Sample records for modulu sr-0 jaderneho

  1. Growth and interface engineering in thin-film Ba0.6Sr0.4TiO3 /SrMoO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Radetinac, Aldin; Ziegler, Jürgen; Vafaee, Mehran; Alff, Lambert; Komissinskiy, Philipp

    2017-04-01

    Epitaxial heterostructures of ferroelectric Ba0.6Sr0.4TiO3 and highly conducting SrMoO3 were grown by pulsed laser deposition on SrTiO3 (0 0 1) substrates. Surface oxidation of the SrMoO3 film is suppressed using a thin cap interlayer of Ba0.6Sr0.4TiO3-δ grown in reduced atmosphere. As shown by X-ray photoelectron spectroscopy, the Mo4+ valence state of the SrMoO3 films is stable upon annealing of the sample in oxygen up to 600 °C. The described oxygen interface engineering enables utilization of the highly conducting material SrMoO3 in multilayer oxide ferroelectric varactors.

  2. Spin reversal and ferroelectricity in perovskite Dy{sub 0.7}Sr{sub 0.3}MnO{sub 3} and Dy{sub 0.6}Sr{sub 0.4}MnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Y.; Cao, S. X.; Ren, W., E-mail: renwei@shu.edu.cn

    2015-08-17

    Multiferroic materials which simultaneously exhibit electric polarization and magnetism have attracted more and more attention due to their novel physical properties and promising applications. Here, we report the magnetic and ferroelectric properties of single phase perovskite manganites Dy{sub 0.7}Sr{sub 0.3}MnO{sub 3} and Dy{sub 0.6}Sr{sub 0.4}MnO{sub 3} by varying temperature and magnetic field. Our results reveal that there exist spin reversal and strong antiferromagnetic pinning effects in both compounds, as well as negative magnetization in Dy{sub 0.6}Sr{sub 0.4}MnO{sub 3}. Moreover, upon Sr-doping, spontaneous electric polarizations have been observed and the maximum polarization value of Dy{sub 0.7}Sr{sub 0.3}MnO{sub 3} is about 1000 μC/m{supmore » 2} while Dy{sub 0.6}Sr{sub 0.4}MnO{sub 3} reaches to 2000 μC/m{sup 2}. The onset of the ferroelectric transition temperature is enhanced to be around 60 K. Our results indicate that the antiferromagnetic coupling is relevant to the ferroelectric properties of these fascinating multiferroic systems.« less

  3. Positive magnetoresistance of La0.7Sr0.3MnO3/C composites

    NASA Astrophysics Data System (ADS)

    Kabirov, Yu. V.; Gavrilyachenko, V. G.; Bogatin, A. S.

    2016-07-01

    The perovskite manganite La0.7Sr0.3MnO3 compound is used as a component in ceramic (1-x)(La0.7Sr0.3MnO3)-xC composites at x = 0.15-0.85. It is found that every studied specimen is characterized by the linear dependence of the positive magnetoresistance (PMR) on the magnetic field strength at room temperature. The 0.6(La0.7Sr0.3MnO3)-0.4C composite has the largest magnetoresistance value (15%) at room temperature and intensity of magnetic field H=15kOe. A possible mechanism for the PMR of (1-x)(La0.7Sr0.3MnO3)-xC composites is discussed.

  4. Silica-Aerogel Composites Opacified with La(0.7)Sr(0.3)MnO3

    NASA Technical Reports Server (NTRS)

    Rhine, Wendell; Polli, Andrew; Deshpande, Kiranmayi

    2009-01-01

    As part of an effort to develop improved lightweight thermal-insulation tiles to withstand temperatures up to 1,000 C, silica aerogel/fused-quartz-fiber composite materials containing La0.7Sr0.3MnO3 particles as opacifiers have been investigated as potentially offering thermal conductivities lower than those of the otherwise equivalent silica-aerogel composite materials not containing La(0.7)Sr(0.3)MnO3 particles. The basic idea of incorporating opacifying particles into silica-aerogels composite to reduce infrared radiative contributions to thermal conductivities at high temperatures is not new: it has been reported in a number of previous NASA Tech Briefs articles. What is new here is the selection of La(0.7)Sr(0.3)MnO3 particles as candidate opacifiers that, in comparison with some prior opacifiers (carbon black and metal nanoparticles), are more thermally stable. The preparation of a composite material of the present type includes synthesis of the silica-aerogel component in a sol-gel process. The La(0.7)Sr(0.3)MnO3 particles, made previously in a separate process, are mixed into the sol, which is then cast onto fused-quartz-fiber batting. Then the aerogel-casting solution is poured into the mold, where it permeates the silica fiber felt. After the sol has gelled, the casting is aged and then subjected to supercritical drying to convert the gel to the final aerogel form. The separate process for making the La(0.7)Sr(0.3)MnO3 particles begins with the slow addition of corresponding proportions of La(CH3COOH)3, Mn(CH3COOH)3, and Sr(NO3)2 to a solution of H2O2 in H2O. The solution is then peptized by drop-wise addition of NH4OH to obtain a sol. Next, the sol is dried in an oven at a temperature of 120 C to obtain a glassy solid. The solid is calcined at 700 C to convert it to La(0.7)Sr(0.3)MnO3. Then La(0.7)Sr(0.3)MnO3 particles are made by ball-milling the calcined solid. The effectiveness of La(0.7)Sr(0.3)MnO3 particles as opacifiers and thermal

  5. Transverse thermoelectric effect in La{sub 0.67}Sr{sub 0.33}MnO{sub 3}|SrRuO{sub 3} superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiomi, Y.; Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Aoba-ku, Sendai 980-8577; Handa, Y.

    2015-06-08

    Transverse thermoelectric effects in response to an out-of-plane heat current have been studied in an external magnetic field for ferromagnetic superlattices consisting of La{sub 0.67}Sr{sub 0.33}MnO{sub 3} and SrRuO{sub 3} layers. The superlattices were fabricated on SrTiO{sub 3} substrates by pulsed laser deposition. We found that the sign of the transverse thermoelectric voltage for the superlattices is opposite to that for La{sub 0.67}Sr{sub 0.33}MnO{sub 3} and SrRuO{sub 3} single layers at 200 K, implying an important role of spin Seebeck effects inside the superlattices. At 10 K, the magnetothermoelectric curves shift from the zero field due to an antiferromagnetic coupling between layersmore » in the superlattices.« less

  6. Characterization of SrFe0.75Mo0.25O3-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ composite cathodes prepared by infiltration

    NASA Astrophysics Data System (ADS)

    Meng, Xie; Han, Da; Wu, Hao; Li, Junliang; Zhan, Zhongliang

    2014-01-01

    This paper describes the structure and electrochemical properties of composite cathodes for solid oxide fuel cells fabricated by infiltration of aqueous solutions corresponding to SrFe0.75Mo0.25O3-δ (SFMO) into porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) backbones. XRD measurement confirms the predominance of the perovskite SFMO oxides in the infiltrates together with some minor impurities of SrMoO4 after calcinations at 850-1100 °C. The cathode polarization resistance as obtained from impedance measurement on symmetric cathode fuel cells exhibits a pronounced increase as a function of calcinations temperature due to increased SFMO particle sizes, e.g., 0.04 Ω cm2 for 70 nm-sized catalysts calcinated at 850 °C versus 0.11 Ω cm2 for 400 nm-sized catalysts calcinated at 1100 °C. Oxygen partial pressure and temperature dependence of impedance data shows that oxygen reduction kinetics is largely determined by ionization of adsorbed oxygen atoms on the SFMO catalysts.

  7. Strain dependence of antiferromagnetic interface coupling in La 0.7Sr 0.3MnO 3/SrRuO 3 superlattices

    DOE PAGES

    Das, Sujit; Herklotz, Andreas; Pippel, Eckhard; ...

    2015-04-06

    We have investigated the magnetic response of La 0.7Sr 0.3MnO 3/SrRuO 3 superlattices to biaxial in-plane strain applied in situ. Superlattices grown on piezoelectric substrates of 0.72PbMg 1/3Nb 2/3O 3-0.28PbTiO 3(001) (PMN-PT) show strong antiferromagnetic coupling of the two ferromagnetic components. The coupling field of mu H-0(AF) = 1.8 T is found to change by mu(0)Delta H-AF/Delta epsilon similar to -520 mT %(-1) under reversible biaxial strain Delta epsilon at 80 K in a [La 0.7Sr 0.3MnO 3(22 angstrom)/SrRuO 3(55 angstrom)] 15 superlattice. This reveals a significant strain effect on interfacial coupling. The applied in-plane compression enhances the ferromagnetic ordermore » in the manganite layers, which are under as-grown tensile strain, leading to a larger net coupling of SrRuO 3 layers at the interface. It is thus difficult to disentangle the contributions from strain-dependent antiferromagnetic Mn-O-Ru interface coupling and Mn-O-Mn ferromagnetic double exchange near the interface for the strength of the apparent antiferromagnetic coupling. We discuss our results in the framework of available models.« less

  8. Sol-Gel Synthesis of La(0.6)Sr(0.4)CoO(3-x) and Sm(0.5)Sr(0.5)CoO(3-x) Cathode Nanopowders for Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Wise, Brent

    2011-01-01

    Nanopowders of La(0.6)Sr(0.4)CoO(3-x) (LSC) and Sm(0.5)Sr(0.5)CoO(3-x) (SSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC) with La(Sr)Ga(Mg)O(3-x) (LSGM) as the electrolyte, were synthesized by low-temperature sol-gel method using metal nitrates and citric acid. Thermal decomposition of the citrate gels was followed by simultaneous DSC/TGA methods. Development of phases in the gels, on heat treatments at various temperatures, was monitored by x-ray diffraction. Solgel powders calcined at 550 to 1000 C consisted of a number of phases. Single perovskite phase La(0.6)Sr(0.4)CoO(3-x) or Sm(0.5)Sr(0.5)CoO(3-x) powders were obtained at 1200 and 1300 C, respectively. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy. The average particle size of the powders was approx.15 nm after 700 C calcinations and slowly increased to 70 to 100 nm after heat treatments at 1300 to 1400 C.

  9. Growth and electrical transport properties of La 0.7 Sr 0.3 MnO 3 thin films on Sr 2 IrO 4 single crystals

    DOE PAGES

    Moon, E. J.; May, A. F.; Shafer, P.; ...

    2017-04-20

    Here, we report the physical properties of La 0.7 Sr 0.3 MnO 3 thin films on Sr 2 IrO 4 single crystals. We also deposited the manganite films using oxide molecular beam epitaxy on flux-grown (001)-oriented iridate crystals. Temperature-dependent magnetotransport and x-ray magnetic circular dichroism measurements reveal the presence of a ferromagnetic metallic ground state in the films, consistent with films grown on SrTiO 3 and La 0.3 Sr 0.7 Al 0.65 Ta 0.35 O 3 . A parallel resistance model is used to separate conduction effects within the Sr 2 IrO 4 substrate and the La 0.7 Sr 0.3more » MnO 3 thin films, revealing that the measured resistance maximum does not correspond to the manganite Curie temperature but results from a convolution of properties of the near-insulating substrate and metallic film. Furthermore, the ability to grow and characterize epitaxial perovskites on Sr 2 IrO 4 crystals enables a new route for studying magnetism at oxide interfaces in the presence of strong spin-orbit interactions.« less

  10. Strain dependence of interfacial antiferromagnetic coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices

    NASA Astrophysics Data System (ADS)

    Das, Sujit; Herklotz, Andreas; Pippel, Eckhard; Guo, Er-Jia; Rata, Diana; Dörr, Kathrin

    2015-03-01

    We have investigated the magnetic response of La0.7Sr0.3MnO3/SrRuO3 superlattices to biaxial in-plane strain applied in-situ. Superlattices grown on piezoelectric substrates of 0.72PbMg1/3Nb2/3O3-0.28PbTiO3(001) (PMN-PT) show strong antiferromagnetic coupling of the two ferromagnetic components. The coupling field of μ0HAF = 1.8 T is found to change by μ0 ΔHAF / Δɛ ~ -520 mT %-1 under reversible biaxial strain (Δɛ) at 80 K in a [La0.7Sr0.3MnO3(22 Å)/SrRuO3(55 Å)]15 superlattice. This reveals a significant strain effect on interfacial coupling. The applied in-plane compression enhances the ferromagnetic order in the manganite layers which are under as-grown tensile strain. It is thus difficult to disentangle the contributions from strain-dependent antiferromagnetic Mn-O-Ru interface coupling and Mn-O-Mn ferromagnetic double exchange near the interface, since the enhanced magnetic order of Mn spins leads to a larger net coupling of SrRuO3 layers at the interface. We discuss our experimental findings taken into account both the strain-dependent orbital occupation in a single-ion picture and the enhanced Mn order at the interface. This work was supported by the DFG within the Collaborative Research Center SFB 762 ``Functionality of Oxide Interfaces.''

  11. La0.8Sr0.2Fe0.8Cu0.2O3-δ as “cobalt-free” cathode for La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte

    NASA Astrophysics Data System (ADS)

    Zurlo, Francesca; Di Bartolomeo, Elisabetta; D'Epifanio, Alessandra; Felice, Valeria; Natali Sora, Isabella; Tortora, Luca; Licoccia, Silvia

    2014-12-01

    A "cobalt-free" cathode material with stoichiometric composition La0.8Sr0.2Fe0.8Cu0.2O3-δ (LSFCu) was specifically developed for use with La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolyte in intermediate temperature solid oxide fuel cell (IT-SOFC) systems. The chemical stability of LSFCu in contact with LSGM electrolyte was investigated by structural and morphological analysis. The electrochemical properties of LSFCu dense pellets were investigated in the temperature range 600-750 °C by electrochemical impedance spectroscopy (EIS). LSFCu|LSGM|LSFCu symmetrical cells were prepared and area specific resistance (ASR) values, directly depending on the rate limiting step of the oxygen reduction reaction, were evaluated. Fuel cells were prepared using LSFCu as cathode material on a LSGM pellet and electrochemical tests were performed in the 700-800 °C temperature range and compared to similar fuel cells prepared by using commercial La0.6Sr0.4Fe0.8Co0.2O3-δ (LSFCo) as a cathode. The maximum current density and power density recorded for LSFCu and LSFCo were similar. This fact demonstrates that Cu can be used as Co substitute in perovskite cathode materials.

  12. (Ba+Sr)/Ti ratio dependence of the dielectric properties for (Ba0.5Sr0.5)TiO3 thin films prepared by ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Yamamichi, Shintaro; Yabuta, Hisato; Sakuma, Toshiyuki; Miyasaka, Yoichi

    1994-03-01

    (Ba0.5Sr0.5)TiO3 thin films were prepared by ion beam sputtering from powder targets with (Ba+Sr)/Ti ratios ranging from 0.80 to 1.50. All of the perovskite (Ba,Sr)TiO3 films were single phase except for the film with a (Ba+Sr)/Ti ratio of 1.41. The dielectric constant values notably depended on the (Ba+Sr)/Ti ratio for films thicker than 70 nm. The highest dielectric constant of 580 was achieved for the 5% (Ba+Sr) rich film. This (Ba+Sr)/Ti ratio dependence was diminished by the thickness dependence for thinner films. The grain sizes for the 9% (Ba+Sr) rich film and for the 6% (Ba+Sr) poor film ranged from 70 to 100 nm and from 30 to 60 nm, respectively. This grain size difference could explain why slightly A-site rich (Ba,Sr)TiO3 films have a larger dielectric constant than A-site poor films.

  13. Effect of Sr Content and Strain on Sr Surface Segregation of La 1–x Sr x Co 0.2 Fe 0.8 O 3-δ as Cathode Material for Solid Oxide Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yang; Ludwig, Karl F.; Woicik, Joseph C.

    2016-10-12

    Strontium doped lanthanum cobalt ferrite (LSCF) is a widely used cathode material due to its high electronic and ionic conductivity, and reasonable oxygen surface exchange coefficient. However, LSCF can have long-term stability issues such as surface segregation of Sr during solid oxide fuel cell (SOFC) operation, which can adversely affect the electrochemical performance. Thus, understanding the nature of the Sr surface segregation phenomenon, and how it is affected by the composition of LSCF and strain are critical. In this research, heteroepitaxial thin films of La 1-x Sr xCo 0.2Fe 0.8O 3 - with varying Sr content (x = 0.4, 0.3,more » 0.2) were deposited by pulsed laser deposition (PLD) on single crystal NdGaO 3, SrTiO 3 and GdScO 3 substrates, leading to different levels of strain in the films. The extent of Sr segregation at the film surface was quantified using synchrotron-based total reflection x-ray fluorescence (TXRF), and atomic force microscopy (AFM). The electronic structure of the Sr-rich phases formed on the surface was investigated by hard X-ray photoelectron spectroscopy (HAXPES). The extent of Sr segregation was found to be a function of the Sr content in bulk. Lowering the Sr content from 40% to 30% reduced the surface segregation, but further lowering the Sr content to 20% increased the segregation. The strain of LSCF thin films on various substrates was measured using high-resolution x-ray diffraction (HRXRD) and the Sr surface segregation was found to be reduced with compressive strain and enhanced with tensile strain present within the thin films. A model was developed correlating the Sr surface segregation with Sr content and strain effects to explain the experimental results.« less

  14. Growth of congruently melting Ca0.59Sr0.41F2 crystals and study of their properties

    NASA Astrophysics Data System (ADS)

    Karimov, D. N.; Komar'kova, O. N.; Sorokin, N. I.; Bezhanov, V. A.; Chernov, S. P.; Popov, P. A.; Sobolev, B. P.

    2010-05-01

    Homogeneous crystals of Ca0.59Sr0.41F2 alloy (sp. gr., Fm bar 3 m, a = 0.56057 nm), corresponding to the point of minimum in the melting curve in the CaF2-SrF2 phase diagram, have been grown by the vertical Bridgman method. The optical, mechanical, electrical, and thermophysical properties of Ca0.59Sr0.41F2 and MF2 crystals ( M = Ca, Sr) have been studied and comparatively analyzed. Ca0.59Sr0.41F2 crystals are transparent in the range of 0.133-11.5 μm, have refractive index n D = 1.436, microhardness H μ = 2.63 ± 0.10 GPa, ion conductivity σ = 5 × 10-5 S/cm at 825 K, and thermal conductivity k = 4.0 W m-1 K-1 at 300 K. It is shown that the optical properties of Ca0.59Sr0.41F2 crystals are intermediate between those of CaF2 and SrF2, whereas their mechanical and electrical characteristics are better than the latter compounds.

  15. Transport properties of Nd0.67Sr0.33Mn0.85Co0.15O3 manganite

    NASA Astrophysics Data System (ADS)

    Bhargav, Abhinav; Tank, Tejas M.; Sanyal, Sankar P.

    2018-05-01

    We have studied the structural and electrical transport properties of Nd0.67Sr0.33Mn0.85Co0.15O3 manganite prepared through conventional solid state reaction technique. The investigation of X-ray diffraction data and rietvield refinement show that the synthesized sample is single phase in nature and crystallizes in orthorhombic perovskite structure with Pbnm space group. The resistivity versus temperature measurement for sample Nd0.67Sr0.33Mn0.85Co0.15O3 was performed in the range 0-300K and at 0T field. The electrical transport mechanism of the sample is analyzed by different theoretical models, for temperatures below and above TP.

  16. Raman study of the Hg0.7Cr0.3Sr2CuO4+δ superconductors

    NASA Astrophysics Data System (ADS)

    Lee, S.-Y.; Chang, B.-Y.; Yang, I.-S.; Gwak, J.-H.; Kim, S.-J.; Choi, J.-H.; Lee, S.-I.; Yakhmi, J. V.; Mandal, J. B.; Bandyopadhyay, B.; Ghosh, B.

    1997-08-01

    The local environment of the apical oxygens (OA) in the Sr-substituted mercury-based superconductor Hg0.7Cr0.3Sr2CuO4+δ is investigated using Raman spectroscopy. Raman spectra from the Sr-substituted Hg-1201 samples show broad OA A1g double peaks at 553 and 583 cm-l, which are 10 - 20 cm-1 lower than the pristine Hg-1201. The existence of, and lower shift of, the double peaks in the Raman spectra of the Sr-substituted Hg-1201 superconductors indicate changes in the environment of OA in the Sr-substituted mercury-based superconductors.

  17. Hydrostatic pressure effect on the spin reorientation transition of ferromagnetic Sm0.7-xLaxSr0.3MnO3 (x = 0, 0.1) polycrystals

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, R.; Arumugam, S.; Sivaprakash, P.; Kannan, M.; Saravanan, C.; Yang, Wenge

    2017-06-01

    The hydrostatic pressure effect on the resistivity and magnetization of the narrow band gap manganite Sm0.7-xLaxSr0.3MnO3 (x = 0, 0.1) systems has been investigated. At ambient pressure measurements, the parent compound Sm0.7Sr0.3MnO3 showed a ferromagnetic-insulating nature, whereas the 10% La-doped compound Sm0.6La0.1Sr0.3MnO3 showed a ferromagnetic-metallic nature. Furthermore, both samples showed a spin-reorientation transition (TSR) below Curie temperature, which originated from the Mn sublattice and was supported by an antiferromagnetic Sm(4f)-Mn(3d) interaction. Both samples exhibited a normal and inverse magnetocaloric effect as a result of these two different magnetic transitions. Magnetization measurements on Sm0.7Sr0.3MnO3 under pressure did not show an appreciable change in the Curie temperature, but enhanced TSR, whereas an insulator-metallic transition was observed during resistivity measurements under pressure. On the other hand, for Sm0.6La0.1Sr0.3MnO3, TC increased and TSR reduced upon the application of pressure. The metallic nature which is observed at ambient pressure resistivity measurement was further enhanced with 97% of piezoresistance. The pressure did not change the normal magnetocaloric effect of Sm0.7Sr0.3MnO3, but increased it in Sm0.6La0.1Sr0.3MnO3. However, there was not much change in the inverse magnetocaloric effect of both compounds. These studies were analyzed based on the pressure effect on the activation energy and scattering interaction factors.

  18. Dielectric properties of Ba0.6Sr0.4TiO3-La(B0.5Ti0.5)O3 (B=Mg, Zn) ceramics.

    PubMed

    Xu, Yebin; Liu, Ting; He, Yanyan; Yuan, Xiao

    2009-11-01

    Ba(0.6)Sr(0.4)TiO(3)-La(B(0.5)Ti(0.5))O(3) (B = Mg, Zn) ceramics were prepared by a solid-state reaction method, and their microwave dielectric characteristics and tunability were investigated. The ferroelectric-dielectric solid solutions with cubic perovskite structures were obtained for compositions of 10 to 60 mol% La(Mg(0.5)Ti(0.5))O(3) and 10 to 50 mol% La(Zn(0.5)Ti(0.5))O(3). With the increase of linear oxide dielectric content, the dielectric constant and tunability were decreased and Qf was increased. Ba(0.6)Sr(0.4)TiO(3)-La(Mg(0.5)Ti(0.5))O(3) has better dielectric properties than Ba(0.6)Sr(0.4)TiO(3)-La(Zn(0.5)Ti(0.5))O(3). 0.9Ba(0.6)Sr(0.4)TiO(3)-0.1La(Mg(0.5)Ti(0.5))O(3) has a dielectric constant epsilon = 338.2, Qf = 979 GHz and a tunability of was 3.7% at 100 kHz under 1.67 kV/mm. The Qf value of 0.5Ba(0.6)Sr(0.4)TiO(3)- 0.5La(Mg(0.5)Ti(0.5))O(3) reached 9367 GHz, but the tunable properties were lost.

  19. Magnetocaloric effect study of Pr0.67Ca0.33MnO3-La0.67Sr0.33MnO3 nanocomposite

    NASA Astrophysics Data System (ADS)

    Das, Kalipada; Roy Chowdhury, R.; Midda, S.; Sen, Pintu; Das, I.

    2018-03-01

    The present study involves investigaton of magnetocaloric effect of Pr0.67Ca0.33MnO3-La0.67Sr0.33MnO3 nanocomposite materials above room temperature. From application point of view in magnetic refrigeration our study highlights the enhancement of operating temperature region compared to the well known La0.67Sr0.33MnO3 refrigerant material above room temperature. Comparison has also been made with the magnetocaloric properties of La0.67Sr0.33MnO3 nanomaterials. The modification of the magnetocaloric entropy changes (broadening of the temperature dependent magnetic entropy change) is addressed due to the effect of the gradual melting of antiferromagnetic charge ordered state of the Pr0.67Ca0.33MnO3 nanoparticles in such nanocomposite materials.

  20. PREPARATION AND ELECTRICAL PROPERTIES OF BiFeO3/La0.7Sr0.3MnO3 MULTILAYERS

    NASA Astrophysics Data System (ADS)

    Zhu, Huiwen; Wang, Shunli; Li, Xiaoyun

    2013-07-01

    (La0.7Sr0.3MnO3 12 nm/BiFeO3 12 nm)10 was grown on SrTiO3 (001) substrate using rf magnetron sputtering. The structure analysis indicated that BiFeO3/La0.7Sr0.3MnO3 multilayers were highly (001)-oriented. Compared with bottom La0.7Sr0.3MnO3 electrode, the top La0.7Sr0.3MnO3 electrode displayed a rougher surface. The electric transport characteristics of the sample were investigated mainly at low temperature, and it was found that the sample exhibited resistance-temperature curves similar to those of La0.7Sr0.3MnO3 with the exception of an upturn at lower temperature region. Furthermore, a nonlinear I-V curve, which is characteristic of a tunneling conduction mechanism, was observed at 50 K. At higher temperature, the I-V curves were found to be diode-like. When the temperature was further increased to 300 K, the sample showed a space charge limited conduction (SCLC) characteristic.

  1. Oxygen vacancy as fatigue evidence of La0.5Sr0.5CoO3/PbZr0.4Ti0.6O3/La0.5Sr0.5CoO3 capacitors

    NASA Astrophysics Data System (ADS)

    Liu, B. T.; Chen, J. E.; Sun, J.; Wei, D. Y.; Chen, J. H.; Li, X. H.; Bian, F.; Zhou, Y.; Guo, J. X.; Zhao, Q. X.; Guan, L.; Wang, Y. L.; Guo, Q. L.; Ma, L. X.

    2010-09-01

    La0.5Sr0.5CoO3 (LSCO) films grown on SrTiO3 substrates, cooled at reduced oxygen pressures, ranging from 8×104 to 1×10-4 Pa, from the depostion temperature, are used as the bottom electrodes of PbZr0.4Ti0.6O3 (PZT) capacitors to study the impact of oxygen stoichiometry of the LSCO bottom electrodes on the structural and physical properties of LSCO/PZT/LSCO capacitors. It is found that the tetragonality, polarization and fatigue-resistance of PZT films decrease with the decrease of the cooling oxygen pressure. Almost 60% polarization degradation occurs for the PZT capacitor with the LSCO bottom electrode cooled in 1×10-4 Pa oxygen up to 1010 switching cycles, indicating that the oxygen vacancy of the bottom electrode can result in fatigue of the LSCO/PZT/LSCO capacitor.

  2. Surface characterization, in vitro and in vivo biocompatibility of Mg-0.3Sr-0.3Ca for temporary cardiovascular implant.

    PubMed

    Bornapour, M; Mahjoubi, H; Vali, H; Shum-Tim, D; Cerruti, M; Pekguleryuz, M

    2016-10-01

    Magnesium-based alloys are attractive candidate materials for medical applications. Our earlier work showed that the ternary Mg-0.3Sr-0.3Ca alloy exhibits slower degradation rates than both binary Mg-Sr and Mg-Ca alloys. The ternary alloy immersed in simulated body fluid (SBF) forms a compact surface layer of corrosion products that we hypothesized to be a Sr-substituted hydroxyapatite (HA). The main objectives of the current work are to understand the bio-degradation mechanism of Mg-0.3Sr-0.3Ca, to identify the exact nature of its protective layer and to evaluate the in vitro and in vivo biocompatibility of the alloy for cardiovascular applications. To better simulate the physiological environment, the alloy was immersed in SBF which was daily refreshed. Raman spectroscopy and X-Ray photoelectron spectroscopy (XPS) confirmed the formation of a thin, Sr-substituted HA layer at the interface between the alloy and the corrosion products. In vitro biocompatibility evaluated via indirect cytotoxicity assays using HUVECs showed no toxicity effect and ions extracted from Mg-0.3Sr-0.3Ca in fact increased the viability of HUVECs after one week. In vivo tests were performed by implanting a tubular Mg-0.3Sr-0.3Ca stent along with a WE43 control stent into the right and left femoral artery of a dog. Post implantation and histological analyses showed no thrombosis in the artery with Mg-0.3Sr-0.3Ca stent after 5weeks of implantation while the artery implanted with WE43 stent was extensively occluded and thrombosed. Microscopic observation of the Mg-0.3Sr-0.3Ca implant-tissue interface confirmed the in situ formation of Sr-substituted HA on the surface during in vivo test. These results show that the interfacial layer protects the surface of the Mg-0.3Sr-0.3Ca alloy both in vitro and in vivo, and is the key factor in the bio-corrosion resistance of the alloy. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Temperature-dependent impedance spectroscopy of La0.8Sr0.2FeO3 nano-crystalline material

    NASA Astrophysics Data System (ADS)

    Kafa, C. A.; Triyono, D.; Laysandra, H.

    2017-04-01

    LaFeO3 is a material with perovskite structure which electrical properties frequently investigated. Research are done due to the exhibition of excellent gas sensing behavior through resistivity comparison from the p-type semiconductor. Sr doping on LaFeO3 or La1-xSrxFeO3 are able to improve the electrical conductivity through structural modification. Using Sr dopant concentration (x) of 0.2, La0.8Sr0.2FeO3 nano-crystal pellet was synthesized. The synthesis used sol-gel method, followed by gradual heat treatment and uniaxial compaction. XRD characterization shows that the structure of the sample is Orthorhombic Perovskite. Topography of the sample by SEM reveals grain and grain boundary existence with emerging agglomeration. The electrical properties of the material, as functions of temperature and frequency, were measured by Impedance Spectroscopy method using RLC meter, for temperatures of 303-373K. Through the Nyquist plot and Bode plot, the electrical conductivity of La0.8Sr0.2FeO3 is contributed by the grain and grain boundary. Finally, the electrical permittivities of La0.8Sr0.2FeO3 are increasing with temperature increase, with the highest achieved when measured at 1 kHz frequency.

  4. Preparation and characterization of BiFeO3/La0.7Sr0.3MnO3 heterostructure grown on SrTiO3 substrate

    NASA Astrophysics Data System (ADS)

    Zhao, Chenwei; Zhou, Chaochao; Chen, Changle

    2017-09-01

    In this paper, BiFeO3/La0.7Sr0.3MnO3 heterostructure is fabricated on the SrTiO (100) substrate using the pulsed laser deposition method (PLD). Magnetization hystersis loops of the BiFeO3/La0.7Sr0.3MnO3 heterostructure are obtained at 300 K and 80 K. The heterostructure exhibits evident ferromagnetic characteristic at both room temperature and 80 K. At 80 K, magnetization of the heterostructure is stronger than room temperature magnetic measure. The temperature dependence of resistance of the heterostructure with different currents is also studied. With different currents, there appears to be a peak resistance about 180 K. When I is 50 uA, ΔR is 68.4%. And when I is 100 uA, ΔR is 79.3%. The BiFeO3/La0.7Sr0.3MnO3 heterostructure exhibits a positive colossal magnetoresistance (MR) effect over a temperature range of 80-300 K. In our heterostructure, maximum magnetic resistance appears in 210 K, and MR = 44.34%. Mechanism analysis of the leakage current at room temperature shows that the leakage current is the interface-limited Schottky emission, but not dominated by the Poole-Frenkel emission or SCLC.

  5. c-Axis oriented epitaxial Ba 0.25Sr 0.75TiO 3 films display Curie-Weiss behavior

    NASA Astrophysics Data System (ADS)

    Boikov, Yu. A.; Claeson, T.

    2002-02-01

    Thin films of ferroelectrics have inferior dielectric properties, including microwave losses, compared to bulk material and generally do not display a proper Curie-Weiss behavior. This study shows that the film properties can be improved considerably, with a Curie-Weiss behavior, by choosing lattice matched electrodes and proper stoichiometry. A 700 nm thick Ba 0.25Sr 0.75TiO 3 layer was inserted, by laser ablation, between two epitaxial metallic oxide (200 nm) SrRuO 3 electrodes. Because of compressive stress in the plane of the substrate, the c-axis of the unit cell in the Ba 0.25Sr 0.75TiO 3 layer was normal to the substrate plane. Grains were of the order of 100-200 nm (with small misorientation angles in a× b plane) as determined by X-rays and AFM. The positions of pronounced maxima in the temperature dependence of the permittivity depended on external bias voltage applied between the SrRuO 3 electrodes to the dielectric film. The measured ε( T) curves agreed well with existing theoretical models at temperatures below and above the ferroelectric phase transition point. At T≈200 K, ε/ ε0 for the Ba 0.25Sr 0.75TiO 3 layer was suppressed up to 85% (from 4400 down to 560) when ±2.5 V bias voltage was applied to the metallic oxide electrodes. Well saturated polarization-vs.-voltage hysteresis loops were measured for the Ba 0.25Sr 0.75TiO 3 layer in the temperature interval 4.2-200 K. Because of depolarization effects, the polarization of the Ba 0.25Sr 0.75TiO 3 layer was suppressed at positive voltage applied between the electrodes, as compared with a negative one.

  6. Strain-mediated magnetic response in La0.67Sr0.33MnO3/SrTiO3/La0.67Sr0.33MnO3/BaTiO3 structure

    NASA Astrophysics Data System (ADS)

    Swain, Anupama; Komatsu, Katsuyoshi; Itoh, Mitsuru; Taniyama, Tomoyasu; Gorige, Venkataiah

    2018-05-01

    Electric field controlled magnetism is an exciting area of condensed matter physics to explore the device applications at ultra-low power consumption compared to the conventional current controlled or magnetic field controlled devices. In this study, an attempt was made to demonstrate electric field controlled magnetoresistance (MR) in a tri-layer structure consisting of La0.67Sr0.33MnO3 (LSMO) (40 nm)/SrTiO3 (10 nm)/LSMO (10 nm) grown on a 500-μm-thick BaTiO3 (001) (BTO) single crystal substrate by pulsed laser deposition technique. Epitaxial growth of the trilayer structure was confirmed by x-ray diffraction measurements. Jumps observed in the temperature-dependent magnetization curve at around the structural phase transitions of BTO ensure the strain-mediated magnetoelectric coupling between LSMO and BTO layers. A significant change in MR of this structure in applied electric fields does not show any polarity dependence. The findings are related to the lattice strain-mediated magnetoelectric coupling in ferromagnetic LSMO/ferroelectric BTO heterostructures.

  7. Effect of La0.1Sr0.9Co0.5Mn0.5O3-δ protective coating layer on the performance of La0.6Sr0.4Co0.8Fe0.2O3-δ solid oxide fuel cell cathode

    NASA Astrophysics Data System (ADS)

    Chou, Ping-Yi; Ciou, Chun-Jing; Lee, Yu-Chen; Hung, I.-Ming

    2012-01-01

    This study investigates the interface reactivity between La0.1Sr0.9Co0.5Mn0.5O3-δ (LSCM) protective coating layer and Crofer22H interconnects. Additionally, we report the mechanism of Cr poisoning of the La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) cathode's electrochemical properties. The phase, chemical composition, and element distribution of compounds formed at the LSCM-Crofer22H interface are analyzed by X-ray diffraction (XRD) and electron dispersive microscopy (EDS). After heat treatment at 800 °C for 100 h, the LSCM/Crofer22H sample contains SrCrO3, a compound with good conductivity; the area specific resistance (ASR) for the LSCM/Crofer22H interconnect is approximately 17-40 mΩ cm2. We found that the amount of (Mn0.98Fe0.02)(Mn0.02Fe0.48Cr1.5)O4, Cr3O4, and (Fe,Cr)2O3 oxides form in LSCF/LSCM/Crofer22H is significantly less than that in LSCF/Crofer22H. LSCF conductivity after heating at 800 °C for 100 h, is notably higher when in contact with LSCM/Crofer22H than it is when in contact with Crofer22H. These results demonstrate that the LSCM protective coating prevents LSCF cathode poisoning by Cr evaporated from the Corfer22H interconnects.

  8. Tuning the Curie temperature of epitaxial Nd0.6Sr0.4MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Bhat, Shwetha G.; Kumar, P. S. Anil

    2018-02-01

    NdxSr1-xMnO3 (0.2 ≤ x ≤ 0.5) systems are widely studied in magnetism, popular for high colossal magnetoresistance and are ferromagnetic oxides with TC ranging from 200 K to 300 K. Recently, many of such compounds are re-visited for exploring the correlation of spin, charge and lattice degrees of freedom. Although, manganite thin films are the ideal candidates for studying the electron-correlation effects, the puzzle of obtaining a high quality epitaxial thin films of NdxSr1-xMnO3 are still unsolved contrary to its sister compound LaxSr1-xMnO3. Hence, in this study, we demonstrate the growth of best quality of Nd0.6Sr0.4MnO3 (NSMO) epitaxial thin films. This is evident from the TC and a sharp insulator-to-metal transition (IMT) coinciding at as high as ∼255 K against the bulk TC (∼270 K). It is the highest reported TC in Nd0.6Sr0.4MnO3 thin films to date. Moreover, as-deposited films with in situ oxygen annealing are not enough to relax the lattice of NSMO films due to the significant Jahn-Teller distortion in the film. With ex situ annealing processes alongside the various deposition and in situ annealing conditions, we have extensively studied the growth of epitaxial NSMO thin films on LaAlO3 (0 0 1) and SrTiO3 (0 0 1) to investigate the evolution of lattice and its one-to-one correspondence with the magnetism and the electrical properties of thin films. Accordingly, the enhanced magnetization, reduced resistivity and the higher TC and IMT of the NSMO films obtained from our extensive growth analysis looks promising for the future applications across the TC and IMT.

  9. Comparative study of heterogeneous magnetic state above TC in La0.82Sr0.18CoO3 cobaltite and La0.83Sr0.17MnO3 manganite

    NASA Astrophysics Data System (ADS)

    Ryzhov, V. A.; Lazuta, A. V.; Molkanov, P. L.; Khavronin, V. P.; Kurbakov, A. I.; Runov, V. V.; Mukovskii, Ya. M.; Pestun, A. E.; Privezentsev, R. V.

    2012-10-01

    The magnetic, transport and structural properties are studied for La0.83Sr0.17MnO3 and La0.82Sr0.18CoO3 single crystals with nearly the same doping and the metallic ground state. Their comparisons have shown that ferromagnetic clusters originate in the paramagnetic matrix below Т*>TC in both samples and exhibit similar properties. This suggests the possible universality of such phenomena in doped mixed-valence oxides of transition metals with the perovskite-type structure. The cluster density increases on cooling and plays an important role on the physical properties of these systems. The differences in cluster evolutions and scenarios of their insulator-metal transitions are related to different magnetic behaviors of the matrixes in these crystals that is mainly due to distinct spin states of the Mn3+ and Co3+ ions.

  10. Magnetization reversal in orthorhombic Sr-doped LaFe0.5Cr0.5O3–δ

    NASA Astrophysics Data System (ADS)

    Coutinho, P. V.; Moreno, N. O.; Ochoa, E. A.; da Costa, M. E. H. Maia; Barrozo, Petrucio

    2018-06-01

    In this paper we studied the reversal magnetization of La1‑x Sr x Fe0.5Cr0.5O3‑δ (x  =  0, 0.1 and 0.2) samples produced by combustion synthesis. The structural analysis was carried out by x-ray diffraction with Rietveld analysis. These analyses revealed that all samples have an orthorhombic structure with space group Pbnm (62) and that the Sr-doping induces a decrease of the lattice parameter. The x-ray photoelectron spectroscopy analysis indicates that the Sr-doping favor the change of the valence states of the Fe3+ to Fe4+. The magnetization as a function of the temperature reveals an unusual magnetic behavior with a reversal of magnetization. The increase of the Sr content induces a decrease of the temperature where occurs an inversion of the magnetization and do the value of the magnetization at 5 K more negative. This effect is attributed to the increase of the concentration of Fe4+ with increasing of the Sr content. The Fe and Cr with a valence of 4+  act as paramagnetic impurities in the antiferromagnetic lattice and are responsible for the changes in the magnetic behavior.

  11. Phase 0 Clinical Chemoprevention Trial of the AKT Inhibitor SR13668

    PubMed Central

    Reid, Joel M.; Walden, Chad; Qin, Rui; Allen Ziegler, Katie L.; Haslam, John L.; Rajewski, Roger A.; Warndahl, Roger; Fitting, Cindy L.; Boring, Daniel; Szabo, Eva; Crowell, James; Perloff, Marjorie; Jong, Ling; Mandrekar, Sumithra J.; Ames, Matthew M.; Limburg, Paul J.

    2011-01-01

    Purpose SR13668, an orally active AKT pathway inhibitor, has demonstrated cancer chemopreventive potential in preclinical studies. To accelerate the clinical development of this promising agent, we designed and conducted the first-ever phase 0 chemoprevention trial to evaluate and compare the effects of food and formulation on SR13668 bioavailability. Patients and Methods Healthy adult volunteers were randomly assigned to receive a single, 38 mg oral dose of SR13668 in one of five different formulations, with or without food. Based on existing animal data, SR13668 in a PEG400/Labrasol® oral solution was defined as the reference formulation. Blood samples were obtained pre- and post-agent administration for pharmacokinetic analyses. Area under the plasma concentration-time curve (AUC0-∞) was defined as the primary endpoint. Data were analyzed and compared using established statistical methods for phase 0 trials with a limited sample size. Results Participants (N=20) were rapidly accrued over a 5-month period. Complete pharmacokinetic data were available for 18 randomized participants. AUC0-∞ values were highest in the fed state (range = 122–439 ng/mL × hours) and were statistically significantly different across formulations (p = 0.007), with Solutol® HS15 providing the highest bioavailability. SR13668 time to peak plasma concentration (3 hours; range, 2 – 6 hours) and half-life were (11.2 ± 3.1 hours) were not formulation dependent. Conclusions Using a novel, highly efficient study design, we rapidly identified a lead formulation of SR13668 for further clinical testing. Our findings support application of the phase 0 trial paradigm to accelerate chemoprevention agent development. PMID:21372034

  12. Interfacial dislocations in (111) oriented (Ba 0.7Sr 0.3)TiO 3 films on SrTiO 3 single crystal

    DOE PAGES

    Shen, Xuan; Yamada, Tomoaki; Lin, Ruoqian; ...

    2015-10-08

    In this study, we have investigated the interfacial structure of epitaxial (Ba,Sr)TiO 3 films grown on (111)-oriented SrTiO 3 single-crystal substrates using transmission electron microscopy (TEM) techniques. Compared with the (100) epitaxial perovskite films, we observe dominant dislocation half-loop with Burgers vectors of a<110> comprised of a misfit dislocation along <112>, and threading dislocations along <110> or <100>. The misfit dislocation with Burgers vector of a <110> can dissociate into two ½ a <110> partial dislocations and one stacking fault. We found the dislocation reactions occur not only between misfit dislocations, but also between threading dislocations. Via three-dimensional electron tomography,more » we retrieved the configurations of the threading dislocation reactions. The reactions between threading dislocations lead to a more efficient strain relaxation than do the misfit dislocations alone in the near-interface region of the (111)-oriented (Ba 0.7Sr 0.3)TiO 3 films.« less

  13. Interfacial charge-mediated non-volatile magnetoelectric coupling in Co 0.3Fe 0.7/Ba 0.6Sr 0.4TiO 3/Nb:SrTiO 3 multiferroic heterostructures

    DOE PAGES

    Zhou, Ziyao; Howe, Brandon M.; Liu, Ming; ...

    2015-01-13

    The central challenge in realizing non-volatile, E-field manipulation of magnetism lies in finding an energy efficient means to switch between the distinct magnetic states in a stable and reversible manner. In this work, we demonstrate using electrical polarization-induced charge screening to change the ground state of magnetic ordering in order to non-volatilely tune magnetic properties in ultra-thin Co 0.3Fe 0.7/Ba 0.6Sr 0.4TiO 3/Nb:SrTiO 3 (001) multiferroic heterostructures. A robust, voltage-induced, non-volatile manipulation of out-of-plane magnetic anisotropy up to 40 Oe is demonstrated and confirmed by ferromagnetic resonance measurements. This discovery provides a framework for realizing charge-sensitive order parameter tuning inmore » ultra-thin multiferroic heterostructures, demonstrating great potential for delivering compact, lightweight, reconfigurable, and energy-efficient electronic devices.« less

  14. Resistance switching mechanism of La0.8Sr0.2MnO3-δ thin films

    NASA Astrophysics Data System (ADS)

    Luo, X. D.; Gao, R. L.; Fu, C. L.; Cai, W.; Chen, G.; Deng, X. L.; Zhang, H. R.; Sun, J. R.

    2016-02-01

    Effects of oxygen vacancies on the electrical transport properties of oxygen stoichiometric La0.8Sr0.2MnO3 and oxygen-deficient La0.8Sr0.2MnO3-δ films have been investigated. The result presents that the oxygen-deficient films annealed in vacuum show obvious increase of resistance and lattice parameter. With the sweeping voltage or temperature increasing, the resistance exhibits obvious bipolar switching effect, no forming process was needed. Oxygen deficiency in the annealed film leads to the formation of a structural disorder in the Mn-O-Mn conduction channel due to the accumulation of oxygen vacancies under high external electric field or temperatures and hence is believed to be responsible for the bipolar resistance switching effect and the enhanced resistivity compared with oxygen stoichiometric La0.8Sr0.2MnO3 film. These results may be important for practical applications in photoelectric or storage devices and point to a useful direction for other oxidizing materials.

  15. Nonlinear Impedance Analysis of La 0.4Sr 0.6Co 0.2Fe 0.8O 3-δ Thin Film Oxygen Electrodes

    DOE PAGES

    Geary, Tim C.; Lee, Dongkyu; Shao-Horn, Yang; ...

    2016-07-23

    Here, linear and nonlinear electrochemical impedance spectroscopy (EIS, NLEIS) were used to study 20 nm thin film La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF-6428) electrodes at 600°C in oxygen environments. LSCF films were epitaxially deposited on single crystal yttria-stabilized zirconia (YSZ) with a 5 nm gadolinium-doped ceria (GDC) protective interlayer. Impedance measurements reveal an oxygen storage capacity similar to independent thermogravimetry measurements on semi-porous pellets. However, the impedance data fail to obey a homogeneous semiconductor point-defect model. Two consistent scenarios were considered: a homogeneous film with non-ideal thermodynamics (constrained by thermogravimetry measurements), or an inhomogeneous film (constrained by a semiconductormore » point-defect model with a Sr maldistribution). The latter interpretation suggests that gradients in Sr composition would have to extend beyond the space-charge region of the gas-electrode interface. While there is growing evidence supporting an equilibrium Sr segregation at the LSCF surface monolayer, a long-range, non-equilibrium Sr stratification caused by electrode processing conditions offers a possible explanation for the large volume of highly reducible LSCF. Additionally, all thin films exhibited fluctuations in both linear and nonlinear impedance over the hundred-hour measurement period. This behavior is inconsistent with changes solely in the surface rate coefficient and possibly caused by variations in the surface thermodynamics over exposure time.« less

  16. Tuning the dead-layer behavior of La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3} via interfacial engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, R.; Xu, H. C.; Xia, M.

    The dead-layer behavior, deterioration of the bulk properties in near-interface layers, restricts the applications of many oxide heterostructures. We present the systematic study of the dead-layer in La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3} grown by ozone-assisted molecular beam epitaxy. Dead-layer behavior is systematically tuned by varying the interfacial doping, while unchanged with varied doping at any other atomic layers. In situ photoemission and low energy electron diffraction measurements suggest intrinsic oxygen vacancies at the surface of ultra-thin La{sub 0.67}Sr{sub 0.33}MnO{sub 3}, which are more concentrated in thinner films. Our results show correlation between interfacial doping, oxygen vacancies, and the dead-layer, whichmore » can be explained by a simplified electrostatic model.« less

  17. Octonary resistance states in La 0.7Sr 0.3MnO 3/BaTiO 3/La 0.7Sr 0.3MnO 3 multiferroic tunnel junctions

    DOE PAGES

    Yue -Wei Yin; Tao, Jing; Huang, Wei -Chuan; ...

    2015-10-06

    General drawbacks of current electronic/spintronic devices are high power consumption and low density storage. A multiferroic tunnel junction (MFTJ), employing a ferroelectric barrier layer sandwiched between two ferromagnetic layers, presents four resistance states in a single device and therefore provides an alternative way to achieve high density memories. Here, an MFTJ device with eight nonvolatile resistance states by further integrating the design of noncollinear magnetization alignments between the ferromagnetic layers is demonstrated. Through the angle-resolved tunneling magnetoresistance investigations on La 0.7Sr 0.3MnO 3/BaTiO 3/La 0.7Sr 0.3MnO 3 junctions, it is found that, besides collinear parallel/antiparallel magnetic configurations, the MFTJ showsmore » at least two other stable noncollinear (45° and 90°) magnetic configurations. As a result, combining the tunneling electroresistance effect caused by the ferroelectricity reversal of the BaTiO 3 barrier, an octonary memory device is obtained, representing potential applications in high density nonvolatile storage in the future.« less

  18. Effect of anode firing on the performance of lanthanum and nickel co-doped SrTiO3 (La0.2Sr0.8Ti0.9Ni0.1O3-δ) anode of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Park, Byung Hyun; Choi, Gyeong Man

    2015-10-01

    Perovskite oxides have potential for use as alternative anode materials in solid oxide fuel cells (SOFCs) due to stability in anode atmosphere; donor-doped SrTiO3 (e.g., La0.2Sr0.8TiO3-δ) is a good candidate for this purpose. Electro-catalytic nanoparticles can be produced in oxide anodes by the ex-solution method, e.g., by incorporating Ni into a perovskite oxide in air, then reducing the oxide in H2 atmosphere. In this study, we varied the temperature (1100, 1250 °C) and atmosphere (air, H2) of La0.2Sr0.8Ti0.9Ni0.1O3-δ (LSTN) anode firing to control the degree of Ni ex-solution and microstructure. LSTN fired at 1250 °C in H2 showed the best anodic performance for scandia-stabilized zirconia (ScSZ) electrolyte-supported cells in H2 and CH4 fuels due to the favorable microstructure and Ni ex-solution.

  19. Electrical conductivity of cobalt doped La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ

    NASA Astrophysics Data System (ADS)

    Wang, Shizhong; Wu, Lingli; Liang, Ying

    La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5) were prepared using a conventional solid-state reaction. Electrical conductivities and electronic conductivities of the samples were measured using four-probe impedance spectrometry, four-probe dc polarization and Hebb-Wagner polarization within the temperature range of 973-1173 K. The electrical conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high (>10 -5 atm) and low oxygen partial pressure regions (<10 -15 atm). However, the electrical conductivity in LSGM8282 had no dependency on the oxygen partial pressure. At temperatures higher than 1073 K, PO2 dependencies of the free electron conductivities in LSGM8282, LSGMC5 and LSGMC8.5 were about -1/4, and PO2 dependencies of the electron hole conductivities were about 0.25, 0.12 and 0.07, respectively. Oxygen ion conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high and low oxygen partial pressure regions, which was due to the increase in the concentration of oxygen vacancies. The change in the concentration of oxygen vacancies and the valence of cobalt with oxygen partial pressure were determined using a thermo-gravimetric technique. Both the electronic conductivity and oxygen ion conductivity in cobalt doped lanthanum gallate samples increased with increasing concentration of cobalt, suggesting that the concentration of cobalt should be optimized carefully to maintain a high electrical conductivity and close to 1 oxygen ion transference number.

  20. Crystal structure and optical property of complex perovskite oxynitrides ALi0.2Nb0.8O2.8N0.2, ANa0.2Nb0.8O2.8N0.2, and AMg0.2Nb0.8O2.6N0.4 (A = Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Moon, Keon Ho; Avdeev, Maxim; Kim, Young-Il

    2017-10-01

    Oxynitride type complex perovskites AM0.2Nb0.8O3-xNx (A = Sr, Ba; M = Li, Na, Mg) were newly synthesized by the solid state diffusion of Li+, Na+, or Mg2+ into the layered oxide, A5Nb4O15, with concurrent O/N substitution. Neutron and synchrotron X-ray Rietveld refinement showed that SrLi0.2Nb0.8O2.8N0.2, SrNa0.2Nb0.8O2.8N0.2, and SrMg0.2Nb0.8O2.6N0.4 had body-centered tetragonal symmetry (I4/mcm), while those with A = Ba had simple cubic symmetry (Pm 3 ̅ m). In the tetragonal Sr-compounds, the nitrogen atoms were localized on the c-axial 4a site. However, the octahedral cations, M/Nb (M = Li, Na, Mg) were distributed randomly in all six compounds. The lattice volume of AM0.2Nb0.8O3-xNx was dependent on various factors including the type of A and the electronegativity of M. Compared to the simple perovskites, ANbO2N (A = Sr, Ba), AM0.2Nb0.8O3-xNx had wider band gaps (1.76-2.15 eV for A = Sr and 1.65-2.10 eV for A = Ba), but significantly lower sub-gap absorption.

  1. Combustion Synthesis of Sm0.5Sr0.5CoO3-x and La0.6Sr0.4CoO3-x Nanopowders for Solid Oxide Fuel Cell Cathodes

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhong, zhimin

    2005-01-01

    Nanopowders of Sm0.5Sr0.5CoO(3-x) (SSC) and La0.6Sr0.4CoO(3-x) (LSC) compositions, which are being investigated as cathode materials for intermediate temperature solid oxide fuel cells, were synthesized by a solution-combustion method using metal nitrates and glycine as fuel. Development of crystalline phases in the as-synthesized powders after heat treatments at various temperatures was monitored by x-ray diffraction. Perovskite phase in LSC formed more readily than in SSC. Single phase perovskites were obtained after heat treatment of the combustion synthesized LSC and SSC powders at 1000 and 1200 C, respectively. The as-synthesized powders had an average particle size of 12 nm as determined from x-ray line broadening analysis using the Scherrer equation. Average grain size of the powders increased with increase in calcination temperature. Morphological analysis of the powders calcined at various temperatures was done by scanning electron microscopy.

  2. Magnetocaloric effect in epitaxial La0.56Sr0.44MnO3 alloy and digital heterostructures

    NASA Astrophysics Data System (ADS)

    Belyea, Dustin D.; Santos, Tiffany S.; Miller, Casey W.

    2012-04-01

    This work investigates the magnetocaloric effect of two epitaxial manganite heterostructures, one being a single layer La0.56Sr0.44MnO3 alloy with randomly distributed La and Sr cations, the other a digitally synthesized superlattice of LaMnO3 and SrMnO3 fabricated to be compositionally identical to the alloy. The magnetic entropy change and relative cooling power were larger for the alloy than the superlattice, though both are suppressed relative to bulk materials. These results indicate that disorder of the A-site cation species in the perovskite structure may play a crucial role in defining the magnetocaloric effect in complex oxide materials.

  3. Cation Valence Control in La0.7Sr0.3Co0.5Mn0.5O3 Thin Films and Bilayers

    NASA Astrophysics Data System (ADS)

    Kane, Alex; Chopdekar, Rajesh; Arenholz, Elke; Mehta, Apurva; Takamura, Yayoi

    The unique interplay between spin, orbital, charge, and lattice degrees of freedom at interfaces in perovskite oxides makes them model systems to probe and exert magnetic control at the nanoscale. Previous work revealed exchange coupling in bilayers composed of a hard ferromagnetic (FM) La0.7Sr0.3CoO3 (LSCO) layer and a soft FM La0.7Sr0.3MnO3 (LSMO) layer, coincident with charge transfer across the LSCO/LSMO interface. An interfacial Co2+-rich LSCO layer produced a FM superexchange interaction with Mn4+ ions in the adjacent LSMO layer, mimicking the behavior of ordered Co2+/Mn4 + ions in the double perovskite La2CoMnO6. In an attempt to manipulate the extent of charge transfer in this system, La0.7Sr0.3Co0.5Mn0.5O3 (LSCMO)/LSMO and LSCMO/LSCO bilayers were deposited by pulsed laser deposition. Bulk magnetometry and soft x-ray magnetic spectroscopy were used to investigate the Mn/Co magnetic and electronic structures, comparing the surface/interface dominant effects vs. the film average. The LSCMO/LSMO bilayer enhanced the magnetically soft Co2+ population at the interface, while the LSCMO/LSCO bilayers strongly suppressed the Co2+ state in the LSCMO layer.

  4. Absence of confinement in (SrTiO3)/( SrTi0.8Nb0.2O3 ) superlattices

    NASA Astrophysics Data System (ADS)

    Bouzerar, G.; Thébaud, S.; Bouzerar, R.; Pailhès, S.; Adessi, Ch.

    2018-03-01

    The reduction of dimensionality is considered an efficient pathway to boost the performances of thermoelectric materials. Quantum confinement of the carriers is expected to induce large Seebeck coefficients (S ) and it also suppresses the thermal conductivity by increasing the phonon scattering processes. However, quantum confinement in superlattices is not always easy to achieve and needs to be carefully validated. In the past decade, large values of S have been measured in (SrTiO3)/(SrTi0.8Nb0.2O3 ) superlattices [H. Ohta et al., Nat. Mater. 6, 129 (2007), 10.1038/nmat1821; Y. Mune et al., Appl. Phys. Lett. 91, 192105 (2007), 10.1063/1.2809364]. In the δ -doped compound, the reported S was almost six times larger than that of the bulk material. This huge increase has been attributed to the two-dimensional carrier confinement in the doped regions. Here, we demonstrate that the experimental data are well explained quantitatively assuming delocalized electrons in both in-plane and growth directions. Moreover, we rule out the confined electron hypothesis whose signature would be the suppression of the Seebeck coefficient. This strongly suggests that the presupposed confinement picture in these superlattices is unlikely.

  5. Superconducting properties and μSR study of the noncentrosymmetric superconductor Nb0.5Os0.5.

    PubMed

    Singh, D; Barker, J A T; Thamizhavel, A; Hillier, A D; Paul, D McK; Singh, R P

    2018-01-22

    The properties of the noncentrosymmetric superconductor (α-[Formula: see text] structure) Nb 0.5 Os 0.5 have been investigated using resistivity, magnetization, specific heat, and muon spin relaxation and rotation (μSR) measurements. These measurements suggest that Nb 0.5 Os 0.5 is a weakly coupled ([Formula: see text]) type-II superconductor ([Formula: see text]), having a bulk superconducting transition temperature T c   =  3.07 K. The specific heat data fits well with the single-gap BCS model indicating nodeless s-wave superconductivity in Nb 0.5 Os 0.5 . The μSR measurements also confirm [Formula: see text]-wave superconductivity with the preserved time-reversal symmetry.

  6. Preparation of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ fine powders by carbonate coprecipitation for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Ha, Sang Bu; Cho, Pyeong-Seok; Cho, Yoon Ho; Lee, Dokyol; Lee, Jong-Heun

    A range of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ (LSCM) powders is prepared by the carbonate coprecipitation method for use as anodes in solid oxide fuel cells. The supersaturation ratio (R = [(NH 4) 2CO 3]/([La 3+] + [Sr 2+] + [Cr 3+] + [Mn 2+])) during the coprecipitation determines the relative compositions of La, Sr, Cr, and Mn. The composition of the precursor approaches the stoichiometric one at the supersaturation range of 4 ≤ R ≤ 12.5, whereas Sr and Mn components are deficient at R < 4 and excessive at R = 25. The fine and phase-pure LSCM powders are prepared by heat treatment at very low temperature (1000 °C) at R = 7.5 and 12.5. By contrast, the solid-state reaction requires a higher heat-treatment temperature (1400 °C). The catalytic activity of the LSCM electrodes is enhanced by using carbonate-derived powders to manipulate the electrode microstructures.

  7. Density functional theory + U analysis of the electronic structure and defect chemistry of LSCF (La 0.5 Sr 0.5 Co 0.25 Fe 0.75 O 3-δ )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritzmann, Andrew M.; Dieterich, Johannes M.; Carter, Emily A.

    2016-01-01

    Reducing operating temperatures is a key step in making solid oxide fuel cell (SOFC) technology viable. A promising strategy for accomplishing this goal is employing mixed ion–electron conducting (MIEC) cathodes. La 1-xSr xCo 1-yFe yO 3-δ (LSCF) is the most widely employed MIEC cathode material; however, rational optimization of the composition of LSCF requires fundamental insight linking its electronic structure to its defect chemistry. To provide the necessary insight, density functional theory plus U (DFT+U) calculations are used to investigate the electronic structure of LSCF (xSr = 0.50, yCo = 0.25). The DFT+U calculations show that LSCF has a significantly different electronic structure than La 1-xSr xFeO 3 because of the addition of cobalt, but that minimal electronic structure differences exist between La 0.5Sr 0.5Co 0.25Fe 0.75O 3 and La 0.5Sr 0.5Co 0.5Fe 0.5O 3. The oxygen vacancy (Vmore » $$-\\atop{o}$$) formation energy (ΔEf,vac) is calculated for V$$-\\atop{o}$$ residing in different local environments within La 0.5Sr 0.5Co 0.25Fe 0.75O 3. These results show that Co-V$$-\\atop{o}$$-Co configurations have the highest ΔEf,vac, while Co-V$$-\\atop{o}$$-Fe have the lowest ΔEf,vac and may act as traps for V$$-\\atop{o}$$. We conclude that compositions with more Fe than Co are preferred because the additional Co-V$$-\\atop{o}$$-Co sites would lead to higher overall ΔEf,vac (and lower V$$-\\atop{o}$$ concentrations), while the trapping strength of the Image Co-V$$-\\atop{o}$$-Fe sites is relatively weak (~0.3 eV).« less

  8. Macroscopic phase separation of superconductivity and ferromagnetism in Sr0.5Ce0.5FBiS2-x Se x revealed by μSR.

    PubMed

    Nikitin, A M; Grinenko, V; Sarkar, R; Orain, J-C; Salis, M V; Henke, J; Huang, Y K; Klauss, H-H; Amato, A; Visser, A de

    2017-12-12

    The compound Sr 0.5 Ce 0.5 FBiS 2 belongs to the intensively studied family of layered BiS 2 superconductors. It attracts special attention because superconductivity at T sc  = 2.8 K was found to coexist with local-moment ferromagnetic order with a Curie temperature T C  = 7.5 K. Recently it was reported that upon replacing S by Se T C drops and ferromagnetism becomes of an itinerant nature. At the same time T sc increases and it was argued superconductivity coexists with itinerant ferromagnetism. Here we report a muon spin rotation and relaxation study (μSR) conducted to investigate the coexistence of superconductivity and ferromagnetic order in Sr 0.5 Ce 0.5 FBiS 2-x Se x with x = 0.5 and 1.0. By inspecting the muon asymmetry function we find that both phases do not coexist on the microscopic scale, but occupy different sample volumes. For x = 0.5 and x = 1.0 we find a ferromagnetic volume fraction of ~8 % and ~30 % at T = 0.25 K, well below T C  = 3.4 K and T C  = 3.3 K, respectively. For x = 1.0 (T sc  = 2.9 K) the superconducting phase occupies most (~64 %) of the remaining sample volume, as shown by transverse field experiments that probe the Gaussian damping due to the vortex lattice. We conclude ferromagnetism and superconductivity are macroscopically phase separated.

  9. Reversible control of magnetism in La 0.67Sr 0.33MnO 3 through chemically-induced oxygen migration

    DOE PAGES

    Grutter, A. J.; Gilbert, D. A.; Alaan, U. S.; ...

    2016-02-22

    We demonstrate reversible control of magnetization and anisotropy in La 0.67Sr 0.33MnO 3 films through interfacial oxygen migration. Gd metal capping layers deposited onto La 0.67Sr 0.33MnO 3 leach oxygen from the film through a solid-state redox reaction to form porous Gd 2O 3. X-ray absorption and polarized neutron reflectometry measurements show Mn valence alterations consistent with high oxygen vacancy concentrations, resulting in suppressed magnetization and increased coercive fields. Effects of the oxygen migration are observed both at the interface and also throughout the majority of a 40 nm thick film, suggesting extensive diffusion of oxygen vacancies. After Gd-capped Lamore » 0.67Sr 0.33MnO 3 is exposed to atmospheric oxygen for a prolonged period of time, oxygen diffuses through the Gd 2O 3 layer and the magnetization of the La 0.67Sr 0.33MnO 3 returns to the uncapped value. In conclusion, these findings showcase perovskite heterostructures as ideal candidates for developing functional interfaces through chemically-induced oxygen migration.« less

  10. Coexistence of superconductivity and ferromagnetism in Sr0.5Ce0.5FBiS2-xSex (x = 0.5 and 1.0), a non-U material with Tc < TFM

    PubMed Central

    Thakur, Gohil S.; Fuchs, G.; Nenkov, K.; Haque, Zeba; Gupta, L. C.; Ganguli, A. K.

    2016-01-01

    We have carried out detailed magnetic and transport studies of the new Sr0.5Ce0.5FBiS2-xSex (0.0 ≤ x ≤ 1.0) superconductors derived by doping Se in Sr0.5Ce0.5FBiS2. Se–doping produces several effects: it suppresses semiconducting–like behavior observed in the undoped Sr0.5Ce0.5FBiS2, the ferromagnetic ordering temperature, TFM, decreases considerably from 7.5 K (in Sr0.5Ce0.5FBiS2) to 3.5 K and the superconducting transition temperature, Tc, gets enhanced slightly to 2.9–3.3 K. Thus in these Se–doped materials, TFM is marginally higher than Tc. Magnetization studies provide evidence of bulk superconductivity in Sr0.5Ce0.5FBiS2-xSex at x ≥ 0.5 in contrast to the undoped Sr0.5Ce0.5FBiS2 (x = 0) where magnetization measurements indicate a small superconducting volume fraction. Quite remarkably, as compared with the effective paramagnetic Ce–moment (~2.2 μB), the ferromagnetically ordered Ce–moment in the superconducting state is rather small (~0.1 μB) suggesting itinerant ferromagnetism. To the best of our knowledge, Sr0.5Ce0.5FBiS2-x Sex (x = 0.5 and 1.0) are distinctive Ce–based bulk superconducting itinerant ferromagnetic materials with Tc < TFM. Furthermore, a novel feature of these materials is that they exhibit a dual and quite unusual hysteresis loop corresponding to both the ferromagnetism and the coexisting bulk superconductivity. PMID:27892482

  11. Enhanced inverse spin Hall contribution at high microwave power levels in La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrRuO{sub 3} epitaxial bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haidar, S. M., E-mail: haidar@imr.tohoku.ac.jp; Lustikova, J.; Shiomi, Y.

    2015-10-12

    We have investigated microwave power dependence of dc voltage generated upon ferromagnetic resonance in a La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrRuO{sub 3} epitaxial bilayer film at room temperature. With increasing microwave power above ∼75 mW, the magnitude of the voltage signal decreases as the sample temperature approaches the Curie temperature of La{sub 0.67}Sr{sub 0.33}MnO{sub 3} due to heating effects. By analyzing the dependence of the voltage signal on the direction of the magnetic field, we show that with increasing microwave power the contribution from the inverse spin Hall effect becomes more dominant than that from the anisotropic magnetoresistance effect.

  12. (Ba1- x Bi0.33 x Sr0.67 x )(Ti1- x Bi0.67 x V0.33 x )O3 and (Ba1- x Bi0.5 x Sr0.5 x )(Ti1- x Bi0.5 x Ti0.5 x )O3 solid solutions: phase evolution, microstructure, dielectric properties and impedance analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xiuli; Li, Xiaoxia; Yan, Xiao; Liu, Gaofeng; Zhou, Huanfu

    2018-06-01

    Perovskite solid solution ceramics of (Ba1- x Bi0.33 x Sr0.67 x )(Ti1- x Bi0.67 x V0.33 x )O3 and (Ba1- x Bi0.5 x Sr0.5 x )(Ti1- x Bi0.5 x Ti0.5 x )O3 (BBSTBV, BBSTBT, 0.02 ≤ x ≤ 0.2) were prepared by the traditional solid state reaction technique. The phase evolution, microstructure and dielectric properties of BBSTBV and BBSTBT ceramics were researched. X-Ray diffraction results illustrated that both BBSTBV and BBSTBT could form a homogenous solid solution which has a similar structure with BaTiO3. The optimized properties of (Ba0.8Bi0.1Sr0.1)(Ti0.8Bi0.1Ti0.1)O3 ceramics with stable ɛ r ( 1769-2293), small Δ ɛ/ ɛ 25 °C values (± 15%) over a broad temperature range from - 58 to 151 °C and low tan δ ≤ 0.03 from - 11 to 131 °C were obtained. In the high-temperature region, the relaxation and conduction process are attributed to the thermal activation and the oxygen vacancies may be the ionic charge carriers in perovskite ferroelectrics.

  13. Multiband electronic transport in α-Yb 1₋xSr x AlB 4 [ x = 0, 0.19(3)] single crystals

    DOE PAGES

    Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil; ...

    2016-08-19

    Here we report on the evidence for the multiband electronic transport in α- YbAlB 4 and α-Yb 0.81(2)Sr 0.19(3)AlB 4. Multiband transport reveals itself below 10 K in both compounds via Hall effect measurements, whereas anisotropic magnetic ground state sets in below 3 K in α-Yb 0.81(2)Sr 0.19(3)AlB 4. Our results show that Sr 2+ substitution enhances conductivity, but does not change the quasiparticle mass of bands induced by heavy fermion hybridization.

  14. Chemical characterization of surface precipitates in La0.7Sr0.3Co0.2Fe0.8O3-δ as cathode material for solid oxide fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yang; Nikiforov, Alexey Y.; Kaspar, Tiffany C.

    2016-11-01

    In this study, a strontium doped lanthanum cobalt ferrite thin film with 30% Sr on A-site, denoted as La0.7Sr0.3Co0.2Fe0.8O3-δ or LSCF-7328, was investigated before and after annealing at 800 °C under CO2 containing atmosphere for 9 hours. The formation of secondary phases on surface of post-annealed LSCF-7328 has been observed using atomic force microscope (AFM) and scanning electron microscope (SEM). The extent of Sr segregation at the film surface was observed using the synchrotron-based total reflection X-ray fluorescence (TXRF) technique. The bonding environment of the secondary phases formed on the surface was investigated by synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES).more » Transmission electron microscope (TEM) and related spectroscopy techniques were used for microstructural and quantitative elemental analyses of the secondary phases on surface. These studies revealed that the secondary phases on surface consisted of SrO covered with a capping layer of SrCO3. The formation of Co-rich phases has also been observed on the surface of post-annealed LSCF-7328.« less

  15. Releasing metal catalysts via phase transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a redox stable anode material for solid oxide fuel cells.

    PubMed

    Xiao, Guoliang; Wang, Siwei; Lin, Ye; Zhang, Yanxiang; An, Ke; Chen, Fanglin

    2014-11-26

    Donor-doped perovskite-type SrTiO3 experiences stoichiometric changes at high temperatures in different Po2 involving the formation of Sr or Ti-rich impurities. NiO is incorporated into the stoichiometric strontium titanate, SrTi0.8Nb0.2O3-δ (STN), to form an A-site deficient perovskite material, (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 (Ni-STN), for balancing the phase transition. Metallic Ni nanoparticles can be released upon reduction instead of forming undesired secondary phases. This material design introduces a simple catalytic modification method with good compositional control of the ceramic backbones, by which transport property and durability of solid oxide fuel cell anodes are largely determined. Using Ni-STN as anodes for solid oxide fuel cells, enhanced catalytic activity and remarkable stability in redox cycling have been achieved. Electrolyte-supported cells with the cell configuration of Ni-STN-SDC anode, La0.8Sr0.2Ga0.87Mg0.13O3 (LSGM) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode produce peak power densities of 612, 794, and 922 mW cm(-2) at 800, 850, and 900 °C, respectively, using H2 as the fuel and air as the oxidant. Minor degradation in fuel cell performance resulted from redox cycling can be recovered upon operating the fuel cells in H2. Such property makes Ni-STN a promising regenerative anode candidate for solid oxide fuel cells.

  16. Dielectric and Energy Storage Properties of Ba0.65Sr0.35TiO3 Ceramics Modified by BiNbO4

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Zhang, Jihua; Wei, Meng; Dong, Xiangxiang; Huang, Jiapeng; Wu, Kaituo; Chen, Hongwei

    2018-02-01

    (1 - x) (Ba0.65Sr0.35TiO3)-xBiNbO4 (x = 0.0-0.15) ceramic were prepared by solid-state reaction method. The phase composition, microstructure, dielectric properties, polarization-electric field, breakdown strength and energy storage behaviors for the BiNbO4-modified Ba0.65Sr0.35TiO3 ceramics were investigated. With the addition of BiNbO4, the remnant polarization and saturation polarization decreased and the nonlinearity was suppressed. When x = 0.07, the maximum recoverable energy storage achieved was 0.5 J/cm3, 1.5 times that of un-doped Ba0.65Sr0.35TiO3 ceramics, with an efficiency of 96.89% and a breakdown electric field reaching 15.3 kV/mm. Therefore, BiNbO4 doping could improve the energy storage properties of Ba0.65Sr0.35TiO3 for high-energy pulse capacitor application.

  17. Insight into the structure and functional application of the Sr0.95Ce0.05CoO3-δ cathode for solid oxide fuel cells.

    PubMed

    Yang, Wei; Zhang, Huairuo; Sun, Chunwen; Liu, Lilu; Alonso, J A; Fernández-Díaz, M T; Chen, Liquan

    2015-04-06

    A new perovskite cathode, Sr0.95Ce0.05CoO3-δ, performs well for oxygen-reduction reactions in solid oxide fuel cells (SOFCs). We gain insight into the crystal structure of Sr1-xCexCoO3-δ (x = 0.05, 0.1) and temperature-dependent structural evolution of Sr0.95Ce0.05CoO3-δ by X-ray diffraction, neutron powder diffraction, and scanning transmission electron microscopy experiments. Sr0.9Ce0.1CoO3-δ shows a perfectly cubic structure (a = a0), with a large oxygen deficiency in a single oxygen site; however, Sr0.95Ce0.05CoO3-δ exhibits a tetragonal perovskite superstructure with a double c axis, defined in the P4/mmm space group, that contains two crystallographically different cobalt positions, with distinct oxygen environments. The structural evolution of Sr0.95Ce0.05CoO3-δ at high temperatures was further studied by in situ temperature-dependent NPD experiments. At 1100 K, the oxygen atoms in Sr0.95Ce0.05CoO3-δ show large and highly anisotropic displacement factors, suggesting a significant ionic mobility. The test cell with a La0.8Sr0.2Ga0.83Mg0.17O3-δ-electrolyte-supported (∼300 μm thickness) configuration yields peak power densities of 0.25 and 0.48 W cm(-2) at temperatures of 1023 and 1073 K, respectively, with pure H2 as the fuel and ambient air as the oxidant. The electrochemical impedance spectra evolution with time of the symmetric cathode fuel cell measured at 1073 K shows that the Sr0.95Ce0.05CoO3-δ cathode possesses superior ORR catalytic activity and long-term stability. Mixed ionic-electronic conduction properties of Sr0.95Ce0.05CoO3-δ account for its good performance as an oxygen-reduction catalyst.

  18. Structural and electrical properties of 1 − x(Na{sub 0.5}K{sub 0.5})NbO{sub 3}–x(Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Tae-Ho; Lee, Sung-Gap, E-mail: lsgap@gnu.ac.kr; Yeo, Jin-Ho

    2014-10-15

    Highlights: • We fabricated lead-free (Na{sub 0.5}K{sub 0.5})NbO{sub 3} ceramics. • We studied the structural and electrical properties of 1 − x(Na{sub 0.5}K{sub 0.5})NbO{sub 3}–x(Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} ceramics. • The structural and electrical properties improved with increasing amount of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3}. - Abstract: In this study, 1 − x(Na{sub 0.5}K{sub 0.5})NbO{sub 3}–x(Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} ceramics were fabricated using the conventional mixed oxide method. The effects of the addition of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} on the structural and electrical properties of the specimens were investigated for their application in piezoelectric devices. As the results of X-ray diffractionmore » analysis show, all specimens display the typical polycrystalline perovskite structure without the presence of the second phase. Sintered densities increased with an increase in the amount of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} added and the specimen with 0.08 mol% of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} added showed the maximum value of 4.54 g/cm{sup 3}. Both average grain size and densification increased with an increase in the amount of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3}. The electromechanical coupling factor, dielectric constant ϵ{sub r}, dielectric loss tan δ, d{sub 33} and Curie temperature of the 0.92(Na{sub 0.5}K{sub 0.5})NbO{sub 3}–0.08(Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} specimens doped with 0.08 mol% of (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} were 0.31, 1338, 0.021, 138 and 445 °C, respectively.« less

  19. Crystal structure and magnetic properties of high-oxygen pressure annealed Sr{sub 1-x}La{sub x}Co{sub 0.5}Fe{sub 0.5}O{sub 3-{delta}} (0{<=}x{<=}0.5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swierczek, Konrad; Materials Science Division, Argonne National Laboratory, Argonne, IL 60439; Dabrowski, Bogdan

    2009-02-15

    Structural and magnetic studies are presented for the perovskite type Sr{sub 1-x}La{sub x}Co{sub 0.5}Fe{sub 0.5}O{sub 3-{delta}} (0{<=}x{<=}0.5) materials annealed under moderately high-oxygen pressures of {approx}200 atm. A detailed analysis of the room temperature neutron time-of-flight diffraction data reveals that the crystal structure of the sample SrCo{sub 0.5}Fe{sub 0.5}O{sub 2.89(1)}, previously described as vacancy-disordered cubic, is similar to the formerly reported, oxygen-vacancy ordered Sr{sub 8}Fe{sub 8}O{sub 23} compound, i.e. Sr{sub 8}Co{sub 4}Fe{sub 4}O{sub 23} is tetragonal with the I4/mmm symmetry. With an increase of the La content the studied materials become nearly oxygen stoichiometric and a lowering of the crystal symmetrymore » is observed from cubic Pm3-barm (x=0.1 and 0.2) to tetragonal I4/mcm (x=0.3 and 0.4), and finally to monoclinic I12/c1 (x=0.5). Low-temperature structural and magnetic measurements show a ferromagnetic ordering with the maximum Curie temperature near 290 K at x=0.2. - Graphical Abstract: Room temperature Rietveld refinement profile using I4/mmm space group for the oxygen vacancy ordered SrCo{sub 0.5}Fe{sub 0.5}O{sub 2.89} (Sr{sub 8}Co{sub 4}Fe{sub 4}O{sub 23}). Top tick-marks denote allowed reflections in I4/mmm, bottom one emphasize the possibility of inexact indexing using Pm3-barm symmetry. Previous reports indicate that similar ordering is common for SrCo{sub 1-x}Fe{sub x}O{sub 3-{delta}} compounds possibly hindering their applications.« less

  20. In situ formation of oxygen vacancy in perovskite Sr0.95Ti0.8Nb0.1M0.1O3 (M = Mn, Cr) toward efficient carbon dioxide electrolysis

    PubMed Central

    Zhang, Jun; Xie, Kui; Wei, Haoshan; Qin, Qingqing; Qi, Wentao; Yang, Liming; Ruan, Cong; Wu, Yucheng

    2014-01-01

    In this work, redox-active Mn or Cr is introduced to the B site of redox stable perovskite Sr0.95Ti0.9Nb0.1O3.00 to create oxygen vacancies in situ after reduction for high-temperature CO2 electrolysis. Combined analysis using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis confirms the change of the chemical formula from oxidized Sr0.95Ti0.9Nb0.1O3.00 to reduced Sr0.95Ti0.9Nb0.1O2.90 for the bare sample. By contrast, a significant concentration of oxygen vacancy is additionally formed in situ for Mn- or Cr-doped samples by reducing the oxidized Sr0.95Ti0.8Nb0.1M0.1O3.00 (M = Mn, Cr) to Sr0.95Ti0.8Nb0.1M0.1O2.85. The ionic conductivities of the Mn- and Cr-doped titanate improve by approximately 2 times higher than bare titanate in an oxidizing atmosphere and 3–6 times higher in a reducing atmosphere at intermediate temperatures. A remarkable chemical accommodation of CO2 molecules is achieved on the surface of the reduced and doped titanate, and the chemical desorption temperature reaches a common carbonate decomposition temperature. The electrical properties of the cathode materials are investigated and correlated with the electrochemical performance of the composite electrodes. Direct CO2 electrolysis at composite cathodes is investigated in solid-oxide electrolyzers. The electrode polarizations and current efficiencies are observed to be significantly improved with the Mn- or Cr-doped titanate cathodes. PMID:25403738

  1. Tunnelling anisotropic magnetoresistance at La{sub 0.67}Sr{sub 0.33}MnO{sub 3}-graphene interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, L. C., E-mail: lee.phillips@cantab.net; Yan, W.; Kar-Narayan, S.

    2016-03-14

    Using ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} electrodes bridged by single-layer graphene, we observe magnetoresistive changes of ∼32–35 MΩ at 5 K. Magneto-optical Kerr effect microscopy at the same temperature reveals that the magnetoresistance arises from in-plane reorientations of electrode magnetization, evidencing tunnelling anisotropic magnetoresistance at the La{sub 0.67}Sr{sub 0.33}MnO{sub 3}-graphene interfaces. Large resistance switching without spin transport through the non-magnetic channel could be attractive for graphene-based magnetic-sensing applications.

  2. Magnetic Structure and Magnetotransport Properties of La0.7Sr0.3Mn1 - x Ni x O3

    NASA Astrophysics Data System (ADS)

    Troyanchuk, I. O.; Bushinsky, M. V.; Tereshko, N. V.; Sikolenko, V.; Schorr, S.

    2018-04-01

    La0.7Sr0.3Mn1 - x Ni x O3 (0.12 ≤ x ≤ 0.35) compositions have been studied using neutron diffraction, magnetometry, and measurements of magnetotransport properties. At temperatures of 5-300 K, these compounds were found to have a rhombohedral crystal structure. The substitution of nickel for manganese has been shown to result in a decrease in the Curie temperature from 278 K ( x = 0.12) to 60 K ( x = 0.3); in this case, the spontaneous magnetization of the compositions decreases to zero ( x = 0.33). The magnetoresistive effect for the semimetals with 0.12 ≤ x < 0.18 increases near the Curie temperature, whereas the magnetoresistance of semiconducting compositions with x ≥ 0.2 progressively decreases as the temperature increases. For compositions with x ≥ 0.25, an antiferromagnetic G-type component has been found by neutron diffraction, the Neel temperature of which reaches 260 K (at x = 0.35). The study of the La1- y Sr y Mn0.65Ni0.35O3 ( y ≤ 0.3) system showed that the content of ferromagnetic component decreases with increasing Sr content. It has been inferred that the antiferromagnetism of the compositions with x > 0.25 is due to the strong negative exchange interactions Ni2+-O-Ni2+ and Mn4+-O-Mn4+ and the absence of ionic order. The obtained data have been used to construct the magnetic phase diagram of the La0.7Sr0.3Mn1- x Ni x O3 (0.12 ≤ x ≤ 0.35) system.

  3. Orientation Control of Interfacial Magnetism at La 0.67Sr 0.33MnO 3/SrTiO 3 Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Er-Jia; Charlton, Timothy; Ambaye, Haile

    Understanding the magnetism at the interface between a ferromagnet and an insulator is essential because the commonly posited magnetic “dead” layer close to an interface can be problematic in magnetic tunnel junctions. Previously, degradation of the magnetic interface was attributed to charge discontinuity across the interface. In this paper, the interfacial magnetism was investigated using three identically prepared La 0.67Sr 0.33MnO 3 (LSMO) thin films grown on different oriented SrTiO 3 (STO) substrates by polarized neutron reflectometry. In all cases the magnetization at the LSMO/STO interface is larger than the film bulk. We show that the interfacial magnetization is largestmore » across the LSMO/STO interfaces with (001) and (111) orientations, which have the largest net charge discontinuities across the interfaces. In contrast, the magnetization of LSMO/STO across the (110) interface, the orientation with no net charge discontinuity, is the smallest of the three orientations. We show that a magnetically degraded interface is not intrinsic to LSMO/STO heterostructures. Finally, the approach to use different crystallographic orientations provides a means to investigate the influence of charge discontinuity on the interfacial magnetization.« less

  4. Orientation Control of Interfacial Magnetism at La 0.67Sr 0.33MnO 3/SrTiO 3 Interfaces

    DOE PAGES

    Guo, Er-Jia; Charlton, Timothy; Ambaye, Haile; ...

    2017-05-16

    Understanding the magnetism at the interface between a ferromagnet and an insulator is essential because the commonly posited magnetic “dead” layer close to an interface can be problematic in magnetic tunnel junctions. Previously, degradation of the magnetic interface was attributed to charge discontinuity across the interface. In this paper, the interfacial magnetism was investigated using three identically prepared La 0.67Sr 0.33MnO 3 (LSMO) thin films grown on different oriented SrTiO 3 (STO) substrates by polarized neutron reflectometry. In all cases the magnetization at the LSMO/STO interface is larger than the film bulk. We show that the interfacial magnetization is largestmore » across the LSMO/STO interfaces with (001) and (111) orientations, which have the largest net charge discontinuities across the interfaces. In contrast, the magnetization of LSMO/STO across the (110) interface, the orientation with no net charge discontinuity, is the smallest of the three orientations. We show that a magnetically degraded interface is not intrinsic to LSMO/STO heterostructures. Finally, the approach to use different crystallographic orientations provides a means to investigate the influence of charge discontinuity on the interfacial magnetization.« less

  5. Photoluminescence and scintillation properties of Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) crystals

    NASA Astrophysics Data System (ADS)

    Igashira, Takuya; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-05-01

    Apatite crystals with chemical compositions of 0.5% Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) were synthesized by the Floating Zone method, and then we evaluated their photoluminescence (PL) and scintillation properties. All the Ce-doped samples exhibited PL and scintillation with an intense broad emission in 400-550 nm in which the origin was attributed to the 5d-4f transition of Ce3+, and the emission peak became broader with increasing the concentration of Lu3+. Both PL and scintillation decay time profiles were best-approximated by a sum of two exponential decay functions, and the origin of slower component was attributed to the 5d-4f transition of Ce3+. In the X-ray induced afterglow measurements, the Ce-doped Sr2(Gd0.4Lu0.6)8(SiO4)6O2 sample exhibited the lowest afterglow level. Furthermore, the Ce-doped Sr2(Gd0.5Lu0.5)8(SiO4)6O2 and Sr2(Gd0.4Lu0.6)8(SiO4)6O2 samples showed a clear full energy deposited peak under 5.5 MeV 241Am α-ray irradiation, and the estimated absolute scintillation light yields were around 290 and 1300 ph/5.5 MeV-α, respectively.

  6. Electrical characterization of Mn doped-(Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1-x}O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, A.; Materials Research Laboratory, Institute of Physics & Electronics, University of Peshawar, 25120; Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD

    2015-12-15

    Highlights: • Solid state processing of the (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1−x}O{sub 3} ceramics. • Mn incorporated on the Ti-site into the host lattice of (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1−x}O{sub 3}. • NTCR behavior was observed in the sintered samples. - Abstract: (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1-x}O{sub 3} (x = 0.00, 0.013, 0.015 and 0.05) ceramics were prepared by solid state sintering route at the 1500 °C for 6 h in air. Effect of Mn substitution on the structure of Ba{sub 0.3}Sr{sub 0.7}(Ti0{sub .9}Zr{sub 0.1}){sub 1−x}O{sub 3} perovskite was investigated systematically. Dielectric and impedancemore » spectroscopic studies were conducted to understand the electronic microstructure of the Ba{sub 0.3}Sr{sub 0.7}(Ti0{sub .9}Zr{sub 0.1}){sub 1−x}O{sub 3} ceramics. Sample with x = 0.05 showed the highest dielectric constant (ϵ{sub r} = 1826) and low dielectric loss (tanδ = 0.001) at 10 kHz, around the room temperature, while the sample with x = 0.00 showed good microwave (MW) dielectric properties (Qf{sub o} = 838 and ϵ{sub r} = 550). The impedance spectroscopic analysis confirmed the electrical homogeneity of the samples with x = 0.013, 0.015 and 0.05, where grain boundaries dominated the conduction mechanism. Similarly, the sample with x = 0.00 was found to possess both grain boundary and bulk resistive contributions.« less

  7. Perpendicular magnetic anisotropy of La0.67Sr0.33MnO3 thin films grown on CaMnO3 buffered SrTiO3

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Hong; Cristiani, G.; Habermeier, H.-U.; Zhang, Zhen-Rong; Han, Bao-Shan

    2003-10-01

    La0.67Sr0.33MnO3(LSMO) thin films were grown onto CaMnO3(CMO) buffered SrTiO3(100) by pulsed laser deposition. Because of the in-plane compressive strain induced by the lattice mismatch between CMO and LSMO, a perpendicular magnetic anisotropy (PMA) was obtained in the overlayer LSMO. Using the magnetic force microscopy, stripe magnetic domains in association with the PMA were observed at room temperature. Furthermore, the magnetoresistance with in-plane magnetic field parallel and vertical to the measuring current was studied at 5 and 300 K, and its correlation with the magnetic anisotropy has been discussed.

  8. Study of electrical and magneto-transport properties in La0.5Sr0.5CoO3

    NASA Astrophysics Data System (ADS)

    Sharma, Gaurav; Tyagi, Shekhar; Rawat, R.; Sathe, V. G.

    2018-04-01

    Electric and Magneto-Transport properties of La0.5Sr0.5CoO3 have been investigated in the temperature range of 5-300K and under the magnetic field up to 8T. The para- to ferromagnetic transition is reflected in zero field R-T measurements in the form of change in slope. La0.5Sr0.5CoO3 is a well-known cluster glass compound with Tc˜250K. The compound show metallic behavior throughout the whole temperature range of measurement. The compound exhibits negative magneto-resistance around the magnetic ordering temperature due to suppression of spin disorder resistivity. The Seebeck coefficient as a function of temperature is also measured and the results are discussed.

  9. Suppressed Sr segregation and performance of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen electrode on Y2O3-ZrO2 electrolyte of solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Ai, Na; He, Shuai; Li, Na; Zhang, Qi; Rickard, William D. A.; Chen, Kongfa; Zhang, Teng; Jiang, San Ping

    2018-04-01

    Active and stable oxygen electrode is probably the most important in the development of solid oxide electrolysis cells (SOECs) technologies. Herein, we report the successful development of mixed ionic and electronic conducting (MIEC) La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite oxides directly assembled on barrier-layer-free yttria-stabilized zirconia (YSZ) electrolyte as highly active and stable oxygen electrodes of SOECs. Electrolysis polarization effectively induces the formation of electrode/electrolyte interface, similar to that observed under solid oxide fuel cell (SOFC) operation conditions. However, in contrast to the significant performance decay under SOFC operation conditions, the cell with directly assembled LSCF oxygen electrodes shows excellent stability, tested for 300 h at 0.5 A cm-2 and 750 °C under SOEC operation conditions. Detailed microstructure and phase analysis reveal that Sr segregation is inevitable for LSCF electrode, but anodic polarization substantially suppresses Sr segregation and migration to the electrode/electrolyte interface, leading to the formation of stable and efficient electrode/electrolyte interface for water and CO2 electrolysis under SOECs operation conditions. The present study demonstrates the feasibility of using directly assembled MIEC cobaltite based oxygen electrodes on barrier-layer-free YSZ electrolyte of SOECs.

  10. Study on Dy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ-Ce0.85Gd0.15O1.95 composite cathode material for intermediate temperature solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Kautkar, Pranay R.; Acharya, Smita A.

    2018-05-01

    xDy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ - xCe0.85Gd0.15O1.95 (x = 50 %) composite cathode supported on Ce0.85Gd0.15O1.95 (GDC15) electrolyte are studied for applications in IT-SOFCs. Results attribute that Dy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ material is chemically compatible with Ce0.85Gd0.15O1.95 (GDC15). Rietveld refined X-ray diffraction patterns notify orthorhombic (space group:Pbnm) symmetry for Dy0.45 Ba0.05Sr0.5Co0.8Fe0.2O3-δ and fluorite type structure (space group: Fm-3m) symmetry for GDC15. The polarization resistance (Rp) of composite cathode reduces to the minimum value of 1.35 Ω cm2 at 650 °C in air. Area specific resistance (ASR) of composite cathode has found 0.67 Ω.cm2 at 650°C respectively. Result shows that the surface diffusion of the dissociative adsorbed oxygen at electrode/electrolyte interface on the composite cathode.

  11. Sc-substituted La0.6Sr0.4FeO3-δ mixed conducting oxides as promising electrodes for symmetrical solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Xuejiao; Han, Da; Zhou, Yucun; Meng, Xie; Wu, Hao; Li, Junliang; Zeng, Fanrong; Zhan, Zhongliang

    2014-01-01

    The main barrier to symmetrical solid oxide fuel cells (SOFCs), where the same catalytic materials are used simultaneously as the anodes and the cathodes, is to identify a redox-stable catalyst that exhibits superior catalytic activities for both fuel oxidation and oxygen reduction reactions. Here we report a Sc-substituted La0.6Sr0.4FeO3-δ oxide, La0.6Sr0.4Fe0.9Sc0.1O3-δ, that shows great promise as a new symmetrical electrode material with good structural stability and reasonable conductivities in air and hydrogen. We further demonstrate that nano-scale La0.6Sr0.4Fe0.9Sc0.1O3-δ catalysts impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ backbones exhibit good catalytic activities for oxygen reduction and hydrogen oxidation reactions and thereby yield low polarization resistances, e.g., 0.015 Ω cm2 in air and 0.29 Ω cm2 in hydrogen with appropriate current collection at 800 °C. Thin La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte fuel cells with such symmetrical La0.6Sr0.4Fe0.9Sc0.1O3-δ catalysts showed maximum power densities of 0.56 and 0.32 W cm-2 when operating on 97% H2-3% H2O at 800 and 700 °C, respectively.

  12. Structure refinement of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-d} as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakaria, Nurhamidah, E-mail: nurhamidahzakaria@yahoo.com; Idris, Mohd Sobri, E-mail: sobri@unimap.edu.my; Osman, Rozana A. M., E-mail: rozana@unimap.edu.my

    2016-07-19

    Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} was successfully prepared using modified solid-state synthesis routes. The lowest temperature to obtained single phase of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} is about 900°C for 15 hours. Longer period of time are required compared to only 5 hours at 950°C as established in literatures. The X-ray Diffraction (XRD) data confirmed that Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} is formed a cubic perovskite with the space group of Pm-3m. The lattice parameters of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} are a = 3.990 (1) Å and unit cell volume is V = 63.5 (1)more » Å{sup 3}. The Rietveld refinement of XRD data revealed that the crystal structure of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} slightly changes as a function of temperature.« less

  13. Epitaxial growth of high quality SrFeO3 films on (001) oriented (LaAlO3)0.3(Sr2TaAlO6)0.7

    NASA Astrophysics Data System (ADS)

    Hong, Deshun; Liu, Changjiang; Pearson, John; Bhattacharya, Anand

    2017-12-01

    The growth of strontium ferrite SrFeO3 films with a stoichiometry of (1:1:3) is challenging as the unstable Fe4+ oxidation state favors the formation of O vacancies. Here, we report the layer by layer growth of SrFeO3 on (001) oriented (LaAlO3)0.3(Sr2TaAlO6)0.7 using ozone assisted molecular beam epitaxy. Upon cooling from room temperature, the film's resistivity decreased from 750 μΩ c m to 150 μΩ c m , as low as the best single crystals, with two identifiable transition points near 110 K and 60 K in resistivity measurements, being hysteretic between cooling and warming through the 60 K transition. During various annealing steps, the low temperature resistivity changes by orders of magnitude, accompanied by an increase in the c-axis lattice parameter. The hysteresis near 60 K persists for a wide range of annealing conditions. We have identified conditions under which changes due to annealing can be reversed. We attribute changes in resistivity and the out of plane lattice parameter to the reversible movement of oxygen ions in the lattice. SrFeO3 may be a promising material for resistive memory applications based upon the control of oxygen vacancies.

  14. Epitaxial growth of high quality SrFeO 3 films on (001) oriented (LaAlO 3 ) 0.3 (Sr 2 TaAlO 6 ) 0.7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Deshun; Liu, Changjiang; Pearson, John

    2017-12-04

    Growth of strontium ferrite SrFeO3 films with stoichiometry of (1:1:3) is challenging as the unstable Fe4+ oxidation state favors the formation of O vacancies. Here, we report layer by layer growth of SrFeO3 on (001) oriented (LaAlO3)0.3(Sr2TaAlO6)0.7 using ozone assisted molecular beam epitaxy. Upon cooling from room temperature, the film’s resistivity decreased from 750 Ω ∙ to 150 Ω ∙ , as low as the best single crystals, with two identifiable transition points near 110 K and 60 K in resistivity measurements, being hysteretic between cooling and warming through the 60 K transition. During various annealing steps, the low temperaturemore » resistivity changes by orders of magnitude, accompanied by an increase in the c-axis lattice parameter. The hysteresis near 60 K persists for a wide range of annealing conditions. We have identified conditions under which changes due to annealing can be reversed. We attribute changes in resistivity and out of plane lattice parameter to the reversible movement of oxygen ions in the lattice. SrFeO3 may be a promising material for resistive memory applications based upon the control of oxygen vacancies.« less

  15. Structural, transport and magnetotransport properties of Ru-doped La0.5Sr0.5Mn1-xRuxO3 (x = 0.0 & 0.05) manganite

    NASA Astrophysics Data System (ADS)

    Jethva, Sadaf; Katba, Savan; Udeshi, Malay; Kuberkar, D. G.

    2017-09-01

    We report the results of the structural, transport and magnetotransport studies on polycrystalline La0.5Sr0.5Mn1-xRuxO3 (x = 0.0 and 0.05) manganite investigated using XRD and resistivity (with and without field) measurements. Rietveld refinement of XRD patterns confirms the single phasic tetragonal structure for both the samples crystalizing in I4/mcm space group (No. 140). Low-temperature resistivity and MR measurements with H = 0 T & 5 T field show thermal hysteresis which has been attributed to the first order phase transition. The increase in resistivity and decrease in metal - insulator transition temperature (TMI) with Ru - doping concentration in La0.5Sr0.5MnO3 (LSMO) has been understood in the context of superexchange interaction between Mn and Ru ions. The observed upturn in resistivity at low temperature under field has been explained using combined effect of electron - electron (e - e) interaction, Kondo-like spin-dependent scattering and electron - phonon interaction while the variation in resistivity at high temperature (T > Tp) has been explained using adiabatic small polaron hopping model.

  16. Synthesis, crystal structure, and luminescence properties of a new nitride polymorph, β-Sr0.98Eu0.02AlSi4N7

    NASA Astrophysics Data System (ADS)

    Yoshimura, Fumitaka; Yamane, Hisanori; Nagasako, Makoto

    2018-02-01

    Prismatic vermilion single crystals 200 μm-2 mm in size, together with a white powder, were obtained by heating a mixture of binary nitrides containing Mg3N2 at 2030 °C under 0.85 MPa of N2. Yellow, thick-platelet single crystals with sizes of 150-500 μm were also found to grow at or near the surface of the product. Single crystal X-ray diffraction demonstrated that the vermilion crystals were orthorhombic Sr0.98Eu0.02AlSi4N7, which has been prepared in previous studies and is termed the α phase of this compound. The yellow crystals were revealed to be a new polymorph of Sr0.98Eu0.02AlSi4N7 (β phase) that crystalized in a monoclinic cell (a = 8.1062(1) Å, b = 9.0953(1) Å, c = 8.9802(2) Å, β = 111.6550(5)°, space group P21) with twins that could be examined by transmission and scanning transmission electron microscopy. β-Sr0.98Eu0.02AlSi4N7 was found to have a three-dimensional network structure formed by the stacking of two types of layers. One is a dreier layer of (Al/Si)N4 tetrahedra that consists of N vertex-sharing double chains of (Al/Si)N4 tetrahedra extending in the c-axis direction with Sr and Eu atoms aligned between the chains, while the other is a layer of (Al/Si)N4 tetrahedra connected by sharing N edges and vertexes. The crystal structure of β-Sr0.98Eu0.02AlSi4N7 is similar to those of certain oxynitrides, such as Sr3Al3+xSi13-xN21-xO2+x:Eu2+ (x ≈ 0) and Sr4.9Eu0.1Al5+xSi21-xN35-xO2+x (x ≈ 0). The peak wavelength and full width at half maximum in the emission spectrum obtained from single crystals of β-Sr0.98Eu0.02AlSi4N7 under excitation at 400 nm were 541 and 66 nm, respectively.

  17. Oxygen ion conductivity of La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ synthesized by laser rapid solidification

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Yuan, Chao; Wang, Jun-Qiao; Liang, Er-Jun; Chao, Ming-Ju

    2013-08-01

    Materials La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ with x = 0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique spear-like or leaf-like microstructures which are orderly arranged and densely packed. Their electrical properties each show a general dependence of the Co content and the total conductivities of La0.8Sr0.2Ga0.83Mg0.085Co0.085O3-δ prepared by laser rapid solidification are measured to be 0.067, 0.124, and 0.202 S·cm-1 at 600, 700, and 800 °C, respectively, which are much higher than by conventional solid state reactions. Moreover, the electrical conductivities each as a function of the oxygen partial pressure are also measured. It is shown that the samples with the Co content values <= 8.5 mol% each exhibit basically ionic conduction while those for Co content values >= 10 mol % each show ionic mixed electronic conduction under oxygen partial pressures from 10-16 atm (1 atm = 1.01325 × 105 Pa) to 0.98 atm. The improved ionic conductivity of La0.8Sr0.2Ga0.83Mg0.085Co0.085O3-δ prepared by laser rapid solidification compared with by solid state reactions is attributed to the unique microstructure of the sample generated during laser rapid solidification.

  18. Positive exchange-bias and giant vertical hysteretic shift in La0.3Sr0.7FeO3/SrRuO3 bilayers

    PubMed Central

    Rana, Rakesh; Pandey, Parul; Singh, R. P.; Rana, D. S.

    2014-01-01

    The exchange-bias effects in the mosaic epitaxial bilayers of the itinerant ferromagnet (FM) SrRuO3 and the antiferromagnetic (AFM) charge-ordered La0.3Sr0.7FeO3 were investigated. An uncharacteristic low-field positive exchange bias, a cooling-field driven reversal of positive to negative exchange-bias and a layer thickness optimised unusual vertical magnetization shift were all novel facets of exchange bias realized for the first time in magnetic oxides. The successive magnetic training induces a transition from positive to negative exchange bias regime with changes in domain configurations. These observations are well corroborated by the hysteretic loop asymmetries which display the modifications in the AFM spin correlations. These exotic features emphasize the key role of i) mosaic disorder induced subtle interplay of competing AFM-superexchange and FM double exchange at the exchange biased interface and, ii) training induced irrecoverable alterations in the AFM spin structure. PMID:24569516

  19. Metal insulator transition and magnetotransport anomalies in perovskite SrIr{sub 0.5}Ru{sub 0.5}O{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Abhijit; Lee, Yong Woo; Kim, Sang Woo

    2015-03-21

    We investigated the nature of transport and magnetic properties in SrIr{sub 0.5}Ru{sub 0.5}O{sub 3} (SIRO), which has characteristics intermediate between a correlated non-Fermi liquid state and an itinerant Fermi liquid state, by growing perovskite thin films on various substrates (e.g., SrTiO{sub 3} (001), (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}TaAlO{sub 6}){sub 0.7} (001), and LaAlO{sub 3} (001)). We observed systematic variation of underlying substrate dependent metal-to-insulator transition temperatures (T{sub MIT} ∼ 80 K on SrTiO{sub 3}, ∼90 K on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}TaAlO{sub 6}){sub 0.7}, and ∼100 K on LaAlO{sub 3}) in resistivity. At temperature 300 K ≥ T ≥ T{sub MIT}, SIRO is metallic and its resistivity follows a T{supmore » 3/2} power law, whereas insulating nature at T < T{sub MIT} is due to the localization effect. Magnetoresistance (MR) measurement of SIRO on SrTiO{sub 3} (001) shows negative MR at T < 25 K and positive MR at T > 25 K, with negative MR ∝ B{sup 1/2} and positive MR ∝ B{sup 2}; consistent with the localized-to-normal transport crossover dynamics. Furthermore, observed spin glass like behavior of SIRO on SrTiO{sub 3} (001) at T < 25 K in the localized regime validates the hypothesis that (Anderson) localization favors glassy ordering. These remarkable features provide a promising approach for future applications and of fundamental interest in oxide thin films.« less

  20. Structure and superconductivity in (Bi(0.35)Cu(0.65))Sr2YCu2O7 and related materials

    NASA Technical Reports Server (NTRS)

    Jennings, R. A.; Williams, S. P.; Greaves, C.

    1995-01-01

    The recently reported (Bi/Cu)Sr2YCu2O7 phase has been studied by time of flight powder neutron diffraction. The proposed 1212 structure has been confirmed and refinements have shown the oxygen in the (Bi/Cu)O layer is displaced by 0.78 A from the ideal (1/2,1/2,0) site (P4/mmm space group) along /100/. Bond Valence Sum calculations have suggested oxidation states of Bi(5+) and Cu(2+) for the cations in the (Bi/Cu)O layers. The material is non-superconducting and all attempts to induce superconductivity have been unsuccessful. Work on the related material (Ce/Cu)Sr2YCu2O7 has shown the ideal Ce content to be 0.5 Ce per formula unit. The introduction of Ba (10%) onto the Sr site dramatically increases phase stability and also induces superconductivity (62 K).

  1. Increased Curie Temperature Induced by Orbital Ordering in La0.67Sr0.33MnO3/BaTiO3 Superlattices.

    PubMed

    Zhang, Fei; Wu, Biao; Zhou, Guowei; Quan, Zhi-Yong; Xu, Xiao-Hong

    2018-01-17

    Recent theoretical studies indicated that the Curie temperature of perovskite manganite thin films can be increased by more than an order of magnitude by applying appropriate interfacial strain to control orbital ordering. In this work, we demonstrate that the regular intercalation of BaTiO 3 layers between La 0.67 Sr 0.33 MnO 3 layers effectively enhances ferromagnetic order and increases the Curie temperature of La 0.67 Sr 0.33 MnO 3 /BaTiO 3 superlattices. The preferential orbital occupancy of e g (x 2 -y 2 ) in La 0.67 Sr 0.33 MnO 3 layers induced by the tensile strain of BaTiO 3 layers is identified by X-ray linear dichroism measurements. Our results reveal that controlling orbital ordering can effectively improve the Curie temperature of La 0.67 Sr 0.33 MnO 3 films and that in-plane orbital occupancy is beneficial to the double exchange ferromagnetic coupling of thin-film samples. These findings create new opportunities for the design and control of magnetism in artificial structures and pave the way to a variety of novel magnetoelectronic applications that operate far above room temperature.

  2. Internal residual stress studies and enhanced dielectric properties in La0.7Sr0.3CoO3 buffered (Ba,Sr)TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Lu, Shengbo; Xu, Zhengkui

    2009-09-01

    Ba0.6Sr0.4TiO3 (BST) thin films were deposited on La0.7Sr0.3CoO3 (LSCO) buffered and unbuffered Pt (111)/Ti/SiO2/Si substrates by pulsed laser deposition. The former exhibits a (100) preferred orientation and the latter a random orientation, respectively. Grazing incident x-ray diffraction study revealed that the tensile residual stress observed in the latter is markedly reduced in the former. As a result, the dielectric property of the LSCO buffered BST thin film is greatly improved, which shows a larger dielectric constant and tunability, smaller loss tangent, and lower leakage current than those of the unbuffered BST thin film. The relaxation of the larger tensile residual stress is attributed to the larger grain size in the buffered BST thin film and to a closer match of thermal expansion coefficient between the BST and the LSCO buffer layer.

  3. Magnetism in La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Co{sub x}O{sub 3} (0 ≤ x ≤ 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Ashutosh, E-mail: ashutosh.pph13@iitp.ac.in; Sharma, Himanshu; Tomy, C. V.

    2016-05-23

    We study the structural and magnetic properties of La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Co{sub x}O{sub 3} (0 ≤ x ≤ 1). Rietveld refinement of X-ray Diffraction (XRD) pattern suggests phase purity of the polycrystalline samples with R-3c space group. Interplay of Ferromagnetic (FM) and Antiferromagnetic (AFM) interaction upon Co substitution at Mn site in La{sub 0.7}Sr{sub 0.3}MnO{sub 3} is evident from magnetic measurements. There is an optimal cobalt substitution at which the coercive field is maximum.

  4. Thickness-dependent magnetic and electrical transport properties of epitaxial La 0.7Sr 0.3CoO 3 films

    DOE PAGES

    Li, Binzhi; Chopdekar, Rajesh V.; Kane, Alexander M.; ...

    2017-04-04

    The thickness-dependent magnetic and electrical transport properties of nearly strain-free La 0.7Sr 0.3CoO 3 (LSCO) films grown on (001)-oriented (LaAlO 3 ) 0.3 (Sr 2AlTaO 6) 0.7 substrates were systematically studied. A crossover from ferromagnetic/metallic to non-magnetic/insulating behavior occurs at a critical thickness (~8 nm) that is significantly smaller than LSCO films under larger strains in reported literature. X-ray absorption measurements revealed that the difference of functional properties at reduced film thicknesses was accompanied by changes in the valence state of Co ions at the film/substrate interface.

  5. Nanoblast synthesis and consolidation of (La0.8Sr0.2)(Ga0.9Mg0.1)O(3-delta) under Spark plasma sintering conditions.

    PubMed

    Vasylkiv, Oleg; Borodianska, Hanna; Badica, Petre; Zhen, Yongda; Tok, Alfred

    2009-01-01

    Four-cation nanograined strontium and magnesium doped lanthanum gallate (La0.8Sr0.2) (Ga0.9Mg0.1)O(3-delta) (LSGM) and its composite with 2 wt% of ceria (LSGM-Ce) were prepared. Morphologically homogeneous nanoreactors, i.e., complex intermediate metastable aggregates of desired composition were assembled by spray atomization technique, and subsequently loaded with nanoparticles of highly energetic C3H6N6O6. Rapid nanoblast calcination technique was applied and the final composition was synthesized within the preliminary localized volumes of each single nanoreactor on the first step of spark plasma treatment. Subsequent SPS consolidations of nanostructured extremely active LSGM and LSGM-Ce powders were achieved by rapid treatment under pressures of 90-110 MPa. This technique provided the heredity of the final structure of nanosize multimetal oxide, allowed the prevention of the uncontrolled agglomeration during multicomponent aggregates assembling, subsequent nanoblast calcination, and final ultra-rapid low-temperature SPS consolidation of nanostructured ceramics. LaSrGaMgCeO(3-delta) nanocrystalline powder consisting of approximately 11 nm crystallites was consolidated to LSGM-Ce nanoceramic with average grain size of approximately 14 nm by low-temperature SPS at 1250 degrees C. Our preliminary results indicate that nanostructured samples of (La0.8Sr0.2)(Ga0.9Mg0.1)O(3-delta) with 2 wt% of ceria composed of approximataley 14 nm grains can exhibit giant magnetoresistive effect in contrast to the usual paramagnetic properties measured on the samples with larger grain size.

  6. Soft ferromagnetism in mixed valence Sr(1-x)La(x)Ti(0.5)Mn(0.5)O₃ perovskites.

    PubMed

    Qasim, Ilyas; Blanchard, Peter E R; Kennedy, Brendan J; Ling, Chris D; Jang, Ling-Yun; Kamiyama, Takashi; Miao, Ping; Torii, Shuki

    2014-05-14

    The structural, magnetic and electrical properties of the mixed Ti-Mn oxides Sr(1-x)La(x)Ti(0.5)Mn(0.5)O3 (0 ≤ x ≤ 0.5) are reported. At room temperature the oxides have a cubic structure in space group Pm3m for x ≤ 0.25 and rhombohedral in R3c for 0.3 ≤ x ≤ 0.50. X-ray absorption spectroscopic measurements demonstrate the addition of La(3+) is compensated by the partial reduction of Mn(4+) to Mn(3+). Variable temperature neutron diffraction measurements show that cooling Sr(0.6)La(0.4)Ti(0.5)Mn(0.5)O3 results in a first order transition from rhombohedra to an orthorhombic structure in Imma. Complex magnetic behaviour is observed. The magnetic behaviour of the mixed valent (Mn(3+/4+)) examples is dominated by ferromagnetic interactions, although cation disorder frustrates long range magnetic ordering.

  7. Interrelation of transport properties, defect structure and spin state of Ni3+ in La1.2Sr0.8Ni0.9Fe0.1O4+δ

    NASA Astrophysics Data System (ADS)

    Gilev, A. R.; Kiselev, E. A.; Zakharov, D. M.; Cherepanov, V. A.

    2017-10-01

    The total conductivity, Seebeck coefficient and oxygen non-stoichiometry for La1.2Sr0.8Ni0.9Fe0.1O4+δ have been measured vs temperature and oxygen partial pressure P(O2). The measurements were carried out at 800, 850, 900 and 950 °C within the P(O2) range of 10-5-0.21 atm. La1.2Sr0.8Ni0.9Fe0.1O4+δ was shown to be oxygen deficient in all temperature and P(O2) ranges studied. The calculated values of the partial molar enthalpy of oxygen depend very slightly on oxygen content (δ), indicating that La1.2Sr0.8Ni0.9Fe0.1O4+δ with the oxygen deficiency can be considered an ideal solution. The model of point defect equilibria in La1.2Sr0.8Ni0.9Fe0.1O4+δ has been proposed and fitted to experimental dependencies. Subsequent joint analysis of the defect structure and transport properties revealed that electron holes can coexist in both localized and quasi-delocalized states in the oxide: the former corresponded to high-spin state Ni3+ and the latter - to low-spin state Ni3+. The mobilities of localized electron holes were shown to be significantly lower in comparison to quasi-delocalized ones. The behavior of localized electron holes was explained in terms of a small polaron conduction mechanism; in contrast, quasi-delocalized electron holes were described in terms of a band conduction approach. The small polaron conduction mechanism was shown to be predominant in the Sr- and Fe-co-doped lanthanum nickelate.

  8. NQRS Data for CoLa0.5O3Sr0.5(Subst. No. 1964)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for CoLa0.5O3Sr0.5 (Subst. No. 1964)

  9. NQRS Data for CoLa0.75O3Sr0.25(Subst. No. 1967)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for CoLa0.75O3Sr0.25 (Subst. No. 1967)

  10. NQRS Data for CoLa0.8O3Sr0.2(Subst. No. 1968)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for CoLa0.8O3Sr0.2 (Subst. No. 1968)

  11. NQRS Data for CoLa0.7O3Sr0.3(Subst. No. 1966)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for CoLa0.7O3Sr0.3 (Subst. No. 1966)

  12. NQRS Data for CoLa0.6O3Sr0.4(Subst. No. 1965)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for CoLa0.6O3Sr0.4 (Subst. No. 1965)

  13. Superconducting Properties and μSR Study of the Noncentrosymmetric Superconductor Nb0.5Os0.5.

    PubMed

    Singh, D; Barker, J A T; Arumugam, Thamizhavel; Hillier, A D; Paul, D McK; Singh, R P

    2017-12-21

    The properties of the noncentrosymmetric superconductor ($\\alpha$-$\\textit{Mn}$ structure) Nb$_{0.5}$Os$_{0.5}$ is investigated using resistivity, magnetization, specific heat, and muon spin relaxation and rotation ($\\mu$SR) measurements. These measurements suggest that Nb$_{0.5}$Os$_{0.5}$ is a weakly coupled ($\\lambda_{e-ph}$ $\\sim$ 0.53) type-II superconductor ($\\kappa_{GL}$ $\\approx$ 61) having a bulk superconducting transition temperature $T_c$ = 3.07 K. The specific heat data in the superconductive regime fits well with the single-gap BCS model indicating nodeless s-wave superconductivity in Nb$_{0.5}$Os$_{0.5}$. The $\\mu$SR measurements also confirm $\\textit{s}$-wave superconductivity with the preserved time-reversal symmetry. © 2017 IOP Publishing Ltd.

  14. Optimal formation and enhanced superconductivity of Tl-1212 phase (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7

    NASA Astrophysics Data System (ADS)

    Ranjbar, M. G.; Ghoranneviss, Mahmood; Abd-Shukor, R.

    2018-06-01

    The effect of heating temperature on the formation of Tl-1212 phase with nominal starting composition (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 (Tl-1212) is reported. The Ba-bearing Tl-1212 phase is normally prepared at around 900 °C while with Sr-bearing sample is prepared at a much higher temperature of around 1000 °C. This work was conducted to determine the optimal temperature to synthesis the Tl-1212 phase when the sample contains Ba and Sr with 1:1 ratio. (Tl0.6Pb0.4)(Ba,Sr)CaCu2O7 samples were prepared using the solid-state reaction method via the precursor route. In the final preparation stage, the samples were heated at 850, 870, 900, 920, 950, 970 and 1000 °C in oxygen flow. X-Ray diffraction patterns showed that most samples consisted of a mixed (Tl0.6Pb0.4)(Ba,Sr)Ca2Cu3O9 (Tl-1223) and Tl-1212 phase except for the sample heated at 970 °C which showed a single Tl-1212 phase and the sample heated at 850 °C which showed the Tl-1223 phase. The transition temperature measured by four-probe method showed that the sample heated at 970 °C exhibited the highest onset temperature of 118 K and zero-resistance temperature of 100 K. This transition temperature is higher than the usually reported value for the Tl-1212 phase. AC susceptibility measurements also showed the 970 °C heated sample with the highest transition temperature T c χ' = 109 K. The interplay of ionic radius (Ba2+ and Sr2+) decreases of the unit cell volume and changes in the internal lattice strain enhanced the transition temperature and the formation of the Tl-1212 phase.

  15. Structural features and high-temperature transport in SrFe0.7Mo0.3O3-δ

    NASA Astrophysics Data System (ADS)

    Merkulov, O. V.; Markov, A. A.; Patrakeev, M. V.; Leonidov, I. A.; Shalaeva, E. V.; Tyutyunnik, A. P.; Kozhevnikov, V. L.

    2018-02-01

    The complex oxide SrFe0.7Mo0.3O3-δ was obtained by combustion of the organometallic precursor in air followed by annealing in an argon flow at 1350 °C, and characterized with the help of X-ray and electron diffraction methods. Oxygen nonstoichiometry and electrical conductivity data were collected in the oxygen partial pressure range from 10-19 to 0.5 atm at temperatures 750-950 °C. The as-prepared single phase oxide SrFe0.7Mo0.3O3-δ with the cubic double perovskite structure (SG Fm3m) is shown to undergo a structural transition to the tetragonal double perovskite phase (SG I4mmm) in the result of reducing treatment at pO2 = 10-12 atm and 950 °C. The ordered phases are characterized by a strong anti-site disordering of iron and molybdenum and nearly zero long-range ordering parameter. The maximal concentration of n-type carriers is about four times larger than of p-type carriers in the studied limits of oxygen pressure and temperature. The mobility of p-type carriers is found to vary within 0.02-0.03 cm2 V-1 s-1 with the migration energy of about 0.4 eV, while the n-type mobility being approximately twice higher does not practically depend on temperature. Such features as good electrical conductivity, which can rise up to 40 S cm-1 in reducing conditions and a considerable amount of oxygen vacancies favorable for fast oxygen ion transport are beneficial for application of SrFe0.7Mo0.3O3-δ as anode material in SOFCs and oxygen membrane for hydrogen generation by a water splitting.

  16. Thermally assisted interlayer magnetic coupling through Ba{sub 0.05}Sr{sub 0.95}TiO{sub 3} barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carreira, Santiago J.; Steren, Laura B.; Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autonoma de Buenos Aires C1425FQB

    2016-08-08

    We report on the interlayer exchange coupling across insulating barriers observed on Ni{sub 80}Fe{sub 20}/Ba{sub 0.05}Sr{sub 0.95}TiO{sub 3}/La{sub 0.66}Sr{sub 0.33}MnO{sub 3} (Py/BST{sub 0.05}/LSMO) trilayers. The coupling mechanism has been analyzed in terms of the barrier thickness, samples' substrate, and temperature. We examined the effect of MgO (MGO) and SrTiO{sub 3} (STO) (001) single-crystalline substrates on the magnetic coupling and also on the magnetic anisotropies of the samples in order to get a deeper understanding of the magnetism of the structures. We measured a weak coupling mediated by spin-dependent tunneling phenomena whose sign and strength depend on barrier thickness and substrate.more » An antiferromagnetic (AF) exchange prevails for most of the samples and smoothly increases with the barrier thicknesses as a consequence of the screening effects of the BST{sub 0.05}. The coupling monotonically increases with temperature in all the samples and this behavior is attributed to thermally assisted mechanisms. The magnetic anisotropy of both magnetic components has a cubic symmetry that in the case of permalloy is added to a small uniaxial component.« less

  17. Synthesis of Sr0.9K0.1FeO3-δ electrocatalysts by mechanical activation

    NASA Astrophysics Data System (ADS)

    Monteiro, J. F.; Waerenborgh, J. C.; Kovalevsky, A. V.; Yaremchenko, A. A.; Frade, J. R.

    2013-02-01

    Potassium-substituted SrFeO3-δ for possible application as oxygen evolution electrode in alkaline or molten salt media was prepared by mechanical activation and characterized by X-ray diffraction, dilatometric and thermogravimetric analysis, Mössbauer spectroscopy, and electrical conductivity measurements. Room temperature mechanical activation of a mixture of oxide precursors with subsequent thermal treatments at 700-900 °C results in the formation of Sr0.9K0.1FeO3-δ with tetragonal perovskite-like structure. Such allows to decrease the synthesis temperature, if compared to the conventional solid-state route, and to prevent possible volatilization of potassium. The results of Mössbauer spectroscopy studies indicate that the oxygen nonstoichiometry in the samples annealed in air at 900-1100 °C with subsequent rapid cooling vary in the range δ=0.30-0.32. The electrical conductivity in air exhibits a metal-like behaviour at temperatures above 400 °C and semiconductor behaviour in the low-temperature range, reaching 13-30 S/cm under prospective operation conditions for alkaline electrolyzers (≤90 °C).

  18. Low temperature transport anomaly in Cr substituted (La0.67Sr0.33)MnO3 manganites

    NASA Astrophysics Data System (ADS)

    Tank, Tejas M.; Shelke, Vilas; Das, Sarmistha; Rana, D. S.; Thaker, C. M.; Samatham, S. S.; Ganesan, V.; Sanyal, S. P.

    2017-06-01

    The structural, electrical, and magnetic properties of La0.67Sr0.33Mn1-xCrxO3 (0 ≤ x ≤ 0.10) manganites have been studied by substitution of antiferromagnetic trivalent Cr ion at Mn-site. Systematic efforts have been carried out to understand the electrical resistivity behavior in the ferromagnetic metallic and paramagnetic semi-conducting phases of Cr substituted La0.67Sr0.33Mn1-xCrxO3 manganites. Polycrystalline samples show a resistivity minimum at a temperature (Tmin) of <40 K in the ferromagnetic metallic phase. Tmin shifts to higher temperatures on application of magnetic fields. The appearance of this resistivity minimum was analyzed by fittings the data according to the model that considers e-e scattering caused by enhanced Coulombic interactions. The electrical resistivity data has been best fitted in the metallic and semiconducting regime using various models. Present results suggest that intrinsic magnetic inhomogeneity like Cr3+ ions in these strongly electron-correlated manganite systems is originating due to the existence of the ferromagnetic interactions.

  19. Magnetic properties of rare-earth-doped La0.7Sr0.3MnO3.

    PubMed

    Veverka, Pavel; Kaman, Ondřej; Knížek, Karel; Novák, Pavel; Maryško, Miroslav; Jirák, Zdeněk

    2017-01-25

    Rare-earth-doped ferromagnetic manganites La 0.63 RE 0.07 Sr 0.30 MnO 3 (RE  =  Gd, Tb, Dy, and Ho) are synthesized in the form of sintered ceramics and nanocrystalline phases with the mean size of crystallites  ≈30 nm. The electronic states of the dopants are investigated by SQUID magnetometry and theoretically interpreted based on the calculations of the crystal field splitting of rare-earth energy levels. The samples show the orthorhombic perovskite structure of Ibmm symmetry, with a complete FM order of Mn spins in bulk and reduced order in nanoparticles. Non-zero moments are also detected at the perovskite A sites, which can be attributed to magnetic polarization of the rare-earth dopants. The measurements in external field up to 70 kOe show a standard Curie-type contribution of the spin-only moments of Gd 3+ ions, whereas Kramers ions Dy 3+ and non-Kramers ions Ho 3+ contribute by Ising moments due to their doublet ground states. The behaviour of non-Kramers ions Tb 3+ is anomalous, pointing to singlet ground state with giant Van Vleck paramagnetism. The Tb 3+ doping leads also to a notably increased coercivity compared to other La 0.63 RE 0.07 Sr 0.30 MnO 3 systems.

  20. AC conductivity studies of La doped Ba0.5Sr0.5TiO3

    NASA Astrophysics Data System (ADS)

    D'Souza, Slavia Deeksha; Rohith, Kotla Surya; Bhatnagar, Anil K.; Kumar, A. Sendil

    2017-05-01

    Ferroelectric material with high dielectric constant of Ba0.5Sr0.5TiO3 is synthesized through Solid State Reaction and fraction of Lanthanum is substituted to introduce hole concentration. XRay Diffraction shows all the samples are stabilized in cubic crystal structure. With La doped samples the Cole-Cole plot is modified and AC conductivity increases at higher temperatures as well as higher frequencies compared to undoped sample.

  1. Interrelation between Structure Magnetic Properties in La0.5Sr0.5CoO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biegalski, Michael D; Takamura, Y; Mehta, A

    Differing anisotropic strain induced from the underlying substrates not only control the long-range structural symmetries in La0.5Sr0.5CoO3 but also impact the magnetic properties of these epitaxial thin films. The two dominant structural distortions: oxygen octahedral tilts and epitaxial strain, however, have complex and non-intuitive effects on the splitting of the t2g states and consequently on magnetization.

  2. Enhanced stability of solid oxide fuel cells by employing a modified cathode-interlayer interface with a dense La0.6Sr0.4Co0.2Fe0.8O3-δ thin film

    NASA Astrophysics Data System (ADS)

    De Vero, Jeffrey C.; Develos-Bagarinao, Katherine; Kishimoto, Haruo; Ishiyama, Tomohiro; Yamaji, Katsuhiko; Horita, Teruhisa; Yokokawa, Harumi

    2018-02-01

    In La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode/Gd-doped ceria (GDC)/yttria-stabilized zirconia (YSZ)-electrolyte based solid oxide fuel cells (SOFCs), one of the key issues affecting performance and long-term stability is the apparent deactivation of LSCF cathode by the presence of secondary phases such as SrZrO3 at the interfaces. Herein, we report that by modifying the cathode-interlayer interface with a dense LSCF thin film, the severe cation interdiffusion is suppressed especially the fast gas or surface diffusion of Sr into adjacent GDC-interlayer/YSZ-electrolyte resulting in the significant reduction of SrZrO3 formation at the interfaces improving cell stability. In order to understand the present results, the interface chemistry is carefully considered and discussed. The results show that modification of cathode-interlayer interfaces is an important strategy for improving the lifetime of SOFCs.

  3. Symmetrical solid oxide fuel cells with impregnated SrFe0.75Mo0.25O3-δ electrodes

    NASA Astrophysics Data System (ADS)

    Meng, Xie; Liu, Xuejiao; Han, Da; Wu, Hao; Li, Junliang; Zhan, Zhongliang

    2014-04-01

    Here we report nominally symmetrical solid oxide fuel cells that feature thin La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolytes and impregnated SrFe0.75Mo0.25O3-δ (SFMO)-LSGM composite electrodes. Operation on hydrogen fuels and air oxidants can produce maximum power densities of 0.39 W cm-2 at 650 °C and 0.97 W cm-2 at 800 °C. Impedance measurements indicate that the anode and the cathode polarizations are 0.22 and 0.04 Ω cm2 at 800 °C, respectively. Hydrogen partial pressure and temperature dependence of impedance data in humidified hydrogen shows that hydrogen oxidation kinetics is largely determined by hydrogen adsorption on the SFMO catalysts at high temperatures and charge transfer reactions along the SFMO|LSGM interfaces at low temperatures. Carbon tolerance of the present fuel cells is also examined in iso-octane fuels balanced by nitrogen at 800 °C that yields stable maximum power densities of 0.39 W cm-2.

  4. Oxygen stoichiometry: A key parameter to tune structural phase diagram of La{sub 0.2}Sr{sub 0.8}MnO{sub 3-δ}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahee, Aga, E-mail: agashahee@gmail.com; Lalla, N. P.

    2015-06-24

    Low temperature x-ray powder diffraction studies, in conjunction with transmission electron microscopy on stoichiometric (δ = 0.01) and oxygen deficient (δ =0.12) samples of La{sub 0.2}Sr{sub 0.8}MnO{sub 3-δ} manganites have been carried out. These studies revealed that oxygen stoichiometry plays a key role in controlling ground state of electron doped manganites. It is observed that the La{sub 0.2}Sr{sub 0.8}MnO{sub 2.99} undergoes a first order phase transition from cubic (Pm-3m) to JT-distorted twin tetragonal (I4/mcm) phase associated with C-type antiferromagnetic ordering at ∼260K. This JT-distortion induced cubic to tetragonal phase transition get totally suppressed in La{sub 0.2}Sr{sub 0.8}MnO{sub 2.88}. The basicmore » perovskite lattice of the off-stoichiometric La{sub 0.2}Sr{sub 0.8}MnO{sub 2.88} remains cubic down to 80K but undergoes a well-developed charge-ordering transition with 9x9 modulations at ∼260K.« less

  5. Redox cycling induced Ni exsolution in Gd0.1Ce0.8Ni0.1O2 - (Sr0.9La0.1)0.9Ti0.9Ni0.1O3 composite solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Shen, X.; Chen, T.; Bishop, S. R.; Perry, N. H.; Tuller, H. L.; Sasaki, K.

    2017-12-01

    Oxide anodes composed of 60 wt% Gd0.1Ce0.8Ni0.1O2 (GDCN)- 40 wt% (Sr0.9La0.1)0.9Ti0.9Ni0.1O3 (SLTN) composites were prepared and tested on (ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 (SSZ) electrolyte-supported SOFC cells utilizing a (La0.75Sr0.25)0.98MnO3 (LSM)-SSZ cathode, in 3%-humidified hydrogen fuel at 800 °C. Improved electrochemical performance was found compared to the cell using Ni-free 60 wt% Gd0.1Ce0.9O2 (GDC) - 40 wt % Sr0.9La0.1TiO3 (SLT) that was attributed to the exsolution of nano-sized Ni particles from the Ni-doped system. This exsolution process represents a simpler, more attractive method to improve performance than the more conventional but more complicated infiltration method for introducing catalytic nanoparticles. Redox cycling testing was performed to investigate the performance and structural stability of the Ni-doped GDC-SLT anode. The results indicated that the Ni exsolution and aggregation occurred while redox cycling proceeded, resulting in a gradually reduced anodic overvoltage. Symmetric cells with dense thin film Gd0.1Ce0.9-xNixO2 (x = 0, 0.05, 0.1, 0.15) electrodes were also tested, demonstrating lower area-specific resistances with increasing Ni content on the surface under reducing conditions. The steady improvement during redox cycling, despite Ni agglomeration, is related to the continuous increase in the overall Ni content on the anode surface, which may be enabled by kinetic limitations to Ni re-dissolving under oxidizing transients.

  6. Temperature controlled evolution of monoclinic to super-tetragonal phase of epitaxial BiFeO3 thin films on La0.67Sr0.33MnO3 buffered SrTiO3 substrate

    NASA Astrophysics Data System (ADS)

    Singh, Anar; Kaifeng, Dong; Chen, Jing-Sheng

    2018-03-01

    Epitaxial BiFeO3 thin films of 130nm were deposited by pulsed laser deposition (PLD) technique on La0.67Sr0.33MnO3 buffered SrTiO3 (001) substrate at various temperatures under different ambient oxygen pressures. Reciprocal space mapping reveals that, with decreasing temperature and oxygen pressure, the broadly reported monoclinic phase (MA) of BiFeO3 thin film initially transforms to a tetragonal phase (T1) with c/a =1.05 (1) in a narrow girth of deposition condition and then to a super-tetragonal phase (T2) with giant c/a = 1.24 (1), as confirmed by reciprocal space mapping using high resolution x-ray diffraction. The surface morphology of the films reveals the island growth of the BiFeO3 films deposited at low temperatures. We propose that the transformation from monoclinic to the super-tetragonal phase is essentially due to the manifestation of excess local strain as a result of the island growth. This study offers a recipe to grow the super-tetragonal phase of BiFeO3, with giant c/a =1.24 (1) which exhibits exceptionally large ferroelectric polarization, on ferromagnetic layer La0.67Sr0.33MnO3. This phase of BiFeO3 can be utilized for the ferroelectric control of magnetism at the interface of BiFeO3 and La0.67Sr0.33MnO3.

  7. Composition and phase analysis of nanocrystalline Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) by using general structure analysis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunanto, Y. E., E-mail: yohanes.gunanto@uph.edu; Jobiliong, E., E-mail: eric.jobiliong@uph.edu; Adi, Wisnu Ari, E-mail: dwisnuaa@batan.go.id

    2016-03-11

    Single phase of nanocrystalline Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) was successfully synthesized by mechanical milling method and thermal process. Stoichiometric quantities of analytical-grade SrCO{sub 3}, BaCO{sub 3}, and Fe{sub 2}O{sub 3}, were mixed and milled using a high-energy milling. The mixture of all precursors was sintered at a temperature of 1000 °C for 10 hours. The refinement of x-ray diffraction trace for all samples confirmed a single phase material with a hexagonal structure. The increase of the amount of strontium content in the barium atoms in the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} system canmore » decrease the lattice parameter which have been successfully substituted into the barium atoms. The calculation result of cationic distribution showed that the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 0.6) and (x = 0.4) samples have nominal composition of Ba{sub 0,61}Sr{sub 0,39}Fe{sub 12}O{sub 19} and Ba{sub 0,37}Sr{sub 0,63}Fe{sub 12}O{sub 19}, respectively. Results of the mean of crystallite size evaluation for respective powder materials showed that the Ba{sub x}Sr{sub 1-x}Fe{sub 12}O{sub 19} (x = 1.0; 0.6; and 0.4) samples have the crystallite size of 22 nm, 25 nm and 34 nm, respectively. We concluded that the cationic distribution of barium atoms was successfully substituted by strontium atoms approaching the nominal stoichiometric composition.« less

  8. Electronic structure and bonding interactions in Ba1- x Sr x Zr0.1Ti0.9O3 ceramics

    NASA Astrophysics Data System (ADS)

    Mangaiyarkkarasi, Jegannathan; Sasikumar, Subramanian; Saravanan, Olai Vasu; Saravanan, Ramachandran

    2017-06-01

    An investigation on the precise electronic structure and bonding interactions has been carried out on Ba1- x Sr x Zr0.1Ti0.9O3 (short for BSZT, x = 0, 0.05, 0.07 and 0.14) ceramic systems prepared via high-temperature solid state reaction technique. The influence of Sr doping on the BSZT structure has been examined by characterizing the prepared samples using PXRD, UV-visible spectrophotometry, SEM and EDS. Powder profile refinement of X-ray data confirms that all the synthesized samples have been crystallized in cubic perovskite structure with single phase. Charge density distribution of the BSZT systems has been completely analyzed by the maximum entropy method (MEM). Co-substitution of Sr at the Ba site and Zr at the Ti site into the BaTiO3 structure presents the ionic nature between Ba and O ions and the covalent nature between Ti and O ions, revealed from MEM calculations. Optical band gap values have been evaluated from UV-visible absorption spectra. Particles with irregular shapes and well defined grain boundaries are clearly visualized from SEM images. The phase purity of the prepared samples is further confirmed by EDS qualitative spectral analysis.

  9. μ SR studies of the extended kagome systems YBaCo4O7+δ (δ = 0 and 0.1)

    NASA Astrophysics Data System (ADS)

    Lee, Suheon; Lee, Wonjun; Mitchell, John; Choi, Kwang-Yong

    We present a μSR study of the extended kagome systems YBaCo4O7+δ (δ = 0 and 0.1), which are made up of an alternating stacking of triangular and kagome layers. The parent material YBaCo4O7.0 undergoes a structural phase transition at 310 K, releasing geometrical frustration and thereby stabilizing an antiferromagnetically ordered state below TN = 106 K. The μSR spectra of YBaCo4O7.0 exhibit the loss of initial asymmetry and the development of a fast relaxation component below TN = 111 K. This indicates that the Co spins in the kagome planes remain in an inhomogeneous and dynamically fluctuating state down to 4 K, while the triangular spins order antiferromagnetically below TN. The nonstoichiometric YBaCo4O7.1 compound with no magnetic ordering exhibits a disparate spin dynamics between the fast cooling (10 K/min) and slow cooling (1 K/min) procedures. While the fast-cooled μSR spectra show a simple exponential decay, the slow-cooled spectra are described with a sum of a simple exponential function and a stretched exponential function. These are in agreements with the occurrence of the phase separation between interstitial oxygen-rich and poor regions in the slow-cooling measurements.

  10. Microstructure and bio-corrosion behaviour of Mg-5Zn-0.5Ca -xSr alloys as potential biodegradable implant materials

    NASA Astrophysics Data System (ADS)

    Yan, Li; Zhou, Jiaxing; Sun, Zhenzhou; Yang, Meng; Ma, Liqun

    2018-04-01

    Magnesium alloys are widely studied as biomedical implants owing to their biodegradability. In this work, novel Mg-5Zn-0.5Ca-xSr (x = 0, 0.14, 0.36, 0.50, 0.70 wt%) alloys were prepared as biomedical materials. The influence of strontium (Sr) addition on the microstructure, corrosion properties and corrosion morphology of the as-cast Mg-5Zn-0.5Ca-xSr alloys is investigated by a variety of techniques such as scanning electron microscopy, x-ray diffraction, and electrochemical measurements. The Sr-free alloy is composed of three phases, namely, α-Mg, CaMg2 and Ca2Mg6Zn3, while the alloys with the Sr addition consist of α-Mg, CaMg2 and Ca2Mg6Zn3 and Mg17Sr2. Corrosion experiments in Hank’s solution show that the addition of a small amount of Sr can improve the corrosion resistance of the Mg-5Zn-0.5Ca alloy. The corrosion products include Mg(OH)2, Zn(OH)2, Ca(OH)2, and HA (Ca5(PO4)3(OH)). Mg-5Zn-0.5Ca-0.36Sr alloy has the minimum weight loss rate (0.68 mm/a), minimal hydrogen evolution (0.08 ml/cm2/d) and minimum corrosion current density (7.4 μA/cm2), indicating that this alloy shows the best corrosion resistance.

  11. Superconductivity of ternary silicide with the AlB(2)-type structure Sr(Ga(0.37),Si(0.63))(2).

    PubMed

    Imai, M; Abe, E; Ye, J; Nishida, K; Kimura, T; Honma, K; Abe, H; Kitazawa, H

    2001-08-13

    A ternary silicide Sr(Ga(0.37),Si(0.63))(2) was synthesized by a floating zone method. Electron diffraction and powder x-ray diffraction measurements indicate that the silicide has the AlB(2)-type structure with the lattice constants of a = 4.1427(6) A and c = 4.7998(9) A, where Si and Ga atoms are arranged in a chemically disordered honeycomb lattice and Sr atoms are inercalated between them. The silicide is isostructural with the high-temperature superconductor MgB(2) reported recently. Electrical resistivity and dc magnetization measurements revealed that it is a type-II superconductor with onset temperature of 3.5 K.

  12. Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties.

    PubMed

    Li, Haifeng; Zhao, Ran; Jia, Yonglei; Sun, Wenzhi; Fu, Jipeng; Jiang, Lihong; Zhang, Su; Pang, Ran; Li, Chengyu

    2014-03-12

    A series of novel red-emitting Sr1.7Zn0.3CeO4:Eu(3+) phosphors were synthesized through conventional solid-state reactions. The powder X-ray diffraction patterns and Rietveld refinement verified the similar phase of Sr1.7Zn0.3CeO4:Eu(3+) to that of Sr2CeO4. The photoluminescence spectrum exhibits that peak located at 614 nm ((5)D0-(7)F2) dominates the emission of Sr1.7Zn0.3CeO4:Eu(3+) phosphors. Because there are two regions in the excitation spectrum originating from the overlap of the Ce(4+)-O(2-) and Eu(3+)-O(2-) charge-transfer state band from 200 to 440 nm, and from the intra-4f transitions at 395 and 467 nm, the Sr1.7Zn0.3CeO4:Eu(3+) phosphors can be well excited by the near-UV light. The investigation of the concentration quenching behavior, luminescence decay curves, and lifetime implies that the dominant mechanism type leading to concentration quenching is the energy transfer among the nearest neighbor or next nearest neighbor activators. The discussion about the dependence of photoluminescence spectra on temperature shows the better thermal quenching properties of Sr1.7Zn0.3CeO4:0.3Eu(3+) than that of Sr2CeO4:Eu(3+). The experimental data indicates that Sr1.7Zn0.3CeO4:Eu(3+) phosphors have the potential as red phosphors for white light-emitting diodes.

  13. Sintering of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) with/without SrTiO3 Dopant

    NASA Technical Reports Server (NTRS)

    Dynys, F.; Sayir, A.; Heimann, P. J.

    2004-01-01

    The perovskite composition, BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta), displays excellent protonic conduction at high temperatures making it a desirable candidate for hydrogen separation membranes. This paper reports on the sintering behavior of BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders doped with SrTiO3. Two methods were used to synthesize BaCe(sub 0.85)Y(sub 0.15)O(sub 3-delta) powders: (1) solid state reaction and (2) wet chemical co-precipitation. Co-precipitated powder crystallized into the perovskite phase at 1000 C for 4 hrs. Complete reaction and crystallization of the perovskite phase by solid state was achieved by calcining at 1200 C for 24 hrs. Solid state synthesis produced a coarser powder with an average particle size of 1.3 microns and surface area of 0.74 sq m/g. Co-precipitation produced a finer powder with a average particle size of 65 nm and surface area of 14.9 sq m/g. Powders were doped with 1, 2, 5, and 10 mole % SrTiO3. Samples were sintered at 1450 C, 1550 C and 1650 C. SrTiO3 enhances sintering, optimal dopant level is different for powders synthesized by solid state and co-precipitation. Both powders exhibit similar grain growth behavior. Dopant levels of 5 and 10 mole % SrTiO3 significantly enhances the grain size.

  14. Study of conduction behavior in Pr0.67Sr0.03Ag0.30MnO3

    NASA Astrophysics Data System (ADS)

    Bhat, Masroor Ahmad; Modi, Anchit; Pandey, Devendra K.; Gaur, N. K.

    2018-05-01

    In this paper, we report the conduction mechanism in Pr0.67Sr0.03Ag0.30MnO3 system synthesized via conventional solid state reaction route. The structural information was carried by X - Ray diffraction using Rietveld refinement which confirms the secondary phase of the sample. The SEM image shows the formation of double phase composite because of limited reaction of silver with parent compound. The resistivity behavior indicates the semiconducting behavior. The electronic nature can be estimated by means of variable range hopping (VRH) and small polaron hopping (SPH) model showing that the enhancement of double exchange interaction suppress the band gap and boost the carrier delocalization of charge carriers.

  15. Effect of (Sr{sub 0.7}Ca{sub 0.3})TiO{sub 3}-substitution on structure, dielectric, ferroelectric, and magnetic properties of BiFeO{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Juan; Liu, Xiao Qiang, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn; Chen, Xiang Ming, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn

    Bi{sub 1−x}(Sr{sub 0.7}Ca{sub 0.3}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} ceramics were prepared by a standard solid state reaction process, and the influence of Sr/Ca ratio on structure and properties for Bi{sub 1−x}(Sr,Ca){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} system was discussed by comparing with Sr{sub 0.5}Ca{sub 0.5}TiO{sub 3}-modified BiFeO{sub 3} ceramics. Rietveld analysis of X-ray diffraction data revealed that the crystal structure changed from rhombohedral R3c (x ≤ 0.4) to orthorhombic Pnma (x = 0.6) with Sr{sub 0.7}Ca{sub 0.3}TiO{sub 3} substitution, and biphasic structure (R3c + Pnma) was determined at x = 0.5, while that for Bi{sub 1−x}(Sr{sub 0.5}Ca{sub 0.5}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} system was at x = 0.4. This indicated thatmore » the morphotropic phase boundary in Bi{sub 1−x}(Sr,Ca){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} system shifted toward (Sr,Ca)TiO{sub 3} side with increasing Sr/Ca ratio. The Raman spectrometric analysis and selected area electron diffraction analysis also confirmed this transition. The dielectric relaxation could be well fitted by Arrhenius law, and the different activation energies were attributed to the different origins of the dielectric relaxations with increasing temperature. The current density-field (J-E) curves indicated that the leakage current was reduced to about five orders of magnitude with Sr{sub 0.7}Ca{sub 0.3}TiO{sub 3} substitution. The P-E hysteresis loops obtained by three different methods indicated the enhanced ferroelectricity at x = 0.4, and it could be attributed to the decrement of leakage current. Meanwhile, the magnetization was enhanced with Sr{sub 0.7}Ca{sub 0.3}TiO{sub 3} substitution, and the maximum remanent magnetization was determined at x = 0.2. The enhanced magnetization originated from the partial substitution of Fe{sup 3+} by Ti{sup 4+}.« less

  16. Nanostructured Crystals of Fluorite Phases Sr1 - x R x F2 + x and Their Ordering: 12. Influence of Structural Ordering on the Fluorine-Ion Conductivity of Sr0.667 R 0.333F2.333 Alloys ( R = Tb or Tm) at Their Annealing

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Karimov, D. N.; Sul'yanova, E. A.; Sobolev, B. P.

    2018-01-01

    The ionic conductivity of Sr0.667 R 0.333F2.333 alloys (rational Sr2 RF7 compositions) in SrF2- RF3 systems ( R = Tb or Tm), prepared by spontaneous crystallization, has been investigated for the "as-grown" state and after annealing in CF4 at 900 ± 20°C for 96 h. As-grown samples of both compositions, prepared by fast (200°C/min) melt crystallization, exhibit partial (nonequilibrium) ordering, which increases from Tb to Tm. Annealing of Sr0.667 R 0.333F2.333 alloys yields strong ordering (equilibrium for the annealing temperatures) of the fluorite structure (CaF2 type, sp. gr. Fm3̅ m, Z = 4) at the formation of t-Sr2 RF7 tetragonal compound (sp. gr. I4/ m, Z = 30). It is established that ordering of the alloy fluorite structure reduces the fluorine-ion conductivity. After the annealing, the conductivity of Sr0.667R0.333F2.333 alloys with the initial (nonequilibrium) ordering stage of t-Sr2 RF7 phases with almost complete (equilibrium) ordering decreases by a factor of 3-4.5.

  17. Structural and magnetic behavior of (Ni, Cu) substituted Nd0.67Sr0.33MnO3 perovskite compounds

    NASA Astrophysics Data System (ADS)

    Arun, B.; Sudakshina, B.; Akshay, V. R.; Chandrasekhar, K. Devi; Yang, H. D.; Vasundhara, M.

    2018-05-01

    Structural and magnetic phase transition of Ni and Cu substituted Nd0.67Sr0.33MnO3 perovskite compounds have been investigated. The Rietveld refinement of X-ray powder diffraction patterns confirms that both compounds have crystallized into an orthorhombic structure with Pbnm space group same as that of Nd0.67Sr0.33MnO3 compound. X-ray absorption spectra studies completely ruled out the possibility of existence of any impurities. Both compounds do not obey the Curie-Weiss law indicates the presence of some ferromagnetic clusters within the paramagnetic matrix. Ni substituted compound shows a lower value of TC and Cu substituted compound shows a higher value of TC than that of the parent. Non-saturating tendency of magnetization is more prominently seen in the case of Cu substituted compound, indicating an increase in the AFM component.

  18. Morphological control of La0.7Sr0.3Co0.2Fe0.8O3-δ and La0.7Sr0.3MnO3-δ catalytic membrane using PEG-H2O additive

    NASA Astrophysics Data System (ADS)

    Iqbal, R. M.; Nurherdiana, S. D.; Hartanto, D.; Othman, M. H. D.; Fansuri, H.

    2018-04-01

    Methane is the primary combustible component in non condensable part of natural gas. It is a promising source for syngas (CO and H2) production by partial oxidation method. The conversion of methane to syngas by partial oxidation method needs a controlled amount of oxygen. Membrane which has asymmetric structure and selectively permeates oxygen can be used to supply just enough oxygen to the reaction. One pathway to the fabricate asymmetric membrane is phase inversion method with an addition of PEG to increase pore size. La0.7Sr0.3Co0.2Fe0.8O3-δ (LSCF 7328) and Laa0.7Sr0.3MnO3-δ (LSM 73) powder were synthesized by solid-state method and they were characterized by XRD. The green membrane was prepared by phase inversion method. A dope solution was made by mixing LSCF 7328 or LSM 73 powder with PEG and stirred them in NMP for 24 h. PESf was then added into the dope solution and the stirring was continued to another 24 h. The resulted dope solution was degassed by immersing the solution inside and conical flask in an ultrasonic bath to remove air bubbles. The degassed mixture was then casted by spreading it on a glass surface (with a thickness of 2 mm) followed by immersion in a water bath for 24 h to coagulate the degassed mixture. Membrane morphology was characterized by Scanning Electron Microscopy (SEM) while the decomposition temperature of the polymer binder was analyzed by Thermogravimetric Analyzer (TGA). The XRD results show that phase of LSCF 7328 and LSM 73 are similar to LaCoO3 and LaMnO3, respectively. It indicated that the perovskite synthesis was successful. SEM micrograph of membrane cross sections show that the green membrane have finger like pores and a dense layer. Pores also appear on top and bottom surface of the membrane. Based on TGA results, the highest weight lost of green membrane at 550-600°C which represents the decomposition of PESf binder.

  19. Investigation on Sr0.2Na0.8Nb1-xVxO3 (x=0.1, 0.2, 0.3) as new ceramic anode materials for low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Pan, Ke-Ji; Hussain, A. Mohammed; Wachsman, Eric D.

    2017-04-01

    Variants of SNNV (Sr0.2Na0.8Nb1-xVxO3, X = 0.1-0.3) ceramic oxides were synthesized via wet chemical method. SNNVs show high electronic conductivity of >100 S/cm when reduced in hydrogen at a relatively low temperature of 650 °C. In particular, 30% V-doped SNNV exhibited the highest conductivity of 300 S/cm at 450 °C. In order to investigate the fuel cell performance, Gd0.1Ce0.9O2-δ (GDC) based electrolyte-supported fuel cells were prepared to study the anode characteristics. Sr0.2Na0.8Nb0.9V0.1O3 (SNNV10)-GDC composite was used as an anode and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)-GDC as a cathode. Both electrodes were porous and sintered at 1050 °C for 2 h in air. The anode side of the fuel cell was infiltrated with 10 wt% GDC/Ni-GDC precursor to activate the anode for fuel oxidation. I-V characteristics were determined in gas conditions such as dry/humidified hydrogen and methane at 650 °C. With the infiltration Ni-GDC, peak power density (PPD) of 280 mW/cm2 and 220 mW/cm2 in dry H2 and CH4, respectively, were obtained at 650 °C, which is higher than GDC alone as infiltrate. The high resistances in the humidified conditions are attributed to the lower conductivity of SNNV10 in high PO2 atmospheres.

  20. Influence of the growth parameters on the electronic and magnetic properties of La0.67Sr0.33MnO3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Annese, E.; Mori, T. J. A.; Schio, P.; Rache Salles, B.; Cezar, J. C.

    2018-04-01

    The implementation of La0.67Sr0.33MnO3 thin films in multilayered structures in organic and inorganic spintronics devices requires the optimization of their electronic and magnetic properties. In this work we report the structural, morphological, electronic and magnetic characterizations of La0.67Sr0.33MnO3 epitaxial thin films on SrTiO3 substrates, grown by pulsed laser deposition under different growing conditions. We show that the fluence of laser shots and in situ post-annealing conditions are important parameters to control the tetragonality (c/a) of the thin films. The distortion of the structure has a remarkable impact on both surface and bulk magnetism, allowing the tunability of the materials properties for use in different applications.

  1. Monoclinic Sr(1-x)Na(x)SiO(3-0.5x): new superior oxide ion electrolytes.

    PubMed

    Singh, Preetam; Goodenough, John B

    2013-07-10

    Oxide ion electrolytes determine the temperature of operation of solid oxide fuel cells, oxygen separation membranes, and oxygen sensors. There is a strong incentive to lower their operating temperatures, in a solid oxide fuel cell, for example, from Top > 800 °C to Top ≈ 500 °C. The use of low-cost Na(+) rather than K(+) as the dopant in monoclinic SrSiO3 (C12/C1) is shown to provide a larger solid solution range (0 < x ≤ 0.45) in Sr1-xNaxSiO3-0.5x and to achieve an oxide ion conductivity σo ≥ 10(-2) S·cm(-1) by 525 °C as a result of lowering the temperature of a smooth transition to full disorder of the mobile oxide ions. The Sr1-xNaxSiO3-0.5x electrolytes are much less hygroscopic than Sr1-xKxSiO3-0.5x and are stable with a nickel composite anode in 5% H2/Ar as well as with cathodes such as La1-xSrxMnO3-δ and Sr0.7Y0.3CoO3-δ in air, which makes them candidate electrolytes for intermediate-temperature solid oxide fuel cells or for other applications of oxide ion electrolytes.

  2. Crystal structure and electronic states of Co and Gd ions in a Gd0.4Sr0.6CoO2.85 single crystal

    NASA Astrophysics Data System (ADS)

    Platunov, M. S.; Dudnikov, V. A.; Orlov, Yu. S.; Kazak, N. V.; Solovyov, L. A.; Zubavichus, Ya. V.; Veligzhanin, A. A.; Dorovatovskii, P. V.; Vereshchagin, S. N.; Shaykhutdinov, K. A.; Ovchinnikov, S. G.

    2016-02-01

    X-ray diffraction and X-ray absorption near edge structure (XANES) spectra have been measured at the Co K-edge and Gd L 3-edge in GdCoO3 and Gd0.4Sr0.6CoO2.85 cobaltites. The effect of Sr substitution on the crystal structure and electronic and magnetic states of Co3+ ions in a Gd0.4Sr0.6CoO2.85 single crystal has been analyzed. The XANES measurements at the Co K-edge have not showed a noticeable shift of the absorption edge with an increase in the concentration of Sr. This indicates that the effective valence of cobalt does not change. An increase in the intensity of absorption at the Gd L 3-edge is due to an increase in the degree of hybridization of the Gd(5 d) and O(2 p) states. The effect of hole doping on the magnetic properties results in the appearance of the ferromagnetic component and in a significant increase in the magnetic moment.

  3. The fabrication of thermoelectric La0.95Sr0.05CoO3 nanofibers and Seebeck coefficient measurement.

    PubMed

    Xu, Weihe; Shi, Yong; Hadim, Hamid

    2010-10-01

    The P-type perovskite oxides La(1-x)Sr(x)CoO(3) are a promising group of complex oxide thermoelectric (TE) materials. The thermoelectric properties of these oxides are expected to be significantly improved when their critical dimensions are reduced to the nanoscale. In this paper, the La(0.95)Sr(0.05)CoO(3) nanofibers, with diameters in the range of approximately 35 nm, were successfully prepared by the electrospinning process. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize these thermoelectric nanofibers. A micro-electromechanical (MEMS) tester was designed and fabricated to measure the Seebeck coefficient of the nanofibers. The measured voltage output was as large as 1.7 mV and the obtained Seebeck coefficient of the nanofibers reached 650 microV K(-1).

  4. Crystal structure, oxidation state and magnetism of Sr{sub x}La{sub 2−x}Cu{sub 0.5}Ru{sub 0.5}O{sub 4} (x=1, 1.5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Minfeng, E-mail: m.f.lv@ciac.jl.cn; Deng, Xiaolong; Waerenborgh, João C.

    2014-03-15

    Sr{sub x}La{sub 2−x}Cu{sub 0.5}Ru{sub 0.5}O{sub 4} (x=1, 1.5) oxides with K{sub 2}NiF{sub 4}-type structure were prepared by solid state reaction and characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, magnetic and electrical resistivity measurements. The SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4} phase was obtained for the first time with a negligible amount of impurities. The octahedral Cu/RuO{sub 6} units are more elongated in SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4} than in Sr{sub 1.5}La{sub 0.5}Cu{sub 0.5}Ru{sub 0.5}O{sub 4} indicating a greater extent of static Jahn–Teller distortion. XPS suggests that mixed ion pairs Ru{sup 5+}/Ru{sup 4+}↔Cu{sup +}/Cu{sup 2+} are present in SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4}, whilemore » Ru remains as Ru{sup 5+} and Cu as Cu{sup 2+} in Sr{sub 1.5}La{sub 0.5}Cu{sub 0.5}Ru{sub 0.5}O{sub 4}. Both samples show spin-glass behavior, which can be explained by competition between ferromagnetic and antiferromagnetic superexchange interactions. The negative Weiss temperature estimated for SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4}, −318 K, is significantly lower than −11.5 K deduced for Sr{sub 1.5}La{sub 0.5}Cu{sub 0.5}Ru{sub 0.5}O{sub 4} which may be related to the higher static Jahn–Teller distortion in the former oxide. -- Graphical abstract: SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4} with K{sub 2}NiF{sub 4}-type structure show a larger static Jahn–Teller distortion than Sr{sub 1.5}La{sub 0.5}Cu{sub 0.5}Ru{sub 0.5}O{sub 4}, which may be related to stronger antiferromagnetic superexchange interactions. Highlights: • SrLaCu{sub 0.5}Ru{sub 0.5}O{sub 4} (I) larger Jahn–Teller (J–T) distortion than Sr{sub 1.5}La{sub 0.5}Cu{sub 0.5}Ru{sub 0.5}O{sub 4} (II). • Octahedral Cu/RuO{sub 6} units are more elongated in I than in II. • Mixed ion pairs Ru{sup 5+}/Ru{sup 4+}↔Cu{sup +}/Cu{sup 2+} are present in I, while Ru remains as Ru{sup 5+} and Cu as Cu{sup 2+} in II. • Negative Weiss temperature of I significantly lower

  5. Effect of La3+ substitution with Gd3+ on the resistive switching properties of La0.7Sr0.3MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Lee, Hong-Sub; Park, Chang-Sun; Park, Hyung-Ho

    2014-05-01

    This study demonstrated that the resistive switching voltage of perovskite manganite material could be controlled by A-site cation substitution in "A" MnO3 perovskite manganite structure. A partial substitution of La3+ in La0.7Sr0.3MnO3 with smaller cation Gd3+ induced A-site vacancy of the largest Sr2+ cation with surface segregation of SrOy due to ionic size mismatch, and the induced vacancies reduced migration energy barrier. The operating voltage decreased from 3.5 V to 2.5 V due to a favorable condition for electrochemical migration and redox of oxygen ions. Moreover, surface-segregated SrOy was enhanced with Gd-substitution and the SrOy reduced Schottky-like barrier height and resistive switching ratio from the potential drop and screening effect. The relationship between A-site vacancy generation resulting in surface segregation of SrOy and resistive switching behavior was also investigated by energy resolved x-ray photoelectron spectroscopy, O 1s near edge x-ray absorption spectroscopy, and current voltage measurement.

  6. Superconducting and normal-state anisotropy of the doped topological insulator Sr 0.1Bi 2Se 3

    DOE PAGES

    Smylie, M. P.; Willa, K.; Claus, H.; ...

    2018-05-16

    Sr xBi 2Se 3 and the related compounds Cu xBi 2Se 3 and Nb xBi 2Se 3 have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with T c ~3 K in Sr xBi 2Se 3 arises upon intercalation of Sr into the layered topological insulator Bi 2Se 3. Here we elucidate the anisotropy of the normal and superconducting state of Sr 0.1Bi 2Se 3 with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magneticmore » properties of Sr 0.1Bi 2Se 3 are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. In conclusion, our results support the recently proposed odd-parity nematic state characterized by a nodal gap of Eu symmetry in Sr xBi 2Se 3.« less

  7. Superconducting and normal-state anisotropy of the doped topological insulator Sr 0.1Bi 2Se 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smylie, M. P.; Willa, K.; Claus, H.

    Sr xBi 2Se 3 and the related compounds Cu xBi 2Se 3 and Nb xBi 2Se 3 have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with T c ~3 K in Sr xBi 2Se 3 arises upon intercalation of Sr into the layered topological insulator Bi 2Se 3. Here we elucidate the anisotropy of the normal and superconducting state of Sr 0.1Bi 2Se 3 with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magneticmore » properties of Sr 0.1Bi 2Se 3 are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. In conclusion, our results support the recently proposed odd-parity nematic state characterized by a nodal gap of Eu symmetry in Sr xBi 2Se 3.« less

  8. Superconducting and normal-state anisotropy of the doped topological insulator Sr0.1Bi2Se3.

    PubMed

    Smylie, M P; Willa, K; Claus, H; Koshelev, A E; Song, K W; Kwok, W-K; Islam, Z; Gu, G D; Schneeloch, J A; Zhong, R D; Welp, U

    2018-05-16

    Sr x Bi 2 Se 3 and the related compounds Cu x Bi 2 Se 3 and Nb x Bi 2 Se 3 have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with T c  ~3 K in Sr x Bi 2 Se 3 arises upon intercalation of Sr into the layered topological insulator Bi 2 Se 3 . Here we elucidate the anisotropy of the normal and superconducting state of Sr 0.1 Bi 2 Se 3 with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magnetic properties of Sr 0.1 Bi 2 Se 3 are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. Our results support the recently proposed odd-parity nematic state characterized by a nodal gap of Eu symmetry in Sr x Bi 2 Se 3 .

  9. X-ray photoemission study of the infinite-layer cuprate superconductor Sr(0.9) La (0.1) CuO(2)

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Jung, C. U.; Kim, J. Y.; Kim, M. S.; Lee, S. Y.; Lee, S. I.

    2001-01-01

    The electron-doped infinite-layer superconductor Sr(0.9)La(0.1) CuO(2) is studied with x-ray photoemission spectroscopy (XPS). A nonaqueous chemical etchant is shown to effectively remove contaminants and to yield surfaces from which signals intrinsic to the superconductor dominate.

  10. Surface Chemistry of La0.99Sr0.01NbO4-d and Its Implication for Proton Conduction.

    PubMed

    Li, Cheng; Pramana, Stevin S; Ni, Na; Kilner, John; Skinner, Stephen J

    2017-09-06

    Acceptor-doped LaNbO 4 is a promising electrolyte material for proton-conducting fuel cell (PCFC) applications. As charge transfer processes govern device performance, the outermost surface of acceptor-doped LaNbO 4 will play an important role in determining the overall cell performance. However, the surface composition is poorly characterized, and the understanding of its impact on the proton exchange process is rudimentary. In this work, the surface chemistry of 1 atom % Sr-doped LaNbO 4 (La 0.99 Sr 0.01 NbO 4-d , denoted as LSNO) proton conductor is characterized using LEIS and SIMS. The implication of a surface layer on proton transport is studied using the isotopic exchange technique. It has shown that a Sr-enriched but La-deficient surface layer of about 6-7 nm thick forms after annealing the sample under static air at 1000 °C for 10 h. The onset of segregation is found to be between 600 and 800 °C, and an equilibrium surface layer forms after 10 h annealing. A phase separation mechanism, due to the low solubility of Sr in LaNbO 4 , has been proposed to explain the observed segregation behavior. The surface layer was concluded to impede the water incorporation process, leading to a reduced isotopic fraction after the D 2 16 O wet exchange process, highlighting the impact of surface chemistry on the proton exchange process.

  11. Enhanced magnetization in morphologically and magnetically distinct BiFeO3 and La0.7Sr0.3MnO3 composites

    NASA Astrophysics Data System (ADS)

    Pillai, Shreeja; Reshi, Hilal Ahmad; Bagwaiya, Toshi; Banerjee, Alok; Shelke, Vilas

    2017-09-01

    Nanomaterials exhibit properties different from those of their bulk counterparts. The modified magnetic characteristics of manganite nanoparticles were exploited to improve magnetization in multiferroic BiFeO3 compound. We studied the composite of two morphologically and magnetically distinct compounds BiFeO3 (BFO) and La0.7Sr0.3MnO3 (LSMO). The microcrystalline BiFeO3 sample was prepared by solid state reaction method and the nanocrystalline La0.7Sr0.3MnO3 by sol-gel method. Composites with nominal compositions (1-x)BiFeO3-(x)La0.7Sr0.3MnO3 were prepared by modified solid state reaction method. The phase purity and crystal structures were checked by using X-ray diffraction. The formation of composites with phase separated BFO and LSMO was confirmed using Raman and Fourier Transform Infrared spectroscopy studies. The composite samples showed relatively high value of magnetization with finite coercivity. This improvement in magnetic behavior is ascribed to the coexistence of multiple magnetic orderings in composite samples. We scrutinized the possibility of oxygen vacancy or Fe mixed valency formation in the samples using X-ray photoelectron spectroscopy technique.

  12. Enhance D. C. resistivity of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} ceramic by acceptor (Mn) doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Hakikat, E-mail: sharmahakikat@yahoo.in; Arya, G. S.; Pramar, Kusum

    2015-05-15

    In the present work, we prepared Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and Mn (2 and 3 at % on Ti site) doped Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} ceramic by sol- gel method. The samples were characterized by X-ray diffraction (XRD). The XRD patterns reveled that Mn ions did not change the perovskite structure of BST (70/30). The dielectric measurements proved that dielectric constant decreased with Mn doping. The dc resistivity was studied by using I-V measurements. The dc resistivity of the BST increased with Mn doping, which suppressed the leakage current.

  13. Tape Casting of High-Performance Low-Temperature Solid Oxide Cells with Thin La0.8Sr0.2Ga0.8Mg0.2O3-δ Electrolytes and Impregnated Nano Anodes.

    PubMed

    Gao, Zhan; Wang, Hongqian; Miller, Elizabeth; Liu, Qinyuan; Senn, Daniel; Barnett, Scott

    2017-03-01

    Low-temperature solid oxide cells (LT-SOCs), operating at 400 to 650 °C, have great potential for commercialization since they can provide lower cost and improved long-term durability. Low operating temperature can also enable high round-trip efficiency of SOCs as reversible energy storage devices. This paper describes Sr 0.8 La 0.2 TiO 3-α (SLT) anode supported LT-SOC with thin La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O 3-δ (LSGM) electrolyte made by tape casting, with screen printed La 0.6 Sr 0.4 Fe 0.8 Co 0.2 O 3-δ (LSCF) cathode and impregnated Ni anode. Optimization of the anode functional layers is described; the best anodes had 68 vol % LSGM and 12.3 vol % Ni and yielded maximum power density of 1.6 Wcm -2 with a cell area specific resistance (ASR) of 0.21 Ωcm 2 at 650 °C. Most of the cell ASR was associated with the cathode. Reversible electrolysis and fuel cell operation yielded similar characteristics with both 50% H 2 -50% H 2 O and syngas fuel. Life testing over 500 h showed that the cathode impedance stabilized after an initial break-in period; the ohmic and anode resistances, though relatively small, increased slightly with time.

  14. The electronic structure of Bi 2.0Sr 1.8La 0.3Ca 0.8Cu 2.1O 8+δ superconductors studied using ultraviolet and X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Wells, B. O.; Borg, A.; Ellis, W.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1989-07-01

    Photoemission measurements on single crystals of La-doped 2212 (Bi 2.0Sr 1.8La 0.3Ca 0.8Cu 2.1O 8+δ) superconductors were carried out utilizing both synchrotron and Al K α (1486.6 eV) radiation. A quantitative analysis of the photoemission data in comparison with similar data for the undoped 2212 material indicates that the La atoms preferentially occupy the Sr sites in the SrO layer next to the BiO plane. Evidence of alternation of the electronic environment of the Bi atoms is found in the Bi 5d core level spectra which show a shoulder at ≈ 1.2 eV higher binding energy, presumably due to the partial substitution of trivalent La ions (La 3+) for divalent Sr ions (Sr 2+). As for the undoped 2212 material, the photoemission spectra reveal a clear Fermi level cut-off at room temperature, single component O ls core level emission, and a Cu 2p satellite to main line intensity ratio of 0.4.

  15. Crystallite size strain analysis of nanocrystalline La0.7Sr0.3MnO3 perovskite by Williamson-Hall plot method

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Verma, Narendra Kumar; Singh, Chandra Bhal; Singh, Akhilesh Kumar

    2018-04-01

    The nanocrystalline Sr-doped LaMnO3 (La0.7Sr0.3MnO3 = LSMO) perovskite manganites having different crystallite size were synthesized using the nitrate-glycine auto-combustion method. The phase purity of the manganites was checked by X-ray diffraction (XRD) measurement. The XRD patterns of the sample reveal that La0.7S0.3MnO3 crystallizes into rhombohedral crystal structure with space group R-3c. The size-dependence of structural lattice parameters have been investigated with the help of Rietveld refinement. The structural parameters increase as a function of crystallite size. The crystallite-size and internal strain as a function of crystallite-size have been calculated using Williamson-Hall plot.

  16. Electrochemical characterisation of air electrodes based on La 0.6Sr 0.4CoO 3 and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Thiele, Doreen; Züttel, Andreas

    The efficiency of fuel cells suffers from the high activation polarisation at the cathode, where the oxygen reduction reaction takes place. In order to improve the performance, air electrodes composed of carbon nanotubes (CNTs) and the perovskite La 0.6Sr 0.4CoO 3 are produced by two different methods and investigated. In the first method CNTs are directly grown on the perovskite and in the second method CNTs and perovskite are combined by ultrasonic mixing. Their catalytic activity towards oxygen reduction in alkaline solution is evaluated by polarisation curves and electrochemical impedance spectroscopy. Best performance shows the electrode composed of 25 wt% CNTs, 55 wt% La 0.6Sr 0.4CoO 3 and 20 wt% PTFE as binder, produced by ultrasonic mixing. The Nyquist plot of this electrode displays two potential-dependent semi-circles, accounting for processes on the catalyst surface and for processes depending on the morphology of the electrode.

  17. Parallel charge sheets of electron liquid and gas in La0.5Sr0.5TiO3/SrTiO3 heterostructures

    PubMed Central

    Renshaw Wang, X.; Sun, L.; Huang, Z.; Lü, W. M.; Motapothula, M.; Annadi, A.; Liu, Z. Q.; Zeng, S. W.; Venkatesan, T.; Ariando

    2015-01-01

    We show here a new phenomenon in La0.5Sr0.5TiO3/SrTiO3 (LSTO/STO) heterostructures; that is a coexistence of three-dimensional electron liquid (3DEL) and 2D electron gas (2DEG), separated by an intervening insulating LSTO layer. The two types of carriers were revealed through multi-channel analysis of the evolution of nonlinear Hall effect as a function of film thickness, temperature and back gate voltage. We demonstrate that the 3D electron originates from La doping in LSTO film and the 2D electron at the surface of STO is due to the polar field in the intervening insulating layer. As the film thickness is reduced below a critical thickness of 6 unit cells (uc), an abrupt metal-to-insulator transition (MIT) occurs without an intermediate semiconducting state. The properties of the LSTO layer grown on different substrates suggest that the insulating phase of the intervening layer is a result of interface strain induced by the lattice mismatch between the film and substrate. Further, by fitting the magnetoresistance (MR) curves, the 6 unit cell thick LSTO is shown to exhibit spin-orbital coupling. These observations point to new functionalities, in addition to magnetism and superconductivity in STO-based systems, which could be exploited in a multifunctional context. PMID:26669575

  18. Effect of manganese doping on remnant polarization and leakage current in (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 epitaxial thin films on SrTiO3

    NASA Astrophysics Data System (ADS)

    Abazari, M.; Akdoǧan, E. K.; Safari, A.

    2008-05-01

    Single phase, epitaxial, ⟨001⟩ oriented, undoped and 1mol% Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films of 400nm thickness were synthesized on SrRuO3 coated SrTiO3. Such films exhibit well saturated hysteresis loops and have a spontaneous polarization (Ps) of 10μC /cm2, which is a 150% higher over the Ps of the undoped composition. The coercive field of 1mol% Mn doped films is 13kV/cm. Mn-doping results in three orders of magnitude decrease in leakage current above 50kV/cm electric field, which we attribute to the suppression of intrinsic p-type conductivity of undoped films by Mn donors.

  19. Ferrimagnetic and spin-glass transition in the Aurivillius compound SrBi{sub 5}Ti{sub 4}Cr{sub 0.5}Co{sub 0.5}O{sub 18}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, B.; Yang, J., E-mail: jyang@issp.ac.cn; Zuo, X. Z.

    Single-phase polycrystalline SrBi{sub 5}Ti{sub 4}CrO{sub 18} and SrBi{sub 5}Ti{sub 4}Cr{sub 0.5}Co{sub 0.5}O{sub 18} were synthesized by a modified Pechini method. Both samples have an orthorhombic structure with the space group B2cb. The valence state of Cr is suggested to be +3 and the Co ions exist in the form of Co{sup 2+} and Co{sup 3+} based on the results of x-ray photoelectron spectroscopy. The sample SrBi{sub 5}Ti{sub 4}CrO{sub 18} exhibits the paramagnetic state, whereas SrBi{sub 5}Ti{sub 4}Cr{sub 0.5}Co{sub 0.5}O{sub 18} undergoes a ferrimagnetic transition at 89 K originating from the antiferromagnetic coupling of Cr-based and Co-based sublattices. In addition, SrBi{sub 5}Ti{submore » 4}Cr{sub 0.5}Co{sub 0.5}O{sub 18} shows a typical spin-glass behavior below 89 K with zν = 6.02 and τ{sub 0} = (1.75 ± 0.33) × 10{sup −14} s as evidenced by the results of the frequency dependence of ac susceptibility and magnetic relaxation measurements. In particular, both the dielectric constant and dielectric loss of SrBi{sub 5}Ti{sub 4}Cr{sub 0.5}Co{sub 0.5}O{sub 18} exhibit the characteristics of dielectric relaxation around 89 K with the activation energy of (0.14 ± 0.02) eV, which can be ascribed to the electron hopping of Co{sup 2+}-V{sub O}-Co{sup 3+} through the bridging oxygen vacancies.« less

  20. Structure and Dielectric Properties of (Sr0.2Ca0.488Nd0.208) TiO3-Li3NbO4 Ceramic Composites

    NASA Astrophysics Data System (ADS)

    Xia, C. C.; Chen, G. H.

    2017-12-01

    The new ceramic composites of (1-x) Li3NbO4-x (Sr0.2Ca0.488Nd0.208)TiO3 were prepared by the conventional solid state reaction method. The sintering behavior, phase composition, microstructure and microwave dielectric properties of the ceramics were investigated specially. The SEM and XRD results show that (1-x) Li3NbO4-x (Sr0.2Ca0.488Nd0.208) TiO3 (0.35≤x≤0.5) composites were composed of two phase, i.e. perovskite and Li3NbO4. With the increase of x, the ɛr increases from 27.1 to 38.7, Q×f decreases from 55000 GHz to 16770 GHz, and the τ f increases from -49 ppm/°C to 226.7 ppm/°C. The optimized dielectric properties with ɛr∼31.4, Q×f~16770GHz and τf~-8.1ppm/°C could be obtained as x=0.4 sintered at 1100°C for 4h. The as-prepared ceramic is expected to be used in resonators, filters, and other microwave devices.

  1. Synthesis and luminescence behavior of SrGd1.76Eu0.24O4 host for display and dosimetric applications

    NASA Astrophysics Data System (ADS)

    Singh, Jyoti; Manam, J.; Singh, Fouran

    2018-05-01

    Novel SrGd1.76Eu0.24O4 materials were synthesized by conventional high-temperature solid-state reaction method in air ambiance. The structural and luminescence properties of as-prepared phosphors were explored by XRD, FESEM, TEM, PL and TL techniques. The confirmation of orthorhombic phase formation was obtained by XRD studies. The agglomerated ginger-like morphology of as-synthesized SrGd1.76Eu0.24O4 samples was unfolded by FESEM and TEM studies. Upon 276 and 395 nm UV excitation, SrGd1.76Eu0.24O4 phosphors showed intense red emission. The TL glow curve of SrGd1.76Eu0.24O4 irradiated with γ-rays exhibits two well-resolved peaks at 393 K and 598 K having a shoulder at 537 K. Linearity in a wide dose range 500 Gy-3 kGy are observed in the as-formed SrGd1.76Eu0.24O4 samples. Intense red emission, linear dose response and high reproducibility of SrGd1.76Eu0.24O4 samples broadly indicated its suitability for display and TL dosimetry applications.

  2. Impedance and magnetoelectric characteristics of (1 - x)BaTiO3- xLa0.7Sr0.3MnO3 ( x = 0.1 and 0.3) nano-composites

    NASA Astrophysics Data System (ADS)

    Nayek, C.; Murugavel, P.; Dinesh Kumar, S.; Subramanian, V.

    2015-08-01

    We have synthesized the phase-pure (1 - x)BaTiO3- xLa0.7Sr0.3MnO3 ( x = 0.1 and 0.3) magnetoelectric composites without interdiffusion among the existing phases. The magnetic measurements revealed an anomaly at the ferroelectric Curie temperature (393 K) of BaTiO3, and the dielectric data revealed an anomaly at the ferromagnetic transition temperature (360 K) of La0.7Sr0.3MnO3 ascertaining the magnetoelectric coupling in the composite. Impedance analysis indicated dipolar polarization contributions to the dielectric spectrum with two non-Debye-type relaxations. Both the grain and grain boundary contributions were present in the system with dominant grain boundary effect in all the composites. The composites show semiconducting behavior with the barrier hopping-type conducting mechanism. To avoid the free charge carrier and the space charge contributions, the magnetoelectric response was measured at high frequency range. The maximum values of magnetoelectric voltage coefficient measured at 100 kHz were 221 and 219 mV/Oe-cm for x = 0.1 and 0.3 samples, respectively.

  3. La2/3Sr1/3MnO3-La0.1Bi0.9MnO3 heterostructures for spin filtering

    NASA Astrophysics Data System (ADS)

    Gajek, M.; Bibes, M.; Varela, M.; Fontcuberta, J.; Herranz, G.; Fusil, S.; Bouzehouane, K.; Barthélémy, A.; Fert, A.

    2006-04-01

    We have grown heterostructures associating half-metallic La2/3Sr1/3MnO3 (LSMO) bottom electrodes and ferromagnetic La0.1Bi0.9MnO3 (LBMO) tunnel barriers. The layers in the heterostructures have good structural properties and top LBMO films (4 nm thick) have a very low roughness when deposited onto LSMO/SrTiO3(1.6 nm) templates. The LBMO films show an insulating behavior and a ferromagnetic character that are both preserved down to very low thicknesses. They are thus suitable for being used as tunnel barriers. Spin-dependent transport measurements performed on tunnel junctions defined from LSMO/SrTiO3/LBMO/Au samples show a magnetoresistance of up to ~90% at low temperature and bias. This evidences a spin-filtering effect by the LBMO layer, with a spin-filtering efficiency of ~35%.

  4. A screen-printed Ce 0.8Sm 0.2O 1.9 film solid oxide fuel cell with a Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ cathode

    NASA Astrophysics Data System (ADS)

    Zhang, Yaohui; Huang, Xiqiang; Lu, Zhe; Liu, Zhiguo; Ge, Xiaodong; Xu, Jiahuan; Xin, Xianshuang; Sha, Xueqing; Su, Wenhui

    Screen-printing technology was developed to fabricate Ce 0.8Sm 0.2O 1.9 (SDC) electrolyte films onto porous NiO-SDC green anode substrates. After sintering at 1400 °C for 4 h, a gas-tight SDC film with a thickness of 12 μm was obtained. A novel cathode material of Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ was subsequently applied onto the sintered SDC electrolyte film also by screen-printing and sintered at 970 °C for 3 h to get a single cell. A fuel cell of Ni-SDC/SDC (12 μm)/Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ provides the maximum power densities of 1280, 1080, 670, 370, 180 and 73 mW cm -2 at 650, 600, 555, 505, 455 and 405 °C, respectively, using hydrogen as fuel and stationary air as oxidant. When dry methane was used as fuel, the maximum power densities are 876, 568, 346 and 114 mW cm -2 at 650, 600, 555 and 505 °C, respectively. The present fuel cell shows excellent performance at lowered temperatures.

  5. Polarization Rotation in Ferroelectric Tricolor PbTiO3/SrTiO3/PbZr0.2Ti0.8O3 Superlattices.

    PubMed

    Lemée, Nathalie; Infante, Ingrid C; Hubault, Cécile; Boulle, Alexandre; Blanc, Nils; Boudet, Nathalie; Demange, Valérie; Karkut, Michael G

    2015-09-16

    In ferroelectric thin films, controlling the orientation of the polarization is a key element to controlling their physical properties. We use laboratory and synchrotron X-ray diffraction to investigate ferroelectric bicolor PbTiO3/PbZr0.2Ti0.8O3 and tricolor PbTiO3/SrTiO3/PbZr0.2Ti0.8O3 superlattices and to study the role of the SrTiO3 layers on the domain structure. In the tricolor superlattices, we demonstrate the existence of 180° ferroelectric stripe nanodomains, induced by the depolarization field produced by the SrTiO3 layers. Each ultrathin SrTiO3 layer modifies the electrostatic boundary conditions between the ferroelectric layers compared to the corresponding bicolor structures, leading to the suppression of the a/c polydomain states. Combined with the electrostatic effect, the tensile strain induced by PbZr0.2Ti0.8O3 in the PbTiO3 layers leads to polarization rotation in the system as evidenced by grazing incidence X-ray measurements. This polarization rotation is associated with the monoclinic Mc phase as revealed by the splitting of the (HHL) and (H0L) reciprocal lattice points. This work demonstrates that the tricolor paraelectric/ferroelectric superlattices constitute a tunable system to investigate the concomitant effects of strains and depolarizing fields. Our studies provide a pathway to stabilize a monoclinic symmetry in ferroelectric layers, which is of particular interest for the enhancement of the piezoelectric properties.

  6. Incoherent-to-coherent crossover of optical spectra in La0.825Sr0.175MnO3: Temperature-dependent reflectivity spectra measured on cleaved surfaces

    NASA Astrophysics Data System (ADS)

    Takenaka, K.; Sawaki, Y.; Sugai, S.

    1999-11-01

    Optical reflectivity spectra were measured on cleaved surfaces of La0.825Sr0.175MnO3 single crystals (TC=283 K) over a temperature range 10-295 K. The optical conductivity σ(ω) shows incoherent-to-coherent crossover with decreasing temperature. The minimum metallic conductivity σmin of this compound was determined by the dc resistivity ρ(T) measurements of Al-substituted crystals (La0.825Sr0.175)(Mn1-zAlz)O3 and was found to be 2000-3000 Ω-1 cm-1. This indicates that the dc conductivity of La0.825Sr0.175MnO3 is smaller than σmin over a wide temperature range below TC even though ρ(T) is metallic (dρ/dT>0). The present results suggest that there are two types of the ferromagnetic-metallic phase below TC-a ``high-temperature incoherent'' metallic (HIM) and a ``low-temperature coherent'' metallic phase. ``Colossal magnetoresistance'' is a characteristic of the HIM phase.

  7. Synthesis and Luminescence Properties of Blue Na(Sr0.97-xCa(x))PO4:0.03Eu2+ Phosphors for White Light Emitting Diode Applications.

    PubMed

    Hakeem, D A; Park, K

    2015-07-01

    The crystal structure and luminescence properties of Na(Sr0.97-xCax)PO4:0.03Eu2+ (0 < x < 1.0) phosphors were studied, depending on the Ca2+ concentration. All the Na(Sr0.97-xCax)PO4:0.03Eu2+ phosphors had a hexagonal crystal structure. The excitation spectra of the prepared phosphors showed a broad band ranging from 250 to 420 nm, which arises due to the 4f-5d transitions of Eu2+ ions. Upon the excitation of 334 nm wavelength, the emission spectra showed a broad blue band ranging from 400 to 700 nm peaking at 450 nm. Among the prepared phosphors, the Na(Sr0.72Ca0.25)PO4:0.03Eu2+ showed the strongest emission intensity and could be applied as a blue emitting phosphor for UV-based w-LEDs.

  8. Effects of background oxygen pressure on dielectric and ferroelectric properties of epitaxial (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films on SrTiO3

    NASA Astrophysics Data System (ADS)

    Abazari, M.; Akdoǧan, E. K.; Safari, A.

    2008-11-01

    Oxygen partial pressure (PO_2) in pulsed laser deposition significantly influences the composition, microstructure, and electrical properties of epitaxial misfit strain-relieved 450nm ⟨001⟩ oriented epitaxial (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films on SrRuO3 coated SrTiO3. Films deposited at 400mTorr exhibit high remnant and saturated polarization of 7.5 and 16.5μC /cm2, respectively, which is ˜100% increase over the ones grown at 100mTorr. The dielectric constant linearly increases from 220 to 450 with increasing PO2. The observed changes in surface morphology of the films and their properties are shown to be due to the suppression of volatile A-site cation loss.

  9. Structural, magnetic, and dielectric studies of the Aurivillius compounds SrBi{sub 5}Ti{sub 4}MnO{sub 18} and SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, B.; Yang, J., E-mail: jyang@issp.ac.cn; Zuo, X. Z.

    We have successfully synthesized the Aurivillius compounds SrBi{sub 5}Ti{sub 4}MnO{sub 18} and SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} using a modified Pechini method. Both samples have an orthorhombic structure with the space group B2cb. The valence state of Mn is suggested to be +3 and the doped Co ions exist in the form of Co{sup 2+} and Co{sup 3+} based on the results of x-ray photoelectron spectroscopy. The sample SrBi{sub 5}Ti{sub 4}MnO{sub 18} exhibits a dominant paramagnetic state with the existence of superparamagnetic state as evidenced by the electron paramagnetic resonance results, whereas SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} undergoesmore » a ferrimagnetic transition at 161 K originating from the antiferromagnetic coupling of Co-based and Mn-based sublattices, and a ferromagnetic transition at 45 K arising from the Mn{sup 3+}-O-Co{sup 3+} (low spin) interaction. The sample SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} exhibits two dielectric anomalies. One corresponds to a relaxor-like dielectric relaxation which follows the Vogel-Fulcher function and the other dielectric relaxation obeys the Arrhenius law arising from the collective motion of oxygen vacancies. In addition, the sample SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} exhibits a magnetodielectric effect caused by the Maxwell-Wagner effect because of the conductivity of the sample. This is demonstrated by the fact that the activation energy in dielectric loss process is close to that for dc conductivity and the magnetodielectric effect is sensitive to the measured frequency.« less

  10. Chemically stable perovskites as cathode materials for solid oxide fuel cells: La-doped Ba0.5Sr0.5Co0.8Fe0.2O(3-δ).

    PubMed

    Kim, Junyoung; Choi, Sihyuk; Jun, Areum; Jeong, Hu Young; Shin, Jeeyoung; Kim, Guntae

    2014-06-01

    Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) (BSCF) has won tremendous attention as a cathode material for intermediate-temperature solid-oxide fuel cells (IT-SOFC) on the basis of its fast oxygen-ion transport properties. Nevertheless, wide application of BSCF is impeded by its phase instabilities at intermediate temperature. Here we report on a chemically stable SOFC cathode material, La0.5Ba0.25Sr0.25Co0.8Fe0.2O(3-δ) (LBSCF), prepared by strategic approaches using the Goldschmidt tolerance factor. The tolerance factors of LBSCF and BSCF indicate that the structure of the former has a smaller deformation of cubic symmetry than that of the latter. The electrical property and electrochemical performance of LBSCF are improved compared with those of BSCF. LBSCF also shows excellent chemical stability under air, a CO2-containg atmosphere, and low oxygen partial pressure while BSCF decomposed under the same conditions. Together with this excellent stability, LBSCF shows a power density of 0.81 W cm(-2) after 100 h, whereas 25 % degradation for BSCF is observed after 100 h. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thermotropic phase transitions in Pb{sub 1−x}Sr{sub x}(Al{sub 1/3}Nb{sub 2/3}){sub 0.1}(Zr{sub 0.52}Ti{sub 0.48}){sub 0.9}O{sub 3} ceramics: Temperature dependent dielectric permittivity and Raman scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C. Q.; Peng, L.; Jiang, K.

    2015-06-15

    The phase transitions of Pb{sub 1−x}Sr{sub x}(Al{sub 1/3}Nb{sub 2/3}){sub 0.1}(Zr{sub 0.52}Ti{sub 0.48}){sub 0.9}O{sub 3} (Sr-modified PAN-PZT) ceramics with Sr compositions of x = 2%, 5%, 10% and 15% have been investigated using X-ray diffraction (XRD), temperature dependent dielectric permittivity and Raman scattering. The XRD analysis show that the phase transition occurs between Sr composition of 5% and 10%. Based on the broad dielectric peaks at 100 Hz, the diffused phase transition from tetragonal (T) to cubic (C) structure shifts to lower temperature with increasing Sr composition. The dramatic changes of wavenumber and full width at half-maximum (FWHM) for E(TO{sub 4})′more » softing mode can be observed at morphotropic phase boundary (MPB). Moreover, the MPB characteristic shows a wider and lower trend of temperature region with increasing Sr composition. It could be ascribed to the diminishment of the energy barrier and increment of A-cation entropy. Therefore, the Sr-modified PAN-PZT ceramics unambiguously undergo two successive structural transitions (rhombohedral-tetragonal-cubic phase) with temperature from 80 to 750 K. Correspondingly, the phase diagram of Sr-modified PAN-PZT ceramics can be well depicted.« less

  12. Strong anisotropy within a Heisenberg model in the J eff = 1 2 insulating state of Sr 2 Ir 0.8 Ru 0.2 O 4

    DOE PAGES

    Calder, Stuart A.; Kim, J. W.; Taylor, Alice E.; ...

    2016-12-28

    The dispersive magnetic excitations in Sr 2IrO 4 have previously been well described within an isospin-1/2 Heisenberg model on a square lattice that revealed parallels with La 2CuO 4. In this paper, we investigate the inelastic spectra of Sr 2Ir 0.8Ru 0.2O 4 with resonant inelastic x-ray scattering (RIXS) at the Ir L 3 edge. The results are well described using linear spin-wave theory within a similar Heisenberg model applicable to Sr 2IrO 4; however, the disorder induced by the substitution of 20% Ir 4+ ions for Ru 4+ removes longer range exchange interactions. A large spin gap (40 meV)more » is measured indicating strong anisotropy from spin-orbit coupling that is manifest due to the altered magnetic structure in Sr 2Ir 0.8Ru 0.2O 4 with c-axis aligned moments compared to the basal plane moments in the parent. Finally, collectively the results indicate the robustness of a Heisenberg model description even when the magnetic structure is altered and the J eff = 1/2 moments are diluted.« less

  13. Composite fuel electrode La(0.2)Sr(0.8)TiO(3-δ)-Ce(0.8)Sm(0.2)O(2-δ) for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser.

    PubMed

    Li, Yuanxin; Zhou, Jianer; Dong, Dehua; Wang, Yan; Jiang, J Z; Xiang, Hongfa; Xie, Kui

    2012-11-28

    Composite Ni-YSZ fuel electrodes are able to operate only under strongly reducing conditions for the electrolysis of CO(2) in oxygen-ion conducting solid oxide electrolysers. In an atmosphere without a flow of reducing gas (i.e., carbon monoxide), a composite fuel electrode based on redox-reversible La(0.2)Sr(0.8)TiO(3+δ) (LSTO) provides a promising alternative. The Ti(3+) was approximately 0.3% in the oxidized LSTO (La(0.2)Sr(0.8)TiO(3.1)), whereas the Ti(3+) reached approximately 8.0% in the reduced sample (La(0.2)Sr(0.8)TiO(3.06)). The strong adsorption of atmospheric oxygen in the form of superoxide ions led to the absence of Ti(3+) either on the surface of oxidized LSTO or the reduced sample. Reduced LSTO showed typical metallic behaviour from 50 to 700 °C in wet H(2); and the electrical conductivity of LSTO reached approximately 30 S cm(-1) at 700 °C. The dependence of [Ti(3+)] concentration in LSTO on P(O(2)) was correlated to the applied potentials when the electrolysis of CO(2) was performed with the LSTO composite electrode. The electrochemical reduction of La(0.2)Sr(0.8)TiO(3+δ) was the main process but was still present up to 2 V at 700 °C during the electrolysis of CO(2); however, the electrolysis of CO(2) at the fuel electrode became dominant at high applied voltages. The current efficiency was approximately 36% for the electrolysis of CO(2) at 700 °C and a 2 V applied potential.

  14. Structural, thermal and electrical conductivity characteristics of Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln: La, Nd and Sm) complex perovskites as anode materials for solid oxide fuel cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Jihoon; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712; Azad, Abul K.

    2015-03-15

    The Ti and Mn replaced complex perovskites, Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln: La, Nd and Sm), were reported as potential anode materials for high temperature-operating solid oxide fuel cells (HT-SOFCs). For the present research study, synthesis, crystallographic, thermal and electrical conductivity properties of Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} complex perovskites were investigated using X-ray diffraction (XRD), Rietveld method, thermogravimetric analysis (TGA) and electrical conductivity to apply these oxide materials for the HT-SOFC anode materials. XRD results showed that Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} oxide systems synthesized as single phases did not react with 8 mol% yttriamore » stabilized zirconia (8YSZ) and 10 mol% Gd-doped cerium oxide (CGO91) up to 1500 °C and did not decompose under dry 3.9% hydrogen at 850 °C. The crystal structures of La{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (LSTM), Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (NSTM) and Sm{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (SSTM) showed orthorhombic symmetry with the space group Pbnm and SSTM showed a more distorted structure. Thermogravimetric analysis (TGA) proved weight gains in these three sample occurred under oxidizing conditions and weight loss under reducing conditions. Electrical conductivity values of NSTM were higher than those of LSTM and SSTM under oxidizing and reducing conditions. - Graphical abstract: The B-site cations (Ti/Mn) are surrounded by regular octahedra of oxygen in Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d}(NSTM). These octahedra are linked together in a corner sharing three dimensional framework, while Nd/Sr ion occupies 12-coordinated A-site between these octahedra. The Ti/Mn–O{sub 6} octahedra are elongated along the c-axis. The crystal structure distortion was due to the smaller ionic radius of the A-site cations, which force the (Ti

  15. Surface functionalized Zr(0.75)Sn(0.25)O4 by SrO2 thick films as H2S gas sensors

    NASA Astrophysics Data System (ADS)

    Shelke, G. B.; Patil, D. R.

    2018-05-01

    Thick films of bulk tin oxide powder were observed to be less sensitive to polluting, hazardous and inflammable gases. So, nanostructured ZrxSn1-xO4 powder was synthesized by disc type ultrasonicated microwave assisted centrifuge technique. Thick films of nanostructured pure Zr(0.75)Sn(0.25)O4 powder were fabricated by screen printing technique. These films were surface functionalized by SrO2 for different intervals of time followed by firing at 450°C for 30 min. The surface morphology, chemical composition, crystal structure, electrical and gas sensing performance of the unmodified and surface functionalized nanostructured Zr(0.75)Sn(0.25)O4 powder by SrO2 have been investigated by FESEM, E-DAX, XRD, etc.

  16. Precise determination of triple Sr isotopes (δ⁸⁷Sr and δ⁸⁸Sr) using MC-ICP-MS.

    PubMed

    Liu, Hou-Chun; You, Chen-Feng; Huang, Kuo-Fang; Chung, Chuan-Hsiung

    2012-01-15

    The non-traditional stable strontium (Sr) isotopes have received increasing attention recently as new geochemical tracers for studying Sr isotopic fractionation and source identification. This has been attributed to the advancement in multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), allows to determine precisely and simultaneously of the triple Sr isotopes. In this study, we applied a modified empirical external normalization (EEN) MC-ICPMS procedure for mass bias correction in Sr isotopic measurement using (92)Zr/(90)Zr. High-purity Zr Standard was spiked into sample solutions and the degree of fractionation was calculated off-line using an exponential law. The long-term external reproducibility for NIST SRM 987 δ(87)Sr and δ(88)Sr was better than 0.040‰ and 0.018‰ (2SD), respectively. The IAPSO standard seawater was used as a secondary standard to validate the analytical protocol and the absolute ratios measured were 0.709161±0.000018 for (87)Sr/(86)Sr, 0.177±0.021‰ for δ(87)Sr, and 0.370±0.026‰ for δ(88)Sr (2SD, n=7). These values are in good agreement with the literature data analyzed by thermal ionization mass spectrometry (TIMS) double spike technique. Rock standards, BHVO-2, BCR-2 and AGV-2 were also analyzed to validate the robustness of the methodology and showed identical results with literature data. Compared to previous (91)Zr/(90)Zr correction, we obtained improved results based on (92)Zr/(90)Zr, probably due to similar mass difference between (92)Zr/(90)Zr and measured Sr isotopes. The new analytical protocol presented in this study not only improves the analytical precision but also increases sample efficiency by omitting the use of the standard-sample bracketing (SSB) procedure. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Spin glass formation in La0.9Sr0.1CoO3 catalyst for flameless combustion of methane.

    PubMed

    Oliva, C; Forni, L; Vishniakov, A V

    2000-02-01

    Two samples of composition La0.9M0.1CoO3 (M = Sr, Ce) have been compared as catalysts for the flameless combustion of methane. The former showed a lower activity than the latter and this difference was enhanced at lower temperature. Aiming at understanding the origin of this behaviour, EPR analysis was carried out at temperatures down to 100 K. At T < 245 K a zero-field intense feature appeared with the M = Sr sample only, characterized by opposite phase with respect to the g approximately 2 line. This zero-field line was attributed to microwave absorption by spin glass formed by cobalt- and oxygen-based paramagnetic ions. The tendency to strong interaction among these species could also be a reason of the low oxygen availability for the catalytic methane oxidation at higher temperature.

  18. Epitaxial Ferroelectric Ba(0.5)Sr(0.5)TiO3 Thin Films for Room-Temperature High-Frequency Tunable Element Applications

    NASA Technical Reports Server (NTRS)

    Chen, C. L.; Feng, H. H.; Zhang, Z.; Brazdeikis, A.; Miranda, F. A.; VanKeuls, F. W.; Romanofsky, R. R.; Huang, Z. J.; Liou, Y.; Chu, W. K.; hide

    1999-01-01

    Perovskite Ba(0.5)SR(0.5)TiO3 thin films have been synthesized on (001) LaAl03 substrates by pulsed laser ablation. Extensive X-ray diffraction, rocking curve, and pole-figure studies suggest that the films are c-axis oriented and exhibit good in-plane relationship of <100>(sub BSTO)//<100>(sub LAO). Rutherford Backscattering Spectrometry studies indicate that the epitaxial films have excellent crystalline quality with an ion beam minimum yield chi(sub min) Of only 2.6 %. The dielectric property measurements by the interdigital technique at 1 MHz show room temperature values of the relative dielectric constant, epsilon(sub r), and loss tangent, tan(sub delta), of 1430 and 0.007 with no bias, and 960 and 0.001 with 35 V bias, respectively. The obtained data suggest that the as-grown Ba(0.5)SR(0.5)TiO3 films can be used for development of room-temperature high-frequency tunable elements.

  19. Orientation effect on microwave dielectric properties of Si-integrated Ba0.6Sr0.4TiO3 thin films for frequency agile devices

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Suk; Hyun, Tae-Seon; Kim, Ho-Gi; Kim, Il-Doo; Yun, Tae-Soon; Lee, Jong-Chul

    2006-07-01

    The effect of texture with (100) and (110) preferred orientations on dielectric properties of Ba0.6Sr0.4TiO3 (BST) thin films grown on SrO (9nm) and CeO2 (70nm ) buffered Si substrates, respectively, was investigated. The coplanar waveguide (CPW) phase shifter using (100) oriented BST films on SrO buffered Si exhibited a much-enhanced figure of merit of 24.7°/dB, as compared to that (10.2°/dB) of a CPW phase shifter using (110) oriented BST films on CeO2 buffered Si at 12GHz. This work demonstrates that the microwave properties of the Si-integrated BST thin films are highly correlated with crystal orientation.

  20. Determination of (87)Sr/(86)Sr and δ(88/86)Sr ratios in plant materials using MC-ICP-MS.

    PubMed

    Liu, Hou-Chun; Chung, Chuan-Hsiung; You, Chen-Feng; Chiang, Yi-Hsuan

    2016-01-01

    A protocol for highly accurate and precise determination of Sr isotope ratios in plant materials, (87)Sr/(86)Sr and δ (88/86)Sr, by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) is presented in this study. An Eichrom Sr resin was used for matrix separation and an improved Zr empirical external normalization coupled with standard-sample bracketing method (Zr EEN-SSB) was applied to mass bias correction during Sr isotope MC-ICP-MS measurements. Potential influences of matrix elements, and polyatomic and isobaric interferences on the Sr isotopic determination were further evaluated using NIST SRM 987 Sr isotopic standard spiked with various amount of Ca, Mg, and Rb contents. Concentrations of Ca and Mg lower than 30 ng g(-1) or Rb < 2 ng g(-1) in 150 ng g(-1) Sr analyte were estimated to have only a minor effect on Sr isotope ratios determination. On the other hand, intensity differences between sample and standards (IntSample/IntStandards) represented a large δ (88/86)Sr deviation of <0.9 or >1.3, reflecting the significance of intensity bias attributed to different mass bias behavior. An apple leaf material, NIST SRM 1515, was adopted as the plant material for overall evaluation of sample digestion, matrix separation, and potential spectral interferences on the measurements of Sr isotope ratios. Our results suggest that the partially remaining organic compounds in the incomplete digestion would have a significant bias on the extraction chromatography procedure, resulting in sizable uncertainty in δ (88/86)Sr ratios. Thus, complete digestion of the organic-enriched materials is of great importance for efficiency assurance in matrix separation. Extraction chromatography works well for the total digested samples, where Ca, Mg, and Rb were efficiently removed. The obtained average (87)Sr/(86)Sr and δ (88/86)Sr values for the NIST SRM 1515 apple leaves are 0.71398 ± 0.00004 and 0.23 ± 0.03‰ (2SD, n = 10

  1. Magnetic and magnetocaloric properties of La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3} (0≤x≤0.3) manganites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherif, R., E-mail: cherifrim18@yahoo.fr; Hlil, E.K.; Ellouze, M.

    2014-07-01

    The La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3} (x=0, 0.1, 0.2 and 0.3) samples have been elaborated by the solid-state reaction method. X-ray powder diffraction shows that all the samples crystallize in a rhombohedric phase with R3{sup ¯}c space group. The variation of magnetization as a function of temperature and applied magnetic field was carried out. The samples for x=0 and 0.1 exhibit a FM–PM transition at the Curie temperature T{sub C}, however, for x=0.2 and 0.3 exhibit an AFM–PM one at the Neel temperature T{sub N}, when the temperature increases. A magneto-caloric effect has been calculated in terms ofmore » isothermal magnetic entropy change. A large magneto-caloric effect has been observed, the maximum entropy change, |ΔS{sub M}{sup max}|, reaches the highest value of 3.28 J/kgK under a magnetic field change of 5 T with an RCP value of 220 J/kg for La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}MnO{sub 3} composition, which will be an interesting compound for application materials working as magnetic refrigerants near room temperature. - Graphical abstract: Magnetic entropy change versus temperature and applied magnetic field for x=0.1 (a) and RCP versus applied magnetic field for x=0, 0.1 (b). - Highlights: • The La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3} (0≤x≤0.3) polycrystalline samples were prepared by the solid state reaction method. • Crystalline and magnetic structures were investigated using DRX and magnetization measurements. • The magnetocaloric (MC) effect was estimated versus magnetic field and temperatures. • Compounds with x=0, 0.1 exhibit great potential for magnetic refrigeration at room temperature.« less

  2. Unsaturated magnetoconductance of epitaxial La0.7Sr0.3MnO3 thin films in pulsed magnetic fields up to 60 T

    NASA Astrophysics Data System (ADS)

    Niu, Wei; Wang, Xuefeng; Gao, Ming; Xia, Zhengcai; Du, Jun; Nie, Yuefeng; Song, Fengqi; Xu, Yongbing; Zhang, Rong

    2017-05-01

    We report on the temperature and field dependence of resistance of La0.7Sr0.3MnO3 thin films over a wide temperature range and in pulsed magnetic fields up to 60 T. The epitaxial La0.7Sr0.3MnO3 thin films were deposited by laser molecular beam epitaxy. High magnetic field magnetoresistance curves were fitted by the Brillouin function, which indicated the existence of magnetically polarized regions and the underlying hopping mechanism. The unsaturated magnetoconductance was the most striking finding observed in pulsed magnetic fields up to 60 T. These observations can deepen the fundamental understanding of the colossal magnetoresistance in manganites with strong correlation of transport properties and magnetic ordering.

  3. Photoemission study of absorption mechanisms in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Wells, B. O.; Dessau, D. S.; Ellis, W. P.; Borg, A.; Kang, J.-S.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1989-11-01

    Photoemission measurements in the constant-final-state (absorption) mode were performed on three different classes of high-temperature superconductors Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, BaBiO3, and Nd1.85Ce0.15CuO4 using synchrotron radiation from 20 to 200 eV. Absorption signals from all elements but Ce are identified. The results firmly show that the Bi 6s electrons are more delocalized in BaBiO3 than in Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ, in agreement with the results of band-structure calculations. Differences in the absorption signals due to O and Bi excitations between BaBiO3 and Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ are discussed. Delayed absorption onsets attributed to giant resonances (Ba 4d-->4f, La 4d-->4f, and Nd 4d-->4f transitions) are also reported.

  4. Double perovskite Sr2FeMoO6-xNx (x=0.3, 1.0) oxynitrides with anionic ordering

    NASA Astrophysics Data System (ADS)

    Retuerto, M.; de la Calle, C.; Martínez-Lope, M. J.; Porcher, F.; Krezhov, K.; Menéndez, N.; Alonso, J. A.

    2012-01-01

    Two new oxynitride double perovskites of composition Sr2FeMoO6-xNx (x=0.3, 1.0) have been synthesized by annealing precursor powders obtained by citrate techniques in flowing ammonia at 750 °C and 650 °C, respectively. The polycrystalline samples have been characterized by chemical analysis, x-ray and neutron diffraction (NPD), Mössbauer spectroscopy and magnetic measurements. They exhibit a tetragonal structure with a=5.5959(1) Å, c=7.9024(2) Å, V=247.46(2) Å3 for Sr2FeMoO5.7N0.3; and a=5.6202(2) Å, c=7.9102(4) Å, V=249.85(2) Å3 for Sr2FeMoO5N; space group I4/m, Z=2. The nitridation process seems to extraordinarily improve the long-range Fe/Mo ordering, achieving 95% at moderate temperatures of 750 °C. The analysis of high resolution NPD data, based on the contrast existing between the scattering lengths of O and N, shows that both atoms are located at (O,N)2 anion substructure corresponding to the basal ab plane of the perovskite structure, whereas the O1 site is fully occupied by oxygen atoms. The evolution of the and distances suggests a shift towards a configuration close to Fe4+(3d4, S=2):Mo5+(4d1, S=1/2). The magnetic susceptibility shows a ferrimagnetic transition with a reduced saturation magnetization compared to Sr2FeMoO6, due to the different nature of the magnetic double exchange interactions through Fe-N-Mo-N-Fe paths in contrast to the stronger Fe-O-Mo-O-Fe interactions. Also, the effect observed by low-temperature NPD seems to reduce the ordered Fe moments and enhance the Mo moments, in agreement with the evolution of the oxidation states, thus decreasing the saturation magnetization.

  5. Thickness and angular dependent magnetic anisotropy of La0.67Sr0.33MnO3 thin films by Vectorial Magneto Optical Kerr Magnetometry

    NASA Astrophysics Data System (ADS)

    Chaluvadi, S. K.; Perna, P.; Ajejas, F.; Camarero, J.; Pautrat, A.; Flament, S.; Méchin, L.

    2017-10-01

    We investigate the in-plane magnetic anisotropy in La0.67Sr0.33MnO3 thin films grown on SrTiO3 (001) substrate using angular dependent room temperature Vectorial Magneto-Optical Kerr Magnetometry. The experimental data reveals that the magnetic anisotropy symmetry landscape significantly changes depending upon the strain and thickness. At low film thickness (12 and 25 nm) the dominant uniaxial anisotropy is due to interface effects, step edges due to mis-cut angle of SrTiO3 substrate. At intermediate thickness, the magnetic anisotropy presents a competition between magnetocrystalline (biaxial) and substrate step induced (uniaxial) anisotropy. Depending upon their relative strengths, a profound biaxial or uniaxial or mixed anisotropy is favoured. Above the critical thickness, magnetocrystalline anisotropy dominates all other effects and shows a biaxial anisotropy.

  6. Growth of transparent Zn1 - xSrxO (0.0 ≤ x ≤ 0.08) films by facile wet chemical method: Effect of Sr doping on the structural, optical and sensing properties

    NASA Astrophysics Data System (ADS)

    Rana, Amit Kumar; Das, Rajasree; Kumar, Yogendra; Sen, Somaditya; Shirage, Parasharam M.

    2016-08-01

    Zn1 - xSrxO (0.0 ≤ x ≤ 0.08) nano-rods thin films are prepared using simple wet chemical technique on transparent flexible substrate. Effect of Sr-doping on structural and optical properties of ZnO is systematically investigated. SEM and TEM confirm the nano-rods like morphology with single crystalline nature of all the samples. Rietveld refinement of XRD shows the samples belongs to P63mc space group, furthermore, a gradual increment in lattice parameters and change in Zn/oxygen occupancy ratio is observed with Sr doping. SIMS and XPS confirm the doping of Sr in the ZnO nanostructures. XPS measurements shows that increase in Sr doping creates more oxygen associated defects, which is further supported by the photoluminescence spectra indicating the gradual change in Zn vacancy (Vzn) and oxygen interstitial (Oin) point defect intensities in the films. Near band edge emission peak shows to shift toward higher wavelength in the doped films. Pure ZnO film shows Raman peaks around 99 (E2low), 333 (E2high - E2low) , 382 (A1 (TO)), 438 (E2high) and 582 (A1 (LO) +E1 (TO)) cm-1, whereas two additional defect driven vibrational modes (at 277 and 663 cm-1) are appeared in the Sr-doped films. The sensing property of the ZnO is enhanced by Sr doping and replicates as a promising material for future toxic and flammable gas sensor applications as well as for opto-electronic devices.

  7. Giant flexoelectricity in Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite

    NASA Astrophysics Data System (ADS)

    Li, Yong; Shu, Longlong; Huang, Wenbin; Jiang, Xiaoning; Wang, Hong

    2014-10-01

    Enhanced flexoelectricity in perovskite ceramics and single crystals has been reported before. In this letter, 3-3 ceramic-ceramic Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with a colossal permittivity was employed in the conventional pure bending experiment in order to examine the transverse flexoelectric response. The measured flexoelectric coefficient at 30 Hz is 128 μC/m and varies to 16 μC/m with the frequency increasing from 30 Hz to 120 Hz, mainly due to the inverse correlation between the permittivity and the frequency. This result reveals the permittivity dependence of flexoelectric coefficient in the frequency dispersion materials, suggesting that the giant permittivity composites can be good flexoelectric materials.

  8. Structure and superconductivity in (Bi{sub 0.35}Cu{sub 0.65})Sr{sub 2}YCu{sub 2}O{sub 7} and related materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennings, R.A.; Williams, S.P.; Greaves, C.

    1994-12-31

    The recently reported (Bi/Cu)Sr{sub 2}YCu{sub 2}O{sub 7} phase has been studied by time of flight powder neutron diffraction. The proposed 1212 structure has been confirmed and refinements have shown the oxygen in the (Bi/Cu)O layer is displaced by 0.78{angstrom} from the ideal (1/2,1/2,0) site (P4/mmm space group) along (100). Bond Valence Sum calculations have suggested oxidation states of Bi{sup 5+} and Cu{sup 2+} for the cations in the (Bi/Cu)O layers. The material is non-superconducting and all attempts to induce superconductivity have been unsuccessful. Work on the related material (Ce/Cu)Sr{sub 2}YCu{sub 2}O{sub y} has shown the ideal Ce content to bemore » 0.5 Ce per formula unit. The introduction of Ba (10%) onto the Sr site dramatically increases phase stability and also induces superconductivity (62K).« less

  9. TC-tuned biocompatible suspension of La0.73Sr0.27MnO3 for magnetic hyperthermia.

    PubMed

    Prasad, N K; Rathinasamy, K; Panda, D; Bahadur, D

    2008-05-01

    La(1-x)Sr(x)MnO(3), a ferromagnet with high magnetization and Curie temperature T(C) below 70 degrees C, enables its use for magnetic hyperthermia treatment of cancer with a possibility of in vivo temperature control. We found that La(0.73)Sr(0.27)MnO(3) particles of size range 20-100 nm showed saturation magnetization around 38 emu/g at 20 kOe and a T(C) value of 45 degrees C. Aqueous suspension of these nanoparticles was prepared using a polymer, acrypol 934, and the biocompatibility of the suspension was examined using HeLa cells. A good heating ability of the magnetic suspension was obtained in the presence of AC magnetic field, and it was found to increase with the amplitude of field. The suspension having concentration of 0.66 mg/mL (e.g., 0.66 mg of nanoparticles with acropyl per milliliter of culture media) was observed to be biocompatible even after 96 h of treatment, as estimated by sulforhodamine B and trypan blue dye exclusion assays. Further, the treatment with the aforementioned concentration did not alter the microtubule cytoskeleton or the nucleus of the cells. However, the bare particles (concentration of 0.66 mg of nanoparticles per milliliter of culture media, but without acropyl) decreased the viability of cell significantly. Our in vitro studies suggest that the suspension (concentration of 0.66 mg/mL) may further be analyzed for in vivo studies. Copyright 2007 Wiley Periodicals, Inc.

  10. Performance of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ perovskite-structure anode material at lanthanum gallate electrolyte for IT-SOFC running on ethanol fuel

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Wang, S. R.; Liu, R. Z.; Ye, X. F.; Nie, H. W.; Sun, X. F.; Wen, T. L.

    Perovskite-structure La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ (LSCM) powders were prepared using a simple combustion process. Thermal analysis was carried out on the perovskite precursor to investigate the oxide-phase formation. The structural phase of the powders was determined by X-ray diffraction. These results showed that the decomposition of the precursors occurs in a two-step reaction and temperatures higher than 1100 °C are required for these decomposition reactions. For the electrochemical characterization, LSCM anode materials and (Pr 0.7Ca 0.3) 0.9MnO 3 (PCM) cathode materials were screen-printed on two sides of dense La 0.8Sr 0.2Ga 0.8Mg 0.2O 3 (LSGM) electrolyte layers prepared by tape casting with a thickness of about 600 μm, respectively. The morphology of the screen-printed La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ perovskite thick films (65 μm) was investigated by field emission scanning electron microscope and showed a porous microstructure. In addition, fuel cell tests were carried out using humidified hydrogen or ethanol stream as fuel and oxygen as oxidant. The performance of the conventional electrolyte-supported cell LSCM/LSGM/PCM while operating on humidified hydrogen was modest with a maximum power density of 165, 99 and 62 mW cm -2 at 850, 800 and 750 °C, respectively, the corresponding values for the cell while operating on ethanol stream was 160, 101 and 58 mW cm -2, respectively. Cell stability tests indicate no significant degradation in performance has been observed after 60 h of cell testing when LSCM anode was exposed to ethanol steam at 750 °C, suggesting that carbon deposition was limited during cell operation.

  11. THERMAL AND ELECTRICAL PROPERTIES OF Ba0.5Sr0.5CoxFe1-x-yNiyO3-δ (x = 0.4, 0 ≤ y ≤ 0.25) AS CATHODE MATERIAL FOR IT-SOFCs

    NASA Astrophysics Data System (ADS)

    Burnwal, Suman Kumar; Kistaiah, P.

    2015-03-01

    Ba0.5Sr0.5CoxFe1-x-yNiyO3-δ (BSCFNi; x = 0.4, 0 ≤ y ≤ 0.25) were studied in relation to their potential use as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. An emphasis is made on the effect of Ni-doping on crystal structure, thermal expansion coefficient (TEC) and dc electrical conductivity. A cubic perovskite structure was observed in the X-ray diffraction (XRD) measurement. The TEC of BSCFNi obtained for 0 ≤ y ≤ 0.25, varies in the range of (12.38-18.81) × 10-6 K-1, measured in the temperature range of 30°C to 800°C. The electrical conductivity which is a major defect of Ba0.5Sr0.5CoxFe1-xO3-δ (BSCF) was improved by Ni-doping. The compound with y = 0.20 and 0.25 demonstrated a conductivity of σ = 62.59 S-cm-1 and 72.64 S-cm-1 at 400°C and 77.01 S-cm-1 and 89.68 S-cm-1 at 500°C.

  12. Curie-Weiss behavior of Y{sub 1-x}Sr{sub x}MnO{sub 3} (x = 0 and 0.03)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakur, Rajesh K., E-mail: thakur.rajesh2009@gmail.com; Thakur, Rasna; Gaur, N. K.

    2015-06-24

    The effect of bivalent cation Sr-doping on magnetic properties in multiferroic YMnO{sub 3} manganites was systemically studied by DC magnetic measurements. Both of the reported samples were prepared by solid-state reaction method with composition Y{sub 1−x}Sr{sub x}MnO{sub 3} (x = 0.00 and 0.03). The X-ray diffraction (XRD) results show that the compounds are synthesized in hexagonal crystal structure with space group P6{sub 3}cm (JCPDS: 25-1079) and slight increase in the lattice parameter is observed with strontium doping. The magnetisation versus temperature curve shows no clear anomaly near the antiferromagnetic transition temperature (T{sub N}), however from the magnetic measurements at 1000Oemore » a slight increase in the magnetisation is clearly witnessed with increasing Stront ium content to the Y-site.« less

  13. Effects of Nb doping level on the electronic transport, photoelectric effect and magnetoresistance across La0.5Ca0.5MnO3/Nb:SrTiO3 junctions

    NASA Astrophysics Data System (ADS)

    Wang, J. F.; Jiang, Y. C.; Chen, M. G.; Gao, J.

    2013-12-01

    Heterojunctions composed of La0.5Ca0.5MnO3 and Nb doped SrTiO3 were fabricated, and the effects of the Nb doping level on their electronic transport, photoelectric effect, and magnetoresistance were investigated. A lower doping concentration of Nb led to better rectifying properties and higher open circuit voltages. The I-V curves for La0.5Ca0.5MnO3/0.7 wt. % Nb-SrTiO3 showed a negligible response to magnetic fields for all temperatures, whereas La0.5Ca0.5MnO3/0.05 wt. % Nb-SrTiO3 exhibited distinct magnetoresistance, which depended on both the bias voltage and temperature. These results are discussed with the assistance of conventional semiconductor theories.

  14. Influence of Fe substitution on structure and Raman spectra of La0.67Sr0.33MnO3: Experimental and density functional studies

    NASA Astrophysics Data System (ADS)

    Astik, Nidhi M.; Soni, Himadri; Jha, Prafulla K.; Sathe, Vasant

    2018-07-01

    We present experimental and theoretical studies on the effect of Fe doping at Mn site, on the structural, morphological, electronic and vibrational properties of La0.67Sr0.3MnO3 nanoparticle. The samples of La0.67Sr0.3MnO3 and La0.67Sr0.33Mn1-xFexO3 (x = 0.15, 0.25 and 0.35) have been prepared by ball milling route. The phase purity of these samples has been confirmed using X-ray diffraction, while compositional analysis is done using EDAX. The morphological analysis done using scanning microscope indicates the agglomeration. The vibrational analysis which is done using Raman scattering and density functional theory (DFT) calculations show a substantial shift in A1g and Eg modes with Fe doping. The Eg modes become broader with Fe doping. The UV-visible spectra were measured in the energy range of 1-5 eV and compared with DFT results. The spin polarized density functional calculations show an increase in density of states at Fermi level due to MnO6octahedra modification and significant magnetism on Fe doping. The total magnetic moment is found from 16 to 17 μB for considered concentration. The effective mass of carriers is also calculated and found increasing with increasing concentration.

  15. Frequency-dependent impedance spectroscopy on the 0.925(Bi0.5Na0.40K0.10)TiO3-0.075(Ba0.70Sr0.30)TiO3 ceramic

    NASA Astrophysics Data System (ADS)

    Ullah, Amir; Rahman, Muneeb-ur; Iqbal, Muhammad Javid; Ahn, Chang Won; Kim, Ill Won; Ullah, Aman

    2016-06-01

    The electrical properties of the 0.925(Bi0.5(Na0.40K0.10)TiO3-0.075(Ba0.70Sr0.30)TiO3 (0.925BNKT-0.075BST) ceramic were investigated by using AC impedance spectroscopy over a wide range of frequencies (10 -2 ~ 105 Hz). The X-ray diffraction patterns confirmed the formation of a single-phase compound. A single semicircular arc in the impedance spectrum indicates that the main contribution of the bulk resistance ( R b ) were due to grain effects, with Rb decreasing with increasing temperature. The conductivity of the ceramics increased with increasing temperature, and the activation energy resulting from the DC conductivity was 0.86 eV. The ceramic displayed a typical negative temperature coefficient of resistance (NTCR) behavior, like that of a semiconductor.

  16. Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite.

    PubMed

    Bornapour, M; Muja, N; Shum-Tim, D; Cerruti, M; Pekguleryuz, M

    2013-02-01

    Magnesium is an attractive material for use in biodegradable implants due to its low density, non-toxicity and mechanical properties similar to those of human tissue such as bone. Its biocompatibility makes it amenable for use in a wide range of applications from bone to cardiovascular implants. Here we investigated the corrosion rate in simulated body fluid (SBF) of a series of Mg-Sr alloys, with Sr in the range of 0.3-2.5%, and found that the Mg-0.5 Sr alloy showed the slowest corrosion rate. The degradation rate from this alloy indicated that the daily Sr intake from a typical stent would be 0.01-0.02 mg day⁻¹, which is well below the maximum daily Sr intake levels of 4 mg day⁻¹. Indirect cytotoxicity assays using human umbilical vascular endothelial cells indicated that Mg-0.5 Sr extraction medium did not cause any toxicity or detrimental effect on the viability of the cells. Finally, a tubular Mg-0.5 Sr stent sample, along with a WE43 control stent, was implanted into the right and left dog femoral artery. No thrombosis effect was observed in the Mg-0.5 Sr stent after 3 weeks of implantation while the WE43 stent thrombosed. X-ray diffraction demonstrated the formation of hydroxyapatite and Mg(OH)₂ as a result of the degradation of Mg-0.5 Sr alloy after 3 days in SBF. X-ray photoelectron spectroscopy further showed the possibility of the formation of a hydroxyapatite Sr-substituted layer that presents as a thin layer at the interface between the Mg-0.5 Sr alloy and the corrosion products. We believe that this interfacial layer stabilizes the surface of the Mg-0.5 Sr alloy, and slows down its degradation rate over time. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Chemical solution-deposited PbZr 0.53 Ti 0.47 O3 on La 0.5 Sr 0.5 Co O3. SIMS investigation of the effect of different precursor additives on the layer structure.

    PubMed

    Pollak, C; Malic, B; Kosec, M; Javoric, S; Hutter, H

    2002-10-01

    Chemical solution-deposited thin films of PbZr(0.53)Ti(0.47)O(3)/La(0.5)Sr(0.5)CoO(3) on Pt/TiO(2)/SiO(2)/Si substrates have been investigated by dynamic SIMS. The PbZr(0.53)Ti(0.47)O(3) (PZT) is intended to serve as a ferroelectric layer for microelectronic or microelectromechanical applications; conducting La(0.5)Sr(0.5)CoO(3) (LSCO) is a buffer layer intended to eliminate fatigue effects which usually occur at the Pt/PZT interface. Depth profiles of the main components were obtained and revealed that significant diffusion occurred during the deposition and crystallisation processes. Two types of sample, with different thickness of PZT and different types of poly(vinyl alcohol) (PVA) added to the LSCO precursor, were investigated.

  18. Structural phase transition and multiferroic properties of Bi0.8A0.2Fe0.8Mn0.2O3 (A = Ca, Sr)

    NASA Astrophysics Data System (ADS)

    Rout, Jyoshna; Choudhary, R. N. P.

    2018-05-01

    The multiferroic BiFeO3 and Bi0.8A0.2Fe0.8Mn0.2O3 (A = Ca, Sr) have been synthesized using direct mechanosynthesis. Detailed investigations were made on the influence of Ca-Mn and Sr-Mn co-substitutions on the structure change, electric and magnetic properties of the BFO. Rietveld refinement on the XRD pattern of the modified samples clarifies the structural transition from R3c:H (parent BiFeO3) to the biphasic structure (R3c: H + Pnma). Scanning electron micrographs confirmed the polycrystalline nature of the materials and each of the microstructure comprised of uniformly distributed grains with less porosity. The dielectric measurements reveal that enhancement in dielectric properties due to the reduction of oxygen vacancies by substitutional ions. Studies of frequency-dependence of impedance and related parameters exhibit that the electrical properties of the materials are strongly dependent on temperature, and bear a good correlation with its microstructure. The bulk resistance (evaluated from impedance studies) is found to decrease with increasing temperature for all the samples. The alternating current (ac) conductivity spectra show a typical signature of an ionic conducting system, and are found to obey Jonscher's universal power law. Preliminary studies of magnetic characteristics of the samples reveal enhanced magnetization for Ca-Mn co-substituted sample. The magnetoelectric coefficient as the function of applied dc magnetizing field under fixed ac magnetic field 15.368 Oe is measured and this ME coefficient αME corresponds to induction of polarization by a magnetic field.

  19. Raman spectra and anomalies of dielectric properties and thermal expansion of lead-free (1-x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramics

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, E. M.; Suchanicz, J.; Bovtun, V.; Konieczny, K.; Czaja, P.; Kluczewska, K.; Handke, B.; Antonova, M.; Sternberg, A.

    2016-08-01

    Thermal expansion, Raman and dielectric properties of the lead-free (1-x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramic solid solutions, fabricated by the conventional solid-state reaction method, were investigated. The Sr-doping results in an increase of the dielectric permittivity, broadening of the permittivity maximum, enhancement of the relaxation near depolarization temperature, broadening of the Raman bands and shift of all anomalies toward lower temperatures. The observed effects are attributed to an increase of the degree of cationic disorder and enhancement of the relaxor-like features. Anomalies in the thermal expansion strain were observed at the temperatures corresponding to the dielectric anomalies but not related to any phase transitions. These anomalies are supposed to follow changes of the averaged unit cell volume in the temperature interval of tetragonal and rhombohedral phase coexistence.

  20. Synthesis, structure and magnetic properties of nanostructured La1-xAxFe0.5Mn0.5O3 (A = Ca, Sr and Pb; x = 0 & 0.25) perovskites

    NASA Astrophysics Data System (ADS)

    Hossain, Aslam; Ghosh, Debamalya; Dutta, Uma; Walke, Pravin S.; Mordvinova, Natalia E.; Lebedev, Oleg I.; Sinha, Bhavesh; Pal, Kamalesh; Gayen, Arup; Kundu, Asish K.; Seikh, Md. Motin

    2017-12-01

    The effect of hole doping on magnetic properties of LaFe0.5Mn0.5O3 have been investigated. All the ceramics samples La1-xAxFe0.5Mn0.5O3 (A = Ca, Sr and Pb; x = 0 & 0.25) were synthesized at 500 °C by sol-gel method and the particles size were found to be in nanodimension. The samples were characterized by X-ray and electron diffraction, HRTEM and both dc and ac-magnetization measurements. The X-ray and electron diffraction patterns were indexed by cubic Pm-3m space group. The particle size of the LaFe0.5Mn0.5O3 is ∼100 nm, whereas the Pb-doped sample is ∼50 nm and for Ca or Sr doped samples the size is ∼10-30 nm. Both dc and ac-susceptibility measurements suggest that the effect of hole doping and A-site cationic radius in LaFe0.5Mn0.5O3 have no significant role on magnetic properties. However, the particle size plays an important role on magnetic property due to the development of surface ferromagnetic cluster at nanoscale. The competing interactions lead to magnetic phase separation where local ferromagnetic clusters coexist within the antiferromagentic matrix in all the samples.

  1. Internal Rb-Sr Age and Initial Sr-87/Sr-86 of a Silicate Inclusion from the Campo Del Cielo Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Nyquist, L.; Wiesmann, H.; Shih, C.; Schwandt, C.; Takeda, H.

    2003-01-01

    The largest group of iron meteorites, IAB, is distinguished by the presence of diverse silicate inclusions. In principle, Rb-Sr and Sm-Nd radiometric dating of these silicate inclusions by internal isochron techniques can determine both the times of melting and parent/daughter ratios in the precursor materials via initial Sr-87/Sr-86 and Nd-143/Nd-144 ratios. The Sr-87/Sr-86 and Nd-143/Nd-144 ratios could distinguish chondritic precursors from already differentiated silicates. We reported Rb-Sr and Sm-Nd internal ischron ages of 4.52+/-0.03 Ga and 4.50+/-0.04 Ga, respectively, for plagioclase-diopside-rich material in the Caddo County IAB iron meteorite. These results are essentially identical to literature values of its Ar-Ar age of 4.520+/-0.005 Ga and its Sm-Nd age of 4.53+/-0.02 Ga. The purpose of this study is to evaluate the formation and evolution of silicate inclusions in IAB iron meteorites by determination of their initial Sr-87/Sr-86 ratios combined with higher-resolution chronology and mineralogical and geochemical studies.

  2. Morphologically well-defined Gd0.1Ce0.9O1.95 embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofiber with an enhanced triple phase boundary as cathode for low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Chanho; Park, Hyunjung; Jang, Inyoung; Kim, Sungmin; Kim, Kijung; Yoon, Heesung; Paik, Ungyu

    2018-02-01

    Controlling triple phase boundary (TPB), an intersection of the ionic conductor, electronic conductor and gas phase as a major reaction site, is a key to improve cell performances for low-temperature solid oxide fuel cells. We report a synthesis of morphologically well-defined Gd0.1Ce0.9O1.95 (GDC) embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) nanofibers and their electrochemical performances as a cathode. Electrospun fibers prepared with a polymeric solution that contains crystalline Ba0.5Sr0.5Co0.8Fe0.2O3-δ particles in ∼200 nm size and Gd(NO3)3/Ce(NO3)3 precursors in an optimized weight ratio of 3 to 2 result in one dimensional structure without severe agglomeration and morphological collapse even after a high calcination at 1000 °C. As-prepared nanofibers have fast electron pathways along the axial direction of fibers, a higher surface area of 7.5 m2 g-1, and more oxygen reaction sites at TPBs than those of GDC/BSCF composite particles and core-shell nanofibers. As a result, the Gd0.1Ce0.9O1.95 embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofiber cell shows excellent performances of the maximum power density of 0.65 W cm-2 at 550 °C and 1.02 W cm-2 at 600 °C, respectively.

  3. Flash microwave synthesis and sintering of nanosized La{sub 0.75}Sr{sub 0.25}Cr{sub 0.93}Ru{sub 0.07}o{sub 3-{delta}} for fuel cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combemale, L., E-mail: lionel.combemale@u-bourgogne.f; Caboche, G.; Stuerga, D.

    2009-10-15

    Perovskite-oxide nanocrystals of La{sub 0.75}Sr{sub 0.25}Cr{sub 0.93}Ru{sub 0.07}O{sub 3-{delta}} with a mean size around 10 nm were prepared by microwave flash synthesis. This reaction was performed in alcoholic solution using metallic salts, sodium ethoxide and microwave autoclave. The obtained powder was characterised after purification by energy dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), BET adsorption technique, photon correlation spectroscopy (PCS) and transmission electron microscopy (TEM). The results show that integrated perovskite-type phase and uniform particle size were obtained in the microwave treated samples. At last the synthesised powder was directly used in a sintering process. A porous solid, inmore » accordance with the expected applications, was then obtained at low sintering temperature (1000 deg. C) without use of pore forming agent. - Graphical abstract: TEM photograph of La{sub 0.75}Sr{sub 0.25}Cr{sub 0.93}Ru{sub 0.07}O{sub 3-{delta}} obtained by microwave flash synthesis. This picture confirms the nanometric size of the ceramic particles.« less

  4. Magnetic studies of high Tc superconducting (La0.9Sr0.1)2CuO4-y

    NASA Technical Reports Server (NTRS)

    Zirngiebl, E.; Thompson, J. D.; Huang, C. Y.; Hor, P. H.; Meng, R. L.

    1987-01-01

    The magnetic moment of La(0.9Sr0.1)2CuO4-y was measured as a function of temperature and magnetic field, and the onset of superconductivity was found to occur at a temperature of 35 K. At 2 K, the dc magnetic susceptibility was found to reach 83 percent of perfect diamagnetism. Field studies have shown that the sample is a type-II superconductor and that the temperature dependences of the critical fiedls are anomalous. Its critical fields, kappa, and lambda(eff) are much larger than those for (La0.9Ba0.1)2CuO4-y, and their temperature dependences cannot be explained in terms of BCS theory.

  5. Highly active La0.4Sr0.6Co0.8Fe0.2O3-δ nanocatalyst for oxygen reduction in intermediate temperature-solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chanquía, Corina M.; Mogni, Liliana; Troiani, Horacio E.; Caneiro, Alberto

    2014-12-01

    Pure-phase La0.4Sr0.6Co0.8Fe0.2O3-δ (LSCF) nanocrystallites were successfully synthesized by the combustion method, by employing glycine as fuel and complexing agent, and ammonium nitrate as combustion trigger. The morphological and structural characterization of the LSCF nanopowders was performed by using X-ray diffraction, N2 physisorption and electron microscopy. The LSCF nanopowder consists of interconnected nanocrystallites (∼45 nm) forming a sponge-like structure with meso and macropores, being its specific surface area around 10 m2 g-1. Crystalline structural analyses show that the LSCF nanopowder presents cubic symmetry in the Pm-3m space group. By employing the spin coating technique and different thermal treatments, symmetrical cells with different electrode crystallite size (45 and 685 nm) were built, by using La0.8Sr0.2Ga0.8Mg0.2O3-δ as electrolyte. Electrochemical impedance spectroscopy measurements were performed varying temperature and pO2. The area specific resistance of the nanostructured sample (45 nm) decreases by two orders of magnitude with respect to the submicrostructured sample (685 nm), reaching values as low as 0.8 Ω cm2 at 450 °C. This improvement is attributed to the cathode morphology optimization in the nanoscale, i.e., enlargement of the exposed surface area and shortening of the oxygen diffusion paths, which reduce the polarization resistance associated to the surface exchange and O-ion bulk diffusion process.

  6. Anomalies in the thermomechanical behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-δ ceramic oxygen conductive membranes at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Huang, B. X.; Malzbender, J.; Steinbrech, R. W.; Grychtol, P.; Schneider, C. M.; Singheiser, L.

    2009-08-01

    The thermomechanical properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) were measured using ring-on-ring tests and depth-sensitive microindentation. The cubic BSCF material exhibits an anomaly in mechanical properties between 200 and 400 °C. The observed anomaly is attributed to the transition of Co3+ spin states which is experimentally confirmed by susceptibility measurements. Furthermore, slip lines were observed around the impression when indentation tests were carried out above 260 °C.

  7. Electric-field control of electronic transport properties and enhanced magnetoresistance in La0.7Sr0.3MnO3/0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 lead-free multiferroic structures

    NASA Astrophysics Data System (ADS)

    Yan, Jian-Min; Gao, Guan-Yin; Liu, Yu-Kuai; Wang, Fei-Fei; Zheng, Ren-Kui

    2017-10-01

    We report the fabrication of lead-free multiferroic structures by depositing ferromagnetic La0.7Sr0.3MnO3 (LSMO) polycrystalline films on polished 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 (BZT-BCT) piezoelectric ceramic substrates. By applying electric fields to the BZT-BCT along the thickness direction, the resistivity of LSMO films can be effectively manipulated via the piezoelectric strain of the BZT-BCT. Moreover, the LSMO polycrystalline films exhibit almost temperature independent and significantly enhanced magnetoresistance (MR) below TC. At T = 2 K and H = 8 T, the MR of polycrystalline films is approximately two orders of magnitude higher than that of LSMO epitaxial films grown on (LaAlO3)0.3(SrAl1/2Ta1/2O3)0.7 single-crystal substrates. The enhanced MR mainly results from the spin-polarized tunneling of charge carriers across grain boundaries. The LSMO/BZT-BCT structures with electric-field controllable modulation of resistivity and enhanced MR effect may have potential applications in low-energy consumption and environmentally friendly electronic devices.

  8. Strain-relaxation and critical thickness of epitaxial La 1.85Sr 0.15CuO 4 films

    DOE PAGES

    Meyer, Tricia L; Jiang, Lu; Park, Sungkyun; ...

    2015-12-08

    We report the thickness-dependent strain-relaxation behavior and the associated impacts upon the superconductivity in epitaxial La 1.85Sr 0.15CuO 4 films grown on different substrates, which provide a range of strain. We have found that the critical thickness for the onset of superconductivity in La 1.85Sr 0.15CuO 4 films is associated with the finite thickness effect and epitaxial strain. In particular, thin films with tensile strain greater than ~0.25% revealed no superconductivity. We attribute this phenomenon to the inherent formation of oxygen vacancies that can be minimized via strain relaxation.

  9. Novel high temperature proton conducting fuel cells: Production of La 0.995Sr 0.005NbO 4- δ electrolyte thin films and compatible cathode architectures

    NASA Astrophysics Data System (ADS)

    Fontaine, M.-L.; Larring, Y.; Haugsrud, R.; Norby, T.; Wiik, K.; Bredesen, R.

    For breakthrough development in solid oxide fuel cells, novel cell architectures integrating better performing materials and cost-effective manufacturing processes with potential for mass production must be realised. The present work addresses this on the basis of the recent discovery of acceptor doped rare-earth ortho-niobate proton conductors and the development of a versatile fabrication process. La 0.995Sr 0.005NbO 4- δ/NiO anodes are produced by tape-casting and co-lamination of green layers. Their porosity is finely tuned by using a pyrolyzable pore former. La 0.995Sr 0.005NbO 4- δ electrolytes are spin-coated using ceramic-based suspensions. Fully dense electrolytes with thickness ranging from 9 μm to 26 μm are obtained after sintering in air at 1350 °C. The cathode layers are then screen-printed. To match thermal expansion and to avoid chemical reaction between the functional layers, special attention is paid to the design of cathode architectures. CaTi 0.9Fe 0.1O 3- δ, La 2NiO 4+ δ and La 4Ni 3O 10 mixed oxygen ion and electron conducting oxides are investigated as either monophase or La 0.995Sr 0.005NbO 4- δ-based composite electrodes. The latter gives the whole cell an innovative "semi-monolithic" concept, which can take advantage of the chemical and mechanical stability of La 0.995Sr 0.005NbO 4- δ, as well as of inherent material integration. Most promising cell architectures are finally selected based on thermo-mechanical and chemical compatibility of all functional layers.

  10. Temperature dependent infrared nano-imaging of La0.67Sr0.33MnO3 thin film

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Huffman, T. J.; Hae Kwak, In; Biswas, Amlan; Qazilbash, M. M.

    2018-01-01

    We investigate the temperature dependence of infrared properties at nanometer length scales in La0.67Sr0.33MnO3 (LSMO) thin film with a thickness of 47 unit cells grown on SrTiO3 substrate. The infrared nano-imaging experiments were performed using a near-field optical microscope in conjunction with a variable temperature heating stage. The near-field infrared data is consistent with the bulk of the LSMO film undergoing the thermally-driven non-percolative second-order transition from a metallic, ferromagnetic phase to an insulating, paramagnetic phase. We find persistent infrared contrast on the nanoscale that is independent of temperature and which we attribute to two novel phases with different conductivities coexisting in the vicinity of the film-substrate interface. These two coexisting phases at the film-substrate interface do not undergo the metal-insulator transition (MIT) and hence are different from the metallic, ferromagnetic and insulating, paramagnetic phases in the bulk of the film. At temperatures approaching the nominal MIT temperature, repeated scans of the same microscopic area at constant temperature reveal bimodal fluctuation of the near-field infrared amplitude. We interpret this phenomenon as slow, critical fluctuations of the conductivity in the bulk of the LSMO film.

  11. Energy dispersions of single-crystalline Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ superconductors determined using angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Wells, B. O.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1989-09-01

    Angle-resolved photoemission studies of single-crystalline La-doped Bi-Sr-Ca-Cu- 90-K superconductors (Bi2.0Sr1.8Ca0.8La0.3Cu2.1O8+δ) were performed utilizing synchrotron radiation covering the photon energy range 10-40 eV. The data conclusively reveal a dispersionless character of the valence-band states as a function of the wave-vector component parallel to the c axis, in agreement with the predictions of band calculations. Band effects are evident from both intensity modulations of the spectral features in the valence band and from energy dispersions as a function of the wave vector component lying in the basal a-b plane.

  12. Thickness dependent thermoelectric properties of SrTiO3/SrLaTiO3 and SrZrO3/SrLaTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Ishii, Masatoshi; Baniecki, John; Schafranek, Robert; Kerman, Kian; Kurihara, Kazuaki

    2013-03-01

    Thermoelectric power generators will be required for future sensor network systems. SrTiO3 (STO) is one candidate thermoelectric material due to its non-toxicity and comparable power factor to Bismuth telluride. The energy conversion efficiency of SrTiO3-based thermoelectric energy conversion elements has been reported to be enhanced by quantum size effects, such as the two dimensional (2D) electron gas in SrTiO3/SrTi0.8Nb0.2O3/SrTiO3. Nevertheless, a complete understanding of the mechanisms for the reported increase in efficiency are missing owing to a lack of understanding of the thickness dependence of the transport properties. In the talk, we will present a study of the thickness dependence of the transport properties of SrTiO3/SrLaTiO3 and SrZrO3/SrLaTiO3 heterostructures. The SrZrO3/SrLaTiO3 interface has a large conduction band off-set of 1.9 eV which can be utilized to confine electrons in a 2D quantum well. Characterization of the thermopower, conductivity, and Hall effect will be presented as a function of the SrLaTiO3 thickness down to a few unit cells and the implications of the thickness dependence of the transport properties on carrier confinement and increasing the efficiency STO-based 2DEG quantum well structures will be discussed.

  13. Low energy excitations and Drude-Smith carrier dynamics in Sm0.5Sr0.5MnO3

    NASA Astrophysics Data System (ADS)

    Kumar, K. Santhosh; Das, Sarmistha; Prajapati, G. L.; Philip, Sharon S.; Rana, D. S.

    2017-05-01

    We have performed terahertz time-domain spectroscopic measurements on half-doped charge-ordered manganite Sm0.5Sr0.5MnO3 in the temperature range of 5-300 K to explore the possibilities of the charge density wave (CDW) ground state and understand the low energy charge carrier dynamics. While a resonance absorption peak at 0.275 meV suggests formation of a CDW condensate, the increase in background conductivity due to uncondensed carriers obey the Drude-Smith model of carrier dynamics. This study confirms that CDW is a generic feature of charge-ordered manganites.

  14. Use of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3 materials in composite anodes for direct ethanol solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Ye, Xiao-Feng; Wang, S. R.; Wang, Z. R.; Hu, Q.; Sun, X. F.; Wen, T. L.; Wen, Z. Y.

    The perovskite system La 1- xSr xCr 1- yM yO 3- δ (M, Mn, Fe and V) has recently attracted much attention as a candidate material for the fabrication of solid oxide fuel cells (SOFCs) due to its stability in both H 2 and CH 4 atmospheres at temperatures up to 1000 °C. In this paper, we report the synthesis of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3 (LSCM) by solid-state reaction and its employment as an alternative anode material for anode-supported SOFCs. Because LSCM shows a greatly decreased electronic conductivity in a reducing atmosphere compared to that in air, we have fabricated Cu-LSCM-ScSZ (scandia-stabilized zirconia) composite anodes by tape-casting and a wet-impregnation method. Additionally, a composite structure (support anode, functional anode and electrolyte) structure with a layer of Cu-LSCM-YSZ (yttria-stabilized zirconia) on the supported anode surface has been manufactured by tape-casting and screen-printing. Single cells with these two kinds of anodes have been fabricated, and their performance characteristics using hydrogen and ethanol have been measured. In the operation period, no obvious carbon deposition was observed when these cells were operated on ethanol. These results demonstrate the stability of LSCM in an ethanol atmosphere and its potential utilization in anode-supported SOFCs.

  15. Magnetic properties of La0.95Sr0.05CoO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Prakash, Ravi; Shukla, Rishabh; Priyanka, Dhaka, R. S.

    2017-05-01

    We report the magnetic and structural properties of La(1-x)SrxCoO3 (x = 0 & 0.05) nanoparticles. The analysis of room temperature powder x-ray diffraction confirms the crystalline nature and single phase of the prepared samples. The magnetic measurements show ferromagnetic transition at TC˜85 K, the spontaneous magnetic moment MS ˜172 emu/mol, and the coercive field HC ˜7 kOe in parent compound, which are in agreement with the literature. Interestingly, with hole doping by Sr2+ substitution at La3+ site the magnetization data show drastic changes, as the TC increases to ˜270 K, the value of MS (˜557 emu/mole) increases about three times, whereas, the HC (˜0.6 kOe) decreases. Below TC, the nanoparticles show a much larger FC moment and a significant difference in FC and ZFC (zero field cooled) behaviors. For x = 0.05, we determined the values of effective magnetic moment (µeff = 3.62 µB/Co), the Curie temperature (θCW = -28 K) and the spin state (Savg = 1.38), which are significantly different than LaCoO3. Our study suggests an important role of charge carriers in controlling of intermediate spin state by hole doping in nanoparticles.

  16. Low Power Resistive Oxygen Sensor Based on Sonochemical SrTi0.6Fe0.4O2.8 (STFO40)

    PubMed Central

    Stratulat, Alisa; Serban, Bogdan-Catalin; de Luca, Andrea; Avramescu, Viorel; Cobianu, Cornel; Brezeanu, Mihai; Buiu, Octavian; Diamandescu, Lucian; Feder, Marcel; Ali, Syed Zeeshan; Udrea, Florin

    2015-01-01

    The current paper reports on a sonochemical synthesis method for manufacturing nanostructured (typical grain size of 50 nm) SrTi0.6Fe0.4O2.8 (Sono-STFO40) powder. This powder is characterized using X ray-diffraction (XRD), Mössbauer spectroscopy and Scanning Electron Microscopy (SEM), and results are compared with commercially available SrTi0.4Fe0.6O2.8 (STFO60) powder. In order to manufacture resistive oxygen sensors, both Sono-STFO40 and STFO60 are deposited, by dip-pen nanolithography (DPN) method, on an SOI (Silicon-on-Insulator) micro-hotplate, employing a tungsten heater embedded within a dielectric membrane. Oxygen detection tests are performed in both dry (RH = 0%) and humid (RH = 60%) nitrogen atmosphere, varying oxygen concentrations between 1% and 16% (v/v), at a constant heater temperature of 650 °C. The oxygen sensor, based on the Sono-STFO40 sensing layer, shows good sensitivity, low power consumption (80 mW), and short response time (25 s). These performance are comparable to those exhibited by state-of-the-art O2 sensors based on STFO60, thus proving Sono-STFO40 to be a material suitable for oxygen detection in harsh environments. PMID:26205267

  17. Structural, magneto-optical properties and cation distribution of SrBi{sub x}La{sub x}Y{sub x}Fe{sub 12−3x}O{sub 19} (0.0 ≤ x ≤ 0.33) hexaferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auwal, I.A.; Güngüneş, H.; Güner, S.

    Highlights: • SrBi{sub x}La{sub x}Y{sub x}Fe{sub 12−3x}O{sub 19} (0.0 ≤ x ≤ 0.33) hexaferrites have been prepared by sol-gel autocombustion. • XRD patterns show that SrBi{sub x}La{sub x}Y{sub x}Fe{sub 12−3x}O{sub 19} (0.0 ≤ x ≤ 0.33) hexaferrites exhibit hexagonal structure. • The intrinsic coercivity (H{sub ci}) above 15000 Oe reveals that all samples are magnetically hard materials. - Abstract: SrBi{sub x}La{sub x}Y{sub x}Fe{sub 12−3x}O{sub 19} (0.0 ≤ x ≤ 0.33) hexaferrites were produced via sol-gel auto combustion. XRD patterns show that all the samples are single-phase M-type strontium hexaferrite (SrM). The magnetic hysteresis (σ-H) loops revealed the ferromagnetic nature ofmore » nanoparticles (NPs). The coercive field decreases from 4740 Oe to 2720 Oe with increasing ion content. In particular, SrBi{sub x}La{sub x}Y{sub x}Fe{sub 12−3x}O{sub 19} NPs with x = 0.0, 0.1, 0.2 have suitable magnetic characteristics (σ{sub s} = 62.03–64.72 emu/g and H{sub c} = 3105–4740 Oe) for magnetic recording. The intrinsic coercivity (H{sub ci}) above 15000 Oe reveals that all samples are magnetically hard materials. Tauc plots were used to specify the direct optical energy band gap (E{sub g}) of NPs. The E{sub g} values are between 1.76 eV and 1.85 eV. {sup 57}Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting, relative area and hyperfine magnetic field values on Bi{sup 3+} La{sup 3+} and Y{sup 3+} substitutions have been determined.« less

  18. La0.3Sr0.2Mn0.1Zn0.4 oxide-Sm0.2Ce0.8O1.9 (LSMZ-SDC) nanocomposite cathode for low temperature SOFCs.

    PubMed

    Raza, Rizwan; Abbas, Ghazanfar; Liu, Qinghua; Patel, Imran; Zhu, Bin

    2012-06-01

    Nanocomposite based cathode materials compatible for low temperature solid oxide fuel cells (LTSOFCs) are being developed. In pursuit of compatible cathode, this research aims to synthesis and investigation nanocomposite La0.3Sr0.2Mn0.1Zn0.4 oxide-Sm0.2Ce0.8O1.9 (LSMZ-SDC) based system. The material was synthesized through wet chemical method and investigated for oxide-ceria composite based electrolyte LTSOFCs. Electrical property was studied by AC electrochemical impedance spectroscopy (EIS). The microstructure, thermal properties, and elemental analysis of the samples were characterized by TGA/DSC, XRD, SEM, respectively. The AC conductivity of cathode was obtained for 2.4 Scm(-1) at 550 degrees C in air. This cathode is compatible with ceria-based composite electrolytes and has improved the stability of the material in SOFC cathode environment.

  19. EFFECTS OF ELECTRODE RESISTANCE ON THE DIELECTRIC BEHAVIORS OF Au/BaxSr1-xTiO3/La1.1Sr0.9NiO4 CAPACITORS

    NASA Astrophysics Data System (ADS)

    Qiu, Jie; Liu, Guozhen; Wolfman, Jérôme

    2016-05-01

    BaxSr1-xTiO3 (0.1≤x≤0.5) (BST) thin films were prepared on La1.1Sr0.9NiO4 (LSNO)/SrTiO3 (STO) structure by combinatorial pulsed laser deposition (comb-PLD). The capacitances of the Au/BST/LSNO capacitors exhibited strong frequency dependence especially when the applied frequency was higher than 10kHz. On the basis of an equivalent circuit model, we presented a theoretical simulation of the relationships between capacitance and frequency for the capacitors with different electrode serial resistances. Based on the fitting results, the observed strong frequency dependence of the measured capacitance at high frequency in our study could be ascribed to the large serial resistance of 750 Ω for oxide electrode LSNO. Further simulation studies found that large serial resistance (1000 Ω) could result in an apparent deviation from the intrinsic dielectric properties especially at high frequencies (>100kHz) for capacitors with capacitances above 1nF. Our results provide useful information for the design of all-oxide electronic devices.

  20. Effect of strontium substitution on the structural and magnetic properties of La1.8Sr0.2MMnO6 (M = Ni, Co)-layered manganites

    NASA Astrophysics Data System (ADS)

    Karimunnesa, Syeda; Ahmmad, Bashir; Basith, M. A.

    2017-07-01

    Sr-substituted perovskites, La1.8Sr0.2MMnO6 (M = Ni, Co), were synthesized using the solid-state reaction technique to present a systematic study on their morphological, structural and magnetic properties. The average grain size of the as-prepared La1.8Sr0.2NiMnO6 samples are in the range of 0.2-0.7 µm and those for La1.8Sr0.2CoMnO6 manganites are 0.1-2.8 μm, which is significantly less than that of unsubstituted La2NiMnO6 (LNMO) and La2CoMnO6 (LCMO) manganites. The XPS analysis enlightened about phase purity, binding energy and oxygen vacancy of La1.8Sr0.2MMnO6 manganites. The Sr-substituted LNMO has revealed a sharp ferromagnetic to paramagnetic phase transition at 160 ± 2 K, which is about 120 K less than that of parent LNMO. The Sr-substituted LCMO exhibited such a transition at 220 ± 2 K, which is 8 K less than that of parent LCMO. The temperature-dependent magnetization measurements suggest that the effect of Sr on the transition temperature in LNMO is more significant than that of LCMO.

  1. Magnetic and magnetoresistance properties of La0.7Sr0.3(Mn,Сo)O3

    NASA Astrophysics Data System (ADS)

    Troyanchuk, I. O.; Karpinsky, D. V.; Bushinsky, M. V.; Sikolenko, V. V.; Gavrilov, S. A.; Silibin, M. V.

    2017-11-01

    Magnetic and magnetotransport properties of La0.7Sr0.3Mn1-xCoxO3 ceramics have been investigated by neutron powder diffraction, magnetization and electrical measurements. It is shown that substitution by cobalt ions leads to a decrease of magnetic transition temperature down to 140 K for the compound with x = 0.33. The compounds with cobalt content 0.4 < x < 0.6 are characterized by a presence of small ferromagnetic component due to exchange interactions between cobalt and manganese ions with maximal transition temperature of about 190 K observed for x = 0.5. Further increase of the dopant concentration diminishes ferromagnetic interactions. An evolution of electronic configuration of manganese and cobalt ions upon chemical substitution as well as related changes in the exchange interactions which determine the type of the magnetic state are discussed. Based on the neutron diffraction results and magnetometry data the preliminary magnetic phase diagram has been constructed.

  2. Effects of crystallization on structural and dielectric properties of thin amorphous films of (1 - x)BaTiO3-xSrTiO3 (x=0-0.5, 1.0)

    NASA Astrophysics Data System (ADS)

    Kawano, H.; Morii, K.; Nakayama, Y.

    1993-05-01

    The possibilities for fabricating solid solutions of (Ba1-x,Srx)TiO3 (x≤0.5,1.0) by crystallization of amorphous films and for improving their dielectric properties by adjusting the Sr content were investigated. Thin amorphous films were prepared from powder targets consisting of mixtures of BaTiO3 and SrTiO3 by sputtering with a neutralized Ar-ion beam. The amorphous films crystallized into (Ba1-x, Srx)TiO3 solid solutions with a cubic perovskite-type structure after annealing in air at 923 K for more than 1 h. The Debye-type dielectric relaxation was observed for the amorphous films, whereas the crystallized films showed paraelectric behavior. The relative dielectric constants were of the order of 20 for the amorphous samples, but increased greatly after crystallization to about 60-200, depending on the composition; a larger increase in the dielectric constant was observed in the higher Sr content films, in the range x≤0.5, which could be correlated with an increase in the grain size of the crystallites. The crystallization processes responsible for the difference in the grain size are discussed based on the microstructural observations.

  3. Substitution effect of Sr2+ by Ca2+ on structure and superconducting properties of Bi2Sr1.6La0.4CuO6+δ (Bi-2201) ceramics

    NASA Astrophysics Data System (ADS)

    Boudjaoui, S.; Amira, A.; Mahamdioua, N.; Altintas, S.; varilci, A.; Terzioglu, C.

    2018-02-01

    In this work, the effect of Ca2+ iso-valence substitution for Sr2+ on properties of Bi2Sr1.6La0.4CuO6+δ superconductors is presented. Samples series with nominal composition of Bi2Sr1.6-xCaxLa0.4CuO6+δ (x= 0, 0.2, 0.4, 0.6 and 0.8) are prepared by a solid-state reaction method. When Ca content is increased, the X-ray diffraction technique shows that the cell parameters a and c decrease, while b one is almost constant. The scanning electron microscopy analysis reveals that the substitution has no significant effect on the porosity and the grain size of the samples. The physical properties of the samples are studied by the analysis of the magneto-resistivity curves measured under magnetic fields in the range 0-1 T. As Ca is added, the results show that the high temperature transition appears and is pushed up to 94.87 K for x=0.8. The substitution also improves the bulk onset critical transition temperature, the transition width, the residual resistivity, the activation energy of vortices and the irreversibility field. The best results are seen for x=0.4 of Ca content.

  4. Dielectric properties and microstructure of nano-MgO dispersed Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} thin films prepared by sputter deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.-F.; Chu, Jinn P.; Lin, C.C.

    2005-07-01

    In this study, thin films prepared from the targets of Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} (BST), BST/5 mol % MgO, BST/10 mol % MgO, and BST/20 mol % MgO composites, using radio frequency magnetron sputtering, have been reported. As-deposited films were found to be amorphous and began to crystallize after annealing at temperatures of 650 deg. C and above. The addition of MgO in the BST films resulted in the hindrance of crystallization and inhibition of grain growth. MgO was substituted into the BST lattices to a certain degree. High-resolution transmission electron microscopy results revealed some MgO dispersed in the BSTmore » matrix. The MgO dispersed in the dense BST matrix was found to be around 25 nm in size. The dielectric constant was estimated to be 90 for the pure BST film annealed at 700 deg. C, and observed to be slightly reduced with the MgO addition. The dielectric losses of the Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} (0.006) and BST/MgO films (0.002-0.004) were much less than those of the Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}(0.013) and Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} films (0.11-0.13). The leakage current was smaller for the BST/10 mol % MgO film compared to the pure BST film and this low leakage current may be attributed to the substitution of Mg in the B sites of BST lattices which might have behaved as an electron acceptors.« less

  5. Effect of La0.6 Sr0.4 Co0.2 Fe0.8O3 - δ air electrode-electrolyte interface on the short-term stability under high-current electrolysis in solid oxide electrolyzer cells

    NASA Astrophysics Data System (ADS)

    Pan, Zehua; Liu, Qinglin; Lyu, Renzhi; Li, Ping; Chan, Siew Hwa

    2018-02-01

    In this work, the effects of the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) electrode-yttria stabilized zirconia (YSZ) electrolyte interface on the stability of LSCF electrodes under high-current electrolysis are studied. Six different half-cells with different configurations are tested at 800 °C for 264 h under an electrolysis current of 1 A cm-2. A few concluding remarks can be drawn by comparing the behaviors of different cells. Firstly, it is confirmed that the formation of SrZrO3 at the interface will lead to the delamination of air electrode. Thus, the formation of SrZrO3 should be strictly prevented. Secondly, increasing sintering temperature can decrease the degradation rate of polarization resistance, RP, for LSCF electrodes. Thirdly, the increase of ohmic resistance, RS, comes from structural changes as the degradation rate in percentage is similar for cells with different electrolytes and electrodes. Fourthly, the LSCF electrode after the electrolysis test shows recrystallization and lattice shrink which could be the reason for the degradation of LSCF electrodes on Gd0.1Ce0.9O2-δ (GDC) electrolytes. Lastly, comparing all the samples, the cell composed of YSZ electrolyte, dense GDC interlayer and LSCF electrode sintered at 1000 °C can be used for future study on the degradation mechanisms of the LSCF air electrode and the electrolyte.

  6. Grain size effect on the permittivity of La1.5Sr0.5NiO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Dang Thanh, Tran; Van Hong, Le

    2009-09-01

    Using the annealing at different temperatures the La1.5Sr0.5NiO4 ceramic samples with different mean grain size were manufactured. Mean grain size () of the samples was evaluated by Warren-Averbach method and their SEM images. The obtained results of both methods are almost the same, changing from 16.2 to 95 nm in dependence on the annealing temperature. The frequency dependence of dielectric constant in the frequency range of (1-13 MHz) was recorded for all samples. The real (ɛ') and the imaginary parts (ɛ") of the permittivity of La1.5Sr0.5NiO4 samples abnormally depend on the frequency, exhibiting a dielectric resonance around 500 kHz. R-L-C in series equivalent-circuit fitted well for the obtained result. It was supposed that there exists magnetic contribution in material that suggests the material is a multiferroic one. Dependence of the (ɛ') on the mean grain size supposed that the colossal dielectric property is an intrinsic behaviour of La1.5Sr0.5NiO4 material.

  7. CARRIER-LATTICE RELAXATION FOR BROADENING EPR LINEWIDTH IN Nd0.55Sr0.45MnO3

    NASA Astrophysics Data System (ADS)

    Fan, Jiyu; Zhang, Xiyuan; Tong, Wei; Zhang, Lei; Zhang, Weichun; Zhu, Yan; Shi, Yangguang; Hu, Dazhi; Hong, Bo; Ying, Yao; Ling, Langsheng; Pi, Li; Zhang, Yuheng

    2013-12-01

    In this paper, we report the electron paramagnetic resonance (EPR) study of perovskite manganite Nd0.55Sr0.45MnO3. Experimental data reveal that the EPR linewidth broadens with a quasilinear manner up to 480 K. The broadening of the EPR linewidth can be understood in terms of the shortening of carrier-lattice relaxation time due to the occurrence of strong carrier-phonon interactions. Two same activation energies obtained respectively from the temperature dependence of EPR intensity and resistivity indicate that the linewidth variation is correlated to the small polaron hopping. Therefore, the carrier-lattice coupling play a major role for deciding its magnetism in the present system.

  8. Regional and interspecific variation in Sr, Ca, and Sr/Ca ratios in avian eggshells from the USA.

    PubMed

    Mora, Miguel A; Brattin, Bryan; Baxter, Catherine; Rivers, James W

    2011-08-01

    To examine regional variation in strontium (Sr), which at high concentrations may reduce eggshell quality, increase egg breakage and reproductive failure, we analyzed Sr, and calcium (Ca) concentrations and Sr/Ca ratios in eggshells from 20 avian species from California, Texas, Idaho, Kansas, and Michigan. In addition, we included data previously reported from Arizona to expand the regional comparisons and to better establish patterns of Sr, and Sr/Ca ratios in bird species across the United States. We found Sr concentrations varied significantly among regions, among species, and among foraging guilds; this variability is strongly influenced by the Sr/Ca ratios in surface water from locations close to the region where the eggshells were collected. Sr concentrations and Sr/Ca ratios were significantly higher in bird eggshells from the Volta wildlife region in the San Joaquin Valley, California and in various locales from Arizona. Sr concentrations and Sr/Ca ratios in bird eggshells from other locations in the USA were lower than those detected in these two regions. Among foraging guilds, invertivores had the highest Sr concentrations and Sr/Ca ratios and carnivores had the lowest. In general, the Sr/Ca ratio increased strongly with increasing Sr concentrations (R(2) = 0.99, P < 0.0001). There was a significant correlation (R(2) = 0.58, P < 0.0001) between Sr/Ca ratios in water and the average Sr/Ca ratios in eggshells suggesting that these values could be determined from Sr/Ca ratios in water. Eggshell thickness was poorly correlated with Sr (R(2) = 0.03) but had a significant and positive correlation with Ca and was more properly correlated by a quadratic equation (R(2) = 0.50, Thickness = 2.13 - 0.02Ca - 3.07 * 10(-5)Ca(2)). Our study provides further evidence that Sr accumulates significantly in the avian eggshell, in some regions at concentrations which could be of concern for potential negative effects on reproduction. We suggest that when assessing the effects

  9. Effect of Synthesis Temperature on Structure and Magnetic Properties of (La,Nd)0.7Sr0.3MnO3 Nanoparticles.

    PubMed

    Shlapa, Yulia; Solopan, Sergii; Bodnaruk, Andrii; Kulyk, Mykola; Kalita, Viktor; Tykhonenko-Polishchuk, Yulia; Tovstolytkin, Alexandr; Belous, Anatolii

    2017-12-01

    Two sets of Nd-doped La 0.7 Sr 0.3 MnO 3 nanoparticles were synthesized via sol-gel method with further heat treatment at 1073 and 1573 K, respectively. Crystallographic and magnetic properties of obtained nanoparticles were studied, and the effect of synthesis conditions on these properties was investigated. According to X-ray data, all particles crystallized in the distorted perovskite structure. Magnetic parameters, such as saturation magnetization, coercivity, Curie temperature, and specific loss power, which is released on the exposure of an ensemble of nanoparticles to AC magnetic field, were determined for both sets of samples. The correlation between the values of Curie temperature and maximal heating temperature under AC magnetic field was found. It was revealed that for the samples synthesized at 1573 K, the dependences of crystallographic and magnetic parameters on Nd content were monotonous, while for the samples synthesized at 1073 K, they were non-monotonous. It was concluded that Nd-doped La 0.7 Sr 0.3 MnO 3 nanoparticles are promising materials for self-controlled magnetic hyperthermia applications, but the researchers should be aware of the unusual behavior of the particles synthesized at relatively low temperatures.

  10. Revisiting Cu 63 NMR evidence for charge order in superconducting La 1.885 Sr 0.115 CuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imai, T.; Takahashi, S. K.; Arsenault, A.

    Here, the presence of charge and spin stripe order in the La 2CuO 4-based family of superconductors continues to lead to new insight on the unusual ground-state properties of high- T c cuprates. Soon after the discovery of charge stripe order at T charge≃65 K in Nd 3+ co-doped La 1.48Nd 0.4Sr 0.12CuO 4( Tc≃6 K), Hunt et al. demonstrated that La 1.48Nd 0.4Sr 0.12CuO 4 and superconducting La 2–xSr xCuO 4 with x~1/8( Tc≃30 K) share nearly identical NMR anomalies near Tcharge of the former. Their inevitable conclusion that La 1.885Sr 0.115CuO 4 also undergoes charge order at amore » comparable temperature became controversial, because diffraction measurements at the time were unable to detect Bragg peaks associated with charge order. Recent advances in x-ray diffraction techniques finally led to definitive confirmations of the charge order Bragg peaks in La 1.885Sr 0.115CuO 4 with an onset at as high as Tcharge≃80 K. Meanwhile, improved instrumental technology has enabled routine NMR measurements that were not feasible two decades ago. Motivated by these new developments, we revisit the charge order transition of a La 1.885Sr 0.115CuO 4 single crystal based on 63Cu NMR techniques. We demonstrate that 63Cu NMR properties of the nuclear spin I z=–1/2 to +1/2 central transition below Tcharge exhibit unprecedentedly strong dependence on the measurement time scale set by the separation time τ between the 90° and 180° radio-frequency pulses; a new kind of anomalous, very broad winglike 63Cu NMR signals gradually emerge below Tcharge only for extremely short τ≲4μs, while the spectral weight I Normal of the normal NMR signals is progressively wiped out. The NMR linewidth and relaxation rates depend strongly on τ below Tcharge, and their enhancement in the charge ordered state indicates that charge order turns on strong but inhomogeneous growth of Cu spin-spin correlations.« less

  11. Revisiting Cu 63 NMR evidence for charge order in superconducting La 1.885 Sr 0.115 CuO 4

    DOE PAGES

    Imai, T.; Takahashi, S. K.; Arsenault, A.; ...

    2017-12-26

    Here, the presence of charge and spin stripe order in the La 2CuO 4-based family of superconductors continues to lead to new insight on the unusual ground-state properties of high- T c cuprates. Soon after the discovery of charge stripe order at T charge≃65 K in Nd 3+ co-doped La 1.48Nd 0.4Sr 0.12CuO 4( Tc≃6 K), Hunt et al. demonstrated that La 1.48Nd 0.4Sr 0.12CuO 4 and superconducting La 2–xSr xCuO 4 with x~1/8( Tc≃30 K) share nearly identical NMR anomalies near Tcharge of the former. Their inevitable conclusion that La 1.885Sr 0.115CuO 4 also undergoes charge order at amore » comparable temperature became controversial, because diffraction measurements at the time were unable to detect Bragg peaks associated with charge order. Recent advances in x-ray diffraction techniques finally led to definitive confirmations of the charge order Bragg peaks in La 1.885Sr 0.115CuO 4 with an onset at as high as Tcharge≃80 K. Meanwhile, improved instrumental technology has enabled routine NMR measurements that were not feasible two decades ago. Motivated by these new developments, we revisit the charge order transition of a La 1.885Sr 0.115CuO 4 single crystal based on 63Cu NMR techniques. We demonstrate that 63Cu NMR properties of the nuclear spin I z=–1/2 to +1/2 central transition below Tcharge exhibit unprecedentedly strong dependence on the measurement time scale set by the separation time τ between the 90° and 180° radio-frequency pulses; a new kind of anomalous, very broad winglike 63Cu NMR signals gradually emerge below Tcharge only for extremely short τ≲4μs, while the spectral weight I Normal of the normal NMR signals is progressively wiped out. The NMR linewidth and relaxation rates depend strongly on τ below Tcharge, and their enhancement in the charge ordered state indicates that charge order turns on strong but inhomogeneous growth of Cu spin-spin correlations.« less

  12. Upper critical fields and two-band superconductivity in Sr 1-xEu x(Fe 0.89Co 0.11)₂As₂ (x=0.20 and 0.46)

    DOE PAGES

    Hu, Rongwei; Mun, Eun Deok; Altarawneh, M. M.; ...

    2012-02-13

    The upper critical fields H c2(T) of single crystals of Sr 1-xEu x(Fe₀.₈₉Co₀.₁₁)₂As₂ (x=0.20 and 0.46) were determined by radio-frequency penetration depth measurements in pulsed magnetic fields. H c2(T) approaches the Pauli limiting field but shows an upward curvature with an enhancement from the orbital limited field, as inferred from the Werthamer-Helfand-Hohenberg theory. We discuss the temperature dependence of the upper critical fields and the decreasing anisotropy using a two-band BCS model.

  13. Fluctuation conductivity in the superconducting compound Bi1.7Pb0.3Sr2Ca2Cu3Oy

    NASA Astrophysics Data System (ADS)

    Aliev, V. M.; Ragimov, J. A.; Selim-zade, R. I.; Damirova, S. Z.; Tairov, B. A.

    2017-12-01

    A study of how the partial substitution of Bi with Pb impacts the mechanism of excess conductivity in a Bi-Sr-Ca-Cu-O system. It is found that such a substitution leads to an increase in the critical temperature of the Bi1.7Pb0.3Sr2Ca2Cu3Oy(B2) sample, in comparison to Bi2Sr2CaCu2Ox (B1) [Tc (B2) = 100.09 K and Tc (B1) = 90.5 K, respectively]. At the same time, the resistivity ρ of the sample B2 in the normal phase decreases by almost 1.5 times in comparison to B1. The mechanism responsible for the generation of excess conductivity in cuprate HTSCs Bi2Sr2CaCu2Ox and Bi1.7Pb0.3Sr2Ca2Cu3Oy is examined using the local pair model with consideration of the Aslamazov-Larkin theory, near Tc. The temperature T0 of the transition from the 2D fluctuation region to the 3D (i.e., the temperature of the 2D-3D crossover), is also determined. The coherence length ξc(0) along the c axis of fluctuation Cooper pairs is calculated. It is shown that the partial substitution of Bi with Pb in the Bi-Sr-Ca-Cu-O system leads to a decrease in ξc(0) by a factor of 1.3 (4.205 and 3.254 Å, respectively), and that there is a narrowing of both the region of pseudogap existence and the region of superconducting fluctuations near Tc. The temperature dependence of the pseudogap Δ*(T) and the value Δ*(Tc) are determined, and the temperatures Tm, which correspond to the maximum of the pseudogap as a function of temperature in these materials, are estimated. The pseudogap maxima in samples B1 and B2 are found to be 61.06 and 38.18 meV, respectively.

  14. A magnetic topological semimetal Sr 1-yMn 1-zSb2 (y, z < 0.10)

    DOE PAGES

    Liu, J. Y.; Hu, J.; Zhang, Qiang; ...

    2017-07-24

    Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. Here in this paper, we report a new type of magnetic semimetal Sr 1-yMn 1-zSb 2 (y, z < 0.1) with nearly massless relativistic fermion behaviour (m* = 0.04 - 0.05m 0, where m 0 is the free-electron mass). This material exhibits a ferromagnetic order for 304 K < T < 565more » K, but a canted antiferromagnetic order with a ferromagnetic component for T < 304 K. The combination of relativistic fermion behaviour and ferromagnetism in Sr 1-yMn 1-zSb2 offers a rare opportunity to investigate the interplay between relativistic fermions and spontaneous TRS breaking.« less

  15. A magnetic topological semimetal Sr 1-yMn 1-zSb2 (y, z < 0.10)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J. Y.; Hu, J.; Zhang, Qiang

    Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. Here in this paper, we report a new type of magnetic semimetal Sr 1-yMn 1-zSb 2 (y, z < 0.1) with nearly massless relativistic fermion behaviour (m* = 0.04 - 0.05m 0, where m 0 is the free-electron mass). This material exhibits a ferromagnetic order for 304 K < T < 565more » K, but a canted antiferromagnetic order with a ferromagnetic component for T < 304 K. The combination of relativistic fermion behaviour and ferromagnetism in Sr 1-yMn 1-zSb2 offers a rare opportunity to investigate the interplay between relativistic fermions and spontaneous TRS breaking.« less

  16. Magneto-optical properties of BaTiO3/La0.76Sr0.24MnO3/BaTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Moog, M.; Singamaneni, S. R.; Prater, J. T.; Biegalski, M. D.; Tsui, F.

    2018-05-01

    The magnetic properties of epitaxial BaTiO3/La0.76Sr0.24MnO3/BaTiO3 (BTO/LSMO/BTO) heterostructures have been studied using magneto-optic Kerr effect (MOKE) technique. Both longitudinal and polar MOKE were probed as a function of magnetic field and temperature (in the range between 80 and 320 K) for epitaxial films of BTO/LSMO/BTO and LSMO grown on TiO2-terminated SrTiO3 (001) substrates by pulsed laser deposition technique. The LSMO film without the BTO layers exhibits nearly square field-dependent MOKE hysteresis loops with low saturation fields below a bulk-like Curie temperature (TC) of ˜ 350K. In contrast, the film with the BTO layers exhibits a significantly suppressed TC of 155 K, accompanied by significantly enhanced coercive fields and perpendicular magnetic anisotropy.

  17. In Situ Foaming of Porous (La 0.6 Sr 0.4 ) 0.98 (Co 0.2 Fe 0.8 ) O 3-δ (LSCF) Cathodes for Solid Oxide Fuel Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandavarapu, Sodith; Sabolsky, Edward; Sabolsky, Katarzyna

    2013-07-18

    A binder system containing polyurethane precursors was used to in situ foam (direct foam) a (La{sub 0.6}Sr{sub 0.4}){sub 0.98} (Co{sub 0.2} Fe{sub 0.8}) O{sub 3-{ delta}} (LSCF) composition for solid oxide fuel cell (SOFC) cathode applications. The relation between in situ foaming parameters on the final microstructure and electrochemical properties was characterized by microscopy and electrochemical impedance spectroscopy (EIS), respectively. The optimal porous cathode architecture was formed with a 70 vol% solids loading within a polymer precursor composition with a volume ratio of 8:4:1 (isocyanate: PEG: surfactant) in a terpineol-based ink vehicle. The resultant microstructure displayed a broad pore sizemore » distribution with highly elongated pore structure.« less

  18. Stress-induced surface magnetization of (La{sub 0.7}Sr{sub 0.3})MnO{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, C.; Lofland, S.E.; Bhagat, S.M.

    1997-09-01

    The role of stress on magnetic properties of epitaxial (La{sub 0.7}Sr{sub 0.3}) MnO{sub 3} (LSMO) films has been studied. The authors have investigated 1,100 {angstrom} thick LSMO films deposited on LaAlO{sub 3} (Sample L, under a compressive stress) and SrTiO{sub 3} (Sample S, under a tensile stress) using the magnetic force microscopy (MFM), DC hysteresis loop, ferromagnetic resonance (FMR) measurements. The magnetic force microscope image of Sample L shows a maze-like pattern indicating a sizable out-of-plane magnetization, while the magnetic image of Sample S shows a feather-like pattern indicative of an in-plane magnetization. The hysteresis loop and ferromagnetic resonance measurementsmore » give quantitative evidence for the role of the lattice mismatch between the film and the substrate in the magnetic anisotropy of the two films. The systematic examination of various thickness LSMO films on LaAlO{sub 3} reveals that the maze pattern is exhibited only between 500 {angstrom} and 1,700 {angstrom} thick films. Despite of larger anisotropy, no maze pattern is observed in films thinner than 360 {angstrom}.« less

  19. Electrical Characteristics and Preparation of (Ba0.5Sr0.5)TiO3 Films by Spray Pyrolysis and Rapid Thermal Annealing

    NASA Astrophysics Data System (ADS)

    Koo, Horng-Show; Chen, Mi; Ku, Hong-Kou; Kawai, Tomoji

    2007-04-01

    Functional films of (Ba0.5Sr0.5)TiO3 on Pt (1000 Å)/Ti (100 Å)/SiO2 (2000 Å)/Si substrates are prepared by spray pyrolysis and subsequently rapid thermal annealing. Barium nitrate, strontium nitrate and titanium isopropoxide are used as starting materials with ethylene glycol as solvent. For (Ba0.5Sr0.5)TiO3 functional thin film, thermal characteristics of the precursor powder scratched from as-sprayed films show a remarkable peak around 300-400 °C and 57.7% weight loss up to 1000 °C. The as-sprayed precursor film with coffee-like color and amorphous-like phase is transformed into the resultant film with white, crystalline perovskite phase and characteristic peaks (110) and (100). The resultant films show correspondent increases of dielectric constant, leakage current and dissipation factor with increasing annealing temperatures. The dielectric constant is 264 and tangent loss is 0.21 in the resultant films annealed at 750 °C for 5 min while leakage current density is 1.5× 10-6 A/cm2 in the film annealed at 550 °C for 5 min.

  20. Fabrication and thermoelectric properties of n-type (Sr0.9Gd0.1)TiO3 oxides

    NASA Astrophysics Data System (ADS)

    Li, Liangliang; Qin, Xiaoying; Liu, Yongfei; Xin, Hongxing; Zhang, Jian; Li, Di; Song, Chunjun; Guo, Guanglei; Dou, Yunchen; Zou, Tianhua

    2014-02-01

    The n-type oxides (Sr0.9Gd0.1)TiO3 (SGTO) have been successfully prepared via a sol-gel process followed by solid-state sintering. The effects of sintering temperature on the thermoelectric (TE) properties of the SGTO samples have been investigated. The Seebeck coefficient showed no obvious difference, while the electrical conductivity increased with increasing sintering temperature, benefiting from an enhancement of densification. The maximum power factor (PF) value, 20.5μW/K2cm at 370 K in the metallic region, was observed for the sample sintered at 1748 K. As a result, the peak figure of merit (ZT) values for the samples sintered at higher than 1673 K were in the range of 0.28-0.30. All the results indicate that such synthetic method provides a simple and effective way to prepare TE oxides.

  1. High-Temperature Thermoelectric Properties of Perovskite-Type Pr0.9Sr0.1Mn1- x Fe x O3 (0 ≤ x ≤ 1)

    NASA Astrophysics Data System (ADS)

    Nakatsugawa, H.; Saito, M.; Okamoto, Y.

    2017-05-01

    Polycrystalline samples of Pr0.9Sr0.1Mn1- x Fe x O3 (0 ≤ x ≤ 1) have been synthesized using a conventional solid-state reaction method, and the crystal structure studied at room temperature. The magnetic susceptibility was measured from 5 K to 350 K. The electrical resistivity, Seebeck coefficient, and thermal conductivity were investigated as functions of temperature below 850 K. For all samples, the perovskite structure at room temperature exhibited orthorhombic Pbnm phase. While the Pr0.9Sr0.1MnO3 ( x = 0) sample exhibited ferromagnetic-like ground state below T C = 145 K (Curie temperature), the ferromagnetic transition temperature T C decreased with increasing x. The Seebeck coefficient of the samples with 0 ≤ x ≤ 0.8 decreased with increasing temperature because of double-exchange interaction of Mn ions. In fact, the carrier type for x = 0 changed from hole-like to electron-like behavior above 800 K. On the other hand, the samples with x ≥ 0.9 showed large positive Seebeck coefficient over the entire temperature range, indicating that the low-spin state of Fe ions dominated the electronic structure for this x range. In particular, the sample with x = 1 exhibited p-type thermoelectric properties with relatively high Seebeck coefficient, moderate electrical resistivity, and low thermal conductivity. Thus, the sample with x = 1 showed power factor of 20 μW m-1 K-2 at 850 K leading to ZT of 0.024 at this temperature, indicating that hole-doped perovskite-type iron oxide is a good candidate high-temperature thermoelectric p-type oxide.

  2. Investigation of structural and electrochemical properties of LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) as potential cathode materials in intermediate-temperature solid oxide fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Junkai; Zhou, Jun, E-mail: zhoujun@mail.xjtu.edu.cn; Fan, Weiwei

    The structural and electrochemical properties of the layered perovskite oxides LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) were investigated to study the effects of substituting Sb for Co for application as cathode materials in intermediate temperature solid oxide fuel cells (IT-SOFCs). The results of crystal structure analyses show the maximum content of Sb in LaSrCo{sub 1−x}Sb{sub x}O{sub 4} to be 0.05 as a pure single phase. XPS shows that Co and Sb in LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} may possess mixed-oxidation states. The electrical conductivity increased greatly after Sb substitution. An improvement in the cathode polarization (R{sub p}) values is observed from themore » Sb-doped sample with respect to the undoped samples. For example, R{sub p} of LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} on LSGM was observed to be 0.16 Ω cm{sup 2} at 800 °C in air. The main rate-limiting step for LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} cathode is charge transfer of oxygen atoms. These results indicate that Sb can be incorporated into LaSrCo{sub 1−x}Sb{sub x}O{sub 4} based materials and can have a beneficial effect on the performance, making them potentially suitable for use as cathode materials in IT-SOFCs. - Graphical abstract: The oxygen partial pressure dependence of polarization resistances for a new layered perovskite cathode LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} at various temperatures was measured. - Highlights: • The maximum content of Sb was 0.05 mol in LaSrCo{sub 1−x}Sb{sub x}O{sub 4}. • The maximum electrical conductivity is 194 S cm{sup −1}for LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} at 800 °C. • A rate-limiting process of charge transfer presented.« less

  3. Protonic Conduction of BaCe0.85YO. 1503 Doped with SrTiO3

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2005-01-01

    Reformers based on ceramic membrane technology potentially offer hydrogen production that is comparable to the cost of fossil fuels. Protonic conducting ceramic with the chemical formula AB03 offers the promise of highly selective hydrogen separation at intermediate temperature (400-800 C). Among different perovskite-type oxides, BaCe03 and SrCe03 based compositions show high protonic conductivities but strong resistance to densification. X-ray diffraction studies on sintered specimens of BaCe0.85Y0.1503-6 show multi-phase formation which was found to show dependence upon powder synthesis method. Doping with SrTiO3 suppresses multi-phase formation and enhances grain growth. Conductivity measurements in temperature range of 200 to 1000 C were performed by ac impedance spectroscopy under dry and wet conditions. Sintering behavior, phase formation and conductivity results will be reported.

  4. Fabrication and Properties of Cr2O3 and La0.7Sr0.3MnO3 Thin Film Heterostructures Integrated on Si(001)

    NASA Astrophysics Data System (ADS)

    Punugupati, Sandhyarani

    Spintronics that utilizes both the spin and charge degrees of freedom of an electron is emerged as an alternate memory technology to conventional CMOS electronics. Many proposed spintronic devices require multifunctional properties in a single material. The oxides Cr2O3 and La0.7Sr0.3MnO3 are such materials which exhibit unique physical properties at room temperature. The Cr2O3 is an antiferromagnetic and magnetoelectric material below its Neel temperature 307K. The La0.7Sr0.3MnO3 is a ferromagnetic half metal with a Curie temperature of 360K and exhibits colossal magnetoresistance. However, the reach of this spintronic technology into more device applications is possible only when these materials in epitaxial thin film form are integrated with Si(001) which is the mainstay substrate in semiconductor industry. The primary objective of this dissertation was to integrate epitaxial Cr2O3, La0.7Sr0.3MnO3 and Cr2O3/La0.7Sr0.3MnO3 thin film heterostructure on Si(001) and, study their physical properties to investigate structure-processing-property relationship in these heterostructures. The epitaxial integration of Cr2O3 thin films on Si(001) was done using epitaxial cubic yttria stabilized zirconia (c-YSZ) buffer layer by pulsed laser deposition. Detailed structural characterizations XRD (2theta and phi) and TEM confirm the epitaxial nature of the films. Though bulk Cr2O3 is antiferromagnetic along the c-axis, the in-plane magnetization measurements on Cr2O3(0001) thin films showed ferromagnetic behavior up to 400K. The thickness dependent magnetization together with oxygen annealing results suggested that the in-plane ferromagnetism in Cr2O3 was due to the oxygen related defects whose concentration is controlled by strain in the films. The out-of-plane magnetic measurements on Cr2O3(0001) films showed magnetic behavior indicative of antiferromagnetic nature. To verify whether ferromagnetism can be induced by strain in Cr 2O3 thin films with orientation other than (0001

  5. Non-Debye domain-wall-induced dielectric response in Sr0.61-xCexBa0.39Nb2O6

    NASA Astrophysics Data System (ADS)

    Kleemann, W.; Dec, J.; Miga, S.; Woike, Th.; Pankrath, R.

    2002-06-01

    Two different non-Debye dielectric spectra are observed in a polydomain relaxor-ferroelectric Sr0.61-xBa0.39Nb2O6:Ce3+x single crystal in the vicinity of its transition temperature, Tc~320 K. At infralow frequencies the susceptibility varies as χ*~ω-β, β~0.2, and is attributed to an irreversible creep-like viscous motion of domain walls, while logarithmic dispersion due to reversible wall relaxation [T. Nattermann, Y. Shapir, and I. Vilfan, Phys. Rev. B 42, 8577 (1990)] occurs at larger ω.

  6. Structural and compositional characterization of synthetic (Ca,Sr)-tremolite and (Ca,Sr)-diopside solid solutions

    NASA Astrophysics Data System (ADS)

    Gottschalk, M.; Najorka, J.; Andrut, M.

    Tremolite (CaxSr1-x)2Mg5[Si8O22/(OH)2] and diopside (CaxSr1-x)Mg[Si2O6] solid solutions have been synthesized hydrothermally in equilibrium with a 1 molar (Ca,Sr)Cl2 aqueous solution at 750°C and 200 MPa. The solid run products have been investigated by optical, electron scanning and high resolution transmission electron microscopy, electron microprobe, X-ray-powder diffraction and Fourier-transform infrared spectroscopy. The synthesized (Ca,Sr)-tremolites are up to 2000 µm long and 30 µm wide, the (Ca,Sr)-diopsides are up to 150 µm long and 20 µm wide. In most runs the tremolites and diopsides are well ordered and chain multiplicity faults are rare. Nearly pure Sr-tremolite (tr0.02Sr-tr0.98) and Sr-diopside (di0.01Sr-di0.99) have been synthesized. A continuous solid solution series, i.e. complete substitution of Sr2+ for Ca2+ on M4-sites exists for (Ca,Sr)-tremolite. Total substitution of Sr2+ for Ca2+ on M2-sites can be assumed for (Ca,Sr)-diopsides. For (Ca,Sr)-tremolites the lattice parameters a, b and β are linear functions of composition and increase with Sr-content whereas c is constant. For the diopside series all 4 lattice parameters are a linear function of composition; a, b, c increase and β decreases with rising Sr-content. The unit cell volume for tremolite increases 3.47% from 906.68 Å3 for tremolite to 938.21 Å3 for Sr-tremolite. For diopside the unit cell volume increases 4.87 % from 439.91 Å3 for diopside to 461.30 Å3 for Sr-diopside. The observed splitting of the OH stretching band in tremolite is caused by different configurations of the next nearest neighbors (multi mode behavior). Resolved single bands can be attributed to the following configurations on the M4-sites: SrSr, SrCa, CaCa and CaMg. The peak positions of these 4 absorption bands are a linear function of composition. They are shifted to lower wavenumbers with increasing Sr-content. No absorption band due to the SrMg configuration on the M4-site is observed. This indicates

  7. 87Sr/86Sr ratios in basalts from islands in the Indian Ocean

    USGS Publications Warehouse

    Hedge, C.E.; Watkins, N.D.; Hildreth, R.A.; Doering, W.P.

    1973-01-01

    87Sr/86Sr ratios of basalts from islands in the Indian Ocean (0.7040) are higher than those of basalts dredged from the Mid-Indian Ocean Ridge (0.7034). The sources of the island basalts have apparently not been in equilibrium with the source of the ridge basalts for roughly 109 years. Both ridge and island basalts in the Indian Ocean are higher in 87Sr/86Sr than are rocks from similar settings in the eastern Pacific. ?? 1973.

  8. La0.8Sr0.2Co0.8Ni0.2O3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Zheng, Haoyu; Tian, Yunfeng; Zhang, Lingling; Chi, Bo; Pu, Jian; Jian, Li

    2018-04-01

    High-temperature H2O/CO2 co-electrolysis through reversible solid oxide electrolysis cell (SOEC) provides potentially a feasible and eco-friendly way to convert electrical energy into chemicals stored in syngas. In this work, La0.8Sr0.2Co0.8Ni0.2O3-δ (LSCN) impregnated Gd0.1Ce0.9O1.95 (GDC)-(La0.8Sr0.2)0.95MnO3-δ (LSM) composite oxygen electrode is studied as high-performance electrode for H2O/CO2 co-electrolysis. The LSCN impregnated cell exhibits competitive performance with the peak power density of 1057 mW cm-2 at 800 °C in solid oxide fuel cell (SOFC) mode; in co-electrolysis mode, the current density can reach 1.60 A cm-2 at 1.5 V at 800 °C with H2O/CO2 ratio of 2/1. With LSCN nanoparticles dispersed on the surface of GDC-LSM to maximize the reaction active sites, the LSCN impregnated cell shows significant enhanced electrochemical performance at both SOEC and SOFC modes. The influence of feed gas composition (H2O-H2-CO2) and operating voltages on the performance of co-electrolysis are discussed in detail. The cell shows a very stable performance without obvious degradation for more than 100 h. Post-test characterization is analyzed in detail by multiple measurements.

  9. The 87Sr/86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake system

    USGS Publications Warehouse

    Hart, W.S.; Quade, Jay; Madsen, D.B.; Kaufman, D.S.; Oviatt, Charles G.

    2004-01-01

    Lakes in the Bonneville basin have fluctuated dramatically in response to changes in rainfall, temperature, and drainage diversion during the Quaternary. We analyzed tufas and shells from shorelines of known ages in order to develop a relation between 87Sr/86Sr ratio of carbonates and lake level, which then can be used as a basis for constraining lake level from similar analyses on carbonates in cores. Carbonates from the late Quaternary shorelines yield the following average 87Sr/86Sr ratios: 0.71173 for the Stansbury shoreline (22-20 14C ka; 1350 m), 0.71153 for the Bonneville shoreline (15.5-14.5 14C ka; 1550 m), 0.71175 for the Provo shoreline (14.4-14.0 14C ka; 1450 m), 0.71244 for the Gilbert shoreline (???10.3-10.9 14C ka; 1300 m), and 0.71469 for the modern Great Salt Lake (1280 m). These analyses show that the 87Sr/86Sr ratio of lacustrine carbonates changes substantially at low- to mid-lake levels but is invariant at mid- to high-lake levels. Sr-isotope mixing models of Great Salt Lake and the Bonneville paleolake system were constructed to explain these variations in 87Sr/86Sr ratios with change in lake level. Our model of the Bonneville system produced a 87Sr/86Sr ratio of 0.71193, very close to the observed ratios from high-shoreline tufa and shell. The model verifies that the integration of the southern Sevier and Beaver rivers with the Bear and others rivers in the north is responsible for the lower 87Sr/86Sr ratios in Lake Bonneville compared to the modern Great Salt Lake. We also modeled the 87Sr/86Sr ratio of Lake Bonneville with the upper Bear River diverted into the Snake River basin and obtained an 87Sr/86Sr ratio of 0.71414. Coincidentally, this ratio is close to the observed ratio for Great Salt Lake of 0.71469. This means that 87Sr/86Sr ratios of >0.714 for carbonate can be produced by climatically induced low-lake conditions or by diversion of the upper Bear River out of the Bonneville basin. This model result also demonstrates that the

  10. Structural evolution of atomically precise thiolated bimetallic [Au(12+n)Cu₃₂(SR)(30+n)]⁴⁻ (n = 0, 2, 4, 6) nanoclusters.

    PubMed

    Yang, Huayan; Wang, Yu; Yan, Juanzhu; Chen, Xi; Zhang, Xin; Häkkinen, Hannu; Zheng, Nanfeng

    2014-05-21

    A series of all-thiol stabilized bimetallic Au-Cu nanoclusters, [Au(12+n)Cu32(SR)(30+n)](4-) (n = 0, 2, 4, 6 and SR = SPhCF3), are successfully synthesized and characterized by X-ray single-crystal analysis and density functional theory (DFT) calculations. Each cluster consists of a Keplerate two-shell Au12@Cu20 core protected by (6 - n) units of Cu2(SR)5 and n units of Cu2Au(SR)6 (n = 0, 2, 4, 6) motifs on its surface. The size and structural evolution of the clusters is atomically controlled by the Au precursors and countercations used in the syntheses. The clusters exhibit similar optical absorption properties that are not dependent on the number of surface Cu2Au(SR)6 units. Although DFT suggests an electronic structure with an 18-electron superatom shell closure, the clusters display different thermal stabilities. [Au(12+n)Cu32(SR)(30+n)](4-) clusters with n = 0 and 2 are more stable than those with n = 4 and 6. Moreover, an oxidation product of the clusters, [Au13Cu12(SR)20](4-), is structurally identified to gain insight into how the clusters are oxidized.

  11. Substrate effect on the magnetic microstructure of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films studied by magnetic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desfeux, R.; Bailleul, S.; Da Costa, A.

    2001-06-04

    Colossal magnetoresistive La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films have been grown under tensile strains on (100)-SrTiO{sub 3} substrates and compressive strains on (100)-LaAlO{sub 3} and (110)-NdGaO{sub 3} substrates by pulsed laser deposition. Using magnetic force microscopy (MFM), a {open_quotes}feather-like{close_quotes} magnetic pattern, characteristic of films with an in-plane magnetization, is observed for films deposited on both SrTiO{sub 3} and NdGaO{sub 3} while a {open_quotes}bubble{close_quotes} magnetic pattern, typical of films with an out-of-plane magnetization, is recorded for LaAlO{sub 3}. We show that the shape of the magnetic pattern imaged by MFM is fully correlated to the easy direction of the magnetization inmore » the film. {copyright} 2001 American Institute of Physics.« less

  12. Structural studies of zirconium doped Ba{sub 0.70}Sr{sub 0.30}TiO{sub 3} lead free ferroelectric thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sarita, E-mail: sss.sharmasarita@gmail.com; Ram, Mast; Thakur, Shilpa

    2016-05-06

    Ba{sub 0.7}Sr{sub 0.3}(Zr{sub x}Ti{sub 1-x})O{sub 3}(BSZT, x=0,0.05,0.10,0.15,0.20) thin films were prepared by using sol gel method. Structural and microstructural properties were studied by using XRD, Raman Spectroscopy and atomic force microscopy (AFM) respectively. XRD and Raman Spectroscopy show the presence of tetragonal phase in multilayer BSZT thin film. The experimental results demonstrate that structural and microstructural properties of BSZT thin film were significantly dependent on variation of Zr content.

  13. Collective Dynamics and Strong Pinning near the Onset of Charge Order in La1.48Nd0.4Sr0.12CuO4

    NASA Astrophysics Data System (ADS)

    Baity, P. G.; Sasagawa, T.; Popović, Dragana

    2018-04-01

    The dynamics of charge-ordered states is one of the key issues in underdoped cuprate high-temperature superconductors, but static short-range charge-order (CO) domains have been detected in almost all cuprates. We probe the dynamics across the CO (and structural) transition in La1.48Nd0.4Sr0.12CuO4 by measuring nonequilibrium charge transport, or resistance R as the system responds to a change in temperature and to an applied magnetic field. We find evidence for metastable states, collective behavior, and criticality. The collective dynamics in the critical regime indicates strong pinning by disorder. Surprisingly, nonequilibrium effects, such as avalanches in R , are revealed only when the critical region is approached from the charge-ordered phase. Our results on La1.48Nd0.4Sr0.12CuO4 provide the long-sought evidence for the fluctuating order across the CO transition, and also set important constraints on theories of dynamic stripes.

  14. The influence of Sr on the microstructure, degradation and stress corrosion cracking of the Mg alloys - ZK40xSr.

    PubMed

    Chen, Lianxi; Bin, Yuanhong; Zou, Wenqi; Wang, Xiaojian; Li, Wei

    2017-02-01

    In the present work, new magnesium (Mg) alloys (Mg-4Zn-0.6Zr-xSr, x=0, 0.4, 0.8, 1.2, 1.6wt%; ZK40xSr) were prepared and studied as potential biodegradable materials. The influence of strontium (Sr) addition on the properties of the new Mg alloys was investigated, which included microstructure, corrosion degradation, and the stress corrosion cracking (SCC) susceptibility. The average grain size of the ZK40Sr was approximately 100µm, which was significantly smaller than that of ZK40 alloy without Sr (402.3±40.2µm). The size of grain boundaries precipitates in the ZK40xSr alloys gradually increased with the increase of Sr content. The grain boundaries finally showed a continuously distribution and net-like shape. The degradation test showed that the average degradation rate of the ZK40xSr alloys increased with the increase of Sr addition. In the case of Mg-4Zn-0.6Zr, the degradation rate was 2.2mgcm -2 day -1 , which was lower than that of Mg-4Zn-0.6Zr-1.6Sr (4.93mgcm -2 day -1 ). When the ZK40xSr alloys were immersed in m-SBF, the rod-like Sr-contained hydroxyapatite (HA) substance was detected, which was known to enhance cell growth around bone implants. The fracture surfaces of the as-cast Mg-4Zn-0.6Zr-1.6Sr were shown intergranular stress corrosion cracking (IGSCC) patterns. The increase of SCC susceptibility of the higher Sr ZK40xSr alloys was attributed to the increase of micro-galvanic corrosion between the α-Mg and the grain boundaries precipitates. The SCC susceptibility values were ≈0.13 and ≈0.41 for the Mg-4Zn-0.6Zr-0.4Sr and the Mg-4Zn-0.6Zr-1.6Sr, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Crystal structure study of dielectric oxynitride perovskites La{sub 1−x}Sr{sub x}TiO{sub 2+x}N{sub 1−x} (x=0, 0.2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habu, Daiki; Masubuchi, Yuji; Torii, Shuki

    As is the case with SrTaO{sub 2}N, both cis-ordering of nitride anions and octahedral titling are also preferable in La{sub 1−x}Sr{sub x}TiO{sub 2+x}N{sub 1−x} (x=0, 0.2) oxynitride perovskites. A larger dielectric constant of ε{sub r}≈5.0×10{sup 3} was estimated for the pure oxynitride with x=0.2, compared with ε{sub r}≈750 for the product with x=0, by extrapolating the ε{sub r} values obtained from powders mixed with paraffin at various mixing ratios. The crystal structure of x=0.2 with larger tolerance factor than x=0 increased the octahedral tilting, which contributes to the increased dielectric constant. The increased dielectric constant supports the exchange mechanism formore » the dielectric property between two kinds of –Ti–N– helical coils (clockwise and anticlockwise) derived from the above cis-ordering of nitride anions. - Graphical abstract: Very large dielectric constant values were estimated for La{sub 1−x}Sr{sub x}TiO{sub 2+x}N{sub 1−x}; ε{sub r}≈5.0×10{sup 3} in x=0.2 and ε{sub r}≈750 in x=0. - Highlights: • Cis-configuration of nitride anions was confirmed in La{sub 1−x}Sr{sub x}TiO{sub 2+x}N{sub 1−x} (x=0, 0.2). • Dielectric constant values were estimated to be 750 for x=0 and 5.0×10{sup 3} for x=0.2, respectively. • The large dielectric property is to the exchange mechanism between clockwise and anticlockwise –Ti–N– coil motifs.« less

  16. Structural and electrochemical properties of La 0.8Sr 0.2Ga 1-xFe xO 3

    NASA Astrophysics Data System (ADS)

    Mori, Kazuhiro; Onodera, Yohei; Kiyanagi, Ryoji; Richardson, James W.; Itoh, Keiji; Sugiyama, Masaaki; Kamiyama, Takashi; Fukunaga, Toshiharu

    2009-02-01

    Mixed ionic-electronic conductor of Fe doped lanthanum gallate, La 0.8Sr 0.2Ga 1-xFe xO 3, has been studied by the dc four-probe method and the neutron powder diffraction. In the electrical conductivity measurement at RT, insulator-metal transition-like phenomenon was observed at around x˜0.35; this suggests an existence of the percolation limit for the electronic conductivity. Simultaneously, a bond length between O atoms, lO-O, in a MO 6 octahedron (M dbnd Ga 1-xFe x) drastically expands over x˜0.4, according to the result of crystal structure refinement based on the hexagonal phase. Such a drastic expansion in the lO-O would induce the decrease in the oxygen ionic conductivity.

  17. Glass-Like Through-Plane Thermal Conductivity Induced by Oxygen Vacancies in Nanoscale Epitaxial La 0.5Sr 0.5CoO 3– δ [Glass-Like Thermal Conductivity Induced by Oxygen Vacancies in Nanoscale Epitaxial La 0.5Sr 0.5CoO 3– δ

    DOE PAGES

    Wu, Xuewang; Walter, Jeff; Feng, Tianli; ...

    2017-11-02

    Here, ultrafast time-domain thermoreflectance (TDTR) is utilized to extract the through-plane thermal conductivity (Λ LSCO) of epitaxial La 0.5Sr 0.5CoO 3–δ (LSCO) of varying thickness (<20 nm) on LaAlO 3 and SrTiO 3 substrates. These LSCO films possess ordered oxygen vacancies as the primary means of lattice mismatch accommodation with the substrate, which induces compressive/tensile strain and thus controls the orientation of the oxygen vacancy ordering (OVO). TDTR results demonstrate that the room-temperature Λ LSCO of LSCO on both substrates (1.7 W m –1 K –1) are nearly a factor of four lower than that of bulk single-crystal LSCO (6.2more » W m –1 K –1). Remarkably, this approaches the lower limit of amorphous oxides (e.g., 1.3 W m –1 K –1 for glass), with no dependence on the OVO orientation. Through theoretical simulations, origins of the glass-like thermal conductivity of LSCO are revealed as a combined effect resulting from oxygen vacancies (the dominant factor), Sr substitution, size effects, and the weak electron/phonon coupling within the LSCO film. The absence of OVO dependence in the measured Λ LSCO is rationalized by two main effects: (1) the nearly isotropic phononic thermal conductivity resulting from the imperfect OVO planes when δ is small; (2) the missing electronic contribution to Λ LSCO along the through-plane direction for these ultrathin LSCO films on insulating substrates.« less

  18. Glass-Like Through-Plane Thermal Conductivity Induced by Oxygen Vacancies in Nanoscale Epitaxial La 0.5Sr 0.5CoO 3– δ [Glass-Like Thermal Conductivity Induced by Oxygen Vacancies in Nanoscale Epitaxial La 0.5Sr 0.5CoO 3– δ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xuewang; Walter, Jeff; Feng, Tianli

    Here, ultrafast time-domain thermoreflectance (TDTR) is utilized to extract the through-plane thermal conductivity (Λ LSCO) of epitaxial La 0.5Sr 0.5CoO 3–δ (LSCO) of varying thickness (<20 nm) on LaAlO 3 and SrTiO 3 substrates. These LSCO films possess ordered oxygen vacancies as the primary means of lattice mismatch accommodation with the substrate, which induces compressive/tensile strain and thus controls the orientation of the oxygen vacancy ordering (OVO). TDTR results demonstrate that the room-temperature Λ LSCO of LSCO on both substrates (1.7 W m –1 K –1) are nearly a factor of four lower than that of bulk single-crystal LSCO (6.2more » W m –1 K –1). Remarkably, this approaches the lower limit of amorphous oxides (e.g., 1.3 W m –1 K –1 for glass), with no dependence on the OVO orientation. Through theoretical simulations, origins of the glass-like thermal conductivity of LSCO are revealed as a combined effect resulting from oxygen vacancies (the dominant factor), Sr substitution, size effects, and the weak electron/phonon coupling within the LSCO film. The absence of OVO dependence in the measured Λ LSCO is rationalized by two main effects: (1) the nearly isotropic phononic thermal conductivity resulting from the imperfect OVO planes when δ is small; (2) the missing electronic contribution to Λ LSCO along the through-plane direction for these ultrathin LSCO films on insulating substrates.« less

  19. Characterization of (Ba(0.5)Sr(0.5)) TiO3 Thin Films for Ku-Band Phase Shifters

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; VanKeuls, Fredrick W.; Romanofsky, Robert R.; Miranda, Felix A.; Warner, Joseph D.; Canedy, Chadwick L.; Ramesh, Rammamoorthy

    1999-01-01

    The microstructural properties of (Ba(0.5)Sr(0.5)TiO3) (BSTO) thin films (300, 700, and 1400 nm thick) deposited on LaAlO3 (LAO) substrates were characterized using high-resolution x-ray diffractometry. Film crystallinity was the parameter that most directly influenced tunability, and we observed that a) the crystalline quality was highest in the thinnest film and progressively degraded with increasing film thickness; and b) strain at the film/substrate interface was completely relieved via dislocation formation. Paraelectric films such as BSTO offer an attractive means of incorporating low-cost phase shifter circuitry into beam-steerable reflectarray antennas.

  20. Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ as a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2 electrolyte of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Kongfa; He, Shuai; Li, Na; Cheng, Yi; Ai, Na; Chen, Minle; Rickard, William D. A.; Zhang, Teng; Jiang, San Ping

    2018-02-01

    La0.6Sr0.2Co0.2Fe0.8O3-δ (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and migration at the electrode/electrolyte interface is a critical issue limiting the electrocatalytic activity and stability of LSCF based cathodes. Herein, we report a Nb and Pd co-doped LSCF (La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ, LSCFNPd) perovskite as stable and active cathode on a barrier-layer-free anode-supported yttria-stabilized zirconia (YSZ) electrolyte cell using direct assembly method without pre-sintering at high temperatures. The cell exhibits a peak power density of 1.3 W cm-2 at 750 °C and excellent stability with no degradation during polarization at 500 mA cm-2 and 750 °C for 175 h. Microscopic and spectroscopic analysis show that the electrochemical polarization promotes the formation of electrode/electrolyte interface in operando and exsolution of Pd/PdO nanoparticles. The Nb doping in the B-site of LSCF significantly reduces the Sr surface segregation, enhancing the stability of the cathode, while the exsoluted Pd/PdO nanoparticles increases the electrocatalytic activity for the oxygen reduction reaction. The present study opens up a new route for the development of cobaltite-based perovskite cathodes with high activity and stability for barrier-layer-free YSZ electrolyte based IT-SOFCs.

  1. Beneficial effects of substituting trivalent ions in the B-site of La0.5Sr0.5Mn1-xAxO3 (A = Al, Ga, Sc) on the thermochemical generation of CO and H2 from CO2 and H2O.

    PubMed

    Dey, Sunita; Naidu, B S; Rao, C N R

    2016-02-14

    The effect of substitution of Al(3+), Ga(3+) and Sc(3+) ions in the Mn(3+) site of La0.5Sr0.5MnO3 on the thermochemical splitting of CO2 to generate CO has been studied in detail. Both La0.5Sr0.5Mn1-xGaxO3 and La0.5Sr0.5Mn1-xScxO3 give high yields of O2 and generate CO more efficiently than La0.5Sr0.5Mn1-xAlxO3 or the parent La0.5Sr0.5MnO3. Substitution of even 5% Sc(3+) (x = 0.05) results in a remarkable improvement in performance. Thus La0.5Sr0.5Mn0.95Sc0.05O3 produces 417 μmol g(-1) of O2 and 545 μmol g(-1) of CO, respectively, i.e. 2 and 1.7 times more O2 and CO than La0.5Sr0.5MnO3. This manganite also generates H2 satisfactorily by the thermochemical splitting of H2O.

  2. Positron annihilation study of Sr Doping in La(2-x)Sr(x)CuO4

    NASA Astrophysics Data System (ADS)

    Sterne, P. A.; Howell, R. H.; Fluss, M. J.; Kaiser, J. H.

    1993-04-01

    A combined experimental and threshold study of effects of Sr doping on electronic structure of La(2-x)Sr(x)CuO(4) was presented. Electron-positron momentum distributions were measured to high statistical precision (greater than 4 x 10(exp 8) counts) at room temperature for samples with Sr concentrations of x = 0.0, 0.1, 0.13, and 0.2. Analysis of all four spectra reveal strong features due to electron-positron wavefunction overlap, in quantitative agreement with theoretical calculations. The Sr doped samples show discontinuities consistent with presence of a Fermi surface. The form and position of these features are in general agreement with the predictions of band theory. Correspondence between theory and experiment, as well as some differences, are revealed by a detailed study of the changes in electron-position momentum density with increasing Sr doping.

  3. Physical and electrical properties of SrTiO3 and SrZrO3

    NASA Astrophysics Data System (ADS)

    Fashren Muhamad, Norhizatol; Aina Maulat Osman, Rozana; Sobri Idris, Mohd; Yasin, Mohd Najib Mohd

    2017-11-01

    Perovskite type oxide strontium titanate (SrTiO3) and strontium zirconate (SrZrO3) ceramic powder has been synthesized using conventional solid state reaction method. The powders were mixed and ground undergone calcinations at 1400°C for 12 h and sintered at 1550°C for 5h. X-ray Diffraction exposes physical properties SrTiO3 which exhibit cubic phase (space group: pm-3m) at room temperature meanwhile SrZrO3 has Orthorhombic phase (space group: pnma). The electrical properties such as dielectric constant (ɛr), dielectric loss (tan δ), and conductivity (σ) were studied in variation temperature and frequency. High dielectric constant of SrTiO3 and SrZrO3 were observed at 10 kHz for both samples about 240 and 21 respectively at room temperature. The dielectric loss of SrTiO3 and SrZrO3 is very low loss value approximately 0.00076 and 0.67512 indicates very good dielectric.

  4. Significantly enhanced ferroelectricity and magnetic properties in (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3}-modified BiFeO{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Juan; Liu, Xiao Qiang, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn; Chen, Xiang Ming, E-mail: xqliu@zju.edu.cn, E-mail: xmchen59@zju.edu.cn

    2015-05-07

    BiFeO{sub 3} multiferroic ceramics were modified by introducing (Sr{sub 0.5}Ca{sub 0.5})TiO{sub 3} to form solid solutions. The single phase structure was easy to be obtained in Bi{sub 1−x}(Sr{sub 0.5}Ca{sub 0.5}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} (x = 0.2, 0.25, 0.3, and 0.4) solid solutions. Rietveld refinement of X-ray diffraction data revealed a transition from rhombohedral R3c (x = 0.2, 0.25, and 0.3) to orthorhombic Pnma (x = 0.4). Current density-field (J-E) characteristics indicated that the leakage current density was reduced by three orders of magnitude in Bi{sub 1−x}(Sr{sub 0.5}Ca{sub 0.5}){sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} ceramics. Both the ferroelectricity and magnetic properties were significantly enhanced in the presentmore » solid solutions. P-E hysteresis loop measurements with dynamic leakage current compensation methods showed the significantly enhanced ferroelectric properties for x = 0.25 and 0.3 and the paraelectric behavior for x = 0.4. The best ferromagnetic characteristics were achieved in the composition of x = 0.25, where the saturated M-H loop was determined with M{sub r} = 34.8 emu/mol. The improvement of ferroelectricity was mainly due to the suppressed leakage current, and the enhanced magnetism originated from the partial substitution of Fe{sup 3+} by Ti{sup 4+}, which destroyed its previous spiral structure to allow the appearance of a macroscopic magnetization.« less

  5. Migration and rearing histories of chinook salmon (Oncorhynchus tshawytscha) determined by ion microprobe Sr isotope and Sr/Ca transects of otoliths

    USGS Publications Warehouse

    Bacon, C.R.; Weber, P.K.; Larsen, K.A.; Reisenbichler, R.; Fitzpatrick, J.A.; Wooden, J.L.

    2004-01-01

    Strontium isotope and Sr/Ca ratios measured in situ by ion microprobe along radial transects of otoliths of juvenile chinook salmon (Oncorhynchus tshawytscha) vary between watersheds with contrasting geology. Otoliths from ocean-type chinook from Skagit River estuary, Washington, had prehatch regions with 87Sr/86Sr ratios of ???0.709, suggesting a maternally inherited marine signature, extensive fresh water growth zones with 87Sr/86Sr ratios similar to those of the Skagit River at ???0.705, and marine-like 87Sr/86Sr ratios near their edges. Otoliths from stream-type chinook from central Idaho had prehatch 87Sr/86Sr ratios ???0.711, indicating that a maternal marine Sr isotopic signature is not preserved after the ???1000- to 1400-km migration from the Pacific Ocean. 87Sr/86Sr ratios in the outer portions of otoliths from these Idaho juveniles were similar to those of their respective streams (???0.708-0.722). For Skagit juveniles, fresh water growth was marked by small decreases in otolith Sr/Ca, with increases in Sr/Ca corresponding to increases in 87Sr/86Sr with migration into salt water. Otoliths of Idaho fish had Sr/Ca radial variation patterns that record seasonal fluctuation in ambient water Sr/Ca ratios. The ion microprobe's ability to measure both 87Sr/86Sr and Sr/Ca ratios of otoliths at high spatial resolution in situ provides a new tool for studies of fish rearing and migration. ?? 2004 NRC Canada.

  6. Field emission of silicon emitter arrays coated with sol-gel (Ba0.65Sr0.35)1-xLaxTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Lu, H.; Pan, J. S.; Chen, X. F.; Zhu, W. G.

    2007-07-01

    (Ba0.65Sr0.35)1-xLaxTiO3 (BSLT) thin films with different La concentrations have been deposited on Si field emitter arrays (FEAs) using sol-gel technology for field electron emission applications. The films exhibit the perovskite structure at low La substitution level (x ≤0.5) and the pyrochlore phase at high La concentration (x ≥0.75). The 30-nm-thick BSLT (x =0.25) thin film has higher crystallinity of perovskite structure in the surface region. An x-ray photoelectron spectroscopy study indicates that the oxygen vacancy concentration decreases with La substitution. With respect to the undoped Ba0.65Sr0.35TiO3 thin film, the Fermi level shifts down for the BSLT sample with x =0.1 ascribed to the decreasing oxygen vacancy concentration, and then shifts up for the BSLT sample with x =0.25 attributed to the increasing La substitution level. In highly doped films with an x value over 0.5, it shifts down again associated with the second pyrochlore phase formation. The best enhancement in field emission is found for the BSLT-coated (x =0.25) Si FEAs due to the improved perovskite structure in the surface region and up-moved Fermi level of the coating.

  7. Antisite-disorder, magnetic and thermoelectric properties of Mo-rich Sr2Fe1-yMo1+yO6 (0 ≤y≤ 0.2) double perovskites.

    PubMed

    Popuri, Srinivasa R; Redpath, Debbie; Chan, Gavin; Smith, Ronald I; Cespedes, Oscar; Bos, Jan-Willem G

    2015-06-21

    Structure analysis using X-ray and neutron powder diffraction and elemental mapping has been used to demonstrate that nominal A-site deficient Sr(2-x)FeMoO(6-δ) (0 ≤x≤ 0.5) compositions form as Mo-rich Sr(2)Fe(1-y)Mo(1+y)O(6) (0 ≤y≤ 0.2) perovskites at high temperatures and under reducing atmospheres. These materials show a gradual transition from the Fe and Mo rock salt ordered double perovskite structure to a B-site disordered arrangement. Analysis of the fractions of B-O-B' linkages revealed a gradual increase in the number of Mo-O-Mo linkages at the expense of the ferrimagnetic (FIM) Fe-O-Mo linkages that dominate the y = 0 material. All samples contain about 10-15% antiferromagnetic (AF) Fe-O-Fe linkages, independent of the degree of B-site ordering. The magnetic susceptibility of the y = 0.2 sample is characteristic of a small domain ferrimagnet (T(c)∼ 250 K), while room temperature neutron powder diffraction demonstrated the presence of G-type AF ordering linked to the Fe-O-Fe linkages (m(Fe) = 1.25(7)μ(B)). The high temperature thermoelectric properties are characteristic of a metal with a linear temperature dependence of the Seebeck coefficient, S (for all y) and electrical resistivity ρ (y≥ 0.1). The largest thermoelectric power factor S(2)/ρ = 0.12 mW m(-1) K(-1) is observed for Sr(2)FeMoO(6) at 1000 K.

  8. Study on the site preference of Ca in superconducting oxides Bi{sub 2}Sr{sub 2−x}Ca{sub x}CuO{sub 6+δ} (0.1 ≤ x ≤ 1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, B.Z.; Zhou, S.L.; Wang, H.

    2014-01-15

    A series of compound with the nominal composition of Bi{sub 2}Sr{sub 2−x}Ca{sub x}CuO{sub 6+δ} (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) were synthesized by the sol–gel method. Constituent phases and crystal structure of samples were analyzed by X-ray diffraction. It can be found that the Ca-doped Bi-2201 system was composed of Bi-2201 phase containing Ca and a small quantity of Bi{sub 16}(Sr,Ca){sub 14}O{sub 38}. For Bi-2201 unit cell containing Ca, chemical component and site preference of Ca atoms were characterized systematically by transmission electron microscopy. With the introduction of Ca atoms, Sr-sites have been occupiedmore » partially by Ca{sup 2+} in Bi-2201 unit cell, which leads to a decrease in the lattice parameters c and b of the Bi-2201 phase when the Ca-content x is below 0.6. Two types of new orthorhombic lattices are formed in the substitution. One is a lattice with space group Pma2 as the two nearest neighbor Sr-sites in the same Sr–O layer are occupied by Ca{sup 2+}. Its lattice parameters can be characterized as a = 5.402 Å, b = 5.313 Å and c = 24.272 Å, respectively. When two nearest Sr ions of the second neighboring Sr–O layers are replaced by Ca{sup 2+} ions, the lattice with the space group Pmn2{sub 1} can be formed. Its lattice parameters are close to that of the previous. The modulation vector is lying in the a*–c* plane in the two new orthorhombic lattices (Pma2 and Pmn2{sub 1}). Bi/Ca-2201 lattice (with Ca) and Bi-2201 lattice (without Ca) coexist in the same Bi{sub 2}Sr{sub 2−x}Ca{sub x}CuO{sub 6}+{sub δ} grain, which can be described as an intergrowth structure.« less

  9. The effect of A-site substitution on the structure and magnetism of Sr2-xPrxFeCoO6 (x = 0, 1, 2)

    NASA Astrophysics Data System (ADS)

    Haripriya, G. R.; Chakraborty, Debamitra; Pradheesh, R.; Sankaranarayanan, V.; Sethupathi, K.

    2018-05-01

    The paper presents the variation of structure and magnetism observed with the A-site composition of the double perovskite oxide Sr2-xPrxFeCoO6 (x = 0, 1, 2). The lattice symmetry was found to be lowered from tetragonal (x = 0) to orthorhombic (x = 2). With a ratio 1:1 of Sr and Pr, a highly asymmetric monoclinic structure is observed. The magnetic behavior of the middle member (x = 1) shows resemblance with that of Sr2FeCoO6, indicating the effect of Sr in the dilution of rare earth magnetism.

  10. Multifold polar states in Zn-doped Sr0.9Ba0.1TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Guo, Yan-Yan; Guo, Yun-Jun; Wei, Tong; Liu, Jun-Ming

    2015-12-01

    We investigate the effect of Zn doping on the dielectricity and ferroelectricity of a series of polycrystalline Sr0.9-xZnxBa0.1TiO3 (0.0% ≤ x ≤ 5.0%) ceramics. It is surprisingly observed that the Zn doping will produce the multifold polar states, i.e., the Zn-doped ceramic will convert a reduced polar state into an enhanced polar state, and eventually into a stabilized polar state with increasing the doping level x. It is revealed that in the background of quantum fluctuations, the competition between the Zn-doping-induced lattice contraction and the Ba-doping-induced lattice expansion is responsible for both the reduced polar state and the enhanced polar state coming into being. Also, the addition of the antiferrodistortive effect, which is the antipolar interaction originating from the opposite tilted-TiO6 octahedra rotation, represents the core physics behind the stabilized polar state. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304158, 51431006, 51102277, and 11104118), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY213020), and the Qing Lan Project of Jiangsu Province, China.

  11. Oxygen vacancies induced switchable and nonswitchable photovoltaic effects in Ag/Bi{sub 0.9}La{sub 0.1}FeO{sub 3} /La{sub 0.7}Sr{sub 0.3}MnO{sub 3} sandwiched capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, R. L., E-mail: gaorongli2008@163.com, E-mail: jrsun@iphy.ac.cn; Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing 100190; Yang, H. W.

    2014-01-20

    The short circuit photocurrent (I{sub sc}) was found to be strongly dependent on the oxygen vacancies (V{sub Os}) distribution in Ag/Bi{sub 0.9}La{sub 0.1}FeO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} heterostructures. In order to manipulate the V{sub Os} accumulated at either the Ag/Bi{sub 0.9}La{sub 0.1}FeO{sub 3} or the Bi{sub 0.9}La{sub 0.1}FeO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} interface by pulse voltages, switchable or nonswitchable photocurrent can be observed without or with changing the polarization direction. The sign of photocurrent could be independent of the direction of polarization when the variation of diffusion current and the modulation of the Schottky barrier at the Ag/Bi{sub 0.9}La{sub 0.1}FeO{submore » 3} interface induced by oxygen vacancies are large enough to offset those induced by polarization. Our work provides deep insights into the nature of photovoltaic effects in ferroelectric films, and will facilitate the advanced design of switchable devices combining spintronic, electronic, and optical functionalities.« less

  12. Manipulation of polar order in the “empty” tetragonal tungsten bronzes: Ba{sub 4-x}Sr{sub x}Dy{sub 0.67}□{sub 1.33}Nb{sub 10}O{sub 30}, x = 0, 0.25, 0.5, 1, 2, 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Jonathan; Morrison, Finlay D., E-mail: finlay.morrison@st-andrews.ac.uk

    2016-08-15

    A series of “empty” tetragonal tungsten bronze (TTB) ferroelectrics, Ba{sub 4-x}Sr{sub x}Dy{sub 0.67}□{sub 1.33}Nb{sub 10}O{sub 30} (x = 0, 0.25, 0.5, 1, 2, 3; □ = vacancy), is reported. With increasing x the unit cell contracts in both the ab plane and c-axis; x ≤ 1 compounds are normal ferroelectrics (FE) with decreasing T{sub C} as x increases, while x ≥ 2 are relaxor ferroelectrics (RFE) with associated frequency dependent permittivity peaks and with similar T{sub m} and T{sub f} (Vogel-Fulcher freezing temperatures) values. This observation is rationalised by differing cation occupancies: for x ≤ 1, Sr{sup 2+} principally occupies the A2-site (co-occupied by Ba{sup 2+} with the A1-site occupiedmore » by Dy{sup 3+} and vacancies); for x ≥ 2 significant Sr A1-site occupation leads to the observed RFE characteristics. This FE to RFE crossover is consistent with a previously proposed TTB crystal chemical framework where both a decrease in average A-site size and concurrent increase in A1-site tolerance factor (t{sub A1}) favour destabilization of long range polar order and relaxor behaviour. The effect of increasing t{sub A1} as a result of Sr occupancy at the A1 site is dominant in the compounds reported here.« less

  13. Crystal orientation, crystallinity, and thermoelectric properties of Bi0.9Sr0.1CuSeO epitaxial films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ishizawa, Mamoru; Fujishiro, Hiroyuki; Naito, Tomoyuki; Ito, Akihiko; Goto, Takashi

    2018-02-01

    We have grown Bi0.9Sr0.1CuSeO epitaxial thin films on MgO and SrTiO3 (STO) single-crystal substrates by pulsed laser deposition (PLD) under various growth conditions, and investigated the crystal orientation, crystallinity, chemical composition, and thermoelectric properties of the films. The optimization of the growth conditions was realized in the film grown on MgO at the temperature T s = 573 K and Ar pressure P Ar = 0.01 Torr in this study, in which there was no misalignment apart from the c-axis and no impurity phase. It was clearly found that the higher crystal orientation of the epitaxial film grown at a higher temperature under a lower Ar pressure mainly enhanced the thermoelectric power factor P (= S 2/ρ), where S is the Seebeck coefficient and ρ is the electrical resistivity. However, the thermoelectric properties of the films were lower than those of polycrystalline bulk because of lattice distortion from lattice mismatch, a low crystallinity caused by a lower T s, and Bi and Cu deficiencies in the films.

  14. Preparation and characterization of Ba0.2Sr0.2La0.6MnO3 nanoparticles and investigation of size & shape effect on microwave absorption

    NASA Astrophysics Data System (ADS)

    Peymanfar, Reza; Javanshir, Shahrzad

    2017-06-01

    In this paper, the design and characterization of a radar absorbing material (RAM) was investigated at microwave frequency. Ba0.2Sr0.2La0.6MnO3 magnetic nanoparticles was synthesized thru a facile hydrothermal method in the presence of polymethyl methacrylate (PMMA) and the possibility of shape and size-controlled synthesis of nanoparticles (NPs) over the range 15-50 Nm was also explored. Afterward, the effect of shape and size of the synthesized Ba0.2Sr0.2La0.6MnO3 NPs on microwave absorption properties was investigated in KU-band. The crystal structures and morphology of as-synthesized nanoparticles were characterized and confirmed by FESEM, XRD, VSM, FTIR analysis. The RAM samples were prepared by dispersion of magnetic NPs in silicone rubber in an ultrasonic bath. The maximum reflection loss (RL) values NPs were 12.04 dB at 14.82 GHz and a broad absorption band (over 1.22 GHz) with RL values <-10 dB are obtained and the maximum reflection loss (RL) values of decrease and shaped NPs were 22.36 dB at 14.78 GHz and a broad absorption band (over 2.67 GHz) with RL values <-10 dB are obtained. The results indicated that the particle size and shape play a major role on the absorption properties of the composites in the 12.4-18 GHz frequency range. It is observed that microwave absorption properties increased with the decrease in average particle size of NPs.

  15. Energy storage properties of Dy3+ doped Sr0.5Ba0.5Nb2O6 thick film with nano-size grains

    NASA Astrophysics Data System (ADS)

    Yang, Daeyeol; Kang, Soo-Bin; Lim, Ji-Ho; Yoon, Songhyeon; Ryu, Jungho; Choi, Jong-Jin; Velayutham, Thamil Selvi; Kim, Hyungsun; Jeong, Dae-Yong

    2017-09-01

    We studied the temperature stable high-energy storage capacitors. Sr0.5Ba0.5Nb2O6 (SBN) is the lead-free ferroelectric solid solution between BaNb2O6 and SrNb2O6. By doping Dy into SBN, the Curie temperature was lowered and dielectric constant was increased. To improve the breakdown behavior of Dy-doped SBN, the aerosoldeposition(AD) was applied to fabricate the dense films with nano-sized grains. These nano-grain give a large number of grain boundaries, suppressing the electron conduction in ceramics. The dielectric constant and breakdown electric field of the AD films annealed at 650 °C were measured as 2307 and 9.9 MV/m, while bulk were 1080 and 4 MV/m. Energy density and efficiency of the AD films annealed at 650 °C were also enhanced as 0.65 J/cc and 90.2% and bulk were 0.08 J/cc and 72.1%, respectively. In addition, the dielectric constant of AD film annealed at 550 °C and 650 °C were quite stable up to 150 °C.

  16. Structural and magnetic study of La0.7Sr0.3MnO3 nanoparticles and AC magnetic heating characteristics for hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Manh, D. H.; Phong, P. T.; Nam, P. H.; Tung, D. K.; Phuc, N. X.; Lee, In-Ja

    We investigated structural and magnetic properties and alternating current magnetic heating characteristics of La0.7Sr0.3MnO3 nanoparticles with respect to the possible application for magnetic hyperthermia treatments. Using Rietveld Profile refinement of powder X-ray diffraction data, the hexagonal structure has been observed. The particle sizes varied from 20 to 50 nm as the annealing temperature increases from 700 to 900 °C. The hysteresis loop is not observed and the good fit of Langevin function with magnetization data reveals the superparamagnetic nature at room temperature for all samples. Characteristic magnetic parameters of the particles including saturation magnetization in the temperature range 10-300 K, an effective anisotropy constant and a magnetocrystalline anisotropy constant have been determined. The Specific Absorption Rate for 15 mg/mL sample concentration was measured in alternating magnetic fields of 50-80 Oe at a fixed frequency of 236 kHz. In addition, the intrinsic loss power (ILP) has been calculated from SAR values. It is believed that La0.7Sr0.3MnO3 nanoparticles with a high ILP will be useful for the in situ hyperthermia treatment of cancer.

  17. Interdiffusion effect on strained La0.8Ba0.2MnO3 thin films by off-axis sputtering on SrTiO3 (100) substrates

    NASA Astrophysics Data System (ADS)

    Chou, Hsiung; Hsu, S. G.; Lin, C. B.; Wu, C. B.

    2007-02-01

    Strained La0.8Ba0.2MnO3 thin films on SrTiO3 (100) substrate are grown by an off-axis sputtering technique. It is found that the ferromagnetic temperature TC increases for thinner films. Secondary ion mass spectroscopy indicates that Sr diffuses partially into the film, making it structurally nonuniform. The region close to the film/substrate interface acts as La1-x(SryBa1-y)xMnO3 with a near negligible y for the as grown film and a non-negligible amount of y for the high-temperature postannealed film. The enhancement of TC is attributed to the combination of the strain and interdiffusion effects.

  18. Nanocrystallized SrHA/SrHA SrTiO3/SrTiO3 TiO2 multilayer coatings formed by micro-arc oxidation for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Han, Y.; Chen, D. H.; Zhang, L.

    2008-08-01

    Novel photocatalytic coatings containing strontium hydroxyapatite (SrHA), strontium titanate (SrTiO3), and TiO2 were formed by micro-arc oxidation (MAO) in an aqueous electrolyte containing strontium acetate and β-glycerophosphate disodium at 530 V for 0.1-5 min. The structure evolution of the coatings was investigated as a function of processing time, and the photocatalytic activity of the coatings was evaluated by measuring the decomposition rate of methyl orange under ultraviolet irradiation. During the MAO processing of the coatings, it was observed that some granules appeared in the electrolyte adjacent to the anode and they increased in amount as the processing time was prolonged. The obtained results show that the granules are amorphous and poorly crystallized SrHA with negative charges. The coating prepared for 5 min presents a microporous structure of SrHA/SrHA-SrTiO3/SrTiO3-TiO2 multilayers, in which the SrHA outermost layer and the SrHA-SrTiO3 intermediate layer are nanocrystallized. It is suggested that formation of the granules, electro-migration of the granules onto the pre-formed layer, and crystallization of the adhered granules are possible mechanisms for the formation of a SrHA/SrHA-SrTiO3/SrTiO3-TiO2 multilayer coating. This coating shows much higher photocatalytic decomposition efficiency relative to the MAO-formed TiO2 coating, and is expected to have an important photocatalytic application.

  19. Realization of single terminated surface of perovskite oxide single crystals and their band profile: (LaAlO3)0.3(Sr2AlTaO6)0.7, SrTiO3 and KTaO3 case study

    NASA Astrophysics Data System (ADS)

    Tomar, Ruchi; Wadehra, Neha; Budhiraja, Vaishali; Prakash, Bhanu; Chakraverty, S.

    2018-01-01

    To characterize the physical properties of thin films without ambiguity and design interface with new functionalities, it is essential to have detailed knowledge of physical properties and appropriate estimation of the band profile of perovskite oxide substrates. We have developed and demonstrated a chemical free unified framework to realize single terminated surface of KTaO3, (LaAlO3)0.3 (Sr2AlTaO6)0.7 and SrTiO3 (001) oriented single crystals. The electronic band line-up of these single crystal substrates, using a combination of optical spectroscopy and Kelvin Probe Force Microscopy, has been constructed. A polar-polar interface of KTaO3 and LaBO3 (B-Transition metal ion) before and after the possible surface/electronic reconstruction has also been schematically presented.

  20. Using 87Sr/86Sr ratios to investigate changes in stream chemistry during snowmelt in the Provo River, Utah, USA

    NASA Astrophysics Data System (ADS)

    Hale, C. A.; Carling, G. T.; Fernandez, D. P.; Nelson, S.; Aanderud, Z.; Tingey, D. G.; Dastrup, D.

    2017-12-01

    Water chemistry in mountain streams is variable during spring snowmelt as shallow groundwater flow paths are activated in the watershed, introducing solutes derived from soil water. Sr isotopes and other tracers can be used to differentiate waters that have interacted with soils and dust (shallow groundwater) and bedrock (deep groundwater). To investigate processes controlling water chemistry during snowmelt, we analyzed 87Sr/86Sr ratios, Sr and other trace element concentrations in bulk snowpack, dust, soil, soil water, ephemeral channels, and river water during snowmelt runoff in the upper Provo River watershed in northern Utah, USA, over four years (2014-2017). Strontium concentrations in the river averaged 20 ppb during base flow and decreased to 10 ppb during snowmelt runoff. 87Sr/86Sr ratios were around 0.717 during base flow and decreased to 0.715 in 2014 and 0.713 in 2015 and 2016 during snowmelt, trending towards less radiogenic values of mineral dust inputs in the Uinta Mountain soils. Ephemeral channels, representing shallow flow paths with soil water inputs, had Sr concentrations between 7-20 ppb and 87Sr/86Sr ratios between 0.713-0.716. Snowpack Sr concentrations were generally <2 ppb with 87Sr/86Sr ratios between 0.710-711, similar to atmospheric dust inputs. The less radiogenic 87Sr/86Sr ratios and lower Sr concentrations in the river during snowmelt are likely a result of activating shallow groundwater flow paths, which allows melt water to interact with shallow soils that contain accumulated dust deposits with a less radiogenic 87Sr/86Sr ratio. These results suggest that flow paths and atmospheric dust are important to consider when investigating variable solute loads in mountain streams.

  1. Reconstruction of travel history using coupled δ18 O and 87 Sr/86 Sr measurements of hair.

    PubMed

    Chau, Thuan H; Tipple, Brett J; Hu, Lihai; Fernandez, Diego P; Cerling, Thure E; Ehleringer, James R; Chesson, Lesley A

    2017-03-30

    Oxygen isotope ratios (δ 18 O values) of hair largely reflect features of regional hydrology while strontium isotope ratios ( 87 Sr/ 86 Sr) are thought to reflect bedrock geology; combination of both isotope signatures may provide greater capacity for determining provenance and reconstructing travel history of an organism. To test this hypothesis, we compared the O-Sr isotope profiles of hair from domestic horses with known residency histories. Tail hairs were collected from a pair of horses pastured together for a period of 16 months, one of which lived in a different location for the 8 months prior. Hair samples were washed with solvents to remove external contaminants prior to sequential sampling for δ 18 O and 87 Sr/ 86 Sr analysis via TC/EA-IRMS and MC-ICP-MS, respectively. Hair digests were concentrated and analyzed employing low-flow natural aspiration to measure 87 Sr/ 86 Sr. Tail hair from the control and transported horses had mean δ 18 O values of 11.25 ± 1.62 ‰ and 10.96 ± 1.53 ‰, and mean 87 Sr/ 86 Sr of 0.7101 ± 0.0006 and 0.7109 ± 0.0020, respectively. The δ 18 O and 87 Sr/ 86 Sr profiles for the control and transported horses were indistinguishable when they were pastured together. The 87 Sr/ 86 Sr profiles were significantly different during the period that the horses were living apart, while the δ 18 O values were indistinguishable during that period. By comparing the O-Sr isotope profiles of a control and transported horse, we investigated isotopic signal(s) potentially useful for reconstructing travel histories via high-resolution sequential sampling along single strands of tail hair. Improved analytical capabilities allowed for extremely low Sr abundance samples to be analyzed for 87 Sr/ 86 Sr and proved capable of resolving a horse's movement between distinct regions. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Modification of energy band alignment and electric properties of Pt/Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}/Pt thin-film ferroelectric varactors by Ag impurities at interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, S.; Komissinskiy, P., E-mail: komissinskiy@oxide.tu-darmstadt.de; Flege, S.

    2014-06-28

    We report on the effects of Ag impurities at interfaces of parallel-plate Pt/Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}/Pt thin film ferroelectric varactors. Ag impurities occur at the interfaces due to diffusion of Ag from colloidal silver paint used to attach the varactor samples with their back side to the plate heated at 600–750 °C during deposition of Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}. X-ray photoelectron spectroscopy and secondary ion mass spectrometry suggest that amount and distribution of Ag adsorbed at the interfaces depend strongly on the adsorbent surface layer. In particular, Ag preferentially accumulates on top of the Pt bottom electrode. The presence of Agmore » significantly reduces the barrier height between Pt and Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} leading to an increased leakage current density and, thus, to a severe degradation of the varactor performance.« less

  3. Induced Ti magnetization at La 0.7Sr 0.3MnO 3 and BaTiO 3 interfaces

    DOE PAGES

    Liu, Yaohua; Tornos, J.; te Velthuis, S. G. E.; ...

    2016-04-01

    In artificial multiferroics hybrids consisting of ferromagnetic La 0.7Sr 0.3MnO 3 (LSMO) and ferroelectric BaTiO 3 epitaxial layers, net Ti moments are found from polarized resonant soft x-ray reflectivity and absorption. The Ti dichroic reflectivity follows the Mn signal during the magnetization reversal, indicating exchange coupling between the Ti and Mn ions. However, the Ti dichroic reflectivity shows stronger temperature dependence than the Mn dichroic signal. Lastly, besides a reduced ferromagnetic exchange coupling in the interfacial LSMO layer, this may also be attributed to a weak Ti-Mn exchange coupling that is insufficient to overcome the thermal energy at elevated temperatures.

  4. Strong anisotropy of electric field effects on uniaxial relaxor ferroelectric Sr0.75Ba0.25Nb2O6 crystals proved by acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, E.; Kojima, S.; Roth, M.

    2018-01-01

    [001] oriented Sr0.75Ba0.25Nb2O6 uniaxial relaxor ferroelectric crystals have been studied by acoustic emission in the temperature range of 20÷200 °C and under an external electric field up to 1 kV/cm. Under the application of an electric field the temperature of a dielectric maximum exhibits a nontrivial behavior: it remains constant at first, secondly steep decreases down to some threshold field, and thirdly starts to increase as a field enhances, whereas the same temperature of a dielectric maximum under a bias electric field to [100] oriented Sr0.75Ba0.25Nb2O6 crystals exhibits a smoothed minimum before the start to increase as a field enhances (E. Dul'kin et al., J. Appl. Phys. 110, 044106 (2011)). Such a difference of electric field effects in c- and a-cut crystals is discussed from the viewpoint of random-bond-random-field model of relaxor ferroelectrics. By the comparison between experimental and theoretical data, a dipole moment of the PNR was estimated to be 0.1 (C cm).

  5. Revisiting 63Cu NMR evidence for charge order in superconducting La1.885Sr0.115CuO4

    NASA Astrophysics Data System (ADS)

    Imai, T.; Takahashi, S. K.; Arsenault, A.; Acton, A. W.; Lee, D.; He, W.; Lee, Y. S.; Fujita, M.

    2017-12-01

    The presence of charge and spin stripe order in the La2CuO4 -based family of superconductors continues to lead to new insight on the unusual ground-state properties of high-Tc cuprates. Soon after the discovery of charge stripe order at Tcharge≃65 K in Nd3 + co-doped La1.48Nd0.4Sr0.12CuO4 (Tc≃6 K) [Tranquada et al., Nature (London) 375, 561 (1995), 10.1038/375561a0], Hunt et al. demonstrated that La1.48Nd0.4Sr0.12CuO4 and superconducting La2 -xSrxCuO4 with x ˜1 /8 (Tc≃30 K) share nearly identical NMR anomalies near Tcharge of the former [Phys. Rev. Lett. 82, 4300 (1999), 10.1103/PhysRevLett.82.4300]. Their inevitable conclusion that La1.885Sr0.115CuO4 also undergoes charge order at a comparable temperature became controversial, because diffraction measurements at the time were unable to detect Bragg peaks associated with charge order. Recent advances in x-ray diffraction techniques finally led to definitive confirmations of the charge order Bragg peaks in La1.885Sr0.115CuO4 with an onset at as high as Tcharge≃80 K. Meanwhile, improved instrumental technology has enabled routine NMR measurements that were not feasible two decades ago. Motivated by these new developments, we revisit the charge order transition of a La1.885Sr0.115CuO4 single crystal based on 63Cu NMR techniques. We demonstrate that 63Cu NMR properties of the nuclear spin Iz=-1/2 to +1/2 central transition below Tcharge exhibit unprecedentedly strong dependence on the measurement time scale set by the separation time τ between the 90∘ and 180∘ radio-frequency pulses; a new kind of anomalous, very broad winglike 63Cu NMR signals gradually emerge below Tcharge only for extremely short τ ≲4 μ s , while the spectral weight INormal of the normal NMR signals is progressively wiped out. The NMR linewidth and relaxation rates depend strongly on τ below Tcharge, and their enhancement in the charge ordered state indicates that charge order turns on strong but inhomogeneous growth of Cu spin

  6. Effect of gadolinium dopant on structural, magneto-transport, magnetic and thermo-power of Pr0.8Sr0.2MnO3

    NASA Astrophysics Data System (ADS)

    Poojary, Thrapthi; Babu, P. D.; Sanil, Tejaswini; Daivajna, Mamatha D.

    2018-07-01

    In the present investigation structural, magneto-transport, magnetic and thermo-power measurements of Gadolinium (Gd) doped Pr0.8-xGdxSr0.2MnO3 (0, 0.2, 0.25 and 0.3) manganites have been done. All the samples are single phased with orthorhombic structure. Temperature variation of resistance exhibits a high temperature transition occurring at 156 K and a low temperature cusp at around 95 K for pristine sample. With Gd doping resistance behavior shows insulating behavior throughout the whole temperature range. Magneto-Resistance (MR%) increases with Gd doping. A huge increase in thermo-electric power is observed with Gd doping.

  7. A Mössbauer spectral study of degradation in La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x after long-term operation in solid oxide electrolysis cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmoud, Abdelfattah; Daroukh, Mahmoud Al; Lipinska-Chwalek, Marta

    Here, degradation processes of oxygen electrodes in solid oxide electrolysis cells (SOECs) were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Mössbauer spectroscopy. La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x (LSCF) anodes (oxygen electrode) were analyzed after different long-term operations durations of 1774, 6100 and 9000 h. The results were compared with a cell in the initial state. Besides the LSCF anode, the SOECs were composed of a Ce 0.8Gd 0.2O 1.9 barrier layer between the anode and electrolyte, yttria-stabilized zirconia (YSZ) as electrolyte and Ni-YSZ as cathode (hydrogen electrode). Mössbauer spectra of the iron-containingmore » anode were acquired in order to determine the alteration of the iron oxidation state and its local environment during operation. Mössbauer spectroscopy yields indirect information about the degradation mechanism, especially in combination with SEM, TEM, and XRD. XRD and TEM revealed the appearance of Co 3O 4 during the SOEC operation and SEM analyses confirmed the formation of SrZrO 3 at the electrode/electrolyte interface. The spectral analysis confirmed the reduction of iron from Fe(IV) to Fe(III) in LSCF after long-term operation. The fraction of Fe(IV) in the electrode decreased with time and 18, 15, 13 and 11% were obtained for 0, 1774, 6100, and 9000 h of operation, respectively.« less

  8. A Mössbauer spectral study of degradation in La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x after long-term operation in solid oxide electrolysis cells

    DOE PAGES

    Mahmoud, Abdelfattah; Daroukh, Mahmoud Al; Lipinska-Chwalek, Marta; ...

    2017-10-21

    Here, degradation processes of oxygen electrodes in solid oxide electrolysis cells (SOECs) were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Mössbauer spectroscopy. La 0.58Sr 0.4Fe 0.5Co 0.5O 3–x (LSCF) anodes (oxygen electrode) were analyzed after different long-term operations durations of 1774, 6100 and 9000 h. The results were compared with a cell in the initial state. Besides the LSCF anode, the SOECs were composed of a Ce 0.8Gd 0.2O 1.9 barrier layer between the anode and electrolyte, yttria-stabilized zirconia (YSZ) as electrolyte and Ni-YSZ as cathode (hydrogen electrode). Mössbauer spectra of the iron-containingmore » anode were acquired in order to determine the alteration of the iron oxidation state and its local environment during operation. Mössbauer spectroscopy yields indirect information about the degradation mechanism, especially in combination with SEM, TEM, and XRD. XRD and TEM revealed the appearance of Co 3O 4 during the SOEC operation and SEM analyses confirmed the formation of SrZrO 3 at the electrode/electrolyte interface. The spectral analysis confirmed the reduction of iron from Fe(IV) to Fe(III) in LSCF after long-term operation. The fraction of Fe(IV) in the electrode decreased with time and 18, 15, 13 and 11% were obtained for 0, 1774, 6100, and 9000 h of operation, respectively.« less

  9. Environmental 90Sr measurements

    USGS Publications Warehouse

    Paul, M.; Berkovits, D.; Cecil, L.D.; Feldstein, H.; Hershkowitz, A.; Kashiv, Y.; Vogt, S.

    1997-01-01

    90Sr (T1/2 = 28.5 years) is a long-lived radionuclide produced in nuclear fission. Fast radiochemical detection of 90Sr in environmental samples is not feasible using current analytical methods. Accelerator Mass Spectrometry (AMS) measurements of 90Sr were made with the Rehovot 14UD Pelletron accelerator at a terminal voltage of 11 or 12 MV using our standard detection system. Injection of hydride ions (SrH3-) was chosen owing to high beam intensity and low Coulomb explosion effects. 90Sr ions were identified and discriminated from isobaric 90Zr by measuring time of flight, total energy and three independent energy-loss signals in an ionization chamber. A reference sample and a ground-water sample were successfully measured. The detection limit determined for a laboratory blank by the residual counts in the 90Sr region is 90Sr/Sr = 3 ?? 10-13, corresponding in practice to (2-4) ?? 10790Sr atoms or about 0.5-1 pCi/L in environmental water samples.

  10. Sr isotopic tracer study of the Samail ophiolite, Oman.

    USGS Publications Warehouse

    Lanphere, M.A.; Coleman, R.G.; Hopson, C.A.

    1981-01-01

    Rb and Sr concentrations and Sr-isotopic compositions were measured in 41 whole-rock samples and 12 mineral separates from units of the Samail ophiolite, including peridotite, gabbro, plagiogranite, diabase dykes, and gabbro and websterite dykes within the metamorphic peridotite. Ten samples of cumulate gabbro from the Wadir Kadir section and nine samples from the Wadi Khafifah section have 87Sr/86Sr ratios of 0.70314 + or - 0.00030 and 0.70306 + or - 0.00034, respectively. The dispersion in Sr- isotopic composition may reflect real heterogeneities in the magma source region. The average Sr-isotopic composition of cumulate gabbro falls in the range of isotopic compositions of modern MORB. The 87Sr/86Sr ratios of noncumulate gabbro, plagiogranite, and diabase dykes range 0.7034-0.7047, 0.7038-0.7046 and 0.7037- 0.7061, respectively. These higher 87Sr/86Sr ratios are due to alteration of initial magmatic compositions by hydrothermal exchange with sea-water. Mineral separates from dykes that cut harzburgite tectonite have Sr-isotopic compositions which agree with that of cumulate gabbro. These data indicate that the cumulate gabbro and the different dykes were derived from partial melting of source regions that had similar long-term histories and chemical compositions.-T.R.

  11. Dielectric maximum temperature non-monotonic behavior in unaxial Sr0.75Ba0.25Nb2O6 relaxor seen via acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, E.; Kojima, S.; Roth, M.

    2011-08-01

    [100] oriented Sr0.75Ba0.25Nb2O6 relaxor crystals have been studied by means of acoustic emission (AE) over a wide 20-400 °C temperature range. Both the Burns temperature, Td = 350 °C, and the intermediate temperature, T* = 183°C, and the susceptibility maximum temperature, Tm (59 °C on heating and 47 °C on cooling), have been successfully detected. Dependent upon the external electric field, the Tm exhibits a local minimum near 0.25 kV/cm accompanied by pronounced AE maximum in a manner which had recently been detected in Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 by Dul'kin et al. [Appl. Phys. Lett. 94, 252904 (2009)] and in Pb(Sc1/2Ta1/2)O3 by Dul'kin et al. [Phys. Rev. B 82, 180101(R) (2010)], whereas the T* increases monotonically, similar to that which had recently been revealed in BaTiO3 by Dul'kin et al. [Appl. Phys. Lett. 97, 032903 (2010)] with a rate of 7.5 K cm/kV. An observed Tm behavior is discussed from the point of view of the existence of the random electric field components along the [100] direction in Sr0.75Ba0.25Nb2O6 crystals.

  12. Electric, Magnetic, and Magnetoelectric Properties of Yttrium-Containing BaY0.025Ti0.9625O3-SrFe12O19 Composite

    NASA Astrophysics Data System (ADS)

    Rather, Mehraj ud Din; Samad, Rubiya; Want, Basharat

    2018-03-01

    The physical properties of BaY0.025Ti0.9625O3, SrFe12O19, and 0.90BaY0.025Ti0.9625O3-0.10 SrFe12O19 composite have been studied. The proposed composite was synthesized by solid-state reaction method from yttrium barium titanate processed by solid-state reaction and strontium hexaferrite obtained by a sol-gel process. Microstructural analysis revealed monophasic grains for yttrium barium titanate phase, while loosely packed biphasic structure was observed for the composite. Powder x-ray analysis showed that the individual phases retained their crystal structure in the composite, without formation of any new additional phase. Measurement of magnetic hysteresis loops at room temperature indicated that the magnetic parameters of the composite were diluted by the presence of the ferroelectric phase. The ferroelectric hysteresis of yttrium barium titanate confirmed the ferroelectric transition at 119°C. Meanwhile, the symmetrical ferroelectric loops observed at different fields established the ferroelectric nature of the composite. Improved dielectric properties and low dielectric losses were observed due to yttrium doping in the composite. The diffuseness of the ferroelectric transitions for the composite was confirmed by the Curie-Weiss law. Activation energy calculations revealed the charge-hopping conduction mechanism in the composite. Magnetodielectric studies confirmed that the overall magnetocapacitance in the composite exhibited combined effects of magnetoresistance and magnetoelectric coupling.

  13. A bottom-up building process of nanostructured La0.75Sr0.25Cr0.5Mn0.5O3-δ electrodes for symmetrical-solid oxide fuel cell: Synthesis, characterization and electrocatalytic testing

    NASA Astrophysics Data System (ADS)

    Chanquía, Corina M.; Montenegro-Hernández, Alejandra; Troiani, Horacio E.; Caneiro, Alberto

    2014-01-01

    Pure-phase La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) nanocrystallites have been successfully synthesized by the combustion method, employing glycine as fuel and complexing agent, and ammonium nitrate as combustion trigger. A detailed morphological and structural characterization is performed, by using of X-ray diffraction, N2 physisorption and electron microscopy. The LSCM material consists in interconnected nanocrystallites (∼30 nm) forming a sponge-like structure with meso and macropores, being its specific surface area around 10 m2 g-1. Crystalline structural analyses show that the LSCM nanopowder has trigonal/rhombohedral symmetry in the R-3c space group. By employing the spin coating technique and quick-stuck thermal treatments of the ink-electrolyte, electrodes with different crystallite size (95, 160 and 325 nm) are built onto both sides of the La0.8Sr0.2Ga0.8Mg0.2O3-δ-disk electrolyte. To test the influence of the electrode crystallite size on the electrocatalytic behavior of the symmetrical cells, electrochemical impedance spectroscopy measurements at 800 °C were performed. When the electrode crystallite size becomes smaller, the area specific resistance decreases from 3.6 to 1.31 Ω cm2 under 0.2O2-0.8Ar atmosphere, possibly due to the enlarging of the triple-phase boundary, while this value increases from 7.04 to 13.78 Ω cm2 under 0.17H2-0.03H2O-0.8Ar atmosphere, probably due to thermodynamic instability of the LSCM nanocrystallites.

  14. Effect of Heat Treatment on The Crystal Structur, Electrical Conductivity and Surface of Ba1.5Sr0.5Fe2O5 Composite

    NASA Astrophysics Data System (ADS)

    Purwanto, P.; Adi, WA; Yunasfi

    2017-05-01

    The Composite of Ba1,5Sr0,5Fe2O5 has been synthesized by using powder metallurgy technique. The Ba1.5Sr0.5Fe2O5 were prepared from BaCO3, SrCO3 and Fe2O3 raw materials with a specific weight ratio. The three materials were synthesized by powder metallurgy under heat treatment at 800 °C, 900 °C, and 1000 °C for 5 hours. All the three samples were characterized by using X-ray Diffraction (XRD) to determine the crystal structure and crystal size, LCR meter to determine the conductivity, and Scanning Electron Microscope (SEM) to observe the morphological of the composites. The phase analysis result showed that the composite consists of several minor phases such as BaO2, SrO2, and Fe2O3. The Crystal size of composite Ba1.5Sr0.5Fe2O5 decreased while increases the strain of crystal with increasing of sintering temperature. The crystal size of the Ba1.5Sr0.5Fe2O5 composite is 3.55 nm to 7.23 nm and value of strain is 8.47% until 3.90%. Based on the conductivity measurement, it was obtained that the conductivity of the Ba1.5Sr0.5Fe2O5 composite decreased with increasing sintering temperature. It was also noticed that the conductivity increased with increasing of frequency. The conductivity ranged from 6.619×10-7 S/cm to 65.659×10-7 S/cm. The energy dispersive spectroscopy (EDS) analysis showed that several dominant elements were a good agreement with the phase analysis.

  15. Magnetocaloric effect and critical field analysis in Eu substituted La0.7-xEuxSr0.3MnO3 (x = 0.0, 0.1, 0.2, 0.3) manganites

    NASA Astrophysics Data System (ADS)

    Vadnala, Sudharshan; Asthana, Saket

    2018-01-01

    In this study, we have investigated magnetic behavior, magnetocaloric effect and critical exponent analysis of La0.7-xEuxSr0.3MnO3 (x = 0.0, 0.1, 0.2, 0.3) manganites synthesized through solid state reaction route. The crystallographic data obtained from refinement of X-ray diffraction patterns reveal that crystal structure changes from rhombohedral (for x = 0.0) to orthorhombic (for x ≥ 0.1). The average ionic radius of A-site is decreased from 1.384 Å (for x = 0.0) to 1.360 Å (for x = 0.3) with Eu3+ substitution which in turn decreases the Mn-O-Mn bond angles. Magnetization measurements are performed in the vicinity of TC to determine magnetocaloric effect (MCE) and critical field behavior. The maximum magnetic entropy change (Δ SMmax) (for μ0ΔH = 6T) increases with the Eu3+ substitution from 3.88 J/kg K (for x = 0.0) to 5.03 J/kg K (for x = 0.3) at the transition temperature. The critical field behaviour of compounds was analysed using various methods such as modified Arrott plots, Kouvel-Fisher method and critical isotherm to determine critical temperature and critical exponents (β, γ and δ). The obtained critical exponents are in good accordance with scaling relation. The temperature dependence of the order parameter n, for different magnetic fields, is studied using the relation ΔSMαHn. The values of n are found to obey the Curie-Weiss law for temperatures above the transition temperature. The rescaled change in entropy data for all compounds collapses into the same universal curve, revealing a second order phase transition.

  16. Cationic Intermixing and Reactivity at the La2 Mo2 O9 /La0.8 Sr0.2 MnO3-δ Solid Oxide Fuel Cell Electrolyte-Cathode Interface.

    PubMed

    Ravella, Uday K; Liu, Jingjing; Corbel, Gwenaël; Skinner, Stephen J; Lacorre, Philippe

    2016-08-23

    Among standard high-temperature cathode materials for solid oxide fuel cells, La0.8 Sr0.2 MnO3-δ (LSM) displays the least reactivity with the oxide-ion conductor La2 Mo2 O9 (LMO), yet a reaction is observed at high processing temperatures, identified by using XRD and focused ion beam secondary-ion mass spectrometry (FIB-SIMS) after annealing at 1050 and 1150 °C. Additionally, Sr and Mn solutions were deposited and annealed on LMO pellets, as well as a Mo solution on a LSM pellet. From these studies several reaction products were identified by using XRD and located by using FIB-SIMS on the surface of pelletised samples. We used depth profiling to show that the reactivity extended up to ∼10 μm from the surface region. If Sr was present, a SrMoO4 -type scheelite phase was always observed as a reaction product, and if Mn was present, LaMnO3+δ single crystals were observed on the surface of the LMO pellets. Additional phases such as La2 MoO6 and La6 MoO12 were also detected depending on the configuration and annealing temperature. Reaction mechanisms and detailed reaction formulae are proposed to explain these observations. The strongest driving force for cationic diffusion appears to originate from Mo(6+) and Mn(3+) cations, rather than from Sr(2+) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: Implications for stratigraphic resolution

    USGS Publications Warehouse

    Saltzman, M. R.; Edwards, C. T.; Leslie, S. A.; Dwyer, Gary S.; Bauer, J. A.; Repetski, John E.; Harris, A. G.; Bergstrom, S. M.

    2014-01-01

    The Ordovician 87Sr/86Sr isotope seawater curve is well established and shows a decreasing trend until the mid-Katian. However, uncertainties in calibration of this curve to biostratigraphy and geochronology have made it difficult to determine how the rates of 87Sr/86Sr decrease may have varied, which has implications for both the stratigraphic resolution possible using Sr isotope stratigraphy and efforts to model the effects of Ordovician geologic events. We measured 87Sr/86Sr in conodont apatite in North American Ordovician sections that are well studied for conodont biostratigraphy, primarily in Nevada, Oklahoma, the Appalachian region, and Ohio Valley. Our results indicate that conodont apatite may provide an accurate medium for Sr isotope stratigraphy and strengthen previous reports that point toward a significant increase in the rate of fall in seawater 87Sr/86Sr during the Middle Ordovician Darriwilian Stage. Our 87Sr/86Sr results suggest that Sr isotope stratigraphy will be most useful as a high-resolution tool for global correlation in the mid-Darriwilian to mid-Sandbian, when the maximum rate of fall in 87Sr/86Sr is estimated at ∼5.0–10.0 × 10–5 per m.y. Variable preservation of conodont elements limits the precision for individual stratigraphic horizons. Replicate conodont analyses from the same sample differ by an average of ∼4.0 × 10–5 (the 2σ standard deviation is 6.2 × 10–5), which in the best case scenario allows for subdivision of Ordovician time intervals characterized by the highest rates of fall in 87Sr/86Sr at a maximum resolution of ∼0.5–1.0 m.y. Links between the increased rate of fall in 87Sr/86Sr beginning in the mid-late Darriwilian (Phragmodus polonicus to Pygodus serra conodont zones) and geologic events continue to be investigated, but the coincidence with a long-term rise in sea level (Sauk-Tippecanoe megasequence boundary) and tectonic events (Taconic orogeny) in North America provides a plausible

  18. Perovskite-type La0.8Sr0.2Co0.8Fe0.2O3 with uniform dispersion on N-doped reduced graphene oxide as an efficient bi-functional Li-O2 battery cathode.

    PubMed

    Cheng, Junfang; Jiang, Yuexing; Zhang, Ming; Zou, Lu; Huang, Yizhen; Wang, Ziling; Chi, Bo; Pu, Jian; Li, Jian

    2017-04-19

    A composite cathode including N-rGO with homogeneously dispersed perovskite La 0.8 Sr 0.2 Co 0.8 Fe 0.2 O 3 on the surface is studied. Li-O 2 batteries with LSCF@N-rGO cathode show better performance than those with LSCF-SP or N-rGO cathode. EIS and morphology analysis indicate that LSCF is beneficial to remold the shape of Li 2 O 2 and catalyze the decomposition of Li 2 O 2 .

  19. Influence of nonmagnetic Al ions on magnetoresistance of double-perovskite Sr2Fe1-xAlxMoO6 (0<=x<=0.30)

    NASA Astrophysics Data System (ADS)

    Sui, Yu; Wang, Xianjie; Cheng, Jinguang; Liu, Zhiguo; Miao, Jipeng; Huang, Xiqiang; Lu, Zhe; Qian, Zhengnan; Su, Wenhui; Tang, Jinke; Ong, C. K.

    2005-09-01

    The structural, magnetic, and magnetoresistance properties of the double-perovskite series Sr2Fe1-xAlxMoO6 (0<=x<=0.30) were systematically investigated in order to clarify the influence of nonmagnetic Al ions on the magnetoresistance. The structural refinements of these samples show that the degree of cationic order increases gradually from 88.5% for x=0 to 92% for x=0.30 without any change in the crystal structure. The magnetization measurements reveal that the substitution of nonmagnetic Al ion for Fe ion enhances the magnetic moment per Fe ion significantly. In addition, the magnetic-field dependence of magnetization and magnetoresistance of these Sr2Fe1-xAlxMoO6 samples were all fitted excellently by taking into account the contributions from ferromagnetic-coupled Fe-O-Mo region and nonferromagnetic-coupled regions. The fitting results indicate that the low-field magnetoresistance can be greatly enhanced due to the separation of the cationic-ordered Fe-O-Mo regions by the paramagnetic Mo-O-Al-O-Mo chains introduced through Al doping. Furthermore, doping nonmagnetic Al ions also suppress the formation of antiferromagnetic Fe-O-Fe antiphase boundaries, and then lead to the improvement of cation ordering and the reduction of magnetoresistance under high field.

  20. Direct observation of double exchange in ferromagnetic La0.7Sr0.3CoO3 by broadband ellipsometry

    NASA Astrophysics Data System (ADS)

    Friš, P.; Munzar, D.; Caha, O.; Dubroka, A.

    2018-01-01

    We present results of our broadband ellipsometry measurements of the optical response of ferromagnetic La0.7Sr0.3CoO3 . Our data show that the ferromagnetic transition is accompanied by a transfer of optical spectral weight from an absorption band centered at 1.5 eV to a narrow component of the Drude-like peak. The associated reduction of the intraband kinetic energy is significantly larger than kBTc , confirming that the double exchange plays a major role in the ferromagnetism of doped cobaltites. In conjunction with results of recent theoretical studies, the temperature dependence of the Drude-like peak suggests that the double exchange is mediated by t2 g orbitals.

  1. Promotion on electrochemical performance of a cation deficient SrCo0.7Nb0.1Fe0.2O3-δ perovskite cathode for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Ding, Liming; Wang, Lixi; Ding, Dong; Zhang, Shihua; Ding, Xifeng; Yuan, Guoliang

    2017-06-01

    Solid oxide fuel cells (SOFCs) offer great promise for the most efficient and cost-effective conversion to electricity of a wide variety of fuels. The cathode materials with high electro-catalytic activity for oxygen reduction reaction is vital to the development of commercially-viable SOFCs to be operated at reduced temperatures. In present study, cobalt-based perovskite oxides SrxCo0.7Nb0.1Fe0.2O3-δ (SCNF, x = 0.95 and 1) were comparatively investigated as promising cathode materials for intermediate-temperature SOFCs. The SCNF compounds with a slight Sr deficiency (S0.95CNF) exhibited single phase of primitive cubic structure with Pm-3m symmetry. A small Sr deficiency is demonstrated to greatly enhance the electrochemical performance of stoichiometric SCNF cathode due to significantly increased oxygen vacancy. The polarization resistance of S0.95CNF at 700 °C was 0.11 Ω cm2, only about 61% of SCNF. The rate limiting step for oxygen reduction reaction (ORR) is demonstrated to be oxygen ion transfer within the bulk electrode and/or from electrode to electrolyte through the triple phase boundary. Full cells with the SCNF cathode present good performance and stable output at reduced temperatures, indicating the great potential for enhanced performance of Co-based cathodes with A-site deficiency.

  2. Microstructural and thermal properties of pure BaFe{sub 12}O{sub 19} and Sr doped barium ferrite (Ba{sub 0.9}Sr{sub 0.1}Fe{sub 12}O{sub 19}) synthesized by auto combustion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taufeeq, Saba, E-mail: sabataufeeq23@gmail.com; Parveen, Azra; Agrawal, Shraddha

    2016-05-23

    Nanoparticles (NPs) of Pure BaFe{sub 12}O{sub 19} and Strontium doped Barium Ferrite (Ba{sub 0.9}Sr{sub 0.1}Fe{sub 12}O{sub 19}) have been successfully synthesized by Auto combustion method using citric acid as a chelating agent and calcined at 450°C for 3 hrs and 850°C for 4 hrs. Microstructural studies were carried by XRD and SEM techniques. Structural studies suggest that the crystal system remains hexagonal even with the doping of Strontium. The XRD analysis confirms the formation of the structures in the nanometer regime and the peaks are the evidence of the crystalline phase. The SEM images shows the morphology of surface ofmore » the samples. The thermal property studied by TGA shows the weight loss which is with varying the temperature and weight loss also varies with Sr doping. The TGA analysis exhibits the loss of weight at different temperatures.« less

  3. Bias polarization study of steam electrolysis by composite oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ/BaCe0.4Zr0.4Y0.2O3-δ

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Shaula, Aliaksandr; Pukazhselvan, D.; Ramasamy, Devaraj; Deng, Jiguang; da Silva, E. L.; Duarte, Ricardo; Saraiva, Jorge A.

    2017-12-01

    The polarization behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaCe0.4Zr0.4Y0.2O3-δ (BSCF-BCZY) electrode under steam electrolysis conditions was studied in detail. The composite oxygen electrode supported by BCZY electrolyzer has been assessed as a function of temperature (T), water vapor partial pressures (pH2O), and bias polarization voltage for electrodes of comparable microstructure. The Electrochemical impedance spectra show two depressed arcs in general without bias polarization. And the electrode resistance became smaller with the increase of the bias polarization under the same water vapor partial pressures. The total resistance of the electrode was shown to be significantly affected by temperature, with the same level of pH2O and bias polarization voltage. This result highlights BSCF-BCZY as an effective oxygen electrode under moderate polarization and pH2O conditions.

  4. Crystallization studies and dielectric properties of (Ba0.7Sr0.3)TiO3 in bariumaluminosilicate glass

    NASA Astrophysics Data System (ADS)

    Divya, P. V.; Vignesh, G.; Kumar, V.

    2007-12-01

    Ferroelectric glass-ceramics with a basic composition (1 - y)(Ba0.70Sr0.30)TiO3 : y(BaO : Al2O3 : 2SiO2) have been synthesized by the sol-gel method. The major crystalline phase is the perovskite. The crystallization of the ferroelectric phase in the glass matrix have been studied using differential thermal analysis and x-ray diffraction and the kinetic parameters characterizing the crystallization have been determined using an Arrhenius model. Glass contents <= 5 mol% promoted liquid phase sintering, which reduced the sintering temperature to 1250 °C. The dielectric permittivity of the glass-ceramic samples decreased and the ferroelectric-paraelectric phase transition became more diffuse with increasing glass content. The dielectric connectivity of the ferroelectric phase in the composite have also been investigated and are reported.

  5. Magneto-optical studies of SrGa{sub 0.7} Co{sub 0.3} O{sub 3−δ} perovskite thin films with embedded cobalt nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veis, M., E-mail: veis@karlov.mff.cuni.cz; Zahradnik, M.; Ohnoutek, L.

    2015-05-07

    Sr(Ga{sub 0.7} Co{sub 0.3})O{sub 3−δ}/Co perovskite/metal thin films have been systematically studied by means of Faraday and Kerr magneto-optical spectroscopies. The samples were prepared by pulsed laser deposition on (001) (LaAlO{sub 3}) {sub 0.3}(Sr{sub 2}AlTaO{sub 6}) {sub 0.7} (LSAT) and Si substrates, and grew as a perovskite matrix containing approximately 6% by volume of embedded metallic Co nanoparticles with diameter less than 20 nm, which were distributed throughout the film and at the film-substrate interface. The film thickness ranged from 130 to 310 nm. The perovskite matrix was single crystal on LSAT and polycrystalline on Si. The magneto-optical spectroscopy was carried out in bothmore » Faraday and Kerr configurations in the photon energy range from 0.5 to 5 eV in magnetic fields sufficient for sample saturation, showing a strong thickness dependence of the magneto-optical effect. This dependence was attributed to the different metallic Co content, nanoparticle size, and accumulation at the film-substrate interface.« less

  6. In-plane reversal of the magnetic anisotropy in (110)-oriented LaCoO3/La0.67Sr0.33MnO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Yan, Xi; Han, Furong; Zhang, Jine; Liu, Dan; Shen, Baogen; Sun, Jirong

    2018-05-01

    The interface engineering of the complex oxides with strongly coupled degrees of freedom opens a wide space for the exploration of novel effects. La0.67Sr0.33MnO3 is one of the most typical complex oxides used for atomic level material engineering. Herein we reported an in-plane reversal of the magnetic anisotropy in (110)-oriented LaCoO3/La0.67Sr0.33MnO3 (LCO/LSMO) bilayers grown on (110)-oriented LaAlO3 substrates. Fixing the LSMO layer thickness to 8 nm and varying the LCO layer from 0 to 8 nm, totally six bilayers were fabricated. Without the LCO layer, the LSMO film exhibits an easy axis along the [1-10] direction. However, when the thickness of the LCO layer exceeds 1 nm, a signature of spin-reorientation appears; the easy axis turns from the [1-10] to the [001] direction below 225 K. This tendency is continuously enhanced by increasing the LCO. We reveal that lattice strains are different along these two directions. The magnetic anisotropy is not only controlled by lattice strain but also by structural distortion at interface. This work shows the great potential of the interface engineering with differently structured oxides for the exploration of novel functional materials.

  7. Structure and dielectric properties of (Ba0.7Sr0.3)1- x Na x (Ti0.9Sn0.1)1- x Nb x O3 ceramics

    NASA Astrophysics Data System (ADS)

    Ghoudi, Hanen; Chkoundali, Souad; Aydi, Abdelhedi; Khirouni, Kamel

    2017-11-01

    (Ba0.7Sr0.3)1- x Na x (Ti0.9Sn0.1)1- x Nb x O3 ceramics with compositions x = 0.6, 0.7, 0.8 and 0.9 were synthesized using the solid-state reaction method. These ceramics were examined by X-ray diffraction and dielectric measurements over a broad temperature and frequency ranges. X-ray diffraction patterns revealed a single-perovskite phase crystallized in a cubic structure, for x < 0.8, and in tetragonal, for x ≥ 0.8, with Pm3m and P4mm spaces groups, respectively. Two types of behaviors, classical ferroelectric or relaxor, were observed depending on the x composition. It is noted that temperatures T C (the Curie temperature) or T m (the temperature of maximum permittivity) rise when x increases and the relaxor character grows more significantly when x composition decreases. To analyze the dielectric relaxation degree of relaxor, various models were considered. It was proven that an exponential function could well describe the temperature dependence of the static dielectric constant and relaxation time.

  8. Evaluation of La0.6Sr0.4Co0.2Fe0.8O3-Gd0.1Ce0.9O1.95 composite cathode with three dimensional microstructure reconstruction

    NASA Astrophysics Data System (ADS)

    Kim, Y. T.; Jiao, Z.; Shikazono, N.

    2017-02-01

    In the present study, the polarization characteristics of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) - Gd0.1Ce0.9O1.95 (GDC) composite cathodes with different volume ratios were investigated. Samples with volume ratios of 20:80, 30:70, 50:50, 70:30 and 100:0 vol % were tested. The electrochemical impedance spectroscopy tests and current voltage curve measurements were carried out for the current densities from 0 to 0.2 Acm-2 with an interval of 0.05 Acm-2. The results showed that a volume ratio of LSCF:GDC = 30:70 composite cathode led to the lowest overpotential, and the overpotential increased in the order of 30:70, 50:50, 70:30, 100:0, 20:80 vol %. Three dimensional microstructures of composite cathodes were reconstructed and quantified by dual beam focused ion beam-scanning electron microscope (FIB-SEM). The results showed that neither LSCF surface area nor triple phase boundary (TPB) alone could explain the dependence of polarization characteristics on volume ratios. Current and electrochemical potential distributions were simulated by the Lattice Boltzmann method, in which both surface and TPB reactions were considered. Prediction considering both surface and TPB reactions could predict qualitatively the dependence of overpotentials on LSCF - GDC cathode composition.

  9. Isotropic Kink and Quasiparticle Excitations in the Three-Dimensional Perovskite Manganite La_{0.6}Sr_{0.4}MnO_{3}.

    PubMed

    Horiba, Koji; Kitamura, Miho; Yoshimatsu, Kohei; Minohara, Makoto; Sakai, Enju; Kobayashi, Masaki; Fujimori, Atsushi; Kumigashira, Hiroshi

    2016-02-19

    In order to reveal the many-body interactions in three-dimensional perovskite manganites that show colossal magnetoresistance, we performed an in situ angle-resolved photoemission spectroscopy on La_{0.6}Sr_{0.4}MnO_{3} and investigated the behavior of quasiparticles. We observed quasiparticle peaks near the Fermi momentum in both the electron and the hole bands, and clear kinks throughout the entire hole Fermi surface in the band dispersion. This isotropic behavior of quasiparticles and kinks suggests that polaronic quasiparticles produced by the coupling of electrons with Jahn-Teller phonons play an important role in the colossal magnetoresistance properties of the ferromagnetic metallic phase of three-dimensional manganites.

  10. Composite (La0.45Nd0.25)Sr0.3MnO3/5CuO materials for magnetic refrigeration applications

    NASA Astrophysics Data System (ADS)

    El Maalam, K.; Balli, M.; Habouti, S.; Dietze, M.; Hamedoun, M.; Hlil, E.-K.; Es-Souni, M.; El Kenz, A.; Benyoussef, A.; Mounkachi, O.

    2018-03-01

    In this work, the magnetocaloric properties of (La0.45Nd0.25)Sr0.3MnO3 (LNSMO)-based composites are studied. The structural, microstructural, magnetic and magnetocaloric properties of LNSMO and LNSMO/5CuO samples were investigated aiming to particularly clarify the secondary phase (CuO) role in driving the magnetocaloric behavior. The main phase LNSMO crystallizes in a rhombohedral R-3C (1 6 7) configuration. The XRD patterns of composite samples show both perovskite LNSMO and monoclinic Tenorite CuO structures. The microstructural analysis unveils that the CuO phase is mainly present in the grain boundaries and segregates region. On the other hand, it was found that the magnetocaloric effect could be significantly enhanced by adding a small amount of CuO (5% weight ratio). For a magnetic field changing from 0 to 1.5 T, the corresponding isothermal entropy change was found to be 2.55 J/kg K for the LNSMO/5CuO composite while it is only about 1.1 J/kg K for the mother material LNSMO. Our finding should inspire and open new ways for the enhancement of the magnetocaloric effect in manganites-based materials.

  11. Thickness dependence of structural and piezoelectric properties of epitaxial Pb(Zr0.52Ti0.48)O3 films on Si and SrTiO3 substrates

    NASA Astrophysics Data System (ADS)

    Kim, D. M.; Eom, C. B.; Nagarajan, V.; Ouyang, J.; Ramesh, R.; Vaithyanathan, V.; Schlom, D. G.

    2006-04-01

    We report the structural and longitudinal piezoelectric responses (d33) of epitaxial Pb(Zr0.52Ti0.48)O3 (PZT) films on (001) SrTiO3 and Si substrates in the thickness range of 40nm -4μm. With increasing film thickness the tetragonality of PZT was reduced. The increase in d33 value with increasing film thicknesses was attributed to the reduction of substrate constraints and softening of PZT due to reduced tetragonality. The d33 values of PZT films on Si substrates (˜330pm/V) are higher than those on SrTiO3 substrates (˜200pm /V). The epitaxial PZT films on silicon will lead to the fabrication of high performance piezoelectric microelectromechanical devices.

  12. The Origin of 87Sr/86Sr in Cold Springs and Travertines of the Franciscan Complex near Cazadero, California

    NASA Astrophysics Data System (ADS)

    Marks, N.; Schiffman, P.; Yin, Q.; Zierenberg, R.

    2005-12-01

    Ultrabasic springs within the Franciscan Complex of the California Coast Range have been intensely investigated by geochemists and geobiologists. Springs located in Sonoma County in an area historically known as The Cedars are of particular interest to scientists exploring Martian analogues (Johnson et al. 2004) or investigating serpentinization processes (Barnes and O'Neil, 1969; Barnes et al. 1972). Laser ablation and solution phase multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) were used to obtain 87Sr/86Sr isotope ratios in fluid, travertine and serpentinite samples collected at the Cedars. 87Sr/86Sr isotopic ratios in the serpentinizing springs range from 0.70926 to 0.70955; the Mg2+-HCO3- type stream water has an isotopic ratio of 0.70848. The 87Sr/86Sr ratio in the travertines ranges from 0.70931 to 0.70966. The mean 87Sr/86Sr ratio of the travertine (0.7094) is far more radiogenic than typical mantle values of 0.703 to 0.705, indicating that the peridotite is an unlikely source of the radiogenic Sr. Similarly, the measured ratio is much higher than the expected Sr isotope ratio of seawater that might be trapped in Jurassic Franciscan Sediments or oceanic crust. Strontium leached from Franciscan sediments themselves should reflect a Sierran or Klamath source with expected values in the range of 0.705 to 0.706. Indeed the measured isotope ratios even exceed modern seawater values. The observed radiogenic values suggest the presence of older, potassium (and rubidium)-rich rocks within the fluid flow path. Alternatively, the presence of clay minerals that readily substitute Sr for Ca may well account for the radiogenic strontium signal. It is possible that the serpentinization observed at The Cedars initiated along a ridge flank and the Sr isotopic chemistry reflects the site of initiation. The radiogenic strontium in these springs may result from fluid interaction with seafloor sediments deposited along the flank of a slow spreading

  13. On the novel double perovskites A2Fe(Mn0.5W0.5)O6 (A= Ca, Sr, Ba). Structural evolution and magnetism from neutron diffraction data

    NASA Astrophysics Data System (ADS)

    García-Ramos, Crisanto A.; Larrégola, Sebastián; Retuerto, María; Fernández-Díaz, María Teresa; Krezhov, Kiril; Alonso, José Antonio

    2018-06-01

    New A2Fe(Mn0.5W0.5)O6 (A = Ca, Sr, Ba) double perovskite oxides have been prepared by ceramic techniques. X-ray diffraction (XRD) complemented with neutron powder diffraction (NPD) indicate a structural evolution from monoclinic (space group P21/n) for A = Ca to cubic (Fm-3m) for A = Sr and finally to hexagonal (P63/mmc) for A = Ba as the perovskite tolerance factor increases with the A2+ ionic size. The three oxides present different tilting schemes of the FeO6 and (Mn,W)O6 octahedra. NPD data also show evidence in all cases of a considerable anti-site disordering, involving the partial occupancy of Fe positions by Mn atoms, and vice-versa. Magnetic susceptibility data show magnetic transitions below 50 K characterized by a strong irreversibility between ZFC and FC susceptibility curves. The A = Ca perovskite shows a G-type magnetic structure, with weak ordered magnetic moments due to the mentioned antisite disordering. Interesting magnetostrictive effects are observed for the Sr perovskite below 10 K.

  14. Estimation of the magnetic entropy change by means of Landau theory and phenomenological model in La0.6Ca0.2 Sr0.2MnO3/Sb2O3 ceramic composites

    NASA Astrophysics Data System (ADS)

    Nasri, M.; Dhahri, E.; Hlil, E. K.

    2018-06-01

    In this paper, magnetocaloric properties of La0.6Ca0.2Sr0.2MnO3/Sb2O3 oxides have been investigated. The composite samples were prepared using the conventional solid-state reaction method. The second-order phase transition can be testified with the positive slope in Arrott plots. An excellent agreement has been found between the -ΔSM values estimated by Landau theory and those obtained using the classical Maxwell relation. The field dependence of the magnetic entropy change analysis shows a power law dependence,|ΔSM|≈Hn , with n(TC) = 0.65. Moreover, the scaling analysis of magnetic entropy change exhibits that ΔSM(T) curves collapse into a single universal curve, indicating that the observed paramagnetic to ferromagnetic phase transition is an authentic second-order phase transition. The maximum value of magnetic entropy change of composites is found to decrease slightly with the further increasing of Sb2O3 concentration. A phenomenological model was used to predict magnetocaloric properties of La0.6Ca0.2Sr0.2MnO3/Sb2O3 composites. The theoretical calculations are compared with the available experimental data.

  15. Reversible operation of microtubular solid oxide cells using La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.9Gd0.1O2-δ oxygen electrodes

    NASA Astrophysics Data System (ADS)

    López-Robledo, M. J.; Laguna-Bercero, M. A.; Larrea, A.; Orera, V. M.

    2018-02-01

    Yttria stabilized zirconia (YSZ) based microtubular solid oxide fuel cells (mT-SOFCs) using La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Ce0.9Gd0.1O2-δ (GDC) as the oxygen electrode, along with a porous GDC electrolyte-electrode barrier layer, were fabricated and characterized in both fuel cell (SOFC) and electrolysis (SOEC) operation modes. The cells were anode-supported, the NiO-YSZ microtubular supports being made by Powder Extrusion Moulding (PEM). The cells showed power densities of 695 mW cm-2 at 800 °C and 0.7 V in SOFC mode, and of 845 mA cm-2 at 800 °C and 1.3 V in SOEC mode. AC impedance experiments performed under different potential loads demonstrated the reversibility of the cells. These results showed that these cells, prepared with a method suitable for using on an industrial scale, are highly reproducible and reliable, as well as very competitive as reversible SOFC-SOEC devices operating at intermediate temperatures.

  16. Structure in the secular variation of seawater sup 87 Sr/ sup 86 Sr for the Ivorian/Chadian (Osagean, Lower Carboniferous)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douthit, T.L.; Hanson, G.N.; Meyers, W.J.

    1990-05-01

    The secular variations of {sup 87}Sr/{sup 86}Sr in seawater for the Ivorian/Chadian, (equivalent to the Osagean, Lower Carboniferous) were determined through detailed analysis of well-preserved marine cements from the Waulsortian facies of Ireland. The results indicate that marine cements have utility in characterizing marine paleochemistries. Marine cements were judged pristine on the basis of nonluminescent character and stable isotopic composition comparable to previous estimates of Mississippian marine calcite. Analysis of the marine cements yielded {sup 87}Sr/{sup 86}Sr ratios lower than previously reported values for the Ivorian/Chadian. Error resulting from chronostratigraphic correlation between different geographic areas was avoided by restricting themore » sample set to a single 1,406-ft-long core (core P-1). The P-1 core is estimated to represent a minimum of 8.7 m.y. of continuous Waulsortian Limestone deposition. The {sup 87}Sr/{sup 86}Sr ratios of 11 nonluminescent cements document a non-monotonic variation in seawater {sup 87}Sr/{sup 86}Sr along the length of the core. {sup 87}Sr/{sup 86}Sr ranges from a high of 0.707908 in the early Ivorian to a low of about 0.707650 in the late Ivorian and middle Chadian with an early Chadian maximum at 0.707800 (all data are adjusted to a value of 0.710140 for SRM 987). The indicated maximum rate of change in seawater {sup 87}Sr/{sup 86}Sr is {minus}0.00011/Ma, comparable in magnitude to Tertiary values. The secular variation curve of seawater {sup 87}Sr/{sup 86}Sr for the Ivorian/Chadian has previously been thought to decrease monotonically with decreasing age. These data suggest that the seawater {sup 87}Sr/{sup 86}Sr variation over this interval may be sinusoidal in nature and emphasize the importance of well-characterized intraformational isotopic base lines.« less

  17. The effects of minor elements in La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes on oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Oishi, Junya; Otomo, Junichiro; Oshima, Yoshito; Koyama, Michihisa

    2015-03-01

    It is known that the minor elements affect the performance of solid oxide fuel cell (SOFC). In this study, we focus on the influence of minor elements on the SOFC cathode properties. The Ca, Ba, Al, and Si, which originate from raw materials and production processes for SOFC cathodes, are investigated as minor elements that may have effect on the properties of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode. To examine the effects of minor elements on the cathode properties, Ca, Ba, Al, and Si with a controlled concentration are added to the LSCF reference sample. Conductivity relaxation measurements are conducted to determine the chemical diffusion coefficient (Dchem) and surface exchange coefficient (ktr), which governs the overpotential characteristics of the LSCF cathode. The results show that Al and Si have negative effects on both Dchem and ktr while Ca and Ba do not alter Dchem and show weakly positive effects on ktr. The effects of Ca and Ba for the cathode properties are discussed on the basis of XPS measurements.

  18. Estimation of Joule heating and its role in nonlinear electrical response of Tb0.5Sr0.5MnO3 single crystal

    NASA Astrophysics Data System (ADS)

    Nhalil, Hariharan; Elizabeth, Suja

    2016-12-01

    Highly non-linear I-V characteristics and apparent colossal electro-resistance were observed in non-charge ordered manganite Tb0.5Sr0.5MnO3 single crystal in low temperature transport measurements. Significant changes were noticed in top surface temperature of the sample as compared to its base while passing current at low temperature. By analyzing these variations, we realize that the change in surface temperature (ΔTsur) is too small to have caused by the strong negative differential resistance. A more accurate estimation of change in the sample temperature was made by back-calculating the sample temperature from the temperature variation of resistance (R-T) data (ΔTcal), which was found to be higher than ΔTsur. This result indicates that there are large thermal gradients across the sample. The experimentally derived ΔTcal is validated with the help of a simple theoretical model and estimation of Joule heating. Pulse measurements realize substantial reduction in Joule heating. With decrease in sample thickness, Joule heating effect is found to be reduced. Our studies reveal that Joule heating plays a major role in the nonlinear electrical response of Tb0.5Sr0.5MnO3. By careful management of the duty cycle and pulse current I-V measurements, Joule heating can be mitigated to a large extent.

  19. Improving La0.6Sr0.4Co0.8Fe0.2O3-δ infiltrated solid oxide fuel cell cathode performance through precursor solution desiccation

    NASA Astrophysics Data System (ADS)

    Burye, Theodore E.; Nicholas, Jason D.

    2015-02-01

    Here, for the first time, the average size of solid oxide fuel cell (SOFC) electrode nano-particles was reduced through the chemical desiccation of infiltrated precursor nitrate solutions. Specifically, after firing at 700 °C, CaCl2-desiccated La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) - Ce0.9Gd0.1O1.95 (GDC) cathodes contained LSCF infiltrate particles with an average size of 22 nm. This is in contrast to comparable, undesiccated LSCF-GDC cathodes which contained LSCF infiltrate particles with an average size of 48 nm. X-ray diffraction, scanning electron microscopy, and controlled atmosphere electrochemical impedance spectroscopy revealed that desiccation reduced the average infiltrate particle size without altering the infiltrate phase purity, the cathode concentration polarization resistance, or the cathode electronic resistance. Compared to undesiccated LSCF-GDC cathodes achieving polarization resistances of 0.10 Ωcm2 at 640 °C, comparable CaCl2-dessicated LSCF-GDC cathodes achieved 0.10 Ωcm2 at 575 °C. Mathematical modeling suggested that these performance improvements resulted solely from average infiltrate particle size reductions.

  20. Temperature and voltage stress dependent dielectric relaxation process of the doped Ba0.67Sr0.33TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Shiguang; Mao, Chaoliang; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin

    2013-09-01

    The current decay characteristic in the time domain is studied in Y3+ and Mn2+ modified Ba0.67Sr0.33TiO3 ceramics under different temperatures (25 °C-213 °C) and voltage stresses (0 V-800 V). The decay of the current is correlated with the overlapping of the relaxation process and leakage current. With respect to the inherent remarkable dielectric nonlinearity, a simple method through curve fitting is derived to differentiate these two currents. Two mechanisms of the relaxation process are proposed: a distribution of the potential barriers mode around room temperature and an electron injection mode at the elevated temperature of 110 °C.

  1. Infiltrated La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3 based anodes for all ceramic and metal supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Nielsen, Jimmi; Persson, Åsa H.; Sudireddy, Bhaskar R.; Irvine, John T. S.; Thydén, Karl

    2017-12-01

    For improved robustness, durability and to avoid severe processing challenges alternatives to the Ni:YSZ composite electrode is highly desirable. The Ni:YSZ composite electrode is conventionally used for solid oxide fuel cell and solid oxide electrolysis cell. In the present study we report on high performing nanostructured Ni:CGO electrocatalyst coated A site deficient Lanthanum doped Strontium Titanate (La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3) based anodes. The anodes were incorporated into the co-sintered DTU metal supported solid oxide fuel cell design and large sized 12 cm × 12 cm cells were fabricated. The titanate material showed good processing characteristics and surface wetting properties towards the Ni:CGO electrocatalyst coating. The cell performances were evaluated on single cell level (active area 16 cm2) and a power density at 0.7 V and 700 °C of 0.650 Wcm-2 with a fuel utilization of 31% was achieved. Taking the temperature into account the performances of the studied anodes are among the best reported for redox stable and corrosion resistant alternatives to the conventional Ni:YSZ composite solid oxide cell electrode.

  2. Thickness dependence of La0.7Sr0.3MnO3/PbZr0.2Ti0.8O3 magnetoelectric interfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Jinling; Tra, Vu Thanh; Dong, Shuai; Trappen, Robbyn; Marcus, Matthew A.; Jenkins, Catherine; Frye, Charles; Wolfe, Evan; White, Ryan; Polisetty, Srinivas; Lin, Jiunn-Yuan; LeBeau, James M.; Chu, Ying-Hao; Holcomb, Mikel Barry

    2015-10-01

    Magnetoelectric materials have great potential to revolutionize electronic devices due to the coupling of their electric and magnetic properties. Thickness varying La0.7Sr0.3MnO3 (LSMO)/PbZr0.2Ti0.8O3 (PZT) heterostructures were built and measured in this article by valence sensitive x-ray absorption spectroscopy. The sizing effects of the heterostructures on the LSMO/PZT magnetoelectric interfaces were investigated through the behavior of Mn valence, a property associated with the LSMO magnetization. We found that Mn valence increases with both LSMO and PZT thickness. Piezoresponse force microscopy revealed a transition from monodomain to polydomain structure along the PZT thickness gradient. The ferroelectric surface charge may change with domain structure and its effects on Mn valence were simulated using a two-orbital double-exchange model. The screening of ferroelectric surface charge increases the electron charges in the interface region, and greatly changes the interfacial Mn valence, which likely plays a leading role in the interfacial magnetoelectric coupling. The LSMO thickness dependence was examined through the combination of two detection modes with drastically different attenuation depths. The different length scales of these techniques' sensitivity to the atomic valence were used to estimate the depth dependence Mn valence. A smaller interfacial Mn valence than the bulk was found by globally fitting the experimental results.

  3. Structural and magnetic characterization of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} nanoparticles prepared via a facile microwave-assisted method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, J., E-mail: j_moradi@yahoo.com; Ghazi, M.E.; Ehsani, M.H., E-mail: mhe_ehsani@yahoo.com

    2014-07-01

    Nanoparticles of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSMO) with different particle sizes are synthesized by a very fast, inexpensive, reproducible, and environmentally friendly method: the microwave irradiation of the corresponding mixture of nitrates. The structural and magnetic properties of the samples are investigated by the X-Ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and magnetic (DC magnetization and AC susceptibility) measurements. The XRD study coupled with the Rietveld refinement show that all samples crystallize in a rhombohedral structure with the space group of R−3C. The FT-IR spectroscopy and FE-SEM images indicate formationmore » of the perovskite structure of LSMO. The DC magnetization measurements confirm the decrease in the particle size effects on the magnetic properties, e.g. reduction in the ferromagnetic (FM) moment and increase in the surface spin disorder. Magnetic dynamics of the samples studied by AC magnetic susceptibility shows that the magnetic behavior of the nanometer-sized samples is well-described by the Vogel-Fulcher and critical slowing down laws. Strong interaction between magnetic nanoparticles of LSMO was detected by fitting the experimental data with the mentioned models. - Graphical abstract: Temperature dependence of the magnetization M(T) was measured in the zero-field-cooling (ZFC) and field-cooling (FC) modes at the applied magnetic field of 100 Oe for the La{sub 0.8}Sr{sub 0.2}MnO{sub 3} with different size prepared via a facile microwave-assisted method. - Highlights: • Nanoparticles of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} were synthesized by the microwave irradiation process. • The structural studies show that all samples crystallize in a rhombohedral structure with space group of R−3C. • The DC magnetic studies confirm tuning of the magnetic properties due to the particle size effects.

  4. Potentiometric NO2 Sensors Based on Thin Stabilized Zirconia Electrolytes and Asymmetric (La0.8Sr0.2)0.95MnO3 Electrodes

    PubMed Central

    Zou, Jie; Zheng, Yangong; Li, Junliang; Zhan, Zhongliang; Jian, Jiawen

    2015-01-01

    Here we report on a new architecture for potentiometric NO2 sensors that features thin 8YSZ electrolytes sandwiched between two porous (La0.8Sr0.2)0.95MnO3 (LSM95) layers—one thick and the other thin—fabricated by the tape casting and co-firing techniques. Measurements of their sensing characteristics show that reducing the porosity of the supporting LSM95 reference electrodes can increase the response voltages. In the meanwhile, thin LSM95 layers perform better than Pt as the sensing electrode since the former can provide higher response voltages and better linear relationship between the sensitivities and the NO2 concentrations over 40–1000 ppm. The best linear coefficient can be as high as 0.99 with a sensitivity value of 52 mV/decade as obtained at 500 °C. Analysis of the sensing mechanism suggests that the gas phase reactions within the porous LSM95 layers are critically important in determining the response voltages. PMID:26205270

  5. FAST TRACK COMMUNICATION: Mechanical, electrical and micro-structural properties of La0.6Sr0.4Co0.2Fe0.8O3 perovskite-based ceramic foams

    NASA Astrophysics Data System (ADS)

    Gupta, Ravindra K.; Kim, Eun Yi; Noh, Ho Sung; Whang, Chin Myung

    2008-02-01

    Mechanical, electrical and micro-structural properties of new electronic conducting ceramic foams are reported. Ceramic foams are prepared using the slurry of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) by the polymeric sponge method, which is followed by spray coating for increasing the number of coatings-sinterings on polyurethane foams of 30, 45 and 60 ppi (pores per linear inch). An increase in the number of coatings-sinterings and ppi improved the compressive strength, density and electrical conductivity by decreasing the porosity to ~76%, as also observed by the SEM study. The three-times coated-sintered ceramic foams (60 ppi) exhibited optimum values of compressive strength of ~1.79 MPa and relative density of ~0.24 at 25 °C and electrical conductivity of ~22 S cm-1 at 600 °C with an activation energy of ~0.22 eV indicating its suitability as a solid oxide fuel cell current collector. The experimental results are discussed in terms of the Gibson and Ashby theoretical model.

  6. Spin glass-like properties and exchange bias in La1.5Sr0.5CoIrO6

    NASA Astrophysics Data System (ADS)

    Coutrim, L. T.; Bittar, E. M.; Baggio-Saitovitch, E.; Bufaiçal, L.

    2017-11-01

    In this work we report the synthesis and investigation of magnetic properties of La1.5Sr0.5CoIrO6. Study of temperature dependent magnetization on this double-perovskite compound revealed two anomalies at T ≃ 88 K and T ≃ 68 K, probably related to antiferromagnetic and ferromagnetic couplings of Co and Ir ions, respectively. At T ≃ 27 K there is another anomaly, which was confirmed by means of ac magnetic susceptibility measurements to be related to the emergence of a spin glass(SG)-like phase. Magnetization as a function of applied magnetic field measurements revealed exchange bias effect of the same order of magnitude of that found for La1.5Ca0.5CoIrO6 analogue compound. We compare our results for La1.5Sr0.5CoIrO6 with those reported for La1.5Ca0.5CoIrO6, and discuss the magnetic properties of both materials in terms of their structural and electronic properties.

  7. Microstructure optimization for high-performance PrBa0.5Sr0.5Co1.5Fe0.5O5+δ-La2NiO4+δ core-shell cathode of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Jin; Qiu, Peng; Xia, Meng; Jia, Lichao; Chi, Bo; Pu, Jian; Li, Jian

    2018-03-01

    Four PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF)-La2NiO4+δ (LN) core-shell cathodes, designated as PL-0, PL-1, PL-3 and PL-5, are prepared by infiltrating LN solution into PBSCF scaffold, and they are investigated in terms of the effect of LN thickness on their electrochemical performance. PL-3 with a continuous LN coating of a moderate average thickness (∼9 nm) demonstrates the lowest initial polarization resistance (0.51 Ω cm2) and highest power density (0.71 W cm-2) among all the cathodes. Polarized at 400 mA cm-2 and 700 °C for up to 40 h, the polarization resistance of all the prepared cathodes increases to approach a stable level after early stage decrease due to current activation, and PL-3 exhibits a slower average rate of performance degradation (25%). The electrochemical performance improvement is mainly attributed to that LN has a relatively high oxygen surface exchange coefficient and continuous LN coating depresses Sr segregation at PBSCF/LN interface.

  8. Photoresponse in La0.9Hf0.1MnO3/0.05wt%Nb-doped SrTiO3 heteroepitaxial junctions

    NASA Astrophysics Data System (ADS)

    Qi, Yaping; Ni, Hao; Zheng, Ming; Zeng, Jiali; Jiang, Yucheng; Gao, Ju

    2018-05-01

    Excellent photo detectors need to have the rapid response and good repeatability from the requirement of industrial applications. In this paper, transport behavior and opto-response of heterostructures made with La0.9Hf0.1MnO3 and 0.05wt%Nb-doped SrTiO3 were investigated. The heterojunctions exhibited an excellent rectifying feature with very low leakage in a broad temperature region (from 40 to 300 K). These thin films presented persistent and stable photovoltages upon light illumination. Rapid shift between small and large voltages corresponding to "light OFF" and "light ON" states, respectively, was observed, demonstrating reliable photo detection behavior. A semiconductor laser with a wavelength of 650 nm was used as the light source. It is also noted that the observed photovoltages are strongly determined by light intensity. The injection of photoexcited charge carriers (electrons) could be responsible for the appearance of the observed opto-response. Such manipulative features by light irradiation exhibit great potential for light detectors for visible light.

  9. Enhanced tunability of magnetron sputtered Ba0.5Sr0.5TiO3 thin films on c-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Fardin, E. A.; Holland, A. S.; Ghorbani, K.; Reichart, P.

    2006-07-01

    Thin films of Ba0.5Sr0.5TiO3 (BST) were deposited on c-plane (0001) sapphire by rf magnetron sputtering and investigated by complementary materials analysis methods. Microwave properties of the films, including tunability and Q factor were measured from 1to20GHz by patterning interdigital capacitors (IDCs) on the film surface. The tunability is correlated with texture, strain, and grain size in the deposited films. An enhanced capacitance tunability of 56% at a bias field of 200kV/cm and total device Q of more than 15 (up to 20GHz) were achieved following postdeposition annealing at 900°C.

  10. Fabrication and electrical properties of (111) textured (Ba0.6Sr0.4)TiO3 film on platinized Si substrate

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Liu, Baoting; Wei, Feng; Yang, Zhimin; Du, Jun

    2007-01-01

    The authors report the fabrication of (Ba0.6Sr0.4)TiO3 (BST) film on Pt /Si(001) substrate without Ti adhesion layer by magnetron sputtering. X-ray diffraction technique is used to characterize the orientation and phase purity of BST/Pt heterostructure. It is found that both BST and Pt films are (111) textured. The (111) BST films are observed to have high tunability of 49.4%; the dielectric constant and dielectric loss of the BST film are about 682 and 0.015, respectively. The leakage current density of BST film agrees well with the space-charge-limited current theory at room temperature and is only 3.90×10-8A/cm2 at 455kV/cm.

  11. Ordered vs. disordered perovskites; structural studies of Fe-doped SrIrO{sub 3} and SrRuO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qasim, Ilyas; Blanchard, Peter E.R.; Liu, Samuel

    2013-10-15

    The structures of the two Fe containing perovskites Sr{sub 2}IrFeO{sub 6} and SrRu{sub 0.5}Fe{sub 0.5}O{sub 3} have been established using a combination of synchrotron and neutron diffraction methods. Sr{sub 2}IrFeO{sub 6} and SrRu{sub 0.5}Fe{sub 0.5}O{sub 3} are shown to be monoclinic I2/m and tetragonal I4/mcm respectively The former exhibits a rock-salt like ordering of the Fe and Ir cations and displays a sequence of phase transitions associated with the loss of the octahedral tilts upon heating; 12/m→I4/m→Fm3{sup ¯}m. The Fe and Ru cations are disordered in SrRu{sub 0.5}Fe{sub 0.5}O{sub 3} and this shows a single structural phase transition upon heatingmore » due to the loss of the in-phase tilts, viz. I4/mcm→Pm3{sup ¯}m. In both cases XANES measurements show partial oxidation of the Fe{sup 3+} to Fe{sup 4+}. The difference in the structures between the two is remarkable given the similar size of Ir{sup 5+} and Ru{sup 5+}, and this is reflected in their magnetic properties. - Graphical abstract: Sr{sub 2}IrFeO{sub 6} and SrRu{sub 0.5}Fe{sub 0.5}O{sub 3} are shown, using a combination of synchrotron and neutron diffraction, to be monoclinic I2/m with cation ordering and tetragonal I4/mcm with disordered Fe and Ir, respectively. Both undergo phase transitions upon heating due to the loss of the octahedral tilts. Display Omitted - Highlights: • Sr{sub 2}IrFeO{sub 6} shown to be monoclinic and shows the transitions upon heating I2/m→I4/m→ Fm3{sup ¯}m. • SrRu{sub 0.5}Fe{sub 0.5}O{sub 3} is tetragonal and shows a single I4/mcm→Pm3m transition upon heating. • The Fe and Ru cations are disordered in SrRu{sub 0.5}Fe{sub 0.5}O{sub 3} but ordered in Sr{sub 2}FeIrO{sub 6}. • XANES measurements show partial oxidation of the Fe{sup 3+} to Fe{sup 4+}.« less

  12. Degradation of (La(0.8)Sr(0.2))(0.98)MnO(3-δ)-Zr(0.84)Y(0.16)O(2-γ) composite electrodes during reversing current operation.

    PubMed

    Hughes, Gareth A; Railsback, Justin G; Yakal-Kremski, Kyle J; Butts, Danielle M; Barnett, Scott A

    2015-01-01

    Reversing-current operation of solid oxide cell (La(0.8)Sr(0.2))(0.98)MnO(3-δ)-Zr(0.84)Y(0.16)O(2-γ) (LSM-YSZ) oxygen electrodes is described. Degradation was characterized by impedance spectroscopy in symmetric cells tested at 800 °C in air with a symmetric current cycle with a period of 12 hours. No change in cell resistance could be detected, in 1000 h tests with a sensitivity of ∼1% per kh, at a current density of 0.5 A cm(-2) corresponding to an overpotential of 0.18 V. At a current density to 0.6 A cm(-2) (0.33 V overpotential) measurable resistance degradation at a rate of 3% per kh was observed, while higher current/overpotential values led to faster degradation. Degradation was observed mainly in the ohmic resistance for current densities of 0.6, 0.8 and 0.9 A cm(-2), with little change in the polarization resistance. Polarization degradation, mainly observed at higher current density, was present as an increase in an impedance response at ∼30 kHz, apparently associated with the resistance of YSZ grain boundaries within the electrode. Microstructural and chemical analysis showed significant changes in electrode structure after the current cycling, including an increase in LSM particle size and a reduction in the amount of YSZ and LSM at the electrode/electrolyte interface - the latter presumably a precursor to delamination.

  13. Strain driven anisotropic magnetoresistance in antiferromagnetic La0.4Sr0.6MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Ward, T. Zac; Wong, A. T.; Takamura, Yayoi; Herklotz, Andreas

    2015-03-01

    Antiferromagnets (AFM) are a promising alternative to ferromagnets (FM) in spintronic applications. The reason stems from the fact that at high data storage densities stray fields could destroy FM set states while AFMs would be relatively insensitive to this data corruption. This work presents the first ever example of antiferromagnetic La0.4Sr0.6MnO3 thin films stabilized in different strain states. Strain is found to drive different types of AFM ordering, and these variations in ordering type are shown to have a profound impact on both the magnitude and character of the materials' resistive response to magnetic field direction, or anisotropic magnetoresistance (AMR) behavior (one standard of spintronic suitability). The compressively strained film shows the highest recorded AMR response in an ohmic AFM device of 63%, while the tensile strained film shows a typical AFM AMR of 0.6%. These findings demonstrate the necessity of understanding electron ordering in AFM spintronic applications and provide a new benchmark for AMR response. This work was supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division.

  14. Extreme sensitivity of magnetic properties on the synthesis routes in La{sub 0.7}Sr{sub 0.3}MnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Ashutosh, E-mail: ashutosh.pph13@iitp.ac.in; Sharma, Himanshu; Tomy, C. V.

    2016-05-06

    La{sub 0.7}Sr{sub 0.3}MnO{sub 3} polycrystalline samples have been prepared using different synthesis routes. X-ray Diffraction (XRD) confirms that the samples are of single phase with R-3c space group. The surface morphology and particle size has been observed using Field Emission Scanning Electron Microscopy (FESEM). Magnetic measurement shows that the magnetization in the materials are affected by low crystallite size which destroys the spin ordering due to strain at grain boundaries and this also leads to reduction in magnetization as well as high coercivity in the material.

  15. The Effect of Oxygen Flow on the Transition Temperature of Hg0.75Pb0.25Sr2-yBayCa2Cu3O8+ δ Superconductors

    NASA Astrophysics Data System (ADS)

    Jasim, Kareem A.; Al-Khafaji, Raghad S.

    2018-05-01

    In this paper, there are three different high temperature superconductors which are Hg0.75Pb0.25Sr2-y BayCa2Cu3O8+δ with deferent weight fractions y = 0.10, 0.20 and 0.25 that have been prepared successfully by solid state reaction and the samples have been equipped with/without O2 flow. The optimum calcinations is 1073 K and the sintering process that has been achieved within 1128-1133 K. Transition temperature Tc has been found by using four probe technique through electrical resistivity measurements. The greatest Tc that has been found for Hg0.75Pb0.25Sr1.75 Ba0.25Ca2Cu3O8.31 is 115 oK. Oxygen content (O2) flow exhibits high-phased superconductors that is similar to the samples prepared without O2. Investigation of X-ray diffraction (XRD) is revealed (tetragonal structure) by the c-axis lattice parameter increasing of the samples substituted with Ba. It has been established, from the calculated results, that the Ba variation concentrations of all samples products a modification in the density (ρm), (c/a) and volume fraction (VPh(2223)).

  16. A-site deficient La0.2Sr0.7TiO3-δ anode material for proton conducting ethane fuel cell to cogenerate ethylene and electricity

    NASA Astrophysics Data System (ADS)

    Liu, Subiao; Behnamian, Yashar; Chuang, Karl T.; Liu, Qingxia; Luo, Jing-Li

    2015-12-01

    A site deficient La0.2Sr0.7TiO3-δ (LSTA) and a highly proton conductive electrolyte BaCe0.7Zr0.1Y0.2O3-δ (BCZY) are synthesized by using solid state reaction method. The performance of the electrolyte-supported single cell, comprised of LSTA + Cr2O3 + Cu//BCZY//(La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ (LSCF)+BCZY, is fabricated and investigated. LSTA shows remarkably high electrical performance, with a conductivity as high as 27.78 Scm-1 at 1150 °C in a 10% H2/N2 reducing atmosphere. As a main anode component, it shows good catalytic activity towards the oxidation of ethane, causing the power density to considerably increase from 158.4 mW cm-2 to 320.9 mW cm-2 and the ethane conversion to significantly rise from 12.6% to 30.9%, when the temperature increases from 650 °C to 750 °C. These changes agree well with the polarization resistance which dramatically decreases from 0.346 Ωcm2 to 0.112 Ωcm2. EDX measurement shows that no element diffusion exists (chemical compatibility) between anode (LSTA + Cr2O3+Cu) and electrolyte (BCZY). With these properties, the pure phase LSTA is evaluated as a high electro-catalytic activity anode material for ethane proton conducting solid oxide fuel cell (PC-SOFC).

  17. Nature and Significance of the High-Sr Aleutian Lavas

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Arndt, S.; Turka, J. R.; Kelemen, P. B.; Vervoort, J. D.; Portnyagin, M.; Hoernle, K.

    2011-12-01

    Results of the Western Aleutian Volcano Expedition and German-Russian KALMAR cruises include the discovery of seafloor volcanism at the Ingenstrem Depression and at unnamed seamounts 300 km west of Buldir, the westernmost emergent volcano in the Aleutian arc. These discoveries indicate that the surface expression of active Aleutian volcanism goes below sea level just west of Buldir, but is otherwise continuous along the full length of the arc. Many lavas dredged from western Aleutian seamounts are basalts, geochemically similar to basalts from elsewhere in Aleutians and other arcs (La/Yb 4-8, Sr/Y<30, 87Sr/86Sr=0.7031-0.7033). Western Aleutian dredge samples also include high-Sr lavas (>700 ppm Sr), which are mostly plagioclase-hornblende andesites and dacites with low Y and middle-heavy rare-earth elements, fractionated trace element patterns (Sr/Y=50-200, La/Yb=9-25) and MORB-like isotopes (87Sr/86Sr < 0.7028). The endmember Sr-rich lavas are magnesian rhyodacites (SiO2~68%, Mg# >0.65) with 1250-1700 ppm Sr, 4-7 ppm Y, low abundances of all rare-earth elements (La<7 ppm, Yb<0.4 ppm) and 87Sr/86Sr < 0.70266. The high silica and primitive (high Mg#) character of the high-Sr lavas, combined with their strongly fractionated trace element patterns and MORB-like isotopes are consistent with a source predominantly of subducted basalt and a melt residue that contained garnet. The high-Sr lavas have some characteristics of MORB fluids (low Ce/Pb and unradiogenic Pb), and their highly calc-alkaline nature implies high pre-eruptive water contents[1], but low 87Sr/86Sr indicates that their source was in MORB, not seawater-altered MORB. The high-Sr endmember is clearly present in andesites from some emergent volcanoes in the western Aleutians, and mixing arrays indicate that it may be present in all Aleutian lavas (e.g., 87Sr/86Sr vs. La/Yb or Sr/Y); however, radiogenic Pb and Sr from subducted sediment renders the high-Sr endmember isotopically invisible in most central and

  18. Scintillation properties of a 2-inch diameter KCa0.8Sr0.2I3:Eu2+ single crystal

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Lindsey, Adam C.; Loyd, Matthew; Stand, Luis; Zhuravleva, Mariya; Koschan, Merry; Melcher, Charles L.

    2017-09-01

    Inch-sized scintillating crystals are required for practical radiation detectors such as hand-held radio-isotope identification devices. In this work, a transparent and colorless 2-inch diameter KCa0.8Sr0.2I3: 0 . 5 mo% Eu2+ single crystal was grown by the vertical Bridgman method, and the scintillation properties of a ∅ 50 mm × 45 mm long sample were evaluated. The Eu2+ 5d1- 4 f emission under X-ray excitation is centered at 472 nm. Its scintillation decay time under 137 Cs source irradiation is 2 . 37 μs, and the absolute light output is 51,000 ± 3000 photons/MeV. The energy resolution at 662 keV was evaluated for different orientations of the crystals with respect to the PMT, and the effect of 40 K background subtraction on energy resolution was evaluated. The performance of the packaged crystal was also investigated.

  19. Tunable thermodynamic activity of La x Sr1-x Mn y Al1-y O3-δ (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) perovskites for solar thermochemical fuel synthesis.

    PubMed

    Ezbiri, M; Takacs, M; Theiler, D; Michalsky, R; Steinfeld, A

    2017-02-28

    Nonstoichiometric metal oxides with variable valence are attractive redox materials for thermochemical and electrochemical fuel processing. To guide the design of advanced redox materials for solar-driven splitting of CO 2 and/or H 2 O to produce CO and/or H 2 (syngas), we investigate the equilibrium thermodynamics of the La x Sr 1- x Mn y Al 1- y O 3- δ perovskite family (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) and La 0.6 Ca 0.4 Mn 0.8 Al 0.2 O 3- δ , and compare them to those of CeO 2 as the baseline. Oxygen nonstoichiometry measurements from 1573 to 1773 K and from 0.206 to 180 mbar O 2 show a tunable reduction extent, increasing with increasing Sr content. Maximal nonstoichiometry of 0.32 is established with La 0.2 Sr 0.8 Mn 0.8 Al 0.2 O 3- δ at 1773 K and 2.37 mbar O 2 . As a trend, we find that oxygen capacities are most sensitive to the A-cation composition. Partial molar enthalpy, entropy and Gibbs free energy changes for oxide reduction are extracted from the experimental data using defect models for Mn 4+ /Mn 3+ and Mn 3+ /Mn 2+ redox couples. We find that perovskites exhibit typically decreasing enthalpy changes with increasing nonstoichiometries. This desirable characteristic is most pronounced by La 0.6 Sr 0.4 Mn 0.4 Al 0.6 O 3- δ , rendering it attractive for CO 2 and H 2 O splitting. Generally, perovskites show lower enthalpy and entropy changes than ceria, resulting in more favorable reduction but less favorable oxidation equilibria. The energy penalties due to larger temperature swings and excess oxidants are discussed in particular. Using electronic structure theory, we conclude with a practical methodology estimating thermodynamic activity to rationally design perovskites with variable stoichiometry and valence.

  20. X-ray absorption and magnetic circular dichroism of LaCoO3 , La0.7Ce0.3CoO3 , and La0.7Sr0.3CoO3 films: Evidence for cobalt-valence-dependent magnetism

    NASA Astrophysics Data System (ADS)

    Merz, M.; Nagel, P.; Pinta, C.; Samartsev, A.; v. Löhneysen, H.; Wissinger, M.; Uebe, S.; Assmann, A.; Fuchs, D.; Schuppler, S.

    2010-11-01

    Epitaxial thin films of undoped LaCoO3 , of electron-doped La0.7Ce0.3CoO3 , and of hole-doped La0.7Sr0.3CoO3 exhibit ferromagnetic order with a transition temperature TC≈84K , 23 K, and 194 K, respectively. The spin-state structure for these compounds was studied by soft x-ray magnetic circular dichroism and by near-edge x-ray absorption fine structure at the CoL2,3 and OK edges. It turns out that superexchange between Co3+ high-spin and Co3+ low-spin states is responsible for the ferromagnetism in LaCoO3 . For La0.7Ce0.3CoO3 the Co3+ ions are in a low-spin state and the spin and orbital moments are predominantly determined by a Co2+ high-spin configuration. A spin blockade naturally explains the low transition temperature and the insulating characteristics of La0.7Ce0.3CoO3 . For La0.7Sr0.3CoO3 , on the other hand, the magnetic moments in the epitaxial films originate from high-spin Co3+ and high-spin Co4+ states. Ferromagnetism is induced by t2g double exchange between the two high-spin configurations. For all systems, a strong magnetic anisotropy is observed, with the magnetic moments essentially oriented within the film plane.

  1. Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry.

    PubMed

    Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas

    2007-07-01

    This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.

  2. A novel family of Nb-doped Bi0.5Sr0.5FeO3-δ perovskite as cathode material for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Li, Qiang; Sun, Liping; Zhang, Xianfa; Huo, Lihua; Zhao, Hui; Grenier, Jean-Claude

    2017-12-01

    Cobalt-free provskite oxides Bi0.5Sr0.5Fe1-xNbxO3-δ (BSFNx, x = 0.05, 0.10 and 0.15) were prepared and evaluated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). In particular, the effects of Nb substitution on phase evolution, thermal expansion behavior and electrochemical performance were systematically investigated. The average thermal expansion coefficient (TEC) of BSFNx decreases from 13.3 × 10-6 K-1 at x = 0.05 to 12.6 × 10-6 K-1 at x = 0.15 within a temperature range of 50-800 °C. Among the BSFNx materials, Bi0.5Sr0.5Fe0.9Nb0.1O3-δ (BSFN0.10) oxide shows the best electrochemical performance. The polarization resistances (Rp) of BSFN0.10 cathode on CGO electrolyte are 0.038, 0.075 and 0.156 Ω cm2 at 700, 650 and 600 °C, respectively. Meanwhile the maximum power densities of the anode-supported single cells are 1.28, 1.54 and 1.34 W cm-2 at 700 °C for BSFNx cathodes with x = 0.05, 0.10, and 0.15, respectively. Furthermore, the relationship study of oxygen partial pressure dependence on Rp indicates that the oxygen reduction reaction (ORR) rate-limiting step is the oxygen adsorption-dissociation on the electrode surface. The desirable electrochemical performance demonstrates that BSFNx oxides are potential cathode materials for IT-SOFCs.

  3. Strain-induced tetragonal distortions and multiferroic properties in polycrystalline Sr1 -xB axMn O3 (x =0.43 -0.45 ) perovskites

    NASA Astrophysics Data System (ADS)

    Somaily, H.; Kolesnik, S.; Mais, J.; Brown, D.; Chapagain, K.; Dabrowski, B.; Chmaissem, O.

    2018-05-01

    We report the structure-property phase diagram of unique single-ion type-1 multiferroic pseudocubic Sr1 -xB axMn O3 perovskites. Employing a specially designed multistep reduction-oxidation synthesis technique, we have synthesized Sr1 -xB axMn O3 compositions in their polycrystalline form with a significantly extended Ba solubility limit that is only rivaled by a very limited number of crystals and thin films grown under nonequilibrium conditions. Understanding the multiferroic interplay with structure in Sr1 -xB axMn O3 is of great importance as it opens the door wide to the development of newer materials from the parent (A A' ) (B B' ) O3 system with enhanced properties. To this end, using a combination of time-of-flight neutron and synchrotron x-ray scattering techniques, we determined the exact structures and quantified the Mn and oxygen polar distortions above and below the ferroelectric Curie temperature TC and the Néel temperature TN. In its ferroelectric state, the system crystalizes in the noncentrosymmetric tetragonal P 4 m m space group, which gives rise to a large electric dipole moment Ps, in the z direction, of 18.4 and 29.5 μ C /c m2 for x =0.43 and 0.45, respectively. The two independently driven ferroelectric and magnetic order parameters are single-handedly accommodated by the Mn sublattice leading to a novel strain-assisted multiferroic behavior in agreement with many theoretical predictions. Our neutron diffraction results demonstrate the large and tunable suppression of the ferroelectric order at the onset of AFM ordering and confirm the coexistence and strong coupling of the two ferroic orders below TN. The refined magnetic moments confirm the strong covalent bonding between Mn and the oxygen anions, which is necessary for stabilizing the ferroelectric phase.

  4. Rare earth elements and (87)Sr/(86)Sr isotopic characterization of Indian Basmati rice as potential tool for its geographical authenticity.

    PubMed

    Lagad, Rupali A; Singh, Sunil K; Rai, Vinai K

    2017-02-15

    The increasing demand for premium priced Indian Basmati rice (Oryza sativa) in world commodity market causing fraudulent activities like adulteration, mislabelling. In order to develop authentication method for Indian Basmati rice, (87)Sr/(86)Sr ratios and REEs composition of Basmati rice, soil and water samples were determined and evaluated their ability as geographical tracer in the present study. In addition, the possible source of Sr in rice plant has also been examined. Basmati rice samples (n=82) showed (87)Sr/(86)Sr ratios in the range 0.71143-0.73448 and concentrations of 10 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Yb) in ppb levels. Statistical analysis showed strong correlation between (87)Sr/(86)Sr ratios of rice, silicate and carbonate fractions of soil. Good correlation and closeness of (87)Sr/(86)Sr of rice with water indicate its uptake in rice from water. Rice grown in southern Uttar Pradesh contains higher (87)Sr/(86)Sr compared to other region of Indo-Gangetic Plain due to higher (87)Sr/(86)Sr of the Ganga compared to other rivers. (87)Sr/(86)Sr ratios can be used as a tracer for differentiating Indian Basmati rice from the other country originated rice samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Prediction of La0.6Sr0.4Co0.2Fe0.8O3 cathode microstructures during sintering: Kinetic Monte Carlo (KMC) simulations calibrated by artificial neural networks

    NASA Astrophysics Data System (ADS)

    Yan, Zilin; Kim, Yongtae; Hara, Shotaro; Shikazono, Naoki

    2017-04-01

    The Potts Kinetic Monte Carlo (KMC) model, proven to be a robust tool to study all stages of sintering process, is an ideal tool to analyze the microstructure evolution of electrodes in solid oxide fuel cells (SOFCs). Due to the nature of this model, the input parameters of KMC simulations such as simulation temperatures and attempt frequencies are difficult to identify. We propose a rigorous and efficient approach to facilitate the input parameter calibration process using artificial neural networks (ANNs). The trained ANN reduces drastically the number of trial-and-error of KMC simulations. The KMC simulation using the calibrated input parameters predicts the microstructures of a La0.6Sr0.4Co0.2Fe0.8O3 cathode material during sintering, showing both qualitative and quantitative congruence with real 3D microstructures obtained by focused ion beam scanning electron microscopy (FIB-SEM) reconstruction.

  6. Assessing Covariation of Holocene Monsoon Intensity and Local Moisture Conditions in Eastern and Southwestern Amazon Basin Using Speleothem δ18O and 87Sr/86Sr Values

    NASA Astrophysics Data System (ADS)

    Ward, B. M.; Wong, C. I.; Novello, V. F.; Silva, L.; McGee, D.; Cheng, H.; Wang, X.; Edwards, R. L.; Cruz, F. W., Sr.; Santos, R. V.

    2017-12-01

    δ18O records from South America offer insight into past variability of the South American Monsoon System (SAMS). Potential, however, for understanding local moisture conditions is limited as precipitation δ18O is strongly influenced by regional climate dynamics. Here we create Holocene speleothem 87Sr/86Sr records at 200-yr resolution using TIMS methods in the Center for Isotope Geochemistry at Boston College to complement existing Holocene δ18O speleothem records and investigate local moisture conditions above caves located in the eastern Amazon Basin (PAR - 4°S, 55°W) and southwestern Brazil (JAR - 21°S, 56°W). Speleothem 87Sr/86Sr variability is interpreted to reflect differences in the extent of water-rock interaction due to differences in infiltration rates under wet and dry conditions. Drier conditions promote longer residence time, enhanced water-rock interaction, and greater evolution of dripwater 87Sr/86Sr values from an initial isotopic signature acquired from the soil to the signature of the cave host rock. PAR speleothem 87Sr/86Sr values range from 0.71024 to 0.71067 and are bracketed by soil (0.71710 to 0.70956) and bedrock (0.70852 to 0.70899) values. JAR speleothem 87Sr/86Sr values range from 0.71216 to 0.71539 and are greater than bedrock values (0.70825 to 0.71219), although some speleothem values exceed the single analysis conducted of the soil isotopic composition (0.71473). JAR speleothem 87Sr/86Sr values increase from the early to mid Holocene, consistent with increase in local moisture availability associated with intensification of the SAMS suggested by decreasing δ18O values in many records from the region. Speleothem 87Sr/86Sr values at JAR decrease from the mid to late Holocene, consistent with an increase in δ18O values at PAR that suggest a decline in monsoon intensity. 87Sr/86Sr variability at JAR, however, is positively correlated with the δ18O record. Preliminary 87Sr/86Sr results from PAR are only broadly consistent with

  7. Magnetic interactions in La0.7Sr0.3Mn1-xMexO3 (Me=Ga, Fe, Cr) manganites

    NASA Astrophysics Data System (ADS)

    Troyanchuk, I. O.; Bushinsky, M. V.; Karpinsky, D. V.; Tereshko, N. V.; Dobryansky, V. M.; Többens, D. M.; Sikolenko, V.; Efimov, V.

    2015-11-01

    Magnetic properties and crystal structure of La0.7Sr0.3Mn1-xMexO3 (Me=Ga, Fe, Cr; x≤0.3) have been studied by neutron powder diffraction and magnetization measurements. It is shown that substitution of manganese ions by chromium or gallium ions (x=0.3) leads to phase separation into antiferromagnetic and ferromagnetic phases whereas replacement by Fe ions stabilizes spin glass state (x=0.3). Ferromagnetic interactions in Cr-substituted compounds are much more pronounced than in Fe- and Ga-doped ones. Magnetic properties are discussed in the model assuming a dominance of superexchange interactions. It is considered that ferromagnetism in the Cr-substituted compositions is associated with nearly equal contributions from positive and negative components of the superexchange interaction between Mn3+ and Cr3+ ions as well as to mixed valence of chromium ions. The spin glass state observed for the Fe-doped sample (x=0.3) is associated with strong antiferromagnetic superexchange between Fe3+-O-Fe3+ and Fe3+-O-(Mn3+, Mn4+).

  8. Preparation of thin-film (Ba(0.5),Sr(0.5))TiO3 by the laser ablation technique and electrical properties

    NASA Astrophysics Data System (ADS)

    Yoon, Soon-Gil; Lee, Jai-Chan; Safari, A.

    1994-09-01

    The chemical composition and electrical properties were investigated for epitaxially crystallized (Ba(0.5),Sr(0.5))TiO3 (BST) films deposited on Pt/MgO and YBa2Cu3O(7-x) (YBCO)/MgO substrates by the laser ablation technique. Rutherford backscattering spectroscopy analysis shows that thin films on Pt/MgO have almost the same stoichiometric composition as the target material. Films deposited at 600 C exhibited an excellent epitaxial growth, a dielectric constant of 430, and a dissipation factor of 0.02 at 10 kHz frequency. They have a charge storage density of 40 fC/sq micron at an applied electric field of 0.15 MV/cm. Leakage current density of BST thin films on Pt/MgO was smaller than on YBCO/MgO. Their leakage current density is about 0.8 microA/sq cm at an applied electric field of 0.15 MV/cm.

  9. Ferroelectricity-induced resistive switching in Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3/Nb-doped SrTiO3 epitaxial heterostructure

    NASA Astrophysics Data System (ADS)

    Md. Sadaf, Sharif; Mostafa Bourim, El; Liu, Xinjun; Hasan Choudhury, Sakeb; Kim, Dong-Wook; Hwang, Hyunsang

    2012-03-01

    We investigated the effect of a ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin film on the generation of resistive switching in a stacked Pr0.7Ca0.3MnO3 (PCMO)/Nb-doped SrTiO3 (Nb:STO) heterostructure forming a p-n junction. To promote the ferroelectric effect, the thin PZT active layer was deposited on an epitaxially grown p-type PCMO film on a lattice-matched n-type Nb:STO single crystal. It was concluded that the observed resistive switching behavior in the all-perovskite Pt/PZT/PCMO/Nb:STO heterostructure was related to the modulation of PCMO/Nb:STO p-n junction's depletion width, which was caused either by the PZT ferroelectric polarization field effect, the electrochemical drift of oxygen ions under an electric field, or both simultaneously.

  10. The effect of secondary apatite on the initial 87Sr/86Sr ratio determination in granitic rocks: a case study of the Tadamigawa pluton, northeastern Japan

    NASA Astrophysics Data System (ADS)

    Wakasugi, Y.; Ichino, K.; Tanioka, Y.; Wakaki, S.; Tsuboi, M.; Ishikawa, T.

    2017-12-01

    Apatite is a major accessory mineral in igneous rocks. Because Rb contents in apatite are very low, 87Sr/86Sr ratios of magmatic apatite are useful to estimate the initial 87Sr/86Sr ratio (SrI) of igneous rocks. Secondary post-magmatic event such as hydrothermal alteration may also crystallize secondary apatite, which may inhibit the estimation of SrI of igneous rocks. In this study, we examine the effects of secondary apatite on the initial 87Sr/86Sr ratio determination of granitic rocks by using acid leaching technique. Leached apatite samples were first separated from the whole rock powder as a heavy mineral fraction by heavy liquid technique, and the heavy mineral fraction was then leached by 3 M HNO3. The isotopic ratios of Sr and the concentrations of Rb and Sr were analyzed by TIMS and ICP-MS at Kochi Core Center, respectively. The Tadamigawa Older-stage granites, which locate in the Taishaku Mountains at the northeastern part of Japan, intrude into the Ashio Jurassic complex, and the ages of these rocks are late Cretaceous to Paleogene. The U-Pb ages of zircon and the K-Ar ages of biotite for these rocks are c. 100 Ma [1, 2]. Rb-Sr whole-rock isochron age of the pluton is 96.5 ± 1.3 Ma (SrI = 0.70534 ± 0.00003) and it is concordant with other radiometric ages. Rb-Sr mineral isochron ages range from 84.4 to 97.3 Ma and these ages are relatively younger than the Rb-Sr whole-rock isochron age. The difference among radiometric ages may reflect the difference of the closure temperature in each isotopic system. The Tadamigawa Older-stage granites have SrI for Rb-Sr mineral isochron range from 0.7053 to 0.7061 and are very similar to that (0.70534) for Rb-Sr whole-rock isochron. These may suggest that the Tadamigawa Older-stage granites are generated from same parental magma. However, 87Sr/86Sr ratios of the leached apatite samples were 0.70544-0.70856 and are relatively higher than SrI obtained from the Rb-Sr mineral isochrons (0.7053-0.7061). This result

  11. Structural Optimization for Wideband Flexoelectric Energy Harvester Using Bulk Paraelectric Ba0.6Sr0.4TiO3

    NASA Astrophysics Data System (ADS)

    Kumar, Anuruddh; Chauhan, Aditya; Vaish, Rahul; Kumar, Rajeev; Jain, Satish Chandra

    2018-01-01

    Flexoelectricity is a phenomenon which allows all crystalline dielectric materials to exhibit strain-induced polarization. With recent articles reporting giant flexoelectric coupling coefficients for various ferroelectric materials, this field must be duly investigated for its application merits. In this study, a wide-band linear energy harvesting device has been proposed using Ba0.6Sr0.4TiO3 ceramic. Both structural and material parameters were scrutinized for an optimized approach. Dynamic analysis was performed using finite element modeling to evaluate several important parameters including beam deflection, open circuit voltage and net power output. It was revealed that open circuit voltage and net power output lack correlation. Further, power output lacks a dependency on optimized width ratios, with the highest power output of 0.07 μW being observed for a width ratio of 0.33 closely followed by ratios of 0.2 and 0.5 (˜0.07 μW) each. The resulting power was generated at discrete (resonant) frequencies lacking a broadband structure. A compound design with integrated beams was proposed to overcome this drawback. The finalized design is capable of a maximum power output of >0.04 μW with an operational frequency of 90-110 Hz, thus allowing for a higher power output in a broader frequency range.

  12. Y0.08Sr0.88TiO3-CeO2 composite as a diffusion barrier layer for stainless-steel supported solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Kun Joong; Kim, Sun Jae; Choi, Gyeong Man

    2016-03-01

    A new diffusion barrier layer (DBL) is proposed for solid oxide fuel cells (SOFCs) supported on stainless-steel where DBL prevents inter-diffusion of atoms between anode and stainless steel (STS) support during fabrication and operation of STS-supported SOFCs. Half cells consisting of dense yttria-stabilized zirconia (YSZ) electrolyte, porous Ni-YSZ anode layer, and ferritic STS support, with or without Y0.08Sr0.88TiO3-CeO2 (YST-CeO2) composite DBL, are prepared by tape casting and co-firing at 1250 and 1350 °C, respectively, in reducing (H2) atmosphere. The porous YST-CeO2 layer (t ∼ 60 μm) blocks inter-diffusion of Fe and Ni, and captures the evaporated Cr during cell fabrication (1350 °C). The cell with DBL and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode achieved a maximum power density of ∼220 mW cm-2 which is stable at 700 °C. In order to further improve the power performance, Ni coarsening in anode during co-firing must be prevented or alternative anode which is resistive to coarsening is suggested. This study demonstrates that the new YST-CeO2 layer is a promising as a DBL for stainless-steel-supported SOFCs fabricated with co-firing process.

  13. Nano-domain states of strontium ferrites SrFe{sub 1−y}M{sub y}O{sub 2.5+x} (M=V, Mo; y≤0.1; x≤0.2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ancharova, Uliana V., E-mail: ancharova@gmail.com; Cherepanova, Svetlana V., E-mail: svch@catalysis.ru; Novosibirsk State University, Pirogova st., 2, Novosibirsk 630090

    Series of the oxygen-deficient strontium ferrites SrFe{sub 1−y}M{sub y}O{sub 2.5+x} (M=V, Mo, y<0.1; x<0.2) substituted with high-charged cations have been investigated by HRTEM and synchrotron radiation XRD. For artificial lowering of x, all the compounds were treated and quenched in vacuum from 950 °C, which led to the formation of the vacancy-ordered brownmillerite phase at local order. Depending on y, the substituted strontium ferrites have three differently disordered nano-domain states. At y≤0.03 there are twinned lamellar 1D nano-domain structures. At 0.04≤y≤0.05 and 0.06≤y≤0.08 the intergrown 3D nano-domain structures with two different types of disorder are formed. The higher the y,more » the lower the domain size. Disordering phenomena of the 3D nano-domain states were examined with local structure simulations followed by the Debye calculation of XRD patterns. - Graphical abstract: Evolution of nano-domain structure with an increase in the substitution degree y in strontium ferrites SrFe{sub 1−y}M{sub y}O{sub 2.5+x} (M=V, Mo; y≤0.1; x≤0.2): an increase in y decreases the average size of domains and increases the degree of disorder, thus producing the lamellar (1D) or 3D nano-domains. - Highlights: • Two major nanodomain states were found for SrFe{sub 1−y}M{sub y}O{sub 2.5+x} (M=V, Mo, y<0.1; x<0.2). • Both contain vacancy-ordered orthorhombic domains intergrown with cubic matrix. • First (y≤0.03) shows orthorhombic and second (0.04≤y≤0.08) – cubic XRD patterns. • First contains 1D twinned lamellar domains with low-angle boundaries and deformations. • Second contains intergrown isotropic in 3D domains perpendicular oriented in matrix.« less

  14. A highly active hybrid catalyst modified (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ cathode for proton conducting solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lei, Libin; Tao, Zetian; Hong, Tao; Wang, Xiaoming; Chen, Fanglin

    2018-06-01

    The sluggish reaction kinetics in the cathode usually leads to considerable cathode polarization resistance, hindering the development of proton conducting solid oxide fuel cells (H-SOFCs) operated at intermediate temperatures (400-650 °C). To address this problem, for the first time, a novel hybrid catalyst consisting of PrNi0.5Mn0.5O3 and PrOx is impregnated in the (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ (LSCF) cathode of H-SOFCs, resulting in significant enhancement of the cathode reaction kinetics. Single cells with impregnated LSCF cathode and BaZr0.8Y0.2O3 (BZY) electrolyte yield a maximum power density (MPD) of 0.198 W cm-2 at 600 °C, more than doubled of that with blank LSCF cathode (0.083 W cm-2). ECR and EIS studies reveal that the hybrid catalyst can substantially accelerate the oxygen-ion transfer and oxygen dissociation-absorption processes in the cathode, resulting in significantly lower polarization resistance and higher MPD. In addition, the hybrid catalyst possesses good chemical and microstructural stability at 600 °C. Consequently, the single cells with impregnated LSCF cathode show excellent durability. This study shows that the impregnation of this novel hybrid catalyst in the cathode could be a promising approach to improve the performance and stability of H-SOFCs.

  15. Structural stability of anhydrous proton conducting SrZr0.9Er0.1O3-δ perovskite ceramic vs. protonation/deprotonation cycling: Neutron diffraction and Raman studies

    NASA Astrophysics Data System (ADS)

    Slodczyk, Aneta; Colomban, Philippe; Upasen, Settakorn; Grasset, Frédéric; André, Gilles

    2015-08-01

    Long-term chemical and structural stability of an ion conducting ceramic is one of the main criteria for its selection as an electrolytic membrane in energy plant devices. Consequently, medium density SrZr0.9Er0.1O3-δ (SZE) anhydrous proton conducting ceramic - a potential electrolyte of SOFC/PCFC, was analysed by neutron diffraction between room temperature and 900 °C. After the first heating/cooling cycle, the ceramic pieces were exposed to water vapour pressure in an autoclave (500 °C, 40 bar, 7 days) in order to incorporate protonic species; the protonated compound was then again analysed by neutron diffraction. This procedure was repeated two times. At each step, the sample was also controlled by TGA and Raman spectroscopy. These studies allow the first comprehensive comparison of structural and chemical stability during the protonation/deprotonation cycling. The results reveal good structural stability, although an irreversible small contraction of the unit-cell volume and local structure modifications near Zr/ErO5[] octahedra are detected after the first protonation. After the second protonation easy ceramic crumbling under a stress is observed because of the presence of secondary phases (SrCO3, Sr(OH)2) well detected by Raman scattering and TGA. The role of crystallographic purity, substituting element and residual porosity in the proton conducting perovskite electrolyte stability is discussed.

  16. Influences of Sr dose on the crystal structure parameters and Sr distributions of Sr-incorporated hydroxyapatite.

    PubMed

    Guo, D G; Hao, Y Z; Li, H Y; Fang, C Q; Sun, L J; Zhu, H; Wang, J; Huang, X F; Ni, P F; Xu, K W

    2013-10-01

    Stoichiometric strontium-incorporated hydroxyapatite (Sr-HA) with different Sr concentrations [Sr/(Sr+Ca)] were synthesized using a wet chemical approach and characterized by X-ray diffraction, Fourier-transformed infrared absorption, X-ray photoelectron spectroscopy, and Rietveld Structure Refinement. The crystal lattice parameter, Sr distribution, chemical state of Sr, and also the relationships between their variations and the Sr concentrations have been intensively studied. The results show that both the crystal lattice parameters and crystal plane space of Sr-HA remarkably increase with the Sr concentration increasing. Whether Sr preferably occupies the Ca(I) site or Ca(II) site after incorporated into apatite lattice depends on the Sr number incorporated into apatite. All the Sr ions completely occupy the Ca(II) sites when the Sr concentration is below 5%. With the exception of partial Sr ions occupying the Ca(II) sites, the other Sr ions start to occupy the Ca(I) sites when the Sr concentration doped in HA is beyond 10%. The ratio of Sr ions occupying the Ca(I) sites increases with the further raising Sr concentration up to 20%. The Sr ions inherit the chemical state and environment of the original Ca(I) or Ca(II) site after incorporated into apatite. Copyright © 2013 Wiley Periodicals, Inc.

  17. The magnetic, electrical transport and magnetoresistance properties of epitaxial La0.7Sr0.3Mn1- xFexO3 (x = 0-0.20) thin films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Li, Z. W.; Li, J.; Ong, C. K.

    2001-05-01

    High-quality epitaxial La0.7Sr0.3Mn1- xFexO3 (LSMFO) thin films have been successfully prepared on SrTiO3 single-crystal substrates by pulsed laser deposition. No structural changes were observed for x≤0.12. For x = 0.2, an elongation in the a-axis direction was identified. An antiferromagnetic arrangement of Fe and Mn ions over the whole Fe-doping region and a canted spin structure at x≥0.12 were observed. Unlike the case for the bulks, only one resistivity peak was observed for the epitaxial films. This shows that one of the two resistivity peaks for polycrystalline LSMFO bulks has its origin in grain boundaries. The effect of Fe doping can be attributed to a combination of doping disorder, Fe-Mn superexchange interactions and a site-percolation mechanism, which suppress the metallic conduction and ferromagnetism. In epitaxial LSMFO thin films, extrinsic magnetoresistance (MR) related to grain boundary effects was excluded. The intrinsic MR is gradually enhanced with increasing Fe concentration. For the film with x = 0.12, a fairly large MR = 12% was observed in a small field of 4 kOe at 145 K. For those films, the resistivity above Tc (the ferromagnetic Curie temperature) follows the Emin-Holstein model for small polarons. The polaron activation energy is enhanced due to weakening of the local double-exchange ferromagnetism by Fe doping. The fitting results indicate that the lattice polarons are magnetic in nature and that non-nearest-neighbour polaron hopping exists. The resistivity below Tp (the resistivity peak temperature) follows an empirical relation, ρ(T,H) = ρ0 + ρ2(H)T2 + ρ7.5(H)T7.5. It is found that the MR arises mainly from the suppression of T7.5-terms. The enhanced MR can be attributed to the suppression of the enhanced magnetic scattering and polaron scattering under an external field.

  18. Dielectric properties of layered perovskite Sr1-xAxBi2Nb2O9 ferroelectrics (A=La, Ca and x=0,0.1)

    NASA Astrophysics Data System (ADS)

    Forbess, M. J.; Seraji, S.; Wu, Y.; Nguyen, C. P.; Cao, G. Z.

    2000-05-01

    In this letter, we report an experimental study on the influences of 10 at. % Ca2+ and La3+ doping on dielectric properties and dc conductivity of SrBi2Nb2O9 ferroelectric ceramics. All the samples were made by two-step solid-state reaction sintering at temperatures up to 1150 °C for 0.5-1 h in air. X-ray diffraction analysis indicated that single-phase layered perovskite ferroelectrics were obtained and no appreciable secondary phase was found. The Curie point was found to increase from 418 °C without doping to 475 °C with Ca2+ doping and to 480 °C with La3+ doping. Dielectric constants, loss tangent, and dc conductivity of SrBi2Nb2O9 ferroelectrics doped with Ca2+ and La3+ were studied and the relationships among doping, crystal structure, and dielectric properties were discussed.

  19. Observation of Superconductivity in the LaNiO3/La0.7Sr0.3MnO3 Superlattice.

    PubMed

    Zhou, Guowei; Jiang, Fengxian; Zang, Julu; Quan, Zhiyong; Xu, Xiaohong

    2018-01-17

    In the pursuit of high-temperature superconductivity like that in cuprates, artificial heterostructures or interfaces have attracted tremendous interest. It has been a long-sought goal to find similar unconventional superconductivity in nickelates. However, as far as we know, this has not yet been experimentally realized. To approach this objective, we synthesized a prototypical superlattice that consists of ultrathin LaNiO 3 and La 0.7 Sr 0.3 MnO 3 layers. Both zero resistance and the Meissner effect are observed using resistive and magnetic measurements of the superlattice. These are experimental indicators for superconductivity in new superconductors. X-ray linear dichroism causes the NiO 2 planes to develop electron-occupied x 2 -y 2 orbital order similar to that of cuprate-based superconductors. Our findings demonstrate that artificial interface engineering is suitable for investigating novel physical phenomena, such as superconductivity.

  20. Sonic-boom measurements for SR-71 aircraft operating at Mach numbers to 3.0 and altitudes to 24384 meters

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Huckel, V.; Henderson, H. R.

    1972-01-01

    Sonic-boom pressure signatures produced by the SR-71 aircraft at altitudes from 10,668 to 24,384 meters and Mach numbers 1.35 to 3.0 were obtained as an adjunct to the sonic boom evaluation program relating to structural and subjective response which was conducted in 1966-1967 time period. Approximately 2000 sonic-boom signatures from 33 flights of the SR-71 vehicle and two flights of the F-12 vehicle were recorded. Measured ground-pressure signatures for both on-track and lateral measuring station locations are presented and the statistical variations of the overpressure, positive impulse, wave duration, and shock-wave rise time are illustrated.

  1. Processing of La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films by dual-ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Madakson, P.; Cuomo, J. J.; Yee, D. S.; Roy, R. A.; Scilla, G.

    1988-03-01

    High-quality La(1.8)Sr(0.2)CuO4 and YBa2Cu3O7 superconducting thin films, with zero resistance at 88 K, have been made by dual-ion-beam sputtering of metal and oxide targets at elevated temperatures. The films are about 1.0 micron thick and are single phase after annealing. The substrates investigated are Nd-YAP, MgO, SrF2, Si, CaF2, ZrO2-(9 pct)Y2O3, BaF2, Al2O3, and SrTiO3. Characterization of the films was carried out using Rutherford backscattering spectroscopy, resistivity measurements, TEM, X-ray diffraction, and SIMS. Substrate/film interaction was observed in every case. This generally involves diffusion of the substrate into the film, which is accompanied by, for example, the replacement of Ba by Sr in the YBa2Cu2O7 structure, in the case of SrTiO3 substrate. The best substrates were those that did not significantly diffuse into the film and which did not react chemically with the film.

  2. Switching properties of SrRuO3/Pb(Zr0.4Ti0.6)O3/SrRuO3 capacitor grown on Cu-coated Si substrate measured at various temperatures

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Liu, B. T.; Li, C. R.; Li, X. H.; Dai, X. H.; Guo, J. X.; Zhou, Y.; Wang, Y. L.; Zhao, Q. X.; Ma, L. X.

    2014-09-01

    SrRuO3(SRO)/Ni-Al/Cu/Ni-Al/SiO2/Si heterostructures annealed at various temperatures are found to remain intact after 750 \\circ\\text{C} annealing. Moreover, a SRO/Pb(Zr0.4Ti0.6)O3 (PZT)/SRO capacitor is grown on a Ni-Al/Cu/Ni-Al/SiO2/Si heterostructure, which is tested up to 100 \\circ\\text{C} to investigate the reliability of the memory capacitor. It is found that besides the good fatigue resistance and retention characteristic, the capacitor, measured at 5 V and room temperature, possesses a large remnant polarization of 25.0 μ \\text{C/cm}2 and a small coercive voltage of 0.83 V, respectively. Its dominant leakage current behavior satisfies the space-charge-limited conduction at various temperatures. Very clear interfaces can be observed from the cross-sectional images of transmission electron microscopy, indicating that the Ni-Al film can be used as a diffusion barrier layer for copper metallization as well as a conducting barrier layer between copper and oxide layer.

  3. Fine resolution chronology based on initial Sr-87/Sr-86

    NASA Technical Reports Server (NTRS)

    Stewart, B. W.; Papanastassiou, D. A.; Capo, R. C.; Wasserburg, G. J.

    1993-01-01

    It has been recognized that small variations in initial Sr-87/Sr-86 (Sr(sub I)), can provide a fine scale relative chronology for the chemical fractionation of materials with low Rb/Sr from parent reservoirs with high Rb/Sr. Similarly, Sr(sub I), as determined for low Rb/Sr phases in meteorites, may permit a fine resolution chronology of the recrystallization or metamorphism of planetary materials. For the establishment of a primitive Sr-87/Sr-86 chronology, it is important to search for samples with extremely low Rb/Sr for which the measured Sr-87/Sr-86 is below BABI, in which case the primitive nature of the Sr can be directly established. Using the measured Rb/Sr to calculate an initial Sr-87/Sr-86 can introduce substantial uncertainty if the Rb-Sr are disturbed. We report Sr-87/Sr-86 in plagioclase from silicate pebbles from the Vaca Muerta mesosiderite on which we have reported Sm-147-Nd-143 and Ne-142 correlations. For the purpose of cross-calibration with our previous work we have performed extensive new measurements on Angra dos Reis and on anorthite from Moore County, which have very low Rb/Sr and primitive Sr-87/Sr-86.

  4. Strain-induced tetragonal distortions and multiferroic properties in polycrystalline Sr 1 - x B a x Mn O 3 ( x = 0.43 - 0.45 ) perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somaily, H.; Kolesnik, S.; Mais, J.

    Here, we report a comprehensive structure-property phase diagram of unique single-ion type-1 multiferroic pseudocubic Sr 1-xBa xMnO 3 perovskites. Employing a specially designed multi-step reduction-oxidation synthesis technique, we describe the successful synthesis of previously unknown Sr 1-xBa xMnO 3 compositions in their polycrystalline form with a significantly extended Ba solubility limit that is only rivaled by a very limited number of crystals and thin films grown under non-equilibrium conditions. Understanding the multiferroic interplay with structure in Sr 1-xBa xMnO 3 is of great importance as it opens the door wide to the development of newer materials from the parent (AA’)(BB’)more » O 3 system with enhanced properties. To this end, using a combination of time-of-flight neutron and synchrotron x-ray scattering techniques, we determined the exact structures and quantified the Mn and oxygen polar distortions above and below T C and T N. In its ferroelectric state, the system crystalizes in the noncentrosymmetric tetragonal P4mm space group which gives rise to a large electric dipole moment P s, in the z-direction, of 18.4 and 29.5 µC/cm 2 for x = 0.43 and 0.45, respectively. The two independently driven ferroelectric and magnetic order parameters are single-handedly accommodated by the Mn sublattice leading to a novel strain-assisted multiferroic behavior in agreement with many theoretical predictions. Our neutron diffraction results demonstrate the large and tunable suppression of the ferroelectric order at the onset of AFM ordering and confirm the coexistence and strong coupling of the two ferroic orders below T N. The refined magnetic moments confirm the strong covalent bonding between Mn and the oxygen anions which is necessary for stabilizing the ferroelectric phase.« less

  5. Strain-induced tetragonal distortions and multiferroic properties in polycrystalline Sr 1 - x B a x Mn O 3 ( x = 0.43 - 0.45 ) perovskites

    DOE PAGES

    Somaily, H.; Kolesnik, S.; Mais, J.; ...

    2018-05-17

    Here, we report a comprehensive structure-property phase diagram of unique single-ion type-1 multiferroic pseudocubic Sr 1-xBa xMnO 3 perovskites. Employing a specially designed multi-step reduction-oxidation synthesis technique, we describe the successful synthesis of previously unknown Sr 1-xBa xMnO 3 compositions in their polycrystalline form with a significantly extended Ba solubility limit that is only rivaled by a very limited number of crystals and thin films grown under non-equilibrium conditions. Understanding the multiferroic interplay with structure in Sr 1-xBa xMnO 3 is of great importance as it opens the door wide to the development of newer materials from the parent (AA’)(BB’)more » O 3 system with enhanced properties. To this end, using a combination of time-of-flight neutron and synchrotron x-ray scattering techniques, we determined the exact structures and quantified the Mn and oxygen polar distortions above and below T C and T N. In its ferroelectric state, the system crystalizes in the noncentrosymmetric tetragonal P4mm space group which gives rise to a large electric dipole moment P s, in the z-direction, of 18.4 and 29.5 µC/cm 2 for x = 0.43 and 0.45, respectively. The two independently driven ferroelectric and magnetic order parameters are single-handedly accommodated by the Mn sublattice leading to a novel strain-assisted multiferroic behavior in agreement with many theoretical predictions. Our neutron diffraction results demonstrate the large and tunable suppression of the ferroelectric order at the onset of AFM ordering and confirm the coexistence and strong coupling of the two ferroic orders below T N. The refined magnetic moments confirm the strong covalent bonding between Mn and the oxygen anions which is necessary for stabilizing the ferroelectric phase.« less

  6. Synthesis and piezoelectric properties of (1 - x)Bi0.5(Na0.8K0.2)0.5TiO3-xSr2ZrTiO6 ceramics

    NASA Astrophysics Data System (ADS)

    Onishi, Ryo; Ogawa, Hirotaka; Iida, Daiki; Kan, Akinori

    2017-10-01

    The effects of Sr2ZrTiO6 (SZT) addition on the piezoelectric properties of (1 - x)Bi0.5(Na0.8K0.2)0.5TiO3 (BNKT)-xSZT ceramics were characterized in this study. The X-ray powder diffraction (XRPD) profiles and Raman spectra of the ceramics in the composition range of 0-0.02 implies the presence of morphotropic phase boundary (MPB) which consists of the rhombohedral and tetragonal phases. Moreover, the temperature dependence of dielectric loss indicated a presence of the ferroelectric-relaxor transition temperature (T F-R) of around 75 °C for x = 0.005 and the temperature dependence shifted to a lower temperature at x = 0.01. The temperature dependence of the P-E hysteresis loop of the ceramics at the compositions of x = 0.005-0.02 showed pinched hysteresis loops above T F-R. Regarding the piezoelectric constant (d 33), it was increased by SZT addition in the MPB region (x = 0-0.01) and the highest d 33 of 202 pC/N was obtained at the composition of x = 0.0025. The S-E unipolar loop was also evaluated, the strain of the ceramic increased up to x = 0.02; and the highest d33* = 436 pm/V was obtained at the composition of x = 0.02.

  7. New high performing scintillators: RbSr2Br5:Eu and RbSr2I5:Eu

    NASA Astrophysics Data System (ADS)

    Stand, L.; Zhuravleva, M.; Johnson, J.; Koschan, M.; Lukosi, E.; Melcher, C. L.

    2017-11-01

    We report the crystal growth and scintillation properties of two new ternary metal halide scintillators, RbSr2Br5 and RbSr2I5, activated with divalent europium. Transparent 7 mm diameter single crystals with 2.5% Eu2+ were grown in evacuated quartz ampoules via the Bridgman technique. RbSr2Br5 and RbSr2I5 have monoclinic crystal structures with densities of 4.18 g/cm3 and 4.55 g/cm3 respectively. These materials are hygroscopic and have some intrinsic radioactivity due to the presence of 87Rb. Luminescence properties typical of the 5d-4f radiative transition in Eu2+ were observed. The X-ray excited emissions consisted of singular peaks centered at 429 nm for RbSr2Br5:Eu 2.5% and 445 nm for RbSr2I4:Eu 2.5%. RbSr2Br5:Eu 2.5% had a light yield of 64,700 photons/MeV, with an energy resolution of 4.0%, and RbSr2I5:Eu 2.5% had a light yield of 90,400 ph/MeV with an energy resolution of 3.0% at 662 keV. Both crystals have an excellent proportional response over a wide range of gamma-ray energies.

  8. Epitaxial growth and dielectric properties of Pb0.4Sr0.6TiO3 thin films on (00l)-oriented metallic Li0.3Ni0.7O2 coated MgO substrates

    NASA Astrophysics Data System (ADS)

    Li, X. T.; Du, P. Y.; Mak, C. L.; Wong, K. H.

    2007-06-01

    Highly (00l)-oriented Li0.3Ni0.7O2 thin films have been fabricated on (001) MgO substrates by pulsed laser deposition. The Pb0.4Sr0.6TiO3 (PST40) thin film deposited subsequently also shows a significant (00l)-oriented texture. Both the PST40 and Li0.3Ni0.7O2 have good epitaxial behavior. The epitaxial growth of the PST40 thin film is more perfect with the Li0.3Ni0.7O2 buffer layer due to the less distortion in the film. The dielectric tunability of the PST40 thin film with Li0.3Ni0.7O2 buffer layer therefore reaches 70%, which is 75% higher than that without Li0.3Ni0.7O2 buffer layer, and the dielectric loss of the PST40 thin film is 0.06.

  9. Electrochemically influenced cation inter-diffusion and Co 3O 4 formation on La 0.6Sr 0.4CoO 3 infiltrated into SOFC cathodes

    DOE PAGES

    Song, Xueyan; Lee, Shiwoo; Chen, Yun; ...

    2015-06-18

    Nanosized LSC electrocatalyst was infiltrated into a porous scaffold cathode composed of Sm 2O 3-doped CeO 2 (SDC) and La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) in a commercial button solid oxide fuel cell (SOFC). To understand the stability of cathodes infiltrated with LSC, the infiltrated composite cells were subjected to both electrochemical operating and thermal aging states at 750 °C for 1500 h. Nanostructure and local chemistry evolution of La 0.6Sr 0.4CoO 3 (LSC) infiltrated cathodes upon operation and aging were investigated by transmission electron microscopy. After operation, the LSC remained a cubic perovskite, and the crystal grains exhibitmore » comparable size to as-infiltrated LSC grains. Inter-diffusion of Fe from the LSCF to a Fe-incorporated LSC layer developed on the LSCF backbone. However, only sharp interfaces were observed between LSC and SDC backbone in the as-infiltrated cathode and such interfaces remain after operation. The infiltrated LSC on the SDC backbone also retains granular particle morphology. Furthermore, newly grown Co 3O 4 nanocrystals were found in the operated cathode. After thermal aging, on the other hand, cation inter-diffusion across the interfaces of the infiltrate particles and the cathode backbones is less than that from the operated cells. Lastly, the following hypothesis is proposed: Co 3O 4 forms on LSC arising from local charge balancing between cobalt and oxygen vacancies.« less

  10. An analysis of lead-free (Bi{sub 0.5}Na{sub 0.5}){sub 0.915}-(Bi{sub 0.5}K{sub 0.5}){sub 0.05}Ba{sub 0.02}Sr{sub 0.015}TiO{sub 3} ceramic for efficient refrigeration and thermal energy harvesting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vats, Gaurav; Vaish, Rahul, E-mail: rahul@iitmandi.ac.in; Bowen, Chris R.

    This article demonstrates the colossal energy harvesting capability of a lead-free (Bi{sub 0.5}Na{sub 0.5}){sub 0.915}-(Bi{sub 0.5}K{sub 0.5}){sub 0.05}Ba{sub 0.02}Sr{sub 0.015}TiO{sub 3} ceramic using the Olsen cycle. The maximum harvestable energy density estimated for this system is found to be 1523 J/L (1523 kJ/m{sup 3}) where the results are presented for extreme ambient conditions of 20–160 °C and electric fields of 0.1–4 MV/m. This estimated energy density is 1.7 times higher than the maximum reported to date for the lanthanum-doped lead zirconate titanate (thin film) system. Moreover, this study introduces a generalized and effective solid state refrigeration cycle in contrast to the ferroelectric Ericsonmore » refrigeration cycle. The cycle is based on a temperature induced polarization change on application of an unipolar electric field to ferroelectric ceramics.« less

  11. A highly active hybrid catalyst modified (La 0.60Sr 0.40) 0.95Co 0.20Fe 0.80O 3-δ cathode for proton conducting solid oxide fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Libin; Tao, Zetian; Hong, Tao

    The sluggish reaction kinetics in the cathode usually leads to considerable cathode polarization resistance, hindering the development of proton conducting solid oxide fuel cells (H-SOFCs) operated at intermediate temperatures (400–650 °C). In this paper, to address this problem, for the first time, a novel hybrid catalyst consisting of PrNi 0.5Mn 0.5O 3 and PrOx is impregnated in the (La 0.60Sr 0.40) 0.95Co 0.20Fe 0.80O 3-δ (LSCF) cathode of H-SOFCs, resulting in significant enhancement of the cathode reaction kinetics. Single cells with impregnated LSCF cathode and BaZr 0.8Y 0.2O 3 (BZY) electrolyte yield a maximum power density (MPD) of 0.198 Wmore » cm -2 at 600 °C, more than doubled of that with blank LSCF cathode (0.083 W cm -2). ECR and EIS studies reveal that the hybrid catalyst can substantially accelerate the oxygen-ion transfer and oxygen dissociation-absorption processes in the cathode, resulting in significantly lower polarization resistance and higher MPD. In addition, the hybrid catalyst possesses good chemical and microstructural stability at 600 °C. Consequently, the single cells with impregnated LSCF cathode show excellent durability. Finally, this study shows that the impregnation of this novel hybrid catalyst in the cathode could be a promising approach to improve the performance and stability of H-SOFCs.« less

  12. A highly active hybrid catalyst modified (La 0.60Sr 0.40) 0.95Co 0.20Fe 0.80O 3-δ cathode for proton conducting solid oxide fuel cells

    DOE PAGES

    Lei, Libin; Tao, Zetian; Hong, Tao; ...

    2018-04-06

    The sluggish reaction kinetics in the cathode usually leads to considerable cathode polarization resistance, hindering the development of proton conducting solid oxide fuel cells (H-SOFCs) operated at intermediate temperatures (400–650 °C). In this paper, to address this problem, for the first time, a novel hybrid catalyst consisting of PrNi 0.5Mn 0.5O 3 and PrOx is impregnated in the (La 0.60Sr 0.40) 0.95Co 0.20Fe 0.80O 3-δ (LSCF) cathode of H-SOFCs, resulting in significant enhancement of the cathode reaction kinetics. Single cells with impregnated LSCF cathode and BaZr 0.8Y 0.2O 3 (BZY) electrolyte yield a maximum power density (MPD) of 0.198 Wmore » cm -2 at 600 °C, more than doubled of that with blank LSCF cathode (0.083 W cm -2). ECR and EIS studies reveal that the hybrid catalyst can substantially accelerate the oxygen-ion transfer and oxygen dissociation-absorption processes in the cathode, resulting in significantly lower polarization resistance and higher MPD. In addition, the hybrid catalyst possesses good chemical and microstructural stability at 600 °C. Consequently, the single cells with impregnated LSCF cathode show excellent durability. Finally, this study shows that the impregnation of this novel hybrid catalyst in the cathode could be a promising approach to improve the performance and stability of H-SOFCs.« less

  13. Magnetoelectric coupling in oxygen deficient La0.67Sr0.33MnO3-δ/BaTiO3 composite film

    NASA Astrophysics Data System (ADS)

    Wang, Jianyuan; Han, Zhuokun; Bai, Jianying; Luo, Bingcheng; Chen, Changle

    2018-04-01

    The effect of magnetic field on the polarization and dielectric properties in oxygen deficient La0.67Sr0.33MnO3-δ/BaTiO3 composite film are investigated. A temperature dependent polarization variation induced by the magnetic field is observed. Under a magnetic fields of 0.8 T, the enhancement of saturation polarization is remarkable at low temperature region with a maximum changing rate 66.5% occurring at 70 K, whereas it is indistinctive at high temperature. The composite film also exhibits significant magnetodielectric property. The positive changing rate of dielectric constant ηε induced by 0.8 T magnetic field reaches the maximum of 80% and 57% at 80 K with the frequency of 1 kHz and 100 kHz, respectively, and the corresponding changing rate of dielectric loss get the negative peak of -27% and -22%. The magneto-induced polarization and dielectric change may result from the charge-based coupling as well as the Maxwell-Wagner effect in this heterojunction.

  14. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure.

    PubMed

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Liu, Yao; Wu, Rong-Rong; Zhang, Xi-Xiang; Sun, Ji-Rong; Shen, Bao-Gen

    2015-04-24

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories.

  15. The solubility of strontianite (SrCO3) in CO2-H2O solutions between 2 and 91°C, the association constants of SrHCO+3(aq) and SrCO03(aq) between 5 and 80°C, and an evaluation of the thermodynamic properties of Sr2+(aq) and SrCO3(cr) at 25°C and 1 atm total pressure

    USGS Publications Warehouse

    Busenberg, Eurybiades; Plummer, Niel; Parker, Vivian B.

    1984-01-01

    Our new data for strontianite have been used in an evaluation of the thermodynamic properties of Sr2+(aq), SrCO3(cr) and related compounds. The following values are recommended for the standard enthalpy (kJ · mol−1), Gibbs energy (kJ · mol−1), and entropy (J · mol−1 · K−1), respectively, of Sr2+aq): −550.90 ± 0.50, −563.83 ± 0.8 and −31.50 ± 2.0, and for SrCO3(cr): −1225.77 ± 1.1, −1144.73 ± 1.0 and 97.2.

  16. Strongly enhanced current densities in Sr0.6K0.4Fe2As2 + Sn superconducting tapes.

    PubMed

    Lin, He; Yao, Chao; Zhang, Xianping; Zhang, Haitao; Wang, Dongliang; Zhang, Qianjun; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo

    2014-03-25

    Improving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.6K0.4Fe2As2 + Sn tapes, prepared from optimized precursors, was significantly improved by employing a simple hot pressing as an alternative route for final sintering. The resulting samples exhibited optimal critical temperature (Tc), sharp resistive transition, small resistivity and high Vickers hardness (Hv) value. Consequently, the transport Jc reached excellent values of 5.1 × 10(4) A/cm(2) in 10 T and 4.3 × 10(4) A/cm(2) in 14 T at 4.2 K, respectively. Our tapes also exhibited high upper critical field Hc2 and almost field-independent Jc. These results clearly demonstrate that PIT pnictide wire conductors are very promising for high-field magnet applications.

  17. Strongly enhanced current densities in Sr0.6K0.4Fe2As2 + Sn superconducting tapes

    PubMed Central

    Lin, He; Yao, Chao; Zhang, Xianping; Zhang, Haitao; Wang, Dongliang; Zhang, Qianjun; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo

    2014-01-01

    Improving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.6K0.4Fe2As2 + Sn tapes, prepared from optimized precursors, was significantly improved by employing a simple hot pressing as an alternative route for final sintering. The resulting samples exhibited optimal critical temperature (Tc), sharp resistive transition, small resistivity and high Vickers hardness (Hv) value. Consequently, the transport Jc reached excellent values of 5.1 × 104 A/cm2 in 10 T and 4.3 × 104 A/cm2 in 14 T at 4.2 K, respectively. Our tapes also exhibited high upper critical field Hc2 and almost field-independent Jc. These results clearly demonstrate that PIT pnictide wire conductors are very promising for high-field magnet applications. PMID:24663054

  18. Strongly enhanced current densities in Sr0.6K0.4Fe2As2 + Sn superconducting tapes

    NASA Astrophysics Data System (ADS)

    Lin, He; Yao, Chao; Zhang, Xianping; Zhang, Haitao; Wang, Dongliang; Zhang, Qianjun; Ma, Yanwei; Awaji, Satoshi; Watanabe, Kazuo

    2014-03-01

    Improving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.6K0.4Fe2As2 + Sn tapes, prepared from optimized precursors, was significantly improved by employing a simple hot pressing as an alternative route for final sintering. The resulting samples exhibited optimal critical temperature (Tc), sharp resistive transition, small resistivity and high Vickers hardness (Hv) value. Consequently, the transport Jc reached excellent values of 5.1 × 104 A/cm2 in 10 T and 4.3 × 104 A/cm2 in 14 T at 4.2 K, respectively. Our tapes also exhibited high upper critical field Hc2 and almost field-independent Jc. These results clearly demonstrate that PIT pnictide wire conductors are very promising for high-field magnet applications.

  19. The effect of doping Mg2+ on structure and properties of Sr(1.992-x)MgxSiO4: 0.008Eu2+ blue phosphor synthesized by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Yang, Lingxiang; Wang, Jin-shan; Zhu, Da-chuan; Pu, Yong; Zhao, Cong; Han, Tao

    2018-01-01

    In order to improve the luminescence property of silicate phosphors, a series of Sr(1.992-x)MgxSiO4: 0.008Eu2+(x = 0, 0.25, 0.50, 0.75) blue phosphors have been synthesized using one-step calcination of a precursor prepared by chemical co-precipitation. And then the crystal structure and luminescence properties of the phosphors are investigated by means of X-Ray Diffraction and spectrophotometer. The results show that β-phase existed in the mixed phases of Sr2SiO4 (β+α‧) would transform to α‧-phase with Mg2+ ions doping into the silicate host until it disappeared. On the other hand, the introduction of Mg2+ ions can enhance the intensity of the excitation spectrum and promote the excitation sensitivity of Sr(1.992-x)MgxSiO4: 0.008Eu2+ phosphors in NUV region. Under NUV excitation at 350 nm, all samples exhibit a broadband emission in range of 400-550 nm due to the 4f65d1→4f7(8S7/2) transition of Eu2+ ions. According to Multi-peak fitting to emission spectra by Gauss method, the broad emission band consists of two single bands with peaks Em1 and Em2 locating at 460 and 490 nm, which corresponds to Eu2+ ions occupying the ten-fold oxygen-coordinated Sr1 site and the nine-fold oxygen-coordinated Sr2 site, respectively. The luminescence intensity of Sr(1.992-x)MgxSiO4:0.008Eu2+(x = 0, 0.25, 0.50, 0.75) blue phosphors has been enhanced remarkably after Mg2+ ions are added. Meanwhile, the chromaticity coordinates change from the blue-green region to the blue region as x moves from 0 to 0.75. Moreover, the decay curves are measured and can be well fitted with double exponential decay equation. It shows that the average lifetime is extended with the concentration of Mg2+ ions increasing. These results indicate that Sr(1.992-x)MgxSiO4: 0.008Eu2+(x = 0, 0.25, 0.50, 0.75) can be used as a potential blue phosphor in near UV-excited white LEDs.

  20. Effect of Mn and Ti substitution on the reflection loss characteristic of Ba{sub 0.6}Sr{sub 0.4}Fe{sub 11-z}MnTi{sub z}O{sub 19} (z = 0, 1, 2 and 3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunanto, Y. E., E-mail: yohanes.gunanto@uph.edu; Cahyadi, L., E-mail: lina.cahyadi@uph.edu; Adi, W. Ari, E-mail: dwisnuaa@batan.go.id

    2016-04-19

    The synthesis and characterization of composition Ba{sub 0.6}Sr{sub 0.4}Fe{sub 11-z}MnTi{sub z}O{sub 19} (z = 0; 1; 2 and 3) compound by solid state reaction using mechanical milling have been performed. The raw materials were BaCO{sub 3}, SrCO{sub 3}, Fe{sub 2}O{sub 3}, MnCO{sub 3}, and TiO{sub 2}. The mixed powder was compacted and sintered at 1000°C for 5 hours. X-ray diffraction studies indicate expansion of hexagonal unit cell and compression of atomic density with substitution of Mn{sup 2+} and Ti{sup 4+} ions. Effect of substitution upon magnetic properties revealed that total magnetization, remanence, and coercivity changed with substitution due to preferentialmore » site occupancy of substituted Mn{sup 2+} and Ti{sup 4+} ions. Since the coercivity and total magnetization may be controlled by substitution while maintaining resistive properties, this material is useful for microwave absorber.« less

  1. Crystal structure and high-temperature properties of the Ruddlesden–Popper phases Sr{sub 3−x}Y{sub x}(Fe{sub 1.25}Ni{sub 0.75})O{sub 7−δ} (0≤x≤0.75)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samain, Louise; Amshoff, Philipp; Biendicho, Jordi J.

    2015-07-15

    Ruddlesden–Popper n=2 member phases Sr{sub 3−x}Y{sub x}Fe{sub 1.25}Ni{sub 0.75}O{sub 7−δ}, 0≤x≤0.75, have been investigated by X-ray and neutron powder diffraction, thermogravimetry and Mössbauer spectroscopy. Both samples as-prepared at 1300 °C under N{sub 2}(g) flow and samples subsequently air-annealed at 900 °C were studied. The as-prepared x=0.75 phase is highly oxygen deficient with δ=1, the O1 atom site being vacant, and the Fe{sup 3+}/Ni{sup 2+} ions having a square pyramidal coordination. For as-prepared phases with lower x values, the Mössbauer spectral data are in good agreement with the presence of both 5- and 4-coordinated Fe{sup 3+} ions, implying in addition amore » partial occupancy of the O3 atom sites that form the basal plane of the square pyramid. The air-annealed x=0.75 sample has a δ value of 0.61(1) and the structure has Fe/Ni ions in both square pyramids and octahedra. Mössbauer spectroscopy shows the phase to contain only Fe{sup 3+}, implying that all Ni is present as Ni{sup 3+}. Air-annealed phases with lower x values are found to contain both Fe{sup 3+} and Fe{sup 4+}. For both the as-prepared and the air-annealed samples, the Y{sup 3+} cations are found to be mainly located in the perovskite block. The high-temperature thermal expansion of as-prepared and air-annealed x=0.75 phases were investigated by high-temperature X-ray diffraction and dilatometry and the linear thermal expansion coefficient determined to be 14.4 ppm K{sup −1}. Electrical conductivity measurements showed that the air-annealed samples have higher conductivity than the as-prepared ones. - Highlights: • Ruddlesden–Popper, n=2, Sr{sub 3−x}Y{sub x}Fe{sub 1.25}Ni{sub 0.75}O{sub 7−δ}, 0≤x≤0.75, have been synthesised. • The crystal structures of the phases have been determined. • Sr{sub 2.25}Y{sub 0.75}Fe{sub 1.25}Ni{sub 0.75}O{sub 6}, made in N{sub 2}(g) has Fe{sup 3+}/Ni{sup 2+} in square pyramides. • Sr{sub 2.25}Y{sub 0.75}Fe

  2. Multiferroic magnetoelectric coupling effect of bilayer La1.2Sr1.8Mn2O7/PbZr0.3Ti0.7O3 complex thin film

    NASA Astrophysics Data System (ADS)

    Liang, K.; Zhou, P.; Ma, Z. J.; Qi, Y. J.; Mei, Z. H.; Zhang, T. J.

    2017-05-01

    Magnetoelectric (ME) coupling effect of 2-2-type ferromagnetic/ferroelectric bi-layer multiferroic epitaxial thin film (La1.2Sr1.8Mn2O7/PbZr0.3Ti0.7O3, LSMO/PZT) on SrRuO3 (SRO) substrate is investigated systematically by using Landau-Ginzburg-Devonshire (LGD) thermodynamic theory and modified constitutive equations. The calculating results clarify the detail relationships between ME coupling response and the residual strain, the volume fraction of constituent phases, the interface coupling coefficients, the magnetic field and the temperature. It also shows that improved ME coupling response can be modulated by these parameters. External magnetic fields (H1) induced ME coupling effect could be enhanced around Curie Temperature (Tc) of ferromagnetic phase and ME voltage coefficient (αE31) approaches a maximum at H1 ∼ 4.5 kOe near Tc. The remarkable variations of ME coupling response can be used to provide useful guidelines on the design of multifunctional devices.

  3. In-plane dielectric properties of epitaxial Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin films grown on GaAs for tunable device application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Zhibin; Hao Jianhua

    2012-09-01

    We have epitaxially deposited ferroelectric Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) thin films grown on GaAs substrate via SrTiO{sub 3} buffer layer by laser molecular beam epitaxy. Structural characteristics of the heterostructure were measured by various techniques. The in-plane dielectric properties of the heteroepitaxial structure under different applying frequency were investigated from -190 to 90 Degree-Sign C, indicating Curie temperature of the BST film to be around 52 Degree-Sign C. At room temperature, the dielectric constant of the heterostructure under moderate dc bias field can be tuned by more than 30% and K factor used for frequency agile materials is foundmore » to be close to 8. Our results offer the possibility to combine frequency agile electronics of ferroelectric titanate with the high-performance microwave capabilities of GaAs for room temperature tunable device application.« less

  4. Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope

    NASA Astrophysics Data System (ADS)

    Terabe, K.; Takekawa, S.; Nakamura, M.; Kitamura, K.; Higuchi, S.; Gotoh, Y.; Gruverman, A.

    2002-09-01

    We have investigated the ferroelectric domain structure formed in a Sr0.61Ba0.39Nb2O6 single crystal by cooling the crystal through the Curie point. Imaging the etched surface structure using a scanning force microscope (SFM) in both the topographic mode and the piezoresponse mode revealed that a multidomain structure of nanoscale islandlike domains was formed. The islandlike domains could be inverted by applying an appropriate voltage using a conductive SFM tip. Furthermore, a nanoscale periodically inverted-domain structure was artificially fabricated using the crystal which underwent poling treatment.

  5. Effect of Sr doping on structural and magnetic behavior of SmBa1-xSrxCo2O5+δ (x = 0 and 1)

    NASA Astrophysics Data System (ADS)

    Kumari, Archana; Dhanasekhar, C.; Das, A. K.

    2018-05-01

    Layered double perovskite, SmBa1-xSrxCo2O5+δ (x = 0, δ = 0.5 and x = 1, δ = 1) samples were prepared by solid state reaction method. X-ray diffraction studies show that the SmBaCo2O5.5 sample crystallizes in the orthorhombic crystal structure with Pmmm space group, whereas SmSrCo2O6 sample crystallizes in the orthorhombic crystal structure with Pnma space group. The temperature dependent magnetization of the SmBaCo2O5.5 sample shows a paramagnetic (PM)-ferromagnetic (FM) and a FM-antiferromagnetic (AFM) transitions at TC = 267 K and TN = 221 K, respectively. In contrast, the SmSrCo2O6 sample shows a PM-FM transition at TC = 175 K. According to Goodenough-Kanamori-Anderson rules, the ferromagnetic behavior in SmSrCo2O6 can be understood from the super exchange interaction between the intermediate spin Co3+ and low spin Co4+ via O2- (IS Co3+ -O2- - LS Co4+). The change in magnetic entropy (ΔSMmax) is found to be maximum for the SmSrCo2O6 sample.

  6. Orientation dependence of phase diagrams and physical properties in epitaxial Ba0.6Sr0.4TiO3 films

    NASA Astrophysics Data System (ADS)

    Qiu, J. H.; Zhao, T. X.; Chen, Z. H.; Yuan, N. Y.; Ding, J. N.

    2018-04-01

    Orientation dependence of phase diagrams and physical properties of Ba0.6Sr0.4TiO3 films are investigated by using a phenomenological Landau-Devonshire theory. New ferroelectric phases, such as the tetragonal a1 phase and the orthorhombic a2 c phase in (110) oriented film and the monoclinic MA phase in (111) oriented film, appear in the "misfit strain-temperature" phase diagrams as compared with (001) oriented film. Moreover, the phase diagrams of (110) and (111) oriented films are more complex than that of (001) oriented film due to the nonlinear coupling terms appeared in the thermodynamic potential. The dielectric and piezoelectric properties largely depend on the misfit strain and orientation. (111) oriented film has the better piezoelectric property than (110) oriented film. Furthermore, the compressive misfit strain is prone to induce the larger piezoelectric property than tensile misfit strain.

  7. Effect of a magnetic field on the permittivity of 80%La0.7Sr0.3MnO3/20%GeO2 composite

    NASA Astrophysics Data System (ADS)

    Kabirov, Yu. V.; Gavrilyachenko, V. G.; Bogatin, A. S.; Sitalo, E. I.; Yatsenko, V. K.

    2018-01-01

    The dielectric properties of a magnetoresistive conducting two-phase 80%La0.7Sr0.3MnO3/20%GeO2 (wt %) composite have been studied near the percolation threshold in magnetic fields from 0 to 15 kOe at frequencies of the measurement field from 5 kHz to 1 MHz. The samples have inductive impedances; i.e., their permittivities can be considered negative due to a high conductivity in this frequency range. The permittivity increases in magnitude in magnetic field, and the values of the magnetodielectric coefficient reach 23% at room temperature. The reasons for the effect of magnetic field on the dielectric permittivity of samples are discussed.

  8. Examination of the mechanism for the reversible aging behavior at open circuit when changing the operating temperature of (La 0.8Sr 0.2) 0.95 MnO 3 electrodes

    DOE PAGES

    Abernathy, Harry; Finklea, Harry O.; Mebane, David S.; ...

    2015-02-17

    The aging behavior of symmetrical cells, consisting of either (La 0.8Sr 0.2) 0.95 MnO 3 (LSM) or La 0.6Sr 0.4Co 0.2Fe 0.8O 3 (LSCF) electrodes screen printed on either 8 mol% yttria-stabilized zirconia (YSZ) or Ce 0.8Gd 0.2O 2 (GDC) electrolyte substrates, is reported as the symmetrical cell is thermally cycled between 700 °C and 800 °C. For LSM, between 700 °C and 850 °C, the polarization resistance exhibits slow increases or decreases with time (on the order of days) after a quick change in temperature. When increasing the temperature, the polarization resistance decreases with time, and when decreasing themore » temperature, the polarization resistance slowly increases with time. In a previous work, the authors had explained these results with LSM by connecting the testing conditions to literature reports of surface analysis of LSM thin films which demonstrated a change in the amount of surface cation segregation as a function of temperature. In this work, TEM/EDS/XPS analysis of dense LSM pellets thermally cycled under the same conditions as the symmetrical cells does not indicate any significant reversible change in the surface composition of the LSM pellet between 700 °C and 800 °C. An alternative hypothesis is proposed to explain the relationship between polarization resistance and the LSM cation/anion vacancy concentrations controlled by the Schottky reaction. The timescale of aging behavior is related to the time necessary for the cations to move to or from the LSM surface to adjust to the new equilibrium at each temperature. Furthermore, the relevance in understanding the mechanism behind the aging behavior is emphasized with respect to fuel cell sample/stack modeling as well as to proper testing procedures for reaching reliable conclusions when comparing different electrode samples.« less

  9. Substrate-induced dielectric polarization in thin films of lead-free (Sr0.5Bi0.5)2Mn2-xTixO6-δ perovskites grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Álvarez-Serrano, I.; Ruiz de Larramendi, I.; López, M. L.; Veiga, M. L.

    2017-03-01

    Thin films of SrBiMn2-xTixO6-δ have been fabricated by Pulsed Laser Deposition on SrTiO3 [100] and [111] substrates. Their texture, width, homogeneity and morphology are evaluated by means of XRD, SEM, XPS, whereas complex impedance spectroscopy is employed to analyze their electrical response. The thickness values range between 80 and 900 nm depending on the experimental conditions. The epitaxial growing could be interpreted in terms of two contributions of microstructural origin: a matrix part and some polycrystalline surface formations (hemi-spheres). Texture studies suggest a fiber-type orientated morphology coherently with the Scanning Electron Microscopy images. XPS analyses indicate a segregation regarding A-sublattice cations, which features depend on the substrate orientation. This segregation could be connected to the development of nanopolar regions. Impedance data show the electrical polarization in the samples to be enhanced compared to bulk response of corresponding powdered samples. A relaxor behavior which fits a Vogel-Fulcher law is obtained for x = 0.50 whereas an almost frequency-independent relaxor ferroelectric behavior is registered for the thinnest film of x = 0.25 composition grown on SrTiO3 [111] substrate. The influence of compositional and structural aspects in the obtained dielectric response is analyzed.

  10. Fast mapping of the cobalt-valence state in Ba0.5Sr0.5Co0.8Fe0.2O3-d by electron energy loss spectroscopy.

    PubMed

    Müller, Philipp; Meffert, Matthias; Störmer, Heike; Gerthsen, Dagmar

    2013-12-01

    A fast method for determination of the Co-valence state by electron energy loss spectroscopy in a transmission electron microscope is presented. We suggest the distance between the Co-L3 and Co-L2 white-lines as a reliable property for the determination of Co-valence states between 2+ and 3+. The determination of the Co-L2,3 white-line distance can be automated and is therefore well suited for the evaluation of large data sets that are collected for line scans and mappings. Data with a low signal-to-noise due to short acquisition times can be processed by applying principal component analysis. The new technique was applied to study the Co-valence state of Ba0.5Sr0.5Co0.8Fe0.2O3-d (BSCF), which is hampered by the superposition of the Ba-M4,5 white-lines on the Co-L2,3 white-lines. The Co-valence state of the cubic BSCF phase was determined to be 2.2+ (±0.2) after annealing for 100 h at 650°C, compared to an increased valence state of 2.8+ (±0.2) for the hexagonal phase. These results support models that correlate the instability of the cubic BSCF phase with an increased Co-valence state at temperatures below 840°C.

  11. Temperature measurement based on photoluminescence of Er3+ doped Sr0.3Cd0.7F2 microcrystal coupled to scanning thermal microscopy

    NASA Astrophysics Data System (ADS)

    Trannoy, N.; Sayoud, A.; Diaf, M.; Duvaut, Th.; Jouart, J. P.; Grossel, Ph.

    2015-04-01

    Rare earth doped sub-micrometric luminescent materials are promising candidates for temperature sensing and play an efficient role in many technological fields. In this paper, a new optical sensor is developed for measuring local temperatures. This sensor is based on a thermal-resistive probe and on photoluminescence of a luminescent fluoride microcrystal. The final purpose is to develop a device calibrated in temperature and capable of acquiring images of local temperature at sub-micrometric scale. Indeed, the sensor temperature can be obtained in two distinct ways: one from the thermal probe parameters and the other from the green photoluminescence generated in the anti-Stokes mode by the active Er ions directly excited by a red laser. The thermal probe is based on Wollaston wire whose thermal-resistive element is in platinum/rhodium. Its temperature is estimated from the probe electrical characteristics and a modeling. A microcrystal of Sr0.3Cd0.7F2: Er3+(4%)-Yb3+(6%) of about 25 μm in diameter is glued at the probe extremity. This luminescent material has the particularity to give a green emission spectrum with intensities sensitive to small temperature variations. Using the fluorescence intensity ratio (FIR) technique, the crystal temperature is estimated from the intensity measurements at green wavelengths 522, 540 and 549 nm by taking advantage of particular optical properties due to the crystalline nature of Sr0.3Cd0.7F2: Er3+-Yb3+. The microcrystal temperature is then assessed as a function of electric current in the thermal probe by applying the Boltzmann's equations. The coupling of the scanning thermal microscope (SThM) with the photoluminescence probe reveals that the particle fluorescence signal is affected by the temperature rise of an electrical microsystem submitted to a Joule heating. The first results are presented and discussed.

  12. Defect Structures of La1 - y Sr y F3 - y , La1 - y Ba y F3 - y , and Nd1 - y Ca y F3 - y ( y = 0.05, 0.10) Nonstoichiometric Tysonite Phases

    NASA Astrophysics Data System (ADS)

    Chernaya, T. S.; Verin, I. A.; Khrykina, O. N.; Bolotina, N. B.

    2018-01-01

    Characteristic features of defect structures of La1 - y Sr y F3 - y , La1 - y Ba y F3 - y , and Nd1 - y Ca y F3 - y ( y = 0.05, 0.10) nonstoichiometric phases of different compositions are determined from X-ray diffraction data. Interest in subtle details of their structure is determined by the possibility of ion transport over fluorine vacancies and by a strong compositional dependence of the ionic conductivity. The La0.95Sr0.05F2.95, La0.95Ba0.05F2.95, and Nd0.95Ca0.05F2.95 phases, as well as the La0.9Ba0.1F2.9 phase, crystallize as β-LaF3 (sp. gr. P3̅c1, Z = 6). The La0.9Sr0.1F2.9 and Nd0.9Ca0.1F2.9 phases lose their superstructure and are described by a cell whose volume is three times smaller (sp. gr. P63/ mmc, Z = 2). Defects of crystal structure R1 - y M y F3 - y are not exhausted by vacancies in fluorine positions. All crystals with a "large" cell are twinned according to the merohedral twin law. The majority of atomic positions in models with a "small" cell are split by group symmetry elements and are occupied statistically.

  13. Thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics in different oxygen-reduction conditions

    NASA Astrophysics Data System (ADS)

    Li, Yi; Liu, Jian; Wang, Chun-Lei; Su, Wen-Bin; Zhu, Yuan-Hu; Li, Ji-Chao; Mei, Liang-Mo

    2015-04-01

    The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high-temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be ˜0.19 at 1073 K in the heaviest oxygen reduced sample. Project supported by the National Basic Research Program of China (Grant No. 2013CB632506) and the National Natural Science Foundation of China (Grant Nos. 51202132 and 51002087).

  14. Er0.4Bi1.6O3-δ - La0.8Sr0.2MnO3-δ nano-composite as a low-temperature firing cathode of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Sun Jae; Dayaghi, Amir Masoud; Kim, Kun Joong; Choi, Gyeong Man

    2017-03-01

    Er0.4Bi1.6O3-δ (ESB) composited with La0.8Sr0.2MnO3-δ (LSM) (2:3 or 3:2 wt:wt) with a bonding aid to decrease firing temperature TF are screen-printed on symmetric single cells composed of a Gd0.2Ce0.8O2-δ (GDC) interlayer/yttria-stabilized zirconia (YSZ) electrolyte/GDC interlayer, and their impedance spectra are compared. Addition of 5 wt % CuO to ESB-LSM (3:2 wt:wt) decreases the cathode TF to 650 °C without increasing cathodic polarization resistance (Rp ∼0.19 Ω cm2 at 650 °C). This ESB-LSM composite can be used as a cathode that can be fired at low temperature.

  15. Degradation of oxygen reduction reaction kinetics in porous La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes due to aging-induced changes in surface chemistry

    NASA Astrophysics Data System (ADS)

    Baqué, Laura C.; Soldati, Analía L.; Teixeira-Neto, Erico; Troiani, Horacio E.; Schreiber, Anja; Serquis, Adriana C.

    2017-01-01

    The modification of surface composition after long-term operation is one of the most reported degradation mechanisms of (La,Sr)(Co,Fe)O3-δ (LSCFO) cathodes for Solid Oxide Fuel Cells (SOFCs). Nevertheless, its effect on the oxygen reduction reaction kinetics of porous LSCFO cathodes has not been yet reliably established. In this work, La- and Sr-enrichment at the LSCFO surface of porous cathodes has been induced after 50 h aging at 800 °C under air. Such cation redistribution can extend up to ∼400 nm depth under the LSCFO surface as detected by high resolution Scanning Transmission Electron Microscopy-Energy Dispersive Spectroscopy maps acquired inside the cathode pores. The observed surface chemical changes hamper the oxygen surface exchange reaction at the LSCFO/gas interface. Accordingly, a suitable Electrochemical Impedance Spectroscopy analysis revealed that the oxygen ion conductivity remains practically unaltered during the aging treatment while the oxygen surface exchange resistance increases up to 1.8 times. As a result, the cathode impedance response deteriorates within the 10-0.1 Hz frequency range during the aging treatment, resulting in a total cathode area specific resistance increase of 150%. The methodology adopted has demonstrated to be very valuable for studying the degradation of SOFC cathodes produced by the modification of surface composition.

  16. Monodomain to polydomain transition in ferroelectric PbTiO3 thin films with La0.67Sr0.33MnO3 electrodes

    NASA Astrophysics Data System (ADS)

    Lichtensteiger, Céline; Dawber, Matthew; Stucki, Nicolas; Triscone, Jean-Marc; Hoffman, Jason; Yau, Jeng-Bang; Ahn, Charles H.; Despont, Laurent; Aebi, Philipp

    2007-01-01

    Finite size effects in ferroelectric thin films have been probed in a series of epitaxial perovskite c-axis oriented PbTiO3 films grown on thin La0.67Sr0.33MnO3 epitaxial electrodes. The film thickness ranges from 480 down to 28Å (seven unit cells). The evolution of the film tetragonality c /a, studied using high resolution x-ray diffraction measurements, shows first a decrease of c /a with decreasing film thickness followed by a recovery of c /a at small thicknesses. This recovery is accompanied by a change from a monodomain to a polydomain configuration of the polarization, as directly demonstrated by piezoresponse atomic force microscopy measurements.

  17. Ferroelectric Schottky diode behavior from a SrRuO3-Pb(Zr0.2Ti0.8)O3-Ta structure

    NASA Astrophysics Data System (ADS)

    Pintilie, Lucian; Stancu, Viorica; Trupina, L.; Pintilie, Ioana

    2010-08-01

    A single ferroelectric Schottky diode was obtained on a SrRuO3-Pb(Zr0.2Ti0.8)O3-Ta (SRO-PZT20/80-Ta) structure in which the SRO-PZT20/80 interface is the rectifying contact and the PZT20/80-Ta interface behaves as a quasiohmic contact. Both the capacitance-voltage (C-V) and the current-voltage (I-V) characteristics show the memory effect due to the ferroelectric polarization. However, retention studies had revealed that only the “down” orientation of ferroelectric polarization is stable in time (polarization oriented from top to bottom contact). The analysis of the experimental results suggests that the PZT20/80 is n type and that the stable orientation of polarization is related to the presence of a depletion region at the SRO-PZT20/80 Schottky interface.

  18. Optimization of the electrochemical performance of a Ni/Ce0.9Gd0.1O2-δ-impregnated La0.57Sr0.15TiO3 anode in hydrogen

    NASA Astrophysics Data System (ADS)

    Xia, Tian; Brüll, Annelise; Grimaud, Alexis; Fourcade, Sébastien; Mauvy, Fabrice; Zhao, Hui; Grenier, Jean-Claude; Bassat, Jean-Marc

    2014-09-01

    A-site deficient perovskite La0.57Sr0.15TiO3 (LSTO) materials are synthesized by a modified polyacrylamide gel route. X-ray diffraction pattern of LSTO indicates an orthorhombic structure. The thermal expansion coefficient of LSTO is 10.0 × 10-6 K-1 at 600 °C in 5%H2/Ar. LSTO shows an electrical conductivity of 2 S cm-1 at 600 °C in 3%H2O/H2. A new composite material, containing the porous LSTO backbone impregnated with small amounts of Ce0.9Gd0.1O2-δ (CGO) (3.4-8.3 wt.%) and Ni/Cu (2.0-6.3 wt.%), is investigated as an alternative anode for solid oxide fuel cells (SOFCs). Because of the substantial electro-catalytic activity of the fine and well-dispersed Ni particles on the surface of the ceramic framework, the polarization resistance of 6.3%Ni-8.3%CGO-LSTO anode reaches 0.73 Ω cm2 at 800 °C in 3%H2O/H2. In order to further improve the anodic performance, corn starch and carbon black are used as pore-formers to optimize the microstructure of anodes.

  19. Transport and thermoelectric properties of Sr{sub 3}(Ti{sub 0.95}R{sub 0.05}){sub 2}O{sub 7} (R = Ta, Nb, W) oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, R. R.; Qin, X. Y.; Li, L. L.

    2012-12-15

    The Sr{sub 3}(Ti{sub 0.95}R{sub 0.05}){sub 2}O{sub 7} (R = Ta, Nb, W) polycrystalline compounds were fabricated, and their transport and thermoelectric properties were investigated. The results indicate that at T > 300 K electrical resistivity {rho} for all the doped compounds increases monotonically with temperature, and basically can be described by a relation {rho}{proportional_to}T{sup M} at T > {approx}650 K, with M = 1.39, 1.66, and 1.77 for R = Ta, Nb, and W, respectively, implying that at the high temperatures the acoustic phonon scattering dominates the scattering process. Although the resistivity {rho} of Sr{sub 3}(Ti{sub 0.95}Ta{sub 0.05}){sub 2}O{sub 7}more » exhibits a metallic-like behavior at the temperature as low as 5 K, a transition from metallic state (d{rho}/dT > 0) to semiconductor-like state (d{rho}/dT < 0) was observed at a critical low temperature {approx}41 K and {approx}79 K for R = Nb and W, respectively. At T < {approx}22 K, {approx}57 K, and {approx}80 K, a relation of {sigma}{proportional_to}T{sup 1/2} (here conductivity {sigma} = 1/{rho}) holds for the doped compounds with R = Nb, Ta, and W, respectively, suggesting that at the low temperatures the main transport mechanism is electron-electron interaction due to the presence of disorder induced by the dopants. The thermoelectric figure of merit (ZT) for Ta-doped compound increases more steeply with increasing temperature among the three compounds and reaches 0.066 at 1000 K.« less

  20. Positive magnetoresistance of single-crystal bilayer manganites (La{sub 1−z}Nd{sub z}){sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} (z = 0, 0.1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaykhutdinov, K. A.; Petrov, M. I.; Terent'ev, K. I.

    2015-04-28

    We investigate magnetoresistance, ρ{sub c}, of single-crystal bilayer lanthanum manganites (La{sub 1−z}Nd{sub z}){sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} (z = 0 and 0.1) at a transport current flowing along the crystal c axis and in external magnetic fields applied parallel to the crystal c axis or ab plane. It is demonstrated that the La{sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} manganite exhibits the positive magnetoresistance effect in the magnetic field applied in the ab sample plane at the temperatures T < 60 K, along with the negative magnetoresistance typical of all the substituted lanthanum manganites. In the (La{sub 0.9}Nd{sub 0.1}){sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} sample, the positive magnetoresistancemore » effect is observed at temperatures of 60–80 K in an applied field parallel to the c axis. The mechanism of this effect is shown to be fundamentally different from the colossal magnetoresistance effect typical of lanthanum manganites. The positive magnetoresistance originates from spin-dependent tunneling of carriers between the manganese-oxygen bilayers and can be explained by features of the magnetic structure of the investigated compounds.« less

  1. Polarized neutron reflectivity studies on epitaxial BiFeO3/La0.7Sr0.3MnO3 heterostructure integrated with Si (100)

    NASA Astrophysics Data System (ADS)

    Singamaneni, S. R.; Prater, J. T.; Glavic, A.; Lauter, V.; Narayan, J.

    2018-05-01

    This work reports polarized neutron reflectivity (PNR) measurements performed using the Magnetism Reflectometer at Oak Ridge National Laboratory on epitaxial BiFeO3(BFO)/La0.7Sr0.3MnO3(LSMO)/SrTiO3(STO)/MgO/TiN heterostructure deposited on Si (100) substrates. By measuring the angular dependence of neutrons reflected from the sample, PNR can provide insights on interface magnetic spin structure, chemical composition and magnetic depth profiles with a nanometer resolution. Our first analysis of nuclear scattering length density (NSLD) and magnetic scattering length density (MSLD) depth profiles measured at 4 K have successfully reproduced most of the expected features of this heterostructure, such as the NSLD for the Si, TiN, MgO, STO, LSMO layers and remanent magnetization (2.28μB/Mn) of bulk LSMO. However, the SLD of the BFO is decreased by about 30% from the expected value. When 5 V was applied across the BFO/LSMO interface, we found that the magnetic moment of the LSMO layer could be varied by about 15-20% at 6 K. Several mechanisms such as redistribution of oxygen vacancies, interface strain, charge screening and valence state change at the interface could be at play. Work is in progress to gain an improved in-depth understanding of these effects using MOKE and STEM-Z interface specific measurements.

  2. Memristive switching induced by 100 MeV Ag7+ ion irradiation in Ag/La0.7Sr0.3MnO3/Ag planar structures

    NASA Astrophysics Data System (ADS)

    Bhavsar, K. H.; Joshi, U. S.; Mistry, B. V.; Khan, S. A.; Avasthi, D. K.

    2011-09-01

    Resistive random access memory is one of the candidate technologies for the promising next generation non-volatile memories with fast switching speed, low power consumption and non-destructive readout. The swift heavy ion (SHI)-induced resistive switching behavior of Ag/La0.7Sr0.3MnO3/Ag planar structures, grown on SiO2 substrates by the chemical solution deposition technique, has been investigated. Five identical samples were irradiated by 100 MeV Ag7+ ions with fluence values ranging from 1×1011 to 5×1013 ions/cm2 at the Materials Science beamline of the IUAC, New Delhi. Upon irradiation, systematic amorphization and grain elongation was observed in the grazing incidence X-ray diffraction and atomic force microscopy, respectively. Four-terminal I-V curves indicate typical non-ohmic behavior of pristine Ag/La0.7Sr0.3MnO3/Ag planar geometry at room temperature for several voltage-sweeping cycles. On the other hand, well-defined hysteresis loops with sharp on-off transition in the I-V curves were observed for the sample irradiated with 100 MeV Ag7+ ions at 1×1012 ions/cm2, indicating that the sample possesses low resistance state and high resistance state. A symmetrical resistance ratio (R high/R low) of ∼ 330% at-1.7 V has been achieved. The resistance switching is bipolar and may be attributed to SHI-induced defects in the device. Such defect-induced resistive switching has recently been proposed theoretically, and our results are direct evidence of the phenomenon.

  3. Influence of Chromium Doping on Electrical and Magnetic Behavior of Nd0.5Sr0.5MnO3 System

    NASA Astrophysics Data System (ADS)

    Lalitha, G.; Pavan Kumar, N.; Venugopal Reddy, P.

    2018-04-01

    With a view to understand the influence of chromium doping at the Mn site on the electrical and magnetic behavior of the Nd0.5Sr0.5MnO3 manganite system, a series of samples were prepared by the citrate sol-gel route method. The samples were characterized structurally by XRD. A systematic investigation of electrical resistivity over a temperature range 5-300 K was carried out mainly to understand the magneto-transport behavior in these materials. Studies on the variation of magnetization with temperature over a temperature range 80-330 K were undertaken. Investigation of magnetization at different magnetic fields at two different temperatures, viz. 80 and 300 K, was also carried out. The results show that chromium doping gave typical electrical and magnetic properties. It has been concluded that the coexistence of charge ordered and ferromagnetic phases induced by chromium doping plays an important role in the low-temperature behavior of the system.

  4. Electric-field-induced strain effects on the magnetization of a Pr 0.67Sr 0.33MnO 3 film

    DOE PAGES

    Zhang, B.; Sun, C. -J.; Lu, W.; ...

    2015-05-26

    The electric-field control of magnetic properties of Pr 0.67Sr 0.33MnO 3 (PSMO) film on piezoelectric Pb(Mg 1/3Nb 2/3)O 3-PbTiO 3 (PMNT) substrate was investigated. The piezoelectric response of the PMNT substrate to the electric field produced strain that was coupled to the PSMO film. The in-plane compressive (tensile) strain increased (decreased) the magnetization. The change of magnetic moment was associated with the Mn ions. First principle simulations showed that the strain-induced electronic redistribution of the two e g orbitals (3d z 2 and 3d x 2 -y 2) of Mn ions was responsible for the change of magnetic moment. Thismore » work demonstrates that the magnetoelectric effect in manganite/piezoelectric hetero-structures originates from the change in eg orbital occupancy of Mn ions induced by strain rather than the interfacial effect.« less

  5. Operando and in situ X-ray spectroscopies of degradation in La0.6Sr0.4Co0.2Fe0.8O(3-δ) thin film cathodes in fuel cells.

    PubMed

    Lai, Samson Y; Ding, Dong; Liu, Mingfei; Liu, Meilin; Alamgir, Faisal M

    2014-11-01

    Information from ex situ characterization can fall short in describing complex materials systems simultaneously exposed to multiple external stimuli. Operando X-ray absorption spectroscopy (XAS) was used to probe the local atomistic and electronic structure of specific elements in a La0.6Sr0.4Co0.2Fe0.8O(3-δ) (LSCF) thin film cathode exposed to air contaminated with H2O and CO2 under operating conditions. While impedance spectroscopy showed that the polarization resistance of the LSCF cathode increased upon exposure to both contaminants at 750 °C, XAS near-edge and extended fine structure showed that the degree of oxidation for Fe and Co decreases with increasing temperature. Synchrotron-based X-ray photoelectron spectroscopy tracked the formation and removal of a carbonate species, a Co phase, and different oxygen moieties as functions of temperature and gas. The combined information provides insight into the fundamental mechanism by which H2O and CO2 cause degradation in the cathode of solid oxide fuel cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Size-dependent photocatalytic activity of La0.8Sr0.2MnO3 nanoparticles prepared by hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Rahmani Afje, F.; Ehsani, M. H.

    2018-04-01

    Synthesize of La0.8Sr0.2MnO3 (LSMO) manganite were carried out in different particle sizes by hydrothermal method. Structural and optical properties of the prepared specimens were studied by x-ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), and UV–vis spectroscopy. The XRD study, coupled with the Rietveld refinement, exhibited rhombohedral structure with R-3C space group. Using the FT-IR and FESEM analyses, the perovskite structure of the samples with Nano-rod-like morphologies were inferred. Furthermore, the average sizes of 48.11, 70.99 and 111.45 nm were obtained for the ones sintered at 800, 900, and 1000 °C temperatures, respectively. The optical research showed that band gap energy is about 2.13 eV, being suitable in visible-light photocatalytic activity for water purification from dyes and toxic organic materials. The photo-degradation efficiency for decolorizing methyl orange solution (10 ppm) for various samples (100 ppm) were systematically probed and a strong relation is concluded between particle size and photocatalytic activity.

  7. Synthesis and luminescence characterization of Pr3+ doped Sr1.5Ca0.5SiO4 phosphor

    NASA Astrophysics Data System (ADS)

    Vidyadharan, Viji; Mani, Kamal P.; Sajna, M. S.; Joseph, Cyriac; Unnikrishnan, N. V.; Biju, P. R.

    2014-12-01

    Luminescence properties of Pr3+ activated Sr1.5Ca0.5SiO4 phosphors synthesized by solid state reaction method are reported in this work. Blue, orange red and red emissions were observed in the Pr3+ doped sample under 444 nm excitation and these emissions are assigned as 3P0 → 3H4, 3P0 → 3H6 and 3P0 → 3F4 transitions. The emission intensity shows a maximum corresponding to the 0.5 wt% Pr3+ ion. The decay analysis was done for 0.05 and 0.5 wt% Pr3+ doped samples for the transition 3P0 → 3H6. The life times of 0.05 and 0.5 wt% Pr3+ doped samples were calculated by fitting to exponential and non-exponential curve respectively, and are found to be 156 and 105 μs respectively. The non-exponential behaviour arises due to the statistical distribution of the distances between the ground state Pr3+ ions and excited state Pr3+ ions, which cause the inhomogeneous energy transfer rate. The XRD spectrum confirmed the triclinic phase of the prepared phosphors. The compositions of the samples were determined by the energy dispersive X-ray spectra. From the SEM images it is observed that the particles are agglomerated and are irregularly shaped. IR absorption bands were assigned to different vibrational modes. The well resolved peaks shown in the absorption spectra are identical to the excitation spectra of the phosphor samples. Pr3+ activated Sr1.5Ca0.5SiO4 phosphors can be efficiently excited with 444 nm irradiation and emit multicolour visible emissions. From the CIE diagram it can be seen that the prepared phosphor samples give yellowish-green emission.

  8. Perovskite SrCo0.9 Nb0.1 O3-δ as an Anion-Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density.

    PubMed

    Zhu, Liang; Liu, Yu; Su, Chao; Zhou, Wei; Liu, Meilin; Shao, Zongping

    2016-08-08

    We have synthesized and characterized perovskite-type SrCo0.9 Nb0.1 O3-δ (SCN) as a novel anion-intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm(-3) (and gravimetric capacitance of ca. 773.6 F g(-1) ) at a current density of 0.5 A g(-1) while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg(-1) with robust long-term stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Investigation of structural, morphological and electromagnetic properties of Mg0.25Mn0.25Zn0.5-xSrxFe2O4 ferrites

    NASA Astrophysics Data System (ADS)

    Rahaman, Md. D.; Nusrat, Tania; Maleque, Rumana; Hossain, A. K. M. Akther

    2018-04-01

    Polycrystalline Mg0.25Mn0.25Zn0.5-xSrxFe2O4 (0 ≤ x ≤ 0.20) ferrites were synthesized using the solid state reaction sintering at 1373 K and 1473 K for 4 h. The XRD patterns revealed the formation of single phase cubic spinel with Sr2FeO4 and SrFe12O19 as impurity phases. The decrement in the lattice parameter for Sr2+ substituted samples is attributed to the difference in ionic radii of cations. The crystallite size decreases with increase in Sr2+ content. Low frequency dielectric dispersion is attributed due to the Maxwell-Wagner interfacial polarization. The appearance of the peak in dielectric loss spectrum for x = 0.15 and 0.20 at 1373 K and x = 0.20 at 1473 K suggests the presence of relaxing dipoles. The loss peak shifts towards lower frequency side with Sr2+ content at 1373 K which is due to the strengthening of dipole-dipole interactions. The complex impedance spectra clearly revealed that the both grain and grain boundary effects on the electrical properties. A complex electric modulus spectrum indicates that a non-Debye type of conductivity relaxation exists. The saturation magnetization and remanence gradually decreases with Sr2+ substitution which may be due to the existence of non-magnetic phase in the space between the magnetic particles and the substitution of Zn2+ cation in Mg0.25Mn0.25Zn0.5Fe2O4 ferrite lattice by Sr2+ content. The permeability decreases significantly while the cut-off frequency increases with the Sr2+ content at 1373 K and decreases at 1473 K, obeying the Snoek's law. The decrease in permeability with Sr2+ content is attributed due to the decrease in magnetization because non-magnetic ions weaken the inter-site exchange interaction.

  10. Thermal strain-induced dielectric anisotropy in Ba0.7Sr0.3TiO3 thin films grown on silicon-based substrates

    NASA Astrophysics Data System (ADS)

    Zhu, X. H.; Guigues, B.; Defaÿ, E.; Dubarry, C.; Aïd, M.

    2009-07-01

    Dielectric properties of Ba0.7Sr0.3TiO3 (BST) thin films, which were prepared on silicon-based substrates by ion beam sputtering and postdeposition annealing method, were systematically investigated in different electrode configurations of metal-insulator-metal and coplanar interdigital capacitors. It was found that a large dielectric anisotropy exists in the films with better in-plane dielectric properties (higher dielectric permittivity and tunability) than those along the out-of-plane direction. The observed anisotropic dielectric responses are explained qualitatively in terms of a thermal strain effect that is related to dissimilar film strains along the in-plane and out-of-plane directions. Another reason for the dielectric anisotropy is due to different influences of the interfacial low-dielectric layer between the BST film and the substrate (metal electrode).

  11. Geochemical tracing of As pollution in the Orbiel Valley (southern France): 87Sr/86Sr as a tracer of the anthropogenic arsenic in surface and groundwater.

    NASA Astrophysics Data System (ADS)

    Khaska, Mahmoud; Le Gal La Salle, Corinnne; Lancelot, Joël; Verdoux, Patrick; Boutin, René

    2014-05-01

    The environmental impacts of arsenic mining activities and their effects on ecosystem and human health are observed in many stream waters and groundwater. The aim of this study is to identify the origin of As content in a mining environment using Sr isotopes. At the Salsigne gold mine, before the closure in 2004, high arsenic content has been observed in surface water and groundwater in the Orbiel valley. At the site, immobilization of As, in As rich leachate, is carried out by adding CaO. High contrast in 87Sr/86Sr between Arsenic rich minerals associated with Variscan metamorphic rocks (0.714888-0.718835), together with rich As waste water (0.713463-715477), and the CaO (0.707593) allows as to trace the origin of anthropogenic As. In 2012, Orbiel stream waters were sampled monthly upstream and downstream from the ancient ore processing site and once after an important rainy event (117mm). The upstream valley samples showed low and relatively constant As content with natural regional background of 3.6 and 5.6 μg/L. The rainy event induced only a slight increase in the As content up to 6.3 μg/L. High 87Sr/86Sr ratios suggested an influence of radiogenic Sr issued from the Variscan metamorphic basement. Downstream from the area, the As content was at least10 time as high. In the wet season, stream water As content clearly increased to 13.9-24 μg/L, reaching 120.5 μg/L during the rainy event. Associated 87Sr/86Sr ratio showed to be less radiogenic (0.712276-0.714002). The anti correlation observed between As and 87Sr/86Sr suggest that As issued from a natural origin is characterised by a high 87Sr/86Sr compared to As derived from the CaO treatement used on site and characterized by a low 87Sr/86Sr ratio. During the dry season, increase in As content was observed reaching 110 μg/L. These highlights the contribution of alluvial groundwater to base flow, probably associated with As reach leachate from the site. Contribution from the alluvial aquifer is confirmed by

  12. Using noble gases and 87Sr/86Sr to constrain heat sources and fluid evolution at the Los Azufres Geothermal Field, Mexico

    NASA Astrophysics Data System (ADS)

    Wen, T.; Pinti, D. L.; Castro, M. C.; Lopez Hernandez, A.; Hall, C. M.; Shouakar-Stash, O.; Sandoval-Medina, F.

    2017-12-01

    Geothermal wells and hot springs were sampled for noble gases' volume fraction and isotopic measurements and 87Sr/86Sr in the Los Azufres Geothermal Field (LAGF), Mexico, to understand the evolution of fluid circulation following three decades of exploitation and re-injection of used brines. The LAGF, divided into the Southern Production Zone (SPZ) and the Northern Production Zone (NPZ), is hosted in a Miocene to Pliocene andesitic volcanic complex covered by Quaternary rhyolitic-dacitic units. Air contamination corrected 3He/4He ratios (Rc) normalized to the atmospheric ratio (Ra=1.384 x 10-6), show a median value of 6.58 indicating a dominant mantle helium component. Contributions of crustal helium up to 53% and 18% are observed in NPZ and SPZ, respectively. Observations based on Rc/Ra and 87Sr/86Sr ratios points to the mixing of three magmatic sources supplying mantle helium to the LAGF: (1) a pure mantle He (Rc/Ra = 8) and Sr (87Sr/86Sr = 0.7035) source; (2) a pure mantle helium (Rc/Ra = 8) with some radiogenic Sr (87Sr/86Sr = 0.7049) source possibly resulting from Quaternary rhyolitic volcanism; and (3) a fossil mantle He component (Rc/Ra = 3.8) with some radiogenic Sr (87Sr/86Sr = 0.7038), corresponding possibly to the Miocene andesite reservoir. Intrusions within the last 50 kyrs from sources (1) and (2) are likely responsible for the addition of mantle volatiles and heat to the hydrothermal system of Los Azufres. He and Ar isotopes indicate that heat flow is transported by both convection and conduction. Atmospheric noble gas elemental ratios suggest that geothermal wells located closer to the western re-injection zone are beginning to be dominated by re-injection of used brines (injectate). The area affected by boiling in LAGF has further extended to the north and west since the last noble gas sampling campaign in 2009.

  13. Electronic properties and surface reactivity of SrO-terminated SrTiO3 and SrO-terminated iron-doped SrTiO3

    PubMed Central

    Staykov, Aleksandar; Tellez, Helena; Druce, John; Wu, Ji; Ishihara, Tatsumi; Kilner, John

    2018-01-01

    Abstract Surface reactivity and near-surface electronic properties of SrO-terminated SrTiO3 and iron doped SrTiO3 were studied with first principle methods. We have investigated the density of states (DOS) of bulk SrTiO3 and compared it to DOS of iron-doped SrTiO3 with different oxidation states of iron corresponding to varying oxygen vacancy content within the bulk material. The obtained bulk DOS was compared to near-surface DOS, i.e. surface states, for both SrO-terminated surface of SrTiO3 and iron-doped SrTiO3. Electron density plots and electron density distribution through the entire slab models were investigated in order to understand the origin of surface electrons that can participate in oxygen reduction reaction. Furthermore, we have compared oxygen reduction reactions at elevated temperatures for SrO surfaces with and without oxygen vacancies. Our calculations demonstrate that the conduction band, which is formed mainly by the d-states of Ti, and Fe-induced states within the band gap of SrTiO3, are accessible only on TiO2 terminated SrTiO3 surface while the SrO-terminated surface introduces a tunneling barrier for the electrons populating the conductance band. First principle molecular dynamics demonstrated that at elevated temperatures the surface oxygen vacancies are essential for the oxygen reduction reaction. PMID:29535797

  14. Synthesis and characterization of La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} oxide as cathode for Intermediate Temperature Solid Oxide Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vázquez, Santiago; Davyt, Sebastián; Basbus, Juan F.

    2015-08-15

    Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} (LSFCu) material was synthetized by combustion method using EDTA as fuel/chelating agent and NH{sub 4}NO{sub 3} as combustion promoter. Structural characterization using thermodiffraction data allowed to determine a reversible phase transition at 425 °C from a low temperature R-3c phase to a high temperature Pm-3m phase and to calculate the thermal expansion coefficient (TEC) of both phases. Important characteristics for cathode application as electronic conductivity and chemical compatibility with Ce{sub 0.9}Gd{sub 0.1}O{sub 2−δ} (CGO) electrolyte were evaluated. LSFCu presented a p-type conductor behavior with maximum conductivity of 135 S cm{sup −1} at 275more » °C and showed a good stability with CGO electrolyte at high temperatures. This work confirmed that as prepared LSFCu has excellent microstructural characteristics and an electrical conductivity between 100 and 60 S cm{sup −1} in the 500–700 °C range which is sufficiently high to work as intermediate temperature Solid Oxide Fuel Cells (IT-SOFCs) cathode. However a change in the thermal expansion coefficient consistent with a small oxygen loss process may affect the electrode-electrolyte interface during fabrication and operation of a SOFC. - Graphical abstract: Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} was prepared by gel combustion and characterized by X-ray thermodiffraction and its conductivity was determined. The phase shows a reversible rhombohedral to cubic structural phase transition at 425 °C and a semiconductor to metallic phase transition at 275 °C. - Highlights: • LSFCu was prepared by gel combustion route using EDTA and NH{sub 4}NO{sub 3}. • LSFCu shows a reversible phase transition at 425 °C from R-3c to Pm-3m phase. • The sample has a maximum conductivity value of 135 S cm{sup −1} at 275 °C. • LSFCu shows a good chemical compatibility with CGO at 900 °C.« less

  15. Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries

    PubMed Central

    Zhao, Yunlong; Xu, Lin; Mai, Liqiang; Han, Chunhua; An, Qinyou; Xu, Xu; Liu, Xue; Zhang, Qingjie

    2012-01-01

    Lithium-air batteries have captured worldwide attention due to their highest energy density among the chemical batteries. To provide continuous oxygen channels, here, we synthesized hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 (LSCO) nanowires. We tested the intrinsic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity in both aqueous electrolytes and nonaqueous electrolytes via rotating disk electrode (RDE) measurements and demonstrated that the hierarchical mesoporous LSCO nanowires are high-performance catalysts for the ORR with low peak-up potential and high limiting diffusion current. Furthermore, we fabricated Li-air batteries on the basis of hierarchical mesoporous LSCO nanowires and nonaqueous electrolytes, which exhibited ultrahigh capacity, ca. over 11,000 mAh⋅g –1, one order of magnitude higher than that of LSCO nanoparticles. Besides, the possible reaction mechanism is proposed to explain the catalytic activity of the LSCO mesoporous nanowire. PMID:23150570

  16. Correlation between magnetism and “dark stripes” in strained La{sub 1−x}Sr{sub x}CoO{sub 3} epitaxial films (0 ≤ x ≤ 0.1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Q. Q.; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190; Shen, X.

    Using the technique of aberration-corrected scanning transmission electron microscopy, we performed a systematic analysis for the atomic lattice of the strained La{sub 1−x}Sr{sub x}CoO{sub 3} (0 ≤ x ≤ 0.1) epitaxial films, which have drawn a great attention in recent years because of their anomalous magnetism. Superstructures characterized by dark stripes are observed in the lattice image, evolving with combined Sr-doping and lattice strains. Fascinatingly, we found a close relation between the proportion of the Co ions in dark stripes and the saturation magnetization of the film: the latter grows linearly with the former. This result implies that the magnetism could be exclusively ascribedmore » to the Co ions in dark stripes.« less

  17. Dielectric and Piezoelectric Properties of Barium-substituted Sr1.9Ca0.1NaNb5O15 Ceramics

    NASA Astrophysics Data System (ADS)

    Xie, Rong-Jun; Akimune, Yoshio; Wang, Ruiping; Hirosaki, Naoto; Nishimura, Toshiyuki

    2003-12-01

    Highly dense piezoelectric ceramics of tungsten bronze-type (Sr1.9Ca0.1)1-0.5xBaxNaNb5O15 (where x=0.1--0.8) were prepared by spark plasma sintering. The crystallographic parameters, dielectric behaviors and piezoelectric properties of the sintered ceramics were investigated, and the effects of the Ba substitution on these electrical properties were discussed. The structural analysis and the electrical property measurements indicate a morphotropic phase boundary (MPB)-like phenomenon at x=0.4--0.5. In all compositions, a diffuse phase transition and a relaxor behavior are observed. The electrical properties are found to be crystallographically dependent.

  18. Effect of rare-earth substitution at La-site on structural, electrical and thermoelectric properties of La0.7-xRExSr0.3MnO3 compounds (x = 0, 0.2, 0.3; RE = Eu, Gd, Y)

    NASA Astrophysics Data System (ADS)

    Choudhary, Y. R. S.; Mangavati, Suraj; Patil, Siddanagouda; Rao, Ashok; Nagaraja, B. S.; Thomas, Riya; Okram, G. S.; Kini, Savitha G.

    2018-04-01

    In the present communication, we present results on the effect of rare-earth (RE) substitution at La-site on the structural, electrical and thermoelectric properties of La0.7-xRExSr0.3MnO3 compounds. The lattice parameters are observed to decrease with RE-doping which is attributed to the fact that the substituted RE ions (RE = Eu, Gd and Y) are smaller than that of La ion. In high temperature semiconducting regime, small polaron hopping (SPH) model is valid, whereas, variable hopping model is valid in low temperature metallic region. The resistivity in the entire temperature range follows percolation model. All the samples exhibit sign reversal in thermopower, S. From temperature dependent S data, it is seen that SPH model is applicable in high temperature regime.

  19. Field-dependent magnetization of BiFeO 3 in ultrathin La 0.7Sr 0.3MnO 3/BiFeO 3 superlattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzsimmons, Michael R.; Jia, Quanxi X.; Singh, Surendra

    2015-12-02

    We report the observation of field-induced magnetization of BiFeO 3 (BFO) in an ultrathin La 0.7Sr 0.3MnO 3 (LSMO)/BFO superlattice using polarized neutron reflectivity (PNR). The depth dependent structure and magnetic characterization of subnano layer thick (thickness ~ 0.7 nm each) LSMO/BFO hetrostructure is carried out using X-ray reflectivity and PNR techniques. Our PNR results indicate parallel alignment of magnetization as well as enhancement in magnetic moment across LSMO/BFO interfaces. The study showed an increase in average magnetization on increasing applied magnetic field at 10K. As a result, we observed a saturation magnetization of 110 ± 15 kA/m (~0.8 μmore » B/Fe) for ultrathin BFO layer (~2 unit cell) sandwiched between ultrathin LSMO layers (~ 2 unit cell).« less

  20. Ferromagnetic-Antiferromagnetic Coupling by Distortion of Fe/Mn Oxygen Octahedrons in (BiFeO3 )m (La0.7 Sr0.3 MnO3 )n Superlattices.

    PubMed

    Xiong, Jie; Lei, Tianyu; Chu, Junwei; Yang, Chao; Wei, Jiake; Zhuo, Mujin; Choi, Eun-Mi; Tao, Bowan; Zhang, Wanli; Wang, Yongqiang; Li, Yanrong

    2017-05-01

    Interface enhanced magnetism attracts much attention due to its potential use in exploring novel structure devices. Nevertheless, the magnetic behavior at interfaces has not been quantitatively determined. In this study, abnormal magnetic moment reduction is observed in La 0.7 Sr 0.3 MnO 3 (LSMO)/BiFeO 3 (BFO) superlattices, which is induced by ferromagnetic (FM)/antiferromagnetic (AFM) coupling in the interface. With reduced repetition of the superlattice's unit cell [(LSMO) n /(BFO) n ] 60/ n (n = 1, 2, 5, 10) on a SrTiO 3 substrate, magnetic moment reduction from 25.5 emu cc -1 ([(LSMO) 10 /(BFO) 10 ] 6 ) to 1.5 emu cc -1 ([(LSMO) 1 /(BFO) 1 ] 60 ) is obtained. Ab initio simulations show that due to the different magnetic domain formation energies, the magnetic moment orientation tends to be paramagnetic in the FM/AFM interface. The work focuses on the magnetic domain formation energy and provides a pathway to construct artificial heterostructures that can be an effective way to tune the magnetic moment orientation and control the magnetization of ultrathin films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Modulation of ultrafast laser-induced magnetization precession in BiFeO3-coated La0.67Sr0.33MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Wan, Qian; Jin, KuiJuan; Wang, JieSu; Yao, HongBao; Gu, JunXing; Guo, HaiZhong; Xu, XiuLai; Yang, GuoZhen

    2017-04-01

    The ultrafast laser-excited magnetization dynamics of ferromagnetic (FM) La0.67Sr0.33MnO3 (LSMO) thin films with BiFeO3 (BFO) coating layers grown by laser molecular beam epitaxy are investigated using the optical pump-probe technique. Uniform magnetization precessions are observed in the films under an applied external magnetic field by measuring the time-resolved magneto-optical Kerr effect. The magnetization precession frequencies of the LSMO thin films with the BFO coating layers are lower than those of uncoated LSMO films, which is attributed to the suppression of the anisotropy field induced by the exchange interaction at the interface between the antiferromagnetic order of BFO and the FM order of LSMO.

  2. Ternary and quaternary oxides of Bi, Sr and Cu

    NASA Technical Reports Server (NTRS)

    Casais, M. T.; Millan, P.; Rasines, I.; Campa, J. A.

    1991-01-01

    Before the discovery of superconductivity in an oxide of Bi, Sr, and Cu, the system Bi-Sr-Cu-O had not been studied, although several solid phases had been identified in the two-component regions of the ternary system Bi2O3-Si-O-CuO. The oxides Sr2CuO3, SrCu2O2, SrCuO2, and Bi2CuO4 were then well known and characterized, and the phase diagram of the binary system Bi2O3-SrO had been established in the temperature range 620 to 1000 C. Besides nine solutions of compositions Bi(2-2x) Sr(x) O(3-2x) and different symmetries, this diagram includes three definite compounds of stoichiometries Bi(2)BrO4. Bi2Sr2O5, and Bi2Sr3O6 (x - 0.50, 0.67 and 0.75 respectively), only the second of which with known unit-cell of orthorhombic symmetry, dimensions (A) a = 14.293(2), b = 7.651(2), c = 6.172(1), and z = 4. The first superconducting oxide in the system Bi-Sr-Cu-O was initially formulated as Bi2Sr2Cu2O(7+x), with an orthorhombic unit-cell of parameters (A) a = 5.32, b = 26.6, c = 48.8. In a preliminary study the same oxide was formulated with half the copper content, Bi(2)Sr(2)CuO(6+x), and index its reflections assuming an orthorhombic unit-cell of dimensions (A) a = 5.390(2), b = 26.973(8), c = 24.69(4). Subsequent studies by diffraction techniques have confirmed the composition 2:2:1. A new family of oxygen-deficient perovskites, was characterized, after identifying by x ray diffraction the phases present in the products of thermal treatments of about 150 mixtures of analytical grade Bi2O3, Sr(OH)2-8H2O and CuO at different molar ratios. X ray diffraction data are presented for some other oxides of Bi and Sr, as well as for various quaternary oxides, among them an oxide of Bi, Sr, and Cu.

  3. Physical properties of nanoparticles Nd added Bi1.7Pb0.3Sr2Ca2Cu3Oy superconductors

    NASA Astrophysics Data System (ADS)

    Abbas, Muna; Abdulridha, Ali; Jassim, Amal; Hashim, Fouad

    2018-05-01

    Bi1.7Pb0.3Sr2Ca2Cu3Oy bulks were synthesized, with the addition of Nd2O3 nanoparticles, by the solid state reaction method. The concentrations of Nd were varied from 0.1 to 0.6. The superconducting properties of the samples were investigated and studied to determine the influence of Nd2O3 addition on superconducting properties and microstructural development. The structural characteristics of the synthesized superconductor samples were carried out through X-ray diffractions. DC Four point probe method was used to study the electrical resistivity behavior and to evaluate the transition temperature (TC) for all samples. It was found that: 0.2 weight percentage of Nd2O3 yield the highest TC 123 K for highest volume fraction of 2223-phase, while excessive addition decreased both of them. The results point to compelling indications of correlations between charge carriers and superconductivity. Energy-dispersive X-ray spectroscopy (EDX) analysis for Bi1.7Pb0.3Nd0.2Sr2Ca2Cu3Oy superconductor shows that Nd may be substituted at Ca sites creating point defects, which act as flux pinning centers. Scanning electron microscopy (SEM) was employed to examine the microstructure of some samples. Their results showed precipitation of Nd nanoparticles on the surface as plate-like grains.

  4. Spectroellipsometric studies of sol-gel derived Sr0.6Ba0.4Nb2O6 films

    NASA Astrophysics Data System (ADS)

    Ho, Melanie M. T.; Tang, T. B.; Mak, C. L.; Pang, G. K. H.; Chan, K. Y.; Wong, K. H.

    2006-10-01

    Sr0.6Ba0.4Nb2O6 (SBN) films have been fabricated on (001)Si substrates by a sol-gel technique. The annealing process was carried out in air at various temperatures ranging from 200to700°C. Studies using x-ray diffractometry, high resolution transmission electron microscopy, and scanning electron microscopy showed that polycrystalline films, with a grain size of about 100nm, were obtained only for annealing temperatures ⩾600°C. The optical properties of these sol-gel derived SBN films were studied by spectroscopic ellipsometry (SE). In the analysis of the measured SE spectra, a triple-layer Lorentz model has been developed and used to deduce the optical properties of the SBN films. Our systematic SE measurements revealed that the refractive indices of the SBN films increase with the annealing temperature. This increase is more pronounced at around the crystallization temperature, i.e., between 500 and 600°C. The extinction coefficients of the films also exhibit a similar trend, showing a zero value for amorphous films and larger values for films annealed at above 600°C. Our results demonstrate that while crystallization helps to raise the refractive index of the film due to film densification, it also promotes scattering by grain boundary, resulting in a larger extinction coefficient.

  5. Photodiodes based in La0.7Sr0.3MnO3/single layer MoS2 hybrid vertical heterostructures

    NASA Astrophysics Data System (ADS)

    Niu, Yue; Frisenda, Riccardo; Svatek, Simon A.; Orfila, Gloria; Gallego, Fernando; Gant, Patricia; Agraït, Nicolás; Leon, Carlos; Rivera-Calzada, Alberto; Pérez De Lara, David; Santamaria, Jacobo; Castellanos-Gomez, Andres

    2017-09-01

    The fabrication of artificial materials by stacking of individual two-dimensional (2D) materials is amongst one of the most promising research avenues in the field of 2D materials. Moreover, this strategy to fabricate new man-made materials can be further extended by fabricating hybrid stacks between 2D materials and other functional materials with different dimensionality making the potential number of combinations almost infinite. Among all these possible combinations, mixing 2D materials with transition metal oxides can result especially useful because of the large amount of interesting physical phenomena displayed separately by these two material families. We present a hybrid device based on the stacking of a single layer MoS2 onto a lanthanum strontium manganite (La0.7Sr0.3MnO3) thin film, creating an atomically thin device. It shows a rectifying electrical transport with a ratio of 103, and a photovoltaic effect with V oc up to 0.4 V. The photodiode behaviour arises as a consequence of the different doping character of these two materials. This result paves the way towards combining the efforts of these two large materials science communities.

  6. Preferential growth and enhanced dielectric properties of Ba0.7Sr0.3TiO3 thin films with preannealed Pt bottom electrode

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaohong; Defaÿ, Emmanuel; Aïd, Marc; Ren, Yinjuan; Zhang, Caiyun; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan

    2013-03-01

    Ba0.7Sr0.3TiO3 (BST) thin films, about 100 nm in thickness, were prepared on unannealed and 700 °C-preannealed Pt bottom electrodes by the ion beam sputtering and post-deposition annealing method. It was found that the preannealed Pt layer has a more compact structure, making it not only a bottom electrode but also a good template for high-quality BST thin film growth. The BST films deposited on preannealed Pt bottom electrodes showed (00 l)-preferred orientation, dense and uniform microstructure with no intermediate phase formed at the film/electrode interface, and thus enhanced dielectric properties. As a result, the typical relative dielectric constant and tunability (under a dc electric field of 1 MV cm-1) reach 180 and 50.1%, respectively, for the BST thin films with preannealed Pt bottom electrodes, which are significantly higher than those (166 and 41.3%, respectively) for the BST thin films deposited on unannealed Pt bottom electrodes.

  7. 87Sr/86Sr in recent accumulations of calcium sulfate on landscapes of hyperarid settings: A bimodal altitudinal dependence for northern Chile (19.5°S-21.5°S)

    NASA Astrophysics Data System (ADS)

    Cosentino, N. J.; Jordan, T. E.; Derry, L. A.; Morgan, J. P.

    2015-12-01

    An elevation-dependent relationship of the 87Sr/86Sr ratio of Holocene surface accumulations of sulfate salts is demonstrated for a continental margin hyperarid setting. In the Atacama Desert of northern Chile, gypsum and anhydrite of multiple origins exist widely on superficial materials that originated during the last 10,000 years. An important source of calcium sulfate is from offshore-generated stratocumulus clouds that are advected onto the continent, where they generate fog that transfers water droplets to the ground surface which, upon evaporation, leaves calcium sulfate crystals. Meteorological measurements of the cloud base and top altitudes average ˜400 m and ˜1100 m above sea level (masl), respectively. The seawater ratio of 87Sr/86Sr (0.70917) is distinctively higher than that reported for weathered mean Andean rock (less than 0.70750). Samples of 28 modern surface salt accumulations for locations between 200 and 2950 masl and between ˜19°30' and ˜21°30'S verify that 87Sr/86Sr varies as a function of site altitude. Sites below 1075 masl and above 225 masl display calcium sulfate 87Sr/86Sr of mean value 0.70807 ± 0.00004, while the ratio outside this altitudinal domain is 0.70746 ± 0.00010. Thus, the 87Sr/86Sr ratio of Holocene salt accumulations differentiates two altitudinal domains.

  8. Transport properties of YBa2Cu3Ox /La0.67Sr0.33MnO3 nanostrips and YBa2Cu3Ox/La0.67Sr0.33MnO3/YBa2Cu3Ox nanojunctions

    NASA Astrophysics Data System (ADS)

    Štrbík, V.; Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V.; Chromik, Š.; Gál, N.; Knoška, J.; Sojková, M.; Pisarčík, M.

    2016-03-01

    A metallic ferromagnet (F) in proximity with a superconductor (S) can transport supercurrent on a long distance through conversion of opposite-spin singlet Cooper pairs (CP) into equal-spin triplet CP (long range triplet component, LRTC), which are not broken by the exchange energy of F. The optimal conditions for the conversion are yet to be clarified; however, it is accepted that the key point to this process include high interface transparency and magnetic inhomogeneity at the SF interface. The aim of our paper is to study SF nanostrips (length of about 1500 nm and width down to 300 nm) and lateral SFS nanojunctions based on high critical temperature YBa2Cu3Ox (YBCO) and half-metallic La0.67Sr0.33MnO3 (LSMO) thin films. We applied a focused Ga+ ion beam (FIB) for patterning the SF nanostrips, as well as lateral SFS nanojunctions, by creating a slot in the nanostrip after removing the YBCO film in the slot along a length of about 200 nm. The temperature dependences of the samples resistance R(T) show critical temperature TCn ≈ 89 K of the SF nanostrips; however, the SFS nanojunctions at T < TCn show a residual resistance R < 100 Ω corresponding to a dirty LSMO (ρ≈ 10 mΩ cm) in the slot. The LRTC was not observed in our lateral SFS nanojunctions until now.

  9. Modulation-Doped SrTiO3/SrTi1-xZrxO3 Heterostructures

    NASA Astrophysics Data System (ADS)

    Kajdos, Adam Paul

    surface reconstruction from (1x1) to (2x1) to c(4x4) is correlated with a change from mixed SrO/TiO2 to pure TiO2 surface termination. It is argued that optimal cation stoichiometry is achieved for growth conditions within the XRD-defined growth window that result in a c(4x4) surface lattice. The development of a doped perovskite oxide semiconductor with a suitable conduction band offset is then discussed as the next necessary step towards realizing modulation-doped heterostructures. The SrTixZr1-x O3 solid solution is investigated for this purpose, with a focus on optimizing cation stoichiometry to allow for controlled doping. In particular, the hybrid MBE growth of SrTixZr1-xO3 thin films is explored using a metal-organic precursor for Zr, zirconium tert-butoxide (ZTB). The successful generation of 2DEGs by modulation doping of SrTiO3 is then demonstrated in SrTiO3/La:SrTi0.95Zr0.05O 3 heterostructures, and the electronic structure is studied by Shubnikov-de Haas analysis using multiple-subband models.

  10. Obtaining and characterization of La0.8Sr0.2CrO3 perovskite by the combustion method

    NASA Astrophysics Data System (ADS)

    Morales Rivera, A. M.; Gómez Cuaspud, J. A.; López, E. Vera

    2017-01-01

    This research is focused on the synthesis and characterization of a perovskite oxide based on La0.8Sr0.2CrO3 system by the combustion method. The material was obtained in order to contribute to analyse the effect of synthesis route in the obtaining of advanced anodic materials for solid oxide fuel cells (SOFC). The obtaining of solid was achieved starting from corresponding nitrate dissolutions, which were polymerized by temperature effect in presence of citric acid. The solid precursor as a foam citrate was characterized by infrared (FTIR) and ultraviolet (UV) spectroscopy, confirming the effectiveness in synthesis process. The solid was calcined in oxygen atmosphere at 800°C and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive of X-ray spectroscopy (EDX) and solid state impedance spectroscopy (IS). Results confirm the obtaining of an orthorhombic solid with space group Pnma (62) and cell parameters a=5.4590Å, b=7.7310Å and c=5.5050Å. At morphological level the solid showed a heterogeneous distribution with an optimal correspondence with proposed and obtained stoichiometry. The electrical characterization, confirm a semiconductor behaviour with a value of 2.14eV Band-gap according with previous works.

  11. Molten salt synthesis of La0.8Sr0.2MnO3 powders for SOFC cathode electrode

    NASA Astrophysics Data System (ADS)

    Gu, Sin-il; Shin, Hyo-soon; Hong, Youn-woo; Yeo, Dong-hun; Kim, Jong-hee; Nahm, Sahn; Yoon, Sang-ok

    2012-08-01

    For La0.8Sr0.2MnO3 (LSM) perovskite, used as the cathode material for solid oxide fuel cells (SOFC), it is known that the formation of a triple-phase-boundary is restrained due to the formation of a second phase at the YSZ/electrode interface at high temperature. To decrease the 2nd phase, lowering the sintering temperature has been used. LSM powder was synthesized by molten salt synthesis method to control its particle size, shape, and agglomeration. We have characterized the phase formation, particle size, shape, and sintering behavior of LSM in the synthesis using the variation of KCl, LiCl, KF and its mixed salts as raw materials. In the case of KCl and KCl-KF salts, the particle size and shape of the LSM was well controlled and synthesized. However, in the case of LiCl and KCl-LiCl salts, LiMnOx as 2nd phase and LSM were synthesized simultaneously. In the case of the mixed salt of KCl-KF, the growth mechanism of the LSM particle was changed from `diffusion-controlled' to `reaction-controlled' according to the amount of mixed salt. The sintering temperature can be decreased below 1000 °C by using the synthesized LSM powder.

  12. Optical conductivity of Nd_0.7Sr_0.3MnO_3-δ in the infrared-UV range

    NASA Astrophysics Data System (ADS)

    Quijada, M. A.; Drew, H. D.; Kwon, C.; Ramesh, R.; Venkatesan, T.

    1997-03-01

    We have measured the infrared-UV (2000-40,000 cm-1) transmittance and reflectance of thin films of Nd_0.7Sr_0.3MnO_3-δ at temperatures in the range of 15-300 K.(S.G. Kaplan et al., Phys. Rev. Lett. 77), 2081 (1996). The optical properties are derived by inverting the full Fresnel equations for a thin film on a thick substrate. The real part of the optical conductivity shows a broad peak feature near 10,000 cm-1 which shifts to lower frequency as the temperature is lowered or the magnetic field is increased. In addition, there is a redistribution of spectral weight from high to low energies as the temperature is lowered through the paramagnetic/ferromagnetic phase transition. The optical data are found to be consistent with models that include both the double-exchange interaction and the dynamic Jahn-Teller (J-T) effect on the Mn^3+ d(e_g) levels. Within these models, the conductivity peak represents the optical charge transfer transition from the lower J-T split Mn^3+ level to a neighboring Mn^4+ ion. We will also report on the sum rule analysis of the optical conductivity up to 40,000 cm-1.

  13. Crystal Structure and Transport Properties of Oxygen-Deficient Perovskite Sr 0.9Y 0.1CoO 3-δ

    DOE PAGES

    Yang, Tianrang; Mattick, Victoria F.; Chen, Yan; ...

    2018-01-29

    The present work reports a systematic study on temperature-dependent local crystal structure, oxygen stoichiometry, and electrical/electrochemical properties of an oxygen-deficient Sr 0.9Y 0.1CoO 3-δ (SYC10) perovskite using variable-temperature neutron diffraction (VTND), thermal gravimetric analysis, and electrical/electrochemical methods, respectively. The VTND reveals that the crystal symmetry of SYC10 remains P4/mmm tetragonal up to 900 °C. The tetragonal symmetry reflects the net effects of temperature and oxygen stoichiometry on crystal symmetry. The observed p-type electronic conductivity behavior originates from the charge-ordering between the two distinctive Co-sites. The partial oxide-ion conductivity and diffusivity obtained from oxygen permeation measurements are 2.3 × 10 –2more » S cm –1 and 7.98 × 10–8 cm 2/s at 800 °C in air, respectively. The electrochemical oxygen reduction reaction kinetics of the SYC10 cathode is primarily limited by the charge-transfer process at low temperatures (600–650 °C) and oxide-ion migration from the cathode into the electrolyte at high temperatures (700–800 °C).« less

  14. Crystal Structure and Transport Properties of Oxygen-Deficient Perovskite Sr 0.9Y 0.1CoO 3-δ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tianrang; Mattick, Victoria F.; Chen, Yan

    The present work reports a systematic study on temperature-dependent local crystal structure, oxygen stoichiometry, and electrical/electrochemical properties of an oxygen-deficient Sr 0.9Y 0.1CoO 3-δ (SYC10) perovskite using variable-temperature neutron diffraction (VTND), thermal gravimetric analysis, and electrical/electrochemical methods, respectively. The VTND reveals that the crystal symmetry of SYC10 remains P4/mmm tetragonal up to 900 °C. The tetragonal symmetry reflects the net effects of temperature and oxygen stoichiometry on crystal symmetry. The observed p-type electronic conductivity behavior originates from the charge-ordering between the two distinctive Co-sites. The partial oxide-ion conductivity and diffusivity obtained from oxygen permeation measurements are 2.3 × 10 –2more » S cm –1 and 7.98 × 10–8 cm 2/s at 800 °C in air, respectively. The electrochemical oxygen reduction reaction kinetics of the SYC10 cathode is primarily limited by the charge-transfer process at low temperatures (600–650 °C) and oxide-ion migration from the cathode into the electrolyte at high temperatures (700–800 °C).« less

  15. 87Sr/86Sr ratios in some eugeosynclinal sedimentary rocks and their bearing on the origin of granitic magma in orogenic belts

    USGS Publications Warehouse

    Peterman, Z.E.; Hedge, C.E.; Coleman, R.G.; Snavely, P.D.

    1967-01-01

    Rb and Sr contents and 87Sr/86Sr values were determined for samples of eugeosynclinal sedimentary rocks, mostly graywackes, from Oregon and California. These data are compatible with the theory of anataxis of eugeosynclinal sedimentary rocks in orogenic belts to produce granitic magmas provided that the melting occurs within several hundreds of m.y. after sedimentation. The low (87Sr/86Sr)0 values of the eugeosynclinal sedimentary rocks are related to the significant amounts of volcanogenic detritus present which probably were originally derived from the mantle. ?? 1967.

  16. Naltrexone/bupropion: Contrave(R); naltrexone SR/bupropion SR.

    PubMed

    2010-01-01

    In March 2010, Orexigen(R) Therapeutics submitted a new drug application (NDA) for approval of naltrexone sustained release (SR)/bupropion SR (Contrave(R)) for the treatment of obesity in the US. The tablet contains naltrexone SR 32 mg and bupropion SR 360 mg. The drug has been tested in four randomized, double-blind, placebo-controlled, phase III trials and the co-primary endpoints were met in each case. This review discusses the key development milestones and clinical trial program to date.

  17. Late Quaternary changes in desert dust inputs to the Red Sea and Gulf of Aden from 87Sr/ 86Sr ratios in deep-sea cores

    NASA Astrophysics Data System (ADS)

    Stein, Mordechai; Almogi-Labin, Ahuva; Goldstein, Steven L.; Hemleben, Christoph; Starinsky, Abraham

    2007-09-01

    Strontium isotope ratios of the HCL-insoluble residue ("ISR") and foraminifera of cores from the Red Sea and Gulf of Aden are used to monitor effects of hydrothermal, fluvial and desert dust transport to these regions during the past ˜ 0.5 Ma. While the Gulf of Aden was open-ocean, during low glacial sea levels the Red Sea was a semi-isolated basin, allowing the possibility to study the effects regional versus global inputs during glacial-interglacial cycles. The ISR from the Gulf of Aden and the Red Sea display different ranges of 87Sr/ 86Sr ratios of 0.7085-0.7107 and 0.7062-0.7085, respectively. These reflect mixtures between three components: granitic, hydrothermal and loess strontium with representative 87Sr/ 86Sr of ˜ 0.711; ˜ 0.706 and ˜ 0.7085, respectively. Gulf of Aden ISR represent mixtures of the loess and "granitic" sources, while Red Sea ISR are mixtures of the loess and sea floor "hydrothermal" sources. In the Gulf of Aden, loess sources dominate during glacials, indicating intensification of the NE moonsonal wind regime, and granitic sources dominate during interglacials, reflecting wetter conditions related to an enhanced regional SW monsoon. Red Sea ISR show no clear glacial-interglacial distinction, but display a general temporal increase in 87Sr/ 86Sr ratios over the past 380 ka toward loess-like values, indicating increasing loess contributions toward the present day. The ranges of ISR 87Sr/ 86Sr ratios in the Red Sea and the Gulf of Aden were distinct prior to the last glacial period (< 60 ka), when they converge at loess values. The increasing loess signal may be due to increasing aridity in the dust source regions, or increasing accumulation and availability of loess with progressive glacial cycles. Superimposed on the Red Sea general trend are shifts to higher 87Sr/ 86Sr ratios following major climate transitions (at ˜ 10, ˜ 80, ˜ 130, ˜ 190, ˜ 240 and ˜ 330 ka BP) that coincide with sapropel episodes in the Eastern Mediterranean

  18. Major enhancement of the thermoelectric performance in Pr/Nb-doped SrTiO3 under strain

    NASA Astrophysics Data System (ADS)

    Amin, B.; Singh, N.; Tritt, T. M.; Alshareef, H. N.; Schwingenschlögl, U.

    2013-07-01

    The electronic structure and thermoelectric properties of strained (biaxially and uniaxially) Sr0.95Pr0.05TiO3 and SrTi0.95Nb0.05O3 are investigated in the temperature range from 300 K to 1200 K. Substitutions of Pr at the Sr site and Nb at the Ti site generate n-type doping and thus improve the thermoelectric performance as compared to pristine SrTiO3. Further enhancement is achieved by the application of strain, for example, of the Seebeck coefficient by 21% for Sr0.95Pr0.05TiO3 and 10% for SrTi0.95Nb0.05O3 at room temperature in the case of 5% biaxial strain. At 1200 K, we predict figures of merit of 0.58 and 0.55 for 2.5% biaxially strained Sr0.95Pr0.05TiO3 and SrTi0.95Nb0.05O3, respectively, which are the highest values reported for rare earth doped SrTiO3.

  19. Effects of Ca/Sr ratio control on optical and scintillation properties of Eu-doped Li(Ca,Sr)AlF6 single crystals

    NASA Astrophysics Data System (ADS)

    Yokota, Yuui; Tanaka, Chieko; Kurosawa, Shunsuke; Yamaji, Akihiro; Ohashi, Yuji; Kamada, Kei; Nikl, Martin; Yoshikawa, Akira

    2018-05-01

    Eu-doped Li(Ca,Sr)AlF6 [Eu:LiCSAF] single crystals with various Ca/Sr ratios were grown by the micro-pulling-down method, and their optical and scintillation properties were investigated to reveal the effects of Ca/Sr ratio on optical and scintillation properties of the Eu:LiCSAF single crystals. The Li(Ca1-x-ySrxEuy)AlF6 single crystals could be grown in 0 ≤ x ≤ 0.1, 0.5 ≤ x ≤ 1.0 and y = 0.02 while the Eu:LiCSAF crystals with x = 0.2, 0.25 and 0.4 included two colquiriite-type phases with different lattice parameters. The Li(Ca1-x-ySrxEuy)AlF6 single crystal with x = 0.25 and y = 0.02 showed the highest light yield under neutron irradiation.

  20. Method of forming a dielectric thin film having low loss composition of Ba.sub.x Sr.sub.y Ca.sub.1-x-y TiO.sub.3 : Ba.sub.0.12-0.25 Sr.sub.0.35-0.47 Ca.sub.0.32-0.53 TiO.sub.3

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Takeuchi, Ichiro

    2000-01-01

    A dielectric thin-film material for microwave applications, including use as a capacitor, the thin-film comprising a composition of barium strontium calcium and titanium of perovskite type (Ba.sub.x Sr.sub.y Ca.sub.1-x-y)TiO.sub.3. Also provided is a method for making a dielectric thin film of that formula over a wide compositional range through a single deposition process.

  1. Low loss composition of BaxSryCa1-x-yTiO3: Ba0.12-0.25Sr0.35-0.47Ca0.32-0.53TiO3

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Takeuchi, Ichiro

    2001-01-01

    A dielectric thin-film material for microwave applications, including use as a capacitor, the thin-film comprising a composition of barium strontium calcium and titanium of perovskite type (Ba.sub.x Sr.sub.y Ca.sub.1-x-y)TiO.sub.3. Also provided is a method for making a dielectric thin film of that formula over a wide compositional range through a single deposition process.

  2. Perovskite Sr2Fe1.5Mo0.5O6-δ as electrode materials for symmetrical solid oxide electrolysis cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qiang; Yang, Chenghao; Dong, Xihui

    2010-10-01

    Perovskite Sr2Fe1.5Mo0.5O6-δ (SFM) has been successfully prepared by a microwave-assisted combustion method in air and employed as both anode and cathode in symmetrical solid oxide electrolysis cells (SOECs) for hydrogen production for the first time in this work. Influence of cell operating temperature, absolute humidity (AH) as well as applied direct current (DC) on the impedance of single cells with the configuration of SFM|La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM)|SFM has been evaluated. Under open circuit conditions and 60 vol.% AH, the cell polarization resistance, RP is as low as 0.26 Ω cm2 at 900 °C. An electrolysis current of 0.88 A cm-2 and amore » hydrogen production rate as high as 380 mL cm-2 h have been achieved at 900 °C with an electrolysis voltage of 1.3 V and 60 vol.% AH. Further, the cell has demonstrated good stability in the long-term steam electrolysis test. The results showed that the cell electrolysis performance was even better than that of the reported strontium doped lanthanum manganite (LSM) – yttria stabilized zirconia (YSZ)|YSZ|Ni–YSZ cell, indicating that SFM could be a very promising electrode material for the practical application of SOEC technology.« less

  3. Effect of misfit strains on fourth and sixth order permittivity in (Ba0.60,Sr0.40)TiO3 films on orthorhombic substrates

    NASA Astrophysics Data System (ADS)

    Simon, W. K.; Akdogan, E. K.; Safari, A.; Bellotti, J.

    2006-03-01

    The in-plane dielectric response of [110] oriented Ba0.60Sr0.40TiO3 epitaxial films grown on [100] NdGaO3 is used to determine the field induced polarization at 10GHz. The nonlinear polarization curve is used to determine the linear and nonlinear permittivity terms for the in-plane principal directions, [001] and [1¯10]. Studied films are in the thickness range of 75-1200nm, and clearly show the influences that drive tunability down with increasing residual strain. The variation of the tunability, along the [001] direction, proves to be less sensitive to residual strain then the [1¯10] direction, although [1¯10] is capable of greater tunability at low residual strains.

  4. High pressure structure studies of 6H-SrIrO3 and the octahedral tilting in 3C-SrIrO3 towards a post-perovskite

    NASA Astrophysics Data System (ADS)

    Kronbo, Camilla H.; Nielsen, Morten B.; Kevy, Simone M.; Parisiades, Paraskevas; Bremholm, Martin

    2016-06-01

    The high pressure behaviors of the two perovskite structures (hexagonal 6H-SrIrO3 and orthorhombic 3C-SrIrO3) have been studied in diamond anvil cells to 43 and 60 GPa, respectively, using synchrotron powder X-ray diffraction. 6H-SrIrO3 was first synthesized at ambient pressure and subsequently transformed into 3C-SrIrO3 in a large volume press at 8.8 GPa and 1000 °C. Both polymorphs were found to retain the initial symmetry up to the highest pressures measured, but in the case of 6H-SrIrO3, two anomalies were identified: a change in the axial compressibilities at 24 GPa and a change in both the axial and volume compressibilities at 32 GPa. Fitting a 3rd order Birch-Murnaghan equation of state to the obtained P-V data yielded bulk moduli of K0=151.5(12) GPa (fitted range 0SrIrO3 and K0=187.1(9) GPa for 3C-SrIrO3. Analysis of the structural parameters for 6H-SrIrO3 aided by F-f plots suggests the anomalies are caused by changes in the compression mechanism. Comparison of the two polymorphs reveals that 6H-SrIrO3 becomes less compressible than 3C-SrIrO3 above 32 GPa as a result of the mechanistic change, and a crossing of their P-V curves is avoided. For 3C-SrIrO3, analysis of the octahedral tilt angles shows that these increase monotonically from the ambient value of 7.23(6) to 23.0(2)° at 60 GPa suggesting that a transition to a post-perovskite is approached.

  5. Determination of the magnetization scaling exponent for single-crystal La0.8Sr0.2MnO3 by broadband microwave surface impedance measurements

    NASA Astrophysics Data System (ADS)

    Schwartz, Andrew; Scheffler, Marc; Anlage, Steven M.

    2000-01-01

    Employing a broadband microwave reflection configuration, we have measured the complex surface impedance, ZS(ω,T), of single-crystal La0.8Sr0.2MnO3, as a function of frequency (0.045-45 GHz) and temperature (250-325 K). Through the dependence of the microwave surface impedance on the magnetic permeability, μ⁁(ω,T), we have studied the local magnetic behavior of this material, and have extracted the spontaneous magnetization, M0(T), in zero applied field. The broadband nature of these measurements and the fact that no external field is applied to the material provide a unique opportunity to analyze the critical behavior of the spontaneous magnetization at temperatures very close to the ferromagnetic phase transition. We find a Curie temperature TC=305.5+/-0.5 K and scaling exponent β=0.45+/-0.05, in agreement with the prediction of mean-field theory. We also discuss other recent determinations of the magnetization critical exponent in this and similar materials and show why our results are more definitive.

  6. Improved electrical properties after post annealing of Ba0.7Sr0.3TiO3 thin films for MIM capacitor applications

    NASA Astrophysics Data System (ADS)

    Rouahi, A.; Kahouli, A.; Sylvestre, A.; Jomni, F.; Defaÿ, E.; Yangui, B.

    2012-11-01

    Dielectric measurements have been performed on ion beam sputtering (IBS) barium strontium titanate Ba0.7Sr0.3TiO3 thin films at annealing temperatures 470 and 700 °C using impedance spectroscopy. The effect of the annealing temperature upon the electrical properties of the films is also investigated using capacitance-voltage techniques. Increasing annealing temperature suggested the increases of density and grain size, whereas the density of the trapped oxygen vacancy may be decreasing with increasing annealing temperature. The barrier height ( E a) of the oxygen vacancy decreases with increasing annealing temperature. The C- V characteristics were investigated in relation to the annealing temperature to identify the anomalous capacitance in the MIM configuration films. Among all measurement temperatures, it was observed that the data fit well by the "LGD" model. The interfacial effect and its dependence of morphology structure have been studied, and the results are discussed.

  7. Influence of applied electric field annealing on the microwave properties of (Ba0.5Sr0.5)TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Cho, Kwang-Hwan; Lee, Chil-Hyoung; Kang, Chong-Yun; Yoon, Seok-Jin; Lee, Young-Pak

    2007-04-01

    The effect of heat treatment in electric field on the structure and dielectric properties at microwave range of rf magnetron sputtering derived (Ba0.5Sr0.5)TiO3 thin films have been studied. It has been demonstrated that postannealing in the proper electric field can increase the dielectric constant and the tunability. The increased out-of-plane lattice constant in the electric-annealed films indicated the formation of small polar regions with tetragonal structure, which are responsible for the increased dielectric constant and tunability. It was proposed that the segregation of Ti3+ ions caused by electric annealing could induce the formation of BaTiO3-like regions, which are ferroelectric at room temperature. And in dielectric loss, as the Ti-O bonding lengths increase, the energy scattering on the ferroelectric mode also increases. So, the value of dielectric loss is slightly increased.

  8. Dielectric and Ferroelectric Properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 Lead-Free Ceramics for High-Energy-Storage Applications.

    PubMed

    Yan, Fei; Yang, Haibo; Lin, Ying; Wang, Tong

    2017-11-06

    Pulsed capacitors require high-recoverable energy-storage density (W rec ) and high energy-storage efficiency (η), which can be realized through the selection and adjustment of the composition. In this work, (1 - x)SrTiO 3 -x(0.95Bi 0.5 Na 0.5 TiO 3 -0.05BaAl 0.5 Nb 0.5 O 3 ) [(1 - x)ST-x(BNT-BAN)] ceramics were successfully prepared via the pressureless solid-state reaction method. The dielectric constant increases gradually with the introduction of BNT-BAN and obtains a maximum value of 3430 with the composition of 0.4ST-0.6(BNT-BAN) at 100 Hz, which is 10.39 times higher than that of the pure ST sample (∼330). Dispersive relaxor behaviors and ferroelectric performances can be enhanced with the introduction of BNT-BAN. The composition of 0.5ST-0.5(BNT-BAN) exhibits a high W rec of 1.89 J/cm 3 as well as a high η of 77%. Therefore, the (1 - x)ST-x(BNT-BAN) systems are candidate materials for pulsed capacitor applications.

  9. Electronic transport and photovoltaic properties in Bi2Sr2Co2Oyepitaxial heterostructures

    NASA Astrophysics Data System (ADS)

    Guo, Hai-Zhong; Gu, Lin; Yang, Zhen-Zhong; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Le; Jin, Kui-Juan; Lu, Hui-Bin; Wang, Can; Ge, Chen; He, Meng; Yang, Guo-Zhen

    2013-08-01

    Epitaxial heterostructures constructed from the thermoelectric cobalt Bi2Sr2Co2Oy thin films and SrTiO3 as well as SrTi0.993Nb0.007O3 substrates were fabricated by pulsed-laser deposition. The scanning transmission electron microscopy results confirm that the heterostructures are epitaxial, with sharp and coherent interfaces. The temperature-dependent electrical transport properties and the Hall effects were systematically investigated. The Bi2Sr2Co2Oy/SrTi0.993Nb0.007O3 p-n heterostructure exhibits good rectifying current-voltage characteristics over a wide temperature range. A strong photovoltaic effect was observed in the Bi2Sr2Co2Oy/SrTi0.993Nb0.007O3 heterostructure, with the temperature-dependent photovoltage being systematically investigated. The present work shows a great potential of this new heterostructures as photoelectric devices.

  10. Polycrystalline Ba0.6Sr0.4TiO3 thin films on r-plane sapphire: Effect of film thickness on strain and dielectric properties

    NASA Astrophysics Data System (ADS)

    Fardin, E. A.; Holland, A. S.; Ghorbani, K.; Akdogan, E. K.; Simon, W. K.; Safari, A.; Wang, J. Y.

    2006-10-01

    Polycrystalline Ba0.6Sr0.4TiO3 (BST) films grown on r-plane sapphire exhibit strong variation of in-plane strain over the thickness range of 25-400nm. At a critical thickness of ˜200nm, the films are strain relieved; in thinner films, the strain is tensile, while compressive strain was observed in the 400nm film. Microwave properties of the films were measured from 1to20GHz by the interdigital capacitor method. A capacitance tunability of 64% was observed in the 200nm film, while thinner films showed improved Q factor. These results demonstrate the possibility of incorporating frequency agile BST-based devices into the silicon on sapphire process.

  11. Ferroelectric and paraelectric Ba0.5Sr0.5TiO3 film structure distortions at room temperature and their effects on tunable microwave properties

    NASA Astrophysics Data System (ADS)

    Alldredge, L. M. B.; Chang, Wontae; Qadri, Syed B.; Kirchoefer, Steven W.; Pond, Jeffrey M.

    2007-05-01

    Sputter-deposited Ba0.5Sr0.5TiO3 films on (001) MgO were characterized for their dielectric properties with different lattice structures. With varying Ar :O2 ratios during deposition, the films showed either in-plane (ca) tetragonal distortions, significantly affecting the dielectric constant and tunability. The dielectric constant exhibited clear hysteresis with dc bias at room temperature, indicating that the films were ferroelectric. The relationship between the dielectric properties and the distortions was the reverse of that observed in films deposited by pulsed laser deposition. The anisotropic in-plane dielectric behavior can be understood by relating polarization to film distortions and to the presence of permanent dipoles.

  12. The mechanism of long phosphorescence of SrAl{sub 2-x}B{sub x}O{sub 4} (00.2) and Sr{sub 4}Al{sub 14-x}B{sub x}O{sub 25} (0.10.4) co-doped with Eu{sup 2+} and Dy{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nag, Abanti; Kutty, T.R.N

    2004-03-01

    The role of B{sub 2}O{sub 3} in realizing the long phosphorescence of Eu(II)+Dy(III) doped strontium aluminates has been investigated. IR and solid state {sup 27}Al MAS NMR spectra show the incorporation of boron as BO{sub 4} in the AlO{sub 4} framework of SrAl{sub 2}O{sub 4} and Sr{sub 4}Al{sub 14}O{sub 25}. Phosphor, made free of glassy phases by washing with hot acetic acid+glycerol, did not show any photoconductivity under UV irradiation, indicating that the mechanism involving hole conduction in valence band is untenable for long phosphorescence. EPR studies confirm the presence of both electron and hole trap centers. Dy{sup 3+} formsmore » substitutional defect complex with borate; [Dy-BO{sub 4}-V{sub Sr}]{sup 2-}, and acts as a hole trap center. The electron centers are formed by the oxygen vacancies associated with BO{sub 3}{sup 3-}, i.e. [BO{sub 3}-V{sub O}]{sup 3-}. Under indigo light or near UV irradiation, the photoinduced electron centers are formed as [BO{sub 3}-V{sub O}(e')]{sup 4-}. The holes are released from [Dy-BO{sub 4}-V{sub Sr}(h{center_dot})]{sup 1-} under thermal excitation at room temperature. The recombination of electrons with holes releases energy which is expended to excite Eu{sup 2+} to induce long phosphorescence.« less

  13. Strontium isotope ratios (87Sr/86Sr) of tooth enamel: a comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods.

    PubMed

    Copeland, Sandi R; Sponheimer, Matt; le Roux, Petrus J; Grimes, Vaughan; Lee-Thorp, Julia A; de Ruiter, Darryl J; Richards, Michael P

    2008-10-01

    Strontium isotope ratios (87Sr/86Sr) in tooth enamel provide a means to investigate migration and landscape use in humans and other animals. Established methods for measuring (87)Sr/(86)Sr in teeth use bulk sampling (5-20 mg) and labor-intensive elemental purification procedures before analysis by either thermal ionization mass spectrometry (TIMS) or multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Another method for measuring 87Sr/86Sr is laser ablation MC-ICP-MS, but concerns have been expressed about its accuracy for measuring tooth enamel. In this study we test the precision and accuracy of the technique by analyzing 30 modern rodent teeth from the Sterkfontein Valley, South Africa by laser ablation MC-ICP-MS and solution MC-ICP-MS. The results show a mean difference in 87Sr/86Sr measured by laser ablation and by solution of 0.0003 +/- 0.0002. This degree of precision is well within the margin necessary for investigating the potential geographic origins of humans or animals in many areas of the world. Because laser ablation is faster, less expensive, and less destructive than bulk sampling solution methods, it opens the possibility for conducting 87Sr/86Sr analyses of intra-tooth samples and small and/or rare specimens such as micromammal and fossil teeth.

  14. Influences of alkaline earth metal substitution on the crystal structure and physical properties of magnetic RuSr1.9A0.1GdCu2O8 (A = Ca, Sr, and Ba) superconductors.

    PubMed

    Hur, Su Gil; Park, Dae Hoon; Hwang, Seong-Ju; Kim, Seung Joo; Lee, J H; Lee, Sang Young

    2005-11-24

    We have investigated the effect of alkaline earth metal substitution on the crystal structure and physical properties of magnetic superconductors RuSr(1.9)A(0.1)GdCu(2)O(8) (A = Ca, Sr, and Ba) in order to probe an interaction between the magnetic coupling of the RuO(2) layer and the superconductivity of the CuO(2) layer. X-ray diffraction and X-ray absorption spectroscopic analyses demonstrate that the isovalent substitution of Sr ions with Ca or Ba ions makes it possible to tune the interlayer distance between the CuO(2) and the RuO(2) layers. From the measurements of electrical resistance and magnetic susceptibility, it was found that, in contrast to negligible change of magnetization, both of the alkaline earth metal substitutions lead to a notable depression of zero-resistance temperature T(c) (DeltaT(c) approximately 17-19 K). On the basis of the absence of a systematic correlation between the T(c) and the interlayer distance/magnetization, we have concluded that the internal magnetic field of the RuO(2) layer has insignificant influence on the superconducting property of the CuO(2) layer in the ruthenocuprate.

  15. Analysis of bias voltage dependent spectral response in Ga0.51In0.49P/Ga0.99In0.01As/Ge triple junction solar cell

    NASA Astrophysics Data System (ADS)

    Sogabe, Tomah; Ogura, Akio; Okada, Yoshitaka

    2014-02-01

    Spectral response measurement plays great role in characterizing solar cell device because it directly reflects the efficiency by which the device converts the sunlight into an electrical current. Based on the spectral response results, the short circuit current of each subcell can be quantitatively determined. Although spectral response dependence on wavelength, i.e., the well-known external quantum efficiency (EQE), has been widely used in characterizing multijunction solar cell and has been well interpreted, detailed analysis of spectral response dependence on bias voltage (SR -Vbias) has not been reported so far. In this work, we have performed experimental and numerical studies on the SR -Vbias for Ga0.51In0.49P/Ga0.99In0.01As/Ge triple junction solar cell. Phenomenological description was given to clarify the mechanism of operation matching point variation in SR -Vbias measurements. The profile of SR-Vbias curve was explained in detail by solving the coupled two-diode current-voltage characteristic transcend formula for each subcell.

  16. Modification of Sr on 4004 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Guo, Erjun; Cao, Guojian; Feng, Yicheng; Wang, Liping; Wang, Guojun; Lv, Xinyu

    2013-05-01

    As a brazing foil, 4004 Al alloy has good welding performance. However, the high Si content decreases the plasticity of the alloy. To improve the plasticity of 4004 Al alloy and subsequently improve the productivity of 4004 Al foil or 434 composite foil, 4004 Al alloy was modified by Al-10%Sr master alloy. Modification effects of an additional amount of Sr, modification temperature, and holding time on 4004 aluminum alloy were studied by orthogonal design. The results showed that the greatest impact parameter of 4004 aluminum alloy modification was the additional amount of Sr, followed by holding time and modification temperature. The optimum modification parameters obtained by orthogonal design were as follows: Sr addition of 0.04%, holding time of 60 min, and modification temperature of 760°C. The effect of Sr addition on modification was analyzed in detail based on orthogonal results. With increasing of Sr addition, elongation of 4004 alloy increased at first, and decreased after reaching the maximum value.

  17. Dielectric relaxation in epitaxial films of paraelectric-magnetic SrTiO3-SrMnO3 solid solution

    NASA Astrophysics Data System (ADS)

    Savinov, M.; Bovtun, V.; Tereshina-Chitrova, E.; Stupakov, A.; Dejneka, A.; Tyunina, M.

    2018-01-01

    Magneto-dielectric properties of (A2+)MnO3-type perovskites are attractive for applications and stimulate extensive studies of these materials. Here, the complex dielectric and magnetic responses are investigated as in epitaxial films of SrTi0.6Mn0.4O3, solid solution of paraelectric SrTiO3 and magnetic SrMnO3. The impedance and resonance measurements at frequencies of 10-2-1010 Hz and temperatures of 10-500 K reveal broad dielectric anomalies centered at 100-200 K, while the films are paramagnetic at all temperatures. Analysis shows polaronic electrical conductivity behind the observed behavior. Electron-phonon correlations, rather than spin-phonon correlations, are suggested to produce the apparent magneto-dielectric responses in many multiferroic manganites.

  18. Sr isotopic composition of Afar volcanics and its implication for mantle evolution

    NASA Astrophysics Data System (ADS)

    Barberi, F.; Civetta, L.; Varet, J.

    1980-10-01

    Investigations of Rb-Sr systematics of basalts from the Afar depression (Ethiopia) indicate the presence of a heterogeneous mantle source region. The Sr isotopic compositions of the basalts from the Afar axial and transverse ranges identify source regions which are enriched in LIL elements and radiogenic Sr (axial ranges) and others which are relatively depleted (transverse ranges). Sr isotopic composition of basalts from the Red Sea, Gulf of Aden and Gulf of Tadjoura, which range from 0.70300 to 0.70340 are also reported and compared with the more radiogenic Afar region, which is characterized by 87Sr/ 86Sr ranging from 0.70328 to 0.70410. Available geochemical and isotopic data suggest that a relation exists between magma composition and the advancement of the rifting process through progressive lithosphere attenuation leading to continental break-up. However, the petrogenetic process is not simple and probably implies a vertically zoned mantle beneath the Afar region. Sr isotopic evidence suggests that the vertically zoned mantle is more radiogenic and enriched in LIL elements in its upper part.

  19. Effect of mesoporous structure on the Seebeck coefficient and electrical properties of SrTi0.8Nb0.2O3

    NASA Astrophysics Data System (ADS)

    Park, Chang-Sun; Hong, Min-Hee; Cho, Hyung Hee; Park, Hyung-Ho

    2017-07-01

    The porosity of mesoporous SrTi0.8Nb0.2O3 (STNO) was controlled by changing the surfactant concentration to investigate the porosity effect on the thermoelectric properties. Mesoporous structure typically induces a large decrease in the carrier mobility and a small increase in the carrier concentration owing to carrier scattering and oxygen vacancies. These changes in the carrier mobility and concentration induce a change in the thermoelectric properties by enhancing the Seebeck coefficient owing to an increase in the electrical resistivity and carrier filtering effect. Brij-S10 surfactant induces a carrier filtering effect in STNO, and so the Seebeck coefficient could be enhanced even with increasing carrier concentration. Because the Seebeck coefficient affects the power factor more strongly than the electrical resistivity does, incorporation of Brij-S10 surfactant into STNO films increases the power factor. The maximum value of the power factor, approximately 2.2 × 10-4 W/mK2 at 200 °C, was obtained at a Brij-S10 molar ratio of 0.075. From this result, we can expect the application of STNO as a thermoelectric material with an enhanced power factor through successful adoption of mesoporous structure.

  20. Anode-supported single-chamber solid oxide fuel cell based on cobalt-free composite cathode of Nd0.5Sr0.5Fe0.8Cu0.2O3-δ-Sm0.2Ce0.8O1.9 at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Yin, Jie-Wei; Zhang, Chunming; Yin, Yi-Mei; Shi, Huangang; Lin, Ye; Lu, Jun; Ma, Zi-Feng

    2015-07-01

    As a candidate of cathode material of single-chamber solid oxide fuel cell (SC-SOFC), cobalt-free mixed ionic electronic conductor (MIEC) Nd0.5Sr0.5Fe0.8Cu0.2O3-δ (NSFCu) is synthesized by sol-gel method with ethylene diamine tetraacetic acid and citric acid as co-complexing agents. The XRD shows NSFCu is stable after CO2 treatment and chemical compatible with SDC at high temperatures. CO2-TPD (CO2-temperature programmed desorption) demonstrates both CO2 adsorption and desorption phenomenon on NSFCu surface. However, the polarization resistances (Rp) of NSFCu and SDC (10:4 in weight) composite electrodes showed no decay in 5% CO2. Single cell using N2-O2-CH4 mixed gas (CH4 to O2 ratio = 1.5) as fuel shows maximum power density of 635 mW cm-2 at 700 °C. These results suggest that NSFCu-SDC is a promising composite cathode material for application in single-chamber solid oxide fuel cell.

  1. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys.

    PubMed

    Zhao, Chaoyong; Pan, Fusheng; Zhang, Lei; Pan, Hucheng; Song, Kai; Tang, Aitao

    2017-01-01

    In this study, as-extruded Mg-Sr alloys were studied for orthopedic application, and the microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys were investigated by optical microscopy, scanning electron microscopy with an energy dispersive X-ray spectroscopy, X-ray diffraction, tensile and compressive tests, immersion test, electrochemical test and cytotoxicity test. The results showed that as-extruded Mg-Sr alloys were composed of α-Mg and Mg 17 Sr 2 phases, and the content of Mg 17 Sr 2 phases increased with increasing Sr content. As-extruded Mg-Sr alloy with 0.5wt.% Sr was equiaxed grains, while the one with a higher Sr content was long elongated grains and the grain size of the long elongated grains decreased with increasing Sr content. Tensile and compressive tests showed an increase of both tensile and compressive strength and a decrease of elongation with increasing Sr content. Immersion and electrochemical tests showed that as-extruded Mg-0.5Sr alloy exhibited the best anti-corrosion property, and the anti-corrosion property of as-extruded Mg-Sr alloys deteriorated with increasing Sr content, which was greatly associated with galvanic couple effect. The cytotoxicity test revealed that as-extruded Mg-0.5Sr alloy did not induce toxicity to cells. These results indicated that as-extruded Mg-0.5Sr alloy with suitable mechanical properties, corrosion resistance and good cytocompatibility was potential as a biodegradable implant for orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Use of 87Sr/86Sr and δ11B to Identify Slag-Affected Sediment in Southern Lake Michigan

    USGS Publications Warehouse

    Bayless, E. Randall; Bullen, Thomas D.; Fitzpatrick, John A.

    2004-01-01

    Slag is a ubiquitous byproduct of the iron-smelting industry and influences geochemistry and water quality in adjacent geologic units, ground and surface water. Despite extensive slag deposition along the Indiana shoreline of Lake Michigan, definitive evidence that slag has affected lakebed sediments has not been established. Concerns for the protection of water and ecosystem resources in the Great Lakes motivated this study to determine if strontium and boron isotopes could be used to identify and delineate slag-affected bed sediment in Lake Michigan. Sixty-five samples of bed sediment were acquired from the southern lobe of Lake Michigan and analyzed for 87Sr/86Sr and ??11B. Samples immediately offshore from Indiana steel mills and slag-disposal sites contained higher median 87Sr/86Sr values (0.70881) than shoreline sediments collected elsewhere in the basin (0.70847) and uniquely decreased with increasing distance from the shoreline. The highest ??11B values occurred in sediments from the Indiana shoreline (+12.9 to 16.4???) but were also elevated in sediments collected offshore from three Lake Michigan cities (+11.7 to 12.7???). Contoured isotope data indicated that 82-154 km2 of bed sediment along the Indiana shoreline had elevated 87Sr/86Sr and ??11B values relative to shoreline sediments elsewhere in southern Lake Michigan.

  3. Ca and Sr isotope records support ocean acidification during end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Wang, J.; Jacobson, A. D.; Zhang, H.; Ramezani, J.; Sageman, B. B.; Hurtgen, M.; Bowring, S. A.; Shen, S.

    2017-12-01

    The end-Permian mass extinction represents the most devastating loss of biodiversity during the Phanerozoic. A negative carbon isotope (δ13C) excursion that accompanies the event suggests a significant perturbation to the global carbon cycle, likely induced by CO2 emissions during eruption of the Siberian Traps large igneous province. The carbon cycle is linked with the Ca and Sr cycles through chemical weathering and carbonate precipitation. Therefore, analyses of Ca (δ44/40Ca), radiogenic Sr (87Sr/86Sr), and stable Sr (δ88/86Sr) isotope abundance variations in marine carbonate rocks spanning the Permian-Triassic Boundary (PTB) can reveal key information about biogeochemical changes that occurred during this time. We report δ44/40Ca, 87Sr/86Sr, and δ88/86Sr records analyzed by TIMS for the Meishan and Dajiang sections in China. δ44/40Ca values exhibit similar patterns in both sections. The values remain unchanged across the extinction event layer (EXT) and then decrease by 0.20‰ before increasing by 0.20‰ to 0.40‰ around the PTB. In the Meishan section, 87Sr/86Sr ratios increase after the EXT and return to pre-excursion levels by the PTB. Simultaneously, δ88/86Sr values decrease by 0.12‰ across the EXT and increase by 0.08‰ by the PTB. The patterns of our data support the hypothesis that elevated atmospheric CO2 levels enhanced chemical weathering inputs and might have caused transient ocean acidification, with an "alkalinity overshoot" and increased carbonate deposition occurring after the extinction. Additional measurements and model calculations are underway to help refine and improve these preliminary interpretations.

  4. Dislocations Accelerate Oxygen Ion Diffusion in La 0.8Sr 0.2MnO 3 Epitaxial Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navickas, Edvinas; Chen, Yan; Lu, Qiyang

    Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO 3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO 3 and SrTiO 3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced bymore » dislocations, especially in the LSM films on LaAlO 3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO 3. In conclusion, the diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk.« less

  5. Dislocations Accelerate Oxygen Ion Diffusion in La0.8Sr0.2MnO3 Epitaxial Thin Films

    PubMed Central

    2017-01-01

    Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO3 and SrTiO3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced by dislocations, especially in the LSM films on LaAlO3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO3. The diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk. PMID:28981249

  6. Dislocations Accelerate Oxygen Ion Diffusion in La 0.8Sr 0.2MnO 3 Epitaxial Thin Films

    DOE PAGES

    Navickas, Edvinas; Chen, Yan; Lu, Qiyang; ...

    2017-10-05

    Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO 3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO 3 and SrTiO 3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced bymore » dislocations, especially in the LSM films on LaAlO 3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO 3. In conclusion, the diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk.« less

  7. Nonadiabatic small-polaron hopping conduction in Li-doped and undoped Bi4Sr3Ca3CuyOx (0<=y<=5)

    NASA Astrophysics Data System (ADS)

    Mollah, S.; Som, K. K.; Bose, K.; Chakravorty, A. K.; Chaudhuri, B. K.

    1992-11-01

    Detailed experimental results of temperature- and CuO-concentration-dependent dc conductivities of semiconducting Bi4Sr3Ca3CuyOx (y=0 to 5) and Li-doped Bi4Sr3Ca3-zLizCu4Ox (z=0.1, 0.5, and 1.0) glasses are reported. The variation of activation energy with glass compositions dominates the conductivity. Unlike many glasses with transition-metal ions, a strong preexponential factor containing the ``small-polaron'' tunneling term [exp(-2αR)] is observed. Nonadiabatic small-polaron hopping mechanism is found to be appropriate for explaining the conductivity data of both glass systems. Addition of alkali-metal ions decreases the conductivities and causes appreciable change of some model parameters obtained from least-squares fittings of the experimental data. The overall thermal behavior of the electrical conductivities of the glasses, however, remains unaltered. This indicates that small (less than 10 wt.%) amount of Li or other alkali-metal ions in these glasses acts as a flux to keep the oxygen content fixed in the corresponding glass-ceramic (superconducting) phases. This in turn helps increase the superconducting transition temperature of the glass ceramics and also lower the sintering and melting temperatures of the glasses.

  8. A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California

    USGS Publications Warehouse

    Goff, F.; Wollenberg, H.A.; Brookins, D.C.; Kistler, R.W.

    1991-01-01

    The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr of 0.7081-0.7078 but show systematically lighter values from west to east in the direction of lateral flow. We believe the decrease in ratio from west to east signifies increased interaction of deeply circulating thermal water with relatively fresh volcanic rocks filling the caldera depression. All types of pre-, syn-, and post-caldera volcanic rocks in the west and central caldera have (87Sr/86Sr)m between about 0.7060 and 0.7072 and values for Sierra Nevada granodiorites adjacent to the caldera are similar. Sierran pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered volcanic rocks inside the caldera have (87Sr/86Sr)m slightly heavier than their fresh volcanic equivalents and hydrothermal calcites (0.7068-0.7105) occupy a midrange of values between the volcanic/plutonic rocks and the Sierran metamorphic rocks. These data indicate that the Long Valley geothermal reservoir is first equilibrated in a basement complex that contains at least some metasedimentary rocks. Reequilibration of Sr-isotope ratios to lower values occurs in thermal waters as convecting geothermal fluids flow through the isotopically lighter volcanic rocks of the caldera fill. ?? 1991.

  9. Absolute measurement of the 1S0 − 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link

    PubMed Central

    Morzyński, Piotr; Bober, Marcin; Bartoszek-Bober, Dobrosława; Nawrocki, Jerzy; Krehlik, Przemysław; Śliwczyński, Łukasz; Lipiński, Marcin; Masłowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michał; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czesław; Ciuryło, Roman; Zawada, Michał

    2015-01-01

    We report a stability below 7 × 10−17 of two independent optical lattice clocks operating with bosonic 88Sr isotope. The value (429 228 066 418 008.3(1.9)syst (0.9)stat Hz) of the absolute frequency of the 1S0 – 3P0 transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures. PMID:26639347

  10. Strontium isotope fractionation during strontianite (SrCO3) dissolution, precipitation and at equilibrium

    NASA Astrophysics Data System (ADS)

    Mavromatis, Vasileios; Harrison, Anna L.; Eisenhauer, Anton; Dietzel, Martin

    2017-12-01

    In this study we examine the behavior of stable Sr isotopes between strontianite [SrCO3] and reactive fluid during mineral dissolution, precipitation, and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 0.01 M NaCl solutions wherein the pH was adjusted by bubbling of a water saturated gas phase of pure CO2 or atmospheric air. The equilibrium Sr isotope fractionation between strontianite and fluid after dissolution of the solid under 1 atm CO2 atmosphere was estimated as Δ88/86SrSrCO3-fluid = δ88/86Sr SrCO3 - δ88/86Srfluid = -0.05 ± 0.01‰. On the other hand, during strontianite precipitation, an enrichment of the fluid phase in 88Sr, the heavy isotopomer, was observed. The evolution of the δ88/86Srfluid during strontianite precipitation can be modeled using a Rayleigh distillation approach and the estimated, kinetically driven, fractionation factor αSrCO3-fluid between solid and fluid is calculated to be 0.99985 ± 0.00003 corresponding to Δ88/86SrSrCO3-fluid = -0.15‰. The obtained results further support that under chemical equilibrium conditions between solid and fluid a continuous exchange of isotopes occurs until the system approaches isotopic equilibrium. This isotopic exchange is not limited to the outer surface layer of the strontianite crystal, but extends to ∼7-8 unit cells below the crystal surface. The behavior of Sr isotopes in this study is in excellent agreement with the concept of dynamic equilibrium and it suggests that the time needed for achievement of chemical equilibrium is generally shorter compared to that for isotopic equilibrium. Thus it is suggested that in natural Sr-bearing carbonates an isotopic change may still occur close to thermodynamic equilibrium, despite no observable change in aqueous elemental concentrations. As such, a secondary and ongoing change of Sr isotope signals in carbonate minerals caused by isotopic re-equilibration with fluids has to be considered in order to use Sr

  11. Charge transfer at the interface between ferromagnetic La0.7Sr0.3MnO3 and superconducting EuBa2Cu3O7 probed by STM/STS

    NASA Astrophysics Data System (ADS)

    Liu, Yinghao; Xiong, Jie

    2012-02-01

    La0.7Sr0.3MnO3 (LSMO) is a ferromagnetic half-metallic compound with nearly 100% spin polarization at room temperature, making it an ideal candidate for applications in spintronic devices. However, this useful functionality disappears when the thickness of LSMO film grown on SrTiO3 substrate is reduced to below 4 nm, limiting its application in nanoscale devices. Here, we show that metallic and ferromagnetic properties of ultrathin (< 4nm) LSMO film can be restored by interfacing it with a superconductor EuBa2Cu3O7- δ (EBCO). We use scanning tunneling microscopy and spectroscopy to probe the evolution of the electronic structure of LSMO film grown on EBCO as functions of LSMO layer thickness and aging of bilayer LSMO/EBCO. Our results reveal that the charge (hole) transfer at LSMO/EBCO interface is responsible for driving LSMO film (of only five-unit-cell thickness) to metallic state. The conductive behavior of aged LSMO/EBCO bilayers varies systematically with the thickness of LSMO layer, allowing us to estimate the charge-transfer depth to be 4˜5 nm on the LSMO side.

  12. Preparation Process and Dielectric Properties of Ba(0.5)Sr(0.5)TiO3-P(VDF-CTFE) Nanocomposites

    NASA Technical Reports Server (NTRS)

    Zhang, Lin; Wu, Peixuang; Li, Yongtang; Cheng, Z. -Y.; Brewer, Jeffrey C.

    2014-01-01

    Ceramic-polymer 0-3 nanocomposites, in which nanosized Ba(0.5)Sr(0.5)TiO3 (BST) powders were used as ceramic filler and P(VDF-CTFE) 88/12 mol% [poly(vinylidene fluoridechlorotrifluoroethylene)] copolymer was used as matrix, were studied over a concentration range from 0 to 50 vol.% of BST powders. It is found that the solution cast composites are porous and a hot-press process can eliminate the porosity, which results in a dense composite film. Two different configurations used in the hot-press process are studied. Although there is no clear difference in the uniformity and microstructure of the composites prepared using these two configurations, the composite prepared using one configuration exhibit a higher dielectric constant with a lower loss. For the composite with 40 vol. BST, a dielectric constant of 70 with a loss of 0.07 at 1 kHz is obtained at room temperature. The composites exhibit a lower dielectric loss than the polymer matrix at high frequency. However, at low frequency, the composites exhibit a higher loss than the polymer matrix due to a low frequency relaxation process that appears in the composites. It is believed that this relaxation process is related to the interfacial layer formed between BST particle and the polymer matrix. The temperature dependence of the dielectric property of the composites was studied. It is found that the dielectric constant of these composites is almost independent of the temperature over a temperature range from 20 to 120 C. Key words: A. Polymer-matrix composites (PMCs); B. Electrical Properties; E. Casting; E. Heat treatment; Dielectric properties.

  13. Study on structural refinement and electrochemical behaviour of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC)

    NASA Astrophysics Data System (ADS)

    Kautkar, Pranay R.; Shirbhate, Shraddha C.; Acharya, Smita A.

    2018-05-01

    Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) was prepared by ethylene glycol-citrate combined sol-gel combustion route and calcined at optimized temperature 1050°C. The X-ray Diffraction (XRD) data revealing the crystal purity of BSCF cathode was refined by the Cubic-type structure having the space group Pm-3m by Rietveld analysis. Refined lattice parameter of BSCF cathode is a = 3.9759 Å and unit cell volume is 62.85 (4) Å3, Co/Fe-O bond length from VESTA program figured out to be 1.987 (3) Å. Electron density distribution (EDD) of the unit cell of BSCF cathode shows the bonding feature with oxygen ions, this could represent oxygen vacancies are present in the lattice. These results reflected in electrochemical impedance spectra measurement of symmetric cell. Area of specific resistance (ASR) of the BSCF cathode was found to be 0.17 Ω.cm2 at 700°C and respective activation energy (Ea) 1.15 eV. It shows surface exchange at cathode interface, surface diffusion and self-diffusion happened through Ce0.85Sd0.15O1.95 (SDC15) electrolyte.

  14. Effect of nanostructure on thermoelectric properties of La0.7Sr0.3MnO3 in 300–600 K temperature range

    NASA Astrophysics Data System (ADS)

    Singh, Saurabh; Srivastav, Simant Kumar; Patel, Ashutosh; Chatterjee, Ratnamala; Pandey, Sudhir K.

    2018-05-01

    In oxide materials, nanostructuring effect has been found a very promising approach for the enhancement of figure-of-merit, ZT. In the present work, we have synthesized La0.7Sr0.3MnO3 (LSMO) compound using sol-gel method and samples of crystallite size of ∼20, ∼41, and ∼49 nm were obtained by giving different heat treatment. Seebeck coefficient (α), electrical resistivity (ρ), and thermal conductivity (κ) measurements were carried out in 300–600 K temperature range. The systematic change in the values of α from ∼‑19 μV/K to ∼‑24 μV/K and drastic reduction in the values of κ from ∼0.88 W/mK to ∼0.23 W/mK are observed as crystallite size is reduced from 49 nm to 20 nm at ∼600 K. Also, fall in the values of ρ in the paramagnetic (PM) insulator phase (400–600 K) are effectively responsible for the increasing trend in the values of ZT at high temperature. For the crystallite size of 41 nm, the value of ZT at 600 K was found to be ∼0.017.

  15. Twentieth century warming of the tropical Atlantic captured by Sr-U paleothermometry

    NASA Astrophysics Data System (ADS)

    Alpert, Alice E.; Cohen, Anne L.; Oppo, Delia W.; DeCarlo, Thomas M.; Gaetani, Glenn A.; Hernandez-Delgado, Edwin A.; Winter, Amos; Gonneea, Meagan E.

    2017-02-01

    Coral skeletons are valuable archives of past ocean conditions. However, interpretation of coral paleotemperature records is confounded by uncertainties associated with single-element ratio thermometers, including Sr/Ca. A new approach, Sr-U, uses U/Ca to constrain the influence of Rayleigh fractionation on Sr/Ca. Here we build on the initial Pacific Porites Sr-U calibration to include multiple Atlantic and Pacific coral genera from multiple coral reef locations spanning a temperature range of 23.15-30.12°C. Accounting for the wintertime growth cessation of one Bermuda coral, we show that Sr-U is strongly correlated with the average water temperature at each location (r2 = 0.91, P < 0.001, n = 19). We applied the multispecies spatial calibration between Sr-U and temperature to reconstruct a 96 year long temperature record at Mona Island, Puerto Rico, using a coral not included in the calibration. Average Sr-U derived temperature for the period 1900-1996 is within 0.12°C of the average instrumental temperature at this site and captures the twentieth century warming trend of 0.06°C per decade. Sr-U also captures the timing of multiyear variability but with higher amplitude than implied by the instrumental data. Mean Sr-U temperatures and patterns of multiyear variability were replicated in a second coral in the same grid box. Conversely, Sr/Ca records from the same two corals were inconsistent with each other and failed to capture absolute sea temperatures, timing of multiyear variability, or the twentieth century warming trend. Our results suggest that coral Sr-U paleothermometry is a promising new tool for reconstruction of past ocean temperatures.

  16. Colossal dielectric constant and relaxation behaviors in Pr:SrTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Liu, Peng; Zhou, Jian-ping; He, Ying; Su, Li-na; Cao, Lei; Zhang, Huai-wu

    2010-05-01

    Sr1-xPrxTiO3 ceramics (0.00≤x≤0.03) were prepared by a traditional solid-state reaction method. Two relaxation processes (marked as A and B) of the Sr0.09Pr0.01TiO3 ceramics were investigated by analyzing the Ea values obtained from the Arrhenius law. Colossal dielectric constant (CDC) was first obtained in Sr0.09Pr0.01TiO3 ceramics, whose permittivity was up to 3000 (1 kHz, room temperature), greater than that of pure SrTiO3 ceramics and samples with more Pr addition (x =0.02 and 0.03). This CDC behavior was related to the internal barrier layer capacitance mechanism.

  17. Magnetic and transport properties of the spin-state disordered oxide La0.8Sr0.2Co1-xRhxO3-δ

    NASA Astrophysics Data System (ADS)

    Shibasaki, Soichiro; Terasaki, Ichiro; Nishibori, Eiji; Sawa, Hiroshi; Lybeck, Jenni; Yamauchi, Hisao; Karppinen, Maarit

    2011-03-01

    We report measurements and analysis of magnetization, resistivity, and thermopower of polycrystalline samples of the perovskite-type Co/Rh oxide La0.8Sr0.2Co1-xRhxO3-δ. This system constitutes a solid solution for a full range of x, in which the crystal structure changes from rhombohedral to orthorhombic symmetry with increasing Rh content x. The magnetization data reveal that the magnetic ground state immediately changes upon Rh substitution from ferromagnetic to paramagnetic with increasing x near 0.25, which is close to the structural phase boundary. We find that one substituted Rh ion diminishes the saturation moment by 9 μB, which implies that one Rh3+ ion makes a few magnetic Co3+ ions nonmagnetic (the low-spin state) and causes disorder in the spin state and the highest occupied orbital. In this disordered composition (0.05⩽x⩽0.75), we find that the thermopower is anomalously enhanced below 50 K. In particular, the thermopower of x=0.5 is larger by a factor of 10 than those of x=0 and 1, and the temperature coefficient reaches 4 μV/K2, which is as large as that of heavy-fermion materials such as CeRu2Si2.

  18. Improvement of the Coercivity of Cobalt Ferrites Induced by Substitution of Sr2+ Ions for Co2+ Ions

    NASA Astrophysics Data System (ADS)

    Zhou, Kaiwen; Chen, Wen; Wu, Xuehang; Wu, Wenwei; Lin, Cuiwu; Wu, Juan

    2017-07-01

    Spinel Co1- x Sr x Fe2O4 ( x = 0.0, 0.1, 0.2, and 0.3) ferrites have been successfully synthesized by calcining a mixture of oxalates in air. X-ray diffraction study shows that the sample with the concentration of x = 0 has a single spinel phase CoFe2O4 structure and the samples with concentrations of x = 0.1-0.3 have a small amount of foreign phase SrFe12O19 and/or Sr7Fe10O22 along the spinel phase. The lattice parameter of the ferrites at first increases with increasing Sr2+ content, then decreases to x = 0.3 due to the large ionic radius of Sr2+ (0.144 nm) as compared to Co2+ (0.072 nm); for higher doping levels, part of the Sr2+ ions could not enter the tetrahedral (A) and/or octahedral (B) sites but forms a second phase Sr7Fe10O22. The addition of Sr2+ ions decreases the average crystallite size of Co1- x Sr x Fe2O4, which is attributed to the foreign phase Sr7Fe10O22 and/or SrFe12O19 restraining the growth of the Co1- x Sr x Fe2O4 crystallite. The trend of specific saturation magnetization ( Ms), remanence ( Mr), and anisotropy constant ( K eff) decreases with the increase in Sr2+ content, whereas that of coercivity is increased. In this study, Co0.8Sr0.2Fe2O4 obtained at 800°C exhibits the highest coercivity (1699.25 ± 40.78 Oe), and Co0.7Sr0.3Fe2O4 obtained at 900°C exhibits the highest squareness (0.470 ± 0.008).

  19. Magnetic excitations and phonons simultaneously studied by resonant inelastic x-ray scattering in optimally doped Bi 1.5 Pb 0.55 Sr 1.6 La 0.4 CuO 6 + δ

    DOE PAGES

    Peng, Y. Y.; Hashimoto, M.; Sala, M. Moretti; ...

    2015-08-24

    In this paper, magnetic excitations in the optimally doped high-T c superconductor Bi 1.5Pb 0.55Sr 1.6La 0.4CuO 6+δ (OP-Bi2201, T c ≃ 34 K) are investigated by Cu L 3 edge resonant inelastic x-ray scattering (RIXS), below and above the pseudogap opening temperature. At both temperatures the broad spectral distribution disperses along the (1,0) direction up to ~350 meV at zone boundary, similar to other hole-doped cuprates. However, above ~0.22 reciprocal lattice units, we observe a concurrent intensity decrease for magnetic excitations and quasielastic signals with weak temperature dependence. This anomaly seems to indicate a coupling between magnetic, lattice, andmore » charge modes in this compound. We also compare the magnetic excitation spectra near the antinodal zone boundary in the single layer OP-Bi2201 and in the bilayer optimally doped Bi 1.5Pb 0.6Sr 1.54CaCu 2O 8+δ (OP-Bi2212, T c ≃ 96 K). Finally, the strong similarities in the paramagnon dispersion and in their energy at zone boundary indicate that the strength of the superexchange interaction and the short-range magnetic correlation cannot be directly related to T c, not even within the same family of cuprates.« less

  20. The effect of Bi substitution on the microstructure and magnetic properties of the Sr0.4Ba0.3La0.3Fe12-xBixO19 hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Wang, Fanhou; Liu, Xiansong; Shao, Juxiang; Feng, Shuangjiu; Huang, Duohui; Li, Mingling

    2017-01-01

    Bi3+ ions doped M-type hexaferrites, Sr0.4Ba0.3La0.3Fe12-xBixO19 (0≤x≤0.7), were prepared by the ceramic process. The phase components of the magnetic powders were investigated by X-ray diffraction. The results show that a single magnetoplumbite phase is obtained for the magnetic powders with x from 0 to 0.2, and BiFeO3 as a second phase appears when Bi content (x)≥0.3. The micrographs of the sintered magnets were observed by a field emission scanning electron microscopy. The sintered magnets are formed of hexagonal-shaped crystals. The magnetic properties of the sintered magnets were measured at room temperature by a permanent magnetic measuring system. The remanence (Br) first increases with x from 0 to 0.2, and then decreases when Bi content (x)≥0.2. The intrinsic coercivity (Hcj) and magnetic induction coercivity (Hcb) firstly decrease quickly with x from 0 to 0.1, and then increase linearly when Bi content (x)≥0.1. The maximum energy product [(BH)max] increases with x from 0 to 0.3, and then decreases when Bi content (x)≥0.3. The ratio Hk/Hcj ratio first increases with Bi content (x) from 0 to 0.4. And the Hk/Hcj ratio decreases when x≥0.4.

  1. Studies of electrical conductivity and complex initial permeability of multiferroic xBa{sub 0.95}Sr{sub 0.05}TiO{sub 3}-(1-x)BiFe{sub 0.90}Gd{sub 0.10}O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miah, Mohammad J., E-mail: mmjulhash@yahoo.com; Department of Physics, Comilla University, Comilla; Khan, M. N. I.

    Multiferroic xBa{sub 0.95}Sr{sub 0.05}TiO{sub 3}-(1-x)BiFe{sub 0.90}Gd{sub 0.10}O{sub 3} [xBST-(1-x)BFGO] (x = 0.00, 0.10 and 0.20) ceramics were prepared by the standard solid-state reaction technique. Crystal structure of the ceramics was determined by X-ray diffraction pattern. All the compositions exhibited rhombohedral crystal structure. The tolerance factor ‘t’ varied from 0.847 to 0.864. The AC conductivity spectrum followed the Jonscher’s power law. The Nyquist plots indicated that only grains have the contribution to the resistance in this material and the values of grain resistance (R{sub g}) increased with BST content. The real part of complex initial permeability decreased with the increase inmore » frequency and increased with increasing BST content. Magnetoelectric coefficient was determined for all compositions. The maximum value of magnetoelectric coefficient was found to be 1.467 mV.cm{sup −1}.Oe{sup −1} for x = 0.20.« less

  2. Sr isotopic composition as a tracer of Ca sources in two forest ecosystems in Belgium.

    NASA Astrophysics Data System (ADS)

    Drouet, T.; Herbauts, J.; Demaiffe, D.

    2003-04-01

    The two main sources of Ca in forest ecosystem are the mineral weathering release and atmospheric inputs. We use the 87Sr/86Sr isotopic ratio (Sr is a proxy for Ca) to determine the Ca contribution from rain input in two forest ecosystems (beech stands) growing on soils formed from parent materials with distinct total Ca contents and contrasted isotopic ratios: Pleistocene loess in Central Belgium (leached brown soil) with present-day 87Sr/86Sr =0.72788 and Lower Devonian shales and sandstones in Ardennes (ochreous brown earth) with 87Sr/86Sr = 0.76913. The 87Sr/86Sr ratios and the Ca and Sr contents were measured in rainwater, vegetation (beech wood growth rings and leaves) and main soil horizons (total, labile and HCl 0.1 M soluble forms). The relative contributions of atmospheric input and soil mineral weathering to vegetation were calculated using mixing equations. Calculations based on the Sr isotope ratios of rainwater (endmember 1; 87Sr/86Sr close to seawater: 0.7090), labile soil fraction (endmember 2; 87Sr/86Sr: 0.71332 to 0.71785) and beech wood (mixing compartment) indicate that about 50 % (Central Belgium) to 35 % (Ardennes) of Ca uptake originate from atmospheric inputs. The choice of the appropriate 87Sr/86Sr ratio for the weathering endmember is however critical. The isotopic composition of the mineral source is theoretically determined by the mineralogical composition of the soil and the relative weatherability of the Sr-bearing minerals. Due to soil processes (weathering and clay illuviation), the distribution of minerals in both soil profiles is not homogeneous and varies from horizon to horizon. Which horizons are relevant and which kind of soil extract (labile soil fraction, acid soluble fraction, total soil,...) should be selected for isotopic measurement of weathering endmember, is therefore questionable. The different ways of estimation are discussed. Quantitative mineralogical reconstitutions of soil horizons and isotopic data indicate

  3. Study on the spin-states of cobalt-based double-layer perovskite Sr2Y0.5Ca0.5Co2O7

    NASA Astrophysics Data System (ADS)

    He, H.; Zhang, W. Y.

    2008-02-01

    The spin-states of cobalt based perovskite compounds depend sensitively on the valence state and local crystal environment of Co ions and the rich physical properties arise from strong coupling among charge, spin, and orbital degrees of freedom. While extensive studies have been carried out in the past, most of them concentrated on the isotropic compound LaCoO3. In this paper, using the unrestricted Hartree-Fock approximation and the real-space recursion method, we have investigated the competition of various magnetically ordered spin-states of anisotropic double-layered perovskite Sr2Y0.5Ca0.5Co2O7. The energy comparison among these states shows that the nearest-neighbor high-spin-intermediate-spin ferromagnetically ordered state is the relevant magnetic ground state of the compound. The magnetic structure and sizes of magnetic moments are consistent with the recent experimental observation.

  4. Misfit strain relaxation in (Ba0.60Sr0.40)TiO3 epitaxial thin films on orthorhombic NdGaO3 substrates

    NASA Astrophysics Data System (ADS)

    Simon, W. K.; Akdogan, E. K.; Safari, A.

    2006-07-01

    Strain relaxation in (Ba0.60Sr0.40)TiO3 (BST) thin films on ⟨110⟩ orthorhombic NdGaO3 substrates is investigated by x-ray diffractometry. Pole figure analysis indicates a [010]BST∥[1¯10]NGO and [001]BST∥[001]NGO in-plane and [100]BST∥[100]NGO out-of-plane epitaxial relationship. The residual strains are relaxed at h ˜200nm, and for h >600nm, films are essentially strain free. Two independent dislocations mechanisms operate to relieve the anisotropic misfit strains along the principal directions. The critical thickness for misfit dislocation formation along [001] and [010] are 11 and 15nm, respectively. Stress analysis indicates deviation from linear elasticity for h <200. The films with 10

  5. Composite anode La0.8Sr0.2MnO3 impregnated with cobalt oxide for steam electrolysis

    NASA Astrophysics Data System (ADS)

    Li, Shisong; Cheng, Jigui; Xie, Kui; Li, Peipei; Wu, Yucheng

    2013-12-01

    Oxygen-ion conducting solid oxide electrolyzer (SOE) has attracted a great deal of interest because it converts electrical energy into chemical energy directly. The oxygen evolution reaction (OER) is occurred at the anode of solid oxide electrolyzer as the O2- being oxidized and form O2 gas, which is considered as one of the major cause of overpotentials in steam electrolyzers. This paper investigates the electrolysis of steam based on cobalt oxide impregnated La0.8Sr0.2MnO3 (LSM) composite anode in an oxide-ion-conducting solid oxide electrolyzer. The conductivity of LSM is studied versus temperature and oxygen partial pressure and correlated to the electrochemical properties of the composite electrodes in symmetric cells at 800 °C. Different contents of Co3O4 (wt.1%, 2%, 4%, 6%, 8%, 10%) were impregnated into LSM electrode and it was found that the polarization resistance (Rp) of symmetric cells gradually improved from 1.16 Ω•cm2 (LSM) to 0.24 Ω•cm2 (wt.10%Co3O4-LSM). Steam electrolysis based on LSM and wt.6%Co3O4-LSM anode electrolyzers are tested at 800°C and the AC impedance spectroscopy results indicated that the Rp of high frequency process significantly decreased from1.1 Ω•cm2 (LSM) to 0.5 Ω•cm2 (wt.6%Co3O4-LSM) under 1.8V electrolysis voltage and the Rp of low frequency process decreased from 14.9 Ω•cm2 to 5.7 Ω•cm2. Electrochemical catalyst Co3O4 can efficiently improve the electrode and enhance the performance of high temperature solid oxide electrolyzer.

  6. Point defect disorder in high-temperature solution grown Sr6Tb0.94Fe1.06(BO3)6 single crystals

    NASA Astrophysics Data System (ADS)

    Velázquez, M.; Péchev, S.; Duttine, M.; Wattiaux, A.; Labrugère, C.; Veber, Ph.; Buffière, S.; Denux, D.

    2018-08-01

    New Sr6Tb0.94Fe1.06(BO3)6 single crystals were obtained from lithium borate high-temperature solution growth under controlled atmosphere. Their average crystal structure was found to adopt the trigonal R-3 space group with lattice parameters a = 12.2164 Å and c = 9.1934 Å. A combined multiscale characterization approach, involving diffuse reflectance, X-ray photoelectron (XPS) and Mössbauer spectroscopies, was undertaken to establish the exact nature of the point defect disorder in this crystal structure. The FeTb× antisite disorder in the Sr6Tb0.94Fe1.06(BO3)6 single crystals is different from the kind of point defect disorder known to exist in the powder phase material counterpart. The absence of Tb4+ cations in the crystal lattice was established by XPS, and that of any phase transition down to 4 K was checked by specific heat measurements. The magnetic susceptibility curve was found to follow a Curie-Weiss behaviour in the 4-354 K temperature range.

  7. Evidence for a Nematic Phase in La 1.75 Sr 0.25 NiO 4

    DOE PAGES

    Zhong, Ruidan; Winn, Barry L.; Gu, Genda; ...

    2017-04-28

    Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La 2 - xSr xNiO 4, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature “disordered” state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid. Following the recent detection of dynamic charge stripes, in this paper we use neutron scattering measurements on an x = 0.25 crystal to demonstrate that the dispersion of themore » charge-stripe excitations is anisotropic. Finally, this observation provides compelling evidence for the presence of electronic nematic order.« less

  8. Evidence for a Nematic Phase in La 1.75 Sr 0.25 NiO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Ruidan; Winn, Barry L.; Gu, Genda

    Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La 2 - xSr xNiO 4, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature “disordered” state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid. Following the recent detection of dynamic charge stripes, in this paper we use neutron scattering measurements on an x = 0.25 crystal to demonstrate that the dispersion of themore » charge-stripe excitations is anisotropic. Finally, this observation provides compelling evidence for the presence of electronic nematic order.« less

  9. Interface-mediated ferroelectric patterning and Mn valency in nano-structured PbTiO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krug, Ingo P.; Institut für Optik and Atomare Physik; Helmholtzzentrum für Materialien und Energie

    2016-09-07

    We employed a multitechnique approach using piezo-force response microscopy and photoemission microscopy to investigate a self-organizing polarization domain pattern in PbTiO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (PTO/LSMO) nanostructures. The polarization is correlated with the nanostructure morphology as well as with the thickness and Mn valence of the LSMO template layer. On the LSMO dots, the PTO is upwards polarized, whereas outside the nanodots, the polarization appears both strain and interface roughness dependent. The results suggest that the electronic structure and strain of the PTO/LSMO interface contribute to determining the internal bias of the ferroelectric layer.

  10. Rapid method to determine 89Sr/ 90Sr in large concrete samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian; Hutchison, Jay B.

    Here, a new rapid method has been developed that provides high quality low-level measurements of 89,90Sr in concrete samples with an MDA (Minimum Detectable Activity) of <1 mBq g -1. The new method is fast, meets new decommissioning regulatory limits and is robust even if refractory particles are present. The method utilizes a rapid fusion to ensure total dissolution of samples and rapid preconcentration and separation of 89,90Sr from 5-10 g concrete samples. When, the 89Sr/ 90Sr ratio is high, Sr can be isolated from up to 5g concrete samples, total 89/90Sr measured, and then 90Sr determined via 90Y separatedmore » after a period of ingrowth. Another approach allows the immediate determination of 90Sr in 10 g concrete aliquots without waiting for 90Y ingrowth, in instances where the shorter lived 89Sr is unlikely to be encountered.« less

  11. Rapid method to determine 89Sr/ 90Sr in large concrete samples

    DOE PAGES

    Maxwell, Sherrod L.; Culligan, Brian; Hutchison, Jay B.; ...

    2016-03-24

    Here, a new rapid method has been developed that provides high quality low-level measurements of 89,90Sr in concrete samples with an MDA (Minimum Detectable Activity) of <1 mBq g -1. The new method is fast, meets new decommissioning regulatory limits and is robust even if refractory particles are present. The method utilizes a rapid fusion to ensure total dissolution of samples and rapid preconcentration and separation of 89,90Sr from 5-10 g concrete samples. When, the 89Sr/ 90Sr ratio is high, Sr can be isolated from up to 5g concrete samples, total 89/90Sr measured, and then 90Sr determined via 90Y separatedmore » after a period of ingrowth. Another approach allows the immediate determination of 90Sr in 10 g concrete aliquots without waiting for 90Y ingrowth, in instances where the shorter lived 89Sr is unlikely to be encountered.« less

  12. Verification of the ODOT overlay design procedure : final report, June 1996.

    DOT National Transportation Integrated Search

    1996-06-01

    The current ODOT overlay design procedure sometimes indicates additional pavement thickness is needed right after the overlay construction. Evaluation of the current procedure reveals that using spreadabiity to back calculate existing pavement modulu...

  13. Sm-Nd and Initial Sr-87/Sr-86 Isotopic Systematics of Asuka 881394 and Cumulate Eucrites Yamato 980318/433 Compared

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y; Young, Y. D.; Takeda, H.

    2011-01-01

    The Asuka 881394 achondrite contains fossil Al-26 and Mn-53 and has a Pb-206/Pb-207 age of 4566.5 +/- 0.2 Ma, the oldest for an achondrite. Recent re-investigation of A881394 yielded revised initial Sm-146/Sm-144 = (9.1 +/- 1.4) x 10(exp -3), a Sm-147-Nd-143 age of 4525 +/- 58 Ma, a Rb-87-Sr-87 age of 4490 +/- 130 Ma, and initial Sr-87/Sr-86 = 0.698991 +/- 19, respectively. The relatively large uncertainties in the Sm-Nd and Rb-Sr ages are due to disturbances of the isotopic systematics of tridymite and other minor phases. A preliminary value for the Sm-147-Nd-143 age of the Yamato 980318 cumulate eucrite of 4560 +/- 150 Ma was refined in later work to 4567 +/- 24 Ma as reported orally at LPSC 35. Similarly, a preliminary value for Sm-146/Sm-144 = (7.7 +/- 1.2) x 10 (exp -3) was refined to (6.0 +/- 0.3) x 10(exp -3). For Yamato 980433, a Sm-147-Nd-143 age of 4542 +/-42 Ma and Sm-146/Sm-144 = (5.7 +/- 0.5) x 10(exp -3) has been reported. Because these two cumulate eucrites are paired, we consider them to represent one igneous rock and present their combined isotopic data here.

  14. Oxide ion diffusion mechanism related to Co and Fe ions in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ using in-situ X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Itoh, Takanori; Imai, Hideto

    2018-03-01

    The time changes of the white line and pre-edge intensities of Co and Fe K-edge in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ (BSCF) were observed to estimate the oxide ion diffusion related to Co and Fe ions by using in - situ X-ray absorption spectroscopy (XAS) during oxidation. The 20 μm self-standing BSCF film was prepared for in - situ XAS measurements. The time changes of absorption were fitted to the exponential decay function with two terms. The longer relaxation time (τ), related to the oxide ion diffusion during the oxidation of BSCF, is dependent on temperature. The oxide ion diffusion coefficients (D) were calculated from the τ s estimated by in - situ XAS. The values of the activation energy (Ea) for D related to Co K-edge white line, Co pre-edge, and Fe pre-edge were 1.8-2.0 eV. The value of Ea for D related to Fe K-edge white line, however, was higher than other absorption values at approximately 2.3 eV. We discussed the oxide ion diffusion mechanism related to Co and Fe ions in BSCF using in - situ XAS.

  15. Anisotropic strain relaxation in (Ba0.6Sr0.4)TiO3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Simon, W. K.; Akdogan, E. K.; Safari, A.

    2005-05-01

    We have studied the evolution of anisotropic epitaxial strains in ⟨110⟩-oriented (Ba0.60Sr0.40)TiO3 paraelectric (m3m) thin films grown on orthorhombic (mm2) ⟨100⟩-oriented NdGaO3 by high-resolution x-ray diffractometry. All the six independent components of the three-dimensional strain tensor were measured in films with 25-1200-nm thickness, from which the principal stresses and strains were obtained. Pole figure analysis indicated that the epitaxial relations are [001]m3m‖[001]mm2 and [1¯10]m3m‖[010]mm2 in the plane of the film, and [110]m3m‖[100]mm2 along the growth direction. The dislocation system responsible for strain relief along [001] has been determined to be ∣b ∣(001)=3/4∣b∣. Strain relief along the [1¯10] direction, on the other hand, has been determined to be due to a coupled mechanism given by ∣b∣(1¯10)=∣b∣ and ∣b∣(1¯10)=√3 /4∣b∣. Critical thicknesses, as determined from nonlinear regression using the Matthews-Blakeslee equation, for misfit dislocation formation along [001] and [1¯10] direction were found to be 5 and 7 nm, respectively. The residual strain energy density was calculated as ˜2.9×106J/m3 at 25 nm, which was found to relax an order of magnitude by 200 nm. At 200 nm, the linear dislocation density along [001] and [1¯10] are ˜6.5×105 and ˜6×105cm-1, respectively. For films thicker than 600 nm, additional strain relief occurred through surface undulations, indicating that this secondary strain-relief mechanism is a volume effect that sets in upon cooling from the growth temperature.

  16. Twentieth century warming of the tropical Atlantic captured by Sr-U paleothermometry

    USGS Publications Warehouse

    Alpert, Alice E.; Cohen, Anne L.; Oppo, Delia W.; DeCarlo, Thomas M.; Gaetani, Glenn A.; Hernandez-Delgado, Edwin A.; Winter, Amos; Gonneea, Meagan

    2017-01-01

    Coral skeletons are valuable archives of past ocean conditions. However, interpretation of coral paleotemperature records is confounded by uncertainties associated with single-element ratio thermometers, including Sr/Ca. A new approach, Sr-U, uses U/Ca to constrain the influence of Rayleigh fractionation on Sr/Ca. Here we build on the initial Pacific Porites Sr-U calibration to include multiple Atlantic and Pacific coral genera from multiple coral reef locations spanning a temperature range of 23.15–30.12°C. Accounting for the wintertime growth cessation of one Bermuda coral, we show that Sr-U is strongly correlated with the average water temperature at each location (r2 = 0.91, P < 0.001, n = 19). We applied the multispecies spatial calibration between Sr-U and temperature to reconstruct a 96 year long temperature record at Mona Island, Puerto Rico, using a coral not included in the calibration. Average Sr-U derived temperature for the period 1900–1996 is within 0.12°C of the average instrumental temperature at this site and captures the twentieth century warming trend of 0.06°C per decade. Sr-U also captures the timing of multiyear variability but with higher amplitude than implied by the instrumental data. Mean Sr-U temperatures and patterns of multiyear variability were replicated in a second coral in the same grid box. Conversely, Sr/Ca records from the same two corals were inconsistent with each other and failed to capture absolute sea temperatures, timing of multiyear variability, or the twentieth century warming trend. Our results suggest that coral Sr-U paleothermometry is a promising new tool for reconstruction of past ocean temperatures.

  17. Synthesis of BiPbSrCaCuO superconductor

    DOEpatents

    Hults, W.L.; Kubat-Martin, K.A.; Salazar, K.V.; Phillips, D.S.; Peterson, D.E.

    1994-04-05

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi[sub a]Pb[sub b]Sr[sub c]Ca[sub d]Cu[sub e]O[sub f] wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10[+-]z by reacting a mixture of Bi[sub 4]Sr[sub 3]Ca[sub 3]Cu[sub 4]O[sub 16[+-]z], an alkaline earth metal cuprate, e.g., Sr[sub 9]Ca[sub 5]Cu[sub 24]O[sub 41], and an alkaline earth metal plumbate, e.g., Ca[sub 2[minus]x]Sr[sub x]PbO[sub 4] wherein x is about 0.5, is disclosed.

  18. Synthesis of BiPbSrCaCuO superconductor

    DOEpatents

    Hults, William L.; Kubat-Martin, Kimberly A.; Salazar, Kenneth V.; Phillips, David S.; Peterson, Dean E.

    1994-01-01

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi.sub.a Pb.sub.b Sr.sub.c Ca.sub.d Cu.sub.e O.sub.f wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10.+-.z by reacting a mixture of Bi.sub.4 Sr.sub.3 Ca.sub.3 Cu.sub.4 O.sub.16.+-.z, an alkaline earth metal cuprate, e.g., Sr.sub.9 Ca.sub.5 Cu.sub.24 O.sub.41, and an alkaline earth metal plumbate, e.g., Ca.sub.2-x Sr.sub.x PbO.sub.4 wherein x is about 0.5, is disclosed.

  19. Effect of second introduced phase on magnetic and magnetotransport properties of (1-x)La0.7Sr0.3Mn0.9Co0.1O3/x% Ag (x=0%, 2%, 4%) nanocomposites

    NASA Astrophysics Data System (ADS)

    Shah, Hiral D.; Bhalodia, J. A.

    2018-05-01

    The structural, magnetic and magnetotransport properties of (1-x)La0.7Sr0.3Mn0.9Co0.1O3(LSMCO)/x% Ag (x=0%, 2%, 4%) nanocomposites were investigated to explore the role of second introduced phase. (1-x) LSMCO/x% Ag (x=0%, 2%, 4%) nanocomposites are prepared via solid-state reaction method. X-ray diffraction (XRD) and SEM analysis indicated that x% of Ag are not substituted into the main LSMCO phase and remains an additive to the second phase at grain boundaries [1]. The structural parameters and the reliability factors for all the samples were successfully determined by the Rietveld refinement. Magnetization and transport properties of (1-x)LSMCO/x% Ag nanocomposites have been reported. Resistivity of the composite samples increases with Ag content in comparison with the pure LSMCO, and suppressed with applied magnetic field in all the composite samples [2]. The metal-insulator transition (TMI) and accompanied paramagnetic-ferromagnetic transition (TC) temperatures decrease with increase in Ag content. The electrical resistivity of the experimental results is explored by theoretical model below TMI. The maximum MR was observed to be 55% in the x=4% sample at 5 K temperature under 7 T magnetic field, this value is larger than that of pure LSMCO (19% at 5 K and 7 T), which is encouraging for practical application. Summarily, the addition of Ag in LSMCO improves MR% values significantly due to the more grain boundary contribution and result in better physical properties of the parent manganite system.

  20. Dielectric properties of Ba0.6Sr0.4TiO3 thin films deposited by mist plasma evaporation using aqueous solution precursor

    NASA Astrophysics Data System (ADS)

    Huang, Hui; Shi, Peng; Wang, Minqiang; Yao, Xi; Tan, O. K.

    2006-06-01

    Mist plasma evaporation (MPE) technique has been developed to deposit Ba0.6Sr0.4TiO3 (BST) thin films on SiO2/Si and Pt/Ti/SiO2/Si substrates at atmospheric pressure using metal nitrate aqueous solution as precursor. MPE is characterized by the injection of liquid reactants into thermal plasma where the source materials in the droplets are evaporated by the high temperature of the thermal plasma. Nanometer-scale clusters are formed in the tail flame of the plasma, and then deposited and rearranged on the substrate at a lower temperature. Due to the high temperature annealing process of the thermal plasma before deposition, well-crystallized BST films were deposited at substrate temperature of 630 °C. The dielectric constant and dielectric loss of the film at 100 kHz are 715 and 0.24, respectively. Due to the good crystallinity of the BST films deposited by MPE, high dielectric tunability up to 39.3% is achieved at low applied electric field of 100 kV cm-1.

  1. Structural, Morphological, Differential Scanning Calorimetric and Thermogravimetric Studies of Ball Milled Fe Doped Nanoscale La0.67Sr0.33MnO3 Manganite

    NASA Astrophysics Data System (ADS)

    Astik, Nidhi; Jha, Prafulla K.; Pratap, Arun

    2018-03-01

    The ball milling route has been used to produce the La0.67Sr0.33Mn0.85Fe0.15O3 (LSMFO) nanocrystalline sample from oxide precursors. The sample was characterized using x-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive x-ray spectroscopy (EDAX), differential scanning calorimetry (DSC) and thermogravimetric (TGA) measurements. The x-ray diffraction confirms the phase purity of sample and shows that the sample crystallizes in the rhombohedral perovskite structure with a R-3c space group. The scanning electron micrograph shows the presence of well-faceted crystallites of LSMFO. The EDAX spectrum demonstrates the molar ratio of different elements of nanocrystalline LSMFO. Furthermore, the crystallite size using the Debye-Scherrer formula and William-Hall analysis has been found as 24 nm and 29 nm, respectively. Our results support the idea that a good quality nanocrystalline LSMFO sample can be obtained using the ball milling route. We also discuss the DSC and TGA curves and analyse the results in terms of phase transition, calcination temperature and activation barrier energies.

  2. Search for d0-Magnetism in Amorphous MB6 (M = Ca, Sr, Ba) Thin Films

    NASA Astrophysics Data System (ADS)

    Suter, Andreas; Ackland, Karl; Stilp, Evelyn; Prokscha, Thomas; Salman, Zaher; Coey, Michael

    In the past decade there have been various reports on insulating or semi-conducting compounds showing weak ferromagnetic-like properties, even though none of their constituent have partially occupied d or f shells. Among them are HfO2 [1], highly oriented pyrolytic graphite [2], CaB2C2 [3], CaB6 [4,5], and ZnO2 [6]. From the very beginning it has been speculated that lattice defects might play a significant role. These effects can potentially be amplified when these materials are grown in thin film form, due to strain and interface effects. With low-energy μSR (LE-μSR) we studied various amorphous thin films of alkaline earth hexaborides MB6 (M = Ca, Sr, Ba) grown on Al2O3. Furthermore, we studied the starting materials which were used for the pulsed laser deposition (PLD) targets for the films with bulk μSR to ensure the quality of these powders. Similar to the results in Ref. [5] we find an increased second moment of the static width (ZF/LF dynamic Kubo-Toyabe function) compared to the nuclear width which suggest a very weak magnetic contribution which must originate from the electronic system (defect polarization, grain boundary effects, etc.). Two complications arise from the fact that a strong quadrupolar level crossing resonance is found in the hexaborides at rather low field values, and muon diffusion sets in at rather low temperature. The thin film results demonstrate a strong suppression of the muon diffusion which makes it more suitable to search for weak magnetic signatures. Indeed we find essentially a temperature independent second moment equal to the low temperature value found in the starting powders. This indicates that the weak magnetic state is stabilized up to much higher temperatures.

  3. Performance evaluation of Mn and Fe doped SrCo0.9Nb0.1O3-δ cathode for IT-SOFC application

    NASA Astrophysics Data System (ADS)

    Bele, Lokesh; Lenka, R. K.; Patro, P. K.; Muhmood, L.; Mahata, T.; Sinha, P. K.

    2018-02-01

    Cathode materials of Mn and Fe doped SrCo0.9Nb0.1O3-δ, are synthesized by solid state route for intermediate temperature fuel cell applications. Phase pure material is obtained after calcining the precursors at 1100 °C. Phase compatibility is observed between this novel cathode material with gadolinia doped ceria (GDC) electrolyte material as reflected in the diffraction pattern. The state of art YSZ electrolyte is not compatible with this cathode material. Average thermal expansion coefficient of the material varies between 17 to 22 X 10-6 K-1 on doping, from room temperature to 800 °C. Increase in thermal expansion coefficient is observed with Mn and Fe doping associated with the loss of oxygen from the crystal. The electrical conductivity of the cathode material decreases with Fe and Mn doping. Mn doped samples show lowest conductivity. From the symmetric cell measurement lower area specific resistance (0.16 Ω-cm2) is obtained for un-doped samples, at 850 °C. From the initial results it can be inferred that Mn/Fe doping improves neither the thermal expansion co-efficient nor the electrochemical activity.

  4. Phase Equilibria and Crystal Chemistry in Portions of the System SrO-CaO-Bi2O3-CuO, Part II—The System SrO-Bi2O3-CuO

    PubMed Central

    Roth, R. S.; Rawn, C. J.; Burton, B. P.; Beech, F.

    1990-01-01

    New data are presented on the phase equilibria and crystal chemistry of the binary systems Sr0-Bi203 and SrO-CuO and the ternary system SrO-Bi2O3-CuO. Symmetry data and unit cell dimensions based on single crystal and powder x-ray diffraction measurements are reported for all the binary SrO-Bi2O3 phases, including a new phase identified as Sr6Bi2O9. The ternary system contains at least four ternary phases which can be formed in air at ~900 °C. These are identified as Sr2Bi2CuO6, Sr8Bi4Cu5O19+x, Sr3Bi2Cu2O8 and a solid solution (the Raveau phase) which, for equilibrium conditions at ~900 °C, corresponds approximately to the formula Sr1.8−xBi2.2+xCu1±x/2Oz.(0.0⩽x⩽~0.15). Superconductivity in this phase apparently occurs only in compositions that correspond to negative values of x. Compositions that lie outside the equilibrium Raveau-phase field often form nearly homogeneous Raveau-phase products. Typically this occurs after relatively brief heat treatments, or in crystallization of a quenched melt. PMID:28179779

  5. Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3−δ nanofilms with tunable oxidation state

    PubMed Central

    Chen, Gao; Zhou, Wei; Guan, Daqin; Sunarso, Jaka; Zhu, Yanping; Hu, Xuefeng; Zhang, Wei; Shao, Zongping

    2017-01-01

    Perovskite oxides exhibit potential for use as electrocatalysts in the oxygen evolution reaction (OER). However, their low specific surface area is the main obstacle to realizing a high mass-specific activity that is required to be competitive against the state-of-the-art precious metal–based catalysts. We report the enhanced performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) for the OER with intrinsic activity that is significantly higher than that of the benchmark IrO2, and this result was achieved via fabrication of an amorphous BSCF nanofilm on a surface-oxidized nickel substrate by magnetron sputtering. The surface nickel oxide layer of the Ni substrate and the thickness of the BSCF film were further used to tune the intrinsic OER activity and stability of the BSCF catalyst by optimizing the electronic configuration of the transition metal cations in BSCF via the interaction between the nanofilm and the surface nickel oxide, which enables up to 315-fold enhanced mass-specific activity compared to the crystalline BSCF bulk phase. Moreover, the amorphous BSCF–Ni foam anode coupled with the Pt–Ni foam cathode demonstrated an attractive small overpotential of 0.34 V at 10 mA cm−2 for water electrolysis, with a BSCF loading as low as 154.8 μg cm−2. PMID:28691090

  6. Perovskite-based heterostructures integrating ferromagnetic-insulating La0.1Bi0.9MnO3

    NASA Astrophysics Data System (ADS)

    Gajek, M.; Bibes, M.; Barthélémy, A.; Varela, M.; Fontcuberta, J.

    2005-05-01

    We report on the growth of thin films and heterostructures of the ferromagnetic-insulating perovskite La0.1Bi0.9MnO3. We show that the La0.1Bi0.9MnO3 perovskite grows single phased, epitaxially, and with a single out-of-plane orientation either on SrTiO3 substrates or onto strained La2/3Sr1/3MnO3 and SrRuO3 ferromagnetic-metallic buffer layers. We discuss the magnetic properties of the La0.1Bi0.9MnO3 films and heterostructures in view of their possible potential as magnetoelectric or spin-dependent tunneling devices.

  7. Experimental and theoretical investigations of the polar intermetallics SrPt{sub 3}Al{sub 2} and Sr{sub 2}Pd{sub 2}Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegemann, Frank; Benndorf, Christopher; Touzani, Rachid St.

    SrPt{sub 3}Al{sub 2}, a CaCu{sub 5} relative (P6/mmm; a = 566.29(3), c = 389.39(3) pm; wR{sub 2} = 0.0202, 121 F{sup 2} values, 9 parameters), and Sr{sub 2}Pd{sub 2}Al, isostructural to Ca{sub 2}Pt{sub 2}Ge (Fdd2; a = 1041.45(5), b = 1558.24(7), c = 604.37(3) pm; wR{sub 2} = 0.0291, 844 F{sup 2} values, 25 parameters) have been prepared from the elements. The crystal structures have been investigated by single crystal X-ray diffraction. Structural relaxation confirmed the electronic stability of SrPt{sub 3}Al{sub 2}, while orthorhombic Sr{sub 2}Pd{sub 2}Al might be a metastable polymorph as it is energetically competitive to its monoclinicmore » variant. Both compounds are predicted to be metallic conductors as their density-of-states (DOS) are non-zero at the Fermi level. COHP bonding analysis coupled with Bader effective charge analysis suggest that the title compounds are polar intermetallic phases in which strong Pt–Al and Pd–Al covalent bonds are present, while a significant electron transfer from Sr atoms to the [Pt{sub 3}Al{sub 2}]{sup δ–} or [Pd{sub 2}Al]{sup δ–} network is found. - Graphical abstract: Chains of Pd atoms in the crystal structure of Sr{sub 2}Pd{sub 2}Al get connected by Al atoms in the shape of a distorted tetrahedra. The band structure calculations confirm weak Pd–Pd interactions. - Highlights: • SrPt{sub 3}Al{sub 2} and Sr{sub 2}Pd{sub 2}Al discovered and crystallographically investigated. • DFT predicts the here reported orthorhombic Sr{sub 2}Pd{sub 2}Al to be competitive in energy to the presently unknown monoclinic Sr{sub 2}Pd{sub 2}Al. • Bader charge analysis indicates SrPt{sub 3}Al{sub 2} and Sr{sub 2}Pd{sub 2}Al are polar intermetallics.« less

  8. The combined use of 87Sr/86Sr and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst

    USGS Publications Warehouse

    Katz, B.G.; Bullen, T.D.

    1996-01-01

    The hydrochemical interaction between groundwater and lakewater influences the composition of water that percolates downward from the surficial aquifer system through the underlying intermediate confining unit and recharges the Upper Floridan aquifer along highlands in Florida. The 87Sr/86Sr ratio along with the stable isotopes, D, 18O, and 13C were used as tracers to study the interaction between groundwater, lakewater, and aquifer minerals near Lake Barco, a seepage lake in the mantled karst terrane of northern Florida. Upgradient from the lake, the 87Sr/86Sr ratio of groundwater decreases with depth (mean values of 0.71004, 0.70890, and 0.70852 for water from the surficial aquifer system, intermediate confining unit, and Upper Floridan aquifer, respectively), resulting from the interaction of dilute oxygenated recharge water with aquifer minerals that are less radiogenic with depth. The concentrations of Sr2+ generally increase with depth, and higher concentrations of Sr2+ in water from the Upper Floridan aquifer (20-35 ??g/L), relative to water from the surficial aquifer system and the intermediate confining unit, result from the dissolution of Sr-bearing calcite and dolomite in the Eocene limestone. Dissolution of calcite [??13C = -1.6 permil (???)] is also indicated by an enriched ??13CDIC (-8.8 to - 11.4???) in water from the Upper Floridan aquifer, relative to the overlying hydrogeologic units (??13CDIC < - 16???). Groundwater downgradient from Lake Barco was enriched in 18O and D relative to groundwater upgradient from the lake, indicating mixing of lakewater leakage and groundwater. Downgradient from the lake, the 87Sr/86Sr ratio of groundwater and aquifer material become less radiogenic and the Sr2+ concentrations generally increase with depth. However, Sr2+ concentrations are substantially less than in upgradient groundwaters at similar depths. The lower Sr2+ concentrations result from the influence of anoxic lakewater leakage on the mobility of Sr2

  9. The combined use of 87Sr/86Sr and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst

    NASA Astrophysics Data System (ADS)

    Katz, Brian G.; Bullen, Thomas D.

    1996-12-01

    The hydrochemical interaction between groundwater and lakewater influences the composition of water that percolates downward from the surficial aquifer system through the underlying intermediate confining unit and recharges the Upper Floridan aquifer along highlands in Florida. The 87Sr/86Sr ratio along with the stable isotopes, D, 18O, and 13C were used as tracers to study the interaction between groundwater, lakewater, and aquifer minerals near Lake Barco, a seepage lake in the mantled karst terrane of northern Florida. Upgradient from the lake, the 87Sr/86Sr ratio of groundwater decreases with depth (mean values of 0.71004, 0.70890, and 0.70852 for water from the surficial aquifer system, intermediate confining unit, and Upper Floridan aquifer, respectively), resulting from the interaction of dilute oxygenated recharge water with aquifer minerals that are less radiogenic with depth. The concentrations of Sr2+ generally increase with depth, and higher concentrations of Sr2+ in water from the Upper Floridan aquifer (20-35 μg/L), relative to water from the surficial aquifer system and the intermediate confining unit, result from the dissolution of Sr-bearing calcite and dolomite in the Eocene limestone. Dissolution of calcite [δ13C= -1.6permil(‰)] is also indicated by an enriched δ13CDIC(-8.8 to -11.4 ‰) in water from the Upper Floridan aquifer, relative to the overlying hydrogeologic units (δ13CDIC< -16‰). Groundwater downgradient from Lake Barco was enriched in18O and D relative to groundwater upgradient from the lake, indicating mixing of lakewater leakage and groundwater. Downgradient from the lake, the 87Sr/86Sr ratio of groundwater and aquifer material become less radiogenic and the Sr2+ concentrations generally increase with depth. However, Sr2+ concentrations are substantially less than in upgradient groundwaters at similar depths. The lower Sr2+ concentrations result from the influence of anoxic lakewater leakage on the mobility of Sr2+ from

  10. The Sr/Ca-temperature relationship in coralline aragonite: Influence of variability in (Sr/Ca)[sub seawater] and skeletal growth parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Villiers, S.; Shen, G.T.; Nelson, B.K.

    1994-01-01

    This paper provides an evaluation of two of the most likely pitfalls of Sr/Ca thermometry, i.e., the effect of biogenic cycling of Sr vs. Ca in the surface ocean and the effect of variable extension rate on Sr incorporation in coralline aragonite. The authors also report calibration of the Sr/Ca-temperature relationship for three coral species, Porites lobata, Pocillopora eydouxi, and Pavona clavus, collected for the Hawaiian and Galapagos islands. Analyses of seawater samples show significant spatial and depth variability in the Sr:Ca ratio. The uncertainty introduced by this effect is estimated to be <0.2[degrees]C for corals located in tropical oligotrophicmore » waters, and potentially larger for corals located in upwelling areas. Sr/Ca along two different growth axes of a Galapagos Pavona clavus, with annual extension rates of [approximately]6 and 12 mm/y, respectively, indicate an offset of 1-2[degrees]C, with higher Sr/Ca values associated with slower extension rates. The offset observed between the two growth axes may be the result of variations in extension and/or calcification rate. These results are important in determining past sea surface temperatures for reconstruction of paleoclimates.« less

  11. Inventory and vertical migration of 90Sr fallout and 137Cs/90Sr ratio in Spanish mainland soils.

    PubMed

    Herranz, M; Romero, L M; Idoeta, R; Olondo, C; Valiño, F; Legarda, F

    2011-11-01

    In this paper the inventory of (90)Sr in 34 points distributed along the Spanish peninsular territory is presented. Obtained values range between 173 Bq/m(2) and 2047 Bq/m(2). From these data set and those (137)Cs data obtained in a previous work the (137)Cs/(90)Sr activity ratio has been established, laying this value between 0.9 and 3.6. Also the migration depth of both radionuclides has been analysed obtaining for (137)Cs an average value 57% lower than that obtained for (90)Sr. Additionally, this paper presents the results obtained in 11 sampling points in which the activity vertical profile has been measured. These profiles have been analysed to state the behaviour of strontium in soils and after, by using a convective-diffusive model, the parameters of the model which governs the vertical migration of (90)Sr in the soil, v (apparent convection velocity) and D (apparent diffusion coefficient) have been evaluated. Mean values obtained are 0.20 cm/year and 3.67 cm(2)/year, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Structural Transition and Electrical Properties of (1 - x)(Na0.4K0.1Bi0.5)TiO3- xSrTiO3 Lead-Free Piezoceramics

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Zhai, Jiwei; Shen, Bo; Li, Feng; Li, Peng

    2017-10-01

    (1 - x)(Na0.4K0.1Bi0.5)TiO3- xSrTiO3 (NKBT- xST) ceramics with x = 0 mol.%, 3 mol.%, and 5 mol.% (0ST, 3ST, and 5ST) have been prepared by a conventional solid-state reaction method and their ferroelectric, electrostrictive, and pyroelectric properties investigated. Addition of ST considerably disrupted the long-range ferroelectric order of NKBT- xST ceramics, and the 5ST ceramic exhibited ergodic relaxor phase structure. T FR shifted to near or below room temperature for 5ST ceramic, accompanied by a significant decline of ferroelectricity and enhanced strain. As the temperature approached T FR, the NKBT- xST ceramics exhibited predominantly electrostrictive effect, and the 5ST ceramic presented relatively high electrostrictive coefficient Q 33 of 0.0193 m4/C2. High pyroelectric response was observed for 0ST, 3ST, and 5ST ceramics in the vicinity of T FR due to the large polarization release during the ferroelectric-relaxor structural transition. The 5ST ceramic exhibited high and frequency-insensitive (100 Hz to 10 kHz) room-temperature pyroelectric properties with pyroelectric coefficient p of 656 μC m-2 K-1 and figures of merit F i, F v, and F d reaching 233 pm/V, 0.013 m2/C, and 7.61 μPa-1/2, respectively, indicating that 5ST ceramic is a promising candidate to replace PZT-based ceramics.

  13. In-flight acoustic test results for the SR-2 and SR-3 advanced-design propellers

    NASA Technical Reports Server (NTRS)

    Lasagna, P. L.; Mackall, K. G.; Cohn, R. B.

    1983-01-01

    Several advanced-design propellers, previously tested in the wind tunnel at the Lewis Research Center, have been tested in flight at the Dryden Flight Research Facility. The flight-test propellers were mounted on a pylon on the top of the fuselage of a JetStar airplane. Acoustic data for the advanced-design SR-2 and SR-3 propellers at Mach numbers to 0.8 and helical-tip Mach numbers to 1.15 are presented; maximum blade-passage frequency sound-pressure levels are also compared.

  14. Oxygen-vacancy-related dielectric relaxation in SrBi2Ta1.8V0.2O9 ferroelectrics

    NASA Astrophysics Data System (ADS)

    Wu, Yun; Forbess, Mike J.; Seraji, Seana; Limmer, Steven J.; Chou, Tammy P.; Cao, Guozhong

    2001-05-01

    The strontium bismuth tantalate vanadate, SrBi2Ta1.8V0.2O9, (SBTV) layered perovskite ferroelectrics were made by solid state powder sintering. It was found that the SBTV ferroelectrics had the same crystal structure as that of strontium bismuth tantalate, SrBi2Ta2O9 (SBT), but an increased paraferroelectric transition temperature at ˜360 °C as compared to 305 °C for SBT. In addition, SBTV ferroelectrics showed a frequency dispersion at low frequencies and broadened dielectric peaks at the paraferroelectric transition temperature that shifted to a higher temperature with a reduced frequency. However, after a postsintering annealing at 850 °C in air for 60 h, SBTV ferroelectrics showed reduced dielectric constants and tangent loss, particularly at high temperatures. In addition, no frequency dependence of paraferroelectric transition was found in the annealed SBTV ferroelectrics. Furthermore, there was a significant reduction in dc conductivity with annealing. The prior results implied that the dielectric relaxation in the as-sintered SBTV ferroelectrics was most likely due to the oxygen-vacancy-related dielectric relaxation instead of relaxor ferroelectric behavior.

  15. In Vitro Metabolic Studies of REV-ERB Agonists SR9009 and SR9011.

    PubMed

    Geldof, Lore; Deventer, Koen; Roels, Kris; Tudela, Eva; Van Eeno, Peter

    2016-10-03

    SR9009 and SR9011 are attractive as performance-enhancing substances due to their REV-ERB agonist effects and thus circadian rhythm modulation activity. Although no pharmaceutical preparations are available yet, illicit use of SR9009 and SR9011 for doping purposes can be anticipated, especially since SR9009 is marketed in illicit products. Therefore, the aim was to identify potential diagnostic metabolites via in vitro metabolic studies to ensure effective (doping) control. The presence of SR9009 could be demonstrated in a black market product purchased over the Internet. Via human liver microsomal metabolic assays, eight metabolites were detected for SR9009 and fourteen metabolites for SR9011 by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Structure elucidation was performed for all metabolites by LC-HRMS product ion scans in both positive and negative ionization mode. Retrospective data analysis was applied to 1511 doping control samples previously analyzed by a full-scan LC-HRMS screening method to verify the presence of SR9009, SR9011 and their metabolites. So far, the presence of neither the parent compound nor the metabolites could be detected in routine urine samples. However, to further discourage use of these potentially harmful compounds, incorporation of SR9009 and SR9011 into screening methods is highly recommended.

  16. In Vitro Metabolic Studies of REV-ERB Agonists SR9009 and SR9011

    PubMed Central

    Geldof, Lore; Deventer, Koen; Roels, Kris; Tudela, Eva; Van Eenoo, Peter

    2016-01-01

    SR9009 and SR9011 are attractive as performance-enhancing substances due to their REV-ERB agonist effects and thus circadian rhythm modulation activity. Although no pharmaceutical preparations are available yet, illicit use of SR9009 and SR9011 for doping purposes can be anticipated, especially since SR9009 is marketed in illicit products. Therefore, the aim was to identify potential diagnostic metabolites via in vitro metabolic studies to ensure effective (doping) control. The presence of SR9009 could be demonstrated in a black market product purchased over the Internet. Via human liver microsomal metabolic assays, eight metabolites were detected for SR9009 and fourteen metabolites for SR9011 by liquid chromatography–high resolution mass spectrometry (LC–HRMS). Structure elucidation was performed for all metabolites by LC–HRMS product ion scans in both positive and negative ionization mode. Retrospective data analysis was applied to 1511 doping control samples previously analyzed by a full-scan LC–HRMS screening method to verify the presence of SR9009, SR9011 and their metabolites. So far, the presence of neither the parent compound nor the metabolites could be detected in routine urine samples. However, to further discourage use of these potentially harmful compounds, incorporation of SR9009 and SR9011 into screening methods is highly recommended. PMID:27706103

  17. Veined pyroxenite xenoliths in Ugandan kamafugites: mantle or magma? Using in situ techniques for 87Sr/86Sr-isotopes and trace elements as tools

    NASA Astrophysics Data System (ADS)

    Link, Klemens; Tommasini, Simone; Braschi, Eleonora; Conticelli, Sandro; Barifaijo, Erasmus; Tiberindwa, John V.; Foley, Stephen F.

    2010-05-01

    beneath the preceding rift within that time. Structures on microscopic scale indicate at least two different generations of mineral growth clearly related to multiphase magmatic events forming the nodules. Rare composite samples allow a correlation between the older and younger parageneses, demonstrating reaction between the older matrix pyroxenite and the younger, high-Ti melt. The relatively low (~0,13wt%) Cr2O3-contents together with the high LREE concentrations measured in the oldest observed clinopyroxenes (La~12,4 x PRIMA with La/Lu~21) as well as the lack of any other characteristic mineral relicts argue against a pervasively overprinted peridotite mantle. Comparable 87Sr/86Sr- values close to bulk earth values as well as similar 143Nd/144Nd- ratios in the nodules (0,512480-0,5122573) and the lavas (average: 0,512551) support a genetic link between the kamafugites and the nodules as suggested by experiments (Lloyd et al. 1985). Low radiogenic 87Sr/86Sr ratios in Rb-free clinopyroxene and perovskite (0,704459-0,704487) constrain initial values for the source whereas slightly more radiogenic values from cogenetic Rb-bearing biotites (0,704754- 0,704762) are the result of radioactive decay after mineral growth. The majority of the kamafugite 87Sr/86Sr values lie between the two end-members (0,704624- 0,704717). Additionally considering microscale structures showing melting processes we conclude that the nodules represent one source and that the intermediate 87Sr/86Sr values of the lavas reflect the melting of differing proportions of biotite and clinopyroxene in the source region.

  18. Rb, Sr, Nd, and Sm concentrations in quartz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossman, G.R.; Weis, D.; Wasserburg, G.J.

    1987-09-01

    The concentrations of Rb, Sr, Nd and Sm in quartz crystals from Crystal Peak, Colorado; Steward Mine, California; Tomas Gonzaga, Minas Gerais, Brazil; and Coleman Mines, Arkansas, were determined by isotope dilution mass spectrometry. Concentrations ranged from: 1.17 to 177 ppb Rb; 3.26 to 1027 ppm Sr; 0.0159 to 0.48 ppm Sm; 0.127 to 2.81 ppb Nd. In the Brazilian crystal, concentrations of these elements were correlated with the amount of fluid inclusion water measured visually by turbidity and quantitatively with infrared adsorption spectroscopy. The highest Rb content was found for a crystal free of visible inclusions, indicating that smallmore » amounts of Rb can also occur in quartz itself. Rb and Sr contents are much lower in synthetic quartz grown commercially from the Arkansas quartz.« less

  19. Effect of natural homointerfaces on the magnetic properties of pseudomorphic La0.7Sr0.3MnO3 thin film: Phase separation vs split domain structure

    NASA Astrophysics Data System (ADS)

    Congiu, Francesco; Sanna, Carla; Maritato, Luigi; Orgiani, Pasquale; Geddo Lehmann, Alessandra

    2016-12-01

    We studied the effect of naturally formed homointerfaces on the magnetic and electric transport behavior of a heavily twinned, 40 nm thick, pseudomorphic epitaxial film of La0.7Sr0.3MnO3 deposited by molecular beam epitaxy on ferroelastic LaAlO3(001) substrate. As proved by high resolution X-ray diffraction analysis, the lamellar twin structure of the substrate is imprinted in La0.7Sr0.3MnO3. In spite of the pronounced thermomagnetic irreversibility in the DC low field magnetization, spin-glass-like character, possibly related to the structural complexity, was ruled out, on the base of AC susceptibility results. The magnetic characterization indicates anisotropic ferromagnetism, with a saturation magnetization Ms = 3.2 μB/Mn, slightly reduced with respect to the fully polarized value of 3.7 μB/Mn. The low field DC magnetization vs temperature is non bulklike, with a two step increase in the field cooled MFC(T) branch and a two peak structure in the zero field cooled MZFC(T) one. Correspondingly, two peaks are present in the resistivity vs temperature ρ(T) curve. With reference to the behavior of epitaxial manganites deposited on bicrystal substrates, results are discussed in terms of a two phase model, in which each couple of adjacent ferromagnetic twin cores, with bulklike TC = 370 K, is separated by a twin boundary with lower Curie point TC = 150 K, acting as barrier for spin polarized transport. The two phase scenario is compared with the alternative one based on a single ferromagnetic phase with the peculiar ferromagnetic domains structure inherent to twinned manganites films, reported to be split into interconnected and spatially separated regions with in-plane and out-of-plane magnetization, coinciding with twin cores and twin boundaries respectively.

  20. Influences of spark plasma sintering temperature on the microstructures and thermoelectric properties of (Sr0.95Gd0.05)TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Liang-Liang; Qin, Xiao-Ying; Liu, Yong-Fei; Liu, Quan-Zhen

    2015-06-01

    (Sr0.95Gd0.05)TiO3 (SGTO) ceramics are successfully prepared via spark plasma sintering (SPS) respectively at 1548, 1648, and 1748 K by using submicron-sized SGTO powders synthesized from a sol-gel method. The densities, microstructures, and thermoelectric properties of the SGTO ceramics are studied. Though the Seebeck coefficient shows no obvious difference in the case that SPS temperatures range from 1548 K to 1648 K, the electrical conductivity and the thermal conductivity increase remarkably due to the increase in grain size and density. The sample has a density higher than 98% theoretical density as the sintering temperature increases up to 1648 K and shows average grain sizes increasing from ˜ 0.7 μm to 7 μm until 1748 K. As a result, the maximum of the dimensionless figure of merit of ˜ 0.24 is achieved at ˜ 1000 K for the samples sintered at 1648 K and 1748 K, which was ˜ 71% larger than that (0.14 at ˜ 1000 K) for the sample sintered at 1548 K due to the enhancement of the power factor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174292, 51101150, and 11374306).