Study to determine and analyze the strength of high modulus glass in epoxy-matrix composites
NASA Technical Reports Server (NTRS)
Bacon, J. F.
1974-01-01
Glass composition research was conducted to produce a high modulus, high strength beryllium-free glass fiber. This program was built on the previous research for developing high modulus, high strength glass fibers which had a 5 weight percent beryllia content. The fibers resulting from the composition program were then used to produce fiber reinforced-epoxy resin composites which were compared with composites reinforced by commercial high modulus glass fibers, Thornel S graphite fiber, and hybrids where the external quarters were reinforced with Thornel S graphite fiber and the interior half with glass fiber as well as the reverse hybrid. The composites were given tensile strength, compressive strength, short-beam shear strength, creep and fatigue tests. Comments are included on the significance of the test data.
High-Temperature Inorganic Self-Healing Inorganic Cement Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyatina, Tatiana; Sugama, Toshifumi
The data files below summarize the results from various experiments testing properties of high-temperature self-healing inorganic cement composites. These properties include cement-carbon steel bond strength, Young's modulus recovery, matrix recovery strength, and compressive strength and Yonug's modulus for cement composites modified with Pozzolanic Clay additives.
Estimation of static parameters based on dynamical and physical properties in limestone rocks
NASA Astrophysics Data System (ADS)
Ghafoori, Mohammad; Rastegarnia, Ahmad; Lashkaripour, Gholam Reza
2018-01-01
Due to the importance of uniaxial compressive strength (UCS), static Young's modulus (ES) and shear wave velocity, it is always worth to predict these parameters from empirical relations that suggested for other formations with same lithology. This paper studies the physical, mechanical and dynamical properties of limestone rocks using the results of laboratory tests which carried out on 60 the Jahrum and the Asmari formations core specimens. The core specimens were obtained from the Bazoft dam site, hydroelectric supply and double-curvature arch dam in Iran. The Dynamic Young's modulus (Ed) and dynamic Poisson ratio were calculated using the existing relations. Some empirical relations were presented to estimate uniaxial compressive strength, as well as static Young's modulus and shear wave velocity (Vs). Results showed the static parameters such as uniaxial compressive strength and static Young's modulus represented low correlation with water absorption. It is also found that the uniaxial compressive strength and static Young's modulus had high correlation with compressional wave velocity and dynamic Young's modulus, respectively. Dynamic Young's modulus was 5 times larger than static Young's modulus. Further, the dynamic Poisson ratio was 1.3 times larger than static Poisson ratio. The relationship between shear wave velocity (Vs) and compressional wave velocity (Vp) was power and positive with high correlation coefficient. Prediction of uniaxial compressive strength based on Vp was better than that based on Vs . Generally, both UCS and static Young's modulus (ES) had good correlation with Ed.
NASA Technical Reports Server (NTRS)
Bradshaw, W. G.; Pinoli, P. C.; Karlak, R. F.
1974-01-01
Large-diameter carbon composite monofilaments with high strength and high modulus were produced by pregging multifiber carbon bundles with suitable organic resins and pyrolysing them together. Two approaches were developed to increase the utilization of fiber tensile strength by minimizing stress concentration defects induced by dissimilar shrinkage during pyrolysis. These were matrix modification to improve char yield and strain-to-failure and fiber-matrix copyrolysis to alleviate matrix cracking. Highest tensile strength and modulus were obtained by heat treatments to 2873 K to match fiber and matrix strain-to-failure and develop maximum monofilament tensile-strength and elastic modulus.
Effects of mechanical and thermal cycling on composite and hybrid laminates with residual stresses
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1977-01-01
The effects of tensile load cycling and thermal cycling on residual stiffness and strength properties of the following composite and hybrid angle-ply laminates were studied: boron/epoxy, boron/polyimide, graphite/low-modulus epoxy, graphite/high-modulus epoxy, graphite/polyimide, S-glass/epoxy, graphite/Kevlar 49/epoxy, and graphite/S-glass/epoxy. Specimens of the first six types were mechanically cycled up to 90% of static strength. Those that survived 10 million cycles were tested statically to failure, and no significant changes in residual strength and modulus were noted. Specimens of all types were subjected to thermal cycling between room temperature and 411 K for the epoxy-matrix composites and 533 K for the polyimide-matrix composites. The residual strength and stiffness remained largely unchanged, except for the graphite/low-modulus epoxy, which showed reductions in both of approximately 35%. When low-temperature thermal cycling under tensile load was applied, there was a noticeable reduction in modulus and strength in the graphite/low-modulus epoxy and some strength reduction in the S-glass/epoxy.
Composite impact strength improvement through a fiber/matrix interphase
NASA Technical Reports Server (NTRS)
Cavano, P. J.; Winters, W. E.
1975-01-01
Research was conducted to improve the impact strength and toughness of fiber/resin composites by means of a fiber coating interphase. Graphite fiber/epoxy resin composites were fabricated with four different fiber coating systems introduced in a matrix-fiber interphase. Two graphite fibers, a high strength and a high modulus type, were studied with the following coating systems: chemical vapor deposited boron, electroless nickel, a polyamide-imide resin and a thermoplastic polysulfone resin. Evaluation methods included the following tests: Izod, flexure, shear fracture toughness, longitudinal and transverse tensile, and transverse and longitudinal compression. No desirable changes could be effected with the high strength fiber, but significant improvements in impact performance were observed with the polyamide-imide resin coated high modulus fiber with no loss in composite modulus.
NASA Astrophysics Data System (ADS)
Smarzewski, Piotr
2017-10-01
This study has investigated the effect of curing period on the mechanical properties of straight polypropylene and hooked-end steel fibre reinforced ultra-high performance concrete (UHPC). Various physical properties are evaluated, i.e. absorbability, apparent density and open porosity. Compressive strength, tensile splitting strength, flexural strength and modulus of elasticity were determined at 28, 56 and 730 days. Comparative strength development of fibre reinforced mixes at 0.5%, 1%, 1.5% and 2% by volume fractions in relation to the mix without fibres was observed. Good correlations between the compressive strength and the modulus of elasticity are established. Steel and polypropylene fibres significantly increased the compressive strength, tensile splitting strength, flexural strength and modulus of elasticity of UHPC after two years curing period when fibre content volume was at least 1%. It seems that steel fibre reinforced UHPC has better properties than the polypropylene fibre reinforced UHPC.
High performance carbon fibers from very high molecular weight polyacrylonitrile precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, E. Ashley; Weisenberger, Matthew C.; Abdallah, Mohamed G.
In this study, carbon fibers are unique reinforcing agents for lightweight composite materials due to their outstanding mechanical properties and low density. Current technologies are capable of producing carbon fibers with 90-95% of the modulus of perfect graphite (~1025 GPa). However, these same carbon fibers possess less than 10% of the theoretical carbon fiber strength, estimated to be about 100 GPa.[1] Indeed, attempts to increase carbon fiber rigidity results in lower breaking strength. To develop advanced carbon fibers with both very high strength and modulus demands a new manufacturing methodology. Here, we report a method of manufacturing high strength, verymore » high modulus carbon fibers from a very high molecular weight (VHMW) polyacrylonitrile (PAN) precursor without the use of nanomaterial additives such as nucleating or structure-templating agents, as have been used by others.[2,3]« less
High performance carbon fibers from very high molecular weight polyacrylonitrile precursors
Morris, E. Ashley; Weisenberger, Matthew C.; Abdallah, Mohamed G.; ...
2016-02-02
In this study, carbon fibers are unique reinforcing agents for lightweight composite materials due to their outstanding mechanical properties and low density. Current technologies are capable of producing carbon fibers with 90-95% of the modulus of perfect graphite (~1025 GPa). However, these same carbon fibers possess less than 10% of the theoretical carbon fiber strength, estimated to be about 100 GPa.[1] Indeed, attempts to increase carbon fiber rigidity results in lower breaking strength. To develop advanced carbon fibers with both very high strength and modulus demands a new manufacturing methodology. Here, we report a method of manufacturing high strength, verymore » high modulus carbon fibers from a very high molecular weight (VHMW) polyacrylonitrile (PAN) precursor without the use of nanomaterial additives such as nucleating or structure-templating agents, as have been used by others.[2,3]« less
Study on axial strength of a channel-shaped pultruded GFRP member
NASA Astrophysics Data System (ADS)
Matsumoto, Yukihiro; Satake, Chito; Nisida, Kenji
2017-10-01
Fiber reinforced polymers (FRP) are widely used in vehicle and aerospace applications because of their lightweight and high-strength characteristics. Additionally, FRPs are increasingly applied to building structures. However, the elastic modulus of glass fiber reinforced polymers (GFRPs) is lower than that of steel. Hence, the evaluating the buckling strength of GFRP members for design purpose is necessary. The buckling strength is determined by Euler buckling mode as well as local buckling. In this study investigated the compressive strength of GFRP members subjected to axial compression through experiments and theoretical calculations. The adopted GFRP member was a channel-shaped GFRP, which was molded via pultrusion, at various lengths. Although, the mechanical properties as longitudinal elastic modulus and fiber volume fraction and strength of GFRP members subjected, to axial can be easily evaluated, evaluating transverse elastic modulus and shear modulus in typical material tests is difficult in standard section. Therefore the composite law was used in this study. As a result, we confirmed that the axial strength of a GFRP member could be calculated by a theoretical evaluation method utilizing longitudinal elastic modulus and fiber volume fraction.
NASA Technical Reports Server (NTRS)
Patel, Parimal J.; Messier, Donald R.; Rich, R. E.
1991-01-01
Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future.
Mechanical properties of injection-molded thermoplastic denture base resins.
Hamanaka, Ippei; Takahashi, Yutaka; Shimizu, Hiroshi
2011-03-01
To investigate the mechanical properties of injection-molded thermoplastic denture base resins. Four injection-molded thermoplastic resins (two polyamides, one polyethylene terephthalate, one polycarbonate) and, as a control, a conventional heat-polymerized polymethyl methacrylate (PMMA), were used in this study. The flexural strength at the proportional limit (FS-PL), the elastic modulus, and the Charpy impact strength of the denture base resins were measured according to International Organization for Standardization (ISO) 1567 and ISO 1567:1999/Amd 1:2003. The descending order of the FS-PL was: conventional PMMA > polyethylene terephthalate, polycarbonate > two polyamides. The descending order of the elastic moduli was: conventional PMMA > polycarbonate > polyethylene terephthalate > two polyamides. The descending order of the Charpy impact strength was: polyamide (Nylon PACM12) > polycarbonate > polyamide (Nylon 12), polyethylene terephthalate > conventional PMMA. All of the injection-molded thermoplastic resins had significantly lower FS-PL, lower elastic moduli, and higher or similar impact strength compared to the conventional PMMA. The polyamide denture base resins had low FS-PL and low elastic moduli; one of them possessed very high impact strength, and the other had low impact strength. The polyethylene terephthalate denture base resin showed a moderately high FS-PL, moderate elastic modulus, and low impact strength. The polycarbonate denture base resin had a moderately high FS-PL, moderately high elastic modulus, and moderate impact strength.
The flexural properties of endodontic post materials.
Stewardson, Dominic A; Shortall, Adrian C; Marquis, Peter M; Lumley, Philip J
2010-08-01
To measure the flexural strengths and moduli of endodontic post materials and to assess the effect on the calculated flexural properties of varying the diameter/length (D/L) ratio of three-point bend test samples. Three-point bend testing of samples of 2mm diameter metal and fiber-reinforced composite (FRC) rods was carried out and the mechanical properties calculated at support widths of 16 mm, 32 mm and 64 mm. Weibull analysis was performed on the strength data. The flexural strengths of all the FRC post materials exceeded the yield strengths of the gold and stainless steel samples; the flexural strengths of two FRC materials were comparable with the yield strength of titanium. Stainless steel recorded the highest flexural modulus while the titanium and the two carbon fiber materials exhibited similar values just exceeding that of gold. The remaining glass fiber materials were of lower modulus within the range of 41-57 GPa. Weibull modulus values for the FRC materials ranged from 16.77 to 30.09. Decreasing the L/D ratio produced a marked decrease in flexural modulus for all materials. The flexural strengths of FRC endodontic post materials as new generally exceed the yield strengths of metals from which endodontic posts are made. The high Weibull modulus values suggest good clinical reliability of FRC posts. The flexural modulus values of the tested posts were from 2-6 times (FRC) to 4-10 times (metal) that of dentin. Valid measurement of flexural properties of endodontic post materials requires that test samples have appropriate L/D ratios. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dusoe, Keith J.; Ye, Xinyi; Kisslinger, Kim
Modulus of resilience, the measure of a material’s capacity to store and release elastic strain energy, is critical for realizing advanced mechanical actuation technologies in micro/nanoelectromechanical systems. In general, engineering the modulus of resilience is difficult because it requires asymmetrically increasing yield strength and Young’s modulus against their mutual scaling behavior. This task becomes further challenging if it needs to be carried out at the nanometer scale. Here, we demonstrate organic–inorganic hybrid composite nanopillars with one of the highest modulus of resilience per density by utilizing vapor-phase aluminum oxide infiltration in lithographically patterned negative photoresist SU-8. In situ nanomechanical measurementsmore » reveal a metal-like high yield strength (~500 MPa) with an unusually low, foam-like Young’s modulus (~7 GPa), a unique pairing that yields ultrahigh modulus of resilience, reaching up to ~24 MJ/m 3 as well as exceptional modulus of resilience per density of ~13.4 kJ/kg, surpassing those of most engineering materials. The hybrid polymer nanocomposite features lightweight, ultrahigh tunable modulus of resilience and versatile nanoscale lithographic patternability with potential for application as nanomechanical components which require ultrahigh mechanical resilience and strength.« less
Dusoe, Keith J.; Ye, Xinyi; Kisslinger, Kim; ...
2017-10-19
Modulus of resilience, the measure of a material’s capacity to store and release elastic strain energy, is critical for realizing advanced mechanical actuation technologies in micro/nanoelectromechanical systems. In general, engineering the modulus of resilience is difficult because it requires asymmetrically increasing yield strength and Young’s modulus against their mutual scaling behavior. This task becomes further challenging if it needs to be carried out at the nanometer scale. Here, we demonstrate organic–inorganic hybrid composite nanopillars with one of the highest modulus of resilience per density by utilizing vapor-phase aluminum oxide infiltration in lithographically patterned negative photoresist SU-8. In situ nanomechanical measurementsmore » reveal a metal-like high yield strength (~500 MPa) with an unusually low, foam-like Young’s modulus (~7 GPa), a unique pairing that yields ultrahigh modulus of resilience, reaching up to ~24 MJ/m 3 as well as exceptional modulus of resilience per density of ~13.4 kJ/kg, surpassing those of most engineering materials. The hybrid polymer nanocomposite features lightweight, ultrahigh tunable modulus of resilience and versatile nanoscale lithographic patternability with potential for application as nanomechanical components which require ultrahigh mechanical resilience and strength.« less
Behavior of Fiber Glass Bolts, Rock Bolts and Cable Bolts in Shear
NASA Astrophysics Data System (ADS)
Li, Xuwei; Aziz, Naj; Mirzaghorbanali, Ali; Nemcik, Jan
2016-07-01
This paper experimentally compares the shear behavior of fiber glass (FG) bolt, rock bolt (steel rebar bolt) and cable bolt for the bolt contribution to bolted concrete surface shear strength, and bolt failure mode. Two double shear apparatuses of different size were used for the study. The tensile strength, the shear strength and the deformation modulus of bolt control the shear behavior of a sheared bolted joint. Since the strength and deformation modulus of FG bolt, rock bolt and cable bolt obtained from uniaxial tensile tests are different, their shear behavior in reinforcing joints is accordingly different. Test results showed that the shear stiffness of FG bolted joints decreased gradually from the beginning to end, while the shear stiffness of joints reinforced by rock bolt and cable bolt decreased bi-linearly, which is clearly consistent with their tensile deformation modulus. The bolted joint shear stiffness was highly influenced by bolt pretension in the high stiffness stage for both rock bolt and cable bolt, but not in the low stiffness stage. The rock bolt contribution to joint shear strength standardised by the bolt tensile strength was the largest, followed by cable bolts, then FG bolts. Both the rock bolts and cable bolts tended to fail in tension, while FG bolts in shear due to their low shear strength and constant deformation modulus.
NASA Astrophysics Data System (ADS)
Waki, Hiroyuki; Nakamura, Kyousuke; Yamaguchi, Itsuki; Kobayashi, Akira
MCrAlY, M means Co and/or Ni, sprayed coating is used to protect a super alloy substrate from corrosion or oxidation in a gas turbine blade. However, the mechanical properties are not well-known, because there are few proper measurement methods for a thin coating at high temperature. Authors have developed the new easy method to measure the mechanical properties using the lateral compression of a circular tube. The method is useful to apply to a thin coating because it does not need chucking and manufacturing a test piece is very easy. The method is also easily applicable to high temperature measurement. In this study, high temperature mechanical properties, Young's modulus, bending strength and fracture strain, of CoNiCrAlY coatings by HVOF were systematically measured. The results obtained were as follows: Young's modulus and bending strength suddenly decreased beyond 400˜450°C. The Young's modulus and bending strength thermally treated at higher than 1050°C was significantly higher than that of virgin CoNiCrAlY coating. It was found that higher thermal treatment in atmosphere was the most effective in increasing the Young's modulus and bending strength. It was also found that the improvement of Young's modulus was primarily caused by not the effect of TGO but the sintering and diffusion of unfused particles. On the contrary, the fracture strain increased beyond 400°C differently from the bending strength. The fracture strains of CoNiCrAlY thermally treated in vacuum were higher than those of CoNiCrAlY treated in atmosphere. It was found that higher thermal treatment in vacuum was the most effective in increasing the fracture strain.
Comparative study of mechanical properties of direct core build-up materials
Kumar, Girish; Shivrayan, Amit
2015-01-01
Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer's recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success. PMID:25684905
Exploratory Development of Improved Fatigue Strength Adhesives
1974-11-01
fiber reinforced adhesives. A fifty-fold in-j crease in fatigue life at equivalent stress levels was achieved when a woven high modulus graphite...the stress level which could survive 10’ fatigue cycles was increased from approximately 30 percent of the ultimate shear strength with nylor knit...supports to as much as fifty percent with the high modulus fiber bond line reinforcement. The stress level which could withstand 10’ fatigue cycles
Ultra-high modulus organic fiber hybrid composites
NASA Technical Reports Server (NTRS)
Champion, A. R.
1981-01-01
An experimental organic fiber, designated Fiber D, was characterized, and its performance as a reinforcement for composites was investigated. The fiber has a modulus of 172 GPa, tensile strength of 3.14 GPa, and density of 1.46 gm/cu cm. Unidirectional Fiber D/epoxy laminates containing 60 percent fiber by volume were evaluated in flexure, shear, and compression, at room temperature and 121 C in both the as fabricated condition and after humidity aging for 14 days at 95 percent RH and 82 C. A modulus of 94.1 GPa, flexure strength of 700 MPa, shear strength of 54 MPa, and compressive strength of 232 MPa were observed at room temperature. The as-fabricated composites at elevated temperature and humidity aged material at room temperature had properties 1 to 20 percent below these values. Combined humidity aging plus evaluated temperature testing resulted in even lower mechanical properties. Hybrid composite laminates of Fiber D with Fiber FP alumina or Thornel 300 graphite fiber were also evaluated and significant increases in modulus, flexure, and compressive strengths were observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng Jianxiang; Jing Fuqian; Li Dahong
2005-07-01
Experimental data for the shear modulus and yield strength of shocked aluminum, copper, and tungsten were systematically analyzed. Comparisons between these data and calculations using the Steinberg-Cochran-Guinan (SCG) constitutive model [D. J. Steinberg, S. G. Cochran, and M. W. Guinan, J. Appl. Phys. 51, 1498 (1980)] indicate that the yield strength has the same dependence on pressure and temperature as the shear modulus for aluminum for shock pressures up to 50 GPa, for copper to 100 GPa, and for tungsten to 200 GPa. Therefore, the assumption of Y{sub p}{sup '}/Y{sub 0}=G{sub p}{sup '}/G{sub 0},Y{sub T}{sup '}/Y{sub 0}=G{sub T}{sup '}/G{sub 0}more » is basically acceptable for these materials, and the SCG model can be used to describe the shear modulus and yield strength of the shocked material at high pressure and temperature.« less
Effect of high pressure hydrogen on the mechanical characteristics of single carbon fiber
NASA Astrophysics Data System (ADS)
Jeon, Sang Koo; Kwon, Oh Heon; Jang, Hoon-Sik; Ryu, Kwon Sang; Nahm, Seung Hoon
2018-02-01
In this study, carbon fiber was exposed to a pressure of 7 MPa for 24 h in high pressure chamber. The tensile test for carbon fiber was conducted to estimate the effect on the high pressure hydrogen in the atmosphere. To determine the tensile strength and Weibull modulus, approximately thirty carbon fiber samples were measured in all cases, and carbon fiber exposed to high pressure argon was evaluated to verify only the effect of hydrogen. Additionally, carbon fiber samples were annealed at 1950 °C for 1 h for a comparison with normal carbon fiber and then tested under identical conditions. The results showed that the tensile strength scatter of normal carbon fiber exposed to hydrogen was relatively wider and the Weibull modulus was decreased. Moreover, the tensile strength of the annealed carbon fiber exposed to hydrogen was increased, and these samples indicated a complex Weibull modulus because the hydrogen stored in the carbon fiber influenced the mechanical characteristic.
B.Z. Yang; R.D. Seale; R. Shmulsky; J. Dahlen; X. Wang
2017-01-01
The identification of strength-reducing characteristics that impact modulus of rupture (MOR) is a key differentiation between lumber grades. Because global design values for MOR are at the fifth percentile level and in-grade lumber can be highly variable, it is important that nondestructive evaluation technology be used to better discern the potential wood strength. In...
Tensile properties of SiC/aluminum filamentary composites - Thermal degradation effects
NASA Technical Reports Server (NTRS)
Skinner, A.; Koczak, M. J.; Lawley, A.
1982-01-01
Aluminium metal matrix composites with a low cost fiber, e.g. SiC, provide for an attractive combination of high elastic modulus and longitudinal strengths coupled with a low density. SiC (volume fraction 0.55)-aluminum (6061) systems have been studied in order to optimize fiber composite strength and processing parameters. A comparison of two SiC/aluminum composites produced by AVCO and DWA is provided. Fiber properties are shown to alter composite tensile properties and fracture morphology. The room temperature tensile strengths appear to be insensitive to thermal exposures at 500 C up to 150 h. The elastic modulus of the composites also appears to be stable up to 400 C, however variations in the loss modulus are apparent. The fracture morphology reflects the quality of the interfacial bond, fiber strengths and fiber processing.
NASA Astrophysics Data System (ADS)
Haridharan, M. K.; Bharathi Murugan, R.; Natarajan, C.; Muthukannan, M.
2017-07-01
In this paper, the experimental investigations was carried out to find the compressive strength, static modulus of elasticity and flexural strength of concrete mixtures, in which natural sand was partially replaced with Waste Tyre Crumb Rubber (WTCR). River sand was replaced with five different percentages (5%, 10%, 15%, 20% and 25%) of WTCR by volume. The main objective of the experimental investigation is to find the relationship between static modulus of elasticity and flexural strength with compressive strength of concrete with WTCR. The experimentally obtainedstatic modulus of elasticity and flexural strength results comparing with the theoretical values (various country codes recommendations).
Cullen, James K T; Wealleans, James A; Kirkpatrick, Timothy C; Yaccino, John M
2015-06-01
The purpose of this study was to evaluate the effect of various concentrations of sodium hypochlorite (NaOCl), including 8.25%, on dental pulp dissolution and dentin flexural strength and modulus. Sixty dental pulp samples and 55 plane parallel dentin bars were retrieved from extracted human teeth. Five test groups (n = 10) were formed consisting of a pulp sample and dentin bar immersed in various NaOCl solutions. The negative control group (n = 5) consisted of pulp samples and dentin bars immersed in saline. The positive control group (n = 5) consisted of pulp samples immersed in 8.25% NaOCl without a dentin bar. Every 6 minutes for 1 hour, the solutions were refreshed. The dentin bars were tested for flexural strength and modulus with a 3-point bend test. The time until total pulp dissolution and any changes in dentin bar flexural strength and modulus for the different NaOCl solutions were statistically analyzed. An increase in NaOCl concentration showed a highly significant decrease in pulp dissolution time. The pulp dissolution property of 8.25% NaOCl was significantly faster than any other tested concentration of NaOCl. The presence of dentin did not have a significant effect on the dissolution capacity of NaOCl if the solutions were refreshed. NaOCl concentration did not have a statistically significant effect on dentin flexural strength or modulus. Dilution of NaOCl decreases its pulp dissolution capacity. Refreshing the solution is essential to counteract the effects of dentin. In this study, NaOCl did not have a significant effect on dentin flexural strength or modulus. Published by Elsevier Inc.
Yilmazer, H; Niinomi, M; Nakai, M; Cho, K; Hieda, J; Todaka, Y; Miyazaki, T
2013-07-01
The effect of high-pressure torsion (HPT) processing on the microstructure and mechanical biocompatibility includes Young's modulus, tensile strength, ductility, fatigue life, fretting fatigue, wear properties and other functionalities such as super elasticity and shape memory effect, etc. at levels suitable for structural biomaterials used in implants that replace hard tissue in the broad sense (Sumitomo et al., 2008 [4]). In particular, in this study, the mechanical biocompatibility implies a combination of great hardness and high strength with an adequate ductility while keeping low Young's modulus of a novel Ti-29Nb-13Ta-4.6Zr (TNTZ) for biomedical applications at rotation numbers (N) ranging from 1 to 60 under a pressure of 1.25 GPa at room temperature was systematically investigated in order to increase its mechanical strength with maintaining low Young's modulus and an adequate ductility. TNTZ subjected to HPT processing (TNTZHPT) at low N exhibits a heterogeneous microstructure in micro-scale and nano-scale consisting of a matrix and a non-etched band, which has nanosized equiaxed and elongated single β grains, along its cross section. The grains exhibit high dislocation densities, consequently non-equilibrium grain boundaries, and non-uniform subgrains distorted by severe deformation. At high N which is N>20, TNTZHPT has a more homogeneous microstructure in nano-scale with increasing equivalent strain, εeq. Therefore, TNTZHPT at high N exhibits a more homogenous hardness distribution. The tensile strength and 0.2% proof stress of TNTZHPT increase significantly with N over the range of 0≤N≤5, and then become saturated at around 1100 MPa and 800 MPa at N≥10. However, the ductility of TNTZHPT shows a reverse trend and a low-level elongation, at around 7%. And, Young's modulus of TNTZHPT decreases slightly to 60 GPa with increasing N and then becomes saturated at N≥10. These obtained results confirm that the mechanical strength of TNTZ can be improved while maintaining a low Young's modulus in single β grain structures through severe plastic deformation. Copyright © 2013 Elsevier B.V. All rights reserved.
Strengthening and toughening metallic glasses: The elastic perspectives and opportunities
NASA Astrophysics Data System (ADS)
Liu, Z. Q.; Zhang, Z. F.
2014-04-01
There exist general conflicts between strength and toughness in crystalline engineering materials, and various strengthening and toughening strategies have been developed from the dislocation motion perspectives. Metallic glasses (MGs) have demonstrated great potentials owing to their unique properties; however, their structural applications are strictly limited. One of the key problems is that the traditional strengthening and toughening strategies and mechanisms are not applicable in MGs due to the absence of dislocations and crystalline microstructures. Here, we show that the strength and toughness, or equivalently the shear modulus and Poisson's ratio, are invariably mutually exclusive in MGs. Accordingly, the MGs can be categorized into four groups with different levels of integrated mechanical properties. It is further revealed that the conflicts originate fundamentally from the atomic bonding structures and the levels of strength-toughness combinations are indeed dominated by the bulk modulus. Moreover, we propose novel strategies for optimizing the mechanical properties of MGs from the elastic perspectives. We emphasize the significance of developing high bulk modulus MGs to achieve simultaneously both high strength and good toughness and highlight the elastic opportunities for strengthening and toughening materials.
Stiff, light, strong and ductile: nano-structured High Modulus Steel.
Springer, H; Baron, C; Szczepaniak, A; Uhlenwinkel, V; Raabe, D
2017-06-05
Structural material development for lightweight applications aims at improving the key parameters strength, stiffness and ductility at low density, but these properties are typically mutually exclusive. Here we present how we overcome this trade-off with a new class of nano-structured steel - TiB 2 composites synthesised in-situ via bulk metallurgical spray-forming. Owing to the nano-sized dispersion of the TiB 2 particles of extreme stiffness and low density - obtained by the in-situ formation with rapid solidification kinetics - the new material has the mechanical performance of advanced high strength steels, and a 25% higher stiffness/density ratio than any of the currently used high strength steels, aluminium, magnesium and titanium alloys. This renders this High Modulus Steel the first density-reduced, high stiffness, high strength and yet ductile material which can be produced on an industrial scale. Also ideally suited for 3D printing technology, this material addresses all key requirements for high performance and cost effective lightweight design.
Improved silicon carbide for advanced heat engines
NASA Technical Reports Server (NTRS)
Whalen, Thomas J.
1989-01-01
The development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines is studied. Injection molding was the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals were to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in four-point loading. Statistically designed experiments were performed throughout the program and a fluid mixing process employing an attritor mixer was developed. Compositional improvements in the amounts and sources of boron and carbon used and a pressureless sintering cycle were developed which provided samples of about 99 percent of theoretical density. Strengths were found to improve significantly by annealing in air. Strengths in excess of 550 MPa (80 ksi) with Weibull modulus of about 9 were obtained. Further improvements in Weibull modulus to about 16 were realized by proof testing. This is an increase of 86 percent in strength and 100 percent in Weibull modulus over the baseline data generated at the beginning of the program. Molding yields were improved and flaw distributions were observed to follow a Poisson process. Magic angle spinning nuclear magnetic resonance spectra were found to be useful in characterizing the SiC powder and the sintered samples. Turbocharger rotors were molded and examined as an indication of the moldability of the mixes which were developed in this program.
Verification of experimental dynamic strength methods with atomistic ramp-release simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Alexander P.; Brown, Justin L.; Lim, Hojun
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less
Verification of experimental dynamic strength methods with atomistic ramp-release simulations
NASA Astrophysics Data System (ADS)
Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; Lane, J. Matthew D.
2018-05-01
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressure gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. These simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.
Verification of experimental dynamic strength methods with atomistic ramp-release simulations
Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; ...
2018-05-04
Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less
The stress relaxation of cement clinkers under high temperature
NASA Astrophysics Data System (ADS)
Wang, Xiufang; Bao, Yiwang; Liu, Xiaogen; Qiu, Yan
2015-12-01
The energy consumption of crushing is directly affected by the mechanical properties of cement materials. This research provides a theoretical proof for the mechanism of the stress relaxation of cement clinkers under high temperature. Compression stress relaxation under various high temperatures is discussed using a specially developed load cell, which can measure stress and displacement under high temperatures inside an autoclave. The cell shows that stress relaxation dramatically increases and that the remaining stress rapidly decreases with an increase in temperature. Mechanical experiments are conducted under various temperatures during the cooling process to study the changes in the grinding resistance of the cement clinker with temperature. The effects of high temperature on the load-displacement curve, compressive strength, and elastic modulus of cement clinkers are systematically studied. Results show that the hardening phenomenon of the clinker becomes apparent with a decrease in temperature and that post-peak behaviors manifest characteristics of the transformation from plasticity to brittleness. The elastic modulus and compressive strength of cement clinkers increase with a decrease in temperature. The elastic modulus increases greatly when the temperature is lower than 1000 °C. The compressive strength of clinkers increases by 73.4% when the temperature drops from 1100 to 800 °C.
NASA Astrophysics Data System (ADS)
Nørgaard Petersen, Helga; Kusano, Yukihiro; Brøndsted, Povl; Almdal, Kristoffer
2016-07-01
Two types of E-glass fibres, a conventional and a high modulus where the last one in the following will be denoted as ECR-glass fibre, were investigated regarding density, diameter, stiffness and strength. The fibres were analysed as pristine and after sizing removal treatments. The sizing was removed by either burning at 565°C or soxhlet extraction with acetone. It was found that the density and the stiffness increased after removing the sizing by the two removal treatments whereas the diameter did not change significantly. The strength of the fibres decreased after burning as the sizing, protecting against water and fibre-fibre damage, had been removed. The strength of the fibres after extraction was not significantly different from the strength of the pristine fibres despite removing the sizing. This indicates that the bonded part of sizing is still protecting the glass fibre surface.
Srisawasdi, Thanida; Petcharoen, Karat; Sirivat, Anuvat; Jamieson, Alexander M
2015-11-01
Pure silk fibroin (SF) hydrogel and polycarbazole/silk fibroin (SF/PCZ) hydrogels were fabricated by solvent casting technique to evaluate electromechanical responses, dielectric properties, and cantilever deflection properties as functions of electric field strength, SF concentration, glutaraldehyde concentration, and PCZ concentration in the blends. Electromechanical properties were characterized in oscillatory shear mode at electric field strengths ranging from 0 to 600V/mm and at a temperature of 27°C. For both the pristine SF and SF/PCZ hydrogels, the storage modulus response (ΔG') and the storage modulus sensitivity (ΔG'/G'0) increased dramatically with increasing electric field strength. The pristine hydrogel possessed the highest storage modulus sensitivity value of 5.87, a relatively high value when compared with other previously studied electroactive polymers. With the addition of conductive PCZ in SF hydrogel, the storage modulus sensitivity and the relative dielectric constant decreased; the conductive polymer thus provided the softening effect under electric field. In the deflection response, the dielectrophoresis force and deflection distance increased monotonically with electric field strength, where the pure SF hydrogel showed the highest deflection distance and dielectrophoresis force. Copyright © 2015 Elsevier B.V. All rights reserved.
Jiang, S; Huang, L J; An, Q; Geng, L; Wang, X J; Wang, S
2018-05-01
Titanium-magnesium (Ti-Mg) composites with bicontinuous structure have been successfully fabricated by powder metallurgy and ultrasonic infiltration for biomaterial potential. In the composites, Ti phase is distributed continuously by sintering necks, while Mg phase is also continuous, distributing at the interconnected pores surrounding the Ti phase. The results showed that the fabricated Ti-Mg composites exhibited low modulus and high strength, which are very suitable for load bearing biomedical materials. The composites with 100 µm and 230 µm particle sizes exhibited Young's modulus of 37.6 GPa and 23.4 GPa, 500.7 MPa and 340 MPa of compressive strength and 631.5 MPa and 375.2 MPa of bending strength, respectively. Moreover, both of the modulus and strength of the composites increase with decreasing of Ti particle sizes. In vitro study has been done for the preliminary evaluation of the Ti-Mg composites. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mechanical properties of composite materials
NASA Technical Reports Server (NTRS)
Thornton, H. Richard; Cornwell, L. R.
1993-01-01
A composite material incorporates high strength, high modulus fibers in a matrix (polymer, metal, or ceramic). The fibers may be oriented in a manner to give varying in-plane properties (longitudinal, transverse-stress, strain, and modulus of elasticity). The lay-up of the composite laminates is such that a center line of symmetry and no bending moment exist through the thickness. The laminates are tabbed, with either aluminum or fiberglass, and are ready for tensile testing. The determination of the tensile properties of resin matrix composites, reinforced by continuous fibers, is outlined in ASTM standard D 3039, Tensile Properties of Oriented Fiber Composites. The tabbed flat tensile coupons are placed into the grips of a tensile machine and load-deformation curves plotted. The load-deformation data are translated into stress-strain curves for determination of mechanical properties (ultimate tensile strength and modulus of elasticity).
NASA Astrophysics Data System (ADS)
Su, Haijian; Jing, Hongwen; Yin, Qian; Yu, Liyuan; Wang, Yingchao; Wu, Xingjie
2017-10-01
The mechanical behaviors of rocks affected by high temperature and stress are generally believed to be significant for the stability of certain projects involving rocks, such as nuclear waste storage and geothermal resource exploitation. In this paper, veined marble specimens were treated to high temperature treatment and then used in conventional triaxial compression tests to investigate the effect of temperature, confining pressure, and vein angle on strength and deformation behaviors. The results show that the strength and deformation parameters of the veined marble specimens changed with the temperature, presenting a critical temperature of 600 °C. The triaxial compression strength of a horizontal vein (β = 90°) is obviously larger than that of a vertical vein (β = 0°). The triaxial compression strength, elasticity modulus, and secant modulus have an approximately linear relation to the confining pressure. Finally, Mohr-Coulomb and Hoek-Brown criteria were respectively used to analyze the effect of confining pressure on triaxial compression strength.
Formability and mechanical properties of porous titanium produced by a moldless process.
Naito, Yoshihito; Bae, Jiyoung; Tomotake, Yoritoki; Hamada, Kenichi; Asaoka, Kenzo; Ichikawa, Tetsuo
2013-08-01
Tailor-made porous titanium implants show great promise in both orthopedic and dental applications. However, traditional powder metallurgical processes require a high-cost mold, making them economically unviable for producing unique devices. In this study, a mixture of titanium powder and an inlay wax binder was developed for moldless forming and sintering. The formability of the mixture, the dimensional changes after sintering, and the physical and mechanical properties of the sintered porous titanium were evaluated. A 90:10 wt % mixture of Ti powder and wax binder was created manually at 70°C. After debindering, the specimen was sintered in Ar at 1100°C without any mold for 1, 5, and 10 h. The shrinkage, porosity, absorption ratio, bending and compressive strength, and elastic modulus were measured. The bending strength (135-356 MPa), compression strength (178-1226 MPa), and elastic modulus (24-54 GPa) increased with sintering time; the shrinkage also increased, whereas the porosity (from 37.1 to 29.7%) and absorption ratio decreased. The high formability of the binder/metal powder mixture presents a clear advantage for fabricating tailor-made bone and hard tissue substitution units. Moreover, the sintered compacts showed high strength and an elastic modulus comparable to that of cortical bone. Copyright © 2013 Wiley Periodicals, Inc.
Strengthening and toughening metallic glasses: The elastic perspectives and opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z. Q.; Zhang, Z. F., E-mail: zhfzhang@imr.ac.cn
2014-04-28
There exist general conflicts between strength and toughness in crystalline engineering materials, and various strengthening and toughening strategies have been developed from the dislocation motion perspectives. Metallic glasses (MGs) have demonstrated great potentials owing to their unique properties; however, their structural applications are strictly limited. One of the key problems is that the traditional strengthening and toughening strategies and mechanisms are not applicable in MGs due to the absence of dislocations and crystalline microstructures. Here, we show that the strength and toughness, or equivalently the shear modulus and Poisson's ratio, are invariably mutually exclusive in MGs. Accordingly, the MGs canmore » be categorized into four groups with different levels of integrated mechanical properties. It is further revealed that the conflicts originate fundamentally from the atomic bonding structures and the levels of strength-toughness combinations are indeed dominated by the bulk modulus. Moreover, we propose novel strategies for optimizing the mechanical properties of MGs from the elastic perspectives. We emphasize the significance of developing high bulk modulus MGs to achieve simultaneously both high strength and good toughness and highlight the elastic opportunities for strengthening and toughening materials.« less
Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen
2015-10-21
Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.
Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete
NASA Astrophysics Data System (ADS)
He, Dongqing; Wu, Min; Jie, Pengyu
2017-12-01
Several common high elastic modulus fibers (steel fibers, basalt fibers, polyvinyl alcohol fibers) and low elastic modulus fibers (polypropylene fiber) are incorporated into the concrete, and its cube compressive strength, splitting tensile strength and flexural strength are studied. The test result and analysis demonstrate that single fiber and hybrid fiber will improve the integrity of the concrete at failure. The mechanical properties of hybrid steel fiber-polypropylene fiber reinforced concrete are excellent, and the cube compressive strength, splitting tensile strength and flexural strength respectively increase than plain concrete by 6.4%, 3.7%, 11.4%. Doped single basalt fiber or polypropylene fiber and basalt fibers hybrid has little effect on the mechanical properties of concrete. Polyvinyl alcohol fiber and polypropylene fiber hybrid exhibit ‘negative confounding effect’ on concrete, its splitting tensile and flexural strength respectively are reduced by 17.8% and 12.9% than the single-doped polyvinyl alcohol fiber concrete.
Jurowski, Krystian; Grzeszczyk, Stefania
2018-01-01
In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete. PMID:29565830
Jurowski, Krystian; Grzeszczyk, Stefania
2018-03-22
In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete.
Elastic properties and fracture strength of quasi-isotropic graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Sullivan, T. L.
1977-01-01
A research program is described which was devised to determine experimentally the elastic properties in tension and bending of quasi-isotropic laminates made from high-modulus graphite fiber and epoxy. Four laminate configurations were investigated, and determinations were made of the tensile modulus, Poisson's ratio, bending stiffness, fracture strength, and fracture strain. The measured properties are compared with those predicted by laminate theory, reasons for scatter in the experimental data are discussed, and the effect of fiber misalignment on predicted elastic tensile properties is examined. The results strongly suggest that fiber misalignment in combination with variation in fiber volume content is responsible for the scatter in both elastic constants and fracture strength.
NASA Astrophysics Data System (ADS)
Shi, Ming F.; Zhang, Li; Zhu, Xinhai
2016-08-01
The Yoshida nonlinear isotropic/kinematic hardening material model is often selected in forming simulations where an accurate springback prediction is required. Many successful application cases in the industrial scale automotive components using advanced high strength steels (AHSS) have been reported to give better springback predictions. Several issues have been raised recently in the use of the model for higher strength AHSS including the use of two C vs. one C material parameters in the Armstrong and Frederick model (AF model), the original Yoshida model vs. Original Yoshida model with modified hardening law, and constant Young's Modulus vs. decayed Young's Modulus as a function of plastic strain. In this paper, an industrial scale automotive component using 980 MPa strength materials is selected to study the effect of two C and one C material parameters in the AF model on both forming and springback prediction using the Yoshida model with and without the modified hardening law. The effect of decayed Young's Modulus on the springback prediction for AHSS is also evaluated. In addition, the limitations of the material parameters determined from tension and compression tests without multiple cycle tests are also discussed for components undergoing several bending and unbending deformations.
Mechanical properties of direct core build-up materials.
Combe, E C; Shaglouf, A M; Watts, D C; Wilson, N H
1999-05-01
This work was undertaken to measure mechanical properties of a diverse group of materials used for direct core build-ups, including a high copper amalgam, a silver cermet cement, a VLC resin composite and two composites specifically developed for this application. Compressive strength, elastic modulus, diametral tensile strength and flexural strength and modulus were measured for each material as a function of time up to 3 months, using standard specification tests designed for the materials. All the materials were found to meet the minimum specification requirements except in terms of flexural strength for the amalgam after 1 h and the silver cermet at all time intervals. There proved to be no obvious superior material in all respects for core build-ups, and the need exists for a specification to be established specifically for this application.
High magnetic field processing of liquid crystalline polymers
Smith, M.E.; Benicewicz, B.C.; Douglas, E.P.
1998-11-24
A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.
High magnetic field processing of liquid crystalline polymers
Smith, Mark E.; Benicewicz, Brian C.; Douglas, Elliot P.
1998-01-01
A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.
Structural Laminate Aluminum-Glass-Fiber Materials 1441-Sial
NASA Astrophysics Data System (ADS)
Shestov, V. V.; Antipov, V. V.; Senatorova, O. G.; Sidel'nikov, V. V.
2014-01-01
The structure, composition and set of properties of specimens and components, and some parameters of the process of production of a promising FML class of metallic polymers based on sheets of high-modulus ( E 79 GPa) alloy 1441 with reduced density ( d 2.6 g/cm3) and an optimized glued prepreg reinforced with fibers of high-strength high-modulus VMPglass are described. Results of fire and fatigue tests of a promising 1441-SIAL structural laminate are presented.
A STUDY OF HIGH MODULUS, HIGH STRENGTH FILAMENT MATERIALS BY DEPOSITION TECHNIQUES.
had an average tensile strength of 240000 psi. The x-ray spectra of silicon carbide filaments made from SiCl4 , trichlorosilane, and...trichloromethylsilane were compared. The filaments produced from the two silane compounds showed strong peaks of SiC whereas the spectra for the SiCl4 produced
Highly porous ceramic oxide aerogels having improved flexibility
NASA Technical Reports Server (NTRS)
Guo, Haiquan (Inventor); Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)
2012-01-01
Ceramic oxide aerogels having improved flexibility are disclosed. Preferred embodiments exhibit high modulus and other strength properties despite their improved flexibility. The gels may be polymer cross-linked via organic polymer chains to further improve strength properties, without substantially detracting from the improved flexibility. Methods of making such aerogels are also disclosed.
NASA Astrophysics Data System (ADS)
Nath, S. K. Deb
2017-10-01
Using molecular dynamics simulation, tension and bending tests of a Fe nanopillar are carried out to obtain its Young's modulus and yield strength. Then the comparative study of Young's modulus and yield strength of a Fe nanopillar under bending and tension are carried out varying its diameter in the range of diameter 1-15nm. We find out the reasons why bending Young's modulus and yield strength of a Fe nanopillar are higher than those of tension Young's modulus and yield strength of a Fe nanopillar. Using the mobility parameters of bulk Fe from the experimental study [N. Urabe and J. Weertman, Materials Science and Engineering 18, 41 (1975)], its temperature dependent stress-strain relationship, yield strength and strain hardening modulus are obtained from the dislocation dynamics simulations. Strain rate dependent yield strength and strain hardening modulus of bulk Fe pillars under tension are studied. Temperature dependent creep behaviors of bulk Fe pillars under tension are also studied. To verify the soundness of the present dislocation dynamics studies of the mechanical properties of bulk Fe pillars under tension, the stress vs. strain relationship and dislocation density vs. strain of bulk Fe pillars obtained by us are compared with the published results obtained by S. Queyreau, G. Monnet, and B. Devincre, International Journal of Plasticity 25, 361 (2009).
Suwanprateeb, Jintamai; Thammarakcharoen, Faungchat; Hobang, Nattapat
2016-11-01
A new infiltration technique using a combination of low and high molecular weight polycaprolactone (PCL) in sequence was developed as a mean to improve the mechanical properties of three dimensional printed hydroxyapatite (HA). It was observed that using either high (M n ~80,000) or low (M n ~10,000) molecular weight infiltration could only increase the flexural modulus compared to non-infiltrated HA, but did not affect strength, strain at break and energy at break. In contrast, a combination of low and high molecular infiltration in sequence increased the flexural modulus, strength and energy at break compared to those of non-infiltrated HA or infiltrated by high or low molecular weight PCL alone. This overall enhancement was found to be attributed to the densification of low molecular weight PCL and the reinforcement of high molecular PCL concurrently. The combined low and high molecular weight infiltration in sequence also maintained high osteoblast proliferation and differentiation of the composites at the similar level of the HA. Densification was a dominant mechanism for the change in modulus with porosity and density of the infiltrated HA/PCL composites. However, both densification and the reinforcing performance of the infiltration phase were crucial for strength and toughening enhancement of the composites possibly by the defect healing and stress shielding mechanisms. The sequence of using low molecular weight infiltration and followed by high molecular infiltration was seen to provide the greatest flexural properties and highest cells proliferation and differentiation capabilities.
Effect of acetylation treatment and soaking time to bending strength of sugar palm fiber composite
NASA Astrophysics Data System (ADS)
Diharjo, Kuncoro; Permana, Andy; Arsada, Robbi; Asmoro, Gundhi; Budiono, Herru Santosa; Firdaus, Yohanes
2017-01-01
The objective of this experiment is to investigate the maximum bending strength of sugar palm composite by optimizing acetylation treatment and soaking time of the fiber. In this research, the acetylation treatments were varied in acetic acid content (0-10%, in weight) and soaking time (30-150 minutes). The composite specimens were produced using a press mold method for 40% of fiber and 60% of bisphenolic matrix composition in weight. The bending testing was conducted using three point bending method according to ASTM D790. The composite with the treated fiber of 4% acetyl acid has maximum bending strength and modulus due to the effect of removing lignin and other polluters without degrading the fiber strength. The longer of soaking time in the acid solution can significantly enhance the bending strength and modulus. The composite with low strength has an opening fracture, and there is no opening fracture on the composite with high strength.
Porous titanium materials with entangled wire structure for load-bearing biomedical applications.
He, Guo; Liu, Ping; Tan, Qingbiao
2012-01-01
A kind of porous metal-entangled titanium wire material has been investigated in terms of the pore structure (size and distribution), the strength, the elastic modulus, and the mechanical behavior under uniaxial tensile loading. Its functions and potentials for surgical application have been explained. In particular, its advantages over competitors (e.g., conventional porous titanium) have been reviewed. In the study, a group of entangled titanium wire materials with non-woven structure were fabricated by using 12-180 MPa forming pressure, which have porosity in a range of 48%-82%. The pores in the materials are irregular in shape, which have a nearly half-normal distribution in size range. The yield strength, ultimate tensile strength, and elastic modulus are 75 MPa, 108 MPa, and 1.05 GPa, respectively, when its porosity is 44.7%. The mechanical properties decrease significantly as the porosity increases. When the porosity is 57.9%, these values become 24 MPa, 47.5 MPa, and 0.33 GPa, respectively. The low elastic modulus is due to the structural flexibility of the entangled titanium wire materials. For practical reference, a group of detailed data of the porous structure and the mechanical properties are reported. This kind of material is very promising for implant applications because of their very good toughness, perfect flexibility, high strength, adequate elastic modulus, and low cost. Copyright © 2011 Elsevier Ltd. All rights reserved.
On the residual properties of damaged FRC
NASA Astrophysics Data System (ADS)
Zerbino, R.; Torrijos, M. C.; Giaccio, G.
2017-09-01
A discussion on the residual behaviour of Fibre Reinforced Concrete (FRC) is performed based on two selected cases of concrete degradation: the exposure at High Temperatures and the development of Alkali Silica Reactions. In addition, and taking in mind that the failure mechanism in FRC is strongly related with the fibre pull-out strength, the bond strength in damaged matrices was shown concluding that the residual bond strength is less affected than the matrix strength. As the damage increases, the compressive strength and the modulus of elasticity decrease, being the modulus of elasticity the most affected. There were no significant changes produced by the incorporation of fibres on the residual behaviour when compared with previous experience on plain damage concrete. Regarding the tensile behaviour although the first peak decreases as the damage increases, even for a severely damage FRC the residual stresses remain almost unaffected.
Influence of Composition and Deformation Conditions on the Strength and Brittleness of Shale Rock
NASA Astrophysics Data System (ADS)
Rybacki, E.; Reinicke, A.; Meier, T.; Makasi, M.; Dresen, G. H.
2015-12-01
Stimulation of shale gas reservoirs by hydraulic fracturing operations aims to increase the production rate by increasing the rock surface connected to the borehole. Prospective shales are often believed to display high strength and brittleness to decrease the breakdown pressure required to (re-) initiate a fracture as well as slow healing of natural and hydraulically induced fractures to increase the lifetime of the fracture network. Laboratory deformation tests were performed on several, mainly European black shales with different mineralogical composition, porosity and maturity at ambient and elevated pressures and temperatures. Mechanical properties such as compressive strength and elastic moduli strongly depend on shale composition, porosity, water content, structural anisotropy, and on pressure (P) and temperature (T) conditions, but less on strain rate. We observed a transition from brittle to semibrittle deformation at high P-T conditions, in particular for high porosity shales. At given P-T conditions, the variation of compressive strength and Young's modulus with composition can be roughly estimated from the volumetric proportion of all components including organic matter and pores. We determined also brittleness index values based on pre-failure deformation behavior, Young's modulus and bulk composition. At low P-T conditions, where samples showed pronounced post-failure weakening, brittleness may be empirically estimated from bulk composition or Young's modulus. Similar to strength, at given P-T conditions, brittleness depends on the fraction of all components and not the amount of a specific component, e.g. clays, alone. Beside strength and brittleness, knowledge of the long term creep properties of shales is required to estimate in-situ stress anisotropy and the healing of (propped) hydraulic fractures.
Evaluation of low-cost aluminum composites for aircraft engine structural applications
NASA Technical Reports Server (NTRS)
Mcdanels, D. L.; Signorelli, R. A.
1983-01-01
Panels of discontinuous SiC composites, with several aluminum matrices, were fabricated and evaluated. Modulus, yield strength and tensile strength results indicated that the properties of composites containing SiC whisker, nodule or particulate reinforcements were similar. The modulus of the composites was controlled by the volume percentage of the SiC reinforcement content, while the strength and ductility were controlled by both the reinforcement content and the matrix alloy. The feasibility of fabricating structural shapes by both wire performs and direct casting was demonstrated for Al2O3/Al composites. The feasibility of fabricating high performance composites into structural shapes by low pressure hot molding was demonstrated for B4C-coated B/Al composites.
Compression failure mechanisms of single-ply, unidirectional, carbon-fiber composites
NASA Technical Reports Server (NTRS)
Ha, Jong-Bae; Nairn, John A.
1992-01-01
A single-ply composite compression test was used to study compression failure mechanisms as a function of fiber type, matrix type, and interfacial strength. Composites made with low- and intermediate-modulus fibers (Hercules AS4 and IM7) in either an epoxy (Hercules 3501-6) or a thermoplastic (ULTEM and LARC-TPI) matrix failed by kink banding and out-of-plane slip. The failures proceeded by rapid and catastrophic damage propagation across the specimen width. Composites made with high-modulus fibers (Hercules HMS4/3501-6) had a much lower compression strength. Their failures were characterized by kink banding and longitudinal splitting. The damage propagated slowly across the specimen width. Composites made with fibers treated to give low interfacial strength had low compression strength. These composites typically failed near the specimen ends and had long kink bands.
Physical and mechanical characterisation of 3D-printed porous titanium for biomedical applications.
El-Hajje, Aouni; Kolos, Elizabeth C; Wang, Jun Kit; Maleksaeedi, Saeed; He, Zeming; Wiria, Florencia Edith; Choong, Cleo; Ruys, Andrew J
2014-11-01
The elastic modulus of metallic orthopaedic implants is typically 6-12 times greater than cortical bone, causing stress shielding: over time, bone atrophies through decreased mechanical strain, which can lead to fracture at the implantation site. Introducing pores into an implant will lower the modulus significantly. Three dimensional printing (3DP) is capable of producing parts with dual porosity features: micropores by process (residual pores from binder burnout) and macropores by design via a computer aided design model. Titanium was chosen due to its excellent biocompatibility, superior corrosion resistance, durability, osteointegration capability, relatively low elastic modulus, and high strength to weight ratio. The mechanical and physical properties of 3DP titanium were studied and compared to the properties of bone. The mechanical and physical properties were tailored by varying the binder (polyvinyl alcohol) content and the sintering temperature of the titanium samples. The fabricated titanium samples had a porosity of 32.2-53.4% and a compressive modulus of 0.86-2.48 GPa, within the range of cancellous bone modulus. Other physical and mechanical properties were investigated including fracture strength, density, fracture toughness, hardness and surface roughness. The correlation between the porous 3DP titanium-bulk modulus ratio and porosity was also quantified.
Mechanical properties of anodized coatings over molten aluminum alloy
Grillet, Anne M.; Gorby, Allen D.; Trujillo, Steven M.; ...
2007-10-22
A method to measure interfacial mechanical properties at high temperatures and in a controlled atmosphere has been developed to study anodized aluminum surface coatings at temperatures where the interior aluminum alloy is molten. This is the first time that the coating strength has been studied under these conditions. In this study, we have investigated the effects of ambient atmosphere, temperature, and surface finish on coating strength for samples of aluminum alloy 7075. Surprisingly, the effective Young's modulus or strength of the coating when tested in air was twice as high as when samples were tested in an inert nitrogen ormore » argon atmosphere. Additionally, the effective Young's modulus of the anodized coating increased with temperature in an air atmosphere but was independent of temperature in an inert atmosphere. The effect of surface finish was also examined. Sandblasting the surface prior to anodization was found to increase the strength of the anodized coating with the greatest enhancement noted for a nitrogen atmosphere. Lastly, machining marks were not found to significantly affect the strength.« less
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Grimes, H. H.
1982-01-01
The effects of isothermal and cyclic exposure on the room temperature axial and transverse tensile strength and dynamic flexural modulus of 35 volume percent and 55 volume percent FP-Al2O3/EZ 33 magnesium composites were studied. The composite specimens were continuously heated in a sand bath maintained at 350 C for up to 150 hours or thermally cycled between 50 and 250 C or 50 and 350 C for up to 3000 cycles. Each thermal cycle lasted for a total of six minutes with a hold time of two minutes at the maximum temperature. Results indicate to significant loss in the room temperature axial tensile strength and dynamic flexural modulus of composites thermally cycled between 50 and 250 C or of composites isothermally heated at 350 C for up to 150 hours from the strength and modulus data for the untreated, as fabricated composites. In contrast, thermal cycling between 50 and 350 C caused considerable loss in both room temperature strength and modulus. Fractographic analysis and measurement of composite transverse strength and matrix hardness of thermally cycled and isothermally heated composites indicated matrix softening and fiber/matrix debonding due to void growth at the interface and matrix cracking as the likely causes of the strength and modulus loss behavior.
Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats.
Xiang, Chunhui; Frey, Margaret W
2016-04-07
Tensile strength, Young's modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber-fiber load sharing. Single-walled carbon nanotubes (CNTs) were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young's modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber-fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young's modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young's modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young's modulus of the electrospun nylon 6 non-woven fiber mats.
The threshold strength of laminar ceramics utilizing molar volume changes and porosity
NASA Astrophysics Data System (ADS)
Pontin, Michael Gene
It has been shown that uniformly spaced thin compressive layers within a ceramic body can arrest the propagation of an otherwise catastrophic crack, producing a threshold strength: a strength below which the probability of failure is zero. Previous work has shown that the threshold strength increases with both the magnitude of the compressive stress and the fracture toughness of the thin layer material, and finite element analysis predicts that the threshold strength can be further increased when the elastic modulus of the compressive layer is much smaller than the thicker layer. The current work describes several new approaches to increase the threshold strength of a laminar ceramic system. The initial method utilized a molar volume expansion within the thin layers, produced by the tetragonal-to-monoclinic phase transformation of unstabilized zirconia during cooling, in order to produce large compressive stresses within the thin layers. High threshold strengths were measured for this system, but they remained relatively constant as the zirconia content was increased. It was determined that microcracking produced during the transformation reduced the magnitude of the compressive stresses, but may also have served to reduce the modulus of the thin compressive layer, providing an additional strengthening mechanism. The second approach studied the addition of porosity to reduce the elastic modulus of the thin compressive layers. A new processing method was created and analyzed, in which thick layers of the laminate were fabricated by tape-casting, and then dip-coated into a slurry, containing rice starch, to create thin porous compressive layers upon densification. The effects of porosity on the residual compressive stress, elastic modulus, and fracture toughness of the thin layers were measured and calculated, and it was found that the elastic modulus mismatch between the thin and thick layers produced a large strengthening effect for volume fractions of porosity below a critical level. Specimens with greater volume fractions of porosity exhibited complete crack arrest, typically followed by non-catastrophic failure, as cracks initiating in adjacent thick layers coalesced by cracking or delamination along the thin porous layers.
Properties of PMR Polyimide composites made with improved high strength graphite fibers
NASA Technical Reports Server (NTRS)
Vannucci, R. D.
1980-01-01
High strength, intermediate modulus graphite fibers were obtained from various commercial suppliers, and were used to fabricate PMR-15 and PMR-2 polyimide composites. The effects of the improved high strength graphite fibers on composite properties after exposure in air at 600 F were investigated. Two of the improved fibers were found to have an adverse effect on the long term performance of PMR composites. The influence of various factors such as fiber physical properties, surface morphology and chemical composition were also examined.
Rafeek, Reisha N
2008-05-01
This study investigated the effects of application of heat alone and heat & pressure on the compressive strength and modulus, the stress relaxation characteristics and the fluoride release of a conventional and a resin-modified glass ionomer cement. Cylindrical specimens were made from both materials and divided into 3 groups. One group was heat treated in an oven at 120 degrees C for 20 min, another group was subjected to heat & pressure at 120 degrees C for 20 min at 6-bar pressure. The third group acted as a control. The compressive strength and modulus, stress relaxation and fluoride release were tested over 56 days. The results of this investigation indicate that heat treatment had no significant effect on the conventional GIC used but significantly affected the resin modified GIC by increasing both the compressive strength and modulus and reducing the stress relaxation characteristics and the fluoride release. The use of GIC to produce inlay or onlay restorations that adhere to tooth tissue and release fluoride would be highly desirable. The results of this study indicate that it is possible to improve the strength of RMGIC with heat to a limited extent, but fluoride release may decrease.
NASA Technical Reports Server (NTRS)
Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.
2011-01-01
A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.
Safiuddin, Md; Raman, Sudharshan N; Zain, Muhammad Fauzi Mohd
2015-12-10
The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete.
Safiuddin, Md.; Raman, Sudharshan N.; Zain, Muhammad Fauzi Mohd.
2015-01-01
The aim of the work reported in this article was to investigate the effects of medium temperature and industrial by-products on the key hardened properties of high performance concrete. Four concrete mixes were prepared based on a water-to-binder ratio of 0.35. Two industrial by-products, silica fume and Class F fly ash, were used separately and together with normal portland cement to produce three concrete mixes in addition to the control mix. The properties of both fresh and hardened concretes were examined in the laboratory. The freshly mixed concrete mixes were tested for slump, slump flow, and V-funnel flow. The hardened concretes were tested for compressive strength and dynamic modulus of elasticity after exposing to 20, 35 and 50 °C. In addition, the initial surface absorption and the rate of moisture movement into the concretes were determined at 20 °C. The performance of the concretes in the fresh state was excellent due to their superior deformability and good segregation resistance. In their hardened state, the highest levels of compressive strength and dynamic modulus of elasticity were produced by silica fume concrete. In addition, silica fume concrete showed the lowest level of initial surface absorption and the lowest rate of moisture movement into the interior of concrete. In comparison, the compressive strength, dynamic modulus of elasticity, initial surface absorption, and moisture movement rate of silica fume-fly ash concrete were close to those of silica fume concrete. Moreover, all concretes provided relatively low compressive strength and dynamic modulus of elasticity when they were exposed to 50 °C. However, the effect of increased temperature was less detrimental for silica fume and silica fume-fly ash concretes in comparison with the control concrete. PMID:28793732
Method of making carbon-carbon composites
Engle, Glen B.
1993-01-01
A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.
Kochumalayil, Joby J; Morimune, Seira; Nishino, Takashi; Ikkala, Olli; Walther, Andreas; Berglund, Lars A
2013-11-11
Nacre-mimetic bionanocomposites of high montmorillonite (MTM) clay content, prepared from hydrocolloidal suspensions, suffer from reduced strength and stiffness at high relative humidity. We address this problem by chemical modification of xyloglucan in (XG)/MTM nacre-mimetic nanocomposites, by subjecting the XG to regioselective periodate oxidation of side chains to enable it to form covalent cross-links to hydroxyl groups in neighboring XG chains or to the MTM surface. The resulting materials are analyzed by FTIR spectroscopy, thermogravimetric analysis, carbohydrate analysis, calorimetry, X-ray diffraction, scanning electron microscopy, tensile tests, and oxygen barrier properties. We compare the resulting mechanical properties at low and high relative humidity. The periodate oxidation leads to a strong increase in modulus and strength of the materials. A modulus of 30 GPa for cross-linked composite at 50% relative humidity compared with 13.7 GPa for neat XG/MTM demonstrates that periodate oxidation of the XG side chains leads to crucially improved stress transfer at the XG/MTM interface, possibly through covalent bond formation. This enhanced interfacial adhesion and internal cross-linking of the matrix moreover preserves the mechanical properties at high humidity condition and leads to a Young's modulus of 21 GPa at 90%RH.
High Temperature Tensile Properties of Unidirectional Hi-Nicalon/Celsian Composites In Air
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.; Bansal, Narottam P.
2000-01-01
High temperature tensile properties of unidirectional BN/SiC-coated Hi-Nicalon SiC fiber reinforced celsian matrix composites have been measured from room temperature to 1200 C (2190 F) in air. Young's modulus, the first matrix cracking stress, and the ultimate strength decreased from room temperature to 1200 C (2190 F). The applicability of various micromechanical models, in predicting room temperature values of various mechanical properties for this CMC, has also been investigated. The simple rule of mixtures produced an accurate estimate of the primary composite modulus. The first matrix cracking stress estimated from ACK theory was in good agreement with the experimental value. The modified fiber bundle failure theory of Evans gave a good estimate of the ultimate strength.
NASA Astrophysics Data System (ADS)
Siregar, J. P.; Sapuan, S. M.; Rahman, M. Z. A.; Zaman, H. M. D. K.
2010-05-01
The effects of electron beam irradiation on the mechanical properties of pineapple leaf fibre reinforced high impact polystyrene (HIPS) composites were studied. Two types of crosslinking agent that has been used in this study were trimethylolpropane triacrylate (TMPTA) and tripropylene gylcol diacrylate (TPGDA). A 50 wt.% of PALF was blended with HIPS and crosslinking agent using Brabender melt mixer at 165 °C. The composites were then irradiated using a 3 MeV electron beam accelerator with dosage of 0-100 kGy. The tensile strength, tensile modulus, flexural strength, flexural modulus, notched and unnotched impat and hardness of composites were measured and the effects of crosslinking agent were also compared.
Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures
Haglund, A.; Koehler, M.; Catoor, D.; ...
2014-12-05
A FCC high-entropy alloy (HEA) that exhibits strong temperature dependence of strength at low homologous temperatures in sharp contrast to pure FCC metals like Ni that show weak temperature dependence is CrMnCoFeNi. In order to understand this behavior, elastic constants were determined as a function of temperature. From 300 K down to 55 K, the shear modulus (G) of the HEA changes by only 8%, increasing from 80 to 86 GPa. Moreover, this temperature dependence is weaker than that of FCC Ni, whose G increases by 12% (81–91 GPa). Therefore, the uncharacteristic temperature-dependence of the strength of the HEA ismore » not due to the temperature dependence of its shear modulus.« less
Super-Strong, Super-Stiff Macrofibers with Aligned, Long Bacterial Cellulose Nanofibers.
Wang, Sha; Jiang, Feng; Xu, Xu; Kuang, Yudi; Fu, Kun; Hitz, Emily; Hu, Liangbing
2017-09-01
With their impressive properties such as remarkable unit tensile strength, modulus, and resistance to heat, flame, and chemical agents that normally degrade conventional macrofibers, high-performance macrofibers are now widely used in various fields including aerospace, biomedical, civil engineering, construction, protective apparel, geotextile, and electronic areas. Those macrofibers with a diameter of tens to hundreds of micrometers are typically derived from polymers, gel spun fibers, modified carbon fibers, carbon-nanotube fibers, ceramic fibers, and synthetic vitreous fibers. Cellulose nanofibers are promising building blocks for future high-performance biomaterials and textiles due to their high ultimate strength and stiffness resulting from a highly ordered orientation along the fiber axis. For the first time, an effective fabrication method is successfully applied for high-performance macrofibers involving a wet-drawing and wet-twisting process of ultralong bacterial cellulose nanofibers. The resulting bacterial cellulose macrofibers yield record high tensile strength (826 MPa) and Young's modulus (65.7 GPa) owing to the large length and the alignment of nanofibers along fiber axis. When normalized by weight, the specific tensile strength of the macrofiber is as high as 598 MPa g -1 cm 3 , which is even substantially stronger than the novel lightweight steel (227 MPa g -1 cm 3 ). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Manning, C. R., Jr.; Honeycutt, L., III
1974-01-01
Evaluation of tantalum carbide-tungsten fiber composites has been completed as far as weight percent carbon additions and weight percent additions of tungsten fiber. Extensive studies were undertaken concerning Young's Modulus and fracture strength of this material. Also, in-depth analysis of the embrittling effects of the extra carbon additions on the tungsten fibers has been completed. The complete fabrication procedure for the tantalum carbide-tungsten fiber composites with extra carbon additions is given. Microprobe and metallographic studies showed the effect of extra carbon on the tungsten fibers, and evaluation of the thermal shock parameter fracture strength/Young's Modulus is included.
Melt compounding with graphene to develop functional, high-performance elastomers
NASA Astrophysics Data System (ADS)
Araby, Sherif; Zaman, Izzuddin; Meng, Qingshi; Kawashima, Nobuyuki; Michelmore, Andrew; Kuan, Hsu-Chiang; Majewski, Peter; Ma, Jun; Zhang, Liqun
2013-04-01
Rather than using graphene oxide, which is limited by a high defect concentration and cost due to oxidation and reduction, we adopted cost-effective, 3.56 nm thick graphene platelets (GnPs) of high structural integrity to melt compound with an elastomer—ethylene-propylene-diene monomer rubber (EPDM)—using an industrial facility. An elastomer is an amorphous, chemically crosslinked polymer generally having rather low modulus and fracture strength but high fracture strain in comparison with other materials; and upon removal of loading, it is able to return to its original geometry, immediately and completely. It was found that most GnPs dispersed uniformly in the elastomer matrix, although some did form clusters. A percolation threshold of electrical conductivity at 18 vol% GnPs was observed and the elastomer thermal conductivity increased by 417% at 45 vol% GnPs. The modulus and tensile strength increased by 710% and 404% at 26.7 vol% GnPs, respectively. The modulus improvement agrees well with the Guth and Halpin-Tsai models. The reinforcing effect of GnPs was compared with silicate layers and carbon nanotube. Our simple fabrication would prolong the service life of elastomeric products used in dynamic loading, thus reducing thermosetting waste in the environment.
Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats
Xiang, Chunhui; Frey, Margaret W.
2016-01-01
Tensile strength, Young’s modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber–fiber load sharing. Single-walled carbon nanotubes (CNTs) were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young’s modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber–fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young’s modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young’s modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young’s modulus of the electrospun nylon 6 non-woven fiber mats. PMID:28773397
Developing the elastic modulus measurement of asphalt concrete using the compressive strength test
NASA Astrophysics Data System (ADS)
Setiawan, Arief; Suparma, Latif Budi; Mulyono, Agus Taufik
2017-11-01
Elastic modulus is a fundamental property of an asphalt mixture. An analytical method of the elastic modulus is needed to determine the thickness of flexible pavement. It has a role as one of the input values on a stress-strain analysis in the finite element method. The aim of this study was to develop the measurement of the elastic modulus by using compressive strength testing. This research used a set of specimen mold tool and Delta Dimensi software to record strain changes occurring in the proving ring of compression machine and the specimens. The elastic modulus of the five types of aggregate gradation and 2 types of asphalt were measured at optimum asphalt content. Asphalt Cement 60/70 and Elastomer Modified Asphalt (EMA) were used as a binder. Manufacturing success indicators of the specimens used void-in-the-mix (VIM) 3-5 % criteria. The success rate of the specimen manufacturing was more than 76%. Thus, the procedure and the compressive strength test equipment could be used for the measurement of the elastic modulus. The aggregate gradation and asphalt types significantly affected the elastic modulus of the asphalt concrete.
Tensile behavior of porous scaffolds made from poly(para phenylene) - biomed 2013.
Dirienzo, Amy L; Yakacki, Christopher M; Safranski, David L; Frick, Carl P
2013-01-01
The goal of this study was to fabricate and mechanically characterize a high-strength porous polymer scaffold for potential use as an orthopedic device. Poly(para-phenylene) (PPP) is an excellent candidate due to its exceptional strength and stiffness and relative inertness, but has never been explicitly investigated for use as a biomedical device. PPP has strength values 3 to 10 times higher and an elastic modulus nearly an order of magnitude higher than traditional polymers such as poly(methyl methacrylate) (PMMA), polycaprolactone (PCL), ultra-high molecular weight polyethylene (UHMWPE), and polyurethane (PU) and is significantly stronger and stiffer than polyetheretherketone (PEEK). By utilizing PPP we can overcome the mechanical limitations of traditional porous polymeric scaffolds since the outstanding stiffness of PPP allows for a highly porous structure appropriate for osteointegration that can match the stiffness of bone (100-250 MPa), while maintaining suitable mechanical properties for soft-tissue fixation. Porous samples were manufactured by powder sintering followed by particle leaching. The pore volume fraction was systematically varied from 5080 vol% for a pore sizes from150-500 µm, as indicated by previous studies for optimal osteointegration. The tensile modulus of the porous samples was compared to the rule of mixtures, and closely matches foam theory up to 70 vol%. The experimental modulus for 70 vol% porous samples matches the stiffness of bone and contains pore sizes optimal for osteointegration.
NASA Technical Reports Server (NTRS)
Bird, R. Keith; Hibberd, Joshua
2009-01-01
Electron beam freeform fabrication (EBF3) direct metal deposition processing was used to fabricate two Inconel 718 single-bead-width wall builds and one multiple-bead-width block build. Specimens were machined to evaluate microstructure and room temperature tensile properties. The tensile strength and yield strength of the as-deposited material from the wall and block builds were greater than those for conventional Inconel 718 castings but were less than those for conventional cold-rolled sheet. Ductility levels for the EBF3 material were similar to those for conventionally-processed sheet and castings. An unexpected result was that the modulus of the EBF3-deposited Inconel 718 was significantly lower than that of the conventional material. This low modulus may be associated with a preferred crystallographic orientation resultant from the deposition and rapid solidification process. A heat treatment with a high solution treatment temperature resulted in a recrystallized microstructure and an increased modulus. However, the modulus was not increased to the level that is expected for Inconel 718.
Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.
Ozan, Sertan; Lin, Jixing; Li, Yuncang; Ipek, Rasim; Wen, Cuie
2015-07-01
A new series of beta Ti-Nb-Zr (TNZ) alloys with considerable plastic deformation ability during compression test, high elastic admissible strain, and excellent cytocompatibility have been developed for removable bone tissue implant applications. TNZ alloys with nominal compositions of Ti-34Nb-25Zr, Ti-30Nb-32Zr, Ti-28Nb-35.4Zr and Ti-24.8Nb-40.7Zr (wt.% hereafter) were fabricated using the cold-crucible levitation technique, and the effects of alloying element content on their microstructures, mechanical properties (tensile strength, yield strength, compressive yield strength, Young's modulus, elastic energy, toughness, and micro-hardness), and cytocompatibilities were investigated and compared. Microstructural examinations revealed that the TNZ alloys consisted of β phase. The alloy samples displayed excellent ductility with no cracking, or fracturing during compression tests. Their tensile strength, Young's modulus, elongation at rupture, and elastic admissible strain were measured in the ranges of 704-839 MPa, 62-65 GPa, 9.9-14.8% and 1.08-1.31%, respectively. The tensile strength, Young's modulus and elongation at rupture of the Ti-34Nb-25Zr alloy were measured as 839 ± 31.8 MPa, 62 ± 3.6 GPa, and 14.8 ± 1.6%, respectively; this alloy exhibited the elastic admissible strain of approximately 1.31%. Cytocompatibility tests indicated that the cell viability ratios (CVR) of the alloys are greater than those of the control group; thus the TNZ alloys possess excellent cytocompatibility. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Wang, Pan; Wu, Lihong; Feng, Yan; Bai, Jiaming; Zhang, Baicheng; Song, Jie; Guan, Shaokang
2017-03-01
The Ti-15Zr-5Cr-2Al alloy has been developed and various heat treatments have been investigated to develop new biomedical materials. It is found that the heat treatment conditions strongly affect the phase constitutions and mechanical properties. The as-cast specimen is comprised of β phase and a small fraction of α phase, which is attributed to the suppression of ω phase caused by adding Al. A high yield strength of 1148±36MPa and moderate Young's modulus of 96±3GPa are obtained in the as-cast specimen. Besides the β phase and α phase, ω phase is also detected in the air cooled and liquid nitrogen quenched specimens, which increases the Young's modulus and lowers the ductility. In contrast, only β phase is detected after ice water quenching. The ice water quenched specimen exhibits a good combination of mechanical properties with a high microhardness of 302±10HV, a large plastic strain of 23±2%, a low Young's modulus of 58±4GPa, a moderate yield strength of 625±32MPa and a high compressive strength of 1880±59MPa. Moreover, the elastic energies of the ice water quenched specimen (3.22MJ/m 3 ) and as-cast specimen (6.86MJ/m 3 ) are higher than that of c.p. Ti (1.25MJ/m 3 ). These results demonstrate that as-cast and ice water quenched Ti-15Zr-5Cr-2Al alloys with a superior combination of mechanical properties are potential materials for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hussein, M.
2018-06-01
The influence of the mechanical property and morphology of different blend ratio of Butyl rubber (IIR)/high molecular weight polyethylene (PE) by temperature and strain rate are performed. Special attention has been considered to a ductile-brittle transition that is known to occur at around 60 °C. The idea is to explain the unexpected phenomenon of brittleness which directly related to all tensile mechanical properties such as the strength of blends, modulus of elasticity of filled and unfilled IIR-polyethylene blends. In particular, the initial Young's modulus, tensile strength and strain at failure exhibit similar dependency on strain rate and temperature. These quantities lowered and increased with an increment of temperature, whereas the increased with increasing of strain rate. Furthermore, the tensile strength and strain at failure decreases for all temperatures range with the increase of PE content in the blend, except Young's modulus in reverse. The strain rate sensitivity index parameter of the examined polymeric materials is consistent with the micro-mechanisms of deformation and the behavior was well described by an Eyring relationship leading to an activation volume of ∼1 nm3, except for the highest value of unfilled IIR ∼8.45 nm3.
DOT National Transportation Integrated Search
2017-11-01
This report documents the evaluation of cement replacement with mekaolin and slag materials supplied by multiple vendors by measuring compressive strength, tensile strength, modulus of rupture, modulus of elasticity, sulfate expansion, alkali-silica ...
Hiremath, Nitilaksha; Lu, Xinyi; Evora, Maria Cecilia; ...
2016-07-29
Recently carbon nanotube (CNT) yarns have been gaining importance as an approach to harvest the excellent properties of the CNTs. However, the properties of CNT yarns at this stage are well below the expected value. Investigation of the structure of CNT yarns and possible approaches to enhance the strength and modulus are reported. Scanning electron microscopy and focused ion beam imaging reveal the inherently porous structure and poor orientation, emphasizing the need to enhance packing of CNT bundles in the yarns for increased strength and modulus. Densification of CNT yarn by toluene or polystyrene increases the strength by 140 ormore » 172 % and modulus by 79 or 218 %, respectively, as compared to that of the pristine yarn. E-beam irradiation was investigated as a means to introduce crosslinking and enhanced internanotubes bonding to increase strength and modulus. However, the irradiation resulted in generation of defects and damages to the yarn contributing to reduction in strength and modulus. Raman spectroscopy studies on the irradiated samples reveal the change in bonding characteristics resulting in poor mechanical properties. As a result, denser packing of nanotubes and increased interaction without any damage is the key to improve the properties of CNT yarns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiremath, Nitilaksha; Lu, Xinyi; Evora, Maria Cecilia
Recently carbon nanotube (CNT) yarns have been gaining importance as an approach to harvest the excellent properties of the CNTs. However, the properties of CNT yarns at this stage are well below the expected value. Investigation of the structure of CNT yarns and possible approaches to enhance the strength and modulus are reported. Scanning electron microscopy and focused ion beam imaging reveal the inherently porous structure and poor orientation, emphasizing the need to enhance packing of CNT bundles in the yarns for increased strength and modulus. Densification of CNT yarn by toluene or polystyrene increases the strength by 140 ormore » 172 % and modulus by 79 or 218 %, respectively, as compared to that of the pristine yarn. E-beam irradiation was investigated as a means to introduce crosslinking and enhanced internanotubes bonding to increase strength and modulus. However, the irradiation resulted in generation of defects and damages to the yarn contributing to reduction in strength and modulus. Raman spectroscopy studies on the irradiated samples reveal the change in bonding characteristics resulting in poor mechanical properties. As a result, denser packing of nanotubes and increased interaction without any damage is the key to improve the properties of CNT yarns.« less
NASA Astrophysics Data System (ADS)
Karanjule, D. B.; Bhamare, S. S.; Rao, T. H.
2018-04-01
Cold drawing is widely used deformation process for seamless tube manufacturing. Springback is one of the major problem faced in tube drawing. Springback is due to the elastic energy stored in the tubes during forming process. It is found that this springback depends upon Young’s modulus of the material. This paper reports mechanical testing of three grades of steels viz. low carbon steel, medium carbon steel and high carbon steel to measure their Young’s modulus and corresponding springback. The results shows that there is 10-20 % variation in the Young’s modulus and inverse proportion between the springback and Young’s modulus. More the percentage of carbon, more the strength, less the value of Young’s modulus and more will springback. The study further leads to identify optimum die semi angle of 15 degree, land width of 10 mm and drawing speed of 8, 6 and 4 m/min for least springback in all the three grades respectively and die semi angle as a most dominant factor causing springback.
Dynamic rheology of food protein networks
USDA-ARS?s Scientific Manuscript database
Small amplitude oscillatory shear analyses of samples containing protein are useful for determining the nature of the protein matrix without damaging it. Elastic modulus, viscous modulus, and loss tangent (the ratio of viscous modulus to elastic modulus) give information on the strength of the netw...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohde, Brian J.; Le, Kim Mai; Krishnamoorti, Ramanan
The mechanical properties of two chemically distinct and complementary thermoset polymers were manipulated through development of thermoset blends. The thermoset blend system was composed of an anhydride-cured diglycidyl ether of bisphenol A (DGEBA)-based epoxy resin, contributing high tensile strength and modulus, and polydicyclopentadiene (PDCPD), which has a higher toughness and impact strength as compared to other thermoset polymers. Ultra-small-angle and small-angle X-ray scattering analysis explored the morphology of concurrently cured thermoset blends, revealing a macroscopically phase separated system with a surface fractal structure across blended systems of varying composition. The epoxy resin rich and PDCPD rich phases exhibited distinct glassmore » transitions (Tg’s): the Tg observed at higher temperature was associated with the epoxy resin rich phase and was largely unaffected by the presence of PDCPD, whereas the PDCPD rich phase Tg systematically decreased with increasing epoxy resin content due to inhibition of dicyclopentadiene ring-opening metathesis polymerization. The mechanical properties of these phase-separated blends were in reasonable agreement with predictions by the rule of mixtures for the blend tensile strength, modulus, and fracture toughness. Scanning electron microscopy analysis of the tensile and fracture specimen fracture surfaces showed an increase in energy dissipation mechanisms, such as crazing, shear banding, and surface roughness, as the fraction of the more ductile component, PDPCD, increased. These results present a facile method to tune the mechanical properties of a toughened thermoset network, in which the high modulus and tensile strength of the epoxy resin can be largely retained at high epoxy resin content in the blend, while increasing the fracture toughness.« less
Thomas, Tony C; K, Aswini Kumar; Mohamed, Shamaz; Krishnan, Vinod; Mathew, Anil; V, Manju
2015-03-01
The aim of this in vitro study was to compare the flexural strength, the flexural modulus and compressive strength of the acrylic polymer reinforced with glass, carbon, polyethylene and Kevlar fibres with that of plain unfilled resin. A total of 50 specimens were prepared and divided into 10 specimens each under 5 groups namely group 1- control group without any fibres, group 2 - carbon fibres, group 3- glass fibres, group 4 - polyethylene, group 5- Kevlar. Universal testing machine (Tinius olsen, USA) was used for the testing of these specimens. Out of each group, 5 specimens were randomly selected and testing was done for flexural strength using a three point deflection test and three point bending test for compressive strength and the modulus was plotted using a graphical method. Statistical analysis was done using statistical software. The respective mean values for samples in regard to their flexural strength for PMMA plain, PMMA+ glass fibre, PMMA+ carbon, PMMA+ polyethylene and PMMA+ Kevlar were 90.64, 100.79, 102.58, 94.13 and 96.43 respectively. Scheffes post hoc test clearly indicated that only mean flexural strength values of PMMA + Carbon, has the highest mean value. One-way ANOVA revealed a non-significant difference among the groups in regard to their compressive strength. The study concludes that carbon fibre reinforced samples has the greatest flexural strength and greatest flexural modulus, however the compressive strength remains unchanged.
High strength graphite and method for preparing same
Overholser, Lyle G.; Masters, David R.; Napier, John M.
1976-01-01
High strength graphite is manufactured from a mixture of a particulate filler prepared by treating a particulate carbon precursor at a temperature in the range of about 400.degree. to 1000.degree. C., an organic carbonizable binder, and green carbonizable fibers in a concentration of not more than 2 weight per cent of the filler. The use of the relatively small quantity of green fibers provides a substantial increase in the flexural strength of the graphite with only a relatively negligible increase in the modulus of elasticity.
NASA Technical Reports Server (NTRS)
Langan, T. J.; Pickens, J. R.
1991-01-01
Weldalite 049, an Al-base Cu-Li-Mg-Ag-Zr alloy, achieves 700 MPa tensile strengths in the near-peak-aged temper in virtue of the nucleation of a T(1)-type platelike strengthening precipitate. Attention is presently given to the possibility that the alloy's modulus could be further increased through the addition of high-modulus TiB2 particles, using the 'XD' process, due to TiB2's good wettability with liquid Al. An 8-percent modulus increase is obtained with 4 vol pct TiB2.
Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates
NASA Astrophysics Data System (ADS)
Yeh, Po-Ching
2011-12-01
This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.
NASA Technical Reports Server (NTRS)
1991-01-01
The addition of ceramic particles to aluminum based alloys can substantially improve mechanical properties, especially Young's modulus and room and elevated temperature strengths. However, these improvements typically occur at the expense of tensile ductility. The mechanical properties are evaluated to a metal matrix composite (MMC) consisting of an ultrahigh strength aluminum lithium alloy, Weldalite (tm) 049, reinforced with TiB2 particles produced by an in situ precipitation technique called the XD (tm) process. The results are compared to the behavior of a nonreinforced Weldalite 049 variant. It is shown that both 049 and 049-TiB2 show very attractive warm temperature properties e.g., 625 MPa yield strength at 150 C after 100 h at temperature. Weldalite 049 reinforced with a nominal 4 v pct. TiB2 shows an approx. 8 pct. increase in modulus and a good combination of strength (529 MPa UTS) and ductility (6.5 pct.) in the T3 temper. And the high ductility of Weldalite 049 in the naturally aged and underaged tempers makes the alloy a good, high strength matrix for ceramic reinforcement.
Biodegradable compounds: Rheological, mechanical and thermal properties
NASA Astrophysics Data System (ADS)
Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.
2015-12-01
Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.
NASA Astrophysics Data System (ADS)
Gömze, L. A.; Gömze, L. N.
2017-02-01
Materials with different crystalline and morphological compositions have different chemical, physical, mechanical and rheological properties, including wear protection, melting temperature, module of elasticity and viscosity. Examining the material structures and behaviors of differentceramic bodies and CMCs under high speed collisions in several years the authors have understood the advantages of hetero-modulus and hetero-viscous complex material systems to absorb and dissipate the kinetic energy of objects during high speed collisions. Applying the rheo-mechanical principles the authors successfully developed a new family of hetero-modulus and hetero-viscous alumina matrix composite materials with extreme mechanical properties including dynamic strength. These new corundum-matrix composite materials reinforced with Si2ON 2, Si3N4 , SiAlON and AlN submicron and nanoparticles have excellent dynamic strength during collisions with high density metallic bodies with speeds about 1000 m/sec or more. At the same time in the alumina matrix composites can be observed a phase transformation of submicron and nanoparticles of alpha and beta silicone-nitride crystals into cubicc-Si3N4 diamond-like particles can be observed, when the high speed collision processes are taken place in vacuum or oxygen-free atmosphere. Using the rheological principles and the energy engorgement by fractures, heating and melting of components the authors successfully developed several new hetero-modulus, hetero-viscous and hetero-plastic complex materials. These materials generally are based on ceramic matrixes and components having different melting temperatures and modules of elasticity from low values like carbon and light metals (Mg, Al, Ti, Si) up to very high values like boride, nitride and carbide ceramics. Analytical methods applied in this research were scanning electron microscopy, X-ray diffractions and energy dispersive spectrometry. Digital image analysis was applied to microscopy results to enhance the results of transformations.
Fabrication of Composite Material Using Gettou Fiber by Injection Molding
NASA Astrophysics Data System (ADS)
Setsuda, Roy; Fukumoto, Isao; Kanda, Yasuyuki
This study investigated the mechanical properties of composite using gettou (shell ginger) fiber as reinforcement fabricated from injection molding. Gettou fiber is a natural fiber made from gettou, a subtropical plant that is largely abundant in Okinawa, Japan. We used the stem part of gettou plant and made the gettou fiber by crushing the stem. The composite using gettou fiber contributed to low shrinkage ratio, high bending strength and high flexural modulus. The mechanical strength of composite using long gettou fiber showed higher value than composite using short gettou fiber. Next, because gettou is particularly known for its anti-mold characteristic, we investigated the characteristic in gettou plastic composite. The composite was tested against two molds: aspergillius niger and penicillium funiculosum. The 60% gettou fiber plastic composite was found to satisfy the JISZ2801 criterion. Finally, in order to predict the flexural modulus of composite using gettou fiber by Halpin-Tsai equation, the tensile elastic modulus of single gettou fiber was measured. The tendency of the experimental results of composite using gettou fiber was in good agreement with Halpin-Tsai equation.
A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics.
Buschmann, M D; Grodzinsky, A J
1995-05-01
Measured values of the swelling pressure of charged proteoglycans (PG) in solution (Williams RPW, and Comper WD; Biophysical Chemistry 36:223, 1990) and the ionic strength dependence of the equilibrium modulus of PG-rich articular cartilage (Eisenberg SR, and Grodzinsky AJ; J Orthop Res 3: 148, 1985) are compared to the predictions of two models. Each model is a representation of electrostatic forces arising from charge present on spatially fixed macromolecules and spatially mobile micro-ions. The first is a macroscopic continuum model based on Donnan equilibrium that includes no molecular-level structure and assumes that the electrical potential is spatially invariant within the polyelectrolyte medium (i.e. zero electric field). The second model is based on a microstructural, molecular-level solution of the Poisson-Boltzmann (PB) equation within a unit cell containing a charged glycosaminoglycan (GAG) molecule and its surrounding atmosphere of mobile ions. This latter approach accounts for the space-varying electrical potential and electrical field between the GAG constituents of the PG. In computations involving no adjustable parameters, the PB-cell model agrees with the measured pressure of PG solutions to within experimental error (10%), whereas the ideal Donnan model overestimates the pressure by up to 3-fold. In computations involving one adjustable parameter for each model, the PB-cell model predicts the ionic strength dependence of the equilibrium modulus of articular cartilage. Near physiological ionic strength, the Donnan model overpredicts the modulus data by 2-fold, but the two models coincide for low ionic strengths (C0 < 0.025M) where the spatially invariant Donnan potential is a closer approximation to the PB potential distribution. The PB-cell model result indicates that electrostatic forces between adjacent GAGs predominate in determining the swelling pressure of PG in the concentration range found in articular cartilage (20-80 mg/ml). The PB-cell model is also consistent with data (Eisenberg and Grodzinsky, 1985, Lai WM, Hou JS, and Mow VC; J Biomech Eng 113: 245, 1991) showing that these electrostatic forces account for approximately 1/2 (290kPa) the equilibrium modulus of cartilage at physiological ionic strength while absolute swelling pressures may be as low as approximately 25-100kPa. This important property of electrostatic repulsion between GAGs that are highly charged but spaced a few Debye lengths apart allows cartilage to resist compression (high modulus) without generating excessive intratissue swelling pressures.
Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi
2017-03-31
The purpose of this study was to investigate the depth of cure, flexural properties and volumetric shrinkage of low and high viscosity bulk-fill giomers and resin composites. Depth of cure and flexural properties were determined according to ISO 4049, and volumetric shrinkage was measured using a dilatometer. The depths of cure of giomers were significantly lower than those of resin composites, regardless of photo polymerization times. No difference in flexural strength and modulus was found among either high or low viscosity bulk fill materials. Volumetric shrinkage of low and high viscosity bulk-fill resin composites was significantly less than low and high viscosity giomers. Depth of cure of both low and high viscosity bulk-fill materials is time dependent. Flexural strength and modulus of high viscosity or low viscosity bulk-fill giomer or resin composite materials are not different for their respective category. Resin composites exhibited less polymerization shrinkage than giomers.
Low modulus and bioactive Ti/α-TCP/Ti-mesh composite prepared by spark plasma sintering.
Guo, Yu; Tan, Yanni; Liu, Yong; Liu, Shifeng; Zhou, Rui; Tang, Hanchun
2017-11-01
A titanium mesh scaffold composite filled with Ti/α-TCP particles was prepared by spark plasma sintering (SPS). The microstructures and interfacial reactions of the composites were investigated by scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The compressive strength and elastic modulus were also measured. In vitro bioactivity and biocompatibility was evaluated by using simulated body fluid and cells culture, respectively. After high temperature sintering, Ti oxides, Ti x P y and CaTiO 3 were formed. The formation of Ti oxides and Ti x P y were resulted from the diffusion of O and P elements from α-TCP to Ti. CaTiO 3 was the reaction product of Ti and α-TCP. The composite of 70Ti/α-TCP incorporated with Ti mesh showed a high compressive strength of 589MPa and a low compressive modulus of 30GPa. The bioactivity test showed the formation of a thick apatite layer on the composite and well-spread cells attachment. A good combination of mechanical properties and bioactivity indicated a high potential application of Ti/α-TCP/Ti-mesh composite for orthopedic implants. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Haryanto, Y.; Hermanto, N. I. S.; Pamudji, G.; Wardana, K. P.
2017-11-01
One feasible solution to overcome the issue of tire disposal waste is the use of waste tire rubber to replace aggregate in concrete. We have conducted an experimental investigation on the effect of rubber tire waste aggregate in cuboid form on the compressive strength and modulus of elasticity of concrete. The test was performed on 72 cylindrical specimens with the height of 300 mm and diameter of 150 mm. We found that the workability of concrete with waste tire rubber aggregate has increased. The concrete density with waste tire rubber aggregate was decreased, and so was the compressive strength. The decrease of compressive strength is up to 64.34%. If the content of waste tire rubber aggregate is more than 40%, then the resulting concrete cannot be categorized as structural concrete. The modulus of elasticity decreased to 59.77%. The theoretical equation developed to determine the modulus of elasticity of concrete with rubber tire waste aggregate has an accuracy of 84.27%.
Zhang, Xuan; Yao, Jiahao; Liu, Bin; Yan, Jun; Lu, Lei; Li, Yi; Gao, Huajian; Li, Xiaoyan
2018-06-14
Mechanical metamaterials with three-dimensional micro- and nano-architectures exhibit unique mechanical properties, such as high specific modulus, specific strength and energy absorption. However, a conflict exists between strength and recoverability in nearly all the mechanical metamaterials reported recently, in particular the architected micro-/nanolattices, which restricts the applications of these materials in energy storage/absorption and mechanical actuation. Here, we demonstrated the fabrication of three-dimensional architected composite nanolattices that overcome the strength-recoverability trade-off. The nanolattices under study are made up of a high entropy alloy coated (14.2-126.1 nm in thickness) polymer strut (approximately 260 nm in the characteristic size) fabricated via two-photon lithography and magnetron sputtering deposition. In situ uniaxial compression inside a scanning electron microscope showed that these composite nanolattices exhibit a high specific strength of 0.027 MPa/kg m3, an ultra-high energy absorption per unit volume of 4.0 MJ/m3, and nearly complete recovery after compression under strains exceeding 50%, thus overcoming the traditional strength-recoverability trade-off. During multiple compression cycles, the composite nanolattices exhibit a high energy loss coefficient (converged value after multiple cycles) of 0.5-0.6 at a compressive strain beyond 50%, surpassing the coefficients of all the micro-/nanolattices fabricated recently. Our experiments also revealed that for a given unit cell size, the composite nanolattices coated with a high entropy alloy with thickness in the range of 14-50 nm have the optimal specific modulus, specific strength and energy absorption per unit volume, which is related to a transition of the dominant deformation mechanism from local buckling to brittle fracture of the struts.
High Temperature Mechanical Characterization of Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.
1998-01-01
A high temperature mechanical characterization laboratory has been assembled at NASA Lewis Research Center. One contribution of this work is to test ceramic matrix composite specimens in tension in environmental extremes. Two high temperature tensile testing systems were assembled. The systems were assembled based on the performance and experience of other laboratories and meeting projected service conditions for the materials in question. The systems use frames with an electric actuator and a center screw. A PC based data acquisition and analysis system is used to collect and analyze the data. Mechanical extensometers are used to measure specimen strain. Thermocouples, placed near the specimen, are used to measure the specimen gage section temperature. The system for testing in air has a resistance element furnace with molybdenum disilicide elements and pneumatic grips with water cooling attached to hydraulic alignment devices. The system for testing in an inert gas has a graphite resistance element furnace in a chamber with rigidly mounted, water cooled, hydraulically actuated grips. Unidirectional SiC fiber reinforced reaction bonded Si3N4 and triaxially woven, two dimensional, SiC fiber reinforced enhanced SiC composites were tested in unidirectional tension. Theories for predicting the Young's modulus, modulus near the ultimate strength, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of SiC/RBSN and enhanced SiC/SiC composites. The SiC/RBSN composite exhibited pseudo tough behavior (increased area under the stress/strain curve) from 22 C to 1500 C. The rule of mixtures provides a good estimate of the Young's modulus of the SiC/RBSN composite using the constituent properties from room temperature to 1440 C for short term static tensile tests in air or nitrogen. The rule of mixtures significantly overestimates the secondary modulus near the ultimate strength. The ACK theory provides the best approximation of the first matrix cracking stress when residual stresses are ignored. The theory of Cao and Thouless, based on Weibull statistics, gave the best prediction for the composite ultimate strength. The enhanced SiC/SiC composite exhibited nonlinear stress/strain behavior from 24 C to 1370 C in air with increased ultimate strain when compared to monolithic SiC. The theory of Yang and Chou with the assumption of a frictional fiber/matrix interface provided the best estimate of the Young's modulus. The theory of Cao and Thouless gave the best estimate for the ultimate strength.
NASA Astrophysics Data System (ADS)
To-Anh Phan, Vu; Ngoc-Anh Pham, Kha
2018-04-01
This paper presents the experimental results of using two additives to improve natural soft soil properties in southern Vietnam (i.g., cement and cement-lime mixture). The specimens were prepared by compacting method. Firstly, the natural soil was mixed with cement or cement-lime to determine the optimum water contents of various additive contents. Then, optimum water content was used to produce samples to test some engineering properties such as unconfined compressive strength, splitting tensile strength, and Young’s modulus. The specimens were tested by various curing duration of 7, 14, and 28 days. Results indicated that using cement additive is suitable for improvement of soft soil in the local area and cement-soil stabilization can be replaced as the subbase layer of the flexible pavement according to current Vietnamese standard. In addition, a higher cement content has a greater compressive strength as well as tensile strength. Besides, the Young’ modulus has significantly increased with a long-term curing age and more cement content. No evidences of increasing in strength and modulus are found with the cement-lime-soil stabilization. Finally, the best-fit power function is established by the relationships between unconfined compressive strength and splitting tensile strength as well unconfined compressive strength and Young’s Modulus, with the coefficient of determination, R2>0.999.
Lightweight orthotic appliances
NASA Technical Reports Server (NTRS)
Baucom, R. M.; St. Clair, T. L.
1976-01-01
Graphite-filament reinforced polymer materials are used in applications requiring high tensile strength and modulus. Superior properties of graphite composite materials permit fabrication of supports that are considerably lighter, thinner, and stiffer than conventional components.
NASA Astrophysics Data System (ADS)
Nakagaito, A. N.; Yano, H.
2005-01-01
A completely new kind of high-strength composite was manufactured using microfibrillated cellulose (MFC) derived from kraft pulp. Because of the unique structure of nano-order-scale interconnected fibrils and microfibrils greatly expanded in the surface area that characterizes MFC, it was possible to produce composites that exploit the extremely high strength of microfibrils. The Young’s modulus (E) and bending strength (σb) of composites using phenolic resin as binder achieved values up to 19 GPa and 370 MPa, respectively, with a density of 1.45 g/cm2, exhibiting outstanding mechanical properties for a plant-fiber-based composite.
Zhang, L; He, Z Y; Zhang, Y Q; Jiang, Y H; Zhou, R
2016-10-01
In this work, interconnected porous Ti-HA biocomposites with enhanced bioactivity, high porosity and compressive strength were prepared by spark plasma sintering (SPS) and space holder method. Pore characteristics, mechanical properties, corrosion behaviors and in vitro bioactivity of the porous Ti-HA were investigated. Results showed that porous Ti-HA with 5-30wt% HA contents possessed not only low elastic modulus of 8.2-15.8GPa (close to that of human bone) but also high compressive strength (86-388MPa). Although the HA partially decomposed and formed secondary phases, the sintered porous Ti-HA can still be good bioactivity. The homogeneity and the thickness of apatite layer increased significantly with the increase of HA. But with the thickness of apatite layer increased, micro-cracks appeared on the surface of porous Ti-30%HA. A model was built to discuss the current distribution and sintering mechanism of HA on Ti matrix during SPS process. It indicated that the excessive addition of HA would deteriorate the sintering quality, thus decreasing the mechanical properties and corrosion resistance. However, the combination of interconnected pore characteristics, low elastic modulus, high compressive strength and enhanced bioactivity might make porous Ti-HA biocomposites prepared by SPS a promising candidate for hard tissue implants. Copyright © 2016 Elsevier B.V. All rights reserved.
Operating the Portable Seismic Pavement Analyzer
2006-12-01
8 Thickness versus modulus...amplitude versus time waveforms....................................................................... 9 Figure 10. A thickness versus Young’s modulus plot...modulus of portland cement concrete (PCC) and asphalt concrete (AC) pavements. Additional strength parameters necessary for structural pavement
Thomas, Tony C; K, Aswini Kumar; Krishnan, Vinod; Mathew, Anil; V, Manju
2015-01-01
Aim: The aim of this in vitro study was to compare the flexural strength, the flexural modulus and compressive strength of the acrylic polymer reinforced with glass, carbon, polyethylene and Kevlar fibres with that of plain unfilled resin. Materials and Methods: A total of 50 specimens were prepared and divided into 10 specimens each under 5 groups namely group 1- control group without any fibres, group 2 – carbon fibres, group 3- glass fibres, group 4 – polyethylene, group 5- Kevlar. Universal testing machine (Tinius olsen, USA) was used for the testing of these specimens. Out of each group, 5 specimens were randomly selected and testing was done for flexural strength using a three point deflection test and three point bending test for compressive strength and the modulus was plotted using a graphical method. Statistical analysis was done using statistical software. Results: The respective mean values for samples in regard to their flexural strength for PMMA plain, PMMA+ glass fibre, PMMA+ carbon, PMMA+ polyethylene and PMMA+ Kevlar were 90.64, 100.79, 102.58, 94.13 and 96.43 respectively. Scheffes post hoc test clearly indicated that only mean flexural strength values of PMMA + Carbon, has the highest mean value. One-way ANOVA revealed a non-significant difference among the groups in regard to their compressive strength. Conclusion: The study concludes that carbon fibre reinforced samples has the greatest flexural strength and greatest flexural modulus, however the compressive strength remains unchanged. PMID:25954696
Melt compounding with graphene to develop functional, high-performance elastomers.
Araby, Sherif; Zaman, Izzuddin; Meng, Qingshi; Kawashima, Nobuyuki; Michelmore, Andrew; Kuan, Hsu-Chiang; Majewski, Peter; Ma, Jun; Zhang, Liqun
2013-04-26
Rather than using graphene oxide, which is limited by a high defect concentration and cost due to oxidation and reduction, we adopted cost-effective, 3.56 nm thick graphene platelets (GnPs) of high structural integrity to melt compound with an elastomer-ethylene-propylene-diene monomer rubber (EPDM)-using an industrial facility. An elastomer is an amorphous, chemically crosslinked polymer generally having rather low modulus and fracture strength but high fracture strain in comparison with other materials; and upon removal of loading, it is able to return to its original geometry, immediately and completely. It was found that most GnPs dispersed uniformly in the elastomer matrix, although some did form clusters. A percolation threshold of electrical conductivity at 18 vol% GnPs was observed and the elastomer thermal conductivity increased by 417% at 45 vol% GnPs. The modulus and tensile strength increased by 710% and 404% at 26.7 vol% GnPs, respectively. The modulus improvement agrees well with the Guth and Halpin-Tsai models. The reinforcing effect of GnPs was compared with silicate layers and carbon nanotube. Our simple fabrication would prolong the service life of elastomeric products used in dynamic loading, thus reducing thermosetting waste in the environment.
Determining and analyzing the strength and impact resistance of high modulus glass
NASA Technical Reports Server (NTRS)
Bacon, J. F.
1972-01-01
A number of new glass compositions have been prepared with increased emphasis on compositions without beryllia. Glass preparations have been much more broadly based and have included the eutectic glass fields, and the mullite-rare earth glass systems. Of the new glasses, the best non-toxic composition is UARL 472 with a bulk modulus of only 18.20 million psi. A second experimental glass, UARL 417, was chosen for research in making large quantities of fiber in monofilament form. Tests of these UARL 417 epoxy resin samples in comparison to similar composites made with the DuPont organic fiber, PRD-49-1, show that the UARL composites have a compressive strength 41/2 times higher and a specific compressive strength at least 21/2 times greater. Much of the research effort attempted to answer the question of why a given glass should have an impact strength superior to other glasses. No definitive answer to the question was found.
Experimental Study on Basic Mechanical Properties of BFRP Bars
NASA Astrophysics Data System (ADS)
Fan, Xiaochun; Xu, Ting; Zhou, Zhengrong; Zhou, Xun
2017-10-01
Basalt Fiber Reinforced Polymer (BFRP) bars have the advantages of corrosion resistance, high strength, light weight, good dielectric properties, and they are new type of green reinforced alternative material. In order to determine the mechanical properties of BFRP bars, the tensile strength of basalt fiber bars was necessary to be studied. The diameters of the basalt fiber bars were compared by means of uniaxial tensile test in this article. Then the stress-strain curve can be drawn out. The results show that the stress - strain curve of BFRP bars present straight line relation, and there is no sign before failure; there is no yield platform on the stress-strain curve of BFRP bars, which are typical brittle material;the tensile strength of BFRP bars is about 3 times higher than that of ordinary steel bars. and the elastic modulus is about 1/5 of that of ordinary steel; the ultimate tensile strength of BFRP bars varies little with the increase of diameter, but there exist some differences in modulus values.
The Influence of TiO2 Addition on the Modulus of Rupture of Alumina-Magnesia Refractory Castables
NASA Astrophysics Data System (ADS)
Yuan, Wenjie; Deng, Chengji; Zhu, Hongxi
2015-08-01
The addition of TiO2 to alumina-magnesia refractory castables could accelerate the in situ spinel and calcium hexa-aluminate (CA6) formation and change the phase evolution, which will have direct effect on the overall modulus of rupture values. The cold (CMOR) and hot (HMOR) modulus of rupture, thermal expansion, and elastic modulus of alumina-magnesia refractory castables with different amounts of TiO2 were measured. The correlation of CMOR, theoretical strength, fracture toughness, and the fractal dimension of the fracture surface for these compositions were investigated. HMOR data were described using the model based on Varshni approach and Adam-Gibbs theory. The influence of TiO2 addition on the modulus of rupture of alumina-magnesia refractory castables was related to microcracks derived from expansive phase formation and pore filling or viscous bridging due to the presence of liquid phase at high temperature. The contribution of the above factors to the modulus of rupture for castables varied with the temperature.
Mechanical properties of graphene oxides.
Liu, Lizhao; Zhang, Junfeng; Zhao, Jijun; Liu, Feng
2012-09-28
The mechanical properties, including the Young's modulus and intrinsic strength, of graphene oxides are investigated by first-principles computations. Structural models of both ordered and amorphous graphene oxides are considered and compared. For the ordered graphene oxides, the Young's modulus is found to vary from 380 to 470 GPa as the coverage of oxygen groups changes, respectively. The corresponding variations in the Young's modulus of the amorphous graphene oxides with comparable coverage are smaller at 290-430 GPa. Similarly, the ordered graphene oxides also possess higher intrinsic strength compared with the amorphous ones. As coverage increases, both the Young's modulus and intrinsic strength decrease monotonically due to the breaking of the sp(2) carbon network and lowering of the energetic stability for the ordered and amorphous graphene oxides. In addition, the band gap of the graphene oxide becomes narrower under uniaxial tensile strain, providing an efficient way to tune the electronic properties of graphene oxide-based materials.
Zhao, Lingxi; Zhou, Yu; Song, Chengli; Wang, Zhigang; Cuschieri, Alfred
2017-03-01
The present study investigates the relationship between bio-impedance and burst pressure of colorectal anastomosis created by radiofrequency (RF)-induced tissue fusion. Colorectal anastomosis were created with ex vivo porcine colorectal segments, during which 5 levels of compression pressure were applied by a custom-made bipolar prototype, with 5 replicate experiments at each compression pressure. Instant anastomotic tensile strength was assessed by burst pressure. Bio-impedance of fused tissue was measured by Impedance Analyzer across frequency that 100 Hz to 3 MHz. Statistical analysis shows only a weak correlation between bio-impedance modulus and burst pressures at frequency of 445 kHz ([Formula: see text] = -0.426, P = 0.099 > 0.05). In contrast, results demonstrated a highly significant negative correlation between reactance modulus and burst pressures ([Formula: see text] = -0.812, P = 0.000 < 0.05). The decrease in mean reactance modulus with increasing burst pressures was highly significant (P = 0.019 < 0.05). The observed strong negative correlation between reactance modulus and burst pressures at frequency of 445 kHz indicates that reactance is likely to be a good index for tensile strength of RF-induced colorectal anastomosis, and should be considered for inclusion in a feedback loops in devices design.
NASA Astrophysics Data System (ADS)
Ruicheng, Feng; Hui, Cao; Haiyan, Li; Zhiyuan, Rui; Changfeng, Yan
2018-01-01
Molecular dynamics simulation is used to analyze tensile strength and elastic modulus under different temperatures and vacancy concentrations. The effects of temperature and vacancy concentration on the mechanical properties of γ-TiAl alloy are investigated. The results show that the ultimate stress, ultimate strain and elastic modulus decrease nonlinearly with increasing temperature and vacancy concentration. As the temperature increases, the plastic of material is reinforced. The influence of temperature on strength and elastic modulus is larger than that of vacancy concentration. The evolution process of vacancy could be observed clearly. Furthermore, vacancies with different concentrations develop into voids first as a function of external forces or other factors, micro cracks evolve from those voids, those micro cracks then converge to a macro crack, and fracture will finally occur. The vacancy evolution process cannot be observed clearly owing to the thermal motion of atoms at high temperature. In addition, potential energy is affected by both temperature and vacancy concentration.
Nanotubular Toughening Inclusions
NASA Technical Reports Server (NTRS)
Park, Cheol (Inventor); Working, Dennis C. (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)
2017-01-01
Conventional toughening agents are typically rubbery materials or small molecular weight molecules, which mostly sacrifice the intrinsic properties of a matrix such as modulus, strength, and thermal stability as side effects. On the other hand, high modulus inclusions tend to reinforce elastic modulus very efficiently, but not the strength very well. For example, mechanical reinforcement with inorganic inclusions often degrades the composite toughness, encountering a frequent catastrophic brittle failure triggered by minute chips and cracks. Thus, toughening generally conflicts with mechanical reinforcement. Carbon nanotubes have been used as efficient reinforcing agents in various applications due to their combination of extraordinary mechanical, electrical, and thermal properties. Moreover, nanotubes can elongate more than 20% without yielding or breaking, and absorb significant amounts of energy during deformation, which enables them to also be an efficient toughening agent, as well as excellent reinforcing inclusion. Accordingly, an improved toughening method is provided by incorporating nanotubular inclusions into a host matrix, such as thermoset and thermoplastic polymers or ceramics without detrimental effects on the intrinsic physical properties of the matrix.
Nanotubular Toughening Inclusions
NASA Technical Reports Server (NTRS)
Park, Cheol (Inventor); Working, Dennis C. (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)
2015-01-01
Conventional toughening agents are typically rubbery materials or small molecular weight molecules, which mostly sacrifice the intrinsic properties of a matrix such as modulus, strength, and thermal stability as side effects. On the other hand, high modulus inclusions tend to reinforce elastic modulus very efficiently, but not the strength very well. For example, mechanical reinforcement with inorganic inclusions often degrades the composite toughness, encountering a frequent catastrophic brittle failure triggered by minute chips and cracks. Thus, toughening generally conflicts with mechanical reinforcement. Carbon nanotubes have been used as efficient reinforcing agents in various applications due to their combination of extraordinary mechanical, electrical, and thermal properties. Moreover, nanotubes can elongate more than 20% without yielding or breaking, and absorb significant amounts of energy during deformation, which enables them to also be an efficient toughening agent, as well as excellent reinforcing inclusion. Accordingly, an improved toughening method is provided by incorporating nanotubular inclusions into a host matrix, such as thermoset and thermoplastic polymers or ceramics without detrimental effects on the matrix's intrinsic physical properties.
Comparison of an experimental bone cement with surgical Simplex P, Spineplex and Cortoss.
Boyd, D; Towler, M R; Wren, A; Clarkin, O M
2008-04-01
Conventional polymethylmethacrylate (PMMA) cements and more recently Bisphenol-a-glycidyl dimethacrylate (BIS-GMA) composite cements are employed in procedures such as vertebroplasty. Unfortunately, such materials have inherent drawbacks including, a high curing exotherm, the incorporation of toxic components in their formulations, and critically, exhibit a modulus mismatch between cement and bone. The literature suggests that aluminium free, zinc based glass polyalkenoate cements (Zn-GPC) may be suitable alternative materials for consideration in such applications as vertebroplasty. This paper, examines one formulation of Zn-GPC and compares its strengths, modulus, and biocompatibility with three commercially available bone cements, Spineplex, Simplex P and Cortoss. The setting times indicate that the current formulation of Zn-GPC sets in a time unsuitable for clinical deployment. However during setting, the peak exotherm was recorded to be 33 degrees C, the lowest of all cements examined, and well below the threshold level for tissue necrosis to occur. The data obtained from mechanical testing shows the Zn-GPC has strengths of 63 MPa in compression and 30 MPa in biaxial flexure. Importantly these strengths remain stable with maturation; similar long term stability was exhibited by both Spineplex and Simplex P. Conversely, the strengths of Cortoss were observed to rapidly diminish with time, a cause for clinical concern. In addition to strengths, the modulus of each material was determined. Only the Zn-GPC exhibited a modulus similar to vertebral trabecular bone, with all commercial materials exhibiting excessively high moduli. Such data indicates that the use of Zn-GPC may reduce adjacent fractures. The final investigation used the well established simulated body fluid (SBF) method to examine the ability of each material to bond with bone. The results indicate that the Zn-GPC is capable of producing a bone like apatite layer at its surface within 24 h which increased in coverage and density up to 7 days. Conversely, Spineplex, and Simplex P exhibit no apatite layer formation, while Cortoss exhibits only minimal formation of an apatite layer after 7 days incubation in SBF. This paper shows that Zn-GPC, with optimised setting times, are suitable candidate materials for further development as bone cements.
Study of Experiment on Rock-like Material Consist of fly-ash, Cement and Mortar
NASA Astrophysics Data System (ADS)
Nan, Qin; Hongwei, Wang; Yongyan, Wang
2018-03-01
Study the uniaxial compression test of rock-like material consist of coal ash, cement and mortar by changing the sand cement ratio, replace of fine coal, grain diameter, water-binder ratio and height-diameter ratio. We get the law of four factors above to rock-like material’s uniaxial compression characteristics and the quantitative relation. The effect law can be sum up as below: sample’s uniaxial compressive strength and elasticity modulus tend to decrease with the increase of sand cement ratio, replace of fine coal and water-binder ratio, and it satisfies with power function relation. With high ratio increases gradually, the uniaxial compressive strength and elastic modulus is lower, and presents the inverse function curve; Specimen tensile strength decreases gradually with the increase of fly ash. By contrast, uniaxial compression failure phenomenon is consistent with the real rock common failure pattern.
2016-01-01
PURPOSE This study inspects the effect of incorporating halloysite nanotubes (HNTs) into polymethyl methacrylate (PMMA) resin on its flexural strength, hardness, and Young's modulus. MATERIALS AND METHODS Four groups of acrylic resin powder were prepared. One group without HNTs was used as a control group and the other three groups contained 0.3, 0.6 and 0.9 wt% HNTs. For each one, flexural strength, Young's modulus and hardness values were measured. One-way ANOVA and Tukey's test were used for comparison (P<.05). RESULTS At lower concentration (0.3 wt%) of HNT, there was a significant increase of hardness values but no significant increase in both flexural strength and Young's modulus values of PMMA resin. In contrast, at higher concentration (0.6 and 0.9 wt%), there was a significant decrease in hardness values but no significant decrease in flexural strength and Young's modulus values compared to those of the control group. CONCLUSION Addition of lower concentration of halloysite nanotubes to denture base materials could improve some of their mechanical properties. Improving the mechanical properties of acrylic resin base material could increase the patient satisfaction. PMID:27350849
Making the case for high temperature low sag (htls) overhead transmission line conductors
NASA Astrophysics Data System (ADS)
Banerjee, Koustubh
The future grid will face challenges to meet an increased power demand by the consumers. Various solutions were studied to address this issue. One alternative to realize increased power flow in the grid is to use High Temperature Low Sag (HTLS) since it fulfills essential criteria of less sag and good material performance with temperature. HTLS conductors like Aluminum Conductor Composite Reinforced (ACCR) and Aluminum Conductor Carbon Composite (ACCC) are expected to face high operating temperatures of 150-200 degree Celsius in order to achieve the desired increased power flow. Therefore, it is imperative to characterize the material performance of these conductors with temperature. The work presented in this thesis addresses the characterization of carbon composite core based and metal matrix core based HTLS conductors. The thesis focuses on the study of variation of tensile strength of the carbon composite core with temperature and the level of temperature rise of the HTLS conductors due to fault currents cleared by backup protection. In this thesis, Dynamic Mechanical Analysis (DMA) was used to quantify the loss in storage modulus of carbon composite cores with temperature. It has been previously shown in literature that storage modulus is correlated to the tensile strength of the composite. Current temperature relationships of HTLS conductors were determined using the IEEE 738-2006 standard. Temperature rise of these conductors due to fault currents were also simulated. All simulations were performed using Microsoft Visual C++ suite. Tensile testing of metal matrix core was also performed. Results of DMA on carbon composite cores show that the storage modulus, hence tensile strength, decreases rapidly in the temperature range of intended use. DMA on composite cores subjected to heat treatment were conducted to investigate any changes in the variation of storage modulus curves. The experiments also indicates that carbon composites cores subjected to temperatures at or above 250 degree Celsius can cause permanent loss of mechanical properties including tensile strength. The fault current temperature analysis of carbon composite based conductors reveal that fault currents eventually cleared by backup protection in the event of primary protection failure can cause damage to fiber matrix interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xiangtao; Bocharova, Vera; Tekinalp, Halil L.
While PLA possesses modest to good strength and stiffness, broader application is hindered by its brittle nature. The aim of this study was to develop strong and tough polymeric materials from renewable biomaterials and understand the underlying interactions and mechanisms. Cellulose nanofibrils (CNFs) and epoxidized soybean oil (ESO) were compounded with poly(lactic acid) (PLA) to create a PLA-CNF-ESO tertiary nanocomposite system. Tensile and dynamic mechanical analyses were performed to see how variations in ESO and CNF content affect mechanical properties such as strength, modulus, ductility, and toughness. It was found that at low CNF levels (10 wt %) the additionmore » of ESO can improve the ductility of the nanocomposites 5- to 10-fold with only slight losses in strength and modulus, while at higher CNF levels (20 and 30 wt %), ESO exhibited little effect on mechanical properties, possibly due to percolation of CNFs in the matrix, dominating stress transfer. Therefore, it is important to optimize CNF and ESO amounts in composites to achieve materials with both high strength and high toughness. As a result, efforts have been made to understand the underlying mechanisms of the mechanical behavior of one class of these composites via thermal, dynamic mechanical, morphological, and Raman analyses.« less
NASA Astrophysics Data System (ADS)
Sarkar, Jit; Das, D. K.
2018-01-01
Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.
High-strength mineralized collagen artificial bone
NASA Astrophysics Data System (ADS)
Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai
2014-03-01
Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toki,S.; Minouchi, N.; Sics, I.
2008-01-01
The tensile strength of rubber depends on a combination of contributions, in particular on the finite extensibility of chain segments between network points and on strain-induced crystallization. In order to achieve high tensile strength at high strain at break, we optimized the composition and processing parameters to gain high molecular flexibility by the cure conditions, to acquire high flexibility of sulfur bridges by the accelerator, and to increase the modulus level without losing rubber molecule flexibility by carbon black. As a result, our formula performed a tensile strength of 42.5 MPa at 25 C under ISO-37, as officially measured bymore » the Society of Rubber Industry, Japan, in 2004.« less
The Column Strength of Two Extruded Aluminum-Alloy H-Sections
NASA Technical Reports Server (NTRS)
Osgood, William R; Holt, Marshall
1939-01-01
Extruded aluminum-alloy members of various cross sections are used in aircraft as compression members either singly or as stiffeners for aluminum-alloy sheet. In order to design such members, it is necessary to know their column strength or, in the case of stiffeners, the value of the double modulus, which is best obtained for practical purposes from column tests. Column tests made on two extruded h-sections are described, and column formulas and formulas for the ratio of the double modulus to Young's modulus, based on the tests, are given.
Shape matters: pore geometry and orientation influences the strength and stiffness of porous rocks
NASA Astrophysics Data System (ADS)
Griffiths, Luke; Heap, Michael; Xu, Tao; Chen, Chong-Feng; Baud, Patrick
2017-04-01
The geometry of voids in porous rock fall between two end-members: very low aspect ratio (the ratio of the minor to the major semi-axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of 2.4 and 1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. This weakening effect is accentuated at higher porosities. The influence of pore aspect ratio (which we vary from 0.2 to 1.0) on strength and Young's modulus depends on the pore angle. At low angles ( 0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles ( 40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles ( 20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. We find that the analytical solutions for the stress and Young's modulus at the boundary of a single elliptical pore are in excellent agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to capture the strength anisotropy observed in experiments on sandstone. The alignment of grains or platy minerals such as clays may play an important role in controlling strength anisotropy in porous sandstones. The modelling presented herein shows that porous rocks containing elliptical pores can display a strength and stiffness anisotropy, with implications for the preservation and destruction of porosity and permeability, as well as the distribution of stress and strain within the Earth's crust.
NASA Technical Reports Server (NTRS)
Kumosa, M.; Armentrout, D.; Rupnowski, P.; Kumosa, L.; Shin, E.; Sutter, J. K.
2003-01-01
The application of the Iosipescu shear test for the room and high temperature failure analyses of the woven graphite/polyimide composites with the medium (T-650) and igh (M40J and M60J) modulus graphite fibers is discussed. The M40J/PMR-II-50 and M60J/PMR-II-50 composites were tested as supplied and after thermal conditioning. The effect of temperature and conditioning on the initiation of intralaminar damage and the shear strength of the composites was established.
Preparation and Anodizing of SiCp/Al Composites with Relatively High Fraction of SiCp
2018-01-01
By properly proportioned SiC particles with different sizes and using squeeze infiltration process, SiCp/Al composites with high volume fraction of SiC content (Vp = 60.0%, 61.2%, 63.5%, 67.4%, and 68.0%) were achieved for optical application. The flexural strength of the prepared SiCp/Al composites was higher than 483 MPa and the elastic modulus was increased from 174.2 to 206.2 GPa. With an increase in SiC volume fraction, the flexural strength and Poisson's ratio decreased with the increase in elastic modulus. After the anodic oxidation treatment, an oxidation film with porous structure was prepared on the surface of the composite and the oxidation film was uniformly distributed. The anodic oxide growth rate of composite decreased with SiC content increased and linearly increased with anodizing time. PMID:29682145
Preparation and Anodizing of SiCp/Al Composites with Relatively High Fraction of SiCp.
Wang, Bin; Qu, Shengguan; Li, Xiaoqiang
2018-01-01
By properly proportioned SiC particles with different sizes and using squeeze infiltration process, SiCp/Al composites with high volume fraction of SiC content (Vp = 60.0%, 61.2%, 63.5%, 67.4%, and 68.0%) were achieved for optical application. The flexural strength of the prepared SiC p /Al composites was higher than 483 MPa and the elastic modulus was increased from 174.2 to 206.2 GPa. With an increase in SiC volume fraction, the flexural strength and Poisson's ratio decreased with the increase in elastic modulus. After the anodic oxidation treatment, an oxidation film with porous structure was prepared on the surface of the composite and the oxidation film was uniformly distributed. The anodic oxide growth rate of composite decreased with SiC content increased and linearly increased with anodizing time.
Nanocellulose reinforcement of Transparent Composites
Joshua Steele; Hong Dong; James F. Snyder; Josh A. Orlicki; Richard S. Reiner; Alan W. Rudie
2012-01-01
In this work, we evaluate the impact of nanocellulose reinforcement on transparent composite properties. Due to the small diameter, high modulus, and high strength of cellulose nanocrystals, transparent composites that utilize these materials should show improvement in bulk mechanical performances without a corresponding reduction in optical properties. In this study...
Al-Dwairi, Ziad N; Tahboub, Kawkab Y; Baba, Nadim Z; Goodacre, Charles J
2018-06-13
The introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) technology to the field of removable prosthodontics has recently made it possible to fabricate complete dentures of prepolymerized polymethyl methacrylate (PMMA) blocks, which are claimed to be of better mechanical properties; however, no published reports that have evaluated mechanical properties of CAD/CAM PMMA. The purpose of this study was to compare flexural strength, impact strength, and flexural modulus of two brands of CAD/CAM PMMA and a conventional heat-cured PMMA. 45 rectangular specimens (65 mm × 10 mm × 3 mm) were fabricated (15 CAD/CAM AvaDent PMMA specimens from AvaDent, 15 CAD/CAM Tizian PMMA specimens from Shütz Dental, 15 conventional Meliodent PMMA specimens from Heraeus Kulzer) and stored in distilled water at (37 ± 1°C) for 7 days. Specimens (N = 15) in each group were subjected to the three-point bending test and impact strength test, employing the Charpy configuration on unnotched specimens. The morphology of the fractured specimens was studied under a scanning electron microscope (SEM). Statistical analysis was performed using one-way ANOVA and Tukey pairwise multiple comparisons with 95% confidence interval. The Schütz Dental specimens showed the highest mean flexural strength (130.67 MPa) and impact strength (29.56 kg/m 2 ). The highest mean flexural modulus was recorded in the AvaDent group (2519.6 MPa). The conventional heat-cured group showed the lowest mean flexural strength (93.33 MPa), impact strength (14.756 kg/m 2 ), and flexural modulus (2117.2 MPa). Differences in means of flexural properties between AvaDent and Schütz Dental specimens were not statistically significant (p > 0.05). As CAD/CAM PMMA specimens exhibited improved flexural strength, flexural modulus, and impact strength in comparison to the conventional heat-cured groups, CAD/CAM dentures are expected to be more durable. Different brands of CAD/CAM PMMA may have inherent variations in mechanical properties. © 2018 by the American College of Prosthodontists.
Improved silicon carbide for advanced heat engines
NASA Technical Reports Server (NTRS)
Whalen, Thomas J.
1988-01-01
This is the third annual technical report for the program entitled, Improved Silicon Carbide for Advanced Heat Engines, for the period February 16, 1987 to February 15, 1988. The objective of the original program was the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. Injection molding is the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals of the revised program are to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in 4-point loading. Two tasks are discussed: Task 1 which involves materials and process improvements, and Task 2 which is a MOR bar matrix to improve strength and reliability. Many statistically designed experiments were completed under task 1 which improved the composition of the batches, the mixing of the powders, the sinter and anneal cycles. The best results were obtained by an attritor mixing process which yielded strengths in excess of 550 MPa (80 ksi) and an individual Weibull modulus of 16.8 for a 9-sample group. Strengths measured at 1200 and 1400 C were equal to the room temperature strength. Annealing of machined test bars significantly improved the strength. Molding yields were measured and flaw distributions were observed to follow a Poisson process. The second iteration of the Task 2 matrix experiment is described.
DOT National Transportation Integrated Search
2008-10-01
Resilient modulus and Youngs modulus are parameters increasingly used to fundamentally characterize the behavior : of pavement materials both in the laboratory and in the field. This study documents the small-strain Youngs modulus : and larger-...
NASA Technical Reports Server (NTRS)
Hough, R. L.; Richmond, R. D.
1974-01-01
The development of large diameter carbon-base monofilament in the 50 micron to 250 micron diameter range using the chemical vapor deposition process is described. The object of this program was to determine the critical process variables which control monofilament strength, monofilament modulus, and monofilament diameter. It was confirmed that wide scatter in the carbon substrate strength is primarily responsible for the scatter in the monofilament strength. It was also shown through etching experiments that defective substrate surface conditions which can induce low strength modular growth in the monofilament layers are best controlled by processing improvements during the synthesis of the substrate. Modulus was found to be linearily proportional to monofilament boron content. Filament modulus was increased to above 27.8MN/sq cm but only by a considerable increase in monofilament boron content to 60 wt. % or more. Monofilament diameter depended upon dwell time in the synthesis apparatus. A monofilament was prepared using these findings which had the combined properties of a mean U.T.S. of 398,000 N/sq cm, a modulus of 18.9 MN/sq cm (24,000,000 psi), and a diameter of 145 microns. Highest measured strength for this fiber was 451,000 N/sq cm (645,000 psi).
Composite structural materials
NASA Technical Reports Server (NTRS)
Loewy, R. G.; Wiberley, S. E.
1985-01-01
Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.
Size effects on elasticity, yielding, and fracture of silver nanowires: In situ experiments
NASA Astrophysics Data System (ADS)
Zhu, Yong; Qin, Qingquan; Xu, Feng; Fan, Fengru; Ding, Yong; Zhang, Tim; Wiley, Benjamin J.; Wang, Zhong Lin
2012-01-01
This paper reports the quantitative measurement of a full spectrum of mechanical properties of fivefold twinned silver (Ag) nanowires (NWs), including Young's modulus, yield strength, and ultimate tensile strength. In-situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a scanning electron microscope (SEM). Young's modulus, yield strength, and ultimate tensile strength all increased as the NW diameter decreased. The maximum yield strength in our tests was found to be 2.64 GPa, which is about 50 times the bulk value and close to the theoretical value of Ag in the 110 orientation. The size effect in the yield strength is mainly due to the stiffening size effect in the Young's modulus. Yield strain scales reasonably well with the NW surface area, which reveals that yielding of Ag NWs is due to dislocation nucleation from surface sources. Pronounced strain hardening was observed for most NWs in our study. The strain hardening, which has not previously been reported for NWs, is mainly attributed to the presence of internal twin boundaries.
Environmentally friendly pervious concrete for treating deicer-laden stormwater (phase one report).
DOT National Transportation Integrated Search
2015-12-30
A graphene oxide-modified pervious concrete was developed by using low-reactivity, high-calcium fly ash as sole binder and chemical : activators and other admixtures. The density, void ratio, mechanical strength, infiltration rate, Youngs modulus,...
NASA Astrophysics Data System (ADS)
Kumarasamy, S.; Shukur Zainol Abidin, M.; Abu Bakar, M. N.; Nazida, M. S.; Mustafa, Z.; Anjang, A.
2018-05-01
In this paper, the tensile performance of glass fiber reinforced polymer (GFRP) composites at high and low temperature was experimentally evaluated. GFRP laminates were manufactured using the wet hand lay-up assisted by vacuum bag, which has resulted in average fibre volume fraction of 0.45. Using simultaneous heating/cooling and loading, glass fiber epoxy and polyester laminates were evaluated for their mechanical performance in static tensile loading. In the elevated temperature environment test, the tension mechanical properties; stress and modulus were reduced with increasing temperature from 25°C to 80°C. Results of low temperature environment from room temperature to a minimum temperature of -20°C, indicated that there is no considerable effect on the tensile strength, however a slight decrease of tensile modulus were observed on the GFRP laminates. The results obtained from the research highlight the structural survivability on tensile properties at low and high temperature of the GFRP laminates.
Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole.
Lay, Makara; Méndez, J Alberto; Delgado-Aguilar, Marc; Bun, Kim Ngun; Vilaseca, Fabiola
2016-11-05
In this work, we prepare cellulose nanopapers of high mechanical performance and with the electrical conductivity of a semiconductor. Cellulose nanofibers (CNF) from bleached softwood pulp were coated with polypyrrole (PPy) via in situ chemical polymerization, in presence of iron chloride (III) as oxidant agent. The structure and morphology of nanopapers were studied, as well as their thermal, mechanical and conductive properties. Nanopaper from pure CNF exhibited a very high tensile response (224MPa tensile strength and 14.5GPa elastic modulus). The addition of up to maximum 20% of polypyrrole gave CNF/PPy nanopapers of high flexibility and still good mechanical properties (94MPa strength and 8.8GPa modulus). The electrical conductivity of the resulting CNF/PPy nanopaper was of 5.2 10(-2)Scm(-1), with a specific capacitance of 7.4Fg(-1). The final materials are strong and conductive nanopapers that can find application as biodegradable flexible thin-film transistor (TFT) or as flexible biosensor. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pitchiaya, Gomatheeshwar
Epoxy-matrices have high modulus, strength, excellent creep resistance, but lacks ductility. One approach to improve the mechanical toughness is the addition of thermoplastic elastomers (TPEs). The TPEs investigated here are triblock copolymers of styrene-butadiene-methyl methacrylate (SBM) and methylmethacrylate-butylacrylate-methylmethacrylate (MAM) of the ABC and ABA type, respectively. The effect of concentration (1-12.5 wt %) of these TPEs on a diglycidyl ether of bisphenol-A (DGEBA) epoxy cured with metaphenylenediamine (mPDA), has been investigated. The TPE-DGEBA epoxies were characterized by TGA, DMA, SEM and impact. The flexural modulus, flexural strength and thermal resistance remained unaffected up to 5 wt% loading of TPEs, and exhibited less than 10% decrease at higher weight percent. T g was unaffected for all concentrations. Fracture toughness was improved 250% and up to 375% (when non- stoichiometric amount of curing agent was used) with TPE addition to epoxy/mPDA matrix. A SBM(1phr)EPON system was chosen to be the matrix of choice for a fiber reinforced composite system with a 4wt% aromatic epoxy sizing on a AS4 (UV-treated) carbon fiber. The 0° and 90° flexural modulus and strength of a SBM modified system was compared with the neat and their fracture surfaces were analyzed. A 89% increase in flexural strength was observed in a 90° flexural test for the modified system when compared with the neat. Novel sizing agents were also developed to enhance interfacial shear strength (IFSS) and the fiber-matrix adhesion and their birefringence pattern were analyzed.
Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability.
Zou, Yu; Wheeler, Jeffrey M; Ma, Huan; Okle, Philipp; Spolenak, Ralph
2017-03-08
Metals with nanometer-scale grains or nanocrystalline metals exhibit high strengths at ambient conditions, yet their strengths substantially decrease with increasing temperature, rendering them unsuitable for usage at high temperatures. Here, we show that a nanocrystalline high-entropy alloy (HEA) retains an extraordinarily high yield strength over 5 GPa up to 600 °C, 1 order of magnitude higher than that of its coarse-grained form and 5 times higher than that of its single-crystalline equivalent. As a result, such nanostructured HEAs reveal strengthening figures of merit-normalized strength by the shear modulus above 1/50 and strength-to-density ratios above 0.4 MJ/kg, which are substantially higher than any previously reported values for nanocrystalline metals in the same homologous temperature range, as well as low strain-rate sensitivity of ∼0.005. Nanocrystalline HEAs with these properties represent a new class of nanomaterials for high-stress and high-temperature applications in aerospace, civilian infrastructure, and energy sectors.
Mechanical properties of thermal protection system materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul
2005-06-01
An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPSmore » materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.« less
Electrical and Electrorheological Properties of Alumina/Natural Rubber (STR XL) Composites
Tangboriboon, Nuchnapa; Uttanawanit, Nuttapot; Longtong, Mean; Wongpinthong, Piraya; Sirivat, Anuvat; Kunanuruksapong, Ruksapong
2010-01-01
The electrorheological properties (ER) of natural rubber (XL)/alumina (Al2O3) composites were investigated in oscillatory shear mode under DC electrical field strengths between 0 to 2 kV/mm. SEM micrographs indicate a mean particle size of 9.873 ± 0.034 µm and particles that are moderately dispersed in the matrix. The XRD patterns indicate Al2O3 is of the β-phase polytype which possesses high ionic conductivity. The storage modulus (G′) of the composites, or the rigidity, increases by nearly two orders of magnitude, with variations in particle volume fraction and electrical field strength. The increase in the storage modulus is caused the ionic polarization of the alumina particles and the induced dipole moments set up in the natural rubber matrix.
Bending strength of water-soaked glued laminated beams
Ronald W. Wolfe; Russell C. Moody
1978-01-01
The effects of water soaking on the bending strength and stiffness of laminated timber were determined by deriving wet-dry ratios for these properties. Values for these ratios, when compared to currently recommended wet use factors, confirm the value now used for modulus of rupture. For modulus of elasticity, the reduction due to water soaking was found to be less than...
Relationship between mechanical properties of one-step self-etch adhesives and water sorption.
Hosaka, Keiichi; Nakajima, Masatoshi; Takahashi, Masahiro; Itoh, Shima; Ikeda, Masaomi; Tagami, Junji; Pashley, David H
2010-04-01
The purpose of this study was to evaluate the relationship between changes in the modulus of elasticity and ultimate tensile strength of one-step self-etch adhesives, and their degree of water sorption. Five one-step self-etch adhesives, Xeno IV (Dentsply Caulk), G Bond (GC Corp.), Clearfil S3 Bond (Kuraray Medical Inc.), Bond Force (Tokuyama Dental Corp.), and One-Up Bond F Plus (Tokuyama Dental Corp.) were used. Ten dumbelled-shaped polymers of each adhesive were used to obtain the modulus of elasticity by the three-point flexural bending test and the ultimate tensile strength by microtensile testing. The modulus of elasticity and the ultimate tensile strength were measured in both dry and wet conditions before/after immersion in water for 24h. Water sorption was measured, using a modification of the ISO-4049 standard. Each result of the modulus of elasticity and ultimate tensile strength was statistically analyzed using a two-way ANOVA and the result of water sorption was statistically analyzed using a one-way ANOVA. Regression analyses were used to determine the correlations between the modulus of elasticity and the ultimate tensile strength in dry or wet states, and also the percent decrease in these properties before/after immersion of water vs. water sorption. In the dry state, the moduli of elasticity of the five adhesive polymers varied from 948 to 1530 MPa, while the ultimate tensile strengths varied from 24.4 to 61.5 MPa. The wet specimens gave much lower moduli of elasticity (from 584 to 1073 MPa) and ultimate tensile strengths (from 16.5 to 35.0 MPa). Water sorption varied from 32.1 to 105.8 g mm(-3). The moduli of elasticity and ultimate tensile strengths of the adhesives fell significantly after water-storage. Water sorption depended on the constituents of the adhesive systems. The percent decreases in the ultimate tensile strengths of the adhesives were related to water sorption, while the percent reductions in the moduli of elasticity of the adhesives were not related to water sorption. Copyright (c) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Mechanical Properties of Nonwoven Reinforced Thermoplastic Polyurethane Composites
Tausif, Muhammad; Pliakas, Achilles; O’Haire, Tom; Goswami, Parikshit; Russell, Stephen J.
2017-01-01
Reinforcement of flexible fibre reinforced plastic (FRP) composites with standard textile fibres is a potential low cost solution to less critical loading applications. The mechanical behaviour of FRPs based on mechanically bonded nonwoven preforms composed of either low or high modulus fibres in a thermoplastic polyurethane (TPU) matrix were compared following compression moulding. Nonwoven preform fibre compositions were selected from lyocell, polyethylene terephthalate (PET), polyamide (PA) as well as para-aramid fibres (polyphenylene terephthalamide; PPTA). Reinforcement with standard fibres manifold improved the tensile modulus and strength of the reinforced composites and the relationship between fibre, fabric and composite’s mechanical properties was studied. The linear density of fibres and the punch density, a key process variable used to consolidate the nonwoven preform, were varied to study the influence on resulting FRP mechanical properties. In summary, increasing the strength and degree of consolidation of nonwoven preforms did not translate to an increase in the strength of resulting fibre reinforced TPU-composites. The TPU composite strength was mainly dependent upon constituent fibre stress-strain behaviour and fibre segment orientation distribution. PMID:28772977
The effect on slurry water as a fresh water replacement in concrete properties
NASA Astrophysics Data System (ADS)
Kadir, Aeslina Abdul; Shahidan, Shahiron; Hai Yee, Lau; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al
2016-06-01
Concrete is the most widely used engineering material in the world and one of the largest water consuming industries. Consequently, the concrete manufacturer, ready mixed concrete plant is increased dramatically due to high demand from urban development project. At the same time, slurry water was generated and leading to environmental problems. Thus, this paper is to investigate the effect of using slurry water on concrete properties in term of mechanical properties. The basic wastewater characterization was investigated according to USEPA (Method 150.1 & 300.0) while the mechanical property of concrete with slurry water was compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressive strength, modulus of elasticity and tensile strength were studied. The percentage of wastewater replaced in concrete mixing was ranging from 0% up to 50%. In addition, the resulted also suggested that the concrete with 20% replacement of slurry water was achieved the highest compressive strength and modulus of elasticity compared to other percentages. Moreover, the results also recommended that concrete with slurry water mix have better compressive strength compared to control mix concrete.
Xie, Lan; Xu, Huan; Niu, Ben; Ji, Xu; Chen, Jun; Li, Zhong-Ming; Hsiao, Benjamin S; Zhong, Gan-Ji
2014-11-10
The notion of toughening poly(lactic acid) (PLA) by adding flexible biopolymers has generated enormous interest but has yielded few desirable advances, mainly blocked by the sacrifice of strength and stiffness due to uncontrollable phase morphology and poor interfacial interactions. Here the phase control methodology, that is, intense extrusion compounding followed by "slit die extrusion-hot stretching-quenching" technique, was proposed to construct well-aligned, stiff poly(butylene succinate) (PBS) nanofibrils in the PLA matrix for the first time. We show that generating nanosized discrete droplets of PBS phase during extrusion compounding is key to enable the development of in situ nanofibrillar PBS assisted by the shearing/stretching field. The size of PBS nanofibrils strongly dependent on the PBS content, showing an increased average diameter from 83 to 116 and 236 nm for the composites containing 10, 20, and 40 wt % nanofibrils, respectively. More importantly, hybrid shish-kebab superstructure anchoring ordered PLA kebabs were induced by the PBS nanofibrils serving as the central shish, conferring the creation of tenacious interfacial crystalline ligaments. The exceptional combination of strength, modulus, and ductility for the composites loaded 40 wt % PBS nanofibrils were demonstrated, outperforming pure PLA with the increments of 31, 51, and 72% in strength, modulus, and elongation at break (56.4 MPa, 1702 MPa, and 92.4%), respectively. The high strength, modulus, and ductility are unprecedented for PLA and are in great potential need for packaging applications.
NASA Astrophysics Data System (ADS)
Shukla, M. J.; Kumar, D. S.; Mahato, K. K.; Rathore, D. K.; Prusty, R. K.; Ray, B. C.
2015-02-01
Glass Fiber Reinforced Polymer (GFRP) composites have been widely accepted as high strength, low weight structural material as compared to their metallic counterparts. Some specific advanced high performance applications such as aerospace components still require superior specific strength and specific modulus. Carbon Fiber Reinforced Polymer (CFRP) composites exhibit superior specific strength and modulus but have a lower failure strain and high cost. Hence, the combination of both glass and carbon fiber in polymer composite may yield optimized mechanical properties. Further the in-service environment has a significant role on the mechanical performance of this class of materials. Present study aims to investigate the mechanical property of GFRP and Glass/Carbon (G/C hybrid) composites at room temperature, in-situ and ex-situ temperature conditions. In-situ testing at +70°C and +100°C results in significant loss in inter-laminar shear strength (ILSS) for both the composites as compared to room temperature. The ILSS was nearly equal for both the composite systems tested in-situ at +100°C and effect of fiber hybridisation was completely diminished there. At low temperature ex-situ conditioning significant reduction in ILSS was observed for both the systems. Further at -60°C G/C hybrid exhibited 32.4 % higher ILSS than GFRP. Hence this makes G/C hybrid a better choice of material in low temperature environmental applications.
Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite
NASA Technical Reports Server (NTRS)
Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Faughnan, Patrick D.; Batterson, Lawrence M.; Caraccio, Anne J.; Sampson, Jeffery W.
2013-01-01
Engineers today are presented with the opportunity to design and build the next generation of space vehicles out of the lightest, strongest, and most durable materials available. Composites offer excellent structural characteristics and outstanding reliability in many forms that will be utilized in future aerospace applications including the Commercial Crew and Cargo Program and the Orion space capsule. NASA's Composites for Exploration (CoEx) project researches the various methods of manufacturing composite materials of different fiber characteristics while using proven infusion methods of different resin compositions. Development and testing on these different material combinations will provide engineers the opportunity to produce optimal material compounds for multidisciplinary applications. Through the CoEx project, engineers pursue the opportunity to research and develop repair patch procedures for damaged spacecraft. Working in conjunction with Raptor Resins Inc., NASA engineers are utilizing high flow liquid infusion molding practices to manufacture high-temperature composite parts comprised of intermediate modulus 7 (IM7) carbon fiber material. IM7 is a continuous, high-tensile strength composite with outstanding structural qualities such as high shear strength, tensile strength and modulus as well as excellent corrosion, creep, and fatigue resistance. IM7 carbon fiber, combined with existing thermoset and thermoplastic resin systems, can provide improvements in material strength reinforcement and deformation-resistant properties for high-temperature applications. Void analysis of the different layups of the IM7 material discovered the largest total void composition within the [ +45 , 90 , 90 , -45 ] composite panel. Tensile and compressional testing proved the highest mechanical strength was found in the [0 4] layup. This paper further investigates the infusion procedure of a low-cost/high-performance BMI resin into an IM7 carbon fiber material and the optical, chemical, and mechanical analyses performed.
Laboratory Characterization of Cemented Rock Fill for Underhand Cut and Fill Method of Mining
NASA Astrophysics Data System (ADS)
Kumar, Dinesh; Singh, Upendra Kumar; Singh, Gauri Shankar Prasad
2016-10-01
Backfilling with controlled specifications is employed for improved ground support and pillar recovery in underground metalliferous mine workings. This paper reports the results of a laboratory study to characterise various mechanical properties of cemented rock fill (CRF) formulations for different compaction levels and cement content percentage for use in underhand cut and fill method of mining. Laboratory test set ups and procedures have been described for conducting compressive and bending tests of CRF block samples. A three dimensional numerical modelling study has also been carried out to overcome the limitations arising due to non-standard dimension of test blocks used in flexural loading test and the test setup devised for this purpose. Based on these studies, specific relations have been established between the compressive and the flexural properties of the CRF. The flexural strength of the wire mesh reinforced CRF is also correlated with its residual strength and the Young's modulus of elasticity under flexural loading condition. The test results of flexural strength, residual flexural strength and modulus show almost linear relations with cement content in CRF. The compressive strength of the CRF block samples is estimated as seven times the flexural strength whereas the compressive modulus is four times the flexural modulus. It has been found that the strengths of CRF of low compaction and no compaction are 75 and 60 % respectively to that of the medium compaction CRF. The relation between the strength and the unit weight of CRF as obtained in this study is significantly important for design and quality control of CRF during its large scale application in underhand cut and fill stopes.
Li, S J; Xu, Q S; Wang, Z; Hou, W T; Hao, Y L; Yang, R; Murr, L E
2014-10-01
Ti-6Al-4V reticulated meshes with different elements (cubic, G7 and rhombic dodecahedron) in Materialise software were fabricated by additive manufacturing using the electron beam melting (EBM) method, and the effects of cell shape on the mechanical properties of these samples were studied. The results showed that these cellular structures with porosities of 88-58% had compressive strength and elastic modulus in the range 10-300MPa and 0.5-15GPa, respectively. The compressive strength and deformation behavior of these meshes were determined by the coupling of the buckling and bending deformation of struts. Meshes that were dominated by buckling deformation showed relatively high collapse strength and were prone to exhibit brittle characteristics in their stress-strain curves. For meshes dominated by bending deformation, the elastic deformation corresponded well to the Gibson-Ashby model. By enhancing the effect of bending deformation, the stress-strain curve characteristics can change from brittle to ductile (the smooth plateau area). Therefore, Ti-6Al-4V cellular solids with high strength, low modulus and desirable deformation behavior could be fabricated through the cell shape design using the EBM technique. Copyright © 2014 Acta Materialia Inc. All rights reserved.
Structure-Property Relationships of Bismaleimides
NASA Technical Reports Server (NTRS)
Tenteris-Noebe, Anita D.
1997-01-01
The purpose of this research was to control and systematically vary the network topology of bismaleimides through cure temperature and chemistry (addition of various coreactants) and subsequently attempt to determine structure-mechanical property relationships. Characterization of the bismaleimide structures by dielectric, rheological, and thermal analyses, and density measurements was subsequently correlated with mechanical properties such as modulus, yield strength, fracture energy, and stress relaxation. The model material used in this investigation was 4,4'-BismaleiMidodIphenyl methane (BMI). BMI was coreacted with either 4,4'-Methylene Dianiline (MDA), o,o'-diallyl bisphenol A (DABA) from Ciba Geigy, or Diamino Diphenyl Sulfone (DDS). Three cure paths were employed: a low- temperature cure of 140 C where chain extension should predominate, a high-temperature cure of 220 C where both chain extension and crosslinking should occur simultaneously, and a low-temperature (140 C) cure followed immediately by a high-temperature (220 C) cure where the chain extension reaction or amine addition precedes BMI homopolymerization or crosslinking. Samples of cured and postcured PMR-15 were also tested to determine the effects of postcuring on the mechanical properties. The low-temperature cure condition of BMI/MDA exhibited the highest modulus values for a given mole fraction of BMI with the modulus decreasing with decreasing concentration of BMI. The higher elastic modulus is the result of steric hindrance by unreacted BMI molecules in the glassy state. The moduli values for the high- and low/high-temperature cure conditions of BMI/MDA decreased as the amount of diamine increased. All the moduli values mimic the yield strength and density trends. For the high-temperature cure condition, the room- temperature modulus remained constant with decreasing mole fraction of BMT for the BMI/DABA and BMI/DDS systems. Postcuring PMR-15 increases the modulus over that of the cured material even though density values of cured and postcured PMR were essentially the same. Preliminary results of a continuous and intermittent stress relaxation experiment for BMI:MDA in a 2:1 molar ratio indicate that crosslinking is occurring when the sample is in the undeformed state. Computer simulation of properties such as density, glass transition temperature, and modulus for the low- temperature cure conditions of BMI/MDA and BMI/DABA were completed. The computer modeling was used to help further understand and confirm the structure characterization results. The simulations correctly predicted the trends of these properties versus mole fraction BMI and were extended to other BMI/diamine systems.
The influence of pore geometry and orientation on the strength and stiffness of porous rock
NASA Astrophysics Data System (ADS)
Griffiths, Luke; Heap, Michael J.; Xu, Tao; Chen, Chong-feng; Baud, Patrick
2017-03-01
The geometry of voids in porous rock falls between two end-members: very low aspect ratio (the ratio of the minor to the major axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock under uniaxial compression. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of ∼2.4 and ∼1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. The influence of pore aspect ratio on strength and Young's modulus depends on the pore angle. At low angles (∼0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles (∼40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles (∼20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. These simulations also highlight that the influence of pore angle on compressive strength and Young's modulus decreases as the pore aspect ratio approaches unity. We find that the analytical solution for the stress concentration around a single elliptical pore, and its contribution to elasticity, are in excellent qualitative agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to capture the strength anisotropy observed in experiments on sandstone. We conclude that the alignment of grains or platy minerals such as clays exerts a greater influence on strength anisotropy in porous sandstones than pore geometry. Finally, we show that the strength anisotropy that arises as a result of preferentially aligned elliptical pores is of a similar magnitude to that generated by bedding in porous sandstones and foliation in low-porosity metamorphic rocks. The modelling presented herein shows that porous rocks containing elliptical pores can display a strength and stiffness anisotropy, with implications for the preservation and destruction of porosity and permeability, as well as the distribution of stress and strain within the Earth's crust.
Yilmaz, Ezgi D; Jelitto, Hans; Schneider, Gerold A
2015-04-01
In this work, the compressive elastic modulus and failure strength values of bovine enamel at the first hierarchical level formed by hydroxyapatite (HA) nanofibers and organic matter are identified in longitudinal, transverse and oblique direction with the uniaxial micro-compression method. The elastic modulus values (∼70 GPa) measured here are within the range of results reported in the literature but these values were found surprisingly uniform in all orientations as opposed to the previous nanoindentation findings revealing anisotropic elastic properties in enamel. Failure strengths were recorded up to ∼1.7 GPa and different failure modes (such as shear, microbuckling, fiber fracture) governed by the orientation of the HA nanofibers were visualized. Structural irregularities leading to mineral contacts between the nanofibers are postulated as the main reason for the high compressive strength and direction-independent elastic behavior on enamels first hierarchical level. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Yu, Sang-Hui; Lee, Yoon; Oh, Seunghan; Cho, Hye-Won; Oda, Yutaka; Bae, Ji-Myung
2012-01-01
The aim of this study was to evaluate the reinforcing effects of three types of fibers at various concentrations and in different combinations on flexural properties of denture base resin. Glass (GL), polyaromatic polyamide (PA) and ultra-high molecular weight polyethylene (PE) fibers were added to heat-polymerized denture base resin with volume concentrations of 2.6%, 5.3%, and 7.9%, respectively. In addition, hybrid fiber-reinforced composite (FRC) combined with either two or three types of fibers were fabricated. The flexural strength, modulus and toughness of each group were measured with a universal testing machine at a crosshead speed of 5 mm/min. In the single fiber-reinforced composite groups, the 5.3% GL and 7.9% GL had the highest flexural strength and modulus; 5.3% PE was had the highest toughness. Hybrid FRC such as GL/PE, which showed the highest toughness and the flexural strength, was considered to be useful in preventing denture fractures clinically.
Single-step process to improve the mechanical properties of carbon nanotube yarn.
Evora, Maria Cecilia; Lu, Xinyi; Hiremath, Nitilaksha; Kang, Nam-Goo; Hong, Kunlun; Uribe, Roberto; Bhat, Gajanan; Mays, Jimmy
2018-01-01
Carbon nanotube (CNT) yarns exhibit low tensile strength compared to conventional high-performance carbon fibers due to the facile sliding of CNTs past one another. Electron beam (e-beam) irradiation was employed for in a single-step surface modification of CNTs to improve the mechanical properties of this material. To this end, CNT yarns were simultaneously functionalized and crosslinked using acrylic acid (AA) and acrylonitrile (AN) in an e-beam irradiation process. The chemical modification of CNT yarns was confirmed by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning electron microscopy (SEM). The best improvement in mechanical properties was achieved on a sample treated with an aqueous solution of AA and subsequent irradiation. CNT yarn treatment with AA enhanced the strength (444.5 ± 68.4 MPa) by more than 75% and the modulus (21.5 ± 0.6 GPa) by more than 144% as compared to untreated CNT yarn (strength 251 ± 26.5 MPa and modulus 8.8 ± 1.2 GPa).
Single-step process to improve the mechanical properties of carbon nanotube yarn
Lu, Xinyi; Hiremath, Nitilaksha; Kang, Nam-Goo; Hong, Kunlun; Uribe, Roberto; Bhat, Gajanan; Mays, Jimmy
2018-01-01
Carbon nanotube (CNT) yarns exhibit low tensile strength compared to conventional high-performance carbon fibers due to the facile sliding of CNTs past one another. Electron beam (e-beam) irradiation was employed for in a single-step surface modification of CNTs to improve the mechanical properties of this material. To this end, CNT yarns were simultaneously functionalized and crosslinked using acrylic acid (AA) and acrylonitrile (AN) in an e-beam irradiation process. The chemical modification of CNT yarns was confirmed by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning electron microscopy (SEM). The best improvement in mechanical properties was achieved on a sample treated with an aqueous solution of AA and subsequent irradiation. CNT yarn treatment with AA enhanced the strength (444.5 ± 68.4 MPa) by more than 75% and the modulus (21.5 ± 0.6 GPa) by more than 144% as compared to untreated CNT yarn (strength 251 ± 26.5 MPa and modulus 8.8 ± 1.2 GPa). PMID:29527431
NASA Astrophysics Data System (ADS)
Shubhra, Quazi T. H.; Alam, A. K. M. M.
2011-11-01
Silk is a strong natural proteinous fiber and E-glass is a very strong synthetic fiber. Compression molding method was used to fabricate B. mori silk fiber reinforced polypropylene (PP) matrix composites. The tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and impact strength (IS) of prepared composites were 55.1 MPa, 780 MPa, 56.3 MPa, 3450 MPa and 17 kJ/m 2, respectively. Synthetic E-glass fiber reinforced PP based composites were fabricated in the same way and TS, TM, BS, BM, IS of E-glass fiber reinforced polypropylene composites were found to be 128.7 MPa, 4350 MPa, 141.6 MPa, 6300 MPa and 19 kJ/m 2, respectively. Gamma radiation is high energy ionizing radiation and was applied to increase the mechanical properties of the composites. Application of gamma ray increases the mechanical properties of silk/PP composites to a greater extent than that of E-glass/PP composites.
The effect of carbon black loading and structure on tensile property of natural rubber composite
NASA Astrophysics Data System (ADS)
Savetlana, S.; Zulhendri; Sukmana, I.; Saputra, F. A.
2017-07-01
Natural rubber composite has been continuously developed due to its advantages such as a good combination of strength and damping property. Most of carbon black (CB)/Natural Rubber (NR) composite were used as material in tyre industry. The addition of CB in natural rubber is very important to enhance the strength of natural rubber. The particle loading and different structure of CB can affect the composite strength. The effects of CB particle loading of 20, 25 and 30 wt% and the effects of CB structures of N220, N330, N550 and N660 series on tensile property of composite were investigated. The result shows that the tensile strength and elastic modulus of natural rubber/CB composite was higher than pure natural rubber. From SEM observation the agglomeration of CB aggregate increases with particle loading. It leads to decrease of tensile strength of composite as more particle was added. High structure of CB particle i.e. N220 resulted in highest tensile stress. In fact, composite reinforced by N660 CB particle shown a comparable tensile strength and elastic modulus with N220 CB particle. SEM observation shows that agglomeration of CB aggregates of N330 and N550 results in lower stress of associate NR/CB composite.
NASA Technical Reports Server (NTRS)
Edwards, Phillip M.; Sliney, Harold E.; Dellacorte, Christopher; Whittenberger, J. Daniel; Martineau, Robert R.
1990-01-01
A powder metallurgy composite, PM212, composed of metal bonded chromium carbide and solid lubricants is shown to be self-lubricating to a maximum application temperature of 900 C. The high temperature compressive strength, tensile strength, thermal expansion and thermal conductivity data needed to design PM212 sliding contact bearings and seals are reported for sintered and isostatically pressed (HIPed) versions of PM212. Other properties presented are room temperature density, hardness, and elastic modulus. In general, both versions appear to have adequate strength to be considered as sliding contact bearing materials, but the HIPed version, which is fully dense, is much stronger than the sintered version which contains about 20 percent pore volume. The sintered material is less costly to make, but the HIPed version is better where high compressive strength is important.
Fuselage structure using advanced technology fiber reinforced composites
NASA Technical Reports Server (NTRS)
Robinson, R. K.; Tomlinson, H. M. (Inventor)
1982-01-01
A fuselage structure is described in which the skin is comprised of layers of a matrix fiber reinforced composite, with the stringers reinforced with the same composite material. The high strength to weight ratio of the composite, particularly at elevated temperatures, and its high modulus of elasticity, makes it desirable for use in airplane structures.
NASA Technical Reports Server (NTRS)
Atchison, C S; Miller, James A
1942-01-01
Tensile and compressive stress-strain curves, stress-deviation curves, and secant modulus-stress curves are given for longitudinal and transverse specimens of 17S-T, 24S-T, and 24S-RT aluminum-alloy sheet in thicknesses from 0.032 to 0.081 inch, 1025 carbon steel sheet in thicknesses of 0.054 and 0.120 inch, and chromium-nickel steel sheet in thicknesses form 0.020 to 0.0275 inch. Significant differences were found between the tensile and the compressive stress-strain curves, and also the corresponding corollary curves; similarly, differences were found between the curves for the longitudinal and transverse directions. These differences are of particular importance in considering the compressive strength of aircraft structures made of thin sheet. They are explored further for the case of compression by giving tangent modulus-stress curves in longitudinal and transverse compression and dimensionless curves of the ratio of tangent modulus to Young's modulus and of the ratio of reduced modulus for a rectangular section to Young's modulus, both plotted against the ratio of stress to secant yield strength.
Production and mechanical properties of Al-SiC metal matrix composites
NASA Astrophysics Data System (ADS)
Karvanis, K.; Fasnakis, D.; Maropoulos, A.; Papanikolaou, S.
2016-11-01
The usage of Al-SiC Metal Matrix Composites is constantly increasing in the last years due to their unique properties such as light weight, high strength, high specific modulus, high fatigue strength, high hardness and low density. Al-SiC composites of various carbide compositions were produced using a centrifugal casting machine. The mechanical properties, tensile and compression strength, hardness and drop-weight impact strength were studied in order to determine the optimum carbide % in the metal matrix composites. Scanning electron microscopy was used to study the microstructure-property correlation. It was observed that the tensile and the compressive strength of the composites increased as the proportion of silicon carbide became higher in the composites. Also with increasing proportion of silicon carbide in the composite, the material became harder and appeared to have smaller values for total displacement and total energy during impact testing.
Novel nano-particles as fillers for an experimental resin-based restorative material.
Rüttermann, S; Wandrey, C; Raab, W H-M; Janda, R
2008-11-01
The purpose of this study is to compare the properties of two experimental materials, nano-material (Nano) and Microhybrid, and two trade products, Clearfil AP-X and Filtek Supreme XT. The flexural strength and modulus after 24h water storage and 5000 thermocycles, water sorption, solubility and X-ray opacity were determined according to ISO 4049. The volumetric behavior (DeltaV) after curing and after water storage was investigated with the Archimedes principle. ANOVA was calculated with p<0.05. Clearfil AP-X showed the highest flexural strength (154+/-14 MPa) and flexural modulus (11,600+/-550 MPa) prior to and after thermocycling (117+/-14 MPa and 13,000+/-300 MPa). The flexural strength of all materials decreased after thermocycling, but the flexural modulus decreased only for Filtek Supreme XT. After thermocycling, there were no significant differences in flexural strength and modulus between Filtek Supreme XT, Microhybrid and Nano. Clearfil AP-X had the lowest water sorption (22+/-1.1 microg mm(-3)) and Nano had the highest water sorption (82+/-2.6 microg mm(-3)) and solubility (27+/-2.9 microg mm(-3)) of all the materials. No significant differences occurred between the solubility of Clearfil AP-X, Filtek Supreme XT and Microhybrid. Microhybrid and Nano provided the highest X-ray opacity. Owing to the lower filler content, Nano showed higher shrinkage than the commercial materials. Nano had the highest expansion after water storage. After thermocycling, Nano performed as well as Filtek Supreme XT for flexural strength, even better for X-ray opacity but significantly worse for flexural modulus, water sorption and solubility. The performances of microhybrids were superior to those of the nano-materials.
CRACK GROWTH ANALYSIS OF SOLID OXIDE FUEL CELL ELECTROLYTES
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Bandopadhyay; N. Nagabhushana
2003-10-01
Defects and Flaws control the structural and functional property of ceramics. In determining the reliability and lifetime of ceramics structures it is very important to quantify the crack growth behavior of the ceramics. In addition, because of the high variability of the strength and the relatively low toughness of ceramics, a statistical design approach is necessary. The statistical nature of the strength of ceramics is currently well recognized, and is usually accounted for by utilizing Weibull or similar statistical distributions. Design tools such as CARES using a combination of strength measurements, stress analysis, and statistics are available and reasonably wellmore » developed. These design codes also incorporate material data such as elastic constants as well as flaw distributions and time-dependent properties. The fast fracture reliability for ceramics is often different from their time-dependent reliability. Further confounding the design complexity, the time-dependent reliability varies with the environment/temperature/stress combination. Therefore, it becomes important to be able to accurately determine the behavior of ceramics under simulated application conditions to provide a better prediction of the lifetime and reliability for a given component. In the present study, Yttria stabilized Zirconia (YSZ) of 9.6 mol% Yttria composition was procured in the form of tubes of length 100 mm. The composition is of interest as tubular electrolytes for Solid Oxide Fuel Cells. Rings cut from the tubes were characterized for microstructure, phase stability, mechanical strength (Weibull modulus) and fracture mechanisms. The strength at operating condition of SOFCs (1000 C) decreased to 95 MPa as compared to room temperature strength of 230 MPa. However, the Weibull modulus remains relatively unchanged. Slow crack growth (SCG) parameter, n = 17 evaluated at room temperature in air was representative of well studied brittle materials. Based on the results, further work was planned to evaluate the strength degradation, modulus and failure in more representative environment of the SOFCs.« less
Stress-strain behavior under static loading in Gd123 high-temperature superconductors at 77 K
NASA Astrophysics Data System (ADS)
Fujimoto, Hiroyuki; Murakami, Akira; Teshima, Hidekazu; Morita, Mitsuru
2013-10-01
Mechanical properties of melt-growth GdBa2Cu3Ox (Gd123) superconducting samples with 10 wt.% Ag2O and 0.5 wt.% Pt were evaluated at 77 K through flexural tests for specimens cut from the samples in order to estimate the mechanical properties of the Gd123 material without metal substrates, buffer layers or stabilization layers. We discuss the mechanical properties; the Young's modulus and flexural strength with stress-strain behavior at 77 K. The results show that the flexural strength and fracture strain of Gd123 at 77 K are approximately 100 MPa and 0.1%, respectively, and that the origin of the fracture is defects such as pores, impurities and non-superconducting compounds. We also show that the Young's modulus of Gd123 is estimated to be 160-165 GPa.
NASA Astrophysics Data System (ADS)
Chanyshev, AI; Belousova, OE
2018-03-01
The authors determine stress and deformation in a heterogeneous rock mass at the preset displacement and Cauchy stress vector at the boundary of an underground excavation. The influence of coordinates on Young’s modulus, shear modulus and ultimate strength is shown. It is found that regions of tension and compression alternate at the excavation boundary—i.e. zonal rock disintegration phenomenon is observed.
Stiffness and strength of oxygen-functionalized graphene with vacancies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zandiatashbar, A.; Ban, E.; Picu, R. C., E-mail: picuc@rpi.edu
2014-11-14
The 2D elastic modulus (E{sup 2D}) and strength (σ{sup 2D}) of defective graphene sheets containing vacancies, epoxide, and hydroxyl functional groups are evaluated at 300 K by atomistic simulations. The fraction of vacancies is controlled in the range 0% to 5%, while the density of functional groups corresponds to O:C ratios in the range 0% to 25%. In-plane modulus and strength diagrams as functions of vacancy and functional group densities are generated using models with a single type of defect and with combinations of two types of defects (vacancies and functional groups). It is observed that in models containing only vacancies,more » the rate at which strength decreases with increasing the concentration of defects is largest, followed by models containing only epoxide groups and those with only hydroxyl groups. The effect on modulus of vacancies and epoxides present alone in the model is similar, and much stronger than that of hydroxyl groups. When the concentration of defects is large, the combined effect of the functional groups and vacancies cannot be obtained as the superposition of individual effects of the two types of defects. The elastic modulus deteriorates faster (slower) than predicted by superposition in systems containing vacancies and hydroxyl groups (vacancies and epoxide groups)« less
Sasaki, Hirono; Hamanaka, Ippei; Takahashi, Yutaka; Kawaguchi, Tomohiro
2016-01-01
The purpose of this study was to investigate the effect of long-term water immersion or thermal shock on the mechanical properties of high-impact acrylic denture base resins. Two high-impact acrylic denture base resins were selected for the study. Specimens of each denture base material tested were fabricated according to the manufacturers' instructions (n=10). The flexural strength at the proportional limit, the elastic modulus and the impact strength of the specimens were evaluated. The flexural strength at the proportional limit of the high-impact acrylic denture base resins did not change after six months' water immersion or thermocycling 50,000 times. The elastic moduli of the high-impact acrylic denture base resins significantly increased after six months' water immersion or thermocycling 50,000 times. The impact strengths of the high-impact acrylic denture base resins significantly decreased after water immersion or thermocycling as described above.
Liu, Kai; Zhu, Feng; Liu, Liang; Sun, Yinghui; Fan, Shoushan; Jiang, Kaili
2012-06-07
Defects of carbon nanotubes, weak tube-tube interactions, and weak carbon nanotube joints are bottlenecks for obtaining high-strength carbon nanotube yarns. Some solution processes are usually required to overcome these drawbacks. Here we fabricate ultra-long and densely packed pure carbon nanotube yarns by a two-rotator twisting setup with the aid of some tensioning rods. The densely packed structure enhances the tube-tube interactions, thus making high tensile strengths of carbon nanotube yarns up to 1.6 GPa. We further use a sweeping laser to thermally treat as-produced yarns for recovering defects of carbon nanotubes and possibly welding carbon nanotube joints, which improves their Young's modulus by up to ∼70%. The spinning and laser sweeping processes are solution-free and capable of being assembled together to produce high-strength yarns continuously as desired.
Mechanical properties of contemporary composite resins and their interrelations.
Thomaidis, Socratis; Kakaboura, Afrodite; Mueller, Wolf Dieter; Zinelis, Spiros
2013-08-01
To characterize a spectrum of mechanical properties of four representative types of modern dental resin composites and to investigate possible interrelations. Four composite resins were used, a microhybrid (Filtek Z-250), a nanofill (Filtek Ultimate), a nanohybrid (Majesty Posterior) and an ormocer (Admira). The mechanical properties investigated were Flexural Modulus and Flexural Strength (three point bending), Brinell Hardness, Impact Strength, mode I and mode II fracture toughness employing SENB and Brazilian tests and Work of Fracture. Fractographic analysis was carried out in an SEM to determine the origin of fracture for specimens subjected to SENB, Brazilian and Impact Strength testing. The results were statistically analyzed employing ANOVA and Tukey post hoc test (a=0.05) while Pearson correlation was applied among the mechanical properties. Significant differences were found between the mechanical properties of materials tested apart from mode I fracture toughness measured by Brazilian test. The latter significantly underestimated the mode I fracture toughness due to analytical limitations and thus its validity is questionable. Fractography revealed that the origin of fracture is located at notches for fracture toughness tests and contact surface with pendulum for Impact Strength testing. Pearson analysis illustrated a strong correlation between modulus of elasticity and hardness (r=0.87) and a weak negative correlation between Work of Fracture and Flexural Modulus (r=-0.46) and Work of Fracture and Hardness (r=-0.44). Weak correlations were also allocated between Flexural Modulus and Flexural Strength (r=0.40), Flexural Strength and Hardness (r=0.39), and Impact Strength and Hardness (r=0.40). Since the four types of dental resin composite tested exhibited large differences among their mechanical properties differences in their clinical performance is also anticipated. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Method of making carbon-carbon composites
Engle, Glen B.
1991-01-01
A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.
Influence of hot isostatic pressing on ZrO2-CaO dental ceramics properties.
Gionea, Alin; Andronescu, Ecaterina; Voicu, Georgeta; Bleotu, Coralia; Surdu, Vasile-Adrian
2016-08-30
Different hot isostatic pressing conditions were used to obtain zirconia ceramics, in order to assess the influence of HIP on phase transformation, compressive strength, Young's modulus and density. First, CaO stabilized zirconia powder was synthesized through sol-gel method, using zirconium propoxide, calcium isopropoxide and 2-metoxiethanol as precursors, then HIP treatment was applied to obtain final dense ceramics. Ceramics were morphologically and structurally characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Density measurements, compressive strength and Young's modulus tests were also performed in order to evaluate the effect of HIP treatment. The zirconia powders heat treated at 500°C for 2h showed a pure cubic phase with average particle dimension about 70nm. The samples that were hot isostatic pressed presented a mixture of monoclinic-tetragonal or monoclinic-cubic phases, while for pre-sintered samples, cubic zirconia was the single crystalline form. Final dense ceramics were obtained after HIP treatment, with relative density values higher than 94%. ZrO2-CaO ceramics presented high compressive strength, with values in the range of 500-708.9MPa and elastic behavior with Young's modulus between 1739MPa and 4372MPa. Finally zirconia ceramics were tested for biocompatibility allowing the normal development of MG63 cells in vitro. Copyright © 2015 Elsevier B.V. All rights reserved.
Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics.
Peitl, Oscar; Zanotto, Edgar D; Serbena, Francisco C; Hench, Larry L
2012-01-01
Bioactive glasses having chemical compositions between 1Na(2)O-2CaO-3SiO(2) (1N2C3S) and 1.5Na(2)O-1.5CaO-3SiO(2) (1N1C2S) containing 0, 4 and 6 wt.% P(2)O(5) were crystallized through two stage thermal treatments. By carefully controlling these treatments we separately studied the effects on the mechanical properties of two important microstructural features not studied before, crystallized volume fraction and crystal size. Fracture strength, elastic modulus and indentation fracture toughness were measured as a function of crystallized volume fraction for a constant crystal size. Glass-ceramics with a crystalline volume fraction between 34% and 60% exhibited a three-fold improvement in fracture strength and an increase of 40% in indentation fracture toughness compared with the parent glass. For the optimal crystalline concentration (34% and 60%) these mechanical properties were then measured for different grain sizes, from 5 to 21 μm. The glass-ceramic with the highest fracture strength and indentation fracture toughness was that with 34% crystallized volume fracture and 13 μm crystals. Compared with the parent glass, the average fracture strength of this glass-ceramic was increased from 80 to 210 MPa, and the fracture toughness from 0.60 to 0.95 MPa.m(1/2). The increase in indentation fracture toughness was analyzed using different theoretical models, which demonstrated that it is due to crack deflection. Fortunately, the elastic modulus E increased only slightly; from 60 to 70 GPa (the elastic modulus of biomaterials should be as close as possible to that of cortical bone). In summary, the flexural strength of our best material (215 MPa) is significantly greater than that of cortical bone and comparable with that of apatite-wollastonite (A/W) bioglass ceramics, with the advantage that it shows a much lower elastic modulus. These results thus provide a relevant guide for the design of bioactive glass-ceramics with improved microstructure. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Properties of ambient cured blended alkali activated cement concrete
NASA Astrophysics Data System (ADS)
Talha Junaid, M.
2017-11-01
This paper presents results of the development and strength properties of ambient-cured alkali activated geopolymer concrete (GPC). The study looks at the strength properties, such as compressive strength, splitting tensile strength, and elastic modulus of such concretes and its dependency on various parameters. The parameters studied in this work are the type and proportions of pre-cursor materials, type of activator and their respective ratios and the curing time. Two types of pre-cursor material; low calcium fly ash (FA) and ground granulated blast furnace slag (GGBFS) were activated using different proportions of sodium silicate and sodium hydroxide solutions. The results indicate that ambient cured geopolymer concrete can be manufactured to match strength properties of ordinary Portland cement concrete (OPC). The strength properties of GPC are dependent on the type and ratio of activator and the proportion of GGBFS used. Increasing the percentage of GGBFS increased the compressive and tensile strengths, while reducing the setting time of the mix. The effect of GGBFS on strength was more pronounced in mixes that contained sodium silicate as activator solution. Unlike OPC, ambient-cured GPC containing sodium silicate gain most of their strength in the first 7 days and there is no change in strength thereafter. However, GPC mixes not containing sodium silicate only achieve a fraction of their strength at 7 days and extended curing is required for such concretes to gain full strength. The results also indicate that the elastic modulus values of GPC mixes without sodium silicate are comparable to OPC while mixes with sodium silicate have elastic modulus values much lower than ordinary concrete.
Antony Finto; Lewis Jordan; Laurence R. Schimleck; Alexander Clark; Ray A. Souter; Richard F. Daniels
2011-01-01
Modulus of elasticity (MOE), modulus of rupture (MOR), and specific gravity (SG) are important properties for determining the end-use and value of a piece of lumber. This study addressed the variation in MOE, MOR, and SG with physiographic region, tree height, and wood type. Properties were measured from two static bending samples (dimensions 25.4 mm à 25.4 mm à 406.4...
NASA Astrophysics Data System (ADS)
Russell, Bobby Glenn
Epoxy resins are thermosets with extraordinary adhesion; high strength; good resistance to creep, heat, and chemicals; and they have low shrinkage. Conversely, these polymers are brittle, they are sensitive to moisture, and they exhibit poor toughness. To improve their toughness, they are often modified by introducing dispersed rubber particles in the primary phase. In this study, the epoxy resin was modified with carboxyl-terminated butadiene acrylonitrile (CTBN), liquid-reactive rubbers. The initiator concentration, percent acrylonitrile in the CTBN rubber, and cure temperatures were altered to give varying materials properties. Statistical analysis of the morphology data showed that the percentage of rubber acrylonitrile had an effect on both the rubber particle size and volume fraction. The cure temperature had an effect on the rubber particle volume and modulus. Plots of the rubber particle size, volume fraction, and modulus versus bulk elastic storage modulus and fracture toughness revealed that rubber particle size had no effect on bulk properties, volume fraction and rubber particle modulus had an effect on both the bulk storage elastic modulus and fracture toughness.
Trends in aerospace structures
NASA Technical Reports Server (NTRS)
Card, M. F.
1978-01-01
Recent developments indicate that there may soon be a revolution in aerospace structures. Increases in allowable operational stress levels, utilization of high-strength, high-toughness materials, and new structural concepts will highlight this advancement. Improved titanium and aluminum alloys and high-modulus, high-strength advanced composites, with higher specific properties than aluminum and high-strength nickel alloys, are expected to be the principal materials. Significant advances in computer technology will cause major changes in the preliminary design cycle and permit solutions of otherwise too-complex interactive structural problems and thus the development of vehicles and components of higher performance. The energy crisis will have an impact on material costs and choices and will spur the development of more weight-efficient structures. There will also be significant spinoffs of aerospace structures technology, particularly in composites and design/analysis software.
Wang, Ching-Jen; Yang, Kuender D; Wang, Feng-Sheng; Hsu, Chia-Chen; Chen, Hsiang-Ho
2004-01-01
Shock wave treatment is believed to improve bone healing after fracture. The purpose of this study was to evaluate the effect of shock wave treatment on bone mass and bone strength after fracture of the femur in a rabbit model. A standardized closed fracture of the right femur was created with a three-point bending method in 24 New Zealand white rabbits. Animals were randomly divided into three groups: (1) control (no shock wave treatment), (2) low-energy (shock wave treatment at 0.18 mJ/mm2 energy flux density with 2000 impulses), and (3) high-energy (shock wave treatment at 0.47 mJ/mm2 energy flux density with 4000 impulses). Bone mass (bone mineral density (BMD), callus formation, ash and calcium contents) and bone strength (peak load, peak stress and modulus of elasticity) were assessed at 12 and 24 weeks after shock wave treatment. While the BMD values of the high-energy group were significantly higher than the control group (P = 0.021), the BMD values between the low-energy and control groups were not statistically significant (P = 0.358). The high-energy group showed significantly more callus formation (P < 0.001), higher ash content (P < 0.001) and calcium content (P = 0.003) than the control and low-energy groups. With regard to bone strength, the high-energy group showed significantly higher peak load (P = 0.012), peak stress (P = 0.015) and modulus of elasticity (P = 0.011) than the low-energy and control groups. Overall, the effect of shock wave treatment on bone mass and bone strength appears to be dose dependent in acute fracture healing in rabbits.
Effect of cobalt doping on the mechanical properties of ZnO nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vahtrus, Mikk; Šutka, Andris
In this work, we investigate the influence of doping on the mechanical properties of ZnO nanowires (NWs) by comparing the mechanical properties of pure and Co-doped ZnO NWs grown in similar conditions and having the same crystallographic orientation [0001]. The mechanical characterization included three-point bending tests made with atomic force microscopy and cantilever beam bending tests performed inside scanning electron microscopy. It was found that the Young's modulus of ZnO NWs containing 5% of Co was approximately a third lower than that of the pure ZnO NWs. Bending strength values were comparable for both materials and in both cases weremore » close to theoretical strength indicating high quality of NWs. Dependence of mechanical properties on NW diameter was found for both doped and undoped ZnO NWs. - Highlights: •Effect of Co doping on the mechanical properties of ZnO nanowires is studied. •Co substitutes Zn atoms in ZnO crystal lattice. •Co addition affects crystal lattice parameters. •Co addition results in significantly decreased Young's modulus of ZnO. •Bending strength for doped and undoped wires is close to the theoretical strength.« less
High performance light-colored nitrile-butadiene rubber nanocomposites.
Lei, Yanda; Guo, Baochun; Chen, Feng; Zhu, Lixin; Zhou, Wenyou; Jia, Demin
2011-12-01
High mechanical performance nitrile-butadiene rubber (NBR) with light color was fabricated by the method of in situ formation of zinc disorbate (ZDS) or magnesium disorbate (MDS). The in situ formed ZDS and its polymerization via internal mixing was confirmed by X-ray diffaraction. The mechanical properties, ageing resistance, morphology and the dynamic mechanical analysis were fully studied. It was found that with increasing loading of metallic disorbate both the curing rate and the ionic crosslink density was largely increased. The modulus, tensile strength and tear strength were largely increased. With a comparison between internal mixing and opening mixing, the mechanical performance for the former one was obviously better than the latter one. The high performance was ascribed to the finely dispersion nano domains with irregular shape and obscure interfacial structures. Except for the NBR vulcanizate with a high loading of MDS, the others' ageing resistance with incorporation of these two metallic disorbate was found to be good. Dynamic mechanical analysis (DMA) showed that, with increasing loading of metallic disorbate, the highly increased storage modulus above -20 degrees C, the up-shifted glass transition temperature (Tg) and the reduced mechanical loss were ascribed to strengthened interfacial interactions.
Okulov, I V; Pauly, S; Kühn, U; Gargarella, P; Marr, T; Freudenberger, J; Schultz, L; Scharnweber, J; Oertel, C-G; Skrotzki, W; Eckert, J
2013-12-01
The correlation between the microstructure and mechanical behavior during tensile loading of Ti68.8Nb13.6Al6.5Cu6Ni5.1 and Ti71.8Nb14.1Al6.7Cu4Ni3.4 alloys was investigated. The present alloys were prepared by the non-equilibrium processing applying relatively high cooling rates. The microstructure consists of a dendritic bcc β-Ti solid solution and fine intermetallic precipitates in the interdendritic region. The volume fraction of the intermetallic phases decreases significantly with slightly decreasing the Cu and Ni content. Consequently, the fracture mechanism in tension changes from cleavage to shear. This in turn strongly enhances the ductility of the alloy and as a result Ti71.8Nb14.1Al6.7Cu4Ni3.4 demonstrates a significant tensile ductility of about 14% combined with the high yield strength of above 820 MPa already in the as-cast state. The results demonstrate that the control of precipitates can significantly enhance the ductility and yet maintaining the high strength and the low Young's modulus of these alloys. The achieved high bio performance (ratio of strength to Young's modulus) is comparable (or even superior) with that of the recently developed Ti-based biomedical alloys. © 2013.
Relative scale and the strength and deformability of rock masses
NASA Astrophysics Data System (ADS)
Schultz, Richard A.
1996-09-01
The strength and deformation of rocks depend strongly on the degree of fracturing, which can be assessed in the field and related systematically to these properties. Appropriate Mohr envelopes obtained from the Rock Mass Rating (RMR) classification system and the Hoek-Brown criterion for outcrops and other large-scale exposures of fractured rocks show that rock-mass cohesive strength, tensile strength, and unconfined compressive strength can be reduced by as much as a factor often relative to values for the unfractured material. The rock-mass deformation modulus is also reduced relative to Young's modulus. A "cook-book" example illustrates the use of RMR in field applications. The smaller values of rock-mass strength and deformability imply that there is a particular scale of observation whose identification is critical to applying laboratory measurements and associated failure criteria to geologic structures.
Properties of PMR polyimide composites made with improved high strength graphite fibers
NASA Technical Reports Server (NTRS)
Vannucci, R. D.
1980-01-01
Recent graphite fiber developments have resulted in high strength, intermediate modulus graphite fibers having improved thermo-oxidative resistance. These improved fibers, obtained from various commercial suppliers, were used to fabricate PMR-15 and PMR-11 polyimide composites. Studies were performed to investigate the effects of the improved high strength graphite fibers on composite properties after exposure in air at 600 F. The use of the more oxidatively resistant fibers did not result in improved performance at 600 F. Two of the improved fibers were found to have an adverse effect on the long-term performance of PMR composites. The influence of various factors such as fiber physical properties, surface morphology and chemical composition are also discussed.
NASA Astrophysics Data System (ADS)
Adak, Nitai Chandra; Chhetri, Suman; Kim, Nam Hoon; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas
2018-03-01
This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young's modulus, toughness, flexural strength and flexural modulus by 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tan δ), respectively, at its glass transition temperature. The fiber-matrix interaction was studied using a Cole-Cole plot analysis.
Mechanical strength of multicomponent reinforced composite structures at different temperatures
NASA Astrophysics Data System (ADS)
Chumaevskii, A. V.; Rubtsov, V. E.; Kolubae, E. A.; Tarasov, S. Yu.; Filippov, A. V.
2017-12-01
The paper studies mechanical properties and fractography of composite structure components after tensile testing at 20, +120 and -120°C. Both tensile strength and elasticity modulus of composite samples were shown to be independent of stress concentrators in the form of ribs. On the contrary, the tensile test at high and low temperatures had notable detrimental effect of mechanical characteristics of the samples with ribs as compared to those of the rib-free samples.
NASA Astrophysics Data System (ADS)
Zakaria, Nurzam Ezdiani; Baharum, Azizah; Ahmad, Ishak
2018-04-01
The main objective of this research is to study the effects of chemical modification on the mechanical properties of treated Sansevieria trifasciata fiber/natural rubber/high density polyethylene (TSTF/NR/HDPE) composites. Processing of STF/NR/HDPE composites was done by using an internal mixer. The processing parameters used were 135°C for temperature and a mixing rotor speed of 55 rpm for 15 minutes. Filler loading was varied from 10% to 40% of STF and the fiber size used was 125 µm. The composite blends obtained then were pressed with a hot press machine to get test samples of 1 mm and 3 mm of thickness. Samples were evaluated via tensile tests, Izod impact test and scanning electron microscopy (SEM). Results showed that tensile strength and strain value decreased while tensile modulus increased when filler loading increased. Impact strength increased when filler loading increased and began to decrease after 10% of filler amount for treated composites. For untreated composites, impact strength began to decrease after 20% of filler loading. Chemical modification by using silane coupling agent has improved certain mechanical properties of the composites such as tensile strength, strain value and tensile modulus. Adding more amount of filler will also increase the viscosity and the stiffness of the materials.
Polyimide Composites from 'Salt-Like' Solution Precursors
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Hou, Tan H.; Weiser, Erik S.; SaintClair, Terry L.
2001-01-01
Four NASA Langley-developed polyimide matrix resins, LaRC(TM)-IA, LaRC(TM)-IAX, LaRC(TM)-8515 and LaRC(TM)-PETI-5, were produced via a 'saltlike' process developed by Unitika Ltd. The salt-like solutions (65% solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC multipurpose tape machine. Process parameters were determined and composite panels fabricated. The temperature dependent volatile depletion rates, the thermal crystallization behavior and the resin rheology were characterized. Composite molding cycles were developed which consistently yielded well consolidated, void-free laminated parts. Composite mechanical properties such as the short beam shear strength; the longitudinal and transverse flexural strength and flexural modulus; the longitudinal compression strength and modulus; and the open hole compression strength and compression after impact strength were measured at room temperature and elevated temperatures. The processing characteristics and the composite mechanical properties of the four intermediate modulus carbon fiber/polyimide matrix composites were compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (30-35% solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of the polyimide composites.
Tibia and radius bone geometry and volumetric density in obese compared to non-obese adolescents.
Leonard, Mary B; Zemel, Babette S; Wrotniak, Brian H; Klieger, Sarah B; Shults, Justine; Stallings, Virginia A; Stettler, Nicolas
2015-04-01
Childhood obesity is associated with biologic and behavioral characteristics that may impact bone mineral density (BMD) and structure. The objective was to determine the association between obesity and bone outcomes, independent of sexual and skeletal maturity, muscle area and strength, physical activity, calcium intake, biomarkers of inflammation, and vitamin D status. Tibia and radius peripheral quantitative CT scans were obtained in 91 obese (BMI>97th percentile) and 51 non-obese adolescents (BMI>5th and <85th percentiles). Results were converted to sex- and race-specific Z-scores relative to age. Cortical structure, muscle area and muscle strength (by dynamometry) Z-scores were further adjusted for bone length. Obese participants had greater height Z-scores (p<0.001), and advanced skeletal maturity (p<0.0001), compared with non-obese participants. Tibia cortical section modulus and calf muscle area Z-scores were greater in obese participants (1.07 and 1.63, respectively, both p<0.0001). Tibia and radius trabecular and cortical volumetric BMD did not differ significantly between groups. Calf muscle area and strength Z-scores, advanced skeletal maturity, and physical activity (by accelerometry) were positively associated with tibia cortical section modulus Z-scores (all p<0.01). Adjustment for muscle area Z-score attenuated differences in tibia section modulus Z-scores between obese and non-obese participants from 1.07 to 0.28. After multivariate adjustment for greater calf muscle area and strength Z-scores, advanced maturity, and less moderate to vigorous physical activity, tibia section modulus Z-scores were 0.32 (95% CI -0.18, 0.43, p=0.06) greater in obese, vs. non-obese participants. Radius cortical section modulus Z-scores were 0.45 greater (p=0.08) in obese vs. non-obese participants; this difference was attenuated to 0.14 with adjustment for advanced maturity. These findings suggest that greater tibia cortical section modulus in obese adolescents is attributable to advanced skeletal maturation and greater muscle area and strength, while less moderate to vigorous physical activities offset the positive effects of these covariates. The impact of obesity on cortical structure was greater at weight bearing sites. Copyright © 2014 Elsevier Inc. All rights reserved.
Liu, Huihong; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken; Narita, Kengo; Şen, Mustafa; Shiku, Hitoshi; Matsue, Tomokazu
2015-01-01
In this study, various amounts of oxygen were added to Ti-10Cr (mass%) alloys. It is expected that a large changeable Young's modulus, caused by a deformation-induced ω-phase transformation, can be achieved in Ti-10Cr-O alloys by the appropriate oxygen addition. This "changeable Young's modulus" property can satisfy the otherwise conflicting requirements for use in spinal implant rods: high and low moduli are preferred by surgeons and patients, respectively. The influence of oxygen on the microstructures and mechanical properties of the alloys was examined, as well as the bending springback and cytocompatibility of the optimized alloy. Among the Ti-10Cr-O alloys, Ti-10Cr-0.2O (mass%) alloy shows the largest changeable Young's modulus following cold rolling for a constant reduction ratio. This is the result of two competing factors: increased apparent β-lattice stability and decreased amounts of athermal ω phase, both of which are caused by oxygen addition. The most favorable balance of these factors for the deformation-induced ω-phase transformation occurred at an oxygen concentration of 0.2mass%. Ti-10Cr-0.2O alloy not only exhibits high tensile strength and acceptable elongation, but also possesses a good combination of high bending strength, acceptable bending springback and great cytocompatibility. Therefore, Ti-10Cr-0.2O alloy is a potential material for use in spinal fixture devices. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Polymer concrete overlay test program : final report.
DOT National Transportation Integrated Search
1981-12-01
The results in this report were obtained during the test program which began in 1973. Physical properties of various polymer concretes are listed. They include compressive strength, splitting tensile strength, bond strength, the modulus of elasticity...
Optimization of ceramic strength using elastic gradients
Zhang, Yu; Ma, Li
2009-01-01
We present a new concept for strengthening ceamics by utilizing a graded structure with a low elastic modulus at both top and bottom surfaces sandwiching a high-modulus interior. Closed-form equations have been developed for stress analysis of simply supported graded sandwich beams subject to transverse center loads. Theory predicts that suitable modulus gradients at the ceramic surface can effectively reduce and spread the maximum bending stress from the surface into the interior. The magnitude of such stress dissipation is governed by the thickness ratio of the beam to the graded layers. We test our concept by infiltrating both top and bottom surfaces of a strong class of zirconia ceramic with an in-house prepared glass of similar coefficient of thermal expansion and Poisson’s ratio to zirconia, producing a controlled modulus gradient at the surface without significant long-range residual stresses. The resultant graded glass/zirconia/glass composite exhibits significantly higher load-bearing capacity than homogeneous zirconia. PMID:20161019
[Properties and infiltration arts of machinable infiltration ceramic(MIC)].
Yang, H; Xian, S; Liao, Y; Xue, Y; Chai, F
2000-06-01
The purpose of this study is to explore the infiltration arts of MIC and study the effects of different packing density of Al2O3 matrix on the properties of MIC. alpha-Al2O3 specimens were fabricated by pouring alpha-Al2O3 slip with different powder/liquid ratios(P/L = 3.5, 7.5, 10.5) into a mold, and subsequently pre-fired at 1160 degrees C for 6 hours to form Al2O3 matrix. The packing density of the matrices were measured. Infiltration concepts were introduced into this study by infiltrating molten mica micro-crystalline glass into the porous Al2O3 matrix at 1160 degrees C for 6 hours to form a continuous interpenetrating composite. The composite then underwent micro-crystallization by nucleating at 550 degrees C for 1 hour and crystallizing at 900 degrees C for 1 hour, which resulted in the MIC. Mechanical properties including three point flexural strength, elastic modulus, Vicker's hardness, indentation fracture toughness and Weibull's modulus of flexural strength were determined. Parameters of machinability(H/KIC)2 of MIC were calculated. XRD and SEM were employed to study its microstructure. The resulted matrices reached packing densities of 63%, 76%, 78% with P/L of 3.5, 7.5 and 10.5. The MIC attained high strength and good machinability after infiltration. Three-point flexural strength and indentation fracture toughness were 342, 431, 374 MPa and 4.05, 4.14, 5.02 MPa m1/2 for MIC with packing density of 63%, 76%, 78% separately. And parameters of machinability were 5.41, 6.84 and 7.39 respectively. Packing density of Al2O3 matrix significantly influenced the mechanical properties. Maximum properties were obtained with a matrix packing density of 75%(P/L = 7.5), with a Weibull's modulus of flexural strength of 6.8. Machinability decreased with the increase of P/L ratio. Micro-crystallizing treatment resulted in the formation of evenly distributed mica crystalline in the composite, which contributed to the high strength of this composite material. MIC is a new infiltrated ceramic with favorable strength and machinability which can satisfy the prosthodontic requirements as all ceramic crown and bridge materials, it also shows promising outlook for future developments and clinical usage.
Tensile Strength and Microstructural Characterization of Uncoated and Coated HPZ Ceramic Fibers
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Wheeler, Donald R.; Dickerson, Robert M.
1996-01-01
Tensile strengths of as-received HPZ fiber and those surface coated with BN, BN/SiC, and BN/Si3N4 have been determined at room temperature using a two-parameter Weibull distribution. Nominally approx. 0.4 micron BN and 0.2 micron SiC or Si3N4 coatings were deposited on the fibers by chemical vapor deposition using a continuous reactor. The average tensile strength of uncoated HPZ fiber was 2.0 +/- 0.56 GPa (290 +/- 81 ksi) with a Weibull modulus of 4.1. For the BN coated fibers, the average strength and the Weibull modulus increased to 2.39 +/- 0.44 GPa (346 +/- 64 ksi) and 6.5, respectively. The HPZ/BN/SiC fibers showed an average strength of 2.0 +/- 0.32 GPa (290 +/- 47 ksi) and Weibull modulus of 7.3. Average strength of the fibers having a dual BN/Si3N4 surface coating degraded to 1.15 +/- 0.26 GPa (166 +/- 38 ksi) with a Weibull modulus of 5.3. The chemical composition and thickness of the fiber coatings were determined using scanning Auger analysis. Microstructural analysis of the fibers and the coatings was carried out by scanning electron microscopy and transmission electron microscopy. A microporous silica-rich layer approx. 200 nm thick is present on the as-received HPZ fiber surface. The BN coatings on the fibers are amorphous to partly turbostratic and contaminated with carbon and oxygen. Silicon carbide coating was crystalline whereas the silicon nitride coating was amorphous. The silicon carbide and silicon nitride coatings are non-stoichiometric, non-uniform, and granular. Within a fiber tow, the fibers on the outside had thicker and more granular coatings than those on the inside.
Tensile strength of aluminium nitride films
NASA Astrophysics Data System (ADS)
Zong, Deng Gang; Ong, Chung Wo; Aravind, Manju; Tsang, Mei Po; Loong Choy, Chung; Lu, Deren; Ma, Dejun
2004-11-01
Two-layered aluminium nitride (AlN)/silicon nitride microbridges were fabricated for microbridge tests to evaluate the elastic modulus, residual stress and tensile strength of the AlN films. The silicon nitride layer was added to increase the robustness of the structure. In a microbridge test, load was applied to the centre of a microbridge and was gradually increased by a nano-indenter equipped with a wedge tip until the sample was broken, while displacement was recorded coherently. Measurements were performed on single-layered silicon nitride microbridges and two-layered AlN/silicon nitride microbridges respectively. The data were fitted to a theory to derive the elastic modulus, residual stress and tensile strength of the silicon nitride films and AlN films. For the AlN films, the three parameters were determined to be 200, 0.06 and 0.3 GPa, respectively. The values of elastic modulus obtained were consistent with those measured by conventional nano-indentation method. The tensile strength value can be used as a reference to reflect the maximum tolerable tensile stress of AlN films when they are used in micro-electromechanical devices.
Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2011-01-01
A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Probabilistic Simulation for Combined Cycle Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Huang, Runzhou; Xu, Xinwu; Lee, Sunyoung; Zhang, Yang; Kim, Birm-June; Wu, Qinglin
2013-01-01
The effect of individual and combined talc and glass fibers (GFs) on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE) composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE) values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites. PMID:28788322
Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.
1996-01-01
A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Characterization of nano-clay reinforced phytagel-modified soy protein concentrate resin.
Huang, Xiaosong; Netravali, Anil N
2006-10-01
Phytagel and nano-clay particles were used to improve the mechanical and thermal properties and moisture resistance of soy protein concentrate (SPC) resin successfully. SPC and Phytagel were mixed together to form a cross-linked structure. The Phytagel-modified SPC resin (PH-SPC) showed improved tensile strength, modulus, moisture resistance, and thermal stability as compared to the unmodified SPC resin. The incorporation of 40% Phytagel and 20% glycerol led to an overall 340% increase in the tensile strength (over 50 MPa) and approximately 360% increase in the Young's modulus (over 710 MPa) of the SPC resin. Nano-clay was uniformly dispersed into PH-SPC resin to further improve the properties. The PH-SPC (40% Phytagel) resin modified with 7% clay nanoparticles (CPH-SPC) had a modulus of 2.1 GPa and a strength of 72.5 MPa. The dynamic mechanical properties such as storage modulus together with the glass transition temperature of the modified resins were also increased by the addition of clay nanoparticles. The moisture resistance of the CPH-SPC resin was higher as compared to both SPC and PH-SPC resins. The thermal stability of the CPH-SPC resin was seen to be higher as compared to the unmodified SPC.
NASA Astrophysics Data System (ADS)
Lan, Hongzhi; Venkatesh, T. A.
2014-01-01
A comprehensive understanding of the relationship between the hardness and the elastic and plastic properties for a wide range of materials is obtained by analysing the hardness characteristics (that are predicted by experimentally verified indentation analyses) of over 9000 distinct combinations of material properties that represent isotropic, homogeneous, power-law hardening metallic materials. Finite element analysis has been used to develop the indentation algorithms that provide the relationships between the elastic and plastic properties of the indented material and its indentation hardness. Based on computational analysis and virtual testing, the following observations are made. The hardness (H) of a material tends to increase with an increase in the elastic modulus (E), yield strength (σy) and the strain-hardening exponent (n). Several materials with different combinations of elastic and plastic properties can exhibit identical true hardness (for a particular indenter geometry/apex angle). In general, combinations of materials that exhibit relatively low elastic modulus and high yield strength or strain-hardening exponents and those that exhibit relatively high elastic modulus and low yield strength or strain-hardening exponents exhibit similar hardness properties. Depending on the strain-hardening characteristics of the indented material, (i.e. n = 0 or ?), the ratio H/σy ranges, respectively, from 2.2 to 2.6 or 2 to 20 (for indentations with a cone angle of 70.3°). The materials that have lower σy/E and higher n exhibit higher H/σy ratios. The commonly invoked relationship between hardness and the yield strength, i.e. H ≈ 3σy, is not generally valid or applicable for all power-law hardening materials. The indentation hardness of a power law hardening material can be taken as following the relationship H ≈ (2.1-2.8)σr where σr is the representative stress based on Tabor's representative strain for a wide range of materials.
Bao-lin, Liu; Hai-yan, Zhu; Chuan-liang, Yan; Zhi-jun, Li; Zhi-qiao, Wang
2014-01-01
When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granite's stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200°C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations. PMID:24778592
Wang, Yu; Liu, Bao-lin; Zhu, Hai-yan; Yan, Chuan-liang; Li, Zhi-jun; Wang, Zhi-qiao
2014-01-01
When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granite's stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200 °C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations.
Pavithra, Chokkakula L. P.; Sarada, Bulusu V.; Rajulapati, Koteswararao V.; Rao, Tata N.; Sundararajan, G.
2014-01-01
Graphene has proved its significant role as a reinforcement material in improving the strength of polymers as well as metal matrix composites due to its excellent mechanical properties. In addition, graphene is also shown to block dislocation motion in a nanolayered metal-graphene composites resulting in ultra high strength. In the present paper, we demonstrate the synthesis of very hard Cu-Graphene composite foils by a simple, scalable and economical pulse reverse electrodeposition method with a well designed pulse profile. Optimization of pulse parameters and current density resulted in composite foils with well dispersed graphene, exhibiting a high hardness of ~2.5 GPa and an increased elastic modulus of ~137 GPa while exhibiting an electrical conductivity comparable to that of pure Cu. The pulse parameters are designed in such a way to have finer grain size of Cu matrix as well as uniform dispersion of graphene throughout the matrix, contributing to high hardness and modulus. Annealing of these nanocomposite foils at 300°C, neither causes grain growth of the Cu matrix nor deteriorates the mechanical properties, indicating the role of graphene as an excellent reinforcement material as well as a grain growth inhibitor. PMID:24514043
NASA Astrophysics Data System (ADS)
Kaluvan, Suresh; Zhang, Haifeng; Mridha, Sanghita; Mukherjee, Sundeep
2017-04-01
Bulk metallic glasses are fully amorphous multi-component alloys with homogeneous and isotropic structure down to the atomic scale. Some attractive attributes of bulk metallic glasses include high strength and hardness as well as excellent corrosion and wear resistance. However, there are few reports and limited understanding of their mechanical properties at elevated temperatures. We used a nondestructive sonic resonance method to measure the Young's modulus and Shear modulus of a bulk metallic glass, Zr41.2Ti13.8Cu12.5Ni10Be22.5, at elevated temperatures. The measurement system was designed using a laser displacement sensor to detect the sonic vibration produced by a speaker on the specimen in high-temperature furnace. The OMICRON Bode-100 Vector Network Analyzer was used to sweep the frequency and its output was connected to the speaker which vibrated the material in its flexural mode and torsional modes. A Polytec OFV-505 laser vibrometer sensor was used to capture the vibration of the material at various frequencies. The flexural and torsional mode frequency shift due to the temperature variation was used to determine the Young's modulus and Shear modulus. The temperature range of measurement was from 50°C to 350°C. The Young's modulus was found to reduce from 100GPa to 94GPa for the 300°C temperature span. Similarly, the Shear modulus decreased from 38.5GPa at 50°C to 36GPa at 350°C.
2013-03-01
with density, Young’s modulus, coefficient of thermal expansion , and Poisson’s ratio, of 3.2 cm 3 , 449 GPa, 4.0 × 10 –6 o C –1 , and 0.16...considers the effect of hydrostatic pressure (confinement) on the strength of ceramics and was implemented using a user subroutine in ABAQUS . The...Due to the high temperature of the encapsulation casting process and the large differential in coefficients of thermal expansion (CTE) between the MMC
NASA Technical Reports Server (NTRS)
Naranong, N.
1980-01-01
The flexural strength and average modulus of graphite fiber reinforced composites were tested before and after exposure to 0.5 Mev electron radiation and 1.33 Mev gamma radiation by using a three point bending test (ASTM D-790). The irradiation was conducted on vacuum treated samples. Graphite fiber/epoxy (T300/5208), graphite fiber/polyimide (C6000/PMR 15) and graphite fiber/polysulfone (C6000/P1700) composites after being irradiated with 0.5 Mev electron radiation in vacuum up to 5000 Mrad, show increases in stress and modulus of approximately 12% compared with the controls. Graphite fiber/epoxy (T300/5208 and AS/3501-6), after being irradiated with 1.33 Mev gamma radiation up to 360 Mrads, show increases in stress and modulus of approximately 6% at 167 Mrad compared with the controls. Results suggest that the graphite fiber composites studied should withstand the high energy radiation in a space environment for a considerable time, e.g., over 30 years.
Bodde, S G; Meyers, M A; McKittrick, J
2011-07-01
Mechanical characterization of the cortex of rectrices (tail feathers) of the Toco Toucan (Ramphastos toco) has been carried out by tensile testing of the rachis cortex in order to systematically determine Young's modulus and maximum tensile strength gradients on the surfaces and along the length of the feather. Of over seventy-five samples tested, the average Young's modulus was found to be 2.56±0.09 GPa, and maximum tensile strength was found to be 78±6 MPa. The Weibull modulus for all sets is greater than one and less than four, indicating that measured strength is highly variable. The highest Weibull moduli were reported for dorsal samplings. Dorsal and ventral surfaces of the cortex are both significantly stiffer and stronger than lateral rachis cortex. On the dorsal surface, cortex sampled from the distal end of the feather was found to be least stiff and weakest compared to that sampled from proximal and middle regions along the length of the feather. Distinctive fracture patterns correspond to failure in the superficial cuticle layer and the bulk of the rachis cortex. In the cuticle, where supramolecular keratinous fibers are oriented tangentially, evidence of ductile tearing was observed. In the bulk cortex, where the fibers are bundled and oriented longitudinally, patterns suggestive of near-periodic aggregation and brittle failure were observed. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tingley, Daniel Arthur
The reinforcement of wood and wood composite structural products to improve their mechanical properties has been in practice for many years. Recently, the use of high-strength fiber-reinforced plastic (FRP) as a reinforcement in such applications has been commercialized. The reinforcement is manufactured using a standard pultrusion process or alternatively a sheet-forming process commonly referred to as "pulforming". The high-modulus fibers are predominately unidirectional, although off-axis fibers are often used to enhance off-axis properties. The fibers used are either of a single type or multiple types, which are called "hybrids". Unidirectional, single, and hybrid fiber FRP physical properties and characteristics were compared to wood. Full-scale reinforced glulams were tested. Aramid-reinforced plastics (ARP) used as tensile reinforcements were found to be superior in strength applications to other types of FRP made with fiber, such as carbon and fiberglass. Carbon/aramid-reinforced plastic (CARP) was shown to be superior in both modulus and strength design situations. Fiberglass was shown to be suitable only in hybrid situations with another fiber such as aramid or carbon and only in limited use situations where modulus was a design criteria. The testing and analysis showed that the global response of reinforced glulam beams is controlled by localized strength variations in the wood such as slope of grain, knots, finger joints, etc. in the tensile zone. The elemental tensile strains in the extreme wood tensile laminae, due to global applied loads, were found to be well below the strain at failure in clear wood samples recovered from the failure area. Two areas affecting the relationship between the wood and the FRP were investigated: compatibility of the wood and FRP materials and interface characteristics between the wood and FRP. The optimum strain value at yield point for an FRP was assessed to be slightly higher than the clear wood value in tension for a species/grade to be reinforced. The effects of localized strength variations in the tensile wood laminae adjacent to the FRP were found to be the predominate cause of failure in full-scale reinforced glulams with less than 1.5% by cross section reinforcement.
Statistical Analysis on the Mechanical Properties of Magnesium Alloys
Liu, Ruoyu; Jiang, Xianquan; Zhang, Hongju; Zhang, Dingfei; Wang, Jingfeng; Pan, Fusheng
2017-01-01
Knowledge of statistical characteristics of mechanical properties is very important for the practical application of structural materials. Unfortunately, the scatter characteristics of magnesium alloys for mechanical performance remain poorly understood until now. In this study, the mechanical reliability of magnesium alloys is systematically estimated using Weibull statistical analysis. Interestingly, the Weibull modulus, m, of strength for magnesium alloys is as high as that for aluminum and steels, confirming the very high reliability of magnesium alloys. The high predictability in the tensile strength of magnesium alloys represents the capability of preventing catastrophic premature failure during service, which is essential for safety and reliability assessment. PMID:29113116
Castable and High Modulus Acoustic Dampening Material
2007-02-22
high impact strength and high dampening laminate structures (e.g., fiberglass parts, etc.). It appears that a carboxy-terminated butadiene nitrile ( CTBN ...Sanjana reference also states that the preferred glass transition temperature for the CTBNs is "<-200". The greater the difference from room...temperature (or the temperature of interest) that the glass transition of the CTBN is, the less acoustic or vibrational energy will be absorbed/dampened
Investigation of Mechanical Properties and Interfacial Mechanics of Crystalline Nanomaterials
NASA Astrophysics Data System (ADS)
Qin, Qingquan
Nanowires (NWs) and nanotubes (NTs) are critical building blocks of nanotechnologies. The operation and reliability of these nanomaterials based devices depend on their mechanical properties of the nanomaterials, which is therefore important to accurately measure the mechanical properties. Besides, the NW--substrate interfaces also play a critical role in both mechanical reliability and electrical performance of these nanodevices, especially when the size of the NW is small. In this thesis, we focus on the mechanical properties and interface mechanics of three important one dimensional (1D) nanomaterials: ZnO NWs, Ag NWs and Si NWs. For the size effect study, this thesis presents a systematic experimental investigation on the elastic and failure properties of ZnO NWs under different loading modes: tension and buckling. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The elastic modulus also shows loading mode dependent; the bending modulus increases more rapidly than the tensile modulus. The tension experiments showed that fracture strain and strength of ZnO NWs increase as the NW diameter decrease. A resonance testing setup was developed to measure elastic modulus of ZnO NWs to confirm the loading mode dependent effect. A systematic study was conducted on the effect of clamping on resonance frequency and thus measured Young's modulus of NWs via a combined experiment and simulation approach. A simple scaling law was provided as guidelines for future designs to accurate measure elastic modulus of a cantilevered NW using the resonance method. This thesis reports the first quantitative measurement of a full spectrum of mechanical properties of five-fold twinned Ag NWs including Young's modulus, yield strength and ultimate tensile strength. In situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a SEM. Young's modulus, yield strength and ultimate tensile strength were found to all increased as the NW diameter decreased. For the temperature effect study, a brief review on brittle-to-ductile transition (BDT) of silicon (Si) is presented. BDT temperature shows decreasing trend as size of the sample decrease. However, controversial results have been reported in terms of brittle or ductile behaviors for Si NWs at room temperature. A microelectromechanical systems (MEMS) thermal actuator (ETA) was designed to test NW without involving external heating. To circumvent undesired heating of the end effector, heat sink beams that can be co-fabricated with the thermal actuator were introduced. A combined modeling and experimental study was conducted to access the effect of such heat sink beams. Temperature distribution was measured and simulated using Raman scattering and multiphysics finite element method, respectively. Our results demonstrated that heat sink beams are effective in reducing the temperature of the thermal actuator. To get elevated temperature in a controllable fashion, a comb drive actuator was designed with separating actuation and heating mechanisms. Multiphysics finite element analysis (coupled electrical-thermal-mechanical) was used to optimize structure design and minimize undesired thermal loading/unloading. A Si NW with diameter of 50 nm was tested on the device under different temperatures. Stress strain curves at different temperatures revealed that plastic deformation occurs at temperature of 55 °C. For interfacial mechanics, we report an experimental study on the friction between Ag and ZnO NW tips (ends) and a gold substrate. An innovative experimental method based on column buckling theory was developed for the friction measurements. Direct measurements of the static friction force and interfacial shear strength between Si NWs and poly(dimethylsiloxane) (PDMS) is reported. The static friction and shear strength were found to increase rapidly and then decrease with the increasing ultraviolet/ozone (UVO) treatment of PDMS.
Mathiazhagan, S; Anup, S
2016-06-01
Superior mechanical properties of biocomposites such as nacre and bone are attributed to their basic building blocks. These basic building blocks have nanoscale features and play a major role in achieving combined stiffening, strengthening and toughening mechanisms. Bioinspired nanocomposites based on these basic building blocks, regularly and stairwise staggered arrangements of hard platelets in soft matrix, have huge potential for developing advanced materials. The study of applicability of mechanical principles of biological materials to engineered materials will guide designing advanced materials. To probe the generic mechanical characteristics of these bioinspired nanocomposites, the model material concept in molecular dynamics (MD) is used. In this paper, the effect of platelets aspect ratio (AR) on the mechanical behaviour of bioinspired nanocomposites is investigated. The obtained Young׳s moduli of both the models and the strengths of the regularly staggered models agree with the available theories. However, the strengths of the stairwise staggered models show significant difference. For the stairwise staggered model, we demonstrate the existence of two critical ARs, a smaller critical AR above which platelet fracture occurs and a higher critical AR above which composite strength remains constant. Our MD study also shows the existence of mechanisms of platelet pull-out and breakage for lower and higher ARs. Pullout mechanism acts as a major source of plasticity. Further, we find that the regularly staggered model can achieve an optimal combination of high Young׳s modulus, flow strength and toughness, and the stairwise staggered model is efficient in obtaining high Young׳s modulus and tensile strength. Copyright © 2015 Elsevier Ltd. All rights reserved.
Self-Supporting Nanodiamond Gels: Elucidating Colloidal Interactions Through Rheology_
NASA Astrophysics Data System (ADS)
Adhikari, Prajesh; Tripathi, Anurodh; Vogel, Nancy A.; Rojas, Orlando J.; Raghavan, Sriunivasa R.; Khan, Saad A.
This work investigates the colloidal interactions and rheological behavior of nanodiamond (ND) dispersions. While ND represents a promising class of nanofiller due to its high surface area, superior mechanical strength, tailorable surface functionality and biocompatibility, much remains unknown about the behavior of ND dispersions. We hypothesize that controlling interactions in ND dispersions will lead to highly functional systems with tunable modulus and shear response. Steady and dynamic rheology techniques are thus employed to systematically investigate nanodiamonds dispersed in model polar and non-polar media. We find that low concentrations of ND form gels almost instantaneously in a non-polar media. In contrast, ND's in polar media show a time-dependent behavior with the modulus increasing with time. We attribute the difference in behavior to variations in inter-particle interactions as well as the interaction of the ND with the media. Large steady and oscillatory strains are applied to ND colloidal gels to investigate the role of shear in gel microstructure breakdown and recovery. For colloidal gels in non-polar medium, the incomplete recovery of elastic modulus at high strain amplitudes indicates dominance of particle-particle interactions; however, in polar media the complete recovery of elastic modulus even at high strain amplitudes indicates dominance of particle-solvent interactions. These results taken together provide a platform to develop self-supporting gels with tunable properties in terms of ND concentration, and solvent type.
NASA Astrophysics Data System (ADS)
Nuruzzaman, D. M.; Kusaseh, N. M.; Chowdhury, M. A.; Rahman, N. A. N. A.; Oumer, A. N.; Fatchurrohman, N.; Iqbal, A. K. M. A.; Ismail, N. M.
2018-04-01
In this research study, glass fiber (GF) reinforced polypropylene (PP)-nylon 6 (PA6) polymer blend composites were prepared using injection molding process. Specimens of four different compositions such as 80%PP+20%PA6, 80%PP+18%PA6+2%GF, 80%PP+16%PA6+4%GF and 80%PP+14%PA6+6%GF were prepared. In the injection molding process, suitable process parameters were selected depending on the type of composite specimen in producing defects free dog bone shaped specimens. Flexure and impact tests were carried out according to ASTM standard. The important flexure properties such as flexural modulus, flexural yield strength, flexural strength and flexural strain were investigated. The obtained results revealed that flexural modulus of 80%PP+20%PA6 polymer blend is the lowest and the polymer blend composite shows steadily improved modulus as the glass fiber content is increased. Results also showed that flexural strength of pure polymer blend is the lowest but it improves gradually when the glass fiber content is increased. Impact test results revealed that impact strength of 80%PP+20%PA6 polymer blend is the highest whereas all the composites show reduced impact strength or toughness. It is noticed that 80%PP+14%PA6+6%GF composite exhibits the lowest impact strength.
Mechanical properties of a Gum-type Ti-Nb-Zr-Fe-O alloy
NASA Astrophysics Data System (ADS)
Nocivin, Anna; Cinca, Ion; Raducanu, Doina; Cojocaru, Vasile Danut; Popovici, Ion Alexandru
2017-08-01
A new Gum-type alloy (Ti-Nb-Zr-Fe-O) in which Fe is used instead of Ta was subjected to a particular thermomechanical processing scheme to assess whether its mechanical characteristics (fine β-grains with high strength and low modulus) render it suitable as a biomedical implant material. After a homogenization treatment followed by cold-rolling with 50% reduction, the specimens were subjected to one of three different recrystallization treatments at 1073, 1173, and 1273 K. The structural and mechanical properties of all of the treated specimens were analyzed. The mechanical characterization included tensile tests, microhardness determinations, and fractography by scanning electron microscopy. The possible deformation mechanisms were discussed using the \\overline {Bo} - \\overline {Md} diagram. By correlating all of the experimental results, we concluded that the most promising processing variant corresponds to recrystallization at 1073 K, which can provide suitable mechanical characteristics for this type of alloys: high yield and ultimate tensile strengths (1038 and 1083 MPa, respectively), a low modulus of elasticity (62 GPa), and fine crystalline grain size (approximately 50 μm).
Modeling Propagation of Shock Waves in Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, W M; Molitoris, J D
2005-08-19
We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P {approx} 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. Atmore » melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P {approx} 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.« less
Modeling Propagation of Shock Waves in Metals
NASA Astrophysics Data System (ADS)
Howard, W. M.; Molitoris, J. D.
2006-07-01
We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P ˜ 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P ˜ 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.
Razavi, Sonia M; Callegari, Gerardo; Drazer, German; Cuitiño, Alberto M
2016-06-30
An ultrasound measurement system was employed as a non-destructive method to evaluate its reliability in predicting the tensile strength of tablets and investigate the benefits of incorporating it in a continuous line, manufacturing solid dosage forms. Tablets containing lactose, acetaminophen, and magnesium stearate were manufactured continuously and in batches. The effect of two processing parameters, compaction force and level of shear strain were examined. Young's modulus and tensile strength of tablets were obtained by ultrasound and diametrical mechanical testing, respectively. It was found that as the blend was exposed to increasing levels of shear strain, the speed of sound in the tablets decreased and the tablets became both softer and mechanically weaker. Moreover, the results indicate that two separate tablet material properties (e.g., relative density and Young's modulus) are necessary in order to predict tensile strength. A strategy for hardness prediction is proposed that uses the existing models for Young's modulus and tensile strength of porous materials. Ultrasound testing was found to be very sensitive in differentiating tablets with similar formulation but produced under different processing conditions (e.g., different level of shear strain), thus, providing a fast, and non-destructive method for hardness prediction that could be incorporated to a continuous manufacturing process. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanical Properties in a Bamboo Fiber/PBS Biodegradable Composite
NASA Astrophysics Data System (ADS)
Ogihara, Shinji; Okada, Akihisa; Kobayashi, Satoshi
In recent years, biodegradable plastics which have low effect on environment have been developed. However, many of them have lower mechanical properties than conventional engineering plastics. Reinforcing them with a natural fiber is one of reinforcing methods without a loss of their biodegradability. In the present study, we use a bamboo fiber as the reinforcement and polybutylenesuccinate (PBS) as the matrix. We fabricate long fiber unidirectional composites and cross-ply laminate with different fiber weight fractions (10, 20, 30, 40 and 50wt%). We conduct tensile tests to evaluate the mechanical properties of these composites. In addition, we measure bamboo fiber strength distribution. We discuss the experimentally-obtained properties based on the mechanical properties of the constituent materials. Young's modulus and tensile strength in unidirectional composite and cross-ply laminate increase with increasing fiber weight fraction. However, the strain at fracture showed decreasing tendency. Young's modulus in fiber and fiber transverse directions are predictable by the rules of mixture. Tensile strength in fiber direction is lower than Curtin's prediction of strength which considers distribution of fiber strength. Young's modulus in cross-ply laminate is predictable by the laminate theory. However, analytical prediction of Poisson's ratio in cross-ply laminate by the laminate theory is lower than the experimental results.
Loading capacity of zirconia implant supported hybrid ceramic crowns.
Rohr, Nadja; Coldea, Andrea; Zitzmann, Nicola U; Fischer, Jens
2015-12-01
Recently a polymer infiltrated hybrid ceramic was developed, which is characterized by a low elastic modulus and therefore may be considered as potential material for implant supported single crowns. The purpose of the study was to evaluate the loading capacity of hybrid ceramic single crowns on one-piece zirconia implants with respect to the cement type. Fracture load tests were performed on standardized molar crowns milled from hybrid ceramic or feldspar ceramic, cemented to zirconia implants with either machined or etched intaglio surface using four different resin composite cements. Flexure strength, elastic modulus, indirect tensile strength and compressive strength of the cements were measured. Statistical analysis was performed using two-way ANOVA (p=0.05). The hybrid ceramic exhibited statistically significant higher fracture load values than the feldspar ceramic. Fracture load values and compressive strength values of the respective cements were correlated. Highest fracture load values were achieved with an adhesive cement (1253±148N). Etching of the intaglio surface did not improve the fracture load. Loading capacity of hybrid ceramic single crowns on one-piece zirconia implants is superior to that of feldspar ceramic. To achieve maximal loading capacity for permanent cementation of full-ceramic restorations on zirconia implants, self-adhesive or adhesive cements with a high compressive strength should be used. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
New textile composite materials development, production, application
NASA Technical Reports Server (NTRS)
Mikhailov, Petr Y.
1993-01-01
New textile composite materials development, production, and application are discussed. Topics covered include: super-high-strength, super-high-modulus fibers, filaments, and materials manufactured on their basis; heat-resistant and nonflammable fibers, filaments, and textile fabrics; fibers and textile fabrics based on fluorocarbon poylmers; antifriction textile fabrics based on polyfen filaments; development of new types of textile combines and composite materials; and carbon filament-based fabrics.
Certification Issues Relating to ABDR
2010-05-01
design techniques, among them increased utilization of advanced fibre reinforced materials or advanced metal alloys with higher material allowables for...most cases as a combination of a high strength/modulus carbon fibre and a hot curing thermoset resin. A high percentage of modern fighter aircraft’s...34Limited Fibre Strain Approach" at ultimate design loadcases, where the reduced material allowables account for a low energy impact damage level
ONRASIA Scientific Information Bulletin, Volume 15, Number 4, October-December 1990
1990-12-01
31 (2) Food industry- yogurt fermentation , flesh Biotechnology Master Plan comprising some (particularly fish) freshness estimation, food $60 million...used in making polymer fibers strains or mutants to determine the role of of high modulus and high strength. In TSUKUBA FERMENTATION ...Development Laboratories 4-105 Tsinghua University, Beijing 1-030 Tsukuba Fermentation Institute 4-003 University of Melbourne 4-121 University of New England
Effect of Sizings on the Durability of High Temperature Polymer Composites
NASA Technical Reports Server (NTRS)
Allred, Ronald E.; Shin, E. Eugene; Inghram, Linda; McCorkle, Linda; Papadopoulos, Demetrios; Wheeler, Donald; Sutter, James K.
2003-01-01
To increase performance and durability of high-temperature composite for potential rocket engine components, it is necessary to optimize wetting and interfacial bonding between high modulus carbon fibers and high-temperature polyimide resins. Sizing commercially supplied on most carbon fiber are not compatible with polyimides. In this study, the chemistry of sizing on two high modulus carbon fiber (M40J and M60J, Tiray) was characterized. A continuous desizling system that uses an environmentally friendly chemical-mechanical process was developed for tow level fiber. Composites were fabricated with fibers containing the manufacturer's sizing, desized, and further treated with a reactive finish. Results of room-temperature tests after thermal aging show that the reactive finish produces a higher strength and more durable interface compared to the manufacturer's sizing. When exposed to moisture blistering tests, however, the butter bonded composite displayed a tendency to delaminate, presumably due to trapping of volatiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibata, K.; Ogata, T.; Nyilas, A.
2006-03-31
Ogata et al. reported in 1996 results of international Round Robin tests on mechanical property measurement of several metals at cryogenic temperatures. Following the report, the standard deviation of Young's modulus of 316L steel is much larger than those of yield and tensile strengths, that is, 4.6 % of the mean value for Young's modulus, while 1.4 % and 1.6 % of the mean values for yield and for tensile strengths, respectively. Therefore, an international Round Robin test on Young's modulus of two austenitic stainless steels at cryogenic temperatures under the participation often institutes from four nations has been initiatedmore » within these two years. As a result, the ratios of standard deviation to the mean values are 4.2 % for 304L and 3.6 % for 316L. Such a drop in the standard deviation is attributable to the decrease in the number of institute owing to the application of single extensometer or direct strain gage technique.« less
Producibility of fibrous refractory composite insulation, FRCI 40-20. [for reusable heat shielding
NASA Technical Reports Server (NTRS)
Strauss, E. L.; Johnson, C. W.; Graese, R. W.; Campbell, R. L.
1983-01-01
Fibrous Refractory Composite Insulation (FRCI) is a NASA-developed, second generation, reusable heat-shield material that comprises a mixture of aluminoborosilicate fibers, silica fibers, and silicon carbide. Under NASA contract, a program was conducted to demonstrate the capability for manufacturing FRCI 40-20 billets. A detailed fabrication procedure was written and validated by testing specimens from the first two billets. The material conformed to NASA requirements for density, tensile strength, modulus of rupture, thermal expansion, cristobalite content, and uniformity. Twenty-four billets were prepared to provide 20 deliverable articles. Production billets were checked for density, modulus of rupture, cristobalite content, and uniformity. Billet density ranged from 309.48 to 332.22 kg/cu m (19.32 to 20.74 lb/cu ft) and modulus of rupture from 4690 to 10,140 kPa (680 to 1470 psi). Cristobalite content was less than 1 percent. A Weibull analysis of modulus-of-rupture data indicated a 1.5 percent probability for failure below the specified strength of 4480 kPa (650 psi).
Mechanical properties and flexure behaviour of lightweight foamed concrete incorporating coir fibre
NASA Astrophysics Data System (ADS)
Mohamad, Noridah; Afif Iman, Muhamad; Othuman Mydin, M. A.; Samad, A. A. A.; Rosli, J. A.; Noorwirdawati, A.
2018-04-01
This paper presents an experimental investigation on the mechanical properties and flexural behaviour of lightweight foamed concrete (LFC) with added coir fibre as filler. The compressive strength (Pt), tensile strength (Ft), modulus of elasticity (E), ultimate load and crack pattern of the foamed concrete were determined. The coir fibre was added to the foamed concrete mixture at 0.1%, 0.2% and 0.3% of the total weight of cement. Effects of various percentage of coir fibre used on foam concrete’s mechanical and properties and flexural behaviour were studied and analysed. It was found that the increase percentage of fibre resulted in increase in compressive strength, tensile strength and modulus of elasticity of LFC mixture. LFC with added coir of 0.3% experienced the smallest crack propagation.
Mechanical properties of resin cements with different activation modes.
Braga, R R; Cesar, P F; Gonzaga, C C
2002-03-01
Dual-cured cements have been studied in terms of the hardness or degree of conversion achieved with different curing modes. However, little emphasis is given to the influence of the curing method on other mechanical properties. This study investigated the flexural strength, flexural modulus and hardness of four proprietary resin cements. Materials tested were: Enforce and Variolink II (light-, self- and dual-cured), RelyX ARC (self- and dual-cured) and C & B (self-cured). Specimens were fractured using a three-point bending test. Pre-failure loads corresponding to specific displacements of the cross-head were used for flexural modulus calculation. Knoop hardness (KHN) was measured on fragments obtained after the flexural test. Tests were performed after 24 h storage at 37 degrees C. RelyX ARC dual-cured showed higher flexural strength than the other groups. RelyX ARC and Variolink II depended upon photo-activation to achieve higher hardness values. Enforce showed similar hardness for dual- and self-curing modes. No correlation was found between flexural strength and hardness, indicating that other factors besides the degree of cure (e.g. filler content and monomer type) affect the flexural strength of composites. No statistical difference was detected in the flexural modulus among the different groups.
Natale, L C; Rodrigues, M C; Xavier, T A; Simões, A; de Souza, D N; Braga, R R
2015-01-01
To compare the ion release and mechanical properties of a calcium hydroxide (Dycal) and two calcium silicate (MTA Angelus and Biodentine) cements. Calcium and hydroxyl ion release in water from 24-h set cements were calculated from titration with HCl (n = 3). Calcium release after 7, 14, 21 and 28 days at pH 5.5 and 7.0 was measured using ICP-OES (n = 6). Flexural strength (FS) and modulus (E) were tested after 48-h storage, and compressive strength (CS) was tested after 48 h and 7 days (n = 10). Ion release and mechanical data were subjected to anova/Tukey and Kruskal-Wallis/Mann-Whitney tests, respectively (α = 0.05). Titration curves revealed that Dycal released significantly fewer ions in solution than calcium silicates (P < 0.001). Calcium release remained constant at pH 7.0, whilst at pH 5.5, it dropped significantly by 24% after 21 days (P < 0.05). At pH 5.5, MTA Angelus released significantly more calcium than Dycal (P < 0.01), whilst Biodentine had superior ion release than Dycal at pH 7.0 (P < 0.01). Biodentine had superior flexural strength, flexural modulus and compressive strength than the other cements, whilst MTA Angelus had higher modulus than Dycal (P < 0.001). Immediate calcium and hydroxyl ion release in solution was significantly lower for Dycal. In general, all materials released constant calcium levels over 28 days, but release from Dycal was significantly lower than Biodentine and MTA Angelus depending on pH conditions. Biodentine had substantially higher strength and modulus than MTA Angelus and Dycal, both of which demonstrated low stress-bearing capabilities. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Mechanical tensile testing of titanium 15-3-3-3 and Kevlar 49 at cryogenic temperatures
NASA Astrophysics Data System (ADS)
James, B. L.; Martinez, R. M.; Shirron, P.; Tuttle, J.; Galassi, N. M.; McGuinness, D. S.; Puckett, D.; Francis, J. J.; Flom, Y.
2012-06-01
Titanium 15-3-3-3 and Kevlar 49 are highly desired materials for structural components in cryogenic applications due to their low thermal conductivity at low temperatures. Previous tests have indicated that titanium 15-3-3-3 becomes increasingly brittle as the temperature decreases. Furthermore, little is known regarding the mechanical properties of Kevlar 49 at low temperatures, most specifically its Young's modulus. This testing investigates the mechanical properties of both materials at cryogenic temperatures through cryogenic mechanical tensile testing to failure. The elongation, ultimate tensile strength, yield strength, and break strength of both materials are provided and analyzed here.
Mechanical Tensile Testing of Titanium 15-3-3-3 and Kevlar 49 at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
James, Bryan L.; Martinez, Raul M.; Shirron, Peter; Tuttle, Jim; Galassi, Nicholas M.; Mcguinness, Daniel S.; Puckett, David; Francis, John J.; Flom, Yury
2011-01-01
Titanium 15-3-3-3 and Kevlar 49 are highly desired materials for structural components in cryogenic applications due to their low thennal conductivity at low temperatures. Previous tests have indicated that titanium 15-3-3-3 becomes increasingly brittle as the temperature decreases. Furthermore, little is known regarding the mechanical properties of Kevlar 49 at low temperatures, most specifically its Young's modulus. This testing investigates the mechanical properties of both materials at cryogenic temperatures through cryogenic mechanical tensile testing to failure. The elongation, ultimate tensile strength, yield strength, and break strength of both materials are provided and analyzed here.
Stretchable, adhesive and ultra-conformable elastomer thin films.
Sato, Nobutaka; Murata, Atsushi; Fujie, Toshinori; Takeoka, Shinji
2016-11-16
Thermoplastic elastomers are attractive materials because of the drastic changes in their physical properties above and below the glass transition temperature (T g ). In this paper, we report that free-standing polystyrene (PS, T g : 100 °C) and polystyrene-polybutadiene-polystyrene triblock copolymer (SBS, T g : -70 °C) thin films with a thickness of hundreds of nanometers were prepared by a gravure coating method. Among the mechanical properties of these thin films determined by bulge testing and tensile testing, the SBS thin films exhibited a much lower elastic modulus (ca. 0.045 GPa, 212 nm thickness) in comparison with the PS thin films (ca. 1.19 GPa, 217 nm thickness). The lower elastic modulus and lower thickness of the SBS thin films resulted in higher conformability and thus higher strength of adhesion to an uneven surface such as an artificial skin model with roughness (R a = 10.6 μm), even though they both have similar surface energies. By analyzing the mechanical properties of the SBS thin films, the elastic modulus and thickness of the thin films were strongly correlated with their conformability to a rough surface, which thus led to a high adhesive strength. Therefore, the SBS thin films will be useful as coating layers for a variety of materials.
NASA Astrophysics Data System (ADS)
Edhirej, Ahmed; Sapuan, S. M.; Jawaid, Mohammad; Zahari, Nur Ismarrubie; Sanyang, M. L.
2017-12-01
Increased awareness of environmental and sustainability issues has generated increased interest in the use of natural fiber reinforced composites. This work focused on the use of cassava roots peel and bagasse as natural fillers of thermoplastic cassava starch (TPS) materials based on cassava starch. The effect of cassava bagasse (CB) and cassava peel (CP) content on the tensile properties of cassava starch (CS) biocomposites films was studied. The biocomposites films were prepared by casting technique using cassava starch (CS) as matrix and fructose as plasticizer. The CB and CP were added to improve the properties of the films. The addition of both fibers increased the tensile strength and modulus while decreased the elongation at break of the biocomposites films. Films containing CB showed higher tensile strength and modulus as compared to the films containing the same amount of CP. The addition of 6 % bagasse increased the modulus and maximum tensile stress to 581.68 and 10.78 MPa, respectively. Thus, CB is considered to be the most efficient reinforcing agent due to its high compatibility with the cassava starch. The use of CB and CP as reinforcement agents for CS thermoplastic cassava added value to these waste by-products and increase the suitability of CS composite films as environmentally friendly food packaging material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanna, V.; Olson, R.A.; Jennings, H.M.
The effects of drying on mortars containing Portland cement blended with fly ash or slag on the shrinkage, extent of surface cracking, pore size distribution as measured by mercury intrusion porosimetry, flexural strength, fracture toughness, and Young`s modulus are reported. Specimens were exposed to conditions of 100% relative humidity (RH), 50% RH, and/or oven-drying at 105 C. Drying coarsened the pore structure and increased the density of surface cracks, but surprisingly increased the flexural strength and the fracture toughness, and as anticipated lowered the Young`s modulus. This was regardless of the content of mineral admixture.
1982-10-01
The purpose of the program was to develop a production method for improved graphite fibers. A goal of 750 x 10 to the 3rd power psi tensile strength...at 60-65 x 10 to the 6th power psi modulus was set for the program. Improved 3-4 micron diameter boron strengthened graphite fibers were successfully... graphite fiber. An average tensile strength of 550 x 10 to the 3rd power psi at the 60 x 10 to the 6th power psi modulus level was achieved through a preliminary optimization of the plant processing conditions.
Application of diffusion barriers to high modulus fibers
NASA Technical Reports Server (NTRS)
Veltri, R. D.; Douglas, F. C.; Paradis, E. L.; Galasso, F. S.
1977-01-01
Barrier layers were coated onto high-modulus fibers, and nickel and titanium layers were overcoated as simulated matrix materials. The objective was to coat the high-strength fibers with unreactive selected materials without degrading the fibers. The fibers were tungsten, niobium, and single-crystal sapphire, while the materials used as barrier coating layers were Al2O3, Y2O3, TiC, ZrC, WC with 14% Co, and HfO2. An ion-plating technique was used to coat the fibers. The fibers were subjected to high-temperature heat treatments to evaluate the effectiveness of the barrier layer in preventing fiber-metal interactions. Results indicate that Al2O3, Y2O3, and HfO2 can be used as barrier layers to minimize the nickel-tungsten interaction. Further investigation, including thermal cycling tests at 1090 C, revealed that HfO2 is probably the best of the three.
Poly(arylene ether)s containing pendent ethynyl groups
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Jensen, Brian J. (Inventor)
1996-01-01
Poly(arylene ether)s containing pendent ethynyl and substituted ethynyl groups and poly(arylene ether) copolymers containing pendent ethynyl and substituted ethynyl groups are readily prepared from bisphenols containing ethynyl and substituted ethynyl groups. The resulting polymers are cured up to 350.degree. C. to provide crosslinked poly(arylene ether)s with good solvent resistance, high strength and modulus.
Poly(arylene ether)s containing pendent ethynyl groups
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Jensen, Brian J. (Inventor)
1994-01-01
Poly(arylene ether)s containing pendent ethynyl and substituted ethynyl groups and poly(arylene ether) copolymers containing pendent ethynyl and substituted ethynyl groups are readily prepared from bisphenols containing ethynyl and substituted ethynyl groups. The resulting polymers are cured up to 350 C to provide crosslinked poly(arylene ether)s with good solvent resistance, high strength and modulus.
Sucrose Treated Carbon Nanotube and Graphene Yarns and Sheets
NASA Technical Reports Server (NTRS)
Sauti, Godfrey (Inventor); Kim, Jae-Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor)
2017-01-01
Consolidated carbon nanotube or graphene yarns and woven sheets are consolidated through the formation of a carbon binder formed from the dehydration of sucrose. The resulting materials, on a macro-scale are lightweight and of a high specific modulus and/or strength. Sucrose is relatively inexpensive and readily available, and the process is therefore cost-effective.
Mechanical properties of tantalum-based ceramic coatings for biomedical applications
NASA Astrophysics Data System (ADS)
Donkov, N.; Walkowicz, J.; Zavaleyev, V.; Zykova, A.; Safonov, V.; Dudin, S.; Yakovin, S.
2018-03-01
The properties were studied of Ta, Ta2O5 and Ta/Ta2O5 coatings deposited by reactive magnetron sputtering on stainless steel (AISI 316) substrates. The compositional, structural and morphological parameters of the coatings were investigated by means of X-ray photoemission spectroscopy (XPS), energy dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The roughness parameters, adhesion strength, hardness, elastic modulus, and H/E ratio were evaluated by standard techniques. The hardness parameters of the Ta2O5 and Ta/Ta2O5 coatings increased in comparison with pure Ta films, while the relatively low Young’s modulus was related to high elastic recovery and high resistance to cracking. The tantalum-based coatings possessed good biomechanical parameters for advanced implant and stent applications.
Yuan, Wenjin; Lu, Yunhua; Xu, Shiai
2016-01-01
A new titanate coupling agent synthesized from polyethylene glycol (PEG), isooctyl alcohol, and phosphorus pentoxide (P2O5) was used for the modification of calcium sulfate whiskers (CSWs) and the preparation of high-performance CSW/poly(vinyl chloride) (PVC) composites. The titanate coupling agent (sTi) and the modified CSWs (sTi–CSW) were characterized by Fourier transform infrared (FTIR) spectroscopy, and the mechanical, dynamic mechanical, and heat resistant properties and thermostability of sTi–CSW/PVC and CSW/PVC composites were compared. The results show that sTi–CSW/PVC composite with 10 wt. % whisker content has the best performance, and its tensile strength, Young’s modulus, elongation at break, break strength, and impact strength are 67.2 MPa, 1926 MPa, 233%, 51.1 MPa, and 12.75 KJ·m−2, with an increase of 20.9%, 11.5%, 145.3%, 24.6%, and 65.4% compared to that of CSW/PVC composite at the same whisker content. As the whisker content increases, the storage modulus increases, the Vicat softening temperature decreases slightly, and the glass transition temperature increases at first and then decreases. PMID:28773748
Reddy, K Obi; Zhang, Jinming; Zhang, Jun; Rajulu, A Varada
2014-12-19
The applications of natural fibers and their microfibrils are increasing rapidly due to their environment benefits, specific strength properties and renewability. In the present work, we successfully extracted cellulose microfibrils from Agave natural fibers by chemical method. The extracted microfibrils were characterized by chemical analysis. The cellulose microfibrils were found to dissolve in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) to larger extent along with little quantity of undissolved microfibrils. Using this solution, the self-reinforced regenerated cellulose composite films were prepared. The raw fiber, extracted cellulose microfibrils and regenerated cellulose composite films were characterized by FTIR, (13)C CP-MAS NMR, XRD, TGA and SEM techniques. The average tensile strength, modulus and elongation at break of the self-reinforced cellulose composite films were found to be 135 MPa, 8150 MPa and 3.2%, respectively. The high values of tensile strength and modulus were attributed to the self-reinforcement of Agave fibers in their generated matrix. These self-reinforced cellulose biodegradable composite films prepared from renewable source can find applications in packaging field. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chu, Yanyan; Chen, Xiaogang; Tian, Lipeng
2017-06-01
Ultra-high molecular weight polyethylene (UHMWPE) yarns are widely used in military applications for protection owing to its high modulus and high strength; however, the friction between UHMWPE yarns is too small, which is a weakness for ballistic applications. The purpose of current research is to increase the friction between UHMWPE yarns by plasma enhanced chemical vapour deposition (PCVD). The changes of morphology and chemical structure were characterised by SEM and FTIR individually. The coefficients of friction between yarns were tested by means of Capstan method. Results from tests showed that the yarn-yarn coefficient of static friction (CSF) has been improved from 0.12 to 0.23 and that of kinetic friction (CSF) increased from 0.11 to 0.19, as the samples exposure from 21 s to 4 min. The more inter-yarn friction can be attributed to more and more particles and more polar groups deposited on the surfaces of yarns, including carboxyl, carbonyl, hydroxyl and amine groups and compounds containing silicon. The tensile strength and modulus of yarns, which are essential to ballistic performance, keep stable and are not affected by the treatments, indicating that PCVD treatment is an effective way to improve the inter-yarn friction without mechanical property degradation.
Lamination residual stresses in fiber composites
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1975-01-01
An experimental investigation was conducted to determine the magnitude of lamination residual stresses in angle-ply composites and to evaluate their effects on composite structural integrity. The materials investigated were boron/epoxy, boron/polyimide, graphite/low modulus epoxy, graphite/high modulus epoxy, graphite/polyimide and s-glass/epoxy. These materials were fully characterized. Static properties of laminates were also determined. Experimental techniques using embedded strain gages were developed and used to measure residual strains during curing. The extent of relaxation of lamination residual stresses was investigated. It was concluded that the degree of such relaxation is low. The behavior of angle-ply laminates subjected to thermal cycling, tensile load cycling, and combined thermal cycling with tensile load was investigated. In most cases these cycling programs did not have any measurable influence on residual strength and stiffness of the laminates. In the tensile load cycling tests, the graphite/polyimide shows the highest endurance with 10 million cycle runouts at loads up to 90 percent of the static strength.
Prakash Maran, J; Sivakumar, V; Thirugnanasambandham, K; Kandasamy, S
2013-11-01
The present study investigates the influence of composition (content of maize starch (1-3 g), sorbitol (0.5-1.0 ml), agar (0.5-1.0 g) and tween-80 (0.1-0.5 ml)) on the mechanical properties (tensile strength, elongation, Young's modulus, puncture force and puncture deformation) of the maize starch based edible films using four factors with three level Box-Behnken design. The edible films were obtained by casting method. The results showed that, tween-80 increases the permeation of sorbitol in to the polymer matrix. Increasing concentration of sorbitol (hydrophilic nature and plasticizing effect of sorbitol) decreases the tensile strength, Young's modulus and puncture force of the films. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were obtained for all responses with high R(2) values (R(2)>0.95). 3D response surface plots were constructed to study the relationship between process variables and the responses. Copyright © 2013 Elsevier B.V. All rights reserved.
Physical properties of a new sonically placed composite resin restorative material.
Ibarra, Emily T; Lien, Wen; Casey, Jeffery; Dixon, Sara A; Vandewalle, Kraig S
2015-01-01
A new nanohybrid composite activated by sonic energy has been recently introduced as a single-step, bulk-fill restorative material. The purpose of this study was to compare the physical properties of this new composite to various other composite restorative materials marketed for posterior or bulk-fill placement. The following physical properties were examined: depth of cure, volumetric shrinkage, flexural strength, flexural modulus, fracture toughness, and percent porosity. A mean and standard deviation were determined per group. One-way ANOVA and Tukey's post hoc tests were performed per property (α = 0.05). Percent porosity was evaluated with a Kruskal-Wallis/Mann-Whitney test (α = 0.005). Significant differences were found between groups (P < 0.001) per test type. Compared to the other composite restorative materials, the new nanohybrid composite showed low shrinkage and percent porosity, moderate fracture toughness and flexural modulus, and high flexural strength. However, it also demonstrated a relatively reduced depth of cure compared to the other composites.
The effect of configuration on strength, durability, and handle of Kevlar fabric-based materials
NASA Technical Reports Server (NTRS)
Reuter, L. L.; Munson, J. B.
1977-01-01
Five Kevlar based laminates and three Kevlar based coated materials were designed, hand made, and tested against comparative conventional Dacron based materials for strength, peel, tear, puncture, creases, and handle. Emphasis was placed on evaluating geometric orientation of constituents, use of elastomeric film in place of high modulus films, and the use of flying thread loom bias reinforcement of Kevlar yarns. Whereas, the performance of the Kevlar laminates was severely degraded by crease effects, significant gains in overall performance factors were shown for the coated Kevlar materials.
Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb
Schulze, Christian; Weinmann, Markus; Schweigel, Christoph; Keßler, Olaf; Bader, Rainer
2018-01-01
The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young’s modulus of α + β-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant–bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed β-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young’s modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants. PMID:29342864
Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb.
Schulze, Christian; Weinmann, Markus; Schweigel, Christoph; Keßler, Olaf; Bader, Rainer
2018-01-13
The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young's modulus of α + β-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant-bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed β-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young's modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants.
Influence of the supporting die structures on the fracture strength of all-ceramic materials.
Yucel, Munir Tolga; Yondem, Isa; Aykent, Filiz; Eraslan, Oğuz
2012-08-01
This study investigated the influence of the elastic modulus of supporting dies on the fracture strengths of all-ceramic materials used in dental crowns. Four different types of supporting die materials (dentin, epoxy resin, brass, and stainless steel) (24 per group) were prepared using a milling machine to simulate a mandibular molar all-ceramic core preparation. A total number of 96 zirconia cores were fabricated using a CAD/CAM system. The specimens were divided into two groups. In the first group, cores were cemented to substructures using a dual-cure resin cement. In the second group, cores were not cemented to the supporting dies. The specimens were loaded using a universal testing machine at a crosshead speed of 0.5 mm/min until fracture occurred. Data were statistically analyzed using two-way analysis of variance and Tukey HSD tests (α = 0.05). The geometric models of cores and supporting die materials were developed using finite element method to obtain the stress distribution of the forces. Cemented groups showed statistically higher fracture strength values than non-cemented groups. While ceramic cores on stainless steel dies showed the highest fracture strength values, ceramic cores on dentin dies showed the lowest fracture strength values among the groups. The elastic modulus of the supporting die structure is a significant factor in determining the fracture resistance of all-ceramic crowns. Using supporting die structures that have a low elastic modulus may be suitable for fracture strength tests, in order to accurately reflect clinical conditions.
The study of stiffness modulus values for AC-WC pavement
NASA Astrophysics Data System (ADS)
Lubis, AS; Muis, Z. A.; Iskandar, T. D.
2018-02-01
One of the parameters of the asphalt mixture in order for the strength and durability to be achieved as required is the stress-and-strain showing the stiffness of a material. Stiffness modulus is a very necessary factor that will affect the performance of asphalt pavements. If the stiffness modulus value decreases there will be a cause of aging asphalt pavement crack easily when receiving a heavy load. The high stiffness modulus asphalt concrete causes more stiff and resistant to bending. The stiffness modulus value of an asphalt mixture material can be obtained from the theoretical (indirect methods) and laboratory test results (direct methods). For the indirect methods used Brown & Brunton method, and Shell Bitumen method; while for the direct methods used the UMATTA tool. This study aims to determine stiffness modulus values for AC-WC pavement. The tests were conducted in laboratory that used 3 methods, i.e. Brown & Brunton Method, Shell Bitumen Method and Marshall Test as a substitute tool for the UMATTA tool. Hotmix asphalt made from type AC-WC with pen 60/70 using a mixture of optimum bitumen content was 5.84% with a standard temperature variation was 60°C and several variations of temperature that were 30, 40, 50, 70 and 80°C. The stiffness modulus value results obtained from Brown & Brunton Method, Shell Bitumen Method and Marshall Test which were 1374,93 Mpa, 235,45 Mpa dan 254,96 Mpa. The stiffness modulus value decreases with increasing temperature of the concrete asphalt. The stiffness modulus value from the Bitumen Shell method and the Marshall Test has a relatively similar value.The stiffness modulus value from the Brown & Brunton method is greater than the Bitumen Shell method and the Marshall Test, but can not measure the stiffness modulus value at temperature above 80°C.
Ullah, Saleem; Zainol, Ismail; Chowdhury, Shiplu Roy; Fauzi, M B
2018-05-01
The various composition multicomponent chitosan/fish collagen/glycerin 3D porous scaffolds were developed and investigated the effect of various composition chitosan/fish collagen/glycerin on scaffolds morphology, mechanical strength, biostability and cytocompatibility. The scaffolds were fabricated via freeze-drying technique. The effects of various compositions consisting in 3D scaffolds were investigated via FT-IR analysis, porosity, swelling and mechanical tests, and effect on the morphology of scaffolds investigated microscopically. The biostability and cytocompatibility tests were used to explore the ability of scaffolds to use for tissue engineering application. The average pore sizes of scaffolds were in range of 100.73±27.62-116.01±52.06, porosity 71.72±3.46-91.17±2.42%, tensile modulus in dry environment 1.47±0.08-0.17±0.03MPa, tensile modulus in wet environment 0.32±0.03-0.14±0.04MPa and biodegradation rate (at day 30) 60.38±0.70-83.48±0.28%. In vitro culture of human fibroblasts and keratinocytes showed that the various composition multicomponent 3D scaffolds were good cytocompatibility however, the scaffolds contained high amount of fish collagen excellently facilitated cell proliferation and adhesion. It was found that the high amount fish collagen and glycerin scaffolds have high porosity, enough mechanical strength and biostability, and excellent cytocompatibility. Copyright © 2018 Elsevier B.V. All rights reserved.
Lin, Wei-Shao; Ercoli, Carlo; Feng, Changyong; Morton, Dean
2012-07-01
The objective of this study was to compare the effect of veneering porcelain (monolithic or bilayer specimens) and core fabrication technique (heat-pressed or CAD/CAM) on the biaxial flexural strength and Weibull modulus of leucite-reinforced and lithium-disilicate glass ceramics. In addition, the effect of veneering technique (heat-pressed or powder/liquid layering) for zirconia ceramics on the biaxial flexural strength and Weibull modulus was studied. Five ceramic core materials (IPS Empress Esthetic, IPS Empress CAD, IPS e.max Press, IPS e.max CAD, IPS e.max ZirCAD) and three corresponding veneering porcelains (IPS Empress Esthetic Veneer, IPS e.max Ceram, IPS e.max ZirPress) were selected for this study. Each core material group contained three subgroups based on the core material thickness and the presence of corresponding veneering porcelain as follows: 1.5 mm core material only (subgroup 1.5C), 0.8 mm core material only (subgroup 0.8C), and 1.5 mm core/veneer group: 0.8 mm core with 0.7 mm corresponding veneering porcelain with a powder/liquid layering technique (subgroup 0.8C-0.7VL). The ZirCAD group had one additional 1.5 mm core/veneer subgroup with 0.7 mm heat-pressed veneering porcelain (subgroup 0.8C-0.7VP). The biaxial flexural strengths were compared for each subgroup (n = 10) according to ISO standard 6872:2008 with ANOVA and Tukey's post hoc multiple comparison test (p≤ 0.05). The reliability of strength was analyzed with the Weibull distribution. For all core materials, the 1.5 mm core/veneer subgroups (0.8C-0.7VL, 0.8C-0.7VP) had significantly lower mean biaxial flexural strengths (p < 0.0001) than the other two subgroups (subgroups 1.5C and 0.8C). For the ZirCAD group, the 0.8C-0.7VL subgroup had significantly lower flexural strength (p= 0.004) than subgroup 0.8C-0.7VP. Nonetheless, both veneered ZirCAD groups showed greater flexural strength than the monolithic Empress and e.max groups, regardless of core thickness and fabrication techniques. Comparing fabrication techniques, Empress Esthetic/CAD, e.max Press/CAD had similar biaxial flexural strength (p= 0.28 for Empress pair; p= 0.87 for e.max pair); however, e.max CAD/Press groups had significantly higher flexural strength (p < 0.0001) than Empress Esthetic/CAD groups. Monolithic core specimens presented with higher Weibull modulus with all selected core materials. For the ZirCAD group, although the bilayer 0.8C-0.7VL subgroup exhibited significantly lower flexural strength, it had highest Weibull modulus than the 0.8C-0.7VP subgroup. The present study suggests that veneering porcelain onto a ceramic core material diminishes the flexural strength and the reliability of the bilayer specimens. Leucite-reinforced glass-ceramic cores have lower flexural strength than lithium-disilicate ones, while fabrication techniques (heat-pressed or CAD/CAM) and specimen thicknesses do not affect the flexural strength of all glass ceramics. Compared with the heat-pressed veneering technique, the powder/liquid veneering technique exhibited lower flexural strength but increased reliability with a higher Weibull modulus for zirconia bilayer specimens. Zirconia-veneered ceramics exhibited greater flexural strength than monolithic leucite-reinforced and lithium-disilicate ceramics regardless of zirconia veneering techniques (heat-pressed or powder/liquid technique). © 2012 by the American College of Prosthodontists.
Tensile properties of orthodontic elastomeric ligatures.
Ahrari, F; Jalaly, T; Zebarjad, M
2010-01-01
Tensile properties of elastomeric ligatures become important when efficiency of orthodontic appliances is considered. The aim of this study was to compare tensile strength, extension to tensile strength, toughness and modulus of elasticity of elastomeric ligatures in both the as--received condition and after 28 days of immersion in the simulated oral environment. Furthermore, the changes that occurred in tensile properties of each brand of ligatures after 28 days were evaluated. Experimental-laboratory based. Elastomeric ligatures were obtained from different companies and their tensile properties were measured using Zwick testing machine in both the as-received condition and after 28 days of immersion in the simulated oral environment. The data were analyzed using independent sample t-tests, analysis of variance and Tukey tests. After 28 days, all the ligatures experienced a significant decrease in tensile strength, extension to tensile strength and toughness ( P < 0.05), whereas modulus of elasticity increased in some groups and decreased in others. There were significant differences in tensile properties of different brands of ligatures in both conditions ( P < 0.05), with the exception of modulus of elasticity after 28 days. The decrease in strength properties of elastomeric ligatures shows that they should be replaced at each appointment to reduce the risk of rupture. There are significant differences in tensile properties of different brands of ligatures, which should be considered during selection of these products.
Falland-Cheung, Lisa; Waddell, J Neil; Chun Li, Kai; Tong, Darryl; Brunton, Paul
2017-04-01
Conducting in vitro research for forensic, impact and injury simulation modelling generally involves the use of a skull simulant with mechanical properties similar to those found in the human skull. For this study epoxy resin, fibre filled epoxy resin, 3D-printing filaments (PETG, PLA) and self-cure acrylic denture base resin were used to fabricate the specimens (n=20 per material group), according to ISO 527-2 IBB and ISO20795-1. Tensile and flexural testing in a universal testing machine was used to measure their tensile/flexural elastic modulus and strength. The results showed that the epoxy resin and fibre filled epoxy resin had similar tensile elastic moduli (no statistical significant difference) with lower values observed for the other materials. The fibre filled epoxy resin had a considerably higher flexural elastic modulus and strength, possibly attributed to the presence of fibres. Of the simulants tested, epoxy resin had an elastic modulus and flexural strength close to that of mean human skull values reported in the literature, and thus can be considered as a suitable skull simulant for a skin/skull/brain model for lower impact forces that do not exceed the fracture stress. For higher impact forces a 3D printing filament (PLA) may be a more suitable skull simulant material, due to its closer match to fracture stresses found in human skull bone. Influencing factors were also anisotropy, heterogeneity and viscoelasticity of human skull bone and simulant specimens. Copyright © 2017 Elsevier Ltd. All rights reserved.
Static strength of molybdenum to 92 GPa under radial X-ray diffraction
NASA Astrophysics Data System (ADS)
Xiong, L.; Tu, P.; Li, B.; Wu, S. Y.; Hao, J. B.; Bai, L. G.; Li, X. D.; Liu, J.
2018-06-01
The high-pressure strength of molybdenum (Mo) to 92 GPa has been studied by radial X-ray diffraction (RXRD) technique. The ratio of t/G is found to decrease above ˜24 GPa, showing the yield of Mo which is caused by plastic deformation at this pressure. Combined with high-pressure shear modulus, it was found that the differential stress corresponding to the yield of Mo at 24 GPa due to plastic deformation is 1.73 GPa. The second increase of t values occurs after ˜66 GPa, suggesting the strength of Mo with a differential stress of ˜1.93 GPa. In addition, the maximum difference stress of molybdenum at 87 GPa is 3.01 GPa.
NASA Astrophysics Data System (ADS)
Norizan, Nabila Najwa; Santiagoo, Ragunathan; Ismail, Hanafi
2017-07-01
The fabrication of High Density Polyethylene (HDPE)/ Acrylonitrile-butadiene rubber (NBR)/ Palm Pressed Fibre (PPF) composite were investigated. The effect of γ-Aminopropyltriethoxy Silane (APS) as coupling agent on the properties of HDPE/ NBR/ PPF composite were studied. The composites were melt mixed using heated two roll mill at 180°C and speed of 15rpm with six different loading (100/0/10, 80/20/10, 70/30/10, 60/40/10, 50/50/10, and 40/60/10). The effects of γ-APS silane on mechanical, and morphological properties were examined using universal tensile machine (UTM) and scanning electron microscopy (SEM), respectively. Tensile strength and Young's modulus of HDPE/ NBR/ PPF composites decrease with increasing of NBR loading, whilst increasing the elongation at break. However, treated composites have resulted 3% to 29%, and 9% to 19%, higher in tensile strength and young's modulus compared to untreated composites. This was due to the better adhesion between HDPE/ NBR matrices and PPF filler with the presence of silanol moieties. From the morphological study, the micrograph of treated composites has proved the well bonded and good attachment of PPF filler with HDPE/ NBR matrices which resulted to better tensile strength to the HDPE/ NBR/ PPF composites.
NASA Astrophysics Data System (ADS)
Kulakov, V. L.; Terrasi, G. P.; Arnautov, A. K.; Portnov, G. G.; Kovalov, A. O.
2014-03-01
A finite element analysis is carried out to determine the stress-strain state of anchors for round rods made of a high- modulus, high-strength unidirectional carbon-fiber reinforced plastic. The rods have splitted ends in which Duralumin wedges are glued. Three types of contact between the composite rods and a potted epoxy compound are considered: adhesion, adhesion-friction, and friction ones. The corresponding three-dimensional problems in the elastic statement are solved by the finite-element method (FEM) with account of nonlinear Coulomb friction. An analysis of stresses on the surface of the composite rod revealed the locations of high concentrations of operating stresses. The results of FEM calculations agree with experimental data.
Reliability formulation for the strength and fire endurance of glued-laminated beams
D. A. Bender
A model was developed for predicting the statistical distribution of glued-laminated beam strength and stiffness under normal temperature conditions using available long span modulus of elasticity data, end joint tension test data, and tensile strength data for laminating-grade lumber. The beam strength model predictions compared favorably with test data for glued-...
Effects of HF Treatments on Tensile Strength of Hi-Nicalon Fibers
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1998-01-01
Tensile strengths of as-received Hi-Nicalon fibers and those having a dual BN/SiC surface coating, deposited by chemical vapor deposition, have been measured at room temperature. These fibers were also treated with HF for 24 h followed by tensile strength measurements. Strengths of uncoated and BN/SiC coated Hi-Nicalon fibers extracted from celsian matrix composites, by dissolving away the matrix in HF for 24 h, were also determined. The average tensile strength of uncoated Hi-Nicalon was 3.19 +/- 0.73 GPa with a Weibull modulus of 5.41. The Hi-Nicalon/BN/SiC fibers showed an average strength of 3.04 q 0.53 GPa and Weibull modulus of 6.66. After HF treatments, the average strengths of the uncoated and BN/SiC coated Hi-Nicalon fibers were 2.69 +/- 0.67 GPa and 2.80 +/- 0.53 GPa and the Weibull moduli were 4.93 and 5.96, respectively. The BN/SiC coated fibers extracted from the celsian matrix composite exhibited a strength of 2.38 +/- 0.40 GPa and a Weibull modulus of 7.15. The strength of the uncoated Hi-Nicalon fibers in the composite was so severely degraded that they disintegrated into small fragments during extraction with HF. The uncoated fibers probably undergo mechanical surface damage during hot pressing of the composites. Also, the BN layer on the coated fibers acts as a compliant layer which protects the fibers from mechanical damage during composite processing. The elemental composition and thickness of the fiber coatings were deten-nined using scanning Auger analysis. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy and transmission electron microscopy. Strengths of fibers calculated using average and measured fiber diameters were in good agreement. Thus, the strength of fibers can be evaluated using an average fiber diameter instead of the measured diameter of each filament.
Physical and Chemical Character of Fly Ash of Coal Fired Power Plant in Java
NASA Astrophysics Data System (ADS)
Triwulan; Priadana, K. A.; Ekaputri, J. J.; Bayuaji, R.
2017-11-01
Quality of fly ash is varying widely in the field, it depends on the combustion process and the quality of the basic ingredients, namely coal. It will affect the physical and mechanical properties of the concrete mixtures used. This study used 12 samples of fly ash. The physical and chemical properties and finesse modulus were analyzed. The fly ash was mixed with OPC (Ordinary Portland Cement) with the proportion of 20% fly ash and 80% OPC. The specimens were form with mortar dimension of 5cm x 5 cm. The test was affected by the correlation of fly ash fineness modulus to compressive strength, correlation density of fly ash to compressive strength, and correlation of carbon content to the compressive strength.
NASA Astrophysics Data System (ADS)
Zhang, Zuhua; Wang, Hao
2016-08-01
The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.
Effect of Kevlar and carbon fibres on tensile properties of oil palm/epoxy composites
NASA Astrophysics Data System (ADS)
Amir, S. M. M.; Sultan, M. T. H.; Jawaid, M.; Cardona, F.; Ishak, M. R.; Yusof, M. R.
2017-12-01
Hybrid composites with natural and synthetic fibers have captured the interests of many researchers. In this work, Kevlar/oil palm Empty Fruit Bunch (EFB)/Kevlar and carbon/oil palm EFB hybrid/carbon composites were prepared using hand lay-up technique by keeping the oil palm EFB fiber as the core material. The tensile properties which include tensile strength, tensile modulus and elongation at break were investigated. It is observed that the tensile strength and modulus for carbon/oil palm EFB/carbon hybrid composites were much higher as compared with Kevlar/oil palm EFB/Kevlar hybrid composites. However, the elongation at break for Kevlar/oil palm EFB/Kevlar hybrid composites exhibited higher value as compared to carbon/oil palm EFB/carbon hybrid composites and oil palm EFB/epoxy composites. The tensile strength for carbon/oil palm EFB/carbon hybrid composites is 93.6 MPa and the tensile modulus for carbon/oil palm EFB/carbon hybrid composites is 6.5 GPa. The elongation at break for Kevlar/oil palm EFB/Kevlar hybrid composites is 3.6%.
Mechanical Properties of a High Lead Glass Used in the Mars Organic Molecule Analyzer
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Smith, Nathan A.; Ersahin, Akif
2015-01-01
The elastic constants, strength, fracture toughness, slow crack growth parameters, and mirror constant of a high lead glass supplied as tubes and funnels were measured using ASTM International (formerly ASTM, American Society for Testing and Materials) methods and modifications thereof. The material exhibits lower Young's modulus and slow crack growth exponent as compared to soda-lime silica glass. Highly modified glasses exhibit lower fracture toughness and slow crack growth exponent than high purity glasses such as fused silica.
Mechanical properties of kenaf composites using dynamic mechanical analysis
NASA Astrophysics Data System (ADS)
Loveless, Thomas A.
Natural fibers show potential to replace glass fibers in thermoset and thermoplastic composites. Kenaf is a bast-type fiber with high specific strength and great potential to compete with glass fibers. In this research kenaf/epoxy composites were analyzed using Dynamic Mechanical Analysis (DMA). A three-point bend apparatus was used in the DMA testing. The samples were tested at 1 hertz, at a displacement of 10 ?m, and at room temperature. The fiber volume content of the kenaf was varied from 20% - 40% in 5% increments. Ten samples of each fiber volume fraction were manufactured and tested. The flexural storage modulus, the flexural loss modulus, and the loss factor were reported. Generally as the fiber volume fraction of kenaf increased, the flexural storage and flexural loss modulus increased. The loss factor remained relatively constant with increasing fiber volume fraction. Woven and chopped fiberglass/epoxy composites were manufactured and tested to be compared with the kenaf/epoxy composites. Both of the fiberglass/epoxy composites reported higher flexural storage and flexural loss modulus values. The kenaf/epoxy composites reported higher loss factor values. The specific flexural storage and specific flexural loss modulus were calculated for both the fiberglass and kenaf fiber composites. Even though the kenaf composites reported a lower density, the fiberglass composites reported higher specific mechanical properties.
NASA Astrophysics Data System (ADS)
Ibrahim, Mustafa K.; Hamzah, E.; Saud, Safaa N.; Nazim, E. M.; Bahador, A.
2017-12-01
Ti-Ni and Ti-Ni-Ce shape memory alloys (SMAs) were successfully fabricated by microwave sintering. The improvement of the mechanical properties especially the elastic modulus is the most important criterion in this research. The high elastic modulus problems are the most critical issues frequently encountered in hard tissue replacement applications. The effect of Ce addition with four atomic percentages (0 %, 0.19 %, 0.385 % and, 1.165 %) on the microstructure, phase composition, transformation temperatures and mechanical properties was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Differential Scanning Calorimeter (DSC), and compression test. The microstructure shows plates-like with needles-like inside the titanium-rich region. The compression strain was improved, but reduces the compression strength. The addition of cerium improved the properties by reducing the elastic modulus to be very close to the natural human bone, also the microwave sintering gives TiNi SMAs with low elastic modulus comparing with other methods. Based on the results, the 0.385 at. % Ce exhibited a remarkable highest compressive strain and lower elastic modulus compared with the other percentages. In conclusion, the present results indicate that Ti-Ni-Ce SMAs could be a potential alternative to improve Ti-51 at %Ni SMAs for certain biomedical applications.
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Jr., Thomas E.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
Continuous fiber unidirectional polymer matrix composites (PMCs) can exhibit significant local variations in fiber volume fraction as a result of processing conditions that can lead to further local differences in material properties and failure behavior. In this work, the coupled effects of both local variations in fiber volume fraction and the empirically-based statistical distribution of fiber strengths on the predicted longitudinal modulus and local tensile strength of a unidirectional AS4 carbon fiber/ Hercules 3502 epoxy composite were investigated using the special purpose NASA Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC); local effective composite properties were obtained by homogenizing the material behavior over repeating units cells (RUCs). The predicted effective longitudinal modulus was relatively insensitive to small (8%) variations in local fiber volume fraction. The composite tensile strength, however, was highly dependent on the local distribution in fiber strengths. The RUC-averaged constitutive response can be used to characterize lower length scale material behavior within a multiscale analysis framework that couples the NASA code FEAMAC and the ABAQUS finite element solver. Such an approach can be effectively used to analyze the progressive failure of PMC structures whose failure initiates at the RUC level. Consideration of the effect of local variations in constituent properties and morphologies on progressive failure of PMCs is a central aspect of the application of Integrated Computational Materials Engineering (ICME) principles for composite materials.
Experimental study of self-compacted concrete in hardened state
NASA Astrophysics Data System (ADS)
Parra Costa, Carlos Jose
The main aim of this work is to investigate the hardened behaviour of Self-Compacting Concrete (SCC). Self compacting Concrete is a special concrete that can flow in its gravity and fill in the formwork alone to its self-weight, passing through the bars and congested sections without the need of any internal or external vibration, while maintaining adequate homogeneity. SCC avoids most of the materials defects due to bleeding or segregation. With regard to its composition, SCC consists of the same components as traditional vibrated concrete (TC), but in different proportions. Thus, the high amount of superplasticizer and high powder content have to taken into account. The high workability of SCC does not allow to use traditional methods for measuring the fresh state properties, so new tests has developed (slump-flow, V-funnel, L-box, and others). The properties of the hardened SCC, which depend on the mix design, should be different from traditional concrete. In order to study the possible modifications of SCC hardened state properties, a review of the bibliography was done. The state of art was focused on the mechanical behaviour (compressive strength, tension strength and elastic modulus), on bond strength of reinforcement steel, and on material durability. The experimental program consisted in the production of two types of concretes: Self-Compacting Concrete and Traditional Concrete. Four different dosages was made with three different water/cement ratio and two strength types of Portland cement, in order to cover the ordinary strength used in construction. Based on this study it can be concluded that compressive strength of SCC and TC are similar (the differences are lesser than 10%), whereas the tensile strength of TC are up to 18% higher. The values of elastic modulus of both concrete are similar. On the other hand, in the ultimate state the bond strength of SCC and TC is similar, although SCC shows higher bond stiffness in the serviceability state (initial displacement). Thus SCC reaches higher average bond strength. Although the variation in bond strength at different elevations, due to top-bar effect, is also observed in SCC the extent is less significant than that of TC. Finally, tests show that water depth penetration under pressure is much lower for SCC than for TC.
Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders.
Liu, Yong; Li, Kaiyang; Wu, Hong; Song, Min; Wang, Wen; Li, Nianfeng; Tang, Huiping
2015-11-01
In this work, powder metallurgical (PM) Ti-Ta alloys were sintered using blended elemental powders. A dual structure, consisting of Ti-rich and Ta-rich zones, was formed due to the insufficient diffusion between Ti and Ta powders. The microstructure, mechanical properties and in vitro biological properties of the alloys were studied. Results indicated that the alloys have inhomogenous microstructures and compositions, but the grain structures were continuous from the Ti-rich zone to the Ta-rich zone. The Ta-rich zone exhibited a much finer grain size than the Ti-rich zone. The alloys had a high relative density in the range of 95-98%, with the porosity increasing with the content of Ta due to the increased difficulty in sintering and the formation of Kirkendall pores. The alloys had a good combination of low elastic modulus and high tensile strength. The strength of alloys was almost doubled compared to that of the ingot metallurgy alloys with the same compositions. The low elastic modulus was due to the residual pores and the alloying effect of Ta, while the high tensile strength resulted from the strengthening effects of solid solution, fine grain size and α phase. The alloys had a high biocompatibility due to the addition of Ta, and were suitable for the attachment of cells due to the surface porosity. It was also indicated that PM Ti-(20-30)Ta alloys are promising for biomedical applications after the evaluations of both the mechanical and the biological properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Advanced Class of FML on the Base Al-Li Alloy 1441 with Lower Density
NASA Astrophysics Data System (ADS)
Antipov, V. V.; Senatorova, O. G.; Lukina, N. F.
Structure, composition, properties combination of specimens and components, a number of technological parameters for production of advanced FML based on high-modulus Al-Li 1441 alloy (E 79 GPa) with reduced density (d 2.6 g/m3) and optimized adhesive prepreg reinforced with high-strength high-modulus VMP glass fibres are described. Service life 1441 alloy provides the possibility of manufacture of thin sheets (up to 0.3 mm), clad and unclad. Moreover, some experience on the usage of 1441 T1, T11 sheets and shapes in Be 200 and Be 103 aircraft was accumulated. The class of FML materials based on Al-Li alloy provide an 5% improvement in weight efficiency and stiffness of skin structures as compared with those made from FML with conventional Al-Cu-Mg (2024T3 a.o.) and Al-Zn-Mg-Cu (7475T76 a.o.) alloys.
Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites
NASA Astrophysics Data System (ADS)
Nurazzi, N. Mohd; Khalina, A.; Sapuan, S. Mohd; Rahmah, M.
2018-04-01
This study investigates the effect of fibre hybridization for sugar palm yarn fibre with glass fibre reinforced with unsaturated polyester composites. In this work, unsaturated polyester resin are reinforced with fibre at a ratio of 70:30 wt% and 60:40 wt%. The hybrid composites were characterized in terms of physical (density and water absorption), mechanical (tensile, flexural and compression) and thermal properties through thermal gravimetry analysis (TGA). Density determination showed that density increased with higher wt% of glass fibre. The inherently higher density of glass fibre increased the density of hybrid composite. Resistance to water absorption is improved upon the incorporation of glass fibre and the hybrid composites were found to reach equilibrium absorption at days 4 and 5. As for mechanical performance, the highest tensile strength, tensile modulus, flexural strength, flexural modulus and compression strength were obtained from 40 wt% of fibres reinforcement with ratio of 50:50 wt% of sugar palm yarn fibre and glass fibre reinforced unsaturated polyester composites. The increase of glass fibre loading had a synergistic effect on the mechanical properties to the composites structure due to its superior strength and modulus. The thermal stability of hybrid composites was improved by the increase of onset temperature and the reduction of residues upon increase in temperature.
El-Malah, Yasser; Nazzal, Sami
2013-01-01
The objective of this work was to study the dissolution and mechanical properties of fast-dissolving films prepared from a tertiary mixture of pullulan, polyvinylpyrrolidone and hypromellose. Disintegration studies were performed in real-time by probe spectroscopy to detect the onset of film disintegration. Tensile strength and elastic modulus of the films were measured by texture analysis. Disintegration time of the films ranged from 21 to 105 seconds whereas their mechanical properties ranged from approximately 2 to 49 MPa for tensile strength and 1 to 21 MPa% for young's modulus. After generating polynomial models correlating the variables using a D-Optimal mixture design, an optimal formulation with desired responses was proposed by the statistical package. For validation, a new film formulation loaded with diclofenac sodium based on the optimized composition was prepared and tested for dissolution and tensile strength. Dissolution of the optimized film was found to commence almost immediately with 50% of the drug released within one minute. Tensile strength and young's modulus of the film were 11.21 MPa and 6, 78 MPa%, respectively. Real-time spectroscopy in conjunction with statistical design were shown to be very efficient for the optimization and development of non-conventional intraoral delivery system such as fast dissolving films.
NASA Astrophysics Data System (ADS)
Wan, L. F.; Beckman, S. P.
2012-10-01
The orthorhombic boride crystal family XYB14, where X and Y are metal atoms, plays a critical role in a unique class of superhard compounds, yet there have been no studies aimed at understanding the origin of the mechanical strength of this compound. We present here the results from a comprehensive investigation into the fracture strength of the archetypal AlLiB14 crystal. First principles, ab initio, methods are used to determine the ideal brittle cleavage strength for several high-symmetry orientations. The elastic tensor and the orientation-dependent Young’s modulus are calculated. From these results the lower bound fracture strength of AlLiB14 is predicted to be between 29 and 31 GPa, which is near the measured hardness reported in the literature. These results indicate that the intrinsic strength of AlLiB14 is limited by the interatomic B-B bonds that span between the B layers.
Korkut, Süleyman; Akgül, Mehmet; Dündar, Turker
2008-04-01
Heat treatment is often applied to wood species to improve their dimensional stability. This study examined the effect of heat treatment on certain mechanical properties of Scots pine (Pinus sylvestris L.), which has industrially high usage potential and large plantations in Turkey. Wood specimens obtained from Bolu, Turkey, were subjected to heat treatment under atmospheric pressure at varying temperatures (120, 150 and 180 degrees C) for varying durations (2, 6 and 10h). The test results of heat-treated Scots pine and control samples showed that technological properties including compression strength, bending strength, modulus of elasticity in bending, janka-hardness, impact bending strength and tension strength perpendicular to grain suffered with heat treatment, and increase in temperature and duration further diminished technological strength values of the wood specimens.
Electron beam surface modifications in reinforcing and recycling of polymers
NASA Astrophysics Data System (ADS)
Czvikovszky, T.; Hargitai, H.
1997-08-01
Thermoplastic polymers can be fiber-reinforced in the recycling step through a reactive modification of the interface between the polymer matrix and fiber. Recollected automobile bumpers made of polypropylene copolymers have been reinforced during the reprocessing with eight different types of high-strength fibers, with waste cord-yarns of the tire industry. A thin layer reactive interface of acrylic oligomers has been applied and activated through low energy (175 keV) electron beam (EB). The upcycling (upgrading recycling) resulted in a series of extrudable and injection-mouldable, fiber-reinforced thermoplastic of enhanced bending strength, increased modulus of elasticity and acceptable impact strength. EB treatment has been compared with conventional methods.
Evaluation of Mechanical Properties of Plywood Treated with a new Wood Preservative (CEB) Chemical
NASA Astrophysics Data System (ADS)
Kalawate, Aparna; Shahoo, Shadhu Charan; Khatua, Pijus Kanti; Das, Himadri Sekhar
2017-04-01
The objective of this study was to explore the physical and mechanical properties of the plywood made with phenolic glue and rubber wood as core veneer with CEB as a wood preservative. The studied properties were glue shear strength in dry, wet mycological, modulus of elasticity, modulus of rupture and tensile strength in parallel to grain direction as per IS:1734 part-4, 11 and 9 (1983) respectively. Results of the above mentioned tests were compared with the prescribed values given in IS 710-2010 and results revealed that samples conformed the prescribed values.
NASA Astrophysics Data System (ADS)
Fu, Jun; Liu, Zhihong; Liu, Jie
2018-01-01
Asphalt Emulsion—Cement Concrete (AECC) is currently considered as a typical semi-flexibility material. One of the disadvantages of this material is brittle fracture and lacking ductility. This study aims at accelerating the basic mechanical properties of AECC using fibers and different aggregates size. The mix of AECC was introduced and the different content of fibers and aggregates size were studied. The results showed that the smaller aggregates size could improve the young’s modulus and compressive strength as well as fiber. The modulus-compressive strength ratio of fiber reinforced AECC is always below 500.
Effect of various filler types on the properties of porous asphalt mixture
NASA Astrophysics Data System (ADS)
Shukry, Nurul Athma Mohd; Hassan, Norhidayah Abdul; Ezree Abdullah, Mohd; Rosli Hainin, Mohd; Yusoff, Nur Izzi Md; Putra Jaya, Ramadhansyah; Mohamed, Azman
2018-04-01
The open structure of porous asphalt exposes a large surface area to the effects of air and water, which accelerates the oxidation rate and affects the coating properties of the binder. These factors may influence the adhesive strength of the binder-aggregate and lead to cohesive failure within the binder film, contributing to aggregate stripping and moisture damage. The addition of fillers in asphalt mixtures has been identified to stiffen the asphalt binder and improve mixture strength. This study investigates the effect of various filler types (hydrated lime, cement, and diatomite) on the properties of porous asphalt. Compacted samples of porous asphalt were prepared using Superpave gyratory compactor at the target air void content of 21%. Each sample was incorporated with 2% of filler and polymer-modified binder of PG76. The morphology and chemical composition of fillers were investigated with a field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) analysis. The properties of porous asphalt were evaluated in terms of permeability, abrasion loss, resilient modulus, and indirect tensile strength. All mixtures were found to show high permeability rates. Mixtures with hydrated lime exhibited lower abrasion loss compared to mixtures with cement and diatomite. The use of diatomite increases the resistance of the mixtures to rutting and moisture damage compared to other fillers as shown by the enhanced resilient modulus and indirect tensile strength.
Configuration and Calibration of High Temperature Furnaces for Testing Ceramic Matrix Composites
2014-10-01
Actual Furnace Cavity Stainless Steel Mesh Cage For Electrical Connections (both sides) High Temperature Power Lead Clamp Furnace Control TC’s Power... tests generate the basic properties such as modulus (E), ultimate tensile strength (UTS), proportional limit (PL), strain at failure (f), as well as...stress- strain behavior. Each material was tested at room temperature, at the maximum use temperature for the CMC system (as determined by the CMC
Summer research fellowship program
NASA Technical Reports Server (NTRS)
Darden, G. C. (Compiler)
1979-01-01
Significant accomplishments reported include uniaxial compression tests of high strength graphite-epoxy laminates. The results show that Young's modulus and fracture stress depend upon the specimen's dimensions. Also presented are: an investigation of robot vision; estimation of spectral signatures of algae from the airborne lidar oceanographic probing equipment; impact tests on polymeric compounds; calibration of quartz crystal microbalance; and a profile of naturally occurring hydrocarbons.
Cho, Yi Je; Lee, Wookjin; Park, Yong Ho
2017-01-01
The elastoplastic deformation behaviors of hollow glass microspheres/iron syntactic foam under tension were modeled using a representative volume element (RVE) approach. The three-dimensional microstructures of the iron syntactic foam with 5 wt % glass microspheres were reconstructed using the random sequential adsorption algorithm. The constitutive behavior of the elastoplasticity in the iron matrix and the elastic-brittle failure for the glass microsphere were simulated in the models. An appropriate RVE size was statistically determined by evaluating elastic modulus, Poisson’s ratio, and yield strength in terms of model sizes and boundary conditions. The model was validated by the agreement with experimental findings. The tensile deformation mechanism of the syntactic foam considering the fracture of the microspheres was then investigated. In addition, the feasibility of introducing the interfacial deboning behavior to the proposed model was briefly investigated to improve the accuracy in depicting fracture behaviors of the syntactic foam. It is thought that the modeling techniques and the model itself have major potential for applications not only in the study of hollow glass microspheres/iron syntactic foams, but also for the design of composites with a high modulus matrix and high strength reinforcement. PMID:29048346
Modeling the Propagation of Shock Waves in Metals
NASA Astrophysics Data System (ADS)
Howard, W. Michael
2005-07-01
We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P ˜300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and bulk modulus depends on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and bulk modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that gives the correct detonation velocity and C-J pressure (P ˜ 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov. We also discuss the dependence of our results upon our material model for aluminum.
Jameson, John; Smith, Peter; Harris, Gerald
2015-01-01
Osteogenesis Imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64–68% lower in the transverse vs. longitudinal beams (P<0.001, linear mixed model). Vascular porosity ranged between 3–42% of total bone volume. Longitudinal properties were associated negatively with porosity (P≤0.006, linear regressions). Mechanical properties, however, were not associated with osteocyte lacuna density or volumetric tissue mineral density (P≥0.167). Bone properties and structural parameters were not associated significantly with donor age (p≥0.225, linear mixed models). This study presents novel data regarding bone material strength in children with osteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight towards understanding bone fragility and the role of intracortical porosity on the strength of bone tissue in children with osteogenesis imperfecta. PMID:24928496
Albert, Carolyne; Jameson, John; Smith, Peter; Harris, Gerald
2014-09-01
Osteogenesis imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64-68% lower in the transverse vs. longitudinal beams (P<0.001, linear mixed model). Vascular porosity ranged between 3 and 42% of total bone volume. Longitudinal properties were associated negatively with porosity (P≤0.006, linear regressions). Mechanical properties, however, were not associated with osteocyte lacuna density or volumetric tissue mineral density (P≥0.167). Bone properties and structural parameters were not associated significantly with donor age (P≥0.225, linear mixed models). This study presents novel data regarding bone material strength in children with osteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight toward understanding bone fragility and the role of intracortical porosity on the strength of bone tissue in children with osteogenesis imperfecta. Copyright © 2014 Elsevier Inc. All rights reserved.
Structural design parameters of current WSDOT mixtures.
DOT National Transportation Integrated Search
2013-06-01
The AASHTO LRFD, as well as other design manuals, has specifications that estimate the structural performance of a concrete mixture with regard to compressive strength, tensile strength, and deformation-related properties such as the modulus of elast...
Optimization of mechanical strength of titania fibers fabricated by direct drawing
NASA Astrophysics Data System (ADS)
Hanschmidt, Kelli; Tätte, Tanel; Hussainova, Irina; Part, Marko; Mändar, Hugo; Roosalu, Kaspar; Chasiotis, Ioannis
2013-11-01
Nanostructured polycrystalline titania (TiO2) microfibers were produced by direct drawing from visco-elastic alkoxide precursors. The fiber crystallinity and grain size were shown to depend on post-treatment calcination temperature. Tensile tests with individual fibers showed strong sensitivity of the elastic modulus and the tensile strength to microstructural details of the fibers. The elastic modulus of as-fabricated fibers increased about 10 times after calcination at 700 ∘C, while the strain at failure remained almost the same at ˜1.4 %. The highest tensile strength of more than 800 MPa was exhibited by nanoscale grained fibers with a bimodal grain size distribution consisting of rutile grains embedded into an anatase matrix. This structure is believed to have reduced the critical defect size, and thus increased the tensile strength. The resultant fibers showed properties that were appropriate for reinforcement of different matrixes.
Brown, Christopher U; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan
2016-08-01
Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser-powder-bed-fusion additive manufacturing machines. The tensile specimens were heat treated and tensile tests conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to 4 times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure.
Mechanical properties of new dental pulp-capping materials.
Nielsen, Matthew J; Casey, Jeffery A; VanderWeele, Richard A; Vandewalle, Kraig S
2016-01-01
The mechanical properties of pulp-capping materials may affect their resistance to fracture during placement of a final restorative material or while supporting an overlying restoration over time. The purpose of this study was to compare the compressive strength, flexural strength, and flexural modulus of 2 new pulp-capping materials (TheraCal LC and Biodentine), mineral trioxide aggregate (MTA), and calcium hydroxide over time. Specimens were created in molds and tested to failure in a universal testing machine after 15 minutes, 3 hours, and 24 hours. The MTA specimens did not set at 15 minutes. At all time periods, TheraCal LC had the greatest compressive and flexural strengths. After 3 and 24 hours, Biodentine had the greatest flexural modulus. TheraCal LC had greater early strength to potentially resist fracture during immediate placement of a final restorative material. Biodentine had greater stiffness after 3 hours to potentially provide better support of an overlying restoration under function over time.
Brown, Christopher U.; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan
2017-01-01
Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser-powder-bed-fusion additive manufacturing machines. The tensile specimens were heat treated and tensile tests conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to 4 times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure. PMID:28243032
NASA Astrophysics Data System (ADS)
Brown, Christopher U.; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan
2016-08-01
Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser powder bed fusion-additive manufacturing machines. The tensile specimens were heat treated and tensile tests were conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to four times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure.
High Elastic Moduli of a 54Al2O3-46Ta2O5 Glass Fabricated via Containerless Processing
Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki; Yanaba, Yutaka; Mizoguchi, Teruyasu; Umada, Takumi; Okamura, Kohei; Kato, Katsuyoshi; Watanabe, Yasuhiro
2015-01-01
Glasses with high elastic moduli have been in demand for many years because the thickness of such glasses can be reduced while maintaining its strength. Moreover, thinner and lighter glasses are desired for the fabrication of windows in buildings and cars, cover glasses for smart-phones and substrates in Thin-Film Transistor (TFT) displays. In this work, we report a 54Al2O3-46Ta2O5 glass fabricated by aerodynamic levitation which possesses one of the highest elastic moduli and hardness for oxide glasses also displaying excellent optical properties. The glass was colorless and transparent in the visible region, and its refractive index nd was as high as 1.94. The measured Young’s modulus and Vickers hardness were 158.3 GPa and 9.1 GPa, respectively, which are comparable to the previously reported highest values for oxide glasses. Analysis made using 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy revealed the presence of a significantly large fraction of high-coordinated Al in addition to four-coordinated Al in the glass. The high elastic modulus and hardness are attributed to both the large cationic field strength of Ta5+ ions and the large dissociation energies per unit volume of Al2O3 and Ta2O5. PMID:26468639
Reinforced nanohydroxyapatite/polyamide66 scaffolds by chitosan coating for bone tissue engineering.
Huang, Di; Zuo, Yi; Zou, Qin; Wang, Yanying; Gao, Shibo; Wang, Xiaoyan; Liu, Haohuai; Li, Yubao
2012-01-01
High porosity of scaffold is always accompanied by poor mechanical property; the aim of this study was to enhance the strength and modulus of the highly porous scaffold of nanohydroxyapatite/polyamide66 (n-HA/PA66) by coating chitosan (CS) and to investigate the effect of CS content on the scaffold physical properties and cytological properties. The results show that CS coating can reinforce the scaffold effectively. The compress modulus and strength of the CS coated n-HA/PA66 scaffolds are improved to 32.71 and 2.38 MPa, respectively, being about six times and five times of those of the uncoated scaffolds. Meanwhile, the scaffolds still exhibit a highly interconnected porous structure and the porosity is approximate about 78%, slightly lower than the value (84%) of uncoated scaffold. The cytological properties of scaffolds were also studied in vitro by cocultured with osteoblast-like MG63 cells. The cytological experiments demonstrate that the reinforced scaffolds display favorable cytocompatibility and have no significant difference with the uncoated n-HA/PA66 scaffolds. The CS reinforced n-HA/PA66 scaffolds can meet the basic mechanical requirement of bone tissue engineering scaffold, presenting a potential for biomedical application in bone reconstruction and repair. Copyright © 2011 Wiley Periodicals, Inc.
Simulating Hydraulic Fracturing: Failure in soft versus hard rocks
NASA Astrophysics Data System (ADS)
Aleksans, J.; Koehn, D.; Toussaint, R.
2017-12-01
In this contribution we discuss the dynamic development of hydraulic fractures, their evolution and the resulting seismicity during fluid injection in a coupled numerical model. The model describes coupling between a solid that can fracture dynamically and a compressible fluid that can push back at the rock and open fractures. With a series of numerical simulations we show how the fracture pattern and seismicity change depending on changes in depth, injection rate, Young's Modulus and breaking strength. Our simulations indicate that the Young's Modulus has the largest influence on the fracture dynamics and also the related seismicity. Simulations of rocks with a Young's modulus smaller than 10 GPa show dominant mode I failure and a growth of fracture aperture with a decrease in Young's modulus. Simulations of rocks with a higher Young's modulus than 10 GPa show fractures with a constant aperture and fracture growth that is mainly governed by a growth in crack length and an increasing amount of mode II failure. We propose that two distinct failure regimes are observed in the simulations, above 10 GPa rocks break with a constant critical stress intensity factor whereas below 10 GPa they break reaching a critical cohesion, i.e. a critical tensile strength. These results are very important for the prediction of fracture dynamics and seismicity during fluid injection, especially since we see a transition from one failure regime to another at around 10 GPa, a Young's modulus that lies in the middle of possible values for natural shale rocks.
Uzun, Gülay; Keyf, Filiz
2003-04-01
Fracture resistance of provisional restorations is an important clinical concern. This property is directly related to transverse strength. Strengthening of provisional fixed partial dentures may result from reinforcement with various fiber types. This study evaluated the effect of fiber type and water storage on the transverse strength of a commercially available provisional resin under two different conditions. The denture resin was reinforced with either glass or aramid fiber or no reinforcement was used. Uniform samples were made from a commercially available autopolymerizing provisional fixed partial denture resin. Sixteen bar-shaped specimens (60 x 10 x 4 mm) were reinforced with pre-treated epoxy resin-coated glass fibers, with aramid fibers, or with no fibers. Eight specimens of each group, with and without fibers, were tested after 24 h of fabrication (immediate group), and after 30-day water storage. A three-point loading test was used to measure the transverse strength, the maximal deflection, and the modulus of elasticity. The Kruskal-Wallis Analysis of Variance was used to examine differences among the three groups, and then the Mann-Whitney U Test and Wilcoxon Signed Ranks Test were applied to determine pair-wise differences. The transverse strength and the maximal deflection values in the immediate group and in the 30-day water storage group were not statistically significant. In the group tested immediately, the elasticity modulus was found to be significant (P = 0.042). In the 30-day water storage group, all the values were statistically insignificant. The highest transverse strength was displayed by the glass-reinforced resin (66.25MPa) in the immediate group. The transverse strength value was 62.04MPa for the unreinforced samples in the immediate group. All the specimens exhibited lower transverse strength with an increase in water immersion time. The transverse strength value was 61.13 MPa for the glass-reinforced resin and was 61.24 MPa for the unreinforced resin. The aramid-reinforced resin decreased from 62.29 to 58.77 MPa. The addition of fiber reinforcement enhanced the physical properties (the transverse strength, the maximal deflection, the modulus of elasticity) of the processed material over that seen with no addition of fiber. Water storage did not statistically affect the transverse strength of the provisional denture resin compared to that of the unreinforced resin. The transverse strength was lowered at water storage but it was not statistically significant. The transverse strength was enhanced by fiber addition compared to the unreinforced resin. The glass fiber was superior to the other fiber. Also the modulus of elasticity was enhanced by fiber addition compared to the unreinforced resin.
Chang, Chang; Nickerson, Michael T
2015-01-01
Biodegradable edible films prepared using proteins are both economically and environmentally important to the food packaging industry relative to traditional petroleum-derived synthetic materials. In the present study, the mechanical and water vapor barrier properties of casted canola protein isolate edible films were investigated as a function of protein (5.0% and 7.5%) and glycerol (30%, 35%, 40%, 45%, and 50%) content. Specifically, tensile strength and elongation, elastic modulus, puncture strength and deformation, opacity, and water vapor permeability were measured. Results indicated that tensile strength, puncture strength, and elastic modulus decreased, while tensile elongation and puncture deformation values increased as glycerol concentration increased for both 5.0% and 7.5% canola protein isolate films. Furthermore, tensile strength, puncture strength, and elastic modulus values were found to increase at higher protein concentrations within the canola protein isolate films, whereas puncture deformation values decreased. Tensile elongation was found to be similar for both canola protein isolate protein levels. Canola protein isolate films became more transparent with increasing of glycerol concentration and decreasing of canola protein isolate concentration. Water vapor permeability value was also found to increase with increasing glycerol and protein contents. Overall, results indicated that canola protein isolate films were less brittle, more malleable and transparent, and had greater water vapor permeability at higher glycerol levels. However, as protein level increased, canola protein isolate films were more brittle, less malleable and more opaque, and also had increased water vapor permeability. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Physical properties of self-, dual-, and light-cured direct core materials.
Rüttermann, Stefan; Alberts, Ian; Raab, Wolfgang H M; Janda, Ralf R
2011-08-01
The objective of this study is to evaluate flexural strength, flexural modulus, compressive strength, curing temperature, curing depth, volumetric shrinkage, water sorption, and hygroscopic expansion of two self-, three dual-, and three light-curing resin-based core materials. Flexural strength and water sorption were measured according to ISO 4049, flexural modulus, compressive strength, curing temperature, and curing depth according to well-proven, literature-known methods, and the volumetric behavior was determined by the Archimedes' principle. ANOVA was calculated to find differences between the materials' properties, and correlation of water sorption and hygroscopic expansion was analysed according to Pearson (p < 0.05). Clearfil Photo Core demonstrated the highest flexural strength (125 ± 12 MPa) and curing depth (15.2 ± 0.1 mm) and had the highest flexural modulus (≈12.6 ± 1.2 GPa) concertedly with Multicore HB. The best compressive strength was measured for Voco Rebilda SC and Clearfil DC Core Auto (≈260 ± 10 MPa). Encore SuperCure Contrast had the lowest water sorption (11.8 ± 3.3 µg mm(-3)) and hygroscopic expansion (0.0 ± 0.2 vol.%). Clearfil Photo Core and Encore SuperCure Contrast demonstrated the lowest shrinkage (≈2.1 ± 0.1 vol.%). Water sorption and hygroscopic expansion had a very strong positive correlation. The investigated core materials significantly differed in the tested properties. The performance of the materials depended on their formulation, as well as on the respective curing process.
Composite Structural Materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.
1984-01-01
The development and application of filamentary composite materials, is considered. Such interest is based on the possibility of using relatively brittle materials with high modulus, high strength, but low density in composites with good durability and high tolerance to damage. Fiber reinforced composite materials of this kind offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been made since the initial developments in the mid 1960's. There were only limited applied to the primary structure of operational vehicles, mainly as aircrafts.
Wind turbine with automatic pitch and yaw control
Cheney, Jr., Marvin Chapin; Spierings, Petrus A. M.
1978-01-01
A wind turbine having a flexible central beam member supporting aerodynamic blades at opposite ends thereof and fabricated of uni-directional high tensile strength material bonded together into beam form so that the beam is lightweight, and has high tensile strength to carry the blade centrifugal loads, low shear modulus to permit torsional twisting thereof for turbine speed control purposes, and adequate bending stiffness to permit out-of-plane deflection thereof for turbine yard control purposes. A selectively off-set weighted pendulum member is pivotally connected to the turbine and connected to the beam or blade so as to cause torsional twisting thereof in response to centrifugal loading of the pendulum member for turbine speed control purposes.
Thermal and mechanical properties of TPU/PBT reinforced by carbon fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jintao; Liu, Huanyu; Lu, Xiang
2016-03-09
In this study, thermal, mechanical properties and processability were performed on a series of carbon fiber (CF) filled thermoplastic polyurethane (TPU)/poly (butylene terephthalate) (PBT) composites to identify the effect of CF weight fraction on the properties of TPU/PBT. Scanning Electronic Microscope (SEM) show that CFs are uniformly dispersed in TPU/PBT matrix and there are no agglomerations. Melt flow index (MFI) show that the melt viscosity increased with the CF loading. Thermogravimetric analysis (TGA) revealed that the introduction of CF into organic materials tend to improve their thermal stability. The mechanical properties indicated that tensile strength and modulus, flexural strength andmore » modulus, improved with an increase in CF loading, but the impact strength decreased by the loading of CF.« less
Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites
NASA Technical Reports Server (NTRS)
Haque, A.; Jeelani, S.
1992-01-01
The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range of 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming.
Evaluation of Mechanical Properties of Glass Fiber Posts Subjected to Laser Surface Treatments.
Barbosa Siqueira, Carolina; Spadini de Faria, Natália; Raucci-Neto, Walter; Colucci, Vivian; Alves Gomes, Erica
2016-10-01
The aim of this study was to evaluate the influence of laser irradiation on flexural strength, elastic modulus, and surface roughness and morphology of glass fiber posts (GFPs). Laser treatment of GFPs has been introduced to improve its adhesion properties. A total of 40 GFPs were divided into 4 groups according to the irradiation protocol: GC-no irradiation, GYAG-irradiation with erbium:yttrium-aluminum-garnet [Er:YAG], GCR-irradiation with erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG), and GDI-irradiation with diode laser. The GFP roughness and morphology were evaluated through laser confocal microscopy before and after surface treatment. Three-point bending flexural test measured flexural strength and elastic modulus. Data about elastic modulus and flexural strength were subjected to one-way ANOVA and Bonferroni test (p < 0.05). The effect of roughness was evaluated using the linear mixed effects model and Bonferroni test (p < 0.05). Laser treatment changed surface roughness in the groups GCR (p = 0.000) and GDI (p = 0.007). The mean flexural strength in GYAG (995.22 MPa) was similar to that in GC (980.48 MPa) (p = 1.000) but different from that in GCR (746.83 MPa) and that in GDI (691.34 MPa) (p = 0.000). No difference was found between the groups GCR and GDI (p = 0.86). For elastic modulus: GYAG (24.47 GPa) was similar to GC (25.92 GPa) (p = 1.000) but different from GCR (19.88 GPa) (p = 0.002) and GDI (17.20 GPa) (p = 0.000). The different types of lasers, especially Er,Cr:YSGG and 980 ηm diode, influenced the mechanical properties of GFPs.
Elastomer modulus and dielectric strength scaling with sample thickness
NASA Astrophysics Data System (ADS)
Larson, Kent
2015-04-01
Material characteristics such as adhesion and dielectric strength have well recognized dependencies on material thickness. There is disagreement, however, on the scale: the long held dictum that dielectric strength is inversely proportional to the square root of sample thickness has been shown to not always hold true for all materials, nor for all possible thickness regions. In D-EAP applications some studies have postulated a "critical thickness" below which properties show significantly less thickness dependency. While a great deal of data is available for dielectric strength, other properties are not nearly as well documented as samples get thinner. In particular, elastic modulus has been found to increase and elongation to decrease as sample thickness is lowered. This trend can be observed experimentally, but has been rarely reported and certainly does not appear in typical suppliers' product data sheets. Both published and newly generated data were used to study properties such as elastic modulus and dielectric strength vs sample thickness in silicone elastomers. Several theories are examined to explain such behavior, such as the impact of defect size and of common (but not well reported) concentration gradients that occur during elastomer curing that create micron-sized layers at the upper and lower interfaces with divergent properties to the bulk material. As Dielectric Electro-Active Polymer applications strive to lower and lower material thickness, changing mechanical properties must be recognized and taken into consideration for accurate electro-mechanical predictions of performance.
Mechanical properties of the human scalp in tension.
Falland-Cheung, Lisa; Scholze, Mario; Lozano, Pamela F; Ondruschka, Benjamin; Tong, Darryl C; Brunton, Paul A; Waddell, J Neil; Hammer, Niels
2018-08-01
Mechanical properties of the human scalp have not been investigated to a great extent with limited information available. The purpose of this study was to provide new baseline material data for human scalp tissue of various ages, which can be applied to experimental and constitutive models, such as in the area of impact biomechanics. This study used specimens from the left and right temporal, fronto-parietal and occipital regions of the human scalp. It investigated the tensile behavior of scalp tissue using tissues harvested from unfixed, fresh cadavers. These samples were subjected to an osmotic stress analysis and upon testing, cyclic loading followed by stretching until failure in a universal testing machine. Strain evaluation was conducted using digital image correlation in a highly standardized approach. Elastic modulus, tensile strength, strain at maximum load and strain to failure were evaluated computationally. No significant differences were observed comparing the tensile strength between males and females. In contrast to that, a sex-dependent difference was found for the elastic modulus of the occipital scalp region and for the elongation properties. Additionally, regional differences within the male group, as well as an age dependent correlation for females were found in the elastic modulus and tensile strength. Scanning electron microscope analyses have shown the ultrastructural failure patterns, indicated by damaged keratin plates, as well as partially disrupted and retraced collagens at the failure site. The novel data obtained in this study could add valuable information to be used for modeling purposes, as well as provide baseline data for simulant materials and comparisons of tissue properties following head injury or forensic investigations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Spider silk reinforced by graphene or carbon nanotubes
NASA Astrophysics Data System (ADS)
Lepore, Emiliano; Bosia, Federico; Bonaccorso, Francesco; Bruna, Matteo; Taioli, Simone; Garberoglio, Giovanni; Ferrari, Andrea C.; Pugno, Nicola Maria
2017-09-01
Spider silk has promising mechanical properties, since it conjugates high strength (~1.5 GPa) and toughness (~150 J g-1). Here, we report the production of silk incorporating graphene and carbon nanotubes by spider spinning, after feeding spiders with the corresponding aqueous dispersions. We observe an increment of the mechanical properties with respect to pristine silk, up to a fracture strength ~5.4 GPa and a toughness modulus ~1570 J g-1. This approach could be extended to other biological systems and lead to a new class of artificially modified biological, or ‘bionic’, materials.
Interface effects on mechanical properties of particle-reinforced composites.
Debnath, S; Ranade, R; Wunder, S L; McCool, J; Boberick, K; Baran, G
2004-09-01
Effective bonding between the filler and matrix components typically improves the mechanical properties of polymer composites containing inorganic fillers. The aim of this study was to test the hypothesis that composite flexural modulus, flexure strength, and toughness are directly proportional to filler-matrix interfacial shear strength. The resin matrix component of the experimental composite consisted of a 60:40 blend of BisGMA:TEGDMA. Two levels of photoinitiator components were used: 0.15, and 0.5%. Raman spectroscopy was used to determine degree of cure, and thermogravimetry (TGA) was used to quantify the degree of silane, rubber, or polymer attachment to silica and glass particles. Filler-matrix interfacial shear strengths were measured using a microbond test. Composites containing glass particles with various surface treatments were prepared and the modulus, flexure strength, and fracture toughness of these materials obtained using standard methods. Mechanical properties were measured on dry and soaked specimens. The interfacial strength was greatest for the 5% MPS treated silica, and it increased for polymers prepared with 0.5% initiator compared with 0.15% initiator concentrations. For the mechanical properties measured, the authors found that: (1) the flexural modulus was independent of the type of filler surface treatment, though flexural strength and toughness were highest for the silanated glass; (2) rubber at the interface, whether bonded to the filler and matrix or not, did not improve toughness; (3) less grafting of resin to silanated filler particles was observed when the initiator concentration decreased. These findings suggest that increasing the strength of the bond between filler and matrix will not result in improvements in the mechanical properties of particulate-reinforced composites in contrast to fiber-reinforced composites. Also, contraction stresses in the 0.5 vs 0.15% initiator concentration composites may be responsible for increases in interfacial shear strengths, moduli, and flexural strengths.
Prediction of mechanical properties of composites of HDPE/HA/EAA.
Albano, C; Perera, R; Cataño, L; Karam, A; González, G
2011-04-01
In this investigation, the behavior of the mechanical properties of composites of high-density polyethylene/hydroxyapatite (HDPE/HA) with and without ethylene-acrylic acid copolymer (EAA) as possible compatibilizer, was studied. Different mathematical models were used to predict their Young's modulus, tensile strength and elongation at break. A comparison with the experimental results shows that the theoretical models of Guth and Kerner modified can be used to predict the Young's modulus. On the other hand, the values obtained by the Verbeek model do not show a good agreement with the experimental data, since different factors that influence the mechanical properties are considered in this model such as: aspect ratio of the reinforcement, interfacial adhesion, porosity and binder content. TEM analysis confirms the discrepancies obtained between the experimental Young's modulus values and those predicted by the Verbeek model. The values of "P", "a" and "σ(A)" suggest that an interaction among the carboxylic groups of the copolymer and the hydroxyl groups of hydroxyapatite might be present. In composites with 20 and 30 wt% of filler, this interaction does not improve the Young's modulus values, since the deviations of the Verbeek model are significant. Copyright © 2010 Elsevier Ltd. All rights reserved.
Tian, Huafeng; Yan, Jiaan; Rajulu, A Varada; Xiang, Aimin; Luo, Xiaogang
2017-03-01
In this work, starch/polyvinyl alcohol (PVA) blend films with different compositions were prepared by melt processing. The effect of the composition and relative humidity (RH) on the structure and properties of the resulting blends were investigated. OH groups on starch and PVA formed hydrogen bonding interactions, which could improve the compatibility of the two components. With the increase of starch, the degree of crystallinity of PVA component decreased. The fracture surface of the blend films exhibited rough surface, suggesting the tough fracture. With the increase of starch, the water uptake at equilibrium decreased. With the increase of RH, the water uptake at equilibrium of the resulting blends increased. The tensile strength, elongation at break and Young's modulus decreased with increasing content of starch. However, at 50% starch content, the flexibility of the blend films was still high, with the elongation at break more than 1000% and tensile strength of 9MPa, which was superior to the commonly LDPE package films. The tensile strength and Young's modulus decreased with the increase of RH, while the elongation at break was enhanced dramatically, indicating the improved flexibility. Therefore, these kinds of blend films exhibited wide application potentials as packaging materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Low-Cost Nanocellulose-Reinforced High-Temperature Polymer Composites for Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozcan, Soydan; Tekinalp, Halil L.; Love, Lonnie J.
2016-07-13
ORNL worked with American Process Inc. to demonstrate the potential use of bio-based BioPlus ® lignin-coated cellulose nanofibrils (L-CNF) as a reinforcing agent in the development of polymer feedstock suitable for additive manufacturing. L-CNF-reinforced polylactic acid (PLA) testing coupons were prepared and up to 69% increase in tensile strength and 133% increase in elastic modulus were demonstrated.
Atomistic modeling of mechanical properties of polycrystalline graphene.
Mortazavi, Bohayra; Cuniberti, Gianaurelio
2014-05-30
We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1-10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets.
Carriço, Camila S; Fraga, Thaís; Carvalho, Vagner E; Pasa, Vânya M D
2017-07-02
Rigid polyurethane foams were synthesized using a renewable polyol from the simple physical mixture of castor oil and crude glycerol. The effect of the catalyst (DBTDL) content and blowing agents in the foams' properties were evaluated. The use of physical blowing agents (cyclopentane and n-pentane) allowed foams with smaller cells to be obtained in comparison with the foams produced with a chemical blowing agent (water). The increase of the water content caused a decrease in density, thermal conductivity, compressive strength, and Young's modulus, which indicates that the increment of CO₂ production contributes to the formation of larger cells. Higher amounts of catalyst in the foam formulations caused a slight density decrease and a small increase of thermal conductivity, compressive strength, and Young's modulus values. These green foams presented properties that indicate a great potential to be used as thermal insulation: density (23-41 kg·m -3 ), thermal conductivity (0.0128-0.0207 W·m -1 ·K -1 ), compressive strength (45-188 kPa), and Young's modulus (3-28 kPa). These biofoams are also environmentally friendly polymers and can aggregate revenue to the biodiesel industry, contributing to a reduction in fuel prices.
NASA Astrophysics Data System (ADS)
Ahmad, Z.; Ansell, M. P.; Smedley, D.
2006-09-01
Results of an experimental investigation into the thermal behavior and mechanical properties of a room-temperature-cured epoxy adhesive (diglycidyl ether of bisphenol A, DGEBA) cross-linked with polyetheramines and filled with different fillers, namely nanosilica, liquid rubber (CTBN), and clay, are reported. The nanosilica and liquid rubber increased the flexural strength and elastic modulus of the adhesive systems; the addition of clay particles raised the elastic modulus significantly, but embrittled the adhesive. Establishing a correct cure time is very important for bonded-in timber structures, as it will affect the bond strength. A study on the effect of cure time on the flexural strength was carried out, from which it follows that the adhesives should be cured for at least 20 days at room temperature. The damping characteristics and the glass-transition temperature of the adhesives were determined by using a dynamic mechanical thermal analysis. The results showed that the filled adhesives had a higher storage modulus, which was in agreement with the elastic moduli determined from static bending tests. The introduction of the fillers increased its glass-transition temperature considerably.
Effect of Salicylate on the Elasticity, Bending Stiffness, and Strength of SOPC Membranes
Zhou, Yong; Raphael, Robert M.
2005-01-01
Salicylate is a small amphiphilic molecule which has diverse effects on membranes and membrane-mediated processes. We have utilized micropipette aspiration of giant unilamellar vesicles to determine salicylate's effects on lecithin membrane elasticity, bending rigidity, and strength. Salicylate effectively reduces the apparent area compressibility modulus and bending modulus of membranes in a dose-dependent manner at concentrations above 1 mM, but does not greatly alter the actual elastic compressibility modulus at the maximal tested concentration of 10 mM. The effect of salicylate on membrane strength was investigated using dynamic tension spectroscopy, which revealed that salicylate increases the frequency of spontaneous defect formation and lowers the energy barrier for unstable hole formation. The mechanical and dynamic tension experiments are consistent and support a picture in which salicylate disrupts membrane stability by decreasing membrane stiffness and membrane thickness. The tension-dependent partitioning of salicylate was utilized to calculate the molecular volume of salicylate in the membrane. The free energy of transfer for salicylate insertion into the membrane and the corresponding partition coefficient were also estimated, and indicated favorable salicylate-membrane interactions. The mechanical changes induced by salicylate may affect several biological processes, especially those associated with membrane curvature and permeability. PMID:15951377
Wang, Yaohui; Ural, Ani
2018-06-01
A key length scale of interest in assessing the fracture resistance of bone is the submicroscale which is composed of mineralized collagen fibrils (MCF) and extra-fibrillar matrix (EFM). Although the processes through which the submicroscale constituents of bone contribute to the fracture resistance in bone have been identified, the extent of the modifications in submicroscale mechanical response due to the changes in individual properties of MCFs and EFM has not been determined. As a result, this study aims to quantify the influence of individual MCF and EFM material property modifications on the mechanical behavior (elastic modulus, ultimate strength, and resistance to failure) of bone at the submicroscale using a novel finite element modeling approach that incorporate 3D networks of MCFs with three different orientations as well as explicit representation of EFM. The models were evaluated under tensile loading in transverse (representing MCF separation) and longitudinal (representing MCF rupture) directions. The results showed that the apparent elastic modulus at the submicroscale under both loading directions for all orientations was only affected by the change in the elastic modulus of MCFs. MCF separation and rupture strengths were mainly dependent on the ultimate strength of EFM and MCFs, respectively, with minimal influence of other material properties. The extent of damage during MCF separation increased with increasing ultimate strength of EFM and decreased with increasing fracture energy of EFM with minimal contribution from elastic modulus of MCFs. For MCF rupture, there was an almost one-to-one linear relationship between the percent change in fracture energy of MCFs and the percent change in the apparent submicroscale fracture energy. The ultimate strength and elastic modulus of MCFs had moderate to limited influence on the MCF rupture fracture energy. The results of this study quantified the extent of changes that may be seen in the energy dissipation processes during MCF rupture and separation relative to the changes in the individual constituents of the tissue. This new knowledge significantly contributes to improving the understanding of how the material property alterations at the submicroscale that can occur due to diseases, age-related changes, and treatments affect the fracture processes at larger length scales. Copyright © 2018 Elsevier Ltd. All rights reserved.
A reassessment of the compressive strength properties of southern yellow pine bark
Thomas L. Eberhardt
2007-01-01
Samples of southern yellow pine outer bark and wood were tested in compression to determine values for modulus of elasticity, stress at proportional limit, and maximum crushing strength. Results reported here resolve inconsistencies in the compressive strength data previously reported by others for pine bark. Testing of solvent-treated bark blocks suggests that...
Effect of Li level, artificial aging, and TiB2 reinforcement on the modulus of Weldalite (tm) 049
NASA Technical Reports Server (NTRS)
1991-01-01
The dynamic Young's Modulus (E) was determined for (1) alloys 049(1.3)(heat 072), (2) 049(1.9), and (3) 049(1.3) TiB2 in the T3 temper and after aging at 160 C were made on a single 0.953 cm (0.375 in) cube to reduce scatter from microstructural inhomogeneities. Both shear and transverse wave velocities were measured for the L, LT, and ST directions by a pulse echo technique. These velocities were then used to calculate modulus. The change is shown in E with aging time at 160 C (320 F) for the three alloys. It is clear from the plots that aging has a minor, but measurable, influence on the E of alloys 049(1.3) and 049(1.9): E decreases by -2.5 pct. for 2 and 3 during the initial stages of artificial aging. This decrease in E generally follows the strength reversion. On further aging beyond the reversion well, E increases and then decreases again as the alloy overage. The slightly higher modulus in the T8 than in the T3 temper is consistent with the presence of the high modulus T sub 1 phase in the T8 temper. A similar change in E was observed on aging for the TiB2 reinforced variant that also follows the aging curve.
Li, Keyan; Xie, Hui; Liu, Jun; Ma, Zengsheng; Zhou, Yichun; Xue, Dongfeng
2013-10-28
Toward engineering high performance anode alloys for Li-ion batteries, we proposed a useful method to quantitatively estimate the bulk modulus of binary alloys in terms of metallic electronegativity (EN), alloy composition and formula volume. On the basis of our proposed potential viewpoint, EN as a fundamental chemistry concept can be extended to be an important physical parameter to characterize the mechanical performance of Li-Si and Li-Sn alloys as anode materials for Li-ion batteries. The bulk modulus of binary alloys is linearly proportional to the combination of average metallic EN and atomic density of alloys. We calculated the bulk moduli of Li-Si and Li-Sn alloys with different Li concentrations, which can agree well with the reported data. The bulk modulus of Li-Si and Li-Sn alloys decreases with increasing Li concentration, leading to the elastic softening of the alloys, which is essentially caused by the decreased strength of constituent chemical bonds in alloys from the viewpoint of EN. This work provides a deep understanding of mechanical failure of Si and Sn anodes for Li-ion batteries, and permits the prediction of the composition dependent bulk modulus of various lithiated alloys on the basis of chemical formula, metallic EN and cell volume (or alloy density), with no structural details required.
NASA Technical Reports Server (NTRS)
Luecke, William E.; Ma, Li; Graham, Stephen M.; Adler, Matthew A.
2010-01-01
Ten commercial laboratories participated in an interlaboratory study to establish the repeatability and reproducibility of compression strength tests conducted according to ASTM International Standard Test Method E9. The test employed a cylindrical aluminum AA2024-T351 test specimen. Participants measured elastic modulus and 0.2 % offset yield strength, YS(0.2 % offset), using an extensometer attached to the specimen. The repeatability and reproducibility of the yield strength measurement, expressed as coefficient of variations were cv(sub r)= 0.011 and cv(sub R)= 0.020 The reproducibility of the test across the laboratories was among the best that has been reported for uniaxial tests. The reported data indicated that using diametrically opposed extensometers, instead of a single extensometer doubled the precision of the test method. Laboratories that did not lubricate the ends of the specimen measured yield stresses and elastic moduli that were smaller than those measured in laboratories that lubricated the specimen ends. A finite element analysis of the test specimen deformation for frictionless and perfect friction could not explain the discrepancy, however. The modulus measured from stress-strain data were reanalyzed using a technique that finds the optimal fit range, and applies several quality checks to the data. The error in modulus measurements from stress-strain curves generally increased as the fit range decreased to less than 40 % of the stress range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Shigeya, E-mail: shi-nakamura@hitachi-chem.co.jp; Tokumitsu, Katsuhisa
The effects of electron beam irradiation on the mechanical and thermal properties of polypropylene (PP) and polyamide6 (PA6) blends-with talc 20 wt% as filler, SEBS-g-MAH as compatibilizer, and triallyl isocyanurate as crosslinking agent-were investigated. Although the tensile and flexural moduli and strengths of the PP/PA6 blends with talc, SEBS-g-MAH, and TAIC could be increased by the application of electron beam irradiation, the impact strength was decreased. Ddifferential scanning calorimetryer measurements showed that the melting temperatures of all PP/PA6 blends were decreased with increases in the electron beam irradiationdose. From dynamic mechanical analyzer results, a storage modulus curve in the plateaumore » region was observed only in the PP/PA6 blends with talc, SEBS-g-MAH, and TAIC; the storage modulus increased with increasing electron beam irradiation dose, indicating that the three-dimensional network developed gradually in the more amorphous PA6. As a result, the most significant improvement observed in heat distortion tests under high load (1.8 MPa) occurred at 200 kGy.« less
Su, Cui; Su, Yunlan; Li, Zhiyong; Haq, Muhammad Abdul; Zhou, Yong; Wang, Dujin
2017-08-01
Bilayered poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) composite hydrogels with anisotropic and gradient mechanical properties were prepared by the combination of directional freezing-thawing (DFT) and electrophoresis method. Firstly, PVA hydrogels with aligned channel structure were prepared by the DFT method. Then, HA nanoparticles were in situ synthesized within the PVA hydrogels via electrophoresis. By controlling the time of the electrophoresis process, a bilayered gradient hydrogel containing HA particles in only half of the gel region was obtained. The PVA/HA composite hydrogel exhibited gradient mechanical strength depending on the distance to the cathode. The gradient initial tensile modulus ranging from 0.18MPa to 0.27MPa and the gradient initial compressive modulus from 0.33MPa to 0.51MPa were achieved. The binding strength of the two regions was relatively high and no apparent internal stress or defect was observed at the boundary. The two regions of the bilayered hydrogel also showed different osteoblast cell adhesion properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Xing, Chenyang; Wang, Hengti; Hu, Qiaoqiao; Xu, Fenfen; Cao, Xiaojun; You, Jichun; Li, Yongjin
2013-02-15
The eco-friendly poly(propylene carbonate) (PPC)/cellulose acetate butyrate (CAB) blends were prepared by melt-blending in a batch mixer for the first time. PPC and CAB were partially miscible because of the drastically shifted glass transition temperatures of both PPC and CAB, which originated from the specific interactions between carbonyl groups and hydroxyl groups. The incorporation of CAB into PPC matrix enhanced not only tensile strength and modulus of PPC dramatically, but also improved heat resistance and thermal stability of PPC significantly. The tensile strength and the modulus of PPC/CAB=50/50 blend are 27.7 MPa and 1.24 GPa, which are 21 times and 28 times higher than those of the unmodified PPC, respectively. Moreover, the elongation at break of PPC/CAB=50/50 blend is as high as 117%. In addition, the obtained blends exhibited good transparency, which is very important for the package materials. The results in this work pave new possibility for the massive application of eco-friendly polymer materials. Copyright © 2012 Elsevier Ltd. All rights reserved.
Liu, X. Sherry; Wang, Ji; Zhou, Bin; Stein, Emily; Shi, Xiutao; Adams, Mark; Shane, Elizabeth; Guo, X. Edward
2013-01-01
While high-resolution peripheral quantitative computed tomography (HR-pQCT) has advanced clinical assessment of trabecular bone microstructure, nonlinear microstructural finite element (μFE) prediction of yield strength by HR-pQCT voxel model is impractical for clinical use due to its prohibitively high computational costs. The goal of this study was to develop an efficient HR-pQCT-based plate and rod (PR) modeling technique to fill the unmet clinical need for fast bone strength estimation. By using individual trabecula segmentation (ITS) technique to segment the trabecular structure into individual plates and rods, a patient-specific PR model was implemented by modeling each trabecular plate with multiple shell elements and each rod with a beam element. To validate this modeling technique, predictions by HR-pQCT PR model were compared with those of the registered high resolution μCT voxel model of 19 trabecular sub-volumes from human cadaveric tibiae samples. Both Young’s modulus and yield strength of HR-pQCT PR models strongly correlated with those of μCT voxel models (r2=0.91 and 0.86). Notably, the HR-pQCT PR models achieved major reductions in element number (>40-fold) and CPU time (>1,200-fold). Then, we applied PR model μFE analysis to HR-pQCT images of 60 postmenopausal women with (n=30) and without (n=30) a history of vertebral fracture. HR-pQCT PR model revealed significantly lower Young’s modulus and yield strength at the radius and tibia in fracture subjects compared to controls. Moreover, these mechanical measurements remained significantly lower in fracture subjects at both sites after adjustment for aBMD T-score at the ultradistal radius or total hip. In conclusion, we validated a novel HR-pQCT PR model of human trabecular bone against μCT voxel models and demonstrated its ability to discriminate vertebral fracture status in postmenopausal women. This accurate nonlinear μFE prediction of HR-pQCT PR model, which requires only seconds of desktop computer time, has tremendous promise for clinical assessment of bone strength. PMID:23456922
Strength reduction in slash pine (Pinus elliotii) wood caused by decay fungi
Zhong Yang; Zhehui Jiang; Chung Y. Hse; Todd F. Shupe
2009-01-01
Small wood specimens selected from slash pine (Pinus elliotii )trees at three growth rates (fast, medium, and slow) were inoculated with brown-rot and white-rot fungi and then evaluated for work to maximum load (WML), modulus of rupture (MOR), and modulus of elasticity (MOE). The experimental variables studied included a brown-rot fungus (Gloeophyllum trabeum...
Gossla, Elke; Tonndorf, Robert; Bernhardt, Anne; Kirsten, Martin; Hund, Rolf-Dieter; Aibibu, Dilibar; Cherif, Chokri; Gelinsky, Michael
2016-10-15
Electrostatic flocking - a common textile technology which has been applied in industry for decades - is based on the deposition of short polymer fibres in a parallel aligned fashion on flat or curved substrates, covered with a layer of a suitable adhesive. Due to their highly anisotropic properties the resulting velvet-like structures can be utilised as scaffolds for tissue engineering applications in which the space between the fibres can be defined as pores. In the present study we have developed a fully resorbable compression elastic flock scaffold from a single material system based on chitosan. The fibres and the resulting scaffolds were analysed concerning their structural and mechanical properties and the biocompatibility was tested in vitro. The tensile strength and Young's modulus of the chitosan fibres were analysed as a function of the applied sterilisation technique (ethanol, supercritical carbon dioxide, γ-irradiation and autoclaving). All sterilisation methods decreased the Young's modulus (from 14GPa to 6-12GPa). The tensile strength was decreased after all treatments - except after the autoclaving of chitosan fibres submerged in water. Compressive strength of the highly porous flock scaffolds was 18±6kPa with a elastic modulus in the range of 50-100kPa. The flocked scaffolds did not show any cytotoxic effect during indirect or direct culture of human mesenchymal stem cells or the sarcoma osteogenic cell line Saos-2. Furthermore cell adhesion and proliferation of both cell types could be observed. This is the first demonstration of a fully biodegradable scaffold manufactured by electrostatic flocking. Most tissues possess anisotropic fibrous structures. In contrast, most of the commonly used scaffolds have an isotropic morphology. By utilising the textile technology of electrostatic flocking, highly porous and clearly anisotropic scaffolds can be manufactured. Flocking leads to parallel aligned short fibres, glued on the surface of a substrate. Such structures are characterised by a high and adjustable porosity, accompanied by distinct stiffness in fibre direction. The present article describes for the first time a fully biodegradable flock scaffold, solely made of chitosan. Utilisation of only one material for manufacturing of flock substrate, adhesive and fibres allow a uniform degradation of the whole construct. Such a new type of scaffold can be of great interest for a variety of biomedical applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Wang, Shibin; Tang, Hongbiao; Guo, Jianchun; Wang, Kunjie
2016-08-20
pH is an important factor affecting the performance of polymer fluid. The rheological properties of hydroxypropyl guar gum (HPG) base fluid and the structural strength, rheological properties, viscoelastic properties and thixotropy properties of HPG gel depend largely on the pH values. For the base fluid, an apparent viscosity-increasing effect was observed over the pH range from 7 to 11, and the apparent viscosity gradually decreased at pH 11.5-14, exhibiting electrostatic repulsion behavior and steric effects. For the HPG gel, at pH 7-12.5, the gel possessed higher apparent viscosity, higher elastic modulus (G'), lower tanδ (the ratio of the viscous modulus to the elastic modulus) and an "8"-shaped hysteresis loop, indicating stronger gel structure strength and the elastic dominant property. At pH 13-13.5, the gel samples exhibited the transition from a pseudoplastic fluid to a Newtonian fluid, and their viscosity, elastic modulus decreased but tanδ increased with the increase in pH values, exhibiting gradually weakened elastic properties. When the pH was 14, the gel mainly exhibited viscous characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohammed, Mohammed; Rozyanty, A. R.; Adam, Tijjani; Betar, Bashir O.
2017-09-01
In this research, we prepared pure kenaf composites and kenaf/glass fibre hybrid composites using the hand lay-up procedure. Also, we studied the weather effects on the mechanical, morphological and thermal properties of the pure kenaf and the kenaf/glass fibre hybrid composites. Before the weathering conditions, we determined that the tensile strength of the kenaf /glass fibre hybrid composite was 70.9 MPa, while the tensile modulus was 3030 MPa. However, during the first weathering month, there was a decrease in the tensile modulus values, which further decreased as the weathering continued. Also, there was a significant difference in the tensile modulus reduced values between the pure kenaf and the glass fibre-reinforced kenaf composites, which indicated that the glass fibre was a good reinforcement option, and could be successfully used for producing high performing composites. Based on the flexural strength results obtained, it could be noted that the natural fibre composites could not withstand the environmental conditions, as they displayed poor wettability, a higher moisture adsorption and were incompatible with some of the polymeric matrices. As they had higher moisture absorption properties, they formed voids within the composites that could decrease the composite mechanical properties like the flexural strength or the flexural modulus, which was supported BY our SEM results. However, some of the modifications do tend to improve the mechanical properties, which help in improving the composite performance with a proper composite formulation during modification. Our results showed that the thermal properties of the kenaf and the kenaf hybrid composites are significantly affected by the weather, wherein the composites display a slow and gradual initial weight loss till a massive weight loss was observed at temperatures around 390°C. However, as the weathering increased, the weight loss was seen to occur at even low temperatures of 290°C. This phenomenon was because of the moisture absorption, which was seen to increase it, and the moisture weakened the molecular interfacial bonds.
NASA Astrophysics Data System (ADS)
Wang, Yonghong; Zhang, Xinru; Chung, Kyungho; Liu, Chengcen; Choi, Seung-Bok; Choi, Hyoung Jin
2016-11-01
To improve mechanical and magnetorheological properties of magnetorheological elastomers (MREs), a facile method was used to fabricate high-performance MREs which consisted of the core-shell complex microparticles with an organic-inorganic network structure dispersed in an ethylene propylene diene rubber. In this work, the proposed magnetic complex microparticles were in situ formed during MREs fabrication as a result of strong interaction between matrix and CIPs using carbon black as a connecting point. The morphology of both isotropic (i-MREs) and anisotropic MREs (a-MREs) was observed by scanning electron microscope (SEM). The effects of carbonyl iron particle (CIP) volume content on mechanical properties and hysteresis loss of MREs were investigated. The effects of CIP volume content on the shear storage modulus, MR effect and loss tangent were studied using a modified dynamic mechanical analyzer under applied magnetic field strengths. The results showed that the orientation effect became more pronounced with increasing CIPs in the a-MREs, whereas CIPs distributed uniformly in the i-MREs. The tensile strength, tear strength and elongation at break decreased with increasing CIP content up to 40 vol.%, while the hardness increased. It is worth noting that the tensile strength of i-MREs and a-MREs containing 40 vol.% CIPs still had high mechanical properties as a result of good compatibility between complex microparticles and rubber matrix. The MR performance of shear storage modulus and damping properties of MREs increased remarkably with CIP content due to strong dipole-dipole interaction of complex microparticles. Besides, the hysteresis loss increased with increasing CIP content as a result of magnetic field induced interfacial sliding between complex microparticles.
Tuning carbon nanotube assembly for flexible, strong and conductive films.
Wang, Yanjie; Li, Min; Gu, Yizhuo; Zhang, Xiaohua; Wang, Shaokai; Li, Qingwen; Zhang, Zuoguang
2015-02-21
Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g(-1), greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive.
Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haque, A.; Jeelani, S.
1992-02-01
The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range ofmore » 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming. 9 refs.« less
Flexural strength of proof-tested and neutron-irradiated silicon carbide
NASA Astrophysics Data System (ADS)
Price, R. J.; Hopkins, G. R.
1982-08-01
Proof testing before service is a valuable method for ensuring the reliability of ceramic structures. Silicon carbide has been proposed as a very low activation first-wall and blanket structural material for fusion devices, where it would experience a high flux of fast neutrons. Strips of three types of silicon carbide were loaded in four-point bending to a stress sufficient to break about a third of the specimens. Groups of 16 survivors were irradiated to 2 × 10 26n/ m2 ( E>0.05 MeV) at 740°C and bend tested to failure. The strength distribution of chemically vapor-deposited silicon carbide (Texas Instruments) was virtually unchanged by irradiation. The mean strength of sintered silicon carbide (Carborundum Alpha) was reduced 34% by irradiation, while the Weibull modulus and the truncated strength distribution characteristic of proof-tested material were retained. Irradiation reduced the mean strength of reaction-bonded silicon carbide (Norton NC-430) by 58%, and the spread in strength values was increased. We conclude that for the chemically vapor-deposited and the sintered silicon carbide the benefits of proof testing to eliminate low strength material are retained after high neutron exposures.
Fischer, M; Joguet, D; Robin, G; Peltier, L; Laheurte, P
2016-05-01
Ti-Nb alloys are excellent candidates for biomedical applications such as implantology and joint replacement because of their very low elastic modulus, their excellent biocompatibility and their high strength. A low elastic modulus, close to that of the cortical bone minimizes the stress shielding effect that appears subsequent to the insertion of an implant. The objective of this study is to investigate the microstructural and mechanical properties of a Ti-Nb alloy elaborated by selective laser melting on powder bed of a mixture of Ti and Nb elemental powders (26 at.%). The influence of operating parameters on porosity of manufactured samples and on efficacy of dissolving Nb particles in Ti was studied. The results obtained by optical microscopy, SEM analysis and X-ray microtomography show that the laser energy has a significant effect on the compactness and homogeneity of the manufactured parts. Homogeneous and compact samples were obtained for high energy levels. Microstructure of these samples has been further characterized. Their mechanical properties were assessed by ultrasonic measures and the Young's modulus found is close to that of classically elaborated Ti-26 Nbingot. Copyright © 2016 Elsevier B.V. All rights reserved.
Comparison of the flexural strength of six reinforced restorative materials.
Cohen, B I; Volovich, Y; Musikant, B L; Deutsch, A S
2001-01-01
This study calculated the flexural strength for six reinforced restorative materials and demonstrated that flexural strength values can be determined simply by using physical parameters (diametral tensile strength and Young's modulus values) that are easily determined experimentally. A one-way ANOVA analysis demonstrated a statistically significant difference between the two reinforced glass ionomers and the four composite resin materials, with the composite resin being stronger than the glass ionomers.
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J
2016-01-01
Macroporous ceramics exhibit an intrinsic strength variability caused by the random distribution of defects in their structure. However, the precise role of microstructural features, other than pore volume, on reliability is still unknown. Here, we analyze the applicability of the Weibull analysis to unidirectional macroporous yttria-stabilized-zirconia (YSZ) prepared by ice-templating. First, we performed crush tests on samples with controlled microstructural features with the loading direction parallel to the porosity. The compressive strength data were fitted using two different fitting techniques, ordinary least squares and Bayesian Markov Chain Monte Carlo, to evaluate whether Weibull statistics are an adequate descriptor of the strength distribution. The statistical descriptors indicated that the strength data are well described by the Weibull statistical approach, for both fitting methods used. Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the key microstructural parameter controlling reliability is wall thickness. In contrast, pore volume is the main parameter controlling the strength. The highest Weibull modulus ([Formula: see text]) and mean strength (198.2 MPa) were obtained for the samples with the smallest and narrowest wall thickness distribution (3.1 [Formula: see text]m) and lower pore volume (54.5%).
NASA Astrophysics Data System (ADS)
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.
2016-01-01
Macroporous ceramics exhibit an intrinsic strength variability caused by the random distribution of defects in their structure. However, the precise role of microstructural features, other than pore volume, on reliability is still unknown. Here, we analyze the applicability of the Weibull analysis to unidirectional macroporous yttria-stabilized-zirconia (YSZ) prepared by ice-templating. First, we performed crush tests on samples with controlled microstructural features with the loading direction parallel to the porosity. The compressive strength data were fitted using two different fitting techniques, ordinary least squares and Bayesian Markov Chain Monte Carlo, to evaluate whether Weibull statistics are an adequate descriptor of the strength distribution. The statistical descriptors indicated that the strength data are well described by the Weibull statistical approach, for both fitting methods used. Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the key microstructural parameter controlling reliability is wall thickness. In contrast, pore volume is the main parameter controlling the strength. The highest Weibull modulus (?) and mean strength (198.2 MPa) were obtained for the samples with the smallest and narrowest wall thickness distribution (3.1 ?m) and lower pore volume (54.5%).
Friction and wear of TPS fibers: A study of the adhesion and friction of high modulus fibers
NASA Technical Reports Server (NTRS)
Bascom, Willard D.; Lee, Ilzoo
1990-01-01
The adhesional and frictional forces between filaments in a woven fabric or felt, strongly influenced the processability of the fiber and the mechanical durability of the final product. Even though the contact loads between fibers are low, the area of contact is extremely small giving rise to very high stresses; principally shear stresses. One consequence of these strong adhesional and frictional forces is the resistance of fibers to slide past each other during weaving or when processed into nonwoven mats or felts. Furthermore, the interfiber frictional forces may cause surface damage and thereby reduce the fiber strength. Once formed into fabrics, flexural handling and manipulation of the material again causes individual filaments to rub against each other resulting in modulus, brittle fibers such as those used in thermal protection systems (TPS). The adhesion and friction of organic fibers, notably polyethylene terephthalate (PET) fibers, have been extensively studied, but there has been very little work reported on high modulus inorganic fibers. An extensive study was made of the adhesion and friction of flame drawn silica fibers in order to develop experimental techniques and a scientific basis for data interpretation. Subsequently, these methods were applied to fibers of interest in TPS materials.
NASA Technical Reports Server (NTRS)
Esposito, J. J.; Zabora, R. F.
1975-01-01
Pertinent mechanical and physical properties of six high conductivity metals were determined. The metals included Amzirc, NARloy Z, oxygen free pure copper, electroformed copper, fine silver, and electroformed nickel. Selection of these materials was based on their possible use in high performance reusable rocket nozzles. The typical room temperature properties determined for each material included tensile ultimate strength, tensile yield strength, elongation, reduction of area, modulus of elasticity, Poisson's ratio, density, specific heat, thermal conductivity, and coefficient of thermal expansion. Typical static tensile stress-strain curves, cyclic stress-strain curves, and low-cycle fatigue life curves are shown. Properties versus temperature are presented in graphical form for temperatures from 27.6K (-410 F) to 810.9K (1000 F).
NASA Astrophysics Data System (ADS)
Chen, Xihui; Sun, Zhigang; Sun, Jianfen; Song, Yingdong
2017-12-01
In this paper, a numerical model which incorporates the oxidation damage model and the finite element model of 2D plain woven composites is presented for simulation of the oxidation behaviors of 2D plain woven C/SiC composite under preloading oxidation atmosphere. The equal proportional reduction method is firstly proposed to calculate the residual moduli and strength of unidirectional C/SiC composite. The multi-scale method is developed to simulate the residual elastic moduli and strength of 2D plain woven C/SiC composite. The multi-scale method is able to accurately predict the residual elastic modulus and strength of the composite. Besides, the simulated residual elastic moduli and strength of 2D plain woven C/SiC composites under preloading oxidation atmosphere show good agreements with experimental results. Furthermore, the preload, oxidation time, temperature and fiber volume fractions of the composite are investigated to show their influences upon the residual elastic modulus and strength of 2D plain woven C/SiC composites.
Time-dependent strength degradation of a siliconized silicon carbide determined by dynamic fatigue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breder, K.
1995-10-01
Both fast-fracture strength and strength as a function of stressing rate at room temperature, 1,100, and 1,400 C were measured for a siliconized SiC. The fast-fracture strength increased slightly from 386 MPa at room temperature to 424 MPa at 1,100 C and then dropped to 308 MPa at 1,400 C. The Weibull moduli at room temperature and 1,100 were 10.8 and 7.8, respectively, whereas, at 1,400 C, the Weibull modulus was 2.8. The very low Weibull modulus at 1,400 C was due to the existence of two exclusive flaw populations with very different characteristic strengths. The data were reanalyzed usingmore » two exclusive flaw populations. The ceramic showed no slow crack growth (SCG), as measured by dynamic fatigue at 1,100 C, but, at 1,400 C, an SCG parameter, n, of 15.5 was measured. Fractography showed SCG zones consisting of cracks grown out from silicon-rich areas. Time-to-failure predictions at given levels of failure probabilities were performed.« less
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Havens, Stephen J. (Inventor)
1997-01-01
Four phenylethynyl amine compounds--3 and 4-aminophenoxy-4'-phenylethynylbenzophenone, and 3 and 4-amino-4'-phenylethynylbenzophenone--were readily prepared and were used to endcap imide oligomers. Phenylethynyl-terminated amide acid oligomers and phenylethynyl-terminated imide oligomers with various molecular weights and compositions were prepared and characterized. These oligomers were cured at 300.degree. C. to 400.degree. C. to provide crosslinked polyimides with excellent solvent resistance, high strength and modulus and good high temperature properties. Adhesive panels, composites, films and moldings from these phenylethynyl terminated imide oligomers gave excellent mechanical performance.
Phenylethynyl terminated imide oligomers
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Havens, Stephen J. (Inventor)
1994-01-01
Four phenylethynyl amine compounds - 3 and 4-aminophenoxy-4'-phenylethynylbenzophenone, and 3 and 4-amino-4'-phenylethynylbenzophenone - were readily prepared and were used to endcap imide oligomers. Phenylethynyl-terminated amide acid oligomers and phenylethynyl-terminated imide oligomers with various molecular weights and compositions were prepared and characterized. These oligomers were cured at 300 to 400 C to provide crosslinked polyimides with excellent solvent resistance, high strength and modulus, and good high temperature properties. Adhesive panels, composites, films, and moldings from these phenylethynyl terminated imide oligomers gave excellent mechanical performance.
Phenylethynyl terminated imide oligomers
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Havens, Stephen J. (Inventor)
1995-01-01
Four phenylethynyl amine compounds - 3 and 4-aminophenoxy-4'-phenylethynylbenzophenone, and 3 and 4-amino-4'-phenylethynylbenzophenone - were readily prepared and were used to endcap imide oligomers. Phenylethynyl-terminated amide acid oligomers and phenylethynyl-terminated imide oligomers with various molecular weights and compositions were prepared and characterized. These oligomers were cured at 300 to 400 C to provide crosslinked polyimides with excellent solvent resistance, high strength and modulus, and good high temperature properties. Adhesive panels, composites, films, and moldings from these phenylethynyl terminated imide oligomers gave excellent mechanical performance.
The Evolution of Plate and Extruded Products with High Strength and Fracture Toughness
NASA Astrophysics Data System (ADS)
Denzer, D. K.; Rioja, R. J.; Bray, G. H.; Venema, G. B.; Colvin, E. L.
From the first use of 2017-T74 on the Junkers F13, improvements have been made to plate and extruded products for applications requiring the highest attainable strength and adequate fracture toughness. One such application is the upper wing of large aircraft. The progression of these product improvements achieved through the development of alloys that include 7075-(T6 & T76), 7150-(T6 & T77) and 7055-(T77 & T79) and most recently 7255-(T77 & T79) is reviewed. The most current advancements include aluminum-copper-lithium, alloy 2055 plate and extruded products that can attain strength equivalent to that of 7055-T77 with higher modulus, similar fracture toughness and improved fatigue, fatigue crack growth and corrosion performance. The achievement of these properties is explained in terms of the several alloy design principles. The highly desired and balanced characteristics make these products ideal for upper wing applications.
NASA Astrophysics Data System (ADS)
Contieri, R. J.; Lopes, E. S. N.; Taquire de La Cruz, M.; Costa, A. M.; Afonso, C. R. M.; Caram, R.
2011-10-01
The performance of Ti alloys can be considerably enhanced by combining Ti and other elements, causing an eutectic transformation and thereby producing composites in situ from the liquid phase. This paper reports on the processing and characterization of a directionally solidified Ti-Fe eutectic alloy. Directional solidification at different growth rates was carried out in a setup that employs a water-cooled copper crucible combined with a voltaic electric arc moving through the sample. The results obtained show that a regular fiber-like eutectic structure was produced and the interphase spacing was found to be a function of the growth rate. Mechanical properties were measured using compression, microindentation and nanoindentation tests to determine the Vickers hardness, compressive strength and elastic modulus. Directionally solidified eutectic samples presented high values of compressive strength in the range of 1844-3000 MPa and ductility between 21.6 and 25.2%.
Mechanical properties and micro-morphology of fiber posts.
Zicari, F; Coutinho, E; Scotti, R; Van Meerbeek, B; Naert, I
2013-04-01
To evaluate flexural properties of different fiber posts systems and to morphologically characterize their micro-structure. Six types of translucent fiber posts were selected: RelyX Post (3M ESPE), ParaPost Taper Lux (Colthéne-Whaledent), GC Fiber Post (GC), LuxaPost (DMG), FRC Postec Plus (Ivoclar-Vivadent), D.T. Light-Post (RTD). For each post system and size, ten specimens were subjected to a three-points bending test. Maximum fracture load, flexural strength and flexural modulus were determined using a universal loading device (5848 MicroTester(®), Instron). Besides, for each system, three intact posts of similar dimensions were processed for scanning electron microscopy to morphologically characterize the micro-structure. The following structural characteristics were analyzed: fibers/matrix ratio, density of fibers, diameter of fibers and distribution of fibers. Data were statistically analyzed with ANOVA. Type and diameter of posts were found to significantly affect the fracture load, flexural strength and flexural modulus (p<0.05). Regarding maximum fracture load, it was found to increase with post diameter, in each post system (p<0.001). Regarding flexural strength and flexural modulus, the highest values were recorded for posts with the smallest diameter (p<0.001). Finally, structural characteristics significantly varied among the post systems tested. However, any correlation has been found between flexural strength and structural characteristics. Flexural strength appeared not to be correlated to structural characteristics of fiber posts, but it may rather be affected by mechanical properties of the resin matrix and the interfacial adhesion between fibers and resin matrix. Copyright © 2013. Published by Elsevier Ltd.
Influence of fibre reinforcement on selected mechanical properties of dental composites.
Niewczas, Agata M; Zamościńska, Jolanta; Krzyżak, Aneta; Pieniak, Daniel; Walczak, Agata; Bartnik, Grzegorz
2017-01-01
For splinting or designing adhesive bridges, reconstructive composite structures with increased mechanical properties owing to embedded reinforcement fibres are used. The aim of this article was to determine the influence of glass and aramid fibres on the mechanical strength of composites reinforced with these fibres. Two polymer-ceramic microhybrid materials: Boston and Herculite were tested. Three types of reinforcement fibres were used: aramid (Podwiązka) with a single layer weave, a single layer weave glass fibre (FSO) and triple layer weave glass fibre (FSO evo). Tests were conducted in accordance with the requirements of ISO 4049:2009. The following material types were chosen for research: Boston, Boston + Podwiązka, Herculite, Herculite + Podwiązka, Herculite + FSO and Herculite + FSO evo. The scope of research included: flexural strength B, bending modulus of elasticity εB and work to failure of the reinforced composite Wfb. Additionally, microscopic observations of fracture occurring in samples were made. In comparison: the Herculite (97.7 MPa) type with the Herculite + FSO evo (177.5 MPa) type was characterized by the highest strength. Fibre reinforcement resulted in decreasing the elasticity modulus: Herculite + reinforcement (6.86 GPa; 6.33 GPa; 6.11 GPa) in comparison with the Herculite (9.84 GPa) and respectively Boston + reinforcement (10.08 GPa) as compared with the Boston (11.81 GPa). Using glass fibres increases flexural strength of the test composites. Using aramid fibres does not change their strength. The elasticity modulus of the reinforced reconstructive structures decreases after application of either type of fibres. However, their resistance to the crack initiation increases.
Zhang, Jianfeng; Gan, Xiaxia; Tang, Hongqun; Zhan, Yongzhong
2017-07-01
In order to obtain material with low elastic modulus, good abrasion resistance and high corrosion stability as screw for dental implant, the biomedical Zr-20Nb and Zr-20Nb-3Ti alloy with low elastic modulus were thermal oxidized respectively at 700°C for 1h and 600°C for 1.25h to obtain the compact oxidized layer to improve its wear resistance and corrosion resistance. The results show that smooth compact oxidized layer (composed of monoclinic ZrO 2 , tetragonal ZrO 2 and 6ZrO 2 -Nb 2 O 5 ) with 22.6μm-43.5μm thickness and 1252-1306HV hardness can be in-situ formed on the surface of the Zr-20Nb-xTi (x=0, 3). The adhesion of oxidized layers to the substrates is determined to be 58.35-66.25N. The oxidized Zr-20Nb-xTi alloys reveal great improvement of the pitting corrosion resistance in comparison with the un-oxidized alloys. In addition, the oxidized Zr-20Nb-3Ti exhibits sharply reduction of the corrosion rates and the oxidized Zr-20Nb shows higher corrosion rates than un-oxidized alloys, which is relevant with the content of the t-ZrO 2 . Wear test in artificial saliva demonstrates that the wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) are superior to pure Ti. All of the un-oxidized Zr-20Nb-xTi (x=0, 3) alloys suffer from serious adhesive wear due to its high plasticity. Because of the protection from compact oxide layer with high adhesion and high hardness, the coefficients of friction and wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) alloys decrease 50% and 95%, respectively. The defects on the oxidized Zr-20Nb have a negative effect on the friction and wear properties. In addition, after the thermal oxidation, compression test show that elastic modulus and strength of Zr-20Nb-xTi (x=0, 3) increase slightly with plastic deformation after 40% of transformation. Furthermore, stripping of the oxidized layer from the alloy matrix did not occur during the whole experiments. As the surface oxidized Zr-20Nb-3Ti alloy has a combination of excellent performance such as high chemical stability, good wear resistance performance and low elastic modulus, moderate strength, it is considered an alternative material as dental implant. Copyright © 2017 Elsevier B.V. All rights reserved.
Ferracane, J L; Ferracane, L L; Braga, R R
2003-07-15
Additives that provide stress relief may be incorporated into dental composites to reduce contraction stress (CS). This study attempted to test the hypothesis that conventional fillers could be replaced by high-density polyethylene (HDPE) spheres in hybrid and nanofill composites to reduce CS, but with minimal effect on mechanical properties. Nanofill and hybrid composites were made from a Bis-GMA/TEGDMA resin having either all silica nanofiller or 75 wt.% strontium glass + 5 wt.% silica and replacing some of the nanofiller or the glass with 0%, 5% (hybrid only), 10% or 20 wt.% HDPE. The surface of the HDPE was either left untreated or had a reactive gas surface treatment (RGST). Contraction stress (CS) was monitored for 10 min in a tensilometer (n = 5) after light curing for 60 s at 390 mW/cm(2). Other specimens (n = 5) were light cured 40 s from two sides in a light-curing unit and aged 1 d in water before testing fracture toughness (K(Ic)), flexure strength (FS), and modulus (E). Results were analyzed by ANOVA with Tukey's multiple comparison test at p < 0.05. There was no difference between composites with RGST and untreated HDPE except for FS-10% HDPE hybrid (RGST higher). An increased level of HDPE reduced contraction stress for both types of composites. Flexure strength, modulus (hybrid only), and fracture toughness were also reduced as the concentration of HDPE increased. SEM showed evidence for HDPE debonding and plastic deformation during fracture of the hybrid composites. In conclusion, the addition of HDPE spheres reduces contraction stress in composites, either through stress relief or a reduction in elastic modulus. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 66B: 318-323, 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moraes, Paulo E.L., E-mail: pauloeduardo.leitedemoraes@gmail.com; Contieri, Rodrigo J., E-mail: contieri@fem.unicamp.br; Lopes, Eder S.N., E-mail: ederlopes@fem.unicamp.br
Ti and Ti alloys are widely used in restorative surgery because of their good biocompatibility, enhanced mechanical behavior and high corrosion resistance in physiological media. The corrosion resistance of Ti-based materials is due to the spontaneous formation of the TiO{sub 2} oxide film on their surface, which exhibits elevated stability in biological fluids. Ti–Nb alloys, depending on the composition and the processing routes to which the alloys are subjected, have high mechanical strength combined with low elastic modulus. The addition of Sn to Ti–Nb alloys allows the phase transformations to be controlled, particularly the precipitation of ω phase. The aimmore » of this study is to discuss the microstructure, mechanical properties and corrosion behavior of cast Ti–Nb alloys to which Sn has been added. Samples were centrifugally cast in a copper mold, and the microstructure was characterized using optical microscopy, scanning electron microscopy and X-ray diffractometry. Mechanical behavior evaluation was performed using Berkovich nanoindentation, Vickers hardness and compression tests. The corrosion behavior was evaluated in Ringer's solution at room temperature using electrochemical techniques. The results obtained suggested that the physical, mechanical and chemical behaviors of the Ti–Nb–Sn alloys are directly dependent on the Sn content. - Graphical abstract: Effects of Sn addition to the Ti–30Nb alloy on the elastic modulus. - Highlights: • Sn addition causes reduction of the ω phase precipitation. • Minimum Vickers hardness and elastic modulus occurred for 6 wt.% Sn content. • Addition of 6 wt.% Sn resulted in maximum ductility and minimum compression strength. • All Ti–30Nb–XSn (X = 0, 2, 4, 6, 8 and 10%) alloys are passive in Ringer's solution. • Highest corrosion resistance was observed for 6 wt.% Sn content.« less
Laminating butt-jointed, log-run southern pine veneers into long beams of uniform high strength
Peter Koch; G.E. Woodson
1968-01-01
Twenty laminated beams were constructed of log-run, butt-jointed, loblolly pine veneers 1|6 inch thick and 100 inches long. The beams were 18 inches deep, 2 inches wide, and 25 feet long. Veneers were arranged in the beams according to their modulus of elasticity (MOE). The stiffest were placed outermost, and the most limber in the center. The veneers, which were cut...
Nose Fairing Modeling and Simulation to Support Trident II D5 Lifecycle Extension
2013-09-01
Rupture Flexural Modulus Flexural Yield strength Compressive Yield strength Poissons Ratio Machinabi lily Shear strength Impact Work to...Categories: Ceramic; Glass; Glass Fiber , other Engineeting Material; C<>mposite Rbers Material Notes: Used as a reinforcing agent in fiber glass compos~es...MATWEB AMERICAN SITKA SPRUCE WOOD .......................35 APPENDIX B. MATWEB E–GLASS FIBER , GENERIC ......................................37 APPENDIX
Properties of Experimental Dental Composites Containing Antibacterial Silver-Releasing Filler.
Stencel, Robert; Kasperski, Jacek; Pakieła, Wojciech; Mertas, Anna; Bobela, Elżbieta; Barszczewska-Rybarek, Izabela; Chladek, Grzegorz
2018-06-18
Secondary caries is one of the important issues related to using dental composite restorations. Effective prevention of cariogenic bacteria survival may reduce this problem. The aim of this study was to evaluate the antibacterial activity and physical properties of composite materials with silver sodium hydrogen zirconium phosphate (SSHZP). The antibacterial filler was introduced at concentrations of 1%, 4%, 7%, 10%, 13%, and 16% ( w / w ) into model composite material consisting of methacrylate monomers and silanized glass and silica fillers. The in vitro reduction in the number of viable cariogenic bacteria Streptococcus mutans ATCC 33535 colonies, Vickers microhardness, compressive strength, diametral tensile strength, flexural strength, flexural modulus, sorption, solubility, degree of conversion, and color stability were investigated. An increase in antimicrobial filler concentration resulted in a statistically significant reduction in bacteria. There were no statistically significant differences caused by the introduction of the filler in compressive strength, diametral tensile strength, flexural modulus, and solubility. Statistically significant changes in degree of conversion, flexural strength, hardness (decrease), solubility (increase), and in color were registered. A favorable combination of antibacterial properties and other properties was achieved at SSHZP concentrations from 4% to 13%. These composites exhibited properties similar to the control material and enhanced in vitro antimicrobial efficiency.
Zhao, Zeng-hui; Wang, Wei-ming; Gao, Xin; Yan, Ji-xing
2013-01-01
According to the geological characteristics of Xinjiang Ili mine in western area of China, a physical model of interstratified strata composed of soft rock and hard coal seam was established. Selecting the tunnel position, deformation modulus, and strength parameters of each layer as influencing factors, the sensitivity coefficient of roadway deformation to each parameter was firstly analyzed based on a Mohr-Columb strain softening model and nonlinear elastic-plastic finite element analysis. Then the effect laws of influencing factors which showed high sensitivity were further discussed. Finally, a regression model for the relationship between roadway displacements and multifactors was obtained by equivalent linear regression under multiple factors. The results show that the roadway deformation is highly sensitive to the depth of coal seam under the floor which should be considered in the layout of coal roadway; deformation modulus and strength of coal seam and floor have a great influence on the global stability of tunnel; on the contrary, roadway deformation is not sensitive to the mechanical parameters of soft roof; roadway deformation under random combinations of multi-factors can be deduced by the regression model. These conclusions provide theoretical significance to the arrangement and stability maintenance of coal roadway. PMID:24459447
High Temperature Mechanical Characterization and Analysis of Al2O3 /Al2O3 Composition
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.; Jaskowiak, Martha H.
1999-01-01
Sixteen ply unidirectional zirconia coated single crystal Al2O3 fiber reinforced polycrystalline Al2O3 was tested in uniaxial tension at temperatures to 1400 C in air. Fiber volume fractions ranged from 26 to 31%. The matrix has primarily open porosity of approximately 40%. Theories for predicting the Young's modulus, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of Al2O3/Al2O3 composites. The composite exhibited pseudo tough behavior (increased area under the stress/strain curve relative to monolithic alumina) from 22 to 1400 C. The rule-of-mixtures provides a good estimate of the Young's modulus of the composite using the constituent properties from room temperature to approximately 1200 C for short term static tensile tests in air. The ACK theory provides the best approximation of the first matrix cracking stress while accounting for residual stresses at room temperature. Difficulties in determining the fiber/matrix interfacial shear stress at high temperatures prevented the accurate prediction of the first matrix cracking stress above room temperature. The theory of Cao and Thouless, based on Weibull statistics, gave the best prediction for the composite ultimate tensile strength.
Effect of temperature on the electric breakdown strength of dielectric elastomer
NASA Astrophysics Data System (ADS)
Liu, Lei; Chen, Hualing; Sheng, Junjie; Zhang, Junshi; Wang, Yongquan; Jia, Shuhai
2014-03-01
DE (dielectric elastomer) is one of the most promising artificial muscle materials for its large strain over 100% under driving voltage. However, to date, dielectric elastomer actuators (DEAs) are prone to failure due to the temperature-dependent electric breakdown. Previously studies had shown that the electrical breakdown strength was mainly related to the temperature-dependent elasticity modulus and the permittivity of dielectric substances. This paper investigated the influence of ambient temperature on the electric breakdown strength of DE membranes (VHB4910 3M). The electric breakdown experiment of the DE membrane was conducted at different ambient temperatures and pre-stretch levels. The real breakdown strength was obtained by measuring the deformation and the breakdown voltage simultaneously. Then, we found that with the increase of the environment temperature, the electric breakdown strength decreased obviously. Contrarily, the high pre-stretch level led to the large electric breakdown strength. What is more, we found that the deformations of DEs were strongly dependent on the ambient temperature.
Highly oriented carbon fiber–polymer composites via additive manufacturing
Tekinalp, Halil L.; Kunc, Vlastimil; Velez-Garcia, Gregorio M.; ...
2014-10-16
Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructuremore » and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. Furthermore, this phenomena is explained based on the changes in fiber orientation, dispersion and void formation.« less
NASA Astrophysics Data System (ADS)
Gaaz, Tayser Sumer; Luaibi, Hasan Mohammed; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.
2018-06-01
The high aspect ratio of nanoscale reinforcements enhances the tensile properties of pure polymer matrix. The composites were first made by adding halloysite nanotubes (HNTs) at low weight percentages of 1, 2, and 3 wt% to thermoplastic polyurethane (TPU). Then, HNTs were phosphoric acid-treated before adding to TPU at same weight percentage to create phosphoric acid HNTs-TPU composites. The samples were fabricated using injection moulding. The HNTs-TPU composites were characterized according to the tensile properties including tensile strength, tensile strain and Young's modulus. The loading has shown its highest tensile values at 2 wt% HNTs loading and same findings are shown with the samples that treated with phosphoric acid. The tensile strength increased to reach 24.65 MPa compare with the 17.7 MPa of the neat TPU showing about 26% improvement. For the phosphoric acid-treated composites, the improvement has reached 35% compared to the neat sample. Regarding the tensile stain, the improvement was about 83% at 2 wt% HNTs loading. For Young's modulus, the results obtained in this study have shown that Young's modulus is linearly improved with either the loading content or the phosphoric acid treated achieving its highest values at 3 wt% HNTs of 14.53 MPa and 16.27 MPa for untreated and treated, respectively. FESEM results showed that HNTs were well dispersed in TPU matrix. Thus, HNTs-TPU has improved tensile properties compared with pure TPU due to the addition of nanofiller.
Mechanical characterization of hydroxyapatite, thermoelectric materials and doped ceria
NASA Astrophysics Data System (ADS)
Fan, Xiaofeng
For a variety of applications of brittle ceramic materials, porosity plays a critical role structurally and/or functionally, such as in engineered bone scaffolds, thermoelectric materials and in solid oxide fuel cells. The presence of porosity will affect the mechanical properties, which are essential to the design and application of porous brittle materials. In this study, the mechanical property versus microstructure relations for bioceramics, thermoelectric (TE) materials and solid oxide fuel cells were investigated. For the bioceramic material hydroxyapatite (HA), the Young's modulus was measured using resonant ultrasound spectroscopy (RUS) as a function of (i) porosity and (ii) microcracking damage state. The fracture strength was measured as a function of porosity using biaxial flexure testing, and the distribution of the fracture strength was studied by Weibull analysis. For the natural mineral tetrahedrite based solid solution thermoelectric material (Cu10Zn2As4S13 - Cu 12Sb4S13), the elastic moduli, hardness and fracture toughness were studied as a function of (i) composition and (ii) ball milling time. For ZiNiSn, a thermoelectric half-Heusler compound, the elastic modulus---porosity and hardness---porosity relations were examined. For the solid oxide fuel cell material, gadolina doped ceria (GDC), the elastic moduli including Young's modulus, shear modulus, bulk modulus and Poisson's ratio were measured by RUS as a function of porosity. The hardness was evaluated by Vickers indentation technique as a function of porosity. The results of the mechanical property versus microstructure relations obtained in this study are of great importance for the design and fabrication of reliable components with service life and a safety factor. The Weibull modulus, which is a measure of the scatter in fracture strength, is the gauge of the mechanical reliability. The elastic moduli and Poisson's ratio are needed in analytical or numerical models of the thermal and mechanical stresses arising from in-service thermal gradients, thermal transients and/or mechanical loading. Hardness is related to a material's wear resistance and machinability, which are two essential considerations in fabrication and application.
NASA Astrophysics Data System (ADS)
Dong, Lina; Zhou, Wenying; Sui, Xuezhen; Wang, Zijun; Cai, Huiwu; Wu, Peng; Zuo, Jing; Liu, Xiangrong
2016-07-01
The modification of epoxy (EP) resin with carboxyl-terminated polybutadiene (CTPB) liquid rubber was carried out in this work. The chemical reaction between the oxirane ring of EP and the carboxyl group of CTPB and kinetic parameters were investigated by Fourier transform infrared and differential scanning calorimetry. The resulting pre-polymers were cured with methyl hexahydrophthalic anhydride. Scanning electron microscopic observations indicate that the micro-sized CTPB particles dispersed uniformly in the EP matrix formed a two-phase morphology, mainly contributing to the improved toughness of the modified network. The best overall mechanical performance was achieved with 20 phr CTPB; above it, a fall in the strength and modulus was observed. The storage modulus and loss declined with the CTPB concentration due to its lower modulus and plasticizing effect from dynamic mechanical analysis measurements. Moreover, due to the weak polarity and excellent electrical insulation of CTPB, the CTPB-modified EP presented higher electrical resistivities and breakdown strength, and low dielectric permittivity and loss compared with neat EP.
Estimation of Effective Directional Strength of Single Walled Wavy CNT Reinforced Nanocomposite
NASA Astrophysics Data System (ADS)
Bhowmik, Krishnendu; Kumar, Pranav; Khutia, Niloy; Chowdhury, Amit Roy
2018-03-01
In this present work, single walled wavy carbon nanotube reinforced into composite has been studied to predict the effective directional strength of the nanocomposite. The effect of waviness on the overall Young’s modulus of the composite has been analysed using three dimensional finite element model. Waviness pattern of carbon nanotube is considered as periodic cosine function. Both long (continuous) and short (discontinuous) carbon nanotubes are being idealized as solid annular tube. Short carbon nanotube is modelled with hemispherical cap at its both ends. Representative Volume Element models have been developed with different waviness, height fractions, volume fractions and modulus ratios of carbon nanotubes. Consequently a micromechanics based analytical model has been formulated to derive the effective reinforcing modulus of wavy carbon nanotubes. In these models wavy single walled wavy carbon nanotubes are considered to be aligned along the longitudinal axis of the Representative Volume Element model. Results obtained from finite element analyses are compared with analytical model and they are found in good agreement.
Tuning carbon nanotube assembly for flexible, strong and conductive films
NASA Astrophysics Data System (ADS)
Wang, Yanjie; Li, Min; Gu, Yizhuo; Zhang, Xiaohua; Wang, Shaokai; Li, Qingwen; Zhang, Zuoguang
2015-02-01
Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g-1, greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive.Carbon nanotubes are ideal scaffolds for designing and architecting flexible graphite films with tunable mechanical, electrical and thermal properties. Herein, we demonstrate that the assembly of aligned carbon nanotubes with different aggregation density and morphology leads to different mechanical properties and anisotropic electrical conduction along the films. Using drying evaporation under tension treatment, the carbon nanotubes can be assembled into strong films with tensile strength and Young's modulus as high as 3.2 GPa and 124 GPa, respectively, leading to a remarkable toughness of 54.38 J g-1, greatly outperforming conventional graphite films, spider webs and even Kevlar fiber films. Different types of solvents may result in the assembly of CNTs with different aggregation morphology and therefore different modulus. In addition, we reveal that the high density assembly of aligned CNTs correlates with better electric conduction along the axial direction, enabling these flexible graphite films to be both strong and conductive. Electronic supplementary information (ESI) available: The TEM image of array CNTs. The surface height curves of x-z cross-section of the films. A comparison of the mechanical properties of the pure CNT films described in this work with other CNT films/fibers spun from CNT array reported in the literature. The measured evaporation rates of ethanol and acetone. See DOI: 10.1039/c4nr06401a
NASA Astrophysics Data System (ADS)
Rothman, Stephen; Edwards, Rhys; Vogler, Tracy; Furnish, Mike
2011-06-01
Velocity-time histories of free- or windowed-surfaces have been used to calculate wave speeds and hence deduce the shear modulus for materials at high pressure. This is important to high velocity impact phenomena, e.g. shaped-charge jets, long rod penetrators, and other projectile/armour interactions. Historically the shock overtake method has required several experiments with different depths of material to account for the effect of the surface on the arrival time of the release. A characteristics method, previously used for analysis of isentropic compression experiments, has been modified to account for the effect of the surface interactions, thus only one depth of material is required. This analysis has been applied to symmetric copper impacts performed at Sandia National Laboratory's Star Facility. A shear modulus of 200Gpa, at a pressure of ~180GPa, has been estimated. These results are in broad agreement with previous work by Hayes et al.
NASA Astrophysics Data System (ADS)
Han, Seungjin
This dissertation provides multifunctional carbon fiber polymer-matrix structural composites for vibration damping, thermal conduction and thermoelectricity. Specifically, (i) it has strengthened and stiffened carbon fiber polymer-matrix structural composites by the incorporation of halloysite nanotubes, carbon nanotubes and silicon carbide whiskers, (ii) it has improved mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation, (iii) it has increased the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation, and (iv) it has enhanced the thermoelectric behavior of carbon fiber polymer-matrix structural composites. Low-cost natural halloysite nanotubes (0.1 microm diameter) were effective for strengthening and stiffening continuous fiber polymer-matrix composites, as shown for crossply carbon fiber (5 microm diameter, ˜59 vol.%) epoxy-matrix composites under flexure, giving 17% increase in strength, 11% increase in modulus and 21% decrease in ductility. They were less effective than expensive multiwalled carbon nanotubes (0.02 microm diameter), which gave 25% increase in strength, 11% increase in modulus and 14% decrease in ductility. However, they were more effective than expensive silicon carbide whiskers (1 microm diameter), which gave 15% increase in strength, 9% increase in modulus and 20% decrease in ductility. Each filler, at ˜2 vol.%, was incorporated in the composite at every interlaminar interface by fiber prepreg surface modification. The flexural strength increase due to halloysite nanotubes incorporation related to the interlaminar shear strength increase. The measured values of the composite modulus agreed roughly with the calculated values based on the Rule of Mixtures. Continuous carbon fiber composites with enhanced vibration damping under flexure are provided by incorporation of fillers between the laminae. Exfoliated graphite (EG) as a sole filler is more effective than carbon nanotube (SWCNT/MWCNT), halloysite nanotube (HNT) or nanoclay as sole fillers in enhancing the loss tangent, if the curing pressure is 2.0 (not 0.5) MPa. The MWCNT, SiC whisker and halloysite nanotube as sole fillers are effective for increasing the storage modulus. The combined use of a storage-modulus-enhancing filler (CNT, SiC whisker or HNT) and a loss-tangent-enhancing filler (EG or nanoclay) gives the best performance. With EG, HNT and 2.0-MPa curing, the loss modulus is increased by 110%, while the flexural strength is decreased by 14% and the flexural modulus is not affected. With nanoclay, HNT and 0.5-MPa curing, the loss modulus is increased by 96%, while the flexural strength and modulus are essentially not affected. The low through-thickness thermal conductivity limits heat dissipation from continuous carbon fiber polymer-matrix composites. This conductivity is increased by up to 60% by raising the curing pressure from 0.1 to 2.0 MPa and up to 33% by incorporation of a filler (61.5 vol.%) at the interlaminar interface. The thermal resistivity is dominated by the lamina resistivity (which is contributed substantially by the intralaminar fiber--fiber interfacial resistivity), with the interlaminar interface thermal resistivity being unexpectedly negligible. The lamina resistivity and intralaminar fiber-fiber interfacial resistivity are decreased by up to 56% by raising the curing pressure and up to 36% by filler incorporation. Thermoelectric structural materials are potentially attractive for large-scale energy harvesting. Through filler incorporation and unprecedented decoupling of the bulk (laminae) and interfacial (interlaminar interfaces) contributions to the Seebeck voltage (through-thickness Seebeck voltage of a crossply continuous carbon fiber/epoxy composite laminate), this work provides thermoelectric power magnitudes at ˜70°C up to 110, 1670 and 11000 microV/K for the laminate, a lamina and an interlaminar interface respectively. The interface provides an apparent thermoelectric effect due to carrier backflow. The interfacial voltage is opposite in sign from the laminate and lamina voltages and is slightly lower in magnitude than the lamina voltage. The through-thickness thermoelectric behavior of continuous carbon fiber epoxy-matrix structural composites has been greatly improved by the use of tellurium particles (13 vol.% of composite), bismuth telluride particles (2 vol.%) and carbon black (2 vol.%) at the interlaminar interface. The thermoelectric power is increased from 8 to 163 microV/K, while the electrical resistivity is decreased from 0.17 to 0.02 O.cm, the thermal conductivity is decreased from 1.31 to 0.51 W/m.K, and the dimensionless thermoelectric figure of merit ZT at 70°C is increased from 9 x 10-6 to 9 x 10-2. Decrease in the curing pressure from 4.0 to 0.5 MPa decreases ZT slightly, mainly due to the increase in electrical resistivity.
Mechanical characterization and modeling of sponge-reinforced hydrogel composites under compression.
Wu, Lei; Mao, Guoyong; Nian, Guodong; Xiang, Yuhai; Qian, Jin; Qu, Shaoxing
2018-05-30
Load-bearing applications of hydrogels call for materials with excellent mechanical properties. Despite the considerable progress in developing tough hydrogels, there is still a requirement to prepare high-performance hydrogels using simple strategies. In this paper, a sponge-reinforced hydrogel composite is synthesized by combining poly(acrylamide) (PAAm) hydrogel and polyurethane (PU) sponge. Uniaxial compressive testing of the hydrogel composites reveals that both the compressive modulus and the strength of the hydrogel composites are much higher than those of the PAAm hydrogel or sponge. In order to predict the compressive modulus of the hydrogel composite, we develop a theoretical model that is validated by experiments and numerical simulations. The present work may guide the design and manufacture of hydrogel-based composite materials, especially for biomaterial scaffolds and soft transducers.
Fracture modes in off-axis fiber composites
NASA Technical Reports Server (NTRS)
Sinclair, J. H.; Chamis, C. C.
1978-01-01
Criteria were developed for identifying, characterizing, and quantifying fracture modes in high-modulus graphite-fiber/resin unidirectional composites subjected to off-axis tensile loading. Procedures are described which use sensitivity analyses and off-axis data to determine the uniaxial strength of fiber composites. It was found that off-axis composites fail by three fracture modes which produce unique fracture surface characteristics. The stress that dominates each fracture mode and the load angle range of its dominance can be identified. Linear composite mechanics is adequate to describe quantitatively the mechanical behavior of off-axis composites. The uniaxial strengths predicted from off-axis data are comparable to these measured in uniaxial tests.
Evaluation of Alternative Refractory Materials for the Main Flame Deflectors at KSC Launch Complexes
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Trejo, David; Rutkowsky, Justin
2006-01-01
The deterioration of the refractory materials used to protect the KSC launch complex steel base structures from the high temperatures during launches results in frequent and costly repairs and safety hazards. KSC-SPEC-P-0012, Specification for Refractory Concrete, is ineffective in qualifying refractory materials. This study of the specification and of alternative refractory materials recommends a complete revision of the specification and further investigation of materials that were found to withstand the environment of the Solid Rocket Booster main flame deflector better than the refractory materials in current use in terms of compressive strength, tensile strength, modulus of rupture, shrinkage, and abrasion.
NASA Technical Reports Server (NTRS)
Allred, Ronald E.; Gosau, Jan M.; Shin, E. Eugene; McCorkle, Linda S.; Sutter, James K.; OMalley, Michelle; Gray, Hugh R. (Technical Monitor)
2002-01-01
To increase performance and durability of high temperature composites for potential rocket engine components, it is necessary to optimize wetting and interfacial bonding between high modulus carbon fibers and high temperature polyimide resins. It has been previously demonstrated that the electro-oxidative shear treatments used by fiber manufacturers are not effective on higher modulus fibers that have fewer edge and defect sites in the surface crystallites. In addition, sizings commercially supplied on most carbon fibers are not compatible with polyimides. This study was an extension of prior work characterizing the surface chemistry and energy of high modulus carbon fibers (M40J and M60J, Torray) with typical fluorinated polyimide resins, such as PMR-II-50. A continuous desizing system which utilizes environmentally friendly chemical- mechanical processes was developed for tow level fiber and the processes were optimized based on weight loss behavior, surface elemental composition (XPS) and morphology (FE-SEM) analyses, and residual tow strength of the fiber, and the similar approaches have been applied on carbon fabrics. Both desized and further treated with a reactive finish were investigated for the composite reinforcement. The effects of desizing and/or subsequent surface retreatment on carbon fiber on composite properties and performance including fiber-matrix interfacial mechanical properties, thermal properties and blistering onset behavior will be discussed in this presentation.
DOT National Transportation Integrated Search
1970-01-01
In this investigation, the optimum structural strength contributed by a material to the overall strength of the pavement was studied for cases applicable to Virginia. The variables were (a) the modulus of elasticity or the thickness equivalency of th...
Creep rupture of polymer-matrix composites
NASA Technical Reports Server (NTRS)
Brinson, H. F.; Morris, D. H.; Griffith, W. I.
1981-01-01
The time-dependent creep-rupture process in graphite-epoxy laminates is examined as a function of temperature and stress level. Moisture effects are not considered. An accelerated characterization method of composite-laminate viscoelastic modulus and strength properties is reviewed. It is shown that lamina-modulus master curves can be obtained using a minimum of normally performed quality-control-type testing. Lamina-strength master curves, obtained by assuming a constant-strain-failure criterion, are presented along with experimental data, and reasonably good agreement is shown to exist between the two. Various phenomenological delayed failure models are reviewed and two (the modified rate equation and the Larson-Miller parameter method) are compared to creep-rupture data with poor results.
NASA Technical Reports Server (NTRS)
Raju, B. B.; Camarda, C. J.; Cooper, P. A.
1979-01-01
Seventy-nine graphite/polyimide compression specimens were tested to investigate experimentally the IITRI test method for determining compressive properties of composite materials at room and elevated temperatures (589 K (600 F)). Minor modifications were made to the standard IITRI fixture and a high degree of precision was maintained in specimen fabrication and load alignment. Specimens included four symmetric laminate orientations. Various widths were tested to evaluate the effect of width on measured modulus and strength. In most cases three specimens of each width were tested at room and elevated temperature and a polynomial regression analysis was used to reduce the data. Scatter of replicate tests and back-to-back strain variations were low, and no specimens failed by instability. Variation of specimen width had a negligible effect on the measured ultimate strengths and initial moduli of the specimens. Measured compressive strength and stiffness values were sufficiently high for the material to be considered a usable structural material at temperatures as high as 589 K (600 F).
Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.
Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo
2017-07-11
Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.
Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures
Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo
2017-01-01
Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load. PMID:28773144
NASA Astrophysics Data System (ADS)
Kumavat, Hemraj Ramdas
2016-09-01
The compressive stress-strain behavior and mechanical properties of clay brick masonry and its constituents clay bricks and mortar, have been studied by several laboratory tests. Using linear regression analysis, a analytical model has been proposed for obtaining the stress-strain curves for masonry that can be used in the analysis and design procedures. The model requires only the compressive strengths of bricks and mortar as input data, which can be easily obtained experimentally. Development of analytical model from the obtained experimental results of Young's modulus and compressive strength. Simple relationships have been identified for obtaining the modulus of elasticity of bricks, mortar, and masonry from their corresponding compressive strengths. It was observed that the proposed analytical model clearly demonstrates a reasonably good prediction of the stress-strain curves when compared with the experimental curves.
Evaluation of silicon carbide fiber/titanium composites
NASA Technical Reports Server (NTRS)
Jech, R. W.; Signorelli, R. A.
1979-01-01
Izod impact, tensile, and modulus of elasticity were determined for silicon carbide fiber/titanium composites to evaluate their potential usefulness as substitutes for titanium alloys or stainless steel in stiffness critical applications for aircraft turbine engines. Variations in processing conditions and matrix ductility were examined to produce composites having good impact strength in both the as-fabricated condition and after air exposure at elevated temperature. The impact strengths of composites containing 36 volume percent silicon carbide (SiC) fiber in an unalloyed (A-40) titanium matrix were found to be equal to unreinforced titanium-6 aluminum-4 vanadium alloy; the tensile strengths of the composites were marginally better than the unreinforced unalloyed (A-70) matrix at elevated temperature, though not at room temperature. At room temperature the modulus of elasticity of the composites was 48 percent higher than titanium or its alloys and 40 percent higher than that of stainless steel.
Cálculo del esfuerzo ideal de metales nobles mediante primeros principios en la dirección <100>
NASA Astrophysics Data System (ADS)
Bautista-Hernández, A.; López-Fuentes, M.; Pacheco-Espejel, V.; Rivas-Silva, J. F.
2005-04-01
We present calculations of the ideal strength on the < 100 > direction for noble metals (Cu, Ag and Au), by means of first principles calculations. First, we obtain the structural parameters (cell parameters, bulk modulus) for each studied metal. We deform on the < 100 > direction calculating the total energy and the stress tensor through the Hellman-Feynman theorem, by the relaxation of the unit cell in the perpendicular directions to the deformation one. The calculated cell constants differ 1.3 % from experimental data. The maximum ideal strength are 29.6, 17 and 19 GPa for Cu, Ag and Au respectively. Meanwhile, the calculated elastic modulus are 106 (Cu), 71 (Ag), and 45 GPa (Au) and are in agreement with the experimental values for polycrystalline samples. The values of maximum strength are explained by the optimum volume values due to the atomic radius size for each element.
NASA Astrophysics Data System (ADS)
Salem, I. A. S.; Rozyanty, A. R.; Betar, B. O.; Adam, T.; Mohammed, M.; Mohammed, A. M.
2017-10-01
In this research, unsaturated polyester/kenaf fiber (UP/KF) composites was prepared by using hand lay-up process. The effect of surface treatment of kenaf fiber on mechanical properties of kenaf filled unsaturated polyester composites were studied. Different concentrationsof stearic acid (SA) were applied, i.e. 0, 0.4, and 0.8 wt%. Tensile strength of untreated UP/KF composites was found to be higher for 40 wt% loading of kenaf fiber. The highest tensile strength value was obtained after treatment with 0.4 wt% concentration of stearic acid at 56 MPa and tensile modulus was at 2409 MPa. From the flexural strength result obtained, it is clearly seen that 40 wt% loading of kenaf fiber and treatment with 0.4 wt% concentration of stearic acid give the highest value at 72 MPa and flexural modulus at 3929 MPa.
Recycle of mixed automotive plastics: A model study
NASA Astrophysics Data System (ADS)
Woramongconchai, Somsak
This research investigated blends of virgin automotive plastics which were identified through market analysis. The intent was that this study could be used as a basis for further research in blends of automotive plastics recyclate. The effects of temperature, shear, time, and degree of mixing in a two-roll mill, a single-screw extruder, and a twin-screw extruder were investigated. Properties were evaluated in terms of melt flow, rigidity, strength, impact, heat resistance, electrical resistivity, color, and resistance to water and gasoline. Torque rheometry, dynamic mechanical analysis (DMA), optical and scanning electron microscopy were used to characterize the processability and morphology of major components of the blends. The two-roll mill was operated at high temperature, short time, and low roll speed to avoid discolored and degraded materials. The single-screw extruder and twin-screw extruder were operated at medium and high temperature and high screw speed, respectively, for optimizing head pressure, residence time, shear and degree of mixing of the materials. Melt index increased with extrusion temperature. Flexural modulus increased with the processing temperatures in milling or twin-screw extrusion, but decreased with the increasing single-screw extrusion temperature. Tensile modulus was also enhanced by increasing processing temperature. The tensile strengths for each process were similar and relatively low. The impact strength increased with temperature and roll speed in two-roll milling, was unaffected by the single-screw extrusion temperature and decreased with increasing twin-screw extrusion temperature. Heat resistance was always reduced by higher processing temperature. The volume resistivity increased, water absorption was unaffected and gasoline absorption altered by increased processing temperature. The latter increased somewhat with mill temperature, roll speed (two-roll mill) and higher extrusion temperature (single-screw extruder), but decreased with increased twin-screw extrusion temperature. The flexural modulus of the recycled mixed automotive plastics expected in 2003 was higher than the 1980s and 1990 recycle. Flexural strength effects were not large enough for serious consideration, but were more dominant when compared to those in the 1980s and 1990s. Impact strengths at 20-30 J/m were the lowest value compared to the 1980s and 1990s mixed automotive recycle. Torque rheometry, dynamic mechanical analysis and optical and electron microscopy agreed with each other on the characterization of the processability and morphology of the blends. LLDPE and HDPE were miscible while PP was partially miscible with polyethylene. ABS and nylon-6 were immiscible with the polyolefins, but partially miscible with each other. As expected, the polyurethane foam was immiscible with the other components. The minor components of the model recycle of mixed automotive materials were probably partially miscible with ABS/nylon-6, but there were multiple and unresolved phases in the major blends.
Effect of soldering on the metal-ceramic bond strength of an Ni-Cr base alloy.
Nikellis, Ioannis; Levi, Anna; Zinelis, Spiros
2005-11-01
Although soldering is a common laboratory procedure, the use of soldering alloys may adversely affect metal-ceramic bond strength and potentially decrease the longevity of metal-ceramic restorations. The purpose of this study was to investigate the effect of soldering on metal-ceramic bond strength of a representative Ni-Cr base metal alloy. Twenty-eight rectangular (25 x 3 x 0.5 mm) Ni-based alloy (Wiron 99) specimens were equally divided into soldering (S) and reference (R) groups. Soldering group specimens were covered with a 0.1-mm layer of the appropriate solder (Wiron-Lot) and reduced by 0.1 mm on the opposite side. Five specimens of each group were used for the measurement of surface roughness parameter (R(z)) and hardness, and 3 were used for measurement of the modulus of elasticity. Six specimens of each group were covered with porcelain (Ceramco 3) and subjected to a 3-point bending test for evaluation of the metal-ceramic bond strength according to the ISO 9693 specification. The data from surface roughness, hardness, modulus of elasticity, and metal-ceramic bond strength were analyzed statistically, using independent t tests (alpha=.05). Statistical analysis of the R(z) surface roughness parameter (S: 3.4 +/- 0.3 mum; R: 3.7 +/- 0.7 microm; P=.07) and bond strength (S: 46 +/- 3 MPa; R: 40 +/- 5 MPa; P=.057) failed to reveal any significant difference between the 2 groups. The specimens of the soldering group demonstrated significantly lower values both in hardness (S: 128 +/- 11 VHN; R: 217 +/- 4 VHN; P<.001) and in modulus of elasticity (S: 135 +/- 4 GPa; R: 183 +/- 6 GPa; P=.035) than the reference group. Under the conditions of the present study, the addition of solder to the base metal alloy did not affect the metal-ceramic bond strength.
Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network
Pascual, Agustín; Camps, Isabel; Grau-Benitez, María
2015-01-01
Background The field of dental ceramics for CAD-CAM is enriched with a new innovative material composition having a porous three-dimensional structure of feldspathic ceramic infiltrated with acrylic resins.The aim of this study is to determine the mechanical properties of Polymer-Infiltrated-Ceramic-Network (PICN) and compare its performance with other ceramics and a nano-ceramic resin available for CAD-CAM systems. Material and Methods In this study a total of five different materials for CAD-CAM were investigated. A polymer-infiltrated ceramic (Vita Enamic), a nano-ceramic resin (Lava Ultimate), a feldspathic ceramic (Mark II), a lithium disilicate ceramic (IPS-e max CAD) and finally a Leucite based ceramic (Empress - CAD). From CAD-CAM blocks, 120 bars (30 for each material cited above) were cut to measure the flexural strength with a three-point-bending test. Strain at failure, fracture stress and Weibull modulus was calculated. Vickers hardness of each material was also measured. Results IPS-EMAX presents mechanical properties significantly better from the other materials studied. Its strain at failure, flexural strength and hardness exhibited significantly higher values in comparison with the others. VITA ENAMIC and LAVA ULTIMATE stand out as the next most resistant materials. Conclusions The flexural strength, elastic modulus similar to a tooth as well as having less hardness than ceramics make PICN materials an option to consider as a restorative material. Key words:Ceramic infiltrated with resin, CAD-CAM, Weibull modulus, flexural strength, micro hardness. PMID:26535096
DOT National Transportation Integrated Search
2010-01-01
This study sought to identify the equivalent 105F curing duration for lime-stabilized soil (LSS) that will : yield the equivalent unconfined compressive strength (UCS) to that resulting from 28-day, 73F curing. Both : 5-day and 7-day 105F (or 1...
Strength of log bridge stringers after several year’s use in southeast Alaska
Russell C. Moody; R.L. Tuomi; W.E. Eslyn; F.W. Muchmore
1979-01-01
Bending tests of 28 untreated log stringers from 12-year-old native timber bridges in southeast Alaska showed significant reductions in strength due to decay. Compared to results on fresh logs, strength reduction was about 25 percent, and could be predicted based on the loss in section modulus due to decay. Log stiffness was not significantly affected. Results will be...
NASA Astrophysics Data System (ADS)
King, Bruce H.
Fibrous-monolithic ceramics are a class of material with many similarities to layered ceramic composites. Like layered composites, fibrous monoliths depend on a weak interphase to promote crack deflection and energy absorption, avoiding catastrophic failure. However, in a fibrous monolith, the interphase surrounds fiber-like "cells" of the strong phase, forming a continuous, 2-dimensional honeycomb network. In the most simple architecture, all cells are aligned unidirectionally. More complex architectures are easily produced by varying the orientation of successive layers relative to each other. The Young's modulus of the unidirectional architecture is predicted accurately along principal axes using a "brick" model, while the modulus at angles between 0sp° and 90sp° is predicted using laminate theory. Laminate theory may also be used to accurately predict the Young's modulus of multidirectional architectures such as a cross-ply 0sp°/90sp° and a quasi-isotropic 0sp°/{±}45sp°/90sp°. Unidirectional fibrous monolithic ceramics are linear elastic in flexure until the first major failure event. The flexural strength of the unidirectional architecture tested at orientations between 0sp° and 90sp° is observed to fall into three distinct regions. Between 0sp° and 10sp° the strength is a constant 450 MPa, but between 10sp° and 45sp°, it gradually drops to 80 MPa. Above 45sp° the strength remains essentially constant. Between 0sp° and 30sp°, the strength is accurately predicted using the Maximum Stress theory. Above 30sp°, the strength is predicted using the Tsai-Hill model. The multidirectional architectures exhibit nonlinearity in flexural loading prior to the peak stress. Cyclic loading experiments indicate that this nonlinearity is a result-of microcracking in the boron nitride cell boundaries of the off-axis layers. The cross-ply architecture exhibits a strength of 334 ± 35 MPa, while the quasi-isotropic has a strength of 255 ± 22 MPa. The models developed to describe the unidirectional architecture may be extended to predict upper and lower bounds on the strength of multidirectional architectures.
Blaesi, Aron H; Saka, Nannaji
2016-07-25
At present, the immediate-release solid dosage forms, such as the oral tablets and capsules, are granular solids. They release drug rapidly and have adequate mechanical properties, but their manufacture is fraught with difficulties inherent in processing particulate matter. Such difficulties, however, could be overcome by liquid-based processing. Therefore, we have recently introduced polymeric cellular (i.e., highly porous) dosage forms prepared from a melt process. Experiments have shown that upon immersion in a dissolution medium, the cellular dosage forms with polyethylene glycol (PEG) as excipient and with predominantly open-cell topology disintegrate by exfoliation, thus enabling rapid drug release. If the volume fraction of voids of the open-cell structures is too large, however, their mechanical strength is adversely affected. At present, the common method for determining the tensile strength of brittle, solid dosage forms (such as select granular forms) is the diametral compression test. In this study, the theory of diametral compression is first refined to demonstrate that the relevant mechanical properties of ductile and cellular solids (i.e., the elastic modulus and the yield strength) can also be extracted from this test. Diametral compression experiments are then conducted on PEG-based solid and cellular dosage forms. It is found that the elastic modulus and yield strength of the open-cell structures are about an order of magnitude smaller than those of the non-porous solids, but still are substantially greater than the stiffness and strength requirements for handling the dosage forms manually. This work thus demonstrates that melt-processed polymeric cellular dosage forms that release drug rapidly can be designed and manufactured to have adequate mechanical properties. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ratim, S.; Bonnia, N. N.; Surip, S. N.
2012-07-01
The effects of woven and non-woven kenaf fiber on mechanical properties of polyester composites were studied at different types of perform structures. Composite polyester reinforced kenaf fiber has been prepared via hand lay-up process by varying fiber forms into plain weave, twill and mats structure. The reinforcing efficiency of different fiber structure was compared with control of unreinforced polyester sample. It was found that the strength and stiffness of the composites are largely affected by fiber structure. A maximum value for tensile strength of composite was obtained for twill weave pattern of fiber structure while no significant different for plain weave and mat structure. The elastic modulus of composite has shown some improvement on plain and twill weave pattern. Meanwhile, lower value of modulus elasticity achieved by mats structure composite as well as control sample. The modulus of rupture and impact resistance were also analyzed. The improvement of modulus of rupture value can be seen on plain and twill weave pattern. However impact resistance doesn't show significant improvement in all types of structure except for mat fiber. The mechanical properties of kenaf fiber reinforced polyester composite found to be increased with woven and non-woven fiber structures in composite.
Baker, Joshua F; Davis, Matthew; Alexander, Ruben; Zemel, Babette S; Mostoufi-Moab, Sogol; Shults, Justine; Sulik, Michael; Schiferl, Daniel J; Leonard, Mary B
2013-03-01
The objective of this study was to identify independent associations between body composition and bone outcomes, including cortical structure and cortical and trabecular volumetric bone mineral density (vBMD) across the adult age spectrum. This cross-sectional study evaluated over 400 healthy adults (48% male, 44% black race), ages 21-78years. Multivariable linear regression models evaluated associations between whole-body DXA measures of lean body mass index (LBMI) and fat mass index (FMI) and tibia peripheral quantitative CT (pQCT) measures of cortical section modulus, cortical and trabecular vBMD and muscle density (as a measure of intramuscular fat), adjusted for age, sex, and race. All associations reported below were statistically significant (p<0.05). Older age and female sex were associated with lower LBMI and muscle strength. Black race was associated with greater LBMI but lower muscle density. Greater FMI was associated with lower muscle density. Cortical section modulus was positively associated with LBMI and muscle strength and negatively associated with FMI. Adjustment for body composition eliminated the greater section modulus observed in black participants and attenuated the lower section modulus in females. Greater LBMI was associated with lower cortical BMD and greater trabecular BMD. FMI was not associated with either BMD outcome. Greater muscle density was associated with greater trabecular and cortical BMD. Associations between body composition and bone outcomes did not vary by sex (no significant tests for interaction). These data highlight age-, sex- and race-specific differences in body composition, muscle strength and muscle density, and demonstrate discrete associations with bone density and structure. These data also show that age-, sex- and race-related patterns of bone density and strength are independent of differences in body composition. Longitudinal studies are needed to examine the temporal relations between changes in bone and body composition. Published by Elsevier Inc.
Baker, Joshua F.; Davis, Matthew; Alexander, Ruben; Zemel, Babette S.; Mostoufi-Moab, Sogol; Shults, Justine; Sulik, Michael; Schiferl, Daniel J.; Leonard, Mary B.
2012-01-01
Background/Purpose The objective of this study was identify independent associations between body composition and bone outcomes, including cortical structure and cortical and trabecular volumetric bone mineral density (vBMD) across the adult age spectrum. Methods This cross-sectional study evaluated over 400 healthy adults (48% male, 44% black race), ages 21–78 years. Multivariable linear regression models evaluated associations between whole-body DXA measures of lean body mass index (LBMI) and fat mass index (FMI) and tibia peripheral quantitative CT (pQCT) measures of cortical section modulus, cortical and trabecular vBMD and muscle density (as a measure of intramuscular fat), adjusted for age, sex, and race. All associations reported below were statistically significant (p < 0.05). Results Older age and female sex were associated with lower LBMI and muscle strength. Black race was associated with greater LBMI but lower muscle density. Greater FMI was associated with lower muscle density. Cortical section modulus was positively associated with LBMI and muscle strength and negatively associated with FMI. Adjustment for body composition eliminated the greater section modulus observed in black participants and attenuated the lower section modulus in females. Greater LBMI was associated with lower cortical BMD and greater trabecular BMD. FMI was not associated with either BMD outcome. Greater muscle density was associated with greater trabecular and cortical BMD. Associations between body composition and bone outcomes did not vary by sex (no significant tests for interaction). Conclusions These data highlight age, sex- and race-specific differences in body composition, muscle strength and muscle density, and demonstrate discrete associations with bone density and structure. These data also show that age, sex- and race- related patterns of bone density and strength are independent of differences in body composition. Longitudinal studies are needed to examine the temporal relations between changes in bone and body composition. PMID:23238122
NASA Astrophysics Data System (ADS)
Escocio, Viviane A.; Visconte, Leila L. Y.; Cavalcante, Andre de P.; Furtado, Ana Maria S.; Pacheco, Elen B. A. V.
2015-05-01
Brazil has a remarkable position in the use of renewable energy. The potential of natural resources in Brazil has motivated the use of these renewable resources to make technologies more sustainable. From the large variety of commercially available High Density Polyethylene (HDPE) from different sources, two were chosen for investigation: one produced from sugarcane ethanol, and the other one, a conventional polyethylene, produced from fossil resources. In the preparation of the composites, sponge-gourds also called Luffa cylindrica were selectec. The main application of this product is as bath sponge, whose production generates scraps that are generally burnt. In this work, the composites were prepared by blending the sponge scrap at different proportions (10, 20, 30 and 40% wt/wt) with high density polyethylene (HDPE) from renewable source by extrusion. The melt flow index analysis of the composites was determined and specimens were obtained by injection molding for the assessment of mechanical properties such as tensile (elasticity modulus), flexural and Izod impact strengths. The microstructure of the impact fractured surface of the specimen also was determined. The results showed that the addition of sponge scrap affects positively all the properties studied as compared to HDPE. The results of tensile strength, elasticity modulus and flexural strength were similar to those observed in the literature for composites of HDPE from fossil source. The microstructure corroborates the results of mechanical properties. It was shown that the sponge scrap has potential to be applied as cellulosic filler for renewable polyethylene, providing a totally renewable material with good mechanical properties.
Environmentally Friendly Bio-Based Vinyl Ester Resins for Military Composite Structures
2008-12-01
composites, fatty acid , vinyl ester 9. Distribution $tatement (requr’iedl lsmanuscript subjectto export control? E ruo I yes Circfe appropriate l tter and...resins is to replace some or all of the styrene with fatty acid -based monomers. These fatty acid vinyl ester resins allow for the formulation of high...validation studies have been performed, showing that the fatty acid -based resins have sufficient, modulus, strength, glass transition temperature, and
Kearney, C M; Buckley, C T; Jenner, F; Moissonnier, P; Brama, P A J
2014-07-01
Selection of suture material in equine surgery is often based on costs or subjective factors, such as the surgeon's personal experience, rather than objective facts. The amount of objective data available on durability of suture materials with regard to specific equine physiological conditions is limited. To evaluate the effect of various equine physiological and pathological fluids on the rate of degradation of a number of commonly used suture materials. In vitro material testing. Suture materials were exposed in vitro to physiological fluid, followed by biomechanical analysis. Three absorbable suture materials, glycolide/lactide copolymer, polyglactin 910 and polydioxanone were incubated at 37°C for 7, 14 or 28 days in phosphate-buffered saline, equine serum, equine urine and equine peritoneal fluid from an animal with peritonitis. Five strands of each suture material type were tested to failure in a materials testing machine for each time point and each incubation medium. Yield strength, strain and Young's modulus were calculated, analysed and reported. For all suture types, the incubation time had a significant effect on yield strength, percentage elongation and Young's modulus in all culture media (P<0.0001). Suture type was also shown significantly to influence changes in each of yield strength, percentage elongation and Young's modulus in all culture media (P<0.0001). While the glycolide/lactide copolymer demonstrated the highest Day 0 yield strength, it showed the most rapid degradation in all culture media. For each of the 3 material characteristics tested, polydioxanone showed the least variation across the incubation period in each culture medium. The duration of incubation and the type of fluid have significant effects on the biomechanical properties of various suture materials. These findings are important for evidence-based selection of suture material in clinical cases. © 2013 EVJ Ltd.
NASA Technical Reports Server (NTRS)
Chang, Katarina L.; Pennline, James A.
2013-01-01
During long-duration missions at the International Space Station, astronauts experience weightlessness leading to skeletal unloading. Unloading causes a lack of a mechanical stimulus that triggers bone cellular units to remove mass from the skeleton. A mathematical system of the cellular dynamics predicts theoretical changes to volume fractions and ash fraction in response to temporal variations in skeletal loading. No current model uses image technology to gather information about a skeletal site s initial properties to calculate bone remodeling changes and then to compare predicted bone strengths with the initial strength. The goal of this study is to use quantitative computed tomography (QCT) in conjunction with a computational model of the bone remodeling process to establish initial bone properties to predict changes in bone mechanics during bone loss and recovery with finite element (FE) modeling. Input parameters for the remodeling model include bone volume fraction and ash fraction, which are both computed from the QCT images. A non-destructive approach to measure ash fraction is also derived. Voxel-based finite element models (FEM) created from QCTs provide initial evaluation of bone strength. Bone volume fraction and ash fraction outputs from the computational model predict changes to the elastic modulus of bone via a two-parameter equation. The modulus captures the effect of bone remodeling and functions as the key to evaluate of changes in strength. Application of this time-dependent modulus to FEMs and composite beam theory enables an assessment of bone mechanics during recovery. Prediction of bone strength is not only important for astronauts, but is also pertinent to millions of patients with osteoporosis and low bone density.
Macroscopic anisotropic bone material properties in children with severe osteogenesis imperfecta.
Albert, Carolyne; Jameson, John; Tarima, Sergey; Smith, Peter; Harris, Gerald
2017-11-07
Children with severe osteogenesis imperfecta (OI) typically experience numerous fractures and progressive skeletal deformities over their lifetime. Recent studies proposed finite element models to assess fracture risk and guide clinicians in determining appropriate intervention in children with OI, but lack of appropriate material property inputs remains a challenge. This study aimed to characterize macroscopic anisotropic cortical bone material properties and investigate relationships with bone density measures in children with severe OI. Specimens were obtained from tibial or femoral shafts of nine children with severe OI and five controls. The specimens were cut into beams, characterized in bending, and imaged by synchrotron radiation X-ray micro-computed tomography. Longitudinal modulus of elasticity, yield strength, and bending strength were 32-65% lower in the OI group (p<0.001). Yield strain did not differ between groups (p≥0.197). In both groups, modulus and strength were lower in the transverse direction (p≤0.009), but anisotropy was less pronounced in the OI group. Intracortical vascular porosity was almost six times higher in the OI group (p<0.001), but no differences were observed in osteocyte lacunar porosity between the groups (p=0.086). Volumetric bone mineral density was lower in the OI group (p<0.001), but volumetric tissue mineral density was not (p=0.770). Longitudinal OI bone modulus and strength were correlated with volumetric bone mineral density (p≤0.024) but not volumetric tissue mineral density (p≥0.099). Results indicate that cortical bone in children with severe OI yields at the same strain as normal bone, and that their decreased bone material strength is associated with reduced volumetric bone mineral density. These results will enable the advancement of fracture risk assessment capability in children with severe OI. Copyright © 2017 Elsevier Ltd. All rights reserved.
Matrix density effects on the mechanical properties of SiC/RBSN composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Kiser, James D.
1990-01-01
The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Kiser, Lames D.
1990-01-01
The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.
Development of high temperature resistant graphite fiber coupling agents
NASA Technical Reports Server (NTRS)
Griffin, R. N.
1975-01-01
Surface treatments were investigated as potential coupling agents to improve the elevated temperature shear strength retention of polyimide/graphite and polyphenylquinoxaline/graphite composites. The potential coupling agents were evaluated by fiber strand tensile tests, fiber and composite weight losses at 533 and 588K, and by interlaminar shear strength retention at 533 and 588K. The two surface treatments selected for more extensive evaluation were a coating of Ventromer T-1, a complex organometallic reaction product of titanium tetrachloride and trimethyl borate, and a polyphenylquinoxaline (PPQ) sizing which was pyrolyzed in nitrogen to form a carbonaceous layer on the fiber. Pyrolyzed polyphenylquinoxaline is a satisfactory coupling agent for polyimide/Thornel 300 graphite fiber composites. During 1000 hours aging at 588K such composites lose a little over half their transverse tensile strength, and suffer a slight loss in flexural modulus. No degradation of flexural strength or interlaminar shear strength occured during 1000 hours aging at 588K. None of the coupling agents examined had a markedly beneficial effect with polyphenylquinoxaline composites.
Properties of Polymer-Infiltrated Carbon Foams
NASA Astrophysics Data System (ADS)
Adams, W. A.; Bunning, T. J.; Farmer, B. L.; Kearns, K. M.; Anderson, D. A.; Roy, A. K.; Banerjee, T.; Jeon, H. G.
2001-03-01
There is considerable interest in extending the use-temperatures of both commodity and high performance polymers. There is also interest in improving the mechanical strength of carbon foams. Composites prepared by infiltrating carbon foam with polymers may offer significant improvements in both, the polymer helping to rigidize the foam and the foam providing thermal protection by virtue of its high thermal conductivity. The mechanical properties and thermal stability of carbon foams of various densities infiltrated with polyurethane have been studied. When used with a heat sink, the composite is able to maintain a substantial thermal gradient which provides stability of the polymer nominally above its decomposition temperature. The composite also has much improved strength properties without sacrificing tensile modulus. The composites may be very well suited for thermal management applications.
Wang, X W; Zhang, C-A; Wang, P L; Zhao, J; Zhang, W; Ji, J H; Hua, K; Zhou, J; Yang, X B; Li, X P
2012-05-08
Poly(butylene succinate) (PBS)/graphene oxide (GO) nanocomposites were facilely prepared via in situ polymerization. The properties of the nanocomposites were studied using FTIR, XRD, and (1)H NMR, and the state of dispersion of GO in the PBS matrix was examined by SEM. The crystallization and melting behavior of the PBS matrix in the presence of dispersed GO nanosheets have been studied by DSC and polarized optical microscopy. Through the mechnical testing machine and DMA, PBS/GO nanocomposites with 3% GO have shown a 43% increase in tensile strength and a 45% improvement in storage modulus. This high performance of the nanocomposites is mainly attributed to the high strength of graphene oxide combined with the strong interfacial interactions in the uniformly dispersed PBS/GO nanocomposites.
Zirconia changes after grinding and regeneration firing.
Hatanaka, Gabriel R; Polli, Gabriela S; Fais, Laiza M G; Reis, José Maurício Dos S N; Pinelli, Lígia A P
2017-07-01
Despite improvements in computer-aided design and computer-aided manufacturing (CAD-CAM) systems, grinding during either laboratory procedures or clinical adjustments is often needed to modify the shape of 3 mol(%) yttria-tetragonal zirconia polycrystal (3Y-TZP) restorations. However, the best way to achieve adjustment is unclear. The purpose of this in vitro study was to evaluate the microstructural and crystallographic phase changes, flexural strength, and Weibull modulus of a 3Y-TZP zirconia after grinding with or without water cooling and regeneration firing. Ninety-six bar-shaped specimens were obtained and divided as follows: as-sintered, control; as-sintered with regeneration firing; grinding without water cooling; grinding and regeneration firing with water cooling; and grinding and regeneration firing. Grinding (0.3 mm) was performed with a 150-μm diamond rotary instrument in a high-speed handpiece. For regeneration firing, the specimens were annealed at 1000°C for 30 minutes. The crystalline phases were evaluated by using x-ray powder diffraction. A 4-point bending test was conducted (10 kN; 0.5 mm/min). The Weibull modulus was used to analyze strength reliability. The microstructure was analyzed by scanning electron microscopy. Data from the flexural strength test were evaluated using the Kruskal-Wallis and Dunn tests (α=.05). Tetragonal-to-monoclinic phase transformation was identified in the ground specimens; R regeneration firing groups showed only the tetragonal phase. The median flexural strength of as-sintered specimens was 642.0; 699.3 MPa for as-sintered specimens with regeneration firing; 770.1 MPa for grinding and water-cooled specimens; 727.3 MPa for specimens produced using water-cooled grinding and regeneration firing; 859.9 MPa for those produced by grinding; and 764.6 for those produced by grinding and regeneration firing; with statistically higher values for the ground groups. The regenerative firing did not affect the flexural strength. Weibull modulus values ranged from 5.3 to 12.4. The SEM images showed semicircular cracks after grinding. Adjustments by grinding in 3Y-TZP frameworks should be performed with water cooling, and regeneration firing should be undertaken to obtain a more reliable material. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Anthoulis, G. I.; Kontou, E.; Fainleib, A.; Bei, I.
2009-03-01
The outstanding improvement in the physical properties of cyanate esters (CEs) compared with those of competitor resins, such as epoxies, has attracted appreciable attention recently. Cyanate esters undergo thermal polycyclotrimerization to give polycyanurates (PCNs). However, like most thermo setting resins, the main draw back of CEs is brittleness. To over come this disadvan tage, CEs can be toughened by the introduction of polytetramethylene glycol (PTMG), a hydroxyl-terminated polyether. How ever, PTMG has a detrimental impact on Young's modulus. To simultaneously enhance both the ductility and the stiffness of CE, we added PTMG and an organoclay (mont morillonite, MMT) to it. A series of PCN/PTMG/MMT nanocomposites with a constant PTMG weight ratio was pre pared, and the resulting nanophase morphology, i.e., the degree of filler dispersion and distribution in the composite and the thermomechanical properties, in terms of glass-transition behaviour, Young's modulus, tensile strength, and elongation at break, were examined using the scanning elec tron micros copy (SEM), a dynamic mechanical analysis (DMA), and stress-strain measurements, re spectively. It was found that, at a content of MMT below 2 wt.%, MMT nanoparticles were distributed uniformly in the matrix, suggesting a lower degree of agglomeration for these materials. In the glassy state, the significant increase in the storage modulus revealed a great stiffening effect of MMT due to its high Young's modulus. The modification with PTMG led to a 233% greater elongation at break compared with that of neat PCN. The nanocomposites exhibited an invariably higher Young's modulus than PCN/PTMG for all the volume factors of organoclay examined, with the 2 wt.% material displaying the most pronounced in crease in the modulus, in agreement with micros copy results.
Design of a unidirectional composite momentum wheel rim
NASA Astrophysics Data System (ADS)
Shogrin, Bradley; Jones, William R., Jr.; Prahl, Joseph M.
1995-05-01
A preliminary study comparing twelve unidirectional-fiber composite systems to five metal materials conventionally used in momentum wheels is presented. Six different fibers are considered in the study: E-Glass, S-Glass, Boron, AS, T300, and Kevlar. Because of the possibility of high momentum requirements, and thus high stresses, only two matrix materials are considered: a high-modulus (HM) and a intermediate-modulus-high-strength (IMHS) matrix. Each of the six fibers are coupled with each of the two matrix materials. In an effort to optimize the composite system, each composite is considered while varying the fiber volume ratio from 0.0 to 0.7 in increments of 0.1. For fiber volume ratios above 0.2, all twelve unidirectional-fiber composite systems meet the study's requirements with higher factors of safety and less mass than the five conventional isotropic (metal) materials. For example, at a fiber volume ratio of 0.6, the Kevlar/IMHS composite system has a safety factor 4.5 times greater than that of a steel (maraging) system and an approximately 10 percent reduction in weight.
NASA Technical Reports Server (NTRS)
Mebs, R W; Mcadam, D J
1947-01-01
A resume is given of an investigation of the influence of plastic deformation and of annealing temperature on the tensile and shear elastic properties of high strength nonferrous metals and stainless steels in the form of rods and tubes. The data were obtained from earlier technical reports and notes, and from unpublished work in this investigation. There are also included data obtained from published and unpublished work performed on an independent investigation. The rod materials, namely, nickel, monel, inconel, copper, 13:2 Cr-Ni steel, and 18:8 Cr-Ni steel, were tested in tension; 18:8 Cr-Ni steel tubes were tested in shear, and nickel, monel, aluminum-monel, and Inconel tubes were tested in both tension and shear. There are first described experiments on the relationship between hysteresis and creep, as obtained with repeated cyclic stressing of annealed stainless steel specimens over a constant load range. These tests, which preceded the measurements of elastic properties, assisted in devising the loading time schedule used in such measurements. From corrected stress-set curves are derived the five proof stresses used as indices of elastic or yield strength. From corrected stress-strain curves are derived the secant modulus and its variation with stress. The relationship between the forms of the stress-set and stress-strain curves and the values of the properties derived is discussed. Curves of variation of proof stress and modulus with prior extension, as obtained with single rod specimens, consist in wavelike basic curves with superposed oscillations due to differences of rest interval and extension spacing; the effects of these differences are studied. Oscillations of proof stress and modulus are generally opposite in manner. The use of a series of tubular specimens corresponding to different amounts of prior extension of cold reduction gave curves almost devoid of oscillation since the effects of variation of rest interval and extension spacing were removed. Comparison is also obtained between the variation of the several properties, as measured in tension and in shear. The rise of proof stress with extension is studied, and the work-hardening rates of the various metals evaluated. The ratio between the tensile and shear proof stresses for the various annealed and cold-worked tubular metals is likewise calculated. The influence of annealing or tempering temperature on the proof stresses and moduli for the cold-worked metals and for air-hardened 13:2 Cr-Ni steel is investigated. An improvement of elastic strength generally is obtained, without important loss of yield strength, by annealing at suitable temperature. The variation of the proof stress and modulus of elasticity with plastic deformation or annealing temperature is explained in terms of the relative dominance of three important factors: namely, (a) internal stress, (b) lattice-expansion or work-hardening, and (c) crystal reorientation. Effective values of Poisson's ratio were computed from tensile and shear moduli obtained on tubular specimens. The variation of Poisson's ratio with plastic deformation and annealing temperature is explained in terms of the degree of anisotropy produced by changes of (a) internal stress and (b) crystal orientation.
NASA Astrophysics Data System (ADS)
Surya, I.; Ismail, H.
2018-02-01
The effects of Alkanolamide (ALK) addition on swelling, rheometric and tensile properties of unfilled chloroprene rubber (CR) compounds were investigated. The ALK was prepared from Refined Bleached Deodorized Palm Stearin and diethanolamine and -together with magnesium and zinc oxides- incorporated into the CR compounds. The ALK loadings were 0.5, 1.0, 1.5 and 2.0 phr. It was found that ALK enhanced the cure rate and torque difference of the CR compounds. ALK also enhanced the tensile modulus and tensile strength; especially up to a 1.5 phr loading. The swelling test proved that the 1.5 phr of ALK exhibited the highest degree of crosslink density which caused the highest in tensile modulus and tensile strength.
Fabrication and characterization of epoxy/silica functionally graded composite material
NASA Astrophysics Data System (ADS)
Misra, N.; Kapusetti, G.; Pattanayak, D. K.; Kumar, A.
2011-09-01
Increased use of composites in aerospace and defense application induces the search for heat resistant material. In present study silica reinforced epoxy functionally graded material using quartz fabric is prepared with different thickness. The gradation in silica : epoxy matrix is maintained with one side pure epoxy to opposite side pure silica. Thermal and mechanical behaviour of the composites were studied. It was found that the temperature gradient of 350°C to 950°C could be maintained for 2 to 5 min if the thickness of insulating silica layer is increased from 0.5 mm to 16 mm. Mechanical properties such as flexural modulus and strength of FGM composites were also evaluated. Strength and modulus decreased with increase of insulating layer.
Tensile Mechanical Property of Oil Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites
NASA Astrophysics Data System (ADS)
Ghazilan, A. L. Ahmad; Mokhtar, H.; Shaik Dawood, M. S. I.; Aminanda, Y.; Ali, J. S. Mohamed
2017-03-01
Natural, short, untreated and randomly oriented oil palm empty fruit bunch fiber reinforced epoxy composites were manufactured using vacuum bagging technique with 20% fiber volume composition. The performance of the composite was evaluated as an alternative to synthetic or conventional reinforced composites. Tensile properties such as tensile strength, modulus of elasticity and Poisson’s ratio were compared to the tensile properties of pure epoxy obtained via tensile tests as per ASTM D 638 specifications using Universal Testing Machine INSTRON 5582. The tensile properties of oil palm empty fruit bunch fiber reinforced epoxy composites were lower compared to plain epoxy structure with the decrement in performances of 38% for modulus of elasticity and 61% for tensile strength.
Design and fabrication of a micron scale free-standing specimen for uniaxial micro-tensile tests
NASA Astrophysics Data System (ADS)
Tang, Jun; Wang, Hong; Li, Shi Chen; Liu, Rui; Mao, Sheng Ping; Li, Xue Ping; Zhang, Cong Chun; Ding, Guifu
2009-10-01
This paper presents a novel design and fabrication of test chips with a nickel free-standing specimen for the micro uniaxial tensile test. To fabricate test chips on the quartz substrate significantly reduces the fabrication time, minimizes the number of steps and eliminates the effect of the wet anisotropic etching process on mechanical properties. The test chip can be gripped tightly to the test machine and aligned accurately in the pulling direction; furthermore, the approximately straight design of the specimen rather than the traditional dog-bone structure enables the strain be directly measured by a displacement sensor. Both finite-element method (FEM) analysis and experimental results indicate the reliability of the new design. The test chip can also be extended to other materials. The experimental measured Young's modulus of a thin nickel film and the ultimate tensile strength are approximately 94.5 Gpa and 1.76 Gpa, respectively. The results were substantially supported by the experiment on larger gauge specimens by a commercial dynamic mechanical analysis (DMA) instrument. These specimens were electroplated under the same conditions. The low Young's modulus and the high ultimate tensile strength might be explained by the fine grain in the electroplated structure.
Compressive behavior of laminated neoprene bridge bearing pads under thermal aging condition
NASA Astrophysics Data System (ADS)
Jun, Xie; Zhang, Yannian; Shan, Chunhong
2017-10-01
The present study was conducted to obtain a better understanding of the variation rule of mechanical properties of laminated neoprene bridge bearing pads under thermal aging condition using compression tests. A total of 5 specimens were processed in a high-temperature chamber. After that, the specimens were tested subjected to axial load. The parameter mainly considered time of thermal aging processing for specimens. The results of compression tests show that the specimens after thermal aging processing are more probably brittle failure than the standard specimen. Moreover, the exposure of steel plate, cracks and other failure phenomena are more serious than the standard specimen. The compressive capacity, ultimate compressive strength, compressive elastic modulus of the laminated neoprene bridge bearing pads decreased dramatically with the increasing in the aging time of thermal aging processing. The attenuation trends of ultimate compressive strength, compressive elastic modulus of laminated neoprene bridge bearing pads under thermal aging condition accord with power function. The attenuation models are acquired by regressing data of experiment with the least square method. The attenuation models conform to reality well which shows that this model is applicable and has vast prospect in assessing the performance of laminated neoprene bridge bearing pads under thermal aging condition.
Zeng, Xiaoliang; Yu, Shuhui; Lai, Maobai; Sun, Rong; Wong, Ching-Ping
2013-01-01
We demonstrate a new method that can simultaneously improve the strength and toughness of the glass fiber-reinforced bismaleimide–triazine (BT) resin composites by using polyethylene glycol (PEG) to construct a flexible bridge at the interface. The mechanical properties, including the elongation, ultimate tensile stress, Young’s modulus, toughness and dynamical mechanical properties were studied as a function of the length of PEG molecular chain. It was found that the PEG molecule acts as a bridge to link BT resin and glass fiber through covalent and non-covalent bondings, respectively, resulting in improved interfacial bonding. The incorporation of PEG produces an increase in elongation, ultimate tensile stress and toughness. The Young’s modulus and Tg were slightly reduced when the length of the PEG molecular chain was high. The elongation of the PEG-modified glass fiber-reinforced composites containing 5 wt% PEG-8000 increased by 67.1%, the ultimate tensile stress by 17.9% and the toughness by 78.2% compared to the unmodified one. This approach provides an efficient way to develop substrate material with improved strength and toughness for integrated circuit packaging applications. PMID:27877621
Damage formation, fatigue behavior and strength properties of ZrO{sub 2}-based ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozulin, A. A., E-mail: kozulyn@ftf.tsu.ru; Kulkov, S. S.; Narikovich, A. S.
It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO{sub 2}-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of themore » static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10{sup 5} stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.« less
TT : a program that implements predictor sort design and analysis
S. P. Verrill; D. W. Green; V. L. Herian
1997-01-01
In studies on wood strength, researchers sometimes replace experimental unit allocation via random sampling with allocation via sorts based on nondestructive measurements of strength predictors such as modulus of elasticity and specific gravity. This report documents TT, a computer program that implements recently published methods to increase the sensitivity of such...
David E. Kretschmann
2008-01-01
Forest products from improved trees grown on managed plantations and harvested in short rotations will contain higher proportions of juvenile wood than in current harvests. More information is needed on the influence of juvenile wood on lumber properties. Most information developed to date has concentrated on ultimate tensile stress, modulus of rupture, and modulus of...
2013-05-01
control system (without CNTs). In addition, storage modulus, glass transition temperature, thermal stability were all improved in MWCNTs modified carbon...curve obtained from Flexural response of different composites (b) variation in flexural properties with the concentration of MWCNTs ...tensile test (b) variation in tensile strength and Young’s modulus with the percentage of MWCNT .... 65 7.4 Fracture morphology of (a) Neat, (b
Steve P. Verrill; James W. Evans; David E. Kretschmann; Cherilyn A. Hatfield
2012-01-01
Two important wood properties are stiffness (modulus of elasticity or MOE) and bending strength (modulus of rupture or MOR). In the past, MOE has often been modeled as a Gaussian and MOR as a lognormal or a two or three parameter Weibull. It is well known that MOE and MOR are positively correlated. To model the simultaneous behavior of MOE and MOR for the purposes of...
Steve P. Verrill; David E. Kretschmann; James W. Evans
2016-01-01
Two important wood properties are stiffness (modulus of elasticity, MOE) and bending strength (modulus of rupture, MOR). In the past, MOE has often been modeled as a Gaussian and MOR as a lognormal or a two- or threeparameter Weibull. It is well known that MOE and MOR are positively correlated. To model the simultaneous behavior of MOE and MOR for the purposes of wood...
Resin/graphite fiber composites
NASA Technical Reports Server (NTRS)
Cavano, P. J.; Jones, R. J.; Vaughan, R. W.
1972-01-01
High temperature resin matrices suitable for use in advanced graphite fiber composites for jet engine applications were evaluated. A series of planned, sequential screening experiments with resin systems in composite form were performed to reduce the number of candidates to a single A-type polyimide resin that repetitively produced void-free, high strength and modulus composites acceptable for use in the 550 F range for 1000 hours. An optimized processing procedure was established for this system. Extensive mechanical property studies characterized this single system, at room temperature, 500 F, 550 F and 600 F, for various exposure times.
Phenylated polyimides prepared from 3,6-diarylpyromellitic dianhydride and aromatic diamines
NASA Technical Reports Server (NTRS)
Harris, Frank W. (Inventor)
1992-01-01
A new class of soluble phenylated polyimides made from 3,6-diarypyromellitic dianhydride and process for the manufacture of the 3,6-diarypyromellitic dianhydride starting material. The polyimides obtained with said dianhydride are readily soluble in appropriate organic solvents and are distinguished by excellent thermal, electrical and/or mechanical properties making the polyimides ideally suited as coating materials for microelectronic apparatii, as membranes for selective molecular separation or permeation or selective gas separation or permeation, or as reinforcing fibers in molecular composites, or as high modulus, high tensile strength fibers.
Single fibre strength of cellulosic fibre extracted from "Belatlan roots" plant
NASA Astrophysics Data System (ADS)
M. Hanis. A., H.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Fahmi, I.
2017-12-01
The tensile strength of a fibre extracted from "Belatlan Root" plant was investigated as potential reinforcement material in polymeric composites. Following retting process, the fibres were manually extracted from "Belatlan" root's plant. The fibres were treated with 5 % 10 %, 15 %, and 20 % sodium hydroxide (NaOH) wt. % concentration for 24 h. The single fibre tests were then performed in accordance with ASTM D3822-07 standard. The surfaces of the fibres prior and after the treatment were observed with a metallurgical Microscope MT8100 and the physical properties were recorded. Physically, in the post treatment, the fibre showed a decrease in diameter with increase in NaOH concentration The results from the mechanical testing indicates that samples subjected to 5 % NaOH treatment yielded the highest tensile strength and elastic modulus at 89.05 MPa ± 2.75 and 3.81 GPa ± 0.09 respectively compared to untreated fibres. This represents an increase of almost 72 % in tensile strength and 42 % for elastic modulus. The findings support the preliminary information for incorporating the "Belatlan Root" as possible reinforcing materials in composite structures.
Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.
Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol
2015-03-27
In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.
Tendon material properties vary and are interdependent among turkey hindlimb muscles
Matson, Andrew; Konow, Nicolai; Miller, Samuel; Konow, Pernille P.; Roberts, Thomas J.
2012-01-01
SUMMARY The material properties of a tendon affect its ability to store and return elastic energy, resist damage, provide mechanical feedback and amplify or attenuate muscle power. While the structural properties of a tendon are known to respond to a variety of stimuli, the extent to which material properties vary among individual muscles remains unclear. We studied the tendons of six different muscles in the hindlimb of Eastern wild turkeys to determine whether there was variation in elastic modulus, ultimate tensile strength and resilience. A hydraulic testing machine was used to measure tendon force during quasi-static lengthening, and a stress–strain curve was constructed. There was substantial variation in tendon material properties among different muscles. Average elastic modulus differed significantly between some tendons, and values for the six different tendons varied nearly twofold, from 829±140 to 1479±106 MPa. Tendons were stretched to failure, and the stress at failure, or ultimate tensile stress, was taken as a lower-limit estimate of tendon strength. Breaking tests for four of the tendons revealed significant variation in ultimate tensile stress, ranging from 66.83±14.34 to 112.37±9.39 MPa. Resilience, or the fraction of energy returned in cyclic length changes was generally high, and one of the four tendons tested was significantly different in resilience from the other tendons (range: 90.65±0.83 to 94.02±0.71%). An analysis of correlation between material properties revealed a positive relationship between ultimate tensile strength and elastic modulus (r2=0.79). Specifically, stiffer tendons were stronger, and we suggest that this correlation results from a constrained value of breaking strain, which did not vary significantly among tendons. This finding suggests an interdependence of material properties that may have a structural basis and may explain some adaptive responses observed in studies of tendon plasticity. PMID:22771746
Tendon material properties vary and are interdependent among turkey hindlimb muscles.
Matson, Andrew; Konow, Nicolai; Miller, Samuel; Konow, Pernille P; Roberts, Thomas J
2012-10-15
The material properties of a tendon affect its ability to store and return elastic energy, resist damage, provide mechanical feedback and amplify or attenuate muscle power. While the structural properties of a tendon are known to respond to a variety of stimuli, the extent to which material properties vary among individual muscles remains unclear. We studied the tendons of six different muscles in the hindlimb of Eastern wild turkeys to determine whether there was variation in elastic modulus, ultimate tensile strength and resilience. A hydraulic testing machine was used to measure tendon force during quasi-static lengthening, and a stress-strain curve was constructed. There was substantial variation in tendon material properties among different muscles. Average elastic modulus differed significantly between some tendons, and values for the six different tendons varied nearly twofold, from 829±140 to 1479±106 MPa. Tendons were stretched to failure, and the stress at failure, or ultimate tensile stress, was taken as a lower-limit estimate of tendon strength. Breaking tests for four of the tendons revealed significant variation in ultimate tensile stress, ranging from 66.83±14.34 to 112.37±9.39 MPa. Resilience, or the fraction of energy returned in cyclic length changes was generally high, and one of the four tendons tested was significantly different in resilience from the other tendons (range: 90.65±0.83 to 94.02±0.71%). An analysis of correlation between material properties revealed a positive relationship between ultimate tensile strength and elastic modulus (r(2)=0.79). Specifically, stiffer tendons were stronger, and we suggest that this correlation results from a constrained value of breaking strain, which did not vary significantly among tendons. This finding suggests an interdependence of material properties that may have a structural basis and may explain some adaptive responses observed in studies of tendon plasticity.
Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour
NASA Astrophysics Data System (ADS)
Smarzewski, Piotr; Stolarski, Adam
2017-10-01
Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.
Nanocomposites of nitrile (NBR) rubber with multi-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Warasitthinon, Nuthathai
Nanotechnology offers the promise of creating new materials with enhanced performance. There are different kinds of fillers used in rubber nanocomposites, such as carbon black, silica, carbon fibers, and organoclays. Carbon nanotube reinforced elastomers have potential for improved rubber properties in aggressive environments. The first chapter is an introduction to the literature. The second chapter investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) into rubber matrix for potential use in high temperature applications. The vulcanization kinetics of acrylonitrile butadiene rubber (NBR) reinforced with multi-walled carbon nanotubes was investigated. The vulcanized NBR rubber with different loading percentages of MWCNTs was also compared to NBR reinforced with carbon black N330. The optimum curing time at 170°C (T90) was found to decrease with increasing content of MWCNTs. Increased filler loading of both carbon black and MWCNTs gave higher modulus and strength. The MWCNTs filled materials gave better retention of modulus and tensile strength at high temperatures, but lower strength as compared to the carbon black filled samples. In the third chapter, carbon black (CB, 50phr) content in nitrile rubber (NBR) nanocomposites was partially replaced by multi-walled carbon nanotubes (MWCNTs). NBR/CB/CNTs nanocomposites with varying ratio of CB/CNTs (50/0 phr to 40/10 phr) were formulated via the melt-mixing method using an internal mixer. The reinforcing effect of single filler (CB) and mixture of fillers (CB and CNTs) on the properties of NBR nanocomposites was investigated. The cure kinetics and bound rubber content were analyzed using rheometry and solvent swelling method. In addition, mechanical behavior at both room temperature and high temperature (350°F/ 121°C) were examined. The scorch time and curing time values showed that there was no significant effect on the curing behavior of NBR nanocomposites after the partial replacement of CB with CNTs. It was observed that bound rubber content decreased with increase in CNT content for NBR/CB/CNTs nanocomposites above a loading of 1 phr CNT. In the fourth chapter, the effect of another carbon filler, fullerene, on the properties of HNBR was studied. Fullerenes are conductive and thermally stable due to their three dimensional aromaticity and high reactivity. In this work, the effect of fullerenes (C60) on the properties of HNBR rubber for potential use in aggressive environments was investigated. The vulcanized HNBR rubber with different filler loadings of fullerenes was compared with carbon black (N330). The static mechanical, dynamic mechanical and rheological behavior of the compounds was investigated, along with the vulcanization kinetics study. Increased filler loading of both carbon black and fullerene gave higher modulus and strength. The fullerene filled materials showed improved failure properties.
Development of low modulus material for use in ceramic gas path seal applications
NASA Technical Reports Server (NTRS)
Eaton, H. E.; Novak, R. C.
1981-01-01
Three candidate materials were examined: Brunsbond (R) Pad; plasma sprayed porous NiCrAlY; and plasma sprayed low modulus microcracked zirconia. Evaluation consisted of mechanical, thermophysical, and oxidation resistance testing along with optical microscopy and a feasibility demonstration of attaching the material to a suitable substrate. The goals of the program were the following: feasibility of fastening or depositing the low modulus system onto a broad range of substrate alloys; feasibility of depositing or forming the low modulus system to a thickness of 0.19 cm to 0.38 cm; potential to attain a modulus of elasticity in the range of 3.4 to 6.9 GPa (0.5 to 1.0 MSI), and an ultimate strength of 17.2 MPa (2.5 ksi); suitable thermal conductivity; and static oxidation life of at least 1000 hours at 1311 K. The results of the program indicate that all three systems offer attractive properties as a strain isolator material.
Tong, Yu; Dong, Xufeng; Qi, Min
2018-05-09
The field-induced storage modulus is an important parameter for the applications of magnetorheological (MR) elastomers. In this study, a model mechanism is established to analyze the potential benefits of using flower-like particles as the active phase compared with the benefits of using conventional spherical particles. To verify the model mechanism and to investigate the difference in dynamic viscoelasticity between MREs with spherical particles and flower-like particles, flower-like cobalt particles and spherical cobalt particles with similar particle sizes and magnetic properties are synthesized and used as the active phase to prepare MR elastomers. As the model predicts, MREs with flower-like cobalt particles present a higher crosslink density and enhanced interfacial bond strength, which leads to a higher storage modulus and higher loss modulus with respect to MREs with spherical cobalt particles. The tunable range of the field-induced storage modulus of MREs is also improved upon using the flower-like particles as the active phase.
Moderate chronic kidney disease impairs bone quality in C57Bl/6J mice.
Heveran, Chelsea M; Ortega, Alicia M; Cureton, Andrew; Clark, Ryan; Livingston, Eric W; Bateman, Ted A; Levi, Moshe; King, Karen B; Ferguson, Virginia L
2016-05-01
Chronic kidney disease (CKD) increases bone fracture risk. While the causes of bone fragility in CKD are not clear, the disrupted mineral homeostasis inherent to CKD may cause material quality changes to bone tissue. In this study, 11-week-old male C57Bl/6J mice underwent either 5/6th nephrectomy (5/6 Nx) or sham surgeries. Mice were fed a normal chow diet and euthanized 11weeks post-surgery. Moderate CKD with high bone turnover was established in the 5/6 Nx group as determined through serum chemistry and bone gene expression assays. We compared nanoindentation modulus and mineral volume fraction (assessed through quantitative backscattered scanning electron microscopy) at matched sites in arrays placed on the cortical bone of the tibia mid-diaphysis. Trabecular and cortical bone microarchitecture and whole bone strength were also evaluated. We found that moderate CKD minimally affected bone microarchitecture and did not influence whole bone strength. Meanwhile, bone material quality decreased with CKD; a pattern of altered tissue maturation was observed with 5/6 Nx whereby the newest 60μm of bone tissue adjacent to the periosteal surface had lower indentation modulus and mineral volume fraction than more interior, older bone. The variance of modulus and mineral volume fraction was also altered following 5/6 Nx, implying that tissue-scale heterogeneity may be negatively affected by CKD. The observed lower bone material quality may play a role in the decreased fracture resistance that is clinically associated with human CKD. Copyright © 2016 Elsevier Inc. All rights reserved.
Moderate Chronic Kidney Disease Impairs Bone Quality in C57Bl/6J Mice
Heveran, Chelsea M.; Ortega, Alicia M.; Cureton, Andrew; Clark, Ryan; Livingston, Eric; Bateman, Ted; Levi, Moshe; King, Karen B.; Ferguson, Virginia L.
2016-01-01
Chronic kidney disease (CKD) increases bone fracture risk. While the causes of bone fragility in CKD are not clear, the disrupted mineral homeostasis inherent to CKD may cause material quality changes to bone tissue. In this study, 11-week old male C57Bl/6J mice underwent either 5/6th nephrectomy (5/6 Nx) or sham procedures. Mice were fed a normal chow diet and euthanized 11 weeks post-surgery. Moderate CKD with high bone turnover was established in the 5/6 Nx group as determined through serum chemistry and bone gene expression assays. We compared nanoindentation modulus and mineral volume fraction (assessed through quantitative backscattered scanning electron microscopy) at matched sites in arrays placed on the cortical bone of the tibia mid-diaphysis. Trabecular and cortical bone microarchitecture (μCT) and whole bone strength were also evaluated. We found that moderate CKD minimally affected bone microarchitecture and did not influence whole bone strength. Meanwhile, bone material quality decreased with CKD; a pattern of altered tissue maturation was observed with 5/6 Nx whereby the newest 60 micrometers of bone tissue adjacent to the periosteal surface had lower indentation modulus and mineral volume fraction than more interior, older bone. The variance of modulus and mineral volume fraction were also altered following 5/6 Nx, implying that tissue-scale heterogeneity may be negatively affected by CKD. The observed lower bone material quality may play a role in the decreased fracture resistance that is clinically associated with human CKD. PMID:26860048
Wu, Xiaorong; Sun, Yi; Xie, Weili; Liu, Yanju; Song, Xueyu
2010-05-01
It has been the focus to develop low shrinkage dental composite resins in recent ten years. A major difficulty in developing low shrinkage dental materials is that their deficiency in mechanical properties cannot satisfy the clinical purpose. The aim of this study is to develop novel dental nanocomposites incorporated with polyhedral oligomeric silsesquioxane (POSS). It is especially interesting to evaluate the volumetric shrinkage and mechanical properties, improve the shrinkage, working performances and service life of dental composite resins. The effect of added POSS on the composites' mechanical properties has been evaluated. The weight percentages of added POSS are 0, 2, 5, 10 and 15wt% respectively. Fourier-transform infra-red spectroscopy and X-ray diffraction were used to characterize their microstructures. Physico-mechanical properties that were investigated included volumetric shrinkage, flexural strength, flexural modulus, compressive strength, compressive modulus, Viker's hardness and fracture energy. Furthermore, the possible reinforced mechanism has been discussed. The shrinkage of novel nanocomposites decreased from 3.53% to 2.18%. The nanocomposites incorporated with POSS showed greatly improved mechanical properties, for example, with only 2wt% POSS added, the nanocompsite's flexural strength increased 15%, compressive strength increased 12%, hardness increased 15% and uncommonly, even the toughness of resins was obviously increased. With 5wt% POSS polymerized, compressive strength increased from 192MPa to 251MPa and compressive modulus increased from 3.93GPa to 6.62GPa, but flexure strength began to decline from 87MPa to 75MPa. This finding indicated that the reinforcing mechanism of flexure state maybe different from that of compressive state. The mechanical properties and volumetric shrinkage of dental composite resins polymerized with POSS can be improved significantly. In current study, the nanocomposite with 2wt% POSS incorporated is observed to achieve the best improved effects. 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Dang, Baokang; Chen, Yipeng; Wang, Hanwei; Chen, Bo; Jin, Chunde; Sun, Qingfeng
2018-01-01
Fe3O4/wood fiber composites are prepared with a green mechanical method using only distilled water as a solvent without any chemical agents, and then a binderless composite board with high mechanical properties is obtained via a hot-press for electromagnetic (EM) absorption. The fibers are connected by hydrogen bonds after being mechanically pretreated, and Fe3O4 nanoparticles (NPs) are attached to the fiber surface through physical adsorption. The composite board is bonded by an adhesive, which is provided by the reaction of fiber composition under high temperature and pressure. The Nano-Fe3O4/Fiber (NFF) binderless composite board shows remarkable microwave absorption properties and high mechanical strength. The optional reflection loss (RL) of the as-prepared binderless composite board is −31.90 dB. The bending strength of the NFF binderless composite board is 36.36 MPa with the addition of 6% nano-Fe3O4, the modulus of elasticity (MOE) is 6842.16 MPa, and the internal bond (IB) strength is 0.81 MPa. These results demonstrate that magnetic nanoparticles are deposited in binderless composite board by hot pressing, which is the easiest way to produce high mechanical strength and EM absorbers. PMID:29361726
Labonte, David; Lenz, Anne-Kristin; Oyen, Michelle L
2017-07-15
The remarkable mechanical performance of biological materials is based on intricate structure-function relationships. Nanoindentation has become the primary tool for characterising biological materials, as it allows to relate structural changes to variations in mechanical properties on small scales. However, the respective theoretical background and associated interpretation of the parameters measured via indentation derives largely from research on 'traditional' engineering materials such as metals or ceramics. Here, we discuss the functional relevance of indentation hardness in biological materials by presenting a meta-analysis of its relationship with indentation modulus. Across seven orders of magnitude, indentation hardness was directly proportional to indentation modulus. Using a lumped parameter model to deconvolute indentation hardness into components arising from reversible and irreversible deformation, we establish criteria which allow to interpret differences in indentation hardness across or within biological materials. The ratio between hardness and modulus arises as a key parameter, which is related to the ratio between irreversible and reversible deformation during indentation, the material's yield strength, and the resistance to irreversible deformation, a material property which represents the energy required to create a unit volume of purely irreversible deformation. Indentation hardness generally increases upon material dehydration, however to a larger extent than expected from accompanying changes in indentation modulus, indicating that water acts as a 'plasticiser'. A detailed discussion of the role of indentation hardness, modulus and toughness in damage control during sharp or blunt indentation yields comprehensive guidelines for a performance-based ranking of biological materials, and suggests that quasi-plastic deformation is a frequent yet poorly understood damage mode, highlighting an important area of future research. Instrumented indentation is a widespread tool for characterising the mechanical properties of biological materials. Here, we show that the ratio between indentation hardness and modulus is approximately constant in biological materials. A simple elastic-plastic series deformation model is employed to rationalise part of this correlation, and criteria for a meaningful comparison of indentation hardness across biological materials are proposed. The ratio between indentation hardness and modulus emerges as the key parameter characterising the relative amount of irreversible deformation during indentation. Despite their comparatively high hardness to modulus ratio, biological materials are susceptible to quasiplastic deformation, due to their high toughness: quasi-plastic deformation is hence hypothesised to be a frequent yet poorly understood phenomenon, highlighting an important area of future research. Copyright © 2017 Acta Materialia Inc. All rights reserved.
Model For Bending Actuators That Use Electrostrictive Graft Elastomers
NASA Technical Reports Server (NTRS)
Costen, Robert C.; Su, Ji; Harrison, Joycelyn S.
2001-01-01
Recently, it was reported that an electrostrictive graft elastomer exhibits large electric field-induced strain (4%). Combined with its high mechanical modulus, the elastomer can offer very promising electromechanical properties, in terms of output mechanical energy density, for an electroactive polymeric material. Therefore, it has been considered as one of the candidates that can be used in high performance, low mass actuation devices in many aerospace applications. Various bilayer- based bending actuators have been designed and fabricated. An analytic model based on beam theory in the strength of materials has been derived for the transverse deflection, or curvature, and the longitudinal strain of the bi-layer beam. The curvature and strain are functions of the applied voltage and the thickness, width, and Young s modulus of the active and passive layers. The model can be used to optimize the performance of electrostrictive graft elastomer-based actuators to meet the requirements of various applications. In this presentation, optimization and sensitivity studies are applied to the bending performance of such actuators.
Strain glass transition in a multifunctional β-type Ti alloy
Wang, Yu; Gao, Jinghui; Wu, Haijun; Yang, Sen; Ding, Xiangdong; Wang, Dong; Ren, Xiaobing; Wang, Yunzhi; Song, Xiaoping; Gao, Jianrong
2014-01-01
Recently, a class of multifunctional Ti alloys called GUM metals attracts tremendous attentions for their superior mechanical behaviors (high strength, high ductility and superelasticity) and novel physical properties (Invar effect, Elinvar effect and low modulus). The Invar and Elinvar effects are known to originate from structural or magnetic transitions, but none of these transitions were found in the GUM metals. This challenges our fundamental understanding of their physical properties. In this study, we show that the typical GUM metal Ti-23Nb-0.7Ta-2Zr-1.2O (at%) alloy undergoes a strain glass transition, where martensitic nano-domains are frozen gradually over a broad temperature range by random point defects. These nano-domains develop strong texture after cold rolling, which causes the lattice elongation in the rolling direction associated with the transition upon cooling and leads to its Invar effect. Moreover, its Elinvar effect and low modulus can also be explained by the nano-domain structure of strain glass. PMID:24500779
Mechanical properties of carbon fibre-reinforced polymer/magnesium alloy hybrid laminates
NASA Astrophysics Data System (ADS)
Zhou, Pengpeng; Wu, Xuan; Pan, Yingcai; Tao, Ye; Wu, Guoqing; Huang, Zheng
2018-04-01
In this study, we prepared fibre metal laminates (FMLs) consisting of high-modulus carbon fibre-reinforced polymer (CFRP) prepregs and thin AZ31 alloy sheets by using hot-pressing technology. Tensile and low-velocity impact tests were performed to evaluate the mechanical properties and fracture behaviour of the magnesium alloy-based FMLs (Mg-FMLs) and to investigate the differences in the fracture behaviour between the Mg-FMLs and traditional Mg-FMLs. Results show that the Mg-FMLs exhibit higher specific tensile strength and specific tensile modulus than traditional Mg-FMLs and that the tensile behaviour of the Mg-FMLs is mainly governed by the CFRP because of the combination of high interlaminar shear properties and thin magnesium alloy layers. The Mg-FMLs exhibit excellent bending stiffness. Hence, no significant difference between the residual displacement d r and indentation depth d i , and the permanent deformation is mainly limited to a small zone surrounding the impact location after the impact tests.
Magnesium Matrix Composite Foams-Density, Mechanical Properties, and Applications
2012-07-24
to syntactic foam densities in the range 1–1.5 g/cc, which directly compete with polymer matrix composites. Their inherently high modulus, ductility ...nomenclature of these alloys A, Z, and C refer to aluminum, zinc and copper, respectively. The two letters are followed by two numbers, which correspond to...respectively [27]. Usually, the increased strength of Mg alloys due to the addition of Al or Cu comes at the expense of ductility . Addition of Zn along
NASA Technical Reports Server (NTRS)
Wennhold, W. F.
1974-01-01
The use of high strength and modulus of advanced filamentary composites to reduce the structural weight of aerospace vehicles was investigated. Application of the technology to space shuttle components was the primary consideration. The mechanical properties for the boron/epoxy, graphite/epoxy, and polyimide data are presented. Structural testing of two compression panel components was conducted in a simulated space shuttle thermal environment. Results of the tests are analyzed.
NASA Astrophysics Data System (ADS)
Caves, Jeffrey Morris
The microstructure and mechanics of collagen and elastin protein fiber networks dictate the mechanical responses of all soft tissues and related organ systems. In this project, we endeavored to meet or exceed native tissue biomechanical properties through mimicry of these extracellular matrix components with synthetic collagen fiber and a recombinant elastin-like protein polymer. Significantly, this work led to the development of a framework for the design and fabrication of protein-based tissue substitutes with enhanced strength, resilience, anisotropy, and more. We began with the development of a spinning process for scalable production of synthetic collagen fiber. Fiber with an elliptical cross-section of 53 +/- 14 by 21 +/- 3 mum and an ultimate tensile strength of 90 +/- 19 MPa was continuously produced at 60 meters per hour from an ultrafiltered collagen solution. The starting collagen concentration, flowrate, and needle size could be adjusted to control fiber size. The fiber was characterized with mechanical analysis, micro-differential scanning calorimetry, transmission electron microscopy, second harmonic generation analysis, and subcutaneous murine implant. We subsequently describe the scalable, semi-automated fabrication of elastin-like protein sheets reinforced with synthetic collagen fibers that can be positioned in a precisely defined three-dimensional hierarchical pattern. Multilamellar, fiber-reinforced elastic protein sheets were constructed with controlled fiber orientation and volume fraction. Structures were analyzed with scanning electron microscopy, transmission electron microscopy, and digital volumetric imaging. The effect of fiber orientation and volume fraction on Young's Modulus, yield stress, ultimate tensile stress, strain-to-failure, and resilience was evaluated in uniaxial tension. Increased fiber volume fraction and alignment with applied deformation significantly increased Young's Modulus, resilience, and yield stress. Highly extensible, elastic tissues display a functionally important mechanical transition from low to high modulus deformation at a strain dictated by the crimped microstructure of native collagen fiber. We report the fabrication of dense arrays of microcrimped synthetic collagen fiber embedded in elastin-like protein lamellae that mimic this aspect of tissue mechanics. Microcrimped fiber arrays were characterized with scanning electron microscopy, confocal laser scanning microscopy, and uniaxial tension analysis. Crimp wavelength was 143 +/- 5 mum. The degree of crimping was varied from 3.1% to 9.4%, and corresponded to mechanical modulus transitions at 4.6% and 13.3% strain. Up to 1000 cycles of tensile loading did not substantially alter microcrimp morphology. We designed and prototyped a series of small-diameter vascular grafts consisting of elastin-like protein reinforced with controlled volume fractions and orientations of collagen fiber. A pressure-diameter system was developed and implemented to study the effects of fiber distribution on graft mechanics. The optimal design satisfied target properties with suture retention strength of 173 +/- 4 g-f, burst strength of 1483 +/- 143 mm Hg, and compliance of 5.1 +/- 0.8 %/100 mm Hg.
Isolation of aramid nanofibers for high strength multiscale fiber reinforced composites
NASA Astrophysics Data System (ADS)
Lin, Jiajun; Patterson, Brendan A.; Malakooti, Mohammad H.; Sodano, Henry A.
2018-03-01
Aramid fibers are famous for their high specific strength and energy absorption properties and have been intensively used for soft body armor and ballistic protection. However, the use of aramid fiber reinforced composites is barely observed in structural applications. Aramid fibers have smooth and inert surfaces that are unable to form robust adhesion to polymeric matrices due to their high crystallinity. Here, a novel method to effectively integrate aramid fibers into composites is developed through utilization of aramid nanofibers. Aramid nanofibers are prepared from macroscale aramid fibers (such as Kevlar®) and isolated through a simple and scalable dissolution method. Prepared aramid nanofibers are dispersible in many polymers due to their improved surface reactivity, meanwhile preserve the conjugated structure and likely the strength of their macroscale counterparts. Simultaneously improved elastic modulus, strength and fracture toughness are observed in aramid nanofiber reinforced epoxy nanocomposites. When integrated in continuous fiber reinforced composites, aramid nanofibers can also enhance interfacial properties by forming hydrogen bonds and π-π coordination to bridge matrix and macroscale fibers. Such multiscale reinforcement by aramid nanofibers and continuous fibers results in strong polymeric composites with robust mechanical properties that are necessary and long desired for structural applications.
Krishnaiah, Prakash; Ratnam, Chantara Thevy; Manickam, Sivakumar
2017-01-01
In this investigation, sisal fibres were treated with the combination of alkali and high intensity ultrasound (HIU) and their effects on the morphology, thermal properties of fibres and mechanical properties of their reinforced PP composites were studied. FTIR and FE-SEM results confirmed the removal of amorphous materials such as hemicellulose, lignin and other waxy materials after the combined treatments of alkali and ultrasound. X-ray diffraction analysis revealed an increase in the crystallinity of sisal fibres with an increase in the concentration of alkali. Thermogravimetric results revealed that the thermal stability of sisal fibres obtained with the combination of both alkali and ultrasound treatment was increased by 38.5°C as compared to the untreated fibres. Morphology of sisal fibre reinforced composites showed good interfacial interaction between fibres and matrix after the combined treatment. Tensile properties were increased for the combined treated sisal fibres reinforced PP composites as compared to the untreated and pure PP. Tensile modulus and strength increased by more than 50% and 10% respectively as compared to the untreated sisal fibre reinforced composite. It has been found that the combined treatment of alkali and ultrasound is effective and useful to remove the amorphous materials and hence to improve the mechanical and thermal properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanical properties of concrete containing a high volume of tire-rubber particles.
Khaloo, Ali R; Dehestani, M; Rahmatabadi, P
2008-12-01
Due to the increasingly serious environmental problems presented by waste tires, the feasibility of using elastic and flexible tire-rubber particles as aggregate in concrete is investigated in this study. Tire-rubber particles composed of tire chips, crumb rubber, and a combination of tire chips and crumb rubber, were used to replace mineral aggregates in concrete. These particles were used to replace 12.5%, 25%, 37.5%, and 50% of the total mineral aggregate's volume in concrete. Cylindrical shape concrete specimens 15 cm in diameter and 30 cm in height were fabricated and cured. The fresh rubberized concrete exhibited lower unit weight and acceptable workability compared to plain concrete. The results of a uniaxial compressive strain control test conducted on hardened concrete specimens indicate large reductions in the strength and tangential modulus of elasticity. A significant decrease in the brittle behavior of concrete with increasing rubber content is also demonstrated using nonlinearity indices. The maximum toughness index, indicating the post failure strength of concrete, occurs in concretes with 25% rubber content. Unlike plain concrete, the failure state in rubberized concrete occurs gently and uniformly, and does not cause any separation in the specimen. Crack width and its propagation velocity in rubberized concrete are lower than those of plain concrete. Ultrasonic analysis reveals large reductions in the ultrasonic modulus and high sound absorption for tire-rubber concrete.
Beri, A; Norton, J E; Norton, I T
2013-12-01
Water-in-oil emulsions in lipsticks could have the potential to improve moisturizing properties and deliver hydrophilic molecules to the lips. The aims of this work were (i) to investigate the effect of emulsifier type (polymer vs. monomer, and saturated vs. unsaturated chain) and concentration on droplet size and (ii) to investigate the effect of wax ratio (carnauba wax, microcrystalline wax, paraffin wax and performalene) and aqueous phase volume on material properties (Young's modulus, point of fracture, elastic modulus and viscous modulus). Emulsion formation was achieved using a high shear mixer. Results showed that the saturated nature of the emulsifier had very little effect on droplet size, neither did the use of an emulsifier with a larger head group (droplet size ~18-25 μm). Polyglycerol polyricinoleate (PGPR) resulted in emulsions with the smallest droplets (~3-5 μm), as expected from previous studies that show that it produces a thick elastic interface. The results also showed that both Young's modulus and point of fracture increase with increasing percentage of carnauba wax (following a power law dependency of 3), but decrease with increasing percentage of microcrystalline wax, suggesting that the carnauba wax is included in the overall wax network formed by the saturated components, whereas the microcrystalline wax forms irregular crystals that disrupt the overall wax crystal network. Young's modulus, elastic modulus and viscous modulus all decrease with increasing aqueous phase volume in the emulsions, although the slope of the decrease in elastic and viscous moduli is dependent on the addition of solid wax, as a result of strengthening the network. This work suggests the potential use for emulsions in lipstick applications, particularly when PGPR is used as an emulsifier, and with the addition of solid wax, as it increases network strength. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Springback of aluminum alloy brazing sheet in warm forming
NASA Astrophysics Data System (ADS)
Han, Kyu Bin; George, Ryan; Kurukuri, Srihari; Worswick, Michael J.; Winkler, Sooky
2017-10-01
The use of aluminum is increasing in the automotive industry due to its high strength-to-weight ratio, recyclability and corrosion resistance. However, aluminum is prone to significant springback due to its low elastic modulus coupled with its high strength. In this paper, a warm forming process is studied to improve the springback characteristics of 0.2 mm thick brazing sheet with an AA3003 core and AA4045 clad. Warm forming decreases springback by lowering the flow stress. The parts formed have complex features and geometries that are representative of automotive heat exchangers. The key objective is to utilize warm forming to control the springback to improve the part flatness which enables the use of harder temper material with improved strength. The experiments are performed by using heated dies at several different temperatures up to 350 °C and the blanks are pre-heated in the dies. The measured springback showed a reduction in curvature and improved flatness after forming at higher temperatures, particularly for the harder temper material conditions.
Roland Hernandez; Jerrold E. Winandy
2005-01-01
A quantitative model is presented for evaluating the effects of incising on the bending strength and stiffness of structural dimension lumber. This model is based on the premise that bending strength and stiffness are reduced when lumber is incised, and the extent of this reduction is related to the reduction in moment of inertia of the bending members. Measurements of...
High strength, low stiffness, porous NiTi with superelastic properties.
Greiner, Christian; Oppenheimer, Scott M; Dunand, David C
2005-11-01
Near-stoichiometric NiTi with up to 18% closed porosity was produced by expansion at 1200 degrees C of argon-filled pores trapped by powder metallurgy within a NiTi billet. When optimally heat-treated, NiTi with 6-16% porosity exhibits superelasticity, with recoverable compressive strains up to 6% at a maximum compressive stress up to 1700 MPa. The apparent Young's modulus of NiTi with 16% porosity, measured during uniaxial compression, is in the range of 15-25 GPa (similar to human bone), but is much lower than measured ultrasonically (approximately 40 GPa), or predicted from continuum elastic mechanics. This effect is attributed to the reversible stress-induced transformation contributing to the linear elastic deformation of porous NiTi. The unique combination of low stiffness, high strength, high recoverable strains and large energy absorption of porous superelastic NiTi, together with the known biocompatibility of NiTi, makes this material attractive for bone-implant applications.
Song, Kenan; Zhang, Yiying; Meng, Jiangsha; Green, Emily C.; Tajaddod, Navid; Li, Heng; Minus, Marilyn L.
2013-01-01
Among the many potential applications of carbon nanotubes (CNT), its usage to strengthen polymers has been paid considerable attention due to the exceptional stiffness, excellent strength, and the low density of CNT. This has provided numerous opportunities for the invention of new material systems for applications requiring high strength and high modulus. Precise control over processing factors, including preserving intact CNT structure, uniform dispersion of CNT within the polymer matrix, effective filler–matrix interfacial interactions, and alignment/orientation of polymer chains/CNT, contribute to the composite fibers’ superior properties. For this reason, fabrication methods play an important role in determining the composite fibers’ microstructure and ultimate mechanical behavior. The current state-of-the-art polymer/CNT high-performance composite fibers, especially in regards to processing–structure–performance, are reviewed in this contribution. Future needs for material by design approaches for processing these nano-composite systems are also discussed. PMID:28809290
NASA Astrophysics Data System (ADS)
Chen, Ruey Shan; Ahmad, Sahrim; Ghani, Mohd Hafizuddin Ab; Salleh, Mohd Nazry
2014-09-01
Biocomposites of recycled high density polyethylene / recycled polyethylene terephthalate (rHDPE/rPET) blend incorporated with rice husk flour (RHF) were prepared using a corotating twin screw extruder. Maleic anhydride polyethylene (MAPE) was added as a coupling agent to improve the fibre-matrix interface adhesion. The effect of high filler loadings (50-90 wt%) on morphology and tensile properties of compatibilized rHDPE/rPET blend was investigated. The results of our study shown that composite with 70 wt% exhibited the highest tensile strength and Young's modulus, which are 22 MPa and 1752 MPa, respectively. The elongation at break decreased with increasing percentage of RHF. SEM micrograph confirmed fillers dispersion, morphological interaction and enhanced interfacial bonding between recycled polymer blends and rice husk. It can be concluded that the optimum RHF content is 70 wt% with maximum tensile strength.
NASA Astrophysics Data System (ADS)
Chozas, V.; Larraza, Í.; Vera-Agullo, J.; Williams-Portal, N.; Mueller, U.; Da Silva, N.; Flansbjer, M.
2015-11-01
This paper describes the synthesis and characterization of a set of textile reinforced reactive powder concrete (RPC) mixes that have been prepared in the framework of the SESBE project which aims to develop facade panels for the building envelope. In order to reduce the environmental impact, high concentration of type I and II mineral additions were added to the mixtures (up to 40% of cement replacement). The mechanical properties of the materials were analysed showing high values of compression strength thus indicating no disadvantages in the compression mechanical performance (∼140 MPa) and modulus of elasticity. In order to enable the use of these materials in building applications, textile reinforcement was introduced by incorporating layers of carbon fibre grids into the RPC matrix. The flexural performance of these samples was analysed showing high strength values and suitability for their further utilization.
NASA Technical Reports Server (NTRS)
Turner, M. J.; Grande, D. L.
1978-01-01
Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.
Reactive powder concrete reinforced with steel fibres exposed to high temperatures
NASA Astrophysics Data System (ADS)
Alrekabi, T. Kh; Cunha, V. M. C. F.; Barros, J. A. O.
2017-09-01
An experimental investigation was carried out to assess the mechanical properties of reactive powder concrete (RPC) reinforced with steel fibres (2% in vol.) when exposed to high temperatures. The compressive, flexural and tensile strength, modulus of elasticity and post-cracking behaviour were assessed after specimens’ exposure to different high temperatures ranging from 400 to 700°C. The mechanical properties of the RPC were assessed for specimens dried for 24 hours at 60 °C and 100 °C. Partially dried specimens (60 °C) exhibited explosive spalling at nearby 450 °C, while fully dried RPC specimens (100 °C) maintained their integrity after heating exposure. In general, the mechanical properties of RPC significantly decreased with the increase of the temperature exposure. The rate of decrease with temperature of the compressive, tensile and flexural strengths, as well the corresponding post-cracking residual stresses was higher for exposure temperatures above the 400 °C.
A Focused Fundamental Study of Predicting Materials Degradation & Fatigue. Volume 1
1997-05-31
physical properties are: bulk modulus, shear strength, coefficient of friction, modulus of elasticity/ rigidity and Poisson’s ratio. Each of these physical...acting on a subsurface crack when abrasive motion occurs on the surface using linear elastic fracture mechanics theory. Both mechanisms involve a...The body of the scattering 5 cell was a 4-way Swagelok*(Crawford Fitting Co., Solon, OH) connector with a 1.5 mm hole drilled in the top for
Characterization of commercial rigid polyurethane foams used as bone analogs for implant testing.
Calvert, Kayla L; Trumble, Kevin P; Webster, Thomas J; Kirkpatrick, Lynn A
2010-05-01
Mechanical properties and microstructure characterization of a series of graded commercial rigid polyurethane foams commonly used to mimic trabecular bone in testing orthopaedic devices is reported. Compressive testing conducted according to ASTM standard F1839-08, which requires large specimens (50.8 mm x 50.8 mm x 25.4 mm blocks) gave elastic modulus and compressive strength values ranging from 115 to 794 MPa and 4.7 to 24.7 MPa, respectively, for foams having densities of 0.240-0.641 g/cm(3). All these results were within the requirements of the specification for the corresponding grades. Compression testing using smaller specimens (7.5 mm diameter x 15 mm) typical of testing bone, gave results in good agreement with those obtained in the standard tests. Microstructural measurements showed the average pore size ranged from 125 to 234 microm for densities ranging from 0.641 to 0.159 g/cm(3), respectively. The relative modulus as a function of relative density of the foams fit well to the model of Gibson and Ashby. Cyclic testing revealed hysteresis in the lower density foams with a loading modulus statistically equivalent to that measured in monotonic testing. Shore DO durometry (hardness) measurements show good correlations to elastic modulus and compressive strength. The results suggest additional parameters to consider for the evaluation of polyurethane foams for bone analog applications.
Some strength and related properties of yagrumo hembra (Cecropia peltata) from Puerto Rico
B. A. Bendtsen
1964-01-01
Evaluations of several mechanical and physical properties were conducted on specimens from five yagrumo hembra (Cecropia peltata) trees from Puerto Rico. With the exception of toughness and modulus of elasticity in both bending and compression parallel to grain, these specimens were lower in specific gravity and in strength properties than material reported previously...
Predictor sort sampling, tight t`s, and the analysis of covariance : theory, tables, and examples
S. P. Verrill; D. W. Green
In recent years wood strength researchers have begun to replace experimental unit allocation via random sampling with allocation via sorts based on nondestructive measurements of strength predictors such as modulus of elasticity and specific gravity. Although this procedure has the potential of greatly increasing experimental sensitivity, as currently implemented it...
The Cryogenic Tensile Properties of an Extruded Aluminum-Beryllium Alloy
NASA Technical Reports Server (NTRS)
Gamwell, W. R.
2002-01-01
Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (-195.5 C (-320 F) and -252.8 C (-423 F)) temperatures. The material evaluated was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."
Development of Polythiophene/Acrylonitrile-Butadiene Rubbers for Artificial Muscle
NASA Astrophysics Data System (ADS)
Thipdech, Pacharavalee; Sirivat, Anuvat
2007-03-01
Electroactive polymers (EAPs) can respond to the applied electrical field by an extension or a retraction. In this work, we are interested in using an elastomeric blend for electroactive applications, acrylonitirle-butadiene rubber (NBR) containing a conductive polymer (Poly(3-thiopheneacetic acid, PTAA); the latter can be synthesized via oxidative polymerization. FT-IR, Thermogravimetric analysis (TGA), ^1H-NMR, UV-visible spectroscopy, and SEM are used to characterize the conductive polymer. Electrorheological properties are measured and investigated in terms of acrylonitrile content, blending ratio, doping level, and temperature. Experiments are carried out under oscillatory shear mode and with applied electric field strength varying from 0 to 2 kV/mm. Dielectric properties, conductivities are measured and correlated with the storage modulus responses. The storage modulus sensitivity, δG'G'0of the pure rubbers increases with increasing electric field strength. They attain the maximum values of about 30% and become constant at electric strength at and above 1000 V/mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Xiaofeng; Qui, Renhui; Fifield, Leonard S.
2012-05-17
Effects of surface treatments on the strength and water resistance of kenaf fiber-reinforced unsaturated polyester (UPE) composites were investigated. A new coupling agent that consists of 1,6-diisocyanato-hexane (DIH) and 2-hydroxylethyl acrylate (HEA) was investigated for surface treatments of kenaf fibers. The surface treatments were found to significantly enhance the tensile strength, modulus of rupture, modulus of elasticity, and water resistance of the resulting kenaf UPE composites. Fourier transform infrared spectroscopy (FTIR) confirmed that DIH-HEA was covalently bonded onto kenaf fibers. Scanning electron microscopy (SEM) images of the composites revealed that chemical treatment of kenaf fibers with a combination of DIHmore » and HEA improved the interfacial adhesion between kenaf fibers and UPE resin in the DIHHEA-treated kenafUPE composites. The mechanisms by which the chemical treatment of kenaf fiber surfaces improved strength and water resistance of the resulting kenaf UPE composites were discussed.« less
Rheological and mechanical properties of recycled polyethylene films contaminated by biopolymer.
Gere, D; Czigany, T
2018-06-01
Nowadays, with the increasing amount of biopolymers used, it can be expected that biodegradable polymers (e.g. PLA, PBAT) may appear in the petrol-based polymer waste stream. However, their impact on the recycling processes is not known yet; moreover, the properties of the products made from contaminated polymer blends are not easily predictable. Therefore, our goal was to investigate the rheological and mechanical properties of synthetic and biopolymer compounds. We made different compounds from regranulates of mixed polyethylene film waste and original polylactic acid (PLA) by extruison, and injection molded specimens from the compounds. We investigated the rheological properties of the regranulates, and the mechanical properties of the samples. When PLA was added, the viscosity and specific volume of all the blends decreased, and mechanical properties (tensile strength, modulus, and impact strength) changed significantly. Young's modulus increased, while elongation at break and impact strength decreased with the increase of the weight fraction of PLA. Copyright © 2018 Elsevier Ltd. All rights reserved.
Room temperature mechanical properties of electron beam welded zircaloy-4 sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parga, C. J.; Rooyen, I. J.; Coryell, B. D.
Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less
Room temperature mechanical properties of electron beam welded zircaloy-4 sheet
Parga, C. J.; Rooyen, I. J.; Coryell, B. D.; ...
2017-11-04
Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less
Mechanical properties of glass fiber-reinforced endodontic posts.
Cheleux, Nicolas; Sharrock, Patrick J
2009-10-01
Five types of posts from three different manufacturers (RTD, France, Carbotech, France and Ivoclar-Vivadent, Liechenstein) were subjected to three-point bending tests in order to obtain fatigue results, flexural strength and modulus. Transverse and longitudinal polished sections were examined by scanning electron microscopy and evaluated by computer-assisted image analysis. Physical parameters, including volume % of fibers, their dispersion index and coordination number, were calculated and correlated with mechanical properties. The weaker posts showed more fiber dispersion, higher resin contents, larger numbers of visible defects and reduced fatigue resistance. The flexural strength was inversely correlated with fiber diameter and the flexural modulus was weakly related to coordination number, volume % of fibers and dispersion index. The interfacial adhesion between the silica fibers and the resin matrix was observed to be of paramount importance.
Tensile behavior of glass/ceramic composite materials at elevated temperatures
NASA Technical Reports Server (NTRS)
Mandell, J. F.; Grande, D. H.; Jacobs, J.
1987-01-01
This paper describes the tensile behavior of high-temperature composite materials containing continuous Nicalon ceramic fiber reinforcement and glass and glass/ceramic matrices. The longitudinal properties of these materials can approach theoretical expectations for brittle matrix composites, failing at a strength and ultimate strain level consistent with those of the fibers. The brittle, high-modulus matrices result in a nonlinear stress-strain curve due to the onset of stable matrix cracking at 10 to 30 percent of the fiber strain to failure, and at strains below this range in off-axis plies. Current fibers and matrices can provide attractive properties well above 1000 C, but composites experience embrittlement in oxidizing atmospheres at 800 to 1000 C due to oxidation of a carbon interface reaction layer.The oxidation effect greatly increases the interface bond strength, causing composite embrittlement.
Mechanical Properties of Steel Encapsulated Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Fudger, Sean; Klier, Eric; Karandikar, Prashant; McWilliams, Brandon; Ni, Chaoying
This research evaluates a coefficient of thermal expansion (CTE) mismatch induced residual compressive stress approach as a means of improving the ductility of metal matrix composites (MMCs). MMCs are frequently incorporated into advanced material systems due to their tailorable material properties. However, they often have insufficient strength and ductility for many structural applications. By combining MMCs with high strength steels in a hybridized, macro composite materials system that exploits the CTE mismatch, materials systems with improved strength, damage tolerance, and structural efficiency can be obtained. Macro hybridized systems consisting of steel encapsulated light metal MMCs were produced with the goal of creating a system which takes advantage of the high strength, modulus, and damage tolerance of steels and high specific stiffness and low density of MMCs while mitigating the high density of steels and the poor ductility of MMCs. Aluminum and magnesium based particulate reinforced MMCs combine many of the desirable characteristic of metals and ceramics, particularly the unique ability to tailor their CTE. This work aims to compare the performance of macro hybridized material systems consisting of aluminum or magnesium MMCs reinforced with Al2O3, SiC, or B4C particles and encapsulated by A36 steel, 304 stainless steel, or cold worked Nitronic® 50 stainless steels.
NASA Astrophysics Data System (ADS)
Suyama, Shoko; Itoh, Yoshiyasu; Tsuno, Katsuhiko; Ohno, Kazuhiko
2005-08-01
Silicon carbide (SiC) is the most advantageous as the material of various telescope mirrors, because of high stiffness, low density, low coefficient of thermal expansion, high thermal conductivity and thermal stability. Newly developed high-strength reaction-sintered silicon carbide (NTSIC), which has two times higher strength than sintered SiC, is one of the most promising candidates for lightweight optical mirror substrate, because of fully dense, lightweight, small sintering shrinkage (+/-1 %), good shape capability and low processing temperature. In this study, 650mm in diameter mirror substrate of NTSIC was developed for space telescope applications. Three developed points describe below. The first point was to realize the lightweight to thin the thickness of green bodies. Ribs down to 3mm thickness can be obtained by strengthen the green body. The second point was to enlarge the mirror size. 650mm in diameter of mirror substrate can be fabricated with enlarging the diameter in order. The final point was to realize the homogeneity of mirror substrate. Some properties, such as density, bending strength, coefficient of thermal expansion, Young's modulus, Poisson's ratio, fracture toughness, were measured by the test pieces cutting from the fabricated mirror substrates.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.
2014-01-01
The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.
NASA Astrophysics Data System (ADS)
Karolina, R.; Putra, A. L. A.
2018-02-01
The Development of concrete technology is continues to grow. The requisite for efficient constructions that are often viewed in terms of concrete mechanical behavior, application on the field, and cost estimation of implementation increasingly require engineers to optimize construction materials, especially for concrete materials. Various types of concrete have now been developed according to their needs, such as high strength concrete. On high strength concrete design, it is necessary to consider several factors that will affect the reach of the quality strength, Those are cement, water cement ratio (w/c), aggregates, and proper admixture. In the use of natural mineral, it is important for an engineer to keep an eye on the natural conditions that have been explored. So the selection of aggregates as possible is a material that is not causing nature destruction. On this experiment the use of steel slag from PT.Growth Sumatra Industry as a substitute of coarse and fine aggregate, and volcanic ash of mount Sinabung as microsilka in concrete mixture substituted to create high strength concrete that is harmless for the environment. The use of mount sinabung volcanic ash as microsilika coupled with the use of Master Glenium Sky 8614 superplasticizer. This experiment intend to compare high strength concrete based slag steel as the main constituent aggregates and high strength concrete with a conventional mixture. The research result for 28 days old concrete shows that conventional concrete compressive strength is 67.567 MPa, slag concrete 75.958 Mpa, conventional tensile strength 5.435 Mpa while slag concrete 5.053 Mpa, conventional concrete bending strength 44064.96 kgcm while concrete slag 51473.94 kgcm and modulus of conventional concrete fracture 124.978 kg / cm2 while slag concrete 145.956 kg / cm2. Both concrete slump values shows similar results due to the use of superplasticizer.
NASA Astrophysics Data System (ADS)
Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng
2018-05-01
Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).
Niu, Haiyang; Chen, Xing-Qiu; Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi
2012-01-01
Traditional strengthening ways, such as strain, precipitation, and solid-solution, come into effect by pinning the motion of dislocation. Here, through first-principles calculations we report on an extra-electron induced covalent strengthening mechanism, which alters chemical bonding upon the introduction of extra-valence electrons in the matrix of parent materials. It is responsible for the brittle and high-strength properties of Al12W-type compounds featured by the typical fivefold icosahedral cages, which are common for quasicrystals and bulk metallic glasses (BMGs). In combination with this mechanism, we generalize ductile-to-brittle criterion in a universal hyperbolic form by integrating the classical Pettifor's Cauchy pressure with Pugh's modulus ratio for a wide variety of materials with cubic lattices. This study provides compelling evidence to correlate Pugh's modulus ratio with hardness of materials and may have implication for understanding the intrinsic brittleness of quasicrystals and BMGs. PMID:23056910
Niu, Haiyang; Chen, Xing-Qiu; Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi
2012-01-01
Traditional strengthening ways, such as strain, precipitation, and solid-solution, come into effect by pinning the motion of dislocation. Here, through first-principles calculations we report on an extra-electron induced covalent strengthening mechanism, which alters chemical bonding upon the introduction of extra-valence electrons in the matrix of parent materials. It is responsible for the brittle and high-strength properties of Al(12)W-type compounds featured by the typical fivefold icosahedral cages, which are common for quasicrystals and bulk metallic glasses (BMGs). In combination with this mechanism, we generalize ductile-to-brittle criterion in a universal hyperbolic form by integrating the classical Pettifor's Cauchy pressure with Pugh's modulus ratio for a wide variety of materials with cubic lattices. This study provides compelling evidence to correlate Pugh's modulus ratio with hardness of materials and may have implication for understanding the intrinsic brittleness of quasicrystals and BMGs.
Concrete with onyx waste aggregate as aesthetically valued structural concrete
NASA Astrophysics Data System (ADS)
Setyowati E., W.; Soehardjono, A.; Wisnumurti
2017-09-01
The utillization of Tulungagung onyx stone waste as an aggregate of concrete mixture will improve the economic value of the concrete due to the brighter color and high aesthetic level of the products. We conducted the research of 75 samples as a test objects to measure the compression stress, splits tensile stress, flexural tensile stress, elasticity modulus, porosity modulus and also studied 15 test objects to identify the concrete micro structures using XRD test, EDAX test and SEM test. The test objects were made from mix designed concrete, having ratio cement : fine aggregate : coarse aggregate ratio = 1 : 1.5 : 2.1, and W/C ratio = 0.4. The 28 days examination results showed that the micro structure of Tulungagung onyx waste concrete is similar with normal concrete. Moreover, the mechanical test results proved that Tulungagung onyx waste concretes also have a qualified level of strength to be used as a structural concrete with higher aesthetic level.
Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng
2018-05-11
Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).
Method and apparatus for determining tensile strength
Ratigan, J.L.
1982-05-28
A method and apparatus is described for determining the statistical distribution of apparent tensile strength of rock, the size effect with respect to tensile strength, as well as apparent deformation modulus of both intact and fractured or jointed rock. The method is carried out by inserting a plug of deformable material, such as rubber, in an opening of a specimen to be tested. The deformable material is loaded by an upper and lower platen until the specimen ruptures, whereafter the tensile strength is calculated based on the parameters of the test specimen and apparatus.
Method and apparatus for determining tensile strength
Ratigan, Joe L.
1984-01-01
A method and apparatus for determining the statistical distribution of apparent tensile strength of rock, the size effect with respect to tensile strength, as well as apparent deformation modulus of both intact and fractured or jointed rock. The method is carried out by inserting a plug of deformable material, such as rubber, in an opening of a specimen to be tested. The deformable material is loaded by an upper and lower platen until the specimen ruptures, whereafter the tensile strength is calculated based on the parameters of the test specimen and apparatus.
Leung, Brian T W; Tsoi, James K H; Matinlinna, Jukka P; Pow, Edmond H N
2015-09-01
Fluorophlogopite glass ceramic (FGC) is a biocompatible, etchable, and millable ceramic with fluoride releasing property. However, its mechanical properties and reliability compared with other machinable ceramics remain undetermined. The purpose of this in vitro study was to compare the mechanical properties of 3 commercially available millable ceramic materials, IPS e.max CAD, Vitablocs Mark II, and Vita Enamic, with an experimental FGC. Each type of ceramic block was sectioned into beams (n=15) of standard dimensions of 2×2×15 mm. Before mechanical testing, specimens of the IPS e.max CAD group were further fired for final crystallization. Flexural strength was determined by the 3-point bend test with a universal loading machine at a cross head speed of 1 mm/min. Hardness was determined with a hardness tester with 5 Vickers hardness indentations (n=5) using a 1.96 N load and a dwell time of 15 seconds. Selected surfaces were examined by scanning electron microscopy and energy-dispersive x-ray spectroscopy. Data were analyzed by the 1-way ANOVA test and Weibull analysis (α=.05). Weibull parameters, including the Weibull modulus (m) as well as the characteristic strength at 63.2% (η) and 10.0% (B10), were obtained. A significant difference in flexural strength (P<.001) was found among groups, with IPS e.max CAD (341.88 ±40.25 MPa)>Vita Enamic (145.95 ±12.65 MPa)>Vitablocs Mark II (106.67 ±18.50 MPa), and FGC (117.61 ±7.62 MPa). The Weibull modulus ranged from 6.93 to 18.34, with FGC showing the highest Weibull modulus among the 4 materials. The Weibull plot revealed that IPS e.max CAD>Vita Enamic>FGC>Vitablocs Mark II for the characteristic strength at both 63.2% (η) and 10.0% (B10). Significant difference in Vickers hardness among groups (P<.001) was found with IPS e.max CAD (731.63 ±30.64 H(V))>Vitablocs Mark II (594.74 ±25.22 H(V))>Vita Enamic (372.29 ±51.23 H(V))>FGC (153.74 ±23.62 H(V)). The flexural strength and Vickers hardness of IPS e.max CAD were significantly higher than those of the 3 materials tested. The FGC's flexural strength was comparable with Vitablocs Mark II. The FGC's Weibull modulus was the highest, while its Vickers hardness was the lowest among the materials tested. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications
NASA Astrophysics Data System (ADS)
Friedrich, Klaus; Almajid, Abdulhakim A.
2013-04-01
Composite materials, in most cases fiber reinforced polymers, are nowadays used in many applications in which light weight and high specific modulus and strength are critical issues. The constituents of these materials and their special advantages relative to traditional materials are described in this paper. Further details are outlined regarding the present markets of polymer composites in Europe, and their special application in the automotive industry. In particular, the manufacturing of parts from thermoplastic as well as thermosetting, short and continuous fiber reinforced composites is emphasized.
NASA Technical Reports Server (NTRS)
Bhatt, R. T.
1981-01-01
The mechanical properties of FP-Al2O3 fiber reinforced composites prepared by liquid infiltration techniques are improved. A strengthening addition, magnesium, was incorporated with the aluminum-lithium matrix alloy usually selected for these composites because of its good wetting characteristics. This ternary composite, FP-Al2O3/Al-(2-3)Li-(3-5)Mg, showed improved transverse strength compared with FP-Al2O3/Al-(2-3)Li composites. The lower axial strengths found for the FP-Al2O3/Al-(2-3)Li-(3-5)Mg composites were attributed to fabrication related defects. Another technique was the use of Ti/B coated FP-Al2O3 fibers in the composites. This coating is readily wet by molten aluminum and permitted the use of more conventional aluminum alloys in the composites. However, the anticipated improvements in the axial and transverse strengths were not obtained due to poor bonding between the fiber coating and the matrix. A third approach studied to improve the strengths of FP-Al2O3 reinforced composites was the use of magnesium alloys as matrix materials. While these alloys wet fibers satisfactorily, the result indicated that the magnesium alloy composites used offered no axial strength or modulus advantage over FP-Al2O3/Al-(2-3)Li composites.
Reinforcements: The key to high performance composite materials
NASA Technical Reports Server (NTRS)
Grisaffe, Salvatore J.
1990-01-01
Better high temperature fibers are the key to high performance, light weight composite materials. However, current U.S. and Japanese fibers still have inadequate high temperature strength, creep resistance, oxidation resistance, modulus, stability, and thermal expansion match with some of the high temperature matrices being considered for future aerospace applications. In response to this clear deficiency, both countries have research and development activities underway. Once successful fibers are identified, their production will need to be taken from laboratory scale to pilot plant scale. In such efforts it can be anticipated that the Japanese decisions will be based on longer term criteria than those applied in the U.S. Since the initial markets will be small, short term financial criteria may adversely minimize the number and strength of U.S. aerospace materials suppliers to well into the 21st century. This situation can only be compounded by the Japanese interests in learning to make commercial products with existing materials so that when the required advanced fibers eventually do arrive, their manufacturing skills will be developed.
Aw, Yah Yun; Yeoh, Cheow Keat; Idris, Muhammad Asri; Teh, Pei Leng; Hamzah, Khairul Amali; Sazali, Shulizawati Aqzna
2018-03-22
Fused deposition modelling (FDM) has been widely used in medical appliances, automobile, aircraft and aerospace, household appliances, toys, and many other fields. The ease of processing, low cost and high flexibility of FDM technique are strong advantages compared to other techniques for thermoelectric polymer composite fabrication. This research work focuses on the effect of two crucial printing parameters (infill density and printing pattern) on the tensile, dynamic mechanical, and thermoelectric properties of conductive acrylonitrile butadiene styrene/zinc oxide (CABS/ZnO composites fabricated by FDM technique. Results revealed significant improvement in tensile strength and Young's modulus, with a decrease in elongation at break with infill density. Improvement in dynamic storage modulus was observed when infill density changed from 50% to 100%. However, the loss modulus and damping factor reduced gradually. The increase of thermal conductivity was relatively smaller compared to the improvement of electrical conductivity and Seebeck coefficient, therefore, the calculated figure of merit (ZT) value increased with infill density. Line pattern performed better than rectilinear, especially in tensile properties and electrical conductivity. From the results obtained, FDM-fabricated CABS/ZnO showed much potential as a promising candidate for thermoelectric application .
NASA Astrophysics Data System (ADS)
Ladhar, A.; Arous, M.; Kaddami, H.; Ayadi, Z.; Kallel, A.
2017-10-01
In the present study, the dielectric and mechanical properties of natural rubber (NR) based nanocomposites are investigated. Cellulose nanofillers are used in two forms as reinforcing phase: nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC). In the dielectric study, different relaxation phenomena are detected: the α dipolar relaxation, the lignin and hemicelluloses relaxation, the water dipoles relaxation, the interfacial polarization and the ionic conduction. For the interfacial polarization, the dielectric strength Δε showed lower values for NFC-filled nanocomposites than CNC-filled samples. It was explained with higher interactions between induced dipoles and lower mobility, assuring a better adhesion between the NR and the NFC. Moreover, in tensile tests, the elastic modulus increases with filling indicating the reinforcement effect of nanofillers. In addition, the NR-NFC nanocomposites display the highest tensile modulus. This result shows the higher compatibility of NFC with the NR matrix, and the ensuing higher filler/matrix adhesion. In dynamic mechanical analysis (DMA), a significant reinforcing effect of NFC was shown. This effect is manifested with the high storage modulus E‧, suggesting that the interactions between the NR matrix and the NFC fibers were stronger.
Mechanical Properties of Uranium Silicides by Nanoindentation and Finite Elements Modeling
NASA Astrophysics Data System (ADS)
Carvajal-Nunez, U.; Elbakhshwan, M. S.; Mara, N. A.; White, J. T.; Nelson, A. T.
2018-02-01
Three methods were used to measure the mechanical properties of {U}3{Si}, {U}_3{Si}2, and USi. Quasi-static and continuous stiffness measurement nanoindentation were used to determine hardness and Young's modulus, and microindentation was used to evaluate the bulk hardness. Hardness and Young's modulus of the three U-Si compounds were both observed to increase with Si content. Finally, finite elements modelling was used to validate the nanoindentation data calculated for {U}3{Si}2 and estimate its yield strength.
Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics
NASA Astrophysics Data System (ADS)
Guo, Wen-Guang; Qiu, Zhi-Ye; Cui, Han; Wang, Chang-Ming; Zhang, Xiao-Jun; Lee, In-Seop; Dong, Yu-Qi; Cui, Fu-Zhai
2013-06-01
Dense hydroxyapatite (HA) ceramic is a promising material for hard tissue repair due to its unique physical properties and biologic properties. However, the brittleness and low compressive strength of traditional HA ceramics limited their applications, because previous sintering methods produced HA ceramics with crystal sizes greater than nanometer range. In this study, nano-sized HA powder was employed to fabricate dense nanocrystal HA ceramic by high pressure molding, and followed by a three-step sintering process. The phase composition, microstructure, crystal dimension and crystal shape of the sintered ceramic were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties of the HA ceramic were tested, and cytocompatibility was evaluated. The phase of the sintered ceramic was pure HA, and the crystal size was about 200 nm. The compressive strength and elastic modulus of the HA ceramic were comparable to human cortical bone, especially the good fatigue strength overcame brittleness of traditional sintered HA ceramics. Cell attachment experiment also demonstrated that the ceramics had a good cytocompatibility.
DOT National Transportation Integrated Search
1968-06-01
This report primarily investigates the wear characteristics of concrete using various cement contents and three different sources of aggregates. Compressive strength and dynamic modulus of elasticity data was also obtained to assist in the evaluation...
NASA Astrophysics Data System (ADS)
Zhang, Dong-ming; Yang, Yu-shun; Chu, Ya-pei; Zhang, Xiang; Xue, Yan-guang
2018-06-01
The triaxial compression test of crystalline sandstone under different loading and unloading velocity of confining pressure is carried out by using the self-made "THM coupled with servo-controlled seepage apparatus for containing-gas coal", analyzed the strength, deformation and permeability characteristics of the sample, the results show that: with the increase of confining pressures loading-unloading velocity, Mohr's stress circle center of the specimen shift to the right, and the ultimate intensity, peak strain and residual stress of the specimens increase gradually. With the decrease of unloading velocity of confining pressure, the axial strain, the radial strain and the volumetric strain of the sample decrease first and then increases, but the radial strain decreases more greatly. The loading and unloading of confining pressure has greater influence on axial strain of specimens. The deformation modulus decreases rapidly with the increase of axial strain and the Poisson's ratio decreases gradually at the initial stage of loading. When the confining pressure is loaded, the deformation modulus decrease gradually, and the Poisson's ratio increases gradually. When the confining pressure is unloaded, the deformation modulus increase gradually, and the Poisson's ratio decreases gradually. When the specimen reaches the ultimate intensity, the deformation modulus decreases rapidly, while the Poisson's ratio increases rapidly. The fitting curve of the confining pressure and the deformation modulus and the Poisson's ratio in accordance with the distribution of quadratic polynomial function in the loading-unloading confining pressure. There is a corresponding relationship between the evolution of rock permeability and damage deformation during the process of loading and unloading. In the late stage of yielding, the permeability increases slowly, and the permeability increases sharply after the rock sample is destroyed. Fitting the permeability and confining pressure conform to the variation law of the exponential function.
Highly-compliant, microcable neuroelectrodes fabricated from thin-film gold and PDMS.
McClain, Maxine A; Clements, Isaac P; Shafer, Richard H; Bellamkonda, Ravi V; LaPlaca, Michelle C; Allen, Mark G
2011-04-01
Bio-electrodes have traditionally been made of materials such as metal and silicon that are much stiffer than the tissue from which they record or stimulate. This difference in mechanical compliance can cause incomplete or ineffective contact with the tissue. The electrode stiffness has also been hypothesized to cause chronic low-grade injury and scar-tissue encapsulation, reducing stimulation and recording efficiency. As an initial step to resolve these issues with electrode performance, we have developed and characterized electrically-functional, low-Young's modulus, microcable-shaped neuroelectrodes and demonstrated electrophysiological recording functionality. The microcable geometry gives the electrodes a similar footprint to traditional wire and microwire neuroelectrodes, while reducing the difference in Young's modulus from nervous tissue by orders of magnitude. The electrodes are composed of PDMS and thin-film gold, affording them a high-level of compliance that is well suited for in vivo applications. The composite Young's modulus of the electrode was experimentally determined to be 1.81 ± 0.01 MPa. By incorporating a high-tear-strength silicone, Sylgard 186, the load at failure was increased by 92%, relative to that of the commonly used Sylgard 184. The microcable electrodes were also electromechanically tested, with measurable conductivity (220 kΩ) at an average 8% strain (n = 2) after the application of 200% strain. Electrophysiological recording is demonstrated by wrapping the electrode around a peripheral nerve, utilizing the compliance and string-like profile of the electrode for effective recording in nerve tissue.
Semi-2-interpenetrating polymer networks of high temperature systems
NASA Technical Reports Server (NTRS)
Hanky, A. O.; St. Clair, T. L.
1985-01-01
A semi-interpenetrating (semi-IPN) polymer system of the semi-2-IPN type is described in which a polymer of acetylene-terminated imidesulfone (ATPISO2) is cross linked in the presence of polyimidesulfone (PISO2). Six different formulations obtained by mixing of either ATPISO2-1n or ATPISO2-3n with PISO2 in three different proportions were characterized in terms of glass transition temperature, thermooxidative stability, inherent viscosity, and dynamic mechanical properties. Adhesive (lap shear) strength was tested at elevated temperatures on aged samples of adhesive scrim cloth prepared from each resin. Woven graphite (Celion 1000)/polyimide composites were tested for flexural strength, flexural modulus, and shear strength. The network polymers have properties intermediate between those of the component polymers alone, have greatly improved processability over either polyimide, and are able to form good adhesive bonds and composites, making the semi-2-IPN systems superior materials for aerospace structures.
Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading
NASA Astrophysics Data System (ADS)
Shokrieh, Mahmood M.; Memar, Mahdi
2010-04-01
The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.
Multifunctional Beta Ti Alloy with Improved Specific Strength
NASA Astrophysics Data System (ADS)
Park, Chan Hee; Hong, Jae-Keun; Lee, Sang Won; Yeom, Jong-Taek
2017-12-01
Gum metals feature properties such as ultrahigh strength, ultralow elastic modulus, superelasticity, and superplasticity. They are composed of elements from Groups 4 and 5 of the periodic table and exist when the valance electron concentration (\\overline{e/a}) is 4.24; the bond order (\\overline{Bo}) is 2.87; and the "d" electron-orbital energy level (\\overline{Md}) is 2.45 eV. Typical compositions include Ti-23Nb-2Zr-0.7Ta-O and Ti-12Ta-9Nb-6Zr-3 V-O, which contain large amounts of heavy Group-5 elements such as Nb and Ta. In the present study, to improve the specific strength of a multifunctional beta Ti alloy, three alloys (Ti-20Nb-5Zr-1Fe-O, Ti-12Zr-10Mo-4Nb-O, and Ti-24Zr-9Cr-3Mo-O) were designed by satisfying the above three requirements while adding Fe, Mo, and Cr, which are not only lightweight but also have strong hardening effects. Microstructural and mechanical property analyses revealed that Ti-20Nb-5Zr-1Fe-O has a 25% higher specific strength than gum metal while maintaining an ultralow elastic modulus.
Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers
Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol
2015-01-01
In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures. PMID:28788011
Influence of increasing amount of recycled concrete powder on mechanical properties of cement paste
NASA Astrophysics Data System (ADS)
Topič, Jaroslav; Prošek, Zdeněk; Plachý, Tomáš
2017-09-01
This paper deals with using fine recycled concrete powder in cement composites as micro-filler and partial cement replacement. Binder properties of recycled concrete powder are given by exposed non-hydrated cement grains, which can hydrate again and in small amount replace cement or improve some mechanical properties. Concrete powder used in the experiments was obtained from old railway sleepers. Infrastructure offer more sources of old concrete and they can be recycled directly on building site and used again. Experimental part of this paper focuses on influence of increasing amount of concrete powder on mechanical properties of cement paste. Bulk density, shrinkage, dynamic Young’s modulus, compression and flexural strength are observed during research. This will help to determine limiting amount of concrete powder when decrease of mechanical properties outweighs the benefits of cement replacement. The shrinkage, dynamic Young’s modulus and flexural strength of samples with 20 to 30 wt. % of concrete powder are comparable with reference cement paste or even better. Negative effect of concrete powder mainly influenced the compression strength. Only a 10 % cement replacement reduced compression strength by about 25 % and further decrease was almost linear.
Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler.
Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku
2017-02-28
The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0-20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler.
Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler
Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku
2017-01-01
The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0–20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler. PMID:28772603
Assessment of wrought ASTM F1058 cobalt alloy properties for permanent surgical implants.
Clerc, C O; Jedwab, M R; Mayer, D W; Thompson, P J; Stinson, J S
1997-01-01
The behavior of the ASTM F1058 wrought cobalt-chromium-nickel-molybdenum-iron alloy (commonly referred to as Elgiloy or Phynox) is evaluated in terms of mechanical properties, magnetic resonance imaging, corrosion resistance, and biocompatibility. The data found in the literature, the experimental corrosion and biocompatibility results presented in this article, and its long track record as an implant material demonstrate that the cobalt superalloy is an appropriate material for permanent surgical implants that require high yield strength and fatigue resistance combined with high elastic modulus, and that it can be safely imaged with magnetic resonance.
Geotechnical Parameters of Alluvial Soils from in-situ Tests
NASA Astrophysics Data System (ADS)
Młynarek, Zbigniew; Stefaniak, Katarzyna; Wierzbicki, Jędrzej
2012-10-01
The article concentrates on the identification of geotechnical parameters of alluvial soil represented by silts found near Poznan and Elblag. Strength and deformation parameters of the subsoil tested were identified by the CPTU (static penetration) and SDMT (dilatometric) methods, as well as by the vane test (VT). Geotechnical parameters of the subsoil were analysed with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. The article includes an analysis of the overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 9 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the Nkt coefficient, which might be used to identify the undrained shear strength of both sediments tested. On the basis of a detailed analysis of changes in terms of the constrained oedometric modulus M0, the relations between the said modulus, the liquidity index and the OCR value were identified. Mayne's formula (1995) was used to determine the M0 modulus from the CPTU test. The usefullness of the sediments found near Poznan as an earth construction material was analysed after their structure had been destroyed and compacted with a Proctor apparatus. In cases of samples characterised by different water content and soil particle density, the analysis of changes in terms of cohesion and the internal friction angle proved that these parameters are influenced by the soil phase composition (Fig. 18 and 19). On the basis of the tests, it was concluded that the most desirable shear strength parameters are achieved when the silt is compacted below the optimum water content.
Geotechnical Parameters of Alluvial Soils from in-situ Tests
NASA Astrophysics Data System (ADS)
Młynarek, Zbigniew; Stefaniak, Katarzyna; Wierzbicki, Jedrzej
2012-10-01
The article concentrates on the identification of geotechnical parameters of alluvial soil represented by silts found near Poznan and Elblag. Strength and deformation parameters of the subsoil tested were identified by the CPTU (static penetration) and SDMT (dilatometric) methods, as well as by the vane test (VT). Geotechnical parameters of the subsoil were analysed with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. The article includes an analysis of the overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 9 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the
Covalent Crosslinking of Carbon Nanotube Materials for Improved Tensile Strength
NASA Technical Reports Server (NTRS)
Baker, James S.; Miller, Sandi G.; Williams, Tiffany A.; Meador, Michael A.
2013-01-01
Carbon nanotubes have attracted much interest in recent years due to their exceptional mechanical properties. Currently, the tensile properties of bulk carbon nanotube-based materials (yarns, sheets, etc.) fall far short of those of the individual nanotube elements. The premature failure in these materials under tensile load has been attributed to inter-tube sliding, which requires far less force than that needed to fracture individual nanotubes.1,2 In order for nanotube materials to achieve their full potential, methods are needed to restrict this tube-tube shear and increase inter-tube forces.Our group is examining covalent crosslinking between the nanotubes as a means to increase the tensile properties of carbon nanotube materials. We are working with multi-walled carbon nanotube (MWCNT) sheet and yarn materials obtained from commercial sources. Several routes to functionalize the nanotubes have been examined including nitrene, aryl diazonium, and epoxide chemistries. The functional nanotubes were crosslinked through small molecule or polymeric bridges. Additionally, electron beam irradiation induced crosslinking of the non-functional and functional nanotube materials was conducted. For example, a nanotube sheet material containing approximately 3.5 mol amine functional groups exhibited a tensile strength of 75 MPa and a tensile modulus of 1.16 GPa, compared to 49 MPa and 0.57 GPa, respectively, for the as-received material. Electron beam irradiation (2.2x 1017 ecm2) of the same amine-functional sheet material further increased the tensile strength to 120 MPa and the modulus to 2.61 GPa. This represents approximately a 150 increase in tensile strength and a 360 increase in tensile modulus over the as-received material with only a 25 increase in material mass. Once we have optimized the nanotube crosslinking methods, the performance of these materials in polymer matrix composites will be evaluated.
Tuning the Elastic Modulus of Hydrated Collagen Fibrils
Grant, Colin A.; Brockwell, David J.; Radford, Sheena E.; Thomson, Neil H.
2009-01-01
Abstract Systematic variation of solution conditions reveals that the elastic modulus (E) of individual collagen fibrils can be varied over a range of 2–200 MPa. Nanoindentation of reconstituted bovine Achilles tendon fibrils by atomic force microscopy (AFM) under different aqueous and ethanol environments was carried out. Titration of monovalent salts up to a concentration of 1 M at pH 7 causes E to increase from 2 to 5 MPa. This stiffening effect is more pronounced at lower pH where, at pH 5, e.g., there is an ∼7-fold increase in modulus on addition of 1 M KCl. An even larger increase in modulus, up to ∼200 MPa, can be achieved by using increasing concentrations of ethanol. Taken together, these results indicate that there are a number of intermolecular forces between tropocollagen monomers that govern the elastic response. These include hydration forces and hydrogen bonding, ion pairs, and possibly the hydrophobic effect. Tuning of the relative strengths of these forces allows rational tuning of the elastic modulus of the fibrils. PMID:19948128
Sangwan, Watchara; Petcharoen, Karat; Paradee, Nophawan; Lerdwijitjarud, Wanchai; Sirivat, Anuvat
2016-10-20
The electromechanical properties, namely the storage modulus sensitivity and bending, of sodium alginate (SA) hydrogels and polycarbazole/sodium alginate (PCB/SA) hydrogel blends under applied electric field was investigated. The electromechanical properties of the pristine SA were studied under effects of crosslinking types and SA molecular weights, whereas the PCB/SA hydrogel blends were studied under the effect of PCB concentrations. The storage modulus sensitivity and bending of the pristine SA as crosslinked by the ionic crosslinking agent were found to be higher than those of the covalent crosslinking. The storage modulus sensitivity and deflection of the SA increased monotonically with increasing molecular weight. The highest electromechanical response of the PCB/SA hydrogel blends was obtained from the blend with 0.10% v/v PCB as it provided surprisingly the highest ever storage modulus sensitivity, (G'-G'0)/G'0 where G'0 and G' are the storage modulus without and with applied electric field, respectively, at 18.5 under applied electric field strength of 800V/mm. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kraft, R. H.; Molinari, J. F.; Ramesh, K. T.; Warner, D. H.
A two-dimensional finite element model is used to investigate compressive loading of a brittle ceramic. Intergranular cracking in the microstructure is captured explicitly by using a distribution of cohesive interfaces. The addition of confining stress increases the maximum strength and if high enough, can allow the effective material response to reach large strains before failure. Increasing the friction at the grain boundaries also increases the maximum strength until saturation of the strength is approached. Above a transitional strain rate, increasing the rate-of-deformation also increases the strength and as the strain rate increases, fragment sizes of the damaged specimen decrease. The effects of flaws within the specimen were investigated using a random distribution at various initial flaw densities. The model is able to capture an effective modulus change and degradation of strength as the initial flaw density increases. Effects of confinement, friction, and spatial distribution of flaws seem to depend on the crack coalescence and dilatation of the specimen, while strain-rate effects are result of inertial resistance to motion.
Hu, Youxin; Shanjani, Yaser; Toyserkani, Ehsan; Grynpas, Marc; Wang, Rizhi; Pilliar, Robert
2014-02-01
Porous calcium polyphosphate (CPP) structures proposed as bone-substitute implants and made by sintering CPP powders to form bending test samples of approximately 35 vol % porosity were machined from preformed blocks made either by additive manufacturing (AM) or conventional gravity sintering (CS) methods and the structure and mechanical characteristics of samples so made were compared. AM-made samples displayed higher bending strengths (≈1.2-1.4 times greater than CS-made samples), whereas elastic constant (i.e., effective elastic modulus of the porous structures) that is determined by material elastic modulus and structural geometry of the samples was ≈1.9-2.3 times greater for AM-made samples. X-ray diffraction analysis showed that samples made by either method displayed the same crystal structure forming β-CPP after sinter annealing. The material elastic modulus, E, determined using nanoindentation tests also showed the same value for both sample types (i.e., E ≈ 64 GPa). Examination of the porous structures indicated that significantly larger sinter necks resulted in the AM-made samples which presumably resulted in the higher mechanical properties. The development of mechanical properties was attributed to the different sinter anneal procedures required to make 35 vol % porous samples by the two methods. A primary objective of the present study, in addition to reporting on bending strength and sample stiffness (elastic constant) characteristics, was to determine why the two processes resulted in the observed mechanical property differences for samples of equivalent volume percentage of porosity. An understanding of the fundamental reason(s) for the observed effect is considered important for developing improved processes for preparation of porous CPP implants as bone substitutes for use in high load-bearing skeletal sites. Copyright © 2013 Wiley Periodicals, Inc.