Science.gov

Sample records for modulu sr-0 jaderneho

  1. Crystal structure of nonsuperconducting Pb 2(Sr 0.94Nd 0.06) 2(Nd 0.76Sr 0.24)Cu 3O 8

    NASA Astrophysics Data System (ADS)

    Hayri, Eric A.; Kvick, Åke

    1990-01-01

    The crystal structure of Pb 2(Sr 0.94Nd 0.06) 2(Nd 0.76Sr 0.24)Cu 3O 8 was determined by single crystal X-ray diffraction. The compound was found to be orthorhombic ( Cmmm) with a = 5.437(3), b = 5.472(2), c = 15.797(7)Å and Z = 2. In the structure double layers of CuO square pyramids are separated by (Nd, Sr) oxygen deficient layers which are stacked between (PbO)Cu(PbO) slabs. The oxygen in the Pb planes is shifted toward a pair of Pb atoms resulting in an orthorhombic distortion of the tetragonal unit cell. The possibilities for modulations and superlattices are discussed as is the role of the PbO planes in superconductivity.

  2. Stripe conductivity in La1.775Sr0.225NiO4

    PubMed

    Pashkevich; Blinkin; Gnezdilov; Tsapenko; Eremenko; Lemmens; Fischer; Grove; Guntherodt; Degiorgi; Wachter; Tranquada; Buttrey

    2000-04-24

    We report Raman light-scattering and optical conductivity measurements on a single crystal of La1.775Sr0.225NiO4 which exhibits incommensurate charge-stripe order. The extra phonon peaks induced by stripe order can be understood in terms of the energies of phonons that occur at the charge-order wave vector Q(c). A strong Fano antiresonance for a Ni-O bond-stretching mode provides clear evidence for finite dynamical conductivity within the charge stripes.

  3. Stripe Conductivity in La1.775Sr0.225NiO4

    NASA Astrophysics Data System (ADS)

    Pashkevich, Yu. G.; Blinkin, V. A.; Gnezdilov, V. P.; Tsapenko, V. V.; Eremenko, V. V.; Lemmens, P.; Fischer, M.; Grove, M.; Güntherodt, G.; Degiorgi, L.; Wachter, P.; Tranquada, J. M.; Buttrey, D. J.

    2000-04-01

    We report Raman light-scattering and optical conductivity measurements on a single crystal of La1.775Sr0.225NiO4 which exhibits incommensurate charge-stripe order. The extra phonon peaks induced by stripe order can be understood in terms of the energies of phonons that occur at the charge-order wave vector Qc. A strong Fano antiresonance for a Ni-O bond-stretching mode provides clear evidence for finite dynamical conductivity within the charge stripes.

  4. Positive magnetoresistance of La0.7Sr0.3MnO3/C composites

    NASA Astrophysics Data System (ADS)

    Kabirov, Yu. V.; Gavrilyachenko, V. G.; Bogatin, A. S.

    2016-07-01

    The perovskite manganite La0.7Sr0.3MnO3 compound is used as a component in ceramic (1-x)(La0.7Sr0.3MnO3)-xC composites at x = 0.15-0.85. It is found that every studied specimen is characterized by the linear dependence of the positive magnetoresistance (PMR) on the magnetic field strength at room temperature. The 0.6(La0.7Sr0.3MnO3)-0.4C composite has the largest magnetoresistance value (15%) at room temperature and intensity of magnetic field H=15kOe. A possible mechanism for the PMR of (1-x)(La0.7Sr0.3MnO3)-xC composites is discussed.

  5. Ni-doped La0.5Sr0.5TiO3 nanofibers: Fabrication and intrinsic ferromagnetism

    NASA Astrophysics Data System (ADS)

    Ponhan, Wichaid; Amornkitbamrung, Vittaya; Maensiri, Santi

    2016-06-01

    We report room-temperature ferromagnetism in ˜104-133 nm nanofibers of La0.5Sr0.5Ti1- x Ni x O3 (0.02 ≤ x ≤ 0.05). As-spun nanofibers of La0.5Sr0.5Ti1- x Ni x O3 are fabricated by an electrospinning technique. Nanofibers of the as spun and calcined La0.5Sr0.5Ti1- x Ni x O3 samples are characterized using X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), X-ray photoelectron microscopy (XPS), X-ray absorption near edge structure (XANES) determination, and vibrating sample magnetometry (VSM). The results of XRD analysis and TEM together with selected electron diffraction (SEAD) analysis indicate that La0.5Sr0.5Ti1- x Ni x O3 nanofibers have a cubic perovskite structure with no secondary phase. The as-spun samples are paramagnetic, whereas the La0.5Sr0.5Ti1- x Ni x O3 samples are ferromagnetic having specific magnetizations of 0.098-0.484 emu/g at 10 kOe. The XPS spectra show that there are some oxygen vacancies in the nanofibers, which its may play an important role in inducing room-temperature ferromagnetism in La0.5Sr0.5Ti1- x Ni x O3 nanofibers. XANES spectra show that most of the Ni ions in La0.5Sr0.5Ti1- x Ni x O3 nanofibers are in the Ni2+ state mixed with some Ni metal. The finding of room temperature ferromagnetism in this nanofibrous structure of the La0.5Sr0.5Ti1- x Ni x O3 system is of interest in research on diluted magnetic oxides.

  6. Unidirectional Order and 3D Stacking of Stripes in Orthorhombic Pr1.67Sr0.33NiO4 and Nd1.67Sr0.33NiO4.

    NASA Astrophysics Data System (ADS)

    Hücker, Markus; Tranquada, John M.; Gu, Gen D.; Zimmermann, Martin V.; Büchner, Bernd K.

    2006-03-01

    The crystal structure and charge stripe order in Pr1. 67Sr0.33NiO4 and Nd1. 67Sr0.33NiO4 was studied by means of single crystal x-ray diffraction in zero and high electric fields. In contrast to tetragonal La1.67Sr0.33NiO4, these crystals are orthorhombic at room temperature. We find that the distortion of the NiO2 planes associated with the orthorhombic strain dictates the direction of the charge stripes. The critical temperature for charge stripe order is the same as in La1.67Sr0.33NiO4 (TCO˜245 K), i.e., it does not depend on the crystal symmetry. A second structural transition observed only in Nd1.67Sr0.33NiO4 at temperatures T˜100 K has no noticeable influence on the stripe order. In crystals with a hole content very close to 1/3 we observe a tripling of the charge stripe unit cell along the c-axis for temperatures T < 225 K, which indicates a strong tendency towards a well defined three dimensional order. A high electric field applied to Nd1.67Sr0.33NiO4 had no noticeable impact on the charge stripe order, i.e., a sliding of stripes was not observed. The work at Brookhaven was supported by the Office of Science, U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

  7. Silica-Aerogel Composites Opacified with La(0.7)Sr(0.3)MnO3

    NASA Technical Reports Server (NTRS)

    Rhine, Wendell; Polli, Andrew; Deshpande, Kiranmayi

    2009-01-01

    As part of an effort to develop improved lightweight thermal-insulation tiles to withstand temperatures up to 1,000 C, silica aerogel/fused-quartz-fiber composite materials containing La0.7Sr0.3MnO3 particles as opacifiers have been investigated as potentially offering thermal conductivities lower than those of the otherwise equivalent silica-aerogel composite materials not containing La(0.7)Sr(0.3)MnO3 particles. The basic idea of incorporating opacifying particles into silica-aerogels composite to reduce infrared radiative contributions to thermal conductivities at high temperatures is not new: it has been reported in a number of previous NASA Tech Briefs articles. What is new here is the selection of La(0.7)Sr(0.3)MnO3 particles as candidate opacifiers that, in comparison with some prior opacifiers (carbon black and metal nanoparticles), are more thermally stable. The preparation of a composite material of the present type includes synthesis of the silica-aerogel component in a sol-gel process. The La(0.7)Sr(0.3)MnO3 particles, made previously in a separate process, are mixed into the sol, which is then cast onto fused-quartz-fiber batting. Then the aerogel-casting solution is poured into the mold, where it permeates the silica fiber felt. After the sol has gelled, the casting is aged and then subjected to supercritical drying to convert the gel to the final aerogel form. The separate process for making the La(0.7)Sr(0.3)MnO3 particles begins with the slow addition of corresponding proportions of La(CH3COOH)3, Mn(CH3COOH)3, and Sr(NO3)2 to a solution of H2O2 in H2O. The solution is then peptized by drop-wise addition of NH4OH to obtain a sol. Next, the sol is dried in an oven at a temperature of 120 C to obtain a glassy solid. The solid is calcined at 700 C to convert it to La(0.7)Sr(0.3)MnO3. Then La(0.7)Sr(0.3)MnO3 particles are made by ball-milling the calcined solid. The effectiveness of La(0.7)Sr(0.3)MnO3 particles as opacifiers and thermal

  8. Sol-Gel Synthesis of La(0.6)Sr(0.4)CoO(3-x) and Sm(0.5)Sr(0.5)CoO(3-x) Cathode Nanopowders for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Wise, Brent

    2011-01-01

    Nanopowders of La(0.6)Sr(0.4)CoO(3-x) (LSC) and Sm(0.5)Sr(0.5)CoO(3-x) (SSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC) with La(Sr)Ga(Mg)O(3-x) (LSGM) as the electrolyte, were synthesized by low-temperature sol-gel method using metal nitrates and citric acid. Thermal decomposition of the citrate gels was followed by simultaneous DSC/TGA methods. Development of phases in the gels, on heat treatments at various temperatures, was monitored by x-ray diffraction. Solgel powders calcined at 550 to 1000 C consisted of a number of phases. Single perovskite phase La(0.6)Sr(0.4)CoO(3-x) or Sm(0.5)Sr(0.5)CoO(3-x) powders were obtained at 1200 and 1300 C, respectively. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy. The average particle size of the powders was approx.15 nm after 700 C calcinations and slowly increased to 70 to 100 nm after heat treatments at 1300 to 1400 C.

  9. Improvement of La0.65Sr0.3MnO3-gamma-YSZ cathodes by infiltrating nanoSm0.6Sr0.4CoO3-gamma particles

    SciTech Connect

    Lu, Chun; Sholklapper, Tal; Chen, Xuan; Zhang, Xiaofeng; Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2004-05-01

    La0.65Sr0.3MnO3-delta-YSZ cathodes are infiltrated with Sm0.6Sr0.4CoO3-delta (SSC) at 800 C using a precipitation method. The effect of SSC infiltration has been characterized for symmetric cells and single cells at reduced temperatures. With SSC addition the cathode polarization resistance, determined from symmetric-cell measurements, significantly decreases: from approx. 19.8 to 8.5 Omega cdot cm2 at 600 C, and from 7.7 to 3.3 Omega cdot cm2 at 650 C. Consequently, the single-cell performance with 97 percentH2+3 percentH2O fuel is dramatically improved, which may be attributed to the superior electrocatalytic activity of SSC in the cathodes.

  10. Disorder enhanced intrinsic electroresistance in Sm0.60Sr0.40Mn1-xFexO3

    NASA Astrophysics Data System (ADS)

    Mahmud, S. T.; Saber, M. M.; Alagoz, H. S.; Biggart, K.; Bouveyron, R.; Khan, Mahmud; Jung, J.; Chow, K. H.

    2012-06-01

    The intrinsic electroresistance (ER) of polycrystalline Sm0.60Sr0.40Mn1-xFexO3 (0 ≤ x ≤ 0.02) have been investigated by magnetotransport measurements. It is found that the ER increases with x while it is suppressed by a magnetic field. These observations imply that the ER increases dramatically with the inhomogeneity in the samples. The possible mechanisms responsible for the observed behavior are discussed.

  11. Magnetocaloric effect in La0.65-xEuxSr0.35MnO3

    NASA Astrophysics Data System (ADS)

    Hamad, Mahmoud A.

    2014-05-01

    The magnetocaloric properties for the Eu-doped La0.65-xEuxSr0.35MnO3 samples with x = 0.05, 0.15, 0.20, and 0.30 upon 0.05T magnetic field have been investigated. It is found that the Eu doping in this system decreases the magnetocaloric properties lightly. Moreover, the results of Eu doping clearly indicate that the magnetocaloric effect in this system is tunable, which is beneficial for manipulating magnetocaloric refrigeration that occurs in various temperature ranges. This makes the La0.65-xEuxSr0.35MnO3 samples potential candidates for practical applications. A complete characterization of the magnetic properties of this material aids to the understanding required for the technological exploitation of such materials, and it suggests La0.65-xEuxSr0.35MnO3 perovskite as the promising magnetic refrigerant.

  12. Resistance switching mechanism of La0.8Sr0.2MnO3-δ thin films

    NASA Astrophysics Data System (ADS)

    Luo, X. D.; Gao, R. L.; Fu, C. L.; Cai, W.; Chen, G.; Deng, X. L.; Zhang, H. R.; Sun, J. R.

    2016-02-01

    Effects of oxygen vacancies on the electrical transport properties of oxygen stoichiometric La0.8Sr0.2MnO3 and oxygen-deficient La0.8Sr0.2MnO3-δ films have been investigated. The result presents that the oxygen-deficient films annealed in vacuum show obvious increase of resistance and lattice parameter. With the sweeping voltage or temperature increasing, the resistance exhibits obvious bipolar switching effect, no forming process was needed. Oxygen deficiency in the annealed film leads to the formation of a structural disorder in the Mn-O-Mn conduction channel due to the accumulation of oxygen vacancies under high external electric field or temperatures and hence is believed to be responsible for the bipolar resistance switching effect and the enhanced resistivity compared with oxygen stoichiometric La0.8Sr0.2MnO3 film. These results may be important for practical applications in photoelectric or storage devices and point to a useful direction for other oxidizing materials.

  13. Unidirectional diagonal order and three-dimensional stacking of charge stripes in orthorhombic Pr1.67Sr0.33NiO4 and Nd1.67Sr0.33NiO4

    NASA Astrophysics Data System (ADS)

    Hücker, M.; Zimmermann, M. V.; Klingeler, R.; Kiele, S.; Geck, J.; Bakehe, S. N.; Zhang, J. Z.; Hill, J. P.; Revcolevschi, A.; Buttrey, D. J.; Büchner, B.; Tranquada, J. M.

    2006-08-01

    The interplay between crystal symmetry and charge stripe order in Pr1.67Sr0.33NiO4 and Nd1.67Sr0.33NiO4 has been studied by means of single crystal x-ray diffraction. In contrast to tetragonal La1.67Sr0.33NiO4 , these crystals are orthorhombic. The corresponding distortion of the NiO2 planes is found to dictate the direction of the charge stripes, similar to the case of diagonal spin stripes in the insulating phase of La2-xSrxCuO4 . In particular, diagonal stripes seem to always run along the short a axis, which is the direction of the octahedral tilt axis. In contrast, no influence of the crystal symmetry on the charge stripe ordering temperature itself was observed, with TCO˜240K for La, Pr, and Nd. The coupling between lattice and stripe degrees of freedom allows one to produce macroscopic samples with unidirectional stripe order. In samples with stoichiometric oxygen content and a hole concentration of exactly 1/3 , charge stripes exhibit a staggered stacking order with a period of three NiO2 layers, previously only observed with electron microscopy in domains of mesoscopic dimensions. Remarkably, this stacking order starts to melt about 40K below TCO . The melting process can be described by mixing the ground state, which has a three-layer stacking period, with an increasing volume fraction with a two-layer stacking period.

  14. Growth of Sr(0.61)Ba(0.39)Nb2O6 fibers - New results regarding orientation

    NASA Technical Reports Server (NTRS)

    Wilde, Jeffrey P.; Jundt, Dieter H.; Galambos, Ludwig; Hesselink, Lambertus

    1991-01-01

    The paper describes stable growth of Sr(0.61)Ba(0.39)Nb2O6 (SBN) single-crystal optical fibers (grown by the laser-heated pedestal growth method) along the 100-line and 110-line crystallographic axes. The orientation of SBN fibers was investigated using transmission holograms recorded by focusing two separate, but mutually coherent, optical wavefronts into one end of the fiber. Results showed that the crystal quality of 100-line and 110-line SBN fibers grown at a given pull velocity strongly depended on the fiber diameter; generally, the quality improves with decreasing diameter.

  15. Investigation of magnetic properties of Sm0.55Sr0.45MnO3

    NASA Astrophysics Data System (ADS)

    Bhat, Masroor Ahmad; Choithrani, Renu; Gaur, N. K.

    2015-08-01

    In this paper, we report the enhancement of metal - insulator transition temperature (TMI) induced by magnetic field confirms the MR phenomenon. The polycrystalline Sm0.55Sr0.45MnO3 were synthesized using solid state reaction route. The XRD patterns using Full Prof Rietveld analysis shows that the sample has single phase nature without any detectable impurity. The SEM micrograph carried to observe the grain morphology and four probe resistivity measurements using with superconducting magnet to investigate the electrical behaviour. The sharp value of temperature coefficient of resistance (TCR) of 11% is used for infrared bolometric sensors.

  16. Possible spin-triplet superconducting phase in the La0.7Sr0.3MnO3/YBa2Cu3O7/La0.7Sr0.3MnO3 trilayer

    NASA Astrophysics Data System (ADS)

    Dybko, K.; Werner-Malento, K.; Aleshkevych, P.; Wojcik, M.; Sawicki, M.; Przyslupski, P.

    2009-10-01

    We report on results of conductance spectroscopy measurements in the current-in-plane (CIP) and current-perpendicular-to-plane (CPP) geometries ([001] and [100] directions respectively) of La0.7Sr0.3MnO3/YBa2Cu3O7/La0.7Sr0.3MnO3 (LSMO/YBCO/LSMO) nonsymmetric trilayer structures in order to search for signature of the formation of spin-triplet phase. This trilayer shows an enhancement of the superconducting transition temperature in magnetic field parallel to the plane. We argue that this enhancement is a result of the formation of spin-triplet phase. The differential conductance (dI/dV) spectra show fully developed zero-bias conductance peaks (ZBCP). The ZBCP measured in CIP geometry demonstrates a sharp shape. This could be attributed to a spin-triplet state arising from the proximity effect at the interface of the half-metal with the d -wave superconductor, similar as was predicted theoretically for the p -wave superconductor and observed experimentally in p -wave Sr2RuO4 superconductor. The measurements of the dI/dV in CPP geometry reveal a V shape similar as was experimentally observed in YBCO superconductor and predicted theoretically for superconductor with a dx2-y2 pairing symmetry of the order parameter.

  17. Combustion Synthesis of Sm0.5Sr0.5CoO3-x and La0.6Sr0.4CoO3-x Nanopowders for Solid Oxide Fuel Cell Cathodes

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhong, zhimin

    2005-01-01

    Nanopowders of Sm0.5Sr0.5CoO(3-x) (SSC) and La0.6Sr0.4CoO(3-x) (LSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells, were synthesized by a solution-combustion method using metal nitrates and glycine as fuel. Development of crystalline phases in the as-synthesized powders after heat treatments at various temperatures was monitored by x-ray diffraction. Perovskite phase in LSC formed more readily than in SSC. Single phase perovskites were obtained after heat treatment of the combustion synthesized LSC and SSC powders at 1000 and 1200 C, respectively. The as-synthesized powders had an average particle size of 12 nm as determined from x-ray line broadening analysis using the Scherrer equation. Average grain size of the powders increased with increase in calcination temperature. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy.

  18. Octonary resistance states in La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 multiferroic tunnel junctions

    DOE PAGES

    Yue -Wei Yin; Tao, Jing; Huang, Wei -Chuan; ...

    2015-10-06

    General drawbacks of current electronic/spintronic devices are high power consumption and low density storage. A multiferroic tunnel junction (MFTJ), employing a ferroelectric barrier layer sandwiched between two ferromagnetic layers, presents four resistance states in a single device and therefore provides an alternative way to achieve high density memories. Here, an MFTJ device with eight nonvolatile resistance states by further integrating the design of noncollinear magnetization alignments between the ferromagnetic layers is demonstrated. Through the angle-resolved tunneling magnetoresistance investigations on La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 junctions, it is found that, besides collinear parallel/antiparallel magnetic configurations, the MFTJ shows at least two other stable noncollinear (45°more » and 90°) magnetic configurations. As a result, combining the tunneling electroresistance effect caused by the ferroelectricity reversal of the BaTiO3 barrier, an octonary memory device is obtained, representing potential applications in high density nonvolatile storage in the future.« less

  19. Investigation of the origin of glassiness in La0.5Sr0.5CoO3

    NASA Astrophysics Data System (ADS)

    Manna, Kaustuv; Elizabeth, Suja; Anil Kumar, P. S.

    2013-05-01

    A comprehensive magnetic study has been carried out on the two sets of La0.5Sr0.5CoO3 samples with a view to understand the origin of low temperature glassiness in the ferromagnetic state. The samples prepared by the conventional solid-state synthesis method show a low temperature shoulder in both dc magnetization as well as in the ac susceptibility measurements, which exhibit characteristics of glassiness such as the frequency dependence and memory effect. These observations suggest the existence of a distinct low temperature cluster-glass like phase within dominant ferromagnetic phase. But, once the same sample is properly homogenized by repeated grinding and annealing process, the low temperature glassy phase disappears, and it shows a pure ferromagnetic behavior. Our comparative study clearly reveals that the reentrant spin-glass like nature is not intrinsic to La0.5Sr0.5CoO3 system, in fact this is an outcome of the compositional inhomogeneity.

  20. Nanostructural and electrical properties of LA0.5SR0.5CoO3

    NASA Astrophysics Data System (ADS)

    Bahari, A.; Ramzannezhad, A.; Shajari, D.; Najafi, H.

    2017-02-01

    A group of ABO3 perovskite-type oxides is currently under intensive studies for their potential as chemical sensing, ferroelectric memories, gas separation and computer devices. This group includes LaxSr1‑xCoO3 (LSCO). In the present work, we have synthesized LSCO samples by using the sol-gel method and studied their nano structural and electrical properties with using the scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Current density-voltage (J-V) and Fourier transform infrared spectroscopy (FTIR) techniques. We synthesized nanoparticles with diameters between 50 and 100 nm by calcination of the pulverized gel powders, and then studied its structure. The band gap characteristics of the La0.5Sr0.5CoO3 structure were also analyzed. The obtained results show that La0.5Sr0.5CoO3 with favorable carrier mobility ( ˜ 1.7 × 10‑2 cm2v‑2s‑1) and dielectric constant (16) exhibits a variety of interesting physical properties which include ferroelectric, dielectric, pyroelectric and piezoelectric behavior.

  1. Magnetic properties of rare-earth-doped La0.7Sr0.3MnO3.

    PubMed

    Veverka, Pavel; Kaman, Ondřej; Knížek, Karel; Novák, Pavel; Maryško, Miroslav; Jirák, Zdeněk

    2017-01-25

    Rare-earth-doped ferromagnetic manganites La0.63RE0.07Sr0.30MnO3 (RE  =  Gd, Tb, Dy, and Ho) are synthesized in the form of sintered ceramics and nanocrystalline phases with the mean size of crystallites  ≈30 nm. The electronic states of the dopants are investigated by SQUID magnetometry and theoretically interpreted based on the calculations of the crystal field splitting of rare-earth energy levels. The samples show the orthorhombic perovskite structure of Ibmm symmetry, with a complete FM order of Mn spins in bulk and reduced order in nanoparticles. Non-zero moments are also detected at the perovskite A sites, which can be attributed to magnetic polarization of the rare-earth dopants. The measurements in external field up to 70 kOe show a standard Curie-type contribution of the spin-only moments of Gd(3+) ions, whereas Kramers ions Dy(3+) and non-Kramers ions Ho(3+) contribute by Ising moments due to their doublet ground states. The behaviour of non-Kramers ions Tb(3+) is anomalous, pointing to singlet ground state with giant Van Vleck paramagnetism. The Tb(3+) doping leads also to a notably increased coercivity compared to other La0.63RE0.07Sr0.30MnO3 systems.

  2. Magnetic properties of rare-earth-doped La0.7Sr0.3MnO3

    NASA Astrophysics Data System (ADS)

    Veverka, Pavel; Kaman, Ondřej; Knížek, Karel; Novák, Pavel; Maryško, Miroslav; Jirák, Zdeněk

    2017-01-01

    Rare-earth-doped ferromagnetic manganites La0.63RE0.07Sr0.30MnO3 (RE  =  Gd, Tb, Dy, and Ho) are synthesized in the form of sintered ceramics and nanocrystalline phases with the mean size of crystallites  ≈30 nm. The electronic states of the dopants are investigated by SQUID magnetometry and theoretically interpreted based on the calculations of the crystal field splitting of rare-earth energy levels. The samples show the orthorhombic perovskite structure of Ibmm symmetry, with a complete FM order of Mn spins in bulk and reduced order in nanoparticles. Non-zero moments are also detected at the perovskite A sites, which can be attributed to magnetic polarization of the rare-earth dopants. The measurements in external field up to 70 kOe show a standard Curie-type contribution of the spin-only moments of Gd3+ ions, whereas Kramers ions Dy3+ and non-Kramers ions Ho3+ contribute by Ising moments due to their doublet ground states. The behaviour of non-Kramers ions Tb3+ is anomalous, pointing to singlet ground state with giant Van Vleck paramagnetism. The Tb3+ doping leads also to a notably increased coercivity compared to other La0.63RE0.07Sr0.30MnO3 systems.

  3. Critical behavior and spontaneous magnetization estimation in La0.5Sr0.5MnO3 compound

    NASA Astrophysics Data System (ADS)

    Hazzez, M.; Ihzaz, N.; Boudard, M.; Oumezzine, M.

    2015-07-01

    We report the critical behavior in La0.5Sr0.5MnO3 perovskite oxide manganite using methods including modified Arrott plot, Kouvel-Fisher plot, and critical isotherm analysis. By means of the above techniques around the ferromagnetic-paramagnetic (FM-PM) transition, the magnetic data analyzed shows the sample attending the second-order magnetic phase transition with the critical parameters β = 0.553±0.020 with TC=352.02±0.63 K (from the spontaneous magnetization MS(T) below TC) and γ =1.169±0.058 with TC=352.49±0.85 K (from the inverse initial susceptibility χ 0 - 1 (T) above TC). The exponent δ =3,216 independently obtained from the critical magnetization isotherm satisfies the Widom scaling relation δ = 1 + β / γ . Moreover, the critical exponents are in the theoretically expected values for mean-field interaction model rather than the other universal theory and also follow the single scaling equation of M (H , ε)ε-β =f± (H /ε β + γ) . Furthermore, to estimate the spontaneous magnetization of La0.5Sr0.5MnO3 perovskite, we used the magnetic entropy change (-ΔSM), obtained from isothermal magnetization. The results of this approach are compared to results obtained from classical analysis using Arrott curves.

  4. Thermally assisted interlayer magnetic coupling through Ba0.05Sr0.95TiO3 barriers

    NASA Astrophysics Data System (ADS)

    Carreira, Santiago J.; Avilés Félix, Luis; Sirena, Martín; Alejandro, Gabriela; Steren, Laura B.

    2016-08-01

    We report on the interlayer exchange coupling across insulating barriers observed on Ni80Fe20/Ba0.05Sr0.95TiO3/La0.66Sr0.33MnO3 (Py/BST0.05/LSMO) trilayers. The coupling mechanism has been analyzed in terms of the barrier thickness, samples' substrate, and temperature. We examined the effect of MgO (MGO) and SrTiO3 (STO) (001) single-crystalline substrates on the magnetic coupling and also on the magnetic anisotropies of the samples in order to get a deeper understanding of the magnetism of the structures. We measured a weak coupling mediated by spin-dependent tunneling phenomena whose sign and strength depend on barrier thickness and substrate. An antiferromagnetic (AF) exchange prevails for most of the samples and smoothly increases with the barrier thicknesses as a consequence of the screening effects of the BST0.05. The coupling monotonically increases with temperature in all the samples and this behavior is attributed to thermally assisted mechanisms. The magnetic anisotropy of both magnetic components has a cubic symmetry that in the case of permalloy is added to a small uniaxial component.

  5. Pressure-induced superconductivity in Ba0.5Sr0.5Fe2As2.

    PubMed

    Tsoi, Georgiy M; Malone, Walter; Uhoya, Walter; Mitchell, Jonathan E; Vohra, Yogesh K; Wenger, Lowell E; Sefat, Athena S; Weir, S T

    2012-12-12

    High-pressure electrical resistance measurements have been performed on single crystal Ba(0.5)Sr(0.5)Fe(2)As(2) platelets to pressures of 16 GPa and temperatures down to 10 K using designer diamond anvils under quasi-hydrostatic conditions with an insulating steatite pressure medium. The resistance measurements show evidence of pressure-induced superconductivity with an onset transition temperature at ∼31 K and zero resistance at ∼22 K for a pressure of 3.3 GPa. The transition temperature decreases gradually with increasing pressure before completely disappearing for pressures above 12 GPa. The present results provide experimental evidence that a solid solution of two 122-type materials, i.e., Ba(1-x)Sr(x)Fe(2)As(2) (0 < x < 1), can also exhibit superconductivity under high pressure.

  6. Microwave study of Nd0.7Sr0.3MnO3 thin film resistivity

    NASA Astrophysics Data System (ADS)

    Claycomb, J. R.; Tralshawala, N.; Xie, L.-M.; Wosik, J.; Miller, J. H.

    1999-04-01

    We report on microwave studies of Nd0.7Sr0.3MnO3 thin film losses in a shielded TE011 dielectric cavity. The cavity quality (Q) factor and resonant frequency are measured as a function of temperature with the dielectric cavity loaded with a thin film on a LaAlO3 substrate. A reference Q measurement is then made without the film enabling the extraction of the film-Q factor Qfilm. Here the temperature dependence of the Q factor is discussed in terms of resistive losses in the thin film. A numerical finite difference time domain code is then used to extract the microwave resistivity as a function of temperature from the measured Q factors. The numerical method involves the discretization of Maxwell's equations on an axisymmetric space-time grid coupled to a discrete Fourier transform to determine the resonant frequency.

  7. Scaling law and flux pinning in polycrystalline La1.85Sr0.15CuO4

    NASA Astrophysics Data System (ADS)

    Hampshire, D. P.; Ikeda, J. A. S.; Chiang, Y.-M.

    1989-11-01

    The transport critical current density (Jct) of two hot-pressed bulk polycrystalline La1.85Sr0.15CuO4 superconducting samples has been measured over the temperature range 2 K to Tc in magnetic fields up to 27 T. It is demonstrated that these data have a separable variable form Fp=JctB=α(D)B2.4c2 (T)b [where α(D) is a constant and b=B/Bc2(T)], in agreement with the Fietz-Webb scaling law. This is strong evidence that in high magnetic fields, flux pinning is the mechanism that determines the critical current density. The authors suggest that the dissipative state is described by flux flow along the regions of weak flux pinning at the grain boundaries.

  8. Independent freezing of charge and spin dynamics in La1.5Sr0.5CoO4

    PubMed

    Zaliznyak; Hill; Tranquada; Erwin; Moritomo

    2000-11-13

    We present elastic and quasielastic neutron scattering measurements characterizing peculiar short-range charge-orbital and spin order in the layered perovskite material La1.5Sr0.5CoO4. We find that below T(c) approximately 750 K holes introduced by Sr doping lose mobility and enter a statically ordered charge glass phase with loosely correlated checkerboard arrangement of empty and occupied d(3z(2)-r(2)) orbitals ( Co3+ and Co2+). The dynamics of the resultant mixed spin system is governed by the anisotropic nature of the crystal-field Hamiltonian and the peculiar exchange pattern produced by the orbital order. It undergoes a spin freezing transition at a much lower temperature, T(s) less, similar30 K.

  9. Anomalies of magnetostriction and thermal expansion in La 0.7Sr 0.3MnO 3 perovskite

    NASA Astrophysics Data System (ADS)

    Demin, R. V.; Koroleva, L. I.; Balbashov, A. M.

    1998-01-01

    It has been found that an anisotropic contribution to the magnetostriction λ t of a La 0.7Sr 0.3MnO 3 single crystal is essential at low temperatures ( λ t ˜ 10 -4 at 90 K). In the region of the Curie temperature T c the value of λ t decreases sharply with T. The bulk magnetostriction ω is negative in the T c region and the | ω|( T) curve has a maximum at T c. The temperature dependence of the thermal expansion Δ l/l at T > T c is stronger than linear. The anomalies of ω and Δ l/l are explained by magnetic phase separation.

  10. First order phase transition in Sm0.53Sr0.47MnO3 films

    NASA Astrophysics Data System (ADS)

    Srivastava, Manoj K.; Singh, M. P.; Kaur, Amarjeet; Singh, H. K.

    2012-06-01

    In the present work Sm0.53Sr0.47MnO3 thin films were deposited on single crystal LAO (LaAlO3/(100)) substrates by DC magnetron sputtering. The θ-2 and ω-2θ scans show that these films are epitaxially grown and are under small compressive strain. The paramagnetic-ferromagnetic (insulator-metal) transition was found at TC˜126 K (at TIM˜128 K). The magnetic state at T

  11. Microwave loss mechanisms in Ba0.25Sr0.75TiO3 thin film varactors

    NASA Astrophysics Data System (ADS)

    Vorobiev, A.; Rundqvist, P.; Khamchane, K.; Gevorgian, S.

    2004-10-01

    Parallel-plate Au(Pt )/Ba0.25Sr0.75TiO3/(Pt)Au thin film varactors were fabricated on high resistance Si substrates and characterized at dc, rf, and microwave frequencies. In the frequency range 10-45 GHz the varactors show relatively low losses, with loss tangent less than 0.025 at 45 GHz. Due to the thick and highly conductive Pt/Au electrodes the metal losses are less than 10%. However, the loss tangent of the ferroelectric film is still three to five times higher than that in Ba0.27Sr0.73TiO3 single crystal. The analysis of the dc field dependences of loss tangent and permittivity in a wide frequency range shows that these additional losses are mainly due to the charged defects. Extrapolation of measured low frequency (1 MHz) loss tangents to the microwave region using the power law ω1/3 is in good agreement with experiment. The dc current through the varactor is found to be controlled by Schottky emission and Poole-Frenkel mechanisms depending on the polarity. The Poole-Frenkel mode is associated with field enhanced thermal excitation of charge carriers from internal traps. The trap activation energy (about 0.15 eV) determined from the Poole-Frenkel mode agrees well with the energy level of the oxygen vacancy. We assume that the oxygen vacancies within the grain boundaries of the ferroelectric film act as charged defects and cause additional (extrinsic) microwave losses. The possible correlation between the film's internal strains and density of the oxygen vacancies are discussed. The knowledge of the extrinsic loss mechanism and corresponding microstructure defects is useful in optimization of the varactor design, deposition, annealing process, and further improvement of the varactor performance.

  12. Insight into the structure and functional application of the Sr0.95Ce0.05CoO3-δ cathode for solid oxide fuel cells.

    PubMed

    Yang, Wei; Zhang, Huairuo; Sun, Chunwen; Liu, Lilu; Alonso, J A; Fernández-Díaz, M T; Chen, Liquan

    2015-04-06

    A new perovskite cathode, Sr0.95Ce0.05CoO3-δ, performs well for oxygen-reduction reactions in solid oxide fuel cells (SOFCs). We gain insight into the crystal structure of Sr1-xCexCoO3-δ (x = 0.05, 0.1) and temperature-dependent structural evolution of Sr0.95Ce0.05CoO3-δ by X-ray diffraction, neutron powder diffraction, and scanning transmission electron microscopy experiments. Sr0.9Ce0.1CoO3-δ shows a perfectly cubic structure (a = a0), with a large oxygen deficiency in a single oxygen site; however, Sr0.95Ce0.05CoO3-δ exhibits a tetragonal perovskite superstructure with a double c axis, defined in the P4/mmm space group, that contains two crystallographically different cobalt positions, with distinct oxygen environments. The structural evolution of Sr0.95Ce0.05CoO3-δ at high temperatures was further studied by in situ temperature-dependent NPD experiments. At 1100 K, the oxygen atoms in Sr0.95Ce0.05CoO3-δ show large and highly anisotropic displacement factors, suggesting a significant ionic mobility. The test cell with a La0.8Sr0.2Ga0.83Mg0.17O3-δ-electrolyte-supported (∼300 μm thickness) configuration yields peak power densities of 0.25 and 0.48 W cm(-2) at temperatures of 1023 and 1073 K, respectively, with pure H2 as the fuel and ambient air as the oxidant. The electrochemical impedance spectra evolution with time of the symmetric cathode fuel cell measured at 1073 K shows that the Sr0.95Ce0.05CoO3-δ cathode possesses superior ORR catalytic activity and long-term stability. Mixed ionic-electronic conduction properties of Sr0.95Ce0.05CoO3-δ account for its good performance as an oxygen-reduction catalyst.

  13. Microwave assisted hydrothermal synthesis and magnetocaloric properties of La0.67Sr0.33MnO3 manganite.

    PubMed

    Anwar, M S; Kumar, Shalendra; Ahmed, Faheem; Kim, G W; Koo, Bon Heun

    2012-07-01

    We report microwave assisted hydrothermal synthesis and magnetocaloric properties of La0.67Sr0.33MnO3 manganite. The synthesized La0.67Sr0.33MnO3 nanoparticles was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS) and magnetization measurements. The XRD results indicated that La0.67Sr0.33MnO3 nanoparticles have polycrystalline nature with monoclinic structure. FE-SEM results suggested that La0.67Sr0.33MnO3 nanoparticles are assembled into rod like morphology. Magnetization measurements show that La0.67Sr0.33MnO3 nanoparticles exhibit transition temperature (Tc) above room temperature. The maximum magnetic entropy change (deltaS(M))max was found to be 0.52 J/kg K near Tc approximately 325 K at applied magnetc field of 20 kOe. This compound may considered as potential material for magnetic refrigeration near room temperature.

  14. Strongly enhanced current densities in Sr0.6K0.4Fe2As2 + Sn superconducting tapes

    PubMed Central

    Lin, He; Yao, Chao; Zhang, Xianping; Zhang, Haitao; Wang, Dongliang; Zhang, Qianjun; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo

    2014-01-01

    Improving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.6K0.4Fe2As2 + Sn tapes, prepared from optimized precursors, was significantly improved by employing a simple hot pressing as an alternative route for final sintering. The resulting samples exhibited optimal critical temperature (Tc), sharp resistive transition, small resistivity and high Vickers hardness (Hv) value. Consequently, the transport Jc reached excellent values of 5.1 × 104 A/cm2 in 10 T and 4.3 × 104 A/cm2 in 14 T at 4.2 K, respectively. Our tapes also exhibited high upper critical field Hc2 and almost field-independent Jc. These results clearly demonstrate that PIT pnictide wire conductors are very promising for high-field magnet applications. PMID:24663054

  15. [Spectroscopic properties of Er3+ : Ba0.65Sr0.35TiO nanopowders].

    PubMed

    Wu, Ji-qing; Zhang, Tian-jin; Wang, Jing-yang; Yu, Lin; Pan, Rui-kun

    2010-11-01

    Ba0.65Sr0.35TiO2 (BST) nanopowders doped with Er3+ were prepared by sol-gel method. The absorption spectrum and photoluminescence (PL) spectrum of Er3+ : BST nanopowders was measured at room temperature. Based on the Judd-Ofelt theory, the intensity parameters of Er3+ in BST nanopowders were determined, omega2 = 0.993 x 10(-20) cm2, omega4 = 1.665 x 10(-20) cm2 and omega = 0.540 x 10(-20) cm2, and then the values of the line strengths, radiative transition probabilities and branching ratios of Er3+ were calculated. According to the PL spectrum, the emission bands centered at about 522, 545, 654 and 851 nm corresponding to 2H(11/2)-->4S(3/2-->4I(15/2), 4F(9/2)-->4I(15/2), and 4S(3/2-->4I(13/2) transition were observed, and the emission properties were also discussed. The results show that the Er3+ : BST nanomaterials are prospective candidates for applications in new photoelectric devices.

  16. Insulating phase at low temperature in ultrathin La0.8Sr0.2MnO3 films

    PubMed Central

    Feng, Yaqing; Jin, Kui-juan; Gu, Lin; He, Xu; Ge, Chen; Zhang, Qing-hua; He, Min; Guo, Qin-lin; Wan, Qian; He, Meng; Lu, Hui-bin; Yang, Guozhen

    2016-01-01

    Metal-insulator transition is observed in the La0.8Sr0.2MnO3 thin films with thickness larger than 5 unit cells. Insulating phase at lower temperature appeared in the ultrathin films with thickness ranging from 6 unit cells to 10 unit cells and it is found that the Mott variable range hopping conduction dominates in this insulating phase at low temperature with a decrease of localization length in thinner films. A deficiency of oxygen content and a resulting decrease of the Mn valence have been observed in the ultrathin films with thickness smaller than or equal to 10 unit cells by studying the aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy of the films. These results suggest that the existence of the oxygen vacancies in thinner films suppresses the double-exchange mechanism and contributes to the enhancement of disorder, leading to a decrease of the Curie temperature and the low temperature insulating phase in the ultrathin films. In addition, the suppression of the magnetic properties in thinner films indicates stronger disorder of magnetic moments, which is considered to be the reason for this decrease of the localization length. PMID:26928070

  17. Investigation of ferromagnetic heterogeneities in La0.7Sr0.3MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Mercone, S.; Belmeguenai, M.; Malo, S.; Ott, F.; Cayrel, F.; Golosovsky, M.; Leridon, B.; Adamo, C.; Monod, P.

    2017-02-01

    La0.7Sr0.3MnO3 manganite thin films are interesting since they have a fully spin-polarized conduction band at room temperature and this opens the way for applications in electronics. An important issue is their magnetic heterogeneity, which is very difficult to detect. We address here the heterogeneity detection issue in two epitaxial LSMO thin films (57 nm and 90 nm thick) on Si substrate fabricated by reactive molecular beam epitaxy (MBE) deposition. Combining three complementary analytic techniques, we measured structural and magnetic behavior of these films. The high frequency ferromagnetic resonance behavior observed in these two LSMO samples put in evidence a standard dynamic behaviour in the case of the homogeneous material and an uncommon multi-mode behavior in the heterogeneous bi-layered film. The multi-mode behavior can be attributed to the presence of two magnetic sub-layers inside the LSMO film. Indeed, transmission electron microscopy observations and neutron reflectivity measurements are essential to give a microscopic description of the structure and intrinsic magnetic homo/heterogeneity of the composite film.

  18. Critical phenomena in Pr0.6Sr0.4MnO3 perovskite manganese oxide

    NASA Astrophysics Data System (ADS)

    Hcini, Sobhi; Zemni, Sadok; Baazaoui, M.ed; Dhahri, Jamila; Vincent, Henri; Oumezzine, M.ed

    2012-05-01

    We studied the critical phenomena of perovskite-manganite compound Pr0.6Sr0.4MnO3 around its Curie temperature. Experimental results based on magnetic measurements using Banerjee criterion revealed that the sample exhibits the second-order paramagnetic-ferromagnetic transition. It is found that the critical behaviour analysis and Kouvel-Fisher method show that the 3D- Heisenberg model is the best one to describe the critical phenomena around the critical point. Critical exponents β = 0.3785(6) and γ = 1.304(12) at TC = 320 K are obtained. The critical exponent δ = 4.7183(2) is determined separately from the isothermal magnetization at TC. These critical exponents fulfil the Widom scaling relation δ = 1 + γ/β. Based on the critical exponents, the magnetization-field-temperature (M-H-T) data around TC collapses into two curves obeying the single scaling equation M(H,ɛ)=|f(H/|) with ɛ = (T - TC)/TC is the reduced temperature.

  19. Effect of La0.67Sr0.33MnO3 electrodes on organic spin valves

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayani; Huhtinen, H.; Majumdar, H. S.; Laiho, R.; Österbacka, R.

    2008-08-01

    We report the effect of La0.7Sr0.3MnO3 (LSMO) electrodes on the temperature dependence of the magnetoresistance (MR) of LSMO/polymer/cobalt spin valves (SVs). LSMO films have been prepared by pulsed laser deposition on three different single crystal substrates using different deposition parameters. The films were characterized for their surface morphologies, structural, magnetic, and magnetotransport properties. Low deposition rate is found to be detrimental for growth of good quality films and polycrystalline films with grain boundary effects are observed in thicker films. The films on MGO (100) substrate show a broad paramagnetic to ferromagnetic transition, accompanied with a metal-insulator transition below room temperature. This indicates growth of some strained structures due to large lattice mismatch (9%) between the substrate and the film and presence of polycrystalline grain boundaries. The deposited films on STO (100) and NGO (001) show much sharper magnetic transition and metallic behavior indicating higher spin polarization (SP) of LSMO on these substrates at room temperature. SVs made on STO (100) show improvement in switching behavior and better MR response compared to the devices made on MGO (100) at low temperatures. No difference in MR response was found at room temperature in either case. We conclude that the bulk spin polarization of LSMO films is not very important in the SV operation. The loss of most of the SP carriers at the LSMO/organic semiconductor interface at room temperature is a more dominant effect and drastically reduces the MR signal.

  20. Variation of the Ru moment in the Ca(0.3)Sr(0.7)Ru(1-x)Mn(x)O3 system.

    PubMed

    Mizusaki, S; Naito, M; Taniguchi, T; Nagata, Y; Itou, M; Sakurai, Y; Noro, Y; Ozawa, T C; Samata, H

    2010-04-14

    The variation of the magnetic moment on Ru and Mn atoms in the Ca(0.3)Sr(0.7)Ru(1-x)Mn(x)O(3) system was investigated by the magnetic Compton scattering technique using synchrotron radiation. The Ca(0.3)Sr(0.7)Ru(1-x)Mn(x)O(3) system has ferrimagnetism with an antiferromagnetic coupling between Ru and Mn, and the dominant magnetic component changes from ferromagnetic Ru to ferromagnetic Mn at x ∼0.25 as the Mn substitution proceeds. The mechanism for the change in the magnetism of Ca(0.3)Sr(0.7)Ru(1-x)Mn(x)O(3) is discussed.

  1. The Role of Iron in the Enhancement of Negative Magnetoresistance in La0.8Sr0.2FexCo1-xO3-z

    SciTech Connect

    Nemeth, Z.; Homonnay, Z.; Vertes, A.; Hakl, J.; Vad, K.; Meszaros, S.; Lackner, B.; Kellner, K.; Gritzner, G.; Greneche, J.M.; Lindbaum, A.

    2005-04-26

    The role of iron in enhancing the magnetoresistance in the compounds La0.8Sr0.2FexCo1-xO3-z was investigated by studying the electronic and magnetic structure of La0.8Sr0.2FexCo1-xO3-z as a function of temperature. For this purpose 57Fe transmission Moessbauer spectroscopy, magnetoresistance, as well as AC and DC magnetization measurements were applied. The detailed study of the temperature dependence of 57Fe Moessbauer parameters gave possibility to explore correlations between the local electronic and magnetic state of iron and the magnetic susceptibility as well as magnetoresistance in La0.8Sr0.2FexCo1-xO3-z. On the basis of the obtained results an attempt was made to explain the exotic magnetic and MR properties of these perovskites.

  2. Displacement waves in La2CuO(4-delta) and La(1.85)Sr(0.15)CuO(4-delta)

    NASA Astrophysics Data System (ADS)

    Kajitani, Tsuyoshi; Onozuka, Takashi; Yamaguchi, Yasuo; Hirabayashi, Makoto; Syono, Yasuhiko

    1987-11-01

    Structural investigation of orthorhombic La2CuO(4-delta) and La(1.85)Sr(0.15)CuO(4-delta) was carried out by means of X-ray and neutron diffraction on the basis of the space group Cmmm. The periodic expansion/contraction type distortion of CuO6 octahedra was found in both orthorhombic compounds. The distortion is nearly one-dimensional in La2CuO(4-delta) but is two-dimensional in La(1.85)Sr(0.15)CuO(4-delta). The existence of a charge-density wave is highly possible in the structures.

  3. Synthesis and photocatalytic property for H2 production of H1.78Sr0.78Bi0.22Nb2O7 nanosheets

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Li, Yingxuan; Luo, Jianmin; Zhao, He; Zhao, Jie; Dong, Guohui; Zhu, Yunqing; Wang, Chuanyi

    2017-01-01

    The SrBi2Nb2O9 platelets with a thickness of about 600 nm were synthesized by molten salt synthesis method. The treatment of the SrBi2Nb2O9 platelets with hydrochloric acid resulted in the formation of the protonated H1.78Sr0.78Bi0.22Nb2O7 platelets. Through a top-down approach in ethylamine solution, the H1.78Sr0.78Bi0.22Nb2O7 platelets were exfoliated into H1.78Sr0.78Bi0.22Nb2O7 nanosheets with a thickness of about 2.6 nm. The evolution of the structure, composition, morphology, optical, and photocatalytic properties of SrBi2Nb2O9 platelets was studied as it is converted into H1.78Sr0.78Bi0.22Nb2O7 platelets and subsequently exfoliated into H1.78Sr0.78Bi0.22Nb2O7 nanosheets. The absorption edge shifts to a lower wavelength accompanied by the protonation and exfoliation. The photocatalytic H2 evolution of the three samples were evaluated under the irradiation of a 300 W Xenon lamp from CH3OH/H2O solution, indicating that H1.78Sr0.78Bi0.22Nb2O7 nanosheets Exhibit 5.5 and 26.2 times higher activity than that of the H1.78Sr0.78Bi0.22Nb2O7 and SrBi2Nb2O9 platelets, respectively. The enhanced activity for the H1.78Sr0.78Bi0.22Nb2O7 nanosheets is mainly attributed to the higher separation efficiency of the photogenerated carriers and the larger specific surface area caused by the significant reduction in thickness.

  4. Strain-relaxation and critical thickness of epitaxial La1.85Sr0.15CuO4 films

    DOE PAGES

    Meyer, Tricia L; Jiang, Lu; Park, Sungkyun; ...

    2015-12-08

    We report the thickness-dependent strain-relaxation behavior and the associated impacts upon the superconductivity in epitaxial La1.85Sr0.15CuO4 films grown on different substrates, which provide a range of strain. We have found that the critical thickness for the onset of superconductivity in La1.85Sr0.15CuO4 films is associated with the finite thickness effect and epitaxial strain. In particular, thin films with tensile strain greater than ~0.25% revealed no superconductivity. We attribute this phenomenon to the inherent formation of oxygen vacancies that can be minimized via strain relaxation.

  5. Effect of Y doping on magnetic and transport properties of La0.7Sr0.3CoO3

    NASA Astrophysics Data System (ADS)

    Dwivedi, G. D.; Shukla, K. K.; Shahi, P.; Jha, O. K.; Ghosh, A. K.; Nigam, A. K.; Chatterjee, Sandip

    2013-02-01

    The temperature variation of magnetization, resistivity and thermo electric power of undoped and Y-doped La0.7Sr0.3CoO3 samples have been investigated. Y-doping decreases the magnetization possibly due to the spin state transition of Co-ions. The low temperature conduction in (La1-yYy)0.7Sr0.3CoO3 is consistent with the variable range hopping. With Y doping, value of the Seebeck coefficient increases, as Y doping decreases bandwidth and increases distortion.

  6. Evidence for decoupled two-dimensional vortex behavior of YBa2Cu3O7-δ in La0.7Sr0.3MnO3/YBa2Cu3O7-δ/La0.7Sr0.3MnO3 trilayer

    NASA Astrophysics Data System (ADS)

    Samal, D.; Anil Kumar, P. S.

    2010-12-01

    We investigate the vortex behavior of YBa2Cu3O7-δ thin films sandwiched between two ferromagnetic layers (La0.7Sr0.3MnO3/YBa2Cu3O7-δ/La0.7Sr0.3MnO3). The magnetization study on La0.7Sr0.3MnO3/YBa2Cu3O7-δ/La0.7Sr0.3MnO3 trilayers conspicuously shows the presence of both ferromagnetic and diamagnetic phases. The magnetotransport study on the trilayers reveals a significant reduction in the activation energy (U) for the vortex motion in YBa2Cu3O7-δ. Besides, the "U" exhibits a logarithmic dependence on the applied magnetic field which directly indicates the existence of decoupled two-dimensional (2D) pancake vortices present in the CuO2 layers. The evidence of 2D decoupled vortex behavior in La0.7Sr0.3MnO3/YBa2Cu3O7-δ/La0.7Sr0.3MnO3 is believed to arise from (a) the weakening of superconducting coherence length along the c-axis and (b) enhanced intraplane vortex-vortex interaction due to the presence of ferromagnetic layers.

  7. Crystal structures, strain analysis, and physical properties of Sr0.7Ce0.3MnO3

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoming; Kennedy, Brendan J.; Howard, Christopher J.; Carpenter, Michael A.; Miiller, Wojciech; Knight, Kevin S.; Matsuda, Motohide; Miyake, Michihiro

    2012-05-01

    We have studied the crystal structure of mixed-valence Sr0.7Ce0.3MnO3 from 4.2 to 973 K using high-resolution neutron powder diffraction. The crystal structure is tetragonal in space group I4/mcm at 4.2-923 K and cubic in Pm3¯m at T ≥ 948 K. Lattice parameters and Mn-O bond distances, obtained by Rietveld refinement, have been used to derive the spontaneous strains and MnO6 octahedral distortion, which are interpreted in terms of strain/order parameter coupling using a single Landau free-energy expansion for a Pm3¯m reference structure with two instabilities (R4+ and Γ3+). Two phase transitions were proposed: an octahedral tilting transition at Tc,φ ˜ 938 K (Pm3¯m↔ I4/mcm, R4+), and an isosymmetric, electronically driven (Jahn-Teller-like) transition at Tc,JT ˜ 770 K (I4/mcm, R4+ ↔ I4/mcm, R4+ and Γ3+). The nature of the tilting transition appears to be tricritical, while that of the Jahn-Teller-like transition is second order. In addition to the contributions from octahedral tilting and Jahn-Teller-like distortions, there is an excess octahedral distortion at temperatures below 250 K; this is speculated to be associated with an anomaly observed over the temperature range of 275-300 K in the heat-capacity measurements.

  8. Reduction properties of phases in the system La 0.5Sr 0.5MO 3 ( M=Fe, Co)

    NASA Astrophysics Data System (ADS)

    Berry, Frank J.; Marco, José F.; Ren, Xiaolin

    2005-04-01

    Phases formed by the reduction of compounds of the type La 0.5Sr 0.5MO 3 ( M=Fe, Co) have been characterized by means of temperature programmed reduction, X-ray powder diffraction, 57Fe Mössbauer spectroscopy and Fe K-, Co K-, Sr K-, and La L III-edge X-ray absorption spectroscopy. The results show that treatment of the material of composition La 0.5Sr 0.5FeO 3 (which contains 50% Fe 4+ and 50% Fe 3+) at 650 °C in a flowing 90% hydrogen/10% nitrogen atmosphere results in the formation of an oxygen-deficient perovskite-related phase containing only trivalent iron. Further heating in the gaseous reducing environment at 1150 °C results in the formation of the Fe 3+-containing phase SrLaFeO 4, which has a K 2NiF 4-type structure, and metallic iron. The material of composition La 0.5Sr 0.5CoO 3 is more susceptible to reduction than the compound La 0.5Sr 0.5FeO 3 since, after heating at 520 °C in the hydrogen/nitrogen mixture, all the Co 4+ and Co 3+ are reduced to metallic cobalt with the concomitant formation of strontium- and lanthanum-oxides.

  9. Dimensionality of the electronic states in Nd0.45Sr0.55MnO3 studied by soft X-ray photoemission

    NASA Astrophysics Data System (ADS)

    Fujiwara, H.; Sekiyama, A.; Yano, M.; Murakawa, T.; Miyamachi, T.; Tsunekawa, M.; Imada, S.; Schmid, B.; Sing, M.; Higashiya, A.; Muro, T.; Nakamura, T.; Noda, K.; Kuwahara, H.; Miyasaka, S.; Tokura, Y.; Suga, S.

    2007-03-01

    The electronic states of Nd0.45Sr0.55MnO3 in the two-dimensional metal phase have been revealed by the high-resolution Mn 2p-3d resonant photoemission. The vanishingly weak intensity at EF indicates an anomalous metal due to the two-dimensionality of the electronic states.

  10. Blockage of domain growth by nanoscale heterogeneities in a relaxor ferroelectric Sr0.61Ba0.39Nb2O6

    NASA Astrophysics Data System (ADS)

    Pertsev, N. A.; Gainutdinov, R. V.; Bodnarchuk, Ya. V.; Volk, T. R.

    2015-01-01

    The growth of localized subsurface domains in a relaxor ferroelectric Sr0.61Ba0.39Nb2O6 is studied using the technique of piezoresponse force microscopy (PFM). Ferroelectric domains are created by applying moderate voltages of 10-50 V to the conductive tip of a scanning force microscope brought into contact with a nonpolar face of a Sr0.61Ba0.39Nb2O6 crystal. PFM images of written domains are acquired and analyzed quantitatively to determine the domain length along the polar axis and its width in the transverse direction. The dependences of domain sizes on the applied voltage, pulse duration, and the time passed after completion of the voltage pulse are reported and analyzed theoretically. It is shown that the observed kinetics of domain growth can be explained by the creep of domain boundaries occurring in the presence of random electric fields inherent in Sr0.61Ba0.39Nb2O6. The comparison of measured domain sizes with their equilibrium values calculated with the aid of the thermodynamic theory demonstrates that the growth of subsurface domains in Sr0.61Ba0.39Nb2O6 is blocked by nanoscale heterogeneities characteristic of this relaxor ferroelectric. These results may have important implications for the development of nonlinear optical devices based on nanoheterogeneous ferroelectrics.

  11. X-ray photoemission study of the infinite-layer cuprate superconductor Sr(0.9) La (0.1) CuO(2)

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Jung, C. U.; Kim, J. Y.; Kim, M. S.; Lee, S. Y.; Lee, S. I.

    2001-01-01

    The electron-doped infinite-layer superconductor Sr(0.9)La(0.1) CuO(2) is studied with x-ray photoemission spectroscopy (XPS). A nonaqueous chemical etchant is shown to effectively remove contaminants and to yield surfaces from which signals intrinsic to the superconductor dominate.

  12. Self-construction of magnetic hollow La0.7Sr0.3MnO3 microspheres with complex units.

    PubMed

    Chu, Xuefeng; Huang, Keke; Han, Mei; Feng, Shouhua

    2013-04-15

    Perovskite structure La0.7Sr0.3MnO3 magnetic hollow microspheres with complex units were prepared via the hydrothermal route without hard and soft templates. The formation of hollow microspheres follows the self-construction mechanism involving oriented attachment, dissolution, and recrystallization processes. It exhibits a ferromagnetic behavior at room temperature.

  13. Influence of Co-substitution on the structural and magnetic properties of nanocrystalline Ba0.5Sr0.5Fe12O19

    NASA Astrophysics Data System (ADS)

    Ezhil Vizhi, R.; Harikrishnan, V.; Saravanan, P.; Rajan Babu, D.

    2016-10-01

    One-step citrate gel combustion method followed by annealing (800 °C/2 h) was employed to synthesize cobalt substituted barium strontium hexaferrite with a chemical composition of Ba0.5Sr0.5Fe12-xCoxO19 (x=0, 0.5, 0.7, and 0.9). A combination of thermo-gravimetric analysis and differential scanning calorimetry was employed to understand the thermo-chemical behavior of Ba0.5Sr0.5Fe12O19. X-ray diffraction (XRD) was used to evaluate the hexagonal phase evolution for the barium strontium ferrite nanopowders and a formation of secondary phase: α-Fe2O3 is evident for the Ba0.5Sr0.5Fe12O19. Raman spectroscopy confirmed the presence of different sublattices of Fe3+ present in the hexaferrite structure. Fourier transform infrared spectroscopy demonstrated the usual stretching vibrations of tetrahedral and octahedral M-O bands. The morphology and chemical composition of the samples were analyzed by transmission electron microscopy and field emission scanning electron microscopy attached with energy dispersive X-ray analysis, respectively. Selected area electron diffraction studies showed the nanocrystalline nature of the samples. The magnetic parameters such as saturation magnetization MS, coercivity, HC and remanent magnetization, MR were estimated from the hysteresis loops. Maximum value of MS (70.5 emu/g) was obtained for the Ba0.5Sr0.5Fe11.5Co0.5O19 nanoparticles. A possible growth mechanism on the crystallization of Ba0.5Sr0.5Fe12O19 hexagonal platelets during the citrate gel combustion synthesis is highlighted.

  14. Study of magnetic transition and magnetic entropy changes of Pr0.6Sr0.4MnO3 and Pr0.6Sr0.4Mn0.9Fe0.1O3 compounds

    NASA Astrophysics Data System (ADS)

    Nasri, Abir.; Hlil, E. K.; Lehlooh, A.-F.; Ellouze, M.; Elhalouani, F.

    2016-04-01

    In the present work, we analyze the magnetic transition and magnetic entropy change \\vertΔ SM\\vert of Pr0.6Sr0.4Mn1- x Fe x O3 samples. Using Arrott plots, we report that the phase transition for Pr0.6Sr0.4MnO3 sample is of second order, while the Pr0.6Sr0.4Mn0.9Fe0.1O3 sample exhibits a first-order magnetic phase transition. From the magnetization measurements at temperature close to the Curie temperature, the magnetic entropy change, \\vertΔ SM\\vert and the Relative Cooling Power (RCP) have been estimated. The maximum of magnetic entropy change \\vertΔ S_M^{max}\\vert reaches, under an applied magnetic field of 5T, 3.58 and 3.66J/kg K for Pr0.6Sr0.4MnO3 and Pr0.6Sr0.4Mn0.9Fe0.1O3, respectively. The RCP values have been estimated to 159.37 and 223.52J/kg. For both samples, the \\vertΔ SM\\vert values evaluated using the Maxwell theory were found in accordance with those calculated by the Landau theory.

  15. Tailoring magnetic interlayer coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices.

    PubMed

    Ziese, M; Vrejoiu, I; Pippel, E; Esquinazi, P; Hesse, D; Etz, C; Henk, J; Ernst, A; Maznichenko, I V; Hergert, W; Mertig, I

    2010-04-23

    The magnetic interlayer coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices was investigated. High quality superlattices with ultrathin La0.7Sr0.3MnO3 and SrRuO3 layers were fabricated by pulsed laser deposition. The superlattices grew coherently with Mn/Ru intermixing restricted to about one interfacial monolayer. Strong antiferromagnetic interlayer coupling depended delicately on magnetocrystalline anisotropy and intermixing at interfaces. Ab initio calculations elucidated that the antiferromagnetic coupling is mediated by the Mn-O-Ru bond. The theoretical calculations allowed for a quantitative correlation between the total magnetic moment of the superlattice and the degree of Mn/Ru intermixing.

  16. Tuning the dead-layer behavior of La0.67Sr0.33MnO3/SrTiO3 via interfacial engineering

    NASA Astrophysics Data System (ADS)

    Peng, R.; Xu, H. C.; Xia, M.; Zhao, J. F.; Xie, X.; Xu, D. F.; Xie, B. P.; Feng, D. L.

    2014-02-01

    The dead-layer behavior, deterioration of the bulk properties in near-interface layers, restricts the applications of many oxide heterostructures. We present the systematic study of the dead-layer in La0.67Sr0.33MnO3/SrTiO3 grown by ozone-assisted molecular beam epitaxy. Dead-layer behavior is systematically tuned by varying the interfacial doping, while unchanged with varied doping at any other atomic layers. In situ photoemission and low energy electron diffraction measurements suggest intrinsic oxygen vacancies at the surface of ultra-thin La0.67Sr0.33MnO3, which are more concentrated in thinner films. Our results show correlation between interfacial doping, oxygen vacancies, and the dead-layer, which can be explained by a simplified electrostatic model.

  17. Atomic-Scale Electronic Spectra across BiFeO3/La0.7Sr0.3MnO3 Complex Oxide Heterointerfaces

    NASA Astrophysics Data System (ADS)

    Chiu, Ya-Ping; Huang, Bo-Chao; Yu, Pu; Ramesh, Ramamoorthy; Chu, Ying-Hao

    2014-03-01

    Atomic-scale evolution of electronic structures across BiFeO3/La0.7Sr0.3MnO3 complex oxide heterointerfaces has been revealed using cross-sectional scanning tunneling microscopy and spectroscopy. Analysis of scanning tunneling spectroscopy results exploits the interfacial valence mismatch to influence the electrostatic configurations across the BiFeO3/La0.7Sr0.3MnO0.3 heterointerfaces. Spatially unit-cell-by-unit-cell resolved electronic states at the atomic level reveal how the control of material interfaces at the atomic level to determine the ferroelectric polarization in BiFeO3. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

  18. Precise lattice parameter measurements of Sr0.72Ba0.25Nb2O5.97 single crystals

    NASA Astrophysics Data System (ADS)

    Paszkowski, R.; Wokulska, K. B.; Dec, J.; Łukasiewicz, T.

    2014-09-01

    Pure and undoped strontium-barium niobate Sr0.72Ba0.25Nb2O5.97 single crystals grown by the Czochralski method were investigated. Using X-ray Bond's method lattice parameters of this crystals are determined with high accuracy in the order of Δd/d=10-5. Based on the lattice parameter data measured at 298 K it was ascertained that the Sr0.72Ba0.25Nb2O5.97 single crystals belong to the tetragonal system. The additional analysis of the diffraction patterns performed by the Laue method confirmed the occurrence of a four-fold axis of symmetry.

  19. Growth and interface engineering in thin-film Ba0.6Sr0.4TiO3 /SrMoO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Radetinac, Aldin; Ziegler, Jürgen; Vafaee, Mehran; Alff, Lambert; Komissinskiy, Philipp

    2017-04-01

    Epitaxial heterostructures of ferroelectric Ba0.6Sr0.4TiO3 and highly conducting SrMoO3 were grown by pulsed laser deposition on SrTiO3 (0 0 1) substrates. Surface oxidation of the SrMoO3 film is suppressed using a thin cap interlayer of Ba0.6Sr0.4TiO3-δ grown in reduced atmosphere. As shown by X-ray photoelectron spectroscopy, the Mo4+ valence state of the SrMoO3 films is stable upon annealing of the sample in oxygen up to 600 °C. The described oxygen interface engineering enables utilization of the highly conducting material SrMoO3 in multilayer oxide ferroelectric varactors.

  20. Synthesis and electrochemical performance of La0.7Sr0.3Co1-xFexO3 catalysts for zinc air secondary batteries

    NASA Astrophysics Data System (ADS)

    Ahn, Seyoung; Kim, Ketack; Kim, Hyunsoo; Nam, Sangyong; Eom, Seungwook

    2010-05-01

    We prepared La0.7Sr0.3Co1-xFexO3 (x=0.1-0.4) catalysts for a zinc air battery by using the citrate method under controlled pH. The prepared precursor powder was heat treated at the calcination temperature of 700 °C and examined for the optimum structure of the cathode. The structure and performance of the catalysts were examined by x-ray diffraction and a scanning electron microscope. The air electrode was prepared by blending the catalyst, Vulcan XC-72R (carbon black), and (polytetrafluoroethylene PTFE) suspension. The oxygen reduction reaction and the oxygen evolution reaction were examined by linear sweep voltammetry. The results showed that La0.7Sr0.3Co0.7Fe0.3O3 (LSCF0.7) is an excellent catalyst for the zinc air secondary battery.

  1. Oxygen diffusion in Sr0.75Y0.25CoO2.625 : A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Rupasov, D.; Chroneos, A.; Parfitt, D.; Kilner, J. A.; Grimes, R. W.; Istomin, S. Ya.; Antipov, E. V.

    2009-05-01

    Oxygen diffusion in Sr0.75Y0.25CoO2.625 is investigated using molecular dynamics simulations in conjunction with an established set of Born model potentials. We predict an activation energy of diffusion for 1.56 eV in the temperature range of 1000-1400 K. We observe extensive disordering of the oxygen ions over a subset of lattice sites. Furthermore, oxygen ion diffusion both in the a-b plane and along the c axis requires the same set of rate-limiting ion hops. It is predicted that oxygen transport in Sr0.75Y0.25CoO2.625 is therefore isotropic.

  2. The nanoscopic separation of magnetic phases in Cr-doped manganites Pr0.44Sr0.56MnO3

    NASA Astrophysics Data System (ADS)

    Knížek, K.; Jirák, Z.; Hejtmánek, J.; Maryško, M.; Martin, C.; Maignan, A.; Hervieu, M.

    2004-05-01

    Magnetic and electric transport investigation on a Pr0.44+y/2Sr0.56-y/2Mn1-yCryO3 (y=0-0.15) series reveal that the low-temperature state is at lower Cr doping composed of segregated FM and A-type AFM phases while for y>=0.9 a new non-uniform magnetic state is formed, characterized by distinctly higher TC and relatively low saturated moment.

  3. Giant positive magnetoresistance in heterostructure (La0.7Sr0.3MnO3) coated with YBa2Cu3O7 composites

    NASA Astrophysics Data System (ADS)

    Lin, Y. B.; Huang, Z. G.; Yang, Y. M.; Wang, S.; Li, S. D.; Zhang, F. M.; Du, Y. W.

    2011-07-01

    (La0.7Sr0.3MnO3) x /(YBa2Cu3O7) y composites were prepared by mixing La0.7Sr0.3MnO3 powders and the sol-gel-derived YBa2Cu3O7 matrix, followed by high-temperature calcinations. Their structural, magnetic properties and magnetoresistance effect have been investigated systematically. A giant positive magnetoresistance (PMR) at low magnetic field is observed at low temperatures. In the case of (La0.7Sr0.3MnO3)1/(YBa2Cu3O7)9 composite, the PMR achieves 260% under a magnetic field of 5800 Oe. However, the PMR value sharply decreases with increasing temperature and no magnetoresistance effects are found above metal-insulator transition temperature. The enhancement of spin-dependent scattering at the grain boundaries should be responsible for the observed PMR. In addition, the temperature dependence of resistance under magnetic field could be explained by the competition between diamagnetism and paramagnetism in YBCO phase. At low temperature, the diamagnetism is predominant over paramagnetism and the interface scattering between LSMO grains is enhanced correspondingly. As a result, the low-temperature resistance increases and large PMR appears.

  4. Synthesis and characterization of La0.8Sr0.2MO3-δ (M=Mn, Fe, or Co) cathode materials by induction plasma technology

    NASA Astrophysics Data System (ADS)

    Bouchard, D.; Sun, L.; Gitzhofer, F.; Brisard, G. M.

    2006-03-01

    In this work, nanopowders of perovskite cathode materials (La0.8Sr0.2MnO3-δ, La0.8Sr0.2FeO3-δ, and La0.8Sr0.2CoO3-δ), for use in solid oxide fuel cells (SOFC), were successfully synthesized, using induction plasma techniques. Their compositions, structures, morphology, particle size distributions, and BET specific surface areas were determined for comparison with their counterparts prepared by the Pechini method and by the glycine-nitrate combustion (GNC) technique. The particle sizes of the plasma-synthesized powders are mostly around 63 nm. These plasma-synthesized powders are generally globular, their BET specific surface areas being about 26 m2g-1, approximately twice those of powders prepared by the GNC and Pechini methods. These plasma-synthesized powders are readily reproducible and are not agglomerated. Their individual particle sizes and distributions are very independent of their composition.

  5. Electron-Phonon Anomaly Related to Charge Stripes: Static Stripe Phase Versus Optimally Doped Superconducting La1.85Sr0.15CuO4

    NASA Astrophysics Data System (ADS)

    Reznik, D.; Pintschovius, L.; Fujita, M.; Yamada, K.; Gu, G. D.; Tranquada, J. M.

    2007-05-01

    Inelastic neutron scattering was used to study the Cu-O bond-stretching vibrations in optimally doped La1.85Sr0.15CuO4 (Tc = 35 K) and in two other cuprates showing static stripe order at low temperatures, i.e. La1.48Nd0.4Sr0.12CuO4 and La1.875Ba0.125CuO4. All three compounds exhibit a very similar phonon anomaly, which is not predicted by conventional band theory. It is argued that the phonon anomaly reflects a coupling to charge inhomogeneities in the form of stripes, which remain dynamic in superconducting La1.85Sr0.15CuO4 down to the lowest temperatures. These results show that the phonon effect indicating stripe formation is not restricted to a narrow region of the phase diagram around the so-called 1/8 anomaly but occurs in optimally doped samples as well.

  6. Bond-stretching phonon mode in stripe ordered orthorhombic Nd1.67Sr0.33NiO4.

    NASA Astrophysics Data System (ADS)

    Hücker, M.; Fukuda, T.; Gu, G. D.; Tranquada, J. M.; Baron, A. Q. R.; Hill, J. P.

    2007-03-01

    Inelastic x-ray scattering (IXS) experiments on Nd1.67Sr0.33NiO4 have been performed to study electron-phonon interactions in this charge stripe ordered nickelate. Resurgent interest in such phenomena has been triggered by recent results on the high temperature superconductors, where a kink in the electron dispersion as well as striking anomalies in high- energy optical phonon modes have been observed. A significant softening of the bond-stretching-phonon mode for Q||[100] was also observed in the tetragonal nickelate La1.69Sr0.31NiO4 with inelastic neutron scattering. Moreover, this compound shows an apparent splitting of the bond-stretching mode along the [110] direction. Here we present first IXS results for Q||[110] on the orthorhombic compound Nd1.67Sr0.33NiO4, which is characterized by domains with unidirectional stripe order. By probing different spots on the sample with different domain distribution, a weak contrast between the phonon spectra has been observed. We discuss these differences in terms of phonons propagating parallel and perpendicular to the stripe direction, as well as the anisotropic, i.e. orthorhombic, lattice structure.

  7. Spin state and magnetic ordering of half-doped Nd0.5Sr0.5CoO3 cobaltite

    NASA Astrophysics Data System (ADS)

    Reis, M. S.; Rocco, D. L.; Caraballo Vivas, R. J.; Pimentel, B.; Checca, N. R.; Torrão, R.; Paixão, L.; dos Santos, A. M.

    2017-01-01

    Cobaltites show intriguing magnetic and transport properties, when compared with manganites for instance, as they exhibit an additional degree of freedom: the spin state of the Co ions. For Nd0.5Sr0.5CoO3 this spin configuration is not well-established, as well as the magnetic ordering below the Curie temperature. Thus, in the present effort, magnetization measurements and a mean-field theoretical model were developed in order to understand in detail these aspects of the half-doped Nd0.5Sr0.5CoO3 cobaltite. These results show that the Co and Nd magnetic sub-lattices couple antiferromagnetically below Curie temperature Tc=215 K down to very low temperature. These findings clarify the presence of the plateau observed at 80 K on M(T) curve, which is erroneously attributed, in the literature, to the onset of an antiferromagnetic ordering. Magnetization data also clearly shows that Co3+ and Co4+ are in an intermediate spin state. In addition, experimental and theoretical magnetic entropy changes were determined and a comparative analysis among these two leads to ratify the results above claimed. Finally, from all those results, a magnetic phase diagram for Nd0.5Sr0.5CoO3. could be drawn.

  8. Ferroelectric domain wall relaxation in Ba0.25Sr0.75TiO3 films displaying Curie-Weiss behavior

    NASA Astrophysics Data System (ADS)

    Boikov, Yu. A.; Khamchane, K.; Claeson, T.

    2004-10-01

    Ferroelectric films may be used in integrated circuits for high frequency and memory applications. Losses and interfaces between films and electrodes are problematic. This work concerns the temperature and electric field response of the complex dielectric permittivity and the relaxation of domain walls in a ferroelectric layer that is of sufficient quality to show a Curie-Weiss behavior. Laser ablation was used to deposit 1200 nm thick Ba0.25Sr0.75TiO3 layers between metallic oxide, (100 nm) SrRuO3 and (120 nm) La0.67Ca0.33MnO3, films in epitaxial heterostructures. The electric field response (E ⩽80kV/cm) of the real ε' and imaginary ε″ parts of the complex permittivity of the intermediate Ba0.25Sr0.75TiO3 layer in these parallel plane film capacitors was studied at temperatures above and below the phase transition point TCurie. The latter was determined from the temperature dependence of the inverse dielectric permittivity and its value, TCurie=145K, agrees well with that of bulk single crystal. ε' of the Ba0.25Sr0.75TiO3 layer could be suppressed about 80% by a field E =80kV/cm at temperatures close to TCurieε'(T,E) and ε″(T,E) curves were used to gain insight into the relaxation dynamics of ferroelectric domain walls (DW) in the Ba0.25Sr0.75TiO3 layer. Their influence on ε' was noticed up to T =230K, well above TCurie. The most probable relaxation time τ of the DW in Ba0.25Sr0.75TiO3 follows a relation τ =τ0exp[(ϕ-β√E )/kT], where τ0=1.2×10-10sϕ=75-105meV, and β =4.7×10-24Jm1/2V-1/2.

  9. Interface ferromagnetism and orbital reconstruction in BiFeO3-La0.7Sr0.3MnO3 heterostructures

    SciTech Connect

    Yu, P; Lee, J.-S.; Okamoto, Satoshi; Rossell, M.D.; Huijben, M.; Yang, C.-H.; He, Q; Zhang, J.-X.; Yang, S.Y.; Lee, M.J.; Ramasse, Q.M.; Erni, R.; Chu, Y.-H.; Arena, D.A.; Kao, C.-C.; Martin, L.W.; Ramesh, R

    2010-01-01

    We report the formation of a novel ferromagnetic state in the antiferromagnet BiFeO3 at the interface with ferromagnet La0.7Sr0.3MnO3. Using x-ray magnetic circular dichroism at Mn and Fe L2,3 edges, we discovered that the development of this ferromagnetic spin structure is strongly associated with the onset of a significant exchange bias. Our results demonstrate that the magnetic state is directly related to an electronic orbital reconstruction at the interface, which is supported by the linearly polarized x-ray absorption measurement at the oxygen K edge.

  10. Perpendicular Exchange-Biased Magnetotransport at the Vertical Heterointerfaces in La(0.7)Sr(0.3)MnO3:NiO Nanocomposites.

    PubMed

    Zhang, Wenrui; Li, Leigang; Lu, Ping; Fan, Meng; Su, Qing; Khatkhatay, Fauzia; Chen, Aiping; Jia, Quanxi; Zhang, Xinghang; MacManus-Driscoll, Judith L; Wang, Haiyan

    2015-10-07

    Heterointerfaces in manganite-based heterostructures in either layered or vertical geometry control their magnetotransport properties. Instead of using spin-polarized tunneling across the interface, a unique approach based on the magnetic exchange coupling along the vertical interface to control the magnetotransport properties has been demonstrated. By coupling ferromagnetic La0.7Sr0.3MnO3 and antiferromagnetic NiO in an epitaxial vertically aligned nanocomposite (VAN) architecture, a dynamic and reversible switch of the resistivity between two distinct exchange biased states has been achieved. This study explores the use of vertical interfacial exchange coupling to tailor magnetotransport properties, and demonstrates their viability for spintronic applications.

  11. Temperature dependence of the mid-infrared absorption in La 1.84Sr 0.16NiO 4+δ

    NASA Astrophysics Data System (ADS)

    Crandles, D. A.; Timusk, T.; Garret, J. D.; Greedan, J. E.

    1993-10-01

    The reflectance of a La 1.84Sr 0.16Ni 4+δ crystal has been measured between 115 cm -1 and 5500 cm -1 with the electric-field vector in the ab-plane for several temperatures between 80 and 300 K. On the basis of the Kramers-Kronig derived optical conductivity data we show that it is unlikely that small-polaron absorption can account for the mid-infrared absorption, as had been previously suggested. A doped-semiconductor model is also considered.

  12. Significant enhancement in energy density of polymer composites induced by dopamine-modified Ba0.6Sr0.4TiO3 nanofibers

    NASA Astrophysics Data System (ADS)

    Song, Yu; Shen, Yang; Hu, Penghao; Lin, Yuanhua; Li, Ming; Nan, C. W.

    2012-10-01

    Ba0.6Sr0.4TiO3 (BST) nanofibers prepared via electrospinning and modified by dopamine are used as dielectric fillers in polyvinylidene fluoride (PVDF)-based composites. With 4.4 vol. % of BST nanofibers, the extractable energy density of the BST/PVDF composites is more than doubled as compared with pure PVDF matrix. Such significant enhancement is attributed to the combined effect of both surface modification by dopamine and large aspect ratio of the BST nanofibers. Paraelectric or anti-ferroelectric fillers of large aspect ratio may serve as a general strategy for enhanced electric energy density in polymer composites.

  13. Optical properties of Ag nanoparticles embedded Ba0.5Sr0.5TiO3 films prepared by alternating pulsed laser deposition.

    PubMed

    Kim, Ji-Suk; Lee, Kyeong-Seok; Kim, Sang Sub

    2006-11-01

    Nanocomposite thin films consisting of nanometer-sized Ag particles embedded in amorphous Ba0.5Sr0.5TiO3 matrix were prepared on fused silica substrates by an alternating pulsed laser deposition method. Their optical nonlinearities have been studied using the Z-scan method. The surface plasmon resonance (SPR) peak shifts to red and increases with the increasing the volume fraction of Ag in the nanocomposite films. The magnitude of the third-order nonlinear susceptibility of the nanocomposite with an Ag volume fraction of 3.3% was calculated to be approximately 2 x 10(-8) esu at the SPR wavelength.

  14. Relation between oxygen stoichiometry and thermodynamic properties and the electronic structure of nonstoichiometric perovskite La0.6Sr0.4CoO3-δ.

    PubMed

    Bychkov, S F; Sokolov, A G; Popov, M P; Nemudry, A P

    2016-10-26

    Continuous phase diagram 3 - δ - log pO2 - T of the nonstoichiometric perovskite La0.6Sr0.4CoO3-δ was obtained in a gas flow reactor by means of the quasi-equilibrium oxygen release technique. The thermodynamic properties of oxides were determined as a function of oxygen nonstoichiometry. Within the framework of the itinerant electron model, the dependence of the oxide nonstoichiometry on the oxygen activity was related to the density of electronic states near the Fermi level.

  15. Bond-stretching-phonon anomalies in stripe-ordered La1.69Sr0.31NiO4.

    PubMed

    Tranquada, J M; Nakajima, K; Braden, M; Pintschovius, L; McQueeney, R J

    2002-02-18

    We report a neutron scattering study of bond-stretching phonons in La1.69Sr0.31NiO4, a doped antiferromagnet in which the added holes order in diagonal stripes at 45 to the Ni-O bonds. For the highest-energy longitudinal optical mode along the bonds, a softening of 20% is observed between the Brillouin zone center and the zone boundary. At 45 to the bonds, a splitting of the same magnitude is found across much of the zone. Surprisingly, the charge-ordering wave vector plays no apparent role in the anomalous dispersions. The implications for related anomalies in the cuprates are discussed.

  16. Hard X-ray diffraction study of charge stripe order in La1.48Nd0.4Sr0.12CuO4

    NASA Astrophysics Data System (ADS)

    Zimmermann, M. v.; Vigliante, A.; Niemöller, T.; Ichikawa, N.; Frello, T.; Madsen, J.; Wochner, P.; Uchida, S.; Andersen, N. H.; Tranquada, J. M.; Gibbs, D.; Schneider, J. R.

    1998-03-01

    High-energy photon diffraction is used to investigate the charge ordering previously studied by neutron diffraction in La1.48Nd0.4Sr0.12CuO4. Besides confirming the existence of superlattice peaks due to charge order, the temperature dependence of the peak intensity, width, and position has been determined with improved precision. Furthermore, we show that the scattered intensity has a sinusoidial modulation along c*, consistent with long-range Coulomb interactions between ordered charges within the CuO2 planes.

  17. Influence of damping constant on inverse spin hall voltage of La0.7Sr0.3MnO3(x)/platinum bilayers.

    PubMed

    Luo, G Y; Chang, C R; Lin, J G

    2014-05-07

    Pure spin transport via spin pumping in the condition of ferromagnetic resonance can be transformed to charge current in the ferromagnetic/paramagnetic bilayer systems, based on inverse spin Hall effect (ISHE). Here, we explore La0.7Sr0.3MnO(x)/Pt(5.5 nm) [x = 10 to 65 nm] bilayers to investigate the influence of damping constant on spin pumping efficiency. The results show that the ISHE voltage depend on the damping constant of magnetic moment, suggesting that the precession energy tansferred to lattice/electron of normal metal is a key parameter to control the magnitude of spin current.

  18. Characterization of (Ba(0.5)Sr(0.5)) TiO3 Thin Films for Ku-Band Phase Shifters

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; VanKeuls, Fredrick W.; Romanofsky, Robert R.; Miranda, Felix A.; Warner, Joseph D.; Canedy, Chadwick L.; Ramesh, Rammamoorthy

    1999-01-01

    The microstructural properties of (Ba(0.5)Sr(0.5)TiO3) (BSTO) thin films (300, 700, and 1400 nm thick) deposited on LaAlO3 (LAO) substrates were characterized using high-resolution x-ray diffractometry. Film crystallinity was the parameter that most directly influenced tunability, and we observed that a) the crystalline quality was highest in the thinnest film and progressively degraded with increasing film thickness; and b) strain at the film/substrate interface was completely relieved via dislocation formation. Paraelectric films such as BSTO offer an attractive means of incorporating low-cost phase shifter circuitry into beam-steerable reflectarray antennas.

  19. Impact of interfacial coupling of oxygen octahedra on ferromagnetic order in La0.7Sr0.3MnO3/SrTiO3 heterostructures

    PubMed Central

    Li, Xiaoyan; Lindfors-Vrejoiu, Ionela; Ziese, Michael; Gloter, Alexandre; van Aken, Peter A.

    2017-01-01

    La0.7Sr0.3MnO3, a half-metallic ferromagnet with full spin polarization, is generally used as a standard spin injector in heterostructures. However, the magnetism of La0.7Sr0.3MnO3 is strongly modified near interfaces, which was addressed as “dead-layer” phenomenon whose origin is still controversial. Here, both magnetic and structural properties of La0.7Sr0.3MnO3/SrTiO3 heterostructures were investigated, with emphasis on the quantitative analysis of oxygen octahedral rotation (OOR) across interfaces using annular-bright-field imaging. OOR was found to be significantly altered near interface for both La0.7Sr0.3MnO3 and SrTiO3, as linked to the magnetism deterioration. Especially in La0.7Sr0.3MnO3/SrTiO3 superlattices, the almost complete suppression of OOR in 4 unit-cell-thick La0.7Sr0.3MnO3 results in a canted ferromagnetism. Detailed comparisons between strain and OOR relaxation and especially the observation of an unexpected La0.7Sr0.3MnO3 lattice c expansion near interfaces, prove the relevance of OOR for the magnetic properties. These results indicate the capability of tuning the magnetism by engineering OOR at the atomic scale. PMID:28074836

  20. Impact of interfacial coupling of oxygen octahedra on ferromagnetic order in La0.7Sr0.3MnO3/SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Lindfors-Vrejoiu, Ionela; Ziese, Michael; Gloter, Alexandre; van Aken, Peter A.

    2017-01-01

    La0.7Sr0.3MnO3, a half-metallic ferromagnet with full spin polarization, is generally used as a standard spin injector in heterostructures. However, the magnetism of La0.7Sr0.3MnO3 is strongly modified near interfaces, which was addressed as “dead-layer” phenomenon whose origin is still controversial. Here, both magnetic and structural properties of La0.7Sr0.3MnO3/SrTiO3 heterostructures were investigated, with emphasis on the quantitative analysis of oxygen octahedral rotation (OOR) across interfaces using annular-bright-field imaging. OOR was found to be significantly altered near interface for both La0.7Sr0.3MnO3 and SrTiO3, as linked to the magnetism deterioration. Especially in La0.7Sr0.3MnO3/SrTiO3 superlattices, the almost complete suppression of OOR in 4 unit-cell-thick La0.7Sr0.3MnO3 results in a canted ferromagnetism. Detailed comparisons between strain and OOR relaxation and especially the observation of an unexpected La0.7Sr0.3MnO3 lattice c expansion near interfaces, prove the relevance of OOR for the magnetic properties. These results indicate the capability of tuning the magnetism by engineering OOR at the atomic scale.

  1. Effect of Synthesis Temperature on Structure and Magnetic Properties of (La,Nd)0.7Sr0.3MnO3 Nanoparticles.

    PubMed

    Shlapa, Yulia; Solopan, Sergii; Bodnaruk, Andrii; Kulyk, Mykola; Kalita, Viktor; Tykhonenko-Polishchuk, Yulia; Tovstolytkin, Alexandr; Belous, Anatolii

    2017-12-01

    Two sets of Nd-doped La0.7Sr0.3MnO3 nanoparticles were synthesized via sol-gel method with further heat treatment at 1073 and 1573 K, respectively. Crystallographic and magnetic properties of obtained nanoparticles were studied, and the effect of synthesis conditions on these properties was investigated. According to X-ray data, all particles crystallized in the distorted perovskite structure. Magnetic parameters, such as saturation magnetization, coercivity, Curie temperature, and specific loss power, which is released on the exposure of an ensemble of nanoparticles to AC magnetic field, were determined for both sets of samples. The correlation between the values of Curie temperature and maximal heating temperature under AC magnetic field was found. It was revealed that for the samples synthesized at 1573 K, the dependences of crystallographic and magnetic parameters on Nd content were monotonous, while for the samples synthesized at 1073 K, they were non-monotonous. It was concluded that Nd-doped La0.7Sr0.3MnO3 nanoparticles are promising materials for self-controlled magnetic hyperthermia applications, but the researchers should be aware of the unusual behavior of the particles synthesized at relatively low temperatures.

  2. Epitaxial Ferroelectric Ba(0.5)Sr(0.5)TiO3 Thin Films for Room-Temperature High-Frequency Tunable Element Applications

    NASA Technical Reports Server (NTRS)

    Chen, C. L.; Feng, H. H.; Zhang, Z.; Brazdeikis, A.; Miranda, F. A.; VanKeuls, F. W.; Romanofsky, R. R.; Huang, Z. J.; Liou, Y.; Chu, W. K.; Chu, C. W.

    1999-01-01

    Perovskite Ba(0.5)SR(0.5)TiO3 thin films have been synthesized on (001) LaAl03 substrates by pulsed laser ablation. Extensive X-ray diffraction, rocking curve, and pole-figure studies suggest that the films are c-axis oriented and exhibit good in-plane relationship of <100>(sub BSTO)//<100>(sub LAO). Rutherford Backscattering Spectrometry studies indicate that the epitaxial films have excellent crystalline quality with an ion beam minimum yield chi(sub min) Of only 2.6 %. The dielectric property measurements by the interdigital technique at 1 MHz show room temperature values of the relative dielectric constant, epsilon(sub r), and loss tangent, tan(sub delta), of 1430 and 0.007 with no bias, and 960 and 0.001 with 35 V bias, respectively. The obtained data suggest that the as-grown Ba(0.5)SR(0.5)TiO3 films can be used for development of room-temperature high-frequency tunable elements.

  3. Effect of Synthesis Temperature on Structure and Magnetic Properties of (La,Nd)0.7Sr0.3MnO3 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shlapa, Yulia; Solopan, Sergii; Bodnaruk, Andrii; Kulyk, Mykola; Kalita, Viktor; Tykhonenko-Polishchuk, Yulia; Tovstolytkin, Alexandr; Belous, Anatolii

    2017-02-01

    Two sets of Nd-doped La0.7Sr0.3MnO3 nanoparticles were synthesized via sol-gel method with further heat treatment at 1073 and 1573 K, respectively. Crystallographic and magnetic properties of obtained nanoparticles were studied, and the effect of synthesis conditions on these properties was investigated. According to X-ray data, all particles crystallized in the distorted perovskite structure. Magnetic parameters, such as saturation magnetization, coercivity, Curie temperature, and specific loss power, which is released on the exposure of an ensemble of nanoparticles to AC magnetic field, were determined for both sets of samples. The correlation between the values of Curie temperature and maximal heating temperature under AC magnetic field was found. It was revealed that for the samples synthesized at 1573 K, the dependences of crystallographic and magnetic parameters on Nd content were monotonous, while for the samples synthesized at 1073 K, they were non-monotonous. It was concluded that Nd-doped La0.7Sr0.3MnO3 nanoparticles are promising materials for self-controlled magnetic hyperthermia applications, but the researchers should be aware of the unusual behavior of the particles synthesized at relatively low temperatures.

  4. In-plane structural order of domain engineered La0.7Sr0.3MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Boschker, J. E.; Monsen, Å. F.; Nord, M.; Mathieu, R.; Grepstad, J. K.; Holmestad, R.; Wahlström, E.; Tybell, T.

    2013-05-01

    We present a detailed structural study of tensile-strained La0.7Sr0.3MnO3 thin films. We use the substrate miscut to control the number of rhombohedral variants in the films and study the in-plane order and structural distortions. Using high-resolution X-ray diffraction, we demonstrate that step-edge induced lattice modulations occur in 4-variant films, whereas periodic twinning is the dominant in-plane order for 2-variant films. We show that the in-plane twinning angle is almost completely relaxed. However, the relaxation of shear strain by the out-of-plane twinning angle and the monoclinic distortion is only partial. Furthermore, the film thickness dependence of the domain width reveals that domain formation is a universal mechanism for shear strain relaxation. Finally, we show that the structural response to the transition from the paramagnetic to the ferromagnetic phase of La0.7Sr0.3MnO3 at 345 K is smaller in 4-variant films compared to 2-variant films.

  5. Preparation of Ba0.09Sr0.91TiO3/YBa2Cu3O7-x bilayers and investigation of their dielectric properties

    NASA Astrophysics Data System (ADS)

    Jia, Jiqiang; Zhao, Gaoyang; Shi, Xiaoxue; Lei, Li

    2016-08-01

    YBa2Cu3O7-x (YBCO) films of 110 nm thickness were prepared on LaAlO3 (LAO) substrates via the sol-gel method. Subsequently, about 400 nm thick Ba0.09Sr0.91TiO3 (BST) films were epitaxially grown on the YBCO and LNO films surface; the BST films exhibited a strong c-axis orientation. The dielectric adjustability and relative dielectric constant was investigated in the range of 300-83 K. Results indicate that the tunability of the Ba0.09Sr0.91TiO3/YBa2Cu3O7-x (BST/YBCO) displayed an increase relative to c-axis-oriented BST on LaNiO3 (LNO). The tunability was further enhanced as the operating temperature decreased, yet the loss tangent (tanδ) decreased. The tunability and the tanδ at 100 kHz and 83 K were 58% and 0.029, respectively.

  6. Phase transformation, dielectric and magnetic properties of Nb doped Bi0.8Sr0.2FeO3 multiferroics

    NASA Astrophysics Data System (ADS)

    Reetu, Agarwal, Ashish; Sanghi, Sujata; Ashima, Ahlawat, Neetu; Monica

    2012-06-01

    Bi0.8Sr0.2Fe1-xNbxO3 (x = 0.0, 0.05, and 0.10) multiferroics were prepared by solid state reaction method. X-ray diffraction and Rietveld analysis show that crystal structure is rhombohedral for x = 0.0, 0.05 samples and triclinic for x = 0.10 sample. These samples showed dispersion in dielectric constant (έ) and dielectric loss (tan δ) values at lower frequencies. For x = 0.05 sample, both έ and tan δ are lower than for Bi0.8Sr0.2FeO3 sample indicating its high resistivity. For x = 0.10 sample, the value of έ is enhanced which may be due to formation of stronger dipoles in triclinic structure. Temperature dependence of frequency exponent "s" of power law suggests that correlated barrier hopping (CBH) model is applicable at lower temperatures and quantum mechanical tunneling model is appropriate at higher temperatures for describing the conduction mechanism in x = 0.0 and x = 0.05 samples; while in x = 0.10 sample, CBH model is appropriate in studied temperature range. Significant enhancement observed in magnetization for x = 0.10 sample is due to the structural phase transition from rhombohedral to triclinic caused by Nb substitution. For this sample, values of remnant magnetization (Mr) and coercive field (Hc) are 0.155 emu/g and 2.695 kOe, respectively.

  7. Electrical Characteristics and Preparation of (Ba0.5Sr0.5)TiO3 Films by Spray Pyrolysis and Rapid Thermal Annealing

    NASA Astrophysics Data System (ADS)

    Koo, Horng-Show; Chen, Mi; Ku, Hong-Kou; Kawai, Tomoji

    2007-04-01

    Functional films of (Ba0.5Sr0.5)TiO3 on Pt (1000 Å)/Ti (100 Å)/SiO2 (2000 Å)/Si substrates are prepared by spray pyrolysis and subsequently rapid thermal annealing. Barium nitrate, strontium nitrate and titanium isopropoxide are used as starting materials with ethylene glycol as solvent. For (Ba0.5Sr0.5)TiO3 functional thin film, thermal characteristics of the precursor powder scratched from as-sprayed films show a remarkable peak around 300-400 °C and 57.7% weight loss up to 1000 °C. The as-sprayed precursor film with coffee-like color and amorphous-like phase is transformed into the resultant film with white, crystalline perovskite phase and characteristic peaks (110) and (100). The resultant films show correspondent increases of dielectric constant, leakage current and dissipation factor with increasing annealing temperatures. The dielectric constant is 264 and tangent loss is 0.21 in the resultant films annealed at 750 °C for 5 min while leakage current density is 1.5× 10-6 A/cm2 in the film annealed at 550 °C for 5 min.

  8. Structure and magnetotransport properties in plasma-sprayed La 0.78Sr 0.22MnO 3 thick film

    NASA Astrophysics Data System (ADS)

    Orlando, M. T. D.; Cunha, A. G.; Freitas, J. C. C.; Orlando, C. G. P.; Bud'ko, S.; Giordanengo, B.; Sato, I. M.; Martinez, L. G.; Baggio-Saitovitch, E. M.

    2002-04-01

    Thick films of La 0.78Sr 0.22MnO 3 were produced by the plasma-spray technique onto stainless-steel substrate at 930°C. These films were obtained without the use of bond-layer, buffer-layer and annealing after deposition. The compound was deposited by a plasma-spray torch using nitrogen as the working gas. The films with thickness varying from 20 to 60 μm have good adherence and are composed of large splats with high degree of interconnection and small number of defects, as revealed by scanning electron microscopy. X-ray diffractometry analysis of the as-deposited film revealed that it had the same crystal structure as the original bulk. Measurements of electrical resistivity versus temperature for the film revealed a magnetic transition temperature near 340 K, with a ferromagnetic/metallic behavior below this temperature. The magnetoresistance of La 0.78Sr 0.22MnO 3 films exhibited similar magnetic field dependence as compared to the bulk sample, which indicates that the plasma-spray technique can be successfully employed for the deposition of thick films of manganites on large-area substrates while maintaining the main bulk properties.

  9. A New Ba0.6 Sr0.4 TiO3 -Silicon Hybrid Metamaterial Device in Terahertz Regime.

    PubMed

    Wu, Liang; Du, Ting; Xu, Ningning; Ding, Chunfeng; Li, Hui; Sheng, Quan; Liu, Ming; Yao, Jianquan; Wang, Zhiyong; Lou, Xiaojie; Zhang, Weili

    2016-05-01

    Metamaterials, offering unprecedented functionalities to manipulate electromagnetic waves, have become a research hotspot in recent years. Through the incorporation of active media, the exotic electromagnetic behavior of metamaterials can be dramatically empowered by dynamic control. Many ferroelectric materials such as BaSrTiO3 (abbreviated as BST), exhibiting strong response to external electric field, hold great promise in both microwave and terahertz tunable devices. A new active Ba0.6 Sr0.4 TiO3 -silicon hybrid metamaterial device, namely, a SRR (square split-ring resonator)-BaSrTiO3 thin film-silicon three-layer structure is fabricated and intensively studied. The active Ba0.6 Sr0.4 TiO3 thin film hybrid metamaterial, with nanoscale thickness, delivers a transmission contrast up to ≈79% due to electrically enabled carrier transport between the ferroelectric thin film and silicon substrate. This work has significantly increased the low modulation rate of ferroelectric based devices in terahertz range, a major problem in this field remaining unresolved for many years. The proposed BST metamaterial is promising in developing high-performance real world photonic devices for terahertz technology.

  10. Ferroelectric and magnetic properties of multiferroic BiFeO3-La0.7Sr0.3MnO3 heterostructures integrated with Si (100)

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Prater, J. T.; Nori, S.; Kumar, D.; Lee, Bongmook; Misra, V.; Narayan, J.

    2015-05-01

    We report on the electrical, ferroelectric, and magnetic properties of BiFeO3 (BFO)-La0.7Sr0.3MnO3 heterostructures deposited epitaxially onto Si(100) substrates. Temperature dependent (200-350 K) current-voltage (I-V), switching spectroscopy piezo-response force microscopy (SSPFM), and temperature dependent (5-300 K) anisotropic magnetization measurements have been performed. The BFO (100-nm thick)-based device structures were fabricated with a 250 nm thick La0.7Sr0.3MnO3 bottom electrode and 200 μm circular top Pt electrodes. I-V measurements performed at various temperatures indicated that the devices retained their as-deposited characteristics and exhibited non-leaky behavior up to at least 50 cycles. The temperature-dependent measurements showed clear diode-like behavior and resistive (hysteretic) switching behaviour. Characteristic butterfly loops (of several cycles) were observed in the PFM amplitude signals of the BFO film. In addition, the phase signal indicated a clear (180°) switching behavior at the switching voltage of 4-5 V, providing unambiguous evidence for the occurrence of ferroelectricity in BFO films integrated on Si (100). The temperature- and angle-dependent zero field cooled isothermal (5 K) magnetization measurements were consistent with the presence of uniaxial magnetic anisotropy. This work makes an important step for the fabrication of CMOS-compatible BFO devices for memory applications.

  11. Atomic-Scale Tunneling Spectra across BiFeO3/La0.7Sr0.3MnO3 Heterointerfaces

    NASA Astrophysics Data System (ADS)

    Chiu, Ya-Ping; Huang, Bo-Chao; Yu, Pu; Chang, Chia-Seng; Chu, Ying-Hao

    2015-03-01

    Atomic-level evolution of electronic structures across BiFeO3/La0.7Sr0.3MnO3 complex oxide heterointerfaces has been demonstrated by cross-sectional scanning tunneling microscopy and spectroscopy in this work. Analysis of scanning tunneling spectroscopy results exploits how the change in the terminated interface brings the influence to the electrostatic configurations across the BiFeO3/La0.7Sr0.3MnO3 heterointerfaces. Spatially unit-cell-by-unit-cell resolved electronic states at the atomic level reveal that the control of material interfaces at the atomic level determines the ferroelectric polarization in BiFeO3. The precise electronic information therefore provides a clear realization about the electronic state at these complex-oxide heterointerfaces, which is crucial to understand and design a host of novel functionalities at complex oxide heterointerfaces. Affilication 2: Department of Physics, National Sun Yat-sen University, Kaohsiung 804, Taiwan.

  12. Magnetic transition behavior of perovskite manganites Nd0.5Sr0.3Ca0.2MnO3 polycrystalline

    NASA Astrophysics Data System (ADS)

    Ru, Xing; Su-Lei, Wan; Wen-Qing, Wang; Lin, Zheng; Xiang, Jin; Min, Zhou; Yi, Lu; Jian-Jun, Zhao

    2016-04-01

    A polycrystalline sample Nd0.5Sr0.3Ca0.2MnO3 is prepared by the conventional solid state reaction method. The structure and magnetic properties are investigated with x-ray diffraction (XRD) patterns, a superconducting quantum interference device (SQUID), and electron spin resonance (ESR). The sample is in single phase with the space group Pbnm symmetry. With the decrease of temperature, Nd0.5Sr0.3Ca0.2MnO3 undergoes three magnetic transitions: ferromagnetic transition at T C ≈ 210 K, charge-ordering at T CO ≈ 175 K, and antiferromagnetic transition at T N = 155 K. In addition, the activation energy E a ≈ 52.78 meV can be extracted by curve fitting. Project supported by the National Natural Science Foundation of China (Grant Nos. 11164019, 51562032, and 61565013), the Inner Mongolia Natural Science Foundation, China (Grant Nos. 2015MS0109, NJZZ11166, and NJZY12202), and the Science and Technology in Baotou Production-Study-Research Cooperation Projects, China (Grant No. 2014X1014-01).

  13. Fabrication and Properties of Cr2O3 and La0.7Sr0.3MnO3 Thin Film Heterostructures Integrated on Si(001)

    NASA Astrophysics Data System (ADS)

    Punugupati, Sandhyarani

    Spintronics that utilizes both the spin and charge degrees of freedom of an electron is emerged as an alternate memory technology to conventional CMOS electronics. Many proposed spintronic devices require multifunctional properties in a single material. The oxides Cr2O3 and La0.7Sr0.3MnO3 are such materials which exhibit unique physical properties at room temperature. The Cr2O3 is an antiferromagnetic and magnetoelectric material below its Neel temperature 307K. The La0.7Sr0.3MnO3 is a ferromagnetic half metal with a Curie temperature of 360K and exhibits colossal magnetoresistance. However, the reach of this spintronic technology into more device applications is possible only when these materials in epitaxial thin film form are integrated with Si(001) which is the mainstay substrate in semiconductor industry. The primary objective of this dissertation was to integrate epitaxial Cr2O3, La0.7Sr0.3MnO3 and Cr2O3/La0.7Sr0.3MnO3 thin film heterostructure on Si(001) and, study their physical properties to investigate structure-processing-property relationship in these heterostructures. The epitaxial integration of Cr2O3 thin films on Si(001) was done using epitaxial cubic yttria stabilized zirconia (c-YSZ) buffer layer by pulsed laser deposition. Detailed structural characterizations XRD (2theta and phi) and TEM confirm the epitaxial nature of the films. Though bulk Cr2O3 is antiferromagnetic along the c-axis, the in-plane magnetization measurements on Cr2O3(0001) thin films showed ferromagnetic behavior up to 400K. The thickness dependent magnetization together with oxygen annealing results suggested that the in-plane ferromagnetism in Cr2O3 was due to the oxygen related defects whose concentration is controlled by strain in the films. The out-of-plane magnetic measurements on Cr2O3(0001) films showed magnetic behavior indicative of antiferromagnetic nature. To verify whether ferromagnetism can be induced by strain in Cr 2O3 thin films with orientation other than (0001

  14. Leakage current limiting mechanisms and ferroelectric properties of BiAlO3/La0.67Sr0.33MnO3 heterostructure

    NASA Astrophysics Data System (ADS)

    Zhao, Yanan; Luo, Bingcheng; Chen, Changle; Xing, Hui; Wang, Jianyuan; Jin, Kexin

    2017-03-01

    The BiAlO3/La0.67Sr0.33MnO3 heterostructure was deposited on LaAlO3 (111) substrate by pulse laser deposition technology. X-ray diffraction measurement indicates that BiAlO3 thin films belong to tetragonal phase. Two different leakage current mechanisms, i.e., Space Charge Limited Current and Schottky emission models are observed in J-E characteristics of BiAlO3/La0.67Sr0.33MnO3 heterostructure in different temperature regions, respectively. The ferroelectric hysteresis loops measured by positive-up negative-down method show intrinsic remnant polarization (2Pr = 2.4 μC/cm2) at the applied electric field of 750 kV/cm, with the 80 nm thickness of BiAlO3 thin films at room temperature. The domain imagines and local piezoelectric hysteresis loops obtained by Piezoresponse Force Microscopy technique further reveal the intrinsic ferroelectricity of. BiAlO3 thin films at room temperature.

  15. Field-induced magnetic phase transition in Pr3+ doped Sm0.5Sr0.5MnO3 manganites

    NASA Astrophysics Data System (ADS)

    Giri, S. K.; Nath, T. K.

    2013-05-01

    Magnetic properties of Pr3+ doped Sm0.5Sr0.5MnO3 manganite with the variation of particle size down to 30 nm have been investigated in detail. We have critically examined the magnetic field (H) dependence of the order of the ferromagnetic (FM) to paramagnetic (PM) phase transition in this Sm0.35Pr0.15Sr0.5MnO3 manganite. It has been shown that all the particle sizes (bulk to nano) exhibit first order FM → PM phase transition under low magnetic field accompanied by magnetization with thermal hysteresis in the field cooled cooling and warming cycle. However, the samples exhibit a second order magnetic phase transition above a critical field HCR. Again with decreasing the particle size, the ferromagnetic transition temperature, the thermal hysteresis width in the magnetizations, and the critical field HCR significantly decrease, which indicate that the ferromagnetism is weakened and the first-order magnetic phase transition is softened. We have also used the Banerjee criteria to distinguish the first-order magnetic phase transition from the second-order one. A detailed analysis of the magnetization measurements of this manganite reveal the disorder-induced softening of the first order phase transition in this phase separated manganite.

  16. Internal electrical and strain fields influence on the electrical tunability of epitaxial Ba0.7Sr0.3TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Bagdzevicius, S.; Mackeviciute, R.; Ivanov, M.; Fraygola, B.; Sandu, C. S.; Setter, N.; Banys, J.

    2016-03-01

    Perpetual demand for higher transfer speed and ever increasing miniaturization of radio and microwave telecommunication devices demands new materials with high electrical tunability. We have investigated built in electrical and strain fields' influence on the electrical tunability in Ba0.7Sr0.3TiO3 thin film hetero-system grown by pulsed laser deposition technique. We observed the built in electrical field by local piezo-force microscopy (as deflected hysteresis loops) and macroscopic impedance analysis (as asymmetric tunability curves), with the calculated 88 kV/cm built in field at room temperature. Negative -1.4% misfit strain (due to clamping by the substrate) enhanced ferroelectric phase transition temperature in Ba0.7Sr0.3TiO3 thin film by more than 300 K. Built in fields do not deteriorate functional film properties—dielectric permittivity and tunability are comparable to the best to date values observed in Ba1-xSrxTiO3 thin films.

  17. Structural, transport, magnetic and thermal properties of La0.7Ca0.24Sr0.06MnO3 single crystal

    NASA Astrophysics Data System (ADS)

    Bodhaye, Ashish; Sanyal, Sankar P.; Mukovskii, Y. M.

    2008-04-01

    La0.7Ca0.24Sr0.06MnO3 single crystals with high quality have been prepared by using floating zone technique. The structural, transport, magnetic and thermal properties of the hole doped La0.7Ca0.24Sr0.06MnO3 single crystal, have been studied using various experimental techniques. The resistivity data shows the metal to insulator transition (MI) occurs at TMI = 281 K along the c-axis and TMI = 270 K along the ab-plane. It is observed that the TMI data is higher along the C-axis as compared to that in the ab-plane, thus indicating more favourable hoping of electrons is along the c-axis. This MI transition and large magnetoresistance peak 79% is closely near to the ferromagnetic—paramagnetic transition Tc, which was confirmed from the magnetization data (at ˜275 K), it was also confirmed from the ac susceptibility data (at ˜275 K) and the specific heat data (at ˜270 K), which in term is indicative of the onset of long range order. The entropy change associated with this transition is found to be 2.3 J/mol K. For bolometric applications point of view, the temperature coefficient of resistance (TCR) along ab-plane is found ˜23%K-1.

  18. Estimation of Joule heating and its role in nonlinear electrical response of Tb0.5Sr0.5MnO3 single crystal

    NASA Astrophysics Data System (ADS)

    Nhalil, Hariharan; Elizabeth, Suja

    2016-12-01

    Highly non-linear I-V characteristics and apparent colossal electro-resistance were observed in non-charge ordered manganite Tb0.5Sr0.5MnO3 single crystal in low temperature transport measurements. Significant changes were noticed in top surface temperature of the sample as compared to its base while passing current at low temperature. By analyzing these variations, we realize that the change in surface temperature (ΔTsur) is too small to have caused by the strong negative differential resistance. A more accurate estimation of change in the sample temperature was made by back-calculating the sample temperature from the temperature variation of resistance (R-T) data (ΔTcal), which was found to be higher than ΔTsur. This result indicates that there are large thermal gradients across the sample. The experimentally derived ΔTcal is validated with the help of a simple theoretical model and estimation of Joule heating. Pulse measurements realize substantial reduction in Joule heating. With decrease in sample thickness, Joule heating effect is found to be reduced. Our studies reveal that Joule heating plays a major role in the nonlinear electrical response of Tb0.5Sr0.5MnO3. By careful management of the duty cycle and pulse current I-V measurements, Joule heating can be mitigated to a large extent.

  19. Field emission of silicon emitter arrays coated with sol-gel (Ba0.65Sr0.35)1-xLaxTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Lu, H.; Pan, J. S.; Chen, X. F.; Zhu, W. G.

    2007-07-01

    (Ba0.65Sr0.35)1-xLaxTiO3 (BSLT) thin films with different La concentrations have been deposited on Si field emitter arrays (FEAs) using sol-gel technology for field electron emission applications. The films exhibit the perovskite structure at low La substitution level (x ≤0.5) and the pyrochlore phase at high La concentration (x ≥0.75). The 30-nm-thick BSLT (x =0.25) thin film has higher crystallinity of perovskite structure in the surface region. An x-ray photoelectron spectroscopy study indicates that the oxygen vacancy concentration decreases with La substitution. With respect to the undoped Ba0.65Sr0.35TiO3 thin film, the Fermi level shifts down for the BSLT sample with x =0.1 ascribed to the decreasing oxygen vacancy concentration, and then shifts up for the BSLT sample with x =0.25 attributed to the increasing La substitution level. In highly doped films with an x value over 0.5, it shifts down again associated with the second pyrochlore phase formation. The best enhancement in field emission is found for the BSLT-coated (x =0.25) Si FEAs due to the improved perovskite structure in the surface region and up-moved Fermi level of the coating.

  20. Promoted CO2-poisoning resistance of La0.8Sr0.2MnO3-δ-coated Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Qiu, Peng; Wang, Ao; Li, Jin; Li, Zongbao; Jia, Lichao; Chi, Bo; Pu, Jian; Li, Jian

    2016-09-01

    The solution impregnation technology was used to prepare a novel core-shell structure cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). The core was composed of porous Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) backbone with high oxygen conductivity, while the dense shell consisted of La0.8Sr0.2MnO3-δ (LSM) high catalytic activity and the excellent CO2-poisoning resistance. The presence of the dense LSM shell prevented the BSCF cathode from being poisoned by CO2, and improved its electrochemical performance. The best performance was achieved when the BSCF cathode was impregnated twice in the LSM precursor solution and coated by LSM shell.

  1. La(0.8)Sr(0.2)MnO(3-δ) decorated with Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ): a bifunctional surface for oxygen electrocatalysis with enhanced stability and activity.

    PubMed

    Risch, Marcel; Stoerzinger, Kelsey A; Maruyama, Shingo; Hong, Wesley T; Takeuchi, Ichiro; Shao-Horn, Yang

    2014-04-09

    Developing highly active and stable catalysts based on earth-abundant elements for oxygen electrocatalysis is critical to enable efficient energy storage and conversion. In this work, we took advantage of the high intrinsic oxygen reduction reaction (ORR) activity of La(0.8)Sr(0.2)MnO(3-δ) (LSMO) and the high intrinsic oxygen evolution reaction (OER) activity of Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) (BSCF) to develop a novel bifunctional catalyst. We used pulsed laser deposition to fabricate well-defined surfaces composed of BSCF on thin-film LSMO grown on (001)-oriented Nb-doped SrTiO3. These surfaces exhibit bifunctionality for oxygen electrocatalysis with enhanced activities and stability for both the ORR and OER that rival the state-of-the-art single- and multicomponent catalysts in the literature.

  2. La0.8Sr0.2Fe0.8Cu0.2O3-δ as “cobalt-free” cathode for La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte

    NASA Astrophysics Data System (ADS)

    Zurlo, Francesca; Di Bartolomeo, Elisabetta; D'Epifanio, Alessandra; Felice, Valeria; Natali Sora, Isabella; Tortora, Luca; Licoccia, Silvia

    2014-12-01

    A "cobalt-free" cathode material with stoichiometric composition La0.8Sr0.2Fe0.8Cu0.2O3-δ (LSFCu) was specifically developed for use with La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolyte in intermediate temperature solid oxide fuel cell (IT-SOFC) systems. The chemical stability of LSFCu in contact with LSGM electrolyte was investigated by structural and morphological analysis. The electrochemical properties of LSFCu dense pellets were investigated in the temperature range 600-750 °C by electrochemical impedance spectroscopy (EIS). LSFCu|LSGM|LSFCu symmetrical cells were prepared and area specific resistance (ASR) values, directly depending on the rate limiting step of the oxygen reduction reaction, were evaluated. Fuel cells were prepared using LSFCu as cathode material on a LSGM pellet and electrochemical tests were performed in the 700-800 °C temperature range and compared to similar fuel cells prepared by using commercial La0.6Sr0.4Fe0.8Co0.2O3-δ (LSFCo) as a cathode. The maximum current density and power density recorded for LSFCu and LSFCo were similar. This fact demonstrates that Cu can be used as Co substitute in perovskite cathode materials.

  3. Spin Gap in the Zigzag Spin-1/2 Chain Cuprate Sr0.9Ca0.1CuO2

    NASA Astrophysics Data System (ADS)

    Hammerath, F.; Nishimoto, S.; Grafe, H.-J.; Wolter, A. U. B.; Kataev, V.; Ribeiro, P.; Hess, C.; Drechsler, S.-L.; Büchner, B.

    2011-07-01

    We report a comparative study of Cu63 nuclear magnetic resonance spin lattice relaxation rates T1-1 on undoped SrCuO2 and Ca-doped Sr0.9Ca0.1CuO2 spin chain compounds. A temperature independent T1-1 is observed for SrCuO2 as expected for an S=1/2 Heisenberg chain. Surprisingly, we observe an exponential decrease of T1-1 for T<90K in the Ca-doped sample evidencing the opening of a spin gap. The data analysis within the J1-J2 Heisenberg model employing density-matrix renormalization group calculations suggests an impurity driven small alternation of the J2-exchange coupling as a possible cause of the spin gap.

  4. The fabrication of thermoelectric La0.95Sr0.05CoO3 nanofibers and Seebeck coefficient measurement.

    PubMed

    Xu, Weihe; Shi, Yong; Hadim, Hamid

    2010-10-01

    The P-type perovskite oxides La(1-x)Sr(x)CoO(3) are a promising group of complex oxide thermoelectric (TE) materials. The thermoelectric properties of these oxides are expected to be significantly improved when their critical dimensions are reduced to the nanoscale. In this paper, the La(0.95)Sr(0.05)CoO(3) nanofibers, with diameters in the range of approximately 35 nm, were successfully prepared by the electrospinning process. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize these thermoelectric nanofibers. A micro-electromechanical (MEMS) tester was designed and fabricated to measure the Seebeck coefficient of the nanofibers. The measured voltage output was as large as 1.7 mV and the obtained Seebeck coefficient of the nanofibers reached 650 microV K(-1).

  5. The pressure dependence of Tc in the infinite-layer electron-doped compound Sr 0.84Nd 0.16CuO 2

    NASA Astrophysics Data System (ADS)

    Wooten, C. L.; Beom-hoan, O.; Markert, J. T.; Smith, M. G.; Manthiram, A.; Zhou, J.; Goodenough, J. B.

    1992-03-01

    We report the effect of nearly hydrostatic pressure in the range 0-20 kbar on the resistively determined superconducting transition temperature Tc of the recently discovered infinite-layer electron-doped copper-oxide compound Sr 0.84ND 0.16CuO 2. In contrast to other electron-doped copper oxides, we observe a positive and appreciable change in Tc with pressure with value {dT c}/{dP }=+0.06±0.02 K/kbar. Thus the sign and magnitude of {dT c}/{dP} are not dominated by the carrier type; in this compound, we suggest they are determined by a pressure-induced enhancement of the interlayer coupling.

  6. Tailoring the solar absorptivity of thermochromic material La0.7Ca0.2Sr0.1MnO3

    NASA Astrophysics Data System (ADS)

    Fan, Desong; Li, Qiang; Xuan, Yimin

    2011-12-01

    La0.7Ca0.2Sr0.1MnO3 is a thermochromic material which can be used as thermal control device. However, its solar absorptivity is too high for that in spacecraft application. To reduce its solar absorptivity, an optical thin film is designed in this paper by using simulated annealing genetic algorithm. This film can effectively reflect the solar radiation at the short wave and can be transparent at long wave. A designed optical thin film is deposited on the surface of thermochromic material by electron beam evaporation. Experiments show that the solar absorptivity is reduced from 0.78 to 0.28 at short wave, and the transmissivity is 0.87 at long wave. The results match pretty well with the theoretical predictions in a global view.

  7. Crystal-Orientation-Modulated Exchange Bias in Orthorhombic-YMnO3/La0.6Sr0.4MnO3 Multiferroic Heterostructures.

    PubMed

    Zheng, Dongxing; Gong, Junlu; Jin, Chao; Li, Peng; Bai, Haili

    2015-07-15

    The magnetic properties of the all-oxide multiferroic heterostructures composed of orthorhombic YMnO3 (YMO) with E-type antiferromagnetic and double-exchange ferromagnetic (FM) La0.6Sr0.4MnO3 (LSMO) were studied. An orientation-modulated exchange bias effect, which is related to the interfacial Mn-O-Mn bond angle, was discovered. Because of the large bond angle in YMO/LSMO(100) heterostructures, a strong exchange coupling at the interface is formed. This strong exchange coupling sustains an FM phase in YMO at the interface region. The FM phase with strong magnetocrystalline anisotropy contributes to the vertical shift and exchange bias effect in (100) orientation heterostructures. When LSMO (110) and (111) were layered with YMO, the Mn-O-Mn bond angle was reduced, leading to a weakened exchange coupling at the interface, and only a relatively small exchange bias at low temperatures was visible.

  8. Saturation of resistivity and Kohler's rule in Ni-doped La1.85Sr0.15CuO4 cuprate

    NASA Astrophysics Data System (ADS)

    Malinowski, A.; Bezusyy, V. L.; Nowicki, P.

    2017-01-01

    We present the results of electrical transport measurements of La1.85Sr0.15Cu1 -yNiyO4 thin single-crystal films at magnetic fields up to 9 T. Adding Ni impurity with strong Coulomb scattering potential to a slightly underdoped cuprate makes the signs of resistivity saturation at ρsat visible in the measurement temperature window up to 350 K. Employing the parallel-resistor formalism reveals that ρsat is consistent with the classical Ioffe-Regel-Mott limit and changes with carrier concentration n as ρsat∝1 /√{n } . Thermopower measurements show that Ni tends to localize mobile carriers, decreasing their effective concentration as n ≅0.15 -y . The classical unmodified Kohler's rule is fulfilled for magnetoresistance in the nonsuperconducting part of the phase diagram when applied to the ideal branch in the parallel-resistor model.

  9. Synthesis, characterization and low field magnetotransport of Nd0.6Sr0.4MnO3/CrO3 composite

    NASA Astrophysics Data System (ADS)

    Ahmed, A. M.; Mohamed, H. F.; Diab, A. K.; Mohamed, Sara A.

    2017-02-01

    (Nd0.6Sr0.4MnO3)1-x/(CrO3)x with x = 0.0-0.030 step 0.005 weight% composites have been prepared by the solid state reaction process. The X-ray and scanning electron microscopic manifest that all composites are a single orthorhombic phase and there are no CrO3 grains separated from NdSrMnO matrix. The electrical measurements have revealed an increase of resistivity and a decrease of metal semiconductor transition with increasing CrO3. The composite x = 0.025 has largest magnetoresistance nearly one hundred percent at room temperature.

  10. Large oxygen-isotope effect in Sr0.4K0.6BiO3: Evidence for phonon-mediated superconductivity

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Meng; Conder, K.; Angst, M.; Kazakov, S. M.; Karpinski, J.; Maciejewski, M.; Bougerol, C.; Pshirkov, J. S.; Antipov, E. V.

    2000-11-01

    The oxygen-isotope effect has been investigated in a recently discovered superconductor Sr0.4K0.6BiO3. This compound has a distorted perovskite structure and becomes superconducting at about 12 K. Upon replacing 16O with 18O by 60-80 %, the Tc of the sample is shifted down by 0.32-0.50 K, corresponding to an isotope exponent of αO=0.40(5). This isotope exponent is very close to that for a similar bismuthate superconductor Ba1-xKxBiO3 with Tc=30 K. The very distinctive doping and Tc dependencies of αO observed in bismuthates and cuprates suggest that bismuthates should belong to conventional phonon-mediated superconductors while cuprates might be unconventional superconductors.

  11. Enhanced ferromagnetic and metal insulator transition in Sm0.55Sr0.45MnO3 thin films: Role of oxygen vacancy induced quenched disorder

    NASA Astrophysics Data System (ADS)

    Srivastava, M. K.; Siwach, P. K.; Kaur, A.; Singh, H. K.

    2010-11-01

    Effect of quenched disorder (QD) caused by oxygen vacancy (OV) and substrate induced inhomogeneous compressive strain, on the magnetic and transport properties of oriented polycrystalline Sm0.55Sr0.45MnO3 thin films is investigated. QD is related intimately to the ordering/disordering of the OVs and controls the paramagnetic-ferromagnetic/insulator-metal transition. OV ordered films show enhanced TC/TIM˜165 K, which is depressed by oxygen annealing. OV disordering realized by quenching reduces TC/TIM. The first order IM transition observed in SSMO single crystals is transformed into nonhysteretic and continuous one in the OV ordered films. QD appears to be diluted by OV disorder/annihilation and results in stronger carrier localization.

  12. Induced Ti magnetization at La0.7Sr0.3MnO3 and BaTiO3 interfaces

    DOE PAGES

    Liu, Yaohua; Tornos, J.; te Velthuis, S. G. E.; ...

    2016-04-01

    In artificial multiferroics hybrids consisting of ferromagnetic La0.7Sr0.3MnO3 (LSMO) and ferroelectric BaTiO3 epitaxial layers, net Ti moments are found from polarized resonant soft x-ray reflectivity and absorption. Moreover, the Ti dichroic reflectivity follows the Mn signal during the magnetization reversal, indicating exchange coupling between the Ti and Mn ions. But, the Ti dichroic reflectivity shows stronger temperature dependence than the Mn dichroic signal. Besides a reduced ferromagnetic exchange coupling in the interfacial LSMO layer, this may also be attributed to a weak Ti-Mn exchange coupling that is insufficient to overcome the thermal energy at elevated temperatures.

  13. Optimization on photoelectric detection based on stacked La0.9Sr0.1MnO3-δ/LaAlO3-δ multijunctions

    NASA Astrophysics Data System (ADS)

    Xing, Jie; Ying Hao, Hui; Jia Guo, Er; Yang, Fang

    2011-08-01

    Three multijunctions consisting of La0.9Sr0.1MnO3-δ and LaAlO3-δ on Si substrate have been fabricated under different oxygen pressures by laser molecular beam epitaxy. They exhibit nonlinear and rectifying current-voltage characteristics and evident photocurrent response to He-Ne laser illumination. Experimental results indicate that the periodically stacked multijunction grown under lower oxygen pressure shows a better rectification behavior and a higher photocurrent. The photovoltaic responsivities of the multijunctions are enhanced greatly at reverse bias and are much higher than that of a similarly grown single p-n junction. Based on the band structure of the multilayers, a possible mechanism of the photovoltaic process was proposed. A high photovoltage responsivity of 168.6 mV/mW has been achieved at - 6 V bias; this demonstrates the potential of the present multijunction configuration for photodetectors operating at room temperature.

  14. Magnetic and calorimetric investigations of inverse magnetocaloric effect in Pr0.46Sr0.54MnO3

    NASA Astrophysics Data System (ADS)

    Naik, V. B.; Barik, S. K.; Mahendiran, R.; Raveau, B.

    2011-03-01

    We investigated magnetic entropy change (ΔSm) in the A-type antiferromagnet Pr0.46Sr0.54MnO3 by magnetic and differential scanning calorimetry (DSC) methods. The field-induced antiferromagnetic to ferromagnetic transition is first-order in nature and is accompanied by a large change in the latent heat as evidenced by the DSC data. The ΔSm shows an inverse magnetocaloric effect (ΔSm=+9 J kg-1 K-1 for ΔH =7 T) around the Neel temperature (TN=210±2 K) by magnetic measurement, which closely agrees with the calorimetric results. It is suggested that the large positive ΔSm results from a field-induced structural transition that accompanies the destruction of antiferromagnetism.

  15. Thickness and field dependent superconductivity in YBa2Cu3O7/La0.7Sr0.3MnO3 bilayers

    NASA Astrophysics Data System (ADS)

    Lin, J. G.; Hsu, Daniel; Song, M. Y.; Chiang, C. H.; Chan, W. C.

    2010-05-01

    Transport and magnetization properties of superconducting/ferromagnetic bilayers YBa2Cu3O7/La0.7Sr0.3MnO3 (YBCO/LSMO) are investigated with the thickness of bottom LSMO layer fixed at 50 nm and that of top YBCO (t) layer varied from 20 to 100 nm. Compared to bulk YBCO, the off set of superconducting temperature TSC-off is suppressed by 10 K for t =20 nm. The suppression rate of TSC versus magnetic field H is obtained as 1.2±0.2 K/T for all bilayers. Considering the polarization effect of LSMO on superconductivity is similar to the field effect, the internal field created by the LSMO in the YBCO(20nm)/LSMO(50nm) bilayer is estimated as 40 T.

  16. A novel counter electrode material of La0.5Sr0.5CoO3 for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhong, Yongfeng; Qin, Tianze; Yang, Bo; Zuo, Xueqin; Li, Guang; Wu, Mingzai; Ma, Yongqing; Jin, Shaowei; Zhu, Kerong

    2016-11-01

    In this work, La0.5Sr0.5CoO3 (LSCO) perovskite oxide with perfect crystallinity was successfully synthesized via a sol-gel method and then used as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The DSSCs with LSCO CEs exhibited excellent electrocatalytic activity for the triiodide reduction and yielded a power conversion efficiency of 7.17%, which is greater than that of the Pt electrode (7.06%). Compared with the hydrothermal method and solvothermal method, sol-gel method is more suitable for large scale preparation. This work should open up a new class of CE materials for low-cost and high-efficiency DSSCs.

  17. Ultra-low magnetic damping of perovskite La0.7Sr0.3MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Qin, Qing; He, Shikun; Song, Wendong; Yang, Ping; Wu, Qingyun; Feng, Yuan Ping; Chen, Jingsheng

    2017-03-01

    The perovskite La0.7Sr0.3MnO3 (LSMO) films grown on different substrates were investigated by an angle resolved broadband ferromagnetic resonance technique. All films exhibited a four-fold magnetocrystalline anisotropy, which is in accord with the crystal structure. Moreover, a perpendicular uniaxial anisotropy changed from the (001)pc easy plane to the [001]pc easy direction when the strain of LSMO films varies from tensile to compressive. The ultra-low magnetic damping constant of 5.2 × 10-4 was obtained for a 44.6 nm LSMO film on an NdGaO3 (110) substrate. The breathing Fermi surface model in which the damping constant is proportional to the density of states at Fermi energy is the dominant mechanism for the intrinsic magnetic relaxation.

  18. Current dependence of the magnetoresistance in a colloidal-sphere-masked ion-milled La0.67Sr0.33MnO3 thin film

    NASA Astrophysics Data System (ADS)

    Li, J.; Zheng, D. N.; Rao, X. S.; Sow, C. H.; Chen, L.; Ong, C. K.

    2004-03-01

    An epitaxial La0.67Sr0.33MnO3 thin film covered with a monolayer of colloidal spheres was ion-milled so that structural discontinuities were involved. Nonlinear V-I characteristics have been observed, revealing that the zero-field resistance of the sample decreases with increasing measuring current I. In a magnetic field, however, the resistance varies non-monotonically with I. An inflexion appears around I = 50 nA. Accordingly, the magnetoresistance also correlates with I. A maximum value as high as - 700% (ΔR/RH) is recorded at liquid nitrogen in 1.5 T when I = 1 nA. The drastic current dependence of the magnetoresistance is believed to come from the ion-milling induced structural and magnetic disorders and to be related to the inelastic scattering of the spin-polarized electrons at the disorders. The possible underlying mechanisms are discussed in detail.

  19. Direct Evidence for the Suppression of Charge Stripes in Epitaxial {La1.67Sr0.33NiO4} Films

    SciTech Connect

    Xie,C.; Budnick, J.; Hines, W.; Wells, B.; He, F.; Moodenbaugh, A.

    2008-01-01

    We have successfully grown epitaxial La1.67Sr0.33NiO4 films with a small crystalline mosaic using pulsed laser deposition. With synchrotron radiation, the x-ray-diffraction peaks associated with charge stripes have been successfully observed for relatively thick films. Anomalies due to the charge-ordering transition have been examined using four-point probe resistivity measurements. X-ray scattering provides direct evidence for suppression of the stripe phase in thinner samples; the phase disappears for film thicknesses 2600 Angstroms. The suppression appears to be a result of shrinking the stripe phase domains. This may reflect the stripe phase progressing from nematic to isotropic.

  20. Influence of strain on an epitaxial ferroelectric (Ba0.50Sr0.50)TiO3 nanodot under different electrical boundary conditions

    NASA Astrophysics Data System (ADS)

    Bin-Omran, S.

    2017-02-01

    A first-principles-derived effective Hamiltonian approach is used to reveal the temperature-versus-misfit strain phase diagram of an epitaxial (Ba0.50Sr0.50)TiO3 dot under different electrical boundary conditions. The results indicate that the electrical polarization and toroidal moment are highly sensitive to the applied strain and/or electrical boundary conditions, resulting in a wide variety of phases that are not found in a free-standing BST dot and in bulk. The calculations indicate that within a narrow range of surface charge screening an intermediate phase in which the polarization and toroidal moment coexist. The dependences of the electrical polarization, toroidal moment and dielectric permittivity on the misfit strain and electrical boundary conditions at room temperature are also investigated and compared with the available theoretical predictions and experimental measurements.

  1. Magnetic field penetration depth of La(1.85)Sr(0.15)CuO4 measured by muon spin relaxation

    NASA Technical Reports Server (NTRS)

    Kossler, W. J.; Kempton, J. R.; Yu, X. H.; Schone, H. E.; Uemura, Y. J.

    1987-01-01

    Muon-spin-relaxation measurements have been performed on a high-Tc superconductor La(1.85)Sr(0.15)CuO4. In an external transverse magnetic field of 500 G, a magnetic field penetration depth of 2000 A at T = 10 K has been determined from the muon-spin-relaxation rate which increased with decreasing temperature below Tc. From this depth and the Pauli susceptibility, the superconducting carrier density is estimated at 3 x 10 to the 21st per cu cm. The zero-field relaxation rates above and below Tc were equal, which suggests that the superconducting state in this sample is not associated with detectable static magnetic ordering.

  2. Microstructural and dielectric properties of Ba0.6Sr0.4Ti1-xZrxO3 based combinatorial thin film capacitors library

    NASA Astrophysics Data System (ADS)

    Liu, Guozhen; Wolfman, Jérôme; Autret-Lambert, Cécile; Sakai, Joe; Roger, Sylvain; Gervais, Monique; Gervais, François

    2010-12-01

    Epitaxial growth of Ba0.6Sr0.4Ti1-xZrxO3 (0≤x≤0.3) composition spread thin film library on SrRuO3/SrTiO3 layer by combinatorial pulsed laser deposition (PLD) is reported. X-ray diffraction and energy dispersive x-ray spectroscopy studies showed an accurate control of the film phase and composition by combinatorial PLD. A complex evolution of the microstructure and morphology with composition of the library is described, resulting from the interplay between epitaxial stress, increased chemical pressure, and reduced elastic energy upon Zr doping. Statistical and temperature-related capacitive measurements across the library showed unexpected variations in the dielectric properties. Doping windows with enhanced permittivity and tunability are identified, and correlated to microstructural properties.

  3. Elastic anomalies in a La 1.85Sr 0.15CuO 4 single crystal under high magnetic fields

    NASA Astrophysics Data System (ADS)

    Hanaguri, Tetsuo; Fukase, Tetsuo; Suzuki, Takao; Tanaka, Isao; Kojima, Hironao

    1994-02-01

    Temperature dependence of the sound velocity Vs in a La 1.85Sr 0.15CuO 4 single crystal has been measured in the ( c11 - c12)/2 mode and in the c33 mode under high magnetic fields up to 23T. In the field above 6T, Vs in the ( c11 - c12)/2 mode anomalously decreases with decreasing temperature, followed by the increase below about 10K. In the c33 mode, similar behavior of Vs can be observed above 20T. Such a temperature dependence of Vs may suggest the existence of a strain sensitive narrow band near the Fermi level or a phase transition related to the flux line lattice.

  4. Critical current densities of Sr0.6K0.4Fe2As2 superconductors estimated from AC susceptibilities

    NASA Astrophysics Data System (ADS)

    Setoyama, Subaru; Kinoshita, Junichi; Akune, Tadahiro; Sakamoto, Nobuyoshi; Murakami, Kouji; Yoshida, Nobuyuki; Kiuchi, Masaru; Otabe, Edmund Soji; Matsushita, Teruo; Ge, Jun; Ni, Baorong; Wang, Lei; Qi, Yanpeng; Zhang, Xianping; Gao, Zhaoshun; Ma, Yanwei

    2013-01-01

    AC susceptibilities (real χ‧ and imaginary χ″) of Sr0.6K0.4Fe2As2 (122 type) polycrystalline with Ag addition are analysed by the grained Bean model. A variety of characteristics, double peak in χ″ and shoulder transition in χ‧, appear in the model simulation. Comparing the measured χ‧ and χ″ with the model allows more clear insight on the polycrystalline structure. Estimated critical current densities Jcg and Jcℓ of the grain and the link in the iron-based pnictides show that the addition of 20 wt.% Ag increases Jcℓ 9 times larger. Improvement of intergrain characteristics with Ag addition is clearly indicated.

  5. Magnetism, superconductivity, and the volume collapse transition in (Ca0.67Sr0.33)Fe2As2 under pressure

    NASA Astrophysics Data System (ADS)

    Jeffries, Jason; Butch, N. P.; Saha, S. R.; Kirshenbaum, K.; Weir, S. T.; Vohra, Y. K.; Paglione, J.

    2012-02-01

    The alkaline earth site of CaFe2As2 can be chemically substituted with Sr, forming a homogeneous solid solution series ending with SrFe2As2. It is found that (Ca0.67Sr0.33)Fe2As2 exhibits a pressure-temperature phase diagram intermediate between the two end members of the series, shifting the phase lines for the suppression of magnetism, the development of superconductivity, and the occurrence of a volume collapse transition to higher pressures. The overall shift in the pressure-temperature phase diagram permits the study of each phase field, yielding valuable information about the correlations between local atomic structure, magnetism, superconductivity, and the volume collapse transition. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

  6. Charge density wave excitations in stripe-type charge ordered Pr0.5Sr0.5MnO3 manganite

    NASA Astrophysics Data System (ADS)

    Rana, Rakesh; Rana, D. S.; Mavani, K. R.; Kawayama, I.; Murakami, H.; Tonouchi, M.

    2012-12-01

    We show that a charge-density wave mode submerged in large conductivity of the stripe-type charge-ordered (CO) crystal of Pr0.5Sr0.5MnO3 (PSMO) can be extracted by exciting selective crystallographic planes using polarized terahertz field. Low energy (1-7 meV) dynamics have been explored in the (100), (110), and (111) epitaxial films of PSMO manganite. Of (110) and (111) films representing bulk-like CO, the former exhibits a peak in the conductivity-energy spectrum with attributes of charge-density wave mode along a specific in-plane axis. On the contrary, the CO (111) and the phase-separated (100) films lack this low energy mode but exhibit a Drude-like spectral behavior in the metallic regime. These studies reveal a variety in isothermal charge dynamics originating from the anisotropic nature of the stripe charge-order.

  7. Orbital Reconstruction Enhanced Exchange Bias in La0.6Sr0.4MnO3/Orthorhombic YMnO3 Heterostructures

    PubMed Central

    Zheng, Dongxing; Jin, Chao; Li, Peng; Wang, Liyan; Feng, Liefeng; Mi, Wenbo; Bai, Haili

    2016-01-01

    The exchange bias in ferromagnetic/multiferroic heterostructures is usually considered to originate from interfacial coupling. In this work, an orbital reconstruction enhanced exchange bias was discovered. As La0.6Sr0.4MnO3 (LSMO) grown on YMnO3 (YMO) suffers a tensile strain (a > c), the doubly degenerate eg orbital splits into high energy 3z2 − r2 and low energy x2 − y2 orbitals, which makes electrons occupy the localized x2 − y2 orbital and leads to the formation of antiferromagnetic phase in LSMO. The orbital reconstruction induced antiferromagnetic phase enhances the exchange bias in the LSMO/YMO heterostructures, lightening an effective way for electric-field modulated magnetic moments in multiferroic magnetoelectric devices. PMID:27090614

  8. Evolution of photoinduced effects in phase-separated Sm0.5Sr0.5Mn1−yCryO3 thin films

    PubMed Central

    Chai, Xiaojie; Xing, Hui; Jin, Kexin

    2016-01-01

    Systematic study on electrical transport properties has been performed in Sm0.5Sr0.5Mn1−yCryO3 thin films illuminated by the light. An evolution of persistent and transient photoinduced effects induced by the impurity doping and temperature has been observed, which is closely related to the number of ferromagnetic clusters. The maximum persistent photoinduced effect is observed at y = 0.08 and the corresponding value is about 61.7% at the power density of 13.7 mW/mm2. The underlying mechanism can be understood by the coexistence and competition of the multiphases in phase-separated manganites induced by Cr-doping. These results would pave the way for practical applications in innovative photoelectric devices of all-oxides. PMID:27001006

  9. Isotropic Kink and Quasiparticle Excitations in the Three-Dimensional Perovskite Manganite La_{0.6}Sr_{0.4}MnO_{3}.

    PubMed

    Horiba, Koji; Kitamura, Miho; Yoshimatsu, Kohei; Minohara, Makoto; Sakai, Enju; Kobayashi, Masaki; Fujimori, Atsushi; Kumigashira, Hiroshi

    2016-02-19

    In order to reveal the many-body interactions in three-dimensional perovskite manganites that show colossal magnetoresistance, we performed an in situ angle-resolved photoemission spectroscopy on La_{0.6}Sr_{0.4}MnO_{3} and investigated the behavior of quasiparticles. We observed quasiparticle peaks near the Fermi momentum in both the electron and the hole bands, and clear kinks throughout the entire hole Fermi surface in the band dispersion. This isotropic behavior of quasiparticles and kinks suggests that polaronic quasiparticles produced by the coupling of electrons with Jahn-Teller phonons play an important role in the colossal magnetoresistance properties of the ferromagnetic metallic phase of three-dimensional manganites.

  10. Quench behavior of Sr0.6K0.4Fe2As2/Ag tapes with AC and DC transport currents at different temperature

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Zhang, Guomin; Yang, Hua; Li, Zhenming; Liu, Wei; Jing, Liwei; Yu, Hui; Liu, Guole

    2016-09-01

    In applications, superconducting wires may carry AC or DC transport current. Thus, it is important to understand the behavior of normal zone propagation in conductors and magnets under different current conditions in order to develop an effective quench protection system. In this paper, quench behavior of Ag sheathed Sr0.6K0.4Fe2As2 (Sr-122 in the family of iron-based superconductor) tapes with AC and DC transport current is reported. The measurements are performed as a function of different temperature (20 K-30 K), varying transport current and operating frequency (50 Hz-250 Hz). The focus of the research is the minimum quench energy (MQE), the normal zone propagation velocity (NZPV) and the comparison of the related results with AC and DC transport current.

  11. Bosonic spectral density of epitaxial thin-film La1.83Sr0.17CuO4 superconductors from infrared conductivity measurements.

    PubMed

    Hwang, J; Schachinger, E; Carbotte, J P; Gao, F; Tanner, D B; Timusk, T

    2008-04-04

    We use optical spectroscopy to investigate the excitations responsible for the structure in the optical self-energy of thin epitaxial films of La(1.83)Sr(0.17)CuO(4). Using Eliashberg's formalism to invert the optical spectra we extract the electron-boson spectral function and find that at low temperature it has a two component structure closely matching the spin excitation spectrum recently measured by magnetic neutron scattering. We contrast the temperature evolution of the spectral density and the two-peak behavior in La(2-Sr(x)CuO(4) with another high temperature superconductor Bi(2)Sr(2)CaCu(2)O(8+delta). The bosonic spectral functions of the two materials account for the low T(c) of LSCO as compared to Bi-2212.

  12. Electrical conduction mechanism and improved multiferroic properties of NFO/ (Pb0.50Sr0.50) TiO3 bilayer nanostructure composite thin film

    NASA Astrophysics Data System (ADS)

    Bala, Kanchan; Ram, Mast; Sharma, Hakikat; Negi, N. S.

    2016-05-01

    Multiferroic 2-2 type layered NFO/ (Pb0.50Sr0.50) TiO3 composite thin film on Pt/TiO2/Si substrate was prepared by novel metallo-Organic process using spin coating technique. The structural and surface morphology were confirmed by X-Ray diffraction (XRD) atomic force microscope (AFM). Significantly improved ferroelectric properties (Ps ˜ 8.69, Pr ˜ 3.19 µC/cm2 and Ec ˜ 419kV/cm) and magnetic properties (Ms), (Mr) and (Hc) is (104emu/cc, 0.8emu/cc and 25Oe.) were observed at room temperature. Our observation provides an effective way to manipulate the conduction behavior to understand the leakage current density of multiferroic composites film at the interface. Poole-Frankel tunneling conduction mechanism dominates the leakage current of films in the relatively high electric filed.

  13. Electronic conduction mechanism for NFO/(Pb0.80Sr0.20) TiO3 bi-layered nanostructure multiferroic composite thin film

    NASA Astrophysics Data System (ADS)

    Bala, Kanchan; Sharma, Hakikat; Negi, N. S.

    2016-05-01

    Multiferroic 2-2 type bi-layered NFO/(Pb0.80Sr0.20) TiO3 composite thin film on Pt/TiO2/Si substrate was prepared by novel metallo-Organic process using spin coating technique. The structural and surface morphology were confirmed by X-Ray diffraction (XRD) atomic force microscope (AFM). Significantly improved ferroelectric properties (Ps ~ 17.25, Pr ~ 8.02 µC/cm2 and Ec ~ 404kV/cm) and magnetic properties (Ms ~ 117emu/cc, Mr ~ 0.83emu/cc and Hc ~ 20Oe) were observed at room temperature. The leakage current densities in NFO/PST composites film have been studied. Poole-Frankel bulk limited conduction mechanism dominates of film at relatively high electric filed.

  14. Flexoelectric Induced Caloric Effect in Truncated Pyramid Shaped Ba0.67Sr0.33TiO3 Ferroelectric Material

    NASA Astrophysics Data System (ADS)

    Patel, Satyanarayan; Chauhan, Aditya; Madhar, Niyaz Ahamad; Ilahi, Bouraoui; Vaish, Rahul

    2017-02-01

    Solid state refrigeration based on ferroelectric materials can potentially be competing in not-in-kind refrigeration technology. However, their functionality is currently limited to Curie temperatures. Through this article, authors have attempted to describe an unexplored component of the stress-driven caloric effect, obtainable beyond the Curie point. The phenomenon, termed as the flexocaloric effect (FCE), relies on inhomogeneous straining of the crystal lattice to induce polarization in centrosymmetric crystals (flexoelectricity). For this study, a truncated pyramid geometry was selected, and the dependence of sample height on caloric capacity was studied. A peak temperature change of 1.75 K (313 K) was estimated for Ba0.67Sr0.33TiO3 (BST) ceramics employing a truncated pyramid configuration.

  15. Neutron scattering studies of the ferroelectric distortion and spin dynamics in the type-1 multiferroic perovskite Sr0.56Ba0.44MnO3

    NASA Astrophysics Data System (ADS)

    Pratt, Daniel K.; Lynn, Jeffrey W.; Mais, James; Chmaissem, Omar; Brown, Dennis E.; Kolesnik, Stanislaw; Dabrowski, Bogdan

    2014-10-01

    The magnetic order, spin dynamics, and crystal structure of the multiferroic Sr0.56Ba0.44MnO3 have been investigated using neutron and x-ray scattering. Ferroelectricity develops at TC=305 K with a polarization of 4.2 µC /cm2 associated with the displacements of the Mn ions, while the Mn4+ spins order below TN≈200 K into a simple G-type commensurate magnetic structure. Below TN the ferroelectric order decreases dramatically, demonstrating that the two order parameters are strongly coupled. The ground state spin dynamics is characterized by a spin gap of 4.6(5) meV and the magnon density of states peaking at 43 meV. Detailed spin wave simulations with a gap and isotropic exchange of J =4.8(2) meV describe the excitation spectrum well. Above TN strong spin correlations coexist with robust ferroelectric order.

  16. Enhanced Shrinkage of Lanthanum Strontium Manganite (La0.90Sr0.10MnO3+δ) Resulting from Thermal and Oxygen Partial Pressure Cycling

    SciTech Connect

    McCarthy, Ben; Pederson, Larry R.; Anderson, Harlan U.; Zhou, Xiao Dong; Singh, Prabhakar; Coffey, Greg W.; Thomsen, Ed C.

    2007-10-01

    Exposure of La0.9Sr0.1MnO3+δ to repeated oxygen partial pressure cycles (air/10 ppm O2) resulted in enhanced densification rates, similar to behavior shown previously due to thermal cycling. Shrinkage rates in the temperature range 700 to 1000oC were orders of magnitude higher than Makipirtti-Meng model estimations based on stepwise isothermal dilatometry results at high temperature. A maximum in enhanced shrinkage due to oxygen partial pressure cycling occurred at 900oC. Shrinkage was greatest when LSM-10 bars that were first equilibrated in air were exposed to gas flows of lower oxygen fugacity than in the reverse direction. The former creates transient cation and oxygen vacancies well above the equilibrium concentration, resulting in enhanced mobility. These vacancies annihilate as Schottky equilibria is re-established, whereas the latter condition does not lead to excess vacancy concentrations.

  17. Evidence for short-range-ordered charge stripes far above the charge-ordering transition in La1.67Sr0.33NiO4.

    PubMed

    Abeykoon, A M Milinda; Božin, Emil S; Yin, Wei-Guo; Gu, Genda; Hill, John P; Tranquada, John M; Billinge, Simon J L

    2013-08-30

    The temperature evolution of structural effects associated with charge order (CO) and spin order in La1.67Sr0.33NiO4 has been investigated using neutron powder diffraction. We report an anomalous shrinking of the c/a lattice parameter ratio that correlates with T(CO). The sign of this change can be explained by the change in interlayer Coulomb energy between the static-stripe-ordered state and the fluctuating-stripe-ordered state or the charge-disordered state. In addition, we identify a contribution to the mean-square displacements of Ni and in-plane O atoms whose width correlates quite well with the size of the pseudogap extracted from the reported optical conductivity, with a non-Debye-like component that persists below and well above T(CO). We infer that dynamic charge-stripe correlations survive to T∼2T(CO).

  18. Detailed structure of the low-energy magnetic dispersion of the diagonal incommensurate phase in La1.975Sr0.025CuO4

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Fernandez-Baca, J. A.; Fujita, M.; Yamada, K.; Tranquada, J. M.

    2011-09-01

    Inelastic neutron scattering experiments have been performed on lightly doped La1.975Sr0.025CuO4, which contains a hole concentration slightly higher than the critical concentration for three-dimensional long-range antiferromagnetic order. We previously found that the magnetic excitation spectrum in the insulating phase with a diagonal incommensurate spin modulation has similarities to that in the superconducting regime, where the spin modulation is bond parallel. In this study, we investigate the excitations in detail around Ecross, at which the excitations become most nearly commensurate. It is found that both the magnitude and the anisotropy of the momentum width of the excitations change abruptly at Ecross. Our experimental results suggest that the magnetic excitations rising from the pair of (diagonally) incommensurate wave vectors merge at Ecross into isotropic excitations.

  19. Evidence for Short-Range-Ordered Charge Stripes Far above the Charge-Ordering Transition in La1.67Sr0.33NiO4

    NASA Astrophysics Data System (ADS)

    Abeykoon, A. M. Milinda; Božin, Emil S.; Yin, Wei-Guo; Gu, Genda; Hill, John P.; Tranquada, John M.; Billinge, Simon J. L.

    2013-08-01

    The temperature evolution of structural effects associated with charge order (CO) and spin order in La1.67Sr0.33NiO4 has been investigated using neutron powder diffraction. We report an anomalous shrinking of the c/a lattice parameter ratio that correlates with TCO. The sign of this change can be explained by the change in interlayer Coulomb energy between the static-stripe-ordered state and the fluctuating-stripe-ordered state or the charge-disordered state. In addition, we identify a contribution to the mean-square displacements of Ni and in-plane O atoms whose width correlates quite well with the size of the pseudogap extracted from the reported optical conductivity, with a non-Debye-like component that persists below and well above TCO. We infer that dynamic charge-stripe correlations survive to T˜2TCO.

  20. Transmission-electron-microscopy study of charge-stripe order in La1.725Sr0.275NiO4

    NASA Astrophysics Data System (ADS)

    Li, Jianqi; Zhu, Yimei; Tranquada, J. M.; Yamada, K.; Buttrey, D. J.

    2003-01-01

    We characterize the local structure and correlations of charge stripes in La1.725Sr0.275NiO4 using transmission-electron microscopy. We present direct evidence that the stripe modulation is indeed one-dimensional within each NiO2 plane. Furthermore, we show that individual stripes tend to be either site centered or bond centered, with a bias towards the former. The spacing between stripes often fluctuates about the mean separation, contributing to a certain degree of frustration of the approximate body-centered stacking along the c axis. These results confirm ideas inferred from previous neutron-diffraction measurements on doped nickelates, and demonstrate that charge-stripe order is quite different from the conventional concept of charge-density-wave order.

  1. Bond-Stretching-Phonon Anomalies in Stripe-Ordered La1.69Sr0.31NiO4

    NASA Astrophysics Data System (ADS)

    Tranquada, J. M.; Nakajima, K.; Braden, M.; Pintschovius, L.; McQueeney, R. J.

    2002-02-01

    We report a neutron scattering study of bond-stretching phonons in La1.69Sr0.31NiO4, a doped antiferromagnet in which the added holes order in diagonal stripes at 45° to the Ni-O bonds. For the highest-energy longitudinal optical mode along the bonds, a softening of 20% is observed between the Brillouin zone center and the zone boundary. At 45° to the bonds, a splitting of the same magnitude is found across much of the zone. Surprisingly, the charge-ordering wave vector plays no apparent role in the anomalous dispersions. The implications for related anomalies in the cuprates are discussed.

  2. Energy-dependent crossover from anisotropic to isotropic magnetic dispersion in lightly-doped La1.96Sr0.04CuO4

    SciTech Connect

    Matsuda, Masaaki; Granroth, Garrett E; Fujita, M.; Yamada, K.; Tranquada, John M.

    2013-01-01

    Inelastic neutron scattering experiments have been performed on lightly-doped La$_{1.96}$Sr$_{0.04}$CuO$_{4}$, which shows diagonal incommensurate spin correlations at low temperatures. We previously reported that this crystal, with a single orthorhombic domain, exhibits the ``hourglass" dispersion at low energies [Phys. Rev. Lett. 101, 197001 (2008)]. In this paper, we investigate in detail the energy evolution of the magnetic excitations up to 65 meV. It is found that the anisotropic excitations at low energies, dispersing only along the spin modulation direction, crossover to an isotropic, conical dispersion that resembles spin waves in the parent compound La$_2$CuO$_{4}$. The change from two-fold to full symmetry on crossing the waist of the hourglass reproduces behavior first identified in studies of underdoped YBa$_2$Cu$_3$O$_{6+x}$. We discuss the significance of these results.

  3. Effect of iron oxide on the properties of La0.9Sr0.1ScO3-α protonics

    NASA Astrophysics Data System (ADS)

    Stroeva, A. Yu.; Gorelov, V. P.; Kuz'min, A. V.; Ponomareva, V. G.; Petrov, S. A.

    2015-07-01

    The effect of doping on the transport properties of solid electrolytes La0.9Sr0.1ScO2.95 + x FeO1.5 ( x = 0.1-15.0 wt % FeO1.5) has been elucidated by investigating the electrical conductivity of these materials by the four-probe method and the impedance method as a function of external parameters, namely, temperature T (150-900°C), oxygen partial pressure (0.21 × 104-10-15 Pa), and humidity (0.04-2.35 kPa). Samples of the solid electrolytes have been investigated using X-ray powder diffraction, electron microscopy, and Mössbauer spectroscopy.

  4. Characterization of La(0.8)Sr(0.2)MnO(3 +/-delta) nanopowders synthesized by aerosol flame synthesis for SOFC cathode.

    PubMed

    Jung, Young-Geul; Choi, Jinyi; Yoon, Yongsub; Shin, Dongwook

    2011-08-01

    Lanthanum strontium manganite (La(0.8)Sr(0.2)MnO(3 +/- delta), LSM) powders with a high specific surface area (55.26 m2/g) were successfully synthesized by aerosol flame synthesis (AFS) technique. The crystallinity and morphology of the synthesized powders sintered at various temperatures were studied by XRD, TEM and BET. The synthesized powders exhibited spherical shape mostly in a few nanometer ranges with a relatively high crystallinity due to thermal plasma reactions in a high temperature of oxy-hydrogen flame. To analyze electrochemical performances of synthesized LSM powders, impedance spectroscopy (IS) was carried out with the symmetric cells prepared by slurry based electrostatic spray deposition (ESD) onto the YSZ electrolyte pellet. The interfacial polarization resistances were 3.04 ohms cm2 at 750 degrees C which is relatively lower than that of micro-porous film (7.24 ohms cm2) applying micro-sized powders deposited on same condition.

  5. CARRIER-LATTICE RELAXATION FOR BROADENING EPR LINEWIDTH IN Nd0.55Sr0.45MnO3

    NASA Astrophysics Data System (ADS)

    Fan, Jiyu; Zhang, Xiyuan; Tong, Wei; Zhang, Lei; Zhang, Weichun; Zhu, Yan; Shi, Yangguang; Hu, Dazhi; Hong, Bo; Ying, Yao; Ling, Langsheng; Pi, Li; Zhang, Yuheng

    2013-12-01

    In this paper, we report the electron paramagnetic resonance (EPR) study of perovskite manganite Nd0.55Sr0.45MnO3. Experimental data reveal that the EPR linewidth broadens with a quasilinear manner up to 480 K. The broadening of the EPR linewidth can be understood in terms of the shortening of carrier-lattice relaxation time due to the occurrence of strong carrier-phonon interactions. Two same activation energies obtained respectively from the temperature dependence of EPR intensity and resistivity indicate that the linewidth variation is correlated to the small polaron hopping. Therefore, the carrier-lattice coupling play a major role for deciding its magnetism in the present system.

  6. Giant elastocaloric effect in ferroelectric Ba0.5Sr0.5TiO3 alloys from first-principles

    NASA Astrophysics Data System (ADS)

    Lisenkov, S.; Ponomareva, I.

    2012-09-01

    As the need for efficient energy converting devices has been rapidly increasing, the materials that exhibit large or even giant caloric responses have emerged as promising candidates for solid-state refrigeration, which is an energy-efficient and environmentally friendly alternative to the conventional refrigeration technology. However, despite recent ground breaking discoveries of giant caloric responses in some materials, they appear to remain one of nature's rarities. Here we predict the existence of giant elastocaloric effect in ferroelectric Ba0.5Sr0.5TiO3 alloys, which adds one more member to this exclusive collection. Moreover, this computational finding reveals the multicaloric nature of such alloys, which could lead to new paradigms for cooling devices.

  7. Ultra-sharp metamagnetic transitions in the half-doped manganite compound Eu0.5Sr0.5MnO3

    NASA Astrophysics Data System (ADS)

    Rana, D. S.; Nirmala, R.; Malik, S. K.

    2005-05-01

    Magnetization, electrical-resistance and specific-heat measurements have been performed on the ABO3-type half-doped Eu0.5Sr0.5MnO3 manganite compound. These studies reveal successive sharp step-like metamagnetic transitions at low temperatures. The steps are sharp at T <= 3 K but smeared above 3 K, signifying the transformation from a homogenous to an inhomogenous phase-separated state at 3 K. Earlier such successive sharp steps have been observed mostly in Pr-based manganites (in which Pr is magnetic). The observation of the similar steps in the present Eu-based system (in which Eu is non-magnetic), along with the irreversibility in the magnetization isotherms, suggests that rare-earth magnetism has no role in the occurrence of this fascinating property.

  8. Microwave dielectric and optical properties of amorphous and crystalline Ba0.5Sr0.5TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Goud, J. Pundareekam; Joseph, Andrews; Ramakanth, S.; Naidu, Kuna Lakshun; Raju, K. C. James

    2016-05-01

    The thin films of composition Ba0.5Sr0.5TiO3 (BST5) were deposited by Pulsed Laser Deposition technique on amorphous fused silica substrates at room temperature (RT) and at 700°C. The film deposited at RT is amorphous while the other crystallized in cubic structure. The refractive index (n) and optical band gap (Eg) extracted from transmission spectra in the 190 -2500 nm range. Microwave dielectric properties were investigated using the Split Post Dielectric Resonators (SPDR) technique at spot frequencies of 10GHz and 20GHz. The experimental results show that thin films deposited at high temperature (700°C) shows very high dielectric constant for both 10GHz and 20 GHz. These high dielectric constant films can be used in a wide range of applications such as capacitors, non-volatile high speed random access memories, and electro-optic devices.

  9. Magnetoelectric coupling at the interface of BiFeO3/La0.7Sr0.3MnO3 multilayers

    SciTech Connect

    Calderon, M. J.; Liang, Shuhua; Yu, Rong; Salafranca, Juan; Scalapino, D. J.; Dong, Shuai; Yunoki, Seiji; Brey, L.; Moreo, Adriana; Dagotto, Elbio R

    2011-01-01

    Electric-field controlled exchange bias in a heterostructure composed of the ferromagnetic manganite La0.7Sr0.3MO3 and the ferroelectric antiferromagnetic BiFeO3 has recently been demonstrated experimentally. By means of a model Hamiltonian, we provide a possible explanation for the origin of this magnetoelectric coupling. We find, in agreement with experimental results, a net ferromagnetic moment at the BiFeO3 interface. The induced ferromagnetic moment is the result of the competition between the eg-electron double exchange and the t2g-spin antiferromagnetic superexchange that dominates in bulk BiFeO3. The balance of these simultaneous ferromagnetic and antiferromagnetic tendencies is strongly affected by the interfacial electronic charge density, which, in turn, can be controlled by the BiFeO3 ferroelectric polarization.

  10. Competition between quantum fluctuations and antiferroelectric order in Ru-doped Sr(0.8)Ca(0.2)Ti(1-x)Ru(x)O(3).

    PubMed

    Wei, T; Guo, Y Y; Guo, Y J; Luo, S J; Wang, K F; Liu, J-M; Wang, P W; Yu, D P

    2009-09-16

    The competition between quantum fluctuations and the antiferroelectric state in Sr(0.8)Ca(0.2)Ti(1-x)Ru(x)O(3) is investigated by measuring the low-temperature dielectric permittivity and by Raman spectroscopy. We demonstrate the significant impact of quantum fluctuations on the stability of the antiferroelectric polar order. It is revealed that the structural phase transitions can be modified by the quantum fluctuations, enhancing the stability of the high-symmetry phase and suppressing the antiferroelectric transitions. More importantly, a quantum antiferroelectric state, exhibiting similar behavior as the quantum ferroelectric state in terms of dielectric response, is identified. In addition, the effect of quantum fluctuations on the increasing permittivity at low temperature is also discussed.

  11. Magnetron-sputtered La0.6Sr0.4Co0.2Fe0.8O3 nanocomposite interlayer for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Solovyev, A. A.; Ionov, I. V.; Shipilova, A. V.; Kovalchuk, A. N.; Syrtanov, M. S.

    2017-03-01

    A thin layer of a La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) is deposited between the electrolyte and the La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode layer of a solid oxide fuel cell (SOFC) by pulsed magnetron sputtering using an oxide target of LSCF. The films were completely dense and well adherent to the substrate. The effects of annealing in temperature range from 200 to 1000 °C on the crystalline structure of the LSCF films have been studied. The films of nominal thickness, 250-500 nm, are crystalline when annealed at temperatures above 600 °C. The crystalline structure, surface topology, and morphology of the films were determined using X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM), respectively. To study the electrochemical characteristics of the deposited-film, solid oxide fuel cells using 325-nm LSCF films as interlayer between the electrolyte and the cathode have been fabricated. The LSCF interlayer improves the overall performance of the SOFC by increasing the interfacial area between the electrolyte and cathode. The electrolyte-supported cells with the interlayer have 30% greater, overall power output compared to that achieved with the cells without interlayer. The LSCF interlayer could also act as a transition layer that improves adhesion and relieves both thermal stress and lattice strain between the cathode and the electrolyte. Our results demonstrate that pulsed magnetron sputtering provides a low-temperature synthesis route for realizing ultrathin nanocrystalline LSCF film layers for intermediate- or low-temperature solid oxide fuel cells.

  12. Griffiths phase and colossal magnetoresistance in Nd0.5Sr0.5MnO3 oxygen-deficient thin films

    NASA Astrophysics Data System (ADS)

    Solin, N. I.; Korolyov, A. V.; Medvedev, Yu. V.; Nikolaenko, Yu. M.; Khokhlov, V. A.; Prokhorov, A. Yu.; Levchenko, G. G.

    2013-05-01

    This work is devoted to study the influence of the Griffiths phase in colossal magnetoresistance manganites. Griffiths-phase-like behavior of the paramagnetic susceptibility χ0 is observed in Nd0.5Sr0.5MnO3 oxygen-deficient thin films fabricated by magnetron sputtering deposition. In Nd0.5Sr0.5MnO3-δ films with oxygen deficiency for ТG≈260-280 K>T>TC=138 K (ТG and ТС—Griffiths and Curie temperatures, respectively), paramagnetic matrix consists of a magnetic phase with short-range order (˜1-1.5 nm) (which is responsible for the colossal magnetoresistance (CMR) above ТС), and is embedded in this matrix region with long-range ferromagnetic order (≫10 nm), responsible for the Griffiths phase-like behavior of the paramagnetic susceptibility. Electrical resistivity is caused by carrier tunneling between the localized states and obeys the Efros-Shklovskii law. Magnetic resistivity is caused by change of the localized state sizes under the magnetic field. The temperature and magnetic field dependencies of size of the phase inhomogeneity inclusions, found from measurements of magneto-transport properties, can be satisfactorily described by the model of thermodynamic phase separation into metallic droplets of small radius in a paramagnetic matrix. Intrinsic nanoscale inhomogeneities caused by thermodynamic phase separation, rather than the Griffiths phase, determine the electrical resistivity and colossal magnetoresistance of the films. In half-doped manganites, the nature of long-range ordered magnetic phases may be related, besides the chemical heterogeneity, to proximity to a ferromagnetic-antiferromagnetic boundary at the phase diagram as well. The results are in good agreement with the model of existence of an analog of Griffiths phase temperature in half-doped manganites.

  13. Assessing electron beam sensitivity for SrTiO3 and La0.7Sr0.3MnO3 using electron energy loss spectroscopy.

    PubMed

    Nord, Magnus; Vullum, Per Erik; Hallsteinsen, Ingrid; Tybell, Thomas; Holmestad, Randi

    2016-10-01

    Thresholds for beam damage have been assessed for La0.7Sr0.3MnO3 and SrTiO3 as a function of electron probe current and exposure time at 80 and 200kV acceleration voltage. The materials were exposed to an intense electron probe by aberration corrected scanning transmission electron microscopy (STEM) with simultaneous acquisition of electron energy loss spectroscopy (EELS) data. Electron beam damage was identified by changes of the core loss fine structure after quantification by a refined and improved model based approach. At 200kV acceleration voltage, damage in SrTiO3 was identified by changes both in the EEL fine structure and by contrast changes in the STEM images. However, the changes in the STEM image contrast as introduced by minor damage can be difficult to detect under several common experimental conditions. No damage was observed in SrTiO3 at 80kV acceleration voltage, independent of probe current and exposure time. In La0.7Sr0.3MnO3, beam damage was observed at both 80 and 200kV acceleration voltages. This damage was observed by large changes in the EEL fine structure, but not by any detectable changes in the STEM images. The typical method to validate if damage has been introduced during acquisitions is to compare STEM images prior to and after spectroscopy. Quantifications in this work show that this method possibly can result in misinterpretation of beam damage as changes of material properties.

  14. Magnetocaloric effect in pristine and Bi-doped Pr0.6Sr0.4MnO3 manganite

    NASA Astrophysics Data System (ADS)

    Daivajna, Mamatha D.; Rao, Ashok

    2016-11-01

    Near room temperature, magnetocaloric effect in pristine and Bi-doped Pr0.6Sr0.4MnO3 manganites has been studied using in-field heat capacity measurements. The Debye temperature (θD) for the pristine sample was estimated to be 522 K and its value increases to 530 K for the Bi-doped sample with x=0.05. The entropy associated with paramagnetic (PM) to ferromagnetic (FM) transition is found to be 2.4 J/mol K and 2.3 J/mol K for x=0 and 0.05 compositions respectively. The estimated values of adiabatic temperature ∆Tad for the samples with x=0 and x=0.05 are respectively 2.2 K and 1.9 K for 0-6 Tesla. The maximum isothermal change in entropy, ∆SM for the sample Pr0.6Sr0.4MnO3 with transition temperature 306 K is found to be 2.7 J/kg-K with application of external magnetic field of 2 T and for Bi-doped sample (with x=0.05) the isothermal change in entropy reduces to 2.0 J/kg-K. The calculated maximum values of the isothermal entropy changes, ∆SM for the pristine sample, vary in the range 1.7-3.9 J/kg-K for a magnetic field change of 1-6 T. The present results suggest that these compounds can be possible candidates as magnetic refrigerants. This results in a large relative cooling power (RCP) around 93.5 J kg-1 K for the pristine sample under an application of magnetic field of 2 T. On contrary, with Bi-doping, RCP decreases to 56 J kg-1 K at external field of 2 T.

  15. Eu2+ concentration effects in KCa0.8Sr0.2I3:Eu2+: A novel high-performance scintillator

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Zhuravleva, Mariya; Lindsey, Adam C.; Koschan, Merry; Melcher, Charles L.

    2016-06-01

    We report here the effect of Eu2+ concentration in KCa0.8Sr0.2I3:Eu2+ single crystal scintillators. KCa0.8Sr0.2I3:Eu2+ single crystals doped with 0.5, 1, 3, 5, and 7 mol% Eu2+ were grown by the Bridgman method. The effects of varying Eu2+concentration and crystal volume on the scintillation properties, including light yield, energy resolution, nonproportionality, scintillation decay time and afterglow level, were systematically investigated. For 5 mm×5 mm×5 mm samples, the best light yield of 86,000±4000 photons/MeV was achieved with a content of 5 mol% Eu2+; its energy resolution of 2.5% at 662 keV was comparable to that of LaBr3:Ce3+ and SrI2:Eu2+. With larger samples of about 2.2 cm3, the best performances achieved were for 3 mol% Eu2+ concentration, i.e. a light yield of 76,000±4000 photons/MeV and an energy resolution of 3% at 662 keV. A direct correlation between nonproportionality and Eu2+ concentration was found. A continuous lengthening of scintillation decay time and x-ray induced afterglow level with increasing Eu2+ concentration was observed. The self-absorption effect was evaluated by using the Stokes shift and the temperature dependence of the photoluminescence decay (PL) of the Eu2+ centers. The sample with the highest dopant concentration had more severe temperature quenching of the Eu2+5d-4f emission than the sample with the lowest dopant concentration, which could be ascribed to the thermally activated concentration quenching.

  16. Structure refinement of Ba0.5Sr0.5Co0.8Fe0.2O3-d as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC)

    NASA Astrophysics Data System (ADS)

    Zakaria, Nurhamidah; Osman, Rozana A. M.; Idris, Mohd Sobri

    2016-07-01

    Ba0.5Sr0.5Co0.8Fe0.2O3-δ was successfully prepared using modified solid-state synthesis routes. The lowest temperature to obtained single phase of Ba0.5Sr0.5Co0.8Fe0.2O3-δ is about 900°C for 15 hours. Longer period of time are required compared to only 5 hours at 950°C as established in literatures. The X-ray Diffraction (XRD) data confirmed that Ba0.5Sr0.5Co0.8Fe0.2O3-δ is formed a cubic perovskite with the space group of Pm-3m. The lattice parameters of Ba0.5Sr0.5Co0.8Fe0.2O3-δ are a = 3.990 (1) Å and unit cell volume is V = 63.5 (1) Å3. The Rietveld refinement of XRD data revealed that the crystal structure of Ba0.5Sr0.5Co0.8Fe0.2O3-δ slightly changes as a function of temperature.

  17. Heteroepitaxy of Nd(0.67)Sr(0.33)MnO3 on silicon for bolometric x-ray detector application.

    PubMed

    Yong, G J; Kolagani, Rajeswari M; Adhikari, S; Drury, O B; Gardner, C; Bionta, R M; Friedrich, S

    2010-11-01

    We have recently reported the design concept and sensor fabrication for a novel bolometric x-ray detector based on a rare earth manganite material for application as a total energy monitor for the Linac Coherent Light Source (LCLS) free electron laser at the Stanford Linear Accelerator Center (SLAC). The detector employs epitaxial thin films of Nd(0.67)Sr(0.33)MnO(3) grown on Si by pulsed laser deposition. In this paper we report details of the fabrication of the actual detector, its response characteristics under photon illumination from LCLS, and improvements in the growth scheme of the sensor material on Si using a buffer/template layer scheme that employs yttria-stabilized zirconia, cerium oxide (CeO(2)), and bismuth titanate (Bi(4)Ti(3)O(12)). The thermal sensor response changes linearly with the energy of an optical calibration laser as expected, and the signals from optical and x-ray pulses at LCLS are very similar, thereby validating the design concept. To the best of our knowledge, the LCLS detector application reported here is the first practical use of colossal magnetoresistive manganite bolometers.

  18. Thickness dependent structural, magnetic and magneto-transport properties of epitaxial Nd0.50Sr0.50MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Singh, Hari Krishna

    2016-05-01

    We report the thickness-dependent structural, magnetic and magneto-transport properties in epitaxial Nd0.50Sr0.50MnO3 thin films (10 to 300nm) prepared by DC magnetron sputtering technique on single crystalline (001) oriented substrate LaAlO3. X-ray diffraction pattern reveals the epitaxial growth of all the films and the out-of-plane lattice parameter of films were found to increase with thickness. As thickness of the film increases the paramagnetic insulator (PMI) to ferromagnetic metal (FMM) transition temperature (TC), charge ordered transition temperature (TCO) and magnetic moment were found to increase with a strong bifurcation in ZFC-FC magnetization. The asymmetry in the coercivity seen in field dependent magnetization loops (M-H loops) suggests the presence of exchange bias (EB) effect. While temperature dependent resistivity of films show the semiconducting nature for thickness 10-200nm in temperature range from 5-300K, the film of thickness 300nm shows the insulator to metal transition with transition temperature (TIM) at 175K. Temperature dependent low field magnetoresistance (LFMR) measured at 4kOe found to decrease with thickness and for high field magnetoresistance (HFMR) at 40kOe and 60kOe also show similar dependence and a crossover at intermediate temperature range in the magnitude of MR between 10nm and 200nm films at constant field. Colossal increase in magnetoresistance observed for 10nm film at low temperature.

  19. Electric-field-induced strain effects on the magnetization of a Pr0.67Sr0.33MnO3 film

    DOE PAGES

    Zhang, B.; Sun, C. -J.; Lu, W.; ...

    2015-05-26

    The electric-field control of magnetic properties of Pr0.67Sr0.33MnO3 (PSMO) film on piezoelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMNT) substrate was investigated. The piezoelectric response of the PMNT substrate to the electric field produced strain that was coupled to the PSMO film. The in-plane compressive (tensile) strain increased (decreased) the magnetization. The change of magnetic moment was associated with the Mn ions. First principle simulations showed that the strain-induced electronic redistribution of the two eg orbitals (3dz2 and 3dx2-y2) of Mn ions was responsible for the change of magnetic moment. This work demonstrates that the magnetoelectric effect in manganite/piezoelectric hetero-structures originates from the change inmore » eg orbital occupancy of Mn ions induced by strain rather than the interfacial effect.« less

  20. Enhanced ferromagnetism and glassy state in phase separated La0.95Sr0.05MnO3 + δ

    NASA Astrophysics Data System (ADS)

    De, K.; Das, S.; Roy, A.; Dhak, P.; Willinger, M.; Amaral, J. S.; Amaral, V. S.; Giri, S.; Majumder, S.; Silva, C. J. R.; Gomes, M. J. M.; Mahapatra, P. K.

    2012-11-01

    Unusual high temperature ferromagentism is reported for La0.95Sr0.05MnO3+δ with Curie temperatures (TC1 and TC2) TC1 at 290 K and TC2 ˜ 150 K. Weak antiferromagnetism (AFM) is thought to give low moment, low temperature irreversibility, and non-saturation up to 10 T at 5 K. A short-range ferromagnetism is predicted from well-defined hysteresis at 5 K and field-cooled (FC) magnetization curves. Strong irreversibility between zero field-cooled (ZFC) and FC at 5 T is due to "hard" spins, not from ferromagnetic clusters. Field-dependent peak shift of spin freezing temperature in ZFC, memory effect, magnetic relaxation shows cluster glass like transition in the system. A metal-insulator transition at 115 K also implies a completion of percolation of short range ferromagnetic clusters, giving an onset of metallic state at 115 K. A complete magnetic phase diagram is presented showing its temperature dependent rich magnetic behavior.

  1. Influence of electron beam irradiation on electrical, structural, magnetic and thermal properties of Pr0.8Sr0.2MnO3 manganites

    NASA Astrophysics Data System (ADS)

    Christopher, Benedict; Rao, Ashok; Petwal, Vikash Chandra; Verma, Vijay Pal; Dwivedi, Jishnu; Lin, W. J.; Kuo, Y.-K.

    2016-12-01

    In this communication, the effect of electron beam (EB) irradiation on the structural, electrical transport and thermal properties of Pr0.8Sr0.2MnO3 manganites has been investigated. Rietveld refinement of XRD data reveals that all samples are single phased with orthorhombic distorted structure (Pbnm). It is observed that the orthorhombic deformation increases with EB dosage. The Mn-O-Mn bond angle is found to increase with increase in EB dosage, presumably due to strain induced by these irradiations. Analysis on the measured electrical resistivity data indicates that the small polaron hopping model is operative in the high temperature region for pristine as well as EB irradiated samples. The electrical resistivity in the entire temperature region has been successfully fitted with the phenomenological percolation model which is based on phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions. The Seebeck coefficient (S) of the pristine as well as the irradiated samples exhibit positive values, indicating that holes is the dominant charge carriers. The analysis of Seebeck coefficient data confirms that the small polaron hopping mechanism governs the thermoelectric transport in the high temperature region. In addition, Seebeck coefficient data also is well fitted with the phenomenological percolation model. The behavior in thermal conductivity at the transition is ascribed to the local anharmonic distortions associated with small polarons. Specific heat measurement indicates that electron beam irradiation enhances the magnetic inhomogeneity of the system.

  2. Protein and polymer immobilized La0.7Sr0.3MnO3 nanoparticles for possible biomedical applications

    NASA Astrophysics Data System (ADS)

    Bhayani, K. R.; Kale, S. N.; Arora, Sumit; Rajagopal, Rajashree; Mamgain, H.; Kaul-Ghanekar, R.; Kundaliya, Darshan C.; Kulkarni, S. D.; Pasricha, Renu; Dhole, S. D.; Ogale, S. B.; Paknikar, K. M.

    2007-08-01

    La0.7Sr0.3MnO3 (LSMO) is a mixed-valent room temperature ferromagnet with properties that are attractive for their applicability in biomedicine. We report, for the first time, immobilization of commonly used biocompatible molecules on LSMO nanoparticles, namely bovine serum albumin and dextran. The former was conjugated to LSMO using 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide (CDI) as a coupling agent while the latter was used without any coupler. These bioconjugated nanoparticles exhibit several properties that suggest their applicability in the field of biomedicine, namely (a) no changes in the Curie temperature at ~360 K after conjugation with biomolecules, (b) rapid attainment of the desired temperature (48 °C) at low concentration (e.g. fluidized dextran-coated system at 80 µg ml-1) upon exposure to 20 MHz radio-frequency, (c) extremely low cytotoxicity in skin carcinoma, human fibrosarcoma and neuroblastoma cell lines and (d) high stability of the LSMO system with negligible leaching of ionic manganese into the delivery medium, indicating their safety in possible human applications.

  3. Element specific and depth-resolved interface magnetism in BiFeO3/La0.67Sr0.33MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Bertinshaw, Joel; Brück, Sebastian; Fritzsche, Helmut; Khaydukov, Yury; Soltwedel, Olaf; Keller, Thomas; Goering, Eberhard; Audehm, Patrick; Hutchison, Wayne; Maran, Ronald; Valanoor, Nagarajan; Klose, Frank; Ulrich, Clemens

    2013-03-01

    In recent years significant research has been conducted to probe the emergent physics of atomically sharp transition metal oxide layered systems. The spin, orbital and charge state at the interface has a drastic impact on the exhibited emergent physics. We have investigated epitaxial bi-layers of multiferroic BiFeO3 (BFO) / ferromagnetic La0.67Sr0.33MnO3 (LSMO). Polarized Neutron Reflectivity conducted at ANSTO, Chalk River, and FRM-II provided the absolute magnetic moment at the interface and X-ray Resonant Magnetic Reflectivity performed at BESSY II provided element specific magnetic information. We determined the precise magnetic properties of the bi-layer interface region, which indicated a region of depleted magnetization extending ~25Å into the LSMO at the interface, despite no FM in the BFO and in contrast to previous results on an inverse LSMO/BFO system. The importance of this result extends to the study and functionality of all strongly correlated thin film systems.

  4. Methane oxidation at redox stable fuel cell electrode La0.75Sr0.25Cr0.5Mn0.5O(3-delta).

    PubMed

    Tao, Shanwen; Irvine, John T S; Plint, Steven M

    2006-11-02

    Because of its widespread availability, natural gas is the most important fuel for early application of stationary fuel cells, and furthermore, methane containing biogases are one of the most promising renewable energy alternatives; thus, it is very important to be able to efficiently utilize methane in fuel cells. Typically, external steam reforming is applied to allow methane utilization in high temperature fuel cells; however, direct oxidation will provide a much better solution. Recently, we reported good electrochemical performance for an oxide anode La0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) in low moisture (3% H2O) H2 and CH4 fuels without significant coking in CH4. Here, we investigate the catalytic activity of this oxide with respect to its ability to utilize methane. This oxide is found to exhibit fairly low reforming activity for both H2O and CO2 reforming but is active for methane oxidation. LSCM is found to be a full oxidation catalyst rather than a partial oxidation catalyst as CO2 production dominates CO production even in CH4-rich CH4/O2 mixtures. X-ray adsorption spectroscopy was utilized to confirm that Mn was the redox active species, clearly demonstrating that this material has the oxidation catalytic behavior that might be expected from a Mn perovskite and that the Cr ion is only present to ensure stability under fuel atmospheres.

  5. Conduction mechanism in Eu0.5Sr0.5Mn0.9Cr0.1O3 perovskite

    NASA Astrophysics Data System (ADS)

    Modi, Anchit; Bhat, Masroor Ahmad; Pandey, Devendra K.; Gaur, N. K.

    2016-05-01

    A systematic study of polycrystalline sample with composition Eu0.5Sr0.5Mn0.9Cr0.1O3 has been undertaken and synthesized by conventional solid state reaction techniques. The room temperature XRD study reveals the single phase formation of the reported compound with orthorhombic structure having Pbnm space group. The temperature dependent resistivity study indicates the highly resistive nature of the compound especially in the low temperature region exhibits a semiconductor behavior and favored the variable range hopping conduction model. The obtained experimental data in the temperature range of our study can be described by the equation ρ(T) = ρ0exp[(T*/T)1/4]. The fitting results are used for the calculation of the temperature scale T* ˜ 9.05×106 K and finally the density of state at Fermi level N(EF) is calculated to be ˜ 61.63 × 1018 eV-1 cm-3.

  6. Effect of particle size on magnetic and electric transport properties of La(0.67)Sr(0.33)MnO3 coatings.

    PubMed

    Zhou, Yu; Zhu, Xinde; Li, Shengli

    2015-12-14

    A systematic study of polycrystalline La0.67Sr0.33MnO3 (LSMO) manganite coatings has been undertaken to analyse the effect of various particle sizes on the magnetic and electric transport properties. In order to acquire a series of samples with different particle sizes, the samples were prepared by a sol-gel method and were subjected to annealing at four different temperatures. With decreasing particle sizes, the magnetization decreases while the coercivity increases, which is attributed to the magnetically disordered surface layer. More attractively, the electrical transport properties can be systematically manipulated by particle sizes and so can the low field magnetoresistance (LFMR) values. Emphasis is placed on how the particle size affects the temperature dependence of resistivity, and three conduction models are explored to describe the transport behaviours in three temperature regions. A minimum resistivity is observed in the low temperature region in the presence and absence of a magnetic field, which can be mainly explained as due to the intergranular spin polarized tunneling (ISPT) through the grain boundaries (GBs) in polycrystalline materials.

  7. Microstructures of La 1.85Sr 0.15CuO 4 doped with Ni at high doping level

    NASA Astrophysics Data System (ADS)

    Wu, X. S.; Jiang, S. S.; Pan, F. M.; Lin, J.; Xu, N.; Mao Zhiqiang; Xu Gaoji; Zhang Yuheng

    1996-02-01

    Ceramic superconductors of La 1.85Sr 0.15Cu 1- yNi yO 4 with 0.00 ≤ y ≤ 0.50 were synthesized. There is no impurity phase detected in the entire Ni doped region. The structure of these Ni-doped samples was characterized by X-ray diffraction studies. The atomic structural parameters were obtained by Rietveld refinements for the Ni-doped samples with y ≤ 0.50. Some meaningful bond distances were determined according to the refined results. According to the variations of some bond distances with y, the whole doping range could be divided into two regions: low doping level (LDL) and high doping level (HDL). The bond length between the two apical oxygen atoms in the CuO 6 octahedra for the Ni-doped samples increased with increasing content of Ni in the LDL, and decreased in the HDL. The average bond distance of LaO was not changed in the whole doping region. The metal-insulator transition was also observed in this Ni-doped system.

  8. Magnetic field effect on the electrochemical performance of La0.7Sr0.3MnO3-δ cathodes

    NASA Astrophysics Data System (ADS)

    Greiner, Yoan; Mascot, Manuel; Naa, Christian Freddy; Fasquelle, Didier

    2016-10-01

    La 0.7 Sr 0.3 MnO 3 - δ (LSM) magnetic properties are exploited through the application of a magnetic field, resulting in a significant decrease of the cathode polarization resistance, a crucial component of high temperature solid oxide fuel cells. The magnetic field is applied during the drying process after the deposition of LSM cathodes by screen-printing on a Gd 0.1 Ce 0.9 O 1.95 (GDC) electrolyte. This specific process aims to decrease the cathode polarization resistance of solid oxide fuel cells. X-ray diffraction patterns show a structural modification triggered by the magnetic field. LSM cathode performance is investigated over a temperature range of 700-800 °C by impedance spectroscopy. The measured electrode area specific resistance (ASR) of a LSM/GDC/LSM symmetric half-cell without and with magnetic field was 0.30 Ω cm2 and 0.20 Ω cm2, respectively, at 800 °C. The ASR value was therefore decreased by 33% with the magnetic field effect. This behaviour may be attributed to LSM grain reorientation, microstructure change, and tortuosity modification of LSM cathodes.

  9. Magnetic AC loss of a mono-Sr0.6K0.4Fe2As2 tape/Ag in perpendicular field

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Zhang, Guomin; Yu, Hui; Huang, Miaomiao; Yuan, Weijia

    2016-12-01

    The magnetic AC losses of monofilament Sr0.6K0.4Fe2As2/Ag tapes are measured in the temperature range between 20 K and 30 K both in perpendicular and parallel field. The loss, measured by the standard magnetization technique, is determined from the area of the hysteresis loop using a vibrating sample magnetometer (VSM) in a cyclic field of amplitude up to 7 T. The results in perpendicular field are compared to that of the parallel-field loss and theoretical calculation of magnetization loss at various temperatures. There is a reasonable agreement between the theoretical model and the experimental results even in high field. The magnetic critical current density (Jc) of the tape, obtained by the magnetic hysteresis measurements M(H), are investigated in two field directions and in the temperature range from 5 K to 30 K. The comparison between the magnetic Jc in both field directions and the transport Jc of the tape are also done at various temperatures and fields. The anisotropy of Jc (Γ = Jcab /Jcc) is very small.

  10. Study of La0.67Sr0.33MnO3 Structure and Resistivity Synthesized by Using Sol Gel Method

    NASA Astrophysics Data System (ADS)

    Widyaiswari, U.; Kurniawan, B.; Imaduddin, A.; Saptari, S. A.

    2016-11-01

    In this study a colossal magnetoresistance La0.67Sr0.33MnO3 material was synthesized by using a sol gel method with different treatment heating process. First sample calcined at 850°C for 10 hours and pelletized, labelled as LSMO1, while another sample calcined at 850°C for 10 hours, pelletized, and sintered at 1200°C for 2 hours, labelled as LSMO2. The aim of this study was to learn a structure and resistivity of this material. The XRD results showed that both samples were single phase with no peak of impurity and formed a rhombohedral structure with space group R-3c. And the result showed that LSMO1 has smaller crystallite size than LSMO2. Result of resistivity measurement showed that LSMO1 has insulator behavior with resistivity several order of magnitude bigger than LSMO2. While LSMO2 had the peak of resistivity that showed a metal-insulator transition.

  11. Signatures of correlation between magnetic and electrical properties of Tb0.5Sr0.5MnO3 single crystals

    NASA Astrophysics Data System (ADS)

    Nhalil, Hariharan; Elizabeth, Suja

    2016-12-01

    Here, we report the dielectric, impedance and transport studies of non-charge-ordered magnetic glass, Tb0.5Sr0.5MnO3 single crystals. The temperature- and frequency-dependent real (ε') and imaginary (ε'' or tanδ) parts of the dielectric constant display large frequency dispersion. The colossal dielectric constant observed (≈ 3000) above 100 K is considered extrinsic. The activation energy of thermally activated relaxation is calculated using the Arrhenius law. Interestingly, two relaxation regions, each with different activation energies (E a ) are clearly evident, one occurring above and the other below the glassy magnetic transition temperature (Tg = 44 \\text{K}) . E a relates to the electron hopping between Mn3+ and Mn4+ ions and the origin of dielectric dispersion. E a in the glassy region is lower than that in paramagnetic region due to a lower energy spent in hopping between frozen spins. Bulk capacitance and resistivity derived from impedance measurements reveal anomalies around T g . Electrical transport data between 60 and 300 K shows insulating behavior and the calculated E a is in good agreement with the value obtained from dielectric measurements. Although, these results cannot be interpreted in terms of magneto-electric coupling, the correlation observed between magnetic and electronic states of the system is significant.

  12. Impact of Fe doping on radiofrequency magnetotransport in La0.7Sr0.3Mn1-xFexO3

    NASA Astrophysics Data System (ADS)

    Barik, S. K.; Mahendiran, R.

    2012-04-01

    We report four probe ac electrical impedance (Z) in La0.7Sr0.3Mn1-xFexO3 (x ≤ 0.15) as a function of temperature (T) and magnetic field (H) in response to radio frequency (f = 0.1-5 MHz) ac current flowing directly through the sample. It is found that Z(T,H = 0) shows an abrupt increase around Curie temperature with increasing f and this excess resistance is suppressed under an external magnetic field. A large magnetoimpedance of ΔZ/Z = -21% at f = 1 MHz for x = 0.05 and -8.5% at f = 5 MHz for x = 0.15 are observed for H = 500 Oe. We suggest that the magnetoimpedance results from suppression of the high frequency transverse permeability by an external magnetic field. Optimization of composition and frequency of ac current will enable us to obtain much larger low-field magnetoimpedance value suitable for practical applications at room temperature.

  13. Huge ac magnetoresistance of La0.7Sr0.3MnO3 in sub-kilogauss magnetic fields

    NASA Astrophysics Data System (ADS)

    Mahendiran, Ramanathan; Rebello, Alwyn; Naik, Vinayak B.; Barik, Sujit Kumar

    2010-03-01

    We report radio frequency (f = 0.1 5 MHz) magnetotransport of La0.7Sr0.3MnO3 in sub kilogauss magnetic fields (H = 0-1 kG). We measured ac resistance (R) and reactance (X) simultaneously. In zero field, R decreases smoothly around the Curie temperature TC when f = 100 kHz, but it increases abruptly and shows a peak close to TC for f = 0.5-5 MHz. The peak decreases in amplitude, broadens and shifts downward in temperature as the bias field increases. The peak is completely suppressed under Hdc = 1 kOe when f = 0.5 MHz. A huge low-field ac magnetoresistance (δR/R = 40 %) and magnetoinductance (δX/X = 12 %) are found in a field of Hdc = 700 Oe and f = 2 MHz. We suggest that the observed ac magnetoresistance arises from the suppression of ac permeability and enhanced magnetic skin depth under a magnetic field. The dynamical magnetotransport reported here will be interesting from view points of fundamental physics and applications.

  14. Ac magnetotransport in La 0.7Sr 0.3Mn 0.95Fe 0.05O 3 at low dc magnetic fields

    NASA Astrophysics Data System (ADS)

    Barik, S. K.; Mahendiran, R.

    2011-12-01

    We report the ac electrical response of La 0.7Sr 0.3Mn 1- xFe xO 3(x=0.05) as a function of temperature, magnetic field (H) and frequency of radio frequency ( rf) current ( f=0.1-20 MHz). The ac impedance (Z) was measured while rf current directly passes through the sample as well as in a coil surrounding the sample. It is found that with increasing frequency of the rf current, Z(T) shows an abrupt increase accompanied by a peak at the ferromagnetic Curie temperature. The peak decreases in magnitude and shifts down with increasing value of H. We find a magnetoimpedance of ΔZ/Z=-21% for ΔH=500 Oe at f=1 MHz around room temperature when the rf current flows directly through the sample and ΔZ/Z=-65.9% when the rf current flows through a coil surrounding the sample. It is suggested that the magnetoimpedance observed is a consequence of suppression of transverse permeability which enhances skin depth for current flow. Our results indicate that the magnetic field control of high frequency impedance of manganites is more useful than direct current magnetoresistance for low-field applications.

  15. Superconductivity suppression in YBa2Cu3O7-δ/La0.7Sr0.3MnO3 bilayer films

    NASA Astrophysics Data System (ADS)

    Sharma, Minaxi; Sharma, K. K.; Choudhary, R. J.; Kumar, Ravi

    2014-12-01

    We study the thickness effect of YBa2Cu3O7-δ (YBCO) in YBCO/La0.7Sr0.3MnO3 (LSMO) bilayer films, fabricated on LaAlO3 (001) substrate using pulsed laser deposition technique. The thickness dependent transport behavior of YBCO layer in considered bilayer systems demonstrate a clear onset critical temperature at 60 K and 80 K for 100 nm and 200 nm thick YBCO layer systems, respectively, whereas 50 nm thick YBCO system reveals complete suppression in the superconductivity. With the increase in thickness of YBCO layer, the magnetoresistance (MR) data show both positive and negative MR. The positive MR in superconducting regime dominates the negative MR, suppress the double exchange interaction. The maximum magnetoresistance ratio ˜81% at 64 K and ˜47% at 30 K temperature are observed for 200 nm and 100 nm YBCO layers, respectively. In YBCO(200 nm)/LSMO(200 nm) bilayer specimen, the temperature co-efficient of resistance is ˜8.4% K-1 at 72 K which can be practical for bolometric performances and temperature sensors.

  16. Positive exchange-bias and giant vertical hysteretic shift in La0.3Sr0.7FeO3/SrRuO3 bilayers

    PubMed Central

    Rana, Rakesh; Pandey, Parul; Singh, R. P.; Rana, D. S.

    2014-01-01

    The exchange-bias effects in the mosaic epitaxial bilayers of the itinerant ferromagnet (FM) SrRuO3 and the antiferromagnetic (AFM) charge-ordered La0.3Sr0.7FeO3 were investigated. An uncharacteristic low-field positive exchange bias, a cooling-field driven reversal of positive to negative exchange-bias and a layer thickness optimised unusual vertical magnetization shift were all novel facets of exchange bias realized for the first time in magnetic oxides. The successive magnetic training induces a transition from positive to negative exchange bias regime with changes in domain configurations. These observations are well corroborated by the hysteretic loop asymmetries which display the modifications in the AFM spin correlations. These exotic features emphasize the key role of i) mosaic disorder induced subtle interplay of competing AFM-superexchange and FM double exchange at the exchange biased interface and, ii) training induced irrecoverable alterations in the AFM spin structure. PMID:24569516

  17. Quantitative analysis of the magnetic domain structure in polycrystalline La(0.7)Sr(0.3)MnO3 thin films by magnetic force microscopy.

    PubMed

    Li, Zhenghua; Wei, Fulin; Yoshimura, Satoru; Li, Guoqing; Asano, Hidefumi; Saito, Hitoshi

    2013-01-14

    The nanoscale magnetic domain structure of the polycrystalline La(0.7)Sr(0.3)MnO(3) granular thin films was imaged with a developed magnetic force microscopy technique by simultaneously detecting both the perpendicular and in-plane components of magnetic field gradients during the same scan of the tip oscillation. The characteristics of both the perpendicular and in-plane magnetic field gradient at the grain edges or the nonmagnetic grain boundary phase for LSMO films were demonstrated and can be used to evaluate the magnetic domain structure and magnetic isolation between neighboring grains. A two dimensional signal transformation algorithm to reconstruct the in-plane magnetization distribution of the polycrystalline LSMO thin films from the measured raw MFM images with the aid of the deconvolution technique was presented. The comparison between the experimental and simulated MFM images indicates that the magnetic grains or clusters are in the single domain (SD) or multi-domain (MD) state with the magnetic moments parallel or anti-parallel to the effective magnetic field of each grain, possibly due to the need for minimizing the total energy. The quantitative interpretation of the magnetic domain structure indicates that the large magnetoresistance in the studied LSMO films is mainly due to tunnel effect and scattering of conducted electrons at the nonmagnetic grain boundary phase related to the different configurations of magnetic domain states between neighboring grains.

  18. Magnetism and superconductivity in Eu0.2Sr0.8(Fe0.86Co0.14)2As2 probed by 75As NMR.

    PubMed

    Sarkar, R; Nath, R; Khuntia, P; Jeevan, H S; Gegenwart, P; Baenitz, M

    2012-02-01

    We report bulk superconductivity (SC) in Eu(0.2)Sr(0.8)(Fe(0.86)Co(0.14))(2)As(2) single crystals by means of electrical resistivity, magnetic susceptibility and specific heat measurements with T(c) is approximately equal to 20 K and an antiferromagnetic (AFM) ordering of Eu(2+) moments at T(N) is approximately equal to 2.0 K in zero field. (75)As NMR experiments have been performed in the two external field directions (H is parallel to ab) and (H is parallel to c). (75)As-NMR spectra are analysed in terms of first-order quadrupolar interaction. Spin-lattice relaxation rates (1/T(1)) follow a T(3) law in the temperature range 4.2-15 K. There is no signature of a Hebel-Slichter coherence peak just below the SC transition, indicating a non-s-wave or s(±) type of superconductivity. In the temperature range 160-18 K 1/T(1)T follows the C/(T+θ) law reflecting 2D AFM spin fluctuations.

  19. Downscaling at submicrometer scale of the gap width of interdigitated Ba0.5Sr0.5TiO3 capacitors.

    PubMed

    Khalfallaoui, Abderrazek; Burgnies, Ludovic; Blary, Karine; Velu, Gabriel; Lippens, Didier; Carru, Jean-Claude

    2015-02-01

    The goal of this work was to study the influence of shrinking the gap width between the fingers of interdigitated tunable capacitors (IDCs). Voltage control of the capacitance was achieved with a 500-nm-thick Ba0.5Sr0.5TiO3 film which is in paraelectric state at room temperature. Eight devices with finger spacing ranging from 3 μm down to 0.25 μm were fabricated by the sol-gel deposition technique, electron beam patterning, and gold evaporation. The equivalent capacitance, quality factor, and tunability of the devices were measured subsequently by vector network analysis from 40 MHz to 40 GHz and for a dc bias voltage varying from -30 V to +30 V. This experimental study mainly shows that a decrease of the gap below 1 μm 1) introduces a frequency dependence of the capacitance caused by resonance effects with the finger inductance; 2) degrades the quality factor above 20 GHz, and 3) optimizes the tunability of the devices by enhancing the local electric field values. As a consequence, some trade-offs are pointed out related to the goal of ultra-thin ferroelectric film which can be voltage controlled by means of finger-shaped electrodes with deep submicrometer spacing.

  20. Hot pressing to enhance the transport Jc of Sr0.6K0.4Fe2As2 superconducting tapes

    PubMed Central

    Lin, He; Yao, Chao; Zhang, Xianping; Dong, Chiheng; Zhang, Haitao; Wang, Dongliang; Zhang, Qianjun; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo; Tian, Huanfang; Li, Jianqi

    2014-01-01

    High-performance Sr0.6K0.4Fe2As2 (Sr-122) tapes have been successfully fabricated using hot pressing (HP) process. The effect of HP temperatures (850–925°C) on the c-axis texture, resistivity, Vickers micro-hardness, microstructure and critical current properties has been systematically studied. Taking advantage of high degree of c-axis texture, well grain connectivity and large concentration of strong-pinning defects, we are able to obtain an excellent Jc of 1.2 × 105 A/cm2 at 4.2 K and 10 T for Sr-122 tapes. More importantly, the field dependence of Jc turns out to be very weak, such that in 14 T the Jc still remains ~ 1.0 × 105 A/cm2. These Jc values are the highest ever reported so far for iron-pnictide wires and tapes, achieving the level desired for practical applications. Our results clearly strengthen the position of iron-pnictide conductors as a competitor to the conventional and MgB2 superconductors for high field applications. PMID:25374068

  1. Size-induced Griffiths phase-like in ferromagnetic metallic La0.67Sr0.33MnO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Baaziz, H.; Tozri, A.; Dhahri, E.; Hlil, E. K.

    2016-04-01

    The La0.67Sr0.33MnO3 (LSMO) compound was prepared by the citrate-gel method and annealed at different temperatures (600 °C (L6), 800 °C (L8), 1000 °C (L10) and 1200 °C (L12)). X-ray diffraction (XRD), transmission electron microscopy (TEM) and magnetic measurements were used to investigate the particle size effects on the physical properties. All samples were found to be single phase crystallizing in rhombohedral symmetry with R 3 bar c space group. It was also found that the reduction of grain size intensively affects the magnetic properties of these compounds. The variation in the magnetic properties as a function of the particle size may be explained in terms of core-shell model. For the L6, L8 and L10 samples, the weaker effective magnetic moments and the deviation of the inverse susceptibility from the Curie-Weiss law were observed, indicating the possible existence of a Griffiths-like cluster phase. However, the latter was found to disappear for L12. The reduction of Griffiths phase may be related to the weaker FM interactions which were weakened by the size reduction, possibly due to the surface spin disorders. Otherwise, the competition between paramagnetic and ferromagnetic phases may strongly affect the magnetic properties that may result in the disappearance of the Griffiths phase.

  2. Potentiometric NO2 Sensors Based on Thin Stabilized Zirconia Electrolytes and Asymmetric (La0.8Sr0.2)0.95MnO3 Electrodes

    PubMed Central

    Zou, Jie; Zheng, Yangong; Li, Junliang; Zhan, Zhongliang; Jian, Jiawen

    2015-01-01

    Here we report on a new architecture for potentiometric NO2 sensors that features thin 8YSZ electrolytes sandwiched between two porous (La0.8Sr0.2)0.95MnO3 (LSM95) layers—one thick and the other thin—fabricated by the tape casting and co-firing techniques. Measurements of their sensing characteristics show that reducing the porosity of the supporting LSM95 reference electrodes can increase the response voltages. In the meanwhile, thin LSM95 layers perform better than Pt as the sensing electrode since the former can provide higher response voltages and better linear relationship between the sensitivities and the NO2 concentrations over 40–1000 ppm. The best linear coefficient can be as high as 0.99 with a sensitivity value of 52 mV/decade as obtained at 500 °C. Analysis of the sensing mechanism suggests that the gas phase reactions within the porous LSM95 layers are critically important in determining the response voltages. PMID:26205270

  3. Non-saturating magnetoresistance of La0.7Sr0.3MnO3 thin films in pulsed magnetic fields up to 60T

    NASA Astrophysics Data System (ADS)

    Niu, Wei; Gao, Ming; Wang, Xuefeng

    The mixed-valence manganite La0.7Sr0.3MnO3 (LSMO) is an interesting material for spintronics due to its intrinsic magnetoresistance properties. In this work, high quality LSMO films with atomic terraces are epitaxially grown on SrTiO3 (100) substrates by laser molecular beam epitaxy. The magnetoresistance of LSMO thin films has been measured in pulsed magnetic fields up to 60T over a wide temperature range. Unsaturated magnetoresistances and resistance relaxation of LSMO thin films have been found at different temperatures. Unlike polycrystalline manganites, a linear increase with fields of the magnetoconductance at low temperature which is attributed to the spin-dependent tunneling via grain boundaries. However, the unsaturation magnetoresistances of our LSMO thin films at different temperature show two kinds of trends: quadratic at low temperature; qusi-linear at high temperature. We attribute the unsaturation behavior to the scattering of domain walls. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China.

  4. Effects of oxygen partial pressure on the ferroelectric properties of pulsed laser deposited Ba0.8Sr0.2TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Silva, J. P. B.; Sekhar, K. C.; Almeida, A.; Agostinho Moreira, J.; Pereira, M.; Gomes, M. J. M.

    2013-11-01

    The Ba0.8Sr0.2TiO3 thin films were grown on the Pt-Si substrate at 700 °C by using a pulsed laser deposition technique at different oxygen partial pressure (PO2) in the range of 1-20 Pa and their properties were investigated. It is observed that the PO2 during the deposition plays an important role on the tetragonal distortion ratio, surface morphology, dielectric permittivity, ferroelectric polarization, switching response, and leakage currents of the films. With an increase in PO2, the in-plane strain for the BST films changes from tensile to compressive. The films grown at 7.5 Pa show the optimum dielectric and ferroelectric properties and also exhibit the good polarization stability. It is assumed that a reasonable compressive strain, increasing the ionic displacement, and thus promotes the in-plane polarization in the field direction, could improve the dielectric permittivity. The butterfly features of the capacitance-voltage ( C- V) characteristics and the bell shape curve in polarization current were attributed to the domain reversal process. The effect of pulse amplitude on the polarization reversal behavior of the BST films grown at PO2 of 7.5 Pa was studied. The peak value of the polarization current shows exponential dependence on the electric field.

  5. Dielectric relaxation in valence compensated solid solution Sr0.65La0.35Ti0.65Co0.35O3

    NASA Astrophysics Data System (ADS)

    Dwivedi, R. K.; Kumar, Devendra; Parkash, Om

    2000-01-01

    The valence compensated solid solution Sr0.65 La0.35 Ti0.65 Co0.35 O3 has been found to exhibit dielectric relaxor behaviour with a very high value of the dielectric constant. In the present investigation, this composition has been prepared using different processing parameters and routes, viz (a) solid-state sintering at 1350 °C followed by furnace cooling, (b) sintering at 1350 °C followed by annealing at 1000 °C, (c) sintering the sample prepared by the sol-gel route at 1100 °C and (d) sintering the powder prepared by the solid-state ceramic route at 1350 °C with 1 wt% SiO2 as a sintering aid. The dielectric characteristics were measured in the temperature range 300-500 K and frequency range 0.1 kHz-1 MHz. The dielectric characteristics of this composition are greatly influenced by processing parameters and routes. The dielectric relaxation in these materials was studied using impedance and modulus spectroscopic techniques.

  6. Complete vertical M-H loop shift in La0.7Sr0.3MnO3/SrRuO3 thin film heterostructures

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Fan, Wu; Prater, J. T.; Narayan, J.

    2015-05-01

    In the current work, we have epitaxially integrated La0.7Sr0.3MnO3/SrRuO3 (LSMO/SRO) BLs with the technologically important substrate Si (100) using pulsed laser deposition. Interestingly, at 4 K, under the magnetic field sweep of ±1500 Oe, a complete vertical M-H loop shift is observed in the sample prepared with 180 nm SRO thickness, which is unusual. This vertical shift persists even up to a field sweep range of ±6000 Oe, at which point the shift disappears and a symmetrical hysteresis loop centered at the origin is observed. In contrast, at the same temperature, under the same field sweep range, we observe a normal M-H loop (no or little vertical shift) from the sample with 45 nm SRO thickness. In both the cases, the LSMO thickness was held constant at ˜100 nm. It appears that SRO moment is frozen in place in the latter case, providing a clear demonstration of the effect that biasing layer (SRO) thickness can have on the magnetic characteristics of bilayer films. We attribute this vertical shift to the strong interplay between the uniaxial magnetocrystalline anisotropy and microscopic interface domain structure.

  7. La(0.7)Sr(0.3)MnO3 nanoparticles based ultra-high sensitive ammonia chemical sensor.

    PubMed

    Al-Dossary, O; Umar, Ahmad; Al-Harbi, A A; Zaidi, Shabi Abbas; Dar, G N

    2012-08-01

    A facile, reliable, reproducible and ultra-high sensitive aqueous ammonia chemical sensor has been fabricated based on the utilization of La(0.7)Sr(0.3)MnO3 nanoparticles (LSMO NPs), as efficient electron mediators, and reported in this paper. The LSMO NPs were prepared by hydrothermal protocol followed by the annealing process and characterized in detail in terms of their mophological, structural and compositional properties. The I-V technique based aqueous ammonia sensor exhibits an ultra-high sensitivity of 494.68 +/- 0.01 microA cm(-2)mM(-1) and very low-detection limit of 0.2 microM with a response time less than 10 s. To the best of our knowledge, this is the first report in which LSMO is used as an efficient electron mediator for the fabrication of aqueous ammonia chemical sensor. Moreover, by comparing the literature, it is confirmed that the fabricated sensor exhibits highest sensitivity towards the detection of aqueous ammonia. This LSMO nanomaterial based research broadens the range of efficient electron mediators utilized for the fabrication of ultra-high sensitive chemical sensors.

  8. Parallel charge sheets of electron liquid and gas in La0.5Sr0.5TiO3/SrTiO3 heterostructures

    PubMed Central

    Renshaw Wang, X.; Sun, L.; Huang, Z.; Lü, W. M.; Motapothula, M.; Annadi, A.; Liu, Z. Q.; Zeng, S. W.; Venkatesan, T.; Ariando

    2015-01-01

    We show here a new phenomenon in La0.5Sr0.5TiO3/SrTiO3 (LSTO/STO) heterostructures; that is a coexistence of three-dimensional electron liquid (3DEL) and 2D electron gas (2DEG), separated by an intervening insulating LSTO layer. The two types of carriers were revealed through multi-channel analysis of the evolution of nonlinear Hall effect as a function of film thickness, temperature and back gate voltage. We demonstrate that the 3D electron originates from La doping in LSTO film and the 2D electron at the surface of STO is due to the polar field in the intervening insulating layer. As the film thickness is reduced below a critical thickness of 6 unit cells (uc), an abrupt metal-to-insulator transition (MIT) occurs without an intermediate semiconducting state. The properties of the LSTO layer grown on different substrates suggest that the insulating phase of the intervening layer is a result of interface strain induced by the lattice mismatch between the film and substrate. Further, by fitting the magnetoresistance (MR) curves, the 6 unit cell thick LSTO is shown to exhibit spin-orbital coupling. These observations point to new functionalities, in addition to magnetism and superconductivity in STO-based systems, which could be exploited in a multifunctional context. PMID:26669575

  9. Avalanches and hysteresis at the structural transition in stripe-ordered La1.48Nd0.4Sr0.12CuO4

    NASA Astrophysics Data System (ADS)

    Baity, P. G.; Saraswat, Garima; Popović, Dragana; Sasagawa, T.

    The coupling or intertwining of lattice, spin and charge orders and their effects on superconductivity are of great current interest in the physics of cuprates. The rare-earth-doped cuprate La1.48Nd0.4Sr0.12CuO4 (LNSCO), for example, exhibits a first-order structural phase transition (SPT) from the low-temperature orthorhombic (LTO) to the low-temperature tetragonal (LTT) phase, with the onset of the static charge stripe order roughly coinciding with the SPT. We present out-of-plane magnetoresistance measurements around the LTO-LTT transition in LNSCO single crystals with H ∥ c up to 12 T and H ∥ ab up to 9 T. Hysteresis is observed for both field orientations, but for H ∥ c we also find evidence for the existence of metastable states and collective dynamics in the form of avalanches and return point memory. Such behavior indicates that, in LNSCO, the LTO-LTT structural transition can be driven with H. A detailed analysis of the avalanche statistics is used to determine their size and field dependence, and to extract information about the domain structure and dynamics of domain walls. Our results shed light on the interplay of lattice, spin and charge degrees of freedom in stripe-ordered La-based cuprates. Supported by NSF DMR-1307075 and NHMFL via NSF DMR-1157490 and the State of Florida.

  10. Magneto-electric properties and magnetic entropy change in perovskite La0.7Sr0.3Mn1-xTixO3

    NASA Astrophysics Data System (ADS)

    Bau, Le Viet; An, Nguyen Manh

    2016-12-01

    The ceramic samples of La0.7Sr0.3Mn1-xTixO3(x=0; 0.05; 0.1; 0.2 and 0.3) were synthesized by the conventional solid state reaction method. Their electric, magnetic and magnetocaloric properties have been investigated. The transition temperature declines and a significant influence on the width of the ferro-paramagnetic phase transition is observed as increasing Ti concentration. Moreover, the sign of spin-glass is expected to exist in the high concentration samples. For fully replacing Ti4+ for Mn4+, the canted spin state is formed. The substitution Ti for Mn increases resistivity quickly and the insulating-metallic transition temperature shifts toward lower temperature. For x>0.1 samples, the insulating state is observed even in ferromagnetic phase. The substitution Ti shifts the CME to room temperature while almost persists the value of entropy change. Although the maximum value of CME reduces slightly, the temperature range happening MCE is expended and then improves the relative cooling power. These properties could be explained in term of DE interaction and phase separation phenomenon.

  11. Evidence of weak localization in quantum interference effects observed in epitaxial La0.7Sr0.3MnO3 ultrathin films

    PubMed Central

    Niu, Wei; Gao, Ming; Wang, Xuefeng; Song, Fengqi; Du, Jun; Wang, Xinran; Xu, Yongbing; Zhang, Rong

    2016-01-01

    Quantum interference effects (QIEs) dominate the appearance of low-temperature resistivity minimum in colossal magnetoresistance manganites. The T1/2 dependent resistivity under high magnetic field has been evidenced as electron-electron (e-e) interaction. However, the evidence of the other source of QIEs, weak localization (WL), still remains insufficient in manganites. Here we report on the direct experimental evidence of WL in QIEs observed in the single-crystal La0.7Sr0.3MnO3 (LSMO) ultrathin films deposited by laser molecular beam epitaxy. The sharp cusps around zero magnetic field in magnetoresistance measurements is unambiguously observed, which corresponds to the WL effect. This convincingly leads to the solid conclusion that the resistivity minima at low temperatures in single-crystal manganites are attributed to both the e-e interaction and the WL effect. Moreover, the temperature-dependent phase-coherence length corroborates the WL effect of LSMO ultrathin films is within a two-dimensional localization theory. PMID:27181882

  12. Magnetic coupling in Epitaxial BiFeO3-La0.7Sr0.3MnO3 Heterostructures Integrated on Si(100)

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Prater, J. T.; Wu, Fan; Shelton, C. T.; Maria, J.-P.; Narayan, J.

    2014-03-01

    We present and discuss the magnetic characteristic of BiFeO3 (BFO)/La0.7Sr0.3MnO3 (LSMO) heterostructure, integrated on Si (100) using pulsed laser deposition (PLD) via the domain matching epitaxy (DME) paradigm. The magnetic behavior of this heterostructure, in which a d5 system (Fe3+) manifested in FE-AFM BFO is epitaxially conjoined at the interface to a multivalent transition metal ion such as Mn3+/Mn4+ in LSMO exhibits interesting magneto electric coupling phenomenon. The temperature- and magnetic field-dependent magnetization measurements reveal an unexpected enhancement in magnetization and improved magnetic hysteresis squareness originating from the BFO/LSMO interface. We observe a stronger temperature dependence of exchange coupling when the polarity of field cooling is negative as compared to positive field cooling. We believe such an enhancement in magnetization and magnetic coupling is likely directly related to an electronic orbital reconstruction at the interface and complex interplay between orbital and spin degrees of freedom.

  13. Ferroelectric Properties of BaZrO3 Doped Sr0.8Bi2.2Ta2O9 Thin Films

    NASA Astrophysics Data System (ADS)

    Bozgeyik, Mehmet S.; Cross, Jeffrey S.; Ishiwara, Hiroshi; Shinozaki, Kazuo

    2009-06-01

    Novel sol-gel derived Sr0.8Bi2.2Ta2O9 (SBT) doped with 5 and 7% molar ratio BaZrO3 (BZ) thin films were fabricated, characterized, and electrical properties were evaluated with Pt electrodes. X-ray diffraction (XRD) analysis showed all the characteristic peaks of the layered perovskite structure with (115) orientation and slight peak broadening by BZ doping. X-ray photoelectron spectra (XPS) showed a small shift in the Sr 3d peak with BZ substitution. Scanning electron microscopy (SEM) cross-sectional photographs of the films show smaller grain size and greater porosity with BZ addition. The remanent polarization (2Pr) was significantly reduced from ˜16.4 µC/cm2 for SBT to ˜2.3 µC/cm2 for SBT with 7% BZ. Capacitance-voltage measurements performed at a frequency of 1 MHz showed butterfly type hysteresis loops, which is further evidence of ferroelectricity of the modified SBT, and dielectric constant of 135 for SBT with 7% BZ. Leakage current measurements showed one order of magnitude higher leakage current for SBT with 5% BZ compared to SBT. Lower film dielectric constant leads to higher leakage current in BZ doped SBT. Although leakage mechanisms predict this general trend, it runs counter to the objective of preparing ferroelectric films with low leakage and low dielectric constants for ferroelectric gate field-effect transistor (FeFET) type memory.

  14. Preferential polarization and its reversal in polycrystalline BiFeO3/La0.5Sr0.5CoO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Palash; Parui, Jayanta; Chiniwar, Santosh; Krupanidhi, S. B.

    2015-04-01

    Polycrystalline BiFeO3 thin films were grown on La0.5Sr0.5CoO3 buffered Pt (200)/TiO2/SiO2/Si substrates under different oxygen partial pressures (10, 25, 50 and 100 mTorr) by pulsed laser ablation. Piezoresponse Force Microscopy and Piezo-Force Spectroscopy have shown that all the films are ferroelectric in nature with locally switchable domains. It has also revealed a preferential downward domain orientation in as-grown films grown under lower oxygen partial pressure (10 and 25 mTorr) with a reversal of preferential domain orientation as the oxygen partial pressure is increased to 100 mTorr during laser ablation. Such phenomena are atypical of multi-grained polycrystalline ferroelectric films and have been discussed on the basis of defect formation with changing growth conditions. For the 50 mTorr grown film, asymmetric domain stability and retention during write-read studies has been observed which is attributed to grain-size-related defect concentration, affecting pinning centres that inhibit domain wall motion.

  15. Comparative Study of Magnetic Ordering and Electrical Transport in Bulk and Nano-Grained Nd0.67Sr0.33MnO3 Manganites

    NASA Astrophysics Data System (ADS)

    Arun, B.; Suneesh, M. V.; Vasundhara, M.

    2016-11-01

    We have prepared bulk and nano-sized Nd0.67Sr0.33MnO3 manganites by solid state and low-temperature mild solgel methods respectively. Both the compounds crystallized into an orthorhombic structure with Pbnm space group confirmed from Rietveld refinement of X-ray powder diffraction patterns. Nano-grained compound shows an average particle size of 22 nm with broad grain size distribution revealed from the Transmission electron micrographs. It appeared that the long range ferromagnetic order becomes unstable upon the reduction of the samples dimension down to nano meter scale. DC magnetization and AC susceptibility results showed frustration of spins in nano-grained compound and thereby it could lead to a cluster glass-like behaviour. Temperature dependence of electrical resistivity under different magnetic fields shows the broad maxima at higher temperatures and a low temperature upturn in both the compounds, however, the latter is more prominent in the nano grained compound. Combination of Kondo effect with electron and phonon interactions govern the low temperature resistivity and a small polaron hopping mechanism dominates at high temperatures for both the compounds. The magnetoresistance is understood by the effect of spin polarized tunneling through the grain boundary. The experimental results revealed that the reduction in particle size influences severely on the magnetic, electrical and magneto transport properties.

  16. Room temperature magnetocaloric effect and refrigerant capacitance in La0.7Sr0.3MnO3 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Kumaresavanji, M.; Sousa, C. T.; Pires, A.; Pereira, A. M.; Lopes, A. M. L.; Araujo, J. P.

    2014-08-01

    High aspect ratio La0.7Sr0.3MnO3 nanotube (NT) arrays have been synthesized using nitrates based sol-gel precursor by nanoporous anodized aluminum oxide template assisted method. Their phase purity and microstructures were analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Magnetocaloric effect (MCE) of as prepared NTs was investigated by means of field dependence magnetization measurements. Significant magnetic entropy change, -△SM = 1.6 J/kg K, and the refrigerant capacitance, RC = 69 J/kg, were achieved near the transition temperature at 315 K for 5 T. For comparison, a bulk sample was also prepared using the same precursor solution which gives a value of -△SM = 4.2 J/kg K and a RC = 165 J/kg. Though the bulk sample exhibits higher △SM value, the NTs present an expanded temperature dependence of -△SM curves that spread over a broad temperature range and assured to be appropriate for active magnetic refrigeration. The diminutive MCE observed in manganite NTs is explained by the increased influence of surface sites of nanograins which affect the structural phase transition occurred by external magnetic field due to the coupling between magnetism and the lattice in manganese perovskites. Our report paves the way for further investigation in 1D manganite nanostructured materials towards applications in such magnetic refrigeration technology or even on hyperthermia/drug delivery.

  17. Increased saturation field as the origin of the giant electrocaloric effect in Ba0.8Sr0.2TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Park, Y. A.; Sung, K. D.; Jung, J. H.; Hur, N.; Cheong, S. W.

    2015-08-01

    We investigated the electrocaloric (EC) effects in epitaxial Ba0.8Sr0.2TiO3 (BSTO) thin films grown on LaAlO3 and MgO substrates and in BSTO sol-gel thin films grown on Si substrates. We compared the EC effects in two forms of BSTO to confirm whether the giant EC effect recently observed in the polycrystalline thin film is an intrinsic effect or an extrinsic effect exclusively occurring in polycrystalline thin films with nano-sized grains. The EC effect in our BSTO single crystals exhibited a moderate EC temperature change over a broad temperature range. On the other hand, the EC effect in the BSTO sol-gel film was observed over a narrow temperature range with a giant Δ T of about 14 °C. We claim that this giant EC effect is due to the increased saturation field related to the small grain size in the sol-gel thin film.

  18. Anisotropy of the upper critical fields and the paramagnetic Meissner effect in La1.85Sr0.15CuO4 single crystals

    NASA Astrophysics Data System (ADS)

    Felner, I.; Tsindlekht, M. I.; Drachuck, G.; Keren, A.

    2013-02-01

    Optimally doped La1.85Sr0.15CuO4 single crystals have been investigated by dc and ac magnetic measurements. These crystals have rectangular needle-like shapes with the long needle axis parallel to the crystallographic c axis (c-crystal) or parallel to the basal planes (a-crystal). In both crystals, the temperature dependence of the upper critical fields (HC2) and the surface critical field (HC3) were measured. The H-T phase diagram is presented. Close to TC = 35 K, for the c-crystal, {\\boldsymbol{\\gamma}}^{c}={H}_{{C3}}^{c}/{H}_{{C2}}^{c}=1.8 0(2), whereas for the a-crystal the {\\boldsymbol{\\gamma}}^{a}={H}_{{C3}}^{a}/{H}_{{C2}}^{a}=4.0(2) obtained is much higher than 1.69, predicted by the ideal mathematical model. At low applied dc fields, positive field-cooled branches known as the ‘paramagnetic Meissner effect’ (PME) are observed; their magnitude is inversely proportional to H. The anisotropic PME is observed in both a- and c-crystals, only when the applied field is along the basal planes. It is speculated that the high γa and the PME are connected to each other.

  19. Obtaining and characterization of La0.8Sr0.2CrO3 perovskite by the combustion method

    NASA Astrophysics Data System (ADS)

    Morales Rivera, A. M.; Gómez Cuaspud, J. A.; López, E. Vera

    2017-01-01

    This research is focused on the synthesis and characterization of a perovskite oxide based on La0.8Sr0.2CrO3 system by the combustion method. The material was obtained in order to contribute to analyse the effect of synthesis route in the obtaining of advanced anodic materials for solid oxide fuel cells (SOFC). The obtaining of solid was achieved starting from corresponding nitrate dissolutions, which were polymerized by temperature effect in presence of citric acid. The solid precursor as a foam citrate was characterized by infrared (FTIR) and ultraviolet (UV) spectroscopy, confirming the effectiveness in synthesis process. The solid was calcined in oxygen atmosphere at 800°C and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive of X-ray spectroscopy (EDX) and solid state impedance spectroscopy (IS). Results confirm the obtaining of an orthorhombic solid with space group Pnma (62) and cell parameters a=5.4590Å, b=7.7310Å and c=5.5050Å. At morphological level the solid showed a heterogeneous distribution with an optimal correspondence with proposed and obtained stoichiometry. The electrical characterization, confirm a semiconductor behaviour with a value of 2.14eV Band-gap according with previous works.

  20. Magnetic field dependence of high- Tc interface superconductivity in La1.55Sr0.45CuO4/La2CuO4 heterostructures

    DOE PAGES

    Gasparov, V. A.; Drigo, L.; Audouard, A.; ...

    2016-07-11

    Heterostructures made of a layer of a cuprate insulator La2CuO4 on the top of a layer of a nonsuperconducting cuprate metal La1.55Sr0.45CuO4 show high-Tc interface superconductivity confined within a single CuO2 plane. Given this extreme quasi-two-dimensional quantum confinement, it is of interest to find out how interface superconductivity behaves when exposed to an external magnetic field. With this motivation, we have performed contactless tunnel-diode-oscillator-based measurements in pulsed magnetic fields up to 56 T as well as measurements of the complex mutual inductance between a spiral coil and the film in static fields up to 3 T. Remarkably, we observe thatmore » interface superconductivity survives up to very high perpendicular fields, in excess of 40 T. Additionally, the critical magnetic field Hm(T) reveals an upward divergence with decreasing temperature, in line with vortex melting as in bulk superconducting cuprates.« less

  1. Gate control of ferromagnetic insulating phase in lightly-doped La0.875Sr0.125MnO3-δ film

    NASA Astrophysics Data System (ADS)

    Kuang, H.; Wang, J.; Hu, F. X.; Zhao, Y. Y.; Liu, Y.; Wu, R. R.; Sun, J. R.; Shen, B. G.

    2016-02-01

    The electric field effect on the lightly doped La0.875Sr0.125MnO3-δ (LSMO) thin film in electric double-layer transistors was investigated by measuring transport properties of the film under various gate voltages. It was found that the positive gate bias leads to an increase of the charge-orbital ordering (COO) transition temperature and a decrease of the Curie temperature TC, indicating the suppression of ferromagnetic metal (FMM) phases and preference of COO/ferromagnetic insulator (FMI) with the hole depletion by gate bias. Such different electric field effects can be ascribed to the weakening of the ferromagnetic interaction and enhancement of Jahn-Teller (JT) distortion caused by the transformation of JT inactive Mn4+-ions to JT active Mn3+-ions. Moreover, a step-like increase in the high temperature region of the ρ-T curve, which is related to the transition of cooperative JT distortion, was found to develop with increasing the positive bias, indicating that the cooperative JT distorted phase is stabilized by the depletion of holes in LSMO film. These results demonstrate that the modulation of holes via electric field strongly affects the balance between energy gains of different interactions and thus produce different effects on the competing FMI, FMM, and cooperative JT distorted phases in LSMO film.

  2. Pulse and quasi-static remagnetization peculiarities and relaxation properties of Nd0.5Sr0.5MnO3 single crystal

    NASA Astrophysics Data System (ADS)

    Dovgii, V. T.; Linnik, A. I.; Kamenev, V. I.; Tarenkov, V. Yu.; Sidorov, S. L.; Todris, B. M.; Mikhailov, V. I.; Davideiko, N. V.; Linnik, T. A.; Popov, Ju. F.; Balbashov, A. M.

    2016-06-01

    Hysteresis features of magnetization and resistance of Nd0.5Sr0.5MnO3 single crystal in quasi-static (up to 9 T) and pulse (up to 14 T) magnetic fields are studied. The relaxation processes of magnetization and resistance after the action of a magnetic field of 9 T are also studied. It is shown that relaxation curves are approximated by two exponents with different time constants. These two constants relate to relaxation of the metastable ferromagnetic phase towards two different crystal structures (Imma and p21/m). Mechanism of phase transitions: antiferromagnetic insulator↔ferromagnetic metal (AFM/I↔FM/M) and existence of a high-conductive state of a sample after removal of magnetizing field in the temperature range below 150 K is proposed. The mechanism is connected with structural transition induced by magnetic field (due to magnetostriction) and slow relaxation of the FM-phase (larger volume) to the equilibrium AFM-phase (smaller volume) after field removal. It is shown that during pulse magnetization at the temperature 18 K time required for the AFM/I→FM/M phase transition is by six-seven orders of magnitude less than for realization of the FM/M→AFM/I phase transition.

  3. Specific features of pulse and quasi-static remagnetization and relaxation properties of Nd0.5Sr0.5MnO3 single crystals

    NASA Astrophysics Data System (ADS)

    Dovgii, V. T.; Linnik, A. I.; Kamenev, V. I.; Tarenkov, V. Yu.; Sidorov, S. L.; Todris, B. M.; Mikhailov, V. I.; Davydeiko, N. V.; Linnik, T. A.; Popov, Yu. F.; Balbashov, A. M.

    2015-12-01

    The hysteresis features in the behavior of the magnetization and resistance of Nd0.5Sr0.5MnO3 single crystals in quasi-static (up to 9 T) and pulsed (up to 14 T) magnetic fields have been studied. Relaxation processes of magnetization and resistance after the action of a magnetic field of 9 T have also been investigated. It has been shown that relaxation curves are approximated by two exponents with different time constants, which are related to relaxation of the metastable ferromagnetic phase towards two different antiferromagnetic crystal structures ( I mma and p21/ m). Mechanism of the phase transitions antiferromagnetic insulator ↔ ferromagnetic metal (AFM/I ↔ FM/M) and existence of a high-conductive state of a sample after removal of magnetizing field in the temperature range below 150 K is proposed. The mechanism is determined by the structural transition, which is induced by a magnetic field (due to magnetostriction), and by a slow relaxation of the FM-phase (larger volume) to the stable AFM-phase (smaller volume) after field removal. It has been shown that, during pulse magnetization at the temperature 18 K, the time required for the AFM/I → FM/M phase transition is six-seven orders of magnitude shorter than that for the FM/M → AFM/I phase transition.

  4. Search for structural fluctuations in the disordered stripe state of Nd1:67 Sr 0:33 NiO 4

    NASA Astrophysics Data System (ADS)

    Abeykoon, A. M. Milinda; Bozin, Emil; Gu, Genda; Hill, John; Tranquada, John; Billinge, Simon

    2011-03-01

    We present a temperature series PDF and a Rietveld analysis of Nd 1:67 Sr 0:33 Ni O4 system to study the local structural response in the state above the charge-ordered state that has not been characterized in detail to date. We observed Ni O6 octahedral tilting patterns of different magnitude for short and long-range structure of the system. A sequential Rietveld refinement, and a T-series PDF analysis on the length scale (5-20)Å were carried out to characterize the long-range order of the system. A PDF analysis on the length scale (0-4.2) Å revealed a different magnitude local octahedral tilt pattern as a function of temperature. The correlation length of short-range ordered charge stripes existing above Tco was estimated using a Box-Car type PDF model. Combining this information with the refined isothermal atomic displacement parameters (ADPs) yields a much more complete picture of the nature of both atomic displacements and how they are correlated with each other in the system. This work was supported by US-DOE-BES.

  5. Energy-dependent crossover from anisotropic to isotropic magnetic dispersion in lightly doped La1.96Sr0.04CuO4

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Granroth, G. E.; Fujita, M.; Yamada, K.; Tranquada, J. M.

    2013-02-01

    Inelastic neutron-scattering experiments have been performed on lightly doped La1.96Sr0.04CuO4, which shows diagonal incommensurate spin correlations at low temperatures. We previously reported that this crystal, with a single orthorhombic domain, exhibits the “hourglass” dispersion at low energies [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.197001 101, 197001 (2008)]. In this paper, we investigate in detail the energy evolution of the magnetic excitations up to 65 meV. It is found that the anisotropic excitations at low energies, dispersing only along the spin modulation direction, cross over to an isotropic, conical dispersion that resembles spin waves in the parent compound La2CuO4. The change from twofold to full symmetry on crossing the waist of the hourglass reproduces behavior first identified in studies of underdoped YBa2Cu3O6+x. We discuss the significance of these results.

  6. Evidence for Short-Range-Ordered Charge Stripes Far above the Charge-Ordering Transition in La1.67Sr0.33NiO4

    NASA Astrophysics Data System (ADS)

    Abeykoon, A. M. Milinda; Bozin, Emil S.; Yin, Wei-Guo; Gu, Genda; Hill, John P.; Tranquada, John M.; Billinge, Simon J. L.

    2015-03-01

    The temperature evolution of structural modulation associated with charge and spin order in La1.67Sr0.33NiO4 has been investigated using neutron powder diffraction. For the first time we report an anomalous shrinking of the c/a lattice parameter ratio that correlates with TCO at the temperature where long-range stacking order of charge stripes disappears. The sign of this change can be explained by the change in interlayer Coulomb energy between the static-stripe-ordered state and the fluctuating-stripe-ordered state or the charge-disordered state. In addition, we identify a contribution to the mean-square displacements of Ni and in-plane O atoms whose width correlates quite well with the size of the pseudogap extracted from the reported optical conductivity, with a non-Debye-like component that persists below and well above TCO. Local structural parameters in the atomic pair distribution function (PDF) well-agree with this result. We infer that dynamic charge-stripe correlations survive to T ~ 2TCO. This work was supported by the DOE Grant, DE- AC02-98CH10886.

  7. Neutron scattering study of spin ordering and stripe pinning in superconducting La1.93Sr0.07CuO4

    NASA Astrophysics Data System (ADS)

    Jacobsen, H.; Zaliznyak, I. A.; Savici, A. T.; Winn, B. L.; Chang, S.; Hücker, M.; Gu, G. D.; Tranquada, J. M.

    2015-11-01

    The relationships among charge order, spin fluctuations, and superconductivity in underdoped cuprates remain controversial. We use neutron scattering techniques to study these phenomena in La1.93Sr0.07CuO4 , a superconductor with a transition temperature of Tc=20 K. At T ≪Tc we find incommensurate spin fluctuations with a quasielastic energy spectrum and no sign of a gap within the energy range from 0.2 to 15 meV. A weak elastic magnetic component grows below ˜10 K, consistent with results from local probes. Regarding the atomic lattice, we have discovered unexpectedly strong fluctuations of the CuO6 octahedra about Cu-O bonds, which are associated with inequivalent O sites within the CuO2 planes. Furthermore, we observed a weak elastic (3 3 ¯0 ) superlattice peak that implies a reduced lattice symmetry. The presence of inequivalent O sites rationalizes various pieces of evidence for charge stripe order in underdoped La2 -xSrxCuO4 . The coexistence of superconductivity with quasistatic spin-stripe order suggests the presence of intertwined orders; however, the rotation of the stripe orientation away from the Cu-O bonds might be connected with evidence for a finite gap at the nodal points of the superconducting gap function.

  8. Detection of charge scattering associated with stripe order in La1.775Sr0.225NiO4 by hard-x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Vigliante, A.; von Zimmermann, M.; Schneider, J. R.; Frello, T.; Andersen, N. H.; Madsen, J.; Buttrey, D. J.; Gibbs, Doon; Tranquada, J. M.

    1997-10-01

    In the past few years neutron-scattering experiments have shown very intriguing stripe correlations of spins and holes in hole-doped La2NiO4 and La2CuO4. As yet, no x-ray-diffraction experiment has confirmed the neutron results and the topic is still controversial. In this paper we report the observation of stripe correlations of holes by x-ray diffraction. The experiments were performed in Laue geometry at the hard-x-ray beamline BW5 at HASYLAB on a crystal of La1.775Sr0.225NiO4 which was previously studied by neutron diffraction. Temperature dependences of the intensities and wave vectors of the charge-density-modulation peaks were characterized and found to be in good agreement with the neutron-scattering results. Interestingly, weak, temperature-dependent scattering was also observed at positions consistent with nonresonant x-ray magnetic scattering from the spin correlations; however, a definitive determination of its origin remains lacking.

  9. Enhanced dielectric constant and relaxor behavior realized by dual stage sintering of Sr0.5Ba0.5Nb2O6

    NASA Astrophysics Data System (ADS)

    Rathore, Satyapal S.; Vitta, Satish

    2014-04-01

    The relaxor ferroelectric compound, Sr0.5Ba0.5Nb2O6 (SBN50) was synthesized by solid state reaction followed by sintering under two different conditions: single and dual stage sintering. The impact of sintering process on structural and dielectric properties has been studied in detail using X-ray diffraction, scanning electron microscopy and broadband dielectric spectroscopy. The crystal structure determined by performing Rietveld refinement of X-ray diffractogram was found to be identical in both cases. SBN50 crystallizes in the ferroelectric tetragonal tungsten bronze, P4bm structure. It was observed that uniform grain growth can be controlled by dual stage sintering and relatively narrow distribution of grains can be achieved with an average grain size of ˜15 μm. The dielectric studies show that SBN50 exhibits a relaxor ferroelectric behavior with the transformation taking place at ˜ 380 K due to formation of polar nano regions. Although both single and dual stage sintered SBN50 exhibits relaxor behaviour, the maximum dielectric constant of dual stage sintered SBN50 is found to be 1550 compare to 1440 for single stage sintering.

  10. Relaxation dynamics and thermodynamic properties of glassy Tb0.5Sr0.5MnO3 single crystal

    NASA Astrophysics Data System (ADS)

    Nhalil, Hariharan; Elizabeth, Suja

    2017-03-01

    Single crystals of Tb0.5Sr0.5MnO3 were grown in an optical float zone furnace and their magnetic and thermodynamic properties were studied. Temperature dependent DC magnetization measurements at different fields show strong irreversibility below the magnetic anomaly at 44 K. The upward deviation from ideal CW behavior well above the transition temperature and its field independent nature are signatures of non-Griffiths phase. The origin non-Griffiths phase owe to competition between the antiferromagnetic and ferromagnetic Mn3+-Mn4+ interactions mediated through intervening oxygen. Further, 44 K transition is confirmed as a magnetic glassy transition. The estimated dynamical spin flip time (τ0=2.11(3)×10-14 s) and zν(9.3(2)) values fall into the range of typical spin-glass systems. Detailed memory and temperature cycling relaxation measurements were performed and support the Hierarchical relaxation model. Low-temperature specific heat data displays a linear term, identifying the glassy magnetic phase contribution.

  11. Neutron scattering study of spin ordering and stripe pinning in superconducting La1.93Sr0.07CuO4

    DOE PAGES

    Jacobsen, H.; Zaliznyak, I. A.; Savici, A. T.; ...

    2015-11-20

    Tmore » he relationships among charge order, spin fluctuations, and superconductivity in underdoped cuprates remain controversial. We use neutron scattering techniques to study these phenomena in La1.93Sr0.07CuO4 a superconductor with a transition temperature of c = 20 K. At << c, we find incommensurate spin fluctuations with a quasielastic energy spectrum and no sign of a gap within the energy range from 0.2 to 15 meV. A weak elastic magnetic component grows below ~ 10 K, consistent with results from local probes. Regarding the atomic lattice, we have discovered unexpectedly strong fluctuations of the CuO6 octahedra about Cu-O bonds, which are associated with inequivalent O sites within the CuO2 planes. Moreover, we observed a weak elastic (3 ⁻30) superlattice peak that implies a reduced lattice symmetry. he presence of inequivalent O sites rationalizes various pieces of evidence for charge stripe order in underdoped La2-xSrxCuO4. he coexistence of superconductivity with quasi-static spin-stripe order suggests the presence of intertwined orders; however, the rotation of the stripe orientation away from the Cu-O bonds might be connected with evidence for a finite gap at the nodal points of the superconducting gap function.« less

  12. Impact of substrate on magnetic phase coexistence in bicritical Sm 0.53Sr 0.47MnO 3 thin films

    NASA Astrophysics Data System (ADS)

    Srivastava, M. K.; Singh, M. P.; Siwach, P. K.; Kaur, A.; Razavi, F. S.; Singh, H. K.

    2012-01-01

    Sm 0.53Sr 0.47MnO 3 thin films were deposited on single crystal LaAlO 3 (LAO/(001)) and SrTiO 3 (STO/(001)) substrates by DC magnetron sputtering. The θ-2θ and ω-2θ scans show that these films have very good crystallinity and the films on LAO and STO are under compressive and tensile strain, respectively. The films on LAO and STO substrates show ferromagnetic (insulator-metal) transition at TC˜126 K (at T˜128 K) and 120 K ( T˜117 K), respectively. The magnetic state at T

  13. Critical phenomena in La0.6Pr0.1Sr0.3MnO3 perovskite manganese oxide

    NASA Astrophysics Data System (ADS)

    Cherif, R.; Hlil, E. K.; Ellouze, M.; Elhalouani, F.; Obbade, S.

    2015-09-01

    We report a study of the critical phenomena of perovskite-manganite compound La0.6Pr0.1Sr0.3MnO3 around the Curie temperature. Experimental results based on magnetic measurements using Banerjee criterion reveals that the sample exhibits a second-order paramagnetic-ferromagnetic transition. The critical behavior analysis and the Kouvel-Fisher method suggests that the critical phenomena around the critical point can be correctly described by the 3D-Heisenberg model. Critical exponents were estimated and found β=0.354±0.009 and γ=1.264±0.035 at TC=325.5±0.443 K. The critical exponent δ is determined separately from the isothermal magnetization at TC and evaluated to δ=4.934±0.0004. These critical exponents obey the Widom scaling relation δ=1‏+γ/β. Based on the critical exponents, the magnetization-field-temperature (M-H-T) data around TC collapses into two curves obeying the single scaling equation M (H , ε) =| ε | β f ± (H /| ε | β + γ) where ε=(T-TC)/TC is the reduced temperature.

  14. Silver infiltrated La 0.6Sr 0.4Co 0.2Fe 0.8O 3 cathodes for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sakito, Y.; Hirano, A.; Imanishi, N.; Takeda, Y.; Yamamoto, O.; Liu, Y.

    Porous La 0.6Sr 0.4Co 0.2Fe 0.8O 3 (LSCF) electrodes on anode support cells were infiltrated with AgNO 3 solutions in citric acid and ethylene glycol. Two types of solid oxide fuel cells with the LSCF-Ag cathode, Ni-YSZ/YSZ/LSCF-Ag and Ni-Ce 0.9Gd 0.1O 1.95(GDC)/GDC/LSCF-Ag, were examined in a temperature range 530-730 °C under air oxidant and moist hydrogen fuel. The infiltration of about 18 wt.% Ag fine particles into LSCF resulted in the enhancement of the power density of about 50%. The maximum power density of Ni-YSZ/YSZ/LSCF was enhanced from 0.16 W cm -2 to 0.25 W cm -2 at 630 °C by infiltration of AgNO 3. No significant degradation of out-put power was observed for 150 h at 0.7 V and 700 °C. The Ni-GDC/GDC/LSCF-Ag cell showed the maximum power density of 0.415 W cm -2 at 530 °C.

  15. Room temperature insulating ferromagnetism induced by charge transfer in ultrathin (110) La0.7Sr0.3MnO3 films

    NASA Astrophysics Data System (ADS)

    Quan, Zhiyong; Wu, Biao; Zhang, Fei; Zhou, Guowei; Zang, Julu; Xu, Xiaohong

    2017-02-01

    The achievement of high temperature ferromagnetism in perovskite manganites has proved both fundamentally and technologically important for spintronics devices. However, high operating temperatures have not been achieved due to the depression of the Curie temperature and the rapid spin filtering efficiency loss, which are the main obstacles for practical applications. Here, we report unexpected room temperature insulating ferromagnetism in ultrathin (110) oriented La0.7Sr0.3MnO3 (LSMO) films. The relationships between room temperature ferromagnetism, charge transfer, and orbital occupancy are investigated, with X-ray absorption spectroscopy (XAS) and X-ray linear dichroism (XLD) measurements. Our results suggest that the room temperature insulating ferromagnetism is originated from super-exchange interaction between Mn2+ and Mn3+. The formation of Mn2+ ions is related to the charge transfer induced by oxygen vacancies. Moreover, a preferential orbital occupancy of eg(3z2-r2) in Mn3+ ions is crucial to the in-plane super-exchange coupling in ultrathin (110) LSMO films, resulting in insulating ferromagnetic behavior. This work may lead to the development of barrier materials in spin filter tunnel junctions and understanding of ferromagnetic coupling in insulating perovskite films.

  16. Interfacial dislocations in (111) oriented (Ba0.7Sr0.3)TiO3 films on SrTiO3 single crystal

    DOE PAGES

    Shen, Xuan; Yamada, Tomoaki; Lin, Ruoqian; ...

    2015-10-08

    In this study, we have investigated the interfacial structure of epitaxial (Ba,Sr)TiO3 films grown on (111)-oriented SrTiO3 single-crystal substrates using transmission electron microscopy (TEM) techniques. Compared with the (100) epitaxial perovskite films, we observe dominant dislocation half-loop with Burgers vectors of a<110> comprised of a misfit dislocation along <112>, and threading dislocations along <110> or <100>. The misfit dislocation with Burgers vector of a <110> can dissociate into two ½ a <110> partial dislocations and one stacking fault. We found the dislocation reactions occur not only between misfit dislocations, but also between threading dislocations. Via three-dimensional electron tomography, we retrievedmore » the configurations of the threading dislocation reactions. The reactions between threading dislocations lead to a more efficient strain relaxation than do the misfit dislocations alone in the near-interface region of the (111)-oriented (Ba0.7Sr0.3)TiO3 films.« less

  17. Critical analysis of the paramagnetic to ferromagnetic phase transition in Pr0.55K0.05Sr0.4MnO3

    NASA Astrophysics Data System (ADS)

    Thaljaoui, R.; Pękała, M.; Fagnard, J.-F.; Vanderbemden, Ph.

    2016-02-01

    The critical properties of monovalent doped manganite Pr0.55K0.05Sr0.4MnO3 around the paramagnetic to ferromagnetic phase transition were investigated through various methods: the modified Arrott plots (MAP), the Kouvel-Fisher method and the critical isotherm analysis. Data obtained near Tc were examined in the framework of the mean field theory, the 3D-Heisenberg model, the 3D-Ising model, and tricritical mean field. The deduced critical exponents values obtained using MAP method were found to be β=0.44(4) with TC≈303 K and γ=1.04(1) with TC≈302 K. Kouvel-Fisher method supplies the critical values to be β=0.41(2) with TC≈302 K and γ=1.09(1) with TC≈302 K. The obtained critical parameters show a tendency towards the mean-field behavior, suggesting the existence of long-range ferromagnetic order in the compound studied. The exponent δ deduced separately from isotherm analysis at T=303 K was found to obey to the Widom scaling relation δ=1+γ/β. The reliability of obtained exponents was confirmed by using the universal scaling hypothesis. The itinerant character of ferromagnetism in the present system was also tested by using Rhodes-Wohlfarth's criterion.

  18. Critical behavior and long-range ferromagnetic order in perovskite manganite Nd0.55Sr0.45MnO3

    NASA Astrophysics Data System (ADS)

    Xu, Lisha; Fan, Jiyu; Shi, Yangguang; Zhu, Yan; Bärner, Klaus; Yang, Changping; Shi, Daning

    2015-10-01

    The critical behavior of perovskite manganite Nd0.55Sr0.45MnO3 has been investigated based on the static magnetization measurement around the paramagnetic-ferromagnetic transition temperature 273 K. A large critical exponent β = 0.4816 and a small one γ = 1.0846 have been obtained by calculating the magnetic-field dependence of the magnetic-entropy change and the Widom scaling relation. These critical exponents not only obey the scaling hypothesis, but also corroborate the results obtained from the Kouvel-Fisher method. In comparison with the values given by standard models, these obtained exponents are very close to those expected from the mean-field model (β = 0.5 and γ = 1 ) and its magnetic-coupling type belongs to nearly long-range interaction. We suggest that the A-site spin disorder and localized magnetic phase competition are the main reasons for the actual critical exponents to show a slight deviation from the theoretical model.

  19. Towards understanding surface chemistry and electrochemistry of La0.1Sr0.9TiO3-α based solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Yurkiv, Vitaliy; Constantin, Guillaume; Hornes, Aitor; Gondolini, Angela; Mercadelli, Elisa; Sanson, Alessandra; Dessemond, Laurent; Costa, Rémi

    2015-08-01

    In the present contribution, we combine modeling and experimental study of electrochemical hydrogen oxidation at an alternative perovskite based mixed-conducting SOFC anode. Composite electrodes were produced by conventional wet ceramic processing (screen printing - spraying) and sintering on YSZ electrolytes (La0.1Sr0.9TiO3-α-Ce1-xGdxO2-α|YSZ) with different compositions and microstructure, and were electrochemically characterized using symmetrical button-cells configuration. An elementary kinetic model was developed and applied to explore the performance of LST based SOFC anode. A detailed multi-step heterogeneous chemical and electrochemical reaction mechanism was established taking into account transport of ions in all ionic phases, and gas transport in channel and porous media. It was found that heterogeneous chemistry at LST surface has capacitive behavior that alters the impedance spectra. In addition, surface charge-transfer reaction, which describes partial oxygen ionization, caused impedance feature and is rate-limiting at high temperature. The gas transport in the supply chamber (gas conversion) is significant only at moderate temperatures.

  20. Apparent Oxygen Uphill Diffusion in La0.8Sr0.2MnO3 Thin Films upon Cathodic Polarization

    PubMed Central

    Huber, Tobias M.; Navickas, Edvinas; Friedbacher, Gernot; Hutter, Herbert

    2015-01-01

    Abstract The impact of cathodic bias on oxygen transport in La0.8Sr0.2MnO3 (LSM) thin films was investigated. Columnar‐grown LSM thin films with different microstructures were deposited by pulsed laser deposition. 18O tracer experiments were performed on thin film microelectrodes with an applied cathodic bias of −300 or −450 mV, and the microelectrodes were subsequently analyzed by time‐of‐flight secondary ion mass spectrometry. The 18O concentration in the cathodically polarized LSM microelectrodes was strongly increased relative to that in the thermally annealed film (without bias). Most remarkable, however, was the appearance of a pronounced 18O fraction maximum in the center of the films. This strongly depended on the applied bias and on the microstructure of the LSM thin layers. The unusual shape of the 18O depth profiles was caused by a combination of Wagner–Hebb‐type stoichiometry polarization of the LSM bulk, fast grain boundary transport and voltage‐induced modification of the oxygen incorporation kinetics, PMID:27525207

  1. Apparent Oxygen Uphill Diffusion in La0.8Sr0.2MnO3 Thin Films upon Cathodic Polarization.

    PubMed

    Huber, Tobias M; Navickas, Edvinas; Friedbacher, Gernot; Hutter, Herbert; Fleig, Jürgen

    2015-10-01

    The impact of cathodic bias on oxygen transport in La0.8Sr0.2MnO3 (LSM) thin films was investigated. Columnar-grown LSM thin films with different microstructures were deposited by pulsed laser deposition. (18)O tracer experiments were performed on thin film microelectrodes with an applied cathodic bias of -300 or -450 mV, and the microelectrodes were subsequently analyzed by time-of-flight secondary ion mass spectrometry. The (18)O concentration in the cathodically polarized LSM microelectrodes was strongly increased relative to that in the thermally annealed film (without bias). Most remarkable, however, was the appearance of a pronounced (18)O fraction maximum in the center of the films. This strongly depended on the applied bias and on the microstructure of the LSM thin layers. The unusual shape of the (18)O depth profiles was caused by a combination of Wagner-Hebb-type stoichiometry polarization of the LSM bulk, fast grain boundary transport and voltage-induced modification of the oxygen incorporation kinetics.

  2. Tuning of Cr3+ ions doping on the magnetic and magnetocaloric properties of La0.5Sr0.5Mn1-xCrxO3

    NASA Astrophysics Data System (ADS)

    Shang, C.; Xia, Z. C.; Wei, M.; Jin, Z.; Chen, B. R.; Shi, L. R.; Xiao, G. L.; Huang, S.

    2016-12-01

    The effects of Cr3+ ions doping on the magnetic and magnetocaloric properties of manganites La0.5Sr0.5Mn1-xCrxO3 (x=0.05, 0.1, 0.15, and 0.2) have been investigated. The magnetization measurements show that a ferromagnetic cluster behavior is induced by Cr3+ dopants and the paramagnetic to ferromagnetic transition temperature TC decreases from 319 to 251 K with increasing Cr3+ content from 0.05 to 0.2. The positive slope of the Arrott plots near TC indicates a second order phase transition. The magnetic entropy change (-ΔSM) is estimated from the isothermal magnetization measurements, and the maximum of the magnetic entropy change (-ΔSmaxM) near TC shows a power law dependence of magnetic field: -ΔSmaxM = m(μ0 H) n with n being close to the predicted value 2/3. The experimental results suggest that the magnetic entropy change and TC can be tuned by changing the Cr3+ ions doping level, which offers an effective method for finding an optimal doping level for magnetic refrigeration near room temperature.

  3. Aberration-corrected STEM-EELS studies of epitaxial La0.5Sr0.5CoO3 thin films

    NASA Astrophysics Data System (ADS)

    Varela, Maria; Gazquez, Jaume; Biskup, Neven; Pennycook, Stephen; Torija, Maria; Sharma, Manish; Bose, Shameek; Leighton, Chris

    2012-02-01

    Cobaltite thin films provide a unique opportunity to study magneto-electronic phase separation, which can be strong in this reduced dimensionality environment. Here we present an investigation of epitaxial La0.5Sr0.5CoO3 thin films on SrTiO3 and LaAlO3 substrates by scanning transmission electron microscopy and electron energy loss spectroscopy. The different degrees of strain and also different orientations of the substrates (such as (001) vs. (110)) induce major changes of the crystal structure and the depth profile of the chemical composition, observed both in the La/Sr and O sub-lattices. These effects can lead to lower effective doping level at the interface, favoring interfacial magneto-electronic phase separation. Research Council Starting Investigator Award (JS, NB) and the U.S. Dept. of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Div. (MV, SJP). Work at UMN supported by NSF and DOE (scattering).

  4. Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires.

    PubMed

    Tang, Haixiong; Sodano, Henry A

    2013-04-10

    Nanocomposites combining a high breakdown strength polymer and high dielectric permittivity ceramic filler have shown great potential for pulsed power applications. However, while current nanocomposites improve the dielectric permittivity of the capacitor, the gains come at the expense of the breakdown strength, which limits the ultimate performance of the capacitor. Here, we develop a new synthesis method for the growth of barium strontium titanate nanowires and demonstrate their use in ultra high energy density nanocomposites. This new synthesis process provides a facile approach to the growth of high aspect ratio nanowires with high yield and control over the stoichiometry of the solid solution. The nanowires are grown in the cubic phase with a Ba0.2Sr0.8TiO3 composition and have not been demonstrated prior to this report. The poly(vinylidene fluoride) nanocomposites resulting from this approach have high breakdown strength and high dielectric permittivity which results from the use of high aspect ratio fillers rather than equiaxial particles. The nanocomposites are shown to have an ultra high energy density of 14.86 J/cc at 450 MV/m and provide microsecond discharge time quicker than commercial biaxial oriented polypropylene capacitors. The energy density of our nanocomposites exceeds those reported in the literature for ceramic/polymer composites and is 1138% greater than the reported commercial capacitor with energy density of 1.2 J/cc at 640 MV/m for the current state of the art biaxial oriented polypropylene.

  5. Magnetic, electrical, magnetoelectrical, and magnetoelastic properties of La0.9Sr0.1MnO3 - y manganites

    NASA Astrophysics Data System (ADS)

    Koroleva, L. I.; Zashchirinskiĭ, D. M.; Khapaeva, T. M.; Gurskiĭ, L. I.; Kalanda, N. A.; Trukhan, V. M.; Szymczak, R.; Krzumanska, B.

    2010-01-01

    This paper reports on a study of the influence of oxygen deficiency on the magnetization, paramagnetic susceptibility, electrical resistivity, magnetoresistance, and volume magnetostriction of the La0.9Sr0.1MnO3 - y manganite with y = 0.03, 0.10, and 0.15. The magnetization M( T) behaves in a complex way with temperature; for T < 80 K, it only weakly depends on T, and at 80 ≤ T ≤ 300 K, the M( T) curve shows a falloff. Within the interval 240 K ≤ T ≤ 300 K, the long-range magnetic order breaks up into superparamagnetic clusters. For T < 80 K, the magnetic moment per formula unit is about one-fourth that which should be expected for complete ferromagnetic alignment of Mn ion moments. Although the composition with y = 0.03, in which part of acceptor centers is compensated by donors (oxygen vacancies), the negative magnetoresistance Δρ/ρ and volume magnetostriction ω are observed to pass through maxima near the Curie point, their values are one to two orders of magnitude smaller than those for the y = 0 composition. In compositions with y = 0.10 and 0.15 with electronic doping, the values of Δρ/ρ and ω are smaller by one to two orders of magnitude than those observed for the y = 0.03 composition. They do not display giant magnetoresistance and volume magnetostriction effects, which evidences the absence of ferrons near unionized oxygen vacancies. This allows the conclusion that the part played by both compensated and uncompensated doubly charged donors consists in forming dangling Mn-O-Mn bonds, which lead to a decrease in the Curie temperature with increasing y and to the formation above it of superparamagnetic clusters of the nonferron type.

  6. Preparation Process and Dielectric Properties of Ba(0.5)Sr(0.5)TiO3-P(VDF-CTFE) Nanocomposites

    NASA Technical Reports Server (NTRS)

    Zhang, Lin; Wu, Peixuang; Li, Yongtang; Cheng, Z. -Y.; Brewer, Jeffrey C.

    2014-01-01

    Ceramic-polymer 0-3 nanocomposites, in which nanosized Ba(0.5)Sr(0.5)TiO3 (BST) powders were used as ceramic filler and P(VDF-CTFE) 88/12 mol% [poly(vinylidene fluoridechlorotrifluoroethylene)] copolymer was used as matrix, were studied over a concentration range from 0 to 50 vol.% of BST powders. It is found that the solution cast composites are porous and a hot-press process can eliminate the porosity, which results in a dense composite film. Two different configurations used in the hot-press process are studied. Although there is no clear difference in the uniformity and microstructure of the composites prepared using these two configurations, the composite prepared using one configuration exhibit a higher dielectric constant with a lower loss. For the composite with 40 vol. BST, a dielectric constant of 70 with a loss of 0.07 at 1 kHz is obtained at room temperature. The composites exhibit a lower dielectric loss than the polymer matrix at high frequency. However, at low frequency, the composites exhibit a higher loss than the polymer matrix due to a low frequency relaxation process that appears in the composites. It is believed that this relaxation process is related to the interfacial layer formed between BST particle and the polymer matrix. The temperature dependence of the dielectric property of the composites was studied. It is found that the dielectric constant of these composites is almost independent of the temperature over a temperature range from 20 to 120 C. Key words: A. Polymer-matrix composites (PMCs); B. Electrical Properties; E. Casting; E. Heat treatment; Dielectric properties.

  7. Spin-state transition of iron in (Ba0.5Sr0.5)(Fe0.8Zn0.2)O perovskite

    NASA Astrophysics Data System (ADS)

    Feldhoff, Armin; Martynczuk, Julia; Arnold, Mirko; Myndyk, Maxym; Bergmann, Ingo; Šepelák, Vladimir; Gruner, Wolfgang; Vogt, Ulrich; Hähnel, Angelika; Woltersdorf, Jörg

    2009-11-01

    The redox behavior of iron during heating of a high-performance perovskite for ceramic oxygen separation membranes was studied by combined electron energy-loss (EELS, esp. ELNES) and Mössbauer spectroscopical in situ methods. At room temperature, the iron in (Ba0.5Sr0.5)(Fe0.8Zn0.2)O (BSFZ) is in a mixed valence state of 75% Fe in the high-spin state and 25% Fe predominantly in the low-spin state. When heated to 900C, a slight reduction of iron is observed that increases the quantity of Fe species. However, the dominant occurrence is a gradual transition in the spin-state of trivalent iron from a mixed low-spin/high-spin to a pure high-spin configuration. In addition, a remarkable amount of hybridization is found in the Fe-O bonds that are highly polar rather than purely ionic. The coupled valence/spin-state transition correlates with anomalies in thermogravimetry and thermal expansion behavior observed by X-ray diffraction and dilatometry, respectively. Since the effective cationic radii depend not only on the valence but also on the spin-state, both have to be considered when estimating under which conditions a cubic perovskite will tolerate specific cations. It is concluded that an excellent phase stability of perovskite-based membrane materials demands a tailoring, which enables pure high-spin states under operational conditions, even if mixed valence states are present. The low spin-state transition temperature of BSFZ provides that all iron species are in a pure high-spin configuration already above ca. 500C making this ceramic highly attractive for intermediate temperature applications ( 500-800C).

  8. Interface magnetism in epitaxial BiFeO3-La0.7Sr0.3MnO3 heterostructures integrated on Si(100).

    PubMed

    Rao, S S; Prater, J T; Wu, Fan; Shelton, C T; Maria, J-P; Narayan, J

    2013-01-01

    We report on the heteroepitaxial growth of ferroelectric (FE)-antiferromagnetic (AFM) BiFeO3 (BFO) on ferromagnetic La0.7Sr0.3MnO3 (LSMO), integrated on Si(100) using pulsed laser deposition via the domain matching epitaxy paradigm. The BFO/LSMO films were epitaxially grown on Si(100) by introducing epitaxial layers of SrTiO3/MgO/TiN. X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photo absorption spectroscopy, and atomic force microscopy were employed to fully characterize the samples. Furthermore, we have investigated the magnetic behavior of this five layer heterostructure, in which a d(5) system (Fe(3+)) manifested in FE-AFM BFO is epitaxially conjoined at the interface to a multivalent transition metal ion such as Mn(3+)/Mn(4+) in LSMO. The temperature- and magnetic field-dependent magnetization measurements reveal an unexpected enhancement in magnetic moment and improved magnetic hysteresis squareness originating from the BFO/LSMO interface. We observe a stronger temperature dependence of HEB when the polarity of field cooling is negative as compared to positive field cooling. We believe such an enhancement in magnetic moment and magnetic coupling is likely directly related to an electronic orbital reconstruction at the interface and complex interplay between orbital and spin degrees of freedom, similar to what has previously been reported in the literature. Future work will involve the linearly polarized X-ray absorption measurements to prove this hypothesis. This work represents a starting step toward the realization of magneto-electronic devices integrated with Si(100).

  9. Magnetic and magnetocaloric properties of the first-order phase transition in Sm0.5+ x Sr0.5- x MnO3 compounds

    NASA Astrophysics Data System (ADS)

    Thanh, Tran Dang; Linh, Dinh Chi; Manh, Tien Van; Nan, Wen-Zhe; Yu, Seong-Cho; Piao, Hong-Guang; Pan, Liqing

    2016-08-01

    In this work, we present a detailed study on the magnetic and the magnetocaloric properties of Sm0.5+ x Sr0.5- x MnO3 compounds with x = 0 - 0.1, which were prepared by using a solid-state reaction method. The x-dependent magnetic, as well as magnetocaloric, properties, including the magnetic phase transition, have been studied. The increase in Sm/Sr ratio plays an important role in controlling the Curie temperature ( T C ). We point out that all the samples undergo a first-order phase transition and exhibit a giant magnetocaloric effect. The magnetic entropy change (Δ S m ) of samples was calculated based on isothermal M( H, T) data. The maximum value of Δ S m (denoted as |Δ S max|) at around T C is found to be 2.6 - 8.9 J·kg -1·K -1 for Δ H = 30 kOe and depends on the value of x. We have also used the universal master curve method for the temperature dependences of Δ S m curves measured at different Δ H values, Δ S m ( T,Δ H), to distinguish the magnetic order in the samples. Interestingly, none of the Δ S m ( T,Δ H) curves for the samples follow the universal master curve, Δ S m ( T,Δ H)/Δ S max versus θ = ( T -T C )/( T r - T C ). As a consequence, a breakdown in the universal behavior of Δ S m ( T,Δ H)/Δ S max versus θ curve is another feature confirming a first-order phase-transition nature.

  10. Surface electronic structure transitions at high temperature on perovskite oxides: the case of strained La0.8Sr0.2CoO3 thin films.

    PubMed

    Cai, Zhuhua; Kuru, Yener; Han, Jeong Woo; Chen, Yan; Yildiz, Bilge

    2011-11-09

    In-depth probing of the surface electronic structure on solid oxide fuel cell (SOFC) cathodes, considering the effects of high temperature, oxygen pressure, and material strain state, is essential toward advancing our understanding of the oxygen reduction activity on them. Here, we report the surface structure, chemical state, and electronic structure of a model transition metal perovskite oxide system, strained La(0.8)Sr(0.2)CoO(3) (LSC) thin films, as a function of temperature up to 450 °C in oxygen partial pressure of 10(-3) mbar. Both the tensile and the compressively strained LSC film surfaces transition from a semiconducting state with an energy gap of 0.8-1.5 eV at room temperature to a metallic-like state with no energy gap at 200-300 °C, as identified by in situ scanning tunneling spectroscopy. The tensile strained LSC surface exhibits a more enhanced electronic density of states (DOS) near the Fermi level following this transition, indicating a more highly active surface for electron transfer in oxygen reduction. The transition to the metallic-like state and the relatively more enhanced DOS on the tensile strained LSC at elevated temperatures result from the formation of oxygen vacancy defects, as supported by both our X-ray photoelectron spectroscopy measurements and density functional theory calculations. The reversibility of the semiconducting-to-metallic transitions of the electronic structure discovered here, coupled to the strain state and temperature, underscores the necessity of in situ investigations on SOFC cathode material surfaces.

  11. Electrostatic versus Electrochemical Doping and Control of Ferromagnetism in Ion-Gel-Gated Ultrathin La0.5Sr0.5CoO3-δ.

    PubMed

    Walter, Jeff; Wang, Helin; Luo, Bing; Frisbie, C Daniel; Leighton, Chris

    2016-08-23

    Recently, electrolyte gating techniques employing ionic liquids/gels in electric double layer transistors have proven remarkably effective in tuning charge carrier density in a variety of materials. The ability to control surface carrier densities at levels above 10(14) cm(-2) has led to widespread use in the study of superconductivity, insulator-metal transitions, etc. In many cases, controversy remains over the doping mechanism, however (i.e., electrostatic vs electrochemical (e.g., redox-based)), and the technique has been less applied to magnetic materials. Here, we discuss ion gel gating of nanoscale 8-unit-cell-thick hole-doped La0.5Sr0.5CoO3-δ (LSCO) films, probing in detail the critical bias windows and doping mechanisms. The LSCO films, which are under compressive stress on LaAlO3(001) substrates, are metallic and ferromagnetic (Curie temperature, TC ∼ 170 K), with strong anomalous Hall effect and perpendicular magnetic anisotropy. Transport measurements reveal that negative gate biases lead to reversible hole accumulation (i.e., predominantly electrostatic operation) up to some threshold, whereas positive bias immediately induces irreversibility. Experiments in inert/O2 atmospheres directly implicate oxygen vacancies in this irreversibility, supported by atomic force microscopy and X-ray photoelectron spectroscopy. The results are thus of general importance, suggesting that hole- and electron-doped oxides may respond very differently to electrolyte gating. Reversible voltage control of electronic/magnetic properties is then demonstrated under hole accumulation, including resistivity, magnetoresistance, and TC. The sizable anomalous Hall coefficient and perpendicular anisotropy in LSCO provide a particularly powerful probe of magnetism, enabling direct extraction of the voltage-dependent order parameter and TC shift. The latter amounts to ∼7%, with potential for much stronger modulation at lower Sr doping.

  12. Effect of the thickness of BiFeO3 layers on the magnetic and electric properties of BiFeO3/La0.7Sr0.3MnO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Le; Wang, Zhen; Jin, Kui-juan; Li, Jian-qi; Yang, Huai-xin; Wang, Can; Zhao, Rui-qiang; Lu, Hui-bin; Guo, Hai-zhong; Yang, Guo-zhen

    2013-06-01

    BiFeO3 layers with various thicknesses were fabricated on La0.7Sr0.3MnO3 covered SrTiO3 substrates by a laser molecular-beam epitaxy system. The ferromagnetic transition temperature (Tc) and magnetic coercive field (Hc) of BiFeO3/La0.7Sr0.3MnO3 heterostructures are larger than those of the La0.7Sr0.3MnO3 film. With increasing the thickness of the BiFeO3 layer, Tc, Hc, and ferroelectric coercive field of the BiFeO3/La0.7Sr0.3MnO3 heterostructures decrease, while the dielectric permittivity, remanent polarization, and resistance ratio of the ON and OFF states increase. The variations of the magnetic and electric properties with the thickness could be due to the effects of the epitaxial strain and the interface layer.

  13. Sr0.95Zn0.05Se:Eu2+ and CdSe/ZnS nanocrystals hybrid phosphors for enhancing color rendering index of white light emitting diode.

    PubMed

    Chung, Wonkeun; Jung, Hyunchul; Lee, Chang Hun; Kim, Sung Hyun

    2012-07-01

    In this study, the yellow emitting cubic structure of Sr0.95Zn0.05Se:Eu2+ phosphors were prepared by high temperature solid state reaction. The Sr0.95Zn0.05Se:Eu2+ phosphors exhibited strong excitation intensity under 400-460 nm region, and broad band emission appeared at around 545-600 nm due to the d-f transition of Eu2+. To enhance the red emission, HDA/TOP/TOPO capped CdSe/ZnS NCs were synthesized via fast nucleation and slow growth method. The narrow emission peak was located at 615 nm with 69% of high quantum yield. Bright white emission was generated by combining a 460 nm InGaN LED chip with CdSe/ZnS NCs and Sr0.95Zn0.05Se:Eu2+ hybrid phosphors. The fabricated white LEDs showed warm white light with acceptable CIE chromaticity coordinate variation from (0.343, 0.255) at 20 mA to (0.335, 0.250) at 50 mA. The addition of CdSe/ZnS NCs contributed to the extension of white light spectrum by supplement of the red region. The color rendering index was largely enhanced from 41.7 to 79.7 compared to the Sr0.95Zn0.05Se:Eu2+ based phosphors white LED.

  14. Novel lead-free ferroelectric film by ultra-small Ba0.8Sr0.2TiO3 nanocubes assembled for a large electrocaloric effect.

    PubMed

    Su, Ran; Zhang, Dawei; Liu, Yang; Lu, Jiangbo; Wang, Zhipeng; Li, Linglong; Bian, Jihong; Wu, Ming; Lou, Xiaojie; Yang, Yaodong

    2016-10-26

    A giant electrocaloric effect (ECE) can be achieved in ferroelectric thin films, which demonstrates the applications of thin films in alternative cooling. However, electrocaloric thin films fabricated by conventional techniques, such as the pulsed laser deposition or sol-gel methods, may be limited by high costs, low yield and their dependence on substrates. In this study, we present a new bottom-up strategy to construct electrocaloric Ba0.8Sr0.2TiO3 thin films by assembling precisely designed building blocks of ferroelectric nanocubes, which is supported by detailed structural characterization. Moreover, it is found that our assembled Ba0.8Sr0.2TiO3 films differ remarkably from both individual Ba0.8Sr0.2TiO3 NPs and bulk Ba0.8Sr0.2TiO3 ceramics in terms of new collective ferroelectric properties, including superior and diffused permittivity constants and polarization-electric field loops. Benefiting from these unique ferroelectric properties, a giant ECE (9.1 K) over a broad temperature range (20 °C to 60 °C) is achieved, which is very large in the lead-free oxide film. Clearly, this bottom-up strategy provides a promising pathway for developing high electrocaloric effect devices.

  15. Structure, Crystallographic Sites, and Tunable Luminescence Properties of Eu(2+) and Ce(3+)/Li(+)-Activated Ca1.65Sr0.35SiO4 Phosphors.

    PubMed

    Xia, Zhiguo; Miao, Shihai; Chen, Mingyue; Molokeev, Maxim S; Liu, Quanlin

    2015-08-17

    Eu(2+) and Ce(3+)/Li(+) singly doped and Eu(2+)/Ce(3+)/Li(+)-codoped Ca1.65Sr0.35SiO4 phosphors have been synthesized by a solid-state reaction method. The crystal structure was determined by Rietveld refinement to verify the formation of the αL′-Ca2SiO4 phase with the Sr addition into Ca2SiO4, and the preferred crystallographic positions of the Eu(2+) and Ce(3+)/Li(+) ions in Ca1.65Sr0.35SiO4 were analyzed based on a comparison of the unit-cell volumes and the designed chemical compositions of undoped isostructural compounds Ca(2–x)Sr(x)SiO4 (x = 0.25, 0.35, 0.45, 0.55 and 0.65). Ce(3+)/Li(+) singly activated Ca1.65Sr0.35SiO4 phosphors exhibit strong absorption in the range of 250–450 nm and a blue emission peak centered at about 465 nm. When Eu(2+) ions are codoped, the emission colors of Ca1.65Sr0.35SiO4:Ce(3+)/Li(+),Eu(2+) phosphors under the irradiation of 365 nm can be finely tuned from blue to green through the energy transfer from Ce(3+) to Eu(2+). The involved energy-transfer process between Ce(3+) and Eu(2+) and the corresponding mechanism are discussed in detail. The reported Ca1.65Sr0.35SiO4:Ce(3+)/Li(+),Eu(2+) phosphor might be a candidate for color-tunable blue-green components in the fabrication of near-ultraviolet-pumped white-light-emitting diodes (WLEDs).

  16. Enhanced Magnetocaloric Effect Driven by Interfacial Magnetic Coupling in Self-Assembled Mn3O4-La(0.7)Sr(0.3)MnO3 Nanocomposites.

    PubMed

    Vandrangi, Suresh K; Yang, Jan-Chi; Zhu, Yuan-Min; Chin, Yi-Ying; Lin, Hong-Ji; Chen, Chien-Te; Zhan, Qian; He, Qing; Chen, Yi-Chun; Chu, Ying-Hao

    2015-12-09

    Magnetic refrigeration, resulting from the magnetocaloric effect of a material around the magnetic phase-transition temperature, is a topic of great interest as it is considered to be an alternate energy solution to conventional vapor-compression refrigeration. The viability of a magnetic refrigeration system for magnetic cooling can be tested by exploiting materials in various forms, from bulk to nanostrucutres. In this study, magnetocaloric properties of self-assembled Mn3O4-La(0.7)Sr(0.3)MnO3 nanocomposites, with varying doping concentrations of Mn3O4 in the form of nanocrystals embedded in the La(0.7)Sr(0.3)MnO3 matrix, are investigated. The temperatures corresponding to the paramagnetic-to-ferromagnetic transitions are higher, and the values of change in magnetic entropy under a magnetic field of 2 T show an enhancement (highest being ∼130%) for the nanocomposites with low doping concentrations of Mn3O4, compared to that of pure La(0.7)Sr(0.3)MnO3 thin films. Relative cooling power remain close to those of La(0.7)Sr(0.3)MnO3. The enhanced magnetic phase-transition temperature and magnetocaloric effect are interpreted and evidenced in the framework of interfacial coupling between Mn3O4 and La(0.7)Sr(0.3)MnO3. This work demonstrates the potentiality of self-assembled nanostructures for magnetic cooling near room temperature under low magnetic fields.

  17. In situ formation of oxygen vacancy in perovskite Sr0.95Ti0.8Nb0.1M0.1O3 (M = Mn, Cr) toward efficient carbon dioxide electrolysis

    PubMed Central

    Zhang, Jun; Xie, Kui; Wei, Haoshan; Qin, Qingqing; Qi, Wentao; Yang, Liming; Ruan, Cong; Wu, Yucheng

    2014-01-01

    In this work, redox-active Mn or Cr is introduced to the B site of redox stable perovskite Sr0.95Ti0.9Nb0.1O3.00 to create oxygen vacancies in situ after reduction for high-temperature CO2 electrolysis. Combined analysis using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis confirms the change of the chemical formula from oxidized Sr0.95Ti0.9Nb0.1O3.00 to reduced Sr0.95Ti0.9Nb0.1O2.90 for the bare sample. By contrast, a significant concentration of oxygen vacancy is additionally formed in situ for Mn- or Cr-doped samples by reducing the oxidized Sr0.95Ti0.8Nb0.1M0.1O3.00 (M = Mn, Cr) to Sr0.95Ti0.8Nb0.1M0.1O2.85. The ionic conductivities of the Mn- and Cr-doped titanate improve by approximately 2 times higher than bare titanate in an oxidizing atmosphere and 3–6 times higher in a reducing atmosphere at intermediate temperatures. A remarkable chemical accommodation of CO2 molecules is achieved on the surface of the reduced and doped titanate, and the chemical desorption temperature reaches a common carbonate decomposition temperature. The electrical properties of the cathode materials are investigated and correlated with the electrochemical performance of the composite electrodes. Direct CO2 electrolysis at composite cathodes is investigated in solid-oxide electrolyzers. The electrode polarizations and current efficiencies are observed to be significantly improved with the Mn- or Cr-doped titanate cathodes. PMID:25403738

  18. Electronic structure of La0.7Sr0.3Mn1-xCuxO3 (0.0<=x<=0.30)

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Yang, J. B.; Medvedeva, J.; Yelon, W. B.; Parris, P. E.; James, W. J.

    2008-06-01

    We have investigated the electronic structure of Cu-substituted La0.7Sr0.3MnO3 (LSMO) by x-ray photoelectron spectroscopy and using density functional theory within local spin-density approximations (LSDA) and LSDA+U. We find that there is a coexistence of mixed-valent Cu ions, Cu3+ with Cu2+ dominant, in all Cu-substituted LSMO samples. From a deconvolution of the XPS spectra of Cu-2p3/2, we determined the ratios of Cu2+/Cu3+ and Mn3+/Mn4+, and in turn calculated the change in the tolerance factors of Cu-substituted LSMO. Valence-band photoelectron spectra show that the density of states at the Fermi level is made up mainly of the O-2p and Mn-3d states with a small contribution near EF from the Cu-3d states. We find that LSDA+U calculations for La1/2Sr1/2Mn1-xCuxO3 describe the half-metallicity and ground state ferromagnetic ordering with no evidence of antiferromagnetism for all systems consistent with experimental neutron diffraction data. Two electron transport channels of the major Mn-O-Mn and the minor Cu-O-Cu chains are found. This suggests that the electronic transport behavior of Cu-substituted LSMO systems may be explained by a combination of two different transport mechanisms: (i) a σpd hybridization between the eg states in a majority spin-up Mn-d channel with O-2p orbitals in the Mn-O-Mn chain and (ii) a σpd hybridization between the eg states in a dominant minority spin-down Cu-d channel with O-2p orbitals in the Cu-O-Cu chain. We also find that the half-metallicity of the compounds is lost upon Cu-substitution with a resulting anisotropic electronic transport of the Cu-pair electrons in the basal plane and along the c axis.

  19. Transport properties of YBa2Cu3Ox /La0.67Sr0.33MnO3 nanostrips and YBa2Cu3Ox/La0.67Sr0.33MnO3/YBa2Cu3Ox nanojunctions

    NASA Astrophysics Data System (ADS)

    Štrbík, V.; Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V.; Chromik, Š.; Gál, N.; Knoška, J.; Sojková, M.; Pisarčík, M.

    2016-03-01

    A metallic ferromagnet (F) in proximity with a superconductor (S) can transport supercurrent on a long distance through conversion of opposite-spin singlet Cooper pairs (CP) into equal-spin triplet CP (long range triplet component, LRTC), which are not broken by the exchange energy of F. The optimal conditions for the conversion are yet to be clarified; however, it is accepted that the key point to this process include high interface transparency and magnetic inhomogeneity at the SF interface. The aim of our paper is to study SF nanostrips (length of about 1500 nm and width down to 300 nm) and lateral SFS nanojunctions based on high critical temperature YBa2Cu3Ox (YBCO) and half-metallic La0.67Sr0.33MnO3 (LSMO) thin films. We applied a focused Ga+ ion beam (FIB) for patterning the SF nanostrips, as well as lateral SFS nanojunctions, by creating a slot in the nanostrip after removing the YBCO film in the slot along a length of about 200 nm. The temperature dependences of the samples resistance R(T) show critical temperature TCn ≈ 89 K of the SF nanostrips; however, the SFS nanojunctions at T < TCn show a residual resistance R < 100 Ω corresponding to a dirty LSMO (ρ≈ 10 mΩ cm) in the slot. The LRTC was not observed in our lateral SFS nanojunctions until now.

  20. Effect of La0.7Sr0.3MnO3 crystal structures on magnetization of (1 1 1) oriented La0.7Sr0.3MnO3-SrRuO3 superlattices

    NASA Astrophysics Data System (ADS)

    Behera, B. C.; Padhan, P.; Prellier, W.

    2016-05-01

    A series of superlattices consisting of 15 bilayers of ferromagnetic La0.7Sr0.3MnO3 (LSMO) and SrRuO3 (SRO) were grown with either stacking order on (1 1 1) oriented SrTiO3 (STO) substrates using the pulsed laser deposition technique. The Raman spectra of these superlattices show the existence of rhombohedral and orthorhombic crystal structures of LSMO in (111)STO/[11-unit cell (u.c.) LSMO/n-u.c. SRO]X15 superlattices with n  =  2 and 3. Interestingly, the Raman spectra of (1 1 1)STO/[11-u.c. SRO/n-u.c. LSMO]X15 superlattices with n  =  2 and 3 show only the orthorhombic structure of LSMO. The (1 1 1)STO/[11-u.c. LSMO/n-u.c. SRO]X15 superlattices exhibit enhanced magnetization with weak antiferromagnetic coupling whereas reduced magnetization with strong antiferromagnetic coupling is observed in (1 1 1)STO/[11-u.c. SRO/n-u.c. LSMO]X15 superlattices. The observed magnetic properties of these superlattices can be explained by the interfacial structural coupling, as evident from their Raman spectra which suggest a modification in the stereochemistry of Mn at the interfaces.

  1. Electrochemical performance and carbon deposition resistance of Ce-doped La0.7Sr0.3Fe0.5Cr0.5O3-δ anode materials for solid oxide fuel cells fed with syngas

    NASA Astrophysics Data System (ADS)

    Sun, Yi-Fei; Li, Jian-Hui; Chuang, Kart T.; Luo, Jing-Li

    2015-01-01

    Ce-doped La0.7Sr0.3Fe0.5Cr0.5O3-δ (Ce-LSFC) perovskite anode catalysts for solid oxide fuel cells are successfully synthesized by a modified combustion method for the first time. The pure perovskite structure without formation of CeO2 is obtained when the content of Ce ≤ 10%. Compared with La0.7Sr0.3Fe0.5Cr0.5O3-δ anode, Ce-LSFC anode not only shows much higher catalytic activity towards the oxidation of syngas with less carbon deposition, but also displays better regeneration from coking. The enhanced performance is attributed to the more available oxygen vacancies in lattice and better oxygen mobility after doping with Ce.

  2. Stripe order of La1.64Eu0.2Sr0.16CuO4 in magnetic fields studied by resonant soft x-ray scattering

    NASA Astrophysics Data System (ADS)

    Zwiebler, M.; Schierle, E.; Weschke, E.; Büchner, B.; Revcolevschi, A.; Ribeiro, Patrick; Geck, J.; Fink, J.

    2016-10-01

    We present results on the magnetic field dependence of the stripe order in La1.64Eu0.2Sr0.16CuO4 (LESCO). Using resonant soft x-ray scattering at the oxygen K edge to probe the (0.259,0,0.648) superlattice reflection, which is commonly associated to charge stripes, we found no pronounced difference in the wave vector, peak widths, and integrated intensity for magnetic fields up to B =6 T. This is in strong contrast to the behavior observed for La1.875Sr0.125CuO4 , where a stabilization of the charge modulation in high magnetic fields has been demonstrated.

  3. Ce electronic states in Nd(0.45-x)Ce(x)Sr0.55MnO3 probed by x-ray absorption spectroscopy and photoemission.

    PubMed

    Shirai, T; Imada, S; Higashiya, A; Sekiyama, A; Suga, S; Muro, T; Tanaka, Y; Tamasaku, K; Yabashi, M; Ishikawa, T; Miyasaka, S; Tokura, Y

    2013-10-16

    We have investigated the Ce 4f electronic states in the Ce-doped manganites Nd(0.45-x)Ce(x)Sr0.55MnO3 (NCSMO) by means of x-ray absorption spectroscopy (XAS) and hard x-ray photoelectron spectroscopy (HAXPES). The Ce 3d XAS shows that the Ce ions exist in the form of the Ce(3+) and Ce(4+) mixed-valent states, and we have found that the XAS spectral features change with temperature. The Ce 3d XAS and HAXPES spectra for NCSMO agree reasonably well with calculated results based on the single-impurity Anderson model, which takes into account the atomic multiplets and two valence bands. The estimated Ce bulk valence of Nd0.15Ce0.3Sr0.55MnO3 decreases from 3.44 to 3.30 with cooling.

  4. Correlation between electrical, magnetocaloric properties and critical behavior in (La0.75Nd0.25)2/3(Ca0.8Sr0.2)1/3MnO3

    NASA Astrophysics Data System (ADS)

    Khelifi, J.; Dhahri, E.; Hlil, E. K.

    2017-01-01

    An investigation of the critical behavior and magnetic entropy from resistivity of (La0.75Nd0.25)2/3(Ca0.8Sr0.2)1/3MnO3 is presented. The magnetocaloric properties of the polycrystalline manganite (La0.75Nd0.25)2/3(Ca0.8Sr0.2)1/3MnO3 based on resistivity measurements were investigated. Using, the equation ΔS = - α∫0H ∂Ln (ρ)/∂T) H dH relates magnetic order to the transport behavior of the compound, we measure the magnetic entropy change ΔSM from the resistivity which is similar to that calculated from the magnetic measurement. Moreover, we have found an excellent estimation of critical behavior from resistivity and magnetic analysis.

  5. Optical spectroscopy study of charge density wave order in Sr3Rh4Sn13 and (Sr0.5Ca0.5)3Rh4Sn13

    NASA Astrophysics Data System (ADS)

    Ban, W. J.; Wang, H. P.; Tseng, C. W.; Kuo, C. N.; Lue, C. S.; Wang, N. L.

    2017-04-01

    We perform optical spectroscopy measurement on single-crystal samples of Sr3Rh4Sn13 and (Sr0.5Ca0.5)3Rh4Sn13. Formation of CDW energy gap was clearly observed for both single-crystal samples when they undergo the phase transitions. The existence of residual Drude components in σ 1( ω) below T CDW indicates that the Fermi surface is only partially gapped in the CDW state. The obtained value of 2Δ/ k B T CDW is roughly 13 for both Sr3Rh4Sn13 and (Sr0.5Ca0.5)3Rh4Sn13 compounds, which is considerably larger than the mean-field value based on the weak-coupling BCS theory. The measurements provide optical evidence for the strong coupling characteristics of the CDW phase transition.

  6. Enhanced second-harmonic generation in Pr0.5Ca0.5MnO3/La0.5Sr0.5MnO3 superlattices

    NASA Astrophysics Data System (ADS)

    Lee, J. S.; Nakamura, M.; Kawasaki, M.; Tokura, Y.

    2013-12-01

    We investigated second harmonic generation for manganite superlattices composed of Pr0.5Ca0.5MnO3 and La0.5Sr0.5MnO3. While the second harmonic intensity shows a strong variation as a function of the constituent layer thickness, it is dramatically enhanced when each layer has a same thickness of about 1.4 nm and endows its own ground state nature, i.e., a charge-orbital ordered antiferromagnetic insulator for Pr0.5Ca0.5MnO3 and a ferromagnetic metal for La0.5Sr0.5MnO3. From the detailed symmetry analysis, we discuss a possible role of the coexisting phases and their boundaries in the enhancement of the polar character in this manganese oxide superlattice.

  7. Novel high temperature proton conducting fuel cells: Production of La 0.995Sr 0.005NbO 4- δ electrolyte thin films and compatible cathode architectures

    NASA Astrophysics Data System (ADS)

    Fontaine, M.-L.; Larring, Y.; Haugsrud, R.; Norby, T.; Wiik, K.; Bredesen, R.

    For breakthrough development in solid oxide fuel cells, novel cell architectures integrating better performing materials and cost-effective manufacturing processes with potential for mass production must be realised. The present work addresses this on the basis of the recent discovery of acceptor doped rare-earth ortho-niobate proton conductors and the development of a versatile fabrication process. La 0.995Sr 0.005NbO 4- δ/NiO anodes are produced by tape-casting and co-lamination of green layers. Their porosity is finely tuned by using a pyrolyzable pore former. La 0.995Sr 0.005NbO 4- δ electrolytes are spin-coated using ceramic-based suspensions. Fully dense electrolytes with thickness ranging from 9 μm to 26 μm are obtained after sintering in air at 1350 °C. The cathode layers are then screen-printed. To match thermal expansion and to avoid chemical reaction between the functional layers, special attention is paid to the design of cathode architectures. CaTi 0.9Fe 0.1O 3- δ, La 2NiO 4+ δ and La 4Ni 3O 10 mixed oxygen ion and electron conducting oxides are investigated as either monophase or La 0.995Sr 0.005NbO 4- δ-based composite electrodes. The latter gives the whole cell an innovative "semi-monolithic" concept, which can take advantage of the chemical and mechanical stability of La 0.995Sr 0.005NbO 4- δ, as well as of inherent material integration. Most promising cell architectures are finally selected based on thermo-mechanical and chemical compatibility of all functional layers.

  8. Direct Observation of Magnetic-Ion Off-Centering-Induced Ferroelectricity in Multiferroic Manganite Pr(Sr0.1Ca0.9)2 Mn2O7.

    PubMed

    Ma, Chao; Lin, Yue; Yang, Huaixin; Tian, Huanfang; Shi, Lei; Zeng, Jie; Li, Jianqi

    2015-11-04

    Ferroelectricity in multiferroic Pr(Sr0.1 Ca0.9)2 Mn2 O7 is found to originate from the off-centering of Mn ions. This polar displacement is energetically stabilized by the cooperative interplay of lattice deformation induced by orbital ordering and oxygen octahedral tilting. This mechanism implies that magnetism and ferroelectricity arise from the same magnetic ions, providing direct evidence for the magnetic-ion off-centering-driven ferroelectricity.

  9. Comparison of stripe modulations in La1.875Ba0.125CuO4 and La1.48Nd0.4Sr0.12CuO4

    NASA Astrophysics Data System (ADS)

    Wilkins, S. B.; Dean, M. P. M.; Fink, Jörg; Hücker, Markus; Geck, J.; Soltwisch, V.; Schierle, E.; Weschke, E.; Gu, G.; Uchida, S.; Ichikawa, N.; Tranquada, J. M.; Hill, J. P.

    2011-11-01

    We report combined soft and hard x-ray scattering studies of the electronic and lattice modulations associated with stripe order in La1.875Ba0.125CuO4 and La1.48Nd0.4Sr0.12CuO4. We find that the amplitude of both the electronic modulation of the hole density and the strain modulation of the lattice is significantly larger in La1.875Ba0.125CuO4 than in La1.48Nd0.4Sr0.12CuO4 and is also better correlated. The in-plane correlation lengths are isotropic in each case; for La1.875Ba0.125CuO4, ξhole=255±5 Å, whereas for La1.48Nd0.4Sr0.12CuO4, ξhole=111±7 Å. We find that the modulations are temperature independent in La1.875Ba0.125CuO4 in the low temperature tetragonal phase. In contrast, in La1.48Nd0.4Sr0.12CuO4, the amplitude grows smoothly from zero, beginning 13 K below the LTT phase transition. We speculate that the reduced average tilt angle in La1.875Ba0.125CuO4 results in reduced charge localization and incoherent pinning, leading to the longer correlation length and enhanced periodic modulation amplitude.

  10. Solution processed Ni-doped TiO2 p-type channel in field effect transistor assembly with <10 nm thin Ba0.5Sr0.5TiO3 dielectric layer

    NASA Astrophysics Data System (ADS)

    Das, Soumen; Kim, Jin-Hwan; Park, Yong-Kyu; Hahn, Yoon-Bong

    2011-05-01

    Solution processed field effect transistor structures were fabricated by inserting a Ba0.5Sr0.5TiO3 layer to form Ag/ZnO/Ba0.5Sr0.5TiO3/Ni2+:TiO2/n-Si assembly. Such assembly registered an on-to-off current ratio as large as 103 with very low off-state current ˜10-12 A. The low leakage current is attributed to the appreciably higher values of valence/conduction band off-set of Ba0.5Sr0.5TiO3/semiconductor heterojunction. The device response was studied as a function of temperature in the range of 25-175 °C. The hole diffusion coefficient and mobility of p-TiO2 was calculated ˜10-3 cm2/s and ˜0.13-0.15 cm-2 V-1 s-1, respectively.

  11. Transport studies of Nb-doped Pr0.7Sr0.3Mn1-xNbxO3 (0≤x≤0.05) manganites

    NASA Astrophysics Data System (ADS)

    Choithrani, Renu; Bhat, Masroor A.; Gaur, N. K.

    2014-09-01

    We have investigated the transport studies of the Nb-doped Pr0.7Sr0.3Mn1-xNbxO3 (0≤x≤0.05) manganites for the first time for identifying the transport properties as a function of the composition and temperature. Pr0.7Sr0.3Mn1-xNbxO3 (0≤x≤0.05) samples exhibit a single phase nature with an orthorhombic structure and a Pbnm space group. These materials show colossal magnetoresistance effect (CMR) and have wide technological applications such as magnetic sensors, reading head devices, spintronics, bolometers, magnetic refrigeration, etc. The computed transport properties such as cohesive energy, Reststrahlen frequency, Debye temperature, Grüneisen parameter and temperature dependence of specific heat of Pr0.7Sr0.3Mn1-xNbxO3 (0≤x≤0.05) manganites are discussed in detail in the present work by applying extended rigid ion model (ERIM) and have shown significant agreement with the corresponding available results.

  12. Dielectric properties of xNa0.5Bi0.5TiO3-(1 ‑ x)Ba0.66Mg0.04Sr0.3TiO3 composite ceramics

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Cheng, Haiyan; Gao, Lan; Wang, Xianling; Duan, Ruijie; Li, Jiali

    2017-02-01

    The ceramics with the composition of xNa0.5Bi0.5TiO3-(1 ‑ x)Ba0.66Mg0.04Sr0.3TiO3 (NBT-BMST) in which x = 0.2, 0.3, 0.4 and 0.5 were prepared successfully by the solid-state reaction method. The effects of NBT-doping on phase structure, morphology, temperature stability and dielectric properties had been investigated in detail. The XRD results show that the composites are composed of tetragonal perovskite. The phase structure of NBT-BMST is observed by scanning electron microscopy. The dielectric constant of 0.3Na0.5Bi0.5TiO3-0.7Ba0.66Mg0.04Sr0.3TiO3 ceramic is ˜4100, the temperature coefficients of capacitance are ‑15%, 15% and 22% at ‑55∘C, 60∘C and 200∘C, respectively. And the dielectric loss is less than 0.13, which is obviously superior to other compositions. The results of this work showed that the component of 0.3Na0.5Bi0.5TiO3-0.7Ba0.66Mg0.04Sr0.3TiO3 is a promising candidate to high-temperature stable materials.

  13. Microstructure and Microwave Dielectric Properties of (1- x)MgAl2O4- x(Ca0.8Sr0.2)TiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Huang, Yafei; Yu, Jun; Shen, Chunying; Tang, Mingliang

    2016-10-01

    The microwave dielectric properties of the (1- x)MgAl2O4- x(Ca0.8Sr0.2)TiO3 ( x = 0.02 to 0.10) ceramic system synthesized by the traditional solid-state reaction method have been investigated. Spinel-structured MgAl2O4 was present together with perovskite-structured (Ca0.8Sr0.2)TiO3, and this multiphase system was verified by x-ray diffraction (XRD) and energy spectrum analyses throughout the whole compositional range. With increasing x, the temperature coefficient of resonant frequency ( τ f) and permittivity ( ɛ r) gradually increased. Consequently, near-zero τ f could be obtained for samples with x = 0.08. Excellent microwave dielectric properties with relative permittivity ( ɛ r) of 10.92, quality factor ( Q × f) of 52,563 GHz (at 12.9 GHz), and temperature coefficient of resonant frequency ( τ f) of -5.6 ppm/°C were obtained for 0.92MgAl2O4-0.08(Ca0.8Sr0.2)TiO3 composite sintered at 1440°C for 3 h, making this material a promising candidate for use in global communication satellites and radar detectors.

  14. Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe48Rh52 and Sm0.6Sr0.4MnO3

    NASA Astrophysics Data System (ADS)

    Aliev, A. M.; Batdalov, A. B.; Khanov, L. N.; Kamantsev, A. P.; Koledov, V. V.; Mashirov, A. V.; Shavrov, V. G.; Grechishkin, R. M.; Kaul', A. R.; Sampath, V.

    2016-11-01

    The magnetocaloric effect (MCE) in an Fe48Rh52 alloy and Sm0.6Sr0.4MnO3 manganite was studied in cyclic magnetic fields. The adiabatic temperature change in the Fe48Rh52 alloy for a magnetic field change (ΔB) of 8 T and a frequency (f) of 0.13 Hz reaches the highest value of (ΔTad) of -20.2 K at 298 K. The magnitude of the MCE in Sm0.6Sr0.4MnO3 reaches ΔTad = 6.1 K at the same magnetic field change at 143 K. The temperature regions, where a strong MCE is exhibited in an alternating magnetic field, are bounded in both compounds. In the case of the Fe48Rh52 alloy, the temperature range for this phenomenon is bounded above by the ferromagnetic to antiferromagnetic transition temperature in the zero field condition during cooling. In the case of the Sm0.6Sr0.4MnO3 manganite, the temperature range for the MCE is bounded below by the ferromagnetic-paramagnetic transition temperature in zero field during heating. The presence of these phase boundaries is a consequence of the existence of areas of irreversible magnetic-field-induced phase transitions. It is found that the effect of long-term action of thousands of cycles of magnetization/demagnetization degrades the magnetocaloric properties of the Fe48Rh52 alloy. This can be explained by the gradual decrease in the size of the ferromagnetic domains and increasing role of the domain walls due to giant magnetostriction at the ferromagnetic to antiferromagnetic transition temperature. The initial magnetocaloric properties can be restored by heating of the material above their Curie temperature.

  15. Microwave and electrical characterization of M-type Ba0.5Sr0.5CoxRuxFe(12-2x)O19 hexaferrite for practical applications

    NASA Astrophysics Data System (ADS)

    Kaur, Rajvir; Dhillon, Naveen; Singh, Charanjeet; Narang, S. Bindra; Chandra, Madhu

    2015-01-01

    The microwave absorption of Ba0.5Sr0.5CoxRuxFe(12-2x)O19 (x=0.0,0.2,0.4,0.8,1.0) ferrite has been investigated as a function of frequency, substitution and thickness. The static I-V characteristics have been studied as a function of substitution. The results exhibit reflection loss of -12.02 dB at 9.0 GHz in x=0.2. The electrical current density increases at higher substitution. The microwave and electrical properties show dependence on microstructure. The ferrite compositions for different electromagnetic applications are also suggested.

  16. Magneto-transport properties of La0.75Ca0.15Sr0.1MnO3 with YBa2Cu3O7-δ addition

    NASA Astrophysics Data System (ADS)

    Zghal, E.; Koubaa, M.; Berthet, P.; Sicard, L.; Cheikhrouhou-Koubaa, W.; Decorse-Pascanut, C.; Cheikhrouhou, A.; Ammar-Merah, S.

    2016-09-01

    We report the structural, magnetic, electrical and magentoresistance properties of (La0.75Ca0.15Sr0.1MnO3)1-x(YBa2Cu3O7-δ)x (with x=0, 0.025, 0.05, 0.075, 0.1, 0.2, and 0.3) composites synthesized through sol-gel method. The powder X-ray diffraction patterns indicate no evidence of reaction between La0.75Ca0.15Sr0.1MnO3 (LCSMO) and YBa2Cu3O7-δ (YBCO). The addition of YBCO induces a reduction of the total magnetization while the Curie temperature remains almost constant (∼312 K). The behavior of the electrical resistivity evolves differently depending on the doping level. Above the paramagnetic-insulating transition temperature the resistivity data were best-fitted by using the adiabatic small polaron and variable range hopping models. Ferromagnetic-metallic regime in the composites seems to emanate from the electron-phonon or/and electron-magnon scattering processes. With increasing the YBCO doping content (until x=0.1), the positive magnetoresistance (MR) of YBCO phase dominates the negative MR of LCSMO one, which gives rise to the decreasing of MR of the composites.

  17. Structural and dielectric behavior of pulsed laser ablated Sr 0.6Ca 0.4TiO 3 thin film and asymmetric multilayer of SrTiO 3 and CaTiO 3

    NASA Astrophysics Data System (ADS)

    Chakraborty, Pradip; Choudhury, Palash Roy; Krupanidhi, S. B.

    2011-12-01

    Homogeneous thin films of Sr 0.6Ca 0.4TiO 3 (SCT40) and asymmetric multilayer of SrTiO 3 (STO) and CaTiO 3 (CTO) were fabricated on Pt/Ti/SiO 2/Si substrates by using pulsed laser deposition technique. The electrical behavior of films was observed within a temperature range of 153 K-373 K. A feeble dielectric peak of SCT40 thin film at 273 K is justified as paraelectric to antiferroelectric phase transition. Moreover, the Curie-Weiss temperature, determined from the ɛ'( T) data above the transition temperature is found to be negative. Using Landau theory, the negative Curie-Weiss temperature is interpreted in terms of an antiferroelectric transition. The asymmetric multilayer exhibits a broad dielectric peak at 273 K, and is attributed to interdiffusion at several interfaces of multilayer. The average dielectric constants for homogeneous Sr 0.6Ca 0.4TiO 3 films (˜650) and asymmetric multilayered films (˜350) at room temperature are recognized as a consequence of grain size effect. Small frequency dispersion in the real part of the dielectric constants and relatively low dielectric losses for both cases ensure high quality of the films applicable for next generation integrated devices.

  18. Y0.08Sr0.88TiO3-CeO2 composite as a diffusion barrier layer for stainless-steel supported solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Kun Joong; Kim, Sun Jae; Choi, Gyeong Man

    2016-03-01

    A new diffusion barrier layer (DBL) is proposed for solid oxide fuel cells (SOFCs) supported on stainless-steel where DBL prevents inter-diffusion of atoms between anode and stainless steel (STS) support during fabrication and operation of STS-supported SOFCs. Half cells consisting of dense yttria-stabilized zirconia (YSZ) electrolyte, porous Ni-YSZ anode layer, and ferritic STS support, with or without Y0.08Sr0.88TiO3-CeO2 (YST-CeO2) composite DBL, are prepared by tape casting and co-firing at 1250 and 1350 °C, respectively, in reducing (H2) atmosphere. The porous YST-CeO2 layer (t ∼ 60 μm) blocks inter-diffusion of Fe and Ni, and captures the evaporated Cr during cell fabrication (1350 °C). The cell with DBL and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode achieved a maximum power density of ∼220 mW cm-2 which is stable at 700 °C. In order to further improve the power performance, Ni coarsening in anode during co-firing must be prevented or alternative anode which is resistive to coarsening is suggested. This study demonstrates that the new YST-CeO2 layer is a promising as a DBL for stainless-steel-supported SOFCs fabricated with co-firing process.

  19. Evidence for monoclinic distortion in the ground state phase of underdoped La1.95Sr0.05CuO4: A single crystal neutron diffraction study

    DOE PAGES

    Singh, Anar; Schefer, Jurg; Sura, Ravi; ...

    2016-03-24

    The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La1.95Sr0.05CuO4 has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for "forbidden" reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La1.95Sr0.05CuO4 at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in a continuous way; however, the structure ismore » stable below similar to 120K which agrees with other observed phenomena. Lastly, our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.« less

  20. Effect of hydrostatic pressure on magnetic entropy change and critical behavior of the perovskite manganite La0.4Bi0.3Sr0.3MnO3

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, R.; Esakki Muthu, S.; Barik, S. K.; Mahendiran, R.; Arumugam, S.

    2013-01-01

    We report the effect of magnetic field (H) and hydrostatic pressure (P) on the order of magnetic transition of polycrystalline La0.4Bi0.3Sr0.3MnO3 which undergoes a first-order paramagnetic (PM) to ferromagnetic (FM) transition in La0.7-xBixSr0.3MnO3 series. The ferromagnetic Curie temperature (TC) increases with increasing H (12.01 K/T-cooling and 10.28 K/T-warming) and P (8.1 K/kbar-cooling and 6 K/kbar-warming). The first-order FM transition becomes second-order under the applied magnetic field of 9 T and pressure of 9.1 kbar. We have analyzed the critical behavior associated with the second order PM-FM transition at 9.1 kbar. The estimated critical exponents (β = 0.5217, γ = 1.209, and δ = 3.162) are found to be close to the mean-field model. Pressure suppresses metamagnetic transition in magnetization isotherms observed above TC in ambient pressure and enhances the magnetic entropy change (ΔSm). The ΔSm was found to increase by 50% under hydrostatic pressure of 9.1 kbar at TC = 240 K. This study suggested that hydrostatic pressure can be used to enhance magnetocaloric values in phase separated manganites.

  1. Effect of Fe substitution on magnetocaloric effect in La 0.7Sr 0.3Mn 1- xFe xO 3 (0.05≤ x≤0.20)

    NASA Astrophysics Data System (ADS)

    Barik, S. K.; Krishnamoorthi, C.; Mahendiran, R.

    2011-04-01

    We have studied the effect of Fe substitution on magnetic and magnetocaloric properties in La0.7Sr0.3Mn1-xFexO3 (x=0.05, 0.07, 0.10, 0.15, and 0.20) over a wide temperature range (T=10-400 K). It is shown that substitution by Fe gradually decreases the ferromagnetic Curie temperature (TC) and saturation magnetization up to x=0.15 but a dramatic change occurs for x=0.2. The x=0.2 sample can be considered as a phase separated compound in which both short-range ordered ferromagnetic and antiferromagnetic phases coexist. The magnetic entropy change (-ΔSm) was estimated from isothermal magnetization curves and it decreases with increase of Fe content from 4.4 J kg-1 K-1 at 343 K (x=0.05) to 1.3 J kg-1 K-1 at 105 K (x=0.2), under ΔH=5 T. The La0.7Sr0.3Mn0.93Fe0.07O3 sample shows negligible hysteresis loss, operating temperature range over 60 K around room temperature with refrigerant capacity of 225 J kg-1, and magnetic entropy of 4 J kg-1 K-1 which will be an interesting compound for application in room temperature refrigeration.

  2. Data Retention and Readout Degradation Properties of Pt/Sr0.7Sm0.07Bi2.2Ta2O9/HfO2/Si Structure Ferroelectric-Gate Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Saiki, Hirokazu; Tokumitsu, Eisuke

    2007-01-01

    We discuss the data retention and readout degradation properties of ferroelectric-gate field-effect transistors (FeFETs) with Pt/Sr0.7Sm0.07Bi2.2Ta2O9/HfO2/Si structures. We first point out that to read out the stored data correctly, unselected FeFETs should be turned off during the readout process and that this process causes a significant reduction of ON readout current. We next characterize the data retention properties of Pt/Sr0.7Sm0.07Bi2.2Ta2O9/HfO2/Si structure n-channel FeFET by taking the readout process into account. It is shown that the retention property measured by applying positive readout pulses after holding at VG=0 V for 30 s, is similar to that measured by the conventional method in which drain current is continuously measured at a positive hold voltage.

  3. Stainless steel-supported solid oxide fuel cell with La0.2Sr0.8Ti0.9Ni0.1O3-δ/yttria-stabilized zirconia composite anode

    NASA Astrophysics Data System (ADS)

    Dayaghi, Amir Masoud; Kim, Kun Joong; Kim, Sunwoong; Park, Juahn; Kim, Sun Jae; Park, Byung Hyun; Choi, Gyeong Man

    2016-08-01

    A metal-supported solid oxide fuel cell (MS-SOFC) is fabricated by co-firing stainless steel (STS) support with a new reduction-resistant oxide-anode and yttria-stabilized zirconia electrolyte. La and Ni co-doped SrTiO3 (La0.2Sr0.8Ti0.9Ni0.1O3-δ, LSTN) which shows Ni exsolution capability is composited with Y0.16Zr0.84O2-δ (YSZ) electrolyte to form a new LSTN-YSZ anode. A cermet layer composed of STS and YSZ (STS-YSZ) is inserted between a porous STS support and a new LSTN-YSZ composite anode for stable contact. With La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode and Ce0.8Gd0.2O2-δ (GDC) interlayer coated on top of co-fired half-cell, YSZ/LSTN-YSZ/STS-YSZ/STS, a newly designed and fabricated cell achieved maximum power density of 185 mW cm-2 at 650 °C. This power density is an improvement over many conventional co-fired MS-SOFCs that use a Ni-cermet anode.

  4. Effect of trivalent rare earth doping on magnetic and magnetocaloric properties of Pr0.5(Ce,Eu,Y)0.1Sr0.4MnO3 manganites

    NASA Astrophysics Data System (ADS)

    Sakka, A.; M'nassri, R.; Chniba-Boudjada, N.; Ommezzine, M.; Cheikhrouhou, A.

    2016-06-01

    Experimental studies of the structural, magnetic and magnetocaloric properties of the three compounds Pr0.5X0.1Sr0.4MnO3 (X = Ce, Eu and Y) are reported. Our samples were synthesized using the Pechini sol-gel method. X-ray powder diffraction at room temperature indicates that our materials crystallize in the orthorhombic structure with Pbnm space group. The compounds undergo a second-order magnetic transition from paramagnetic to ferromagnetic state around their own Curie temperatures T C ~ 310, 270 and 230 K for X = Ce, Eu and Y, respectively. A considerable magnetocaloric effect (MCE) is observed around room temperature. The maximum values of magnetic entropy change ∆ S max are 3.54, 3.81 and 2.99 J/kgK for the samples with X = Ce, Eu and Y, respectively, when a magnetic field of 5 T was applied. The relative cooling power (RCP) values for the corresponding materials are 246.60, 261.66 and 298 J/kg. It is shown that for Pr0.5X0.1Sr0.4MnO3 the exponent n and the magnetic entropy change follow a master curve behavior. With the universal scaling curve, the experimental ∆ S at several temperatures and fields can be extrapolated.

  5. Ergodic Relaxor State with High Energy Storage Performance Induced by Doping Sr0.85Bi0.1TiO3 in Bi0.5Na0.5TiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Qing-Ning; Zhou, Chong-Rong; Xu, Ji-Wen; Yang, Ling; Zhang, Xin; Zeng, Wei-Dong; Yuan, Chang-Lai; Chen, Guo-Hua; Rao, Guang-Hui

    2016-10-01

    The large maximum polarization P max and low remnant polarization P r in relaxor ferroelectrics are key features for the energy storage density ( W) and energy-storage efficiency ( η) in materials selection. In this study, the ergodic relaxor (ER) state with high energy storage performance associated with low P r and large P max, induced by Sr0.85Bi0.1TiO3(SBT) addition in (1 - x)Bi0.5Na0.5TiO3- xSr0.85Bi0.1TiO3 (BNT-SBT x with x = 0.25-0.45, Bi0.5Na0.5TiO3 abbreviated as BNT) ceramics has been observed. In particular, significantly increased energy storage density ( W = 1.5 J/cm3) and energy-storage efficiency ( η = 73%) are obtained for BNT-SBT ergodic relaxor ceramics. These results suggest a new means of designing lead-free energy-storage materials.

  6. Theoretical investigation of the magnetocaloric effect on La0.7(Ba, Sr)0.3Mn0.9Ga0.1O3 compound at room temperature

    NASA Astrophysics Data System (ADS)

    Tlili, R.; Hammouda, R.; Bejar, M.; Dhahri, E.

    2015-07-01

    Based on a phenomenological model, the magnetic and magnetocaloric properties of La0.7(Ba, Sr)0.3Mn0.9Ga0.1O3 oxide have been studied. Indeed, the magnetic measurements have demonstrated that the sample exhibits a ferromagnetic-paramagnetic transition at room temperature. The value of the magnetocaloric effect such as magnetic entropy change, full width at half-maximum, relative cooling power and magnetic specific heat change has been determined from the calculation of magnetization as a function of temperature under different external magnetic fields. The maximum magnetic entropy change (- ΔSMmax) and the relative cooling power (RCP) are, respectively, 0.57 J kg-1 K-1 and 28.68 J kg-1 for a 10 kOe field change at 300 K, which are the characteristics of a good magnetocaloric material. Hence, the La0.7(Ba, Sr)0.3Mn0.9Ga0.1O3 compound can be considered as a promising material in magnetic refrigeration technology. According to the master curve behavior for the temperature dependence of ΔSM predicted for different maximum fields, this work has confirmed that the paramagnetic-ferromagnetic phase transition observed for our sample is of a second order.

  7. The temperature evolution of NiO6 octahedral tilts as a probe to study charge stripes in Ln1:67Sr0:33NiO4 (Ln=La/Nd)

    NASA Astrophysics Data System (ADS)

    Abeykoon, Milinda; Bozin, Emil; Gu, Genda; Hill, John; Tranquada, John; Billinge, Simon

    2012-02-01

    Nd1:67Sr0:33NiO4 and La1:67Sr0:33NiO4 exhibit long range ordered (LRO) charge stripes below Tco˜240K. When the charge stripes are static and long-range ordered, they have been seen as superlattice Bragg peaks in single crystal neutron and x-ray diffraction. We used neutron atomic pair distribution function (NPDF) technique to investigate the possibility of existence of localized charges above Tco, where, the LRO of the stripes disappears. Rigid body type NiO6 octahedral tilts were used as a probe to study the local and average structural response to charge order. The amplitude of rotation of the octahedral units was used to investigate the observed large apical oxygen thermal ellipsoids (anisotropic thermal displacement parameters) in the a-b crystal plane. We measured enhanced tilt amplitudes in the local structure, compared to the average. We will discuss the temperature dependence of the tilt amplitudes and of the correlation length of the local tilt order and explore the potential relationship to local stripe order.

  8. Robust NdBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode material and its degradation prevention operating logic for intermediate temperature-solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hee; Park, Ka-Young; Kim, Nam-In; Song, Sun-Ju; Hong, Ki-Ha; Ahn, Docheon; Azad, Abul K.; Hwang, Junyeon; Bhattacharjee, Satadeep; Lee, Seung-Cheol; Lim, Hyung-Tae; Park, Jun-Young

    2016-11-01

    We report solutions (durable material and degradation prevention method) to minimize the performance degradation of cell components occurring in the solid oxide fuel cell (SOFC) operation. Reliability testing is carried out with the Nisbnd Nd0.1Ce0.9O2-δ (NDC) anode-supported intermediate temperature-SOFCs. For the cathode materials, single perovskite structured Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and double perovskite structured NdBa0.5Sr0.5Co1.5Fe0.5O5+δ (NBSCF) are prepared and evaluated under harsh SOFC operating conditions. The double perovskite NBSCF cathode shows excellent stability in harsh SOFC environments of high humidity and low flow rate of air. Furthermore, we propose the concurrent fuel and air starvation mode, in which the cell potential is temporarily reduced due to the formation of both fuel-starvation (in the anode) and air-depletion (in the cathode) concurrently under a constant load. This is carried out in order to minimize the performance decay of the stable NBSCF-cell through the periodic and extra reduction of aH2 O (and aO2) in the anode. The operating-induced degradation of SOFCs, which are ordinarily assumed to be unrecoverable, can be completely circumvented by the proposed periodical operation logic to prevent performance degradation (concurrent fuel-starvation and air-depletion mode).

  9. Chemically stable perovskites as cathode materials for solid oxide fuel cells: La-doped Ba0.5Sr0.5Co0.8Fe0.2O(3-δ).

    PubMed

    Kim, Junyoung; Choi, Sihyuk; Jun, Areum; Jeong, Hu Young; Shin, Jeeyoung; Kim, Guntae

    2014-06-01

    Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) (BSCF) has won tremendous attention as a cathode material for intermediate-temperature solid-oxide fuel cells (IT-SOFC) on the basis of its fast oxygen-ion transport properties. Nevertheless, wide application of BSCF is impeded by its phase instabilities at intermediate temperature. Here we report on a chemically stable SOFC cathode material, La0.5Ba0.25Sr0.25Co0.8Fe0.2O(3-δ) (LBSCF), prepared by strategic approaches using the Goldschmidt tolerance factor. The tolerance factors of LBSCF and BSCF indicate that the structure of the former has a smaller deformation of cubic symmetry than that of the latter. The electrical property and electrochemical performance of LBSCF are improved compared with those of BSCF. LBSCF also shows excellent chemical stability under air, a CO2-containg atmosphere, and low oxygen partial pressure while BSCF decomposed under the same conditions. Together with this excellent stability, LBSCF shows a power density of 0.81 W cm(-2) after 100 h, whereas 25 % degradation for BSCF is observed after 100 h.

  10. A study on the extent of exchange coupling between (Ba0.5Sr0.5Fe12O19)1-x(CoFe2O4)x magnetic nanocomposites synthesized by solgel combustion method

    NASA Astrophysics Data System (ADS)

    Harikrishnan, V.; Ezhil Vizhi, R.

    2016-11-01

    One step citrate gel combustion method followed by high temperature annealing was employed for preparing (Ba0.5Sr0.5Fe12O19)1-x(CoFe2O4)x (x=0.1, 0.2, and 0.3) composite ferrite powders. The powders were subjected to annealing at 800 °C in order to decisively study the phase evolution of the combined hard and soft ferrites. Thermogravitry (TGA)/differential scanning calorimetry (DSC) analysis exhibited three stages of decomposition in the precursor gels combined with an exothermic peak at 210 °C. X-ray diffraction (XRD) analysis confirmed that the diffraction peaks were perfectly indexed to the hexagonal magnetoplumbite structure of Ba0.5Sr0.5Fe12O19 and the cubic spinel structure of CoFe2O4. Fourier transform infrared spectroscopy (FT-IR) analysis for the samples showed a Co-O stretching vibration accompanied with Co-O-Co or Fe-O-Fe bands at 1220 cm-1. The morphology of the samples were examined by field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). The crystallinity of a selected sample was evaluated by using the high resolution transmission electron microscope (HR-TEM) and selected area electron diffraction (SAED) pattern. It confirmed the presence of planes comprising the hard and soft phases in the synthesized nanocomposites. The magnetic parameters like saturation magnetization MS, remanent magnetization MR, squareness ratio SR, coercivity HC and magnetic moment μB were evaluated using hysteresis by employing vibrating sample magnetometer (VSM). Maximum HC of 4.7 kOe and MS of 60.4 emu/g were obtained for (Ba0.5Sr0.5Fe12O19)0.9(CoFe2O4)0.1. Switching field distribution curves were analysed by using the demagnetization curve. The exchange coupling between the hard and soft phases were analysed by the dM/dH plots and it indicated the exchange coupling first increased with the increase in the concentration of spinels and then decreased. The possible comparison of exchange coupling between the hard and soft phases

  11. Room temperature ferromagnetic properties of epitaxial (111) Y0.225Sr0.775CoO3-δ thin film grown on single crystalline (111) MgO substrate

    NASA Astrophysics Data System (ADS)

    Seo, Jeongdae; Ahn, Yoonho; Yeog Son, Jong

    2015-08-01

    Epitaxial (111) Y0.225Sr0.775CoO3-δ (YSCO) thin films were deposited on single crystalline (111) MgO substrates by a pulsed laser deposition method. The YSCO thin film exhibited room temperature ferromagnetism with a remanent magnetization of 1.5×10-5 emu. The magnetic force microscopy (MFM) study revealed that the YSCO thin film had a mosaic MFM domain structure. The comparison of domain wall energy for the YSCO and PZT indicates that the large domain wall energy induce the large domain size, though the large magnetization value reduce the magnetic domain size in the case of Co. According to the optical conductivity analysis by spectroscopic ellipsometry, it is inferred that the transition from the intermediate spin state to the high spin state of the YSCO thin film is attributed to the ferromagnetism of the Co4+ ion.

  12. Strong perpendicular exchange bias in epitaxial La(0.7)Sr(0.3)MnO3:BiFeO3 nanocomposite films through vertical interfacial coupling.

    PubMed

    Zhang, Wenrui; Chen, Aiping; Jian, Jie; Zhu, Yuanyuan; Chen, Li; Lu, Ping; Jia, Quanxi; MacManus-Driscoll, Judith L; Zhang, Xinghang; Wang, Haiyan

    2015-09-07

    An exchange bias effect with perpendicular anisotropy is of great interest owing to potential applications such as read heads in magnetic storage devices with high thermal stability and reduced dimensions. Here we report a novel approach for achieving perpendicular exchange bias by orienting the ferromagnetic/antiferromagnetic coupling in the vertical geometry through a unique vertically aligned nanocomposite (VAN) design. Our results demonstrate robust perpendicular exchange bias phenomena in micrometer-thick films employing a prototype material system of antiferromagnetic BiFeO3 and ferromagnetic La0.7Sr0.3MnO3. The unique response of exchange bias to a perpendicular magnetic field reveals the existence of exchange coupling along their vertical heterointerfaces, which exhibits a strong dependence on their strain states. This VAN approach enables a large selection of material systems for achieving perpendicular exchange bias, which could lead to advanced spintronic devices.

  13. Large tunneling anisotropic magnetoresistance in La0.7Sr0.3MnO3/pentacene/Cu structures prepared on SrTiO3 (110) substrates

    NASA Astrophysics Data System (ADS)

    Kamiya, Takeshi; Miyahara, Chihiro; Tada, Hirokazu

    2017-01-01

    We investigated tunneling anisotropic magnetoresistance (TAMR) at the interface between pentacene and La0.7Sr0.3MnO3 (LSMO) thin films prepared on SrTiO3 (STO) (110) substrates. The dependence of the TAMR ratio on the magnetic field strength was approximately ten times larger than that of the magnetic field angle at a high magnetic field. This large difference in the TAMR ratio is explained by the interface magnetic anisotropy of strain-induced LSMO thin films on a STO (110) substrate, which has an easy axis with an out-of-plane component. We also note that the TAMR owing to out-of-plane magnetization was positive at each angle of the in-plane magnetic field. This result implies that active control of the interface magnetic anisotropy between organic materials and ferromagnetic metals should realize nonvolatile and high-efficiency TAMR devices.

  14. The onset of ferromagnetism and superconductivity in [La0.7Sr0.3MnO3(n u.c.)/YBa2Cu3O7(2 u.c.)]20 superlattices.

    PubMed

    Dybko, K; Aleshkevych, P; Sawicki, M; Paszkowicz, W; Przyslupski, P

    2013-09-18

    With the aim of studying the interface magnetism, the onset of ferromagnetism and the onset of the transition to the superconducting state a series of [La0.7Sr0.3MnO3(n u.c.)/YBa2Cu3O7(2 u.c.)]20 (LSMO/YBCO) superlattices with nominally varying layer thickness of the LSMO from one to four unit cells (u.c.) was prepared and characterized by x-ray diffraction, electronic transport, magnetization and ferromagnetic resonance measurements. Spontaneous magnetization was observed for a superlattice with four u.c. LSMO layer thickness in a multilayer structure. Superlattices with 3 u.c. of LSMO and lower layer thicknesses did not show a signature of ferromagnetism. The onset of superconductivity was observed for superlattices with one and two LSMO layer u.c. thickness.

  15. Magnetoelectric Coupling Characteristics of the La0.67Sr0.33MnO3/PbZr0.2Ti0.8O3(001) Interface

    NASA Astrophysics Data System (ADS)

    Hammouri, Mahmoud; Karpov, Dmitry; Fohtung, Edwin; Vasiliev, Igor

    Multiferroic heterostructures composed of thin layers of ferromagnetic and ferroelectric perovskites have attracted considerable attention in recent years. We apply ab initio computational methods based on density functional theory to study the characteristics of the magnetoelectric coupling at the (001) interface between La0.67Sr0.33MnO3 (LSMO) and PbZr0.2Ti0.8O3(PZT). The calculations are carried out using the Quantum ESPRESSO electronic structure code combined with Vanderbilt ultrasoft pseudopotentials. Our study shows that the interfacial interaction between LSMO and PZT and the polarization of PZT have a strong influence on the distribution of magnetization within the LSMO layer. A significant change in the magnetization of the LSMO layer adjacent to PZT is observed after reversal of the direction of polarization of PZT. Supported by NMSU GREG award. EF is funded by the DoD-AFOSR under Award No FA9550-14-1-0363.

  16. Modulation of ultrafast laser-induced magnetization precession in BiFeO3-coated La0.67Sr0.33MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Wan, Qian; Jin, KuiJuan; Wang, JieSu; Yao, HongBao; Gu, JunXing; Guo, HaiZhong; Xu, XiuLai; Yang, GuoZhen

    2017-04-01

    The ultrafast laser-excited magnetization dynamics of ferromagnetic (FM) La0.67Sr0.33MnO3 (LSMO) thin films with BiFeO3 (BFO) coating layers grown by laser molecular beam epitaxy are investigated using the optical pump-probe technique. Uniform magnetization precessions are observed in the films under an applied external magnetic field by measuring the time-resolved magneto-optical Kerr effect. The magnetization precession frequencies of the LSMO thin films with the BFO coating layers are lower than those of uncoated LSMO films, which is attributed to the suppression of the anisotropy field induced by the exchange interaction at the interface between the antiferromagnetic order of BFO and the FM order of LSMO.

  17. Two regimes behavior in the resistivity of the La 1.85Sr 0.15Cu 1- xLi xO 4 system: A signature of different electronic states for holes

    NASA Astrophysics Data System (ADS)

    García, S.; Musa, J. E.; Giordanengo, B.; Baggio-Saitovitch, E. M.

    1998-01-01

    The variations of the normal-state resistivity and the superconducting transition temperature Tc of the La 1.85Sr 0.15(Cu 1- xLi x)O 4 system for 0 ≤ x ≤ 0.05 reveal a two regimes behavior, with x ≅ 0.03 being the critical concentration for a transition from a delocalized state, with a reduction of the resistivity values while Tc remains unchanged, to an early stage of a spin compensation process, characterized by Tc suppression without broadening. Disorder at the CuO 2 planes is proposed to be the source of localization and Tc depletion, as supported by fitting of the normal-state curves according to different conduction models.

  18. Normal-state magnetic properties and their correlation with Tc suppression and the resistivity anomalies in the (La1-xPrx)1.85Sr0.15CuO4 series

    NASA Astrophysics Data System (ADS)

    Musa, J. E.; García, S.; Rothier de Amaral, M.; Salim de Amorim, H.; Giordanengo, B.; Baggio-Saitovitch, E. M.; Pagliuso, P. J. G.; Rettori, C.; Yelon, W. B.; Malik, S. K.

    1999-04-01

    We have investigated the normal-state anomalies observed in the magnetic and transport properties of the (La1-xPrx)1.85Sr0.15CuO4 system with 0⩽x⩽0.5. The resistivity curves showed an increasing deviation from linearity below ˜100 K. This behavior is properly accounted by a logarithmic term, whose coefficient C linearly increases with x. The normal-state magnetic susceptibility measurements evidenced a departure from the Pr3+ Curie-Weiss dependence in the same temperature range for which the resistivity anomaly occurs. A comprehensive picture of the conduction mechanism is presented in terms of a Kondo-like scattering of the mobile holes by the spin fluctuations.

  19. Er0.4Bi1.6O3-δ - La0.8Sr0.2MnO3-δ nano-composite as a low-temperature firing cathode of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Sun Jae; Dayaghi, Amir Masoud; Kim, Kun Joong; Choi, Gyeong Man

    2017-03-01

    Er0.4Bi1.6O3-δ (ESB) composited with La0.8Sr0.2MnO3-δ (LSM) (2:3 or 3:2 wt:wt) with a bonding aid to decrease firing temperature TF are screen-printed on symmetric single cells composed of a Gd0.2Ce0.8O2-δ (GDC) interlayer/yttria-stabilized zirconia (YSZ) electrolyte/GDC interlayer, and their impedance spectra are compared. Addition of 5 wt % CuO to ESB-LSM (3:2 wt:wt) decreases the cathode TF to 650 °C without increasing cathodic polarization resistance (Rp ∼0.19 Ω cm2 at 650 °C). This ESB-LSM composite can be used as a cathode that can be fired at low temperature.

  20. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ).

    PubMed

    Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, YongMan; Kim, Guntae; Liu, Meilin

    2013-01-01

    Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ), which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm(-2) at 600°C, representing an important step toward commercially viable SOFC technologies.

  1. Sm0.5Sr0.5CoO3-δ infiltrated Ce0.9Gd0.1O2-δ composite cathodes for high performance protonic ceramic fuel cells

    NASA Astrophysics Data System (ADS)

    Zhao, Ling; Li, Geng; Chen, Kongfa; Ling, Yihan; Cui, Yuexiao; Gui, Liangqi; He, Beibei

    2016-11-01

    Sm0.5Sr0.5CoO3-δ (SSC) infiltrated Ce0.9Gd0.1O2-δ (GDC) composite cathodes are developed for protonic ceramic fuel cells (PCFCs). Although the SSC infiltrated GDC cathodes make little contribute to expending the reaction sites of water formation, it can significantly improve the oxygen reduction dynamics among the whole electrochemical reaction. The symmetric half cell and single cell testing results demonstrate the high electrochemical activity of SSC infiltrated GDC cathodes. Moreover, the single cell is stable at 600 °C for 120 h in humidified H2 and humidified H2sbnd CO. The encouraging results indicate that the SSC infiltrated GDC could be the promising composite cathodes for application in PCFCs.

  2. Carrier tuning the metal-insulator transition of epitaxial La0.67Sr0.33MnO3 thin film on Nb doped SrTiO3 substrate

    NASA Astrophysics Data System (ADS)

    Zhan, J. M.; Li, P. G.; Liu, H.; Tao, S. L.; Ma, H.; Shen, J. Q.; Pan, M. J.; Zhang, Z. J.; Wang, S. L.; Yuan, G. L.

    2016-04-01

    La0.67Sr0.33MnO3 (LSMO) thin films were deposited on (001)SrTiO3(STO) and n-type doped Nb:SrTiO3(NSTO) single crystal substrates respectively. The metal to insulator transition temperature(TMI) of LSMO film on NSTO is lower than that on STO, and the TMI of LSMO can be tuned by changing the applied current in the LSMO/NSTO p-n junction. Such behaviors were considered to be related to the carrier concentration redistribution in LSMO film caused by the change of depletion layer thickness in p-n junction which depends greatly on the applied electric field. The phenomenon could be used to configure artificial devices and exploring the underlying physics.

  3. Thickness and temperature dependence of the magnetodynamic damping of pulsed laser deposited La0.7Sr0.3MnO3 on (111)-oriented SrTiO3

    NASA Astrophysics Data System (ADS)

    Flovik, Vegard; Macià, Ferran; Lendínez, Sergi; Hernàndez, Joan Manel; Hallsteinsen, Ingrid; Tybell, Thomas; Wahlström, Erik

    2016-12-01

    We have investigated the magnetodynamic properties of La0.7Sr0.3MnO3 (LSMO) films of thickness 10, 15 and 30 nm grown on (111)-oriented SrTiO3 (STO) substrates by pulsed laser deposition. Ferromagnetic resonance (FMR) experiments were performed in the temperature range 100-300 K, and the magnetodynamic damping parameter α was extracted as a function of both film thickness and temperature. We found that the damping is lowest for the intermediate film thickness of 15 nm with α ≈ 2 ·10-3 , where α is relatively constant as a function of temperature well below the Curie temperature of the respective films.

  4. Conductivity of perovskites La0.9Sr0.1Sc1- x Fe x O3-α ( x = 0.003-0.47) in oxidizing and reducing atmospheres

    NASA Astrophysics Data System (ADS)

    Stroeva, A. Yu.; Gorelov, V. P.; Kuz'min, A. V.

    2016-08-01

    The conductivity of single-phase ceramic materials based on proton-conducting perovskite La0.9Sr0.1ScO3-α containing from 0.3 to 47 at % Fe in the scandium sublattice has been studied. Synthesis has been performed by burning with ethylene glycol. Measurements have been carried out by the four-probe (500-900°C) and impedance (100-500°C) methods in oxidizing and reducing atmospheres, as well as at different pressures {p_{{O_2}}} (2.1 × 104-10‒15 Pa) and {p_{{H_2}O}} (0.04-2.5 kPa). Substitution of scandium with iron significantly decreases the proton conductivity.

  5. Positive to negative zero-field cooled exchange bias in La0.5Sr0.5Mn0.8Co0.2O3 ceramics

    PubMed Central

    Shang, Cui; Guo, Shaopu; Wang, Ruilong; Sun, Zhigang; Xiao, Haibo; Xu, Lingfang; Yang, Changping; Xia, Zhengcai

    2016-01-01

    Exchange bias effect obtained after zero-field cooling from unmagnetized state usually exhibits a shift of hysteresis loop negative to the direction of the initial magnetic field, known as negative zero-field cooled exchange bias. Here, positive zero-field cooled exchange bias is reported in La0.5Sr0.5Mn0.8Co0.2O3 ceramics. In addition, a transition from positive to negative exchange bias has been observed with increasing initial magnetization field and measurement temperature. Based on a simple spin bidomain model with variable interface, two type of interfacial spin configuration formed during the initial magnetization process are proposed to interpret the observed phenomenon. PMID:27168382

  6. Electrical transport and giant magnetoresistance in La0.75Sr0.25Mn1-xCrxO3 (0.15, 0.20 and 0.25) manganite oxide.

    PubMed

    Dhahri, Ah; Jemmali, M; Dhahri, E; Hlil, E K

    2015-03-28

    We have investigated the influence of chromium (Cr) doping on the magneto-electrical properties of polycrystalline samples La0.75Sr0.25Mn1-xCrxO3 (0.15 ≤ x ≤ 0.25), prepared by the sol-gel method. Comparison of experimental data with the theoretical models shows that in the metal-ferromagnetic region, the electrical behavior of the three samples is quite well described by a theory based on electron-electron, electron-phonon and electron-magnon scattering and Kondo-like spin dependent scattering. For the high temperature paramagnetic insulating regime, the adiabatic small polaron hopping (SPH) model is found to fit well the experimental curves.

  7. Manganite based hetero-junction structure of La0.7Sr(0.7-x)CaxMnO3 and CaMnO(3-δ) for cross-point arrays.

    PubMed

    Lee, Hong-Sub; Park, Hyung-Ho

    2015-07-10

    Resistive random access memory and the corresponding cross-point array (CPA) structure have received a great deal of attention for high-density next generation non-volatile memory. However, the cross-talk issue of CPA structure by sneak current should be overcome to realize the highest density integration. To accomplish this, the sneak current can be minimized by high, nonlinear characteristic behaviors of resistive switching (RS). Therefore this study fabricated pnp bipolar hetero-junction structure using the perovskite manganite family, such as La0.7Sr(0.3-x)CaxMnO3 (LSCMO) and CaMnO(3-δ) (CMO), to obtain nonlinear RS behavior. The pnp structure not only shows nonlinear characteristics, but also a tunable characteristic with Ca substitution.

  8. Characteristics of metal-ferroelectric-insulator-semiconductor diodes composed of Pt electrodes and epitaxial Sr0.8Bi2.2Ta2O9(001)/SrTiO3(100)/Si(100) structures

    NASA Astrophysics Data System (ADS)

    Lu, Xubing; Ishiwara, Hiroshi; Gu, Xing; Lubyshev, Dmitri; Fastenau, Joel; Pelzel, Rodney

    2009-01-01

    Epitaxial metal-ferroelectric-insulator-semiconductor diodes were fabricated by depositing a chemical-solution-decomposed Sr0.8Bi2.2Ta2O9 (SBT) film on an SrTiO3-coated Si(100) wafer. X-ray diffraction analysis revealed that the SBT film was composed mostly of c-axis-oriented grains. In Pt/SBT(300 nm)/SrTiO3(23 nm)/Si diodes, a memory window as wide as 1.1 V was obtained for a voltage sweep of ±7 V in capacitance-voltage measurement. The capacitance change in per decade increase in the retention time was approximately 10% up to 24 h. The origin of the ferroelectricity in a c-axis-oriented SBT film is discussed.

  9. Effect of Cu doping on Ba0.5Sr0.5Fe1-xCuxO3-δ perovskites for solid oxide fuel cells: A first-principles study

    NASA Astrophysics Data System (ADS)

    Vázquez, Santiago; Suescun, Leopoldo; Faccio, Ricardo

    2016-04-01

    Nowadays a rational design of solid oxide fuel cells (SOFCs) cathodes is possible thanks to first-principles calculations based on density functional theory (DFT). We study the effect of Cu-doping in the bulk properties for the perovskite Ba0.5Sr0.5Fe1-xCuxO3-δ (with x = 0, 0.25 and 0.50) and correlate the results with previous experimental characterization. Bulk properties such as geometric structure, charge analysis, thermodynamic stability, vacancy formation energy, oxygen diffusion and electronic structure where studied in detail to provide an explanation of the oxygen reduction reaction (ORR) activity enhancement with Cu-doping. The results obtained here, using GGA+U, demonstrate the first-principles approach gives useful information that allows the prediction and explanation of experimental characterizations.

  10. Robust high-temperature magnetic pinning induced by proximity in YBa2Cu3O7-δ/La0.67Sr0.33MnO3 hybrids

    NASA Astrophysics Data System (ADS)

    Chen, C. Z.; Liu, Z. Y.; Lu, Y. M.; Zeng, L.; Cai, C. B.; Zeng, R.; Dou, S. X.

    2011-04-01

    An elaborately designed bilayer consisting of superconducting YBa2Cu3O7-δ (YBCO) and ferromagnetic La0.67Sr0.33MnO3-δ (LSMO) was prepared on a single crystal LaAlO3 substrate by pulsed laser deposition (PLD), with a view to understanding the mechanism behind the influence of superconductor/ferromagnet proximity on the critical current density, Jc. The present bilayer system shows significant modifications in Jc, as evidenced by the suppressed decay of its temperature dependence, as well as the crossing behavior of the magnetic field dependence of Jc at high temperatures. This indicates that enhanced flux pinning emerges at high temperatures, and it is believed to arise from the special magnetic inhomogeneity, i.e., the ferromagnet/antiferromagnet clusters caused by phase separation due to the epitaxial stress between LSMO and the substrate.

  11. The novel dielectric relaxation behavior around the Curie point of (Ba0.7Sr0.3)0.96Y0.04TiO3 ceramics with giant effective permittivity

    NASA Astrophysics Data System (ADS)

    Yan, Shiguang; Mao, Chaoliang; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin; Meng, Xiangjian

    2016-10-01

    The temperature (80 K ˜ 423 K) and frequency (40 Hz ˜ 5 MHz) dependence of the permittivity were studied in (Ba0.7Sr0.3)0.96Y0.04TiO3 ceramics. A giant effective permittivity over 105 with a certain frequency and temperature stability and Debye-type dielectric relaxation behavior was observed. The complex impedance spectrum analysis reveals that the giant permittivity is due to the heterogeneous structure with a semiconducting bulk and high resistance electrode-ceramic interface. Deviating from low temperature (below 200 K) thermal activated behavior, the odd change of the characteristic relaxation frequency around the Curie point is observed and proven to be induced by the competition between the positive temperature coefficient of the resistance effect of the bulk ceramic and the dielectric anomaly of the surface layer capacitance, both of which originate from the ferroelectric-paraelectric phase transition.

  12. Structure and dielectric tunability of (Pb 0.5Ba 0.5)ZrO 3 thin films derived on (Sr 0.95La 0.05)TiO 3 buffer-layered substrates

    NASA Astrophysics Data System (ADS)

    Hao, Xihong; Zhai, Jiwei; Zhou, Jing; Yang, Jichun; Song, Xiwen; An, Shengli

    2010-02-01

    In present work, (Pb 0.5Ba 0.5)ZrO 3 (PBZ) thin films with a thickness of 840 nm were successfully fabricated on (Sr 0.95La 0.05)TiO 3 (SLT) buffer-layered Pt(1 1 1)/TiO 2/SiO 2/Si(1 0 0) substrates via the sol-gel technique. The effects of SLT buffer layer on the microstructure and electrical properties of PBZ thin films were investigated systemically. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results indicated that PBZ thin films on SLT buffer-layered substrates showed a more uniform structure with a random orientation. Dielectric measurements illustrated that PBZ films with SLT buffer layer displayed larger dielectric constant, improved tunability and enhanced figure of merit (FOM). Moreover, leakage current of PBZ films was also reduced by SLT buffer layer.

  13. Investigation of Carbon ion-implanted waveguides in tungsten bronze (Ca0.28Ba0.72)0.25(Sr0.6Ba0.4)0.75Nb2O6 single crystal

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Wang, Chuan-Kui; Li, Zong-Liang; Ren, Ying-Ying

    2014-09-01

    Planar optical waveguides were fabricated in (Ca0.28Ba0.72)0.25(Sr0.6Ba0.4)0.75Nb2O6 (CSBN25) crystal by 6.0-MeV C+ ion implantation with fluences of 2, 4 and 6 × 1014 ions/cm2 at room temperature. The mode parameters, refractive indices profiles are measured and the refractive indices behavior in the waveguide region is discussed. The shape of nuclear energy loss distribution of the C+ implantation was similar to those of the waveguide refractive index profiles, which means an inherent relationship between the waveguide formation and the energetic energy deposition. The extraordinary refractive index has a small positive change in the surface region after the implantation.

  14. Growth and characterization of charge carrier spatially confined SrMnO3/La0.7Sr0.3MnO3/SrMnO3 trilayers

    NASA Astrophysics Data System (ADS)

    Galdi, A.; Sacco, C.; Orgiani, P.; Romeo, F.; Maritato, L.

    2017-02-01

    (SrMnO3)x/(La0.7Sr0.3MnO3)y/(SrMnO3)z (x,y,z=number of unit cells) trilayers have been grown using a Reflection High Energy Electron Diffraction calibrated layer-by-layer molecular beam epitaxy technique. X-Ray Reflectivity and X-Ray Diffraction measurements confirm the structural quality and the abruptness of the interfaces. Electrical transport property analysis as a function of temperature show effects related to the spatial confinement of the charge carriers induced by the layering. These results are important in view of future developments of oxide based heterostructures for innovative quantum devices.

  15. Interfacial charge-mediated non-volatile magnetoelectric coupling in Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 multiferroic heterostructures

    PubMed Central

    Zhou, Ziyao; Howe, Brandon M.; Liu, Ming; Nan, Tianxiang; Chen, Xing; Mahalingam, Krishnamurthy; Sun, Nian X.; Brown, Gail J.

    2015-01-01

    The central challenge in realizing non-volatile, E-field manipulation of magnetism lies in finding an energy efficient means to switch between the distinct magnetic states in a stable and reversible manner. In this work, we demonstrate using electrical polarization-induced charge screening to change the ground state of magnetic ordering in order to non-volatilely tune magnetic properties in ultra-thin Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 (001) multiferroic heterostructures. A robust, voltage-induced, non-volatile manipulation of out-of-plane magnetic anisotropy up to 40 Oe is demonstrated and confirmed by ferromagnetic resonance measurements. This discovery provides a framework for realizing charge-sensitive order parameter tuning in ultra-thin multiferroic heterostructures, demonstrating great potential for delivering compact, lightweight, reconfigurable, and energy-efficient electronic devices. PMID:25582090

  16. Prediction of La0.6Sr0.4Co0.2Fe0.8O3 cathode microstructures during sintering: Kinetic Monte Carlo (KMC) simulations calibrated by artificial neural networks

    NASA Astrophysics Data System (ADS)

    Yan, Zilin; Kim, Yongtae; Hara, Shotaro; Shikazono, Naoki

    2017-04-01

    The Potts Kinetic Monte Carlo (KMC) model, proven to be a robust tool to study all stages of sintering process, is an ideal tool to analyze the microstructure evolution of electrodes in solid oxide fuel cells (SOFCs). Due to the nature of this model, the input parameters of KMC simulations such as simulation temperatures and attempt frequencies are difficult to identify. We propose a rigorous and efficient approach to facilitate the input parameter calibration process using artificial neural networks (ANNs). The trained ANN reduces drastically the number of trial-and-error of KMC simulations. The KMC simulation using the calibrated input parameters predicts the microstructures of a La0.6Sr0.4Co0.2Fe0.8O3 cathode material during sintering, showing both qualitative and quantitative congruence with real 3D microstructures obtained by focused ion beam scanning electron microscopy (FIB-SEM) reconstruction.

  17. Structures and phase transition in the layered perovskite La0.6Sr0.1TiO3: a new orthorhombic structure solved from high-resolution diffraction in combination with group theoretical analysis

    NASA Astrophysics Data System (ADS)

    Howard, Christopher J.; Zhang, Zhaoming

    2003-07-01

    The crystal structure of the layered perovskite La0.6Sr0.1TiO3 at room temperature has been solved by synchrotron x-ray powder diffraction in combination with group theoretical analysis. The structure is orthorhombic in Cmmm, on a cell with a = 7.7556(1), b = 7.7349(1) and c = 7.7910(1) Å. It is believed that this is also the structure adopted by La2/3TiO3. Pertinent features are the alternation of fully and partly occupied layers of La (Sr) cations, and out-of-phase tilting of the TiO6 octahedra around an axis perpendicular to the direction of the cation ordering. The compound undergoes a second order transition to a tetragonal structure, the transition temperature being estimated as 360 °C.

  18. Electric-field modulation of photoinduced effect in phase-separated Pr0.65 (Ca0.75Sr0.25)0.35MnO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Li, W.; Dong, X. L.; Wang, S. H.; Jin, K. X.

    2016-08-01

    In this letter, we report the photoinduced effect modulated by different electric fields in the Pr0.65 (Ca0.75Sr0.25)0.35MnO3/0.7PbMg1/3Nb2/3O3-0.3PbTiO3 heterostructure. The film exhibits a decrease in the resistance up to five orders of magnitude by enhancing applied electric fields, combined with an electric-field-induced insulator-to-metal transition. More interestingly, a reversible bistability arises in the photoinduced change in resistance at T < 80 K as the voltages are increased. The results can be attributed to the phase separation in manganites, which provides a prototype of photoelectric conversion for electric-field modulation of all-oxide heterostructures.

  19. Proton uptake in the H(+)-SOFC cathode material Ba(0.5)Sr(0.5)Fe(0.8)Zn(0.2)O(3-δ): transition from hydration to hydrogenation with increasing oxygen partial pressure.

    PubMed

    Poetzsch, Daniel; Merkle, Rotraut; Maier, Joachim

    2015-01-01

    Thermogravimetric investigations on the perovskite Ba(0.5)Sr(0.5)Fe(0.8)Zn(0.2)O(3-δ) (BSFZ, with mixed hole, oxygen vacancy and proton conductivity) from water vapor can occur by acid-base reaction (hydration) or redox reaction (hydrogen uptake), depending on the oxygen partial pressure, i.e. on the material's defect concentrations. In parallel, the effective diffusion coefficient of the stoichiometry relaxation kinetics also changes. These striking observations can be rationalized in terms of a defect chemical model and transport equations for materials with three mobile carriers. Implications for the search of cathode materials with mixed electronic and protonic conductivity for application on proton conducting oxide electrolytes are discussed.

  20. Thermodynamic stability maps for the La0.6Sr0.4Co0.2Fe0.8O3±δ-CO2-O2 system for application in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Darvish, Shadi; Gopalan, Srikanth; Zhong, Yu

    2016-12-01

    Thermodynamic and electrochemical predictions on the formation of secondary phases in CO2 containing atmosphere on the La0.6Sr0.4Co0.2Fe0.8O3±δ (LSCF-6428) surface have been carried out utilizing the CALculation of Phase Diagram (CALPHAD) approach. The effect of temperature, CO2 partial pressure, O2 partial pressure as well as the cathode composition on the formation of secondary phases have been investigated and correlated with the previous investigations in the literature. It is predicted that SrCO3 has the possibility to form on the surface as a result of CO2 exposure to the system. In addition, it is seen that LSCF-6428 experiences higher degradation due to the larger amount of segregated phases than LSM-20 at the same operating condition.

  1. Magnetic field reversal of electric polarization and magnetoelectric phase diagram of the hexaferrite Ba1.3Sr0.7Co0.9Zn1.1Fe10.8Al1.2O22

    NASA Astrophysics Data System (ADS)

    Shen, Shipeng; Yan, Liqin; Chai, Yisheng; Cong, Junzhuang; Sun, Young

    2014-01-01

    Low magnetic field reversal of electric polarization has been demonstrated in the multiferroic Y-type hexaferrite Ba1.3Sr0.7Co0.9Zn1.1Fe10.8Al1.2O22 single crystal. The maximum magnetoelectric coefficient at 200 K reaches 1065 ps/m near zero magnetic field. By a systematic investigation of magnetic field dependence of magnetic and dielectric responses at various temperatures, we obtained the magnetoelectric phase diagram describing the detailed evolution of the spin-induced ferroelectric phases with temperature and magnetic field. Below 225 K, the transverse spin cone can be stabilized at zero magnetic field, which is responsible for the reversal behavior of electric polarization. Our study reveals how to eventually achieve magnetic field reversal of electric polarization in hexaferrites at room temperature.

  2. An investigation on the microstructures and magnetic properties of the Sr0.35-xBaxCa0.30La0.35Fe11.71Co0.29O19 hexaferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Liu, Xiansong

    2014-11-01

    M-type hexaferrite Sr0.35-xBaxCa0.30La0.35Fe11.71Co0.29O19 (0≤x≤0.35) magnetic powders and magnets were prepared by the solid-state reaction. The phase compositions of the magnetic powders were investigated by X-ray diffraction. X-ray diffraction patterns show that the hexagonal single phase is obtained in all samples. The micrographs of the magnets were observed by a field emission scanning electron microscopy. All magnets have formed hexagonal structures and the particles are distributed evenly. Magnetic properties of the magnets were measured by a magnetic properties test instrument. The remanence, intrinsic coercivity, magnetic induction coercivity and maximum energy product of the magnets continuously decrease with increasing barium content (x).

  3. Field-dependent magnetization of BiFeO3 in ultrathin La0.7Sr0.3MnO3/BiFeO3 superlattice

    DOE PAGES

    Fitzsimmons, Michael R.; Jia, Quanxi X.; Singh, Surendra; ...

    2015-12-02

    We report the observation of field-induced magnetization of BiFeO3 (BFO) in an ultrathin La0.7Sr0.3MnO3 (LSMO)/BFO superlattice using polarized neutron reflectivity (PNR). The depth dependent structure and magnetic characterization of subnano layer thick (thickness ~ 0.7 nm each) LSMO/BFO hetrostructure is carried out using X-ray reflectivity and PNR techniques. Our PNR results indicate parallel alignment of magnetization as well as enhancement in magnetic moment across LSMO/BFO interfaces. The study showed an increase in average magnetization on increasing applied magnetic field at 10K. As a result, we observed a saturation magnetization of 110 ± 15 kA/m (~0.8 μB/Fe) for ultrathin BFO layermore » (~2 unit cell) sandwiched between ultrathin LSMO layers (~ 2 unit cell).« less

  4. Nanoblast synthesis and consolidation of (La0.8Sr0.2)(Ga0.9Mg0.1)O(3-delta) under Spark plasma sintering conditions.

    PubMed

    Vasylkiv, Oleg; Borodianska, Hanna; Badica, Petre; Zhen, Yongda; Tok, Alfred

    2009-01-01

    Four-cation nanograined strontium and magnesium doped lanthanum gallate (La0.8Sr0.2) (Ga0.9Mg0.1)O(3-delta) (LSGM) and its composite with 2 wt% of ceria (LSGM-Ce) were prepared. Morphologically homogeneous nanoreactors, i.e., complex intermediate metastable aggregates of desired composition were assembled by spray atomization technique, and subsequently loaded with nanoparticles of highly energetic C3H6N6O6. Rapid nanoblast calcination technique was applied and the final composition was synthesized within the preliminary localized volumes of each single nanoreactor on the first step of spark plasma treatment. Subsequent SPS consolidations of nanostructured extremely active LSGM and LSGM-Ce powders were achieved by rapid treatment under pressures of 90-110 MPa. This technique provided the heredity of the final structure of nanosize multimetal oxide, allowed the prevention of the uncontrolled agglomeration during multicomponent aggregates assembling, subsequent nanoblast calcination, and final ultra-rapid low-temperature SPS consolidation of nanostructured ceramics. LaSrGaMgCeO(3-delta) nanocrystalline powder consisting of approximately 11 nm crystallites was consolidated to LSGM-Ce nanoceramic with average grain size of approximately 14 nm by low-temperature SPS at 1250 degrees C. Our preliminary results indicate that nanostructured samples of (La0.8Sr0.2)(Ga0.9Mg0.1)O(3-delta) with 2 wt% of ceria composed of approximataley 14 nm grains can exhibit giant magnetoresistive effect in contrast to the usual paramagnetic properties measured on the samples with larger grain size.

  5. Precursor solution additives improve desiccated La0.6Sr0.4Co0.8Fe0.2O3-x infiltrated solid oxide fuel cell cathode performance

    NASA Astrophysics Data System (ADS)

    Burye, Theodore E.; Nicholas, Jason D.

    2016-01-01

    Here, the addition of the surfactant Triton X-100 or the chelating agent citric acid to Solid Oxide Fuel Cell (SOFC) La0.6Sr0.4Co0.8Fe0.2O3-x (LSCF) precursor nitrate solutions is shown via scanning electron microscopy (SEM) and X-ray diffraction (XRD) to reduce average infiltrate nano-particle size and improve infiltrate phase purity. In addition, the desiccation of LSCF precursor solutions containing the aforementioned organic solution additives further reduces the average LSCF infiltrate nano-particle size and improves the low-temperature infiltrate phase purity. In particular, CaCl2-desiccation reduces the average size of Triton X-100 derived (TXD) LSCF particles fired at 700 °C from 48 to 22 nm, and reduces the average size of citric acid derived LSCF particles fired at 700 °C from 50 to 41 nm. Modeling and electrochemical impedance spectroscopy (EIS) tests indicate that particle size reductions alone are responsible for desiccation-induced cathode performance improvements such as CaCl2-desiccated TXD La0.6Sr0.4Co0.8Fe0.2O3-x - Ce0.9Gd0.1O1.95 (LSCF-GDC) cathodes reaching a polarization resistance of 0.17 Ωcm2 at 540 °C, compared to 600 °C for undesiccated TXD LSCF-GDC cathodes. This excellent low-temperature performance, combined with a low open-circuit 540 °C degradation rate, suggests that the desiccation of organic-additive-containing infiltrate precursor solutions may be useful for the development of durable, high-power, low-temperature SOFCs.

  6. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Liu, Yao; Wu, Rong-Rong; Zhang, Xi-Xiang; Sun, Ji-Rong; Shen, Bao-Gen

    2015-04-01

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories.

  7. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure.

    PubMed

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Liu, Yao; Wu, Rong-Rong; Zhang, Xi-Xiang; Sun, Ji-Rong; Shen, Bao-Gen

    2015-04-24

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories.

  8. High-Temperature Thermoelectric Properties of Perovskite-Type Pr0.9Sr0.1Mn1-x Fe x O3 (0 ≤ x ≤ 1)

    NASA Astrophysics Data System (ADS)

    Nakatsugawa, H.; Saito, M.; Okamoto, Y.

    2017-02-01

    Polycrystalline samples of Pr0.9Sr0.1Mn1-x Fe x O3 (0 ≤ x ≤ 1) have been synthesized using a conventional solid-state reaction method, and the crystal structure studied at room temperature. The magnetic susceptibility was measured from 5 K to 350 K. The electrical resistivity, Seebeck coefficient, and thermal conductivity were investigated as functions of temperature below 850 K. For all samples, the perovskite structure at room temperature exhibited orthorhombic Pbnm phase. While the Pr0.9Sr0.1MnO3 (x = 0) sample exhibited ferromagnetic-like ground state below T C = 145 K (Curie temperature), the ferromagnetic transition temperature T C decreased with increasing x. The Seebeck coefficient of the samples with 0 ≤ x ≤ 0.8 decreased with increasing temperature because of double-exchange interaction of Mn ions. In fact, the carrier type for x = 0 changed from hole-like to electron-like behavior above 800 K. On the other hand, the samples with x ≥ 0.9 showed large positive Seebeck coefficient over the entire temperature range, indicating that the low-spin state of Fe ions dominated the electronic structure for this x range. In particular, the sample with x = 1 exhibited p-type thermoelectric properties with relatively high Seebeck coefficient, moderate electrical resistivity, and low thermal conductivity. Thus, the sample with x = 1 showed power factor of 20 μW m-1 K-2 at 850 K leading to ZT of 0.024 at this temperature, indicating that hole-doped perovskite-type iron oxide is a good candidate high-temperature thermoelectric p-type oxide.

  9. Electrochemically influenced cation inter-diffusion and Co3O4 formation on La0.6Sr0.4CoO3 infiltrated into SOFC cathodes

    DOE PAGES

    Song, Xueyan; Lee, Shiwoo; Chen, Yun; ...

    2015-06-18

    Nanosized LSC electrocatalyst was infiltrated into a porous scaffold cathode composed of Sm2O3-doped CeO2 (SDC) and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) in a commercial button solid oxide fuel cell (SOFC). To understand the stability of cathodes infiltrated with LSC, the infiltrated composite cells were subjected to both electrochemical operating and thermal aging states at 750 °C for 1500 h. Nanostructure and local chemistry evolution of La0.6Sr0.4CoO3 (LSC) infiltrated cathodes upon operation and aging were investigated by transmission electron microscopy. After operation, the LSC remained a cubic perovskite, and the crystal grains exhibit comparable size to as-infiltrated LSC grains. Inter-diffusion of Fe from themore » LSCF to a Fe-incorporated LSC layer developed on the LSCF backbone. However, only sharp interfaces were observed between LSC and SDC backbone in the as-infiltrated cathode and such interfaces remain after operation. The infiltrated LSC on the SDC backbone also retains granular particle morphology. Furthermore, newly grown Co3O4 nanocrystals were found in the operated cathode. After thermal aging, on the other hand, cation inter-diffusion across the interfaces of the infiltrate particles and the cathode backbones is less than that from the operated cells. Lastly, the following hypothesis is proposed: Co3O4 forms on LSC arising from local charge balancing between cobalt and oxygen vacancies.« less

  10. Effect of natural homointerfaces on the magnetic properties of pseudomorphic La0.7Sr0.3MnO3 thin film: Phase separation vs split domain structure

    NASA Astrophysics Data System (ADS)

    Congiu, Francesco; Sanna, Carla; Maritato, Luigi; Orgiani, Pasquale; Geddo Lehmann, Alessandra

    2016-12-01

    We studied the effect of naturally formed homointerfaces on the magnetic and electric transport behavior of a heavily twinned, 40 nm thick, pseudomorphic epitaxial film of La0.7Sr0.3MnO3 deposited by molecular beam epitaxy on ferroelastic LaAlO3(001) substrate. As proved by high resolution X-ray diffraction analysis, the lamellar twin structure of the substrate is imprinted in La0.7Sr0.3MnO3. In spite of the pronounced thermomagnetic irreversibility in the DC low field magnetization, spin-glass-like character, possibly related to the structural complexity, was ruled out, on the base of AC susceptibility results. The magnetic characterization indicates anisotropic ferromagnetism, with a saturation magnetization Ms = 3.2 μB/Mn, slightly reduced with respect to the fully polarized value of 3.7 μB/Mn. The low field DC magnetization vs temperature is non bulklike, with a two step increase in the field cooled MFC(T) branch and a two peak structure in the zero field cooled MZFC(T) one. Correspondingly, two peaks are present in the resistivity vs temperature ρ(T) curve. With reference to the behavior of epitaxial manganites deposited on bicrystal substrates, results are discussed in terms of a two phase model, in which each couple of adjacent ferromagnetic twin cores, with bulklike TC = 370 K, is separated by a twin boundary with lower Curie point TC = 150 K, acting as barrier for spin polarized transport. The two phase scenario is compared with the alternative one based on a single ferromagnetic phase with the peculiar ferromagnetic domains structure inherent to twinned manganites films, reported to be split into interconnected and spatially separated regions with in-plane and out-of-plane magnetization, coinciding with twin cores and twin boundaries respectively.

  11. (Bi0.15La0.27Sr0.53)(Co0.25Fe0.75)O3-δ perovskite: A novel cathode material for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Khaerudini, Deni S.; Guan, Guoqing; Zhang, Peng; Xiaoketi, Pairuzha; Hao, Xiaogang; Wang, Zhongde; Kasai, Yutaka; Abudula, Abuliti

    2016-12-01

    Perovskite oxides (Bi0.15La0.27Sr0.53)x(Co0.25Fe0.75)O3-δ (BiLSCFx, x = 0.8, 0.9, 1.0, 1.1) have been synthesized by solid state reaction and evaluated as a novel cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The effects of A-site variations on lattice structure, calcination temperature, oxygen desorption and electrochemical properties of BiLSCFx are investigated. This kind of material has perfectly cubic structure based on the Pm-3m space group whose lattice size increases with x, which is thermally stable after calcination and shows desirable chemical compatibility with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte at 1150 °C for 8 h under air atmosphere. Among those A-site variations, it is found that BiLSCF0.9 demonstrates the best cathode performance. It has the minimum polarization resistance value of 0.039 Ω cm2 at 700 °C and α-oxygen desorbed about 0.031 mmol g-1, indicating a good reactivity and strong adsorbate of O2. The single cell with BiLSCF0.9 cathode delivers a power density of 0.66 W cm-2 at 700 °C with humidified H2 (∼3% H2O) as the fuel and ambient air as the oxidant. In addition, the cell shows sufficient stability with ∼9% degradation over 75 h at 600 °C. It indicates that BiLSCF0.9 is a promising candidate for application as cathode material in IT-SOFCs.

  12. Stability and performance of La0.6Sr0.4Co0.2Fe0.8O3-δ nanostructured cathodes with Ce0.8Gd0.2O1.9 surface coating

    NASA Astrophysics Data System (ADS)

    dos Santos-Gómez, L.; Porras-Vázquez, J. M.; Losilla, E. R.; Martín, F.; Ramos-Barrado, J. R.; Marrero-López, D.

    2017-04-01

    La0.6Sr0.4Co0.2Fe0.8O3-δ is considered as one of the most promising cathodes for Solid Oxide Fuels Cells (SOFCs) operating at intermediate temperatures, however, its performance degrades significantly over time mainly due to phase segregations on the surface. In this work, the surface of La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Gd0.2O1.9 (LSCF-CGO) nanostructured cathode is coated with CGO particles via a simple and economic spray-pyrolysis deposition process. The electrode polarization resistance (Rp) and the microstructure evolution of the uncoated and CGO-coated cathodes are investigated by impedance spectroscopy and scanning electron microscopy, respectively. The CGO-coated cathodes exhibit improved stability and performance, with Rp values varying from 0.27 to 0.30 Ωcm2 at an annealing temperature of 600 °C for 400 h. On the contrary, the uncoated cathode shows a faster degradation rate, with a continuous increase of Rp from 2.8 to 8.5 Ωcm2. Above 800 °C, the particle coarsening of the CGO layer results in a significant increase of Rp over time, reaching steady values of 0.04 Ωm2 at 800 °C. An anode-supported cell with the CGO-coated cathode shows a remarkable power density of 0.72 Wcm-2 at 650 °C in comparison to 0.56 Wcm-2 for the cell with uncoated cathode.

  13. In situ study of electrochemical activation and surface segregation of the SOFC electrode material La0.75Sr0.25Cr0.5Mn0.5O(3±δ).

    PubMed

    Huber, Anne-Katrin; Falk, Mareike; Rohnke, Marcus; Luerssen, Bjoern; Gregoratti, Luca; Amati, Matteo; Janek, Jürgen

    2012-01-14

    Mixed-conducting perovskite-type electrodes which are used as cathodes in solid oxide fuel cells (SOFCs) exhibit pronounced performance improvement after cathodic polarization. The current in situ study addresses the mechanism of this activation process which is still unknown. We chose the new perovskite-type material La(0.75)Sr(0.25)Cr(0.5)Mn(0.5)O(3±δ) which is a potential candidate for use in symmetrical solid oxide fuel cells (SFCs). We prepared La(0.75)Sr(0.25)Cr(0.5)Mn(0.5)O(3±δ) thin film model electrodes on YSZ (111) single crystals by pulsed laser deposition (PLD). Impedance spectroscopy (EIS) measurements show that the kinetics of these electrodes can be drastically improved by applying a cathodic potential. To understand the origin of the enhanced electrocatalytic activity the surfaces of operating LSCrM electrodes were studied in situ (at low pressure) with spatially resolving X-ray photoelectron spectroscopy (μ-ESCA, SPEM) and quasi static secondary ion mass spectrometry (ToF-SIMS) after applying different electrical potentials in the SIMS chamber. We observed that the electrode surfaces which were annealed at 600 °C are enriched significantly in strontium. Subsequent cathodic polarization decreases the strontium surface concentration while anodic polarization increases the strontium accumulation at the electrode surface. We propose a mechanism based on the reversible incorporation of a passivating SrO surface phase into the LSCrM lattice to explain the observed activation/deactivation process.

  14. A-site deficient La0.2Sr0.7TiO3-δ anode material for proton conducting ethane fuel cell to cogenerate ethylene and electricity

    NASA Astrophysics Data System (ADS)

    Liu, Subiao; Behnamian, Yashar; Chuang, Karl T.; Liu, Qingxia; Luo, Jing-Li

    2015-12-01

    A site deficient La0.2Sr0.7TiO3-δ (LSTA) and a highly proton conductive electrolyte BaCe0.7Zr0.1Y0.2O3-δ (BCZY) are synthesized by using solid state reaction method. The performance of the electrolyte-supported single cell, comprised of LSTA + Cr2O3 + Cu//BCZY//(La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ (LSCF)+BCZY, is fabricated and investigated. LSTA shows remarkably high electrical performance, with a conductivity as high as 27.78 Scm-1 at 1150 °C in a 10% H2/N2 reducing atmosphere. As a main anode component, it shows good catalytic activity towards the oxidation of ethane, causing the power density to considerably increase from 158.4 mW cm-2 to 320.9 mW cm-2 and the ethane conversion to significantly rise from 12.6% to 30.9%, when the temperature increases from 650 °C to 750 °C. These changes agree well with the polarization resistance which dramatically decreases from 0.346 Ωcm2 to 0.112 Ωcm2. EDX measurement shows that no element diffusion exists (chemical compatibility) between anode (LSTA + Cr2O3+Cu) and electrolyte (BCZY). With these properties, the pure phase LSTA is evaluated as a high electro-catalytic activity anode material for ethane proton conducting solid oxide fuel cell (PC-SOFC).

  15. Rietveld refinement, impedance spectroscopy and magnetic properties of Bi0.8Sr0.2FeO3 substituted Na0.5Bi0.5TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Kumari, Rekha; Ahlawat, Neetu; Agarwal, Ashish; Sanghi, Sujata; Sindhu, Monica; Ahlawat, Navneet

    2016-09-01

    We herein presented the investigation on the structural, electrical and magnetic properties of (1-x)(Na0.5Bi0.5TiO3)-x(Bi0.8Sr0.2FeO3) polycrystalline ceramic samples, with x=0.1, 0.3, 0.5 and 0.7. These samples were prepared by conventional solid state reaction method and the crystalline phase of prepared ceramics was identified with the help of X-ray diffraction pattern. Rietveld analysis of the obtained XRD data confirmed that all the synthesized samples adopt the rhombohedral crystal structure with R3c space group. Impedance spectroscopic measurements were performed on all the compositions in the frequency range 10 Hz-5 MHz to probe the electrical microstructure of polycrystalline (1-x)(Na0.5Bi0.5TiO3)-x(Bi0.8Sr0.2FeO3) ceramics, which changes significantly as a function of x (content of BSFO). A significant increase in dielectric constant has been observed with increase in BSFO concentration, which was attributed to enhancement of oxygen vacancies. Detailed study of impedance complex plane plots revealed the presence of non-Debye type relaxation for all the prepared systems and enabled us to separate the contribution from grains and grain boundaries. Equivalent circuit model (RgCPEg)(RgbCPEgb)(ReCPEe) was employed to explain the impedance data for all the prepared samples. The activation energies obtained from electric modulus as well as dc conductivity increase with increase in BSFO content, which approaches the value 1 eV and indicates an Arrehenius type thermally activated process. Remnant magnetization (Mr) and coercive field (Hc) are found to be increase with BSFO concentration.

  16. X-ray photoelectron spectroscopic study of direct reforming catalysts Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln = La, Nd, and Sm) for high temperature-operating solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Keunsoo; Jeong, Jihoon; Azad, Abul K.; Jin, Sang Beom; Kim, Jung Hyun

    2016-03-01

    Chemical states of lanthanide doped perovskite for direct reforming anode catalysts, Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln = La, Nd, and Sm) have been studied by X-ray Photoelectron Spectroscopy (XPS) in order to determine the effects of various lanthanide substitution in complex perovskites for high temperature-operating solid oxide fuel cells (HT-SOFC). The charge state of lanthanide ions remained at 3+ and the binding energies of the lanthanide ions in Ln0.5Sr0.5Ti0.5Mn0.5O3±d were located in a relatively lower range compared to those of conventional lanthanide oxides. Mn and Ti were regarded as charge compensation components in Ln0.5Sr0.5Ti0.5Mn0.5O3±d; Mn was more influential than Ti. In the cases of substituting Nd and Sm into Ln0.5Sr0.5Ti0.5Mn0.5O3±d, some portion of Ti showed metallic behavior; the specific Mn satellite peak indicating an electro-catalytic effect had occurred. Three types of oxygen species comprised of lattice oxygen, carbonate species, and adsorbed oxygen species were observed in Ln0.5Sr0.5Ti0.5Mn0.5O3±d from the O 1s spectra; a high portion of lattice oxygen was observed in both Nd0.5Sr0.5Ti0.5Mn0.5O3±d (NSTM) and Sm0.5Sr0.5Ti0.5Mn0.5O3±d (SSTM). In various respects, NSTM and SSTM will be desirable reforming catalysts and anode candidates for high temperature solid oxide fuel cell.

  17. Coexistence of superconductivity and ferromagnetism in Sr0.5Ce0.5FBiS2-xSex (x = 0.5 and 1.0), a non-U material with Tc < TFM.

    PubMed

    Thakur, Gohil S; Fuchs, G; Nenkov, K; Haque, Zeba; Gupta, L C; Ganguli, A K

    2016-11-28

    We have carried out detailed magnetic and transport studies of the new Sr0.5Ce0.5FBiS2-xSex (0.0 ≤ x ≤ 1.0) superconductors derived by doping Se in Sr0.5Ce0.5FBiS2. Se-doping produces several effects: it suppresses semiconducting-like behavior observed in the undoped Sr0.5Ce0.5FBiS2, the ferromagnetic ordering temperature, TFM, decreases considerably from 7.5 K (in Sr0.5Ce0.5FBiS2) to 3.5 K and the superconducting transition temperature, Tc, gets enhanced slightly to 2.9-3.3 K. Thus in these Se-doped materials, TFM is marginally higher than Tc. Magnetization studies provide evidence of bulk superconductivity in Sr0.5Ce0.5FBiS2-xSex at x ≥ 0.5 in contrast to the undoped Sr0.5Ce0.5FBiS2 (x = 0) where magnetization measurements indicate a small superconducting volume fraction. Quite remarkably, as compared with the effective paramagnetic Ce-moment (~2.2 μB), the ferromagnetically ordered Ce-moment in the superconducting state is rather small (~0.1 μB) suggesting itinerant ferromagnetism. To the best of our knowledge, Sr0.5Ce0.5FBiS2-x Sex (x = 0.5 and 1.0) are distinctive Ce-based bulk superconducting itinerant ferromagnetic materials with Tc < TFM. Furthermore, a novel feature of these materials is that they exhibit a dual and quite unusual hysteresis loop corresponding to both the ferromagnetism and the coexisting bulk superconductivity.

  18. Coexistence of superconductivity and ferromagnetism in Sr0.5Ce0.5FBiS2-xSex (x = 0.5 and 1.0), a non-U material with Tc < TFM

    PubMed Central

    Thakur, Gohil S.; Fuchs, G.; Nenkov, K.; Haque, Zeba; Gupta, L. C.; Ganguli, A. K.

    2016-01-01

    We have carried out detailed magnetic and transport studies of the new Sr0.5Ce0.5FBiS2-xSex (0.0 ≤ x ≤ 1.0) superconductors derived by doping Se in Sr0.5Ce0.5FBiS2. Se–doping produces several effects: it suppresses semiconducting–like behavior observed in the undoped Sr0.5Ce0.5FBiS2, the ferromagnetic ordering temperature, TFM, decreases considerably from 7.5 K (in Sr0.5Ce0.5FBiS2) to 3.5 K and the superconducting transition temperature, Tc, gets enhanced slightly to 2.9–3.3 K. Thus in these Se–doped materials, TFM is marginally higher than Tc. Magnetization studies provide evidence of bulk superconductivity in Sr0.5Ce0.5FBiS2-xSex at x ≥ 0.5 in contrast to the undoped Sr0.5Ce0.5FBiS2 (x = 0) where magnetization measurements indicate a small superconducting volume fraction. Quite remarkably, as compared with the effective paramagnetic Ce–moment (~2.2 μB), the ferromagnetically ordered Ce–moment in the superconducting state is rather small (~0.1 μB) suggesting itinerant ferromagnetism. To the best of our knowledge, Sr0.5Ce0.5FBiS2-x Sex (x = 0.5 and 1.0) are distinctive Ce–based bulk superconducting itinerant ferromagnetic materials with Tc < TFM. Furthermore, a novel feature of these materials is that they exhibit a dual and quite unusual hysteresis loop corresponding to both the ferromagnetism and the coexisting bulk superconductivity. PMID:27892482

  19. Coexistence of superconductivity and ferromagnetism in Sr0.5Ce0.5FBiS2-xSex (x = 0.5 and 1.0), a non-U material with Tc < TFM

    NASA Astrophysics Data System (ADS)

    Thakur, Gohil S.; Fuchs, G.; Nenkov, K.; Haque, Zeba; Gupta, L. C.; Ganguli, A. K.

    2016-11-01

    We have carried out detailed magnetic and transport studies of the new Sr0.5Ce0.5FBiS2-xSex (0.0 ≤ x ≤ 1.0) superconductors derived by doping Se in Sr0.5Ce0.5FBiS2. Se–doping produces several effects: it suppresses semiconducting–like behavior observed in the undoped Sr0.5Ce0.5FBiS2, the ferromagnetic ordering temperature, TFM, decreases considerably from 7.5 K (in Sr0.5Ce0.5FBiS2) to 3.5 K and the superconducting transition temperature, Tc, gets enhanced slightly to 2.9–3.3 K. Thus in these Se–doped materials, TFM is marginally higher than Tc. Magnetization studies provide evidence of bulk superconductivity in Sr0.5Ce0.5FBiS2-xSex at x ≥ 0.5 in contrast to the undoped Sr0.5Ce0.5FBiS2 (x = 0) where magnetization measurements indicate a small superconducting volume fraction. Quite remarkably, as compared with the effective paramagnetic Ce–moment (~2.2 μB), the ferromagnetically ordered Ce–moment in the superconducting state is rather small (~0.1 μB) suggesting itinerant ferromagnetism. To the best of our knowledge, Sr0.5Ce0.5FBiS2-x Sex (x = 0.5 and 1.0) are distinctive Ce–based bulk superconducting itinerant ferromagnetic materials with Tc < TFM. Furthermore, a novel feature of these materials is that they exhibit a dual and quite unusual hysteresis loop corresponding to both the ferromagnetism and the coexisting bulk superconductivity.

  20. Ln 0.6Sr 0.4Co 1- yFe yO 3- δ (Ln = La and Nd; y = 0 and 0.5) cathodes with thin yttria-stabilized zirconia electrolytes for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Torres-Garibay, Claudia; Kovar, Desiderio; Manthiram, Arumugam

    The electrochemical performances of the solid oxide fuel cells (SOFC) fabricated with Ln 0.6Sr 0.4Co 1- yFe yO 3- δ (Ln = La, Nd; y = 0, 0.5) perovskite cathodes, thin yttria-stabilized zirconia (YSZ) electrolytes, and YSZ-Ni anodes by tape casting, co-firing, and screen printing are evaluated at 600-800 °C. Peak power densities of ∼550 mW cm -2 are achieved at 800 °C with a La 0.6Sr 0.4CoO 3- δ (LSC) cathode that is known to have high electrical conductivity. Substitution of La by Nd (Nd 0.6Sr 0.4CoO 3- δ) to reduce the thermal expansion coefficient (TEC) results in only a slight decrease in power density despite a lower electrical conductivity. Conversely, substitution of Fe for Co (La 0.6Sr 0.4Co 0.5Fe 0.5O 3- δ or Nd 0.6Sr 0.4Co 0.5Fe 0.5O 3- δ) to reduce the TEC further reduces the cell performance greatly due to a significant decrease in electrical conductivity. However, infiltration of the Fe-substituted cathodes with Ag to increase the electrical conductivity increases the cell performance while preserving the low TEC.

  1. Examination of the mechanism for the reversible aging behavior at open circuit when changing the operating temperature of (La0.8Sr0.2)0.95 MnO3 electrodes

    DOE PAGES

    Abernathy, Harry; Finklea, Harry O.; Mebane, David S.; ...

    2015-02-17

    The aging behavior of symmetrical cells, consisting of either (La0.8Sr0.2)0.95 MnO3 (LSM) or La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) electrodes screen printed on either 8 mol% yttria-stabilized zirconia (YSZ) or Ce0.8Gd0.2O2 (GDC) electrolyte substrates, is reported as the symmetrical cell is thermally cycled between 700 °C and 800 °C. For LSM, between 700 °C and 850 °C, the polarization resistance exhibits slow increases or decreases with time (on the order of days) after a quick change in temperature. When increasing the temperature, the polarization resistance decreases with time, and when decreasing the temperature, the polarization resistance slowly increases with time. In a previous work,more » the authors had explained these results with LSM by connecting the testing conditions to literature reports of surface analysis of LSM thin films which demonstrated a change in the amount of surface cation segregation as a function of temperature. In this work, TEM/EDS/XPS analysis of dense LSM pellets thermally cycled under the same conditions as the symmetrical cells does not indicate any significant reversible change in the surface composition of the LSM pellet between 700 °C and 800 °C. An alternative hypothesis is proposed to explain the relationship between polarization resistance and the LSM cation/anion vacancy concentrations controlled by the Schottky reaction. The timescale of aging behavior is related to the time necessary for the cations to move to or from the LSM surface to adjust to the new equilibrium at each temperature. Furthermore, the relevance in understanding the mechanism behind the aging behavior is emphasized with respect to fuel cell sample/stack modeling as well as to proper testing procedures for reaching reliable conclusions when comparing different electrode samples.« less

  2. The role of structural and magnetic inhomogeneities in the formation of magneto-transport properties of the La0.6-xSmxSr0.3Mn1.1O3-δ ceramics

    NASA Astrophysics Data System (ADS)

    Pashchenko, A. V.; Pashchenko, V. P.; Prokopenko, V. K.; Revenko, Yu. F.; Mazur, A. S.; Burchovetskii, V. V.; Turchenko, V. A.; Liedienov, N. A.; Pitsyuga, V. G.; Levchenko, G. G.; Dyakonov, V. P.; Szymczak, H.

    2016-10-01

    X-ray diffraction, magnetic, transport and SEM measurements were used to investigate the role of structural and magnetic inhomogeneities in the formation of magneto-transport properties of the La0.6-xSmxSr0.3Mn1.1O3-δ (x=0-0.6) ceramics. Reduction of the a parameter of perovskite structure and change of its symmetry are shown to be due to both replacement of La3+ by Sm3+ and an increase concentration of anion and cation vacancies. Broad asymmetric 55Mn NMR spectra are indicative of the high frequency electron double exchange Mn3+↔Mn4+ and demonstrate the heterogeneity of magnetic and valence Mn-states. An excess manganese is dissolved in perovskite structure statistically without formation of planar antiferromagnetic clusters of Mn2+ ions in the deformed A positions. Constructing phase diagram of "composition-structure-properties" describes a strong correlation between structural, resistive and magnetic properties as well as reflects a special role of structural defects in the formation of magneto-transport properties of the rare-earth manganites.

  3. La0.7Sr0.3MnO3 thin films on SrTiO3 and CaTiO3 buffered Si substrates: structural, static, and dynamic magnetic properties

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Mercone, S.; Adamo, C.; Chauveau, T.; Méchin, L.; Monod, P.; Moch, P.; Schlom, D. G.

    2011-11-01

    Nearly 50-nm thick La0.7Sr0.3MnO3 (LSMO) films were grown on Si substrates using molecular beam epitaxy on (001) Si substrates over-layered by a 20 nm thick SrTiO3 (STO) or by a 20 nm thick CaTiO3 (CTO) film. In addition, a reference LSMO film was directly deposited on a (001) STO substrate by pulsed laser deposition. For all the samples, X-ray diffraction revealed an excellent epitaxy of the LSMO film and small mosaicity around (001), with in-plane [100] and [010] cubic axes. The LSMO/CTO films are in-plane compressed while the LSMO/STO ones are in-plane extended. The temperature dependence of their static magnetic properties was studied using a SQUID, showing a Curie temperature overpassing 315 K for all the samples. Hysteresis loops performed at room temperature (294 K) with the help of a vibrating sample magnetometer (VSM) are also discussed. At 294 K Micro-strip ferromagnetic resonance (MS-FMR) was used to investigate the dynamic magnetic properties. It allows concluding to a strong anisotropy perpendicular to the films and to a weak fourfold in-plane anisotropy with easy axes along the [110] and [ 1bar{1}0 ] directions. Their values strongly depend on the studied sample and are presumably related to the strains suffered by the films.

  4. Co-electrolysis of steam and CO2 in a solid oxide electrolysis cell with La0.75Sr0.25Cr0.5Mn0.5O3-δ -Cu ceramic composite electrode

    NASA Astrophysics Data System (ADS)

    Xing, Ruimin; Wang, Yarong; Zhu, Yongqiang; Liu, Shanhu; Jin, Chao

    2015-01-01

    Cu impregnation has been performed to improve electronic conductivity of La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) material in reducing atmosphere, and solid oxide electrolysis cells (SOECs) with the configuration of LSCF|LSGM|LSCM-Cu are prepared and evaluated for high temperature steam and carbon dioxide co-electrolysis. Electrochemical impedance spectra (EIS) and voltage-current curves are carried out to characterize the cell performances. Compared with LSCF|LSGM|LSCM cell without Cu impregnation for steam electrolysis under the same conditions, EIS results show that LSCF|LSGM|LSCM-Cu cell not only displays lower ohmic resistance and better electrochemical performances, but also their resistance increases with the percentage of the fed CO2 under open circuit voltage, in which the polarization resistance dominates. With the applied electrolysis voltage of 1.65 V and the operating temperature of 750 °C, the maximum consumed current density increases from 1.31 A cm-2 without CO2 to 1.82 A cm-2 with 37.5% CO2. Although there is an increase of 2.0% in the applied electrolysis voltage, the cell has exhibited an excellent durability test for more than 50 h with the electrolysis current density of 0.33 A cm-2 and the gas mixture of 50% AH-25% H2-25% CO2 at 750 °C.

  5. Preparation of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ fine powders by carbonate coprecipitation for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Ha, Sang Bu; Cho, Pyeong-Seok; Cho, Yoon Ho; Lee, Dokyol; Lee, Jong-Heun

    A range of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ (LSCM) powders is prepared by the carbonate coprecipitation method for use as anodes in solid oxide fuel cells. The supersaturation ratio (R = [(NH 4) 2CO 3]/([La 3+] + [Sr 2+] + [Cr 3+] + [Mn 2+])) during the coprecipitation determines the relative compositions of La, Sr, Cr, and Mn. The composition of the precursor approaches the stoichiometric one at the supersaturation range of 4 ≤ R ≤ 12.5, whereas Sr and Mn components are deficient at R < 4 and excessive at R = 25. The fine and phase-pure LSCM powders are prepared by heat treatment at very low temperature (1000 °C) at R = 7.5 and 12.5. By contrast, the solid-state reaction requires a higher heat-treatment temperature (1400 °C). The catalytic activity of the LSCM electrodes is enhanced by using carbonate-derived powders to manipulate the electrode microstructures.

  6. Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers.

    PubMed

    Shaohui, Liu; Jiwei, Zhai; Jinwen, Wang; Shuangxi, Xue; Wenqin, Zhang

    2014-02-12

    The ceramic-polymer nanocomposites consisting of Ba0.6Sr0.4TiO3 nanofibers (BST60 NF) with a large aspect ratio prepared via electrospinning and employing surface hydroxylated as fillers and poly(vinylidene fluoride) (PVDF) as matrix have been fabricated by a solution casting method. The nanocomposites exhibit enhanced permittivity, reduced loss tangents and improved breakdown electric field strength at a low volume fraction of hydroxylated BST60 NF. The energy density of the nanocomposites is significantly enhanced, and the maximal energy density of 6.4 J/cm(3) is obtained in the composite material with 2.5 wt % hydroxylated BST60 NF, which is more than doubled as compared with the pure PVDF. Such significant enhancements result from combined effect of the large aspect ratio, the surface modification and the improved crystallinity of the nanocomposites induced by the hydroxylated BST60 NF. This work may provide a route for using the hydroxylated ceramic nanofibers to enhance the dielectric energy density in ceramic-polymer nanocomposites.

  7. Electron channeling contrast imaging of anti-phase boundaries in coherently strained La0.7Sr0.3MnO3 thin films on (110)-oriented SrTiO3

    NASA Astrophysics Data System (ADS)

    Yan, Miaolei; De Graef, Marc; Picard, Yoosuf N.; Salvador, Paul A.

    2015-07-01

    Electron channeling contrast imaging (ECCI) was used to characterize coherently strained La0.7Sr0.3MnO3 (LSM) films grown on (110)cubic-SrTiO3 (STO) and ( 100 ) orthorhombic -NdGaO3 (NGO). We focus on the characterization of a relatively low density (1-3 μm/μm2) of meandering loops (MLs) found in the LSM film on STO and absent in the film on NGO. The MLs exhibit a uniform contrast variation from the background and a strong contrast dependence on the diffraction vector g. The MLs are quantitatively consistent with LSM anti-phase boundaries (APBs) having a displacement vector R = /1 2 [ 001 ] L S M . These APBs are consistent with a "double positioning" degeneracy of tilted octahedra along [ 001 ] L S M on untilted octahedra along [ 001 ] S T O . The results highlight the non-destructive capacity of ECCI to characterize extended defects in oxide films.

  8. Effect of atmospheric CO2 on surface segregation and phase formation in La0.6Sr0.4Co0.2Fe0.8O3-δ thin films

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Luo, Heng; Cetin, Deniz; Lin, Xi; Ludwig, Karl; Pal, Uday; Gopalan, Srikanth; Basu, Soumendra

    2014-12-01

    The effects of atmospheric CO2 on surface segregation and phase formation in La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF-6428) were investigated. (0 0 1)-oriented LSCF-6428 thin films were deposited on lattice matched (1 1 0)-oriented NdGaO3 (NGO) substrates by pulsed laser deposition (PLD). Using the synchrotron technique of total reflection X-ray fluorescence (TXRF), it was found that the kinetics of Sr surface segregation was enhanced when annealing at 800 °C in a high-CO2 partial pressure, as compared to a similar anneal in a CO2-free atmosphere, with the oxygen partial pressure being constant in both cases. Hard X-ray photoelectron spectroscopy (HAXPES) measurements showed that the contribution of the surface carbonate to surface oxide phases increased significantly for the sample annealed in the high-CO2 atmosphere. Atomic force microscopy (AFM) studies showed enhanced surface phase formation during the high-CO2 partial pressure anneal. Density functional theory (DFT) calculations provide a thermodynamic basis for the enhanced kinetics of surface segregation in the presence of atmospheric CO2.

  9. Investigation of Sm 0.5Sr 0.5CoO 3- δ/Co 3O 4 composite cathode for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Haizhou; Liu, Huanying; Cong, You; Yang, Weishen

    The electrochemical properties of an Sm 0.5Sr 0.5CoO 3- δ/Co 3O 4 (SSC/Co 3O 4) composite cathode were investigated as a function of the cathode-firing temperature, SSC/Co 3O 4 composition, oxygen partial pressure and CO 2 treatment. The results showed that the composite cathodes had an optimal microstructure at a firing temperature of about 1100 °C, while the optimum Co 3O 4 content in the composite cathode was about 40 wt.%. A single cell with this optimized C 40-1100 cathode exhibited a very low polarization resistance of 0.058 Ω cm 2, and yielded a maximum power density of 1092 mW cm -2 with humidified hydrogen fuel and air oxidant at 600 °C. The maximum power density reached 1452 mW cm -2 when pure oxygen was used as the oxidant for a cell with a C 30-1100 cathode operating at 600 °C due to the enhanced open-circuit voltage and accelerated oxygen surface-exchange rate. X-ray diffraction and thermogravimetric analyses, as well as the electrochemical properties of a CO 2-treated cathode, also implied promising applications of such highly efficient SSC/Co 3O 4 composite cathodes in single-chamber fuel cells with direct hydrocarbon fuels operating at temperatures below 500 °C.

  10. Effect of the symmetric cell preparation temperature on the activity of Ba0.5Sr0.5Fe0.8Cu0.2O3-δ as cathode for intermediate temperature Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Vázquez, Santiago; Basbus, Juan; Soldati, Analía L.; Napolitano, Federico; Serquis, Adriana; Suescun, Leopoldo

    2015-01-01

    In this work we studied the electrochemical performance of Ba0.5Sr0.5Fe0.8Cu0.2O3-δ (BSFCu) as cathode for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFC) with Ce0.9Gd0.1O1.95 (CGO) electrolyte and the effect of the symmetric cell preparation temperature on the oxygen reduction reaction (ORR) activity. Symmetrical cells with the configuration BSFCu/CGO/BSFCu were prepared at 900 °C, 950 °C and 1000 °C to perform the electrochemical characterization in the 500-700 °C temperature range. The resultant area specific resistance (ASR) of the cells with different preparation temperatures followed the tendency: ASR900°C < ASR950°C < ASR1000°C. The symmetric cell constructed at 900 °C showed ASR values of 0.18, 0.078 and 0.035 Ω cm2 at 600, 650 and 700 °C respectively, which demonstrated superior electrochemical activities than previous reports. Additional, X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM and TEM) techniques were used to characterize the microstructure of the original and fired BSFCu materials and correlate it with the cell preparation temperature.

  11. Influence of strontium-rich pore-filling phase on the performance of La0.6Sr0.4CoO3-δ thin-film cathodes

    NASA Astrophysics Data System (ADS)

    Pecho, Omar; Holzer, Lorenz; Yáng, Zhèn; Martynczuk, Julia; Hocker, Thomas; Flatt, Robert J.; Prestat, Michel

    2015-01-01

    Nanoporous 1-μm thin La0.6Sr0.4CoO3-δ (LSC) layers are deposited by spray pyrolysis and subsequently sintered at 600 °C, 800 °C, and 1000 °C. A strontium- and oxygen-rich phase can be found within the pore network, which appears at low sintering temperatures. This so-called "secondary phase" occupies up to 20.7 vol.% of the LSC films for the 600 °C annealing process. It does not hinder the electrochemical activity towards oxygen reduction of such layers that exhibit an area-specific resistance (ASR) as low as 0.13 Ω cm2 at 600 °C in air. This result makes the spray pyrolysed LSC thin films promising candidates as intermediate-temperature solid oxide fuel cell cathodes. For higher sintering temperatures the secondary phase progressively disappears. A correlation between the inverse of the ASR and the whole LSC surface area (regardless of the presence of the secondary phase or not) is also evidenced. The increase of ASR with increasing sintering temperature is found to be primarily related to the exchange neutral flux density of the Sr-deficient LSC.

  12. Magnetic and structural properties of Sr0.75La0.25FexCu0.20O19 (10.40≤x≤11.80) hexagonal ferrites prepared by the solid-state reaction

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Shao, Juxiang; Wang, Fanhou; Liu, Xiansong; Feng, Shuangjiu; Huang, Duohui; Yang, Junsheng; Jin, Chengguo

    2016-05-01

    In this study, the hexaferrite magnetic powders and magnets according to the formula Sr0.75La0.25FexCu0.20O19, where x ranging from 10.40 to 11.80 with a step of 0.2 were prepared by the solid-state reaction. X-ray diffraction was performed to investigate the microstructures of the magnetic powders. The results show that a single magnetoplumbite phase is obtained for the magnetic powders with Fe content (10.60≤x≤11.60). For the magnetic powders with Fe content (x) of 10.40 or 11.80, magnetic impurities appear in the structure. A field emission scanning electron microscopy was hired to explore the micrographs of the magnets. The hexaferrite magnets are formed of hexagonal-shaped crystals. A magnetic properties test instrument was used in order to study the magnetic properties of the magnets. The remanence and maximum energy product first increase with Fe content (x) from 10.40 to 11.00 and then begin to decrease when Fe content (x) continues to increase. While the intrinsic coercivity and magnetic induction coercivity first increase with Fe content (x) from 10.40 to 11.20 and then decrease when Fe content (x)>11.20.

  13. Abnormal percolative transport and colossal electroresistance induced by anisotropic strain in (011)-Pr0.7(Ca0.6Sr0.4)0.3MnO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Zhang, Hong-Rui; Liu, Yao; Zhang, Ying; Wang, Shuan-Hu; Wu, Rong-Rong; Zhang, Ming; Bao, Li-Fu; Sun, Ji-Rong; Shen, Bao-Gen

    2014-11-01

    Abnormal percolative transport in inhomogeneous systems has drawn increasing interests due to its deviation from the conventional percolation picture. However, its nature is still ambiguous partly due to the difficulty in obtaining controllable abnormal percolative transport behaviors. Here, we report the first observation of electric-field-controlled abnormal percolative transport in (011)-Pr0.7(Ca0.6Sr0.4)0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructure. By introducing an electric-field-induced in-plane anisotropic strain-field in a phase separated PCSMO film, we stimulate a significant inverse thermal hysteresis (~ -17.5 K) and positive colossal electroresistance (~11460%), which is found to be crucially orientation-dependent and completely inconsistent with the well accepted conventional percolation picture. Further investigations reveal that such abnormal inverse hysteresis is strongly related to the preferential formation of ferromagnetic metallic domains caused by in-plane anisotropic strain-field. Meanwhile, it is found that the positive colossal electroresistance should be ascribed to the coactions between the anisotropic strain and the polarization effect from the poling of the substrate which leads to orientation and bias-polarity dependencies for the colossal electroresistance. This work unambiguously evidences the indispensable role of the anisotropic strain-field in driving the abnormal percolative transport and provides a new perspective for well understanding the percolation mechanism in inhomogeneous systems.

  14. Time-resolved optical response of all-oxide YBa2Cu3O7/La0.7Sr0.3MnO3 proximitized bilayers

    NASA Astrophysics Data System (ADS)

    Parlato, L.; Arpaia, R.; De Lisio, C.; Miletto Granozio, F.; Pepe, G. P.; Perna, P.; Pagliarulo, V.; Bonavolontà, C.; Radovic, M.; Wang, Y.; Sobolewski, Roman; Scotti di Uccio, U.

    2013-04-01

    We present femtosecond pump-probe spectroscopy studies of time-resolved optical reflectivity of all-oxide YBa2Cu3O7/La0.7Sr0.3MnO3 (YBCO/LSMO) superconductor/ferromagnet (S/F) bilayers consisting of a 100-nm-thick YBCO base layer and either 10 or 35 nm LSMO cap thickness. At temperatures far below the YBCO superconducting transition TC, samples with a 10 nm F overlayer show a photoresponse that is similar to, but faster than, pure-YBCO, 100-nm-thick reference samples, while close to TC and above (up to ˜160 K) we observe a signature of both the electronic and spin response that cannot be interpreted as an incoherent sum of contributions from the two layers. The photoresponse of the S/F structures with the 35-nm LSMO layer always qualitatively follows that of the pure LSMO, but with a shorter relaxation time. In all cases, the YBCO/LSMO nonequilibrium dynamics can be modeled using a generalized multitemperature model, which is a superposition of the dynamics of the three-temperature models that are used to describe the superconductor and ferromagnet subsystems, respectively. The long term of the photoresponse signal of the S/F bilayer can be well fitted with the two characteristic relaxation times.

  15. Effect of Screen-Printing Mesh Opening Diameter on Microstructural and Electrical Properties of La0.6Sr0.4Co0.2Fe0.8O3- δ Thick Films

    NASA Astrophysics Data System (ADS)

    Jamale, Atul P.; Bhosale, C. H.; Jadhav, L. D.

    2016-01-01

    The performance of solid oxide fuel cells (SOFCs) is hampered by the large polarization and ohmic losses across the cathode-electrolyte interface. To minimize these losses, in most SOFCs the cathode is obtained by thick-film deposition techniques. Since the properties of such films depend upon the starting materials and screen-printing parameters, the effect of the mesh opening diameter on the physiochemical properties of cathodes for intermediate-temperature (IT)-SOFCs has been studied. Combustion-synthesized La0.6Sr0.4Co0.2Fe0.8O3- δ powder with specific surface area of 11.64 m2 g-1 was utilized in film formation. All films were porous in nature, and the thickness was observed to increase with the mesh opening diameter. The electrical conductivity showed a decreasing trend with film thickness. Typically, film with 7 μm thickness showed moderate conductivity of 16.4 S cm-1 with E a = 0.1 eV.

  16. XPS study of surface state of novel perovskite system Dy0.5Sr0.5Co0.8Fe0.2O3-δ as cathode for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kautkar, Pranay R.; Acharya, Smita A.; Tumram, Priya V.; Deshpande, U. P.

    2016-05-01

    In the present attempt,novel perovskite oxide Dy0.5Sr0.5Co0.8Fe0.2O3-δ (DSCF) as cathode material has been synthesized by an Ethylene glycol-citrate combined sol-gel combustion route. Orthorhombic symmetry structure is confirmed by X-ray diffraction (XRD) and data is well fitted using Rietveld refinement by Full-Prof software suite. Chemical natureof surface of DSCF has been analyzed by using X-ray photoelectron spectroscopy (XPS). XPS result shows that Dy ions are in +3 oxidation state and Sr in +2 states. However Co2p and Fe2p spectra indicates partial change in oxidation state from Co3+/Fe3+ to Co4+/Fe4+. These attribute to develop active sites on the surface for oxygen ions. O1s XPS spectra shows two oxygen peaks relatedto lattice oxygen in perovskite and absorbed oxygen in oxygen vacancy are detected. O1s spectra demonstrate the existence of adsorbed oxygen species on the surface of DSCF oxide which is quite beneficial for intermediate temperature of Solid Oxide Fuel Cell.

  17. Synthesis and characterization of La0.6Sr0.4Fe0.8Cu0.2O3-δ oxide as cathode for Intermediate Temperature Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Vázquez, Santiago; Davyt, Sebastián; Basbus, Juan F.; Soldati, Analía L.; Amaya, Alejandro; Serquis, Adriana; Faccio, Ricardo; Suescun, Leopoldo

    2015-08-01

    Nanocrystalline La0.6Sr0.4Fe0.8Cu0.2O3-δ (LSFCu) material was synthetized by combustion method using EDTA as fuel/chelating agent and NH4NO3 as combustion promoter. Structural characterization using thermodiffraction data allowed to determine a reversible phase transition at 425 °C from a low temperature R-3c phase to a high temperature Pm-3m phase and to calculate the thermal expansion coefficient (TEC) of both phases. Important characteristics for cathode application as electronic conductivity and chemical compatibility with Ce0.9Gd0.1O2-δ (CGO) electrolyte were evaluated. LSFCu presented a p-type conductor behavior with maximum conductivity of 135 S cm-1 at 275 °C and showed a good stability with CGO electrolyte at high temperatures. This work confirmed that as prepared LSFCu has excellent microstructural characteristics and an electrical conductivity between 100 and 60 S cm-1 in the 500-700 °C range which is sufficiently high to work as intermediate temperature Solid Oxide Fuel Cells (IT-SOFCs) cathode. However a change in the thermal expansion coefficient consistent with a small oxygen loss process may affect the electrode-electrolyte interface during fabrication and operation of a SOFC.

  18. Evaluation of La0.6Sr0.4Co0.2Fe0.8O3-Gd0.1Ce0.9O1.95 composite cathode with three dimensional microstructure reconstruction

    NASA Astrophysics Data System (ADS)

    Kim, Y. T.; Jiao, Z.; Shikazono, N.

    2017-02-01

    In the present study, the polarization characteristics of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) - Gd0.1Ce0.9O1.95 (GDC) composite cathodes with different volume ratios were investigated. Samples with volume ratios of 20:80, 30:70, 50:50, 70:30 and 100:0 vol % were tested. The electrochemical impedance spectroscopy tests and current voltage curve measurements were carried out for the current densities from 0 to 0.2 Acm-2 with an interval of 0.05 Acm-2. The results showed that a volume ratio of LSCF:GDC = 30:70 composite cathode led to the lowest overpotential, and the overpotential increased in the order of 30:70, 50:50, 70:30, 100:0, 20:80 vol %. Three dimensional microstructures of composite cathodes were reconstructed and quantified by dual beam focused ion beam-scanning electron microscope (FIB-SEM). The results showed that neither LSCF surface area nor triple phase boundary (TPB) alone could explain the dependence of polarization characteristics on volume ratios. Current and electrochemical potential distributions were simulated by the Lattice Boltzmann method, in which both surface and TPB reactions were considered. Prediction considering both surface and TPB reactions could predict qualitatively the dependence of overpotentials on LSCF - GDC cathode composition.

  19. NiCo2O4@La0.8Sr0.2MnO3 core-shell structured nanorods as efficient electrocatalyst for Lisbnd O2 battery with enhanced performances

    NASA Astrophysics Data System (ADS)

    Luo, Yong; Lu, Fanliang; Jin, Chao; Wang, Yarong; Yang, Ruizhi; Yang, Chenghao

    2016-07-01

    La1-xSrxMnO3 perovskite oxides are promising electrocatalysts for Lisbnd O2 batteries because of their excellent intrinsic catalytic activity for oxygen reduction reaction (ORR). However, the relatively inert catalytic activity for oxygen evolution reaction (OER) suppresses their practical applications in Lisbnd O2 battery. Here, nanoscale NiCo2O4 (NCO) layer with high OER catalytic activity has been homogenously incorporated into the surface of La0.8Sr0.2MnO3 (LSM) nanorods to form a core-shell structure. In this typical structure, the ORR mainly occurred on the LSM core, while the OER mainly occurred on the nanoscale NCO shell, and structure damage of catalysts coming from gas evolution can be greatly avoided. The synergy of high catalytic activity and core-shell structure results in the Lisbnd O2 battery with good rate capability and excellent cycle stability, which sustains 80 cycles without capacity attenuation at a high current density of 200 mA g-1.

  20. Electrochemical properties of ceria-based intermediate temperature solid oxide fuel cell using microwave heat-treated La0.1Sr0.9Co0.8Fe0.2O3-δ as a cathode

    NASA Astrophysics Data System (ADS)

    Choi, M.-B.; Lee, K.-T.; Yoon, H.-S.; Jeon, S.-Y.; Wachsman, E. D.; Song, S.-J.

    2012-12-01

    The temperature dependence of the chemical diffusion coefficient and the surface exchange coefficient of LSCF1982 is successfully determined from the D.C. conductivity relaxation in the temperature range of 500 ≤ T/°C ≤ 700 and an oxygen partial pressure of 0.21 atm. The kinetic values of chemical diffusion coefficient (D˜) and surface exchange coefficient (k) are 1.85 × 10-5 cm2 s-1 and 2.42 × 10-4 cm s-1 at 650 °C, respectively. The electrochemical properties of La0.1Sr0.9Co0.8Fe0.2O3-δ (LSCF1982) as a cathode for ceria based IT-SOFC are successfully characterized by I-V performance measurement and electrochemical impedance spectroscopy (EIS) in terms of cathode microstructure effects by using microwave heat treatment. The cell with microwave heat-treated cathode shows the higher performance than conventional heat treated cathode. At 650 °C the open circuit potential (OCP) and maximum power density are respectively 0.753 V and 1.79 W cm-2 under 150 sccm of wet hydrogen and air gas flow conditions, and the ohmic and electrode area specific resistance (ASR) are 0.037 and 0.014 Ω cm2, respectively.

  1. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Improvement in Dielectric Tunability of Ba0.6Sr0.4TiO4-Mg2TiO4 Composite Ceramics via Heterogeneous Nucleation Processing

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Li, Yong-Xiang

    2009-11-01

    Dielectric tunable composite ceramics Ba0.6Sr0.4 TiO3-Mg2TiO4 (BST-MT) are prepared with a heterogeneous nucleation sol-gel approach. The Mg2TiO4 powders are synthesized by the conventional solid-state reaction method. The micro-sized MT powders with dispersant Ciba-4010 are introduced into Ba-Sr-Ti sol to obtain uniform and homogeneous mixture compounds with nano-sized BST particles synthesized via heterogeneous nucleation (HN) in the sol-gel process. Thus, the microstructural and dielectric properties can be tailored. The dielectric constants of BST-MT composite ceramics can be adjusted in a large range from 294 to 1790, and the dielectric tunability can be adjusted from 29.4% to 37.0% with different MT contents from 60 wt% to 20 wt%. Compared to the samples prepared by the conventional solid-state (SS) process, the BST-MT composite ceramics by the heterogeneous nucleation sol-gel process exhibit a more uniform microstructure, and improve dielectric properties.

  2. Effects of strain relaxation in Pr0.67Sr0.33MnO3 films probed by polarization dependent X-ray absorption near edge structure

    DOE PAGES

    zhang, Bangmin; Chen, Jingsheng; Venkatesan, T.; ...

    2016-01-28

    In this study, the Mn K edge X-ray absorption near edge structure (XANES) of Pr0.67Sr0.33MnO3 films with different thicknesses on (001) LaAlO3 substrate were measured, and the effects of strain relaxation on film properties were investigated. The films experienced in-plane compressive strain and out-of-plane tensile strain. Strain relaxation evolved with the film thickness. In the polarization dependent XANES measurements, the in-plane (parallel) and out-of-plane (perpendicular) XANES spectrocopies were anisotropic with different absorption energy Er. The resonance energy Er along two directions shifted towards each other with increasing film thickness. Based on the X-ray diffraction results, it was suggested that themore » strain relaxation weakened the difference of the local environment and probability of electronic charge transfer (between Mn 3d and O 2p orbitals) along the in-plane and out-of-plane directions, which was responsible for the change of Er. XANES is a useful tool to probe the electronic structures, of which the effects on magnetic properties with the strain relaxation was also been studied.« less

  3. Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Jin, Chao; Cao, Xuecheng; Zhang, Liya; Zhang, Cong; Yang, Ruizhi

    2013-11-01

    An urchin-like La0.8Sr0.2MnO3 (LSM) perovskite oxide has been synthesized through a co-precipitation method with urea as a precipitator, and characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET analysis. SEM results show that a micro/nanocomposite with an urchin-like morphology has been obtained. The as-synthesized LSM perovskite oxide has a high specific surface area of 48 m2 g-1. The catalytic activity of the oxide for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in 0.1 M KOH solution has been studied by using a rotating-ring-disk electrode (RRDE). In the ORR test, a maximum cathodic current density of 5.2 mA cm-2 at -1.0 V (vs. Ag/AgCl) with 2500 rpm was obtained, and the ORR mainly favors a direct four-electron pathway. The results of anodic linear scanning voltammograms indicate that the urchin-like LSM perovskite oxide exhibits an encouraging catalytic activity for the OER. All electrochemical measurements suggest that the urchin-like LSM perovskite oxide could be used as a bifunctional catalyst for the ORR and the OER.

  4. Electric and Magnetic Characterization of patterned La0.6Sr0.4MnO3/SrTiO3/Si junctions using strained SrTiO3 as a Ferroelectric Barrier

    NASA Astrophysics Data System (ADS)

    Jalili Shafighi, Parisa; Cottier, Ryan; Currie, Daniel. A.; Koehne, Barry. D.; Johnson, Andrew; Veazey, Joshua. P.; Theodoropoulou, Nikoleta; Texas State University, San Marcos, TX Team; Hope College, Holland, MI Team

    Controlling a magnetic device via electrical means is a sought-after goal for technological devices and can be achieved through magnetoelectric coupling between ferroelectric and ferromagnetic materials. We investigate such as possibility through a by epitaxially growing a magnetic oxide, La0.6Sr0.4MnO3 (LSMO) as an active magnetic electrode on a ferroelectric oxide, strained SrTiO3(STO) on Si. STO thin films grown on Si are compressively strained (1.7 %) and can be ferroelectric at T =300 K when less than 5nm thick. LSMO is ferromagnetic up to 340 K (in bulk), has an in-plane crystal constant of a = 0.3870 nm, and is closely lattice matched to STO (a = 0.3905 nm) with a 0.9% in-plane tensile strain. Since STO is compressively strained in Si, an even smaller lattice mismatch is expected between LSMO and STO/Si. We investigate the epitaxial growth of LSMO/STO/Si and electrical characteristics in a capacitor type structure fabricated using photolithography as a function of Temperature and Magnetic Field. Acknowledgements: Support by the NSF-Career grant, DMR-1255629, Hope College Frissel Research Fund, NSF-MRI Grant, CHE-1126462 is gratefully acknowledged.

  5. Relationship Between Designed Three-Dimensional YSZ Electrolyte Surface Area and Performance of Solution-Precursor Plasma-Sprayed La0.8Sr0.2MnO3- δ Cathodes

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Lin; Huang, Jiang-Yuan; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2016-12-01

    Active three-phase boundaries (TPBs) significantly influence cathode performance in solid oxide fuel cells, but obtaining long TPBs and understanding the mechanism underlying the improved cathode performance when the electrolyte is prepared with a smooth surface by a high-temperature sintering process remain essential challenges. In this work, we used flame spraying to deposit single-layer semimolten particles on a smooth electrolyte to build a three-dimensional surface with enlarged active surface area and thus increased TPBs. Meanwhile, La0.8Sr0.2MnO3- δ (LSM) cathodes with fine microstructure were deposited by solution-precursor plasma spraying (SPPS) on the designed electrolyte to establish a three-dimensional cathode-electrolyte interface. The deposition behavior of the semimolten particles on the smooth electrolyte and LSM cathodes on the three-dimensional electrolyte surface was studied. The effects of the area enlargement factor ( α area) on the polarization resistance of the SPPS LSM cathodes were investigated, using three-dimensional electrolytes with α area from 1.29 to 2.48. The results indicated that convex particles with different molten states bonded well with the electrolytes. SPPS LSM cathodes also showed good interfacial bonding with convex particles. Finally, the cathode polarization ( R p) decreased linearly with increase of α area. At 800 °C, R p decreased from 0.98 to 0.32 Ω cm2 when α area was increased from 1.29 to 2.48.

  6. Remarkable charge-trapping performance based in Zr0.5Hf0.5O2 with nanocrystal Ba0.6Sr0.4TiO3 blocking layer for nonvolatile memory device

    NASA Astrophysics Data System (ADS)

    Yan, X. B.; Jia, X. L.; Yang, T.; Zhao, J. H.; Li, Y. C.; Zhou, Z. Y.; Zhang, Y. Y.

    2016-10-01

    Two kinds of charge trapping memory device with Au/Zr0.5Hf0.5O2(ZHO)/SiO2/p-Si and Au/Ba0.6Sr0.4TiO3(BST)/Zr0.5Hf0.5O2/SiO2/p-Si structure were fabricated and investigated. The double BST/ZHO films exhibit a larger memory window of 7.36 V under ±14 V sweeping voltages in its C-V curve and the device has good charge retention properties with only small charge loss of ∼ 5% after more than 104 s. The good characteristics are attributed to the inter-diffusion between BST and ZHO where more deep defect sites were created after RTA treatment, which provides high potential barriers for the trapped charges to tunnel back to the silicon substrate. Furthermore, the nanocrystal in the BST layer increases the tunneling barrier of tunneling current into the gate and effectively restrains the leakage of storage charge from blocking layer, which improves the charge retention characteristic.

  7. Development and understanding of La0.85Sr0.15Cr1-xNixO3-δ anodes for La5.6WO11.4-δ-based Proton Conducting Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Solís, Cecilia; Navarrete, Laura; Balaguer, María; Serra, José M.

    2014-07-01

    Porous electrodes based on the system La0.85Sr0.15Cr1-xNixO3-δ (x = 0.1 and 0.2) have been investigated as anodes for proton conducting solid oxide fuel cells based on the La5.6WO11.4-δ (LWO) electrolyte material. The microstructure of the anodes was optimized by varying both the starting powder morphology and the final anode sintering temperature. Two different electrode thicknesses were studied, i.e. 15 and 30 μm. The importance of the catalytic role of Ni was also studied by using different concentrations of Ni (10% and 20%) in the chromite and by tuning the Ni particle sizes through the control of the reduction temperature. Additionally, a ceramic-ceramic (cer-cer) composite electrode comprising a physical mixture of the optimized chromite and LWO phase was also considered. Finally, a kinetics study and modeling based on Langmuir-Hinshelwood mechanism was carried out in order to quantitatively describe the rate of dissociative adsorption of H2 on the Ni particles spread on the chromite surface.

  8. Electrical properties and transport mechanisms of Au/Ba0.6Sr0.4TiO3/GaN metal-insulator-semiconductor (MIS) diode at high temperature range

    NASA Astrophysics Data System (ADS)

    Rajagopal Reddy, V.

    2016-05-01

    The electrical and transport mechanisms of a fabricated Au/Ba0.6Sr0.4TiO3 (BST)/GaN metal-insulator-semiconductor (MIS) diode have been studied in the temperature range of 280-430 K by current-voltage ( I- V) and capacitance-voltage ( C- V) measurements. The barrier heights (BHs) of the Au/BST/GaN MIS diode are found to be 0.85 eV ( I- V)/1.35 ( C- V) at 280 K and 1.14 eV ( I- V)/1.17 ( C- V) at 430 K. The series resistance ( R S) values determined by Cheung's functions are in good agreement with each other. The difference between BHs estimated by I- V and C- V methods are also discussed. Results show that the estimated interface state density ( N SS) of MIS diode decreases with an increase in temperature. Observations have indicated that the BH increases whereas ideality factor R S and N SS decreases with increasing temperature. Results have demonstrated that the reverse leakage current is dominated by Poole-Frenkel emission at temperatures of 280-340 K and by Schottky emission at temperatures of 370-430 K. It is also noted that there is a transition of the conduction mechanism in Au/BST/GaN MIS diode from Poole-Frenkel to Schottky emission at temperatures of 340-370 K.

  9. Kinetic arrest of first-order transition between charge-ordered and ferromagnetic phases in Gd0.5Sr0.5MnO3 single crystals: magnetization relaxation studies

    NASA Astrophysics Data System (ADS)

    Wagh, Aditya A.; Kumar, P. S. Anil; Elizabeth, Suja

    2016-10-01

    We have studied the span and nature of first-order phase transition (FOPT) between charge-ordered insulating and ferromagnetic metallic phases in oriented single crystals of Gd0.5Sr0.5MnO3. Magnetic field—temperature phase diagram was formulated from magnetization data for different crystallographic axes and non-monotonic variation of supercooling limit was observed at low temperature. A peculiar nature of magnetization was observed as irreversible open hysteresis loops during thermal cycling. We perceive that the nature of metastable states responsible for open hysteresis loops is different from that of supercooled ones. Further, thermal cycling magnetization data reveal that magnetic phases formed at 8 K after zero-field or field-cooled protocols (89 kOe) are not in equilibrium. Relaxation time constant is found to increase below 30 K in magnetization relaxation measurements made across the FOPT. The non-monotonic variation of relaxation time constant is a manifestation of kinetic arrest of the FOPT. We propose that the non-equilibrium, glass-like magnetic phase (at 8 K and 89 kOe) is a consequence of kinetic arrest.

  10. Intermediate temperature single-chamber methane fed SOFC based on Gd doped ceria electrolyte and La 0.5Sr 0.5CoO 3- δ as cathode

    NASA Astrophysics Data System (ADS)

    Morales, M.; Piñol, S.; Segarra, M.

    Single-chamber fuel cells with electrodes supported on an electrolyte of gadolinium doped ceria Ce 1- xGd xO 2- y with x = 0.2 (CGO) 200 μm thickness has been successfully prepared and characterized. The cells were fed directly with a mixture of methane and air. Doped ceria electrolyte supports were prepared from powders obtained by the acetyl-acetonate sol-gel related method. Inks prepared from mixtures of precursor powders of NiO and CGO with different particle sizes and compositions were prepared, analysed and used to obtain optimal porous anodes thick films. Cathodes based on La 0.5Sr 0.5CoO 3 perovskites (LSCO) were also prepared and deposited on the other side of the electrolyte by inks prepared with a mixture of powders of LSCO, CGO and AgO obtained also by sol-gel related techniques. Both electrodes were deposited by dip coating at different thicknesses (20-30 μm) using a commercial resin where the electrode powders were dispersed. Finally, electrical properties were determined in a single-chamber reactor where methane, as fuel, was mixed with synthetic air below the direct combustion limit. Stable density currents were obtained in these experimental conditions. Temperature, composition and flux rate values of the carrier gas were determinants for the optimization of the electrical properties of the fuel cells.

  11. Ferromagnetic-Antiferromagnetic Coupling by Distortion of Fe/Mn Oxygen Octahedrons in (BiFeO3 )m (La0.7 Sr0.3 MnO3 )n Superlattices.

    PubMed

    Xiong, Jie; Lei, Tianyu; Chu, Junwei; Yang, Chao; Wei, Jiake; Zhuo, Mujin; Choi, Eun-Mi; Tao, Bowan; Zhang, Wanli; Wang, Yongqiang; Li, Yanrong

    2017-03-10

    Interface enhanced magnetism attracts much attention due to its potential use in exploring novel structure devices. Nevertheless, the magnetic behavior at interfaces has not been quantitatively determined. In this study, abnormal magnetic moment reduction is observed in La0.7 Sr0.3 MnO3 (LSMO)/BiFeO3 (BFO) superlattices, which is induced by ferromagnetic (FM)/antiferromagnetic (AFM) coupling in the interface. With reduced repetition of the superlattice's unit cell [(LSMO)n /(BFO)n ]60/n (n = 1, 2, 5, 10) on a SrTiO3 substrate, magnetic moment reduction from 25.5 emu cc(-1) ([(LSMO)10 /(BFO)10 ]6 ) to 1.5 emu cc(-1) ([(LSMO)1 /(BFO)1 ]60 ) is obtained. Ab initio simulations show that due to the different magnetic domain formation energies, the magnetic moment orientation tends to be paramagnetic in the FM/AFM interface. The work focuses on the magnetic domain formation energy and provides a pathway to construct artificial heterostructures that can be an effective way to tune the magnetic moment orientation and control the magnetization of ultrathin films.

  12. Electrical transport and magnetic properties of epitaxial Nd0.7 Sr0.3 MnO3 thin films on (001)-oriented LaAlO3 substrate

    NASA Astrophysics Data System (ADS)

    Gopalarao, T. R.; Ravi, S.; Pamu, D.

    2016-07-01

    Nd0.7 Sr0.3 MnO3 thin films were deposited using RF-magnetron sputtering on (001) oriented LaAlO3 substrate by varying thickness in the range of 12-200 nm. X-ray diffraction patterns of both air annealed and oxygen annealed films show epitaxial growth along (00l) orientation with decrease in lattice strain with increase in film thickness. Raman spectra show the presence of strong peaks corresponding to rotational and stretching modes of MnO6 octahedra and their intensity is found to decrease with increase in film thickness. Both air and oxygen annealed films except for 12 nm thickness exhibit ferromagnetic transition with a maximum TC of 200 K. The magnetic anisotropic constant was estimated from the analysis of M-H curve and its value is found to decrease with increase in film thickness. Metal-insulator transitions have been observed in all films including the 12 nm thick film. The electrical resistivity data in the metallic region, i.e. close to TMI, were analysed by considering electron-magnon scattering mechanism and in the low temperature region far below TMI; the analysis was carried out by considering the combination of electron-electron scattering and charge localisation effect. The resistivity data in the insulating region (T >TMI) were analysed by considering Mott-variable range hopping model.

  13. Improved electrical properties of Sr0.8Bi2.2Ta2O9 films by ZrSiO4 doping for low voltage operations of metal-ferroelectric-insulator-Si devices

    NASA Astrophysics Data System (ADS)

    Lu, Xubing; Ishiwara, Hiroshi

    2009-03-01

    Sr0.8Bi2.2Ta2O9 (SBT) films were prepared by chemical solution deposition in which ZrSiO4 (ZSO) with concentration ranging from 0 to 10 wt % was incorporated for improving dielectric and leakage current characteristics of the films. X-ray diffraction analysis revealed that no secondary phase and clear degradation of crystallization can be found in ZSO-doped SBT films. Smaller grain size and reduced surface roughness were found for the samples with higher ZSO doping concentration as observed by atomic force microscopy and scanning electron microscopy. The dielectric constant was observed to be much reduced for ZSO-doped SBT films as well as the remnant polarization and coercive field. Films preannealed at 400 °C have a much smaller dielectric constant when compared with that of the films preannealed at 750 °C. Furthermore, a clear reduction in the leakage current and improved fatigue characteristics were observed for ZSO-doped SBT films preannealed at 400 °C. Such improved electrical properties as reduced dielectric constant, leakage current, and coercive field for the ZSO-doped SBT films will be very beneficial for the low voltage operations in metal-ferroelectric-insulator-Si devices.

  14. Fabrication and Characterization of ZnO:Al/Sr0.8Bi2.2Ta2O9/Y2O3:Eu Structures for Ferroelectric-Electroluminescent Devices

    NASA Astrophysics Data System (ADS)

    Aizawa, Koji; Inagaki, Hiroyuki; Takatsuka, Yushi; Hoko, Koichi; Otani, Yusuke; Tokunaga, Yoshiaki

    2009-09-01

    ZnO:Al (AZO)/Sr0.8Bi2.2Ta2O9 (SBT)/Pt and AZO/SBT/Y2O3:Eu/Pt structures were fabricated, and their crystallinity, ferroelectric, and electroluminescent (EL) properties were investigated for the first time. The AZO/SBT/Pt structures showed a typical hysteresis loop, in which their double remnant polarization was approximately 5.3 µC/cm2. The polycrystalline SBT/Y2O3:Eu structures were grown on a Pt-coated substrate, in which ferroelectric phases were formed on an Y2O3:Eu film with cubic crystals. The electrical and EL properties of the AZO/SBT/Y2O3:Eu/Pt structures were measured, and then EL emission peaks associated with the 5D0-7F1 (λ=601 nm) and 5D0-7F2 (λ=617 nm) transitions of Eu3+ were observed. The EL emission pattern of the AZO/SBT/Y2O3:Eu/Pt structure was different from the PL emission pattern of the Y2O3:Eu film. Furthermore, polarization-voltage characteristics with counterclockwise hysteresis loops and an asymmetric behavior of current-voltage characteristics were observed in the fabricated AZO/SBT/Y2O3/Pt:Eu structures.

  15. Porous YSZ impregnated with La0.4Sr0.5Ba0.1TiO3 as a possible composite anode for SOFCs fueled with sour feeds

    NASA Astrophysics Data System (ADS)

    Vincent, Adrien L.; Hanifi, Amir R.; Luo, Jing-Li; Chuang, Karl T.; Sanger, Alan R.; Etsell, Thomas H.; Sarkar, Partha

    2012-10-01

    The system LSBT/YSZ (LSBT is La0.4Sr0.5Ba0.1TiO3) is a promising combination as an anode material for full ceramic SOFCs. An anode comprising a porous layer of YSZ impregnated with LSBT shows good performance for conversion of high sulfur content fuels. The microstructures within the composite matrix were determined and correlated with the parameters of the production process. The anodes were characterized electrochemically using impedance spectroscopy (EIS) and potentiodynamic tests performed at 850 °C with various fuels to determine the effect of H2S in the feeds: H2, H2/H2S (5000 ppm), CH4, CH4/H2S (5000 ppm). The highest power densities (200 mW cm-2 in H2/H2S) were obtained for LSBT/YSZ composites after impregnation six times with LSBT, corresponding to 12.6 wt% LSBT; further impregnations dramatically decreased performance as a result of restricted access of fuel to active sites.

  16. Operando and in situ X-ray spectroscopies of degradation in La0.6Sr0.4Co0.2Fe0.8O(3-δ) thin film cathodes in fuel cells.

    PubMed

    Lai, Samson Y; Ding, Dong; Liu, Mingfei; Liu, Meilin; Alamgir, Faisal M

    2014-11-01

    Information from ex situ characterization can fall short in describing complex materials systems simultaneously exposed to multiple external stimuli. Operando X-ray absorption spectroscopy (XAS) was used to probe the local atomistic and electronic structure of specific elements in a La0.6Sr0.4Co0.2Fe0.8O(3-δ) (LSCF) thin film cathode exposed to air contaminated with H2O and CO2 under operating conditions. While impedance spectroscopy showed that the polarization resistance of the LSCF cathode increased upon exposure to both contaminants at 750 °C, XAS near-edge and extended fine structure showed that the degree of oxidation for Fe and Co decreases with increasing temperature. Synchrotron-based X-ray photoelectron spectroscopy tracked the formation and removal of a carbonate species, a Co phase, and different oxygen moieties as functions of temperature and gas. The combined information provides insight into the fundamental mechanism by which H2O and CO2 cause degradation in the cathode of solid oxide fuel cells.

  17. The surface evolution of La0.4Sr0.6TiO3+δ anode in solid oxide fuel cells: Understanding the sulfur-promotion effect

    NASA Astrophysics Data System (ADS)

    Yan, Ning; Zanna, Sandrine; Klein, Lorena H.; Roushanafshar, Milad; Amirkhiz, Babak S.; Zeng, Yimin; Rothenberg, Gadi; Marcus, Philippe; Luo, Jing-Li

    2017-03-01

    The ideal solid oxide fuel cells (SOFCs) can be powered by readily available hydrocarbon fuels containing impurities. While this is commonly recognized as a key advantage of SOFC, it also, together with the elevated operating temperature, becomes the main barrier impeding the in-situ or operando investigations of the anode surface chemistry. Here, using a well-designed quenching experiment, we managed to characterize the near-surface structure of La0.4Sr0.6TiO3+δ (LST) anode in SOFCs fuelled by H2S-containing methane. This new method enabled us to clearly observe the surface amorphization and sulfidation of LST under simulated SOFC operating conditions. The ∼1 nm-thick two dimensional sulfur-adsorbed layer was on top of the disordered LST, containing -S, -SH and elemental sulfur species. In SOFC test, such "poisoned" anode showed increased performances: a ten-fold enhanced power density enhancement (up to 30 mW cm-2) and an improved open circuit voltage (from 0.69 V to 1.17 V). Moreover, its anodic polarization resistance in methane decreased to 21.53 Ω cm2, a difference of 95% compared with the sulfur-free anode. Control experiments confirmed that once the adsorbed sulfur species were removed electrochemically, methane conversion slowed down simultaneously till full stop.

  18. Interfacial charge-mediated non-volatile magnetoelectric coupling in Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 multiferroic heterostructures

    DOE PAGES

    Zhou, Ziyao; Howe, Brandon M.; Liu, Ming; ...

    2015-01-13

    The central challenge in realizing non-volatile, E-field manipulation of magnetism lies in finding an energy efficient means to switch between the distinct magnetic states in a stable and reversible manner. In this work, we demonstrate using electrical polarization-induced charge screening to change the ground state of magnetic ordering in order to non-volatilely tune magnetic properties in ultra-thin Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 (001) multiferroic heterostructures. A robust, voltage-induced, non-volatile manipulation of out-of-plane magnetic anisotropy up to 40 Oe is demonstrated and confirmed by ferromagnetic resonance measurements. This discovery provides a framework for realizing charge-sensitive order parameter tuning in ultra-thin multiferroic heterostructures, demonstrating great potentialmore » for delivering compact, lightweight, reconfigurable, and energy-efficient electronic devices.« less

  19. FAST TRACK COMMUNICATION: Mechanical, electrical and micro-structural properties of La0.6Sr0.4Co0.2Fe0.8O3 perovskite-based ceramic foams

    NASA Astrophysics Data System (ADS)

    Gupta, Ravindra K.; Kim, Eun Yi; Noh, Ho Sung; Whang, Chin Myung

    2008-02-01

    Mechanical, electrical and micro-structural properties of new electronic conducting ceramic foams are reported. Ceramic foams are prepared using the slurry of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) by the polymeric sponge method, which is followed by spray coating for increasing the number of coatings-sinterings on polyurethane foams of 30, 45 and 60 ppi (pores per linear inch). An increase in the number of coatings-sinterings and ppi improved the compressive strength, density and electrical conductivity by decreasing the porosity to ~76%, as also observed by the SEM study. The three-times coated-sintered ceramic foams (60 ppi) exhibited optimum values of compressive strength of ~1.79 MPa and relative density of ~0.24 at 25 °C and electrical conductivity of ~22 S cm-1 at 600 °C with an activation energy of ~0.22 eV indicating its suitability as a solid oxide fuel cell current collector. The experimental results are discussed in terms of the Gibson and Ashby theoretical model.

  20. Hierarchical Mesoporous/Macroporous Perovskite La0.5Sr0.5CoO3-x Nanotubes: A Bifunctional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen Batteries.

    PubMed

    Liu, Guoxue; Chen, Hongbin; Xia, Lu; Wang, Suqing; Ding, Liang-Xin; Li, Dongdong; Xiao, Kang; Dai, Sheng; Wang, Haihui

    2015-10-14

    Perovskites show excellent specific catalytic activity toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline solutions; however, small surface areas of the perovskites synthesized by traditional sol-gel methods lead to low utilization of catalytic sites, which gives rise to poor Li-O2 batteries performance and restricts their application. Herein, a hierarchical mesporous/macroporous perovskite La0.5Sr0.5CoO3-x (HPN-LSC) nanotube is developed to promote its application in Li-O2 batteries. The HPN-LSC nanotubes were synthesized via electrospinning technique followed by postannealing. The as-prepared HPN-LSC catalyst exhibits outstanding intrinsic ORR and OER catalytic activity. The HPN-LSC/KB electrode displays excellent performance toward both discharge and charge processes for Li-O2 batteries, which enhances the reversibility, the round-trip efficiency, and the capacity of resultant batteries. The synergy of high catalytic activity and hierarchical mesoporous/macroporous nanotubular structure results in the Li-O2 batteries with good rate capability and excellent cycle stability of sustaining 50 cycles at a current density of 0.1 mA cm(-2) with an upper-limit capacity of 500 mAh g(-1). The results will benefit for the future development of high-performance Li-O2 batteries using hierarchical mesoporous/macroporous nanostructured perovskite-type catalysts.

  1. The effects of minor elements in La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes on oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Oishi, Junya; Otomo, Junichiro; Oshima, Yoshito; Koyama, Michihisa

    2015-03-01

    It is known that the minor elements affect the performance of solid oxide fuel cell (SOFC). In this study, we focus on the influence of minor elements on the SOFC cathode properties. The Ca, Ba, Al, and Si, which originate from raw materials and production processes for SOFC cathodes, are investigated as minor elements that may have effect on the properties of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode. To examine the effects of minor elements on the cathode properties, Ca, Ba, Al, and Si with a controlled concentration are added to the LSCF reference sample. Conductivity relaxation measurements are conducted to determine the chemical diffusion coefficient (Dchem) and surface exchange coefficient (ktr), which governs the overpotential characteristics of the LSCF cathode. The results show that Al and Si have negative effects on both Dchem and ktr while Ca and Ba do not alter Dchem and show weakly positive effects on ktr. The effects of Ca and Ba for the cathode properties are discussed on the basis of XPS measurements.

  2. Developing the dielectric mechanisms of polyetherimide/multiwalled carbon nanotube/(Ba0.8Sr0.2)(Ti0.9Zr0.1)O3 composites

    PubMed Central

    2012-01-01

    Various amounts of multiwalled carbon nanotubes [MWNTs] were embedded into polyetherimide [PEI] to form PEI/MWNT composites, and their dielectric properties were measured at 1 MHz. The Lichtenecker mixing rule was used to find a reasonable dielectric constant for the MWNTs used in this study. The dielectric constants of the developed composites were significantly increased, and the loss tangents were significantly decreased as 2.0 wt.% (Ba0.8Sr0.2)(Ti0.9Zr0.1)O3 ceramic powder [BSTZ] was added to the PEI/MWNTs to form PEI/MWNT/BSTZ composites. The Lichtenecker and Yamada mixing rules were used to predict the dielectric constants of the PEI/MWNT and PEI/MWNT/BSTZ composites. Equivalent electrical conduction models of both composites were established using the two mixing rules. In addition, the theoretical bases of the two mixing rules were used to explain the measured results for the PEI/MWNT and PEI/BSTZ/MWNT composites. PMID:22340201

  3. Modeling the magnetic isotherms of (La0.56Ce0.14)Sr0.30MnO3 by a mean-field scaling method and estimation of magnetic entropy change

    NASA Astrophysics Data System (ADS)

    Yahyaoui, S.; Khalfaoui, M.; Kallel, S.; Kallel, N.; Amaral, J. S.; Ben Lamine, A.

    2015-11-01

    We report a study on the magnetic properties of the (La0.56Ce0.14)Sr0.30MnO3 perovskite, by a mean-field method. By scaling of the experimental magnetization data, the mean-field exchange parameter λ and the BS function of the equation of state BS [ (H +Hexch) / T ] are directly determined, as well as the order of the phase transition. The spin quantum number of the manganite has been also determined. The mean-field scaling has been used to estimate magnetic entropy change (- ΔSM) within the thermodynamics of the model and without using the usual numerical integration of a Maxwell relation. The maxima of the positive absolute value of (- ΔSM) upon variation of the applied magnetic field at 1 and 5 T are about 1.68 and 5.04 J kg-1 K-1, respectively. Satisfactory agreement between the mean-field model and experimental behavior has been found.

  4. Preparation of La 0.8Sr 0.2Ga 0.83Mg 0.17O 2.815 powders by microwave-induced poly(vinyl alcohol) solution polymerization

    NASA Astrophysics Data System (ADS)

    Zhai, Yuling; Ye, Chang; Xia, Feng; Xiao, Jianzhong; Dai, Lei; Yang, Yifan; Wang, Yongqian

    A new and simple chemical route, named microwave-induced poly(vinyl alcohol) (PVA) solution polymerization, has been used to prepare fine, homogeneous and high-density pellets of purer La 0.8Sr 0.2Ga 0.83Mg 0.17O 2.815 (denoted as LS 0.2GM 0.17). The effect of different contents of PVA as the polymeric carrier, was studied and we obtained an optimal amount of PVA (1.65:1 ratio of positively charged valences of the cations (Me n+) to negatively charged hydroxyl (-OH -) groups of the organics), which could ensure homogenous distribution of the metal ions in the polymeric network structure and inhibit segregation. The behavior of the powder after calcination at different temperatures was studied. The PVA solution process consumed less organic material compared with the Pechini process, and consequently PVA was a more effective carrier in the preparation of LSGM. Higher heating rate and a more homogenous heating manner without thermal gradients in the microwave oven resulted in fewer secondary phases in the LS 0.2GM 0.17 powder after calcination at 1400 °C for 9 h and a smaller pellet grain size (2-3 μm) without segregation. The density of LS 0.2GM 0.17 pellet sintered at 1400 °C for 9 h was 6.19 g cm -3.

  5. Ferromagnetic and multiferroic interfaces in granular perovskite composite xLa0.5Sr0.5CoO3-(1-x)BiFeO3

    NASA Astrophysics Data System (ADS)

    Lohr, Javier H.; López, Carlos A.; Saleta, Martín E.; Sánchez, Rodolfo D.

    2016-08-01

    Nanopowder of ferromagnetic La0.5Sr0.5CoO3 (LSCO) and multiferroic BiFeO3 (BFO) were synthesized by spray pyrolysis method. Different compositions of multiferroic xLSCO-(1-x)BFO composites were synthesized at 800 °C for 2 h. Scanning electron microscopy and energy dispersive spectroscopy elemental mapping were performed to study the morphology of composites. Ferri/ferromagnetic responses above TC (LSCO) are observed, which are associated with the interfaces LSCO/BFO. This interface presents a different behavior compared to the original perovskites, and the magnitude of the magnetization depends on x. Electrical DC conductivity as a function of temperature for LSCO nanopowder (x = 1) presents a different behavior than that reported in bulk material. For x = 1 and 0.9, the model by Glazman and Matveev [Zh. Eksp. Teor. Fiz. 94, 332 (1988)] is proposed to describe the electrical conductivity. On the other hand, x = 0, 0.1, and 0.5 present a variable range hopping behavior. Complex impedance spectroscopy as a function of frequency indicates a pure resistive behavior for x ≥ 0.5 compositions, while a complex resistive-capacitive behavior is observed for low x values (0, 0.1). In these samples, low values of magnetoelectric coupling were measured with an AC lock-in technique.

  6. Magnetic structure and effect of magnetic field on its domain structure in magnetoelectric Ba1.3Sr0.7CoZnFe11AlO22

    NASA Astrophysics Data System (ADS)

    Ueda, H.; Tanaka, Y.; Nakajima, H.; Mori, S.; Ohta, K.; Haruki, K.; Hirose, S.; Wakabayashi, Y.; Kimura, T.

    2016-10-01

    The magnetic structure and the effect of a magnetic field on its domain structure were investigated in a magnetoelectric Y-type hexaferrite, Ba1.3Sr0.7CoZnFe11AlO22, by means of mapping with a micro-focused and circularly polarized X-ray beam in the resonant X-ray diffraction. It was revealed that this hexaferrite exhibits a magnetic order characterized by two distinct antiferromagnetic components: incommensurate helical and commensurate collinear ones, which can be explained as the development of the so-called alternating longitudinal conical structure. A multi-domain state due to the handedness of the helical component, i.e., spin-chirality, is transformed into nearly a mono-domain one by using only a magnetic field. Furthermore, the sign of the spin-chirality in the mono-domain state is reversed by reversing the sign of a magnetic field. These results demonstrate that the spin-chirality in this hexaferrite can be manipulated by a magnetic field alone at room temperature.

  7. Chemical characterization of surface precipitates in La0.7Sr0.3Co0.2Fe0.8O3-δ as cathode material for solid oxide fuel cells

    SciTech Connect

    Yu, Yang; Nikiforov, Alexey Y.; Kaspar, Tiffany C.; Woicik, Joseph C.; Ludwig, Karl F.; Gopalan, Srikanth; Pal, Uday B.; Basu, Soumendra N.

    2016-11-01

    In this study, a strontium doped lanthanum cobalt ferrite thin film with 30% Sr on A-site, denoted as La0.7Sr0.3Co0.2Fe0.8O3-δ or LSCF-7328, was investigated before and after annealing at 800 °C under CO2 containing atmosphere for 9 hours. The formation of secondary phases on surface of post-annealed LSCF-7328 has been observed using atomic force microscope (AFM) and scanning electron microscope (SEM). The extent of Sr segregation at the film surface was observed using the synchrotron-based total reflection X-ray fluorescence (TXRF) technique. The bonding environment of the secondary phases formed on the surface was investigated by synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). Transmission electron microscope (TEM) and related spectroscopy techniques were used for microstructural and quantitative elemental analyses of the secondary phases on surface. These studies revealed that the secondary phases on surface consisted of SrO covered with a capping layer of SrCO3. The formation of Co-rich phases has also been observed on the surface of post-annealed LSCF-7328.

  8. Signatures of a Two-Dimensional Ferromagnetic Electron Gas at the La0.7Sr0.3MnO3/ SrTiO3 Interface Arising From Orbital Reconstruction

    NASA Astrophysics Data System (ADS)

    Calderon, Maria J.; Nemes, Norbert; Beltran, Juan Ignacio; Bruno, Flavio; Garcia-Barriocanal, Javier; Sefrioui, Zouhair; Leon, Carlos; Garcia-Hernandez, Mar; Muñoz, Carmen; Brey, Luis; Santamaria, Jacobo

    2015-03-01

    The interface between two different oxides has properties different from the ones corresponding to the constituent layers in bulk. Different orders can arise due to the complexity of these materials in which the orbital degree of freedom, magnetism and lattice are strongly interdependent. Here we present a joint theoretical-experimental effort to understand the properties of a multilayer formed by a metallic ferromagnetic manganite oxide (La0.7Sr0.3MnO3) and the insulating SrTiO3. Magnetoresistance measurements as a function of the relative angle between the magnetic field and the interface plane have shown an unexpected in-plane peak. Calculations of resistivity in a model system including spin-orbit coupling reveal that the unexpected in-plane maximum is due to transport through a two-dimensional ferromagnetic electron gas formed by orbital reconstruction at the manganite interface. These orbital and magnetic reconstructions are supported by X-ray linear dichroism and ab-initio calculations. Advanced Materials DOI:10.1002/adma.201402829. MINECO-Spain through grants FIS2012-33521, MAT2011-27470-C02-01, MAT2011-27470-C02-02, MAT2012-38045-C04-04, CSD2009-00013, and Ramon y Cajal program.

  9. Chemical characterization of surface precipitates in La0.7Sr0.3Co0.2Fe0.8O3-δ as cathode material for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Nikiforov, Alexey Y.; Kaspar, Tiffany C.; Woicik, Joseph C.; Ludwig, Karl F.; Gopalan, Srikanth; Pal, Uday B.; Basu, Soumendra N.

    2016-11-01

    In this study, a strontium doped lanthanum cobalt ferrite thin film with 30% Sr on A-site, denoted as La0.7Sr0.3Co0.2Fe0.8O3-δ or LSCF-7328, is investigated before and after annealing at 800 °C under CO2 containing atmosphere for 9 h. The formation of secondary phases on surface of post-annealed LSCF-7328 is observed using atomic force microscope (AFM) and scanning electron microscope (SEM). The extent of Sr segregation at the film surface is monitored using the synchrotron-based total reflection X-ray fluorescence (TXRF) technique. The bonding environment of the secondary phases formed on the surface is investigated by synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). Scanning transmission electron microscopy (STEM) and related spectroscopy techniques are used for microstructural and quantitative elemental analyses of the secondary phases on surface. These studies reveal that the secondary phases on surface consist of SrO covered with a capping layer of SrCO3. The formation of Co-rich phases is observed on the surface of post-annealed LSCF-7328.

  10. Electrostatic doping limits and control of magnetism in electrolyte gated LaAlO3(001)/La0.5Sr0.5CoO3-δ thin films

    NASA Astrophysics Data System (ADS)

    Walter, Jeff; Wang, Helin; Leighton, Chris

    Recently developed ionic liquid/gel gating techniques have proven remarkably expedient in the study of charge density effects in a variety of conductors, ranging from organics to complex oxides. Here we present electrolyte gate control of magnetism in ultrathin (8 u.c.) La0.5Sr0.5CoO3-δ (LSCO) films, using ion gels in electric double layer transistors. The LSCO films are initially metallic and ferromagnetic (Tc ~ 170 K), with anomalous Hall conductivity up to 40 S/cm, and strong perpendicular magnetic anisotropy. Based on extensive temperature and gate voltage dependences we first determined the limits for electrostatic vs. electrochemical operation, concluding that negative bias enables reversible hole accumulation, whereas positive bias irreversibly induces oxygen vacancies. Following this we demonstrated clear voltage-control of resistivity, magnetoresistance, andTc. Utilizing the anomalous Hall conductivity as an exceptional probe of the magnetic order parameter in the gated surface region, a 12 K shift in Tc is obtained. This compares favorably to the state-of-the-art and exhibits potential for much larger modulation in films of lower Sr content. Work supported by NSF MRSEC.

  11. Critical behavior and magnetic entropy change in the La0.6Sr0.4Mn0.8Fe0.1Cr0.1O3 perovskite

    NASA Astrophysics Data System (ADS)

    Ben Abdelkhalek, Sonia; Kallel, Nabil; Kallel, Sami; Peña, Octavio; Oumezzine, Mohamed

    2012-11-01

    Critical behavior in the La0.6Sr0.4Mn0.8Fe0.1Cr0.1O3 ceramics was studied using magnetization methods. Results show that the paramagnetic-ferromagnetic transition is of second order. Based on the critical behavior analysis using the Banerjee criterion and the Kouvel-Fisher method, we find the critical exponents: β=0.395±0.010, γ=1.402±0.010, and δ=5.208±0.007, for which the magnetic interaction is satisfied within the three-dimensional Heisenberg model. Results indicate the presence of short-range interactions. The magnetic entropy change (-ΔSM) reached maximum values of 1.75, 1.45, 1.15, 0.8 and 0.43 J Kg-1 K-1 under a magnetic field variation of 5, 4, 3, 2 and 1 T, respectively. Nevertheless, these (-ΔSM) values are much low for any potential application at this moment. The nature of this phenomenon is discussed in relation to the characteristics of the magnetic phase transition and critical exponents.

  12. La 0.6Sr 0.4Co 0.2Fe 0.8O 3- δ cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Nie, Lifang; Liu, Mingfei; Zhang, Yujun; Liu, Meilin

    Porous La 0.6Sr 0.4Co 0.2Fe 0.8O 3- δ (LSCF) cathodes are coated with a thin film of Sm 0.2Ce 0.8O 1.95- δ (SDC) using a one-step infiltration process. Examination of the microstructures reveals that small SDC particles are formed on the surface of LSCF grains with a relatively narrow size distribution. Impedance analysis indicates that the SDC infiltration has dramatically reduced the polarization of LSCF cathode, reaching interfacial resistances of 0.074 and 0.44 Ω cm 2 at 750 °C and 650 °C, respectively, which are about half of those for LSCF cathode without infiltration of SDC. The activation energies of the SDC infiltrated LSCF cathodes are in the range of 1.42-1.55 eV, slightly lower than those for a blank LSCF cathode. The SDC infiltrated LSCF cathodes have also shown improved stability under typical SOFC operating conditions, suggesting that SDC infiltration improves not only power output but also performance stability and operational life.

  13. High performance La2NiO4+δ-infiltrated (La0.6Sr0.4)0.995Co0.2Fe0.8O3-δ cathode for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xinxin; Zhang, Hui; Liu, Xingbo

    2014-12-01

    In this paper, we reported our effort on improving electrochemical performance of (La0.6Sr0.4)0.995Co0.2Fe0.8O3-δ (LSCF) cathode in solid oxide fuel cell (SOFC) by infiltration of La2NiO4+δ (LNO). It is found that a porous LSCF backbone coated with LNO nanoparticles is an attractive way to acquire a noticeable decrease in the polarization resistance and activation energy of LSCF cathode, thereby showing high surface activity and enhanced oxygen transport capability. The key contributions of the LNO nanoparticles also lead to a 67% increase in peak power density and operation stability at a constant current density of 250 mA cm-2 with a low degradation rate of 0.39% for about 500 h at 750 °C. Although extended durability of LNO-infiltrated LSCF might be concerned, based on coarsening of the LNO nanoparticles, a greatly increased power density and voltage output after a cell operation of 500 h engenders substantial confidence in the beneficial effect of LNO-infiltrated LSCF materials on cell properties. The enhancement of ORR kinetics could be ascribed to the increase of active surface area and active reaction regions from the heterostructured LSCF/LNO interface architecture, and/or favorable cation diffusion from LSCF to LNO.

  14. Improving La0.6Sr0.4Co0.8Fe0.2O3-δ infiltrated solid oxide fuel cell cathode performance through precursor solution desiccation

    NASA Astrophysics Data System (ADS)

    Burye, Theodore E.; Nicholas, Jason D.

    2015-02-01

    Here, for the first time, the average size of solid oxide fuel cell (SOFC) electrode nano-particles was reduced through the chemical desiccation of infiltrated precursor nitrate solutions. Specifically, after firing at 700 °C, CaCl2-desiccated La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) - Ce0.9Gd0.1O1.95 (GDC) cathodes contained LSCF infiltrate particles with an average size of 22 nm. This is in contrast to comparable, undesiccated LSCF-GDC cathodes which contained LSCF infiltrate particles with an average size of 48 nm. X-ray diffraction, scanning electron microscopy, and controlled atmosphere electrochemical impedance spectroscopy revealed that desiccation reduced the average infiltrate particle size without altering the infiltrate phase purity, the cathode concentration polarization resistance, or the cathode electronic resistance. Compared to undesiccated LSCF-GDC cathodes achieving polarization resistances of 0.10 Ωcm2 at 640 °C, comparable CaCl2-dessicated LSCF-GDC cathodes achieved 0.10 Ωcm2 at 575 °C. Mathematical modeling suggested that these performance improvements resulted solely from average infiltrate particle size reductions.

  15. Optimization of the electrochemical performance of a Ni/Ce0.9Gd0.1O2-δ-impregnated La0.57Sr0.15TiO3 anode in hydrogen

    NASA Astrophysics Data System (ADS)

    Xia, Tian; Brüll, Annelise; Grimaud, Alexis; Fourcade, Sébastien; Mauvy, Fabrice; Zhao, Hui; Grenier, Jean-Claude; Bassat, Jean-Marc

    2014-09-01

    A-site deficient perovskite La0.57Sr0.15TiO3 (LSTO) materials are synthesized by a modified polyacrylamide gel route. X-ray diffraction pattern of LSTO indicates an orthorhombic structure. The thermal expansion coefficient of LSTO is 10.0 × 10-6 K-1 at 600 °C in 5%H2/Ar. LSTO shows an electrical conductivity of 2 S cm-1 at 600 °C in 3%H2O/H2. A new composite material, containing the porous LSTO backbone impregnated with small amounts of Ce0.9Gd0.1O2-δ (CGO) (3.4-8.3 wt.%) and Ni/Cu (2.0-6.3 wt.%), is investigated as an alternative anode for solid oxide fuel cells (SOFCs). Because of the substantial electro-catalytic activity of the fine and well-dispersed Ni particles on the surface of the ceramic framework, the polarization resistance of 6.3%Ni-8.3%CGO-LSTO anode reaches 0.73 Ω cm2 at 800 °C in 3%H2O/H2. In order to further improve the anodic performance, corn starch and carbon black are used as pore-formers to optimize the microstructure of anodes.

  16. Performance enhancement of solution impregnated nanostructured La0.8Sr0.2Co0.8Ni0.2O3-δ oxygen electrode for intermediate temperature solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Tan, Yuan; Duan, Nanqi; Wang, Ao; Yan, Dong; Chi, Bo; Wang, Ning; Pu, Jian; Li, Jian

    2016-02-01

    Nanostructured La0.8Sr0.2Co0.8Ni0.2O3-δ (LSCN) based Gd2O3-doped CeO2 (GDC) oxygen electrodes are prepared by impregnation method for intermediate temperature solid oxide electrolysis cell (SOEC) for efficient hydrogen production. The microstructure features and the electrochemical performance of the impregnated LSCN-GDC oxygen electrodes with various LSCN loadings are evaluated and investigated. Electrochemical tests show that the impregnated LSCN-GDC oxygen electrodes present great enhancement of oxygen evolution performance, due to the good nanoparticle LSCN dispersion on the GDC scaffold surface to maximize the active reaction sites. The cell with 30 wt% LSCN loaded LSCN-GDC as the oxygen electrode presents a polarization resistance of 0.072 Ω cm2 at 800 °C with 60 vol% absolute humidity (AH), only about half of that for the screen-printed LSCN electrode. The hydrogen production rate is 484 mL cm-2 h-1 at 750 °C at 1.5 V with 60 vol%AH. For stability test in galvanostatic SOEC operation up to 100 h, the solution impregnated cell shows a very stable performance without obvious degradation.

  17. EFFECTS OF ELECTRODE RESISTANCE ON THE DIELECTRIC BEHAVIORS OF Au/BaxSr1-xTiO3/La1.1Sr0.9NiO4 CAPACITORS

    NASA Astrophysics Data System (ADS)

    Qiu, Jie; Liu, Guozhen; Wolfman, Jérôme

    2016-05-01

    BaxSr1-xTiO3 (0.1≤x≤0.5) (BST) thin films were prepared on La1.1Sr0.9NiO4 (LSNO)/SrTiO3 (STO) structure by combinatorial pulsed laser deposition (comb-PLD). The capacitances of the Au/BST/LSNO capacitors exhibited strong frequency dependence especially when the applied frequency was higher than 10kHz. On the basis of an equivalent circuit model, we presented a theoretical simulation of the relationships between capacitance and frequency for the capacitors with different electrode serial resistances. Based on the fitting results, the observed strong frequency dependence of the measured capacitance at high frequency in our study could be ascribed to the large serial resistance of 750 Ω for oxide electrode LSNO. Further simulation studies found that large serial resistance (1000 Ω) could result in an apparent deviation from the intrinsic dielectric properties especially at high frequencies (>100kHz) for capacitors with capacitances above 1nF. Our results provide useful information for the design of all-oxide electronic devices.

  18. Cationic Intermixing and Reactivity at the La2 Mo2 O9 /La0.8 Sr0.2 MnO3-δ Solid Oxide Fuel Cell Electrolyte-Cathode Interface.

    PubMed

    Ravella, Uday K; Liu, Jingjing; Corbel, Gwenaël; Skinner, Stephen J; Lacorre, Philippe

    2016-08-23

    Among standard high-temperature cathode materials for solid oxide fuel cells, La0.8 Sr0.2 MnO3-δ (LSM) displays the least reactivity with the oxide-ion conductor La2 Mo2 O9 (LMO), yet a reaction is observed at high processing temperatures, identified by using XRD and focused ion beam secondary-ion mass spectrometry (FIB-SIMS) after annealing at 1050 and 1150 °C. Additionally, Sr and Mn solutions were deposited and annealed on LMO pellets, as well as a Mo solution on a LSM pellet. From these studies several reaction products were identified by using XRD and located by using FIB-SIMS on the surface of pelletised samples. We used depth profiling to show that the reactivity extended up to ∼10 μm from the surface region. If Sr was present, a SrMoO4 -type scheelite phase was always observed as a reaction product, and if Mn was present, LaMnO3+δ single crystals were observed on the surface of the LMO pellets. Additional phases such as La2 MoO6 and La6 MoO12 were also detected depending on the configuration and annealing temperature. Reaction mechanisms and detailed reaction formulae are proposed to explain these observations. The strongest driving force for cationic diffusion appears to originate from Mo(6+) and Mn(3+) cations, rather than from Sr(2+) .

  19. In situ examination of oxygen non-stoichiometry in La0.80Sr0.20CoO3 thin films at intermediate and low temperatures by X-ray diffraction

    SciTech Connect

    Biegalski, Michael D; Crumlin, Ethan; Belianinov, Alex; Mutoro, Eva; Shao-Horn, Yang; Kalinin, Sergei

    2014-01-01

    Structural evolution of epitaxial La0.80Sr0.20CoO3 thin films under chemical and voltage stimuli were examined in situ using X-ray diffraction. The changes in lattice parameter (chemical expansivity) were used to quantify oxygen reduction reaction processes and vacancy concentration changes in LSCO. At 550 C the observed lattice parameter reduction at an applied bias of 0.6 V was equivalent to that from the reducing condition of a two percent carbon monoxide atmosphere with an oxygen non-stoichiometry of 0.24. At lower temperatures (200 C) the application of bias reduced the sample much more effectively than a carbon monoxide atmosphere and induced an oxygen non-stoichiometry of 0.47. Despite these large changes in oxygen concentration, the epitaxial thin film was completely re-oxidized and no signs of crystallinity loss or film amorphization were observed. This work demonstrates that the effects of oxygen evolution and reduction can be examined with applied bias at low temperatures, extending the ability to probe these processes with in-situ analytical techniques.

  20. Electrical, magnetic and magnetocaloric properties of polycrystalline Pr0.63A0.07Sr0.3MnO3 (A=Pr, Sm and Bi)

    NASA Astrophysics Data System (ADS)

    Elghoul, A.; Krichene, A.; Boujelben, W.

    2016-11-01

    We studied the effects of the partial substitution (10%) of praseodymium by samarium and bismuth, on the structural, magnetic, magnetocaloric and electrical properties of the Pr0.63A0.07Sr0.3MnO3 (A=Pr, Sm and Bi) manganites prepared using the solid state reaction. Refinement of the X-ray diffraction patterns shows that all our samples are single phase and crystallize in the orthorhombic structure with Pnma space group. Magnetic studies indicate that all the samples exhibit a ferromagnetic-paramagnetic transition with increasing temperature. Curie temperature TC decreases by substitution. M(H) curves indicate the presence of some antiferromagnetic domains in the substituted samples testifying the phase-separated nature of these samples. The magnetic entropy curves -ΔS(T) show a maximum in vicinity of TC. Important values of maximum of -ΔS are recorded for our compounds. For the parent compound, we found 4.59 J/kg K for an applied magnetic field of 2 T at TC=266 K which raises the possibility of using this compound as a magnetic refrigerant. The temperature dependence of the electrical resistivity ρ(T) indicates that all compounds exhibit a metal-insulator transition with increasing temperature. Electrical study suggests the presence of a correlation between electrical and magnetic properties.

  1. The effect of Bi substitution on the microstructure and magnetic properties of the Sr0.4Ba0.3La0.3Fe12-xBixO19 hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Wang, Fanhou; Liu, Xiansong; Shao, Juxiang; Feng, Shuangjiu; Huang, Duohui; Li, Mingling

    2017-01-01

    Bi3+ ions doped M-type hexaferrites, Sr0.4Ba0.3La0.3Fe12-xBixO19 (0≤x≤0.7), were prepared by the ceramic process. The phase components of the magnetic powders were investigated by X-ray diffraction. The results show that a single magnetoplumbite phase is obtained for the magnetic powders with x from 0 to 0.2, and BiFeO3 as a second phase appears when Bi content (x)≥0.3. The micrographs of the sintered magnets were observed by a field emission scanning electron microscopy. The sintered magnets are formed of hexagonal-shaped crystals. The magnetic properties of the sintered magnets were measured at room temperature by a permanent magnetic measuring system. The remanence (Br) first increases with x from 0 to 0.2, and then decreases when Bi content (x)≥0.2. The intrinsic coercivity (Hcj) and magnetic induction coercivity (Hcb) firstly decrease quickly with x from 0 to 0.1, and then increase linearly when Bi content (x)≥0.1. The maximum energy product [(BH)max] increases with x from 0 to 0.3, and then decreases when Bi content (x)≥0.3. The ratio Hk/Hcj ratio first increases with Bi content (x) from 0 to 0.4. And the Hk/Hcj ratio decreases when x≥0.4.

  2. Abnormal percolative transport and colossal electroresistance induced by anisotropic strain in (011)-Pr(0.7)(Ca(0.6)Sr(0.4))(0.3)MnO₃/PMN-PT heterostructure.

    PubMed

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Zhang, Hong-Rui; Liu, Yao; Zhang, Ying; Wang, Shuan-Hu; Wu, Rong-Rong; Zhang, Ming; Bao, Li-Fu; Sun, Ji-Rong; Shen, Bao-Gen

    2014-11-17

    Abnormal percolative transport in inhomogeneous systems has drawn increasing interests due to its deviation from the conventional percolation picture. However, its nature is still ambiguous partly due to the difficulty in obtaining controllable abnormal percolative transport behaviors. Here, we report the first observation of electric-field-controlled abnormal percolative transport in (011)-Pr(0.7)(Ca(0.6)Sr(0.4))(0.3)MnO3/0.7Pb(Mg(1/3)Nb(2/3))O3-0.3PbTiO3 heterostructure. By introducing an electric-field-induced in-plane anisotropic strain-field in a phase separated PCSMO film, we stimulate a significant inverse thermal hysteresis (~ -17.5 K) and positive colossal electroresistance (~11460%), which is found to be crucially orientation-dependent and completely inconsistent with the well accepted conventional percolation picture. Further investigations reveal that such abnormal inverse hysteresis is strongly related to the preferential formation of ferromagnetic metallic domains caused by in-plane anisotropic strain-field. Meanwhile, it is found that the positive colossal electroresistance should be ascribed to the coactions between the anisotropic strain and the polarization effect from the poling of the substrate which leads to orientation and bias-polarity dependencies for the colossal electroresistance. This work unambiguously evidences the indispensable role of the anisotropic strain-field in driving the abnormal percolative transport and provides a new perspective for well understanding the percolation mechanism in inhomogeneous systems.

  3. Effects of cation-size disorder in (La0.67Ca0.15Sr0.18)1-x(Gd0.67Ba0.33)xCoO3 perovskites

    NASA Astrophysics Data System (ADS)

    Sun, J. R.; Wong, H. K.

    1999-07-01

    Effects of the A-cation disorder on the structural, magnetic and transport properties of the ABO3-type (La0.67Ca0.15Sr0.18)1-x(Gd0.67Ba0.33)xCoO3 (x=0.0, 0.1, 0.2, 0.3, and 0.4) are studied. Based on x-ray diffraction, two crystallographic phases coexist in the compounds, and a progressive transition from rhombohedral structure to orthorhombic structure takes place with increasing x, with which the cation disorder increases. Two resistive transitions, a metal-to-metal and a metal-to-semiconductor, occur subsequently with decreasing temperature, with the upper resistive transition coinciding with a magnetic one. Both resistive transitions vary against x, with the upper one from ~223 to ~190 K and the lower one from ~95 to ~160 K corresponding to a change of x from 0.0-0.3. The presence of cation-size disorder drives the system from the cluster-glass state into the spin-glass state, accompanied by an enhancement of the semiconducting character of the compounds. The weak Jahn-Teller effects and the spin state transition could be responsible for the special cation disorder effects in the Co-based perovskites.

  4. A robust high performance cobalt-free oxygen electrode La0.5Sr0.5Fe0.8Cu0.15Nb0.05O3-δ for reversible solid oxide electrochemical cell

    NASA Astrophysics Data System (ADS)

    Zhou, Ning; Yin, Yi-Mei; Li, Jingcheng; Xu, Lei; Ma, Zi-Feng

    2017-02-01

    A novel cobalt-free perovskite oxide La0.5Sr0.5Fe0.8Cu0.15Nb0.05O3-δ (LSFCN) has been synthesized and evaluated as oxygen electrode for reversible solid oxide electrochemical cells (RSOCs). The performance and stability of the LSFCN based RSOCs have been characterized in fuel cell and electrolysis modes, and the reversibility of the cells has been proven. In FC mode, the cell exhibits the maximum power density of 1.10 Wcm-2 at 800 °C, and a stable output under 0.7 V at 700 °C during 108 h. The performance and stability of the cell in electrolysis mode are also remarkable. An electrolysis current of 0.85 A cm-2 is achieved at 750 °C with an applied voltage of 1.3 V, and no degradation as well as delamination are observed for the cell after 50 h electrolysis under voltage of 1.60 V (∼1.27 A cm-2) at 800 °C. The high performance of the LSFCN at both cathodic and anodic conditions may be attributed to the inherent high electrochemical activity of copper-iron based perovskites; and the incorporation of Nb5+ cations into perovskite lattice is responsible for the stability of LSFCN, which leads to the more stable crystal structure, lower thermal expansion coefficient and the reduced Sr segregation at surface.

  5. Large dielectric tuning and microwave phase shift at low electric field in epitaxial Ba0.5Sr0.5TiO3 on SrTiO3

    NASA Astrophysics Data System (ADS)

    Leach, J. H.; Liu, H.; Avrutin, V.; Xiao, B.; Özgür, Ü.; Morkoç, H.; Das, J.; Song, Y. Y.; Patton, C. E.

    2010-04-01

    Dielectric properties of annealed and as-grown ferroelectric Ba0.5Sr0.5TiO3 (BST) grown by pulsed laser deposition on sputtered BST seed layers on strontium titanate (STO) substrates were investigated at microwave frequencies in the realm of tunability of its dielectric constant as well as phase shifters based on this material. The as-grown layers were nearly fully relaxed with measured lattice parameters nearly identical to those of bulk BST. The tuning of the relative dielectric constant (˜1750 at zero bias at 10 GHz) of the annealed BST was found to be as high as 59% and 56% at 10 and 19 GHz, respectively. The analysis of the loss in the BST results in a measured tan δ of 0.02 for the annealed as well as the unannealed films at a frequency of 18 GHz. Phase shifters also exhibited high tuning with differential phase shift figures of merit of 35 and 55°/dB at a field of 60 kV/cm at 10 and 19 GHz, respectively. Serendipitously, most of the tuning occurs at low fields, and thus we propose a new figure of merit, taking into account the amplitude of applied electric field in order to achieve the phase shift. In this new realm we achieved the values of this overall figure of merit of 1.2 and 1.8° cm/dB kV at 10 and 19 GHz, respectively, using an applied electric field of only 10 kV/cm.

  6. Interfacial Analysis of (La0.6Sr0.4)(Co0.2Fe0.8)O3-δ Substrates Wetted by Ag-CuO

    SciTech Connect

    Weil, K. Scott; Kim, Jin Yong Y.; Hardy, John S.

    2005-05-01

    Recently a new method of brazing has been developed to hermetically seal high-temperature, solid-state electrochemical devices, such as as oxygen and hydrogen separators, fuel gas reformers, solid oxide fuel cells, and chemical sensors. Based on a two-phase liquid composed of silver and copper oxide, brazing is conducted directly in air without the need of an inert cover gas or the use of surface reactive fluxes. A key issue in the development of this joining technique is understanding the effect of braze composition on wetting behavior. In the present paper we consider the wetting behaviors of two candidate braze filler materials, Ag-CuO and Ag-CuO-TiO2, on a protoypical mixed ionic/electronic conducting oxide substrate, lanthanum strontium cobalt ferrite [(La0.6Sr0.4)(Co0.2Fe0.8)O3-δ]. It was found that additions of CuO to silver exhibit a tremendous effect on both the wettability and joint strength characteristics of the subsequent braze relative to polycrystalline alumina substrates. The effect is particularly significant at low CuO content, with substantial improvements in wetting observed in the 1 – 8 mol% range. The corresponding strength of the brazed polycrystalline alumina joints appears to be maximized at a copper oxide content of 8 mol%, with a maximum room temperature flexural strength approaching that of monolithic alumina. While further increases in oxide content lead to improved wetting on polycrystalline alumina, the effect on joint strength is deleterious. It appears that the formation of a continuous brittle copper-based oxide layer along the interface between the braze and alumina faying surface is responsible for the poor mechanical behavior observed in joints fabricated with higher CuO content brazes.

  7. Abnormal percolative transport and colossal electroresistance induced by anisotropic strain in (011)-Pr0.7(Ca0.6Sr0.4)0.3MnO3/PMN-PT heterostructure

    PubMed Central

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Zhang, Hong-Rui; Liu, Yao; Zhang, Ying; Wang, Shuan-Hu; Wu, Rong-Rong; Zhang, Ming; Bao, Li-Fu; Sun, Ji-Rong; Shen, Bao-Gen

    2014-01-01

    Abnormal percolative transport in inhomogeneous systems has drawn increasing interests due to its deviation from the conventional percolation picture. However, its nature is still ambiguous partly due to the difficulty in obtaining controllable abnormal percolative transport behaviors. Here, we report the first observation of electric-field-controlled abnormal percolative transport in (011)-Pr0.7(Ca0.6Sr0.4)0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructure. By introducing an electric-field-induced in-plane anisotropic strain-field in a phase separated PCSMO film, we stimulate a significant inverse thermal hysteresis (~ -17.5 K) and positive colossal electroresistance (~11460%), which is found to be crucially orientation-dependent and completely inconsistent with the well accepted conventional percolation picture. Further investigations reveal that such abnormal inverse hysteresis is strongly related to the preferential formation of ferromagnetic metallic domains caused by in-plane anisotropic strain-field. Meanwhile, it is found that the positive colossal electroresistance should be ascribed to the coactions between the anisotropic strain and the polarization effect from the poling of the substrate which leads to orientation and bias-polarity dependencies for the colossal electroresistance. This work unambiguously evidences the indispensable role of the anisotropic strain-field in driving the abnormal percolative transport and provides a new perspective for well understanding the percolation mechanism in inhomogeneous systems. PMID:25399635

  8. Magnetocaloric effect and critical behavior in Pr0.5Sr0.5MnO3: an analysis of the validity of the Maxwell relation and the nature of the phase transitions.

    PubMed

    Caballero-Flores, R; Bingham, N S; Phan, M H; Torija, M A; Leighton, C; Franco, V; Conde, A; Phan, T L; Yu, S C; Srikanth, H

    2014-07-16

    The Maxwell relation, the Clausius-Clapeyron equation, and a non-iterative method to obtain the critical exponents have been used to characterize the magnetocaloric effect (MCE) and the nature of the phase transitions in Pr0.5Sr0.5MnO3, which undergoes a second-order paramagnetic to ferromagnetic (PM-FM) transition at TC ~ 247 K, and a first-order ferromagnetic to antiferromagnetic (FM-AFM) transition at TN ~ 165 K. We find that around the second-order PM-FM transition, the MCE (as represented by the magnetic entropy change, ΔSM) can be precisely determined from magnetization measurements using the Maxwell relation. However, around the first-order FM-AFM transition, values of ΔSM calculated with the Maxwell relation deviate significantly from those calculated by the Clausius-Clapeyron equation at the magnetic field and temperature ranges where a conversion between the AFM and FM phases occurs. A detailed analysis of the critical exponents of the second-order PM-FM transition allows us to correlate the short-range type magnetic interactions with the MCE. Using the Arrott-Noakes equation of state with the appropriate values of the critical exponents, the field- and temperature-dependent magnetization [Formula: see text] curves, and hence the [Formula: see text] curves, have been simulated and compared with experimental data. A good agreement between the experimental and simulated data has been found in the vicinity of the Curie temperature TC, but a noticeable discrepancy is present for [Formula: see text]. This discrepancy arises mainly from the coexistence of AFM and FM phases and the presence of ferromagnetic clusters in the AFM matrix.

  9. Structure, phase transitions, 55Mn NMR, 57Fe Mössbauer studies and magnetoresistive properties of La0.6Sr0.3Mn1.1-xFexO3

    NASA Astrophysics Data System (ADS)

    Pashchenko, A. V.; Pashchenko, V. P.; Revenko, Yu. F.; Prokopenko, V. K.; Shemyakov, A. A.; Levchenko, G. G.; Pismenova, N. E.; Kitaev, V. V.; Gufan, Yu. M.; Sil'cheva, A. G.; Dyakonov, V. P.

    2014-11-01

    The influence of substitution of Fe ions for manganese on the structure, phase transitions, magnetoresistance, 55Mn NMR and 57Fe Mössbauer spectra in the ceramic La0.6Sr0.3Mn1.1-xFexO3 (x=0-0.15) samples has been studied by X-ray diffraction, electron microscopy, magnetic, 55Mn NMR and 57Fe Mössbauer methods. The real rhombohedral perovskite structure (R3barc) is established to contain the different valence manganese ions (Mn3+ and Mn4+), anion and cation vacancies as well as nanostructural clusters with Mn2+ located in the A-sites. Temperature dependences of the a lattice parameter, a(T), demonstrate the anomalies near the Curie temperature, Tc. Wide asymmetric 55Mn NMR spectra confirm the high frequency electron double exchange between Mn3+ and Mn4+ ions and irregularity of their surrounding by other ions and defects. According to the Mössbauer spectroscopy data, Fe3+ ions (~80%) substitute for Mn3+ and partially Mn4+ in the B-positions. The rest of Fe3+ (Fe2+) ions and clusters with Mn2+ are located in the A-positions. The temperatures of metal-semiconductor and ferromagnet-paramagnet phase transitions are reduced with increasing x, and the magnetic irregularity increases due to the weakening high-frequency Mn3+↔Mn4+ double exchange by Fe3+ ions. The amount of ferromagnetic phase is also reduced. The anomalous hysteresis is interpreted as a result of anisotropy of exchange interaction between the ferromagnetic matrix and antiferromagnetic cluster containing MnA2+ ions. The phase diagram demonstrates the strong correlated interrelation among magnetic, transport and magnetoresistance properties.

  10. Ultraviolet assisted processing: A unique approach to mitigate oxygen vacancies and attain low loss highly tunable Ba0.60Sr0.40TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Cole, M. W.; Toonen, R. C.; Ivill, M.; Hirsch, S. G.; Ngo, E.; Hubbard, C.

    2011-12-01

    Isothermal (700 °C) ultraviolet annealing (UVA) processing of crystallized Ba0.60Sr0.40TiO3 (BST) thin films for exposure times up to 225 min films has been studied. The BST films, grown on PtSi wafers via the metalorganic solution deposition (MOSD) technique, were crystallized via conventional furnace annealing (CFA) prior to UVA treatment, and the effects of UV annealing time on the structural, dielectric, and insulation properties were evaluated. The experimental results demonstrated significantly improved structural, dielectric, and insulation properties for the UVA films. Specifically, lattice parameter contraction (toward that of bulk BST60/40) and a 20% reduction in loss were observed for the UVA treated films with respect to the CFA/control film. Leakage current characteristics were found to be the most sensitive characterization technique to access material property modification as a result of UVA exposure time. Specifically, the 225 min UVA exposure time resulted in a three-order of magnitude reduction in leakage current density compared to the CFA film, and the lowest value observed was 1.06 × 10-7 A/cm2 at E = 300 kV/cm. The useable tunability (tunability value at the maximum acceptable leakage current, 500 pA) was found to be elevated by a factor of two with respect to that of the CFA/control BST film (52.31%/UVA film vs. 18.5%/control film). It is suggested that the improved material properties are due to the mitigation of unwanted oxygen vacancies within the film after UV-annealing. A mechanistic model is presented and discussed.

  11. Temperature-dependent and time-dependent effects of hyperthermia mediated by dextran-coated La0.7Sr0.3MnO3: in vitro studies

    PubMed Central

    Haghniaz, Reihaneh; Umrani, Rinku D; Paknikar, Kishore M

    2015-01-01

    Background The purpose of this study was to investigate the therapeutic efficacy of dextran-coated (Dex) La0.7Sr0.3MnO3 (LSMO) nanoparticles-mediated hyperthermia at different temperatures (43°C, 45°C, and 47°C) based on cell killing potential and induction of heat shock proteins in a murine melanoma cell (B16F1) line. Methods LSMO nanoparticles were synthesized by a citrate-gel method and coated with dextran. B16F1 cells were exposed to the Dex-LSMO nanoparticles and heated using a radiofrequency generator. After heating, the morphology and topology of the cells were investigated by optical microscopy and atomic force microscopy. At 0 hours and 24 hours post heating, cells were harvested and viability was analyzed by the Trypan blue dye exclusion method. Apoptosis and DNA fragmentation were assessed by terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) assay and agarose gel electrophoresis, respectively. An enzyme-linked immunosorbent assay was used to quantify heat shock protein levels. Results Our data indicate that cell death and induction of heat shock proteins in melanoma cells increased in a time-dependent and temperature-dependent manner, particularly at temperatures higher than 43°C. The mode of cell death was found to be apoptotic, as evident by DNA fragmentation and TUNEL signal. A minimum temperature of 45°C was required to irreversibly alter cell morphology, significantly reduce cell viability, and result in 98% apoptosis. Repeated cycles of hyperthermia could induce higher levels of heat shock proteins (more favorable for antitumor activity) when compared with a single cycle. Conclusion Our findings indicate a potential use for Dex-LSMO-mediated hyperthermia in the treatment of melanoma and other types of cancer. PMID:25759583

  12. Neutron-scattering study of stripe-phase order of holes and spins in La1.48Nd0.4Sr0.12CuO4

    NASA Astrophysics Data System (ADS)

    Tranquada, J. M.; Axe, J. D.; Ichikawa, N.; Nakamura, Y.; Uchida, S.; Nachumi, B.

    1996-09-01

    We present a neutron diffraction study of charge and spin order within the CuO2 planes of La1.48Nd0.4Sr0.12CuO4, a crystal in which superconductivity is anomalously suppressed. At low temperatures we observe elastic magnetic superlattice peaks of the type (1/2+/-ɛ,1/2,0) and charge-order peaks at (2+/-2ɛ,0,0), where ɛ=0.118. After cooling the crystal through the low-temperature-orthorhombic (LTO) to low-temperature-tetragonal (LTT) phase transition near 70 K, the charge-order peaks appear first at ~60 K, with the magnetic peaks appearing below 50 K. The magnetic peaks increase in intensity by an order of magnitude below 3 K due to ordering of the Nd ions. We show that the observed diffraction features are consistent with stripe-phase order, in which the dopant-induced holes collect in domain walls that separate antiferromagnetic antiphase domains. The Q dependence of the magnetic scattering indicates that the low-temperature correlation length within the planes is substantial (~170 Å), but only very weak correlations exist between next-nearest-neighbor planes. Correlations between nearest-neighbor layers are frustrated by pinning of the charge stripes to the lattice distortions of the LTT phase. The spin-density-wave amplitude corresponds to a Cu moment of 0.10+/-0.03 μB. The behavior of the electrical resistivity within the LTT phase is examined, and the significance of stripe-phase correlations for understanding the unusual transport properties of layered cuprates is discussed.

  13. Stripe order, depinning, and fluctuations in La1.875 Ba0.125 CuO4 and La1.875 Ba0.075 Sr0.050 CuO4

    NASA Astrophysics Data System (ADS)

    Fujita, M.; Goka, H.; Yamada, K.; Tranquada, J. M.; Regnault, L. P.

    2004-09-01

    We present a neutron scattering study of stripe correlations measured on a single crystal of La1.875Ba0.125CuO4 . Within the low-temperature-tetragonal (LTT) phase, superlattice peaks indicative of spin and charge stripe order are observed below 50K . For excitation energies ℏω⩽12meV , we have characterized the magnetic excitations that emerge from the incommensurate magnetic superlattice peaks. In the ordered state, these excitations are similar to spin waves. Following these excitations as a function of temperature, we find that there is relatively little change in the Q -integrated dynamical spin susceptibility for ℏω˜10meV as stripe order disappears and then as the structure transforms from LTT to the low-temperature-orthorhombic phase. The Q -integrated signal at lower energies changes more dramatically through these transitions, as it must in a transformation from an ordered to a disordered state. We argue that the continuous evolution through the transitions provides direct evidence that the incommensurate spin excitations in the disordered state are an indicator of dynamical charge stripes. An interesting feature of the thermal evolution is a variation in the incommensurability of the magnetic scattering. Similar behavior is observed in measurements on a single crystal of La1.875Ba0.075Sr0.050CuO4 ; maps of the scattered intensity in a region centered on the antiferromagnetic wave vector and measured at ℏω=4meV are well reproduced by a model of disordered stripes with a temperature-dependent mixture of stripe spacings. We discuss the relevance of our results to understanding the magnetic excitations in cuprate superconductors.

  14. The impact of disorder on magnetocaloric properties in Ti-doped manganites of La0.7Sr0.25Na0.05Mn(1-x)TixO3 (0≤x≤0.2)

    NASA Astrophysics Data System (ADS)

    Kossi, S. EL.; Ghodhbane, S.; Mnefgui, S.; Dhahri, J.; Hlil, E. K.

    2015-12-01

    This work reports the effect of Ti doping on the structural, magnetic and magnetocaloric properties of La0.7Sr0.25Na0.05Mn(1-x)TixO3 (LSNMTix) (0≤x≤0.2) manganese perovskite prepared by the conventional solid-state reaction. Rietvelds' refinement result of X-ray power diffraction using the FullProf refinement program indicates that these compounds have a rhombohedrally distorted structure with a space group R 3 ̅c. Magnetization as a function of temperature shows that all samples exhibit a paramagnetic (PM) - ferromagnetic (FM) phase transition at the Curie temperature TC which decreases from 363 K to 125 K for x=0-0.2, respectively. The magnetic entropy change (ΔSM) deduced from the measured magnetization M (μ0H) data using Maxwell relation, strongly depends on the Ti content. The maximum value of magnetic entropy change has been observed in our samples with a peak centered around their respective TC decrease from 4.34 J kg-1 K-1 to 2.03 J kg-1 K-1 for x=0 and x=0.2 at μ0H=5 T respectively. In addition, the relative cooling power (RCP) values inferred from the |ΔSM| vs. T peak broadening, vary slightly with the titanium content reaching values between 298 and 273 J kg-1 for an applied magnetic field of 5 T when x increases from 0 to 0.2. Technically, these results suggest that the material can be considered as suitable candidate as working substance in magnetic refrigeration.

  15. Performance and sulfur poisoning of Ni/CeO2 impregnated La0.75Sr0.25Cr0.5Mn0.5O3-δ anode in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Yiqian; Zhang, Yaohui; Zhu, Xingbao; Wang, Zhihong; Lü, Zhe; Huang, Xiqiang; Zhou, Yongjun; Zhu, Lin; Jiang, Wei

    2015-07-01

    In this study, comparison experiments are conducted based on yttria-stabilized zirconia (YSZ) electrolyte supported single solid oxide fuel cells (SOFCs) with pure La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCrM) or Ni/CeO2 impregnated LSCrM anodes. The single cells are tested in dry H2 and H2/H2S (50 ppm) mixture, respectively. Compared with the pure LSCrM anode, the cell with Ni/CeO2 impregnated LSCrM presents a significant performance improvement when the pure H2 is fueled to the anode, and shows a good stability during a constant-current discharge testing (398 mA cm-2). When the fuel is switched to H2/H2S mixture, the cell with Ni/CeO2 impregnated LSCrM anode still shows a remarkable constant-current discharge (120 mA cm-2) performance compared with pure LSCrM anode. The Ni/CeO2 impregnation can improve the electrochemical performance of the LSCrM anode without any sacrifice of sulfur tolerance ability. The Ni/CeO2 impregnated LSCrM might be a potential anode material for solid oxide fuel cell operating in sulfur-containing fuels. The XRD and XPS results demonstrate that the anode poisoning product is composed of adsorbed sulfur, metal sulfides and sulfate radical. The mass spectrum result confirms that the poisoning mechanism involves the reaction of sulfur with anode rather than the direct reaction between H2S gas and anode.

  16. Performance of Y0.9Sr0.1Cr0.9Fe0.1O3-δ as a sulfur-tolerant anode material for intermediate temperate solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Bu, Yun-Fei; Zhong, Qin; Xu, Dan-Dan; Zhao, Xiao-Lu; Tan, Wen-Yi

    2014-03-01

    Perovskite-type Y0.9Sr0.1Cr0.9Fe0.1O3-δ maintained good chemical stability under a H2S-containing atmosphere based on results from X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) in our previous study. In this research, the YSCF-based anode was studied using H2 and H2S-containing fuels. The activity of an electrode is closely related to its material composition, lattice structure, physic-chemical properties, and morphologic structure. Therefore, the characteristics of the YSCF powders and the cell were analyzed by XRD, Brunauer-Emmett-Teller (BET) surface area analysis, and scanning electron microscopy (SEM). The conductivities of YSCF were evaluated by four-probe method in 10% H2-N2, 1% H2S-N2 and air, respectively. Thermodynamic calculations and X-ray photoelectron spectroscopy (XPS) analysis have been used to investigate the stability of the elements in YSCF upon exposure to hydrogen sulfide (H2S) in hydrogen (H2) over a range of partial pressures of sulfur (pS2) and oxygen (pO2) that are representative of fuel cell operating conditions. In addition, the performance of the complete cell (YSCF-SDC|SDC|Ag) under H2S and H2 fuel mixtures was also evaluated by electrochemical impedance spectra (EIS) and I-V and I-P curves. The emergence of FeSO4 in the sulfur treatment should play an important role in preventing further sulfur-poisoning.

  17. Evaluation of the effect of various mechanisms on the magnetoresistance of lanthanum manganites La0.85Sr0.15MnO3 with activation-type conductivity

    NASA Astrophysics Data System (ADS)

    Gudin, S. A.; Kurkin, M. I.; Neifel'd, E. A.; Korolev, A. V.; Gapontseva, N. N.; Ugryumova, N. A.

    2015-11-01

    A method is proposed that allows one to divide the magnetoresistance (MR) observed in manganites into three mechanisms: dimensional, orientational, and magnetic. The first two mechanisms are associated with the stratification of a substance into ferromagnetic and nonferromagnetic phases, which significantly differ in electric resistivity. The dimensional mechanism of MR is attributed to the effect of a magnetic field on the size of magnetic inclusions. The orientational mechanism of MR is determined by the dependence of electric resistivity on the mutual orientation of the magnetizations of magnetic inclusions. The magnetic mechanism of MR is determined by the properties of the magnetization of a ferromagnet, in particular, by the Curie-Weiss singularity on the temperature dependence of magnetic susceptibility at the Curie point. This mechanism exists in homogeneous substances, although its value may depend on the magnetic properties of inhomogeneities. The method is developed for substances with activation-type conductivity and is applied to the analysis of MR of La0.85Sr0.15MnO3 manganite near the Curie point, where the MR attains its maximum. The dimensional mechanism turns out to be dominant in magnetic fields H greater than the saturation field H s ( H > H s ). The orientational, dimensional, and magnetic mechanisms have a comparable effect on the MR for H < H s . The effect of the orientational mechanism on MR is relatively weak (does not exceed the third part of the total MR), although this mechanism determines the giant MR in multilayered metal films. The possibility of application of the method to the analysis of MR near the insulator-metal transition is analyzed.

  18. Nano-ceria pre-infiltration improves La0.6Sr0.4Co0.8Fe0.2O3-x infiltrated Solid Oxide Fuel Cell cathode performance

    NASA Astrophysics Data System (ADS)

    Burye, Theodore E.; Nicholas, Jason D.

    2015-12-01

    Here, scanning electron microscopy, X-ray diffraction, and thermo-gravimetric analysis experiments show that the pre-infiltration of Ce0.9Gd0.1O1.95 (GDC) nano-particles reduces the average size of La0.6Sr0.4Co0.8Fe0.2O3-x (LSCF) produced from the subsequent infiltration of precursor nitrate solutions containing the surfactant Triton X-100 or the chelating agent citric acid. In contrast, GDC pre-infiltration has no effect on the average size of LSCF particles produced from precursor solutions containing only lanthanum, strontium, cobalt, and iron nitrate. Consistent with the observed particle size trends, electrochemical impedance spectroscopy measurements show that GDC pre-infiltration improves the performance of Triton X-100 Derived (TXD) LSCF-GDC cathodes and Citric Acid Derived (CAD) LSCF-GDC cathodes, but has no effect on the performance of Pure Nitrate Derived (PND) LSCF-GDC cathodes. In particular, TXD LSCF-GDC cathodes with more than ∼5 vol% of GDC pre-infiltration display average LSCF particle sizes of 21 nm and open-circuit polarization resistance values of 0.10 Ωcm2 at 540 °C, compared to 48 nm and 640 °C without GDC pre-infiltration. Results suggest that this 100 °C reduction in cathode operating temperature is caused solely by LSCF particle size reductions. 7.4 vol% GDC pre-infiltrated TXD LSCF-GDC cathodes also display lower 540 °C degradation rates than conventionally infiltrated PND LSCF-GDC cathodes.

  19. Copper oxide as a synergistic catalyst for the oxygen reduction reaction on La0.6Sr0.4Co0.2Fe0.8O3-δ perovskite structured electrocatalyst

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Brinkman, Kyle; Xia, Changrong

    2016-10-01

    This work presents the effect of dispersed copper oxide (CuO) nanoparticles on the oxygen reduction reaction (ORR) on a typical solid oxide fuel cell (SOFC) electrocatalyst, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF). The ORR kinetics were enhanced by a factor up to 4 at 750 °C as demonstrated by electrical conductivity relaxation measurements used to determine the chemical surface exchange coefficient, kchem. The value of kchem increased from 2.6 × 10-5 cm s-1 to 9.3 × 10-5 cm s-1 at 750 °C when the LSCF surface was coated with submicron CuO particles. The enhanced kchem was attributed to additional reactions that occur on the CuO surface and at the LSCF-CuO-gas three-phase boundaries (3PBs) as suggested by the kchem dependence on CuO coverage and 3PB length. This enhancement was further demonstrated by the introduction of CuO nanoparticles into LSCF electrodes. CuO infiltrated electrodes reduced the interfacial polarization resistance from 2.27 Ω cm2 to 1.5 Ω cm2 at 600 °C and increased the peak power density from 0.54 W cm-2 to 0.72 W cm-2 at 650 °C. Electrochemical impedance spectroscopy indicated that the reduced resistance was due to the shrinkage of the low frequency arc, which is associated with the electrochemical surface exchange reaction.

  20. Exsolution of Fe and SrO Nanorods and Nanoparticles from Lanthanum Strontium Ferrite La0.6Sr0.4FeO3−δ Materials by Hydrogen Reduction

    PubMed Central

    2015-01-01

    Formation of uniform Fe and SrO rods as well as nanoparticles following controlled reduction of La0.6Sr0.4FeO3−δ (LSF) and Ni-LSF samples in dry and moist hydrogen is studied by aberration-corrected electron microscopy. Metallic Fe and SrO precipitate from the perovskite lattice as rods of several tenths of nm and thicknesses up to 20 nm. Based on a model of Fe whisker growth following reduction of pure iron oxides, Fe rod exsolution from LSF proceeds via rate-limiting lattice oxygen removal. This favors the formation of single iron metal nuclei at the perovskite surface, subsequently growing as isolated rods. The latter is only possible upon efficient removal of reduction-induced water and, subsequently, reduction of Fe +III/+IV to Fe(0). If water remains in the system, no reduction or rod formation occurs. In contrast, formation of SrO rods following reduction in dry hydrogen is a catalytic process aided by Ni particles. It bears significant resemblance to surface diffusion-controlled carbon whisker growth on Ni, leading to similar extrusion rods and filaments. In addition to SrO rod growth, the exsolution of Fe nanoparticles and, subsequently, Ni–Fe alloy particles is observed. The latter have also been observed under static hydrogen reduction. Under strict control of the experimental parameters, the presented data therefore open an attractive chemically driven pathway to metal nanoarchitectures beyond the formation of “simple” nanoparticles. PMID:26435764

  1. Enhanced performance of solid oxide fuel cells with Ni/CeO 2 modified La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ anodes

    NASA Astrophysics Data System (ADS)

    Zhu, Xingbao; Lü, Zhe; Wei, Bo; Chen, Kongfa; Liu, Mingliang; Huang, Xiqiang; Su, Wenhui

    The optimization of electrodes for solid oxide fuel cells (SOFCs) has been achieved via a wet impregnation method. Pure La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ (LSCrM) anodes are modified using Ni(NO 3) 2 and/or Ce(NO 3) 3/(Sm,Ce)(NO 3) x solution. Several yttria-stabilized zirconia (YSZ) electrolyte-supported fuel cells are tested to clarify the contribution of Ni and/or CeO 2 to the cell performance. For the cell using pure-LSCrM anodes, the maximum power density (P max) at 850 °C is 198 mW cm -2 when dry H 2 and air are used as the fuel and oxidant, respectively. When H 2 is changed to CH 4, the value of P max is 32 mW cm -2. After 8.9 wt.% Ni and 5.8 wt.% CeO 2 are introduced into the LSCrM anode, the cell exhibits increased values of P max 432, 681, 948 and 1135 mW cm -2 at 700, 750, 800 and 850 °C, respectively, with dry H 2 as fuel and air as oxidant. When O 2 at 50 mL min -1 is used as the oxidant, the value of P max increases to 1450 mW cm -2 at 850 °C. When dry CH 4 is used as fuel and air as oxidant, the values of P max reach 95, 197, 421 and 645 mW cm -2 at 750, 800, 850 and 900 °C, respectively. The introduction of Ni greatly improves the performance of the LSCrM anode but does not cause any carbon deposit.

  2. Effect of Bi doping on magnetic and magnetocaloric properties of La0.7-xBixSr0.3MnO3 (0<=x<=0.4)

    NASA Astrophysics Data System (ADS)

    Barik, S. K.; Mahendiran, R.

    2010-05-01

    We investigated the effect of Bi doping on magnetic and magnetocaloric properties of La0.7-xBixSr0.3MnO3 (x=0.0-0.4). It is shown that the low temperature ground state changes from a ferromagnet (x=0) to a charge-ordered antiferromagnet for x=0.4. While the paramagnetic-ferromagnetic (PM-FM) transition is second-order in x≤0.25, it changes into first-order for x=0.3 which is at the magnetic phase boundary. The changes in the magnetic ground state affect magnetic entropy. The magnitude of the isothermal magnetic entropy (|ΔSM|) at the FM Curie temperature increases from 4.56 J/kg K for x=0 to a maximum value of 5.02 J/kg K for x=0.05 and then decreases to nearly zero for x=0.4 at the charge order transition. In contrast to x≤0.25, the ΔSM of x=0.3 is magnetic history dependent and its temperature dependence exhibits a clear step at TCO=260 K followed by a plateau between 240 and 185 K. Although |ΔSM|=3.1 J/kg K of x=0.3 is small compared to other compositions, it has a high relative cooling power (325 J/kg) which is desirable for magnetic refrigeration over a wide temperature. The unusual magnetic and magnetocaloric properties of x=0.3 are attributed to the existence of short-range charge-orbital (CO) correlations in the PM state. It is suggested that harnessing competition between FM spin ordering and CO correlations may provide a strategy to enhance magnetic refrigeration capacity over a wide temperature range.

  3. Influence of non-magnetic and magnetic ions on the MagnetoCaloric properties of La0.7Sr0.3Mn0.9M0.1O3 doped in the Mn sites by M=Cr, Sn, Ti

    NASA Astrophysics Data System (ADS)

    Arayedh, Brahim; Kallel, Sami; Kallel, Nabil; Peña, Octavio

    2014-06-01

    We have studied the MagnetoCaloric Effect (MCE) in La0.7Sr0.3Mn0.9M0.1O3, M=Cr, Sn and Ti, prepared by a conventional solid state reaction. The temperature dependence of magnetization reveals that all compositions exhibit a ferromagnetic (FM) to paramagnetic (PM) transition at TC temperatures of 369, 326, 228 and 210 K, respectively for La0.7Sr0.3MnO3 (LSMO), La0.7Sr0.3Mn0.9Cr0.1O3 (LSMO-Cr), La0.7Sr0.3Mn0.9Sn0.1O3 (LSMO-Sn), and La0.7Sr0.3Mn0.9Ti0.1O3 (LSMO-Ti). Using Arrott plots, the phase transition from FM to PM is found to be of second order. The maximum magnetic entropy change (-ΔSM), at the applied magnetic field of 2 T, is found to be 1.27, 1.76, 0.47 and 1.45 J kg-1 K-1, respectively for LSMO, LSMO-Cr, LSMO-Sn and LSMO-Ti. The relative cooling power (RCP) for LSMO-Cr, LSMO-Sn and LSMO-Ti is in the order of 50%, 26% and 71%, respectively, compared to gadolinium (Gd). As a result, the LSMO-Cr and LSMO-Ti compounds can be considered as promising materials in magnetic refrigeration technology.

  4. Calcioferrite with composition (Ca3.94Sr0.06)Mg1.01(Fe2.93Al1.07)(PO4)6(OH)4·12H2O

    PubMed Central

    Lafuente, Barbara; Downs, Robert T.; Yang, Hexiong; Jenkins, Robert A.

    2014-01-01

    Calcioferrite, ideally Ca4MgFe3+ 4(PO4)6(OH)4·12H2O (tetra­calcium magnesium tetrairon(III) hexakis-phosphate tetra­hydroxide dodeca­hydrate), is a member of the calcioferrite group of hydrated calcium phosphate minerals with the general formula Ca4 AB 4(PO4)6(OH)4·12H2O, where A = Mg, Fe2+, Mn2+ and B = Al, Fe3+. Calcioferrite and the other three known members of the group, montgomeryite (A = Mg, B = Al), kingsmountite (A = Fe2+, B = Al), and zodacite (A = Mn2+, B = Fe3+), usually occur as very small crystals, making their structure refinements by conventional single-crystal X-ray diffraction challenging. This study presents the first structure determination of calcioferrite with composition (Ca3.94Sr0.06)Mg1.01(Fe2.93Al1.07)(PO4)6(OH)4·12H2O based on single-crystal X-ray diffraction data collected from a natural sample from the Moculta quarry in Angaston, Australia. Calcioferrite is isostructural with montgomeryite, the only member of the group with a reported structure. The calcioferrite structure is characterized by (Fe/Al)O6 octa­hedra (site symmetries 2 and -1) sharing corners (OH) to form chains running parallel to [101]. These chains are linked together by PO4 tetra­hedra (site symmetries 2 and 1), forming [(Fe/Al)3(PO4)3(OH)2] layers stacking along [010], which are connected by (Ca/Sr)2+ cations (site symmetry 2) and Mg2+ cations (site symmetry 2; half-occupation). Hydrogen-bonding inter­actions involving the water mol­ecules (one of which is equally disordered over two positions) and OH function are also present between these layers. The relatively weaker bonds between the layers account for the cleavage of the mineral parallel to (010). PMID:24764934

  5. Influence of microstructure and interfacial strain on the magnetic properties of epitaxial Mn3O4/La0.7Sr0.3MnO3 layered-composite thin films

    NASA Astrophysics Data System (ADS)

    Mukherjee, Devajyoti; Bingham, Nicholas; Hordagoda, Mahesh; Phan, Manh-Huong; Srikanth, Hariharan; Witanachchi, Sarath; Mukherjee, Pritish

    2012-10-01

    Epitaxial Mn3O4/La0.7Sr0.3MnO3 (Mn3O4/LSMO) bilayer thin films were grown on lattice-matched single crystal substrates of SrTiO3 (STO) (100) and MgO (100), with Mn3O4 as the top layer, using a pulsed laser deposition technique. X-ray diffraction (XRD) patterns revealed the single crystalline nature and epitaxial relationship between the layers. A detailed analysis of strains using XRD asymmetric/symmetric scans indicated an increasing in-plane compressive strain in the LSMO layer with increasing thicknesses of the Mn3O4 layer, resulting in a tetragonal distortion of the LSMO lattice in the Mn3O4/LSMO films in comparison to the tensile strains in LSMO single-layer films grown on both STO and MgO substrates. Cross-sectional high resolution transmission electron microscope (HRTEM) images showed atomically sharp interfaces in all films. However, as opposed to a flat interface between LSMO and STO, the Mn3O4 and LSMO interface was undulating and irregular in the bilayer films. Magnetic measurements revealed that relative to LSMO, the presence of Mn3O4 in Mn3O4/LSMO reduced the saturation magnetization at T > 50 K (the ferrimagnetic ordering temperature of Mn3O4) but enhanced it at T < 50 K. The decrease of the saturation magnetization in Mn3O4/LSMO for T > 50 K was associated with the appearance and increase of the compressive strain with the increase in Mn3O4 thickness. These observations point to the importance of a ferromagnetic-ferrimagnetic interfacial coupling between the LSMO and Mn3O4 layers in enhancing the surface magnetism of LSMO in the Mn3O4/LSMO bilayers. Our study provides useful information regarding the development of manganite composite thin films with improved magnetic properties for a wide range of technological applications, such as in spintronics and sensor devices.

  6. Structural and magnetic inhomogeneities, phase transitions, 55Mn nuclear magnetic resonance, and magnetoresistive properties of La0.6 - x Nd x Sr0.3Mn1.1O3-δ ceramics

    NASA Astrophysics Data System (ADS)

    Pashchenko, A. V.; Pashchenko, V. P.; Prokopenko, V. K.; Revenko, Yu. F.; Kisel, N. G.; Kamenev, V. I.; Sil'cheva, A. G.; Ledenev, N. A.; Burkhovetskii, V. V.; Levchenko, G. G.

    2014-05-01

    The structure, lattice imperfection, and properties of ceramic samples La0.6 - x Nd x Sr0.3Mn1.1O3-δ ( x = 0-0.4) have been investigated using the X-ray diffraction, resistive, magnetic (χac, 55Mn NMR), magnetoresistive and microscopic methods. It has been shown that there is a satisfactory agreement between the concentration decrease in the lattice parameters a of the rhombohedral ( x = 0, 0.1, 0.2) and cubic ( x = 0.3, 0.4) perovskite structures and the average ionic radii for the lattice containing anion vacancies, cation vacancies, and nanostructured clusters with Mn2+ ions in A-positions. With an increase in the neodymium concentration x, the vacancy-type imperfection increases, the cluster-type imperfection decreases, the temperatures of metal-semiconductor phase transition T ms and ferromagnetic-paramagnetic phase transition T C decrease, and the content of the ferromagnetic phase decreases. The anomalous hysteresis is associated with the appearance of unidirectional exchange anisotropy induced in a clustered perovskite structure consisting of a ferromagnetic matrix and a planar antiferromagnetic cluster coherently coupled with it. An analysis of the asymmetrically broadened 55Mn NMR spectra has revealed a high-frequency electronic double exchange (Mn3+-O2--Mn4+) ↔ (Mn4+-O2--Mn3+) and an inhomogeneity of the magnetic and charge states of manganese due to the heterogeneous environment of the manganese ions by other ions and defects. The observed changes in the resonant frequency and width of the resonance curve are caused by changes in the ratio Mn3+/Mn4+ and magnetic inhomogeneity. An increase in the neodymium concentration x leads to a decrease in the ferromagnetic phase content determined from the dependences 4π Nχac( T) and the 55Mn NMR curves. The phase diagram characterizes an interrelation between the composition, the imperfection of the structure, and the transport, magnetic, and magnetoresistive properties of lanthanum neodymium manganite

  7. Dielectric properties of BaMg1/3Nb2/3O3 doped Ba0.45Sr0.55Tio3 thin films for tunable microwave applications

    NASA Astrophysics Data System (ADS)

    Alema, Fikadu; Pokhodnya, Konstantin

    2015-11-01

    Ba(Mg1/3Nb2/3)O3 (BMN) doped and undoped Ba0.45Sr0.55TiO3 (BST) thin films were deposited via radio frequency magnetron sputtering on Pt/TiO2/SiO2/Al2O3 substrates. The surface morphology and chemical state analyses of the films have shown that the BMN doped BST film has a smoother surface with reduced oxygen vacancy, resulting in an improved insulating properties of the BST film. Dielectric tunability, loss, and leakage current (LC) of the undoped and BMN doped BST thin films were studied. The BMN dopant has remarkably reduced the dielectric loss (˜38%) with no significant effect on the tunability of the BST film, leading to an increase in figure of merit (FOM). This is attributed to the opposing behavior of large Mg2+ whose detrimental effect on tunability is partially compensated by small Nb5+ as the two substitute Ti4+ in the BST. The coupling between MgTi″ and VO•• charged defects suppresses the dielectric loss in the film by cutting electrons from hopping between Ti ions. The LC of the films was investigated in the temperature range of 300-450K. A reduced LC measured for the BMN doped BST film was correlated to the formation of defect dipoles from MgTi″, VO•• and NbTi• charged defects. The carrier transport properties of the films were analyzed in light of Schottky thermionic emission (SE) and Poole-Frenkel (PF) emission mechanisms. The result indicated that while the carrier transport mechanism in the undoped film is interface limited (SE), the conduction in the BMN doped film was dominated by bulk processes (PF). The change of the conduction mechanism from SE to PF as a result of BMN doping is attributed to the presence of uncoupled NbTi• sitting as a positive trap center at the shallow donor level of the BST.

  8. Cross-plane electronic and thermal transport properties of p-type La0.67Sr0.33MnO3/LaMnO3 perovskite oxide metal/semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj; Sands, Timothy D.; Cassels, Laura; Jackson, Philip; Favaloro, Tela; Kirk, Benjamin; Zide, Joshua; Xu, Xianfan; Shakouri, Ali

    2012-09-01

    Lanthanum strontium manganate (La0.67Sr0.33MnO3, i.e., LSMO)/lanthanum manganate (LaMnO3, i.e., LMO) perovskite oxide metal/semiconductor superlattices were investigated as a potential p-type thermoelectric material. Growth was performed using pulsed laser deposition to achieve epitaxial LSMO (metal)/LMO (p-type semiconductor) superlattices on (100)-strontium titanate (STO) substrates. The magnitude of the in-plane Seebeck coefficient of LSMO thin films (<20 μV/K) is consistent with metallic behavior, while LMO thin films were p-type with a room temperature Seebeck coefficient of 140 μV/K. Thermal conductivity measurements via the photo-acoustic (PA) technique showed that LSMO/LMO superlattices exhibit a room temperature cross-plane thermal conductivity (0.89 W/m.K) that is significantly lower than the thermal conductivity of individual thin films of either LSMO (1.60 W/m.K) or LMO (1.29 W/m.K). The lower thermal conductivity of LSMO/LMO superlattices may help overcome one of the major limitations of oxides as thermoelectrics. In addition to a low cross-plane thermal conductivity, a high ZT requires a high power factor (S2σ). Cross-plane electrical transport measurements were carried out on cylindrical pillars etched in LSMO/LMO superlattices via inductively coupled plasma reactive ion etching. Cross-plane electrical resistivity data for LSMO/LMO superlattices showed a magnetic phase transition temperature (TP) or metal-semiconductor transition at ˜330 K, which is ˜80 K higher than the TP observed for in-plane resistivity of LSMO, LMO, or LSMO/LMO thin films. The room temperature cross-plane resistivity (ρc) was found to be greater than the in-plane resistivity by about three orders of magnitude. The magnitude and temperature dependence of the cross-plane conductivity of LSMO/LMO superlattices suggests the presence of a barrier with the effective barrier height of ˜300 meV. Although the magnitude of the cross-plane power factor is too low for thermoelectric

  9. The effect of group IIIA metal ion dopants on the photocatalytic activities of nanocrystalline Sr0.25H1.5Ta2O6·H2O.

    PubMed

    Liang, Shijing; Zhu, Shuying; Zhu, Jia; Chen, Yan; Zhang, Yongfan; Wu, Ling

    2012-01-21

    A series of group IIIA metal ion electron acceptors doped into Sr(0.25)H(1.5)Ta(2)O(6)·H(2)O (HST) samples have been prepared by an impregnation and calcination method for the first time. The samples are characterized by XRD, TEM, DRS and XPS. The variations in the electronic structure and photoelectric response after metal ion doping are investigated by theoretical calculations and photocurrent experiments, respectively. Results show that the metal ions can be efficiently incorporated into the HST crystal structure, which is reflected in the lattice contraction. Meanwhile, the photoabsorption edges of the metal-doped HST samples are red shifted to a longer wavelength. Taking into account the ionic radii and electronegativities of the dopants, as well as the XRD and XPS results, it is concluded that Ta(5+) ions may be partially substituted by the Al(3+) and Ga(3+) ions in the framework, while In(3+) ions are the favourable substitutes for Sr(2+) sites in the cavity. The first-principles DFT calculations confirm that the variation of the band structure is sensitive to the type of group IIIA metal ion. Introducing the dopant only at the Ta site induces an obvious variation in the band structure and the band gap becomes narrow. Meanwhile, an ''extra step'' appeared in the band gap, which can trap photogenerated electrons from the valance band (VB) and could enhance the charge mobility and the photocurrent. For the photocatalytic degradation of methyl orange in an aqueous solution and in benzene in the gas phase, the doped samples show superior photocatalytic activities compared with both undoped samples and TiO(2). The enhanced photocatalytic activities can be well explained by their electronic structure, photoabsorption performance, photoelectric response, and the concentration of the active species. Due to the fact that Ga ion doping can create an acceptor impurity level and change the electronic band, efficiently narrowing the band gap, the Ga-doped sample shows

  10. Systematic evaluation of cobalt-free Ln0.5Sr0·5Fe0·8Cu0·2O3-δ (Ln = La, Pr, and Nd) as cathode materials for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Pang, Shengli; Wang, Wenzhi; Chen, Tao; Shen, Xiangqian; Wang, Yonggang; Xu, Kaijie; Xi, Xiaoming

    2016-09-01

    Cobalt-free perovskites, Ln0.5Sr0·5Fe0·8Cu0·2O3-δ (Ln = La, Pr, and Nd), are systematically evaluated as the cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs) using Gd0.1Ce0·9O1.95 as the electrolyte. The samples exhibit an orthorhombic perovskite structures, and their cell volumes decrease as the ionic radius of Ln decreases. Both the oxygen vacancy content and the magnitude of lattice oxygen release per formula unit increase in the temperature range from 370 °C to 850 °C as the ionic radius of Ln decreases. Ln0.5Sr0.5Fe0.8Cu0.2O3-δ is chemically and thermally compatible with the Gd0.1Ce0·9O1.95 electrolyte. In the temperature range of 600 °C-750 °C, Nd0.5Sr0·5Fe0·8Cu0·2O3-δ possesses the highest catalytic activity for the oxygen reduction reaction with area specific resistance values of 0.071 Ω cm2 and 0.141 Ω cm2 at 750 °C and 700 °C, respectively. The maximum power densities of the anode-supported single cells at 800 °C and 700 °C are 1003.7 mW cm-2 and 516.7 mW cm-2 for Pr0.5Sr0·5Fe0·8Cu0·2O3-δ and 944.5 mW cm-2 and 530.2 mW cm-2 for Nd0.5Sr0·5Fe0·8Cu0·2O3-δ, respectively. Ln0.5Sr0.5Fe0.8Cu0.2O3-δ is shown to be a promising cathode material for IT-SOFCs.

  11. Effect of A-site ionic size variation on TCR and electrical transport properties of (Nd0.7-xLax)0.7Sr0.3MnO3 with x = 0, 0.1 and 0.2

    NASA Astrophysics Data System (ADS)

    Vadnala, Sudarshan; Asthana, Saket; Pal, Prem; Srinath, S.

    2015-02-01

    In this work, the structural and transport properties of (Nd0.7-xLax)0.7Sr0.3MnO3 manganites with x = 0, 0.1 and 0.2 prepared by solid state reaction route are studied. These compounds are found to be crystallized in orthorhombic structural form. Experimental results showing a shift in the metal to semiconductor/insulator transition temperature (TMI) towards room temperature (289 K) with the substitution of Nd by La, as the value of x is varied in the sequence (0,0.1,0.2), have been provided. The shift in the TMI, from 239 K (for x=0) to near the room temperature 289 K (for x=0.2), is attributed to the fact that the average radius of site-A increases with the percentage of La. The maximum temperature coefficients of resistance (TCR) of (Nd0.7-xLax)0.7Sr0.3MnO3 (x= 0.1 and 0.2) are found to be higher compared to its parent compound Nd0.7Sr0.3MnO3. The electrical transport mechanisms for (Nd0.7-xLax)0.7Sr0.3MnO3 (x= 0 to 0.2) are explored by using different theoretical models, for temperatures below and above TMI. An appropriate enlightenment for the observed behavior is discussed in detail.

  12. Neutron structural characterization and transport properties of oxidized and reduced La0.5Sr0.5M0.5Ti0.5O3 (M = Mn, Fe) perovskites: Possible electrode materials in solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Martínez-Coronado, R.; Alonso, J. A.; Aguadero, A.; Perez-Coll, D.; Fernández-Díaz, M. T.

    2013-03-01

    Oxygen-stoichiometric La0.5Sr0.5M0.5Ti0.5O3 (M = Mn, Fe) perovskites and the corresponding reduced specimens, of La0.5Sr0.5M0.5Ti0.5O3-δ composition, have been prepared and characterized by x-ray diffraction and neutron powder diffraction (NPD), in complement with thermal analysis, electrical conductivity, and thermal expansion measurements. NPD data show that these perovskites are all orthorhombic, space group Pbnm (No. 62). The total reduction of M3+ to M2+ in the reduced phases is accompanied with the occurrence of oxygen vacancies, which was confirmed by thermogravimetric analysis (TGA). Above room-temperature, these phases undergo two structural phase transitions studied in situ from NPD data; the former to a tetragonal (I4/mcm) structure, and the second one to a cubic (Pm-3m) phase. All the oxides display a semiconductor-like behavior with a maximum conductivity value of 15 S.cm-1 for the oxidized La0.5Sr0.5Mn0.5Ti0.5O3 phase at 850 °C. The measured thermal expansion coefficients perfectly match with the values usually displayed by solid-oxide fuel cell (SOFC) electrolytes. The obtained results present these perovskites as alternative electrodes for SOFCs.

  13. THERMAL AND ELECTRICAL PROPERTIES OF Ba0.5Sr0.5CoxFe1-x-yNiyO3-δ (x = 0.4, 0 ≤ y ≤ 0.25) AS CATHODE MATERIAL FOR IT-SOFCs

    NASA Astrophysics Data System (ADS)

    Burnwal, Suman Kumar; Kistaiah, P.

    2015-03-01

    Ba0.5Sr0.5CoxFe1-x-yNiyO3-δ (BSCFNi; x = 0.4, 0 ≤ y ≤ 0.25) were studied in relation to their potential use as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. An emphasis is made on the effect of Ni-doping on crystal structure, thermal expansion coefficient (TEC) and dc electrical conductivity. A cubic perovskite structure was observed in the X-ray diffraction (XRD) measurement. The TEC of BSCFNi obtained for 0 ≤ y ≤ 0.25, varies in the range of (12.38-18.81) × 10-6 K-1, measured in the temperature range of 30°C to 800°C. The electrical conductivity which is a major defect of Ba0.5Sr0.5CoxFe1-xO3-δ (BSCF) was improved by Ni-doping. The compound with y = 0.20 and 0.25 demonstrated a conductivity of σ = 62.59 S-cm-1 and 72.64 S-cm-1 at 400°C and 77.01 S-cm-1 and 89.68 S-cm-1 at 500°C.

  14. Effect of anode firing on the performance of lanthanum and nickel co-doped SrTiO3 (La0.2Sr0.8Ti0.9Ni0.1O3-δ) anode of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Park, Byung Hyun; Choi, Gyeong Man

    2015-10-01

    Perovskite oxides have potential for use as alternative anode materials in solid oxide fuel cells (SOFCs) due to stability in anode atmosphere; donor-doped SrTiO3 (e.g., La0.2Sr0.8TiO3-δ) is a good candidate for this purpose. Electro-catalytic nanoparticles can be produced in oxide anodes by the ex-solution method, e.g., by incorporating Ni into a perovskite oxide in air, then reducing the oxide in H2 atmosphere. In this study, we varied the temperature (1100, 1250 °C) and atmosphere (air, H2) of La0.2Sr0.8Ti0.9Ni0.1O3-δ (LSTN) anode firing to control the degree of Ni ex-solution and microstructure. LSTN fired at 1250 °C in H2 showed the best anodic performance for scandia-stabilized zirconia (ScSZ) electrolyte-supported cells in H2 and CH4 fuels due to the favorable microstructure and Ni ex-solution.

  15. Frequency-dependent impedance spectroscopy on the 0.925(Bi0.5Na0.40K0.10)TiO3-0.075(Ba0.70Sr0.30)TiO3 ceramic

    NASA Astrophysics Data System (ADS)

    Ullah, Amir; Rahman, Muneeb-ur; Iqbal, Muhammad Javid; Ahn, Chang Won; Kim, Ill Won; Ullah, Aman

    2016-06-01

    The electrical properties of the 0.925(Bi0.5(Na0.40K0.10)TiO3-0.075(Ba0.70Sr0.30)TiO3 (0.925BNKT-0.075BST) ceramic were investigated by using AC impedance spectroscopy over a wide range of frequencies (10 -2 ~ 105 Hz). The X-ray diffraction patterns confirmed the formation of a single-phase compound. A single semicircular arc in the impedance spectrum indicates that the main contribution of the bulk resistance ( R b ) were due to grain effects, with Rb decreasing with increasing temperature. The conductivity of the ceramics increased with increasing temperature, and the activation energy resulting from the DC conductivity was 0.86 eV. The ceramic displayed a typical negative temperature coefficient of resistance (NTCR) behavior, like that of a semiconductor.

  16. Giant magnetoelectric coefficient of Pb(Zr0.52Ti0.48)O3/La0.67Sr0.33MnO3 thin film grown on 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystal assisted by metglas

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Yang, Chao; Li, Junyu; Liu, Xiangli; Mei, Zhiheng; Ye, Ang; Liang, Kun; Ma, Zhijun; Qi, Yajun; Yang, Xiaofei; Zhang, Tianjin

    2017-02-01

    Pb(Zr0.52Ti0.48)O3/La0.67Sr0.33MnO3 heterostructures grown on 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single-crystal substrates with (001), (110), and (111) crystallographic orientations were fabricated. Their structural and ferroelectric properties were studied in detail, and their magnetoelectric properties assisted by metglas were also investigated. The results show that the maximum magnetoelectric coefficient of 17 V/(cm·Oe) can be achieved at a very low dc bias magnetic field of 14 Oe for the (001)-oriented heterostructure, which is related to the magnetic-mechanical-electric interaction between the magnetic and ferroelectric phases. This work provides a new route for realizing an extremely high magnetoelectric coefficient in a thin-film heterostructure at a low dc bias magnetic field.

  17. Temperature-composition phase diagrams for Ba1-xSrxFe2As2 (0 ≤x≤ 1) and superconducting Ba0.5Sr0.5(Fe1-yCoy)2As2 (0 ≤y≤ 0.141)

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan E.; Saparov, Bayrammurad; Lin, Wenzhi; Calder, Stuart; Li, Qing; Kalinin, Sergei V.; Pan, Minghu; Christianson, Andrew D.; Sefat, Athena S.

    2012-11-01

    Single crystals of mixed alkaline earth metal iron arsenide materials, Ba1-xSrxFe2As2 with 0.185 ≤ x ≤ 0.762 and Ba0.5Sr0.5(Fe1-yCoy)2As2 with 0.028 ≤ y ≤ 0.141, are synthesized via the self-flux method. Ba1-xSrxFe2As2 display spin-density wave features (TN) at temperatures intermediate to the parent materials, x = 0 and 1, with TN(x) following an approximately linear trend. Cobalt doping of the 1:1 Ba:Sr mixture, Ba0.5Sr0.5(Fe1-yCoy)2As2, results in a superconducting dome with maximum transition temperature of TC = 19 K at y = 0.092, close to the maximum transition temperatures observed in unmixed A(Fe1-yCoy)2As2; however, an annealed crystal with y = 0.141 showed a TC increase from 11 to 16 K with a decrease in Sommerfeld coefficient γ from 2.58(2) to 0.63(2) mJ/(K2 mol atom). For the underdoped y = 0.053, neutron diffraction results give evidence that TN and structural transition (TO) are linked at 78 K, with anomalies observed in magnetization, resistivity, and heat capacity data, while a superconducting transition at TC ≈ 6 K is seen in resistivity and heat capacity data. Scanning tunneling microscopy measurements for y = 0.073 give Dynes broadening factor Γ = 1.15 and a superconducting gap Δ = 2.37 meV with evidence of surface inhomogeneity.

  18. Solid oxide fuel cell cathodes prepared by infiltration of LaNi 0.6Fe 0.4O 3 and La 0.91Sr 0.09Ni 0.6Fe 0.4O 3 in porous yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Lee, Shiwoo; Bevilacqua, M.; Fornasiero, P.; Vohs, J. M.; Gorte, R. J.

    SOFC composite electrodes of yttria-stabilized zirconia (YSZ) and either LaNi 0.6Fe 0.4O 3 (LNF) or La 0.91Sr 0.09Ni 0.6Fe 0.4O 3 (LSNF) were prepared by infiltration to a loading of 40 wt% of the perovskite into porous YSZ using aqueous solutions of the nitrate salts. XRD measurements indicated that the perovskite structures were formed following calcination at 850 °C, at which temperature the LNF and LSNF form small particles that coat the YSZ pores. Heating to 1100 °C causes the particles to form a dense film over the YSZ but caused no solid-state reaction. Calcination of an LNF-YSZ composite to 1200 °C led to an expansion of the LNF lattice, suggesting introduction of Zr(IV) into the perovskite; further heating to 1300 °C caused the formation of La 2Zr 2O 7. For 850 °C calcination, the electrode performance of both LNF-YSZ and LSNF-YSZ composites was similar to that reported for composites of YSZ and La 0.8Sr 0.2FeO 3 (LSF), with a current-independent impedance of approximately 0.1 Ω cm 2 at 700 °C in air. For 1100 °C calcination, both LNF-YSZ and LSNF-YSZ composites exhibited impedances that decreased strongly under both anodic and cathodic polarization. The implications of these results for preparing electrodes based on LNF and LSNF are discussed.

  19. Critical phenomena and estimation of the spontaneous magnetization by the analysis of the magnetic entropy change for the Nd0.6Sr0.3Ca0.1Mn0.975Fe0.025O3 manganite

    NASA Astrophysics Data System (ADS)

    Laouyenne, M. R.; Baazaoui, M.; Mahjoub, Sa.; Hlil, E. K.; Oumezzine, M.

    2017-02-01

    In this actual work, we have already studied the universal critical behavior in perovskite-manganite compound Nd0.6Sr0.3Ca0.1Mn0.975Fe0.025O3. An approve of a second order ferromagnetic-paramagnetic phase transition through the magnetic measurements using Banerjee's criteria is completely clarified. The critical exponents values near the critical point TC are determined through several techniques such as modified Arrott plot (MAP), Kouvel Fisher (KF) method and critical isotherm (CI). The critical exponents values obtained agree toughly with the mean field model (β = 0.478 ± 0.01 with TC = 232 K ± 0.9 K and γ = 1.039 ± 0.02 with TC = 230 K ± 0.94 K). We have confirmed the obtained critical exponents with the single scaling equation of: M(H ,ε) =εβf ±(H /ε(β+γ)) With ε = (T-TC)/TC is the reduced temperature. We have verified the agreement between two different methodologies of determining the spontaneous magnetization (MS) in Nd0.6Sr0.3Ca0.1Mn0.975Fe0.025O3 manganite. Used the spontaneous magnetization (MS) obtained through the magnetic entropy change (ΔSM) vs M2; we have fitted MS(T) curves to obtain an excellent agreement between the theoretical and experimental value of β. This result leads to confirm the validity of the magnetic entropy change approach in order to estimate the spontaneous magnetization MS in a ferromagnetic system.

  20. Charge transfer to the local singlet states as a function of Li content in La 2Cu 1- xLi xO 4 and La 1.85Sr 0.15Cu 1- xLi xO 4

    NASA Astrophysics Data System (ADS)

    Rykov, Alexandre I.; Yasuoka, Hiroshi; Ueda, Yutaka

    1995-02-01

    Magnetic susceptibility (χ) and NMR/NQR measurements were performed on La 2Cu 1- xLi xO 4 0≤ x≤0.5) and La 1.85Sr 0.15Cu 1- xLi xO 4 (0≤ x≤0.425). The narrow 63Cu NQR line at νQ = 46.3 MHz (1.3 K) is detected in La 2Cu 0.5Li 0.5O 4. This frequency is higher than all 63Cu-NQR frequencies found so far in all the cuprates. Moreover, a further increase of νQ is observed in the solid solutions La 2Cu 1- xLi xO 4 with decreasing x. Corresponding electric field gradients (EFG's) are considered in terms of ionic and cluster models. The 3d hole density nx2- y2 ≈ 1 and the radial average < r-3> ≈ 9.5 a.u. are derived from the EFG's, suggesting the d 9L state of the formally trivalent copper. The antiferromagnetic ordering is rapidly suppressed as a function of x in the La 2Cu 1- xLi xO 4, and for x ≥ 0.03 we find TN ≈ 0. The evolution of χ vs. x shows a gradual decrease of Cu spin susceptibility and its disappearance in the diamagnetic La 2Cu 0.5Li 0.5O 4, in which χ = -6.7 × 10 -5 cm 3/mole is composed of Van Vleck and core terms. The electronic state is implied to be a local singlet ( 1A 1g) of primarily d 9L character. The quadrupole signature of the local singlet in the range 46.3 ≤ 63ν Q ≤ 47.0 MHz is observed for x > 0.15 in both systems, La 2Cu 1- xLi xO 4 and La 1.85Sr 0.15Cu 1- xLi xO 4. The differentiation of charge between local singlet and conductivity band states is discussed.

  1. Anode-supported single-chamber solid oxide fuel cell based on cobalt-free composite cathode of Nd0.5Sr0.5Fe0.8Cu0.2O3-δ-Sm0.2Ce0.8O1.9 at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Yin, Jie-Wei; Zhang, Chunming; Yin, Yi-Mei; Shi, Huangang; Lin, Ye; Lu, Jun; Ma, Zi-Feng

    2015-07-01

    As a candidate of cathode material of single-chamber solid oxide fuel cell (SC-SOFC), cobalt-free mixed ionic electronic conductor (MIEC) Nd0.5Sr0.5Fe0.8Cu0.2O3-δ (NSFCu) is synthesized by sol-gel method with ethylene diamine tetraacetic acid and citric acid as co-complexing agents. The XRD shows NSFCu is stable after CO2 treatment and chemical compatible with SDC at high temperatures. CO2-TPD (CO2-temperature programmed desorption) demonstrates both CO2 adsorption and desorption phenomenon on NSFCu surface. However, the polarization resistances (Rp) of NSFCu and SDC (10:4 in weight) composite electrodes showed no decay in 5% CO2. Single cell using N2-O2-CH4 mixed gas (CH4 to O2 ratio = 1.5) as fuel shows maximum power density of 635 mW cm-2 at 700 °C. These results suggest that NSFCu-SDC is a promising composite cathode material for application in single-chamber solid oxide fuel cell.

  2. Studies on the percolation limit of Ce0.9Gd0.1O1.95 in La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.9Gd0.1O1.95 nanocomposites for solid oxide fuel cells application

    NASA Astrophysics Data System (ADS)

    Jamale, Atul P.; Jadhav, S. T.; Dubal, S. U.; Bhosale, C. H.; Jadhav, L. D.

    2015-10-01

    A large difference in thermal expansion coefficient of electrode and electrolyte leads to imperfect electrode/electrolyte interface and hence significant polarization losses in solid oxide fuel cells. To overcome the difficulties associated with electrode and electrode/electrolyte interface, there is need to fabricate the composite cathode. Thus the present paper deals with study of La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)-Ce0.9Gd0.1O1.95(GDC) nanocomposite with different fractions of GDC obtained by physical mixing of combustion synthesized nanopowders. No secondary phases were observed upon sintering at 1100 °C for 2 h affirming the chemical compatibility between LSCF and GDC. The composites with relatively high GDC% have higher density as a consequence of rapid grain growth and less conductivity. The nanocomposite with 50% of GDC showed electric conductivity of 30 Scm-1 at 500 °C and low area specific resistance of 106 Ω cm2 with 10 μs relaxation time at 200 °C.

  3. Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3-δ- Sm0.2Ce0.8O1.9) and Schottky barrier

    NASA Astrophysics Data System (ADS)

    Afzal, Muhammad; Saleemi, Mohsin; Wang, Baoyuan; Xia, Chen; Zhang, Wei; He, Yunjuan; Jayasuriya, Jeevan; Zhu, Bin

    2016-10-01

    Perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) is synthesized via a chemical co-precipitation technique for a low temperature solid oxide fuel cell (LTSOFC) (300-600 °C) and electrolyte-layer free fuel cell (EFFC) in a comprehensive study. The EFFC with a homogeneous mixture of samarium doped ceria (SDC): BSCF (60%:40% by weight) which is rather similar to the cathode (SDC: BSCF in 50%:50% by weight) used for a three layer SOFC demonstrates peak power densities up to 655 mW/cm2, while a three layer (anode/electrolyte/cathode) SOFC has reached only 425 mW/cm2 at 550 °C. Chemical phase, crystal structure and morphology of the as-prepared sample are characterized by X-ray diffraction and field emission scanning electron microscopy coupled with energy dispersive spectroscopy. The electrochemical performances of 3-layer SOFC and EFFC are studied by electrochemical impedance spectroscopy (EIS). As-prepared BSCF has exhibited a maximum conductivity above 300 S/cm at 550 °C. High performance of the EFFC device corresponds to a balanced combination between ionic and electronic (holes) conduction characteristic. The Schottky barrier prevents the EFFC from the electronic short circuiting problem which also enhances power output. The results provide a new way to produce highly effective cathode materials for LTSOFC and semiconductor designs for EFFC functions using a semiconducting-ionic material.

  4. Liquid plasma sprayed nano-network La0.4Sr0.6Co0.2Fe0.8O3/Ce0.8Gd0.2O2 composite as a high-performance cathode for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Lin; Li, Chang-Jiu; Li, Cheng-Xin; Yang, Guan-Jun; Huang, Kevin; Liu, Meilin

    2016-09-01

    Here, we investigate the feasibility of using a liquid plasma spray process as a novel method for the cost-effective fabrication of a nanonetwork of La0.4Sr0.6Co0.2Fe0.8O3-δ (LSCF) and Ce0.8Gd0.2O2-δ (GDC) composite as a high-performance cathode for intermediate-temperature solid oxide fuel cells. A suspension containing well-dispersed nanosized GDC particles in an LSCF precursor solution is designed as the feedstock. The effects of GDC concentration in the suspension on the phase composition, microstructure, and electrochemical performance of the resulting cathode are studied. When the GDC concentration increases to 15 g L-1, the nanosized GDC particles distribute uniformly and continuously on the LSCF backbone to form a porous network structure. The electrochemical studies further indicate that the cathode polarization decreased with the increase in GDC concentration from 0 g L-1 to 15 g L-1, whereas a further increase in the GDC concentration increases the cathode polarization instead. At 600 and 750 °C, the cathode prepared using 15 g L-1 GDC concentration exhibits an impressive area-specific polarization resistance (Rp) of 0.1 Ω cm2 and 0.009 Ω cm2, respectively. Finally, the Rp of the optimal cathode almost does not change after the isothermal dwelling at 650 °C for 350 h.

  5. The role of iron in the formation of the magnetic structure and related properties of La 0.8Sr 0.2Co 1-xFe xO 3 ( x=0.15, 0.2, 0.3)

    NASA Astrophysics Data System (ADS)

    Klencsár, Z.; Németh, Z.; Kuzmann, E.; Homonnay, Z.; Vértes, A.; Hakl, J.; Vad, K.; Mészáros, S.; Simopoulos, A.; Devlin, E.; Kallias, G.; Grenéche, J. M.; Cziráki, Á.; De, S. K.

    La 0.8Sr 0.2Co 1-xFe xO 3 ( x=0.15, 0.2, 0.3) samples were studied by means of AC magnetic susceptibility, magnetization, magnetoresistance and 57Fe Mössbauer spectrometry. Iron was found to take on a high spin 3d 5- α electronic state in each of the samples, where α refers to a partly delocalized 3d electron. The compounds were found to exhibit a spin-cluster glass transition with a common transition temperature of ˜53 K. The spin-cluster glass transition is visualized in the 57Fe Mössbauer spectra as the slowing down of magnetic relaxation below ˜70 K, thereby showing that iron takes part in the formation of the glassy magnetic phase. The paramagnetic-like phase found at higher temperatures is identified below Tc≈195 K as being composed of weakly interacting, magnetically ordered nanosized clusters of magnetic ions in part with a magnetic moment oriented opposite to the net magnetic moment of the cluster. For each of the samples a considerable low-temperature negative magnetoresistance was found, whose magnitude in the studied range decreases with increasing iron concentration. The observed results obtained on the present compounds are qualitatively explained assuming that the absolute strengths of magnetic exchange interactions are subject to the relation ∣ JCo-Co∣<∣ JFe-Co∣<∣ JFe-Fe∣.

  6. Normal-state anomalies in the transport and magnetic properties in the (La1-xPrx)1.85Sr0.15CuO4 system and their correlation with Tc suppression: A signature of the effects of orthorhombic distortions

    NASA Astrophysics Data System (ADS)

    Musa, J. E.; García, S.; Rothier de Amaral, M., Jr.; Salim de Amorim, H.; Giordanengo, B.; Baggio-Saitovitch, E. M.; Pagliuso, P. J. G.; Rettori, C.; Yelon, W. B.; Malik, S. K.

    1999-03-01

    The correlation between the normal-state anomalies observed in the magnetic and transport properties of the (La1-xPrx)1.85Sr0.15CuO4 system with 0<=x<=0.5 was studied. The x-ray-diffraction patterns revealed a linear increase of the (a-b) orthorhombic parameter with the Pr content. The resistivity curves showed an increasing deviation from linearity below ~100 K. This anomaly was properly accounted by a logarithmic term, whose coefficient C linearly increases with x. Superconducting quantum interference device measurements of the normal-state magnetic susceptibility evidenced a deviation from the Pr3+ Curie-Weiss behavior in the same temperature range for which the resistivity anomaly occurs. This behavior is explained in terms of an induced magnetic moment at the CuO2 layers under strain. A Dzialoshinsky-Moriya interaction, associated to the orthorhombic distortions, is proposed to be the source of a weak canted ferromagnetic component, which develops in conjunction with an enhancement of the antiferromagnetic correlations. A comprehensive picture of the conduction mechanism for the whole system is presented in terms of a Kondo-like scattering of the mobile holes by the spin fluctuations at the conduction planes. Tc suppression was found to correlate with C, suggesting that the excitation which interacts with the carriers in the normal state is relevant for superconductivity.

  7. Enhancing the oxygen permeation rate of Zr(0.84)Y(0.16)O(1.92)-La(0.8)Sr(0.2)Cr(0.5)Fe(0.5)O(3-δ) dual-phase hollow fiber membrane by coating with Ce(0.8)Sm(0.2)O(1.9) nanoparticles.

    PubMed

    Liu, Tong; Wang, Yao; Yuan, Ronghua; Gao, Jianfeng; Chen, Chusheng; Bouwmeester, Henny J M

    2013-10-09

    Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-δ (YSZ-LSCrF) dual-phase composite hollow fiber membranes were prepared by a combined phase-inversion and sintering method. The shell surface of the hollow fiber membrane was modified with Ce0.8Sm0.2O1.9 (SDC) via a drop-coating method. As the rate of oxygen permeation of the unmodified membrane is partly controlled by the surface exchange kinetics, coating of a porous layer of SDC on the shell side (oxygen reduction side) of the hollow fiber membrane was found to improve its oxygen permeability. Rate enhancements up to 113 and 48% were observed, yielding a maximum oxygen flux of 0.32 and 4.53 mL min(-1) cm(-2) under air/helium and air/CO gradients at 950 °C, respectively. Excess coating of SDC was found to induce significant gas phase transport limitations and hence lower the rate of oxygen permeation. A model was proposed to calculate the length of triple phase boundaries (TPBs) for the coated dual-phase composite membrane and to explain the effect of coating on the oxygen permeability.

  8. Metastability and inverse magnetocaloric effect in doped manganite (Nd(0.25)Sm(0.25)Sr(0.5)MnO3) and ferromagnetic shape memory alloy (Ni2Mn(1.36)Sn(0.64)): a comparison.

    PubMed

    Chatterjee, S; Giri, S; Majumdar, S

    2012-09-12

    The manganite Nd(0.25)Sm(0.25)Sr(0.5)MnO(3) (NSSMO) shows a first-order metal to insulator transition on cooling, which is concomitant with a magnetic transition from the ferromagnetic to antiferromagnetic state. In some respect the sample shows a striking similarity with Ni-Mn-Sn based ferromagnetic shape memory alloys (FSMAs) undergoing a first-order magneto-structural transition, and efforts have been made to highlight the similarities and dissimilarities of the studied manganite with one such FSMA of composition Ni(2)Mn(1.36)Sn(0.64). From our transport and magnetic investigations, the region of transition in the NSSMO is found to be highly metastable, with a clear indication of a magnetically arrested state which persists even when the sample is cooled down to the lowest temperature of measurement. Interestingly, the studied manganite shows an inverse magnetocaloric effect similar to the FSMA. However, a striking difference between the two compositions is evident in the low-temperature magneto-transport behavior: while a clear signature of tunneling magnetoresistance is present in NSSMO due to the coexisting metallic and insulating clusters of nanometer dimension, the studied FSMA do not show such behavior due to the absence of any insulating phase in the intermetallic alloy.

  9. Soft-mode spectroscopy in cubic (Ba0.8Sr0.2)Ti0.95(Zn1/3Nb2/3)0.05O3 by hyper-Raman scattering and the mechanism of the phase transition

    NASA Astrophysics Data System (ADS)

    Nabil, Dhifallah; Hehlen, Bernard; El Marssi, Mimoun; Mohamed, Dammak; Khemakhem, Hamadi

    2016-12-01

    This paper presents a survey of soft modes and their relationship to structural phase transitions. After introducing the concept of a soft mode, the origin of softening is considered from a lattice-dynamical point. The Landau theory approach to structural transitions is then discussed, followed by a generalization of the soft-mode concept through the use of the dynamic order-parameter susceptibility. The hyper-Raman spectra in the cubic phase of (Ba0.8Sr0.2)Ti0.95(Zn1/3Nb2/3)0.05O3 are studied with special emphasis on the lowest-frequency phonon mode. The spectral structure is found to change above the Curie temperature (303-873 K). Soft modes were put forward by Cochran and Anderson about 50 years ago as an explanation of structural phase transitions. Extending Landau's theory of phase transitions, their prediction was that the square of the frequency of the soft mode was proportional to ω0 (T) = C √{ T - TC } where Tc is the transition temperature.

  10. A top-down strategy for the synthesis of mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a cathode precursor for buffer layer-free deposition on stabilized zirconia electrolyte with a superior electrochemical performance

    NASA Astrophysics Data System (ADS)

    Su, Chao; Xu, Xiaomin; Chen, Yubo; Liu, Yu; Tadé, Moses O.; Shao, Zongping

    2015-01-01

    We develop a facile and effective top-down method for the fabrication of mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) oxide with a high specific surface area (∼25 m2 g-1). The original BSCF is first synthesized by the simple EDTA-citric acid complexing method, and then treated in H2O2 to obtain the mesoporous BSCF. The structure and morphology of as-prepared BSCF power is systematically characterized by N2 adsorption/desorption isotherms, XRD, TEM, SEM and ICP techniques. A possible mechanism for the creation of mesoporous BSCF is proposed, in which Ba2+ and Sr2+ dissolve selectively from partial BSCF particles during the catalytic decomposition of H2O2. The electrochemical properties are investigated by the EIS and I-V test in the symmetrical cell and integrated single cell configurations, respectively. The interfacial reaction between BSCF electrode and YSZ electrolyte was suppressed successfully by using the BSCF with high specific surface area to decrease the sintering temperature (800 °C), thus the electrode exhibits high oxygen reduction reaction activity. The solid oxide fuel cell (SOFC) achieves an exciting peak power density of ∼1800 mW cm-2 at 800 °C, signifying the mesoporous BSCF, together with the preparation method, has a good application prospect in the development of SOFCs.

  11. 3.3 V write-voltage Ir/Ca0.2Sr0.8Bi2Ta2O9/HfO2/Si ferroelectric-gate field-effect transistors with 109 endurance and good retention

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Takahashi, Mitsue; Sasaki, Yoshikazu; Kusuhara, Masaki; Sakai, Shigeki

    2017-04-01

    Ir/Ca0.2Sr0.8Bi2Ta2O9 (CSBT)/HfO2/Si ferroelectric-gate field-effect transistors (FeFETs), which were appropriate for low-voltage 3.3 V operations, were developed. The key to the success was the use of N2-dominant gas mixed with a small amount of O2 in a gas flow during the annealing of the FeFETs at 780 °C for CSBT polycrystallization. The Ir gate was newly developed for overcoming the problem of Pt peeling off from the CSBT surface during the novel annealing process. For maximizing the memory windows of the FeFETs, the optimum flow rate of O2 mixed with 1000-sccm-fixed N2 was found to be as low as 0.5 sccm. The novel annealing process suppressed the SiO2 interfacial layer growth to 2.6 nm thickness. The annealing also improved CSBT ferroelectricity. A 109 cycle endurance and a 105 s retention were demonstrated by 3.3 V writing of the FeFETs.

  12. Instability and growth of nanoscale Ce0.8Gd0.2O1.9/NiO infiltrate in Sr0.94Ti0.9Nb0.1O3-Zr0.84Y0.16O1.92 anodes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Theil Kuhn, Luise; Stanley Jørgensen, Peter; Reddy Sudireddy, Bhaskar; Jonna Bentzen, Janet; Bernuy-Lopez, Carlos; Veltzé, Sune; Ramos, Tânia

    2014-07-01

    Microstructural evolution of Ce0.8Gd0.2O1.9/NiO (CGO/NiO) co-infiltrated nanoparticles in Sr0.94Ti0.9Nb0.1O3-Zr0.84Y0.16O1.92 (STN94-YSZ) anodes for solid oxide fuel cells (SOFCs) is investigated during electrochemical testing in a symmetric cell setup. The CGO/NiO infiltrated symmetric cells were subjected to varying atmospheres of H2O/H2 between 650 and 850 °C and characterized by electrochemical impedance spectroscopy. Analytical high resolution transmission electron microscopy showed that the CGO/NiO infiltrate was found to coalesce and grow from an indistinguishable CGO/NiO fluorite structure of an average diameter of 5 nm to individual well-connected, but phase-separated, CGO and Ni particles of 50 nm in average. This study confirms that instability and growth of CGO/NiO infiltrates in STN-based SOFC electrodes affect the morphology and can potentially be linked to reported losses in electrochemical performance.

  13. One dimensional La0.8Sr0.2Co0.2Fe0.8O3-δ/Ce0.8Gd0.2O1.9 nanocomposite cathodes for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhao, Erqing; Jia, Zheng; Zhao, Li; Xiong, Yueping; Sun, Chunwen; Brito, Manuel E.

    2012-12-01

    One dimensional La0.8Sr0.2Co0.2Fe0.8O3-δ (LSCF) nanorod/Ce0.8Gd0.2O1.9 (GDC) nanoparticle composite cathode has been fabricated by infiltrating the GDC precursor solution into LSFC scaffolds consisting of LSCF nanorods prepared with an electrospinning technique. For comparison, LSCF/GDC nanoparticle cathodes are also obtained using the same method. Impedance analysis reveals that nanorod structured LSCF/GDC cathode has a better electrochemical performance than that of the pure nanorod LSCF cathode, achieving a polarization resistance of 0.10 Ω cm2 at 650 °C for the GDC loading of 160 μL, corresponding to about 50 wt.% GDC. Especially, the polarization resistance of nanorod LSCF/GDC cathode with 160 μL loading displays 5 times smaller than that of LSCF/GDC nanoparticle cathode with an optimal GDC loading of 80 μL at 650 °C, mainly due to its optimal structure with larger LSCF/GDC boundaries and higher porosity. These results imply that LSCF nanorod/GDC nanoparticle composite is a promising cathode material for intermediate temperature solid oxide fuel cell (IT-SOFC).

  14. High-performance solid oxide fuel cells based on a thin La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte membrane supported by a nickel-based anode of unique architecture

    NASA Astrophysics Data System (ADS)

    Sun, Haibin; Chen, Yu; Chen, Fanglin; Zhang, Yujun; Liu, Meilin

    2016-01-01

    Solid oxide fuel cells (SOFCs) based on a thin La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolyte membrane supported by a nickel-based anode often suffers from undesirable reaction/diffusion between the Ni anode and the LSGM during high-temperature co-firing. In this study, a high performance intermediate-temperature SOFC is fabricated by depositing thin LSGM electrolyte membranes on a LSGM backbone of unique architecture coated with nano-sized Ni and Gd0.1Ce0.9O2-δ (GDC) particles via a combination of freeze-drying tape-casting, slurry drop-coating, and solution infiltration. The thickness of the dense LSGM electrolyte membranes is ∼30 μm while the undesirable reaction/diffusion between Ni and LSGM are effectively hindered because of the relatively low firing temperature, as confirmed by XRD analysis. Single cells show peak power densities of 1.61 W cm-2 at 700 °C and 0.52 W cm-2 at 600 °C using 3 vol% humidified H2 as fuel and ambient air as oxidant. The cell performance is very stable for 115 h at a constant current density of 0.303 A cm-2 at 600 °C.

  15. A CO2-tolerant La2NiO4+δ-coated PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Jin; Zhang, Qian; Qiu, Peng; Jia, Lichao; Chi, Bo; Pu, Jian; Li, Jian

    2017-02-01

    La2NiO4+δ (LN)-coated PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF) composite cathode, designated as PBSCF-LN, for the intermediate temperature solid oxide fuel cells (IT-SOFCs) is prepared by solution infiltration, and investigated comparatively with single phase PBSCF cathode in the half and full cells using Ag and/or Pt paste as the current collector. Compared with Pt, Ag current collector results in a decrease of cathode polarization resistance (RP) by an order of magnitude, which suggests that Ag is electrocatalytically active and not suitable for the use of studying the cathode performance of IT-SOFCs. The RP value of PBSCF-LN cathode is significantly lower than that of PBSCF cathode, no matter whether Pt or Ag current collector is used for the measurement. High power densities ranging from 0.24 to 0.94 W cm-2 at temperatures between 600 and 750 °C are achieved using a full cell with PBSCF-LN cathode. Upon exposure to a CO2-rich atmosphere, carbonate particles are formed on the surface of PBSCF cathode, causing irreversible degradation of electrochemical performance. In contrast, the surface of PBSCF-LN cathode remains clean, and its performance degradation due to CO2 adsorption is recoverable.

  16. Characterization of Cu, Ag and Pt added La 0.6Sr 0.4Co 0.2Fe 0.8O 3- δ and gadolinia-doped ceria as solid oxide fuel cell electrodes by temperature-programmed techniques

    NASA Astrophysics Data System (ADS)

    Huang, Ta-Jen; Shen, Xian-De; Chou, Chien-Liang

    Cu, Ag and Pt added La 0.6Sr 0.4Co 0.2Fe 0.8O 3- δ (LSCF) and gadolinia-doped ceria (GDC) were analyzed by the temperature-programmed techniques for their characteristics as either the cathode or the anode of the solid oxide fuel cells (SOFCs). Temperature-programmed oxidation using CO 2 was used to characterize the cathode materials while temperature-programmed reduction (TPR) using H 2 and TPR using CO were used to characterize the anode materials. These techniques can offer an easy screening of the materials as the SOFC electrodes. The effects of adding Cu, Ag and Pt to LSCF for the cathodic reduction activity and the anodic oxidation activity are different-Cu > Ag > Pt for reduction and Pt > Cu > Ag for oxidation. The CO oxidation activities are higher than the H 2 oxidation activities. Adding GDC to LSCF can increase both reduction and oxidation activities. The LSCF-GDC composite has a maximum activity for either reduction or oxidation when LSCF/GDC is 2 in weight.

  17. Magnetic field, frequency and temperature dependence of complex conductance of ultrathin La1.65Sr0.45CuO4/La2CuO4 films and the organic superconductors κ-(BEDT-TTF)2Cu[N(CN)2]Br

    DOE PAGES

    V. A. Gasparov; Bozovic, I.; He, Xi; ...

    2015-09-01

    In this study, we used atomic-layer molecular beam epitaxy (ALL-MBE) to synthesize bilayer films of a cuprate metal (La1.65Sr0.45CuO4) and a cuprate insulator (La2CuO4), in which interface superconductivity occurs in a layer that is just one-half unit cell thick. We have studied the magnetic field and temperature dependence of the complex sheet conductance, σ(ω), of these films, and compared them to κκ-(BEDT-TTF)2Cu[N(CN)2]Br single crystals. The magnetic field H was applied both parallel and perpendicular to the 2D conducting layers. Experiments have been carried out at frequencies between 23 kHz and 50 MHz using either two-coil mutual inductance technique, or themore » LC resonators with spiral or rectangular coils. The real and the imaginary parts of the mutual-inductance M(T,ω) between the coil and the sample were measured and converted to complex conductivity. For H perpendicular to the conducting layers, we observed almost identical behavior in both films and κ-Br single crystals: (i) the transition onset in the inductive response, Lk–1(T) occurs at a temperature lower by 2 K than in Re σ(T), (ii) this shift is almost constant with magnetic field up to 8 T; (iii) the vortex diffusion constant D(T) is exponential due to pinning of vortex cores. These results can be described by the extended dynamic theory of the Berezinski–Kosterlitz–Thouless (BKT) transition and dynamics of bound vortex–antivortex pairs with short separation lengths.« less

  18. Structural and magnetic studies on perovskite rare-earth manganites (Nd1-xGdx)0.55Sr0.45MnO3 (x=0, 0.1, 0.3 and 0.5): Observation of two-step magnetization and negative magnetization behavior

    NASA Astrophysics Data System (ADS)

    Kamel, R.; Tozri, A.; Dhahri, E.; Hlil, E. K.; Bessais, L.

    2017-03-01

    The effect of smaller and heavy rare-earth cation Gd3+(rGd3+=1.107 Å and SGd3+ = 7 / 2) on the magnetic and structural properties of Nd0.55Sr0.45MnO3 has been investigated. The orthorhombic structure (space group, Pnma) evolves from orbital distorted-O" type symmetry (c > a) for x=0 to orbital ordered-O' type (a > c) for x ≥ 0.1 . Diffraction data shows the crucial role of the shear strains involved in the structure. The magnetization measurement shows two magnetic transitions occurring in compounds x≥0.1. Spectacular feature was observed in the heavily Gd-doped sample (x=0.5) such as: the continuous increase of M with high magnetic field, the low value of saturation magnetization at low temperature, the metamagnetic transition, and the presence of exchange bias. These findings are interpreted as the fingerprints of the phase separation. Our result indicates that the martensitic accommodation strain, in addition to quenched disorders, may be an alternative approach to understand the physical phase separation. The interesting feature for x=0.5 sample is the negative magnetization observed at low field. Result is interpreted in terms of two interacting networks, with negative exchange interaction between the (Gd+Nd) and the ferromagnetic Mn lattices. The disappearance of the negative magnetization for magnetic field well below the coercive field ( 0.047 T) suggest that the magnetic properties of x=0.5 behaves as an inhomogeneous ferrimagnet at low field.

  19. Improved performance and stability of Ag-infiltrated nanocomposite La0.6Sr0.4Co0.2Fe0.8O3-δ-(Y2O3)0.08(ZrO2)0.92 oxygen electrode for H2O/CO2 co-electrolysis

    NASA Astrophysics Data System (ADS)

    Fan, Hui; Han, Minfang

    2016-12-01

    An Ag-infiltrated nanocomposite LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ)-YSZ (yttria stabilized zirconia) oxygen electrode is prepared for co-electrolysis of steam and CO2. Scanning electron microscopy (SEM) associated with energy dispersive X-ray spectroscopy (EDS) is employed to verify that nano-Ag particles are formed into the porous LSCF-YSZ electrode. Polarization curves and electrochemical impedance spectra (EIS) of the cell as well as long-term durability are investigated. In comparison with the Ag-free cell, the Ag-loaded cell exhibited improved performance and long-term stability when 45% H2O, 45% CO2, and 10% H2 is introduced as inlet gas. With infiltration of metal Ag, the ohmic resistance of the cell decreases from 0.14 Ω cm2 to 0.11 Ω cm2, and the polarization resistance from 0.30 Ω cm2 to 0.17 Ω cm2 at 800 °C. No significant deterioration of the Ag-infiltrated cell is observed when operating for 200 h at 1.3 V and 750 °C. With respect to varied H2O/CO2 ratio (1:2, 1:1, and 2:1) in feed gas, higher H2O percent content is resulted into higher cell performance, despite the fact that varied inlet gas composition did not dramatically influence the cell performance.

  20. Polarization-Induced Interface and Sr Segregation of in Situ Assembled La0.6Sr0.4Co0.2Fe0.8O3-δ Electrodes on Y2O3-ZrO2 Electrolyte of Solid Oxide Fuel Cells.

    PubMed

    Chen, Kongfa; Li, Na; Ai, Na; Cheng, Yi; Rickard, William D A; Jiang, San Ping

    2016-11-23

    Application of cobaltite-based electrodes such as La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) on Y2O3-ZrO2 (YSZ) electrolyte in solid oxide fuel cells (SOFCs) generally requires the use of a doped ceria barrier layer to prevent the interaction between LSCF and YSZ during sintering at high temperatures. In this paper, we report for the first time an in situ assembly approach to directly incorporate LSCF cathode to YSZ electrolyte without the use of a doped ceria barrier layer and without presintering at high temperatures. A Ni-YSZ anode-supported YSZ electrolyte cell with an in situ assembled LSCF electrode exhibits a peak power density of 1.72 W cm(-2) at 750 °C. However, the cell performance degrades significantly at 500 mAcm(-2) and 750 °C. The results indicate that cathodic polarization not only induces the formation of the interface but also accelerates the Sr segregation. The segregated Sr migrates to the LSCF electrode/YSZ electrolyte surface and forms an SrO layer. Using a Sr-free LaCoO3-δ composite cathode overcomes the Sr segregation problem, showing an excellent peak power density of 1.2 Wcm(-2) and good stability at 750 °C for over 100 h. The present study shows that cobaltite-based perovskites can be directly used on YSZ-based electrolyte via the in situ assembly providing an effective means to advance the application of highly active mixed ionic/electronic conducting cathodes to YSZ electrolyte-based SOFCs.

  1. Magnetic field, frequency and temperature dependence of complex conductance of ultrathin La1.65Sr0.45CuO4/La2CuO4 films and the organic superconductors κ-(BEDT-TTF)2Cu[N(CN)2]Br

    NASA Astrophysics Data System (ADS)

    Gasparov, V. A.; He, Xi; Dubuis, G.; Pavuna, D.; Kushch, N. D.; Yagubskii, E. B.; Schlueter, J. A.; Bozovic, I.

    2015-09-01

    We used atomic-layer molecular beam epitaxy (ALL-MBE) to synthesize bilayer films of a cuprate metal (La1.65Sr0.45CuO4, LSCO) and a cuprate insulator (La2CuO4, LCO), in which interface superconductivity occurs in a layer that is just one-half unit cell thick. We have studied the magnetic field and temperature dependence of the complex sheet conductance, σ(ω), of these films, and compared them to κ-(BEDT-TTF)2Cu[N(CN)2]Br single crystals. The magnetic field H was applied both parallel and perpendicular to the 2D conducting layers. Experiments have been carried out at frequencies between 23 kHz and 50 MHz using either two-coil mutual inductance technique, or the LC resonators with spiral or rectangular coils. The real and the imaginary parts of the mutual-inductance M(T,ω) between the coil and the sample were measured and converted to complex conductivity. For H perpendicular to the conducting layers, we observed almost identical behavior in both films and κ-Br single crystals: (i) the transition onset in the inductive response, Lk-1(T) occurs at a temperature lower by 2 K than in Reσ(T), (ii) this shift is almost constant with magnetic field up to 8 T; (iii) the vortex diffusion constant D(T) is exponential due to pinning of vortex cores. These results can be described by the extended dynamic theory of the Berezinski-Kosterlitz-Thouless (BKT) transition and dynamics of bound vortex-antivortex pairs with short separation lengths.

  2. Effect of the annealing temperature on the structural and magnetic behaviors of 0.875La0.6Ca0.4MnO3/0.125La0.6Sr0.4MnO3 composition

    NASA Astrophysics Data System (ADS)

    Gharsallah, H.; Bejar, M.; Dhahri, E.; Hlil, E. K.; Sajieddine, M.

    2016-03-01

    The polycrystalline compounds of La0.6Ca0.4MnO3 (S0C1) and La0.6Sr0.4MnO3 (S1C0) were prepared using the citric-gel method. With the resultant nanoparticle powders having crystallite size of 22.51 nm from S0C1 and 27.39 nm from S1C0, the 0.875(S0C1)0.125(S1C0) composition was sintered at different temperatures: SC. 4-1 (at 700 °C), SC. 4-2 (at 900 °C), SC. 4-3 (at 1100 °C) and SC. 4-4 (at 1300 °C). XRD data were analyzed by Rietveld refinement technique. The two S0C1 and S1C0 mother compounds were found to crystallize in the rhombohedral and orthorhombic structure, respectively. The compounds sintered at 700 °C (SC. 4-1) and 900 °C (SC. 4-2) were found to present the two rhombohedral and orthorhombic phases corresponding to the mother compounds, which indicates that no interfacial reaction occurs. However, when augmenting the sintering temperature, the formation of the 0.875(S0C1)0.125(S1C0) new phase was observed. These observations were confirmed from the magnetization study, which revealed that the SC. 4-1 and SC. 4-2 compounds present two magnetic transitions temperature corresponding to the two mother compounds. For higher sintering temperature (1100 and 1300 °C), we have noted the presence of a new magnetic transition corresponding to the composition 0.875(S0C1)0.125(S1C0) compound. The variation of the M(T) curves were discussed in terms of the orthorhombic distortion σ2(Mn-O).

  3. Structural, magnetic, and superconducting properties of pulsed-laser-deposition-grown La1.85 Sr0.15 CuO4 / La2/3 Ca1/3 MnO3 superlattices on (001)-oriented LaSrAlO4 substrates

    DOE PAGES

    Das, S.; Sen, K.; Marozau, I.; ...

    2014-03-12

    Epimore » taxial La1.85 Sr0.15 CuO4 / La2/3 Ca1/3 MnO3 (LSCO/LCMO) superlattices (SL) on (001)- oriented LaSrAlO4 substrates have been grown with pulsed laser deposition (PLD) technique. Their structural, magnetic and superconducting properties have been determined with in-situ reflection high energy electron diffraction (RHEED), x-ray diffraction, specular neutron reflectometry, scanning transmission electron microscopy (STEM), electric transport, and magnetization measurements. We find that despite the large mismatch between the in-plane lattice parameters of LSCO (a = 0.3779 nm) and LCMO (a = 0.387 nm) these superlattices can be grown epitaxially and with a high crystalline quality. While the first LSCO layer remains clamped to the LSAO substrate, a sizeable strain relaxation occurs already in the first LCMO layer. The following LSCO and LCMO layers adopt a nearly balanced state in which the tensile and compressive strain effects yield alternating in-plane lattice parameters with an almost constant average value. No major defects are observed in the LSCO layers, while a significant number of vertical antiphase boundaries are found in the LCMO layers. The LSCO layers remain superconducting with a relatively high superconducting onset temperature of Tconset ≈ 36 K. The macroscopic superconducting response is also evident in the magnetization data due to a weak diamagnetic signal below 10 K for H ∥ ab and a sizeable paramagnetic shift for H ∥ c that can be explained in terms of a vortex-pinning-induced flux compression. The LCMO layers maintain a strongly ferromagnetic state with a Curie temperature of TCurie ≈ 190 K and a large low-temperature saturation moment of about 3.5 (1) μB. These results suggest that the LSCO/LCMO superlattices can be used to study the interaction between the antagonistic ferromagnetic and superconducting orders and, in combination with previous studies on YBCO/LCMO superlattices, may allow one to identify the relevant

  4. Pulsed laser deposition growth of heteroepitaxial YBa2Cu3O7/La0.67Ca0.33MnO3 superlattices on NdGaO3 and Sr0.7La0.3Al0.65Ta0.35O3 substrates

    NASA Astrophysics Data System (ADS)

    Malik, V. K.; Marozau, I.; Das, S.; Doggett, B.; Satapathy, D. K.; Uribe-Laverde, M. A.; Biskup, N.; Varela, M.; Schneider, C. W.; Marcelot, C.; Stahn, J.; Bernhard, C.

    2012-02-01

    Heteroepitaxial superlattices of [YBa2Cu3O7(n)/La0.67Ca0.33MnO3(m)]x (YBCO/LCMO), where n and m are the number of YBCO and LCMO monolayers and x the number of bilayer repetitions, have been grown with pulsed laser deposition on NdGaO3 (110) and Sr0.7La0.3Al0.65Ta0.35O3 (001). These substrates are well lattice matched with YBCO and LCMO and, unlike the commonly used SrTiO3, they do not give rise to complex and uncontrolled strain effects at low temperature. The growth dynamics and the structure have been studied in situ with reflection high-energy electron diffraction and ex situ with scanning transmission electron microscopy, x-ray diffraction, and neutron reflectometry. The individual layers are found to be flat and continuous over long lateral distances with sharp and coherent interfaces and with a well-defined thickness of the individual layer. The only visible defects are antiphase boundaries in the YBCO layers that originate from perovskite unit-cell height steps at the interfaces with the LCMO layers. We also find that the first YBCO monolayer at the interface with LCMO has an unusual growth dynamics and is lacking the CuO chain layer, while the subsequent YBCO layers have the regular Y-123 structure. Accordingly, the CuO2 bilayers at both the LCMO/YBCO and the YBCO/LCMO interfaces are lacking one of their neighboring CuO chain layers and, thus, half of their hole-doping reservoir. Nevertheless, from electric transport measurements on a superlattice with n=2 we obtain evidence that the interfacial CuO2 bilayers remain conducting and even exhibit the onset of a superconducting transition at very low temperature. Finally, we show from dc magnetization and neutron reflectometry measurements that the LCMO layers are strongly ferromagnetic.

  5. Structural, magnetic, and superconducting properties of pulsed-laser-deposition-grown La1.85Sr0.15CuO4/La2/3Ca1/3MnO3 superlattices on (001)-oriented LaSrAlO4 substrates

    NASA Astrophysics Data System (ADS)

    Das, S.; Sen, K.; Marozau, I.; Uribe-Laverde, M. A.; Biskup, N.; Varela, M.; Khaydukov, Y.; Soltwedel, O.; Keller, T.; Döbeli, M.; Schneider, C. W.; Bernhard, C.

    2014-03-01

    Epitaxial La1.85Sr0.15CuO4/La2/3Ca1/3MnO3 (LSCO/LCMO) superlattices on (001)-oriented LaSrAlO4 substrates have been grown with pulsed laser deposition technique. Their structural, magnetic, and superconducting properties have been determined with in situ reflection high-energy electron diffraction, x-ray diffraction, specular neutron reflectometry, scanning transmission electron microscopy, electric transport, and magnetization measurements. We find that despite the large mismatch between the in-plane lattice parameters of LSCO (a =0.3779 nm) and LCMO (a =0.387 nm) these superlattices can be grown epitaxially and with a high crystalline quality. While the first LSCO layer remains clamped to the LaSrAlO4 substrate, a sizable strain relaxation occurs already in the first LCMO layer. The following LSCO and LCMO layers adopt a nearly balanced state in which the tensile and compressive strain effects yield alternating in-plane lattice parameters with an almost constant average value. No major defects are observed in the LSCO layers, while a significant number of vertical antiphase boundaries are found in the LCMO layers. The LSCO layers remain superconducting with a relatively high superconducting onset temperature of Tconset≈36 K. The macroscopic superconducting response is also evident in the magnetization data due to a weak diamagnetic signal below 10 K for H ∥ ab and a sizable paramagnetic shift for H ∥ c that can be explained in terms of a vortex-pinning-induced flux compression. The LCMO layers maintain a strongly ferromagnetic state with a Curie temperature of TCurie≈190 K and a large low-temperature saturation moment of about 3.5(1) μB per Mn ion. These results suggest that the LSCO/LCMO superlattices can be used to study the interaction between the antagonistic ferromagnetic and superconducting orders and, in combination with previous studies on YBa2Cu3O7-x/La2/3Ca1/3MnO3 superlattices, may allow one to identify the relevant mechanisms.

  6. Temperature-dependent emissivity property in La0.7Sr0.3MnO3 films

    NASA Astrophysics Data System (ADS)

    Fan, Desong; Li, Qiang; Dai, Ping

    2016-04-01

    Thermochromic films have been deposited by magnetron sputtering technique on different substrates. The crystallinity and surface morphology of the films have been characterized. Characterization result shows that the films are of perovskite structure. Composition analysis is performed and the result indicated that the element composition of the film can be close to its stoichiometric ratio. Temperature-dependent reflectivity and emissivity are studied. Reflectivity spectra show a downward trend with increasing temperature. Emissivity of the film is large at high temperature and it decreases sharply upon cooling. The emissivity increment at 123-373 K can approach 0.43 at 1.4 Pa sputtering pressure environment, which is attractive for thermal control application in spacecraft.

  7. Anisotropic dispersion of charge stripe fluctuations in La1.75Sr0.25NiO4

    NASA Astrophysics Data System (ADS)

    Tranquada, John; Zhong, Ruidan; Gu, Genda; Reznik, Dmitry; Winn, Barry

    2015-03-01

    It has recently been demonstrated that charge stripe fluctuations can be detected in La2-xSrxNiO4 by inelastic neutron scattering at temperatures close to the charge-ordering transition. The next step is to characterize the dispersion of these excitations. To do this, we have studied a crystal with x = 0 . 25 using the HYSPEC instrument at the Spallation Neutron Source. The clearest picture has been obtained at a temperature of 160 K, where spin order is absent while the charge order is weak but finite. The effective observation window is limited to E < 8 meV, as acoustic phonons dispersing from neighboring Bragg peaks obscure the weak signal of interest at higher energies. Measuring about the charge-order peak at wave vector (4.4,3,0), where a* = 1 . 159 Å-1, we observe a dispersion with a velocity of ~ 20 meV-Å along the stripe-modulation direction, but no clear dispersion in the orthogonal direction. The detected velocity has the scale of lattice, rather than purely electronic, excitations. Work at BNL supported by Office of Basic Energy Sciences, US DOE, under Contract No. DE-AC02-98CH10886.

  8. High-energy spin dynamics in La1.69Sr0.31NiO4.

    PubMed

    Bourges, P; Sidis, Y; Braden, M; Nakajima, K; Tranquada, J M

    2003-04-11

    To test the prediction that the dispersion of the magnetic resonance in superconducting YBa2Cu3O(6+x) is similar to magnons in an incommensurate antiferromagnet, we have mapped out the spin dynamics in a stripe-ordered nickelate, La(2-x)SrxNiO4, with x approximately equal to 0.31, using inelastic neutron scattering. We observe spin-wave excitations up to 80 meV emerging from the incommensurate magnetic peaks with a surprisingly large and almost isotropic spin velocity: variant Planck's over 2 pi c(s) approximately 0.32 eV A. A comparison indicates that the inferred spin-excitation spectrum is not, by itself, an adequate model for the magnetic resonance feature of the superconductor.

  9. Toward Wearable Cooling Devices: Highly Flexible Electrocaloric Ba0.67 Sr0.33 TiO3 Nanowire Arrays.

    PubMed

    Zhang, Guangzu; Zhang, Xiaoshan; Huang, Houbing; Wang, Jianjun; Li, Qi; Chen, Long-Qing; Wang, Qing

    2016-06-01

    Flexible lead-free ferroelectric ceramic nanowire arrays exhibit a unique combination of features that can contribute to the realization of wearable cooling devices, including an outstanding electrocaloric effect at low fields, high efficiency, bendability and stretchability, and robustness against mechanical deformations. Thermodynamic and phase-field simulations are carried out to validate their superior electrocaloric effect in comparison to thin films.

  10. Electric-field control of ferromagnetic resonance in monolithic BaFe12O19-Ba0.5Sr0.5TiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Das, Jaydip; Song, Young-Yeal; Wu, Mingzhong

    2010-08-01

    This paper demonstrates an electric-field tuning of the ferromagnetic resonance (FMR) responses at millimeter wave frequencies for a monolithic magneto-electric heterostructure. The layered stack is comprised of c-axis oriented and low loss barium hexaferrite (BaM) and (111) oriented ferroelectric barium strontium titanate (BSTO) layers along with embedded platinum electrode layers, all fabricated by pulsed laser deposition technique. A tunability of the FMR frequency as large as 3.5 MHz/V has been observed at 60 GHz due to application of bias voltages in the range of several volts. The realization of such a large tunability relies on the quasi-lattice-to-lattice contact between the BaM and BSTO layers as well as the high quality of those layers.

  11. Laser-Ablated Ba(0.50)Sr(0.50)TiO3/LaAlO3 Films Analyzed Statistically for Microwave Applications

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2003-01-01

    Scanning phased-array antennas represent a highly desirable solution for futuristic near-Earth and deep space communication scenarios requiring vibration-free, rapid beam steering and enhanced reliability. The current state-of-practice in scanning phased arrays is represented by gallium arsenide (GaAs) monolithic microwave integrated circuit (MMIC) technology or ferrite phase shifters. Cost and weight are significant impediments to space applications. Moreover, conventional manifold-fed arrays suffer from beam-forming loss that places considerable burden on MMIC amplifiers. The inefficiency can result in severe thermal management problems.

  12. Coercivity enhancement driven by interfacial magnetic phase separation in SrTiO3(001)/Nd0.5Sr0.5CoO3

    SciTech Connect

    Sharma, M; Gazquez Alabart, Jaume; Varela del Arco, Maria; Schmitt, J.; Leighton, chris

    2011-01-01

    Thin-film perovskite cobaltites have been found to exhibit coercivity values enhanced by almost 2 orders of magnitude in comparison to bulk. In this paper, we have investigated this unexplained coercivity enhancement in detail, focusing on epitaxial SrTiO{sub 3}(001)/Nd{sub 0.5}Sr{sub 0.5}CoO{sub 3} [SrTiO{sub 3} = STO] films, which display coercivity values up to 40 kOe at low temperatures. Thickness-dependent (10-800 {angstrom}) magnetometry and magnetotransport studies demonstrate that nanoscopic magnetic phase separation occurs in the interface region of Nd{sub 0.5}Sr{sub 0.5}CoO{sub 3} [consistent with recent work on SrTiO{sub 3}(001)/La{sub 1-x}Sr{sub x}CoO{sub 3}], which is responsible for the degradation in magnetic and electronic properties in the very-thin-film limit. The coercivity is shown to be intimately related to the existence of this (70-{angstrom}-thick) interfacial phase-separated layer, leading us to advance an explanation for the coercivity enhancement in terms of the pinning of domain walls by interfacial nanoscopic ferromagnetic clusters and a crossover to single domain clusters at very low thickness. Simple estimates of the magnetocrystalline anisotropy (from the maximum coercivity), cluster dimensions (from the superparamagnetic blocking temperature), multidomain to single domain crossover point, and domain-wall width, provide quantitative support for this picture.

  13. Layed Perovskite PRBA0.5SR0.5CO205 as High Performance Cathode for Solid Oxide Fuels Using Photon Conducting Electrolyte

    SciTech Connect

    Brinkman, K.

    2010-05-05

    The layered perovskite PrBa{sub 0.5}Sr{sub 0.5}Co{sub 2}O{sub 5+{delta}} (PBSC) was investigated as a cathode material for a solid oxide fuel cell using a proton-conducting electrolyte based on BaCe{sub 0.7}Y{sub 0.2}Zr{sub 0.1}O{sub 3-{delta}} (BCYZ). The sintering conditions for the PBSC-BCYZ composite cathode were optimized resulting in the lowest area-specific resistance and apparent activation energy obtained with the cathode sintered at 1200 C for 2h. The maximum power densities of the PBSC-BCYZ/BZCY/NiO-BCYZ cell were 0.179, 0.274, 0.395, and 0.522 Wcm{sup -2} at 550, 600, 650, and 700 C, respectively with a 15{micro}m thick electrolyte. A relatively low cell interfacial polarization resistance of 0.132 {Omega}cm{sup 2} at 700 C indicated that the PBSC-BCYZ could be a good cathode candidate for intermediate temperature SOFCs with proton-conducting electrolyte.

  14. Surface analysis monitoring of polyelectrolyte deposition on Ba 0.5Sr 0.5TiO 3 thin films

    NASA Astrophysics Data System (ADS)

    Morales-Cruz, Angel L.; Fachini, Estevão R.; Miranda, Félix A.; Cabrera, Carlos R.

    2007-09-01

    Thin films are currently gaining interest in many areas such as integrated optics, sensors, friction, reducing coatings, surface orientation layers, and general industrial applications. Recently, molecular self-assembling techniques have been applied for thin film deposition of electrically conducting polymers, conjugated polymers for light-emitting devices, nanoparticles, and noncentrosymmetric-ordered second order nonlinear optical (NOL) devices. Polyelectrolytes self-assemblies have been used to prepare thin films. The alternate immersion of a charged surface in polyannion and a polycation solution leads usually to the formation of films known as polyelectrolyte multilayers. These polyanion and polycation structures are not neutral. However, charge compensation appears on the surface. This constitutes the building driving force of the polyelectrolyte multilayer films. The present approach consists of two parts: (a) the chemisorption of 11-mercaptoundecylamine (MUA) to construct a self-assembled monolayer with the consequent protonation of the amine, and (b) the deposition of opposite charged polyelectrolytes in a sandwich fashion. The approach has the advantage that ionic attraction between opposite charges is the driving force for the multilayer buildup. For our purposes, the multilayer of polyelectrolytes depends on the quality of the surface needed for the application. In many cases, this approach will be used in a way that the roughness factor defects will be diminished. The polyelectrolytes selected for the study were: polystyrene sulfonate sodium salt (PSS), poly vinylsulfate potassium salt (PVS), and polyallylamine hydrochloride (PAH), as shown in Fig. 1. The deposition of polyelectrolytes was carried out by a dipping procedure with the corresponding polyelectrolyte. Monitoring of the alternate deposition of polyelectrolyte bilayers was done by surface analysis techniques such as X-ray photoelectron spectroscopy (XPS), specular reflectance infrared (IR), and atomic force microscopy (AFM). The surface analysis results are presented through the adsorption steps of the polyelectrolytes layer by layer.

  15. Strong mass renormalization at a local momentum space in multiorbital Ca1.8Sr0.2RuO4.

    PubMed

    Shimoyamada, A; Ishizaka, K; Tsuda, S; Nakatsuji, S; Maeno, Y; Shin, S

    2009-02-27

    We have studied the mass renormalization in Ca2-xSrxRuO4 (x=0.2) using high-resolution angle-resolved photoemission spectroscopy. We observed precise band dispersions near the Fermi level (E_{F}) and the corresponding Fermi surfaces. A characteristic flat band with approximately 4 meV dispersion accompanying sharp quasiparticle (QP) peaks shows up in a limited momentum region around (pi, 0). The QP peak rapidly evolves below the crossover temperature T;{*} approximately 20 K, which agrees well with the mass enhancement behavior indicated by thermal, magnetic, and transport properties. We discuss the origin of the mass renormalization in relation to the local flat band at (pi, 0) possibly derived from the gamma (d_{xy}) band.

  16. Microwave characterization of nanostructured ferroelectric Ba(0.6)Sr(0.4)TiO(3) thin films fabricated by pulsed laser deposition.

    PubMed

    Campbell, Angela L; Biggers, Rand R; Subramanyam, Guru; Kozlowski, Gregory; Kleismit, Richard A; Zate, Hollie N; Hopkins, Simon C; Glowacki, Bartek A; Riehl, Bonnie D; Peterson, Timothy L

    2008-12-03

    A series of nanostructured ferroelectric thin films of barium strontium titanate were fabricated using a pulsed laser deposition system with real-time in situ process control. Pulsed laser deposition parameters were controlled during the growth of nanostructured thin films for use in the development of high frequency tunable microwave devices. The thin films were all grown at the same substrate temperature and laser beam energy density, but the chamber oxygen partial pressure (COPP) was varied systematically from 19 mTorr through 1000 Torr. Structural and electromagnetic characterization was performed using atomic force microscopy and evanescent microwave microscopy, respectively. Atomic force microscopy showed a linear increase in grain size with increases in the ambient oxygen pressure from 38 to 150 mTorr and from 300 mTorr to 1000 Torr. The correlation of the microwave properties with the epitaxial film microstructure can be attributed to stresses and polarizability in the film. Microwave characterization showed that a COPP of 75 mTorr yielded the most desirable film in terms of tunability and loss tangent over a wide frequency range.

  17. Improved Dielectric Properties of Heterostructured Ba2.5Sr0.5TiO3 Thin Film Composites for Microwave Dielectric Devices

    NASA Technical Reports Server (NTRS)

    Jain, M.; Majumder, S. B.; Katiyar, R. S.; Bhalla, A. S.; Agrawal, D. C.; Kulkarni, V. N.; VanKeuls, F. W.; Miranda, F. A.; Romanofsky, R. R.; Mueller, C. H.; Fernandez, F.

    2002-01-01

    In the present work we have deposited MgO and Ba(sub 0.5)Sr(sub 0.5)TiO(sub 3)(BST50) thin layers in different sequences to make MgO:BST50 hetero-structured thin films. These films were characterized by X-ray diffraction and Rutherford backscattering technique and found to be highly (100) textured. The figure of merit {(C(sub0)-C(sub v)/(C(sub0-tandelta)} of the hetero-structured films was found to be higher as compared to pure BST50 films measured at 1 MHz frequency with electric field of 25.3 kV/cm. These films were used to make eight element coupled micro-strip phase shifter and characterized in a frequency range of 13-15 GHz. The high frequency figure of merit (kappa factor, defined as the ratio of degree of phase shift per dB loss) measured at around 14 GHz with electric field of 333 kV/cm has been markedly improved (around 64.28 deg/dB for hetero-structured film as compared to 24.65 deg /dB for pure film). Improvement in dielectric properties in a wide frequency range in the MgO:BST are believed to be due to the higher densification of the hetero-structured films.

  18. The Dependence of Dielectric Properties on Composition Variation in Ba(0.6)Sr(0.4)(YTa)(y)Ti(1-2y)O(3)

    DTIC Science & Technology

    2003-04-03

    Klapp and Patey [9]. A number of other papers discuss dipolar effects in ferroelectrics (see for example References [10-13]) and the shift in c(T,) of...Perovskites and High T, Superconductors, Gordon and Breach (1990), p. 108. 9. S. H. L. Klapp and G. N. Patey, J. Chem. Phys. 115, 4718 (2001). 10. B. E

  19. A K-Band Linear Phased Array Antenna Based on Ba(0.60)Sr(0.40)TiO3 Thin Film Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, R.; Bernhard, J.; Washington, G.; VanKeuls, F.; Miranda, F.; Cannedy, C.

    2000-01-01

    This paper summarizes the development of a 23.675 GHz linear 16-element scanning phased array antenna based on thin ferroelectric film coupled microstripline phase shifters and microstrip patch radiators.

  20. Microstructural and electrical properties of Y0.07Sr0.93- x TiO3- δ perovskite ceramics

    NASA Astrophysics Data System (ADS)

    Miruszewski, Tadeusz; Bochentyn, Beata; Karczewski, Jakub; Gazda, Maria; Kusz, Bogusław

    2012-10-01

    In order to find a relationship between electrical and microstructural properties, yttrium-doped strontium titanate (7 mol%) with various values of strontium nonstoichiometry was investigated and shown in this work. It has been observed that yttrium doping can affect the electrical properties of SrTiO3 to a great extent. Moreover, the microstructural and electrical properties can be influenced by strontium nonstoichiometry. The defect chemistry explaining obtained results was also suggested and discussed.

  1. Microstructural and electrical properties of Y0.07Sr0.93-x TiO3-δ perovskite ceramics

    NASA Astrophysics Data System (ADS)

    Miruszewski, Tadeusz; Bochentyn, Beata; Karczewski, Jakub; Gazda, Maria; Kusz, Bogusław

    2012-10-01

    In order to find a relationship between electrical and microstructural properties, yttrium-doped strontium titanate (7 mol%) with various values of strontium nonstoichiometry was investigated and shown in this work. It has been observed that yttrium doping can affect the electrical properties of SrTiO3 to a great extent. Moreover, the microstructural and electrical properties can be influenced by strontium nonstoichiometry. The defect chemistry explaining obtained results was also suggested and discussed.

  2. Large transport Jc in Cu-sheathed Sr0.6K0.4Fe2As2 superconducting tape conductors

    PubMed Central

    Lin, He; Yao, Chao; Zhang, Haitao; Zhang, Xianping; Zhang, Qianjun; Dong, Chiheng; Wang, Dongliang; Ma, Yanwei

    2015-01-01

    Copper sheath is the first choice for manufacturing high-Tc superconducting wires and tapes because of its high electrical and thermal conductivities, low-cost and good mechanical properties. However, Cu can easily react with superconducting cores, such as BSCCO, MgB2 and pnictides, and therefore drastically decrease the transport Jc. Here, we report the fabrication of Cu-sheathed Sr1−xKxFe2As2 tapes with superior Jc performance using a simple hot pressing method that is capable of eliminating the lengthy high-temperature sintering. We obtained high-quality Sr1−xKxFe2As2 tapes with processing at 800 oC for 30 minutes and measured high Tc and sharp transition. By this rapid fabrication, Cu sheath does not give rise to apparent reaction layer, and only slightly diffuses into Sr-122 core. As a consequence, we achieved high transport Jc of 3.1 × 104 A/cm2 in 10 T and 2.7 × 104 A/cm2 in 14 T at 4.2 K. The in-field Jc performance is by far the highest reported for Cu-sheathed high-Tc conductors. More importantly, Cu-sheathed Sr-122 tapes also showed a high Je value of 1.0 × 104 A/cm2 in 10 T at 4.2 K, which has reached the widely accepted practical level for applications. These results demonstrate that Cu is a very promising sheath for the practical application of pnictide conductors. PMID:26122741

  3. Superconductivity in La1.56Sr0.44CuO4/La2CuO4 Superlattices

    SciTech Connect

    Bozovic I.; Suter, A.; Morenzoni, E.; Prokscha, T.; Luetkens, H.; Wojek, B.M.; Logvenov, G.; Gozar, A.

    2011-12-01

    Superlattices of the repeated structure La{sub 1.56}Sr{sub 0.44}CuO{sub 4}/La{sub 2}CuO{sub 4} (LSCO-LCO), where none of the constituents is superconducting, show a superconducting transition of T{prime}{sub c} 25 K. In order to elucidate the nature of the superconducting state we have performed a low-energy {mu}SR study. By applying a magnetic field parallel (Meissner state) and perpendicular (vortex state) to the film planes, we could show that superconductivity is sheet like, resulting in a very anisotropic superconducting state. This result is consistent with a simple charge-transfer model, which takes into account the layered structure and the difference in the chemical potential between LCO and LSCO, as well as Sr interdiffusion. Using a pancake-vortex model we could estimate a strict upper limit of the London penetration depth to 380 nm in these superlattices. The temperature dependence of the muon depolarization rate in field cooling experiments is very similar to what is observed in intercalated BSCCO and suggests that vortex-vortex interaction is dominated by electromagnetic coupling but negligible Josephson interaction.

  4. Exchange current model for (La0.8Sr0.2)0.95MnO3 (LSM) porous cathode for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Miyoshi, Kota; Miyamae, Takuma; Iwai, Hiroshi; Saito, Motohiro; Kishimoto, Masashi; Yoshida, Hideo

    2016-05-01

    In this paper, we propose an empirical formula for i0,TPB, the exchange current density per unit triple-phase boundary (TPB) length, for porous lanthanum strontium manganite (LSM) cathodes of solid oxide fuel cells (SOFCs); the evaluation of i0,TPB is of crucial importance in numerical simulations of electrodes based on reconstructed microstructures obtained by a dual beam focused ion beam scanning electron microscopy (FIB-SEM) and tomography techniques. To derive a widely applicable empirical formula for i0,TPB, electrochemical measurements of porous LSM cathodes are conducted under various oxygen partial pressures (0.05-0.25 atm) and temperatures (800-950 °C). By comparing the derived formula with that derived from a thin and dense patterned LSM electrode used in previous studies, it is found that at an air temperature of 800 °C, i0,TPB derived from a porous LSM cathode is approximately 40% smaller than that for the patterned electrode. This can be attributed to the fact that the electrochemical reaction in thin and dense electrodes can occur not only at the TPBs but also at the LSM surface owing to the non-negligible ionic conductivity of LSM. The derived formula is also applied to a three-dimensional numerical simulation to confirm its validity.

  5. Phonon anomalies and critical fluctuations associated with charge stripes in La1.67Sr0.33NiO4

    NASA Astrophysics Data System (ADS)

    Anisimova, Svetlana; Parshall, Dan; Reznik, Dmitry; Lamago, Daniel; Abernathy, Douglas; Marty, Karol; Lumsden, Mark; Gu, G.; Tranquada, J. M.

    2012-02-01

    We will report inelastic neutron scattering measurements of the spectrum of charge excitations in the stripe-ordered phase of La2-xSrxNiO4 (x = 13 ). We identified clear signature of charge stripes at low energies in the nickelates. Our results imply that dynamic stripes are critical fluctuations associated with the stripe-ordering transition. We also observed a phonon anomaly correlated with dynamic stripes above the static-ordering transition, which occurs at 241 K. Our results elucidate the nature of dynamic charge stripes and their signature in the neutron spectra.

  6. Low-energy dispersion of dynamic charge stripes in La1.75Sr0.25NiO4 observed with inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Zhong, Ruidan; Tranquada, John; Gu, Genda; Reznik, Dmitry; Winn, Barry

    The dynamic stripe correlations have been the subject of intense research, owing to the possible links with high-Tc superconductivity. In light of a recently published, direct observation of charge-stripe fluctuations in La2-xSrxNiO4 using inelastic neutron scattering, we did a follow-up neutron experiment on a x=0.25 sample to characterize the low-energy dispersion of these dynamic charge stripes using the HYSPEC instrument at the Spallation Neutron Source. The scattering signals are collected in the vicinity of a charge-order peak with a large wave vector (4.4, 3, 0), where dynamic spin-stripe correlations are negligible. Mapping the low-energy charge-stripe fluctuations in a wide temperature range, we observe a finite dispersion along the stripe-modulation direction at T >=160K where the charge stripes become disordered, while the steep dispersion in the orthogonal direction is not resolved. Work at BNL supported by Office of Basic Energy Sciences, US DOE, under Contract No. DE-SC00112704.

  7. Preparation and characterization of Sr0.5Ba0.5Nb2O6 glass-ceramic on piezoelectric properties

    NASA Astrophysics Data System (ADS)

    Shan, Jiang; Xuan-Ming, Wang; Jia-Yu, Li; Yong, Zhang; Tao, Zheng; Jing-Wen, Lv

    2016-03-01

    We studied the influence of heat treatment time on the optical, thermal, electrical, and mechanical properties of strontium barium niobate (Sr1-xBaxNb2O6 hereafter SBN) piezoelectric glass-ceramics with tungsten bronze-type structure, which have good piezoelectric properties and are important lead-free piezoelectric materials. We found that the best heat treatment time is 4 h. The properties of the prepared materials are better than that of SBN ceramics and the glass-ceramic growth is faster than the SBN crystal when the heat treatment time of the SBN piezoelectric glass-ceramic is controlled, reducing the preparation costs greatly.

  8. Synthesis and frequency-dependent dielectric properties of epitaxial La1.875Sr0.125NiO4 thin films

    SciTech Connect

    Podpirka, Adrian; Tselev, Alexander; Ramanathan, Shriram

    2012-01-01

    Epitaxial thin films of La{sub 1.875}Sr{sub 0.125}NiO{sub 4} (lanthanum strontium nickelate, LSNO) have been synthesized by sputtering onto single crystal oxide substrates and their structural and dielectric properties are reported. High dielectric constants on the order of 10{sup 7} have been measured up to 1 MHz in interdigitated capacitors with a frequency dependence that correlates with substrate imposed strain and texture. The observation of a high dielectric constant albeit with moderate loss tangent at high frequencies motivates further explorations of charge ordering phenomena in such complex oxides and serves to examine size effects on dielectric response by comparison with studies on bulk single crystal LSNO.

  9. Neutron Diffraction Study of Parasitic Nd-Moment Order in the Checkerboard-Type Phase Nd1.3Sr0.7NiO4

    DOE PAGES

    Kobayashi, Riki; Yoshizawa, Hideki; Matsuda, Masaaki; ...

    2015-05-25

    In this paper, the Nd-moment order in the layered nickelate Nd2-xSrxNiO4 (x = 0.7) has been investigated by performing a neutron diffraction experiment using a single crystal sample. First, the checkerboard (CB)-type charge order was confirmed by observing the temperature dependence of the nuclear superlattice peak at Q=(5,0,0) between 1.9 and 300 K, which indicates that the transition temperature of the CB-type charge order is above 300 K. Magnetic superlattice peaks with the propagation vector k=(1-ε,0,1) appear below 67 K, and the value of ε was determined to be 0.455 in good agreement with previous studies. The intensity of themore » magnetic superlattice peaks appearing below 67 K shows a sharp increase below ≈20 K. This behavior indicates that the Nd moments freeze under the influence of the Ni ordering. The CB-type antiferromagnetic (AFM) Ni order in the NiO2 layers is stacked antiferromagnetically in the c-axis direction, while the Nd moments in the Nd/SrO2 layers are coupled antiferromagnetically with the Ni moments. Finally, the Nd moments are parallel to the c-axis, while the Ni moments are canted towards the c-axis direction from the basal ab-plane at low temperatures where the Nd moments are well ordered.« less

  10. Congruent Sr0.61Ba0.39Nb2O6 doubly doped with Ce and Cr: Photo- and thermoluminescence investigations

    NASA Astrophysics Data System (ADS)

    Kislova, I. L.; Gao, M.; Kapphan, S. E.; Pankrath, R.; Kutsenko, A. B.; Vikhnin, V. S.

    Congruent Sr-x Ba1-xNb2O6 (SBN, x=0.61) doped with Ce or Cr ions exhibits enhanced photorefractive properties and new spectral features like increased red sensitivity. Here special emphasis is placed on the luminescence features of doubly doped Ce+Cr SBN crystals. The luminescence excitation and emission spectra combined with the absorption of the impurities allow to draw conclusions about the origin of the charge carriers und their recombination. The well separated thermo-luminescence peaks detected and their spectral line shape in emission point to specific recombination processes following the thermal liberation of light-induced electron trapping centers: Nb4+ polarons and VIS-centers created at low temperature under light irradiation. The thermal activation energy for the hopping motion of Nb4+ polarons and of VIS-centers are estimated to be 0.18+/-0.02 eV and 0.30+/-0.05 eV respectively. Possible excitation and recombination mechanisms in SBN:Ce+Cr are discussed.

  11. Neutron Diffraction Study of Parasitic Nd-Moment Order in the Checkerboard-Type Phase Nd1.3Sr0.7NiO4

    NASA Astrophysics Data System (ADS)

    Kobayashi, Riki; Yoshizawa, Hideki; Matsuda, Masaaki; Kajimoto, Ryoichi; Ishizaka, Kyoko; Tokura, Yoshinori

    2015-06-01

    The Nd-moment order in the layered nickelate Nd2-xSrxNiO4 (x = 0.7) has been investigated by performing a neutron diffraction experiment using a single crystal sample. First, the checkerboard (CB)-type charge order was confirmed by observing the temperature dependence of the nuclear superlattice peak at Q = (5,0,0) between 1.9 and 300 K, which indicates that the transition temperature of the CB-type charge order is above 300 K. Magnetic superlattice peaks with the propagation vector k = (1 - ɛ ,0,1) appear below 67 K, and the value of ɛ was determined to be 0.455 in good agreement with previous studies. The intensity of the magnetic superlattice peaks appearing below 67 K shows a sharp increase below ≈20 K. This behavior indicates that the Nd moments freeze under the influence of the Ni ordering. The CB-type antiferromagnetic (AFM) Ni order in the NiO2 layers is stacked antiferromagnetically in the c-axis direction, while the Nd moments in the Nd/SrO2 layers are coupled antiferromagnetically with the Ni moments. The Nd moments are parallel to the c-axis, while the Ni moments are canted towards the c-axis direction from the basal ab-plane at low temperatures where the Nd moments are well ordered.

  12. Hyperthermia mediated by dextran-coated La0.7Sr0.3MnO3 nanoparticles: in vivo studies

    PubMed Central

    Haghniaz, Reihaneh; Umrani, Rinku D; Paknikar, Kishore M

    2016-01-01

    Purpose The aim of this study was to evaluate radiofrequency-induced dextran-coated lanthanum strontium manganese oxide nanoparticles-mediated hyperthermia to be used for tumor regression in mice. Materials and methods Nanoparticles were injected intra-tumorally in melanoma-bearing C57BL/6J mice and were subjected to radiofrequency treatment. Results Hyperthermia treatment significantly inhibited tumor growth (~84%), increased survival (~50%), and reduced tumor proliferation in mice. Histopathological examination demonstrated immense cell death in treated tumors. DNA fragmentation, increased terminal deoxynucleotidyl transferase-dUTP nick end labeling signal, and elevated levels of caspase-3 and caspase-6 suggested apoptotic cell death. Enhanced catalase activity suggested reactive oxygen species-mediated cell death. Enhanced expression of heat shock proteins 70 and 90 in treated tumors suggested the possible development of “antitumor immunity”. Conclusion The dextran-coated lanthanum strontium manganese oxide-mediated hyperthermia can be used for the treatment of cancer. PMID:27175076

  13. Preparation and Comparison of the Photoelectronic Properties of Sr2Nb207 and Ba0.5Sr0.5Nb2O6.

    DTIC Science & Technology

    1979-08-20

    eV, but a flat-band potential of 0.1 V vs SCE at a pH of 13.3. Hence, the gain of utilizing a larger portion of the solar spectrum obtained from the...as a tetragonally distorted perovskite , ( 3) whereas Sr2Nb2O7 was reported to be orthorhombic (4). - 1...glass cell with a quartz window, and a current amplifier as nreviously described (8). The electrolyte, 0.2 M sodium acetate (pH 8.3), was purged of

  14. Monitoring the growth of SrTiO3 and La0.66Sr0.33MnO3 thin films using a low-pressure Reflection High Energy Electron Diffraction system

    NASA Astrophysics Data System (ADS)

    Mercey, Bernard; David, Adrian; Copie, Olivier; Prellier, Wilfrid

    2016-12-01

    Oxides display a variety of electronic phenomena, including ferroelectricity, magnetism or multiferroicity. Recently, a large interest has raised from the interfaces between two oxides of few unit cells, which show unexpected electronic properties such as superconductivity or magnetism. Thus, the structural quality of interfaces as well as a precise control of the thickness are main challenges for researchers who grow oxide films. To achieve such a high quality interface and a careful control of the growth, Reflection High Energy Electron Diffraction in-situ monitoring, is often used and mounted in a pulsed laser ablation system. While high pressure is widely utilized, low pressure is rarely utilized for oxides except when coupled to a molecular beam epitaxy (MBE) chamber. Here, the preparation of high-quality oxide thin films is reported and the different factors which affect the reliability of such an approach are presented, i.e. the correlation between the observed intensity oscillations and the deposited thickness. It is shown that oxides thin films grown on SrTiO3 single crystals, in a low-pressure environment with the laser-MBE system, possess extremely high physical characteristics (magnetoresistance, ferroelectricity, ferromagnetism, metal/insulating transition) very close to the bulk values and that the interface is nearly perfect, of the same quality as found for semiconductors.

  15. Characterization of non-stoichiometric co-sputtered Ba0.6Sr0.4(Ti (1-x)Fe(x))(1+x)O(3-δ) thin films for tunable passive microwave applications.

    PubMed

    Stemme, F; Geßwein, H; Drahus, M D; Holländer, B; Azucena, C; Binder, J R; Eichel, R-A; Haußelt, J; Bruns, M

    2012-05-01

    The fabrication of novel iron-doped barium strontium titanate thin films by means of radio frequency (RF) magnetron co-sputtering is shown. Investigations of the elemental composition and the dopant distribution in the thin films obtained by X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and time-of-flight secondary ion mass spectroscopy reveal a homogeneous dopant concentration throughout the thin film. The incorporation of the iron dopant and the temperature-dependent evolution of the crystal structure and morphology are analyzed by electron paramagnetic resonance spectroscopy, X-ray diffraction, Raman spectroscopy, atomic force microscopy, and scanning electron microscopy. In summary, these results emphasize the RF magnetron co-sputter process as a versatile way to fabricate doped thin films.

  16. Superconducting Transition at 38 K in Insulating-Overdoped La2CuO4-La1:64Sr0:36CuO4 Superlattices: Evidence for Interface Electronic Redistribution from Resonant Soft X-Ray Scattering

    SciTech Connect

    Smadici, S.; Bozovic, I.; Lee, J. C. T.; Wang, S.; Abbamonte, P.; Logvenov, G.; Gozar, A.; Deville Cavellin, C.

    2009-03-12

    We use resonant soft x-ray scattering (RSXS) to quantify the hole distribution in a superlattice of insulating La{sub 2}CuO{sub 4} (LCO) and overdoped La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO). Despite its nonsuperconducting constituents, this structure is superconducting with T{sub c} = 38 K. We found that the conducting holes redistribute electronically from LSCO to the LCO layers. The LCO layers were found to be optimally doped, suggesting they are the main drivers of superconductivity. Our results demonstrate the utility of RSXS for separating electronic from structural effects at oxide interfaces.

  17. Persistent Fe moments in the normal-state collapsed-tetragonal phase of the pressure-induced superconductor Ca0.67Sr0.33Fe2As2

    NASA Astrophysics Data System (ADS)

    Jeffries, J. R.; Butch, N. P.; Lipp, M. J.; Bradley, J. A.; Kirshenbaum, K.; Saha, S. R.; Paglione, J.; Kenney-Benson, C.; Xiao, Y.; Chow, P.; Evans, W. J.

    2014-10-01

    Using nonresonant Fe Kβ x-ray emission spectroscopy, we reveal that Sr substitution into CaFe2As2 decouples the Fe moment from the volume collapse transition, yielding a collapsed-tetragonal, paramagnetic normal state out of which superconductivity develops. X-ray diffraction measurements implicate the c-axis lattice parameter as the controlling criterion for the Fe moment, promoting a generic description for the appearance of pressure-induced superconductivity in the alkaline-earth-based 122 ferropnictides (AFe2As2). The evolution of Tc with pressure lends support to theories for superconductivity involving unconventional pairing mediated by magnetic fluctuations.

  18. Substrate-induced dielectric polarization in thin films of lead-free (Sr0.5Bi0.5)2Mn2-xTixO6-δ perovskites grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Álvarez-Serrano, I.; Ruiz de Larramendi, I.; López, M. L.; Veiga, M. L.

    2017-03-01

    Thin films of SrBiMn2-xTixO6-δ have been fabricated by Pulsed Laser Deposition on SrTiO3 [100] and [111] substrates. Their texture, width, homogeneity and morphology are evaluated by means of XRD, SEM, XPS, whereas complex impedance spectroscopy is employed to analyze their electrical response. The thickness values range between 80 and 900 nm depending on the experimental conditions. The epitaxial growing could be interpreted in terms of two contributions of microstructural origin: a matrix part and some polycrystalline surface formations (hemi-spheres). Texture studies suggest a fiber-type orientated morphology coherently with the Scanning Electron Microscopy images. XPS analyses indicate a segregation regarding A-sublattice cations, which features depend on the substrate orientation. This segregation could be connected to the development of nanopolar regions. Impedance data show the electrical polarization in the samples to be enhanced compared to bulk response of corresponding powdered samples. A relaxor behavior which fits a Vogel-Fulcher law is obtained for x = 0.50 whereas an almost frequency-independent relaxor ferroelectric behavior is registered for the thinnest film of x = 0.25 composition grown on SrTiO3 [111] substrate. The influence of compositional and structural aspects in the obtained dielectric response is analyzed.

  19. Low loss composition of BaxSryCa1-x-yTiO3: Ba0.12-0.25Sr0.35-0.47Ca0.32-0.53TiO3

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Takeuchi, Ichiro

    2001-01-01

    A dielectric thin-film material for microwave applications, including use as a capacitor, the thin-film comprising a composition of barium strontium calcium and titanium of perovskite type (Ba.sub.x Sr.sub.y Ca.sub.1-x-y)TiO.sub.3. Also provided is a method for making a dielectric thin film of that formula over a wide compositional range through a single deposition process.

  20. Cross-plane Thermoelectric Transport in p-type La0.67Sr0.33MnO3/LaMnO3 Oxide Metal/Semiconductor Superlattices

    DTIC Science & Technology

    2013-12-07

    materials for LSMO/LMO superlattice heterostructures on (100)- strontium titanate substrates. X-ray diffraction and high-resolution reciprocal space...constituent materials for LSMO/LMO superlattice heterostructures on (100)- strontium titanate substrates. X-ray diffraction and high-resolution reciprocal...laser deposition to achieve low resistivity constituent materials for LSMO/LMO superlattice heterostructures on (100)- strontium titanate substrates. X

  1. Degradation of oxygen reduction reaction kinetics in porous La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes due to aging-induced changes in surface chemistry

    NASA Astrophysics Data System (ADS)

    Baqué, Laura C.; Soldati, Analía L.; Teixeira-Neto, Erico; Troiani, Horacio E.; Schreiber, Anja; Serquis, Adriana C.

    2017-01-01

    The modification of surface composition after long-term operation is one of the most reported degradation mechanisms of (La,Sr)(Co,Fe)O3-δ (LSCFO) cathodes for Solid Oxide Fuel Cells (SOFCs). Nevertheless, its effect on the oxygen reduction reaction kinetics of porous LSCFO cathodes has not been yet reliably established. In this work, La- and Sr-enrichment at the LSCFO surface of porous cathodes has been induced after 50 h aging at 800 °C under air. Such cation redistribution can extend up to ∼400 nm depth under the LSCFO surface as detected by high resolution Scanning Transmission Electron Microscopy-Energy Dispersive Spectroscopy maps acquired inside the cathode pores. The observed surface chemical changes hamper the oxygen surface exchange reaction at the LSCFO/gas interface. Accordingly, a suitable Electrochemical Impedance Spectroscopy analysis revealed that the oxygen ion conductivity remains practically unaltered during the aging treatment while the oxygen surface exchange resistance increases up to 1.8 times. As a result, the cathode impedance response deteriorates within the 10-0.1 Hz frequency range during the aging treatment, resulting in a total cathode area specific resistance increase of 150%. The methodology adopted has demonstrated to be very valuable for studying the degradation of SOFC cathodes produced by the modification of surface composition.

  2. Interaction of La0.58Sr0.40Co0.20Fe0.80O3-δ cathode with volatile Cr in a stack test - Scanning electron microscopy and transmission electron microscopy investigations

    NASA Astrophysics Data System (ADS)

    Menzler, Norbert H.; Sebold, Doris; Wessel, Egbert

    2014-05-01

    Anode-supported solid oxide fuel cells with special thin-film yttria-stabilized zirconia electrolytes made by sol-gel technology were operated in a short stack sequentially for about 1300 h at temperatures of 700 °C and subsequently for 1200 h at 600 °C, respectively. The stack was operated galvanostatically at a constant current density of 500 mA cm-2. After operation, the stack was dismantled and the cells were analyzed with respect to Cr interaction with the LSCF cathode. Chemical analysis revealed typical overall Cr amounts of several tenths μg cm-2 cathode area depending on the operation time. SEM cross sections showed less SrCrO4 formation at the typical sites for LSCF (top side of cathode) but there was evidence of chromate formation at the border between the cathode and barrier (electrolyte) layer. This location of foreign phase formation was unexpected. Additional TEM characterizations were therefore conducted. The TEM investigation verified the presence of Cr-containing crystals and revealed pore formation in the barrier layer. The formation of SrCrO4 at this borderline and pore formation were found for the first time after SOFC stack operation.

  3. Non-spectroscopic composition measurements of SrTiO3-La0.7Sr0.3MnO3 multilayers using scanning convergent beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Ophus, Colin; Ercius, Peter; Huijben, Mark; Ciston, Jim

    2017-02-01

    The local atomic structure of a crystalline sample aligned along a zone axis can be probed with a focused electron probe, which produces a convergent beam electron diffraction pattern. The introduction of high speed direct electron detectors has allowed for experiments that can record a full diffraction pattern image at thousands of probe positions on a sample. By incoherently summing these patterns over crystalline unit cells, we demonstrate that in addition to crystal structure and thickness, we can also estimate the local composition of a perovskite superlattice sample. This is achieved by matching the summed patterns to a library of simulated diffraction patterns. This technique allows for atomic-scale chemical measurements without requiring a spectrometer or hardware aberration correction.

  4. CuO added Pb0.92Sr0.06Ba0.02(Mg1/3Nb2/3)0.25(Ti0.53Zr0.47)0.75O3 ceramics sintered with Ag electrodes at 900 °C for multilayer piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Adnan Qaiser, Muhammad; Hussain, Ahmad; Xu, Yuqing; Wang, Yaojin; Wang, Yiping; Yang, Ying; Yuan, Guoliang

    2017-03-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51472118, 51602156, 52177072, and 11274174) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30916011104 and 30916011208).

  5. X-ray and neutron total scattering analysis of Hy·(Bi0.2Ca0.55Sr0.25)(Ag0.25Na0.75)Nb3O10·xH2O perovskite nanosheet booklets with stacking disorder

    SciTech Connect

    Metz, Peter; Koch, Robert; Cladek, Bernadette; Page, Katharine; Neuefeind, Joerg; Misture, Scott

    2016-05-23

    Ion-exchanged Aurivillius materials form perovskite nanosheet booklets wherein well-defined bi-periodic sheets, with ~11.5 Å thickness, exhibit extensive stacking disorder. The perovskite layer contents were defined initially using combined synchrotron X-ray and neutron Rietveld refinement of the parent Aurivillius structure. The structure of the subsequently ion-exchanged material, which is disordered in its stacking sequence, is analyzed using both pair distribution function (PDF) analysis and recursive method simulations of the scattered intensity. Combined X-ray and neutron PDF refinement of supercell stacking models demonstrates sensitivity of the PDF to both perpendicular and transverse stacking vector components. Further, hierarchical ensembles of stacking models weighted by a standard normal distribution are demonstrated to improve PDF fit over 1–25 Å. Recursive method simulations of the X-ray scattering profile demonstrate agreement between the real space stacking analysis and more conventional reciprocal space methods. The local structure of the perovskite sheet is demonstrated to relax only slightly from the Aurivillius structure after ion exchange.

  6. Preparation and electrical properties of yttrium-doped strontium titanate with B-site deficiency

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Zhao, Hailei; Li, Xue; Cheng, Yunfei; Zhou, Xiong; Cui, Fenge

    Yttrium-doped strontium titanate with B-site deficiency (Y 0.08Sr 0.92Ti 1- xO 3- δ) is synthesized via conventional solid-state reaction. The effect of B-site deficiency on the lattice parameter, sinterability, microstructure and electrical properties of Y 0.08Sr 0.92TiO 3- δ is investigated. The charge compensation mechanism for B-site deficiency is proposed. The limit of B-site deficiency in Y 0.08Sr 0.92Ti 1- xO 3- δ is below 5 mol % in Ar with 5% H 2 at 1500 °C. The sinterability of Y 0.08Sr 0.92Ti 1- xO 3- δ decreases slightly with increasing deficiency level (x). Compared with Y 0.08Sr 0.92TiO 3- δ, the electrical conductivity of Y 0.08Sr 0.92Ti 1- xO 3- δ samples decreases while the ionic conductivity increases with increasing B-site deficient amount. It is assumed that the deficiency of Ti in Y 0.08Sr 0.92Ti 1- xO 3- δ is charge compensated by the increase of oxygen vacancy concentration and the decrease of Ti 3+ concentration. Y 0.08Sr 0.92Ti 1- xO 3- δ shows a relatively stable electrical conductivity at different oxygen partial pressures and displays an excellent chemical compatibility with YSZ electrolyte below 1200 °C.

  7. Pulsed laser deposition of ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Sengupta, Somnath; McKnight, Steven H.; Sengupta, Louise C.

    1997-05-01

    It has been shown that in bulk ceramic form, the barium to strontium ratio in barium strontium titanium oxide (Ba1- xSrxTiO3, BSTO) affects the voltage tunability and electronic dissipation factor in an inverse fashion; increasing the strontium content reduces the dissipation factor at the expense of lower voltage tunability. However, the oxide composites of BSTO developed at the Army Research Laboratory still maintain low electronic loss factors for all compositions examined. The intent of this study is to determine whether such effects can be observed in the thin film form of the oxide composites. The pulsed laser deposition (PLD) method has been used to deposit the thin films. The different compositions of the compound (with 1 wt% of the oxide additive) chosen were: Ba0.3Sr0.7TiO3, Ba0.4Sr0.6TiO3, Ba0.5Sr0.5TiO3, Ba0.6Sr0.4TiO3, and Ba0.7Sr0.3TiO3. The electronic properties investigated in this study were the dielectric constant and the voltage tunability. The morphology of the thin films were examined using the atomic force microscopy. Fourier transform Raman spectroscopy was also utilized for optical characterization of the thin films. The electronic and optical properties of the thin films and the bulk ceramics were compared. The results of these investigations are discussed.

  8. Superconducting coupling across a spin-filtering manganite tunnel barrier with magnetic disorder

    NASA Astrophysics Data System (ADS)

    Harada, T.; Matvejeff, M.; Takahashi, R.; Lippmaa, M.

    2016-09-01

    Ferromagnetic insulator Josephson junctions consisting of Nb/Au/Pr0.8Ca0.2MnO3/La1.85Sr0.15CuO4 layers were fabricated. Non-linear current-voltage characteristics suggest the presence of superconducting coupling between the Nb/Au and La1.85Sr0.15CuO4 layers across a ferromagnetic Pr0.8Ca0.2MnO3 tunnel barrier. Tunneling spectra showed clear conductance peaks due to quasi-particle tunneling. Superconducting gap energies determined from the tunneling spectra were consistent with the temperature dependence of the critical current of the junctions. We argue that magnetic inhomogeneity in the ultrathin tunnel barrier plays a role in linking the superconducting states in Nb/Au and La1.85Sr0.15CuO4.

  9. Chemical problems associated with the preparation and characterization of superconducting oxides containing copper

    NASA Astrophysics Data System (ADS)

    Davison, S.; Smith, K.; Zhang, Y.-C.; Liu, J.-H.; Kershaw, R.

    The superconducting oxides La(1.8)Sr(0.2)CuO4 and Ba2YCu3O7 were prepared by decomposition of mixed metal nitrates. Thermogravimetric analysis and electron spin resonance measurements indicated the presence of Cu(I) and Cu(III) in the La(1.8)Sr(0.2)CuO4 phase. The compound Ba2YCu3O7 prepared from the nitrates and subjected to an oxygen anneal at 425 C gave a sharp superconducting transition at 92 K. The phase was stoichiometric but readily decomposed when kept in contact with moist air.

  10. Multiband electronic transport in α-Yb1₋xSrx AlB4 [ x = 0, 0.19(3)] single crystals

    DOE PAGES

    Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil; ...

    2016-08-19

    Here we report on the evidence for the multiband electronic transport in α- YbAlB4 and α-Yb0.81(2)Sr0.19(3)AlB4. Multiband transport reveals itself below 10 K in both compounds via Hall effect measurements, whereas anisotropic magnetic ground state sets in below 3 K in α-Yb0.81(2)Sr0.19(3)AlB4. Our results show that Sr2+ substitution enhances conductivity, but does not change the quasiparticle mass of bands induced by heavy fermion hybridization.

  11. Lanthanoid-free perovskite oxide catalyst for dehydrogenation of ethylbenzene working with redox mechanism.

    PubMed

    Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi

    2013-01-01

    For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 - x SrxFe y Mn1 - y O3 - δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ and the Fe-K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ perovskite oxide.

  12. Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets

    DOE PAGES

    Folven, Eric; Linder, J.; Gomonay, O. V.; ...

    2015-09-14

    Using soft x-ray spectromicroscopy, we investigate the magnetic domain structure in embedded nanomagnets defined in La0.7Sr0.3MnO3 thin films and LaFeO3/La0.7Sr0.3MnO3 bilayers. We find that shape-controlled antiferromagnetic domain states give rise to a significant reduction of the switching field of the rectangular nanomagnets. This is discussed within the framework of competition between an intrinsic spin-flop coupling and shape anisotropy. In conclusion, the data demonstrates that shape effects in antiferromagnets may be used to control the magnetic properties in nanomagnets.

  13. Ultrathin Limit of Exchange Bias Coupling at Oxide Multiferroic/Ferromagnetic Interfaces

    DTIC Science & Technology

    2013-07-12

    control of exchange bias was also shown for an all oxide heterostructure consisting of BFO and La 0.7 Sr 0.3 MnO 3 (LSMO), [ 22 , 23 ] where epitaxial...drastically. This is generally interpreted by considering a strain-induced distortion of MnO 6 octahedra based on the Jahn-Teller distortion theory. [ 39

  14. Study of structural effect on Eu-substituted LSMO manganite for high temperature coefficient of resistance

    NASA Astrophysics Data System (ADS)

    Vadnala, Sudharshan; Durga Rao, T.; Pal, Prem; Asthana, Saket

    2014-09-01

    In this work, Eu substituted La0.7Sr0.3MnO3 (LSMO) is studied to achieve high temperature coefficient of resistance (TCR). The compounds La0.7-xEuxSr0.3MnO3 with x=0, 0.1 0.2 and 0.3 are prepared by solid state reaction route and their structural and transport properties are examined by different characterization techniques. The metal-semiconductor/insulator transition temperature (TMI) decreases from 390 K (for x=0) to 240 K (for x=0.3) with decrease in average ionic radius of A-site. The maximum TCR percentage of La0.7-xEuxSr0.3MnO3 compound is found to be increased for x=0.2 (1.9%) and for x=0.3 (3.36%) compared to its parent compound La0.7Sr0.3MnO3 (1.1%). The substitution of Eu increases the lattice distortion, which enhances the TCR value from 1.1% to 3.36%. The robustness of distortion increases with decreasing which is well correlated with the high magneto-resistance, and high TCR findings.

  15. 14 CFR 25.233 - Directional stability and control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... tendency in 90° cross winds, up to a wind velocity of 20 knots or 0.2 V SR 0, whichever is greater, except that the wind velocity need not exceed 25 knots at any speed at which the airplane may be expected to be operated on the ground. This may be shown while establishing the 90° cross component of...

  16. 14 CFR 25.233 - Directional stability and control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... tendency in 90° cross winds, up to a wind velocity of 20 knots or 0.2 V SR 0, whichever is greater, except that the wind velocity need not exceed 25 knots at any speed at which the airplane may be expected to be operated on the ground. This may be shown while establishing the 90° cross component of...

  17. 14 CFR 25.233 - Directional stability and control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... tendency in 90° cross winds, up to a wind velocity of 20 knots or 0.2 V SR 0, whichever is greater, except that the wind velocity need not exceed 25 knots at any speed at which the airplane may be expected to be operated on the ground. This may be shown while establishing the 90° cross component of...

  18. 14 CFR 25.233 - Directional stability and control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... tendency in 90° cross winds, up to a wind velocity of 20 knots or 0.2 V SR 0, whichever is greater, except that the wind velocity need not exceed 25 knots at any speed at which the airplane may be expected to be operated on the ground. This may be shown while establishing the 90° cross component of...

  19. 14 CFR 25.233 - Directional stability and control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... tendency in 90° cross winds, up to a wind velocity of 20 knots or 0.2 V SR 0, whichever is greater, except that the wind velocity need not exceed 25 knots at any speed at which the airplane may be expected to be operated on the ground. This may be shown while establishing the 90° cross component of...

  20. Indirect and direct determination of the casein content of milk by Kjeldahl nitrogen analysis: collaborative study.

    PubMed

    Lynch, J M; Barbano, D M; Fleming, J R

    1998-01-01

    The classic method for determination of milk casein is based on precipitation of casein at pH 4.6. Precipitated milk casein is removed by filtration and the nitrogen content of either the precipitate (direct casein method) or filtrate (noncasein nitrogen; NCN) is determined by Kjeldahl analysis. For the indirect casein method, milk total nitrogen (TN; Method 991.20) is also determined and casein is calculated as TN minus NCN. Ten laboratories tested 9 pairs of blind duplicate raw milk materials with a casein range of 2.42-3.05% by both the direct and indirect casein methods. Statistical performance expressed in protein equivalents (nitrogen x 6.38) with invalid and outlier data removed was as follows: NCN method (wt%), mean = 0.762, sr = 0.010, sR = 0.016, repeatability relative standard deviation (RSDr) = 1.287%, reproducibility relative standard deviation (RSDr) = 2.146%; indirect casein method (wt%), mean = 2.585, repeatability = 0.015, reproducibility = 0.022, RSDr = 0.560%, RSDR = 0.841; direct casein method (wt%), mean = 2.575, sr = 0.015, sR = 0.025, RSDr = 0.597%, RSDR = 0.988%. Method performance was acceptable and comparable to similar Kjeldahl methods for determining nitrogen content of milk (Methods 991.20, 991.21, 991.22, 991.23). The direct casein, indirect casein, and noncasein nitrogen methods have been adopted by AOAC INTERNATIONAL.