Sample records for modules deployed outdoors

  1. Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, T. J.; Deceglie, M. G.; Marion, B.

    2013-06-01

    We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitablemore » water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.« less

  2. Evaluation and Field Assessment of Bifacial Photovoltaic Module Power Rating Methodologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deline, Chris; MacAlpine, Sara; Marion, Bill

    2016-11-21

    1-sun power ratings for bifacial modules are currently undefined. This is partly because there is no standard definition of rear irradiance given 1000 Wm-2 on the front. Using field measurements and simulations, we evaluate multiple deployment scenarios for bifacial modules and provide details on the amount of irradiance that could be expected. A simplified case that represents a single module deployed under conditions consistent with existing 1-sun irradiance standards leads to a bifacial reference condition of 1000 Wm-2 Gfront and 130-140 Wm-2 Grear. For fielded systems of bifacial modules, Grear magnitude and spatial uniformity will be affected by self-shade frommore » adjacent modules, varied ground cover, and ground-clearance height. A standard measurement procedure for bifacial modules is also currently undefined. A proposed international standard is under development, which provides the motivation for this work. Here, we compare outdoor field measurements of bifacial modules with irradiance on both sides with proposed indoor test methods where irradiance is only applied to one side at a time. The indoor method has multiple advantages, including controlled and repeatable irradiance and thermal environment, along with allowing the use of conventional single-sided flash test equipment. The comparison results are promising, showing that the indoor and outdoor methods agree within 1%-2% for multiple rear-irradiance conditions and bifacial module types.« less

  3. Evaluation and Field Assessment of Bifacial Photovoltaic Module Power Rating Methodologies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deline, Chris; MacAlpine, Sara; Marion, Bill

    2016-06-16

    1-sun power ratings for bifacial modules are currently undefined. This is partly because there is no standard definition of rear irradiance given 1000 Wm-2 on the front. Using field measurements and simulations, we evaluate multiple deployment scenarios for bifacial modules and provide details on the amount of irradiance that could be expected. A simplified case that represents a single module deployed under conditions consistent with existing 1-sun irradiance standards leads to a bifacial reference condition of 1000 Wm-2 Gfront and 130-140 Wm-2 Grear. For fielded systems of bifacial modules, Grear magnitude and spatial uniformity will be affected by self-shade frommore » adjacent modules, varied ground cover, and ground-clearance height. A standard measurement procedure for bifacial modules is also currently undefined. A proposed international standard is under development, which provides the motivation for this work. Here, we compare outdoor field measurements of bifacial modules with irradiance on both sides with proposed indoor test methods where irradiance is only applied to one side at a time. The indoor method has multiple advantages, including controlled and repeatable irradiance and thermal environment, along with allowing the use of conventional single-sided flash test equipment. The comparison results are promising, showing that the indoor and outdoor methods agree within 1%-2% for multiple rear-irradiance conditions and bifacial module types.« less

  4. I-V Curves from Photovoltaic Modules Deployed in Tucson

    NASA Astrophysics Data System (ADS)

    Kopp, Emily; Brooks, Adria; Lonij, Vincent; Cronin, Alex

    2011-10-01

    More than 30 Mega Watts of photo-voltaic (PV) modules are connected to the electric power grid in Tucson, AZ. However, predictions of PV system electrical yields are uncertain, in part because PV modules degrade at various rates (observed typically in the range 0% to 3 %/yr). We present I-V curves (PV output current as a function of PV output voltage) as a means to study PV module efficiency, de-ratings, and degradation. A student-made I-V curve tracer for 100-Watt modules will be described. We present I-V curves for several different PV technologies operated at an outdoor test yard, and we compare new modules to modules that have been operated in the field for 10 years.

  5. Wireless Sensor Networks for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liang, Y.; Navarro, M.; Zhong, X.; Villalba, G.; Li, Y.; Davis, T.; Erratt, N.

    2015-12-01

    Wireless sensor networks (WSNs) have gained an increasing interest in a broad range of new scientific research and applications. WSN technologies can provide high resolution for spatial and temporal data which has not been possible before, opening up new opportunities. On the other hand, WSNs, particularly outdoor WSNs in harsh environments, present great challenges for scientists and engineers in terms of the network design, deployment, operation, management, and maintenance. Since 2010, we have been working on the deployment of an outdoor multi-hop WSN testbed for hydrological/environmental monitoring in a forested hill-sloped region at the Audubon Society of Western Pennsylvania (ASWP), Pennsylvania, USA. The ASWP WSN testbed has continuously evolved and had more than 80 nodes by now. To our knowledge, the ASWP WSN testbed represents one of the first known long-term multi-hop WSN deployments in an outdoor environment. As simulation and laboratory methods are unable to capture the complexity of outdoor environments (e.g., forests, oceans, mountains, or glaciers), which significantly affect WSN operations and maintenance, experimental deployments are essential to investigate and understand WSN behaviors and performances as well as its maintenance characteristics under these harsh conditions. In this talk, based on our empirical studies with the ASWP WSN testbed, we will present our discoveries and investigations on several important aspects including WSN energy profile, node reprogramming, network management system, and testbed maintenance. We will then provide our insight into these critical aspects of outdoor WSN deployments and operations.

  6. Field Testing of Thermoplastic Encapsulants in High-Temperature Installations

    DOE PAGES

    Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; ...

    2015-11-01

    Recently there has been increased interest in using thermoplastic encapsulant materials in photovoltaic modules, but concerns have been raised about whether these would be mechanically stable at high temperatures in the field. This has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. We constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass thin-film mock modules using different encapsulant materials, of which only two were formulated to chemically crosslink. One module set was exposed outdoors with thermal insulation on the back side in Mesa, Arizona, in the summer (hot-dry), and an identicalmore » module set was exposed in environmental chambers. High-precision creep measurements (±20 μm) and electrical performance measurements indicate that despite many of these polymeric materials operating in the melt or rubbery state during outdoor deployment, no significant creep was seen because of their high viscosity, lower operating temperature at the edges, and/or the formation of chemical crosslinks in many of the encapsulants with age despite the absence of a crosslinking agent. Only an ethylene-vinyl acetate (EVA) encapsulant formulated without a peroxide crosslinking agent crept significantly. When the crystalline-silicon modules, the physical restraint of the backsheet reduced creep further and was not detectable even for the EVA without peroxide. Because of the propensity of some polymeric materials to crosslink as they age, typical thermoplastic encapsulants would be unlikely to result in creep in the vast majority of installations.« less

  7. Quantifying Water and Energy Fluxes Over Different Urban Land Covers in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Templeton, Nicole P.; Vivoni, Enrique R.; Wang, Zhi-Hua; Schreiner-McGraw, Adam P.

    2018-02-01

    The impact of urbanization on water and energy fluxes varies according to the characteristics of the urban patch type. Nevertheless, urban flux observations are limited, particularly in arid climates, given the wide variety of land cover present in cities. To help address this need, a mobile eddy covariance tower was deployed at three locations in Phoenix, Arizona, to sample the surface energy balance at a parking lot, a xeric landscaping (irrigated trees with gravel) and a mesic landscaping (irrigated turf grass). These deployments were compared to a stationary eddy covariance tower in a suburban neighborhood. A comparison of the observations revealed key differences between the mobile and reference sites tied to the urban land cover within the measurement footprints. For instance, the net radiation varied substantially among the sites in manners consistent with albedo and shallow soil temperature differences. The partitioning of available energy between sensible and latent heat fluxes was modulated strongly by the presence of outdoor water use, with the irrigated turf grass exhibiting the highest evaporative fraction. At this site, we identified a lack of sensitivity of turbulent flux partitioning to precipitation events, which suggests that frequent outdoor water use removes water limitations in an arid climate, thus leading to mesic conditions. Other urban land covers with less irrigation, however, exhibited sensitivity to the occurrence of precipitation, as expected for an arid climate. As a result, quantifying the frequency and magnitude of outdoor water use is critical for understanding evapotranspiration losses in arid urban areas.

  8. Assessment of bifacial photovoltaic module power rating methodologies–inside and out

    DOE PAGES

    Deline, Chris; MacAlpine, Sara; Marion, Bill; ...

    2017-01-26

    One-sun power ratings for bifacial modules are currently undefined. This is partly because there is no standard definition of rear irradiance given 1000 W·m -2 on the front. Using field measurements and simulations, we evaluate multiple deployment scenarios for bifacial modules and provide details on the amount of irradiance that could be expected. A simplified case that represents a single module deployed under conditions consistent with existing one-sun irradiance standards lead to a bifacial reference condition of 1000 W·m -2 G front and 130-140 W·m -2 G rear. For fielded systems of bifacial modules, Grear magnitude and spatial uniformity willmore » be affected by self-shade from adjacent modules, varied ground cover, and ground-clearance height. A standard measurement procedure for bifacial modules is also currently undefined. A proposed international standard is under development, which provides the motivation for this paper. Here, we compare field measurements of bifacial modules under natural illumination with proposed indoor test methods, where irradiance is only applied to one side at a time. The indoor method has multiple advantages, including controlled and repeatable irradiance and thermal environment, along with allowing the use of conventional single-sided flash test equipment. The comparison results are promising, showing that indoor and outdoor methods agree within 1%-2% for multiple rear-irradiance conditions and bifacial module construction. Furthermore, a comparison with single-diode theory also shows good agreement to indoor measurements, within 1%-2% for power and other current-voltage curve parameters.« less

  9. Tracking accuracy assessment for concentrator photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Norton, Matthew S. H.; Anstey, Ben; Bentley, Roger W.; Georghiou, George E.

    2010-10-01

    The accuracy to which a concentrator photovoltaic (CPV) system can track the sun is an important parameter that influences a number of measurements that indicate the performance efficiency of the system. This paper presents work carried out into determining the tracking accuracy of a CPV system, and illustrates the steps involved in gaining an understanding of the tracking accuracy. A Trac-Stat SL1 accuracy monitor has been used in the determination of pointing accuracy and has been integrated into the outdoor CPV module test facility at the Photovoltaic Technology Laboratories in Nicosia, Cyprus. Results from this work are provided to demonstrate how important performance indicators may be presented, and how the reliability of results is improved through the deployment of such accuracy monitors. Finally, recommendations on the use of such sensors are provided as a means to improve the interpretation of real outdoor performance.

  10. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments.

    PubMed

    Stojanovska, Zdenka; Boev, Blazo; Zunic, Zora S; Ivanova, Kremena; Ristova, Mimoza; Tsenova, Martina; Ajka, Sorsa; Janevik, Emilija; Taleski, Vaso; Bossew, Peter

    2016-05-01

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m(3) for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported.

  11. A sun-tracking environmental chamber for the outdoor quantification of CPV modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faiman, David, E-mail: faiman@bgu.ac.il; Melnichak, Vladimir, E-mail: faiman@bgu.ac.il; Bokobza, Dov, E-mail: faiman@bgu.ac.il

    2014-09-26

    The paper describes a sun-tracking environmental chamber and its associated fast electronics, devised for the accurate outdoor characterization of CPV cells, receivers, mono-modules, and modules. Some typical measurement results are presented.

  12. Outdoor module testing and comparison of photovoltaic technologies

    NASA Astrophysics Data System (ADS)

    Fabick, L. B.; Rifai, R.; Mitchell, K.; Woolston, T.; Canale, J.

    A comparison of outdoor test results for several module technologies is presented. The technologies include thin-film silicon:hydrogen alloys (TFS), TFS modules with semitransparent conductor back contacts, and CuInSe2 module prototypes. A method for calculating open-circuit voltage and fill-factor temperature coefficients is proposed. The method relies on the acquisition of large statistical data samples to average effects due to varying insolation level.

  13. A Systematic Review on Recent Advances in mHealth Systems: Deployment Architecture for Emergency Response

    PubMed Central

    2017-01-01

    The continuous technological advances in favor of mHealth represent a key factor in the improvement of medical emergency services. This systematic review presents the identification, study, and classification of the most up-to-date approaches surrounding the deployment of architectures for mHealth. Our review includes 25 articles obtained from databases such as IEEE Xplore, Scopus, SpringerLink, ScienceDirect, and SAGE. This review focused on studies addressing mHealth systems for outdoor emergency situations. In 60% of the articles, the deployment architecture relied in the connective infrastructure associated with emergent technologies such as cloud services, distributed services, Internet-of-things, machine-to-machine, vehicular ad hoc network, and service-oriented architecture. In 40% of the literature review, the deployment architecture for mHealth considered traditional connective infrastructure. Only 20% of the studies implemented an energy consumption protocol to extend system lifetime. We concluded that there is a need for more integrated solutions specifically for outdoor scenarios. Energy consumption protocols are needed to be implemented and evaluated. Emergent connective technologies are redefining the information management and overcome traditional technologies. PMID:29075430

  14. A Systematic Review on Recent Advances in mHealth Systems: Deployment Architecture for Emergency Response.

    PubMed

    Gonzalez, Enrique; Peña, Raul; Avila, Alfonso; Vargas-Rosales, Cesar; Munoz-Rodriguez, David

    2017-01-01

    The continuous technological advances in favor of mHealth represent a key factor in the improvement of medical emergency services. This systematic review presents the identification, study, and classification of the most up-to-date approaches surrounding the deployment of architectures for mHealth. Our review includes 25 articles obtained from databases such as IEEE Xplore, Scopus, SpringerLink, ScienceDirect, and SAGE. This review focused on studies addressing mHealth systems for outdoor emergency situations. In 60% of the articles, the deployment architecture relied in the connective infrastructure associated with emergent technologies such as cloud services, distributed services, Internet-of-things, machine-to-machine, vehicular ad hoc network, and service-oriented architecture. In 40% of the literature review, the deployment architecture for mHealth considered traditional connective infrastructure. Only 20% of the studies implemented an energy consumption protocol to extend system lifetime. We concluded that there is a need for more integrated solutions specifically for outdoor scenarios. Energy consumption protocols are needed to be implemented and evaluated. Emergent connective technologies are redefining the information management and overcome traditional technologies.

  15. Real-time and accelerated outdoor endurance testing of solar cells

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Anagnostou, E.

    1978-01-01

    Materials for solar-cell module construction have been studied on the basis of limited real-time outdoor exposure evaluations. The materials tested included transmission samples, sub-modules, and actual solar cells. The results suggest that glass, fluorinated ethylene propylene, and perfluoroalkoxy are good materials for the covering or encapsulation of solar-cell modules. In all cases, dirt accumulation and cleanability are important factors.

  16. Timothy Silverman | NREL

    Science.gov Websites

    physical phenomena, PV package reliability, and outdoor PV performance. At NREL, he performs research in advanced concept PV modules. Dr. Silverman studies the performance and reliability of PV modules, including previously studied the degradation of solder joints in high-concentration PV and the outdoor performance of

  17. Direct Analysis of JV-Curves Applied to an Outdoor-Degrading CdTe Module (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, D; Kurtz, S.; Ulbrich, C.

    2014-03-01

    We present the application of a phenomenological four parameter equation to fit and analyze regularly measured current density-voltage JV curves of a CdTe module during 2.5 years of outdoor operation. The parameters are physically meaningful, i.e. the short circuit current density Jsc, open circuit voltage Voc and differential resistances Rsc, and Roc. For the chosen module, the fill factor FF degradation overweighs the degradation of Jsc and Voc. Interestingly, with outdoor exposure, not only the conductance at short circuit, Gsc, increases but also the Gsc(Jsc)-dependence. This is well explained with an increase in voltage dependent charge carrier collection in CdTe.

  18. Thin-film-based CdTe photovoltaic module characterization: measurements and energy prediction improvement.

    PubMed

    Lay-Ekuakille, A; Arnesano, A; Vergallo, P

    2013-01-01

    Photovoltaic characterization is a topic of major interest in the field of renewable energy. Monocrystalline and polycrystalline modules are mostly used and, hence characterized since many laboratories have data of them. Conversely, cadmium telluride (CdTe), as thin-film module are, in some circumstances, difficult to be used for energy prediction. This work covers outdoor testing of photovoltaic modules, in particular that regarding CdTe ones. The scope is to obtain temperature coefficients that best predict the energy production. A First Solar (K-275) module has been used for the purposes of this research. Outdoor characterizations were performed at Department of Innovation Engineering, University of Salento, Lecce, Italy. The location of Lecce city represents a typical site in the South Italy. The module was exposed outdoor and tested under clear sky conditions as well as under cloudy sky ones. During testing, the global-inclined irradiance varied between 0 and 1500 W/m(2). About 37,000 I-V characteristics were acquired, allowing to process temperature coefficients as a function of irradiance and ambient temperature. The module was characterized by measuring the full temperature-irradiance matrix in the range from 50 to 1300 W/m(2) and from -1 to 40 W/m(2) from October 2011 to February 2012. Afterwards, the module energy output, under real conditions, was calculated with the "matrix method" of SUPSI-ISAAC and the results were compared with the five months energy output data of the same module measured with the outdoor energy yield facility in Lecce.

  19. Thin-film-based CdTe photovoltaic module characterization: Measurements and energy prediction improvement

    NASA Astrophysics Data System (ADS)

    Lay-Ekuakille, A.; Arnesano, A.; Vergallo, P.

    2013-01-01

    Photovoltaic characterization is a topic of major interest in the field of renewable energy. Monocrystalline and polycrystalline modules are mostly used and, hence characterized since many laboratories have data of them. Conversely, cadmium telluride (CdTe), as thin-film module are, in some circumstances, difficult to be used for energy prediction. This work covers outdoor testing of photovoltaic modules, in particular that regarding CdTe ones. The scope is to obtain temperature coefficients that best predict the energy production. A First Solar (K-275) module has been used for the purposes of this research. Outdoor characterizations were performed at Department of Innovation Engineering, University of Salento, Lecce, Italy. The location of Lecce city represents a typical site in the South Italy. The module was exposed outdoor and tested under clear sky conditions as well as under cloudy sky ones. During testing, the global-inclined irradiance varied between 0 and 1500 W/m2. About 37 000 I-V characteristics were acquired, allowing to process temperature coefficients as a function of irradiance and ambient temperature. The module was characterized by measuring the full temperature-irradiance matrix in the range from 50 to 1300 W/m2 and from -1 to 40 W/m2 from October 2011 to February 2012. Afterwards, the module energy output, under real conditions, was calculated with the "matrix method" of SUPSI-ISAAC and the results were compared with the five months energy output data of the same module measured with the outdoor energy yield facility in Lecce.

  20. Evaluation of the 8310-N-S manufactured by Sutron–Results of bench, temperature, and field deployment testing

    USGS Publications Warehouse

    Kunkle, Gerald A.

    2016-01-07

    The Sutron 8310-N-S (8310) data collection platform (DCP) manufactured by Sutron Corporation was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) for conformance to the manufacturer’s specifications for recording and transmitting data. The 8310-N-S is a National Electrical Manufacturers Association (NEMA)-enclosed DCP with a built-in Geostationary Operational Environmental Satellite transmitter that operates over a temperature range of −40 to 60 degrees Celsius (°C). The evaluation procedures followed and the results obtained are described in this report for bench, temperature chamber, and outdoor deployment testing. The three units tested met the manufacturer’s stated specifications for the tested conditions, but two of the units had transmission errors either during temperature chamber or deployment testing. During outdoor deployment testing, 6.72 percent of transmissions by serial number 1206109 contained errors, resulting in missing data. Transmission errors were also observed during temperature chamber testing with serial number 1208283, at an error rate of 3.22 percent. Overall, the 8310 has good logging capabilities, but the transmission errors are a concern for users who require reliable telemetered data.

  1. Indoorgml - a Standard for Indoor Spatial Modeling

    NASA Astrophysics Data System (ADS)

    Li, Ki-Joune

    2016-06-01

    With recent progress of mobile devices and indoor positioning technologies, it becomes possible to provide location-based services in indoor space as well as outdoor space. It is in a seamless way between indoor and outdoor spaces or in an independent way only for indoor space. However, we cannot simply apply spatial models developed for outdoor space to indoor space due to their differences. For example, coordinate reference systems are employed to indicate a specific position in outdoor space, while the location in indoor space is rather specified by cell number such as room number. Unlike outdoor space, the distance between two points in indoor space is not determined by the length of the straight line but the constraints given by indoor components such as walls, stairs, and doors. For this reason, we need to establish a new framework for indoor space from fundamental theoretical basis, indoor spatial data models, and information systems to store, manage, and analyse indoor spatial data. In order to provide this framework, an international standard, called IndoorGML has been developed and published by OGC (Open Geospatial Consortium). This standard is based on a cellular notion of space, which considers an indoor space as a set of non-overlapping cells. It consists of two types of modules; core module and extension module. While core module consists of four basic conceptual and implementation modeling components (geometric model for cell, topology between cells, semantic model of cell, and multi-layered space model), extension modules may be defined on the top of the core module to support an application area. As the first version of the standard, we provide an extension for indoor navigation.

  2. Behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic modules under outdoor long term exposure

    PubMed Central

    Kichou, Sofiane; Silvestre, Santiago; Nofuentes, Gustavo; Torres-Ramírez, Miguel; Chouder, Aissa; Guasch, Daniel

    2016-01-01

    Four years׳ behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic (PV) modules installed in a relatively dry and sunny inland site with a Continental-Mediterranean climate (in the city of Jaén, Spain) are presented in this article. The shared data contributes to clarify how the Light Induced Degradation (LID) impacts the output power generated by the PV array, especially in the first days of exposure under outdoor conditions. Furthermore, a valuable methodology is provided in this data article permitting the assessment of the degradation rate and the stabilization period of the PV modules. Further discussions and interpretations concerning the data shared in this article can be found in the research paper “Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure” (Kichou et al., 2016) [1]. PMID:26977439

  3. Design and long-term monitoring of DSC/CIGS tandem solar module

    NASA Astrophysics Data System (ADS)

    Vildanova, M. F.; Nikolskaia, A. B.; Kozlov, S. S.; Shevaleevskiy, O. I.

    2015-11-01

    This paper describes the design and development of tandem dye-sensitized/Cu(In, Ga)Se (DSC/CIGS) PV modules. The tandem PV module comprised of the top DSC module and a bottom commercial 0,8 m2 CIGS module. The top DSC module was made of 10 DSC mini-modules with the field size of 20 × 20 cm2 each. Tandem DSC/CIGS PV modules were used for providing the long-term monitoring of energy yield and electrical parameters in comparison with standalone CIGS modules under outdoor conditions. The outdoor test facility, containing solar modules of both types and a measurement unit, was located on the roof of the Institute of Biochemical Physics in Moscow. The data obtained during monitoring within the 2014 year period has shown the advantages of the designed tandem DSC/CIGS PV-modules over the conventional CIGS modules, especially for cloudy weather and low-intensity irradiation conditions.

  4. Passive Sampling for Indoor and Outdoor Exposures to Chlorpyrifos, Azinphos-Methyl, and Oxygen Analogs in a Rural Agricultural Community.

    PubMed

    Gibbs, Jenna L; Yost, Michael G; Negrete, Maria; Fenske, Richard A

    2017-03-01

    Recent studies have highlighted the increased potency of oxygen analogs of organophosphorus pesticides. These pesticides and oxygen analogs have previously been identified in the atmosphere following spray applications in the states of California and Washington. We used two passive sampling methods to measure levels of the ollowing organophosphorus pesticides: chlorpyrifos, azinphos-methyl, and their oxygen analogs at 14 farmworker and 9 non-farmworker households in an agricultural region of central Washington State in 2011. The passive methods included polyurethane foam passive air samplers deployed outdoors and indoors and polypropylene deposition plates deployed indoors. We collected cumulative monthly samples during the pesticide application seasons and during the winter season as a control. Monthly outdoor air concentrations ranged from 9.2 to 199 ng/m 3 for chlorpyrifos, 0.03 to 20 ng/m 3 for chlorpyrifos-oxon, < LOD (limit of detection) to 7.3 ng/m 3 for azinphos-methyl, and < LOD to 0.8 ng/m 3 for azinphos-methyl-oxon. Samples from proximal households (≤ 250 m) had significantly higher outdoor air concentrations of chlorpyrifos, chlorpyrifos-oxon, and azinphos-methyl than did samples from nonproximal households ( p ≤ 0.02). Overall, indoor air concentrations were lower than outdoors. For example, all outdoor air samples for chlorpyrifos and 97% of samples for azinphos-methyl were > LOD. Indoors, only 78% of air samples for chlorpyrifos and 35% of samples for azinphos-methyl were > LOD. Samples from farmworker households had higher indoor air concentrations of both pesticides than did samples from non-farmworker households. Mean indoor and outdoor air concentration ratios for chlorpyrifos and azinphos-methyl were 0.17 and 0.44, respectively. We identified higher levels in air and on surfaces at both proximal and farmworker households. Our findings further confirm the presence of pesticides and their oxygen analogs in air and highlight their potential for infiltration of indoor living environments. Citation: Gibbs JL, Yost MG, Negrete M, Fenske RA. 2017. Passive sampling for indoor and outdoor exposures to chlorpyrifos, azinphos-methyl, and oxygen analogs in a rural agricultural community. Environ Health Perspect 125:333-341; http://dx.doi.org/10.1289/EHP425.

  5. A Movement-Assisted Deployment of Collaborating Autonomous Sensors for Indoor and Outdoor Environment Monitoring

    PubMed Central

    Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał

    2016-01-01

    Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper. PMID:27649186

  6. A Movement-Assisted Deployment of Collaborating Autonomous Sensors for Indoor and Outdoor Environment Monitoring.

    PubMed

    Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał

    2016-09-14

    Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper.

  7. Inflatable nested toroid structure

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J. (Inventor); Raboin, Jasen L. (Inventor); Spexarth, Gary R. (Inventor)

    2011-01-01

    An inflatable structure comprises at least two generally toroidal, inflatable modules. When in a deployed mode, the first, inner module has a major diameter less than that of a second, outer module and is positioned within the inner circumference of the outer module such that the first module is nested circumferentially alongside the second module. The inflatable structure, in a non-deployed, non-inflated mode, is of compact configuration and adapted to be transported to a site of deployment. When deployed, the inflatable structure is of substantially increased interior volume. In one embodiment, access between the interior of the first module and the second module is provided by at least one port or structural pass-through. In another embodiment, the inflatable structure includes at least one additional generally toroidal module external of and circumferentially surrounding the second module.

  8. A critical assessment of passive air samplers for per- and polyfluoroalkyl substances

    NASA Astrophysics Data System (ADS)

    Karásková, Pavlína; Codling, Garry; Melymuk, Lisa; Klánová, Jana

    2018-07-01

    Since their inclusion in the Stockholm Convention, there has been a need for global monitoring of perfluorooctane sulfonate (PFOS), its salts and perfluorooctanesulfonyl fluoride (PFOSF), along with other non-listed highly fluorinated compounds. Passive air samplers (PAS) are ideal for geographic coverage of atmospheric monitoring. The most common type of PAS, using polyurethane foam (PUF) as a sorbent, was primarily developed for non-polar semivolatile organic compounds (SVOCs) and are not well-validated for polar substances such as the per- and polyfluoroalkyl substances (PFASs), however, they have been used for some PFASs, particularly PFOS. To evaluate their applicability, PAS were deployed for measurement of PFASs in outdoor and indoor air. Outdoors, two types of PAS, one consisting of PUF and one of XAD-2 resin, were deployed in an 18-week calibration study in parallel with a low-volume active air sampler (LV-AAS) in a suburban area. Indoors, PUF-PAS were similarly deployed over 12 weeks to evaluate their applicability for indoor monitoring. Samples were analysed for perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonates (PFSAs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs). In outdoor air, 17 out of the 21 PFAS were detected in more than 50% of samples, with a median ∑17PFASs of 18.0 pg m-3 while 20 compounds were detected in indoor air with a median concentration ∑20PFASs of 76.6 pg m-3 using AAS samplers. PFOS was the most common PFAS in the outdoor air while PFBA was most common indoors. Variability between PAS and AAS was observed and comparing gas phase and particle phase separately or in combination did not account for the variation observed. PUF-PAS may still have a valuable use in PFAS monitoring but more work is needed to identify the applicability of passive samplers for ionic PFAS.

  9. Design of Measure and Control System for Precision Pesticide Deploying Dynamic Simulating Device

    NASA Astrophysics Data System (ADS)

    Liang, Yong; Liu, Pingzeng; Wang, Lu; Liu, Jiping; Wang, Lang; Han, Lei; Yang, Xinxin

    A measure and control system for precision deploying pesticide simulating equipment is designed in order to study pesticide deployment technology. The system can simulate every state of practical pesticide deployment, and carry through precise, simultaneous measure to every factor affecting pesticide deployment effects. The hardware and software incorporates a structural design of modularization. The system is divided into many different function modules of hardware and software, and exploder corresponding modules. The modules’ interfaces are uniformly defined, which is convenient for module connection, enhancement of system’s universality, explodes efficiency and systemic reliability, and make the program’s characteristics easily extended and easy maintained. Some relevant hardware and software modules can be adapted to other measures and control systems easily. The paper introduces the design of special numeric control system, the main module of information acquisition system and the speed acquisition module in order to explain the design process of the module.

  10. A module concept for a cable-mesh deployable antenna

    NASA Technical Reports Server (NTRS)

    Meguro, Akira

    1993-01-01

    This paper describes the design, manufacture, and deployment tests of a modular mesh deployable antenna. Reaction forces and moments created by a mesh and cable network are estimated using CASA. Deployment analysis is carried out using DADS. Three types of deployable antenna modules are developed and fabricated. Their design approach and deployment characteristics are also presented. Ground deployment tests are performed to verify design criteria.

  11. Degradation Analysis of Field-Exposed Photovoltaic Modules with Non-Fluoropolymer-Based Backsheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, Michael D; Fairbrother, Andrew; Julien, Scott

    The selection of polymeric materials utilized in photovoltaic (PV) modules has changed relatively little since the inception of the PV industry, with ethylene-vinyl acetate (EVA), polyethylene terephthalate (PET), and fluoropolymer-based laminates being the most widely adopted primary components of the encapsulant and backsheet materials. The backsheet must serve to electrically insulate the solar cells and protect them from the effects of weathering. Due to continued downward pressure on cost, other polymeric materials are being formulated to withstand outdoor exposure for use in backsheets to replace either the PET film, the fluoropoymer film, or both. Because of their relatively recent deployment,more » less is known about their reliability and if they are durable enough to fulfill the greater than or equal to 25 year warranties of current PV modules. This work presents a degradation analysis of field-exposed modules with polyamide- and polyester-based backsheets. Modules were exposed for up to five years in different geographic locations: USA (Maryland, Ohio), China, and Italy. Surface and cross-sectional analysis included visual inspection, colorimetry, glossimetry, and Fourier-transform infrared spectroscopy. Each module experienced different types of degradation depending on the exposure site, even for the same material and module brand. For instance, the polyamide-based backsheet experienced hairline cracking and greater yellowing and chemical changes in China (Changsu, humid subtropical climate), while in Italy (Rome, hot-summer Mediterranean climate) it underwent macroscopic cracking and greater losses in gloss. Spectroscopic studies have permitted identification of degradation products and changes in polymer structure over time. Comparisons are made to fielded modules with fluoropolymer-based backsheets, as well as backsheet materials in accelerated laboratory exposures. Implications for qualification testing and service life prediction of the non-fluoropolymer-based backsheets are discussed.« less

  12. Degradation analysis of field-exposed photovoltaic modules with non-fluoropolymer-based backsheets

    NASA Astrophysics Data System (ADS)

    Fairbrother, Andrew; Julien, Scott; Wan, Kai-Tak; Ji, Liang; Boyce, Kenneth; Merzlic, Sebastien; Lefebvre, Amy; O'Brien, Greg; Wang, Yu; Bruckman, Laura; French, Roger; Kempe, Michael; Gu, Xiaohong

    2017-08-01

    The selection of polymeric materials utilized in photovoltaic (PV) modules has changed relatively little since the inception of the PV industry, with ethylene-vinyl acetate (EVA), polyethylene terephthalate (PET), and fluoropolymer-based laminates being the most widely adopted primary components of the encapsulant and backsheet materials. The backsheet must serve to electrically insulate the solar cells and protect them from the effects of weathering. Due to continued downward pressure on cost, other polymeric materials are being formulated to withstand outdoor exposure for use in backsheets to replace either the PET film, the fluoropoymer film, or both. Because of their relatively recent deployment, less is known about their reliability and if they are durable enough to fulfill the >=25 year warranties of current PV modules. This work presents a degradation analysis of field-exposed modules with polyamide- and polyester-based backsheets. Modules were exposed for up to five years in different geographic locations: USA (Maryland, Ohio), China, and Italy. Surface and cross-sectional analysis included visual inspection, colorimetry, glossimetry, and Fourier-transform infrared spectroscopy. Each module experienced different types of degradation depending on the exposure site, even for the same material and module brand. For instance, the polyamide-based backsheet experienced hairline cracking and greater yellowing and chemical changes in China (Changsu, humid subtropical climate), while in Italy (Rome, hot-summer Mediterranean climate) it underwent macroscopic cracking and greater losses in gloss. Spectroscopic studies have permitted identification of degradation products and changes in polymer structure over time. Comparisons are made to fielded modules with fluoropolymer-based backsheets, as well as backsheet materials in accelerated laboratory exposures. Implications for qualification testing and service life prediction of the non-fluoropolymer-based backsheets are discussed.

  13. Experimental Evaluation of Adaptive Modulation and Coding in MIMO WiMAX with Limited Feedback

    NASA Astrophysics Data System (ADS)

    Mehlführer, Christian; Caban, Sebastian; Rupp, Markus

    2007-12-01

    We evaluate the throughput performance of an OFDM WiMAX (IEEE 802.16-2004, Section 8.3) transmission system with adaptive modulation and coding (AMC) by outdoor measurements. The standard compliant AMC utilizes a 3-bit feedback for SISO and Alamouti coded MIMO transmissions. By applying a 6-bit feedback and spatial multiplexing with individual AMC on the two transmit antennas, the data throughput can be increased significantly for large SNR values. Our measurements show that at small SNR values, a single antenna transmission often outperforms an Alamouti transmission. We found that this effect is caused by the asymmetric behavior of the wireless channel and by poor channel knowledge in the two-transmit-antenna case. Our performance evaluation is based on a measurement campaign employing the Vienna MIMO testbed. The measurement scenarios include typical outdoor-to-indoor NLOS, outdoor-to-outdoor NLOS, as well as outdoor-to-indoor LOS connections. We found that in all these scenarios, the measured throughput is far from its achievable maximum; the loss is mainly caused by a too simple convolutional coding.

  14. Passive Sampling for Indoor and Outdoor Exposures to Chlorpyrifos, Azinphos-Methyl, and Oxygen Analogs in a Rural Agricultural Community

    PubMed Central

    Gibbs, Jenna L.; Yost, Michael G.; Negrete, Maria; Fenske, Richard A.

    2016-01-01

    Background: Recent studies have highlighted the increased potency of oxygen analogs of organophosphorus pesticides. These pesticides and oxygen analogs have previously been identified in the atmosphere following spray applications in the states of California and Washington. Objectives: We used two passive sampling methods to measure levels of the ollowing organophosphorus pesticides: chlorpyrifos, azinphos-methyl, and their oxygen analogs at 14 farmworker and 9 non-farmworker households in an agricultural region of central Washington State in 2011. Methods: The passive methods included polyurethane foam passive air samplers deployed outdoors and indoors and polypropylene deposition plates deployed indoors. We collected cumulative monthly samples during the pesticide application seasons and during the winter season as a control. Results: Monthly outdoor air concentrations ranged from 9.2 to 199 ng/m3 for chlorpyrifos, 0.03 to 20 ng/m3 for chlorpyrifos-oxon, < LOD (limit of detection) to 7.3 ng/m3 for azinphos-methyl, and < LOD to 0.8 ng/m3 for azinphos-methyl-oxon. Samples from proximal households (≤ 250 m) had significantly higher outdoor air concentrations of chlorpyrifos, chlorpyrifos-oxon, and azinphos-methyl than did samples from nonproximal households (p ≤ 0.02). Overall, indoor air concentrations were lower than outdoors. For example, all outdoor air samples for chlorpyrifos and 97% of samples for azinphos-methyl were > LOD. Indoors, only 78% of air samples for chlorpyrifos and 35% of samples for azinphos-methyl were > LOD. Samples from farmworker households had higher indoor air concentrations of both pesticides than did samples from non-farmworker households. Mean indoor and outdoor air concentration ratios for chlorpyrifos and azinphos-methyl were 0.17 and 0.44, respectively. Conclusions: We identified higher levels in air and on surfaces at both proximal and farmworker households. Our findings further confirm the presence of pesticides and their oxygen analogs in air and highlight their potential for infiltration of indoor living environments. Citation: Gibbs JL, Yost MG, Negrete M, Fenske RA. 2017. Passive sampling for indoor and outdoor exposures to chlorpyrifos, azinphos-methyl, and oxygen analogs in a rural agricultural community. Environ Health Perspect 125:333–341; http://dx.doi.org/10.1289/EHP425 PMID:27517732

  15. Calibration of two passive air samplers for monitoring phthalates and brominated flame-retardants in indoor air.

    PubMed

    Saini, Amandeep; Okeme, Joseph O; Goosey, Emma; Diamond, Miriam L

    2015-10-01

    Two passive air samplers (PAS), polyurethane foam (PUF) disks and Sorbent Impregnated PUF (SIP) disks, were characterized for uptake of phthalates and brominated flame-retardants (BFRs) indoors using fully and partially sheltered housings. Based on calibration against an active low-volume air sampler for gas- and particle-phase compounds, we recommend generic sampling rates of 3.5±0.9 and 1.0±0.4 m(3)/day for partially and fully sheltered housing, respectively, which applies to gas-phase phthalates and BFRs as well as particle-phase DEHP (the later for the partially sheltered PAS). For phthalates, partially sheltered SIPs are recommended. Further, we recommend the use of partially sheltered PAS indoors and a deployment period of one month. The sampling rate for the partially sheltered PUF and SIP of 3.5±0.9 m(3)/day is indistinguishable from that reported for fully sheltered PAS deployed outdoors, indicating the role of the housing outdoors to minimize the effect of variable wind velocities on chemical uptake, versus the partially sheltered PAS deployed indoors to maximize chemical uptake where air flow rates are low. Copyright © 2015. Published by Elsevier Ltd.

  16. MPPT implementation for the outdoor characterization of CPV modules

    NASA Astrophysics Data System (ADS)

    Sánchez, Daniel; Mora, Jaime; Calvo-Parra, Gustavo; Martínez, María

    2015-09-01

    One of the challenges during the characterization of CPV modules is to deal with the thermal behavior. During normal operation in the field the concentrator is connected to the inverter and a fraction of the energy coming from the sun is dissipated with the corresponding conversion into electricity. On the other hand, when making the characterization of CPV modules, they are usually kept in VOC between I-V sweeps, what means that none energy is converted into electricity resulting in a higher operation temperature. Current standards, like IEC-62108:2007 and IEC-62670-3 C01 draft, define that, during the outdoor characterization, the CPV module should be connected to an electrical load to maintain it near MPP between I-V sweeps, what simulates normal operating conditions. The easiest solution could be to use mini-inverters, but it is an expensive solution and not easily adaptable to the different technologies. ISFOC has designed and developed a low-cost MPPT equipment that can be easily implemented in an outdoor characterization laboratory. This equipment is compatible with most of the CPV technologies since it covers a wide range of voltage and current values (up to 150V and 10A) and it is able to distinguish between absolute and local MPP what permits working with modules in any phase of development or making shading effects measurements. Currently, the MPPT is implemented and in operation at ISFOC's outdoor laboratory to make the long term validation. But the results obtained up to now are very promising; the equipment is able to maintain the CPV module under test within a ±3% of the expected power in stable conditions and is able to keep tracking the MPP after any variation in the operating conditions, like cloudy periods, tracking incidence, shading, etc.

  17. Deployable Soft Composite Structures.

    PubMed

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-02-19

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel.

  18. Deployable Soft Composite Structures

    PubMed Central

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-01-01

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel. PMID:26892762

  19. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1984-01-01

    Encapsulation materials for solar cells were investigated. The different phases consisted of: (1) identification and development of low cost module encapsulation materials; (2) materials reliability examination; and (3) process sensitivity and process development. It is found that outdoor photothermal aging devices (OPT) are the best accelerated aging methods, simulate worst case field conditions, evaluate formulation and module performance and have a possibility for life assessment. Outdoor metallic copper exposure should be avoided, self priming formulations have good storage stability, stabilizers enhance performance, and soil resistance treatment is still effective.

  20. Design and Testing of CPAS Main Deployment Bag Energy Modulator

    NASA Technical Reports Server (NTRS)

    Mollmann, Catherine

    2017-01-01

    During the developmental testing program for CPAS (Capsule Parachute Assembly System), the parachute system for the NASA Orion Crew Module, simulation revealed that high loads may be experienced by the pilot risers during the most devere deployment conditions. As the role of the pilot parachutes is to deploy the main parachutes, these high loads introduced the possibility of main deployment failure. In order to mitigate these high loads, a set of energy modulators was incorporated between the pilot riser and the main deployment bag. An extensive developmental program was implemented to ensure the adequacy of these energy modulators. After initial design comparisons, the energy modulator design was validated through slow-speed joint tests as well as through high-speed bungee tests. This paper documents the design, development, and results of multiple tests completed on the final design.

  1. Effects of synchronous irradiance monitoring and correction of current-voltage curves on the outdoor performance measurements of photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Hishikawa, Yoshihiro; Doi, Takuya; Higa, Michiya; Ohshima, Hironori; Takenouchi, Takakazu; Yamagoe, Kengo

    2017-08-01

    Precise outdoor measurement of the current-voltage (I-V) curves of photovoltaic (PV) modules is desired for many applications such as low-cost onsite performance measurement, monitoring, and diagnosis. Conventional outdoor measurement technologies have a problem in that their precision is low when the solar irradiance is unstable, hence, limiting the opportunity of precise measurement only on clear sunny days. The purpose of this study is to investigate an outdoor measurement procedure, that can improve both the measurement opportunity and precision. Fast I-V curve measurements within 0.2 s and synchronous measurement of irradiance using a PV module irradiance sensor very effectively improved the precision. A small standard deviation (σ) of the module’s maximum output power (P max) in the range of 0.7-0.9% is demonstrated, based on the basis of a 6 month experiment, that mainly includes partly sunny days and cloudy days, during which the solar irradiance is unstable. The σ was further improved to 0.3-0.5% by correcting the curves for the small variation of irradiance. This indicates that the procedure of this study enables much more reproducible I-V curve measurements than a conventional usual procedure under various climatic conditions. Factors that affect measurement results are discussed, to further improve the precision.

  2. Community Air Sensor Network (CAIRSENSE) Project: Lower Cost, Continuous Ambient Monitoring Methods

    EPA Science Inventory

    Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of numerous sensors across a small geographic area would have potential benefits to supplement existing monitoring networks and ...

  3. Methods for preventing ASR in new construction: results of field exposure sites.

    DOT National Transportation Integrated Search

    2013-12-01

    As part of the FHWA ASR Development and Deployment Program, two sites were built to study ASR in new concrete construction. Concrete blocks were produced with a range of aggregates and cementitious materials and placed on outdoor exposure sites at th...

  4. Environmental Emergency Preparedness. Outdoor Living Skills Series. Instructor Manual.

    ERIC Educational Resources Information Center

    Deaton, Don

    This instructor's manual contains 21 lesson plans to teach advanced skills to cope with emergency outdoor living situations and emphasizes being prepared, rather than survival. Written for the classroom teacher, but adaptable for other youth groups, the module contains subject information, lesson plans with activities, student handouts, a written…

  5. Campground Cookery. Outdoor Living Skills Series. Instructor Manual.

    ERIC Educational Resources Information Center

    Phillips, Jan

    Designed to help instructors lead a group cooking experience at a base camp, the module provides information on food safety, planning a camping trip, building fires, constructing and using outdoor cooking equipment, campground cookery, and positive camping ethics. An extensive section offers 93 recipes to serve 12 people for breakfast (clam…

  6. Effects of outdoor exposure on solar cell modules in the ERDA/NASA Lewis Research Center Systems Test Facility

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Curtis, H. B.; Forestieri, A. F.

    1977-01-01

    The effects of outdoor exposure were determined by comparing standard I-V data obtained for the as-received modules with similar data obtained after removal from the field and cleaning with detergent solution. All modules measured in this way exhibited nonrecoverable degradation in P sub maximum varying from 4 to 7 percent. One module exposed for 41 days exhibited partial cell discoloration, loss of front surface metallization over the discolored portion, and a decrease in P sub maximum of 7 percent, tentatively attributed to cell damage. Measurements before and after cleaning showed a recoverable degradation due to dirt accumulation. This recoverable loss in power was 11 percent after 245 days in the field for one brand of module, 6 percent after 48 days for another brand, and 4 1/2 percent for the third brand.

  7. Outdoor Test Facility and Related Facilities | Photovoltaic Research | NREL

    Science.gov Websites

    advanced or emerging photovoltaic (PV) technologies under simulated, accelerated indoor and outdoor, and evaluate prototype, pre-commercial, and commercial PV modules. One of the major roles of researchers at the OTF is to work with industry to develop uniform and consensus standards and codes for testing PV

  8. Energy scavenging for long-term deployable wireless sensor networks.

    PubMed

    Mathúna, Cian O; O'Donnell, Terence; Martinez-Catala, Rafael V; Rohan, James; O'Flynn, Brendan

    2008-05-15

    The coming decade will see the rapid emergence of low cost, intelligent, wireless sensors and their widespread deployment throughout our environment. While wearable systems will operate over communications ranges of less than a meter, building management systems will operate with inter-node communications ranges of the order of meters to tens of meters and remote environmental monitoring systems will require communications systems and associated energy systems that will allow reliable operation over kilometers. Autonomous power should allow wireless sensor nodes to operate in a "deploy and forget" mode. The use of rechargeable battery technology is problematic due to battery lifetime issues related to node power budget, battery self-discharge, number of recharge cycles and long-term environmental impact. Duty cycling of wireless sensor nodes with long "SLEEP" times minimises energy usage. A case study of a multi-sensor, wireless, building management system operating using the Zigbee protocol demonstrates that, even with a 1 min cycle time for an 864 ms "ACTIVE" mode, the sensor module is already in SLEEP mode for almost 99% of the time. For a 20-min cycle time, the energy utilisation in SLEEP mode exceeds the ACTIVE mode energy by almost a factor of three and thus dominates the module energy utilisation thereby providing the ultimate limit to the power system lifetime. Energy harvesting techniques can deliver energy densities of 7.5 mW/cm(2) from outdoor solar, 100 microW/cm(2) from indoor lighting, 100 microW/cm(3) from vibrational energy and 60 microW/cm(2) from thermal energy typically found in a building environment. A truly autonomous, "deploy and forget" battery-less system can be achieved by scaling the energy harvesting system to provide all the system energy needs. In the building management case study discussed, for duty cycles of less than 0.07% (i.e. in ACTIVE mode for 0.864 s every 20 min), energy harvester device dimensions of approximately 2 cm on a side would be sufficient to supply the complete wireless sensor node energy. Key research challenges to be addressed to deliver future, remote, wireless, chemo-biosensing systems include the development of low cost, low-power sensors, miniaturised fluidic transport systems, anti-bio-fouling sensor surfaces, sensor calibration, reliable and robust system packaging, as well as associated energy delivery systems and energy budget management.

  9. The Influence of Human and Environmental Exposure Factors on Personal NO2 Exposures

    EPA Science Inventory

    The US Environmental Protection Agency’s (US EPA) Detroit Exposure and Aerosol Research Study (DEARS) deployed a total of over 2000 nitrogen dioxide, NO2, passive monitors during 3 years of field data collections. These 24-h based personal, residential outdoor and comm...

  10. Real-time and accelerated outdoor endurance testing of solar cells

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Anagnostou, E.

    1977-01-01

    Real-time and accelerated outdoor endurance testing was performed on a variety of samples of interest to the National Photovoltaic Conversion Program. The real-time tests were performed at seven different sites and the accelerated tests were performed at one of those sites in the southwestern United States. The purpose of the tests were to help evaluate the lifetime of photovoltaic systems. Three types of samples were tested; transmission samples of possible cover materials, sub-modules constructed using these materials attached to solar cells, and solar cell modules produced by the manufacturers for the ERDA program. Results indicate that suitable cover materials are glass, FEP-A and PFA. Dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  11. Robust Depth Image Acquisition Using Modulated Pattern Projection and Probabilistic Graphical Models

    PubMed Central

    Kravanja, Jaka; Žganec, Mario; Žganec-Gros, Jerneja; Dobrišek, Simon; Štruc, Vitomir

    2016-01-01

    Depth image acquisition with structured light approaches in outdoor environments is a challenging problem due to external factors, such as ambient sunlight, which commonly affect the acquisition procedure. This paper presents a novel structured light sensor designed specifically for operation in outdoor environments. The sensor exploits a modulated sequence of structured light projected onto the target scene to counteract environmental factors and estimate a spatial distortion map in a robust manner. The correspondence between the projected pattern and the estimated distortion map is then established using a probabilistic framework based on graphical models. Finally, the depth image of the target scene is reconstructed using a number of reference frames recorded during the calibration process. We evaluate the proposed sensor on experimental data in indoor and outdoor environments and present comparative experiments with other existing methods, as well as commercial sensors. PMID:27775570

  12. Basic Principles--Outdoor Living Skills Series. Instructor Manual.

    ERIC Educational Resources Information Center

    Deaton, Don

    The priorities for sustaining life--air, shelter, water, and food--are the subjects of this module designed to give junior and senior high school students the foundation for safe, rewarding experiences in the outdoors. Five 50-minute lesson plans cover the basic need in order of priority: air (3 minutes to survive without it), shelter (3 hours, in…

  13. Space station structures development

    NASA Technical Reports Server (NTRS)

    Teller, V. B.

    1986-01-01

    A study of three interrelated tasks focusing on deployable Space Station truss structures is discussed. Task 1, the development of an alternate deployment system for linear truss, resulted in the preliminary design of an in-space reloadable linear motor deployer. Task 2, advanced composites deployable truss development, resulted in the testing and evaluation of composite materials for struts used in a deployable linear truss. Task 3, assembly of structures in space/erectable structures, resulted in the preliminary design of Space Station pressurized module support structures. An independent, redundant support system was developed for the common United States modules.

  14. Outdoor field experience with autonomous RPC based stations

    NASA Astrophysics Data System (ADS)

    Lopes, L.; Assis, P.; Blanco, A.; Carolino, N.; Cerda, M. A.; Conceição, R.; Cunha, O.; Ferreira, M.; Fonte, P.; Luz, R.; Mendes, L.; Pereira, A.; Pimenta, M.; Sarmento, R.; Tomé, B.

    2016-09-01

    In the last two decades Resistive Plate Chambers were employed in the Cosmic Ray Experiments COVER-PLASTEX and ARGO/YBJ. In both experiments the detectors were housed indoors, likely owing to gas distribution requirements and the need to control environment variables that directly affect RPCs operational stability. But in experiments where Extended Air Shower (EAS) sampling is necessary, large area arrays composed by dispersed stations are deployed, rendering this kind of approach impossible. In this situation, it would be mandatory to have detectors that could be deployed in small standalone stations, with very rare opportunities for maintenance, and with good resilience to environmental conditions. Aiming to meet these requirements, we started some years ago the development of RPCs for Autonomous Stations. The results from indoor tests and measurements were very promising, both concerning performance and stability under very low gas flow rate, which is the main requirement for Autonomous Stations. In this work we update the indoor results and show the first ones concerning outdoor stable operation. In particular, a dynamic adjustment of the high voltage is applied to keep gas gain constant.

  15. Collaborative Localization Algorithms for Wireless Sensor Networks with Reduced Localization Error

    PubMed Central

    Sahoo, Prasan Kumar; Hwang, I-Shyan

    2011-01-01

    Localization is an important research issue in Wireless Sensor Networks (WSNs). Though Global Positioning System (GPS) can be used to locate the position of the sensors, unfortunately it is limited to outdoor applications and is costly and power consuming. In order to find location of sensor nodes without help of GPS, collaboration among nodes is highly essential so that localization can be accomplished efficiently. In this paper, novel localization algorithms are proposed to find out possible location information of the normal nodes in a collaborative manner for an outdoor environment with help of few beacons and anchor nodes. In our localization scheme, at most three beacon nodes should be collaborated to find out the accurate location information of any normal node. Besides, analytical methods are designed to calculate and reduce the localization error using probability distribution function. Performance evaluation of our algorithm shows that there is a tradeoff between deployed number of beacon nodes and localization error, and average localization time of the network can be increased with increase in the number of normal nodes deployed over a region. PMID:22163738

  16. Procedural considerations for CPV outdoor power ratings per IEC 62670

    NASA Astrophysics Data System (ADS)

    Muller, Matthew; Kurtz, Sarah; Rodriguez, Jose

    2013-09-01

    The IEC Working Group 7 (WG7) is in the process of developing a draft procedure for an outdoor concentrating photovoltaic (CPV) module power rating at Concentrator Standard Operating Conditions (CSOC). WG7 recently achieved some consensus that using component reference cells to monitor/limit spectral variation is the preferred path for the outdoor power rating. To build on this consensus, the community must quantify these spectral limits and select a procedure for calculating and reporting a power rating. This work focuses on statistically comparing several procedures the community is considering in context with monitoring/limiting spectral variation.

  17. Child Adjustment to Parental Combat Deployment: Risk and Resilience Models

    DTIC Science & Technology

    2011-03-01

    if they are not pronounced clearly or are in "baby talk" (for example: "baba" for bottle). FOODS 1. apple 2. banana 3. bread 4. butter 5. cake...blocks 36. book 37. cravons 38. doll 39. 40. pre!;ent 41. 42. swing 43. teddy bear OUTDOORS 44. flower 45. house moon 47. rain 48

  18. Child Adjustment to Parental Combat Deployment: Risk and Resilience Models

    DTIC Science & Technology

    2012-03-01

    include words even if bottle). FOODS 1. apple 2. banana 3. bread 4. butter 5. cake 6. candy 7. cereal 8. cheese 9~ coffee 10. cookie 11...41. 42. swing 43. teddy bear OUTDOORS 44. flower 45. house moon 47. rain 48. sidewalk 49. sky 50. snow 51. star 52 street I’>Uil tree

  19. Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States

    EPA Science Inventory

    Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of a large number of sensors across a small geographic area would have potential benefits to supplement traditional monitoring n...

  20. New insight into the distribution pattern, levels, and risk diagnosis of FRs in indoor and outdoor air at low- and high-altitude zones of Pakistan: Implications for sources and exposure.

    PubMed

    Khan, Muhammad Usman; Besis, Athanasios; Li, Jun; Zhang, Gan; Malik, Riffat Naseem

    2017-10-01

    Data regarding flame retardants (FRs) in indoor and outdoor air and their exposure to population are scarce and especially unknown in the case of Pakistan. The current study was designed to probe FR concentrations and distribution pattern in indoor and outdoor air at different altitudinal zones (DAZs) of Pakistan with special emphasis on their risk to the exposed population. In this study, passive air samplers for the purpose of FR deposition were deployed in indoor and outdoor air at the industrial, rural, and background/colder zones/sites. All the indoor and outdoor air samples collected from DAZs were analyzed for the target FRs (9.30-472.30 pg/m 3 ), showing a decreasing trend as follows: ∑NBFRs > ∑PBDEs > ∑DP. However, significant correlations among FRs in the indoor and outdoor air at DAZs signified a similar source of FR origin that is used in different consumer goods. Furthermore, air mass trajectories revealed that movement of air over industrial area sources influenced concentrations of FRs at rural sites. The FR concentrations, estimated daily intake (EDI) and the hazard quotient (HQ), were recorded to be higher in toddlers than those in adults. In addition, indoor air samples showed higher FR levels, EDI and HQ, than outdoor air samples. An elevated FR concentrations and their prevalent exposure risks were recorded in the industrial zones followed by rural and background zones. The HQ for BDE-47 and BDE-99 in the indoor and outdoor air samples at different industrial and rural sites were recorded to be >1 in toddlers and adults, this further warrants a health risk in the population. However, FR investigation in indoor and outdoor air samples will provide a baseline data in Pakistan to take further steps by the government and agencies for its implementations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repins, Ingrid; Jordan, Dirk; Bosco, Nick

    The proposed new IEC standard will address the test temperature requirements in IEC 61215 (module design), IEC 61730 (module safety), IEC 62790 (junction box safety) and IEC 62852 (connectors), and will provide guidelines to modify temperature limits in four existing standards to better describe module performance in hotter climates. This workshop includes four presentations: Special Testing for Modules Deployed in Hot Use Environments - Are We Doing This in a Low-Cost Way?, Experimental Evidence, Why the highest temperatures are the most stressful to PV modules during thermal cycling, and Safety Aspects for Modules Deployed in Hot Use Environments.

  2. Integrated RGB laser light module for autostereoscopic outdoor displays

    NASA Astrophysics Data System (ADS)

    Reitterer, Jörg; Fidler, Franz; Hambeck, Christian; Saint Julien-Wallsee, Ferdinand; Najda, Stephen; Perlin, Piotr; Stanczyk, Szymon; Czernecki, Robert; McDougall, Stewart D.; Meredith, Wyn; Vickers, Garrie; Landles, Kennedy; Schmid, Ulrich

    2015-02-01

    We have developed highly compact RGB laser light modules to be used as light sources in multi-view autostereoscopic outdoor displays and projection devices. Each light module consists of an AlGaInP red laser diode, a GaInN blue laser diode, a GaInN green laser diode, as well as a common cylindrical microlens. The plano-convex microlens is a so-called "fast axis collimator", which is widely used for collimating light beams emitted from high-power laser diode bars, and has been optimized for polychromatic RGB laser diodes. The three light beams emitted from the red, green, and blue laser diodes are collimated in only one transverse direction, the so-called "fast axis", and in the orthogonal direction, the so-called "slow axis", the beams pass the microlens uncollimated. In the far field of the integrated RGB light module this produces Gaussian beams with a large ellipticity which are required, e.g., for the application in autostereoscopic outdoor displays. For this application only very low optical output powers of a few milliwatts per laser diode are required and therefore we have developed tailored low-power laser diode chips with short cavity lengths of 250 μm for red and 300 μm for blue. Our RGB laser light module including the three laser diode chips, associated monitor photodiodes, the common microlens, as well as the hermetically sealed package has a total volume of only 0.45 cm³, which to our knowledge is the smallest RGB laser light source to date.

  3. Performance of 7-cells Dye Sensitized Solar Module in Z-type Series Interconnection

    NASA Astrophysics Data System (ADS)

    Nur Anggraini, Putri; Muliani, Lia; Maulani Nursam, Natalita; Hidayat, Jojo

    2018-01-01

    Dye sensitized solar cells (DSSC) is becoming attractive research topic as third generation solar cells technology since it provides clean energy and low cost fabrication. In this study, DSSC was fabricated into module scale, which is important for practical applications. The module was prepared in sandwich structure consisting of TiO2 working electrode and Pt counter electrode on conductive substrate with an area of 100 mm x 100 mm, which was distributed into seven active cells. TiO2 paste was deposited on FTO glass as working electrode with a size of 10 mm x 98 mm per unit cell by screen printing method. Each cell was connected in Z-type series that able to produce high voltage. I - V measurement was applied in two methods consisting of laboratory testing using sun simulator under 500 W/m2 of illumination and outdoor testing using a digital multimeter under direct sunlight. The result shows that DSSC module has photoconversion efficiency of 1.08% and 1.17% for laboratory and outdoor testing, respectively. The module was also tested in three different times to monitor its stability performance.

  4. SinterHab

    NASA Astrophysics Data System (ADS)

    Rousek, Tomáš; Eriksson, Katarina; Doule, Ondřej

    2012-05-01

    This project describes a design study for a core module on a Lunar South Pole outpost, constructed by 3D printing technology with the use of in-situ resources and equipped with a bio-regenerative life support system. The module would be a hybrid of deployable (CLASS II) and in-situ built (CLASS III) structures. It would combine deployable membrane structures and pre-integrated rigid elements with a sintered regolith shell for enhanced radiation and micrometeorite shielding. The closed loop ecological system would support a sustainable presence on the Moon with particular focus on research activities. The core module accommodates from four to eight people, and provides laboratories as a test bed for development of new lunar technologies directly in the environment where they will be used. SinterHab also includes an experimental garden for development of new bio-regenerative life support system elements. The project explores these various concepts from an architectural point-of-view particularly, as they constitute the building, construction and interior elements. The construction method for SinterHab is based on 3D printing by sintering of the lunar regolith. Sinterator robotics 3D printing technology proposed by NASA JPL enables construction of future generations of large lunar settlements with little imported material and the use of solar energy. The regolith is processed, placed and sintered by the Sinterator robotics system which combines the NASA ATHLETE and the Chariot remotely controlled rovers. Microwave sintering creates a rigid structure in the form of walls, vaults and other architectural elements. The interior is coated with a layer of inflatable membranes inspired by the TransHab project. The life-support system is mainly bio-regenerative and several parts of the system are intrinsically multifunctional and serve more than one purpose. The plants for food production are also an efficient part of atmosphere revitalization and water treatment. Moreover, the plants will be used as a "winter garden" for psychological and recreational purposes. The water in the revitalization system has a multifunctional use, as radiation shielding in the safe-haven habitat core. The garden module creates an artificial outdoor environment mitigating the notion of confinement on the lunar surface. Fiber optics systems and plasma lamps are used for transmission of natural and artificial light into the interior.

  5. Outdoor and indoor particle characterization from a large and uncontrolled combustion of a tire landfill.

    PubMed

    Artíñano, B; Gómez-Moreno, F J; Díaz, E; Amato, F; Pandolfi, M; Alonso-Blanco, E; Coz, E; García-Alonso, S; Becerril-Valle, M; Querol, X; Alastuey, A; van Drooge, B L

    2017-09-01

    A large and uncontrolled fire of a tire landfill started in Seseña (Toledo, Spain) on May 13, 2016. An experimental deployment was immediately launched in the area for measuring regulated and non-standard air quality parameters to assess the potential impact of the plume at local and regional levels. Outdoor and indoor measurements of different parameters were carried out at a near school, approximately 700m downwind the burning tires. Real time measurements of ambient black carbon (BC) and total number particle concentrations were identified as good tracers of the smoke plume. Simultaneous peaks allowed us to characterize situations of the plume impact on the site. Outdoor total particle number concentrations reached in these occasions 3.8×10 5 particlescm -3 (on a 10min resolution) whereas the indoor concentration was one order of magnitude lower. BC mass concentrations in ambient air were in the range of 2 to 7μgm -3 , whereas concentrations<2μgm -3 were measured indoor. Indoor and outdoor deposited inhalable dust was sampled and chemically characterized. Both indoor and outdoor dust was enriched in tire components (Zn, sulfate) and PAHs associated to the tire combustion process. Infiltration processes have been documented for BC and particle number concentrations causing increases in indoor concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The OBIS Trail Module. Trial Version.

    ERIC Educational Resources Information Center

    Fairwell, Kay, Ed.; And Others

    Designed to allow youngsters aged 10 to 15 to experience the challenges and problems environmental investigators might face making an environmental impact study, the trial version of the Outdoor Biology Instructional Strategies (OBIS) Trail Module focuses on aspects of construction-related environment problems. Four activities are included in the…

  7. A Detailed Analysis of Visible Defects Formed in Commercial Silicon Thin-Film Modules During Outdoor Exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Andreas; Johnston, Steve; Olivera-Pimentel, Guillermo

    We analyzed defects in silicon thin-film tandem (a-Si:H/..mu..c-Si:H) modules from an outdoor installation in India. The inspection of several affected modules reveals that most of the defects -- which optically appear as bright spots -- were formed primarily nearby the separation and series connection laser lines. Cross-sectional SEM analysis reveals that the bright spots emerge due to electrical isolation, caused by a delamination of the cell from the front TCO in the affected area. In addition, the morphology of the a-Si:H top cell differs in the delaminated area compared to the surrounding unaffected area. We propose that these effects aremore » potentially caused by an explosive and thermally triggered liberation of hydrogen from the a-Si:H layer. Electrical and thermal measurements reveal that these defects can impact the cell performance significantly.« less

  8. Indoor and outdoor characterization of the HIRL prototype: An innovative highly integrated receiverless LCPV concept using multijunction cells

    NASA Astrophysics Data System (ADS)

    Weick, Clément; De Betelu, Romain; Tauzin, Aurélie; Baudrit, Mathieu

    2017-09-01

    Concentrator photovoltaic (CPV) modules are composed of many components and interfaces, which require complex assembling processes, resulting in fabrication complexity and often lack of reliability. The present work addresses these issues, by proposing an innovative low concentration photovoltaic (LCPV) concept. In particular, the purpose here is to develop a module with a high level of integration by lowering the number of components and interfaces. The mirror used as the concentrator optic is multifunctional, as it combines thermal, structural and optical function. Moreover, the proposed design claims to demonstrate the applicability of reliable flat PV processes (such as lamination and cells interconnections), for the manufacturing of this LCPV module. The paper describes both indoor and outdoor characterization of a new prototype. Performances by means of IV curves tracing will be discussed regarding the losses distribution within the optical chain.

  9. Predicting the potential moisture ingress characteristics of polyisobutylene based edge seals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kempe, Michael D.

    2016-09-01

    Photovoltaic devices are often sensitive to moisture and must be packaged in such a way as to limit moisture ingress for 25 years or more. Typically, this is accomplished through the use of impermeable front and backsheets (e.g., glass sheets or metal foils). However, this will still allow moisture ingress between the sheets from the edges. Attempts to hermetically seal with a glass frit or similarly welded bonds at the edge have had problems with costs and mechanical strength. Because of this, low diffusivity polyisobutylene materials filled with desiccant are typically used. Although it is well known that these materials will substantially delay moisture ingress, correlating that to outdoor exposure has been difficult. Here, we use moisture ingress measurements at different temperatures and relative humidities to find fit parameters for a moisture ingress model for an edge-seal material. Then, using meteorological data, a finite element model is used to predict the moisture ingress profiles for hypothetical modules deployed in different climates and mounting conditions, assuming no change in properties of the edge-seal as a function of aging.

  10. On the relevance of using open wireless sensor networks in environment monitoring.

    PubMed

    Bagula, Antoine B; Inggs, Gordon; Scott, Simon; Zennaro, Marco

    2009-01-01

    This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atmaram, G.H.; Ventre, G.G.; Maytrott, C.W.

    This study evaluates the long-term effects of outdoor exposure and high voltage operation on the performance and reliability of flat-plate crystalline silicon photovoltaic modules. The photovoltaic modules selected for this study were employed in the arrays of grid-connected residential photovoltaic prototype systems for over ten years at the Southeast Regional Experiment Station (SE RES) in Cape Canaveral, Florida. The modules included Mobil Ra-180 EFG ribbon silicon modules, Photowatt MU-7061 and ARCO 16-2000 single-crystal silicon modules with round cells. The Mobil and Photowatt modules were Block 5 generation, while the ARCO modules were Block 4 generation type. In all three typesmore » of photovoltaic modules (Mobil, Photowatt and ARCO), no significant power loss occurred over more than ten years of outdoor operation in the warm, humid and ocean-salt environments of coastal Florida. However, the wet insulation resistance values of a majority of the modules in all three types were lower than the values recommended in IEEE Standard 1262. This indicates potential future safety, reliability and lifetime related problems. The visual defects were more pronounced in the ARCO modules, which were manufactured in 1980 than in the Mobil and Photowatt modules, both of which were fabricated in 1983. The ARCO modules showed significant damage to the back surface tedlar in the form of tearing of the tedlar. All of the Mobil and most of the ARCO modules showed significant browning of the encapsulant, while only about half of the Photowatt modules showed significant encapsulant browning. The encapsulant discoloration generally did not appear to have any effect on the modules` power generation.« less

  12. Evaluation of cleaners for photovoltaic modules exposed in an outdoor environment

    NASA Technical Reports Server (NTRS)

    Knapp, W. D.

    1979-01-01

    Power recovery of silicone encapsulated and glass covered photovoltaic modules, exposed for two years to a suburban environment, was measured after washing with a variety of cleaners including detergents, abrasive soap, and hydrocarbon solvents. Silicone encapsulated modules in operating environments may experience significant power losses or require extensive periodic cleaning. Glass front-faced modules in similar situations are much less affected. Organic hydrocarbon solvents or abrasives were found to be about five times more effective than mild detergents in cleaning encapsulated modules.

  13. Observations on persistent organic pollutants in indoor and outdoor air using passive polyurethane foam samplers

    NASA Astrophysics Data System (ADS)

    Bohlin, Pernilla; Jones, Kevin C.; Tovalin, Horacio; Strandberg, Bo

    Air quality data of persistent organic pollutants (POPs) indoors and outdoors are sparse or lacking in several parts of the world, often hampered by the cost and inconvenience of active sampling techniques. Cheap and easy passive air sampling techniques are therefore helpful for reconnaissance surveys. As a part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) project in Mexico City Metropolitan Area in 2006, a range of POPs (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs)) were analyzed in polyurethane foam (PUF) disks used as passive samplers in indoor and outdoor air. Results were compared to those from samplers deployed simultaneously in Gothenburg (Sweden) and Lancaster (United Kingdom). Using sampling rates suggested in the literature, the sums of 13 PAHs in the different sites were estimated to be 6.1-180 ng m -3, with phenanthrene as the predominant compound. Indoor PAH levels tended to be higher in Gothenburg and outdoor levels higher in Mexico City. The sum of PCBs ranged 59-2100 ng m -3, and seemed to be highest indoors in Gothenburg and Lancaster. PBDE levels (sum of seven) ranged 0.68-620 ng m -3, with the highest levels found in some indoor locations. OCPs (i.e. DDTs, HCHs, and chlordanes) were widely dispersed both outdoors and indoors at all three studied areas. In Gothenburg all POPs tended to be higher indoors than outdoors, while indoor and outdoor levels in Mexico City were similar. This could be due to the influence of indoor and outdoor sources, air exchange rates, and lifestyle factors. The study demonstrates how passive samplers can provide quick and cheap reconnaissance data simultaneously at many locations which can shed light on sources and other factors influencing POP levels in air, especially for the gaseous fractions.

  14. The design and development of a rectangular, shingle-type photovoltaic module

    NASA Astrophysics Data System (ADS)

    Shepard, N. F., Jr.

    A shingle-type photovoltaic module has been designed and developed to meet the requirements of specifications for residential applications. The module is ideally suited for installation directly to the sheathing of a sloping, south-facing roof of a residential, industrial, or commercial building. The design requirements are examined, taking into account also module safety requirements. Aspects of module design and analysis are discussed, giving attention to installation details, solar cells and electrical circuit design, the encapsulation system, substrate lamination, and the module-to-module interconnecting cable. Details of module assembly experience and test and outdoor exposure experience are also considered.

  15. The design and development of a rectangular, shingle-type photovoltaic module

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1982-01-01

    A shingle-type photovoltaic module has been designed and developed to meet the requirements of specifications for residential applications. The module is ideally suited for installation directly to the sheathing of a sloping, south-facing roof of a residential, industrial, or commercial building. The design requirements are examined, taking into account also module safety requirements. Aspects of module design and analysis are discussed, giving attention to installation details, solar cells and electrical circuit design, the encapsulation system, substrate lamination, and the module-to-module interconnecting cable. Details of module assembly experience and test and outdoor exposure experience are also considered.

  16. View of the Laser Ranging Retro Reflector deployed by Apollo 14 astronauts

    NASA Image and Video Library

    1971-02-05

    AS14-67-9386 (5 Feb. 1971) --- A close-up view of the laser ranging retro reflector (LR3) which the Apollo 14 astronauts deployed on the moon during their lunar surface extravehicular activity (EVA). While astronauts Alan B. Shepard Jr., commander, and Edgar D. Mitchell, lunar module pilot, descended in the Lunar Module (LM) to explore the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  17. The first batteryless, solar-powered cardiac pacemaker.

    PubMed

    Haeberlin, Andreas; Zurbuchen, Adrian; Walpen, Sébastien; Schaerer, Jakob; Niederhauser, Thomas; Huber, Christoph; Tanner, Hildegard; Servatius, Helge; Seiler, Jens; Haeberlin, Heinrich; Fuhrer, Juerg; Vogel, Rolf

    2015-06-01

    Contemporary pacemakers (PMs) are powered by primary batteries with a limited energy-storing capacity. PM replacements because of battery depletion are common and unpleasant and bear the risk of complications. Batteryless PMs that harvest energy inside the body may overcome these limitations. The goal of this study was to develop a batteryless PM powered by a solar module that converts transcutaneous light into electrical energy. Ex vivo measurements were performed with solar modules placed under pig skin flaps exposed to different irradiation scenarios (direct sunlight, shade outdoors, and indoors). Subsequently, 2 sunlight-powered PMs featuring a 4.6-cm(2) solar module were implanted in vivo in a pig. One prototype, equipped with an energy buffer, was run in darkness for several weeks to simulate a worst-case scenario. Ex vivo, median output power of the solar module was 1963 μW/cm(2) (interquartile range [IQR] 1940-2107 μW/cm(2)) under direct sunlight exposure outdoors, 206 μW/cm(2) (IQR 194-233 μW/cm(2)) in shade outdoors, and 4 μW/cm(2) (IQR 3.6-4.3 μW/cm(2)) indoors (current PMs use approximately 10-20 μW). Median skin flap thickness was 4.8 mm. In vivo, prolonged SOO pacing was performed even with short irradiation periods. Our PM was able to pace continuously at a rate of 125 bpm (3.7 V at 0.6 ms) for 1½ months in darkness. Tomorrow's PMs might be batteryless and powered by sunlight. Because of the good skin penetrance of infrared light, a significant amount of energy can be harvested by a subcutaneous solar module even indoors. The use of an energy buffer allows periods of darkness to be overcome. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  18. Design and Construction of a Modular Lunar Base

    NASA Astrophysics Data System (ADS)

    Grandl, Dipl. Ing Werner

    DESIGN and CONSTRUCTION of a MODULAR LUNAR BASE Purpose: The Lunar Base Design Study is a concept for the return of humans from 2020 to the end of the century. Structure: The proposed lunar station is built of 6 cylindrical modules, each one 17 m long and 6 m in diameter. Each module is made of aluminium sheets and trapezoidal aluminium sheeting and has a weight (on earth) of approx.10.2 tonnes, including the interior equipment and furnishing. The outer wall of the cylinders is built as a double-shell system, stiffened by radial bulkheads. 8 astronauts or scientists can live and work in the station, using the modules as follows: -1 Central Living Module -2 Living Quater Modules, with private rooms for each person -1 Laboratory Module for scientific research and engineering -1 Airlock Module, containing outdoor equipment, space suits, etc. -1 Energy Plant Module, carrying solar panels a small nuclear reactor and antennas for communication. Shielding: To protect the astronauts micrometeorites and radiation, the caves between the two shells of the outer wall are filled with a 0.6 m thick layer or regolith in situ by a small teleoperated digger vehicle. Using lunar material for shielding the payload for launching can be minimized. Launch and Transport: For launching a modified ARIANE 5 launcher or similar US, Russian, Chinese or Indian rockets can be used. For the flight from Earth Orbit to Lunar Orbit a "Space-Tug", which is deployed in Earth Orbit, can be used. To land the modules on the lunar surface a "Teleoperated Rocket Crane" has been developed by the author. This vehicle will be assembled in lunar orbit and is built as a structural framework, carrying rocket engines, fuel tanks and teleoperated crawlers to move the modules on the lunar surface. To establish this basic stage of the Lunar Base 11 launches are necessary: -1 Lunar Orbiter, a small manned spaceship (3 astronauts) -1 Manned Lander and docking module for the orbiter -1 Teleoperated Rocket Crane -6 Lunar Base Modules -1 machinery, teleoperated digger and excavator vehicle, etc. -1 scientific equipment, Lunar Rover, etc. Future: Due to its modular design the LUNAR BASE can be enlarged in stages, finally becom-ing an "urban structure" for dozens of astronauts, scientists and even tourists, always using similar launchers and machinery with current technoloy. Werner Grandl

  19. Art Concepts - Apollo VIII

    NASA Image and Video Library

    1968-12-02

    S68-51306 (December 1968) --- North American Rockwell artist's concept illustrating a phase of the scheduled Apollo 8 lunar orbit mission. Here, the Apollo 8 spacecraft lunar module adapter (SLA) panels, which have supported the Command and Service Modules, are jettisoned. This is done by astronauts firing the service module reaction control engines. A signal simultaneously deploys and jettisons the panels, separating the spacecraft from the SLA and deploying the high gain (deep space) antenna.

  20. Rapid Transmeridian Deployment: Cognitive Performance and Chronobiologic Prophylaxis for Circadian Dyschronism,

    DTIC Science & Technology

    1980-06-01

    shifted LD schedules. Similarly, post-flight participation in outdoor group activities can hasten the adaptation process following transmeridian flight...fruit juice, milk, and decaffeinated cof- fee; in fact, the majority ate nothing. Napping was prohibited throughout the day. Upon boarding the...to-day variation of individuals and may obfuscate the oscillatory nature of the adjust- ment process by Implying a smooth, gradual transition

  1. Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface

    NASA Image and Video Library

    1969-11-19

    Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.

  2. Astronaut Alan Bean deploys Lunar Surface Magnetometer on lunar surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, deploys the Lunar Surface Magnetometer (LSM) during the first Apollo 12 extravehicular activity on the Moon. The LSM is a component of the Apollo Lunar Surface Experiments Package (ALSEP). The Lunar Module can be seen in the left background.

  3. Basic Fishing. Aquatic Skills Series. Instructor Manual.

    ERIC Educational Resources Information Center

    Staton, Robert D., Jr.

    Part of a series of self-contained instructional units to teach Missourians how to use outdoor resources wisely and skillfully, this module of the Aquatic Skills Series introduces the basics of sport fishing using spin-casting equipment. The instructor may modify the module to meet the individual needs of class members based on age, experience…

  4. The Influence of PV Module Materials and Design on Solder Joint Thermal Fatigue Durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosco, Nick; Silverman, Timothy J.; Kurtz, Sarah

    Finite element model (FEM) simulations have been performed to elucidate the effect of flat plate photovoltaic (PV) module materials and design on PbSn eutectic solder joint thermal fatigue durability. The statistical method of Latin Hypercube sampling was employed to investigate the sensitivity of simulated damage to each input variable. Variables of laminate material properties and their thicknesses were investigated. Using analysis of variance, we determined that the rate of solder fatigue was most sensitive to solder layer thickness, with copper ribbon and silicon thickness being the next two most sensitive variables. By simulating both accelerated thermal cycles (ATCs) and PVmore » cell temperature histories through two characteristic days of service, we determined that the acceleration factor between the ATC and outdoor service was independent of the variables sampled in this study. This result implies that an ATC test will represent a similar time of outdoor exposure for a wide range of module designs. This is an encouraging result for the standard ATC that must be universally applied across all modules.« less

  5. Long Term Outdoor Testing of Low Concentration Solar Modules

    NASA Astrophysics Data System (ADS)

    Fraas, Lewis; Avery, James; Minkin, Leonid; Huang, H. X.; Hebrink, Tim; Hurt, Rik; Boehm, Robert

    2011-12-01

    A 1-axis carousel tracker equipped with four 3-sun low-concentration mirror modules has now been under test outdoors at the University of Nevada in Las Vegas (UNLV) for three years. There are three unique features associated with this unit. First, simple linear mirrors are used to reduce the amount of expensive single crystal silicon in order to potentially lower the module cost while potentially maintaining cell efficiencies over 20% and high module efficiency. Simple linear mirrors also allow the use of a single axis tracker. Second, the azimuth carousel tracker is also unique allowing trackers to be used on commercial building rooftops. Third, an experiment is underway comparing aluminum based mirrors with novel 3M Company multilayer polymeric mirrors which are potentially very low cost. Comparing the data from March of 2008 through March of 2011 shows that the aluminum mirror degradation to date is negligible and that the carousel tracker has been operating continuously and reliable. Also, no degradation has been observed for the 3M brand cool mirrors after one year in use.

  6. Artists concept of Apollo 15 crewmen performing deployment of LRV

    NASA Image and Video Library

    1971-06-26

    S71-38188 (26 June 1971) --- An artist's concept showing the Apollo 15 mission commander and the lunar module pilot performing deployment of the Lunar Roving Vehicle (LRV) on the lunar surface. The figure on the left represents astronaut James B. Irwin, lunar module pilot, who here is maintaining a constant pull on the deployment cable to help the LRV unfold, while astronaut David R. Scott (right), commander, pulls the tapes that lower the LRV to the surface. (This is the third in a series of Grumman Aerospace Corporation artist's concepts telling the lunar surface LRV deployment story of the Apollo 15 mission).

  7. Evaluation and guidelines for using polyurethane foam (PUF) passive air samplers in double-dome chambers to assess semi-volatile organic compounds (SVOCs) in non-industrial indoor environments.

    PubMed

    Bohlin, Pernilla; Audy, Ondřej; Škrdlíková, Lenka; Kukučka, Petr; Vojta, Šimon; Přibylová, Petra; Prokeš, Roman; Čupr, Pavel; Klánová, Jana

    2014-11-01

    Indoor air pollution has been recognized as an important risk factor for human health, especially in areas where people tend to spend most of their time indoors. Many semi-volatile organic compounds (SVOCs) have primarily indoor sources and are present in orders of magnitude higher concentrations indoors than outdoors. Despite this, awareness of SVOCs in indoor air and assessment of the link between indoor concentrations and human health have lagged behind those of outdoor air. This is partially related to challenges associated with indoor sampling of SVOCs. Passive air samplers (PASs), which are widely accepted in established outdoor air monitoring networks, have been used to fill the knowledge gaps on indoor SVOCs distribution. However, their applicability for indoor environments and the assessment of human health risks lack sufficient experimental data. To address this issue, we performed an indoor calibration study of polyurethane foam (PUF) PAS deployed in a double-dome chamber, covering both legacy and new SVOC classes. PUF-PAS and a continuous low-volume active air sampler (AAS) were co-deployed for a calibration period of twelve weeks. Based on the results from this evaluation, PUF-PAS in a double-bowl chamber is recommended for indoor sampling and health risk assessment of gas phase SVOCs, including novel brominated flame retardants (nBFR) providing sufficient exposure time is applied. Data for particle associated SVOCs suffered from significant uncertainties caused by low level of detection and low precision in this study. A more open chamber design for indoor studies may allow for higher sampling rates (RS) and better performance for the particle associated SVOCs.

  8. Optimal sensor placement for deployable antenna module health monitoring in SSPS using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Zhang, Xuepan; Huang, Xiaoqi; Cheng, ZhengAi; Zhang, Xinghua; Hou, Xinbin

    2017-11-01

    The concept of space solar power satellite (SSPS) is an advanced system for collecting solar energy in space and transmitting it wirelessly to earth. However, due to the long service life, in-orbit damage may occur in the structural system of SSPS. Therefore, sensor placement layouts for structural health monitoring should be firstly considered in this concept. In this paper, based on genetic algorithm, an optimal sensor placement method for deployable antenna module health monitoring in SSPS is proposed. According to the characteristics of the deployable antenna module, the designs of sensor placement are listed. Furthermore, based on effective independence method and effective interval index, a combined fitness function is defined to maximize linear independence in targeted modes while simultaneously avoiding redundant information at nearby positions. In addition, by considering the reliability of sensors located at deployable mechanisms, another fitness function is constituted. Moreover, the solution process of optimal sensor placement by using genetic algorithm is clearly demonstrated. At last, a numerical example about the sensor placement layout in a deployable antenna module of SSPS is presented, which by synthetically considering all the above mentioned performances. All results can illustrate the effectiveness and feasibility of the proposed sensor placement method in SSPS.

  9. Indoor and outdoor weathering of PV-modules

    NASA Astrophysics Data System (ADS)

    Koehl, Michael; Heck, Markus; Philipp, Daniel; Weiss, Karl-Anders; Ferrara, Claudio; Herrmann, Werner

    2008-08-01

    Manufacturers of PV-modules usually give a warranty for at least 20 years. There is still only little knowledge about the lifetime of newly developed modules, however. How do they cope with snow, desert-climate or tropical humidity? In order to answer this question the Fraunhofer-Institute for Solar Energy Systems and TUV Rheinland have installed different outdoor exposure sites where modules have to stand extreme climates: high temperatures with high differences between day and night in the Negev desert at Israel, snow, wind and changing irradiation in the German Alps, and high humidity at warm temperatures at Indonesia. Commercial modules from industrial partners as well as innovative modules with different combinations of encapsulants and back-sheets were exposed. UV-irradiation, solar-irradiation, ambient- and module temperatures, ambient humidity and wind speed is measured and collected at a central server in Germany. These data are the basis for the calculation of integral loads for the comparison of different climatic regions and for an estimation of the service life, an exciting field of work since decades. Results from the evaluation of the monitoring during the fist 12 months of exposure are compared. Fluorescent lamps are chosen for accelerated UV-testing, since they simulate the UV-irradiation of the sun well while emitting less thermal radiation than Xenon-lamps. The UV-source is designed for use in climatic cabinets for damp-heat testing with UV.

  10. Urban outdoor water use and response to drought assessed through mobile energy balance and vegetation greenness measurements

    NASA Astrophysics Data System (ADS)

    Liang, L. L.; Anderson, R. G.; Shiflett, S. A.; Jenerette, G. D.

    2017-08-01

    Urban vegetation provides many highly valued ecosystem services but also requires extensive urban water resources. Increasingly, cities are experiencing water limitations and managing outdoor urban water use is an important concern. Quantifying the water lost via evapotranspiration (ET) is critical for urban water management and conservation, especially in arid or semi-arid regions. In this study, we deployed a mobile energy balance platform to measure evaporative fraction throughout Riverside, California, a warm, semi-arid, city. We observed the relationship between evaporative fraction and satellite derived vegetation index across 29 sites, which was then used to map whole-city ET for a representative mid-summer period. Resulting ET distributions were strongly associated with both neighborhood population density and income. By comparing 2014 and 2015 summer-period water uses, our results show 7.8% reductions in evapotranspiration, which were also correlated with neighborhood demographic characteristics. Our findings suggest a mobile energy balance measurement platform coupled with satellite imagery could serve as an effective tool in assessing the outdoor water use at neighborhood to whole city scales.

  11. The Successful Deployment of a New Sub-Seafloor Observatory

    NASA Astrophysics Data System (ADS)

    Lado Insua, T.; Moran, K.; Kulin, I.; Farrington, S.; Newman, J. B.; Riedel, M.; Iturrino, G. J.; Masterson, W. A.; Furman, C. R.; Klaus, A.; Storms, M.; Attryde, J.; Hetmaniak, C.; Huey, D.

    2013-12-01

    The Simple Cabled Instrument for Measuring Parameters In-Situ (SCIMPI) is a new ocean observatory instrument designed to study dynamic processes in the sub-seafloor. The first SCIMPI prototype comprises nine modules that collect time series measurements of temperature, pressure and electrical resistivity of sediments at pre-selected depths below seafloor. These modules are joined in an array by flexible cables. Floats are attached to the cables of the system to keep the cabling taught against the weight of a sinker bar at the bottom of the string. The system was designed for deployment through drillpipe using D/V JOIDES Resolution. SCIMPI is designed for sediments that will collapse around the observatory after deployment. After five years in development, SCIMPI was successfully deployed within the NEPTUNE Canada observatory in May 2013. The IODP Expedition 341S took place on the Cascadia Margin. The deployment Site U1416 is within an active gas hydrate vent field. Spacing of SCIMPI modules was tailored to measure parameters in the accreted sediment and above and below the Bottom Simulating Reflector (BSR). The location of the modules was dimensioned based on a multivariate analysis of physical properties derived from IODP boreholes located nearby. Members of the SCIMPI team, science party, technical support, crew and participants of the School of Rock assembled the instrument on deck during the days leading up to the deployment. During deployment, SCIMPI was connected to the Multi-Function-Telemetry-Module (from LDEO) and was lowered through drillpipe on the wireline logging cable. SCIMPI communicated data to a shipboard computer until its release, providing assurance that measurements were active on all sensors. The observatory was released with the Electronic Release System (ERS) and the drillpipe was pulled out of the borehole. A camera system was used to check on the installation immediately after deployment. An Ocean Networks Canada expedition revisited the site a month later to assess the borehole collapse around SCIMPI. Its four year battery life will allow SCIMPI to record data on its command module while waiting to be connected to the NEPTUNE Canada observatory in 2014. The modular design of SCIMPI allows adapting its configuration for different situations and environments. SCIMPI is now available for exploring other dynamic sub-seafloor settings in future expeditions.

  12. The Development and Flight Testing of an Aerially Deployed Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Smith, Andrew

    An investigation into the feasibility of aerial deployed unmanned aerial vehicles was completed. The investigation included the development and flight testing of multiple unmanned aerial systems to investigate the different components of potential aerial deployment missions. The project consisted of two main objectives; the first objective dealt with the development of an airframe capable of surviving aerial deployment from a rocket and then self assembling from its stowed configuration into its flight configuration. The second objective focused on the development of an autopilot capable of performing basic guidance, navigation, and control following aerial deployment. To accomplish these two objectives multiple airframes were developed to verify their completion experimentally. The first portion of the project, investigating the feasibility of surviving an aerial deployment, was completed using a fixed wing glider that following a successful deployment had 52 seconds of controlled flight. Before developing the autopilot in the second phase of the project, the glider was significantly upgraded to fix faults discovered in the glider flight testing and to enhance the system capabilities. Unfortunately to conform to outdoor flight restrictions imposed by the university and the Federal Aviation Administration it was required to switch airframes before flight testing of the new fixed wing platform could begin. As a result, an autopilot was developed for a quadrotor and verified experimentally completely indoors to remain within the limits of governing policies.

  13. Overview of Robotic Devices for Nursing Care Project.

    PubMed

    Hirukawa, Hirohisa

    2017-01-01

    METI/AMED are conducting a project on the development and deployment of robotic devices for nursing care to enhance the autonomy of elderly persons and assist care givers. An evaluation protocol is presented and the devices developed in the project are introduced. The devices consist of transfer assist devices (wearable/non-wearable), walking assist devices (outdoor/indoor), safety surveillance sensors (nursing home/private home), bath lift and toilet assist.

  14. A Networked Sensor System for the Analysis of Plot-Scale Hydrology.

    PubMed

    Villalba, German; Plaza, Fernando; Zhong, Xiaoyang; Davis, Tyler W; Navarro, Miguel; Li, Yimei; Slater, Thomas A; Liang, Yao; Liang, Xu

    2017-03-20

    This study presents the latest updates to the Audubon Society of Western Pennsylvania (ASWP) testbed, a $50,000 USD, 104-node outdoor multi-hop wireless sensor network (WSN). The network collects environmental data from over 240 sensors, including the EC-5, MPS-1 and MPS-2 soil moisture and soil water potential sensors and self-made sap flow sensors, across a heterogeneous deployment comprised of MICAz, IRIS and TelosB wireless motes. A low-cost sensor board and software driver was developed for communicating with the analog and digital sensors. Innovative techniques (e.g., balanced energy efficient routing and heterogeneous over-the-air mote reprogramming) maintained high success rates (>96%) and enabled effective software updating, throughout the large-scale heterogeneous WSN. The edaphic properties monitored by the network showed strong agreement with data logger measurements and were fitted to pedotransfer functions for estimating local soil hydraulic properties. Furthermore, sap flow measurements, scaled to tree stand transpiration, were found to be at or below potential evapotranspiration estimates. While outdoor WSNs still present numerous challenges, the ASWP testbed proves to be an effective and (relatively) low-cost environmental monitoring solution and represents a step towards developing a platform for monitoring and quantifying statistically relevant environmental parameters from large-scale network deployments.

  15. A Networked Sensor System for the Analysis of Plot-Scale Hydrology

    PubMed Central

    Villalba, German; Plaza, Fernando; Zhong, Xiaoyang; Davis, Tyler W.; Navarro, Miguel; Li, Yimei; Slater, Thomas A.; Liang, Yao; Liang, Xu

    2017-01-01

    This study presents the latest updates to the Audubon Society of Western Pennsylvania (ASWP) testbed, a $50,000 USD, 104-node outdoor multi-hop wireless sensor network (WSN). The network collects environmental data from over 240 sensors, including the EC-5, MPS-1 and MPS-2 soil moisture and soil water potential sensors and self-made sap flow sensors, across a heterogeneous deployment comprised of MICAz, IRIS and TelosB wireless motes. A low-cost sensor board and software driver was developed for communicating with the analog and digital sensors. Innovative techniques (e.g., balanced energy efficient routing and heterogeneous over-the-air mote reprogramming) maintained high success rates (>96%) and enabled effective software updating, throughout the large-scale heterogeneous WSN. The edaphic properties monitored by the network showed strong agreement with data logger measurements and were fitted to pedotransfer functions for estimating local soil hydraulic properties. Furthermore, sap flow measurements, scaled to tree stand transpiration, were found to be at or below potential evapotranspiration estimates. While outdoor WSNs still present numerous challenges, the ASWP testbed proves to be an effective and (relatively) low-cost environmental monitoring solution and represents a step towards developing a platform for monitoring and quantifying statistically relevant environmental parameters from large-scale network deployments. PMID:28335534

  16. Testing low cost OEM CO2 sensors for outdoor ecological studies

    NASA Astrophysics Data System (ADS)

    Macintyre, C. M.; Risk, D. A.

    2011-12-01

    IR (Infrared) gas sensors are used extensively in CO2 research but price and power requirement often limits low-cost distributed sensing. In the past three years, sensors have been introduced to the industrial market at prices as low as $100 US for air-handling and automotive application. These inexpensive sensors are small in size, and have low power demand making them potentially ideal for low-cost distributed deployments. However, the sensors are only tested and calibrated for indoor use and for industrial standards and may not show their true potential for outdoor ecological studies. This poster summarizes the results of a sensor inter-comparison test, to document functionality, response time, electrical noise, precision, and accuracy, under varying moistures and temperatures broadly representative of a wide range of outdoor settings. The three selected sensors were placed in a closed loop system with a valving system using a LiCor Li-7000 as reference, controlled by a CR1000 datalogger that controlled CO2 and moisture concentrations content within the cell on the basis of LiCor readings. To achieve different temperatures, the tests were repeated at room temperature, inside a freezer (-18°C) and incubator (40°C). The tests involved repeatedly stepping the sensors from 2000 ppm CO2 to 400 ppm CO2 in 200 ppm or 400 ppm increments, at various moisture contents, and under the various temperature regimes. Vaisala 222 and 343 sensors were also part of the test group as comparators, as both are used widely in ecological research. The OEM sensors displayed good linearity, fast response time, and results comparable to Vaisala probes. In most cases the sensors performed beyond our expectations with notably less electrical noise than the Vaisala sensors and excellent power thriftiness. Some sensors showed better response to extreme moisture and temperature conditions. Provided that suitable protective embodiments were built around them, and that they are deployed in an environment suiting their tolerance limits, most of the tested sensors would be suitable as low-cost alternatives to sensors currently being sold for outdoor ecological studies.

  17. Localized real-time information on outdoor air quality at kindergartens in Oslo, Norway using low-cost sensor nodes.

    PubMed

    Castell, Nuria; Schneider, Philipp; Grossberndt, Sonja; Fredriksen, Mirjam F; Sousa-Santos, Gabriela; Vogt, Mathias; Bartonova, Alena

    2018-08-01

    In Norway, children in kindergartens spend significant time outdoors under all weather conditions, and there is thus a natural concern about the quality of outdoor air. It is well known that air pollution is associated with a wide variety of adverse health impacts for children, with greater impact on children with asthma. Especially during winter and spring, kindergartens in Oslo that are situated close to streets with busy traffic, or in areas where wood burning is used for house heating, can experience many days with bad air quality. During these periods, updated information on air quality levels can help the kindergarten teachers to plan appropriate outdoor activities and thus protect children's health. We have installed 17 low-cost air quality nodes in kindergartens in Oslo. These nodes are smaller, cheaper and less complex to use than traditional equipment. Performance evaluation shows that while they are less accurate and suffer from higher uncertainty than reference equipment, they still can provide reliable coarse information about local pollution. The main challenge when using this technology is that calibration parameters might change with time depending on the atmospheric conditions. Thus, even if the sensors are calibrated a priori, once deployed, and especially if they are deployed for a long time, it is not possible to determine if a node is over- or under-estimating the concentration levels. To enhance the data from the sensors, we employed a data fusion technique that allows generating a detailed air quality map merging the data from the sensors and the data from an urban model, thus being able to offer air quality information to any location within Oslo. We arranged a focus group with the participation of local administration, kindergarten staff and parents to understand their opinion and needs related to the air quality information that was provided to the participant kindergartens. They expressed concern about the data quality but agree that having updated information on the air quality in the surroundings of kindergartens can help them to reduce children's exposure to air pollution. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Astronaut Alan Bean with subpackages of the ALSEP during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot, traverses with the two subpackages of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA). Bean deployed the ALSEP components 300 feet from the Lunar Module (LM). The LM and deployed erectable S-band antenna can be seen in the background.

  19. Fundamentals of Indoor Air Quality in Buildings

    EPA Pesticide Factsheets

    This module provides the fundamentals to understanding indoor air quality. It provides a rudimentary framework for understanding how indoor and outdoor sources of pollution affect the indoor air quality of buildings.

  20. Astronaut Harrison Schmitt next to deployed U.S. flag on lunar surface

    NASA Image and Video Library

    1972-12-13

    AS17-134-20384 (7-19 Dec. 1972) --- Scientist-astronaut Harrison H. Schmitt, lunar module pilot, is photographed next to the deployed United States flag during lunar surface extravehicular activity (EVA) at the Taurus-Littrow landing site. The highest part of the flag appears to point toward our planet Earth in the distant background. This picture was taken by astronaut Eugene A. Cernan, Apollo 17 commander. While astronauts Cernan and Schmitt descended in the Lunar Module (LM) to explore the moon, astronaut Ronald E. Evans, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  1. Development of deployable structures for large space platforms. Volume 2: Design development

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1983-01-01

    Design evolution, test article design, test article mass properties, and structural analysis of deployable platform systems are discussed. Orbit transfer vehicle (OTV) hangar development, OTV hangar concept selection, and manned module development are discussed. Deployable platform systems requirements, material data base, technology development needs, concept selection and deployable volume enclosures are also discussed.

  2. Seasonal influence on stimulated BAT activity in prospective trials: a retrospective analysis of BAT visualized on 18F-FDG PET-CTs and 123I-mIBG SPECT-CTs.

    PubMed

    Bahler, Lonneke; Deelen, Jan W; Hoekstra, Joost B; Holleman, Frits; Verberne, Hein J

    2016-06-15

    Retrospective studies have shown that outdoor temperature influences the prevalence of detectable brown adipose tissue (BAT). Prospective studies use acute cold exposure to activate BAT. In prospective studies, BAT might be preconditioned in winter months leading to an increased BAT response to various stimuli. Therefore the aim of this study was to assess whether outdoor temperatures and other weather characteristics modulate the response of BAT to acute cold. To assess metabolic BAT activity and sympathetic outflow to BAT, 64 (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography-computed tomography (PET-CT) and 56 additional (123)I-meta-iodobenzylguanidine ((123)I-mIBG) single-photon emission computed tomography-CT (SPECT-CT) scans, respectively, of subjects participating in previously executed trials were retrospectively included. BAT activity was measured in subjects after an overnight fast, following 2 h of cold exposure (∼17°C). The average daytime outdoor temperatures and other weather characteristics were obtained from the Dutch Royal Weather Institute. Forty-nine subjects were BAT positive. One week prior to the scan, outdoor temperature was significantly lower in the BAT-positive group compared with the BAT-negative group. Higher outdoor temperatures on preceding days resulted in lower stimulated metabolic BAT activity and volume (all P < 0.01). Outdoor temperatures did not correlate with sympathetic outflow to BAT. In conclusion, outdoor temperatures influence metabolic BAT activity and volume, but not sympathetic outflow to BAT, in subjects exposed to acute cold. To improve the consistency of the findings of future BAT studies in humans and to exclude bias introduced by outdoor temperatures, these studies should be planned in periods of similar outdoor temperatures. Copyright © 2016 the American Physiological Society.

  3. Short-term dynamics of indoor and outdoor endotoxin exposure: Case of Santiago, Chile, 2012.

    PubMed

    Barraza, Francisco; Jorquera, Héctor; Heyer, Johanna; Palma, Wilfredo; Edwards, Ana María; Muñoz, Marcelo; Valdivia, Gonzalo; Montoya, Lupita D

    2016-01-01

    Indoor and outdoor endotoxin in PM2.5 was measured for the very first time in Santiago, Chile, in spring 2012. Average endotoxin concentrations were 0.099 and 0.094 [EU/m(3)] for indoor (N=44) and outdoor (N=41) samples, respectively; the indoor-outdoor correlation (log-transformed concentrations) was low: R=-0.06, 95% CI: (-0.35 to 0.24), likely owing to outdoor spatial variability. A linear regression model explained 68% of variability in outdoor endotoxins, using as predictors elemental carbon (a proxy of traffic emissions), chlorine (a tracer of marine air masses reaching the city) and relative humidity (a modulator of surface emissions of dust, vegetation and garbage debris). In this study, for the first time a potential source contribution function (PSCF) was applied to outdoor endotoxin measurements. Wind trajectory analysis identified upwind agricultural sources as contributors to the short-term, outdoor endotoxin variability. Our results confirm an association between combustion particles from traffic and outdoor endotoxin concentrations. For indoor endotoxins, a predictive model was developed but it only explained 44% of endotoxin variability; the significant predictors were tracers of indoor PM2.5 dust (Si, Ca), number of external windows and number of hours with internal doors open. Results suggest that short-term indoor endotoxin variability may be driven by household dust/garbage production and handling. This would explain the modest predictive performance of published models that use answers to household surveys as predictors. One feasible alternative is to increase the sampling period so that household features would arise as significant predictors of long-term airborne endotoxin levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Development of Monitors for Assessing Exposure of Military Personnel to Toxic Chemicals.

    DTIC Science & Technology

    2000-01-01

    Residues " S ampler Preparation 7 Transfer and Analysis 7 Temperature Effects on PIMS Sampling Rate 8 Environmental Air Sampling 8 Results and...of exposure and potential toxicity to personnel. While progress has been made in improving active water and air sampling technology, such devices...streams, 3) the apparatus is also applicable for use in air sampling deployments in indoor and outdoor scenarios, and 4) the apparatus is commercially

  5. Indoor Soiling Method and Outdoor Statistical Risk Analysis of Photovoltaic Power Plants

    NASA Astrophysics Data System (ADS)

    Rajasekar, Vidyashree

    This is a two-part thesis. Part 1 presents an approach for working towards the development of a standardized artificial soiling method for laminated photovoltaic (PV) cells or mini-modules. Construction of an artificial chamber to maintain controlled environmental conditions and components/chemicals used in artificial soil formulation is briefly explained. Both poly-Si mini-modules and a single cell mono-Si coupons were soiled and characterization tests such as I-V, reflectance and quantum efficiency (QE) were carried out on both soiled, and cleaned coupons. From the results obtained, poly-Si mini-modules proved to be a good measure of soil uniformity, as any non-uniformity present would not result in a smooth curve during I-V measurements. The challenges faced while executing reflectance and QE characterization tests on poly-Si due to smaller size cells was eliminated on the mono-Si coupons with large cells to obtain highly repeatable measurements. This study indicates that the reflectance measurements between 600-700 nm wavelengths can be used as a direct measure of soil density on the modules. Part 2 determines the most dominant failure modes of field aged PV modules using experimental data obtained in the field and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 744 poly-Si glass/polymer frameless modules fielded for 18 years under the cold-dry climate of New York was evaluated. Defect chart, degradation rates (both string and module levels) and safety map were generated using the field measured data. A statistical reliability tool, FMECA that uses Risk Priority Number (RPN) is used to determine the dominant failure or degradation modes in the strings and modules by means of ranking and prioritizing the modes. This study on PV power plants considers all the failure and degradation modes from both safety and performance perspectives. The indoor and outdoor soiling studies were jointly performed by two Masters Students, Sravanthi Boppana and Vidyashree Rajasekar. This thesis presents the indoor soiling study, whereas the other thesis presents the outdoor soiling study. Similarly, the statistical risk analyses of two power plants (model J and model JVA) were jointly performed by these two Masters students. Both power plants are located at the same cold-dry climate, but one power plant carries framed modules and the other carries frameless modules. This thesis presents the results obtained on the frameless modules.

  6. DUMAND-II (deep underwater muon and neutrino detector) progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, K.K.; The DUMAND Collaboration

    1995-07-10

    The DUMAND II detector will search for astronomical sources of high energy neutrinos. Successful deployment of the basic infrastructure, including the shore cable, the underwater junction box, and an environmental module was accomplished in December, 1993. One optical module string was also deployed and operated, logging data for about 10 hours. The underwater cable was connected to the shore station where we were able to successfully exercise system controls and log further environmental data. After this time, water leaking into the electronics control module for the deployed string disabled the string electrical system. The acquired data are consistent with themore » expected rate of downgoing muons, and our ability to reconstruct muons was demonstrated. The measured acoustical backgrounds are consistent with expectation, which should allow acoustical detection of nearby PeV particle cascades. The disabled string has been recovered and is undergoing repairs ashore. We have identified the source of the water leak and implemented additional testing and QC procedures to ensure no repetition in our next deployment. We will be ready to deploy three strings and begin continuous data taking in late 1994 or early 1995. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.« less

  7. Development of deployable structures for large space platform systems, volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Generic deployable spacecraft configurations and deployable platform systems concepts were identified. Sizing, building block concepts, orbiter packaging, thermal analysis, cost analysis, and mass properties analysis as related to platform systems integration are considered. Technology needs are examined and the major criteria used in concept selection are delineated. Requirements for deployable habitat modules, tunnels, and OTV hangars are considered.

  8. Zvezda Launch Coverage

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Footage shows the Proton Rocket (containing the Zvezda module) ready for launch at the Baikonur Cosmodrome in Kazakhstan, Russia. The interior and exterior of Zvezda are seen during construction. Computerized simulations show the solar arrays deploying on Zvezda in space, the maneuvers of the module as it approaches and connects with the International Space Station (ISS), the installation of the Z1 truss on the ISS and its solar arrays deploying, and the installations of the Destiny Laboratory, Remote Manipulator System, and Kibo Experiment Module. Live footage then shows the successful launch of the Proton Rocket.

  9. Astronaut Alan Bean with subpackages of the ALSEP during EVA

    NASA Image and Video Library

    1969-11-19

    AS12-46-6807 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot, traverses with the two sub packages of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA). Bean deployed the ALSEP components 300 feet from the Lunar Module (LM). The LM and deployed erectable S-band antenna can be seen in the background.

  10. Lunar surface structural concepts and construction studies

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin

    1991-01-01

    The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.

  11. A Compact Energy Harvesting System for Outdoor Wireless Sensor Nodes Based on a Low-Cost In Situ Photovoltaic Panel Characterization-Modelling Unit

    PubMed Central

    Antolín, Diego; Calvo, Belén; Martínez, Pedro A.

    2017-01-01

    This paper presents a low-cost high-efficiency solar energy harvesting system to power outdoor wireless sensor nodes. It is based on a Voltage Open Circuit (VOC) algorithm that estimates the open-circuit voltage by means of a multilayer perceptron neural network model trained using local experimental characterization data, which are acquired through a novel low cost characterization system incorporated into the deployed node. Both units—characterization and modelling—are controlled by the same low-cost microcontroller, providing a complete solution which can be understood as a virtual pilot cell, with identical characteristics to those of the specific small solar cell installed on the sensor node, that besides allows an easy adaptation to changes in the actual environmental conditions, panel aging, etc. Experimental comparison to a classical pilot panel based VOC algorithm show better efficiency under the same tested conditions. PMID:28777330

  12. A Compact Energy Harvesting System for Outdoor Wireless Sensor Nodes Based on a Low-Cost In Situ Photovoltaic Panel Characterization-Modelling Unit.

    PubMed

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Martínez, Pedro A

    2017-08-04

    This paper presents a low-cost high-efficiency solar energy harvesting system to power outdoor wireless sensor nodes. It is based on a Voltage Open Circuit (VOC) algorithm that estimates the open-circuit voltage by means of a multilayer perceptron neural network model trained using local experimental characterization data, which are acquired through a novel low cost characterization system incorporated into the deployed node. Both units-characterization and modelling-are controlled by the same low-cost microcontroller, providing a complete solution which can be understood as a virtual pilot cell, with identical characteristics to those of the specific small solar cell installed on the sensor node, that besides allows an easy adaptation to changes in the actual environmental conditions, panel aging, etc. Experimental comparison to a classical pilot panel based VOC algorithm show better efficiency under the same tested conditions.

  13. Apollo 9 Lunar Module in lunar landing configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on the Lunar Module 'Spider' has been deployed. Note Lunar Module's upper hatch and docking tunnel.

  14. Telephone Support During Overseas Deployment for Military Spouses

    DTIC Science & Technology

    2017-12-01

    other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a...negotiating roles and relationships; changes during deployment; strategies to support the spouse and the service member; and cues to alert spouses when to...14 o Table 4. Decision Making When Service Member (SM) Home and Deployed ............. 15 • Spouse Deployed Contents – Elearning modules

  15. Development of a passive air sampler to measure airborne organophosphorus pesticides and oxygen analogs in an agricultural community.

    PubMed

    Armstrong, Jenna L; Yost, Michael G; Fenske, Richard A

    2014-09-01

    Organophosphorus pesticides are some of the most widely used insecticides in the US, and spray drift may result in human exposures. We investigate sampling methodologies using the polyurethane foam passive air sampling device to measure cumulative monthly airborne concentrations of OP pesticides chlorpyrifos, azinphos-methyl, and oxygen analogs. Passive sampling rates (m(3)d(-1)) were determined using calculations using chemical properties, loss of depuration compounds, and calibration with side-by-side active air sampling in a dynamic laboratory exposure chamber and in the field. The effects of temperature, relative humidity, and wind velocity on outdoor sampling rates were examined at 23 sites in Yakima Valley, Washington. Indoor sampling rates were significantly lower than outdoors. Outdoor rates significantly increased with average wind velocity, with high rates (>4m(3)d(-1)) observed above 8ms(-1). In exposure chamber studies, very little oxygen analog was observed on the PUF-PAS, yet substantial amounts chlorpyrifos-oxon and azinphos methyl oxon were measured in outdoor samples. PUF-PAS is a practical and useful alternative to AAS because it results in little artificial transformation to the oxygen analog during sampling, it provides cumulative exposure estimates, and the measured sampling rates were comparable to rates for other SVOCs. It is ideal for community based participatory research due to low subject burden and simple deployment in remote areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Analysis of a Single Year of Performance Data for Thin Film Modules Deployed at NREL and NISE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacAlpine, Sara; Deceglie, Michael; Kurtz, Sarah

    2016-08-01

    The National Renewable Energy Laboratory (NREL) and National Institute of Solar Energy (NISE), located in the United States and India, respectively, have partnered to deploy and monitor modules of three different thin film technologies, to compare the performance and/or degradation between the two sites. This report analyzes a single year of performance data (May 2014 -- May 2015) for the three thin film technologies, exploring the modules' performance under standard test conditions and monthly performance ratios, as well as fill factors varying season, light level, and temperature.

  17. Human Detection from a Mobile Robot Using Fusion of Laser and Vision Information

    PubMed Central

    Fotiadis, Efstathios P.; Garzón, Mario; Barrientos, Antonio

    2013-01-01

    This paper presents a human detection system that can be employed on board a mobile platform for use in autonomous surveillance of large outdoor infrastructures. The prediction is based on the fusion of two detection modules, one for the laser and another for the vision data. In the laser module, a novel feature set that better encapsulates variations due to noise, distance and human pose is proposed. This enhances the generalization of the system, while at the same time, increasing the outdoor performance in comparison with current methods. The vision module uses the combination of the histogram of oriented gradients descriptor and the linear support vector machine classifier. Current approaches use a fixed-size projection to define regions of interest on the image data using the range information from the laser range finder. When applied to small size unmanned ground vehicles, these techniques suffer from misalignment, due to platform vibrations and terrain irregularities. This is effectively addressed in this work by using a novel adaptive projection technique, which is based on a probabilistic formulation of the classifier performance. Finally, a probability calibration step is introduced in order to optimally fuse the information from both modules. Experiments in real world environments demonstrate the robustness of the proposed method. PMID:24008280

  18. Human detection from a mobile robot using fusion of laser and vision information.

    PubMed

    Fotiadis, Efstathios P; Garzón, Mario; Barrientos, Antonio

    2013-09-04

    This paper presents a human detection system that can be employed on board a mobile platform for use in autonomous surveillance of large outdoor infrastructures. The prediction is based on the fusion of two detection modules, one for the laser and another for the vision data. In the laser module, a novel feature set that better encapsulates variations due to noise, distance and human pose is proposed. This enhances the generalization of the system, while at the same time, increasing the outdoor performance in comparison with current methods. The vision module uses the combination of the histogram of oriented gradients descriptor and the linear support vector machine classifier. Current approaches use a fixed-size projection to define regions of interest on the image data using the range information from the laser range finder. When applied to small size unmanned ground vehicles, these techniques suffer from misalignment, due to platform vibrations and terrain irregularities. This is effectively addressed in this work by using a novel adaptive projection technique, which is based on a probabilistic formulation of the classifier performance. Finally, a probability calibration step is introduced in order to optimally fuse the information from both modules. Experiments in real world environments demonstrate the robustness of the proposed method.

  19. Michael Deceglie | NREL

    Science.gov Websites

    postdoctoral researcher focused on photovoltaic performance and reliability. His current research interests illumination nonuniformity, and outdoor performance of advanced photovoltaic technologies. Featured photovoltaic module," Proceedings of the Thirty-ninth IEEE Photovoltaic Specialists Conference (PVSC), pp

  20. View of Cosmic Ray Experiment near the Apollo 15 Lunar Module

    NASA Image and Video Library

    1972-04-21

    AS16-107-17442 (22 April 1972) --- A close-up view of the Apollo 16 Cosmic Ray Detector (CRD) experiment deployed at the +Y strut of the Lunar Module (LM). The crewmembers moved it to this position from near the deployment site of the Apollo Lunar Surface Experiments Package (ALSEP) because, in the words of astronaut John W. Young, commander, "The panels were getting a little warm." Note that the LM did not skid upon landing, as evidenced by the landing contact probe's folded back (neatly) position and the lack of skid marks. While astronauts Young, and Charles M. Duke Jr., lunar module pilot; descended in the Apollo 16 Lunar Module (LM) "Orion" to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  1. The Interaction between Sytactic and Semantic Modules in Chinese Learners' English Spotaneous Speech

    ERIC Educational Resources Information Center

    Gang, Xu

    2014-01-01

    According to modular theory, there are interactive effects between the central modules and language modules. The central cognition may deploy and redeploy resources from language modules. Moreover, the language modules can activate the cognitive ability. So this paper studies the spontaneous speech of students who learn English as a foreign…

  2. Astronaut Edwin Aldrin poses for photograph beside deployed U.S. flag

    NASA Image and Video Library

    1969-07-20

    AS11-40-5875 (20 July 1969) --- Astronaut Edwin E. Aldrin Jr., lunar module pilot of the first lunar landing mission, poses for a photograph beside the deployed United States flag during an Apollo 11 extravehicular activity (EVA) on the lunar surface. The Lunar Module (LM) is on the left, and the footprints of the astronauts are clearly visible in the soil of the moon. Astronaut Neil A. Armstrong, commander, took this picture with a 70mm Hasselblad lunar surface camera. While astronauts Armstrong and Aldrin descended in the LM, the "Eagle", to explore the Sea of Tranquility region of the moon, astronaut Michael Collins, command module pilot, remained with the Command and Service Modules (CSM) "Columbia" in lunar orbit. Photo credit: NASA

  3. Outlook and Challenges of Perovskite Solar Cells toward Terawatt-Scale Photovoltaic Module Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Kai; Kim, Donghoe; Whitaker, James B

    Rapid development of perovskite solar cells (PSCs) during the past several years has made this photovoltaic (PV) technology a serious contender for potential large-scale deployment on the terawatt scale in the PV market. To successfully transition PSC technology from the laboratory to industry scale, substantial efforts need to focus on scalable fabrication of high-performance perovskite modules with minimum negative environmental impact. Here, we provide an overview of the current research and our perspective regarding PSC technology toward future large-scale manufacturing and deployment. Several key challenges discussed are (1) a scalable process for large-area perovskite module fabrication; (2) less hazardous chemicalmore » routes for PSC fabrication; and (3) suitable perovskite module designs for different applications.« less

  4. Economically Sustainable Scaling of Photovoltaics to Meet Climate Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Needleman, David Berney; Poindexter, Jeremy R.; Kurchin, Rachel C.

    To meet climate goals, photovoltaics (PV) deployment will have to grow rapidly over the next fifteen years. We identify two barriers to this growth: scale-up of manufacturing capacity and the cost of PV module production. We explore several technoeconomic approaches to overcoming these barriers and identify deep reductions in the capital intensity (capex) of PV module manufacturing and large increases in module efficiency as the most promising routes to rapid deployment. Given the lag inherent in rolling out new technology, we explore an approach where growth is fueled by debt or subsidies in the short-term and technological advances in themore » medium term. Finally, we analyze the current capex structure of crystalline silicon PV module manufacturing to identify potential savings.« less

  5. Use of control umbilicals as a deployment mode for free flying telerobotic work systems

    NASA Technical Reports Server (NTRS)

    Kuehn, J. S.; Selle, E. D.

    1987-01-01

    Work to date on telerobotic work systems for use in space generally consider two deployment modes, free flying, or fixed within a limited work envelope. Control tethers may be employed to obtain a number of operational advantages and added flexibility in the basing and deployment of telerobotic work systems. Use of a tether allows the work system to be separated into two major modules, the remote work package and the control module. The Remote Work Package (RWP) comprises the free flying portion of the work system while the Control Module (CM) remains at the work system base. The chief advantage of this configuration is that only the components required for completion of the work task must be located at the work site. Reaction mass used in free flight is stored at the Control module and supplied to the RWP through the tether, eliminating the need for the RWP to carry it. The RWP can be made less massive than a self contained free flying work system. As a result, reaction mass required for free flight is lower than for a self contained free flyer.

  6. Apollo 14 Mission image - Astronaut Edgar D. Mitchell, lunar module pilot for the Apollo 14 lunar landing mission, stands by the deployed U.S. flag on the lunar surface during the early moments of the first extravehicular activity (EVA-1) of the mission.

    NASA Image and Video Library

    1971-02-05

    AS14-66-9233 (5 Feb. 1971) --- Astronaut Edgar D. Mitchell, lunar module pilot for the Apollo 14 lunar landing mission, stands by the deployed U.S. flag on the lunar surface during the early moments of the first extravehicular activity (EVA) of the mission. He was photographed by astronaut Alan B. Shepard Jr., mission commander, using a 70mm modified lunar surface Hasselblad camera. While astronauts Shepard and Mitchell descended in the Lunar Module (LM) "Antares" to explore the Fra Mauro region of the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) "Kitty Hawk" in lunar orbit.

  7. Erectable/deployable concepts for large space system technology

    NASA Technical Reports Server (NTRS)

    Agan, W. E.

    1980-01-01

    Erectable/deployable space structure concepts particularly relating to the development of a science and applications space platform are presented. Design and operating features for an automatic coupler clevis joint, a side latching detent joint, and a module-to-module auto lock coupler are given. An analysis of the packaging characteristics of stacked subassembly, single fold, hybrid, and double fold concepts is given for various platform structure configurations. Payload carrier systems and assembly techniques are also discussed.

  8. Tether deployment monitoring system, phase 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An operational Tether Deployment Monitoring System (TEDEMS) was constructed that would show system functionality in a terrestrial environment. The principle function of the TEDEMS system is the launching and attachment of reflective targets onto the tether during its deployment. These targets would be tracked with a radar antenna that was pointed towards the targets by a positioning system. A spring powered launcher for the targets was designed and fabricated. An instrumentation platform and launcher were also developed. These modules are relatively heavy and will influence tether deployment scenarios, unless they are released with a velocity and trajectory closely matching that of the tether. Owing to the tracking range limitations encountered during field trails of the Radar system, final TEDEMS system integration was not completed. The major module not finished was the system control computer. The lack of this device prevented any subsystem testing or field trials to be conducted. Other items only partially complete were the instrumentation platform launcher and modules and the radar target launcher. The work completed and the tests performed suggest that the proposed system continues to be a feasible approach to tether monitoring, although additional effort is still necessary to increase the range at which modules can be detected. The equipment completed and tested, to the extent stated, is available to NASA for use on any future program that requires tether tracking capability.

  9. Specific innovative semi-transparent solar cell for indoor and outdoor LiFi applications.

    PubMed

    Bialic, Emilie; Maret, Luc; Kténas, Dimitri

    2015-09-20

    Research in light-fidelity (LiFi), also called visible light communication (VLC), has gained huge interest. In such a communication system, an optical sensor translates the received luminous modulation flux into an electrical signal which is decoded. To consider LiFi as an alternative solution for wireless communication, the receiver must be operational in indoor and outdoor configurations. Photovoltaic modules could appear as a solution to this issue. In this paper, we present signal-to-noise ratio (SNR) response in the frequency of two different kinds of photovoltaic modules. We characterize in detail the SNR by using an experimental setup which connects a software-based direct current optical (DCO)-orthogonal frequency division multiiplexing emitter and receiver to hardware optical front ends. We analyze LiFi performances under different lighting conditions. We prove that the available bandwidth depends drastically on ambient lighting configurations. Under specific lighting conditions, a bandwidth around 4 MHz corresponding a data rate around 8 Mbit/s could be achieved. We present the lighting saturation effects and we prove that the semi-transparent solar cell under study improves their performances (both bandwidth and data rate) in high ambient lighting environments.

  10. Hubble Space Telescope (HST) high gain antenna (HGA) deployment during STS-31

    NASA Image and Video Library

    1990-04-25

    Held in appendage deploy position, the Hubble Space Telescope's (HST's) high gain antenna (HGA) has been released from its stowed position along the Support System Module (SSM) forward shell. The STS-31 crew aboard Discovery, Orbiter Vehicle (OV) oversees the automatic HGA deployment prior to releasing HST. HST HGA is backdropped against the blackness of space.

  11. Development of Manufacturing Technology to Accelerate Cost Reduction of Low Concentration and

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detrick, Adam

    The purpose of this project was to accelerate deployment of cost-effective US-based manufacturing of Solaria’s unique c-Si module technology. This effort successfully resulted in the development of US-based manufacturing technology to support two highly-differentiated, market leading product platforms. The project was initially predicated on developing Solaria’s low-concentration PV (LCPV) module technology which at the time of the award was uniquely positioned to exceed the SunShot price goal of $0.50/Wp for standard c-Si modules. The Solaria LCPV module is a 2.5x concentrator that leverages proven, high-reliability PV module materials and low silicon cell usage into a technology package that already hadmore » the lowest direct material cost and leading Levelized Cost of Electricity (LCOE). With over 25 MW commercially deployed globally, the Solaria module was well positioned to continue to lead in PV module cost reduction. Throughout the term of the contract, market conditions changed dramatically and so to did Solaria’s product offerings to support this. However, the manufacturing technology developed for the LCPV module was successfully leveraged and optimized to support two new and different product platforms. BIPV “PowerVision” and High-efficiency “PowerXT” modules. The primary barrier to enabling high-volume PV module manufacturing in the US is the high manual labor component in certain unique aspects of our manufacturing process. The funding was used to develop unique manufacturing automation which makes the manual labor components of these key processes more efficient and increase throughput. At the core of Solaria’s product offerings are its unique and proprietary techniques for dicing and re-arranging solar cells into modules with highly-differentiated characteristics that address key gaps in the c-Si market. It is these techniques that were successfully evolved and deployed into US-based manufacturing site with SunShot funding. Today, Solaria is currently positioned to become the market leader with these two technologies over the coming 24 months largely due to the successful innovations of the underlying manufacturing technology. This success will leverage US-based manufacturing technology and the associated US-jobs to support. Solaria views the project as highly successful and a great example of SunShot funding enabling the creating of US jobs and the deployment of ubiquitous solar energy products.« less

  12. Deployment simulation of a deployable reflector for earth science application

    NASA Astrophysics Data System (ADS)

    Wang, Xiaokai; Fang, Houfei; Cai, Bei; Ma, Xiaofei

    2015-10-01

    A novel mission concept namely NEXRAD-In-Space (NIS) has been developed for monitoring hurricanes, cyclones and other severe storms from a geostationary orbit. It requires a space deployable 35-meter diameter Ka-band (35 GHz) reflector. NIS can measure hurricane precipitation intensity, dynamics and its life cycle. These information is necessary for predicting the track, intensity, rain rate and hurricane-induced floods. To meet the requirements of the radar system, a Membrane Shell Reflector Segment (MSRS) reflector technology has been developed and several technologies have been evaluated. However, the deployment analysis of this large size and high-precision reflector has not been investigated. For a pre-studies, a scaled tetrahedral truss reflector with spring driving deployment system has been made and tested, deployment dynamics analysis of this scaled reflector has been performed using ADAMS to understand its deployment dynamic behaviors. Eliminating the redundant constraints in the reflector system with a large number of moving parts is a challenging issue. A primitive joint and flexible struts were introduced to the analytical model and they can effectively eliminate over constraints of the model. By using a high-speed camera and a force transducer, a deployment experiment of a single-bay tetrahedral module has been conducted. With the tested results, an optimization process has been performed by using the parameter optimization module of ADAMS to obtain the parameters of the analytical model. These parameters were incorporated to the analytical model of the whole reflector. It is observed from the analysis results that the deployment process of the reflector with a fixed boundary experiences three stages. These stages are rapid deployment stage, slow deployment stage and impact stage. The insight of the force peak distributions of the reflector can help the optimization design of the structure.

  13. Capability 9.3 Assembly and Deployment

    NASA Technical Reports Server (NTRS)

    Dorsey, John

    2005-01-01

    Large space systems are required for a range of operational, commercial and scientific missions objectives however, current launch vehicle capacities substantially limit the size of space systems (on-orbit or planetary). Assembly and Deployment is the process of constructing a spacecraft or system from modules which may in turn have been constructed from sub-modules in a hierarchical fashion. In-situ assembly of space exploration vehicles and systems will require a broad range of operational capabilities, including: Component transfer and storage, fluid handling, construction and assembly, test and verification. Efficient execution of these functions will require supporting infrastructure, that can: Receive, store and protect (materials, components, etc.); hold and secure; position, align and control; deploy; connect/disconnect; construct; join; assemble/disassemble; dock/undock; and mate/demate.

  14. Accelerated laboratory weathering of acrylic lens materials

    NASA Astrophysics Data System (ADS)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2015-09-01

    Flat samples from various poly(methyl methacrylate) (PMMA) formulations were subjected to outdoor weathering in Arizona and Florida, EMMAQUA® accelerated outdoor weathering, and two accelerated laboratory weathering procedures at 3 Sun irradiance which, imitate dry (Arizona) and wet (Florida) conditions. The main mode of degradation is yellowing and not the generation of haze for any weathering procedure within the investigated radiant exposure. Higher UV absorber concentrations lead to smaller changes in optical properties and in the resulting relative concentrator photovoltaic (CPV) module efficiencies. Comparison of sample properties after various weathering procedures reveals that the influence of weathering factors other than radiant exposure depends on the sample as well.

  15. Improved methods for the measurement and modeling of PV module and system performance for all operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, D.L.

    1995-11-01

    The objective of this work was to develop improved performance model for modules and systems for for all operating conditions for use in module specifications, system and BOS component design, and system rating or monitoring. The approach taken was to identify and quantify the influence of dominant factors of solar irradiance, cell temperature, angle-of-incidence; and solar spectrum; use outdoor test procedures to separate the effects of electrical, thermal, and optical performance; use fundamental cell characteristics to improve analysis; and combine factors in simple model using the common variables.

  16. Modular reflector concept study

    NASA Technical Reports Server (NTRS)

    Vaughan, D. H.

    1981-01-01

    A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.

  17. Variation in the modal parameters of space structures

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Bicos, Andrew S.

    1992-01-01

    An analytic and experimental study of gravity and suspension influences on space structural test articles is presented. A modular test article including deployable, erectable, and rotary modules was assembled in three one- and two-dimensional structures. The two deployable modules utilized cable diagonal bracing rather than rigid cross members; within a bay of one of the deployable modules, the cable preload was adjustable. A friction lock was used on the alpha joint to either allow or prohibit rotary motion. Suspension systems with plunge fundamentals of 1, 2, and 5 Hz were used for ground testing to evaluate the influences of suspension stiffness. Assembly and reassembly testing was performed, as was testing on two separate shipsets at two test sites. Trends and statistical variances in modal parameters are presented as a function of force amplitude, joint preload, reassembly, shipset and suspension. Linear finite element modeling of each structure provided analytical results for 0-g unsuspended and 1-g suspended models, which are correlated with the analytical model.

  18. On the sensitivity of 4 different CPV module technologies to relevant ambient and operation conditions

    NASA Astrophysics Data System (ADS)

    Domínguez, César; Besson, Pierre

    2014-09-01

    The sensitivity of four different CPV module technologies to most operating conditions relevant to CPV systems has been studied, namely DNI, spectrum, cell and lens temperature and clearness of the sky. In order to isolate the influence of a single operation parameter, the analysis of long-term outdoor monitoring data is required. The effect of lens temperature on cell current has been found to vary greatly between modules due to the different optical architectures studied. Maximum sensitivity is found for silicone-on-glass primary lenses. The VOC thermal coefficient was found to vary between module technologies, probably due to differences in maximum local effective concentration.

  19. Inflatable Vessel and Method

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen L. (Inventor); Valle, Gerard D. (Inventor); Edeen, Gregg A. (Inventor); delaFuente, Horacio M. (Inventor); Schneider, William C. (Inventor); Spexarth, Gary R. (Inventor); Pandya, Shalini Gupta (Inventor); Johnson, Christopher J. (Inventor)

    2003-01-01

    An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch or pre-deployed configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.

  20. Monitoring of heavy metal concentrations in home outdoor air using moss bags.

    PubMed

    Rivera, Marcela; Zechmeister, Harald; Medina-Ramón, Mercedes; Basagaña, Xavier; Foraster, Maria; Bouso, Laura; Moreno, Teresa; Solanas, Pascual; Ramos, Rafael; Köllensperger, Gunda; Deltell, Alexandre; Vizcaya, David; Künzli, Nino

    2011-04-01

    One monitoring station is insufficient to characterize the high spatial variation of traffic-related heavy metals within cities. We tested moss bags (Hylocomium splendens), deployed in a dense network, for the monitoring of metals in outdoor air and characterized metals' long-term spatial distribution and its determinants in Girona, Spain. Mosses were exposed outside 23 homes for two months; NO₂ was monitored for comparison. Metals were not highly correlated with NO₂ and showed higher spatial variation than NO₂. Regression models explained 61-85% of Cu, Cr, Mo, Pb, Sb, Sn, and Zn and 72% of NO₂ variability. Metals were strongly associated with the number of bus lines in the nearest street. Heavy metals are an alternative traffic-marker to NO₂ given their toxicological relevance, stronger association with local traffic and higher spatial variability. Monitoring heavy metals with mosses is appealing, particularly for long-term exposure assessment, as mosses can remain on site many months without maintenance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, Matt; Hamilton, Chris

    This report provides supplemental information to the assessment of target markets provided in Appendix A of the 2012 Next Generation Nuclear Plant (NGNP) Industry Alliance (NIA) business plan [NIA 2012] for deployment of High Temperature Gas-Cooled Reactors (HTGRs) in the 2025 – 2050 time frame. This report largely reiterates the [NIA 2012] assessment for potential deployment of 400 to 800 HTGR modules (100 to 200 HTGR plants with 4 reactor modules) in the 600-MWt class in North America by 2050 for electricity generation, co-generation of steam and electricity, oil sands operations, hydrogen production, and synthetic fuels production (e.g., coal tomore » liquids). As the result of increased natural gas supply from hydraulic fracturing, the current and historically low prices of natural gas remain a significant barrier to deployment of HTGRs and other nuclear reactor concepts in the U.S. However, based on U.S. Department of Energy (DOE) Energy Information Agency (EIA) data, U.S. natural gas prices are expected to increase by the 2030 – 2040 timeframe when a significant number of HTGR modules could be deployed. An evaluation of more recent EIA 2013 data confirms the assumptions in [NIA 2012] of future natural gas prices in the range of approximately $7/MMBtu to $10/MMBtu during the 2030 – 2040 timeframe. Natural gas prices in this range will make HTGR energy prices competitive with natural gas, even in the absence of carbon-emissions penalties. Exhibit ES-1 presents the North American projections in each market segment including a characterization of the market penetration logic. Adjustments made to the 2012 data (and reflected in Exhibit ES-1) include normalization to the slightly larger 625MWt reactor module, segregation between steam cycle and more advanced (higher outlet temperature) modules, and characterization of U.S. synthetic fuel process applications as a separate market segment.« less

  2. Evaluation of VOC concentrations in indoor and outdoor microenvironments at near-road schools.

    PubMed

    Raysoni, Amit U; Stock, Thomas H; Sarnat, Jeremy A; Chavez, Mayra C; Sarnat, Stefanie Ebelt; Montoya, Teresa; Holguin, Fernando; Li, Wen-Whai

    2017-12-01

    A 14-week air quality study, characterizing the indoor and outdoor concentrations of 18 VOCs at four El Paso, Texas elementary schools, was conducted in Spring 2010. Three schools were in an area of high traffic density and the fourth school, considered as a background school, was situated in an area affected minimally by stationary and mobile sources of air pollution. Passive samplers were deployed for monitoring and analyzed by GC/MS. Differences in the concentration profiles of the BTEX species between the high and low traffic density schools confirmed the pre-defined exposure patterns. Toluene was the predominant compound within the BTEX group and the 96-hr average outdoor concentrations varied from 1.16 to 4.25 μg/m 3 across the four schools. Outdoor BTEX species were strongly correlated with each other (0.63 < r < 1.00, p < 0.05) suggesting a common source: vehicular traffic emissions. As expected, the strength of the associations between these compounds was more intense at each of the three high-exposure schools in contrast to the low-exposure school. This was further corroborated by the results obtained from the BTEX inter-species ratios (toluene: benzene and m, p- xylenes: ethylbenzene). Certain episodic events during the study period resulted in very elevated concentrations of some VOCs such as n-pentane. Indoor concentration of compounds with known indoor sources such as α -pinene, d-limonene, p-dichlorobenzene, and chloroform were generally higher than their corresponding outdoor concentrations. Cleaning agents, furniture polishes, materials used in arts and crafts activities, hot-water usage, and deodorizing cakes used in urinal pots were the likely major sources for these high indoor concentrations. Finally, retrospective assessment of average ambient BTEX concentrations over the last twenty years suggest a gradual decrement in this border region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 2D materials in electro-optic modulation: energy efficiency, electrostatics, mode overlap, material transfer and integration

    NASA Astrophysics Data System (ADS)

    Ma, Zhizhen; Hemnani, Rohit; Bartels, Ludwig; Agarwal, Ritesh; Sorger, Volker J.

    2018-02-01

    Here we discuss the physics of electro-optic modulators deploying 2D materials. We include a scaling laws analysis and show how energy-efficiency and speed change for three underlying cavity systems as a function of critical device length scaling. A key result is that the energy-per-bit of the modulator is proportional to the volume of the device, thus making the case for submicron-scale modulators possible deploying a plasmonic optical mode. We then show how Graphene's Pauli-blocking modulation mechanism is sensitive to the device operation temperature, whereby a reduction of the temperature enables a 10× reduction in modulator energy efficiency. Furthermore, we show how the high-index tunability of graphene is able to compensate for the small optical overlap factor of 2D-based material modulators, which is unlike classical silicon-based dispersion devices. Lastly, we demonstrate a novel method towards a 2D material printer suitable for cross-contamination free and on-demand printing. The latter paves the way to integrate 2D materials seamlessly into taped-out photonic chips.

  4. Apollo 12 Mission image - View of part of the deployed Apollo Lunar Surface Experiment Package (ALSEP)

    NASA Image and Video Library

    1969-11-19

    AS12-47-6918 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot, took this photograph of three of the components of the Apollo Lunar Surface Experiments Package (ALSEP) which was deployed on the moon during the first Apollo 12 extravehicular activity (EVA). The Passive Seismic Experiment (PSE) is in the center foreground. The largest object is the Central Station; and the white object on legs is the Suprathermal Ion Detector Experiment (SIDE). A portion of the shadow of astronaut Charles Conrad Jr., commander, can be seen at the left center edge of the picture. Astronaut Richard F. Gordon Jr., command module pilot, remained with the Apollo 12 Command and Service Modules (CSM) in lunar orbit while Conrad and Bean descended in the Lunar Module (LM) to explore the moon.

  5. Astronaut David Scott gives salute beside U.S. flag during EVA

    NASA Image and Video Library

    1971-08-01

    AS15-88-11863 (1 Aug. 1971) --- Astronaut David R. Scott, commander, gives a military salute while standing beside the deployed United States flag during the Apollo 15 lunar surface extravehicular activity (EVA) at the Hadley-Apennine landing site. The flag was deployed toward the end of EVA-2. The Lunar Module (LM), "Falcon," is partially visible on the right. Hadley Delta in the background rises approximately 4,000 meters (about 13,124 feet) above the plain. The base of the mountain is approximately 5 kilometers (about three statue miles) away. This photograph was taken by astronaut James B. Irwin, lunar module pilot. While astronauts Scott and Irwin descended in the LM to explore the moon, astronaut Alfred M. Worden, command module pilot, remained in lunar orbit in the Command and Service Modules (CSM).

  6. Partial view of the deployed Apollo Lunar Surface Experiments Package

    NASA Image and Video Library

    1972-04-21

    AS16-113-18347 (21 April 1972) --- A partial view of the Apollo 16 Apollo Lunar Surface Experiments Package (ALSEP) in deployed configuration on the lunar surface as photographed during the mission's first extravehicular activity (EVA), on April 21, 1972. The Passive Seismic Experiment (PSE) is in the foreground center; Central Station (C/S) is in center background, with the Radioisotope Thermoelectric Generator (RTG) to the left. One of the anchor flags for the Active Seismic Experiment (ASE) is at right. While astronauts John W. Young, commander; and Charles M. Duke Jr., lunar module pilot; descended in the Apollo 16 Lunar Module (LM) "Orion" to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  7. Recent developments in photovoltaic energy by ERDA/NASA-LeRC

    NASA Technical Reports Server (NTRS)

    Deyo, J. N.

    1977-01-01

    Application development activities were designed to stimulate the market for photovoltaics so that as costs are reduced there will be an increasing market demand to encourage the expansion of industrial solar array production capacity. Supporting these application development activities are tasks concerned with: (1) establishing standards and methodology for terrestrial solar cell calibration; (2) conducting standard and diagnostic measurements on solar cells and modules; and (3) conducting real time and accelerated testing of solar cell modules and materials of construction under outdoor sunlight conditions.

  8. Large space erectable structures - building block structures study

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.; Skoumal, D. E.; Straayer, J. W.

    1977-01-01

    A modular planar truss structure and a long slender boom concept identified as building block approaches to construction of large spacecraft configurations are described. The concepts are compatible in weight and volume goals with the Space Transportation System, use standard structural units, and represent high on-orbit productivity in terms of structural area or beam length. Results of structural trade studies involving static and dynamic analyses of a single module and rigid body deployment analyses to assess kinetics and kinematics of automatic deployment of the building block modules are presented.

  9. An intelligent training system for payload-assist module deploys

    NASA Technical Reports Server (NTRS)

    Loftin, R. Bowen; Wang, Lui; Baffes, Paul; Rua, Monica

    1987-01-01

    An autonomous intelligent training system which integrates expert system technology with training/teaching methodologies is described. The Payload-Assist Module Deploys/Intelligent Computer-Aided Training (PD/ICAT) system has, so far, proven to be a potentially valuable addition to the training tools available for training Flight Dynamics Officers in shuttle ground control. The authors are convinced that the basic structure of PD/ICAT can be extended to form a general architecture for intelligent training systems for training flight controllers and crew members in the performance of complex, mission-critical tasks.

  10. The development of expertise using an intelligent computer-aided training system

    NASA Technical Reports Server (NTRS)

    Johnson, Debra Steele

    1991-01-01

    An initial examination was conducted of an Intelligent Tutoring System (ITS) developed for use in industry. The ITS, developed by NASA, simulated a satellite deployment task. More specifically, the PD (Payload Assist Module Deployment)/ICAT (Intelligent Computer Aided Training) System simulated a nominal Payload Assist Module (PAM) deployment. The development of expertise on this task was examined using three Flight Dynamics Officer (FDO) candidates who has no previous experience with this task. The results indicated that performance improved rapidly until Trial 5, followed by more gradual improvements through Trial 12. The performance dimensions measured included performance speed, actions completed, errors, help required, and display fields checked. Suggestions for further refining the software and for deciding when to expose trainees to more difficult task scenarios are discussed. Further, the results provide an initial demonstration of the effectiveness of the PD/ICAT system in training the nominal PAM deployment task and indicate the potential benefits of using ITS's for training other FDO tasks.

  11. The development of expertise on an intelligent tutoring system

    NASA Technical Reports Server (NTRS)

    Johnson, Debra Steele

    1989-01-01

    An initial examination was conducted of an Intelligent Tutoring System (ITS) developed for use in industry. The ITS, developed by NASA, simulated a satellite deployment task. More specifically, the PD (Payload Assist Module Deployment)/ICAT (Intelligent Computer Aided Training) System simulated a nominal Payload Assist Module (PAM) deployment. The development of expertise on this task was examined using three Flight Dynamics Officer (FDO) candidates who had no previous experience with this task. The results indicated that performance improved rapidly until Trial 5, followed by more gradual improvements through Trial 12. The performance dimensions measured included performance speed, actions completed, errors, help required, and display fields checked. Suggestions for further refining the software and for deciding when to expose trainees to more difficult task scenarios are discussed. Further, the results provide an initial demonstration of the effectiveness of the PD/ICAT system in training the nominal PAM deployment task and indicate the potential benefits of using ITS's for training other FDO tasks.

  12. Towards large-scale deployment of bifacial photovoltaics

    NASA Astrophysics Data System (ADS)

    Kopecek, R.; Libal, J.

    2018-06-01

    Low photovoltaic module costs imply that increasing the energy yield per module area is now a priority. We argue that modules harvesting sunlight from both sides will strongly penetrate the market but that more field data, better simulation tools and international measurement standards are needed to overcome perceived investment risks.

  13. Safety Precautions. Child Health and Safety Series (Module I).

    ERIC Educational Resources Information Center

    Iscoe, Louise; And Others

    This manual for parents and child care personnel in day care homes and centers provides guidelines and information on indoor and outdoor safety precautions, emergency preparation and first aid. Contents focus on monitoring arrivals and departures, prevention of suffocation and strangulation, control of pets and other animals, preventing and…

  14. Modelling of polymer photodegradation for solar cell modules

    NASA Technical Reports Server (NTRS)

    Guillet, J. E.

    1982-01-01

    A computer program which simulates the complex processes of photooxidation which take place in a polymer upon prolonged exposure outdoors causing it to fail in photovoltaic and other applications. The method calculates from an input data set of elementary reactions and rates the concentration profiles of all species over time.

  15. Backpacking. Outdoor Living Skills Series. Instructor Manual.

    ERIC Educational Resources Information Center

    Mentis, Jim

    Intended for use by those who teach or work with youth in classroom or organizational settings, this self-contained module is designed to teach novices how to prepare for and conduct a safe backpack trip. Initial chapters present background information under nine headings: introduction (objectives, backpack history, information about Missouri…

  16. [Deployment surgery from the viewpoint of the German Red Cross].

    PubMed

    Grabarek, V

    1997-01-01

    The German military coinages "deployment medicine" and "deployment surgery" are unusual within the Red Cross Germany (DRK). For its (surgical) deployments, the DRK complies exclusively with the principles of the International Red Cross and Red Crescent Movement. The mobile surgical unit of the DRK's rapid module system is an intentionally "low-tech" medical/surgical unit that also does without any dispensable medical conveniences. For its purposes and objectives it is optimally equipped, and enables the DRK to provide prompt and flexible regionally adjusted relief that is compatible with the Red Cross worldwide.

  17. Webinars on MyCDX Changes and New Defects and Recalls Reporting Module

    EPA Pesticide Factsheets

    This webinar focuses on MyCDX changes, overview of the new defects and recalls reporting module, the Engines and Vehicles Compliance Information System (EV-CIS) home page prototype and deployment information.

  18. STS-31 pre-deployment checkout of the Hubble Space Telescope (HST) on OV-103

    NASA Image and Video Library

    1990-04-25

    The Hubble Space Telescope (HST), grappled by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), is oriented in a 90 degree pitch position during STS-31 pre-deployment checkout procedures. The solar array (SA) panel (center) and high gain antennae (HGA) (on either side) are stowed along the Support System Module (SSM) forward shell prior to deployment. The sun highlights HST against the blackness of space.

  19. June 7, 2017 Webinar: Heavy-Duty Highway Trailers Verify Certification Module and Manufacturer Testing Information

    EPA Pesticide Factsheets

    This EPA webinar provides information on the Verify module for heavy-duty highway trailer manufacturers including introduction, user registration process, submitting certification information, request for certificate, testing and deployment information.

  20. Astronaut James Irwin gives salute beside U.S. flag during EVA

    NASA Image and Video Library

    1971-08-01

    AS15-88-11866 (1 Aug. 1971) --- Astronaut James B. Irwin, lunar module pilot, gives a military salute while standing beside the deployed United States flag during the Apollo 15 lunar surface extravehicular activity (EVA) at the Hadley-Apennine landing site. The flag was deployed toward the end of EVA-2. The Lunar Module (LM) "Falcon" is in the center. On the right is the Lunar Roving Vehicle (LRV). This view is looking almost due south. Hadley Delta in the background rises approximately 4,000 meters (about 13,124 feet) above the plain. The base of the mountain is approximately 5 kilometers (about 3 statute miles) away. This photograph was taken by astronaut David R. Scott, Apollo 15 commander. While astronauts Scott and Irwin descended in the LM to explore the moon, astronaut Alfred M. Worden, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  1. Astronaut John Young at LRV prior to deployment of ALSEP during first EVA

    NASA Image and Video Library

    1972-04-21

    AS16-116-18578 (21 April 1972) --- Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, works at the Lunar Roving Vehicle (LRV) just prior to deployment of the Apollo Lunar Surface Experiments Package (ALSEP) during the first extravehicular activity (EVA) on April 21, 1972. Note the Ultraviolet (UV) Camera/Spectrometer to the right of the Lunar Module (LM) ladder. Also, note the pile of protective/thermal foil under the U.S. flag on the LM which the astronauts pulled away to get to the Modular Equipment Storage Assembly (MESA) bay. While astronauts Young and Charles M. Duke Jr., lunar module pilot; descended in the Apollo 16 LM "Orion" to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  2. Air-dropped sensor network for real-time high-fidelity volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Huang, R.; Xu, M.; Ma, A.; Shirazi, B.; LaHusen, R.

    2009-01-01

    This paper presents the design and deployment experience of an air-dropped wireless sensor network for volcano hazard monitoring. The deployment of five stations into the rugged crater of Mount St. Helens only took one hour with a helicopter. The stations communicate with each other through an amplified 802.15.4 radio and establish a self-forming and self-healing multi-hop wireless network. The distance between stations is up to 2 km. Each sensor station collects and delivers real-time continuous seismic, infrasonic, lightning, GPS raw data to a gateway. The main contribution of this paper is the design and evaluation of a robust sensor network to replace data loggers and provide real-time long-term volcano monitoring. The system supports UTC-time synchronized data acquisition with 1ms accuracy, and is online configurable. It has been tested in the lab environment, the outdoor campus and the volcano crater. Despite the heavy rain, snow, and ice as well as gusts exceeding 120 miles per hour, the sensor network has achieved a remarkable packet delivery ratio above 99% with an overall system uptime of about 93.8% over the 1.5 months evaluation period after deployment. Our initial deployment experiences with the system have alleviated the doubts of domain scientists and prove to them that a low-cost sensor network system can support real-time monitoring in extremely harsh environments. Copyright 2009 ACM.

  3. Apollo 9 Lunar Module in lunar landing configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The Lunar Module 'Spider' is flying upside down in relation to the earth below. The landing gear on the 'Spider' had been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads.

  4. Firearms Safety: Instructor Manual. Shooting Skills Series.

    ERIC Educational Resources Information Center

    Green, Rodney J.; Powell, Cheryl Riley, Ed.

    Although written with the classroom teacher in mind, this learning module on firearms safety can be adapted by leaders of camps, 4-H clubs, outdoor educators, scouting organizations or any workers with junior and senior high school youth. The self-contained unit includes information on the subject, lesson plans, activities, class exercises, tests,…

  5. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1985-01-01

    The successful use of outdoor mounting racks as an accelerated aging technique (these devices are called optal reactors); a beginning list of candidate pottant materials for thin-film encapsulation, which process at temperatures well below 100 C; and description of a preliminary flame retardant formulation for ethylene vinyl acetate which could function to increase module flammability ratings are presented.

  6. New NREL Method Reduces Uncertainty in Photovoltaic Module Calibrations |

    Science.gov Websites

    calibration traceability to certified test laboratories. This reliable calibration, in turn, determines the of a spire flash simulator, SOMS outdoor test bed, and LACSS continuous simulator. In NREL's Cell and % (k=2 coverage factor). This value is the lowest reported Pmax uncertainty of any accredited test

  7. Real time outdoor exposure testing of solar cell modules and component materials

    NASA Technical Reports Server (NTRS)

    Anagnostou, E.; Forestieri, A. F.

    1977-01-01

    Plastic samples, solar cell modules, and sub-modules were exposed at test sites in Florida, Arizona, Puerto Rico, and Cleveland, Ohio, in order to determine materials suitable for use in solar cell modules with a proposed 20-year lifetime. Various environments were encountered including subtropical, subtropical with a sea air atmosphere, desert, rain forest, normal urban, and urban-polluted. The samples were exposed for periods up to six months. Materials found not suitable were polyurethane, polyester, Kapton, Mylar, and UV-stabilized Lexan. Suitable materials were acrylic, FEP-A, and glass. The results of exposure of polyvinylidene fluoride were dependent on the specific formulation, but several types appear suitable. RTV silicone rubber (clear) appears to pick up and hold dirt both as a free film and as a potting medium for modules. The results indicate that dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  8. cloudPEST - A python module for cloud-computing deployment of PEST, a program for parameter estimation

    USGS Publications Warehouse

    Fienen, Michael N.; Kunicki, Thomas C.; Kester, Daniel E.

    2011-01-01

    This report documents cloudPEST-a Python module with functions to facilitate deployment of the model-independent parameter estimation code PEST on a cloud-computing environment. cloudPEST makes use of low-level, freely available command-line tools that interface with the Amazon Elastic Compute Cloud (EC2(TradeMark)) that are unlikely to change dramatically. This report describes the preliminary setup for both Python and EC2 tools and subsequently describes the functions themselves. The code and guidelines have been tested primarily on the Windows(Registered) operating system but are extensible to Linux(Registered).

  9. NanoRacks CubeSat Deployment

    NASA Image and Video Library

    2015-02-27

    ISS042E290579 (02/27/2015) --- On Feb. 27 2015, a series of CubeSats, small experimental satellites, were deployed via a special device mounted on the Japanese Experiment Module (JEM) Remote Manipulator System (JEMRMS). Deployed satellites included twelve Dove sats, one TechEdSat-4, one GEARRSat, one LambdaSat, one MicroMas. These satellites perform a variety of functions from capturing new Earth imagery, to using microwave scanners to create 3D images of hurricanes, to even developing new methods for returning science samples back to Earth from space. The small satellites were deployed through the first week in March.

  10. Validation of the PVSyst Performance Model for the Concentrix CPV Technology

    NASA Astrophysics Data System (ADS)

    Gerstmaier, Tobias; Gomez, María; Gombert, Andreas; Mermoud, André; Lejeune, Thibault

    2011-12-01

    The accuracy of the two-stage PVSyst model for the Concentrix CPV Technology is determined by comparing modeled to measured values. For both stages, i) the module model and ii) the power plant model, the underlying approaches are explained and methods for obtaining the model parameters are presented. The performance of both models is quantified using 19 months of outdoor measurements for the module model and 9 months of measurements at four different sites for the power plant model. Results are presented by giving statistical quantities for the model accuracy.

  11. Solar simulators vs outdoor module performance in the Negev Desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faiman, D

    The power output of photovoltaic cells depends on the intensity of the incoming light, its spectral content and the cell temperature. In order to be able to predict the performance of a pv system, therefore, it is of paramount importance to be able to quantify cell performance in a reproducible manner. The standard laboratory technique for this purpose is to employ a solar simulator and a calibrated reference cell. Such a setup enables module performance to be assessed under constant, standard, illumination and temperature conditions. However, this technique has three inherent weaknesses.

  12. Filtration by eyelashes

    NASA Astrophysics Data System (ADS)

    Vistarakula, Krishna; Bergin, Mike; Hu, David

    2010-11-01

    Nearly every mammalian and avian eye is rimmed with lashes. We investigate experimentally the ability of lashes to reduce airborne particle deposition in the eye. We hypothesize that there is an optimum eyelash length that maximizes both filtration ability and extent of peripheral vision. This hypothesis is tested using a dual approach. Using preserved heads from 36 species of animals at the American Museum of Natural History, we determine the relationship between eye size and eyelash geometry (length and spacing). We test the filtration efficacy of these geometries by deploying outdoor manikins and measuring particle deposition rate as a function of eyelash length.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Kempe, Michael D.; Muller, Matthew T.

    We examined the durability of polymeric encapsulation materials using outdoor exposure at the nominal geometric concentration of 500 suns. The results for 36-month cumulative field deployment are presented for materials including: poly(ethylene-co-vinyl acetate), (EVA); polyvinyl butyral (PVB); ionomer; polyethylene/polyoctene copolymer (PO); thermoplastic polyurethane (TPU); poly(dimethylsiloxane) (PDMS); poly(diphenyl dimethyl siloxane) (PDPDMS); and poly(phenyl-methyl siloxane) (PPMS). Measurements of the field conditions including ambient temperature and ultraviolet (UV) dose were recorded at the test site during the experiment. Our measurements for the experiment included optical transmittance (with subsequent analysis of solar-weighted transmittance, UV cut-off wavelength, and yellowness index), mass, visual photography, photoelastic imaging,more » and fluorescence spectroscopy. While the results to date for EVA are presented and discussed, examination here focuses more on the siloxane materials. A specimen recently observed to fail by thermal decomposition is discussed in terms of the implementation of the experiment as well as its fluorescence signature, which was observed to become more pronounced with age. Modulated thermogravimetry (allowing determination of the activation energy of thermal decomposition) was performed on a subset of the siloxanes to quantify the propensity for decomposition at elevated temperatures. Supplemental, Pt-catalyst- and primer-solutions as well as peroxide-cured PDMS specimens were examined to assess the source of the luminescence. Furthermore, our results, including the change in optical transmittance, observed failure modes, and subsequent analyses of the failure modes are described in the conclusions.« less

  14. Development of deployable structures for large space platform systems. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1983-01-01

    The preponderance of study effort was devoted toward the deployable platform systems study which culminated in the detailed design of a ground test article for future development testing. This design is representative of a prototype square-truss, single-fold building-block design that can construct deployable platform structures. This prototype design was selected through a comprehensive and traceable selection process applied to eight competitive designs. The selection process compared the competitive designs according to seven major selection criteria, i.e., design versatility, cost, thermal stability, meteoroid impact significance, reliability, performance predictability, and orbiter integration suitability. In support of the foregoing, a materials data base, and platform systems technology development needs were established. An erectable design of an OTV hangar was selected and recommended for further design development. This design was selected from five study-developed competitive single-fold and double-fold designs including hard-shell and inflatable designs. Also, two deployable manned module configurations, i.e., a hard-shell and an inflatable design were each developed to the same requirements as the composite of two Space station baseline habitat modules.

  15. Apollo 9 Lunar Module in lunar landing configuration

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on the 'Spider' has been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were Astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot.

  16. Design of Small MEMS Microphone Array Systems for Direction Finding of Outdoors Moving Vehicles

    PubMed Central

    Zhang, Xin; Huang, Jingchang; Song, Enliang; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2014-01-01

    In this paper, a MEMS microphone array system scheme is proposed which implements real-time direction of arrival (DOA) estimation for moving vehicles. Wind noise is the primary source of unwanted noise on microphones outdoors. A multiple signal classification (MUSIC) algorithm is used in this paper for direction finding associated with spatial coherence to discriminate between the wind noise and the acoustic signals of a vehicle. The method is implemented in a SHARC DSP processor and the real-time estimated DOA is uploaded through Bluetooth or a UART module. Experimental results in different places show the validity of the system and the deviation is no bigger than 6° in the presence of wind noise. PMID:24603636

  17. Design of small MEMS microphone array systems for direction finding of outdoors moving vehicles.

    PubMed

    Zhang, Xin; Huang, Jingchang; Song, Enliang; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2014-03-05

    In this paper, a MEMS microphone array system scheme is proposed which implements real-time direction of arrival (DOA) estimation for moving vehicles. Wind noise is the primary source of unwanted noise on microphones outdoors. A multiple signal classification (MUSIC) algorithm is used in this paper for direction finding associated with spatial coherence to discriminate between the wind noise and the acoustic signals of a vehicle. The method is implemented in a SHARC DSP processor and the real-time estimated DOA is uploaded through Bluetooth or a UART module. Experimental results in different places show the validity of the system and the deviation is no bigger than 6° in the presence of wind noise.

  18. Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin

    PubMed Central

    Callac, Nolwenn; Rommevaux-Jestin, Céline; Rouxel, Olivier; Lesongeur, Françoise; Liorzou, Céline; Bollinger, Claire; Ferrant, Antony; Godfroy, Anne

    2013-01-01

    Oceanic basalts host diverse microbial communities with various metabolisms involved in C, N, S, and Fe biogeochemical cycles which may contribute to mineral and glass alteration processes at, and below the seafloor. In order to study the microbial colonization on basaltic glasses and their potential biotic/abiotic weathering products, two colonization modules called AISICS (“Autonomous in situ Instrumented Colonization System”) were deployed in hydrothermal deep-sea sediments at the Guaymas Basin for 8 days and 22 days. Each AISICS module contained 18 colonizers (including sterile controls) filled with basaltic glasses of contrasting composition. Chemical analyses of ambient fluids sampled through the colonizers showed a greater contribution of hydrothermal fluids (maximum temperature 57.6°C) for the module deployed during the longer time period. For each colonizer, the phylogenetic diversity and metabolic function of bacterial and archaeal communities were explored using a molecular approach by cloning and sequencing. Results showed large microbial diversity in all colonizers. The bacterial distribution was primarily linked to the deployment duration, as well as the depth for the short deployment time module. Some 16s rRNA sequences formed a new cluster of Epsilonproteobacteria. Within the Archaea the retrieved diversity could not be linked to either duration, depth or substrata. However, mcrA gene sequences belonging to the ANME-1 mcrA-guaymas cluster were found sometimes associated with their putative sulfate-reducers syntrophs depending on the colonizers. Although no specific glass alteration texture was identified, nano-crystals of barite and pyrite were observed in close association with organic matter, suggesting a possible biological mediation. This study gives new insights into the colonization steps of volcanic rock substrates and the capability of microbial communities to exploit new environmental conditions. PMID:23986754

  19. Reliability and Engineering of Thin-Film Photovoltaic Modules. Research forum proceedings

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr. (Editor); Royal, E. L. (Editor)

    1985-01-01

    A Research Forum on Reliability and Engineering of Thin Film Photovoltaic Modules, under sponsorship of the Jet Propulsion Laboratory's Flat Plate Solar Array (FSA) Project and the U.S. Department of Energy, was held in Washington, D.C., on March 20, 1985. Reliability attribute investigations of amorphous silicon cells, submodules, and modules were the subjects addressed by most of the Forum presentations. Included among the reliability research investigations reported were: Arrhenius-modeled accelerated stress tests on a Si cells, electrochemical corrosion, light induced effects and their potential effects on stability and reliability measurement methods, laser scribing considerations, and determination of degradation rates and mechanisms from both laboratory and outdoor exposure tests.

  20. Preliminary results of accelerated exposure testing of solar cell system components

    NASA Technical Reports Server (NTRS)

    Anagnostou, E.; Forestieri, A. F.

    1977-01-01

    Plastic samples and solar cell sub modules were exposed to an accelerated outdoor environment in Arizona and an accelerated simulated environment in a cyclic ultraviolet exposure tester which included humidity exposure. These tests were for preliminary screening of materials suitable for use in the manufacture of solar cell modules which are to have a 20-year lifetime. The samples were exposed for various times up to six months, equivalent to a real time exposure of four years. Suitable materials were found to be FEP-A, FEP-C, PFA, acrylic, silicone compounds and adhesives and possibly parylene. The method of packaging the sub modules was also found to be important to their performance.

  1. Chemical Bonding Technology: Direct Investigation of Interfacial Bonds

    NASA Technical Reports Server (NTRS)

    Koenig, J. L.; Boerio, F. J.; Plueddemann, E. P.; Miller, J.; Willis, P. B.; Cuddihy, E. F.

    1986-01-01

    This is the third Flat-Plate Solar Array (FSA) Project document reporting on chemical bonding technology for terrestrial photovoltaic (PV) modules. The impetus for this work originated in the late 1970s when PV modules employing silicone encapsulation materials were undergoing delamination during outdoor exposure. At that time, manufacturers were not employing adhesion promoters and, hence, module interfaces in common with the silicone materials were only in physical contact and therefore easily prone to separation if, for example, water were to penetrate to the interfaces. Delamination with silicone materials virtually vanished when adhesion promoters, recommended by silicone manufacturers, were used. The activities related to the direct investigation of chemically bonded interfaces are described.

  2. Low concentration solar louvres for building integration

    NASA Astrophysics Data System (ADS)

    Vincenzi, D.; Aldegheri, F.; Baricordi, S.; Bernardoni, P.; Calabrese, G.; Guidi, V.; Pozzetti, L.

    2013-09-01

    The building integration of CPV modules offers several advantages over the integration of flat panel systems, but the decreasing price trend of standard modules observed in the last years has hampered the market expansion of CPV systems, which still don't rely on a low-cost mass production supply chain. To overcome this contingent issue and to foster the diffusion of innovative PV systems we developed a low concentration BIPV module with added functionalities, such as sunlight shading and building illumination. The electrical performances, retrieved under outdoor conditions, and the lighting performances of the Solar F-Light are shown. The latter indicate that it is suitable for ambient lighting, with a very limited power draw.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Satyabrata; Rao, Nageswara S; Wu, Qishi

    There have been increasingly large deployments of radiation detection networks that require computationally fast algorithms to produce prompt results over ad-hoc sub-networks of mobile devices, such as smart-phones. These algorithms are in sharp contrast to complex network algorithms that necessitate all measurements to be sent to powerful central servers. In this work, at individual sensors, we employ Wald-statistic based detection algorithms which are computationally very fast, and are implemented as one of three Z-tests and four chi-square tests. At fusion center, we apply the K-out-of-N fusion to combine the sensors hard decisions. We characterize the performance of detection methods bymore » deriving analytical expressions for the distributions of underlying test statistics, and by analyzing the fusion performances in terms of K, N, and the false-alarm rates of individual detectors. We experimentally validate our methods using measurements from indoor and outdoor characterization tests of the Intelligence Radiation Sensors Systems (IRSS) program. In particular, utilizing the outdoor measurements, we construct two important real-life scenarios, boundary surveillance and portal monitoring, and present the results of our algorithms.« less

  4. Outdoor passive air monitoring of semi volatile organic compounds (SVOCs): a critical evaluation of performance and limitations of polyurethane foam (PUF) disks.

    PubMed

    Bohlin, P; Audy, O; Škrdlíková, L; Kukučka, P; Přibylová, P; Prokeš, R; Vojta, Š; Klánová, J

    2014-03-01

    The most commonly used passive air sampler (PAS) (i.e. polyurethane foam (PUF) disk) is cheap, versatile, and capable of accumulating compounds present both in gas and particle phases. Its performance for particle associated compounds is however disputable. In this study, twelve sets of triplicate PUF-PAS were deployed outdoors for exposure periods of 1-12 weeks together with continuously operated active samplers, to characterize sampling efficiency and derive sampling rates (RS) for compounds belonging to 7 SVOC classes (including particle associated compounds). PUF-PAS efficiently and consistently sampled polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), and eight novel brominated flame retardant (nBFR) compounds. Low accuracy and lack of sensitivity was observed for most polychlorinated dibenzo-p-dioxins/furans PCDD/Fs and polybrominated diphenyl ethers (PBDEs) (under the conditions of this study), with the exception of some congeners which may be used as qualitative markers for their respective classes. Application of compound specific RS was found crucial for all compounds except PCBs. Sampling efficiency of the particle associated compounds was often low.

  5. Technical support package: Large, easily deployable structures. NASA Tech Briefs, Fall 1982, volume 7, no. 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Design and test data for packaging, deploying, and assembling structures for near term space platform systems, were provided by testing light type hardware in the Neutral Buoyancy Simulator. An optimum or near optimum structural configuration for varying degrees of deployment utilizing different levels of EVA and RMS was achieved. The design of joints and connectors and their lock/release mechanisms were refined to improve performance and operational convenience. The incorporation of utilities into structural modules to determine their effects on packaging and deployment was evaluated. By simulation tests, data was obtained for stowage, deployment, and assembly of the final structural system design to determine construction timelines, and evaluate system functioning and techniques.

  6. Supply Constraints Analysis | Energy Analysis | NREL

    Science.gov Websites

    module cost, and future price could be critical to the economic viability of this PV technology. Even constraints on future CdTe PV module deployment and found that: CdTe PV modules can remain cost-competitive and 4070 GW of annual CdTe production by 2030. Cost estimates were based on NREL's manufacturing cost

  7. Models for Deploying Open Source and Commercial Software to Support Earth Science Data Processing and Distribution

    NASA Astrophysics Data System (ADS)

    Yetman, G.; Downs, R. R.

    2011-12-01

    Software deployment is needed to process and distribute scientific data throughout the data lifecycle. Developing software in-house can take software development teams away from other software development projects and can require efforts to maintain the software over time. Adopting and reusing software and system modules that have been previously developed by others can reduce in-house software development and maintenance costs and can contribute to the quality of the system being developed. A variety of models are available for reusing and deploying software and systems that have been developed by others. These deployment models include open source software, vendor-supported open source software, commercial software, and combinations of these approaches. Deployment in Earth science data processing and distribution has demonstrated the advantages and drawbacks of each model. Deploying open source software offers advantages for developing and maintaining scientific data processing systems and applications. By joining an open source community that is developing a particular system module or application, a scientific data processing team can contribute to aspects of the software development without having to commit to developing the software alone. Communities of interested developers can share the work while focusing on activities that utilize in-house expertise and addresses internal requirements. Maintenance is also shared by members of the community. Deploying vendor-supported open source software offers similar advantages to open source software. However, by procuring the services of a vendor, the in-house team can rely on the vendor to provide, install, and maintain the software over time. Vendor-supported open source software may be ideal for teams that recognize the value of an open source software component or application and would like to contribute to the effort, but do not have the time or expertise to contribute extensively. Vendor-supported software may also have the additional benefits of guaranteed up-time, bug fixes, and vendor-added enhancements. Deploying commercial software can be advantageous for obtaining system or software components offered by a vendor that meet in-house requirements. The vendor can be contracted to provide installation, support and maintenance services as needed. Combining these options offers a menu of choices, enabling selection of system components or software modules that meet the evolving requirements encountered throughout the scientific data lifecycle.

  8. Apollo 12 Mission image - Close-up view of the Solar Wind Panel

    NASA Image and Video Library

    1969-11-19

    AS12-47-6898 (19 Nov. 1969) --- A close-up view of the Solar Wind Composition device. Astronaut Alan L. Bean, lunar module pilot, took this photograph, after having deployed the device. Astronauts Charles Conrad Jr., commander, and Bean descended in the Apollo 12 Lunar Module (LM) to explore the moon, while astronaut Richard F. Gordon Jr., command module pilot, remained in lunar orbit with the Command and Service Modules (CSM).

  9. Astronaut Alan Bean deploys ALSEP during first Apollo 12 EVA on moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, Apollo 12 lunar module pilot, deploys components of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA) on the moon. The photo was made by Astronaut Charles Conrad Jr., Apollo 12 commander, using a 70mm handheld Haselblad camera modified for lunar surface usage.

  10. Long-Term Outdoor Reliability Assessment of a Wireless Unit for Air-Quality Monitoring Based on Nanostructured Films Integrated on Micromachined Platforms

    PubMed Central

    Leccardi, Matteo; Decarli, Massimiliano; Lorenzelli, Leandro; Milani, Paolo; Mettala, Petteri; Orava, Risto; Barborini, Emanuele

    2012-01-01

    We have fabricated and tested in long-term field operating conditions a wireless unit for outdoor air quality monitoring. The unit is equipped with two multiparametric sensors, one miniaturized thermo-hygrometer, front-end analogical and digital electronics, and an IEEE 802.15.4 based module for wireless data transmission. Micromachined platforms were functionalized with nanoporous metal-oxides to obtain multiparametric sensors, hosting gas-sensitive, anemometric and temperature transducers. Nanoporous metal-oxide layer was directly deposited on gas sensing regions of micromachined platform batches by hard-mask patterned supersonic cluster beam deposition. An outdoor, roadside experiment was arranged in downtown Milan (Italy), where one wireless sensing unit was continuously operated side by side with standard gas chromatographic instrumentation for air quality measurements. By means of a router PC, data from sensing unit and other instrumentation were collected, merged, and sent to a remote data storage server, through an UMTS device. The whole-system robustness as well as sensor dataset characteristics were continuously characterized over a run-time period of 18 months. PMID:22969394

  11. Indoor Localization Using Wi-Fi Based Fingerprinting and Trilateration Techiques for Lbs Applications

    NASA Astrophysics Data System (ADS)

    Chan, S.; Sohn, G.

    2012-06-01

    The past few years have seen wide spread adoption of outdoor positioning services, mainly GPS, being incorporated into everyday devices such as smartphones and tablets. While outdoor positioning has been well received by the public, its indoor counterpart has been mostly limited to private use due to its higher costs and complexity for setting up the proper environment. The objective of this research is to provide an affordable mean for indoor localization using wireless local area network (WLAN) Wi-Fi technology. We combined two different Wi-Fi approaches to locate a user. The first method involves the use of matching the pre-recorded received signal strength (RSS) from nearby access points (AP), to the data transmitted from the user on the fly. This is commonly known as "fingerprint matching". The second approach is a distance-based trilateration approach using three known AP coordinates detected on the user's device to derive the position. The combination of the two steps enhances the accuracy of the user position in an indoor environment allowing location-based services (LBS) such as mobile augmented reality (MAR) to be deployed more effectively in the indoor environment. The mapping of the RSS map can also prove useful to IT planning personnel for covering locations with no Wi-Fi coverage (ie. dead spots). The experiments presented in this research helps provide a foundation for the integration of indoor with outdoor positioning to create a seamless transition experience for users.

  12. Wakata in the JPM

    NASA Image and Video Library

    2013-11-15

    View of Koichi Wakata,Expedition 38 Flight Engineer (FE),in the Japanese Experiment Module (JEM) Pressurized Module (JPM). JEM Small Satellite Orbital Deployer (J-SSOD) installed on the Multi-Purpose Experiment Platform (MPEP),is visible. Photo was taken during Expedition 38. Image was released by astronaut on Twitter.

  13. KSC-03PD-2139

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Joseph Tanner (center) and Heidemarie Stefanyshyn-Piper (right) look at the inside of the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  14. KSC-03PD-2138

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Joseph Tanner (left) and Heidemarie Stefanyshyn-Piper (right) look over the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  15. KSC-03PD-2141

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper (left) gets ready to check out the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  16. KSC-03PD-2140

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Heidemarie Stefanyshyn- Piper (left) and Joseph Tanner (center) get ready to check out the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.

  17. Performance degradation of photovoltaic modules at different sites

    NASA Astrophysics Data System (ADS)

    Arab, A. Hadj; Mahammed, I. Hadj; Ould Amrouche, S.; Taghezouit, B.; Yassaa, N.

    2018-05-01

    In this work are presented results of electrical performance measurements of 120 crystalline silicon PV modules following long-term outdoor measurements. A set of 90 PV modules represent the first grid-connected photovoltaic (PV) system in Algeria, installed at the level of the “Centre de Développement des Energies Renouvelables” (CDER) site (Mediterranean coast), Bouzareah. The other 30 PV modules were undertaken in an arid area of the desert region of Ghardaïa site, about 600 km south of Algiers, with measurements collected from different applications. Following different characterization tests, we noticed that the all tested PV modules kept their power-generating rate except a slight reduction. Therefore, a mathematical model has been used to carry out PV module testing at different irradiance and temperature levels. Hence, different PV module parameters have been calculated from the recorded values of the open-circuit voltage, the short-circuit current, the voltage and current at maximum power point. The electrical measurements have indicated different degradations of current-voltage parameters. All the PV modules stated a decrease in the nominal power, which is variable from one module to another.

  18. Relevant climate response tests for stratospheric aerosol injection: A combined ethical and scientific analysis

    NASA Astrophysics Data System (ADS)

    Lenferna, Georges Alexandre; Russotto, Rick D.; Tan, Amanda; Gardiner, Stephen M.; Ackerman, Thomas P.

    2017-06-01

    In this paper, we focus on stratospheric sulfate injection as a geoengineering scheme, and provide a combined scientific and ethical analysis of climate response tests, which are a subset of outdoor tests that would seek to impose detectable and attributable changes to climate variables on global or regional scales. We assess the current state of scientific understanding on the plausibility and scalability of climate response tests. Then, we delineate a minimal baseline against which to consider whether certain climate response tests would be relevant for a deployment scenario. Our analysis shows that some climate response tests, such as those attempting to detect changes in regional climate impacts, may not be deployable in time periods relevant to realistic geoengineering scenarios. This might pose significant challenges for justifying stratospheric sulfate aerosol injection deployment overall. We then survey some of the major ethical challenges that proposed climate response tests face. We consider what levels of confidence would be required to ethically justify approving a proposed test; whether the consequences of tests are subject to similar questions of justice, compensation, and informed consent as full-scale deployment; and whether questions of intent and hubris are morally relevant for climate response tests. We suggest further research into laboratory-based work and modeling may help to narrow the scientific uncertainties related to climate response tests, and help inform future ethical debate. However, even if such work is pursued, the ethical issues raised by proposed climate response tests are significant and manifold.

  19. Game On! Students' Perceptions of Gamified Learning

    ERIC Educational Resources Information Center

    Buckley, Patrick; Doyle, Elaine; Doyle, Shane

    2017-01-01

    Gamification is presented in the literature as a pedagogical innovation that may increase student engagement and enhance learning. This study explores students' perceptions of a gamified learning intervention deployed in a large undergraduate module and a small postgraduate module. Given the dearth of previous empirical work, an exploratory…

  20. Labeled line drawing of Magellan spacecraft

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Labeled line drawing identifies Magellan spacecraft components including forward equipment module, star scanner, propulsion module, rocket engine module, thermal control louvers, solar panel drive and cable wrap, solar panel, bus, altimeter antenna, low-gain antenna, and high gain antenna. Magellan, named for the 16th century Portuguese explorer, will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-30.

  1. Small Cube Satellite Deploy

    NASA Image and Video Library

    2013-11-19

    ISS038-E-003876 (19 Nov. 2013) --- Three nanosatellites, known as Cubesats, are featured in this image photographed by an Expedition 38 crew member on the International Space Station. The satellites were released outside the Kibo laboratory using a Small Satellite Orbital Deployer attached to the Japanese module's robotic arm on Nov. 19, 2013. Japan Aerospace Exploration Agency astronaut Koichi Wakata, flight engineer, monitored the satellite deployment while operating the Japanese robotic arm from inside Kibo. The Cubesats were delivered to the International Space Station Aug. 9, aboard Japan’s fourth H-II Transfer Vehicle, Kounotori-4.

  2. STS-31 Hubble Space Telescope (HST) solar array (SA) deploy aboard OV-103

    NASA Image and Video Library

    1990-04-25

    During STS-31, the Hubble Space Telescope (HST) is held in appendage deploy position by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS) above the payload bay (PLB) and crew compartment cabin. While in this position the solar array (SA) wing bistem cassette (HST center) is deployed from its stowed location along side the Support System Module (SSM) forward shell. A high gain antenna (HGA) remains stowed along the SSM. The Earth's surface and the Earth limb creates a dramatic backdrop.

  3. Interactions of aquatic animals with the ORPC OCGen® in Cobscook Bay, Maine: Monitoring behavior change and assessing the probability of encounter with a deployed MHK device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zydlewski, Gayle Barbin; Staines, Garrett; Viehman, Haley

    Commercial viability of the marine hydrokinetic (MHK) energy industry is contingent on numerous and diverse factors. A major factor is the effects deployed devices have on animals. This factor is multi-faceted since it is dependent on the availability of appropriate scientific approaches to detect these effects. One of the animal groups with overlapping distributions of MHK devices are fishes. As such, individual fish behavior is likely to be influenced by the presence and operation of MHK devices. Depending on the scale of deployment there are implications for changes to essential fish habitat and effects that can be explored during deploymentmore » of a single device yet most changes are likely to be realized when multiple devices are deployed over large areas. It is not only important to document these effects and examine the need for mitigation, but also determine whether the methods involved can be used within the economic constraints of this nascent industry. The results presented in this report benefit the MHK industry by providing transferrable environmental monitoring approaches for MHK projects, specifically related to the interactions between static and dynamic tidal turbines and fish. In addition, some of the data can be used to generalize conditions (e.g., the temporal periodicity of fish presence in tidal regions and probability of fish encountering a device) at other MHK sites with similar physical conditions and fish assemblages. Ocean Renewable Power Company, LLC (ORPC) deployed and tested a prototype OCGen® tidal module in Cobscook Bay, Maine, in the summer of 2014. University of Maine researchers proposed an approach to inform other researchers, regulators, and industry members of the effects of this deployment on fish. While the approach was specifically applied to the OCGen® module, results are applicable to other pilot projects and inform future array deployments. Research funded under this grant allowed us to quantify fish presence as well as individual and group-level behavior changes in the presence of the deployed OCGen® module along with a bottom support frame from a previously deployed device (TidGen®). Specific objectives associated with fish behavior changes were (1) continuation of two long-term datasets: (a) stationary down-looking hydroacoustic dataset near an MHK device (group-level) and (b) stationary side-looking hydroacoustics near the bottom-support frame of a previously deployed MHK device (individual-level); (2) application of new processing methods to down-looking hydroacoustic datasets to improve fish species identification (group-level); and (3) development of an encounter probability model using data on fish abundance, vertical distribution, and behavior.« less

  4. Solid Surface Wetting and the Deployment of Drops in Microgravity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Depew, J.

    1994-01-01

    The complete or partial deployment of liquid samples in low gravity is primarily influenced by the interfacial properties of the specific liquid and solid materials used because the overwhelming bias of the Earth gravitational acceleration is removed. This study addresses the engineering aspects of injecting and deploying drops of prescribed volume into an acoustic positioning chamber in microgravity. The specific problems of interest are the design, testing, and implementation of injector tips to be used in a simuttaneously retracting dual-injector system used in the Drop Physics Module microgravity experiment facility. Prior to release, the liquid to be deployed must be retained within a restricted area at the very end of the injectors even under dynamic stimuli due to continuous injection flow as well as to the stepped motion of the injectors, and the final released drop must have a well determined volume as well as negligible residual linear or angular momentum from the deployment process. The outcome of Earthbased short-duration low gravity experiments had been the selection of two types of injector tips which were flown as back-up parts and were successfully utilized during the USML-1 Spacelab mission. The combination of a larger contact surface, liquid pinning with a sharp edge, and selective coating of strategic tip surfaces with a non-wetting compound has allowed a significant increase in the success rate of deployment of simple and compound drops of aqueous solutions of glycerol and silicone oil. The diameter of the samples studied in the Drop Physics Module ranged between 0.3 and 2.7 cm. The tests conducted onsrbit with a manually operated small device have allowed the calibration of the volume deployed for a few drop sizes. The design for improved tips to be used during the next USML flight is based on these results.

  5. A reactive system for open terrain navigation: Performance and limitations

    NASA Technical Reports Server (NTRS)

    Langer, D.; Rosenblatt, J.; Hebert, M.

    1994-01-01

    We describe a core system for autonomous navigation in outdoor natural terrain. The system consists of three parts: a perception module which processes range images to identify untraversable regions of the terrain, a local map management module which maintains a representation of the environment in the vicinity of the vehicle, and a planning module which issues commands to the vehicle controller. Our approach is to use the concept of 'early traversability evaluation', and on the use of reactive planning for generating commands to drive the vehicle. We argue that our approach leads to a robust and efficient navigation system. We illustrate our approach by an experiment in which a vehicle travelled autonomously for one kilometer through unmapped cross-country terrain.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holley, W A

    This report describes work performed under a subcontract to the National Renewable Energy Laboratory under the Photovoltaic Manufacturing Technology Project. The objectives of this subcontract are to (1) define the problem of yellowing/browning of EVA-based encapsulants; (2) determine probable mechanisms and the role of various parameters such as heat, UV exposure, module construction, EVA interfaces, and EVA thickness, in the browning of EVA-based encapsulants; (3) develop stabilization strategies for various module constructions to protect the encapsulant from degradative failure; (4) conduct laboratory, accelerated outdoor, and field testing of encapsulant, laminated test coupons, and full modules to demonstrate the functional adequacymore » of the stabilization strategies; and (5) implement these strategies. This report summarizes the accomplishments related to the above goals for the reporting period.« less

  7. First results of ground-based LWIR hyperspectral imaging remote gas detection

    NASA Astrophysics Data System (ADS)

    Zheng, Wei-jian; Lei, Zheng-gang; Yu, Chun-chao; Wang, Hai-yang; Fu, Yan-peng; Liao, Ning-fang; Su, Jun-hong

    2014-11-01

    The new progress of ground-based long-wave infrared remote sensing is presented. The LWIR hyperspectral imaging by using the windowing spatial and temporal modulation Fourier spectroscopy, and the results of outdoor ether gas detection, verify the features of LWIR hyperspectral imaging remote sensing and technical approach. It provides a new technical means for ground-based gas remote sensing.

  8. Astronaut Alan Bean deploys ALSEP during first Apollo 12 EVA on moon

    NASA Image and Video Library

    1969-11-19

    AS12-47-6919 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot, deploys components of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA) on the moon. The photo was made by astronaut Charles Conrad Jr., commander, using a 70mm handheld Hasselblad camera modified for lunar surface usage.

  9. Patient Care Utility Module for DEPMEDS Hospitals

    DTIC Science & Technology

    1991-06-05

    identified in the patient care utility capability in Deployable Medical S-:tems (DEPMEDS) hospitals, especially in the Intensive Care Unit (ICU). A...identified in the patient care utility capability in Deployable Medical Systems (DEPMEDS) hospitals, especially in the Intensive Care Unit (ICU). A...REQUEST FROM DEFENSE MEDICAL STANDARDIZATION BOARD TO STUDY SPACE AROUND PATIENT BEDSIDE IN DEPHEDS HOSPITALS 28 DEFENSE MEDICAL STANDARDIZATION BOARD FONT

  10. Applications of thermoelectric modules on heat flow detection.

    PubMed

    Leephakpreeda, Thananchai

    2012-03-01

    This paper presents quantitative analysis and practical scenarios of implementation of the thermoelectric module for heat flow detection. Mathematical models of the thermoelectric effects are derived to describe the heat flow from/to the detected media. It is observed that the amount of the heat flow through the thermoelectric module proportionally induces the conduction heat owing to the temperature difference between the hot side and the cold side of the thermoelectric module. In turn, the Seebeck effect takes place in the thermoelectric module where the temperature difference is converted to the electric voltage. Hence, the heat flow from/to the detected media can be observed from both the amount and the polarity of the voltage across the thermoelectric module. Two experiments are demonstrated for viability of the proposed technique by the measurements of the heat flux through the building wall and thermal radiation from the outdoor environment during daytime. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Long-term performance analysis of CIGS thin-film PV modules

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.; Kaul, Ashwani; Pethe, Shirish A.

    2011-09-01

    Current accelerated qualification tests of photovoltaic (PV) modules mostly assist in avoiding infant mortality but can neither duplicate changes occurring in the field nor can predict useful lifetime. Therefore, outdoor monitoring of fielddeployed thin-film PV modules was undertaken at FSEC with goals of assessing their performance in hot and humid climate under high system voltage operation and to correlate the PV performance with the meteorological parameters. Significant and comparable degradation rate of -5.13% and -4.5% per year was found by PV USA type regression analysis for the positive and negative strings respectively of 40W glass-to-glass CIGS thin-film PV modules in the hot and humid climate of Florida. With the current-voltage measurements it was found that the performance degradation within the PV array was mainly due to a few (8-12%) modules having a substantially high degradation. The remaining modules within the array continued to show reasonable performance (>96% of the rated power after ~ 4years).

  12. Impact of heavy soiling on the power output of PV modules

    NASA Astrophysics Data System (ADS)

    Schill, Christian; Brachmann, Stefan; Heck, Markus; Weiss, Karl-Anders; Koehl, Michael

    2011-09-01

    Fraunhofer ISE is running a PV-module outdoor testing set-up on the Gran Canaria island, one of the Canary Island located west of Morroco in the Atlantic Ocean. The performance of the modules is assessed by IV-curve monitoring every 10 minutes. The electronic set-up of the monitoring system - consisting of individual electronic loads for each module which go into an MPP-tracking mode between the IV-measurements - will be described in detail. Soiling of the exposed modules happened because of building constructions nearby. We decided not to clean the modules, but the radiation sensors and recorded the decrease of the power output and the efficiency over time. The efficiency dropped to 20 % within 5 months before a heavy rain and subsequently the service personnel on site cleaned the modules. A smaller rain-fall in between washed the dust partly away and accumulated it at the lower part of the module, what could be concluded from the shape of the IV-curves, which were similar to partial shading by hot-spot-tests and by partial snow cover.

  13. ACT-Vision: active collaborative tracking for multiple PTZ cameras

    NASA Astrophysics Data System (ADS)

    Broaddus, Christopher; Germano, Thomas; Vandervalk, Nicholas; Divakaran, Ajay; Wu, Shunguang; Sawhney, Harpreet

    2009-04-01

    We describe a novel scalable approach for the management of a large number of Pan-Tilt-Zoom (PTZ) cameras deployed outdoors for persistent tracking of humans and vehicles, without resorting to the large fields of view of associated static cameras. Our system, Active Collaborative Tracking - Vision (ACT-Vision), is essentially a real-time operating system that can control hundreds of PTZ cameras to ensure uninterrupted tracking of target objects while maintaining image quality and coverage of all targets using a minimal number of sensors. The system ensures the visibility of targets between PTZ cameras by using criteria such as distance from sensor and occlusion.

  14. Micro air vehicle autonomous obstacle avoidance from stereo-vision

    NASA Astrophysics Data System (ADS)

    Brockers, Roland; Kuwata, Yoshiaki; Weiss, Stephan; Matthies, Lawrence

    2014-06-01

    We introduce a new approach for on-board autonomous obstacle avoidance for micro air vehicles flying outdoors in close proximity to structure. Our approach uses inverse-range, polar-perspective stereo-disparity maps for obstacle detection and representation, and deploys a closed-loop RRT planner that considers flight dynamics for trajectory generation. While motion planning is executed in 3D space, we reduce collision checking to a fast z-buffer-like operation in disparity space, which allows for significant speed-up compared to full 3d methods. Evaluations in simulation illustrate the robustness of our approach, whereas real world flights under tree canopy demonstrate the potential of the approach.

  15. Leadership, cohesion, morale, and the mental health of UK Armed Forces in Afghanistan.

    PubMed

    Jones, Norman; Seddon, Rachel; Fear, Nicola T; McAllister, Pete; Wessely, Simon; Greenberg, Neil

    2012-01-01

    UK Armed Forces (AF) personnel deployed to Afghanistan are frequently exposed to intense combat and yet little is known about the short-term mental health consequences of this exposure and the potential mitigating effects of military factors such as cohesion, morale, and leadership. To assess the possible modulating influence of cohesion, morale, and leadership on post-traumatic stress disorder (PTSD) symptoms and common mental disorders resulting from combat exposure among UK AF personnel deployed to Afghanistan, UK AF personnel, during their deployment to Afghanistan in 2010, completed a self-report survey about aspects of their current deployment, including perceived levels of cohesion, morale, leadership, combat exposure, and their mental health status. Outcomes were symptoms of common mental disorder and symptoms of PTSD. Combat exposure was associated with both PTSD symptoms and symptoms of common mental disorder. Of the 1,431 participants, 17.1% reported caseness levels of common mental disorder, and 2.7% were classified as probable PTSD cases. Greater self-reported levels of unit cohesion, morale, and perceived good leadership were all associated with lower levels of common mental disorder and PTSD. Greater levels of unit cohesion, morale, and good leadership may help to modulate the effects of combat exposure and the subsequent development of mental health problems among UK Armed Forces personnel deployed to Afghanistan. © 2012 Guilford Publications, Inc.

  16. Space Shuttle Projects

    NASA Image and Video Library

    1984-01-01

    The Space Shuttle Challenger, making its fourth space flight, highlights the 41B insignia. The reusable vehicle is flanked in the oval by an illustration of a Payload Assist Module-D solid rocket motor (PAM-D) for assisted satellite deployment; an astronaut making the first non-tethered extravehicular activity (EVA); and eleven stars.

  17. EDITORIAL Wireless sensor networks: design for real-life deployment and deployment experiences Wireless sensor networks: design for real-life deployment and deployment experiences

    NASA Astrophysics Data System (ADS)

    Gaura, Elena; Roedig, Utz; Brusey, James

    2010-12-01

    Wireless sensor networks (WSNs) are among the most promising technologies of the new millennium. The opportunities afforded by being able to program networks of small, lightweight, low-power, computation- and bandwidth-limited nodes have attracted a large community of researchers and developers. However, the unique set of capabilities offered by the technology produces an exciting but complex design space, which is often difficult to negotiate in an application context. Deploying sensing physical environments produces its own set of challenges, and can push systems into failure modes, thus revealing problems that can be difficult to discover or reproduce in simulation or the laboratory. Sustained efforts in the area of wireless networked sensing over the last 15 years have resulted in a large number of theoretical developments, substantial practical achievements, and a wealth of lessons for the future. It is clear that in order to bridge the gap between (on the one hand) visions of very large scale, autonomous, randomly deployed networks and (on the other) the actual performance of fielded systems, we need to view deployment as an essential component in the process of developing sensor networks: a process that includes hardware and software solutions that serve specific applications and end-user needs. Incorporating deployment into the design process reveals a new and different set of requirements and considerations, whose solutions require innovative thinking, multidisciplinary teams and strong involvement from end-user communities. This special feature uncovers and documents some of the hurdles encountered and solutions offered by experimental scientists when deploying and evaluating wireless sensor networks in situ, in a variety of well specified application scenarios. The papers specifically address issues of generic importance for WSN system designers: (i) data quality, (ii) communications availability and quality, (iii) alternative, low-energy sensing modalities and (iv) system solutions with high end-user added value and cost benefits. The common thread is deployment and deployment evaluation. In particular, satisfaction of application requirements, involvement of the end-user in the design and deployment process, satisfactory system performance and user acceptance are concerns addressed in many of the contributions. The contributions form a valuable set, which help to identify the priorities for research in this burgeoning area: Robust, reliable and efficient data collection in embedded wireless multi-hop networks are essential elements in creating a true deploy-and-forget user experience. Maintaining full connectivity within a WSN, in a real world environment populated by other WSNs, WiFi networks or Bluetooth devices that constitute sources of interference is a key element in any application, but more so for those that are safety-critical, such as disaster response. Awareness of the effects of wireless channel, physical position and line-of-sight on received signal strength in real-world, outdoor environments will shape the design of many outdoor applications. Thus, the quantification of such effects is valuable knowledge for designers. Sensors' failure detection, scalability and commercialization are common challenges in many long-term monitoring applications; transferable solutions are evidenced here in the context of pollutant detection and water quality. Innovative, alternative thinking is often needed to achieve the desired long-lived networks when power-hungry sensors are foreseen components; in some instances, the very problems of wireless technology, such as RF irregularity, can be transformed into advantages. The importance of an iterative design and evaluation methodology—from analysis to simulation to real-life deployment—should be well understood by all WSN developers. The value of this is highlighted in the context of a challenging WPAN video-surveillance application based on a novel Nomadic Access Mechanism. Cost benefits to be drawn from devising a WSN based solution to classic application areas such as surveillance are often a prime motivator for WSN designers; an example is offered here based on the use of intelligent agents for intrusion monitoring. Last but not least, the practicality and usability of the WSN solutions found for novel applications is key to their adoption. This is particularly true when the end-users of the developed technology are medical patients. The importance of feedback, elegant hardware encapsulation and extraction of meaning from data is presented in the context of novel orthopedic rehabilitation aids. Overall, this feature offers wide coverage of most issues encountered in the process of design, implementation and evaluation of deployable WSN systems. We trust that designers and developers of WSN systems will find much work of value, ranging from lessons learned, through solutions to known hurdles, to novel developments that enhance applications. Finally, we would like to thank all authors for their valuable contributions!

  18. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    NASA Technical Reports Server (NTRS)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  19. Apollo 9 Lunar Module in lunar landing configuration

    NASA Image and Video Library

    1969-03-07

    AS09-21-3181 (7 March 1969) --- A View of the Apollo 9 Lunar Module (LM), "Spider," in a lunar lading configuration, as photographed from the Command and Service Modules (CSM) on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module (CM), "Gumdrop," while the other two astronauts checked out the LM.

  20. The effect of the indoor environment on the fate of organic chemicals in the urban landscape.

    PubMed

    Cousins, Anna Palm

    2012-11-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK(OA) and the impact of the ventilation rate on the urban fate of organic chemicals. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Bacterial communities in commercial aircraft high-efficiency particulate air (HEPA) filters assessed by PhyloChip analysis.

    PubMed

    Korves, T M; Piceno, Y M; Tom, L M; Desantis, T Z; Jones, B W; Andersen, G L; Hwang, G M

    2013-02-01

    Air travel can rapidly transport infectious diseases globally. To facilitate the design of biosensors for infectious organisms in commercial aircraft, we characterized bacterial diversity in aircraft air. Samples from 61 aircraft high-efficiency particulate air (HEPA) filters were analyzed with a custom microarray of 16S rRNA gene sequences (PhyloChip), representing bacterial lineages. A total of 606 subfamilies from 41 phyla were detected. The most abundant bacterial subfamilies included bacteria associated with humans, especially skin, gastrointestinal and respiratory tracts, and with water and soil habitats. Operational taxonomic units that contain important human pathogens as well as their close, more benign relatives were detected. When compared to 43 samples of urban outdoor air, aircraft samples differed in composition, with higher relative abundance of Firmicutes and Gammaproteobacteria lineages in aircraft samples, and higher relative abundance of Actinobacteria and Betaproteobacteria lineages in outdoor air samples. In addition, aircraft and outdoor air samples differed in the incidence of taxa containing human pathogens. Overall, these results demonstrate that HEPA filter samples can be used to deeply characterize bacterial diversity in aircraft air and suggest that the presence of close relatives of certain pathogens must be taken into account in probe design for aircraft biosensors. A biosensor that could be deployed in commercial aircraft would be required to function at an extremely low false alarm rate, making an understanding of microbial background important. This study reveals a diverse bacterial background present on aircraft, including bacteria closely related to pathogens of public health concern. Furthermore, this aircraft background is different from outdoor air, suggesting different probes may be needed to detect airborne contaminants to achieve minimal false alarm rates. This study also indicates that aircraft HEPA filters could be used with other molecular techniques to further characterize background bacteria and in investigations in the wake of a disease outbreak. © 2012 John Wiley & Sons A/S.

  2. Seismometer reading from impact made by Lunar Module ascent stage

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The seismometer reading from the impact made by the Lunar Module ascent stage when it struck the lunar surface. The impact was registered by the Passive Seismic Experiment Package (PSEP) which was deployed on the Moon by the Apollo 12 astronauts. The Lunar module's ascent stage was jettisoned and sent toward impact on the Moon after Astronauts Charles Conrad Jr. and Alan L. Bean returned to lunar orbit and rejoined Astronaut Richard F. Gordon Jr., in the Command/Service Modules.

  3. FSA field test

    NASA Technical Reports Server (NTRS)

    Jaffe, P.; Weaver, R. W.; Lee, R. E.

    1981-01-01

    The 12 continental remote sites were decommissioned. Testing was consolidated into a five-site network consisting of the four Southern California sites and a new Florida site. 16 kW of new state-of-the-art modules were deployed at the five sites. Testing of the old modules continued at the Goldstone site but as a low-priority item. Array testing of modules is considered. Additional new testing capabilities were added. A battery-powered array data logger is discussed. A final set of failure and degradation data was obtained from the modules.

  4. Development and First Results of the Width-Tapered Beam Method for Adhesion Testing of Photovoltaic Material Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosco, Nick; Tracy, Jared; Dauskardt, Reinhold

    2016-11-21

    A fracture mechanics based approach for quantifying adhesion at every interface within the PV module laminate is presented. The common requirements of monitoring crack length and specimen compliance are circumvented through development of a width-tapered cantilever beam method. This technique may be applied at both the module and coupon level to yield a similar, quantitative, measurement. Details of module and sample preparation are described and first results on field-exposed modules deployed for over 27 years presented.

  5. Real-time Series Resistance Monitoring in PV Systems; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deceglie, M. G.; Silverman, T. J.; Marion, B.

    We apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IV curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IVmore » curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on micro-inverters or module-integrated electronics, but it can also be extended to full strings. Automated detection of series resistance increases can provide early warnings of some of the most common reliability issues, which also pose fire risks, including broken ribbons, broken solder bonds, and contact problems in the junction or combiner box. We describe the method in detail and describe a sample application to data collected from modules operating in the field.« less

  6. Advanced Structural and Inflatable Hybrid Spacecraft Module

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); delaFuente, Horacio M. (Inventor); Edeen, Gregg A. (Inventor); Kennedy, Kriss J. (Inventor); Lester, James D. (Inventor); Gupta, Shalini (Inventor); Hess, Linda F. (Inventor); Lin, Chin H. (Inventor); Malecki, Richard H. (Inventor); Raboin, Jasen L. (Inventor)

    2001-01-01

    An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.

  7. Apollo 9 Lunar Module in lunar landing configuration

    NASA Image and Video Library

    1969-03-07

    AS09-21-3199 (7 March 1969) --- Excellent view of the Apollo 9 Lunar Module, "Spider," in a lunar landing configuration, as photographed from the Command and Service Modules on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module, "Gumdrop," while the other two astronauts checked out the Lunar Module.

  8. Apollo 9 Lunar Module in lunar landing configuration

    NASA Image and Video Library

    1969-03-07

    AS09-21-3212 (7 March 1969) --- A view of the Apollo 9 Lunar Module (LM), "Spider", in a lunar landing configuration, as photographed from the Command and Service Modules (CSM) on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Lunar surface probes (sensors) extend out from landing gear foot pads. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander, and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module (CM), "Gumdrop", while the other two astronauts checked out the Lunar Module.

  9. Intelligent Predictor of Energy Expenditure with the Use of Patch-Type Sensor Module

    PubMed Central

    Li, Meina; Kwak, Keun-Chang; Kim, Youn-Tae

    2012-01-01

    This paper is concerned with an intelligent predictor of energy expenditure (EE) using a developed patch-type sensor module for wireless monitoring of heart rate (HR) and movement index (MI). For this purpose, an intelligent predictor is designed by an advanced linguistic model (LM) with interval prediction based on fuzzy granulation that can be realized by context-based fuzzy c-means (CFCM) clustering. The system components consist of a sensor board, the rubber case, and the communication module with built-in analysis algorithm. This sensor is patched onto the user's chest to obtain physiological data in indoor and outdoor environments. The prediction performance was demonstrated by root mean square error (RMSE). The prediction performance was obtained as the number of contexts and clusters increased from 2 to 6, respectively. Thirty participants were recruited from Chosun University to take part in this study. The data sets were recorded during normal walking, brisk walking, slow running, and jogging in an outdoor environment and treadmill running in an indoor environment, respectively. We randomly divided the data set into training (60%) and test data set (40%) in the normalized space during 10 iterations. The training data set is used for model construction, while the test set is used for model validation. The experimental results revealed that the prediction error on treadmill running simulation was improved by about 51% and 12% in comparison to conventional LM for training and checking data set, respectively. PMID:23202166

  10. Scientific Cluster Deployment and Recovery - Using puppet to simplify cluster management

    NASA Astrophysics Data System (ADS)

    Hendrix, Val; Benjamin, Doug; Yao, Yushu

    2012-12-01

    Deployment, maintenance and recovery of a scientific cluster, which has complex, specialized services, can be a time consuming task requiring the assistance of Linux system administrators, network engineers as well as domain experts. Universities and small institutions that have a part-time FTE with limited time for and knowledge of the administration of such clusters can be strained by such maintenance tasks. This current work is the result of an effort to maintain a data analysis cluster (DAC) with minimal effort by a local system administrator. The realized benefit is the scientist, who is the local system administrator, is able to focus on the data analysis instead of the intricacies of managing a cluster. Our work provides a cluster deployment and recovery process (CDRP) based on the puppet configuration engine allowing a part-time FTE to easily deploy and recover entire clusters with minimal effort. Puppet is a configuration management system (CMS) used widely in computing centers for the automatic management of resources. Domain experts use Puppet's declarative language to define reusable modules for service configuration and deployment. Our CDRP has three actors: domain experts, a cluster designer and a cluster manager. The domain experts first write the puppet modules for the cluster services. A cluster designer would then define a cluster. This includes the creation of cluster roles, mapping the services to those roles and determining the relationships between the services. Finally, a cluster manager would acquire the resources (machines, networking), enter the cluster input parameters (hostnames, IP addresses) and automatically generate deployment scripts used by puppet to configure it to act as a designated role. In the event of a machine failure, the originally generated deployment scripts along with puppet can be used to easily reconfigure a new machine. The cluster definition produced in our CDRP is an integral part of automating cluster deployment in a cloud environment. Our future cloud efforts will further build on this work.

  11. Creation and Global Deployment of a Mobile, Application-Based Cognitive Simulator for Cardiac Surgical Procedures.

    PubMed

    Brewer, Zachary E; Ogden, William David; Fann, James I; Burdon, Thomas A; Sheikh, Ahmad Y

    Several modern learning frameworks (eg, cognitive apprenticeship, anchored instruction, and situated cognition) posit the utility of nontraditional methods for effective experiential learning. Thus, development of novel educational tools emphasizing the cognitive framework of operative sequences may be of benefit to surgical trainees. We propose the development and global deployment of an effective, mobile cognitive cardiac surgical simulator. In methods, 16 preclinical medical students were assessed. Overall, 4 separate surgical modules (sternotomy, cannulation, decannulation, and sternal closure) were created utilizing the Touch Surgery (London, UK) platform. Modules were made available to download free of charge for use on mobile devices. Usage data were collected over a 6-month period. Educational efficacy of the modules was evaluated by randomizing a cohort of medical students to either module usage or traditional, reading-based self-study, followed by a multiple-choice learning assessment tool. In results, downloads of the simulator achieved global penetrance, with highest usage in the USA, Brazil, Italy, UK, and India. Overall, 5368 unique users conducted a total of 1971 hours of simulation. Evaluation of the medical student cohort revealed significantly higher assessment scores in those randomized to module use versus traditional reading (75% ± 9% vs 61% ± 7%, respectively; P < 0.05). In conclusion, this study represents the first effort to create a mobile, interactive cognitive simulator for cardiac surgery. Simulators of this type may be effective for the training and assessment of surgical students. We investigated whether an interactive, mobile-computing-based cognitive task simulator for cardiac surgery could be developed, deployed, and validated. Our findings suggest that such simulators may be a useful learning tool. Copyright © 2016. Published by Elsevier Inc.

  12. The Value Proposition for Fractionated Space Architectures

    DTIC Science & Technology

    2006-09-01

    transmission relying on electrostatic forces has been proposed for use in GEO by Parker et al.37 Demonstration Program The Defense Advanced...capability of the original monolithic system.6 One can envision the fractionation trade space to be defined by three high-level metrics. First, the ... by deploying additional modules. Thus, for instance, one could envision deploying an initial communications capability in the form of a power

  13. The Millennium Cohort Family Study: A Prospective Evaluation of the Health and Well-Being of Military Service Members and Their Families

    DTIC Science & Technology

    2014-06-10

    psychology , family, military, epidemiology, mental health, deployments Correspondence Nancy Crum-Cianflone, Deployment Health Research Department...American Psychological Association, 2007; Siegel et al., 2013; US Army Medical Research and Materiel Command, 2013). Although studies on military...functional health Modules on common types of mental disorders: depression, anxiety, panic syndrome, somatoform symptoms, alcohol abuse, bulimia nervosa

  14. Durability of Polymeric Encapsulation Materials for a PMMA/glass Concentrator Photovoltaic System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Kempe, Michael D.; Muller, Matthew T

    2014-04-08

    The durability of polymeric encapsulation materials was examined using outdoor exposure at the nominal geometric concentration of 500 suns. The results for 36 months cumulative field deployment are presented for materials including: poly(ethylene-co-vinyl acetate), (EVA); polyvinyl butyral (PVB); ionomer; polyethylene/ polyoctene copolymer (PO); thermoplastic polyurethane (TPU); poly(dimethylsiloxane) (PDMS); poly(diphenyl dimethyl siloxane) (PDPDMS); and poly(phenyl-methyl siloxane) (PPMS). Measurements of the field conditions including ambient temperature and ultraviolet (UV) dose were recorded at the test site during the experiment. Measurements for the experiment included optical transmittance (with subsequent analysis of solar-weighted transmittance, UV cut-off wavelength, and yellowness index), mass, visual photography, photoelasticmore » imaging, and fluorescence spectroscopy. While the results to date for EVA are presented and discussed, examination here focuses more on the siloxane materials. A specimen recently observed to fail by thermal decomposition is discussed in terms of the implementation of the experiment as well as its fluorescence signature, which was observed to become more pronounced with age. Modulated thermogravimetry (allowing determination of the activation energy of thermal decomposition) was performed on a subset of the siloxanes to quantify the propensity for decomposition at elevated temperatures. Supplemental, Pt-catalyst- and primer-solutions as well as peroxide-cured PDMS specimens were examined to assess the source of the luminescence. The results of the study including the change in optical transmittance, observed failure modes, and subsequent analyses of the failure modes are described in the conclusions.« less

  15. Durability of polymeric encapsulation materials in a PMMA/glass concentrator photovoltaic system

    DOE PAGES

    Miller, David C.; Kempe, Michael D.; Muller, Matthew T.; ...

    2016-07-13

    We examined the durability of polymeric encapsulation materials using outdoor exposure at the nominal geometric concentration of 500 suns. The results for 36-month cumulative field deployment are presented for materials including: poly(ethylene-co-vinyl acetate), (EVA); polyvinyl butyral (PVB); ionomer; polyethylene/polyoctene copolymer (PO); thermoplastic polyurethane (TPU); poly(dimethylsiloxane) (PDMS); poly(diphenyl dimethyl siloxane) (PDPDMS); and poly(phenyl-methyl siloxane) (PPMS). Measurements of the field conditions including ambient temperature and ultraviolet (UV) dose were recorded at the test site during the experiment. Our measurements for the experiment included optical transmittance (with subsequent analysis of solar-weighted transmittance, UV cut-off wavelength, and yellowness index), mass, visual photography, photoelastic imaging,more » and fluorescence spectroscopy. While the results to date for EVA are presented and discussed, examination here focuses more on the siloxane materials. A specimen recently observed to fail by thermal decomposition is discussed in terms of the implementation of the experiment as well as its fluorescence signature, which was observed to become more pronounced with age. Modulated thermogravimetry (allowing determination of the activation energy of thermal decomposition) was performed on a subset of the siloxanes to quantify the propensity for decomposition at elevated temperatures. Supplemental, Pt-catalyst- and primer-solutions as well as peroxide-cured PDMS specimens were examined to assess the source of the luminescence. Furthermore, our results, including the change in optical transmittance, observed failure modes, and subsequent analyses of the failure modes are described in the conclusions.« less

  16. Orion Multi-Purpose Crew Vehicle (MPCV) Capsule Parachute Assembly System (CPAS) Wake Deficit Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Ross, James C.; Schuster, David M.

    2014-01-01

    During descent after re-entry into the Earth's atmosphere, the Orion CM deploys its drogue parachutes at approximately Mach 0.7. Accurately predicting the dynamic pressure experienced by the drogue parachutes at deployment is critical to properly designing the parachutes. This NASA Engineering and Safety Center assessment was designed to provide a complete set of flowfield measurements on and around an idealized Orion Crew Module shape with the most appropriate wind tunnel simulation of the Orion flight conditions prior to parachute deployment. This document contains the details of testing and the outcome of the assessment.

  17. STS-31 Hubble Space Telescope (HST) pre-deployment procedures aboard OV-103

    NASA Image and Video Library

    1990-04-24

    During STS-31, the Hubble Space Telescope (HST) grappled by the remote manipulator system (RMS) end effector is held in appendage deploy position above Discovery, Orbiter Vehicle (OV) 103. The solar array (SA) bistem cassette has been released from its latch fittings. The bistem spreader bars begin to unfurl the SA wing. The secondary deployment mechanism (SDM) handle is visible at the SA end. Stowed against either side of the HST System Support Module (SSM) forward shell are the high-gain antennae (HGA). Puerto Rico and the Dominican Republic are recognizable at the left of the frame.

  18. Prediction of the thermal imaging minimum resolvable (circle) temperature difference with neural network application.

    PubMed

    Fang, Yi-Chin; Wu, Bo-Wen

    2008-12-01

    Thermal imaging is an important technology in both national defense and the private sector. An advantage of thermal imaging is its ability to be deployed while fully engaged in duties, not limited by weather or the brightness of indoor or outdoor conditions. However, in an outdoor environment, many factors, including atmospheric decay, target shape, great distance, fog, temperature out of range and diffraction limits can lead to bad image formation, which directly affects the accuracy of object recognition. The visual characteristics of the human eye mean that it has a much better capacity for picture recognition under normal conditions than artificial intelligence does. However, conditions of interference significantly reduce this capacity for picture recognition for instance, fatigue impairs human eyesight. Hence, psychological and physiological factors can affect the result when the human eye is adopted to measure MRTD (minimum resolvable temperature difference) and MRCTD (minimum resolvable circle temperature difference). This study explores thermal imaging recognition, and presents a method for effectively choosing the characteristic values and processing the images fully. Neural network technology is successfully applied to recognize thermal imaging and predict MRTD and MRCTD (Appendix A), exceeding thermal imaging recognition under fatigue and the limits of the human eye.

  19. Study on an agricultural environment monitoring server system using Wireless Sensor Networks.

    PubMed

    Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun

    2010-01-01

    This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.

  20. Where, When, and How mmWave is Used in 5G and Beyond

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Kei; Haustein, Thomas; Barbarossa, Sergio; Strinati, Emilio Calvanese; Clemente, Antonio; Destino, Giuseppe; Pärssinen, Aarno; Kim, Ilgyu; Chung, Heesang; Kim, Junhyeong; Keusgen, Wilhelm; Weiler, Richard J.; Takinami, Koji; Ceci, Elena; Sadri, Ali; Xian, Liang; Maltsev, Alexander; Tran, Gia Khanh; Ogawa, Hiroaki; Mahler, Kim; Heath, Robert W., Jr.

    Wireless engineers and business planners commonly raise the question on where, when, and how millimeter-wave (mmWave) will be used in 5G and beyond. Since the next generation network is not just a new radio access standard, but instead an integration of networks for vertical markets with diverse applications, answers to the question depend on scenarios and use cases to be deployed. This paper gives four 5G mmWave deployment examples and describes in chronological order the scenarios and use cases of their probable deployment, including expected system architectures and hardware prototypes. The paper starts with 28 GHz outdoor backhauling for fixed wireless access and moving hotspots, which will be demonstrated at the PyeongChang winter Olympic games in 2018. The second deployment example is a 60 GHz unlicensed indoor access system at the Tokyo-Narita airport, which is combined with Mobile Edge Computing (MEC) to enable ultra-high speed content download with low latency. The third example is mmWave mesh network to be used as a micro Radio Access Network ({\\mu}-RAN), for cost-effective backhauling of small-cell Base Stations (BSs) in dense urban scenarios. The last example is mmWave based Vehicular-to-Vehicular (V2V) and Vehicular-to-Everything (V2X) communications system, which enables automated driving by exchanging High Definition (HD) dynamic map information between cars and Roadside Units (RSUs). For 5G and beyond, mmWave and MEC will play important roles for a diverse set of applications that require both ultra-high data rate and low latency communications.

  1. Development and Calibration of a Field-Deployable Microphone Phased Array for Propulsion and Airframe Noise Flyover Measurements

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Lockard, David P.; Khorrami, Mehdi R.; Culliton, William G.; McSwain, Robert G.; Ravetta, Patricio A.; Johns, Zachary

    2016-01-01

    A new aeroacoustic measurement capability has been developed consisting of a large channelcount, field-deployable microphone phased array suitable for airframe noise flyover measurements for a range of aircraft types and scales. The array incorporates up to 185 hardened, weather-resistant sensors suitable for outdoor use. A custom 4-mA current loop receiver circuit with temperature compensation was developed to power the sensors over extended cable lengths with minimal degradation of the signal to noise ratio and frequency response. Extensive laboratory calibrations and environmental testing of the sensors were conducted to verify the design's performance specifications. A compact data system combining sensor power, signal conditioning, and digitization was assembled for use with the array. Complementing the data system is a robust analysis system capable of near real-time presentation of beamformed and deconvolved contour plots and integrated spectra obtained from array data acquired during flyover passes. Additional instrumentation systems needed to process the array data were also assembled. These include a commercial weather station and a video monitoring / recording system. A detailed mock-up of the instrumentation suite (phased array, weather station, and data processor) was performed in the NASA Langley Acoustic Development Laboratory to vet the system performance. The first deployment of the system occurred at Finnegan Airfield at Fort A.P. Hill where the array was utilized to measure the vehicle noise from a number of sUAS (small Unmanned Aerial System) aircraft. A unique in-situ calibration method for the array microphones using a hovering aerial sound source was attempted for the first time during the deployment.

  2. Hydronic rooftop cooling systems

    DOEpatents

    Bourne, Richard C [Davis, CA; Lee, Brian Eric [Monterey, CA; Berman, Mark J [Davis, CA

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  3. The 25 kW power module evolution study. Part 3: Conceptual designs for power module evolution. Volume 2: Program plans

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A plan is presented for the evolutionary development and deployment of the power module system with performance capabilities required to support the 1983 to 1990 user requirements. Aspects summarized include program functional, operational, and hardware elements; program work breakdown and specification items; development plans and schedules for developmental and technology milestones; test concepts and timeliness; and ground and orbit operations concepts.

  4. Modulated Acquisition of Spatial Distortion Maps

    PubMed Central

    Volkov, Alexey; Gros, Jerneja Žganec; Žganec, Mario; Javornik, Tomaž; Švigelj, Aleš

    2013-01-01

    This work discusses a novel approach to image acquisition which improves the robustness of captured data required for 3D range measurements. By applying a pseudo-random code modulation to sequential acquisition of projected patterns the impact of environmental factors such as ambient light and mutual interference is significantly reduced. The proposed concept has been proven with an experimental range sensor based on the laser triangulation principle. The proposed design can potentially enhance the use of this principle to a variety of outdoor applications, such as autonomous vehicles, pedestrians' safety, collision avoidance, and many other tasks, where robust real-time distance detection in real world environment is crucial. PMID:23966196

  5. Modulated acquisition of spatial distortion maps.

    PubMed

    Volkov, Alexey; Gros, Jerneja Zganec; Zganec, Mario; Javornik, Tomaž; Svigelj, Aleš

    2013-08-21

    This work discusses a novel approach to image acquisition which improves the robustness of captured data required for 3D range measurements. By applying a pseudo-random code modulation to sequential acquisition of projected patterns the impact of environmental factors such as ambient light and mutual interference is significantly reduced. The proposed concept has been proven with an experimental range sensor based on the laser triangulation principle. The proposed design can potentially enhance the use of this principle to a variety of outdoor applications, such as autonomous vehicles, pedestrians' safety, collision avoidance, and many other tasks, where robust real-time distance detection in real world environment is crucial.

  6. Gain and power optimization of the wireless optical system with multilevel modulation.

    PubMed

    Liu, Xian

    2008-06-01

    When used in an outdoor environment to expedite networking access, the performance of wireless optical communication systems is affected by transmitter sway. In the design of such systems, much attention has been paid to developing power-efficient schemes. However, the bandwidth efficiency is also an important issue. One of the most natural approaches to promote bandwidth efficiency is to use multilevel modulation. This leads to multilevel pulse amplitude modulation in the context of intensity modulation and direct detection. We develop a model based on the four-level pulse amplitude modulation. We show that the model can be formulated as an optimization problem in terms of the transmitter power, bit error probability, transmitter gain, and receiver gain. The technical challenges raised by modeling and solving the problem include the analytical and numerical treatments for the improper integrals of the Gaussian functions coupled with the erfc function. The results demonstrate that, at the optimal points, the power penalty paid to the doubled bandwidth efficiency is around 3 dB.

  7. View of the SBS-4 communications satellite in orbit above the earth

    NASA Image and Video Library

    1984-08-30

    41D-39-068 (1 Sept 1984) --- Quickly moving away from the Space Shuttle Discovery is the Telstar 3 communications satellite, deployed September 1, 1984. The 41-D crew successfully completed three satellite placements, of which this was the last. Telstar was the second 41-D deployed satellite to be equipped with a payload assist module (PAM-D). The frame was exposed with a 70mm camera.

  8. J-SSOD 4 Mission

    NASA Image and Video Library

    2015-09-17

    ISS045E014236 (09/17/2015) – A Japanese Small Satellite is deployed from outside the Japanese Experiment Module on Sept. 17, 2015. Two satellites were sent into Earth orbit by the Small Satellite Orbital Deployer. The first satellite is designed to observe the Ultraviolet (UV) spectrum during the Orionid meteor shower in October. The second satellite, sponsored by the University of Brasilia and the Brazilian government, focuses on meteorological data collection.

  9. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRAMP)

    DOE Data Explorer

    Andreas, Afshin; Wilcox, Steve

    2016-03-14

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy National Renewable Energy Laboratory (NMREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar powered projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  10. Tier-scalable reconnaissance: the future in autonomous C4ISR systems has arrived: progress towards an outdoor testbed

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang; Brooks, Alexander J.-W.; Tarbell, Mark A.; Dohm, James M.

    2017-05-01

    Autonomous reconnaissance missions are called for in extreme environments, as well as in potentially hazardous (e.g., the theatre, disaster-stricken areas, etc.) or inaccessible operational areas (e.g., planetary surfaces, space). Such future missions will require increasing degrees of operational autonomy, especially when following up on transient events. Operational autonomy encompasses: (1) Automatic characterization of operational areas from different vantages (i.e., spaceborne, airborne, surface, subsurface); (2) automatic sensor deployment and data gathering; (3) automatic feature extraction including anomaly detection and region-of-interest identification; (4) automatic target prediction and prioritization; (5) and subsequent automatic (re-)deployment and navigation of robotic agents. This paper reports on progress towards several aspects of autonomous C4ISR systems, including: Caltech-patented and NASA award-winning multi-tiered mission paradigm, robotic platform development (air, ground, water-based), robotic behavior motifs as the building blocks for autonomous tele-commanding, and autonomous decision making based on a Caltech-patented framework comprising sensor-data-fusion (feature-vectors), anomaly detection (clustering and principal component analysis), and target prioritization (hypothetical probing).

  11. Solid surface wetting and the deployment of drops in microgravity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Depew, J.

    1994-01-01

    The complete or partial deployment of liquid samples in low gravity is primarily influenced by the interfacial properties of the specific liquid and solid materials used because the overwhelming bias of the Earth gravitational acceleration is removed. This study addresses the engineering aspects of injecting and deploying drops of prescribed volume into an acoustic positioning chamber in microgravity. The specific problems of interest are the design, testing, and implementation of injector tips to be used in a simultaneously retracting dual-injector system in the Drop Physics Module microgravity experiment facility. Prior to release, the liquid to be deployed must be retained within a restricted area at the very end of the injectors under dynamic stimuli from the continuous injection flow as well as from the stepped motion of the injectors. The final released drop must have a well determined volume and negligible residual linear or angular momentum. The outcome of Earth-based short-duration low gravity experiments had been the selection of two types of injector tips which were flown as back-up parts. They were successfully utilized during the USML-1 Spacelab mission as the primary tips. The combination of a larger contact surface, liquid pinning with a sharp edge, and selective coating of strategic tip surfaces with a non-wetting compound has allowed a significant increase in the success rate of deployment of simple and compound drops of aqueous solutions of glycerol and silicone oil. The diameter of the samples studied in the Drop Physics Module range between 0.3 and 2.7 cm. The tests conducted on-orbit with a manually operated small device have allowed the calibration of the volume deployed for a few drop sizes. The design for improved tips to be used during the next USML flight is based on these results.

  12. Building Diagnostic Market Deployment - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katipamula, S.; Gayeski, N.

    2012-04-30

    Operational faults are pervasive across the commercial buildings sector, wasting energy and increasing energy costs by up to about 30% (Mills 2009, Liu et al. 2003, Claridge et al. 2000, Katipamula and Brambley 2008, and Brambley and Katipamula 2009). Automated fault detection and diagnostic (AFDD) tools provide capabilities essential for detecting and correcting these problems and eliminating the associated energy waste and costs. The U.S. Department of Energy's (DOE) Building Technology Program (BTP) has previously invested in developing and testing of such diagnostic tools for whole-building (and major system) energy use, air handlers, chillers, cooling towers, chilled-water distribution systems, andmore » boilers. These diagnostic processes can be used to make the commercial buildings more energy efficient. The work described in this report was done as part of a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) and KGS Building LLC (KGS). PNNL and KGS both believe that the widespread adoption of AFDD tools will result in significant reduction to energy and peak energy consumption. The report provides an introduction and summary of the various tasks performed under the CRADA. The CRADA project had three major focus areas: (1) Technical Assistance for Whole Building Energy Diagnostician (WBE) Commercialization, (2) Market Transfer of the Outdoor Air/Economizer Diagnostician (OAE), and (3) Development and Deployment of Automated Diagnostics to Improve Large Commercial Building Operations. PNNL has previously developed two diagnostic tools: (1) whole building energy (WBE) diagnostician and (2) outdoor air/economizer (OAE) diagnostician. WBE diagnostician is currently licensed non-exclusively to one company. As part of this CRADA, PNNL developed implementation documentation and provided technical support to KGS to implement the tool into their software suite, Clockworks. PNNL also provided validation data sets and the WBE software tool to validate the KGS implementation. OAE diagnostician automatically detects and diagnoses problems with outdoor air ventilation and economizer operation for air handling units (AHUs) in commercial buildings using data available from building automation systems (BASs). As part of this CRADA, PNNL developed implementation documentation and provided technical support to KGS to implement the tool into their software suite. PNNL also provided validation data sets and the OAE software tool to validate the KGS implementation. Finally, as part of this CRADA project, PNNL developed new processes to automate parts of the re-tuning process and transfer those process to KGS for integration into their software product. The transfer of DOE-funded technologies will transform the commercial buildings sector by making buildings more energy efficient and also reducing the carbon footprint from the buildings. As part of the CRADA with PNNL, KGS implemented the whole building energy diagnostician, a portion of outdoor air economizer diagnostician and a number of measures that automate the identification of re-tuning measures.« less

  13. Module Hipot and ground continuity test results

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1984-01-01

    Hipot (high voltage potential) and module frame continuity tests of solar energy conversion modules intended for deployment into large arrays are discussed. The purpose of the tests is to reveal potentially hazardous voltage conditions in installed modules, and leakage currents that may result in loss of power or cause ground fault system problems, i.e., current leakage potential and leakage voltage distribution. The tests show a combined failure rate of 36% (69% when environmental testing is included). These failure rates are believed easily corrected by greater care in fabrication.

  14. Methodology for Outdoor Water Savings Model and Spreadsheet Tool for U.S. and Selected States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Alison A.; Chen, Yuting; Dunham, Camilla

    Green lawns and landscaping are archetypical of the populated American landscape, and typically require irrigation, which corresponds to a significant fraction of residential, commercial, and institutional water use. In North American cities, the estimated portion of residential water used for outdoor purposes ranges from 22-38% in cooler climates up to 59-67% in dry and hot environments, while turfgrass coverage within the United States spans 11.1-20.2 million hectares (Milesi et al. 2009). One national estimate uses satellite and aerial photography data to develop a relationship between impervious surface and lawn surface area, yielding a conservative estimate of 16.4 (± 3.6) millionmore » hectares of lawn surface area in the United States—an area three times larger than that devoted to any irrigated crop (Milesi et al. 2005). One approach that holds promise for cutting unnecessary outdoor water use is the increased deployment of “smart” irrigation controllers to increase the water efficiency of irrigation systems. This report describes the methodology and inputs employed in a mathematical model that quantifies the effects of the U.S. Environmental Protection Agency’s WaterSense labeling program for one such type of controller, weather-based irrigation controllers (WBIC). This model builds off that described in “Methodology for National Water Savings Model and Spreadsheet Tool–Outdoor Water Use” and uses a two-tiered approach to quantify outdoor water savings attributable to the WaterSense program for WBIC, as well as net present value (NPV) of that savings. While the first iteration of the model assessed national impacts using averaged national values, this version begins by evaluating impacts in three key large states that make up a sizable portion of the irrigation market: California, Florida, and Texas. These states are considered to be the principal market of “smart” irrigation controllers that may result in the bulk of national savings. Modeled water savings and net present value for these three states should be more accurate and representative than the averaged national values given state-specific inputs such as lot size, water price, and housing stock. To complete the picture of national impacts, the remaining WBIC shipments not assigned to these three states are assessed using the original methodology based on the averaged national values.« less

  15. Apollo 17 Astronauts during EVA training

    NASA Image and Video Library

    1972-06-08

    S72-44423 (8 Sept. 1972) --- Two Apollo 17 crewmen ready a Lunar Roving Vehicle trainer following its deployment from a Lunar Module trainer in the Flight Crew Training Building at the Kennedy Space Center, Florida. Taking part in the Apollo 17 training exercise were astronauts Eugene A. Cernan (right), commander; and Harrison H. "Jack" Schmitt, lunar module pilot.

  16. Fugitive Methane Gas Emission Monitoring in oil and gas industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Levente

    Identifying fugitive methane leaks allow optimization of the extraction process, can extend gas extraction equipment lifetime, and eliminate hazardous work conditions. We demonstrate a wireless sensor network based on cost effective and robust chemi-resistive methane sensors combined with real time analytics to identify leaks from 2 scfh to 10000 scfh. The chemi-resistive sensors were validated for sensitivity better than 1 ppm of methane plume detection. The real time chemical sensor and wind data is integrated into an inversion models to identify the location and the magnitude of the methane leak. This integrated solution can be deployed in outdoor environment formore » long term monitoring of chemical plumes.« less

  17. Specific energy yield comparison between crystalline silicon and amorphous silicon based PV modules

    NASA Astrophysics Data System (ADS)

    Ferenczi, Toby; Stern, Omar; Hartung, Marianne; Mueggenburg, Eike; Lynass, Mark; Bernal, Eva; Mayer, Oliver; Zettl, Marcus

    2009-08-01

    As emerging thin-film PV technologies continue to penetrate the market and the number of utility scale installations substantially increase, detailed understanding of the performance of the various PV technologies becomes more important. An accurate database for each technology is essential for precise project planning, energy yield prediction and project financing. However recent publications showed that it is very difficult to get accurate and reliable performance data of theses technologies. This paper evaluates previously reported claims the amorphous silicon based PV modules have a higher annual energy yield compared to crystalline silicon modules relative to their rated performance. In order to acquire a detailed understanding of this effect, outdoor module tests were performed at GE Global Research Center in Munich. In this study we examine closely two of the five reported factors that contribute to enhanced energy yield of amorphous silicon modules. We find evidence to support each of these factors and evaluate their relative significance. We discuss aspects for improvement in how PV modules are sold and identify areas for further study further study.

  18. Damage in Monolithic Thin-Film Photovoltaic Modules Due to Partial Shade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, Timothy J.; Mansfield, Lorelle; Repins, Ingrid

    2016-09-01

    The typical configuration of monolithic thin-film photovoltaic modules makes it possible for partial shade to place one or more cells in such a module in reverse bias. Reverse bias operation leads to high voltage, current density, and power density conditions, which can act as driving forces for failure. We showed that a brief outdoor shadow event can cause a 7% permanent loss in power. We applied an indoor partial shade durability test that moves beyond the standard hot spot endurance test by using more realistic mask and bias conditions and by carefully quantifying the permanent change in performance due tomore » the stress. With the addition of a pass criterion based on change in maximum power, this procedure will soon be proposed as a part of the module-type qualification test. All six commercial copper indium gallium diselenide and cadmium telluride modules we tested experienced permanent damage due to the indoor partial shade test, ranging from 4% to 14% loss in maximum power. We conclude by summarizing ways to mitigate partial shade stress at the cell, module, and system levels.« less

  19. Into the Deep Black Sea: The Icefin Modular AUV for Ice-Covered Ocean Exploration

    NASA Astrophysics Data System (ADS)

    Meister, M. R.; Schmidt, B. E.; West, M. E.; Walker, C. C.; Buffo, J.; Spears, A.

    2015-12-01

    The Icefin autonomous underwater vehicle (AUV) was designed to enable long-range oceanographic exploration of physical and biological ocean environments in ice-covered regions. The vehicle is capable of surveying under-ice geometry, ice and ice-ocean interface properties, as well as water column conditions beneath the ice interface. It was developed with both cryospheric and planetary-analog exploration in mind. The first Icefin prototype was successfully operated in Antarctica in Austral summer 2014. The vehicle was deployed through a borehole in the McMurdo Ice Shelf near Black Island and successfully collected sonar, imaging, video and water column data down to 450 m depth. Icefin was developed using a modular design. Each module is designed to perform specific tasks, dependent on the mission objective. Vehicle control and data systems can be stably developed, and power modules added or subtracted for mission flexibility. Multiple sensor bays can be developed in parallel to serve multiple science objectives. This design enables the vehicle to have greater depth capability as well as improved operational simplicity compared to larger vehicles with equivalent capabilities. As opposed to those vehicles that require greater logistics and associated costs, Icefin can be deployed through boreholes drilled in the ice. Thus, Icefin satisfies the demands of achieving sub-ice missions while maintaining a small form factor and easy deployment necessary for repeated, low-logistical impact field programs. The current Icefin prototype is 10.5 inches in diameter by 10 feet long and weighs 240 pounds. It is comprised of two thruster modules with hovering capabilities, an oceanographic sensing module, main control module and a forward-sensing module for obstacle avoidance. The oceanographic sensing module is fitted with a side scan sonar (SSS), CT sensor, altimetry profiler and Doplar Velocity Log (DVL) with current profiling. Icefin is depth-rated to 1500 m and is equipped with 3.5 km of fiber optic, Kevlar reinforced cable, which provides point-to-point communications as well as a stable recovery platform between missions. SUPPORT: Icefin was designed and built at Georgia Tech, under Dr. Britney Schmidt's startup funds with effort contributed from Georgia Tech Research Institute (GTRI).

  20. Mini Review: Mode of Action of Mosquito Repellents

    DTIC Science & Technology

    2013-01-01

    Mini review: Mode of action of mosquito repellents Joseph C. Dickens ⇑, Jonathan D. Bohbot United States Department of Agriculture, Agricultural...Modulation a b s t r a c t The mode of action of mosquito repellents remains a controversial topic. However, electrophysiological studies and molecular...annoyance that can disrupt outdoor activities. The use of repellents decreases contacts between mosquitoes and their hosts, and may even lower the rate of

  1. Perception for Outdoor Navigation

    DTIC Science & Technology

    1990-11-01

    without lane marktings. Our perception modules use a variety of techniques for video processing (clusering theory, symbolic feature detection, neural nets...on gravel and dirt roads, as expected. The most difficult case involved a dirt road in a forest, which was mainly distinguishable in the video images...in that estimate. u bIsrshigl Neural Nets. Under separate funding, we have driven the Naviab using neural nets to track the road in video iages. We ame

  2. The GMOD Drupal bioinformatic server framework.

    PubMed

    Papanicolaou, Alexie; Heckel, David G

    2010-12-15

    Next-generation sequencing technologies have led to the widespread use of -omic applications. As a result, there is now a pronounced bioinformatic bottleneck. The general model organism database (GMOD) tool kit (http://gmod.org) has produced a number of resources aimed at addressing this issue. It lacks, however, a robust online solution that can deploy heterogeneous data and software within a Web content management system (CMS). We present a bioinformatic framework for the Drupal CMS. It consists of three modules. First, GMOD-DBSF is an application programming interface module for the Drupal CMS that simplifies the programming of bioinformatic Drupal modules. Second, the Drupal Bioinformatic Software Bench (biosoftware_bench) allows for a rapid and secure deployment of bioinformatic software. An innovative graphical user interface (GUI) guides both use and administration of the software, including the secure provision of pre-publication datasets. Third, we present genes4all_experiment, which exemplifies how our work supports the wider research community. Given the infrastructure presented here, the Drupal CMS may become a powerful new tool set for bioinformaticians. The GMOD-DBSF base module is an expandable community resource that decreases development time of Drupal modules for bioinformatics. The biosoftware_bench module can already enhance biologists' ability to mine their own data. The genes4all_experiment module has already been responsible for archiving of more than 150 studies of RNAi from Lepidoptera, which were previously unpublished. Implemented in PHP and Perl. Freely available under the GNU Public License 2 or later from http://gmod-dbsf.googlecode.com.

  3. Deficient attention modulation of lateralized alpha power in schizophrenia.

    PubMed

    Kustermann, Thomas; Rockstroh, Brigitte; Kienle, Johanna; Miller, Gregory A; Popov, Tzvetan

    2016-06-01

    Modulation of 8-14 Hz (alpha) activity in posterior brain regions is associated with covert attention deployment in visuospatial tasks. Alpha power decrease contralateral to to-be-attended stimuli is believed to foster subsequent processing, such as retention of task-relevant input. Degradation of this alpha-regulation mechanism may reflect an early stage of disturbed attention regulation contributing to impaired attention and working memory commonly found in schizophrenia. The present study tested this hypothesis of early disturbed attention regulation by examining alpha power modulation in a lateralized cued delayed response task in 14 schizophrenia patients (SZ) and 25 healthy controls (HC). Participants were instructed to remember the location of a 100-ms saccade-target cue in the left or right visual hemifield in order to perform a delayed saccade to that location after a retention interval. As expected, alpha power decrease during the retention interval was larger in contralateral than ipsilateral posterior regions, and SZ showed less of this lateralization than did HC. In particular, SZ failed to show hemifield-specific alpha modulation in posterior right hemisphere. Results suggest less efficient modulation of alpha oscillations that are considered critical for attention deployment and item encoding and, hence, may affect subsequent spatial working memory performance. © 2016 Society for Psychophysiological Research.

  4. On enhancing energy harvesting performance of the photovoltaic modules using an automatic cooling system and assessing its economic benefits of mitigating greenhouse effects on the environment

    NASA Astrophysics Data System (ADS)

    Wang, Jen-Cheng; Liao, Min-Sheng; Lee, Yeun-Chung; Liu, Cheng-Yue; Kuo, Kun-Chang; Chou, Cheng-Ying; Huang, Chen-Kang; Jiang, Joe-Air

    2018-02-01

    The performance of photovoltaic (PV) modules under outdoor operation is greatly affected by their location and environmental conditions. The temperature of a PV module gradually increases as it is exposed to solar irradiation, resulting in degradation of its electrical characteristics and power generation efficiency. This study adopts wireless sensor network (WSN) technology to develop an automatic water-cooling system for PV modules in order to improve their PV power generation efficiency. A temperature estimation method is developed to quickly and accurately estimate the PV module temperatures based on weather data provided from the WSN monitoring system. Further, an estimation method is also proposed for evaluation of the electrical characteristics and output power of the PV modules, which is performed remotely via a control platform. The automatic WSN-based water-cooling mechanism is designed to avoid the PV module temperature from reaching saturation. Equipping each PV module with the WSN-based cooling system, the ambient conditions are monitored automatically so that the temperature of the PV module is controlled by sprinkling water on the panel surface. The field-test experiment results show an increase in the energy harvested by the PV modules of approximately 17.75% when using the proposed WSN-based cooling system.

  5. Hubble Space Telescope (HST) above OV-103's PLB during STS-31 deployment

    NASA Image and Video Library

    1990-04-25

    The Hubble Space Telescope (HST) is raised above the payload bay (PLB) in low hover position during STS-31 checkout and pre-deployment procedures aboard Discovery, Orbiter Vehicle (OV) 103. Stowed along the HST Support System Module (SSM) are the high gain antenna (HGA) (center) and the two solar arrays (one either side). In the background are the orbital maneuvering system (OMS) pods and the Earth's surface.

  6. Artists concept of Apollo 15 crewmen performing deployment of LRV

    NASA Image and Video Library

    1971-06-26

    S71-38189 (26 June 1971) --- An artist's concept showing the final steps of readying the Apollo 15 Lunar Roving Vehicle (LRV) or Rover 1 for mobility on the lunar surface. Performing the last few LRV deployment tasks here are, left to right, astronauts James B. Irwin, lunar module pilot, and David R. Scott, commander. More specifically the tasks depicted here include the setting up of the seats and the total releasing of the LRV from the LM. (This is the fourth in a series of four Grumman Aerospace Corporation artist's concepts telling the lunar surface LRV deployment story for Apollo 15).

  7. MSL EDL Entry Guidance using the Entry Terminal Point Controller

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Mars Science Laboratory will be the first Mars mission to attempt a guided entry with the objective of safely delivering the entry vehicle to a survivable parachute deploy state within 10 km of the pre-designated landing site. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control range based on deviations in range, altitude rate, and drag acceleration from a reference trajectory. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last four years. Performance tradeoffs between ellipse size and deploy altitude will be presented, along with imposed constraints of entry acceleration and heating. Performance sensitivities to the bank reversal deadbands, heading alignment, attitude initialization error, and atmospheric delivery errors are presented. Guidance settings for contingency operations, such as those appropriate for severe dust storm scenarios, are evaluated.

  8. A laser scanning system for metrology and viewing in ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spampinato, P.T.; Barry, R.E.; Menon, M.M.

    1996-05-01

    The construction and operation of a next-generation fusion reactor will require metrology to achieve and verify precise alignment of plasma-facing components and inspection in the reactor vessel. The system must be compatible with the vessel environment of high gamma radiation (10{sup 4} Gy/h), ultra-high-vacuum (10{sup {minus}8} torr), and elevated temperature (200 C). The high radiation requires that the system be remotely deployed. A coherent frequency modulated laser radar-based system will be integrated with a remotely operated deployment mechanism to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics tomore » the laser source and imaging units that are located outside of a biological shield. The deployment mechanism will be a mast-like positioning system. Radiation-damage tests will be conducted on critical sensor components at Oak Ridge National Laboratory to determine threshold damage levels and effects on data transmission. This paper identifies the requirements for International Thermonuclear Experimental Reactor metrology and viewing and describes a remotely operated precision ranging and surface mapping system.« less

  9. Energy efficient flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network with pay as you grow deployment

    NASA Astrophysics Data System (ADS)

    Garg, Amit Kumar; Madavi, Amresh Ashok; Janyani, Vijay

    2017-02-01

    A flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network architecture that allows dual rate signals to be sent at 1 and 10 Gbps to each optical networking unit depending upon the traffic load is proposed. The proposed design allows dynamic wavelength allocation with pay-as-you-grow deployment capability. This architecture is capable of providing up to 40 Gbps of equal data rates to all optical distribution networks (ODNs) and up to 70 Gbps of a asymmetrical data rate to the specific ODN. The proposed design handles broadcasting capability with simultaneous point-to-point transmission, which further reduces energy consumption. In this architecture, each module sends a wavelength to each ODN, thus making the architecture fully flexible; this flexibility allows network providers to use only required OLT components and switch off others. The design is also reliable to any module or TRx failure and provides services without any service disruption. Dynamic wavelength allocation and pay-as-you-grow deployment support network extensibility and bandwidth scalability to handle future generation access networks.

  10. Transducer Modules for Dry-Coupled Ultrasonic Inspection of Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Komsky, Igor N.

    2004-02-01

    Several types of transducer modules have been developed at Northwestern University to overcome the problems that are associated with the application of liquid or gel couplants. The modules deploy polymer films to transmit the ultrasound through a dry interface. These films are very flexible, so even with a low pressure they can be adapted to the irregular inspection surfaces. The dry-coupled transducer modules may be used for transmission and reception of both longitudinal and transverse ultrasonic waves in the MHz frequency range. The prototype modules have been integrated with the portable ultrasonic inspection units and tested on a number of aircraft structures.

  11. Advanced earth observation spacecraft computer-aided design software: Technical, user and programmer guide

    NASA Technical Reports Server (NTRS)

    Farrell, C. E.; Krauze, L. D.

    1983-01-01

    The IDEAS computer of NASA is a tool for interactive preliminary design and analysis of LSS (Large Space System). Nine analysis modules were either modified or created. These modules include the capabilities of automatic model generation, model mass properties calculation, model area calculation, nonkinematic deployment modeling, rigid-body controls analysis, RF performance prediction, subsystem properties definition, and EOS science sensor selection. For each module, a section is provided that contains technical information, user instructions, and programmer documentation.

  12. The Unity connecting module moves into payload bay of Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Unity connecting module is moved toward the payload bay of the orbiter Endeavour at Launch Pad 39A. Part of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88 . The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time.

  13. BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service

    PubMed Central

    Zou, Han; Jiang, Hao; Luo, Yiwen; Zhu, Jianjie; Lu, Xiaoxuan; Xie, Lihua

    2016-01-01

    The location and contextual status (indoor or outdoor) is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS) for individuals. In addition, optimizations of building management systems (BMS), such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO) detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS) easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption. PMID:26907295

  14. The effect of microphone wind noise on the amplitude modulation of wind turbine noise and its mitigation.

    PubMed

    Kendrick, Paul; von Hünerbein, Sabine; Cox, Trevor J

    2016-07-01

    Microphone wind noise can corrupt outdoor recordings even when wind shields are used. When monitoring wind turbine noise, microphone wind noise is almost inevitable because measurements cannot be made in still conditions. The effect of microphone wind noise on two amplitude modulation (AM) metrics is quantified in a simulation, showing that even at low wind speeds of 2.5 m/s errors of over 4 dBA can result. As microphone wind noise is intermittent, a wind noise detection algorithm is used to automatically find uncorrupted sections of the recording, and so recover the true AM metrics to within ±2/±0.5 dBA.

  15. The Role of Outdoor Art in Urban Environmental Education

    NASA Astrophysics Data System (ADS)

    Filippelli, G. M.; Kesling, M.; Ryan, T.; Fraser, J.; McDonald, F.; Rollings, A.; Miss, M.; Kanpetch, B.; Trueblood, M.

    2015-12-01

    Finding ways to engage youth in inadvertent learning about nature and the environment is challenging, particularly in urban areas where environmental literacy is profoundly limited by access to safe and representative spaces. Termed the Nature Deficit Disorder, the lack of contact and connection between people and their environment leads to a less than holistic approach to environmental management at the personal and governmental levels. One of the challenges is developing ways to engage youth in science learning not by bringing them indoors to a science museum but rather by taking the science museum outdoors. Funded by the NSF Informal Science Learning program, we launched a collaborative between scientists and artists to understand the nature and impact of environmental learning through outdoor art and science programming, called StreamLines. Launched in 2014 and now near full deployment, the program is part of a bigger initiative in Indianapolis (Reconnecting to Our Waterways) to embrace the multiple waterways that traverse the city as a valuable community and health resource. This collaborative is designed to function on multiple levels. An Artist and Scientists Roundtable engages practitioners in regular conversations supplemented by external readings to share how practitioners use concepts and tools from the "opposite" side to inform their work and scholarship. Physical installations of iconic art at individual sites reflect the environmental conditions at individual sites are designed as tools for explicit and implicit learning and exploration about the environment. Music, poetry, and dance programming developed for individual sites portray cogent characteristics of place and are meant to allow visitors to see how artists engage with and draw from the environment for inspiration. A research approach unpins all of these efforts, utilizing a set of different sample populations to explore environmental education and potential advocacy after interactions with components of StreamLines.

  16. The Unity connecting module is moved to payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, workers attach the overhead crane that will lift the Unity connecting module from its workstand to move the module to the payload canister. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  17. STS-31 pre-deployment checkout of the Hubble Space Telescope (HST) on OV-103

    NASA Image and Video Library

    1990-04-25

    View taken through overhead window W7 aboard Discovery, Orbiter Vehicle (OV) 103, shows the Hubble Space Telescope (HST) grappled by the remote manipulator system (RMS) and held in a 90 degree pitch position against the blackness of space. The solar array (SA) panel (center) and the high gain antennae (HGA) (on either side) are visible along the Support System Module (SSM) forward shell prior to deployment during STS-31.

  18. Hubble Space Telescope (HST) grappled by OV-103's RMS during STS-31 checkout

    NASA Image and Video Library

    1990-04-25

    The Hubble Space Telescope (HST), grappled by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), is held in a pre-deployment position. During STS-31 checkout procedures, the solar array (SA) panels and the high gain antennae (HGA) will be deployed. The starboard SA (center) and the two HGA are stowed along side the Support System Module (SSM) forward shell. The sun highlights HST against the blackness of space.

  19. STS-31 Hubble Space Telescope (HST) solar array panel deploy aboard OV-103

    NASA Image and Video Library

    1990-04-25

    Held in appendage deploy position by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), the Hubble Space Telescope's (HST's) starboard solar array (SA) bistem cassette is released from its stowed position on the Support System Module (SSM) forward shell. The spreader bar & bistem begin to unfurl the SA wing. View was taken by an STS-31 crewmember through an overhead window & is backdropped against the surface of the Earth.

  20. Ultralightweight Space Deployable Primary Reflector Demonstrator

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Zeiders, Glenn W.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A concept has been developed and analyzed and several generational prototypes built for a gossamer-class deployable truss for a mirror or reflector with many smaller precisely-figured solid elements attached will, for at least the next several decades, minimize the mass of a large primary mirror assembly while still providing the high image quality essential for planet-finding and cosmological astronomical missions. Primary mirror segments are mounted in turn on ultralightweight thermally-formed plastic panels that hold clusters of mirror segments in rigid arrays whose tip/tilt and piston would be corrected over the scale of the plastic panels by the control segments. Prototype panels developed under this program are 45 cm wide and fabricated from commercially available Kaplan sheets. A three-strut octahedral tensegrity is the basis for the overall support structure. Each fundamental is composed of two such octahedrons, rotated oppositely about a common triangular face. Adjacent modules are joined at the nodes of the upper and lower triangles to form a deployable structure that could be made arbitrarily large. A seven-module dowel-and-wire prototype has been constructed. Deployment techniques based on the use of collapsing toggled struts with diagonal tensional elements allows an assembly of tensegrities to be fully collapsed and redeployed. The prototype designs will be described and results of a test program for measuring strength and deformation will be presented.

  1. Cortical Coupling Reflects Bayesian Belief Updating in the Deployment of Spatial Attention.

    PubMed

    Vossel, Simone; Mathys, Christoph; Stephan, Klaas E; Friston, Karl J

    2015-08-19

    The deployment of visuospatial attention and the programming of saccades are governed by the inferred likelihood of events. In the present study, we combined computational modeling of psychophysical data with fMRI to characterize the computational and neural mechanisms underlying this flexible attentional control. Sixteen healthy human subjects performed a modified version of Posner's location-cueing paradigm in which the percentage of cue validity varied in time and the targets required saccadic responses. Trialwise estimates of the certainty (precision) of the prediction that the target would appear at the cued location were derived from a hierarchical Bayesian model fitted to individual trialwise saccadic response speeds. Trial-specific model parameters then entered analyses of fMRI data as parametric regressors. Moreover, dynamic causal modeling (DCM) was performed to identify the most likely functional architecture of the attentional reorienting network and its modulation by (Bayes-optimal) precision-dependent attention. While the frontal eye fields (FEFs), intraparietal sulcus, and temporoparietal junction (TPJ) of both hemispheres showed higher activity on invalid relative to valid trials, reorienting responses in right FEF, TPJ, and the putamen were significantly modulated by precision-dependent attention. Our DCM results suggested that the precision of predictability underlies the attentional modulation of the coupling of TPJ with FEF and the putamen. Our results shed new light on the computational architecture and neuronal network dynamics underlying the context-sensitive deployment of visuospatial attention. Spatial attention and its neural correlates in the human brain have been studied extensively with the help of fMRI and cueing paradigms in which the location of targets is pre-cued on a trial-by-trial basis. One aspect that has so far been neglected concerns the question of how the brain forms attentional expectancies when no a priori probability information is available but needs to be inferred from observations. This study elucidates the computational and neural mechanisms under which probabilistic inference governs attentional deployment. Our results show that Bayesian belief updating explains changes in cortical connectivity; in that directional influences from the temporoparietal junction on the frontal eye fields and the putamen were modulated by (Bayes-optimal) updates. Copyright © 2015 Vossel et al.

  2. Can 100Gb/s wavelengths be deployed using 10Gb/s engineering rules?

    NASA Astrophysics Data System (ADS)

    Saunders, Ross; Nicholl, Gary; Wollenweber, Kevin; Schmidt, Ted

    2007-09-01

    A key challenge set by carriers for 40Gb/s deployments was that the 40Gb/s wavelengths should be deployable over existing 10Gb/s DWDM systems, using 10Gb/s link engineering design rules. Typical 10Gb/s link engineering rules are: 1. Polarization Mode Dispersion (PMD) tolerance of 10ps (mean); 2. Chromatic Dispersion (CD) tolerance of +/-700ps/nm 3. Operation at 50GHz channel spacing, including transit through multiple cascaded [R]OADMs; 4. Optical reach up to 2,000km. By using a combination of advanced modulation formats and adaptive dispersion compensation (technologies rarely seen at 10Gb/s outside of the submarine systems space), vendors did respond to the challenge and broadly met this requirement. As we now start to explore feasible technologies for 100Gb/s optical transport, driven by 100GE port availability on core IP routers, the carrier challenge remains the same. 100Gb/s links should be deployable over existing 10Gb/s DWDM systems using 10Gb/s link engineering rules (as listed above). To meet this challenge, optical transport technology must evolve to yet another level of complexity/maturity in both modulation formats and adaptive compensation techniques. Many clues as to how this might be achieved can be gained by first studying sister telecommunications industries, e.g. satellite (QPSK, QAM, LDCP FEC codes), wireless (advanced DSP, MSK), HDTV (TCM), etc. The optical industry is not a pioneer of new ideas in modulation schemes and coding theory, we will always be followers. However, we do have the responsibility of developing the highest capacity "modems" on the planet to carry the core backbone traffic of the Internet. As such, the key to our success will be to analyze the pros and cons of advanced modulation/coding techniques and balance this with the practical limitations of high speed electronics processing speed and the challenges of real world optical layer impairments. This invited paper will present a view on what advanced technologies are likely candidates to support 100GE optical IP transport over existing 10Gb/s DWDM systems, using 10Gb/s link engineering rules.

  3. FSA field test report, 1980 - 1982

    NASA Technical Reports Server (NTRS)

    Maxwell, H. G.; Grimmett, C. A.; Repar, J.; Frickland, P. O.; Amy, J. A.

    1983-01-01

    Photovoltaic modules made of new and developing materials were tested in a continuing study of weatherability, compatibility, and corrosion protection. Over a two-year period, 365 two-cell submodules have been exposed for various intervals at three outdoor sites in Southern California or subjected to laboratory acceptance tests. Results to date show little loss of maximum power output, except in two types of modules. In the first of these, failure is due to cell fracture from the stresses that arise as water is regained from the surrounding air by a hardboard substrate, which shrank as it dried during its encapsulation in plastic film at 150 C in vacuo. In the second, the glass superstrate is sensitive to cracking, which also damages the cells electrostatically bonded to it; inadequate bonding of interconnects to the cells is also a problem in these modules. In a third type of module, a polyurethane pottant has begun to yellow, though as yet without significant effect on maximum power output.

  4. The GMOD Drupal Bioinformatic Server Framework

    PubMed Central

    Papanicolaou, Alexie; Heckel, David G.

    2010-01-01

    Motivation: Next-generation sequencing technologies have led to the widespread use of -omic applications. As a result, there is now a pronounced bioinformatic bottleneck. The general model organism database (GMOD) tool kit (http://gmod.org) has produced a number of resources aimed at addressing this issue. It lacks, however, a robust online solution that can deploy heterogeneous data and software within a Web content management system (CMS). Results: We present a bioinformatic framework for the Drupal CMS. It consists of three modules. First, GMOD-DBSF is an application programming interface module for the Drupal CMS that simplifies the programming of bioinformatic Drupal modules. Second, the Drupal Bioinformatic Software Bench (biosoftware_bench) allows for a rapid and secure deployment of bioinformatic software. An innovative graphical user interface (GUI) guides both use and administration of the software, including the secure provision of pre-publication datasets. Third, we present genes4all_experiment, which exemplifies how our work supports the wider research community. Conclusion: Given the infrastructure presented here, the Drupal CMS may become a powerful new tool set for bioinformaticians. The GMOD-DBSF base module is an expandable community resource that decreases development time of Drupal modules for bioinformatics. The biosoftware_bench module can already enhance biologists' ability to mine their own data. The genes4all_experiment module has already been responsible for archiving of more than 150 studies of RNAi from Lepidoptera, which were previously unpublished. Availability and implementation: Implemented in PHP and Perl. Freely available under the GNU Public License 2 or later from http://gmod-dbsf.googlecode.com Contact: alexie@butterflybase.org PMID:20971988

  5. Apollo 16 Lunar Module 'Orion' at the Descartes landing site

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 16 Lunar Module 'Orion' is part of the lunar scene at the Descartes landing site, as seen in the reproduction taken from a color television transmission made by the color TV camera mounted on the Lunar Roving Vehicle. Note the U.S. flag deployed on the left. This picture was made during the second Apollo 16 extravehicular activity (EVA-2).

  6. A New Black Carbon Sensor for Dense Air Quality Monitoring Networks

    PubMed Central

    Caubel, Julien J.; Cados, Troy E.; Kirchstetter, Thomas W.

    2018-01-01

    Low-cost air pollution sensors are emerging and increasingly being deployed in densely distributed wireless networks that provide more spatial resolution than is typical in traditional monitoring of ambient air quality. However, a low-cost option to measure black carbon (BC)—a major component of particulate matter pollution associated with adverse human health risks—is missing. This paper presents a new BC sensor designed to fill this gap, the Aerosol Black Carbon Detector (ABCD), which incorporates a compact weatherproof enclosure, solar-powered rechargeable battery, and cellular communication to enable long-term, remote operation. This paper also demonstrates a data processing methodology that reduces the ABCD’s sensitivity to ambient temperature fluctuations, and therefore improves measurement performance in unconditioned operating environments (e.g., outdoors). A fleet of over 100 ABCDs was operated outdoors in collocation with a commercial BC instrument (Magee Scientific, Model AE33) housed inside a regulatory air quality monitoring station. The measurement performance of the 105 ABCDs is comparable to the AE33. The fleet-average precision and accuracy, expressed in terms of mean absolute percentage error, are 9.2 ± 0.8% (relative to the fleet average data) and 24.6 ± 0.9% (relative to the AE33 data), respectively (fleet-average ± 90% confidence interval). PMID:29494528

  7. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture.

    PubMed

    Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing

    2017-01-14

    In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT.

  8. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture

    PubMed Central

    Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing

    2017-01-01

    In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT. PMID:28098822

  9. A New Black Carbon Sensor for Dense Air Quality Monitoring Networks.

    PubMed

    Caubel, Julien J; Cados, Troy E; Kirchstetter, Thomas W

    2018-03-01

    Low-cost air pollution sensors are emerging and increasingly being deployed in densely distributed wireless networks that provide more spatial resolution than is typical in traditional monitoring of ambient air quality. However, a low-cost option to measure black carbon (BC)-a major component of particulate matter pollution associated with adverse human health risks-is missing. This paper presents a new BC sensor designed to fill this gap, the Aerosol Black Carbon Detector (ABCD), which incorporates a compact weatherproof enclosure, solar-powered rechargeable battery, and cellular communication to enable long-term, remote operation. This paper also demonstrates a data processing methodology that reduces the ABCD's sensitivity to ambient temperature fluctuations, and therefore improves measurement performance in unconditioned operating environments (e.g., outdoors). A fleet of over 100 ABCDs was operated outdoors in collocation with a commercial BC instrument (Magee Scientific, Model AE33) housed inside a regulatory air quality monitoring station. The measurement performance of the 105 ABCDs is comparable to the AE33. The fleet-average precision and accuracy, expressed in terms of mean absolute percentage error, are 9.2 ± 0.8% (relative to the fleet average data) and 24.6 ± 0.9% (relative to the AE33 data), respectively (fleet-average ± 90% confidence interval).

  10. Work Flow Analysis Report Action Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PETERMANN, M.L.

    The Work Flow Analysis Report will be used to facilitate the requirements for implementing the further deployment of the Action Tracking module of Passport. The report consists of workflow integration processes for Action Tracking.

  11. System interface for an integrated intelligent safety system (ISS) for vehicle applications.

    PubMed

    Hannan, Mahammad A; Hussain, Aini; Samad, Salina A

    2010-01-01

    This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS) that includes an airbag deployment decision system (ADDS) and a tire pressure monitoring system (TPMS). A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications.

  12. System Interface for an Integrated Intelligent Safety System (ISS) for Vehicle Applications

    PubMed Central

    Hannan, Mahammad A.; Hussain, Aini; Samad, Salina A.

    2010-01-01

    This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS) that includes an airbag deployment decision system (ADDS) and a tire pressure monitoring system (TPMS). A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications. PMID:22205861

  13. STS-31 pre-deployment checkout of the Hubble Space Telescope (HST) on OV-103

    NASA Image and Video Library

    1990-04-25

    During STS-31 checkout, the Hubble Space Telescope (HST) is held in a pre-deployment position by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS). The view, taken from the crew cabin overhead window W7, shows the starboard solar array (SA) panel (center) and two high gain antennae (HGA) (on either side) stowed along side the Support System Module (SSM) forward shell. The sun highlights HST against the blackness of space.

  14. Active plasma release experiments

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A pulse code modulator (PCM) encoder capable of storing data onboard into the mass memory in the encoder at up to 12 megabits per second was designed and constructed. This telemetry system was programed for two successful flights. All parts of the electronic system functioned perfectly during both previous flights and the detectors performed perfectly. However, in the first flight in Pokerflat, Alaska, an electron arm did not deploy for reasons as yet unkown. The ion arm deployed perfectly and good data was acquired.

  15. STS-97 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Various shots highlight the STS-97 Endeavour mission. Footage shows the crew suiting up and leaving the Operations and Checkout (O&C) Building, the launch, and landing. Various on-orbit activities are seen, such as docking with the International Space Station (ISS), the spacewalks (installing the PV Module P6), array deployment, meeting the Expedition 1 crew, eating, and undocking. Shots show the northern lights and a meteorite entering Earth's atmosphere from above. The Andes can be seen from the Orbiter while the P6 arrays are deploying.

  16. Ocean Bottom Seismometer Augmentation of the Philippine Sea Experiment (OBSAPS) Cruise Report

    DTIC Science & Technology

    2011-09-01

    single 77.5Hz M-sequence on six OBSAPS receivers: (from bottom to top) the vertical geophone on the North OBS ( blue ), the hydrophone module on the...wet end electronics (pressure sensor, hydrophone and octopus ) to the spare J15-3 S/N 14 and re-deployed the transducer and tow body assembly. We then...our wet end electronics (hydrophone, pressure sensor and octopus ) to the S/N 11 unit and re-deployed. The repaired J15-3 S/N 11 unit performed

  17. Astronaut John Young at LRV prior to deployment of ALSEP during first EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of Apollo 16, is at the Lunar Roving Vehicle (LRV), just prior to deployment of the Apollo Lunar Surface Experiment Package (ALSEP) during the first extravehicular activity (EVA-1), on April 21, 1972. Note Ultraviolet Camera/Spectrometer at right of Lunar Module (LM) ladder. Also note pile of protective/thermal foil under the U.S. flag on the LM which the astronauts pulled away to get to the Modular Equipment Stowage Assembly (MESA) bay.

  18. Road to Grid Parity through Deployment of Low-Cost 21.5% N-Type Si Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velundur, Vijay

    This project seeks to develop and deploy differentiated 21.5% efficient n-type Si solar cells while reaching the SunShot module cost goal of ≤ $0.50/W. This objective hinges on development of enabling low cost technologies that simplify the manufacturing process and reduce overall processing costs. These comprise of (1) Boron emitter formation and passivation; (2) Simplified processing process for emitter and BSF layers; and (3) Advanced metallization for the front and back contacts.

  19. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.

    PubMed

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-08-30

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments.

  20. Modulation of mechanical and muscular load by footwear during catering.

    PubMed

    Kersting, U G; Janshen, L; Böhm, H; Morey-Klapsing, G M; Brüggemann, G-P

    2005-03-15

    The BGN (Berufsgenossenschaft Nahrungsmithl und Gaststätten) reports 70% of job induced days off work to be connected with traumas of the ankle joint or overloading of the leg, knee and lower back, with an increased incidence in service areas outdoors (R. Grieshaber, personal communication). Workspace environments usually contain narrow passages, slopes or stairs and sudden changes between different surfaces. The aim of this study was to investigate the biomechanical load on the lower extremity and the low back during catering service when wearing different types of footwear. Thus, the potential for altering mechanical stress experienced during catering by variations in footwear was explored. Sixteen experienced waiters followed a course typical for a combined indoor-outdoor service area. Three different types of footwear were investigated using pressure distribution measurements, rearfoot goniometry and electromyography. A discriminant analysis revealed that the factors subject, shoe and surface affect rear foot movement or pressure distribution in different ways. A MANOVA demonstrated significant differences in loading parameters between footwear types. In general, these differences increased in magnitude in critical situations, such as climbing stairs or crossing slippery surfaces. The results of this study demonstrate that manipulations to footwear offer a great potential for modulating loads experienced during catering. Based on the results, the effects of constructional features are discussed. The method proposed can be applied to evaluate shoe modifications under realistic workplace conditions.

  1. Robot-assisted real-time magnetic resonance image-guided transcatheter aortic valve replacement.

    PubMed

    Miller, Justin G; Li, Ming; Mazilu, Dumitru; Hunt, Tim; Horvath, Keith A

    2016-05-01

    Real-time magnetic resonance imaging (rtMRI)-guided transcatheter aortic valve replacement (TAVR) offers improved visualization, real-time imaging, and pinpoint accuracy with device delivery. Unfortunately, performing a TAVR in a MRI scanner can be a difficult task owing to limited space and an awkward working environment. Our solution was to design a MRI-compatible robot-assisted device to insert and deploy a self-expanding valve from a remote computer console. We present our preliminary results in a swine model. We used an MRI-compatible robotic arm and developed a valve delivery module. A 12-mm trocar was inserted in the apex of the heart via a subxiphoid incision. The delivery device and nitinol stented prosthesis were mounted on the robot. Two continuous real-time imaging planes provided a virtual real-time 3-dimensional reconstruction. The valve was deployed remotely by the surgeon via a graphic user interface. In this acute nonsurvival study, 8 swine underwent robot-assisted rtMRI TAVR for evaluation of feasibility. Device deployment took a mean of 61 ± 5 seconds. Postdeployment necropsy was performed to confirm correlations between imaging and actual valve positions. These results demonstrate the feasibility of robotic-assisted TAVR using rtMRI guidance. This approach may eliminate some of the challenges of performing a procedure while working inside of an MRI scanner, and may improve the success of TAVR. It provides superior visualization during the insertion process, pinpoint accuracy of deployment, and, potentially, communication between the imaging device and the robotic module to prevent incorrect or misaligned deployment. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  2. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021060 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  3. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021061 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  4. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021284 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  5. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021044 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  6. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021296 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  7. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021028 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  8. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020884 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  9. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021046 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  10. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020610 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  11. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021024 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  12. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021058 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  13. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021085 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  14. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020576 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  15. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020594 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  16. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021081 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  17. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020856 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  18. Russian EVA-31

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020683 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  19. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021037 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  20. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020581 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  1. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021293 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  2. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021286 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  3. The U.S. Navy Littoral Combat Ship: Current Issues and How to Employ It in the Future

    DTIC Science & Technology

    2012-03-07

    Ship: NIA Curr-ent Issues and How to Deploy It in the Future 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHORCSl 5d. PROJECT NUMBER...Lieutenant Commander Gregory M Zimmerman, United States Navy N/A 5e. TASK NUMBER N/A 5f. WORK UNIT NUMBER NIA 7. PERFORMING ORGANIZATION NAME(S...Launch Module, MH-60R helicopter, UAV (Fire Scout), Mission Package Application Software Module, and the optional Maritime Security Module. 27 LCS can

  4. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020892 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  5. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021054 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  6. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021080 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  7. The Unity connecting module moves into payload bay of Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Looking like a painting, this wide-angle view shows the Unity connecting module being moved toward the payload bay of the orbiter Endeavour at Launch Pad 39A. Part of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time.

  8. The Unity connecting module is moved to payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, an overhead crane moves the Unity connecting module to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  9. The Unity connecting module moves into payload bay of Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Viewed from below, the Unity connecting module is moved into the payload bay of the orbiter Endeavour at Launch Pad 39A. Part of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time.

  10. KSC-98pc1410

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, workers attach the overhead crane that will lift the Unity connecting module from its workstand to move the module to the payload canister. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  11. Optimal spiral phase modulation in Gerchberg-Saxton algorithm for wavefront reconstruction and correction

    NASA Astrophysics Data System (ADS)

    Baránek, M.; Běhal, J.; Bouchal, Z.

    2018-01-01

    In the phase retrieval applications, the Gerchberg-Saxton (GS) algorithm is widely used for the simplicity of implementation. This iterative process can advantageously be deployed in the combination with a spatial light modulator (SLM) enabling simultaneous correction of optical aberrations. As recently demonstrated, the accuracy and efficiency of the aberration correction using the GS algorithm can be significantly enhanced by a vortex image spot used as the target intensity pattern in the iterative process. Here we present an optimization of the spiral phase modulation incorporated into the GS algorithm.

  12. Development of Ocean-Bottom Seismograph in Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, H.; Jang, J. P.; Chen, P.; Lin, C. R.; Kuo, B. Y.; Wang, C. C.; Kim, K. H.; Lin, P. P.

    2016-12-01

    Yardbird-20s, one type of Ocean-Bottom Seismograph (OBS), is fabricated by Taiwan Ocean Research Institute (TORI), the Institute of Earth Science of Academia Sinica and the Institute of Undersea Technology of the National Sun Yat-Sen University in Taiwan. Yardbirds can be deployed up to 5000m deep for up to 15 months. The total weight with anchor in the air is about 170Kg. The rising and sinking rate is about 0.8 m/s. We utilized ultra-low power micro control unit (MCU) and SD card to design a data logger. The sensors are three of 4.5Hz geophones that were extended the lower frequency response to 20 sec. The sensor module also includes the leveling system, which is design by dual-axis DC motor-driven module to level the vertical component to be less than 0.1 degree with respect to the gravity. Yardbirds have been successfully deployed and recovered in several research cruises in Taiwan and Korea. In this study, we'll also display the data quality and power spectral density (PSD) calculations, probability density function (PDF) plots and from the Yardbirds that deployed and recovered in the East Sea near sough-east of Korea.

  13. Design of a Thermal and Micrometeorite Protection System for an Unmanned Lunar Cargo Lander

    NASA Technical Reports Server (NTRS)

    Hernandez, Carlos A.; Sunder, Sankar; Vestgaard, Baard

    1989-01-01

    The first vehicles to land on the lunar surface during the establishment phase of a lunar base will be unmanned lunar cargo landers. These landers will need to be protected against the hostile lunar environment for six to twelve months until the next manned mission arrives. The lunar environment is characterized by large temperature changes and periodic micrometeorite impacts. An automatically deployable and reconfigurable thermal and micrometeorite protection system was designed for an unmanned lunar cargo lander. The protection system is a lightweight multilayered material consisting of alternating layers of thermal and micrometeorite protection material. The protection system is packaged and stored above the lander common module. After landing, the system is deployed to cover the lander using a system of inflatable struts that are inflated using residual fuel (liquid oxygen) from the fuel tanks. Once the lander is unloaded and the protection system is no longer needed, the protection system is reconfigured as a regolith support blanket for the purpose of burying and protecting the common module, or as a lunar surface garage that can be used to sort and store lunar surface vehicles and equipment. A model showing deployment and reconfiguration of the protection system was also constructed.

  14. Deployable bamboo structure project: A building life-cycle report

    NASA Astrophysics Data System (ADS)

    Firdaus, Adrian; Prastyatama, Budianastas; Sagara, Altho; Wirabuana, Revian N.

    2017-11-01

    Bamboo is considered as a sustainable material in the world of construction, and it is vastly available in Indonesia. The general utilization of the material is increasingly frequent, however, its usage as a deployable structure-a recently-developed use of bamboo, is still untapped. This paper presents a report on a deployable bamboo structure project, covering the entire building life-cycle phase. The cycle encompasses the designing; fabrication; transportation; construction; operation and maintenance; as well as a plan for future re-use. The building is made of a configuration of the structural module, each being a folding set of bars which could be reduced in size to fit into vehicles for easy transportation. Each structural module was made of Gigantochloa apus bamboo. The fabrication, transportation, and construction phase require by a minimum of three workers. The fabrication and construction phase require three hours and fifteen minutes respectively. The building is utilized as cafeteria stands, the operation and maintenance phase started since early March 2017. The maintenance plan is scheduled on a monthly basis, focusing on the inspection of the locking mechanism element and the entire structural integrity. The building is designed to allow disassembly process so that it is reusable in the future.

  15. The X-beam as a deployable boom for the space station

    NASA Technical Reports Server (NTRS)

    Adams, Louis R.

    1988-01-01

    Extension of antennas and thrust modules from the primary structure of the space station will require deployable beams of high stiffness and strength, as well as low mass and package volume. A square boom cross section is desirable for interface reasons. These requirements and others are satisfied by the X-beam. The X-beam folds by simple geometry, using single-degree-of-freedom hinges at simple angles, with no strain during deployment. Strut members are of large diameter with unidirectional graphite fibers for maximum beam performance. Fittings are aluminum with phosphor bronze bushings so that compliance is low and joint lifetime is high. The several beam types required for different applications on the space station will use the same basic design, with changes in strut cross section where necessary. Deployment is by a BI-STEM which pushes the beam out; retraction is by cables which cause initial folding and pull the beam in.

  16. Deployable wavelength optimizer for multi-laser sensing and communication undersea

    NASA Astrophysics Data System (ADS)

    Neuner, Burton; Hening, Alexandru; Pascoguin, B. Melvin; Dick, Brian; Miller, Martin; Tran, Nghia; Pfetsch, Michael

    2017-05-01

    This effort develops and tests algorithms and a user-portable optical system designed to autonomously optimize the laser communication wavelength in open and coastal oceans. In situ optical meteorology and oceanography (METOC) data gathered and analyzed as part of the auto-selection process can be stored and forwarded. The system performs closedloop optimization of three visible-band lasers within one minute by probing the water column via passive retroreflector and polarization optics, selecting the ideal wavelength, and enabling high-speed communication. Backscattered and stray light is selectively blocked by employing polarizers and wave plates, thus increasing the signal-to-noise ratio. As an advancement in instrumentation, we present autonomy software and portable hardware, and demonstrate this new system in two environments: ocean bay seawater and outdoor test pool freshwater. The next generation design is also presented. Once fully miniaturized, the optical payload and software will be ready for deployment on manned and unmanned platforms such as buoys and vehicles. Gathering timely and accurate ocean sensing data in situ will dramatically increase the knowledge base and capabilities for environmental sensing, defense, and industrial applications. Furthermore, communicating on the optimal channel increases transfer rates, propagation range, and mission length, all while reducing power consumption in undersea platforms.

  17. Development of a unique multi-contaminant air sampling device for a childhood asthma cohort in an agricultural environment.

    PubMed

    Armstrong, Jenna L; Fitzpatrick, Cole F; Loftus, Christine T; Yost, Michael G; Tchong-French, Maria; Karr, Catherine J

    2013-09-01

    This research describes the design, deployment, performance, and acceptability of a novel outdoor active air sampler to provide simultaneous measurements of multiple contaminants at timed intervals for the Aggravating Factors of Asthma in Rural Environment (AFARE) study-a longitudinal cohort of 50 children in Yakima Valley, Washington. The sampler was constructed of multiple sampling media connected to individual critical orifices and a rotary vane vacuum pump. It was connected to a timed control valve system to collect 24 hours samples every six days over 18 months. We describe a spatially representative approach with both quantitative and qualitative location criteria to deploy a network of 14 devices at participant residences in a rural region (20 × 60 km). Overall the sampler performed well, as the concurrent mean sample flow rates were within or above the ranges of recommended sampling rates for each exposure metric of interest. Acceptability was high among the study population of Hispanic farmworker participant households. The sampler design may prove useful for future urban and rural community-based studies with aims at collecting multiple contaminant data during specific time periods.

  18. Development of a self contained heat rejection module, phase 2 and 3

    NASA Technical Reports Server (NTRS)

    Fleming, M. L.

    1976-01-01

    The fabrication and testing of a prototype deployable radiator system is described. Vapor compression with a conventional aircraft compressor yielded a net heat rejection effect at high environments while returning low temperature (10 F and 35 F) conditioned fluid to the payload thermal control system. The system is compatible with shuttle orbiter payloads, free flying experiment modules launched from the shuttle, or by another launch vehicle.

  19. Interference Resilient Sigma Delta-Based Pulse Oximeter.

    PubMed

    Shokouhian, Mohsen; Morling, Richard; Kale, Izzet

    2016-06-01

    Ambient light and optical interference can severely affect the performance of pulse oximeters. The deployment of a robust modulation technique to drive the pulse oximeter LEDs can reduce these unwanted effects and increases the resilient of the pulse oximeter against artificial ambient light. The time division modulation technique used in conventional pulse oximeters can not remove the effect of modulated light coming from surrounding environment and this may cause huge measurement error in pulse oximeter readings. This paper presents a novel cross-coupled sigma delta modulator which ensures that measurement accuracy will be more robust in comparison with conventional fixed-frequency oximeter modulation technique especially in the presence of pulsed artificial ambient light. Moreover, this novel modulator gives an extra control over the pulse oximeter power consumption leading to improved power management.

  20. Lightweight Shield Against Space Debris

    NASA Technical Reports Server (NTRS)

    Redmon, John W., Jr.; Lawson, Bobby E.; Miller, Andre E.; Cobb, W. E.

    1992-01-01

    Report presents concept for lightweight, deployable shield protecting orbiting spacecraft against meteoroids and debris, and functions as barrier to conductive and radiative losses of heat. Shield made in four segments providing 360 degree coverage of cylindrical space-station module.

  1. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Inside Building 1555 at Vandenberg Air Force Base in California, technicians and engineers install one of eight NASA Cyclone Global Navigation Satellite System (CYGNSS) spacecraft on its deployment module. Processing activities will prepare the spacecraft for launch aboard an Orbital ATK Pegasus XL rocket. When preparations are competed at Vandenberg, the rocket will be transported to NASA’s Kennedy Space Center in Florida attached to the Orbital ATK L-1011 carrier aircraft with in its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  2. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Inside Building 1555 at Vandenberg Air Force Base in California, one of eight NASA Cyclone Global Navigation Satellite System (CYGNSS) spacecraft is installed on its deployment module. Processing activities will prepare the spacecraft for launch aboard an Orbital ATK Pegasus XL rocket. When preparations are competed at Vandenberg, the rocket will be transported to NASA’s Kennedy Space Center in Florida attached to the Orbital ATK L-1011 carrier aircraft with in its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  3. Entry Guidance for the 2011 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Mendeck, Gavin F.; Craig, Lynn E.

    2011-01-01

    The 2011 Mars Science Laboratory will be the first Mars mission to attempt a guided entry to safely deliver the rover to a touchdown ellipse of 25 km x 20 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range error while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last nine years. Key dispersions driving deploy ellipse and altitude performance are identified. Performance sensitivities including attitude initialization error and the velocity of transition from range control to heading alignment are presented.

  4. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK prepare to install the micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  5. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-12

    A technician with Orbital ATK prepares to install another micro satellite on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  6. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK install the first two sets of micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  7. Skylab 3,Skylab as the CM moves in for docking

    NASA Image and Video Library

    1973-07-28

    SL3-114-1683 (28 July 1973) --- A close-up view of the Skylab space station photographed against an Earth background from the Skylab 3 Command and Service Modules (CSM) during station-keeping maneuvers prior to docking. Aboard the Command Module (CM) were astronauts Alan L. Bean, Owen K. Garriott and Jack R. Lousma, who remained with the Skylab Space Station in Earth orbit for 59 days. This picture was taken with a hand-held 70mm Hasselblad camera using a 100mm lens and SO-368 medium speed Ektachrome film. Note the one solar array system wing on the Orbital Workshop (OWS) which was successfully deployed during extravehicular activity (EVA) on the first manned Skylab flight. The parasol solar shield which was deployed by the Skylab 2 crew can be seen through the support struts of the Apollo Telescope Mount (ATM). Photo credit: NASA

  8. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    A technician with Orbital ATK prepares the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) for micro satellites installation in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  9. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    A technician with Orbital ATK checks out the micro satellites deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  10. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-13

    All of the micro satellites have been fully installed on the deployment module by Orbital ATK for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  11. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK prepare the micro satellites for installation on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  12. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-12

    Technicians with Orbital ATK continue to install the micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  13. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-12

    Technicians with Orbital ATK continue to install micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  14. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    A technician with Orbital ATK assembles the micro satellites deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  15. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK check assemble the micro satellites deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  16. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK prepare a set of micro satellites for installation on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  17. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK check out the micro satellites deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  18. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK prepare to install micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  19. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-12

    A technician with Orbital ATK checks the installation of the micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  20. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Technicians with Orbital ATK install the first set of micro satellites on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  1. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    A technician with Orbital ATK prepares a set of micro satellites for installation on the deployment module for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) in Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida aboard the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  2. Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The results of a study for Task 3 of the Low Cost Solar Array Project, directed toward the development of a cost effective encapsulation system for photovoltaic modules using silicon based materials, are reported. Results of the following are discussed: (1) weather-ometer stressing vs. weathering history of silicon and silicon modified materials; (2) humidity/temperature cycling exposure; (3) exposure at high humidity/high temperature; (4) outdoor exposure stress; (5) thermal cycling stress; and (6) UV screening agents. The plans for the next quarter are outlined.

  3. Outdoor, indoor, and personal black carbon exposure from cookstoves burning solid fuels

    PubMed Central

    Downward, George S.; Hu, Wei; Rothman, Nat; Reiss, Boris; Wu, Guoping; Wei, Fusheng; Xu, Jun; Seow, Wei Jie; Brunekreef, Bert; Chapman, Robert S.; Qing, Lan; Vermeulen, Roel

    2015-01-01

    Background Black carbon (BC) emissions from solid fuel combustion are associated with increased morbidity and mortality and are important drivers of climate change. We studied BC measurements, approximated by particulate matter (PM2.5) absorbance, in rural Yunnan province, China whose residents use a variety of solid fuels for cooking and heating including: bituminous and anthracite coal, and wood. Methods Measurements were taken over 2 consecutive 24 h periods from 163 households in 30 villages. PM2.5 absorbance (PMabs) was measured using an EEL 043 Smoke Stain Reflectometer. Results PMabs measurements were higher in wood burning households (16.3 × 10−5 m−1) than bituminous and anthracite coal households (12 and 5.1 × 10−5 m−1 respectively). Among bituminous coal users, measurements varied by a factor of two depending on the coal source. Portable stoves (which are lit outdoors and brought indoors for use) were associated with reduced PMabs levels, but no other impact of stove design was observed. Outdoor measurements were positively correlated with and approximately half the level of indoor measurements (r= 0.49, p<0.01). Conclusion Measurements of BC (as approximated by PMabs) in this population are modulated by fuel type and source. This provides valuable insight into potential morbidity, mortality and climate change contributions of domestic usage of solid fuels. PMID:26452237

  4. A Modular Localization System as a Positioning Service for Road Transport

    PubMed Central

    Brida, Peter; Machaj, Juraj; Benikovsky, Jozef

    2014-01-01

    In recent times smart devices have attracted a large number of users. Since many of these devices allow position estimation using Global Navigation Satellite Systems (GNSS) signals, a large number of location-based applications and services have emerged, especially in transport systems. However GNSS signals are affected by the environment and are not always present, especially in dense urban environment or indoors. In this work firstly a Modular Localization Algorithm is proposed to allow seamless switching between different positioning modules. This helps us develop a positioning system that is able to provide position estimates in both indoor and outdoor environments without any user interaction. Since the proposed system can run as a service on any smart device, it could allow users to navigate not only in outdoor environments, but also indoors, e.g., underground garages, tunnels etc. Secondly we present the proposal of a 2-phase map reduction algorithm which allows one to significantly reduce the complexity of position estimation processes in case that positioning is performed using a fingerprinting framework. The proposed 2-phase map reduction algorithm can also improve the accuracy of the position estimates by filtering out reference points that are far from the mobile device. Both algorithms were implemented into a positioning system and tested in real world conditions in both indoor and outdoor environments. PMID:25353979

  5. Research on virtual network load balancing based on OpenFlow

    NASA Astrophysics Data System (ADS)

    Peng, Rong; Ding, Lei

    2017-08-01

    The Network based on OpenFlow technology separate the control module and data forwarding module. Global deployment of load balancing strategy through network view of control plane is fast and of high efficiency. This paper proposes a Weighted Round-Robin Scheduling algorithm for virtual network and a load balancing plan for server load based on OpenFlow. Load of service nodes and load balancing tasks distribution algorithm will be taken into account.

  6. sl2-x7-615

    NASA Image and Video Library

    2013-09-10

    SL2-X7-615 (22 June 1973) --- An overhead view of the Skylab 1 space station cluster in Earth orbit photographed from the Skylab 2 Command/Service Module during the final ?fly around? inspection by the CSM. The space station is sharply contrasted against a black sky background. Note the deployed parasol solar shield which shades the Orbital Workshop where the micrometeoroid shield is missing. The one remaining OWS solar array system wing has been fully deployed successfully. The OWS solar panel on the opposite side is missing completely. Photo credit: NASA

  7. PAYLOAD (INDIA SATELLITE [INSAT]) - SHUTTLE

    NASA Image and Video Library

    1983-01-12

    S83-36307 (2 June 1983) --- INSAT 1-B is being prepared for its trip aboard the space shuttle Challenger and its deployment for geosynchronous orbital duties at the Cape Canaveral Air Force Station and at NASA's Kennedy Space Center (KSC). The Indian National Satellite is the second such Indian communications/meteorological spacecraft, the first having been sent into space via a Delta launch vehicle. The STS-8 astronaut crew members and a payload assist module (PAM) will aid the newest INSAT in its deployment steps during NASA?s third Challenger flight in August of this year.

  8. Intelligent path loss prediction engine design using machine learning in the urban outdoor environment

    NASA Astrophysics Data System (ADS)

    Wang, Ruichen; Lu, Jingyang; Xu, Yiran; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2018-05-01

    Due to the progressive expansion of public mobile networks and the dramatic growth of the number of wireless users in recent years, researchers are motivated to study the radio propagation in urban environments and develop reliable and fast path loss prediction models. During last decades, different types of propagation models are developed for urban scenario path loss predictions such as the Hata model and the COST 231 model. In this paper, the path loss prediction model is thoroughly investigated using machine learning approaches. Different non-linear feature selection methods are deployed and investigated to reduce the computational complexity. The simulation results are provided to demonstratethe validity of the machine learning based path loss prediction engine, which can correctly determine the signal propagation in a wireless urban setting.

  9. Decentralized sensor fusion for Ubiquitous Networking Robotics in Urban Areas.

    PubMed

    Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T J

    2010-01-01

    In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted.

  10. Development of photovoltaic array and module safety requirements

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Safety requirements for photovoltaic module and panel designs and configurations likely to be used in residential, intermediate, and large-scale applications were identified and developed. The National Electrical Code and Building Codes were reviewed with respect to present provisions which may be considered to affect the design of photovoltaic modules. Limited testing, primarily in the roof fire resistance field was conducted. Additional studies and further investigations led to the development of a proposed standard for safety for flat-plate photovoltaic modules and panels. Additional work covered the initial investigation of conceptual approaches and temporary deployment, for concept verification purposes, of a differential dc ground-fault detection circuit suitable as a part of a photovoltaic array safety system.

  11. Apollo 14 Mission image - View of the ALSEP Station

    NASA Image and Video Library

    1971-02-05

    AS14-67-9361 (5 Feb. 1971) --- A close-up view of two components of the Apollo lunar surface experiments package (ALSEP) which the Apollo 14 astronauts deployed on the moon during their first extravehicular activity (EVA). In the center background is the ALSEP's central station (CS); and in the foreground is the mortar package assembly of the ALSEP's active seismic experiment (ASE). The modularized equipment transporter (MET) can be seen in the right background. While astronauts Alan B. Shepard Jr., commander, and Edgar D. Mitchell, lunar module pilot, descended in the Lunar Module (LM) to explore the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  12. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020596 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, deploys a small ball-shaped science satellite during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, also moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module.

  13. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021078 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  14. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020619 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  15. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020601 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, deploys a small ball-shaped science satellite during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, also moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module.

  16. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021072 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  17. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021067 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  18. Unity nameplate is attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    - In the Space Station Processing Facility, a worker checks placement of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  19. Unity nameplate added to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, workers look over the Unity connecting module, part of the International Space Station, after attaching the nameplate. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  20. The Unity connecting module is moved to payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, workers at the side and on the floor of the payload canister guide the Unity connecting module into position for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  1. Unity nameplate examined after being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, a worker checks placement of the nameplate for the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  2. Unity nameplate is attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    - In the Space Station Processing Facility, a worker places the nameplate on the side of the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  3. The Unity connecting module is moved to payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, a closeup view shows the overhead crane holding the Unity connecting module as it moves it to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  4. Effects of different excitation waveforms on detection and characterisation of delamination in PV modules by active infrared thermography

    NASA Astrophysics Data System (ADS)

    Sinha, Archana; Gupta, Rajesh

    2017-10-01

    Delamination significantly affects the performance and reliability of photovoltaic (PV) modules. Recently, an active infrared thermography approach using step heating has been exploited for the detection and characterisation of delamination in PV modules. However, step heating takes longer observation time and causes overheating problems. This paper presents the effects of different thermal excitation waveforms namely rectangular, half-sine and short pulse, on the detection and characterisation of delamination in PV module by experiments and simulations. For simulation, a 3-dimensional electro-thermal model of heat conduction, based on resistance-capacitance network approach, has been exploited to study the variation in maximum thermal contrast and peak contrast time with the delamination thickness and heating parameters. Results show that the rectangular waveform provides better detection of delamination due to higher absolute contrast, while the half-sine waveform allows better characterisation of delamination in the PV modules with low-cost and low-power heat source. The high-energy short pulse enabled quick visualisation of delamination, but has limited practical implementation. The advantages and limitations of each waveform have been highlighted to assess the specific requirement for appropriate choice in the non-destructive thermographic inspection of delamination in PV modules at the manufacturing units or outdoor fields.

  5. Air quality, health, and climate implications of China’s synthetic natural gas development

    PubMed Central

    Qin, Yue; Wagner, Fabian; Scovronick, Noah; Yang, Junnan; Zhu, Tong; Mauzerall, Denise L.

    2017-01-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ∼32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties. PMID:28438993

  6. End-user perspective of low-cost sensors for outdoor air pollution monitoring.

    PubMed

    Rai, Aakash C; Kumar, Prashant; Pilla, Francesco; Skouloudis, Andreas N; Di Sabatino, Silvana; Ratti, Carlo; Yasar, Ansar; Rickerby, David

    2017-12-31

    Low-cost sensor technology can potentially revolutionise the area of air pollution monitoring by providing high-density spatiotemporal pollution data. Such data can be utilised for supplementing traditional pollution monitoring, improving exposure estimates, and raising community awareness about air pollution. However, data quality remains a major concern that hinders the widespread adoption of low-cost sensor technology. Unreliable data may mislead unsuspecting users and potentially lead to alarming consequences such as reporting acceptable air pollutant levels when they are above the limits deemed safe for human health. This article provides scientific guidance to the end-users for effectively deploying low-cost sensors for monitoring air pollution and people's exposure, while ensuring reasonable data quality. We review the performance characteristics of several low-cost particle and gas monitoring sensors and provide recommendations to end-users for making proper sensor selection by summarizing the capabilities and limitations of such sensors. The challenges, best practices, and future outlook for effectively deploying low-cost sensors, and maintaining data quality are also discussed. For data quality assurance, a two-stage sensor calibration process is recommended, which includes laboratory calibration under controlled conditions by the manufacturer supplemented with routine calibration checks performed by the end-user under final deployment conditions. For large sensor networks where routine calibration checks are impractical, statistical techniques for data quality assurance should be utilised. Further advancements and adoption of sophisticated mathematical and statistical techniques for sensor calibration, fault detection, and data quality assurance can indeed help to realise the promised benefits of a low-cost air pollution sensor network. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Air quality, health, and climate implications of China's synthetic natural gas development.

    PubMed

    Qin, Yue; Wagner, Fabian; Scovronick, Noah; Peng, Wei; Yang, Junnan; Zhu, Tong; Smith, Kirk R; Mauzerall, Denise L

    2017-05-09

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO 2 emissions. Due to variations in air pollutant and CO 2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ∼32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today's technology, SNG emits 22 to 40% more CO 2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties.

  8. Development of a subsurface gas flow probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cutler, R.P.; Ballard, S.; Barker, G.T.

    1997-04-01

    This report describes a project to develop a flow probe to monitor gas movement in the vadose zone due to passive venting or active remediation efforts such as soil vapor extraction. 3-D and 1-D probes were designed, fabricated, tested in known flow fields under laboratory conditions, and field tested. The 3-D pores were based on technology developed for ground water flow monitoring. The probes gave excellent agreement with measured air velocities in the laboratory tests. Data processing software developed for ground water flow probes was modified for use with air flow, and to accommodate various probe designs. Modifications were mademore » to decrease the cost of the probes, including developing a downhole multiplexer. Modeling indicated problems with flow channeling due to the mode of deployment. Additional testing was conducted and modifications were made to the probe and to the deployment methods. The probes were deployed at three test sites: a large outdoor test tank, a brief vapor extraction test at the Chemical Waste landfill, and at an active remediation site at a local gas station. The data from the field tests varied markedly from the laboratory test data. All of the major events such as vapor extraction system turn on and turn off, as well as changes in the flow rate, could be seen in the data. However, there were long term trends in the data which were much larger than the velocity signals, which made it difficult to determine accurate air velocities. These long term trends may be due to changes in soil moisture content and seasonal ground temperature variations.« less

  9. Air quality, health, and climate implications of China's synthetic natural gas development

    NASA Astrophysics Data System (ADS)

    Qin, Yue; Wagner, Fabian; Scovronick, Noah; Peng, Wei; Yang, Junnan; Zhu, Tong; Smith, Kirk R.; Mauzerall, Denise L.

    2017-05-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ˜32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties.

  10. WiFi RFID demonstration for resource tracking in a statewide disaster drill.

    PubMed

    Cole, Stacey L; Siddiqui, Javeed; Harry, David J; Sandrock, Christian E

    2011-01-01

    To investigate the capabilities of Radio Frequency Identification (RFID) tracking of patients and medical equipment during a simulated disaster response scenario. RFID infrastructure was deployed at two small rural hospitals, in one large academic medical center and in two vehicles. Several item types from the mutual aid equipment list were selected for tracking during the demonstration. A central database server was installed at the UC Davis Medical Center (UCDMC) that collected RFID information from all constituent sites. The system was tested during a statewide disaster drill. During the drill, volunteers at UCDMC were selected to locate assets using the traditional method of locating resources and then using the RFID system. This study demonstrated the effectiveness of RFID infrastructure in real-time resource identification and tracking. Volunteers at UCDMC were able to locate assets substantially faster using RFID, demonstrating that real-time geolocation can be substantially more efficient and accurate than traditional manual methods. A mobile, Global Positioning System (GPS)-enabled RFID system was installed in a pediatric ambulance and connected to the central RFID database via secure cellular communication. This system is unique in that it provides for seamless region-wide tracking that adaptively uses and seamlessly integrates both outdoor cellular-based mobile tracking and indoor WiFi-based tracking. RFID tracking can provide a real-time picture of the medical situation across medical facilities and other critical locations, leading to a more coordinated deployment of resources. The RFID system deployed during this study demonstrated the potential to improve the ability to locate and track victims, healthcare professionals, and medical equipment during a region-wide disaster.

  11. Reward can modulate attentional capture, independent of top-down set.

    PubMed

    Munneke, Jaap; Hoppenbrouwers, Sylco S; Theeuwes, Jan

    2015-11-01

    The traditional distinction between exogenous and endogenous attentional control has recently been enriched with an additional mode of control, termed "selection history." Recent findings have indicated, for instance, that previously rewarded or punished stimuli capture more attention than their physical attributes would predict. As such, the value that is associated with certain stimuli modulates attentional capture. This particular influence has also been shown for endogenous attention. Although recent leads have emerged, elucidating the influences of reward on exogenous and endogenous attention, it remains unclear to what extent exogenous attention is modulated by reward when endogenous attention is already deployed. We used a Posner cueing task in which exogenous and endogenous cues were presented to guide attention. Crucially, the exogenous cue also indicated the reward value. That is, the color of the exogenous cue indicated how much reward could be obtained on a given trial. The results showed main effects of endogenous and exogenous attention (i.e., speeded reaction times when either cue was valid, as compared to when it was invalid). Crucially, an interaction between exogenous cue validity and reward level was observed, indicating that reward-based associative-learning processes rapidly influence attentional capture, even when endogenous attention has been actively deployed.

  12. Embedded ARM system for volcano monitoring in remote areas: application to the active volcano on Deception Island (Antarctica).

    PubMed

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-02

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.

  13. Embedded ARM System for Volcano Monitoring in Remote Areas: Application to the Active Volcano on Deception Island (Antarctica)

    PubMed Central

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-01

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis. PMID:24451461

  14. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  15. Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements.

    PubMed

    Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R

    2012-07-01

    A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.

  16. Development of a Kelp-type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Taiping; Khangaonkar, Tarang; Long, Wen

    2014-02-07

    In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a “backstop” to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts tomore » the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.« less

  17. Application of a New Infrasound Sensor Technology in a Long Range Infrasound Propagation Experiment

    NASA Astrophysics Data System (ADS)

    Talmadge, C. L.; Waxler, R.; Hetzer, C. H.; Kleniert, D. E., Jr.; Dillion, K.; Assink, J.; Aydin, A.

    2009-12-01

    A low-cost ruggedized infrasound sensor has been developed at the NCPA laboratory of the University of Mississippi for outdoor infrasound measurements. This sensor has similar performance characteristics to other "standard" infrasound sensors, such as the Chaparral 50. A total of 50 sensors were constructed for this experiment, of which 42 were deployed on the Nevada and Utah desert for a period of four months. A long-range infrasound propagation experiment using these sensors was performed during the summer and fall of 2009. Source sizes varied in size from 4, 20 and 80 equivalent tons of TNT. The blasts were carried out typically on the Monday of each week in the afternoon, and were part of a scheduled demolition of first, second and third stages of trident missiles. In addition to a source capture location 23-km south of the site of the blasts, a series of 8 5-element arrays are located to the west of the blast location, at approximate ranges of 180 through 250 km in 10-km steps. Each array consisted of elements at -150-m, -50-m, 0-m, 50-m and 150-m relative to the center of the array along an east-west direction, and all microphones were equipped with 4 50-ft porous hoses connected to the microphone manifold for wind noise suppression. The signals from the microphones were digitized using GPS-synchronized, 24-bit DAQ systems. A Westerly direction for the deployment of the microphones was motivated by the presence of a strong stratospheric duct that persists through the summer months in the northern hemisphere at these latitudes. In this paper, we will discuss feasibility issues related the design of the NCPA microphone that makes possible deployments on these on large scales. Signal to noise issues related to temperature and wind fluctuations will also be discussed. Future plans include a larger scale deployment of several hundred microphones during 2010. We will discuss how the lessons learned from this series of measurements impacts that future deployment.

  18. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019318 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  19. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019300 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  20. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019312 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  1. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019307 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  2. Gerst working on JEM airlock satellite deployer

    NASA Image and Video Library

    2014-06-25

    ISS040-E-019299 (25 June 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, prepares to transfer a multi-purpose experiment platform and a robotic arm known as the Small Fine Arm through the Kibo module?s scientific airlock. The Small Fine Arm, which attaches to the Kibo?s larger main arm, handles delicate operations involved in exchanging experiments and payloads located on the Exposed Facility.

  3. Environmental analysis of the chemical release module. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    Heppner, J. P.; Dubin, M.

    1980-01-01

    The environmental analysis of the Chemical Release Module (a free flying spacecraft deployed from the space shuttle to perform chemical release experiments) is reviewed. Considerations of possible effects of the injectants on human health, ionosphere, weather, ground based optical astronomical observations, and satellite operations are included. It is concluded that no deleterious environmental effects of widespread or long lasting nature are anticipated from chemical releases in the upper atmosphere of the type indicated for the program.

  4. Autonomic Intelligent Cyber Sensor to Support Industrial Control Network Awareness

    DOE PAGES

    Vollmer, Todd; Manic, Milos; Linda, Ondrej

    2013-06-01

    The proliferation of digital devices in a networked industrial ecosystem, along with an exponential growth in complexity and scope, has resulted in elevated security concerns and management complexity issues. This paper describes a novel architecture utilizing concepts of Autonomic computing and a SOAP based IF-MAP external communication layer to create a network security sensor. This approach simplifies integration of legacy software and supports a secure, scalable, self-managed framework. The contribution of this paper is two-fold: 1) A flexible two level communication layer based on Autonomic computing and Service Oriented Architecture is detailed and 2) Three complementary modules that dynamically reconfiguremore » in response to a changing environment are presented. One module utilizes clustering and fuzzy logic to monitor traffic for abnormal behavior. Another module passively monitors network traffic and deploys deceptive virtual network hosts. These components of the sensor system were implemented in C++ and PERL and utilize a common internal D-Bus communication mechanism. A proof of concept prototype was deployed on a mixed-use test network showing the possible real world applicability. In testing, 45 of the 46 network attached devices were recognized and 10 of the 12 emulated devices were created with specific Operating System and port configurations. Additionally the anomaly detection algorithm achieved a 99.9% recognition rate. All output from the modules were correctly distributed using the common communication structure.« less

  5. The impact of top-down spatial attention on laterality and hemispheric asymmetry in the human parietal cortex

    PubMed Central

    Jeong, Su Keun; Xu, Yaoda

    2016-01-01

    The human parietal cortex exhibits a preference to contralaterally presented visual stimuli (i.e., laterality) as well as an asymmetry between the two hemispheres with the left parietal cortex showing greater laterality than the right. Using visual short-term memory and perceptual tasks and varying target location predictability, this study examined whether hemispheric laterality and asymmetry are fixed characteristics of the human parietal cortex or whether they are dynamic and modulated by the deployment of top-down attention to the target present hemifield. Two parietal regions were examined here that have previously been shown to be involved in visual object individuation and identification and are located in the inferior and superior intraparietal sulcus (IPS), respectively. Across three experiments, significant laterality was found in both parietal regions regardless of attentional modulation with laterality being greater in the inferior than superior IPS, consistent with their roles in object individuation and identification, respectively. Although the deployment of top-down attention had no effect on the superior IPS, it significantly increased laterality in the inferior IPS. The deployment of top-down spatial attention can thus amplify the strength of laterality in the inferior IPS. Hemispheric asymmetry, on the other hand, was absent in both brain regions and only emerged in the inferior but not the superior IPS with the deployment of top-down attention. Interestingly, the strength of hemispheric asymmetry significantly correlated with the strength of laterality in the inferior IPS. Hemispheric asymmetry thus seems to only emerge when there is a sufficient amount of laterality present in a brain region. PMID:27494544

  6. The impact of top-down spatial attention on laterality and hemispheric asymmetry in the human parietal cortex.

    PubMed

    Jeong, Su Keun; Xu, Yaoda

    2016-08-01

    The human parietal cortex exhibits a preference to contralaterally presented visual stimuli (i.e., laterality) as well as an asymmetry between the two hemispheres with the left parietal cortex showing greater laterality than the right. Using visual short-term memory and perceptual tasks and varying target location predictability, this study examined whether hemispheric laterality and asymmetry are fixed characteristics of the human parietal cortex or whether they are dynamic and modulated by the deployment of top-down attention to the target present hemifield. Two parietal regions were examined here that have previously been shown to be involved in visual object individuation and identification and are located in the inferior and superior intraparietal sulcus (IPS), respectively. Across three experiments, significant laterality was found in both parietal regions regardless of attentional modulation with laterality being greater in the inferior than superior IPS, consistent with their roles in object individuation and identification, respectively. Although the deployment of top-down attention had no effect on the superior IPS, it significantly increased laterality in the inferior IPS. The deployment of top-down spatial attention can thus amplify the strength of laterality in the inferior IPS. Hemispheric asymmetry, on the other hand, was absent in both brain regions and only emerged in the inferior but not the superior IPS with the deployment of top-down attention. Interestingly, the strength of hemispheric asymmetry significantly correlated with the strength of laterality in the inferior IPS. Hemispheric asymmetry thus seems to only emerge when there is a sufficient amount of laterality present in a brain region.

  7. Solar UV exposure among outdoor workers in Denmark measured with personal UV-B dosimeters: technical and practical feasibility.

    PubMed

    Grandahl, Kasper; Mortensen, Ole Steen; Sherman, David Zim; Køster, Brian; Lund, Paul-Anker; Ibler, Kristina Sophie; Eriksen, Paul

    2017-10-10

    Exposure to solar ultraviolet radiation is a well-known cause of skin cancer. This is problematic for outdoor workers. In Denmark alone, occupational skin cancer poses a significant health and safety risk for around 400,000 outdoor workers. Objective measures of solar ultraviolet radiation exposure are needed to help resolve this problem. This can be done using personal ultraviolet radiation dosimeters. We consider technical and practical feasibility of measuring individual solar ultraviolet exposure at work and leisure in professions with different á priori temporal high-level outdoor worktime, using aluminium gallium nitride (AlGaN) photodiode detector based personal UV-B dosimeters. Essential technical specifications including the spectral and angular responsivity of the dosimeters are described and pre-campaign dosimeter calibration applicability is verified. The scale and conduct of dosimeter deployment and campaign in-field measurements including failures and shortcomings affecting overall data collection are presented. Nationwide measurements for more than three hundred and fifty workers from several different professions were collected in the summer of 2016. On average, each worker's exposure was measured for a 2-week period, which included both work and leisure. Data samples of exposure at work during a Midsummer day show differences across professions. A construction worker received high-level occupational UV exposure most of the working day, except during lunch hour, accumulating to 5.1 SED. A postal service worker was exposed intermittently around noon and in the afternoon, preceded by no exposure forenoon when packing mail, accumulating to 1.6 SED. A crane fitter was exposed only during lunch hour, accumulating to 0.7 SED. These findings are in line with our specialist knowledge as occupational physicians. Large-scale use of personal UV-B dosimeters for measurement of solar ultraviolet radiation exposure at work and leisure in Denmark is indeed feasible from a technical and practical viewpoint. Samples of exposure data shown support the presumption that the Danish campaign UV-B dosimeter measurement dataset can be used to sum and compare exposure between groups of professions with reliable results to be used in future analysis with clinical as well as epidemiological/questionnaire data. This was despite some dosimeter failures and shortcomings.

  8. Characterization of coarse particulate matter in school gyms.

    PubMed

    Braniš, Martin; Šafránek, Jiří

    2011-05-01

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM(10-2.5) and PM(2.5-1.0)) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM(10-2.5) 4.1-7.4 μg m(-3) and PM(2.5-1.0) 2.0-3.3 μg m(-3)) than indoors (average PM(10-2.5) 13.6-26.7 μg m(-3) and PM(2.5-1.0) 3.7-7.4 μg m(-3)). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM(10-2.5) and 1.4-4.8 for the PM(2.5-1.0) values. Under extreme conditions, the I/O ratios reached 180 (PM(10-2.5)) and 19.1 (PM(2.5-1.0)). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high concentrations of coarse particulate matter, which can contribute to increased short-term inhalation exposure of exercising children. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Profiling the scent of weathered training aids for blood-detection dogs.

    PubMed

    Chilcote, Baree; Rust, LaTara; Nizio, Katie D; Forbes, Shari L

    2018-03-01

    At outdoor crime scenes, cadaver-detection and blood-detection dogs may be tasked with locating blood that is days, weeks or months old. Although it is known that the odour profile of blood will change during this time, it is currently unknown how the profile changes when exposed to the environment. Such variables must be studied in order to understand when the odour profile is no longer detectable by the scent-detection dogs and other crime scene tools should be implemented. In this study, blood was deposited onto concrete and varnished wood surfaces and weathered in an outdoor environment over a three-month period. Headspace samples were collected using solid phase microextraction (SPME) and analysed using comprehensive two-dimensional gas chromatography - time-of-flight mass spectrometry (GC×GC-TOFMS). The chemical odour profiles were compared with the behavioural responses of cadaver-detection and blood-detection dogs during training. Data interpretation using principal component analysis (PCA) and hierarchical cluster analysis (HCA) established that the blood odour could no longer be detected using SPME-GC×GC-TOFMS after two months of weathering on both surfaces. Conversely, the blood-detection dogs had difficulty locating the blood samples after one month of weathering on concrete and after one week of weathering on varnished wood. The scent-detection dogs evaluated herein had not been previously exposed to environmentally weathered blood samples during training. Given that this study was conducted to test the dogs' baseline abilities, it is expected that with repeated exposure, the dogs' capabilities would likely improve. The knowledge gained from this study can assist in providing law enforcement with more accurate training aids for blood-detection dogs and can improve their efficiency when deployed to outdoor crime scenes. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  10. Deployed Base Solar Power (BRIEFING SLIDES)

    DTIC Science & Technology

    2009-09-01

    various time intervals. Data Acquisitions and Components:  FieldPoint  Current, Voltage, and Power Transducers  POA Pyranometers  Solar...Tracking Pyranometer  Weather Station  kWh Meter Parameters being monitored:  Solar Module Temperatures  Ambient Temperature  Wind Speed  Wind

  11. Apollo 9 Mission image - Lunar Module

    NASA Image and Video Library

    1969-03-07

    AS09-21-3183 (7 March 1969) --- A view of the Apollo 9 Lunar Module (LM) "Spider" in a lunar landing configuration, as photographed from the Command and Service Modules (CSM) on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module (CM), "Gumdrop," while the other two astronauts checked out the LM. Schweickart, lunar module pilot, is photographed from the CM "Gumdrop" during his extravehicular activity (EVA) on the fourth day of the Apollo 9 Earth-orbital mission. The CSM is docked with the LM. Astronaut James A. McDivitt, Apollo 9 commander, was inside the LM "Spider." Astronaut David R. Scott, command module pilot, remained at the controls in the CM.

  12. Apollo 9 Mission image - Lunar Module

    NASA Image and Video Library

    1969-03-07

    AS09-21-3197 (7 March 1969) --- A view of the Apollo 9 Lunar Module (LM) "Spider" in a lunar landing configuration, as photographed from the Command and Service Modules (CSM) on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module (CM), "Gumdrop," while the other two astronauts checked out the LM. Schweickart, lunar module pilot, is photographed from the CM "Gumdrop" during his extravehicular activity (EVA) on the fourth day of the Apollo 9 Earth-orbital mission. The CSM is docked with the LM. Astronaut James A. McDivitt, Apollo 9 commander, was inside the LM "Spider." Astronaut David R. Scott, command module pilot, remained at the controls in the CM.

  13. Active Self-Testing Noise Measurement Sensors for Large-Scale Environmental Sensor Networks

    PubMed Central

    Domínguez, Federico; Cuong, Nguyen The; Reinoso, Felipe; Touhafi, Abdellah; Steenhaut, Kris

    2013-01-01

    Large-scale noise pollution sensor networks consist of hundreds of spatially distributed microphones that measure environmental noise. These networks provide historical and real-time environmental data to citizens and decision makers and are therefore a key technology to steer environmental policy. However, the high cost of certified environmental microphone sensors render large-scale environmental networks prohibitively expensive. Several environmental network projects have started using off-the-shelf low-cost microphone sensors to reduce their costs, but these sensors have higher failure rates and produce lower quality data. To offset this disadvantage, we developed a low-cost noise sensor that actively checks its condition and indirectly the integrity of the data it produces. The main design concept is to embed a 13 mm speaker in the noise sensor casing and, by regularly scheduling a frequency sweep, estimate the evolution of the microphone's frequency response over time. This paper presents our noise sensor's hardware and software design together with the results of a test deployment in a large-scale environmental network in Belgium. Our middle-range-value sensor (around €50) effectively detected all experienced malfunctions, in laboratory tests and outdoor deployments, with a few false positives. Future improvements could further lower the cost of our sensor below €10. PMID:24351634

  14. Rigging Test Bed Development for Validation of Multi-Stage Decelerator Extractions

    NASA Technical Reports Server (NTRS)

    Kenig, Sivan J.; Gallon, John C.; Adams, Douglas S.; Rivellini, Tommaso P.

    2013-01-01

    The Low Density Supersonic Decelerator project is developing new decelerator systems for Mars entry which would include testing with a Supersonic Flight Dynamics Test Vehicle. One of the decelerator systems being developed is a large supersonic ringsail parachute. Due to the configuration of the vehicle it is not possible to deploy the parachute with a mortar which would be the preferred method for a spacecraft in a supersonic flow. Alternatively, a multi-stage extraction process using a ballute as a pilot is being developed for the test vehicle. The Rigging Test Bed is a test venue being constructed to perform verification and validation of this extraction process. The test bed consists of a long pneumatic piston device capable of providing a constant force simulating the ballute drag force during the extraction events. The extraction tests will take place both inside a high-bay for frequent tests of individual extraction stages and outdoors using a mobile hydraulic crane for complete deployment tests from initial pack pull out to canopy extraction. These tests will measure line tensions and use photogrammetry to track motion of the elements involved. The resulting data will be used to verify packing and rigging as well, as validate models and identify potential failure modes in order to finalize the design of the extraction system.

  15. Correlation between surface carbon concentration and adhesive strength at the Si cell/EVA interface in a PV module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhere, N.G.; Wollam, M.E.; Gadre, K.S.

    1997-12-31

    Silicon solar cell/EVA composite is being studied with an objective to further improve the manufacturing technology of PV modules. Sample extraction and adhesion strength measurement process has been modified. Silicon and EVA samples were extracted from solar cells of new and field-deployed modules. Optical microscopy, SEM, and AES of samples from new modules revealed EVA islands covering most of the silicon cell surface indicating a cohesive failure. A good correlation was observed between the adhesive strength and surface concentration of carbon. A low carbon concentration which indicated less EVA clinging to cell surface always resulted in low adhesive strengths. Themore » correlation provides a simple technique for inferring properties of EVA.« less

  16. Come to Marlboro Country.

    ERIC Educational Resources Information Center

    Rowell, Elizabeth H.; Goodkind, Thomas B.

    1984-01-01

    Discusses learning activities involving advertising that uses outdoor images. Classifies such advertisements into six types: those directly about the outdoor/outdoor items, classified ads, advertisements using outdoor scenes to sell non-outdoor products, advertisements using animals as logos/trade names, outdoor advertising, and advocacy…

  17. Reward and attentional control in visual search.

    PubMed

    Yantis, Steven; Anderson, Brian A; Wampler, Emma K; Laurent, Patryk A

    2012-01-01

    It has long been known that the control of attention in visual search depends both on voluntary, top-down deployment according to context-specific goals, and on involuntary, stimulus-driven capture based on the physical conspicuity of perceptual objects. Recent evidence suggests that pairing target stimuli with reward can modulate the voluntary deployment of attention, but there is little evidence that reward modulates the involuntary deployment of attention to task-irrelevant distractors. We report several experiments that investigate the role of reward learning on attentional control. Each experiment involved a training phase and a test phase. In the training phase, different colors were associated with different amounts of monetary reward. In the test phase, color was not task-relevant and participants searched for a shape singleton; in most experiments no reward was delivered in the test phase. We first show that attentional capture by physically salient distractors is magnified by a previous association with reward. In subsequent experiments we demonstrate that physically inconspicuous stimuli previously associated with reward capture attention persistently during extinction--even several days after training. Furthermore, vulnerability to attentional capture by high-value stimuli is negatively correlated across individuals with working memory capacity and positively correlated with trait impulsivity. An analysis of intertrial effects reveals that value-driven attentional capture is spatially specific. Finally, when reward is delivered at test contingent on the task-relevant shape feature, recent reward history modulates value-driven attentional capture by the irrelevant color feature. The influence of learned value on attention may provide a useful model of clinical syndromes characterized by similar failures of cognitive control, including addiction, attention-deficit/hyperactivity disorder, and obesity.

  18. Reward and Attentional Control in Visual Search

    PubMed Central

    Anderson, Brian A.; Wampler, Emma K.; Laurent, Patryk A.

    2015-01-01

    It has long been known that the control of attention in visual search depends both on voluntary, top-down deployment according to context-specific goals, and on involuntary, stimulus-driven capture based on the physical conspicuity of perceptual objects. Recent evidence suggests that pairing target stimuli with reward can modulate the voluntary deployment of attention, but there is little evidence that reward modulates the involuntary deployment of attention to task-irrelevant distractors. We report several experiments that investigate the role of reward learning on attentional control. Each experiment involved a training phase and a test phase. In the training phase, different colors were associated with different amounts of monetary reward. In the test phase, color was not task-relevant and participants searched for a shape singleton; in most experiments no reward was delivered in the test phase. We first show that attentional capture by physically salient distractors is magnified by a previous association with reward. In subsequent experiments we demonstrate that physically inconspicuous stimuli previously associated with reward capture attention persistently during extinction—even several days after training. Furthermore, vulnerability to attentional capture by high-value stimuli is negatively correlated across individuals with working memory capacity and positively correlated with trait impulsivity. An analysis of intertrial effects reveals that value-driven attentional capture is spatially specific. Finally, when reward is delivered at test contingent on the task-relevant shape feature, recent reward history modulates value-driven attentional capture by the irrelevant color feature. The influence of learned value on attention may provide a useful model of clinical syndromes characterized by similar failures of cognitive control, including addiction, attention-deficit/hyperactivity disorder, and obesity. PMID:23437631

  19. Characterization of coarse particulate matter in school gyms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branis, Martin, E-mail: branis@natur.cuni.cz; Safranek, Jiri

    2011-05-15

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM{sub 10-2.5} and PM{sub 2.5-1.0}) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM{sub 10-2.5} 4.1-7.4 {mu}g m{sup -3} andmore » PM{sub 2.5-1.0} 2.0-3.3 {mu}g m{sup -3}) than indoors (average PM{sub 10-2.5} 13.6-26.7 {mu}g m{sup -3} and PM{sub 2.5-1.0} 3.7-7.4 {mu}g m{sup -3}). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM{sub 10-2.5} and 1.4-4.8 for the PM{sub 2.5-1.0} values. Under extreme conditions, the I/O ratios reached 180 (PM{sub 10-2.5}) and 19.1 (PM{sub 2.5-1.0}). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high concentrations of coarse particulate matter, which can contribute to increased short-term inhalation exposure of exercising children. - Highlights: {yields} We studied concentration, composition and morphology of coarse particles in gyms. {yields} Indoor concentration of coarse particles was high during days with pupils activity. {yields} Effect of outdoor coarse dust on indoor levels was weak and inconsistent. {yields} Six main groups of minerals contributing to indoor resuspended dust were determined. {yields} The most abundant coarse particles were human skin scales.« less

  20. Evaluation of advanced air bag deployment algorithm performance using event data recorders.

    PubMed

    Gabler, Hampton C; Hinch, John

    2008-10-01

    This paper characterizes the field performance of occupant restraint systems designed with advanced air bag features including those specified in the US Federal Motor Vehicle Safety Standard (FMVSS) No. 208 for advanced air bags, through the use of Event Data Recorders (EDRs). Although advanced restraint systems have been extensively tested in the laboratory, we are only beginning to understand the performance of these systems in the field. Because EDRs record many of the inputs to the advanced air bag control module, these devices can provide unique insights into the characteristics of field performance of air bags. The study was based on 164 advanced air bag cases extracted from NASS/CDS 2002-2006 with associated EDR data. In this dataset, advanced driver air bags were observed to deploy with a 50% probability at a longitudinal delta-V of 9 mph for the first stage, and at 26 mph for both inflator stages. In general, advanced air bag performance was as expected, however, the study identified cases of air bag deployments at delta-Vs as low as 3-4 mph, non-deployments at delta-Vs over 26 mph, and possible delayed air bag deployments.

  1. Evaluation of Advanced Air Bag Deployment Algorithm Performance using Event Data Recorders

    PubMed Central

    Gabler, Hampton C.; Hinch, John

    2008-01-01

    This paper characterizes the field performance of occupant restraint systems designed with advanced air bag features including those specified in the US Federal Motor Vehicle Safety Standard (FMVSS) No. 208 for advanced air bags, through the use of Event Data Recorders (EDRs). Although advanced restraint systems have been extensively tested in the laboratory, we are only beginning to understand the performance of these systems in the field. Because EDRs record many of the inputs to the advanced air bag control module, these devices can provide unique insights into the characteristics of field performance of air bags. The study was based on 164 advanced air bag cases extracted from NASS/CDS 2002-2006 with associated EDR data. In this dataset, advanced driver air bags were observed to deploy with a 50% probability at a longitudinal delta-V of 9 mph for the first stage, and at 26 mph for both inflator stages. In general, advanced air bag performance was as expected, however, the study identified cases of air bag deployments at delta-Vs as low as 3-4 mph, non-deployments at delta-Vs over 26 mph, and possible delayed air bag deployments. PMID:19026234

  2. The Neural Basis of Selective Attention

    PubMed Central

    Yantis, Steven

    2009-01-01

    Selective attention is an intrinsic component of perceptual representation in a visual system that is hierarchically organized. Modulatory signals originate in brain regions that represent behavioral goals; these signals specify which perceptual objects are to be represented by sensory neurons that are subject to contextual modulation. Attention can be deployed to spatial locations, features, or objects, and corresponding modulatory signals must be targeted within these domains. Open questions include how nonspatial perceptual domains are modulated by attention and how abstract goals are transformed into targeted modulatory signals. PMID:19444327

  3. Location of Microbial Ecology Evaluation Device in Apollo Command Module

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The location of the Microbial Ecology Evaluation Device (MEED) installed on the open hatch of the Apollo Command Module is illustrated in this photograph. The MEED, equipment of the Microbial Response in Space Environment experiment, will house a selection of microbial systems. The MEED will be deployed during the extravehicular activity on the transearth coast phase of the Aopllo 16 lunar landing mission. The purpose of the experiment will be to measure the effects of certain space environmental parameters on the microbial test systems.

  4. KSC-98pc1411

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, an overhead crane moves the Unity connecting module to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  5. Industrial application experiment series

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.

    1980-01-01

    The deployment of parabolic dish systems into the industrial sector for the purpose of providing users, suppliers, sponsors, and developers with a realistic assessment of system feasibility in selected near-term industrial applications will be accomplished initially through the industrial module experiment and later through additional experiments involving thermal, electric, and combined thermal and electrical systems. The approach is to progress through steps, from single module to multi-module systems, from thermal-only applications to more complex combined thermal and electric applications. The experience of other solar thermal experiments, particularly those involving parabolic dish hardware, will be utilized to the fullest extent possible in experiment planning and implementation.

  6. Unity nameplate gets final check before being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    - In the Space Station Processing Facility, workers make a final check of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  7. The Unity connecting module rests inside the payload bay of Endeavour

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Unity connecting module rests inside the payload bay of the orbiter Endeavour at Launch Pad 39A. The first U.S. element of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time. The mission is expected to last nearly 12 days, landing back at the Kennedy Space Center on Dec. 14.

  8. Unity nameplate examined after being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, Joan Higgenbotham, with KSC's Astronaut Office Computer Support, checks placement of the nameplate for the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  9. Saturn Apollo Program

    NASA Image and Video Library

    1965-01-01

    In this photograph, the Pegasus, meteoroid detection satellite is installed in its specially modified Apollo service module atop the S-IV stage (second stage) of a Saturn I vehicle for the SA-9 mission at Cape Kennedy. Personnel in the service structure moved the boilerplate Apollo command module into place to cap the vehicle. The command and service modules, visible here, were jettisoned into orbit to free the Pegasus for wing deployment. The satellite was used to obtain data on frequency and penetration of the potentially hazardous micrometeoroids in low Earth orbits and to relay the information back to Earth. The SA-9 was launched on February 16, 1965.

  10. A Lightweight, Precision-Deployable, Optical Bench for High Energy Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Danner, Rolf; Dailey, D.; Lillie, C.

    2011-09-01

    The small angle of total reflection for X-rays, forcing grazing incidence optics with large collecting areas to long focal lengths, has been a fundamental barrier to the advancement of high-energy astrophysics. Design teams around the world have long recognized that a significant increase in effective area beyond Chandra and XMM-Newton requires either a deployable optical bench or separate X-ray optics and instrument module on formation flying spacecraft. Here, we show that we have in hand the components for a lightweight, precision-deployable optical bench that, through its inherent design features, is the affordable path to the next generation of imaging high-energy astrophysics missions. We present our plans for a full-scale engineering model of a deployable optical bench for Explorer-class missions. We intend to use this test article to raise the technology readiness level (TRL) of the tensegrity truss for a lightweight, precision-deployable optical bench for high-energy astrophysics missions from TRL 3 to TRL 5 through a set of four well-defined technology milestones. The milestones cover the architecture's ability to deploy and control the focal point, characterize the deployed dynamics, determine long-term stability, and verify the stowed load capability. Our plan is based on detailed design and analysis work and the construction of a first prototype by our team. Building on our prior analysis and the high TRL of the architecture components we are ready to move on to the next step. The key elements to do this affordably are two existing, fully characterized, flight-quality, deployable booms. After integrating them into the test article, we will demonstrate that our architecture meets the deployment accuracy, adjustability, and stability requirements. The same test article can be used to further raise the TRL in the future.

  11. Outdoor Leadership Competencies: A Research Study Surveying Outdoor Leaders.

    ERIC Educational Resources Information Center

    Swiderski, Michael J.

    The study identified land-based outdoor leadership competencies deemed necessary by outdoor leaders in the western United States. Using resources such as outdoor leadership literature, competency-based teacher education manuals, consultation with outdoor leadership specialists in educational, private, and governmental agencies, and personal…

  12. Deployment Ready Airway Management System (DRAMS)

    DTIC Science & Technology

    2013-10-24

    have been developed along with rapid prototypes. The results have been excellent and DMLS Alpha one and two prototypes have been developed resulting...Contact Model Quarterly  Report               10/25/2013 DMLS FlexBlade Reusable Module B-1 Prototype

  13. PV Reliability -- Where We've Been and Where We're Going

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah

    2017-04-27

    The photovoltaic (PV) industry has demonstrated impressive progress toward deploying hardware with excellent quality. As module prices drop and designs are squeezed to reduce cost of materials and processing, how will this affect the failures that are seen in the field?

  14. NASA CPAS Drogue Textile Riser Feasibility Study

    NASA Technical Reports Server (NTRS)

    Hennings, Elsa J.; Petersen, Michael L.; Anderson, Brian; Johnson, Brian

    2015-01-01

    Steel cable was chosen for the lower end of the drogue and main parachute risers on NASA's Orion Multi Purpose Crew Vehicle Parachute Assembly System (CPAS) to protect the risers from extreme temperatures and abrasion should they contact the crew module during deployment, as was done for Apollo. Due to the weight and deployment complexity inherent in steel, there was significant interest in the possibility of substituting textile for steel for the drogue and main parachute risers. However, textile risers could be damaged when subjected to high temperature and abrasion. Investigations were consequently performed by a subset of the authors to determine whether sacrificial, non-load-bearing textile riser covers could be developed to mitigate the thermal and abrasion concerns. Multiple material combinations were tested, resulting in a cover design capable of protecting the riser against severe riser/crew module contact interactions. A feasibility study was then conducted to evaluate the performance of the textile drogue riser cover in relevant abrasive environments. This paper describes the testing performed and documents the results of this feasibility study.

  15. Pegasus XL CYGNSS Microsats Installation on Deployment Module

    NASA Image and Video Library

    2016-10-11

    Inside Building 1555 at Vandenberg Air Force Base in California, NASA’s Cyclone Global Navigation Satellite System (CYGNSS) deployment module is inspected prior to installation of eight spacecraft that will be part of the program’s constellation of spacecraft. Processing activities will prepare the spacecraft for launch aboard an Orbital ATK Pegasus XL rocket. When preparations are competed at Vandenberg, the rocket will be transported to NASA’s Kennedy Space Center in Florida attached to the Orbital ATK L-1011 carrier aircraft with in its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  16. Wi-Fi/MARG Integration for Indoor Pedestrian Localization.

    PubMed

    Tian, Zengshan; Jin, Yue; Zhou, Mu; Wu, Zipeng; Li, Ze

    2016-12-10

    With the wide deployment of Wi-Fi networks, Wi-Fi based indoor localization systems that are deployed without any special hardware have caught significant attention and have become a currently practical technology. At the same time, the Magnetic, Angular Rate, and Gravity (MARG) sensors installed in commercial mobile devices can achieve highly-accurate localization in short time. Based on this, we design a novel indoor localization system by using built-in MARG sensors and a Wi-Fi module. The innovative contributions of this paper include the enhanced Pedestrian Dead Reckoning (PDR) and Wi-Fi localization approaches, and an Extended Kalman Particle Filter (EKPF) based fusion algorithm. A new Wi-Fi/MARG indoor localization system, including an Android based mobile client, a Web page for remote control, and a location server, is developed for real-time indoor pedestrian localization. The extensive experimental results show that the proposed system is featured with better localization performance, with the average error 0.85 m, than the one achieved by using the Wi-Fi module or MARG sensors solely.

  17. Challenges and issues of geolocation in clinical environment.

    PubMed

    Issom, David-Zacharie; Hagry, Claire; Wodia Mendo, Laetitia; Seng, Henry; Ehrler, Frederic; Lovis, Christian

    2012-01-01

    Reaching a good indoor geolocation without deploying extensive and expensive infrastructure is a challenge, because satellite positioning system is not available indoors. Geolocation could be of major use in healthcare facilities; to help care providers, visitors and patients to navigate, to improve movements and flows efficiency or to implement location-awareness systems. A system able to provide the location of a person in a hospital requires precision, multi-floors and obstacles management and should also perform in basements and outdoors. Such system needs also to be insensitive to environmental variations occurring in a hospital. These changes may be various kinds of obstacles. These can be the displacement of metallic objects, metallic machines, strong magnetic fields or simply human displacement. A system conforming to the above requirements can also answer various security questions, operational workflow management but also assist movement of people.

  18. Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas

    PubMed Central

    Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M.; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T.J.

    2010-01-01

    In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted. PMID:22294927

  19. Engaging the Global South on climate engineering research

    NASA Astrophysics Data System (ADS)

    Winickoff, David E.; Flegal, Jane A.; Asrat, Asfawossen

    2015-07-01

    The Global South is relatively under-represented in public deliberations about solar radiation management (SRM), a controversial climate engineering concept. This Perspective analyses the outputs of a deliberative exercise about SRM, which took place at the University of California-Berkeley and involved 45 mid-career environmental leaders, 39 of whom were from the Global South. This analysis identifies and discusses four themes from the Berkeley workshop that might inform research and governance in this arena: (1) the 'moral hazard' problem should be reframed to emphasize 'moral responsibility'; (2) climate models of SRM deployment may not be credible as primary inputs to policy because they cannot sufficiently address local concerns such as access to water; (3) small outdoor experiments require some form of international public accountability; and (4) inclusion of actors from the Global South will strengthen both SRM research and governance.

  20. Definitions of Outdoor Recreation and Other Associated Terminology.

    ERIC Educational Resources Information Center

    Phipps, Maurice L.

    This document defines terms related to outdoor recreation: (1) outdoor recreation includes activities that occur outdoors in an urban and man-made environment as well as those activities traditionally associated with the natural environment; (2) outdoor education is education in, about, and for the outdoors; (3) environmental education is an…

  1. An Autonomous Gps-Denied Unmanned Vehicle Platform Based on Binocular Vision for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Qin, M.; Wan, X.; Shao, Y. Y.; Li, S. Y.

    2018-04-01

    Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.

  2. Polycyclic aromatic hydrocarbons and their derivatives in indoor and outdoor air in an eight-home study

    NASA Astrophysics Data System (ADS)

    Chuang, Jane C.; Mack, Gregory A.; Kuhlman, Michael R.; Wilson, Nancy K.

    A pilot field study was performed in Columbus, OH, during the winter of 1986/1987. The objectives were to determine the feasibility of the use of a newly developed quiet sampler in indoor air sampling for particles and semivolatile organic compounds (SVOC) and to measure the concentrations of polycyclic aromatic hydrocarbons (PAH), PAH derivatives, and nicotine in air in selected residences. Eight homes were chosen for sampling on the basis of these characteristics: electric/gas heating system, electric/gas cooking appliances, and the absence/presence of environmental tobacco smoke (ETS). The indoor sampler was equipped with a quartz-fiber filter to collect particles followed by XAD-4 resin to trap SVOC. A PS-1 sampler with a similar sampling module was used outdoors. The indoor air was sampled in the kitchen and living room areas over two consecutive 8-h periods. The outdoor air was sampled concurrently with the indoor samples over a 16-h period. Fifteen PAH, five nitro-PAH, five oxygenated PAH, and three nitrogen heterocyclic compounds were determined in these samples. The most abundant PAH found indoors was naphthalene. The indoor concentrations of PAH derivatives were lower than those of their parent compounds. Average concentrations of all but three target compounds (naphthalene dicarboxylic acid anhydride, pyrene dicarboxylic acid anhydride, and 2-nitrofluoranthene) were higher indoors than outdoors. Environmental tobacco smoke was the most significant influence on indoor pollutant levels. Homes with gas heating systems had higher indoor pollutant levels than homes with electric heating systems. However, the true effects of heating and cooking systems were not characterized as accurately as the effects of ETS because of the small sample sizes and the lack of statistical significance for most pollutant differences in the absence of ETS. The concentrations of PAH marker compounds (phenanthrene, fluoranthene, and pyrene) correlated well with the concentrations of other target compounds. Quinoline and isoquinoline can be used to indicate indoor levels of ETS.

  3. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules.

    PubMed

    Hu, Linhua; Dai, Songyuan; Weng, Jian; Xiao, Shangfeng; Sui, Yifeng; Huang, Yang; Chen, Shuanghong; Kong, Fantai; Pan, Xu; Liang, Linyun; Wang, Kongjia

    2007-01-18

    The optimization of dye-sensitized solar cells, especially the design of nanoporous TiO2 film microstructure, is an urgent problem for high efficiency and future commercial applications. However, up to now, little attention has been focused on the design of nanoporous TiO2 microstructure for a high efficiency of dye-sensitized solar cell modules. The optimization and design of TiO2 photoelectrode microstructure are discussed in this paper. TiO2 photoelectrodes with three different layers, including layers of small pore size films, larger pore size films, and light-scattering particles on the conducting glass with the desirable thickness, were designed and investigated. Moreover, the photovoltaic properties showed that the different porosities, pore size distribution, and BET surface area of each layer have a dramatic influence on short-circuit current, open-circuit voltage, and fill factor of the modules. The optimization and design of TiO2 photoelectrode microstructure contribute a high efficiency of DSC modules. The photoelectric conversion efficiency around 6% with 15 x 20 cm2 modules under illumination of simulated AM1.5 sunlight (100 mW/cm2) and 40 x 60 cm2 panels with the same performance tested outdoor have been achieved by our group.

  4. The Contribution of Outdoor Recreation and Outdoor Education to the Economy of Scotland: Case Studies and Preliminary Findings.

    ERIC Educational Resources Information Center

    Higgins, Peter

    2000-01-01

    Outdoor recreation and education contribute substantially to the Scottish economy. Outdoor recreation generates considerable tourism income, much of it in rural areas, and also extends the traditional tourist season. Outdoor education centers are significant employers in certain rural areas. In addition, "therapeutic" outdoor programs…

  5. Monitoring Spacecraft Telemetry Via Optical or RF Link

    NASA Technical Reports Server (NTRS)

    Fielhauer, K. B.; Boone, B. G.

    2011-01-01

    A patent disclosure document discusses a photonic method for connecting a spacecraft with a launch vehicle upper-stage telemetry system as a means for monitoring a spacecraft fs health and status during and right after separation and deployment. This method also provides an efficient opto-coupled capability for prelaunch built-in-test (BIT) on the ground to enable more efficient and timely integration, preflight checkout, and a means to obviate any local EMI (electromagnetic interference) during integration and test. Additional utility can be envisioned for BIT on other platforms, such as the International Space Station (ISS). The photonic telemetry system implements an optical free-space link with a divergent laser transmitter beam spoiled over a significant cone angle to accommodate changes in spacecraft position without having to angle track it during deployment. Since the spacecraft may lose attitude control and tumble during deployment, the transmitted laser beam interrogates any one of several low-profile meso-scale retro-reflective spatial light modulators (SLMs) deployed over the surface of the spacecraft. The return signal beam, modulated by the SLMs, contains health, status, and attitude information received back at the launch vehicle. Very compact low-power opto-coupler technology already exists for the received signal (requiring relatively low bandwidths, e.g., .200 kbps) to enable transfer to a forward pass RF relay from the launch vehicle to TDRSS (Tracking and Data Relay Satellite System) or another recipient. The link would be active during separation and post-separation to monitor spacecraft health, status, attitude, or other data inventories until attitude recovery and ground control can be re-established. An optical link would not interfere with the existing upper stage telemetry and beacon systems, thus meeting launch vehicle EMI environmental constraints.

  6. Eye Injuries from Air Bags with Seamless Module Covers

    PubMed Central

    Duma, Stefan M.; Crandall, Jeff R.

    1999-01-01

    Air bag deployment through a seamless module cover may release foam particles at high velocities that could result in eye injuries. This paper presents the results of twenty-one (n = 21) tests in which foam particles, similar to those observed from air bag deployments, were impacted onto porcine eyes. A pneumatic cannon was designed to propel the foam disks at speeds representative of actual foam particle velocities as observed in prototype air bag deployments. Five foam types, which varied in density and stiffness, were used. All tests were recorded with high speed video (1000 fps). The mass of the impacting particles varied from 0.155 g to 0.653 g with velocities from 18 m/s to 87.6 m/s. Injury analysis was performed using three techniques: fluorescein dye to reveal corneal abrasions, ophthalmic ultrasound to determine lens displacements and retinal detachments, and necropsy to examine tissue damage. As seen in case reports of air bag induced eye injuries, corneal abrasions were the most recorded injuries in the porcine eye impact tests. A logistic regression analysis demonstrated that the combination of mass and velocity in the form of kinetic energy was the most significant contributor to injury (p = 0.0023). An injury risk curve was generated based on kinetic energy which gave a 50% risk of corneal abrasion at 0.183 J. Over the range of materials used, the foam type was a poor contributor to the model (p = 0.45). The injury risk function presented for the kinetic energy of the particles offers a design guide to minimize corneal abrasions, if the production of foam particles during air bag deployment is unavoidable.

  7. ImageJS: Personalized, participated, pervasive, and reproducible image bioinformatics in the web browser

    PubMed Central

    Almeida, Jonas S.; Iriabho, Egiebade E.; Gorrepati, Vijaya L.; Wilkinson, Sean R.; Grüneberg, Alexander; Robbins, David E.; Hackney, James R.

    2012-01-01

    Background: Image bioinformatics infrastructure typically relies on a combination of server-side high-performance computing and client desktop applications tailored for graphic rendering. On the server side, matrix manipulation environments are often used as the back-end where deployment of specialized analytical workflows takes place. However, neither the server-side nor the client-side desktop solution, by themselves or combined, is conducive to the emergence of open, collaborative, computational ecosystems for image analysis that are both self-sustained and user driven. Materials and Methods: ImageJS was developed as a browser-based webApp, untethered from a server-side backend, by making use of recent advances in the modern web browser such as a very efficient compiler, high-end graphical rendering capabilities, and I/O tailored for code migration. Results: Multiple versioned code hosting services were used to develop distinct ImageJS modules to illustrate its amenability to collaborative deployment without compromise of reproducibility or provenance. The illustrative examples include modules for image segmentation, feature extraction, and filtering. The deployment of image analysis by code migration is in sharp contrast with the more conventional, heavier, and less safe reliance on data transfer. Accordingly, code and data are loaded into the browser by exactly the same script tag loading mechanism, which offers a number of interesting applications that would be hard to attain with more conventional platforms, such as NIH's popular ImageJ application. Conclusions: The modern web browser was found to be advantageous for image bioinformatics in both the research and clinical environments. This conclusion reflects advantages in deployment scalability and analysis reproducibility, as well as the critical ability to deliver advanced computational statistical procedures machines where access to sensitive data is controlled, that is, without local “download and installation”. PMID:22934238

  8. ImageJS: Personalized, participated, pervasive, and reproducible image bioinformatics in the web browser.

    PubMed

    Almeida, Jonas S; Iriabho, Egiebade E; Gorrepati, Vijaya L; Wilkinson, Sean R; Grüneberg, Alexander; Robbins, David E; Hackney, James R

    2012-01-01

    Image bioinformatics infrastructure typically relies on a combination of server-side high-performance computing and client desktop applications tailored for graphic rendering. On the server side, matrix manipulation environments are often used as the back-end where deployment of specialized analytical workflows takes place. However, neither the server-side nor the client-side desktop solution, by themselves or combined, is conducive to the emergence of open, collaborative, computational ecosystems for image analysis that are both self-sustained and user driven. ImageJS was developed as a browser-based webApp, untethered from a server-side backend, by making use of recent advances in the modern web browser such as a very efficient compiler, high-end graphical rendering capabilities, and I/O tailored for code migration. Multiple versioned code hosting services were used to develop distinct ImageJS modules to illustrate its amenability to collaborative deployment without compromise of reproducibility or provenance. The illustrative examples include modules for image segmentation, feature extraction, and filtering. The deployment of image analysis by code migration is in sharp contrast with the more conventional, heavier, and less safe reliance on data transfer. Accordingly, code and data are loaded into the browser by exactly the same script tag loading mechanism, which offers a number of interesting applications that would be hard to attain with more conventional platforms, such as NIH's popular ImageJ application. The modern web browser was found to be advantageous for image bioinformatics in both the research and clinical environments. This conclusion reflects advantages in deployment scalability and analysis reproducibility, as well as the critical ability to deliver advanced computational statistical procedures machines where access to sensitive data is controlled, that is, without local "download and installation".

  9. Managing Risk for Thermal Vacuum Testing of the International Space Station Radiators

    NASA Technical Reports Server (NTRS)

    Carek, Jerry A.; Beach, Duane E.; Remp, Kerry L.

    2000-01-01

    The International Space Station (ISS) is designed with large deployable radiator panels that are used to reject waste heat from the habitation modules. Qualification testing of the Heat Rejection System (HRS) radiators was performed using qualification hardware only. As a result of those tests, over 30 design changes were made to the actual flight hardware. Consequently, a system level test of the flight hardware was needed to validate its performance in the final configuration. A full thermal vacuum test was performed on the flight hardware in order to demonstrate its ability to deploy on-orbit. Since there is an increased level of risk associated with testing flight hardware, because of cost and schedule limitations, special risk mitigation procedures were developed and implemented for the test program, This paper introduces the Continuous Risk Management process that was utilized for the ISS HRS test program. Testing was performed in the Space Power Facility at the NASA Glenn Research Center, Plum Brook Station located in Sandusky, Ohio. The radiator system was installed in the 100-foot diameter by 122-foot tall vacuum chamber on a special deployment track. Radiator deployments were performed at several thermal conditions similar to those expected on-orbit using both the primary deployment mechanism and the back-up deployment mechanism. The tests were highly successful and were completed without incident.

  10. Photovoltaic Manufacturing Consortium (PVMC) – Enabling America’s Solar Revolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metacarpa, David

    The U.S. Photovoltaic Manufacturing Consortium (US-PVMC) is an industry-led consortium which was created with the mission to accelerate the research, development, manufacturing, field testing, commercialization, and deployment of next-generation solar photovoltaic technologies. Formed as part of the U.S. Department of Energy's (DOE) SunShot initiative, and headquartered in New York State, PVMC is managed by the State University of New York Polytechnic Institute (SUNY Poly) at the Colleges of Nanoscale Science and Engineering. PVMC is a hybrid of industry-led consortium and manufacturing development facility, with capabilities for collaborative and proprietary industry engagement. Through its technology development programs, advanced manufacturing development facilities,more » system demonstrations, and reliability and testing capabilities, PVMC has demonstrated itself to be a recognized proving ground for innovative solar technologies and system designs. PVMC comprises multiple locations, with the core manufacturing and deployment support activities conducted at the Solar Energy Development Center (SEDC), and the core Si wafering and metrology technologies being headed out of the University of Central Florida. The SEDC provides a pilot line for proof-of-concept prototyping, offering critical opportunities to demonstrate emerging concepts in PV manufacturing, such as evaluations of innovative materials, system components, and PV system designs. The facility, located in Halfmoon NY, encompasses 40,000 square feet of dedicated PV development space. The infrastructure and capabilities housed at PVMC includes PV system level testing at the Prototype Demonstration Facility (PDF), manufacturing scale cell & module fabrication at the Manufacturing Development Facility (MDF), cell and module testing, reliability equipment on its PV pilot line, all integrated with a PV performance database and analytical characterizations for PVMC and its partners test and commercial arrays. Additional development and deployment support are also housed at the SEDC, such as cost modeling and cost model based development activities for PV and thin film modules, components, and system level designs for reduced LCOE through lower installation hardware costs, labor reductions, soft costs and reduced operations and maintenance costs. The progression of the consortium activities started with infrastructure and capabilities build out focused on CIGS thin film photovoltaics, with a particular focus on flexible cell and module production. As marketplace changes and partners objectives shifted, the consortium shifted heavily towards deployment and market pull activities including Balance of System, cost modeling, and installation cost reduction efforts along with impacts to performance and DER operational costs. The consortium consisted of a wide array of PV supply chain companies from equipment and component suppliers through national developers and installers with a particular focus on commercial scale deployments (typically 25 to 2MW installations). With DOE funding ending after the fifth budget period, the advantages and disadvantages of such a consortium is detailed along with potential avenues for self-sustainability is reviewed.« less

  11. Fermilab Outdoor Family Fair

    Science.gov Websites

    Search Fermilab Outdoor Family Fair Join us for an afternoon of outdoor fun. Families explore the outdoor 60510-0500 (630) 840-5588, edreg@fnal.gov The Outdoor Family Fair is co-supported by Fermilab Friends

  12. SEDS1 mission software verification using a signal simulator

    NASA Technical Reports Server (NTRS)

    Pierson, William E.

    1992-01-01

    The first flight of the Small Expendable Deployer System (SEDS1) is schedule to fly as the secondary payload of a Delta 2 in March, 1993. The objective of the SEDS1 mission is to collect data to validate the concept of tethered satellite systems and to verify computer simulations used to predict their behavior. SEDS1 will deploy a 50 lb. instrumented satellite as an end mass using a 20 km tether. Langley Research Center is providing the end mass instrumentation, while the Marshall Space Flight Center is designing and building the deployer. The objective of the experiment is to test the SEDS design concept by demonstrating that the system will satisfactorily deploy the full 20 km tether without stopping prematurely, come to a smooth stop on the application of a brake, and cut the tether at the proper time after it swings to the local vertical. Also, SEDS1 will collect data which will be used to test the accuracy of tether dynamics models used to stimulate this type of deployment. The experiment will last about 1.5 hours and complete approximately 1.5 orbits. Radar tracking of the Delta II and end mass is planned. In addition, the SEDS1 on-board computer will continuously record, store, and transmit mission data over the Delta II S-band telemetry system. The Data System will count tether windings as the tether unwinds, log the times of each turn and other mission events, monitor tether tension, and record the temperature of system components. A summary of the measurements taken during the SEDS1 are shown. The Data System will also control the tether brake and cutter mechanisms. Preliminary versions of two major sections of the flight software, the data telemetry modules and the data collection modules, were developed and tested under the 1990 NASA/ASEE Summer Faculty Fellowship Program. To facilitate the debugging of these software modules, a prototype SEDS Data System was programmed to simulate turn count signals. During the 1991 summer program, the concept of simulating signals produced by the SEDS electronics systems and circuits was expanded and more precisely defined. During the 1992 summer program, the SEDS signal simulator was programmed to test the requirements of the SEDS Mission software, and this simulator will be used in the formal verification of the SEDS Mission Software. The formal test procedures specification was written which incorporates the use of the signal simulator to test the SEDS Mission Software and which incorporates procedures for testing the other major component of the SEDS software, the Monitor Software.

  13. The relationship between indoor and outdoor temperature, apparent temperature, relative humidity, and absolute humidity

    PubMed Central

    Nguyen, Jennifer L.; Schwartz, Joel; Dockery, Douglas W.

    2013-01-01

    Introduction Many studies report an association between outdoor ambient weather and health. Outdoor conditions may be a poor indicator of personal exposure because people spend most of their time indoors. Few studies have examined how indoor conditions relate to outdoor ambient weather. Methods and Results The average indoor temperature, apparent temperature, relative humidity (RH), and absolute humidity (AH) measured in 16 homes in Greater Boston, Massachusetts, from May 2011 - April 2012 was compared to measurements taken at Boston Logan airport. The relationship between indoor and outdoor temperatures is non-linear. At warmer outdoor temperatures, there is a strong correlation between indoor and outdoor temperature (Pearson correlation coefficient, r = 0.91, slope, β = 0.41), but at cooler temperatures, the association is weak (r = 0.40, β = 0.04). Results were similar for outdoor apparent temperature. The relationships were linear for RH and AH. The correlation for RH was modest (r = 0.55, β = 0.39). AH exhibited the strongest indoor-to-outdoor correlation (r = 0.96, β = 0.69). Conclusions Indoor and outdoor temperatures correlate well only at warmer outdoor temperatures. Outdoor RH is a poor indicator of indoor RH, while indoor AH has a strong correlation with outdoor AH year-round. PMID:23710826

  14. Occupational Lung Diseases among Soldiers Deployed to Iraq and Afghanistan

    PubMed Central

    Szema, Anthony M

    2013-01-01

    Military personnel deployed to Iraq and Afghanistan, from 2004 to the present, has served in a setting of unique environmental conditions. Among these are exposures to burning trash in open air “burn pits” lit on fire with jet fuel JP-8. Depending on trash burned--water bottles, styrofoam trays, medical waste, unexploded munitions, and computers--toxins may be released such as dioxins and n-hexane and benzene. Particulate matter air pollution culminates from these fires and fumes. Additional environmental exposures entail sandstorms (Haboob, Shamal, and Sharqi) which differ in direction and relationship to rain. These wars saw the first use of improvised explosive devices (roadside phosphate bombs),as well as vehicle improvised explosive devices (car bombs), which not only potentially aerosolize metals, but also create shock waves to induce lung injury via blast overpressure. Conventional mortar rounds are also used by Al Qaeda in both Iraq and Afghanistan. Outdoor aeroallergens from date palm trees are prevalent in southern Iraq by the Tigris and Euphrates rivers, while indoor aeroallergen aspergillus predominates during the rainy season. High altitude lung disease may also compound the problem, particularly in Kandahar, Afghanistan. Clinically, soldiers may present with new-onset asthma or fixed airway obstruction. Some have constrictive bronchiolitis and vascular remodeling on open lung biopsy - despite having normal spirometry and chest xrays and CT scans of the chest. Others have been found to have titanium and other metals in the lung (rare in nature). Still others have fulminant biopsy-proven sarcoidiosis. We found DNA probe–positive Mycobacterium Avium Complex in lung from a soldier who had pneumonia, while serving near stagnant water and camels and goats outside Abu Gharib. This review highlights potential exposures, clinical syndromes, and the Denver Working Group recommendations on post-deployment health. PMID:24443711

  15. Lowering the Barrier for Standards-Compliant and Discoverable Hydrological Data Publication

    NASA Astrophysics Data System (ADS)

    Kadlec, J.

    2013-12-01

    The growing need for sharing and integration of hydrological and climate data across multiple organizations has resulted in the development of distributed, services-based, standards-compliant hydrological data management and data hosting systems. The problem with these systems is complicated set-up and deployment. Many existing systems assume that the data publisher has remote-desktop access to a locally managed server and experience with computer network setup. For corporate websites, shared web hosting services with limited root access provide an inexpensive, dynamic web presence solution using the Linux, Apache, MySQL and PHP (LAMP) software stack. In this paper, we hypothesize that a webhosting service provides an optimal, low-cost solution for hydrological data hosting. We propose a software architecture of a standards-compliant, lightweight and easy-to-deploy hydrological data management system that can be deployed on the majority of existing shared internet webhosting services. The architecture and design is validated by developing Hydroserver Lite: a PHP and MySQL-based hydrological data hosting package that is fully standards-compliant and compatible with the Consortium of Universities for Advancement of Hydrologic Sciences (CUAHSI) hydrologic information system. It is already being used for management of field data collection by students of the McCall Outdoor Science School in Idaho. For testing, the Hydroserver Lite software has been installed on multiple different free and low-cost webhosting sites including Godaddy, Bluehost and 000webhost. The number of steps required to set-up the server is compared with the number of steps required to set-up other standards-compliant hydrologic data hosting systems including THREDDS, IstSOS and MapServer SOS.

  16. Implementing technology-based embedded assessment in the home and community life of individuals aging with disabilities: a participatory research and development study.

    PubMed

    Chen, Ke-Yu; Harniss, Mark; Patel, Shwetak; Johnson, Kurt

    2014-03-01

    The goal of the study was to investigate the accuracy, feasibility and acceptability of implementing an embedded assessment system in the homes of individuals aging with disabilities. We developed and studied a location tracking system, UbiTrack, which can be used for both indoor and outdoor location sensing. The system was deployed in the homes of five participants with spinal cord injuries, muscular dystrophy, multiple sclerosis and late effects of polio. We collected sensor data throughout the deployment, conducted pre and post interviews and collected weekly diaries to measure ground truth. The system was deployed successfully although there were challenges related to system installation and calibration. System accuracy ranged from 62% to 87% depending upon room configuration and number of wireless access points installed. In general, participants reported that the system was easy to use, did not require significant effort on their part and did not interfere with their daily lives. Embedded assessment has great potential as a mechanism to gather ongoing information about the health of individuals aging with disabilities; however, there are significant challenges to its implementation in real-world settings with people with disabilities that will need to be resolved before it can be practically implemented. Technology-based embedded assessment has the potential to promote health for adults with disabilities and allow for aging in place. It may also reduce the difficulty, cost and intrusiveness of health measurement. Many new commercial and non-commercial products are available to support embedded assessment; however, most products have not been well-tested in real-world environments with individuals aging with disability. Community settings and diverse population of people with disabilities pose significant challenges to the implementation of embedded assessment systems.

  17. Occupational Lung Diseases among Soldiers Deployed to Iraq and Afghanistan.

    PubMed

    Szema, Anthony M

    2013-01-01

    Military personnel deployed to Iraq and Afghanistan, from 2004 to the present, has served in a setting of unique environmental conditions. Among these are exposures to burning trash in open air "burn pits" lit on fire with jet fuel JP-8. Depending on trash burned--water bottles, styrofoam trays, medical waste, unexploded munitions, and computers--toxins may be released such as dioxins and n-hexane and benzene. Particulate matter air pollution culminates from these fires and fumes. Additional environmental exposures entail sandstorms (Haboob, Shamal, and Sharqi) which differ in direction and relationship to rain. These wars saw the first use of improvised explosive devices (roadside phosphate bombs),as well as vehicle improvised explosive devices (car bombs), which not only potentially aerosolize metals, but also create shock waves to induce lung injury via blast overpressure. Conventional mortar rounds are also used by Al Qaeda in both Iraq and Afghanistan. Outdoor aeroallergens from date palm trees are prevalent in southern Iraq by the Tigris and Euphrates rivers, while indoor aeroallergen aspergillus predominates during the rainy season. High altitude lung disease may also compound the problem, particularly in Kandahar, Afghanistan. Clinically, soldiers may present with new-onset asthma or fixed airway obstruction. Some have constrictive bronchiolitis and vascular remodeling on open lung biopsy - despite having normal spirometry and chest xrays and CT scans of the chest. Others have been found to have titanium and other metals in the lung (rare in nature). Still others have fulminant biopsy-proven sarcoidiosis. We found DNA probe-positive Mycobacterium Avium Complex in lung from a soldier who had pneumonia, while serving near stagnant water and camels and goats outside Abu Gharib. This review highlights potential exposures, clinical syndromes, and the Denver Working Group recommendations on post-deployment health.

  18. Power module assembly

    DOEpatents

    Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  19. Lightweight Deployable Mirrors with Tensegrity Supports

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W.; Bradford, Larry J.; Cleve, Richard C.

    2004-01-01

    The upper part of Figure 1 shows a small-scale prototype of a developmental class of lightweight, deployable structures that would support panels in precise alignments. In this case, the panel is hexagonal and supports disks that represent segments of a primary mirror of a large telescope. The lower part of Figure 1 shows a complete conceptual structure containing multiple hexagonal panels that hold mirror segments. The structures of this class are of the tensegrity type, which was invented five decades ago by artist Kenneth Snelson. A tensegrity structure consists of momentfree compression members (struts) and tension members (cables). The structures of this particular developmental class are intended primarily as means to erect large segmented primary mirrors of astronomical telescopes or large radio antennas in outer space. Other classes of tensegrity structures could also be designed for terrestrial use as towers, masts, and supports for general structural panels. An important product of the present development effort is the engineering practice of building a lightweight, deployable structure as an assembly of tensegrity modules like the one shown in Figure 2. This module comprises two octahedral tensegrity subunits that are mirror images of each other joined at their plane of mirror symmetry. In this case, the plane of mirror symmetry is both the upper plane of the lower subunit and the lower plane of the upper subunit, and is delineated by the midheight triangle in Figure 2. In the configuration assumed by the module to balance static forces under mild loading, the upper and lower planes of each sub-unit are rotated about 30 , relative to each other, about the long (vertical) axis of the structure. Larger structures can be assembled by joining multiple modules like this one at their sides or ends. When the module is compressed axially (vertically), the first-order effect is an increase in the rotation angle, but by virtue of the mirror arrangement, the net first-order rotation between the uppermost and lowermost planes is zero. The need to have zero net rotation between these planes under all loading conditions in a typical practical structure is what prompts the use of the mirror configuration. Force and moment loadings other than simple axial compression produce only second-order deformations through strains in the struts and cables.

  20. "Is What You See What You Get?" The Production of Knowledge in-between the Indoors and the Outdoors in Outdoor Education

    ERIC Educational Resources Information Center

    Zink, Robyn; Burrows, Lisette

    2008-01-01

    Background: Many believe the "outdoors" is a key factor influencing student learning in "outdoor education" because it is so different from the "everyday" indoor contexts of students' lives. In much of the outdoor education literature the outdoors is construed as a neutral and simplified space which allows students to…

  1. The Outdoor Classroom: School Camping as Education in NSW 1890-1960s

    ERIC Educational Resources Information Center

    Georgakis, Steve; Light, Richard

    2010-01-01

    At all levels of education in New South Wales outdoor experiences and outdoor education are a prominent part of the curriculum. This emphasis on the outdoors begins early. Outdoor activities are an important part of most primary schools whether they are public or private. Likewise at secondary level and at university outdoor education is still an…

  2. Learning in Eden: The Philosophy of Outdoor Education of the SCOPE Outdoor Learning Laboratories Program.

    ERIC Educational Resources Information Center

    O'Grady, Jerome

    Designed as a guide in inservice preparation and as a reference in planning and conducting outdoor lessons, this statement of philosophy will help teachers who participate in the Outdoor Learning Laboratories program understand the aims and methods of outdoor education. To educate children is, of course, the ultimate purpose of outdoor education.…

  3. Inhibition of return in the covert deployment of attention: evidence from human electrophysiology.

    PubMed

    McDonald, John J; Hickey, Clayton; Green, Jessica J; Whitman, Jennifer C

    2009-04-01

    People are slow to react to objects that appear at recently attended locations. This delay-known as inhibition of return (IOR)-is believed to aid search of the visual environment by discouraging inspection of recently inspected objects. However, after two decades of research, there is no evidence that IOR reflects an inhibition in the covert deployment of attention. Here, observers participated in a modified visual-search task that enabled us to measure IOR and an ERP component called the posterior contralateral N2 (N2pc) that reflects the covert deployment of attention. The N2pc was smaller when a target appeared at a recently attended location than when it appeared at a recently unattended location. This reduction was due to modulation of neural processing in the visual cortex and the right parietal lobe. Importantly, there was no evidence for a delay in the N2pc. We conclude that in our task, the inhibitory processes underlying IOR reduce the probability of shifting attention to recently attended locations but do not delay the covert deployment of attention itself.

  4. Case Study for the ARRA-funded Ground Source Heat Pump (GSHP) Demonstration at Wilders Grove Solid Waste Service Center in Raleigh, NC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaobing; Malhotra, Mini; Xiong, Zeyu

    High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects, a distributed GSHP system for providing all the space conditioning, outdoor air ventilation, and 100% domestic hot water tomore » the Wilders Grove Solid Waste Service Center of City of Raleigh, North Carolina. This case study is based on the analysis of measured performance data, construction costs, and simulations of the energy consumption of conventional central heating, ventilation, and air-conditioning (HVAC) systems providing the same level of space conditioning and outdoor air ventilation as the demonstrated GSHP system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the GSHP system compared with conventional HVAC systems. This case study also identified opportunities for reducing uncertainties in the performance evaluation and improving the operational efficiency of the demonstrated GSHP system.« less

  5. Deployable reflector configurations

    NASA Astrophysics Data System (ADS)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  6. Deployable reflector configurations. [for space telescope

    NASA Technical Reports Server (NTRS)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    1983-01-01

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  7. Development of the Orion Crew-Service Module Umbilical Retention and Release Mechanism

    NASA Technical Reports Server (NTRS)

    Delap, Damon; Glidden, Joel; Lamoreaux, Christopher

    2013-01-01

    The Orion Crew-Service Module umbilical retention and release mechanism supports, protects and disconnects all of the cross-module commodities between the spacecraft's crew and service modules. These commodities include explosive transfer lines, wiring for power and data, and flexible hoses for ground purge and life support systems. Initial development testing of the mechanism's separation interface resulted in binding failures due to connector misalignments. The separation interface was redesigned with a robust linear guide system, and the connector separation and boom deployment were separated into two discretely sequenced events. Subsequent analysis and testing verified that the design changes corrected the binding. This umbilical separation design will be used on Exploration Flight Test 1 (EFT-1) as well as all future Orion flights. The design is highly modular and can easily be adapted to other vehicles/modules and alternate commodity sets.

  8. iss047e083584

    NASA Image and Video Library

    2016-04-27

    ISS047e083584 (04/27/2016) --- The DIWATA-1 satellite is deployed from outside of the Japanese Kibo modul. Intended to observe earth and monitor climate changes, this was the first microsatellite owned by the Philippine government that involved Filipino engineers in the development. It was a joint project between Philippine and Japanese universities.

  9. Waste Information Management System: One Year After Web Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoffner, P.A.; Geisler, T.J.; Upadhyay, H.

    2008-07-01

    The implementation of the Department of Energy (DOE) mandated accelerated cleanup program created significant potential technical impediments. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast information regarding the volumes and types of waste that would be generated by DOEmore » sites over the next 30 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. A common application allows identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the deployment of this fully operational, web-based forecast system. New functional modules and annual waste forecast data updates have been added to ensure the long-term viability and value of this system. In conclusion: WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. WIMS has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different database and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made over the year since its web deployment include the addition of new DOE sites, an updated data set, and the ability to easily print the forecast data tables, the disposition maps, and the GIS maps. Future enhancements will include a high-level waste summary, a display of waste forecast by mode of transportation, and a user help module. The waste summary display module will provide a high-level summary view of the waste forecast data based on the selection of sites, facilities, material types, and forecast years. The waste summary report module will allow users to build custom filtered reports in a variety of formats, such as MS Excel, MS Word, and PDF. The user help module will provide a step-by-step explanation of various modules, using screen shots and general tutorials. The help module will also provide instructions for printing and margin/layout settings to assist users in using their local printers to print maps and reports. (authors)« less

  10. Unity nameplate examined before being attached to module for ISS and Mission STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, holding the nameplate for the Unity connecting module are (left) Joan Higginbotham, with the Astronaut Office Computer Support Branch, and (right) Nancy Tolliver, with Boeing-Huntsville. Part of the International Space Station, Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.

  11. Education in and for the Outdoors. Report of the National Conference on Outdoor Education (Kellogg Gull Lake Biological Station, Hickory Corners, Michigan, May 2-4, 1962).

    ERIC Educational Resources Information Center

    American Association for Health, Physical Education, and Recreation, Washington, DC.

    The two board aspects of outdoor education considered in this document are education in the outdoors, using the natural environment as a laboratory for learning, and education for the outdoors, with a focus on teaching skills and appreciations for outdoor recreation. Conference procedures, keynote addresses, current practices, contributions to…

  12. Context-Specific Outdoor Time and Physical Activity among School-Children Across Gender and Age: Using Accelerometers and GPS to Advance Methods

    PubMed Central

    Klinker, Charlotte Demant; Schipperijn, Jasper; Kerr, Jacqueline; Ersbøll, Annette Kjær; Troelsen, Jens

    2014-01-01

    Introduction: Being outdoors has a positive influence on health among children. Evidence in this area is limited and many studies have used self-reported measures. Objective context-specific assessment of physical activity patterns and correlates, such as outdoor time, may progress this field. Aims: To employ novel objective measures to assess age and gender differences in context-specific outdoor weekday behavior patterns among school-children [outdoor time and outdoor moderate to vigorous physical activity (MVPA)] and to investigate associations between context-specific outdoor time and MVPA. Methods: A total of 170 children had at least one weekday of 9 h combined accelerometer and global positioning system data and were included in the analyses. The data were processed using the personal activity and location measurement system (PALMS) and a purpose-built PostgreSQL database resulting in context-specific measures for outdoor time, outdoor MVPA, and overall daily MVPA. In addition, 4 domains (leisure, school, transport, and home) and 11 subdomains (e.g., urban green space and sports facilities) were created and assessed. Multilevel analyses provided results on age and gender differences and the association between outdoor time and MVPA. Results: Girls compared to boys had fewer outdoor minutes (p < 0.05), spent a smaller proportion of their overall daily time outdoors (p < 0.05), had fewer outdoor MVPA minutes during the day (p < 0.001) and in 11 contexts. Children compared to adolescents had more outdoor minutes (p < 0.05). During school and within recess, children compared to adolescents had more outdoor MVPA (p < 0.001) and outdoor time (p < 0.001). A 1-h increase in outdoor time was associated with 9.9 more minutes of MVPA (p < 0.001). Conclusion: A new methodology to assess the context-specific outdoor time and physical activity patterns has been developed and can be expanded to other populations. Different context-specific patterns were found for gender and age, suggesting different strategies may be needed to promote physical activity. PMID:24653983

  13. Is Outdoor Education Environmental Education?

    ERIC Educational Resources Information Center

    Parkin, Danny

    1998-01-01

    Explores the relationship between outdoor education and environmental education by examining the broad nature of outdoor education and discussing whether outdoor education and environmental education are overlapping philosophies or separate methods of instruction. Includes analysis of a survey of outdoor educators and details a process for…

  14. On-Orbit Checkout and Activation of the ISS Oxygen Generation System

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Prokhorov, Kimberlee S.

    2007-01-01

    NASA has developed and; deployed an Oxygen Generation System (OGS) into the Destiny Module of the International Space Station (ISS). The major. assembly; included in this system is the Oxygen Generator Assembly. (OGA) which was developed under NASA contract by Hamilton Sundstrand Space Systems International (HSSSI), Inc. This paper summarizes the installation of the system into the Destiny Module, its initial checkout and periodic preventative maintenance activities, and its operational activation. Trade studies and analyses that were conducted with the goal of mitigating on-orbit operational risks are also discussed.

  15. Fly-around view between the Starboard and Zenith (+YA, -ZA) sides of the ISS

    NASA Image and Video Library

    2013-11-19

    STS088-365-004 (4-15 Dec. 1998) --- The U.S.-built Unity Connecting Module and the Russian-built FGB (Zarya, with solar panels deployed) are backdropped against the blackness of space in this 35mm photograph taken from the Space Shuttle Endeavour. After devoting the major portion of its mission time to various tasks to ready the two docked modules for their International Space Station (ISS) roles, the six-member crew released the tandem and performed a fly-around survey of the hardware.

  16. The Potential for Imaging in Situ Damage in Inflatable Space Structures

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.; Seebo, Jeffrey P.; Studor, George; McMakin, Douglas L.; Nellums, Robert; Winfree, William P.

    2007-01-01

    NASA is investigating the use of inflatable habitat structures for orbital transfer and planetary applications. Since space structures are vulnerable to damage from micrometeoroid and orbital debris, it is important to investigate means of detecting such damage. This study is an investigation into methods for performing non-destructive evaluation (NDE) on inflatable habitat modules. Results of this work showed that various electromagnetic imaging modalities from microwaves to terahertz imaging have the greatest potential for a viable, portable, NDE tool which could possibly be deployed aboard an inflatable habitat module.

  17. KSC-98pc1363

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, a worker checks placement of the nameplate for the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  18. KSC-98pc1367

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, a worker checks placement of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  19. KSC-98pc1365

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, workers look over the Unity connecting module, part of the International Space Station, after attaching the nameplate. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  20. KSC-98pc1366

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, workers make a final check of the nameplate to be attached to the Unity connecting module, part of the International Space Station. Unity was expected to be transported to Launch Pad 39A on Oct. 26 for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  1. Forward end (+XA side) of the PMA-2 prior to mating to the Orbiter Docking System (ODS).

    NASA Image and Video Library

    1998-12-05

    STS088-335-017 (5 Dec. 1998) --- One of the STS-88 astronauts aimed a 35mm camera through Endeavour's aft flight deck windows to record this Dec. 5 image of the Unity connecting module as it was being unberthed in the cargo bay. The berthing and mating process constituted the first link in a long chain of events that led up to the eventual deployment in Earth orbit of the connected Unity and Zarya modules later in the 11-day mission. Photo credit: NASA

  2. A Rapidly Deployable Bridge System

    DTIC Science & Technology

    2013-01-15

    17 - 4PH SS H1150 Hinge Pins 30x106 psi (2) 143 ksi (4) 157 ksi (4) - 104.7 ksi SS T316 Cables 30x106 psi - 116 ksi - 77.3 ksi The stress...CLASSIFICATION OF: 17 . LIMITATION OF ABSTRACT Public Release 18. NUMBER OF PAGES 12 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b...an MLC30/12m configuration. The MLC50/20m system uses 17 modules in a 9/8 configuration. The connection of the modules to each other is by means of

  3. KSC-98pc1412

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, a closeup view shows the overhead crane holding the Unity connecting module as it moves it to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  4. KSC-98pc1413

    NASA Image and Video Library

    1998-10-22

    In the Space Station Processing Facility, workers at the side and on the floor of the payload canister guide the Unity connecting module into position for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time

  5. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura

    1994-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. The description and development status of the PVM thermal control system is presented.

  6. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura S.

    1992-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. This paper presents the description and development status of the PVM thermal control system.

  7. Deployment of the National Transparent Optical Network around the San Francisco Bay Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCammon, K.; Haigh, R.; Armstrong, G.

    1996-06-01

    We report on the deployment and initial operation of the National Transparent Optical Network, an experimental WDM network testbed around the San Francisco Bay Area, during the Optical Fiber Conference (OFC`96) held in San Jose, CA. The deployment aspects of the physical plant, optical and SONET layers are examined along with a discussion of broadband applications which utilized the network during the OFC`96 demonstration. The network features dense WDM technology, transparent optical routing technology using acousto- optic tunable filter based switches, and network modules with add/drop, multicast, and wavelength translation capabilities. The physical layer consisted of over 300 km ofmore » Sprint and Pacific Bell conventional single mode fiber which was amplified with I I optical amplifiers deployed in pre-amp, post-amp, and line amp configurations. An out-of-band control network provided datacom channels from remote equipment sites to the SONET network manager deployed at the San Jose Convention Center for the conference. Data transport over five wavelengths was achieved in the 1550 nm window using a variety of signal formats including analog and digital signal transmission on different wavelengths on the same fiber. The network operated throughout the week of OFC`96 and is still in operation today.« less

  8. Outdoor Education and Troubled Youth. ERIC Digest.

    ERIC Educational Resources Information Center

    Berman, Dene S.; Davis-Berman, Jennifer

    This digest briefly summarizes the parallel development of outdoor education and outdoor therapeutic programs for troubled and adjudicated youth, describes the rationale supporting outdoor approaches, and reports related research and evaluation findings. First attempts to use the outdoors as a healing environment were "tent therapy"…

  9. The Cost of Becoming an Outdoor Instructor.

    ERIC Educational Resources Information Center

    Cashel, Chris

    This article describes instructor criteria in three outdoor organizations: Outward Bound (OB), the National Outdoor Leadership School (NOLS), and the Wilderness Education Association (WEA). Common requirements for outdoor leadership programs are outdoor experience and skills, advanced first aid, CPR, and a minimum age requirement. Traditionally…

  10. Assessment of the smoke-free outdoor regulation in the WHO European Region.

    PubMed

    Martínez, Cristina; Guydish, Joseph; Robinson, Gillian; Martínez-Sánchez, Jose María; Fernández, Esteve

    2014-07-01

    The aim of this study is to assess the level of protection of secondhand smoke in outdoor locations among countries belonging to the WHO European Region. This cross-sectional study measures the level of protection provided by laws in outdoor locations. A protocol to evaluate the outdoor smoke-free legislation was developed according to the recommendations provided by the WHO Guidelines for implementing smoke-free outdoor places. For each law 6 main sectors and 28 outdoor locations were evaluated. 68 laws from 48 countries were reviewed, totally assessing 1758 locations. Overall 3.1% of the locations specified 100% smoke-free outdoor regulation without exceptions, 2.5% permitted smoking in designated outdoor areas, 37.5% allowed smoking everywhere, and 56.9% did not provide information about how to deal with smoking in outdoor places. In the Education sector 17.8% of the laws specified smoke-free outdoor regulation, mainly in the primary and secondary schools. Three pioneering laws from recreational locations and two from general health facilities specified 100% outdoor smoke-free regulation. Outdoor smoke-free policies among countries belonging to the WHO European Region are limited and mainly have been passed in the primary and secondary schools, which protect minors from the hazards of secondhand smoke in educational settings. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Australian Outdoor (and) Environmental Education Research: Senses of "Place" in Two Constituencies

    ERIC Educational Resources Information Center

    Gough, Noel

    2016-01-01

    The Outdoor Council of Australia's renaming of "Australian Journal of Outdoor Education" ("AJOE") as "Journal of Outdoor and Environmental Education" ("JOEE") follows deliberations among Australian and international stakeholders in outdoor education about the future of publishing in the field and raises a…

  12. Mercury Shopping Cart Interface

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; McMahon, Joe

    2006-01-01

    Mercury Shopping Cart Interface (MSCI) is a reusable component of the Power User Interface 5.0 (PUI) program described in another article. MSCI is a means of encapsulating the logic and information needed to describe an orderable item consistent with Mercury Shopping Cart service protocol. Designed to be used with Web-browser software, MSCI generates Hypertext Markup Language (HTML) pages on which ordering information can be entered. MSCI comprises two types of Practical Extraction and Report Language (PERL) modules: template modules and shopping-cart logic modules. Template modules generate HTML pages for entering the required ordering details and enable submission of the order via a Hypertext Transfer Protocol (HTTP) post. Shopping cart modules encapsulate the logic and data needed to describe an individual orderable item to the Mercury Shopping Cart service. These modules evaluate information entered by the user to determine whether it is sufficient for the Shopping Cart service to process the order. Once an order has been passed from MSCI to a deployed Mercury Shopping Cart server, there is no further interaction with the user.

  13. Contamination Control Considerations for the Next Generation Space Telescope (NGST)

    NASA Technical Reports Server (NTRS)

    Wooldridge, Eve M.

    1998-01-01

    The NASA Space Science Program, in its ongoing mission to study the universe, has begun planning for a telescope that will carry on the Hubble Space Telescope's exploration. This telescope, the 'Next Generation Space Telescope' (NGST), will be 6-8 meters in diameter, will be radiatively cooled to 30-60 Kelvin in order to enable extremely deep exposures at near infrared wavelengths, and will operate for a lifetime of 5-10 years. The requirement will be to measure wavelengths from 1-5 microns, with a goal to measure wavelengths from 0.6-30 microns. As such, NGST will present a new contamination control challenge. The Goddard Space Flight Center (GSFC) performed one of three preliminary feasibility studies for the NGST, presenting a telescope with an 8 meter, deployable primary mirror and a deployable secondary mirror. The telescope would be radiatively cooled, with the optical telescope assembly (OTA) and the science instrument module (SIM) isolated from the warmer spacecraft support module (SSM). The OTA and the SIM would also be shielded from sunlight with an enormous, inflatable sun-shield. The GSFC telescope was designed for launch on an Atlas HAS, which would require launching the telescope in a stowed configuration, with the SSM, antennae, sun-shield, primary mirror 'petals', and secondary mirror deployed once on-orbit. The launch configuration and deployment scenario of an exposed telescope measuring near infrared and cooled to 30-60 K are the factors presenting contamination hazards to the NGST mission. Preliminary science requirements established are: less than 20% reflectance decrease on optical surfaces over the wavelength range, and less than 0.3% obscuration of optical surfaces. In order to meet these requirements, NGST must be built and launched with careful attention to contamination control. Initial contamination control design options include strict selecting of materials and baking out of hardware down to the component level, minimizing or eliminating exposure of the OTA to sunlight or earth albedo during deployment and early on-orbit operations, cleaning of the primary and secondary mirrors at the launch site, cleaning of the launch vehicle fairing, locating thrusters and vents on the warm side of the sun shield only, and the possibility of including a deployable cover if that is shown to be necessary.

  14. Environmental Respect: A New Approach to Outdoor Education.

    ERIC Educational Resources Information Center

    Huck, Albert R.; Decker, Eugene

    Most outdoor education programs do not include the teaching of correct outdoor behavior. The purpose of this manual is to assist educators and concerned lay persons in establishing an outdoor education program with an instructional strategy that will manipulate students into becoming responsible, ethical, respectful outdoor citizens. Both lay…

  15. Some Outdoor Educators' Experiences of Outdoor Education

    ERIC Educational Resources Information Center

    Gunn, Terry

    2006-01-01

    The phenomenological study presented in this paper attempts to determine, from outdoor educators, what it meant for them to be teaching outdoor education in Victorian secondary schools during 2004. In 1999, Lugg and Martin surveyed Victorian secondary schools to determine the types of outdoor education programs being run, the objectives of those…

  16. Fostering Trust in Outdoor Leaders: The Role of Personal Attributes

    ERIC Educational Resources Information Center

    Shooter, Wynn; Paisley, Karen; Sibthorp, Jim

    2012-01-01

    This study examined trust development between participants of outdoor education programs and outdoor leaders. Participants were college students enrolled in outdoor education courses. Using a factorial survey design, the technical ability, interpersonal ability, benevolence, integrity, and gender of an outdoor leader was displayed randomly in a…

  17. 9 CFR 3.103 - Facilities, outdoor.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... requirements shall be applicable to all outdoor pools. (1) The water surface of pools in outdoor primary... free of solid ice to allow for entry and exit of the animals. (2) The water surface of pools in outdoor... water dwelling species of pinnipeds or cetaceans shall be housed in outdoor pools where water...

  18. 9 CFR 3.103 - Facilities, outdoor.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... requirements shall be applicable to all outdoor pools. (1) The water surface of pools in outdoor primary... free of solid ice to allow for entry and exit of the animals. (2) The water surface of pools in outdoor... water dwelling species of pinnipeds or cetaceans shall be housed in outdoor pools where water...

  19. Definition: Conservation Education, Environmental Education, Outdoor Education.

    ERIC Educational Resources Information Center

    1970

    Conservation education, outdoor education, and environmental education all have as a common goal the understanding and appreciation of the natural world. Outdoor education is a method of teaching wherein established disciplines, topics, and concepts which can best be taught outdoors are taught outdoors. Conservation education is the study of man's…

  20. Revisiting Your Outdoor Environment: Reasons to Reshape, Enrich, Redevelop the Outdoor Space.

    ERIC Educational Resources Information Center

    Mauffette, Anne Gillain

    1998-01-01

    Provides suggestions for designing effective outdoor space. Focuses on advocating for space, designing spaces based on children's characteristics and preferences, integrating the outdoors in educational planning, including children in decision making and work, knowing about injury prevention, providing adult models who love the outdoors, and…

Top