NASA Astrophysics Data System (ADS)
Konduru, R.; Gupta, A.; Matsumoto, J.; Takahashi, H. G.
2017-12-01
In order to explain monsoon circulation, surface temperature gradients described as most traditional concept. However, it cannot explain certain important aspects of monsoon circulation. Later, convective quasi-equilibrium framework and vertically integrated atmospheric energy budget has become recognized theories to explain the monsoon circulation. In this article, same theories were analyzed and observed for the duration 1979-2010 over south Asian summer monsoon region. With the help of NCEP-R2, NOAA 20th Century, and Era-Interim reanalysis an important feature was noticed pertained to subcloud layer entropy and vertical moist static energy. In the last 32 years, subcloud layer entropy and vertically integrated moist static energy has shown significant seasonal warming all over the region with peak over the poleward flank of the cross-equatorial cell. The important reason related to the warming was found to be increase in surface enthalpy fluxes. Instead, other dynamical contributions pertained to the warming was also observed. Increase in positive anomalies of vertical advection of moist static energy over northern Bay of Bengal, Central India, Peninsular India, Eastern Arabian Sea, and Equatorial Indian Ocean was found to be an important dynamic factor contributing for warming of vertically integrated moist static energy. Along with it vertical moist stability has also supported the argument. Similar interpretations were perceived in the AMIP simulation of CCSM4 model. Further modeling experiments on this warming will be helpful to know the exact mechanism behind it.
On wave-CISK and the evaporation-wind feedback for the Madden-Julian oscillation
NASA Technical Reports Server (NTRS)
Kirtman, B.; Vernekar, A.
1993-01-01
The combined effects of Kelvin wave-CISK and the evaporation-wind (E-W) feedback are proposed as a possible mechanism for the Madden-Julian oscillation. A very simple single vertical mode model has been employed to examine the effects of both these processes on moist Kelvin waves. The effects of wave-induced moisture convergence is parameterized by reducing the moist static stability, and CISK occurs when the moist static stability becomes negative. The E-W feedback in the presence of mean easterlies leads to unstable Kelvin modes. The presence of mean westerlies leads to decaying Kelvin modes. When CISK and the E-W feedback work in concert, an unstable Kelvin mode develops that has phase speeds of propagation between 5 m/s and 10 m/s for a large range of parameter values. On the other hand, the E-W feedback mechanism alone, in the case when CISK is not operating, produces the phase speeds of the observed Madden-Julian oscillation for only a very limited range of parameter values.
Evaluation of a Heuristic Model for Tropical Cyclone Resilience
2015-01-26
in which the effective static stability vanishes in rising and sinking regions, the 13 heuristic model yields a poor approximation to the simulated...tilt configuration. However, in the moist-neutral 12 limit, in which the effective static stability vanishes in rising and sinking regions, the 13...larger, leading to more effective 13 damping of the tilt mode (e.g., Schecter and Montgomery 2007; see their Figs. 10 and 11 14 and accompanying
NASA Astrophysics Data System (ADS)
Tuck, A. F.; Hovde, S. J.; Lovejoy, S.; Schertzer, D.
2007-12-01
Application of generalized scale invariance to horizontal airborne observations of winds, temperature, ozone and humidity reveals the atmosphere as a random, non-Gaussian Levy process, having mean scaling exponents H (conservation), C1 (intermittency) and alpha (Levy) of 0.56, 0.05 and 1.6 respectively in the cases of winds and temperature. A correlation between the intermittency of temperature and the ozone photodissociation rate in the Arctic lower stratosphere is interpreted in terms of the ring currents of non-equilibrium statistical mechanics in which vortices, fluid dynamical behavior, emerge from thermalized populations of Maxwellian molecules subjected to an anisotropy in the form of a flux. The emergence of jet streams and the definition of atmospheric temperature are examined in the light of these results. The vertical scaling of wind, temperature and humidity is examined through the depth of the troposphere using data observed by GPS dropsondes from the NOAA Gulfstream 4 aircraft over the eastern Pacific Ocean in boreal winter. The results exclude isotropic turbulence in the atmosphere, and reveal the structure of static, moist static and dynamic (Richardson number) stabilities to be sparse fractal sets. Each stable layer contains a set of smaller scale unstable sublayers, each of which in turn contains a set of stable sub-sublayers and so on. The moist static stability scales differently to the dry static stability in the lower troposphere. As with the 'horizontal' data, the 'vertical' data reveal a correlation between H for horizontal wind and measures of jet stream strength. It is pointed out that these results provide potentially a new way of testing numerical models of the atmosphere.
A diagnostic study of the forcing of the Ferrel cell by eddies, with latent heat effects included
NASA Technical Reports Server (NTRS)
Salustri, G.; Stone, P. H.
1983-01-01
A diagnostic study of the forcing of the Ferrel cell by eddy fluxes in the Northern Hemisphere is carried out. The quasi-geostrophic omega equation, and Oort and Rasmusson's (1971) data set, are used. The effects of condensation associated with the large scale motions are introduced to the omega equation by using the quasi-geostrophic moisture conservation equation. Thus, the dry static stability is replaced by a moist static stability, and the forcing of the Ferrel cell by eddy latent heat fluxes as well as sensible heat and momentum fluxes is included. Both effects tend to enhance the forcing of the Ferrel cell. The numerical analysis indicates that the effects are small in January, but in July the maximum vertical velocities are enhanced by about 30 percent.
NASA Astrophysics Data System (ADS)
Anber, U.; Wang, S.; Gentine, P.; Jensen, M. P.
2017-12-01
A framework is introduced to investigate the indirect impact of aerosol loading on tropical deep convection using 3-dimentional idealized cloud-system resolving simulations with coupled large-scale circulation. The large scale dynamics is parameterized using a spectral weak temperature gradient approximation that utilizes the dominant balance in the tropics between adiabatic cooling and diabatic heating. Aerosol loading effect is examined by varying the number concentration of nuclei (CCN) to form cloud droplets in the bulk microphysics scheme over a wide range from 30 to 5000 without including any radiative effect as the radiative cooling is prescribed at a constant rate, to isolate the microphysical effect. Increasing aerosol number concentration causes mean precipitation to decrease monotonically, despite the increase in cloud condensates. Such reduction in precipitation efficiency is attributed to reduction in the surface enthalpy fluxes, and not to the divergent circulation, as the gross moist stability remains unchanged. We drive a simple scaling argument based on the moist static energy budget, that enables a direct estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometers and microphysical properties is also examined and is consistent with the macro-physical picture.
Estimating Bulk Entrainment With Unaggregated and Aggregated Convection
NASA Astrophysics Data System (ADS)
Becker, Tobias; Bretherton, Christopher S.; Hohenegger, Cathy; Stevens, Bjorn
2018-01-01
To investigate how entrainment is influenced by convective organization, we use the ICON (ICOsahedral Nonhydrostatic) model in a radiative-convective equilibrium framework, with a 1 km spatial grid mesh covering a 600 by 520 km2 domain. We analyze two simulations, with unaggregated and aggregated convection, and find that, in the lower free troposphere, the bulk entrainment rate increases when convection aggregates. The increase of entrainment rate with aggregation is caused by a strong increase of turbulence in the close environment of updrafts, masking other effects like the increase of updraft size and of static stability with aggregation. Even though entrainment rate increases with aggregation, updraft buoyancy reduction through entrainment decreases because aggregated updrafts are protected by a moist shell. Parameterizations that wish to represent mesoscale convective organization would need to model this moist shell.
NASA Astrophysics Data System (ADS)
Sedlar, J.
2015-12-01
Atmospheric advection of heat and moisture from lower latitudes to the high-latitude Arctic is a critical component of Earth's energy cycle. Large-scale advective events have been shown to make up a significant portion of the moist static energy budget of the Arctic atmosphere, even though such events are typically infrequent. The transport of heat and moisture over surfaces covered by ice and snow results in dynamic changes to the boundary layer structure, stability and turbulence, as well as to diabatic processes such as cloud distribution, microphysics and subsequent radiative effects. Recent studies have identified advection into the Arctic as a key mechanism for modulating the melt and freeze of snow and sea ice, via modification to all-sky longwave radiation. This paper examines the radiative impact during summer of such Arctic advective events at the top of the atmosphere (TOA), considering also the important role they play for the surface energy budget. Using infrared sounder measurements from the AIRS satellite, the summer frequency of significantly stable and moist advective events from 2003-2014 are characterized; justification of AIRS profiles over the Arctic are made using radiosoundings during a 3-month transect (ACSE) across the Eastern Arctic basin. One such event was observed within the East Siberian Sea in August 2014 during ACSE, providing in situ verification on the robustness and capability of AIRS to monitor advective cases. Results will highlight the important surface warming aspect of stable, moist instrusions. However a paradox emerges as such events also result in a cooling at the TOA evident on monthly mean TOA radiation. Thus such events have a climatic importance over ice and snow covered surfaces across the Arctic. ERA-Interim reanalyses are examined to provide a longer term perspective on the frequency of such events as well as providing capability to estimate meridional fluxes of moist static energy.
NASA Astrophysics Data System (ADS)
Wing, Allison; Camargo, Suzana; Sobel, Adam; Kim, Daehyun; Murakami, Hiroyuki; Reed, Kevin; Vecchi, Gabriel; Wehner, Michael; Zarzycki, Colin; Zhao, Ming
2017-04-01
In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore the tropical cyclogenesis processes in five high-resolution climate models, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter was originally developed to study the mechanisms of tropical convective organization in idealized cloud-resolving models, and allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis both along the individual tracks and composited over many tropical cyclones. We then compare the genesis processes; in particular, the role of cloud-radiation interactions, to those of spontaneous tropical cyclogenesis in idealized cloud-resolving model simulations.
NASA Astrophysics Data System (ADS)
Ma, Xulin; He, Jie; Ge, Xuyang
2017-09-01
In this study, the impacts of the environmental temperature profile on the tropical cyclone eyewall replacement cycle are examined using idealized numerical simulations. It is found that the environmental thermal condition can greatly affect the formation and structure of a secondary eyewall and the intensity change during the eyewall replacement cycle. Simulation with a warmer thermal profile produces a larger moat and a prolonged eyewall replacement cycle. It is revealed that the enhanced static stability greatly suppresses convection, and thus causes slow secondary eyewall formation. The possible processes influencing the decay of inner eyewall convection are investigated. It is revealed that the demise of the inner eyewall is related to a choking effect associated with outer eyewall convection, the radial distribution of moist entropy fluxes within the moat region, the enhanced static stability in the inner-core region, and the interaction between the inner and outer eyewalls due to the barotropic instability. This study motivates further research into how environmental conditions influence tropical cyclone dynamics and thermodynamics.
NASA Astrophysics Data System (ADS)
Wing, A. A.; Camargo, S. J.; Sobel, A. H.; Kim, D.; Moon, Y.; Bosilovich, M. G.; Murakami, H.; Reed, K. A.; Vecchi, G. A.; Wehner, M. F.; Zarzycki, C. M.; Zhao, M.
2017-12-01
In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However, biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore tropical cyclogenesis and intensification processes in six high-resolution climate models from NOAA/GFDL, NCAR, and NASA, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis, including surface flux feedbacks and cloud-radiative feedbacks. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis along the individual tracks and composited over many tropical cyclones. We use two methods of compositing: a composite over all TC track points in a given intensity range, and a composite relative to the time of lifetime maximum intensity for each storm (at the same stage in the TC life cycle).
Subtropical air masses over eastern Canada: Their links to extreme precipitation
NASA Astrophysics Data System (ADS)
Gyakum, John; Wood, Alice; Milrad, Shawn; Atallah, Eyad
2017-04-01
We investigate extremely warm, moist air masses with an analysis of 850-hPa equivalent potential temperature (θe) extremes at Montreal, Quebec. The utility of using this metric is that it represents the thermodynamic property of air that ascends during a precipitation event. We produce an analysis of the 40 most extreme cases of positive θe, 10 for each season, based upon standardized anomalies from the 33-year climatology. The analysis shows the cases to be characterized by air masses with distinct subtropical traits for all seasons: reduced static stability, anomalously high precipitable water, and anomalously elevated dynamic tropopause heights. Persistent, slow moving upper- and lower-level features were essential in the build up of high- θe air encompassing much of eastern Canada. The trajectory analysis also showed anticyclonic curvature to all paths in all seasons, implying that the subtropical anticyclone is crucial in the transport of high- θe air. These atmospheric rivers during the winter are characterized by trajectories from the subtropical North Atlantic, and over the Gulf Stream current, northward into Montreal. In contrast, the summer anticyclonic trajectories are primarily continental, traveling from Texas north-northeastward into the Great Lakes, and then eastward into Montreal. The role of the air mass in modulating the strength of a precipitation event is addressed with an analysis of the expression, P = RD, where P is the total precipitation, and R is the precipitation rate, averaged through the duration, D, of the event. Though appearing simple, this expression includes R, (assumed to be same as condensation, with an efficiency of 1), which may be expressed as the product of vertical motion and the change of saturation mixing ratio following a moist adiabat, through the troposphere. This expression for R includes the essential ingredients of lift, air mass temperature, and static stability (implicit in vertical motion). We use this expression for precipitation rate to study the extreme precipitation events in Montreal that are associated with these same cases of extreme warm, moist air masses, and their physical impacts on the precipitation rate. Implications of this air mass modulation on precipitation rate are discussed in the context of longer-term global climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xiaoqing; Deng, Liping
The moist static energy (MSE) anomalies and MSE budget associated with the Madden–Julian oscillation (MJO) simulated in the Iowa State University General Circulation Model (ISUGCM) over the Indian and Pacific Oceans are compared with observations. Different phase relationships between MJO 850-hPa zonal wind, precipitation, and surface latent heat flux are simulated over the Indian Ocean and western Pacific, which are greatly influenced by the convection closure, trigger conditions, and convective momentum transport (CMT). The moist static energy builds up from the lower troposphere 15–20 days before the peak of MJO precipitation, and reaches the maximum in the middle troposphere (500–600more » hPa) near the peak of MJO precipitation. The gradual lower-tropospheric heating and moistening and the upward transport of moist static energy are important aspects of MJO events, which are documented in observational studies but poorly simulated in most GCMs. The trigger conditions for deep convection, obtained from the year-long cloud resolving model (CRM) simulations, contribute to the striking difference between ISUGCM simulations with the original and modified convection schemes and play the major role in the improved MJO simulation in ISUGCM. Additionally, the budget analysis with the ISUGCM simulations shows the increase in MJO MSE is in phase with the horizontal advection of MSE over the western Pacific, while out of phase with the horizontal advection of MSE over the Indian Ocean. However, the NCEP analysis shows that the tendency of MJO MSE is in phase with the horizontal advection of MSE over both oceans.« less
Characteristics of middle and upper tropospheric clouds as deduced from rawinsonde data
NASA Technical Reports Server (NTRS)
Starr, D. D. O.; Cox, S. K.
1982-01-01
The static environment of middle and upper tropospheric clouds is characterized. Computed relative humidity with respect to ice is used to diagnose the presence of cloud layer. The deduced seasonal mean cloud cover estimates based on this technique are shown to be reasonable. The cases are stratified by season and pressure thickness, and the dry static stability, vertical wind speed shear, and Richardson number are computed for three layers for each case. Mean values for each parameter are presented for each stratification and layer. The relative frequency of occurrence of various structures is presented for each stratification. The observed values of each parameter and the observed structure of each parameter are quite variable. Structures corresponding to any of a number of different conceptual models may be found. Moist adiabatic conditions are not commonly observed and the stratification based on thickness yields substantially different results for each group.
MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis
NASA Astrophysics Data System (ADS)
Ahn, Min-Seop; Kim, Daehyun; Sperber, Kenneth R.; Kang, In-Sik; Maloney, Eric; Waliser, Duane; Hendon, Harry
2017-12-01
The Madden-Julian Oscillation (MJO) simulation diagnostics developed by MJO Working Group and the process-oriented MJO simulation diagnostics developed by MJO Task Force are applied to 37 Coupled Model Intercomparison Project phase 5 (CMIP5) models in order to assess model skill in representing amplitude, period, and coherent eastward propagation of the MJO, and to establish a link between MJO simulation skill and parameterized physical processes. Process-oriented diagnostics include the Relative Humidity Composite based on Precipitation (RHCP), Normalized Gross Moist Stability (NGMS), and the Greenhouse Enhancement Factor (GEF). Numerous scalar metrics are developed to quantify the results. Most CMIP5 models underestimate MJO amplitude, especially when outgoing longwave radiation (OLR) is used in the evaluation, and exhibit too fast phase speed while lacking coherence between eastward propagation of precipitation/convection and the wind field. The RHCP-metric, indicative of the sensitivity of simulated convection to low-level environmental moisture, and the NGMS-metric, indicative of the efficiency of a convective atmosphere for exporting moist static energy out of the column, show robust correlations with a large number of MJO skill metrics. The GEF-metric, indicative of the strength of the column-integrated longwave radiative heating due to cloud-radiation interaction, is also correlated with the MJO skill metrics, but shows relatively lower correlations compared to the RHCP- and NGMS-metrics. Our results suggest that modifications to processes associated with moisture-convection coupling and the gross moist stability might be the most fruitful for improving simulations of the MJO. Though the GEF-metric exhibits lower correlations with the MJO skill metrics, the longwave radiation feedback is highly relevant for simulating the weak precipitation anomaly regime that may be important for the establishment of shallow convection and the transition to deep convection.
MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis
Ahn, Min-Seop; Kim, Daehyun; Sperber, Kenneth R.; ...
2017-03-23
The Madden-Julian Oscillation (MJO) simulation diagnostics developed by MJO Working Group and the process-oriented MJO simulation diagnostics developed by MJO Task Force are applied to 37 Coupled Model Intercomparison Project phase 5 (CMIP5) models in order to assess model skill in representing amplitude, period, and coherent eastward propagation of the MJO, and to establish a link between MJO simulation skill and parameterized physical processes. Process-oriented diagnostics include the Relative Humidity Composite based on Precipitation (RHCP), Normalized Gross Moist Stability (NGMS), and the Greenhouse Enhancement Factor (GEF). Numerous scalar metrics are developed to quantify the results. Most CMIP5 models underestimate MJOmore » amplitude, especially when outgoing longwave radiation (OLR) is used in the evaluation, and exhibit too fast phase speed while lacking coherence between eastward propagation of precipitation/convection and the wind field. The RHCP-metric, indicative of the sensitivity of simulated convection to low-level environmental moisture, and the NGMS-metric, indicative of the efficiency of a convective atmosphere for exporting moist static energy out of the column, show robust correlations with a large number of MJO skill metrics. The GEF-metric, indicative of the strength of the column-integrated longwave radiative heating due to cloud-radiation interaction, is also correlated with the MJO skill metrics, but shows relatively lower correlations compared to the RHCP- and NGMS-metrics. Our results suggest that modifications to processes associated with moisture-convection coupling and the gross moist stability might be the most fruitful for improving simulations of the MJO. Though the GEF-metric exhibits lower correlations with the MJO skill metrics, the longwave radiation feedback is highly relevant for simulating the weak precipitation anomaly regime that may be important for the establishment of shallow convection and the transition to deep convection.« less
MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Min-Seop; Kim, Daehyun; Sperber, Kenneth R.
The Madden-Julian Oscillation (MJO) simulation diagnostics developed by MJO Working Group and the process-oriented MJO simulation diagnostics developed by MJO Task Force are applied to 37 Coupled Model Intercomparison Project phase 5 (CMIP5) models in order to assess model skill in representing amplitude, period, and coherent eastward propagation of the MJO, and to establish a link between MJO simulation skill and parameterized physical processes. Process-oriented diagnostics include the Relative Humidity Composite based on Precipitation (RHCP), Normalized Gross Moist Stability (NGMS), and the Greenhouse Enhancement Factor (GEF). Numerous scalar metrics are developed to quantify the results. Most CMIP5 models underestimate MJOmore » amplitude, especially when outgoing longwave radiation (OLR) is used in the evaluation, and exhibit too fast phase speed while lacking coherence between eastward propagation of precipitation/convection and the wind field. The RHCP-metric, indicative of the sensitivity of simulated convection to low-level environmental moisture, and the NGMS-metric, indicative of the efficiency of a convective atmosphere for exporting moist static energy out of the column, show robust correlations with a large number of MJO skill metrics. The GEF-metric, indicative of the strength of the column-integrated longwave radiative heating due to cloud-radiation interaction, is also correlated with the MJO skill metrics, but shows relatively lower correlations compared to the RHCP- and NGMS-metrics. Our results suggest that modifications to processes associated with moisture-convection coupling and the gross moist stability might be the most fruitful for improving simulations of the MJO. Though the GEF-metric exhibits lower correlations with the MJO skill metrics, the longwave radiation feedback is highly relevant for simulating the weak precipitation anomaly regime that may be important for the establishment of shallow convection and the transition to deep convection.« less
Vadapalli, Sriharsha Babu; Atluri, Kaleswararao; Putcha, Madhu Sudhan; Kondreddi, Sirisha; Kumar, N. Suman; Tadi, Durga Prasad
2016-01-01
Objectives: This in vitro study was designed to compare polyvinyl-siloxane (PVS) monophase and polyether (PE) monophase materials under dry and moist conditions for properties such as surface detail reproduction, dimensional stability, and gypsum compatibility. Materials and Methods: Surface detail reproduction was evaluated using two criteria. Dimensional stability was evaluated according to American Dental Association (ADA) specification no. 19. Gypsum compatibility was assessed by two criteria. All the samples were evaluated, and the data obtained were analyzed by a two-way analysis of variance (ANOVA) and Pearson's Chi-square tests. Results: When surface detail reproduction was evaluated with modification of ADA specification no. 19, both the groups under the two conditions showed no significant difference statistically. When evaluated macroscopically both the groups showed statistically significant difference. Results for dimensional stability showed that the deviation from standard was significant among the two groups, where Aquasil group showed significantly more deviation compared to Impregum group (P < 0.001). Two conditions also showed significant difference, with moist conditions showing significantly more deviation compared to dry condition (P < 0.001). The results of gypsum compatibility when evaluated with modification of ADA specification no. 19 and by giving grades to the casts for both the groups and under two conditions showed no significant difference statistically. Conclusion: Regarding dimensional stability, both impregum and aquasil performed better in dry condition than in moist; impregum performed better than aquasil in both the conditions. When tested for surface detail reproduction according to ADA specification, under dry and moist conditions both of them performed almost equally. When tested according to macroscopic evaluation, impregum and aquasil performed significantly better in dry condition compared to moist condition. In dry condition, both the materials performed almost equally. In moist condition, aquasil performed significantly better than impregum. Regarding gypsum compatibility according to ADA specification, in dry condition both the materials performed almost equally, and in moist condition aquasil performed better than impregum. When tested by macroscopic evaluation, impregum performed better than aquasil in both the conditions. PMID:27583217
Vadapalli, Sriharsha Babu; Atluri, Kaleswararao; Putcha, Madhu Sudhan; Kondreddi, Sirisha; Kumar, N Suman; Tadi, Durga Prasad
2016-01-01
This in vitro study was designed to compare polyvinyl-siloxane (PVS) monophase and polyether (PE) monophase materials under dry and moist conditions for properties such as surface detail reproduction, dimensional stability, and gypsum compatibility. Surface detail reproduction was evaluated using two criteria. Dimensional stability was evaluated according to American Dental Association (ADA) specification no. 19. Gypsum compatibility was assessed by two criteria. All the samples were evaluated, and the data obtained were analyzed by a two-way analysis of variance (ANOVA) and Pearson's Chi-square tests. When surface detail reproduction was evaluated with modification of ADA specification no. 19, both the groups under the two conditions showed no significant difference statistically. When evaluated macroscopically both the groups showed statistically significant difference. Results for dimensional stability showed that the deviation from standard was significant among the two groups, where Aquasil group showed significantly more deviation compared to Impregum group (P < 0.001). Two conditions also showed significant difference, with moist conditions showing significantly more deviation compared to dry condition (P < 0.001). The results of gypsum compatibility when evaluated with modification of ADA specification no. 19 and by giving grades to the casts for both the groups and under two conditions showed no significant difference statistically. Regarding dimensional stability, both impregum and aquasil performed better in dry condition than in moist; impregum performed better than aquasil in both the conditions. When tested for surface detail reproduction according to ADA specification, under dry and moist conditions both of them performed almost equally. When tested according to macroscopic evaluation, impregum and aquasil performed significantly better in dry condition compared to moist condition. In dry condition, both the materials performed almost equally. In moist condition, aquasil performed significantly better than impregum. Regarding gypsum compatibility according to ADA specification, in dry condition both the materials performed almost equally, and in moist condition aquasil performed better than impregum. When tested by macroscopic evaluation, impregum performed better than aquasil in both the conditions.
Land surface-precipitation feedback and ramifications on storm dynamics.
NASA Astrophysics Data System (ADS)
Baisya, H.; PV, R.; Pattnaik, S.
2017-12-01
A series of numerical experiments are carried out to investigate the sensitivity of a landfalling monsoon depression to land surface conditions using the Weather Research and Forecasting (WRF) model. Results suggest that precipitation is largely modulated by moisture influx and precipitation efficiency. Three cloud microphysical schemes (WSM6, WDM6, and Morrison) are examined, and Morrison is chosen for assessing the land surface-precipitation feedback analysis, owing to better precipitation forecast skills. It is found that increased soil moisture facilitates Moisture Flux Convergence (MFC) with reduced moisture influx, whereas a reduced soil moisture condition facilitates moisture influx but not MFC. A higher Moist Static Energy (MSE) is noted due to increased evapotranspiration in an elevated moisture scenario which enhances moist convection. As opposed to moist surface, sensible heat dominates in a reduced moisture scenario, ensued by an overall reduction in MSE throughout the Planetary Boundary Layer (PBL). Stability analysis shows that Convective Available Potential Energy (CAPE) is comparable in magnitude for both increased and decreased moisture scenarios, whereas Convective Inhibition (CIN) shows increased values for the reduced moisture scenario as a consequence of drier atmosphere leading to suppression of convection. Simulations carried out with various fixed soil moisture levels indicate that the overall precipitation features of the storm are characterized by initial soil moisture condition, but precipitation intensity at any instant is modulated by soil moisture availability. Overall results based on this case study suggest that antecedent soil moisture plays a crucial role in modulating precipitation distribution and intensity of a monsoon depression.
Cloud-Radiative Driving of the Madden-Julian Oscillation as Seen by the A-Train
NASA Technical Reports Server (NTRS)
Del Genio, Anthony; Chen, Yonghua
2015-01-01
Cloud and water vapor radiative heating anomalies associated with convection may be an effective source of moist static energy driving the Madden-Julian Oscillation (MJO). In this paper five years of radiative heating profiles derived from CloudSat radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data are analyzed to document radiative heating anomalies during the MJO. Atmospheric shortwave absorption and surface longwave radiation anomalies are of opposite sign and 10-20% as large as top-of-atmosphere outgoing longwave radiation (OLR) anomalies, confirming that OLR provides a useful estimate of the total column radiative heating anomaly. Positive anomalies generally peak about one week before the MJO peak and are smallest over the Indian Ocean. Anomalies over the Maritime Continent are strongest, and coincident with the MJO peak. Shortwave heating profile anomalies are about half as large as longwave anomalies in the active region of the MJO but generally of opposite sign; thus shortwave heating damps the longwave destabilization of the lower troposphere. The exception is the onset phase of the MJO, where shortwave and longwave heating anomalies due to thin cirrus are both positive in the upper troposphere and exert a stabilizing influence. Specific humidity anomalies in the middle troposphere reach 0.5 g kg(exp. -1), but the associated clear sky heating anomaly is very small. Radiative enhancement of column moist static energy becomes significant about 10 days before the MJO peak, when precipitation anomalies are still increasing, and then remains high after the MJO peak after precipitation has begun to decline.
Kim, Daehyun; Sobel, Adam H.; Del Genio, Anthony; Wu, Jingbo
2017-01-01
Abstract The processes that lead to changes in the propagation and maintenance of the Madden‐Julian Oscillation (MJO) as a response to increasing CO2 are examined by analyzing moist static energy budget of the MJO in a series of NASA GISS model simulations. It is found changes in MJO propagation is dominated by several key processes. Horizontal moisture advection, a key process for MJO propagation, is found to enhance predominantly due to an increase in the mean horizontal moisture gradients. The terms that determine the strength of the advecting wind anomalies, the MJO horizontal scale and the dry static stability, are found to exhibit opposing trends that largely cancel out. Furthermore, reduced sensitivity of precipitation to changes in column moisture, i.e., a lengthening in the convective moisture adjustment time scale, also opposes enhanced propagation. The dispersion relationship of Adames and Kim, which accounts for all these processes, predicts an acceleration of the MJO at a rate of ∼3.5% K−1, which is consistent with the actual phase speed changes in the simulation. For the processes that contribute to MJO maintenance, it is found that damping by vertical MSE advection is reduced due to the increasing vertical moisture gradient. This weaker damping is nearly canceled by weaker maintenance by cloud‐radiative feedbacks, yielding the growth rate from the linear moisture mode theory nearly unchanged with the warming. Furthermore, the estimated growth rates are found to be a small, negative values, suggesting that the MJO in the simulation is a weakly damped mode. PMID:29497477
Moist convective storms in the atmosphere of Saturn
NASA Astrophysics Data System (ADS)
Hueso, R.; Sánchez-Lavega, A.
2003-05-01
Moist convective storms might be a key aspect in the global energy budget of the atmospheres of the Giant Planets. In spite of its dull appearance, Saturn is known to develop the largest scale convective storms in the Solar System, the Great White Spots, the last of them arising in 1990 triggered a planetary scale disturbance that encircled the whole Equatorial region. However, Saturn seems to be very much less convective than Jupiter, being convective storms rare and small for the most part of the cases. Here we present simulations of moist convective storms in the atmosphere of Saturn at different latitudes, the Equator and 42 deg S, the regions where most of the convective activity of the planet has been observed. We use a 3D anelastic model of the atmosphere with parameterized microphysics (Hueso and Sánchez-Lavega, 2001) and we study the onset and evolution of moist convective storms. Ammonia storms are able to develop only if the static stability of the upper atmosphere is slightly decreased. Water storms are difficult to develop requiring very specific atmospheric conditions. However, when they develop they can be very energetic arriving at least to the 150 mbar level. The Coriolis forces play a mayor role in the characteristics of water based storms in the atmosphere of Saturn. The 3-D Coriolis forces at the Equator transfer upward momentum to westward motions acting to diminish the strength of the equatorial jet. The GWS of 1990 could have been a mayor force in reducing the intensity of the equatorial jet stream as revealed recently (Sánchez-Lavega et al. Nature, 2003). The Cassini spacecraft will arrive to Saturn in a year. Its observations of the atmosphere will allow to measure the amount of convective activity on the planet, its characteristics and it will clarify the role of moist convection in the atmospheric dynamics of the Giant Planets. Acknowledgements: This work was supported by the Spanish MCYT PNAYA 2000-0932. RH acknowledges a Post-doctoral fellowship from Gobierno Vasco.
NASA Astrophysics Data System (ADS)
Baisya, Himadri; Pattnaik, Sandeep; Rajesh, P. V.
2017-03-01
A series of numerical experiments are carried out to investigate the sensitivity of a landfalling monsoon depression to land surface conditions using the Weather Research and Forecasting (WRF) model. Results suggest that precipitation is largely modulated by moisture influx and precipitation efficiency. Three cloud microphysical schemes (WSM6, WDM6, and Morrison) are examined, and Morrison is chosen for assessing the land surface-precipitation feedback analysis, owing to better precipitation forecast skills. It is found that increased soil moisture facilitates Moisture Flux Convergence (MFC) with reduced moisture influx, whereas a reduced soil moisture condition facilitates moisture influx but not MFC. A higher Moist Static Energy (MSE) is noted due to increased evapotranspiration in an elevated moisture scenario which enhances moist convection. As opposed to moist surface, sensible heat dominates in a reduced moisture scenario, ensued by an overall reduction in MSE throughout the Planetary Boundary Layer (PBL). Stability analysis shows that Convective Available Potential Energy (CAPE) is comparable in magnitude for both increased and decreased moisture scenarios, whereas Convective Inhibition (CIN) shows increased values for the reduced moisture scenario as a consequence of drier atmosphere leading to suppression of convection. Simulations carried out with various fixed soil moisture levels indicate that the overall precipitation features of the storm are characterized by initial soil moisture condition, but precipitation intensity at any instant is modulated by soil moisture availability. Overall results based on this case study suggest that antecedent soil moisture plays a crucial role in modulating precipitation distribution and intensity of a monsoon depression.
Storm track response to climate change: Insights from simulations using an idealized dry GCM.
NASA Astrophysics Data System (ADS)
Mbengue, Cheikh; Schneider, Tapio
2013-04-01
The midlatitude storm tracks, where the most intense extratropical cyclones are found, are an important fixture in the general circulation. They are instrumental in balancing the Earth's heat, momentum, and moisture budgets and are responsible for the weather and climatic patterns over large regions of the Earth's surface. As a result, the midlatitude storm tracks are the subject of a considerable amount of scientific research to understand their response to global warming. This has produced the robust result showing that the storm tracks migrate poleward with global warming. However, the dynamical mechanisms responsible for this migration remain unclear. Our work seeks to broaden understanding of the dynamical mechanisms responsible for storm track migration. Competing mechanisms present in the comprehensive climate models often used to study storm track dynamics make it difficult to determine the primary mechanisms responsible for storm track migration. We are thus prompted to study storm track dynamics from a simplified and idealized framework, which enables the decoupling of mean temperature effects from the effects of static stability and of tropical from extratropical effects. Using a statistically zonally symmetric, dry general circulation model (GCM), we conduct a series of numerical simulations to help understand the storm track response to global mean temperatures and to the tropical convective static stability, which we can vary independently. We define storm tracks as regions of zonally and temporally averaged maxima of barotropic eddy kinetic energy (EKE). This storm track definition also allows us to use previously found scalings between the magnitude of bulk measures of mean available potential energy (MAPE) and EKE, to decompose MAPE, and to obtain some mechanistic understanding of the storm track response in our simulations. These simulations provide several insights, which enable us to extend upon existing theories on the mechanisms driving the poleward migration of the storm tracks. We demonstrate a poleward migration of the midlatitude storm tracks in dry atmospheres with fixed pole-equator temperature contrast and increasing radiative equilibrium mean temperature, without changes in convective static stability. We also show scalings between the location of maxima of surface MAPE and of barotropic EKE. In the simulations where we independently vary tropical convective static stability, we find a marked poleward migration of the storm tracks. However, our decomposition shows that meridional temperature gradients, and not static stability, determine the location and the intensity of the storm tracks. This suggests that although the storm tracks are sensitive to tropical convective static stability, it influences them indirectly. Furthermore, our simulations show that the storm tracks generally migrate in tandem with the terminus of the Hadley cell. Therefore, we hypothesize that it is possible that the Hadley cell provides the tropical-extratropical communication necessary to generate the storm track response to tropical convective static stability we observe in the simulations. The results contained herein could be used to supplement ongoing storm track research in moist atmospheres using comparatively more comprehensive GCMs to understand storm track dynamics in earth-like environments.
NASA Astrophysics Data System (ADS)
Acosta, R. P.; Huber, M.
2017-08-01
Accurately simulating the Indo-Asian monsoon (IAM) using atmospheric general circulation models (AGCMs) is challenging but crucial. This study uses reanalysis products European Centre of Medium-Range Forecast Interim reanalysis, Japanese Reanalysis year 55, and High Asia Reanalysis to highlight an easterly, low-level barrier jet along the Indo-Gangetic Plain (referred from here as IG LLJ), which we identify as the primary moisture transport mechanism for the northeastern branch of the IAM. We show that the NCAR family of AGCMs (Community Atmospheric Model (CAM)) does not capture this circulation until 1/2° or greater spatial horizontal resolution is used. The IG LLJ develops due to a persistent low-pressure system centered over the Ganges basin and is enhanced by the Himalayas. Using diabatic heating rates and the moist Froude number as diagnostics, we find that in CAM, this branch of the IAM displays two different dynamical regimes as a function of resolution. At low resolution, the atmosphere near the Himalayas is statically unstable, diabatic heating is strong, and the moisture flow is southwesterly from the Arabian Sea and moves over the terrain (unblocked). At high resolution, the moist static stability near the Himalayan Mountains is stable, diabatic heating is weak, and the flow primarily enters easterly from the Bay of Bengal and moves parallel to the terrain (blocked). During the summer season, the low-resolution CAM is locked into the unblocked mode, which has serious implications for interpreting topography-monsoon interactions. For a broader context, we demonstrate that more than half of the CMIP5 models do not capture the IG LLJ, which further highlights model-data mismatch across the IAM region.
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Molod, A.
1988-01-01
The influence of surface albedo and evapotranspiration anomalies that could result from the hypothetical semiarid vegetation over North Africa on its July circulation and rainfall is examined using the Goddard Laboratory for Atmospheres GCM. It is shown that increased soil moisture and its dependent evapotranspiration produces a cooler and moister PBL over North Africa that is able to support enhanced moist convection and rainfall in Sahel and southern Sahara. It is found that lower surface albedo yields even higher moist static energy in the PBL and enhances the local moist convection and rainfall. Modifying the rain-evaporation parameterization in the model produces changes in the hydrological cycle and rainfall anomalies in distant regions. The effects of different falling rain parameterizations are discussed.
NASA Astrophysics Data System (ADS)
Mapes, B. E.; Kelly, P.; Song, S.; Hu, I. K.; Kuang, Z.
2015-12-01
An economical 10-layer global primitive equation solver is driven by time-independent forcing terms, derived from a training process, to produce a realisting eddying basic state with a tracer q trained to act like water vapor mixing ratio. Within this basic state, linearized anomaly moist physics in the column are applied in the form of a 20x20 matrix. The control matrix was derived from the results of Kuang (2010, 2012) who fitted a linear response function from a cloud resolving model in a state of deep convecting equilibrium. By editing this matrix in physical space and eigenspace, scaling and clipping its action, and optionally adding terms for processes that do not conserve moist statice energy (radiation, surface fluxes), we can decompose and explain the model's diverse moist process coupled variability. Recitified effects of this variability on the general circulation and climate, even in strictly zero-mean centered anomaly physic cases, also are sometimes surprising.
NASA Astrophysics Data System (ADS)
Harrop, Bryce E.; Ma, Po-Lun; Rasch, Philip J.; Neale, Richard B.; Hannay, Cecile
2018-04-01
Precipitation is an important climate quantity that is critically relevant to society. In spite of intense efforts, significant precipitation biases remain in most climate models. One pervasive and persistent bias found in many general circulation models occurs in the Tropical West Pacific where northern hemisphere summer-time precipitation is often underestimated compared to observations. Using the DOE-E3SM model, the inclusion of a missing process, convective gustiness, is shown to reduce those biases through a net increase in surface evaporation. Gustiness in surface wind fields is assumed to arise empirically in proportion to the intensity of convective precipitation. The increased evaporation can be treated as an increase in the moist static energy forcing into the atmosphere. A Normalized Gross Moist Stability (NGMS) framework (which characterizes the relationship between convective forcing and convective response) is used to explore the processes responsible for the precipitation bias, and the impact of the gustiness parameterization in reducing that bias. Because the NGMS of the Tropical West Pacific is less than unity in the E3SMv1 model, the increase in energy forcing amplifies the increase in precipitation to exceed that of the evaporative flux. Convective gustiness favors increased precipitation in regions where the resolved surface winds are weak and convection is present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrop, Bryce E.; Ma, Po -Lun; Rasch, Philip J.
Precipitation is an important climate quantity that is critically relevant to society. In spite of intense efforts, significant precipitation biases remain in most climate models. One pervasive and persistent bias found in many general circulation models occurs in the Tropical West Pacific where northern hemisphere summer-time precipitation is often underestimated compared to observations. Using the DOE-E3SM model, the inclusion of a missing process, convective gustiness, is shown to reduce those biases through a net increase in surface evaporation. Gustiness in surface wind fields is assumed to arise empirically in proportion to the intensity of convective precipitation. The increased evaporation canmore » be treated as an increase in the moist static energy forcing into the atmosphere. A Normalized Gross Moist Stability (NGMS) framework (which characterizes the relationship between convective forcing and convective response) is used to explore the processes responsible for the precipitation bias, and the impact of the gustiness parameterization in reducing that bias. Because the NGMS of the Tropical West Pacific is less than unity in the E3SMv1 model, the increase in energy forcing amplifies the increase in precipitation to exceed that of the evaporative flux. Convective gustiness favors increased precipitation in regions where the resolved surface winds are weak and convection is present.« less
Harrop, Bryce E.; Ma, Po -Lun; Rasch, Philip J.; ...
2018-03-12
Precipitation is an important climate quantity that is critically relevant to society. In spite of intense efforts, significant precipitation biases remain in most climate models. One pervasive and persistent bias found in many general circulation models occurs in the Tropical West Pacific where northern hemisphere summer-time precipitation is often underestimated compared to observations. Using the DOE-E3SM model, the inclusion of a missing process, convective gustiness, is shown to reduce those biases through a net increase in surface evaporation. Gustiness in surface wind fields is assumed to arise empirically in proportion to the intensity of convective precipitation. The increased evaporation canmore » be treated as an increase in the moist static energy forcing into the atmosphere. A Normalized Gross Moist Stability (NGMS) framework (which characterizes the relationship between convective forcing and convective response) is used to explore the processes responsible for the precipitation bias, and the impact of the gustiness parameterization in reducing that bias. Because the NGMS of the Tropical West Pacific is less than unity in the E3SMv1 model, the increase in energy forcing amplifies the increase in precipitation to exceed that of the evaporative flux. Convective gustiness favors increased precipitation in regions where the resolved surface winds are weak and convection is present.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Jiwen; Rosenfeld, Daniel; Yang, Yan
Extreme events such as heat waves, floods, and droughts, have become more frequent since the 1950s1-2. This is likely caused through changes in greenhouse gases and aerosols that perturb the radiative balance and alter cloud processes3-8. On 8-9 July, 2013 a catastrophic flood devastated several metropolitan areas at the foothills of the Sichuan Basin. Using a high-resolution coupled atmosphere-chemistry model, we show that this disaster was not entirely natural. Ensemble simulations robustly show that the severe anthropogenic pollution in the Sichuan Basin significantly enhanced rainfall intensity over the mountainous area northwest of the basin. The heavy air pollution (mainly blackmore » carbon) absorbs solar radiation in the lower atmosphere at the expense of surface cooling, which stabilizes the atmosphere and suppresses convection and precipitation over the basin. The enhanced moisture and moist static energy over the basin are then transported by the prevailing winds towards the mountains during daytime. As the excessive moist air that reaches the foothills at night is orographically lifted, very strong convection develops and produces extremely heavy precipitation. Reducing black carbon (BC) emissions in the basin can effectively mitigate the extreme precipitation in the mountains. Unfortunately, BC emissions have been increasing in many developing countries including China9, making them more vulnerable to enhanced disasters as reported here.« less
Insights into mid-latitude storm track dynamics from simulations with an idealized dry GCM
NASA Astrophysics Data System (ADS)
Mbengue, C. O.; Schneider, T.
2012-12-01
The mid-latitude storm tracks play an important role in balancing the earth's heat and momentum budget. They have a significant human impact through precipitation and adverse weather conditions; thus, the storm track response to changing climatic conditions is of great interest. In this study, we investigate the climatological response of the mid-latitude storm tracks to varying mean global temperature and convective static stability, using an idealized dry GCM. We demonstrate storm track migration in response to changes in global-mean surface temperatures without modifying the surface pole-equator temperature contrast or including moisture-related effects. The results help interpret the findings of previous global warming studies in which the mid-latitude storm tracks migrate poleward with increasing mean global temperatures. In our study, the storm track position is found to be particularly sensitive to changes in tropical static stability and tropopause height and their effect on the Hadley circulation. The mechanisms driving the dynamics of the mid-latitude storm tracks have been elusive. However, making use of the simplified framework employed in this study, which lends itself to dynamical decompositions, we have been able to improve upon some existing theories on storm track dynamics in dry atmospheres, as well as make additional observations. Previous studies into dry atmospheric dynamics have shown a linear scaling between eddy kinetic energy, a robust measure of the level of storminess, and the mean available potential energy (MAPE). This scaling is utilized in a decomposition that shows that the dominant quantity in storm track dynamics is the meridional gradient of the potential temperature—a measure of baroclinicity. This observation leads us to look for dynamical mechanisms that, on average, dictate the location of regions of elevated baroclinicity. Some credible explanations include the effects on mid-latitude isentropic slopes through a raising or lowering of the tropical tropopause, and effects of a migrating terminus of the Hadley cell. In a simulation where we only vary the convective lapse rate, the decomposition reinforces the meridional temperature gradient as the major determinant of the location of the maximum of MAPE and, by extension, the location of the storm tracks. This is surprising considering that static stability constitutes one of the components of the decomposition. This revelation suggests that static stability plays an indirect role in storm track dynamics through temperature gradients, which is plausible since static stability can affect temperature gradients through its interaction with isentropic slopes. Furthermore, upper tropospheric temperature gradients can be modified by the convective lapse rate through its effect on the depth of the troposphere. The results contained herein can be used to supplement ongoing storm track work in moist atmospheres, using more comprehensive GCMs to understand storm track dynamics in an earth-like environment.
Observing the atmosphere in moisture space
NASA Astrophysics Data System (ADS)
Schulz, Hauke; Stevens, Bjorn
2017-04-01
Processes behind convective aggregation have mostly been analysed and identified on the basis of relatively idealized cloud resolving model studies. Relatively little effort has been spent on using observations to test or quantify the findings coming from the models. In 2010 the Barbados Cloud Observatory (BCO) was established on Barbados, which is on the edge of the ITCZ, in part to test hypotheses such as those emerging form the analysis of cloud resolving models. To better test ideas related to the driving forces of convective aggregation, we analyse BCO measurements to identify the processes changing the moist static energy flux, in moisture space, i.e., as a function of rank column water vapour. Similar approaches are used to analyse cloud resolving models. We composite five years of cloud- and water-vapor profiles, from a cloud radar, and Raman water vapour lidar to construct the structure of the observed atmosphere in moisture space. The data show both agreement and disagreement with the models: radiative transfer calculations of the cross-section reveal a strong anomalous radiative cooling in the boundary layer at the dry end of the moisture space. We show that the radiation, mainly in the long-wave, implies a shallow circulation. This circulation agrees generally with supplementary used reanalysis datasets, but the strength and extent vary more markedly across the analyses. Consistent with the modelling, the implied radiative driven circulation supports the aggregation process by importing net moist static energy into the moist regimes.
The Dynamics of Hadley Circulation Variability and Change
NASA Astrophysics Data System (ADS)
Davis, Nicholas Alexander
The Hadley circulation exerts a dominant control on the surface climate of earth's tropical belt. Its converging surface winds fuel the tropical rains, while subsidence in the subtropics dries and stabilizes the atmosphere, creating deserts on land and stratocumulus decks over the oceans. Because of the strong meridional gradients in temperature and precipitation in the subtropics, any shift in the Hadley circulation edge could project as major changes in surface climate. While climate model simulations predict an expansion of the Hadley cells in response to greenhouse gas forcings, the mechanisms remain elusive. An analysis of the climatology, variability, and response of the Hadley circulation to radiative forcings in climate models and reanalyses illuminates the broader landscape in which Hadley cell expansion is realized. The expansion is a fundamental response of the atmosphere to increasing greenhouse gas concentrations as it scales with other key climate system changes, including polar amplification, increasing static stability, stratospheric cooling, and increasing global-mean surface temperatures. Multiple measures of the Hadley circulation edge latitudes co-vary with the latitudes of the eddy-driven jets on all timescales, and both exhibit a robust poleward shift in response to forcings. Further, across models there is a robust coupling between the eddy-driving on the Hadley cells and their width. On the other hand, the subtropical jet and tropopause break latitudes, two common observational proxies for the tropical belt edges, lack a strong statistical relationship with the Hadley cell edges and have no coherent response to forcings. This undermines theories for the Hadley cell width predicated on angular momentum conservation and calls for a new framework for understanding Hadley cell expansion. A numerical framework is developed within an idealized general circulation model to isolate the mean flow and eddy responses of the global atmosphere to radiative forcings. It is found that it is primarily the eddy response to greenhouse-gas-like forcings that causes Hadley cell expansion. However, the mean flow changes in the Hadley circulation itself crucially mediate this eddy response such that the full response comes about due to eddy-mean flow interactions. A theoretical scaling for the Hadley cell width based on moist static energy is developed to provide an improved framework to understand climate change responses of the general circulation. The scaling predicts that expansion is driven by increases in the surface latent heat flux and the width of the rising branch of the circulation and opposed by increases in tropospheric radiative cooling. A reduction in subtropical moist static energy flux divergence by the eddies is key, as it tilts the energetic balance in favor of expansion.
Multiscale Simulation of Moist Global Atmospheric Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabowski, Wojciech W.; Smolarkiewicz, P. K.
The overarching goal of this award was to include phase changes of the water substance and accompanying latent heating and precipitation processes into the all-scale nonhydrostatic atmospheric dynamics EUlerian/LAGrangian (EULAG) model. The model includes fluid flow solver that is based on either an unabbreviated set of the governing equations (i.e., compressible dynamics) or a simplified set of equations without sound waves (i.e., sound-proof, either anelastic or pseudo-incompressible). The latter set has been used in small-scale dynamics for decades, but its application to the all-scale dynamics (from small-scale to planetary) has never been studied in practical implementations. The highlight of themore » project is the development of the moist implicit compressible model that can be run by applying time steps, as long as the anelastic model is limited only by the computational stability of the fluid flow and not by the speed of sound waves that limit the stability of explicit compressible models. Applying various versions of the EULAG model within the same numerical framework allows for an unprecedented comparison of solutions obtained with various sets of the governing equations and straightforward evaluation of the impact of various physical parameterizations on the model solutions. The main outcomes of this study are reported in three papers, two published and one currently under review. These papers include comparisons between model solutions for idealized moist problems across the range of scales from small to planetary. These tests include: moist thermals rising in the stable-stratified environment (following Grabowski and Clark, J. Atmos. Sci. 1991) and in the moist-neutral environment (after Bryan and Fritsch, Mon. Wea. Rev. 2002), moist flows over a mesoscale topography (as in Grabowski and Smolarkiewicz, Mon. Wea. Rev. 2002), deep convection in a sheared environment (following Weisman and Klemp, Mon. Wea. Rev. 1982), moist extension of the baroclinic wave on the sphere of Jablonowski and Williamson (Q. J. R. Met. Soc. 2006), and moist extension of the Held-Suarez idealized climate benchmark (Held and Suarez, Bull. Amer. Met. Soc., 1994).« less
Mechanisms Regulating Deep Moist Convection and Sea-Surface Temperatures of the Tropics
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Walker, G. K.; Lau, K. M.
1998-01-01
Despite numerous previous studies, two relationships between deep convection and the sea-surface temperature (SST) of the tropics remain unclear. The first is the cause for the sudden emergence of deep convection at about 28 deg SST, and the second is its proximity to the highest observed SST of about 30 C. Our analysis provides a rational explanation for both by utilizing the Improved Meteorological (IMET) buoy data together with radar rainfall retrievals and atmospheric soundings provided by the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE). The explanation relies on the basic principles of moist convection as enunciated in the Arakawa-Schubert cumulus parameterization. Our analysis shows that an SST range of 28-29 C is necessary for "charging" the atmospheric boundary layer with sufficient moist static energy that can enable the towering convection to reach up to the 200 hPa level. In the IMET buoy data, the changes in surface energy fluxes associated with different rainfall amounts show that the deep convection not only reduces the solar flux into the ocean with a thick cloud cover, but it also generates downdrafts which bring significantly cooler and drier air into the boundary-layer thereby augmenting oceanic cooling by increased sensible and latent heat fluxes. In this way, the ocean seasaws between a net energy absorber for non-raining and a net energy supplier for deep-convective raining conditions. These processes produce a thermostat-like control of the SST. The data also shows that convection over the warm pool is modulated by dynamical influences of large-scale circulation embodying tropical easterly waves (with a 5-day period) and MJOs (with 40-day period); however, the quasi-permanent feature of the vertical profile of moist static energy, which is primarily maintained by the large-scale circulation and thermodynamical forcings, is vital for both the 28 C SST for deep convection and its upper limit at about 30 C.
Nonrotating Convective Self-Aggregation in a Limited Area AGCM
NASA Astrophysics Data System (ADS)
Arnold, Nathan P.; Putman, William M.
2018-04-01
We present nonrotating simulations with the Goddard Earth Observing System (GEOS) atmospheric general circulation model (AGCM) in a square limited area domain over uniform sea surface temperature. As in previous studies, convection spontaneously aggregates into humid clusters, driven by a combination of radiative and moisture-convective feedbacks. The aggregation is qualitatively independent of resolution, with horizontal grid spacing from 3 to 110 km, with both explicit and parameterized deep convection. A budget for the spatial variance of column moist static energy suggests that longwave radiative and surface flux feedbacks help establish aggregation, while the shortwave feedback contributes to its maintenance. Mechanism-denial experiments confirm that aggregation does not occur without interactive longwave radiation. Ice cloud radiative effects help support the humid convecting regions but are not essential for aggregation, while liquid clouds have a negligible effect. Removing the dependence of parameterized convection on tropospheric humidity reduces the intensity of aggregation but does not prevent the formation of dry regions. In domain sizes less than (5,000 km)2, the aggregation forms a single cluster, while larger domains develop multiple clusters. Larger domains initialized with a single large cluster are unable to maintain them, suggesting an upper size limit. Surface wind speed increases with domain size, implying that maintenance of the boundary layer winds may limit cluster size. As cluster size increases, large boundary layer temperature anomalies develop to maintain the surface pressure gradient, leading to an increase in the depth of parameterized convective heating and an increase in gross moist stability.
Moist, Double-diffusive convection
NASA Astrophysics Data System (ADS)
Oishi, Jeffrey; Burns, Keaton; Brown, Ben; Lecoanet, Daniel; Vasil, Geoffrey
2017-11-01
Double-diffusive convection occurs when the competition between stabilizing and a destabilizing buoyancy source is mediated by a difference in the diffusivity of each source. Such convection is important in a wide variety of astrophysical and geophysical flows. However, in giant planets, double-diffusive convection occurs in regions where condensation of important components of the atmosphere occurs. Here, we present preliminary calculations of moist, double-diffusive convection using the Dedalus pseudospectral framework. Using a simple model for phase change, we verify growth rates for moist double diffusive convection from linear calculations and report on preliminary relationships between the ability to form liquid phase and the resulting Nusselt number in nonlinear simulations.
NASA Astrophysics Data System (ADS)
Zhang, Chunxi; Wang, Yuqing
2018-01-01
The sensitivity of simulated tropical cyclones (TCs) to the choice of cumulus parameterization (CP) scheme in the advanced Weather Research and Forecasting Model (WRF-ARW) version 3.5 is analyzed based on ten seasonal simulations with 20-km horizontal grid spacing over the western North Pacific. Results show that the simulated frequency and intensity of TCs are very sensitive to the choice of the CP scheme. The sensitivity can be explained well by the difference in the low-level circulation in a height and sorted moisture space. By transporting moist static energy from dry to moist region, the low-level circulation is important to convective self-aggregation which is believed to be related to genesis of TC-like vortices (TCLVs) and TCs in idealized settings. The radiative and evaporative cooling associated with low-level clouds and shallow convection in dry regions is found to play a crucial role in driving the moisture-sorted low-level circulation. With shallow convection turned off in a CP scheme, relatively strong precipitation occurs frequently in dry regions. In this case, the diabatic cooling can still drive the low-level circulation but its strength is reduced and thus TCLV/TC genesis is suppressed. The inclusion of the cumulus momentum transport (CMT) in a CP scheme can considerably suppress genesis of TCLVs/TCs, while changes in the moisture-sorted low-level circulation and horizontal distribution of precipitation are trivial, indicating that the CMT modulates the TCLVs/TCs activities in the model by mechanisms other than the horizontal transport of moist static energy.
Jason Vogel; Edward A.G. Schuur; Christian Trucco; Hanna Lee
2009-01-01
Climate change in high latitudes can lead to permafrost thaw, which in ice-rich soils can result in ground subsidence, or thermokarst. In interior Alaska, we examined seasonal and annual ecosystem CO2 exchange using static and automatic chamber measurements in three areas of a moist acidic tundra ecosystem undergoing varying degrees of permafrost...
NASA Astrophysics Data System (ADS)
de Szoeke, S. P.
2017-12-01
Averaged over the tropical marine boundary layer (BL), 130 W m-2 turbulent surface moist static energy (MSE) flux, 120 W m-2 of which is evaporation, is balanced by upward MSE flux at the BL top due to 1) incorporation of cold air by downdrafts from deep convective clouds, and 2) turbulent entrainment of dry air into the BL. Cold saturated downdraft air, and warm clear air entrained into the BL have distinct thermodynamic properties. This work observationally quantifies their respective MSE fluxes in the central Indian Ocean in 2011, under different convective conditions of the intraseasonal (40-90 day) Madden Julian oscillation (MJO). Under convectively suppressed conditions, entrainment and downdraft fluxes export equal shares (60 W m-2) of MSE from the BL. Downdraft fluxes are more variable, increasing for stronger convection. In the convectively active phase of the MJO, downdrafts export 90 W m-2 from the BL, compared to 40 W m-2 by entrainment. These processes that control the internal, latent (condensation), and MSE of the tropical marine atmospheric BL determine the parcel buoyancy and strength of tropical deep convection.
Investigating the Sensitivity of Model Intraseasonal Variability to Minimum Entrainment
NASA Astrophysics Data System (ADS)
Hannah, W. M.; Maloney, E. D.
2008-12-01
Previous studies have shown that using a Relaxed Arakawa-Schubert (RAS) convective parameterization with appropriate convective triggers and assumptions about rain re-evaporation produces realistic intraseasonal variability. RAS represents convection with an ensemble of clouds detraining at different heights, each with different entrainment rate, the highest clouds having the lowest entrainment rates. If tropospheric temperature gradients are weak and boundary layer moist static energy is relatively constant, then by limiting the minimum entrainment rate deep convection is suppressed in the presence of dry tropospheric air. This allows moist static energy to accumulate and be discharged during strong intraseasonal convective events, which is consistent with the discharge/recharge paradigm. This study will examine the sensitivity of intra-seasonal variability to changes in minimum entrainment rate in the NCAR-CAM3 with the RAS scheme. Simulations using several minimum entrainment rate thresholds will be investigated. A frequency-wavenumber analysis will show the improvement of the MJO signal as minimum entrainment rate is increased. The spatial and vertical structure of MJO-like disturbances will be examined, including an analysis of the time evolution of vertical humidity distribution for each simulation. Simulated results will be compared to observed MJO events in NCEP-1 reanalysis and CMAP precipitation.
NASA Astrophysics Data System (ADS)
He, Y.; Dickinson, R.
2005-12-01
The seasonal variation of marine stratus and stratocumulus (MSC) plays a significant role in ocean- atmosphere-land interaction during the seasonal transition of basic climate in the Eastern Pacific. A key factor in parameterization of MSC cloud cover is atmospheric stability. In this study, we examine the importance of lower troposphere stability for Marine Stratus and Stratocumulus (MSC) cloud cover variations over subtropical oceans on monthly and seasonal timescales. Our approach is to consider a two-layer conceptual model with moist denser boundary layer air topped by dry lighter free air beneath a trade wind inversion at around 700 mb.The vertical integrated dry static energy is of central importance in the lower troposphere. The variation of dry static energy transport and latent heat release leads to the variation of cloud top radiative forcing, which is a function of low cloud cover. A diagnostic cloud cover scheme derived from the model is a nonlinear function of lower troposphere stability and large-scale subsidence. Use ERA-40 and ISCCP-FD data as input, the scheme reproduces well the seasonal variation of low cloud cover in four MSC regions near the western coast of continents. NCAR CAM linear empirical cloud cover scheme could explain 16% of the observed ISCCP monthly covariance in the southeast subtropical Pacific during 1990 to 2000 period; while the new cloud cover scheme could explain 50% of the total covariance. When implementing new scheme into NCAR CAM3.1, it is found that the seasonal phase of MSC is better simulated near the Peruvian region, but the seasonal amplitudes of MSC cloud cover in four MSC regions using both schemes have systematic problems. Possible causes for model cloud biases are investigated through numerical experiments. The importance of MSC cloud cover in the eastern Pacific on local mean climate is also discussed.
The Importance of Three Physical Processes in a Minimal Three-Dimensional Tropical Cyclone Model.
NASA Astrophysics Data System (ADS)
Zhu, Hongyan; Smith, Roger K.
2002-06-01
The minimal three-dimensional tropical cyclone model developed by Zhu et al. is used to explore the role of shallow convection, precipitation-cooled downdrafts, and the vertical transport of momentum by deep convection on the dynamics of tropical cyclone intensification. The model is formulated in coordinates and has three vertical levels, one characterizing a shallow boundary layer, and the other two representing the upper and lower troposphere, respectively. It has three options for treating cumulus convection on the subgrid scale and a simple scheme for the explicit release of latent heat on the grid scale.In the model, as in reality, shallow convection transports air with low moist static energy from the lower troposphere to the boundary layer, stabilizing the atmosphere not only to itself, but also to deep convection. Also it moistens and cools the lower troposphere. For realistic parameter values, the stabilization in the vortex core region is the primary effect: it reduces the deep convective mass flux and therefore the rate of heating and drying in the troposphere. This reduced heating, together with the direct cooling of the lower troposphere by shallow convection, diminishes the buoyancy in the vortex core and thereby the vortex intensification rate.The effects of precipitation-cooled downdrafts depend on the closure scheme chosen for deep convection. In the two closures in which the deep cloud mass flux depends on the degree of convective instability, the downdrafts do not change the total mass flux of air that subsides into the boundary layer, but they carry air with a lower moist static energy into this layer than does subsidence outside downdrafts. As a result they decrease the rate of intensification during the early development stage. Nevertheless, by reducing the deep convective mass flux and the drying effect of compensating subsidence, they enable grid scale saturation, and therefore rapid intensification, to occur earlier than in calculations where they are excluded. In the closure in which the deep cloud mass flux depends on the mass convergence in the boundary layer, downdrafts reduce the gestation period and increase the intensification rate.Convective momentum transport as represented in the model weakens both the primary and secondary circulations of the vortex. However, it does not significantly reduce the maximum intensity attained after the period of rapid development. The weakening of the secondary circulation impedes vortex development and significantly prolongs the gestation period.Where possible the results are compared with those found in other studies.
14 CFR 25.175 - Demonstration of static longitudinal stability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... stability. 25.175 Section 25.175 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stability § 25.175 Demonstration of static longitudinal stability. Static longitudinal stability must be shown as follows: (a...
NASA Astrophysics Data System (ADS)
Kirshbaum, Daniel; Merlis, Timothy; Gyakum, John; McTaggart-Cowan, Ron
2017-04-01
The impact of cloud diabatic heating on baroclinic life cycles has been studied for decades, with the nearly universal finding that this heating enhances the system growth rate. However, few if any studies have systematically addressed the sensitivity of baroclinic waves to environmental temperature. For a given relative humidity, warmer atmospheres contain more moisture than colder atmospheres. They also are more prone to the development of deep moist convection, which is itself a major source of diabatic heating. Thus, it is reasonable to expect faster baroclinic wave growth in warmer systems. To address this question, this study performs idealized simulations of moist baroclinic waves in a periodic channel, using initial environments with identical relative humidities, dry stabilities, and dry available potential energies but varying environmental temperatures and moist instabilities. While the dry versions of these simulations exhibit virtually identical wave growth, the moist versions exhibit major differences in life cycle. Counter-intuitively, despite slightly faster initial wave growth, the warmer and moister waves ultimately develop into weaker baroclinic systems with an earlier onset of the decay phase. An energetics analysis reveals that the reduced wave amplitude in the warmer cases stems from a reduced transfer of available potential energy into eddy potential energy. This reduced energy transfer is associated with an unfavorable phasing of mid-to-upper-level thermal and vorticity anomalies, which limits the meridional heat flux.
NASA Astrophysics Data System (ADS)
Shmerlin, B. Ya; Kalashnik, M. V.
2013-05-01
Convective motions in moist saturated air are accompanied by the release of latent heat of condensation. Taking this effect into account, we consider the problem of convective instability of a moist saturated air layer, generalizing the formulation of the classical Rayleigh problem. An analytic solution demonstrating the fundamental difference between moist convection and Rayleigh convection is obtained. Upon losing stability in the two-dimensional case, localized convective rolls or spatially periodic chains of rollers with localized areas of upward motion evolve. In the case of axial symmetry, the growth of localized convective vortices with circulation characteristic of tropical cyclones (hurricanes) is possible at the early stages of development and on the scale of tornados to tropical cyclones.
NASA Technical Reports Server (NTRS)
Holdaway, Daniel; Errico, Ronald; Gelaro, Ronaldo; Kim, Jong G.
2013-01-01
Inclusion of moist physics in the linearized version of a weather forecast model is beneficial in terms of variational data assimilation. Further, it improves the capability of important tools, such as adjoint-based observation impacts and sensitivity studies. A linearized version of the relaxed Arakawa-Schubert (RAS) convection scheme has been developed and tested in NASA's Goddard Earth Observing System data assimilation tools. A previous study of the RAS scheme showed it to exhibit reasonable linearity and stability. This motivates the development of a linearization of a near-exact version of the RAS scheme. Linearized large-scale condensation is included through simple conversion of supersaturation into precipitation. The linearization of moist physics is validated against the full nonlinear model for 6- and 24-h intervals, relevant to variational data assimilation and observation impacts, respectively. For a small number of profiles, sudden large growth in the perturbation trajectory is encountered. Efficient filtering of these profiles is achieved by diagnosis of steep gradients in a reduced version of the operator of the tangent linear model. With filtering turned on, the inclusion of linearized moist physics increases the correlation between the nonlinear perturbation trajectory and the linear approximation of the perturbation trajectory. A month-long observation impact experiment is performed and the effect of including moist physics on the impacts is discussed. Impacts from moist-sensitive instruments and channels are increased. The effect of including moist physics is examined for adjoint sensitivity studies. A case study examining an intensifying Northern Hemisphere Atlantic storm is presented. The results show a significant sensitivity with respect to moisture.
Convectively Coupled Equatorial Waves in Reanalysis and CMIP5 Simulations
NASA Astrophysics Data System (ADS)
Castanheira, J. M.; Marques, C. A. F.
2014-12-01
Convectively coupled equatorial waves (CCEWs) are a result of the interplay between the physics and dynamics in the tropical atmosphere. As a result of such interplay, tropical convection appears often organized into synoptic to planetary-scale disturbances with time scales matching those of equatorial shallow water waves. CCEWs have broad impacts within the tropics, and their simulation in general circulation models is still problematic. Several studies showed that dispersion of those waves characteristics fit the dispersion curves derived from the Matsuno's (1966) solutions of the shallow water equations on the equatorial beta plane, namely, Kelvin, equatorial Rossby, mixed Rossby-gravity, and inertio-gravity waves. However, the more common methodology used to identify those waves is yet controversial. In this communication a new methodology for the diagnosis of CCEWs will be presented. It is based on a pre-filtering of the geopotential and horizontal wind, using 3--D normal modes functions of the adiabatic linearized equations of a resting atmosphere, followed by a space--time spectral analysis to identify the spectral regions of coherence. The methodology permits a direct detection of various types of equatorial waves, compares the dispersion characteristics of the coupled waves with the theoretical dispersion curves and allows an identification of which vertical modes are more involved in the convection. Moreover, the proposed methodology is able to show the existence of free dry waves and moist coupled waves with a common vertical structure, which is in conformity with the effect of convective heating/cooling on the effective static stability, as traduced in the gross moist stability concept. The methodology is also sensible to Doppler shifting effects. The methodology has been applied to the ERA-Interim horizontal wind and geopotential height fields and to the interpolated Outgoing Longwave Radiation (OLR) data produced by the National Oceanic and Atmospheric Administration. The same type of data (i.e. u, v, Φ and OLR) from CMIP5 historical experiments (1976-2005) were analyzed. The obtained results provide examples of the aforementioned effects and points deficiencies in the models.
Trends in continental temperature and humidity directly linked to ocean warming.
Byrne, Michael P; O'Gorman, Paul A
2018-05-08
In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.
A new paradigm for predicting zonal-mean climate and climate change
NASA Astrophysics Data System (ADS)
Armour, K.; Roe, G.; Donohoe, A.; Siler, N.; Markle, B. R.; Liu, X.; Feldl, N.; Battisti, D. S.; Frierson, D. M.
2016-12-01
How will the pole-to-equator temperature gradient, or large-scale patterns of precipitation, change under global warming? Answering such questions typically involves numerical simulations with comprehensive general circulation models (GCMs) that represent the complexities of climate forcing, radiative feedbacks, and atmosphere and ocean dynamics. Yet, our understanding of these predictions hinges on our ability to explain them through the lens of simple models and physical theories. Here we present evidence that zonal-mean climate, and its changes, can be understood in terms of a moist energy balance model that represents atmospheric heat transport as a simple diffusion of latent and sensible heat (as a down-gradient transport of moist static energy, with a diffusivity coefficient that is nearly constant with latitude). We show that the theoretical underpinnings of this model derive from the principle of maximum entropy production; that its predictions are empirically supported by atmospheric reanalyses; and that it successfully predicts the behavior of a hierarchy of climate models - from a gray radiation aquaplanet moist GCM, to comprehensive GCMs participating in CMIP5. As an example of the power of this paradigm, we show that, given only patterns of local radiative feedbacks and climate forcing, the moist energy balance model accurately predicts the evolution of zonal-mean temperature and atmospheric heat transport as simulated by the CMIP5 ensemble. These results suggest that, despite all of its dynamical complexity, the atmosphere essentially responds to energy imbalances by simply diffusing latent and sensible heat down-gradient; this principle appears to explain zonal-mean climate and its changes under global warming.
Buyukturan, B; Guclu-Gunduz, A; Buyukturan, O; Dadali, Y; Bilgin, S; Kurt, E E
2017-11-01
This study aims at evaluating and comparing the effects of cervical stability training to combined cervical and core stability training in patients with neck pain and cervical disc herniation. Fifty patients with neck pain and cervical disc herniation were included in the study, randomly divided into two groups as cervical stability and cervical-core stability. Training was applied three times a week in three phases, and lasted for a total duration of 8 weeks. Pain, activation and static endurance of deep cervical flexor muscles, static endurance of neck muscles, cross-sectional diameter of M. Longus Colli, static endurance of trunk muscles, disability and kinesiophobia were assessed. Pain, activation and static endurance of deep cervical flexors, static endurance of neck muscles, cross-sectional diameter of M. Longus Colli, static endurance of trunk muscles, disability and kinesiophobia improved in both groups following the training sessions (p < 0.05). Comparison of the effectiveness of these two training methods revealed that the cervical stability group produced a greater increase in the right transverse diameter of M. Longus Colli (p < 0.05). However, static endurance of trunk muscles and kinesiophobia displayed better improvement in the cervical-core stability group (p < 0.05). Cervical stability training provided benefit to patients with cervical disc herniation. The addition of core stability training did not provide any additional significant benefit. Further research is required to investigate the efficacy of combining other techniques with cervical stability training in patients with cervical disc herniation. Both cervical stability training and its combination with core stability training were significantly and similarly effective on neck pain and neck muscle endurance in patients with cervical disc herniation. © 2017 European Pain Federation - EFIC®.
Is gross moist stability a useful quantity for studying the moisture mode theory?
NASA Astrophysics Data System (ADS)
Inoue, K.; Back, L. E.
2016-12-01
The idea is growing and being accepted that the Madden-Julian Oscillation (MJO) is a moisture mode. Along with the appearance of the moisture mode theory, a conceptual quantity called gross moist stability (GMS) has gained increasing attention. However, the GMS is a vexing quantity because it can be interpreted in different ways, depending on the size of spatial domains where the GMS is computed and on computation methodologies. We present a few different illustrations of the GMS using satellite observations. We first show GMS variability as a phase transition on a phase plane that we refer to as the GMS plane. Second, we demonstrate that the GMS variability shown as a time-series, which much past literature presented, is most likely not relevant to the moisture mode theory. In this talk, we present a protocol of moisture-mode-oriented GMS analyses with satellite observations.
An introduction to the physical aspects of helicopter stability
NASA Technical Reports Server (NTRS)
Gessow, Alfred; Amer, Kenneth B
1950-01-01
In order to provide engineers interested in rotating-wing aircraft, but with no specialized training in stability theory, some understanding of the factors that influence the flying qualities of the helicopter, an explanation is made of both the static stability and the stick-fixed oscillation in hovering and forward flight in terms of fundamental physical quantities. Three significant stability factors -- static stability with angle of attack, static stability with speed, and damping due to a pitching or rolling velocity -- are explained in detail.
14 CFR 29.177 - Static directional stability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static directional stability. 29.177... Static directional stability. (a) The directional controls must operate in such a manner that the sense... versus directional control position curve may have a negative slope within a small range of angles around...
14 CFR 29.173 - Static longitudinal stability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static longitudinal stability. 29.173... Static longitudinal stability. (a) The longitudinal control must be designed so that a rearward movement... constant during the maneuvers specified in § 29.175(a) through (d), the slope of the control position...
Static and dynamic stability analysis of the space shuttle vehicle-orbiter
NASA Technical Reports Server (NTRS)
Chyu, W. J.; Cavin, R. K.; Erickson, L. L.
1978-01-01
The longitudinal static and dynamic stability of a Space Shuttle Vehicle-Orbiter (SSV Orbiter) model is analyzed using the FLEXSTAB computer program. Nonlinear effects are accounted for by application of a correction technique in the FLEXSTAB system; the technique incorporates experimental force and pressure data into the linear aerodynamic theory. A flexible Orbiter model is treated in the static stability analysis for the flight conditions of Mach number 0.9 for rectilinear flight (1 g) and for a pull-up maneuver (2.5 g) at an altitude of 15.24 km. Static stability parameters and structural deformations of the Orbiter are calculated at trim conditions for the dynamic stability analysis, and the characteristics of damping in pitch are investigated for a Mach number range of 0.3 to 1.2. The calculated results for both the static and dynamic stabilities are compared with the available experimental data.
NASA Astrophysics Data System (ADS)
Khodri, M.; Kageyama, M.; Roche, D. M.
2009-12-01
Proxy data over tropical latitudes for the Last Glacial Maximum (LGM) has been interpreted as a southward shift of the Inter Tropical Convergence Zone (ITCZ) and so far linked to a mechanism analogous to the modern day “meridional-mode” in the Atlantic Ocean. Here we have explored alternative mechanisms, related to the direct impact of the LGM global changes in the dry static stability on tropical moist deep convection. We have used a coupled ocean-atmosphere model capable of capturing the thermodynamical structure of the atmosphere and the tropical component of the Hadley and Walker circulations. In each experiment, we have applied either all the LGM forcings, or the individual contributions of greenhouse gases (GHG) concentrations, ice sheet topography and/or albedo to explore the hydrological response over tropical latitudes with a focus on South America. The dominant forcing for the LGM tropical temperature and precipitation changes is found to be due to the reduced GHG, through the direct effect of reduced radiative heating (Clausius-Clapeyron relationship). The LGM GHG is also responsible for increased extra-tropical static stability which strengthens the Hadley Cell. Stronger subsidence over northern tropics then produces an amplification of the northern tropics drying initially due to the direct cooling effect. The land ice sheet is also able to promote the Hadley cell feedback mostly via the topographic effect on the extra-tropical dry static stability and on the position of the subtropical jets. Our results therefore suggest that the communication between the extratropics and the tropics is tighter during LGM and does not necessarily rely on the “meridional-mode” mechanism. The Hadley cell response is constrained by the requirement that diabatic heating in the tropics balances cooling in subtropics. We show that such extratropics-tropics dependence is stronger at the LGM because of the stronger perturbation of northern extra tropical thermal and dynamical equilibrium due to both reduced GHG and land ice sheets. We also show that the overall tropical Pacific circulation response to land ice albedo alone consists in a substantial thermo-dynamical stabilisation of the equatorial atmosphere. The upper troposphere warming spreading out from South East Central Pacific, analogous to the atmosphere response to El-Niño conditions, results in enhanced rainfall over Nordeste and Southeastern Brazil. Such tropics-tropics teleconnection is essential to explain the moistening of the southern tropics, amplifying thereby the influence of the extratropical atmosphere on the LGM tropical climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Heng; Gustafson, Jr., William I.; Hagos, Samson M.
2015-04-18
With this study, to better understand the behavior of quasi-equilibrium-based convection parameterizations at higher resolution, we use a diagnostic framework to examine the resolution-dependence of subgrid-scale vertical transport of moist static energy as parameterized by the Zhang-McFarlane convection parameterization (ZM). Grid-scale input to ZM is supplied by coarsening output from cloud-resolving model (CRM) simulations onto subdomains ranging in size from 8 × 8 to 256 × 256 km 2s.
NASA Astrophysics Data System (ADS)
Grise, K. M.; Thompson, D. W.; Birner, T.
2009-12-01
Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. The long-term mean static stability field is characterized by the well-known transition from low values in the troposphere to high values in the stratosphere. However, the magnitude and structure of fine-scale static stability features near the tropopause are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply over six years of high vertical resolution Global Positioning System radio occultation temperature profiles to document the long-term mean structure and variability of static stability in the global upper troposphere and lower stratosphere (UTLS). The results of this study demonstrate that a shallow but pronounced maximum in static stability exists just above the tropopause at all latitudes (i.e., the “tropopause inversion layer,” or TIL). This study also uncovers two novel aspects of static stability in the global UTLS. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ~17 km and ~19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10 and 15 degrees latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.
NASA Astrophysics Data System (ADS)
Grise, Kevin M.; Thompson, David W. J.; Birner, Thomas
2010-05-01
Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. The long-term mean static stability field is characterized by the well-known transition from low values in the troposphere to high values in the stratosphere. However, the magnitude and structure of fine-scale static stability features near the tropopause are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply over six years of high vertical resolution Global Positioning System radio occultation temperature profiles to document the long-term mean structure and variability of static stability in the global upper troposphere and lower stratosphere (UTLS). The results of this study demonstrate that a shallow but pronounced maximum in static stability exists just above the tropopause at all latitudes (i.e., the "tropopause inversion layer," or TIL). This study also uncovers two novel aspects of static stability in the global UTLS. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ~17 km and ~19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10 and 15 degrees latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.
NASA Technical Reports Server (NTRS)
Paulson, John W.
1959-01-01
An investigation of the low-speed static stability and control characteristics of a model of a right triangular pyramid reentry configuration has been made in the Langley free-flight tunnel. The investigation showed that the model had generally satisfactory longitudinal and lateral static stability characteristics. The maximum lift-drag ratio was increased from about 3 to 5 by boattailing the base of the model.
NASA Astrophysics Data System (ADS)
Liang, Ju; Tang, Yaoguo
2017-10-01
An upswing in haze weather during autumn and winter has been observed over North and Northeast China in recent years, imposing adverse impacts upon local socioeconomic development and human health. However, such an increase in the occurrence of haze events and its association with natural climate variability and climate change are not well understood. To investigate the climatology of the meteorological factors associated with haze events and their natural variability, this study uses a meteorological pollution index called PLAM (Parameter Linking Air-quality to Meteorological conditions) and ERA-Interim reanalysis data. The results suggest that high PLAM values tend to occur over southern parts of northern China, implying the weather conditions over this area are favorable for the occurrence of haze weather. For the period 1979-2014, the regional mean PLAM shows an overall increase across Beijing, Tianjin, and Hebei Province, and parts of Shanxi Province. Also, a periodicity of 28-34 months is found in the temporal variation of PLAM, which implies a potential association of PLAM with the stratospheric Quasi-Biannual Oscillation (QBO). By using the QBO index during the autumn and winter seasons in the preceding year, an increase in PLAM is found for the westerly phases of the QBO, relative to the easterly phases. An upper-tropospheric warming is also found in the westerly phases, which can induce a stable stratification that favors the increase in PLAM across the midlatitudes. The modulations of large-scale environmental factors, including moist static stability, vertical velocity, and temperature advection, also act to enhance PLAM in the westerly phases. However, the baroclinic term of moist potential vorticity at 700 hPa tends to decrease over the south, and an increase in low-level ascent is found over the north. These factors can reduce PLAM and possibly limit the statistical significance of the increased PLAM in the westerly phases of the QBO.
The role of large-scale eddies in the climate equilibrium. Part 2: Variable static stability
NASA Technical Reports Server (NTRS)
Zhou, Shuntai; Stone, Peter H.
1993-01-01
Lorenz's two-level model on a sphere is used to investigate how the results of Part 1 are modified when the interaction of the vertical eddy heat flux and static stability is included. In general, the climate state does not depend very much on whether or not this interaction is included, because the poleward eddy heat transport dominates the eddy forcing of mean temperature and wind fields. However, the climatic sensitivity is significantly affected. Compared to two-level model results with fixed static stability, the poleward eddy heat flux is less sensitive to the meridional temperature gradient and the gradient is more sensitive to the forcing. For example, the logarithmic derivative of the eddy flux with respect to the gradient has a slope that is reduced from approximately 15 on a beta-plane with fixed static stability and approximately 6 on a sphere with fixed static stability, to approximately 3 to 4 in the present model. This last result is more in line with analyses from observations. The present model also has a stronger baroclinic adjustment than that in Part 1, more like that in two-level beta-plane models with fixed static stability, that is, the midlatitude isentropic slope is very insensitive to the forcing, the diabatic heating, and the friction, unless the forcing is very weak.
Using the Moist Static Energy Budget to Understand Storm Track Shifts across a Range of Timescales
NASA Astrophysics Data System (ADS)
Barpanda, P.; Shaw, T.
2017-12-01
Storm tracks shift meridionally in response to forcing across a range of time scales. Here we formulate a moist static energy (MSE) framework for storm track position and use it to understand storm track shifts in response to seasonal insolation, El Niño minus La Niña conditions, and direct (increased CO2 over land) and indirect (increased sea surface temperature) effects of increased CO2. Two methods (linearized Taylor series and imposed MSE flux divergence) are developed to quantify storm track shifts and decompose them into contributions from net energy (MSE input to the atmosphere minus atmospheric storage) and MSE flux divergence by the mean meridional circulation and stationary eddies. Net energy is not a dominant contribution across the time scales considered. The stationary eddy contribution dominates the storm-track shift in response to seasonal insolation, El Niño minus La Niña conditions, and CO2 direct effect in the Northern Hemisphere, whereas the mean meridional circulation contribution dominates the shift in response to CO2 indirect effect during northern winter and in the Southern Hemisphere during May and October. Overall, the MSE framework shows the seasonal storm-track shift in the Northern Hemisphere is connected to the stationary eddy MSE flux evolution. Furthermore, the equatorward storm-track shift during northern winter in response to El Niño minus La Niña conditions involves a different regime than the poleward shift in response to increased CO2 even though the tropical upper troposphere warms in both cases.
The Sensitivity of West African Squall Line Water Budgets to Land Cover
NASA Technical Reports Server (NTRS)
Mohr, Karen I.; Baker, R. David; Tao, Wei-Kuo; Famiglietti, James S.; Starr, David OC. (Technical Monitor)
2001-01-01
This study used a two-dimensional coupled land/atmosphere (cloud-resolving) model to investigate the influence of land cover on the water budgets of squall lines in the Sahel. Study simulations used the same initial sounding and one of three different land covers, a sparsely vegetated semi-desert, a grassy savanna, and a dense evergreen broadleaf forest. All simulations began at midnight and ran for 24 hours to capture a full diurnal cycle. In the morning, the latent heat flux, boundary layer mixing ratio, and moist static energy in the boundary layer exhibited notable variations among the three land covers. The broadleaf forest had the highest latent heat flux, the shallowest, moistest, slowest growing boundary layer, and significantly more moist static energy per unit area than the savanna and semi-desert. Although all simulations produced squall lines by early afternoon, the broadleaf forest had the most intense, longest-lived squall lines with 29% more rainfall than the savanna and 37% more than the semi-desert. The sensitivity of the results to vegetation density, initial sounding humidity, and grid resolution was also assessed. There were greater differences in rainfall among land cover types than among simulations of the same land cover with varying amounts of vegetation. Small changes in humidity were equivalent in effect to large changes in land cover, producing large changes in the condensate and rainfall. Decreasing the humidity had a greater effect on rainfall volume than increasing the humidity. Reducing the grid resolution from 1.5 km to 0.5 km decreased the temperature and humidity of the cold pools and increased the rain volume.
Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo Presti, D.; Fontana, T.; Marchetti, D.
2008-07-08
Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysismore » (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area.« less
Application of a Modal Approach in Solving the Static Stability Problem for Electric Power Systems
NASA Astrophysics Data System (ADS)
Sharov, J. V.
2017-12-01
Application of a modal approach in solving the static stability problem for power systems is examined. It is proposed to use the matrix exponent norm as a generalized transition function of the power system disturbed motion. Based on the concept of a stability radius and the pseudospectrum of Jacobian matrix, the necessary and sufficient conditions for existence of the static margins were determined. The capabilities and advantages of the modal approach in designing centralized or distributed control and the prospects for the analysis of nonlinear oscillations and rendering the dynamic stability are demonstrated.
Conductivity and electrochemical stability of concentrated aqueous choline chloride solutions
NASA Astrophysics Data System (ADS)
Grishina, E. P.; Kudryakova, N. O.
2017-10-01
The conductivity and electrochemical stability of choline chloride (ChCl) solutions with water contents ranging from 20 to 39 wt % are studied. Exposing ChCl to moist ambient air yields a highly concentrated aqueous solution that, as an electrolyte, exhibits the properties and variations in conductivity with temperature and concentration characteristic of other similar systems. Its electrochemical stability window, determined by cyclic voltammetry, is comparable to that of ChCl-based deep eutectic solvents (DESs). Products of the electrolysis of ChCl‒H2O mixtures seem to be less toxic than those of Reline, Ethaline, and Maline.
Stability-Constrained Aerodynamic Shape Optimization with Applications to Flying Wings
NASA Astrophysics Data System (ADS)
Mader, Charles Alexander
A set of techniques is developed that allows the incorporation of flight dynamics metrics as an additional discipline in a high-fidelity aerodynamic optimization. Specifically, techniques for including static stability constraints and handling qualities constraints in a high-fidelity aerodynamic optimization are demonstrated. These constraints are developed from stability derivative information calculated using high-fidelity computational fluid dynamics (CFD). Two techniques are explored for computing the stability derivatives from CFD. One technique uses an automatic differentiation adjoint technique (ADjoint) to efficiently and accurately compute a full set of static and dynamic stability derivatives from a single steady solution. The other technique uses a linear regression method to compute the stability derivatives from a quasi-unsteady time-spectral CFD solution, allowing for the computation of static, dynamic and transient stability derivatives. Based on the characteristics of the two methods, the time-spectral technique is selected for further development, incorporated into an optimization framework, and used to conduct stability-constrained aerodynamic optimization. This stability-constrained optimization framework is then used to conduct an optimization study of a flying wing configuration. This study shows that stability constraints have a significant impact on the optimal design of flying wings and that, while static stability constraints can often be satisfied by modifying the airfoil profiles of the wing, dynamic stability constraints can require a significant change in the planform of the aircraft in order for the constraints to be satisfied.
Nonlinear Slewing Spacecraft Control Based on Exergy, Power Flow, and Static and Dynamic Stability
NASA Astrophysics Data System (ADS)
Robinett, Rush D.; Wilson, David G.
2009-10-01
This paper presents a new nonlinear control methodology for slewing spacecraft, which provides both necessary and sufficient conditions for stability by identifying the stability boundaries, rigid body modes, and limit cycles. Conservative Hamiltonian system concepts, which are equivalent to static stability of airplanes, are used to find and deal with the static stability boundaries: rigid body modes. The application of exergy and entropy thermodynamic concepts to the work-rate principle provides a natural partitioning through the second law of thermodynamics of power flows into exergy generator, dissipator, and storage for Hamiltonian systems that is employed to find the dynamic stability boundaries: limit cycles. This partitioning process enables the control system designer to directly evaluate and enhance the stability and performance of the system by balancing the power flowing into versus the power dissipated within the system subject to the Hamiltonian surface (power storage). Relationships are developed between exergy, power flow, static and dynamic stability, and Lyapunov analysis. The methodology is demonstrated with two illustrative examples: (1) a nonlinear oscillator with sinusoidal damping and (2) a multi-input-multi-output three-axis slewing spacecraft that employs proportional-integral-derivative tracking control with numerical simulation results.
14 CFR 27.173 - Static longitudinal stability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static longitudinal stability. 27.173... longitudinal stability. (a) The longitudinal control must be designed so that a rearward movement of the... the maneuvers specified in § 27.175(a) through (d), the slope of the control position versus airspeed...
14 CFR 27.177 - Static directional stability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static directional stability. 27.177... directional stability. (a) The directional controls must operate in such a manner that the sense and direction... sideslip angle versus directional control position curve may have a negative slope within a small range of...
Tolerance of Cottonwood to Certain Herbicides
James W. Martin; Mason C. Carter
1966-01-01
The decreasing supply of cottonwood (Populus deltoides Bartr.) to meet the demands of pulp and paper and lumber industries has stimulated considerable interest in the cultivation of this species. Natural regeneration of cottonwood occurs mainly on bare, moist, mineral soil such as new bars and silt deposits along major rivers. Current river stabilization and flood...
Storage stability of biodegradable polyethylene glycol microspheres
NASA Astrophysics Data System (ADS)
Jain, Era; Sheth, Saahil; Polito, Kristen; Sell, Scott A.; Zustiak, Silviya P.
2017-10-01
Degradable hydrogel microspheres are popular choices for multiple biomedical applications, including drug, protein, or cell carriers for minimally invasive delivery. Clinical transitioning of such new, sensitive pharmaceutical preparations requires investigation of storage methods that retain key properties for extended time. In this study, we sought to determine the influence of seven common storage conditions on the physical and mechanical properties of degradable polyethylene glycol (PEG) hydrogel microspheres: 25 °C, 4 °C, -80 °C, lyophilization/-20 °C, dimethyl sulfoxide/-80 °C, dimethyl sulfoxide/lyophilization/-20 °C, vacuum/-20 °C. We have outlined the storage conditions in detail and explained their effect on swelling ratio, stiffness and degradation rate post-storage. Additionally, we have implemented protein-loaded hydrogels to evaluate the effect of storage conditions on diffusivity as well as protein stability post-storage. We found that hydrogels could be stored short-term (1-4 d) under moist conditions (i.e. storage without drying) without a substantial loss of properties. For extended storage (7-28 d), they could be stored either at -80 °C (moist condition) or vacuum drying (dry condition).
Arifin, Nooranida; Abu Osman, Noor Azuan; Wan Abas, Wan Abu Bakar
2014-04-01
The measurements of postural balance often involve measurement error, which affects the analysis and interpretation of the outcomes. In most of the existing clinical rehabilitation research, the ability to produce reliable measures is a prerequisite for an accurate assessment of an intervention after a period of time. Although clinical balance assessment has been performed in previous study, none has determined the intrarater test-retest reliability of static and dynamic stability indexes during dominant single stance. In this study, one rater examined 20 healthy university students (female=12, male=8) in two sessions separated by 7 day intervals. Three stability indexes--the overall stability index (OSI), anterior/posterior stability index (APSI), and medial/ lateral stability index (MLSI) in static and dynamic conditions--were measured during single dominant stance. Intraclass correlation coefficient (ICC), standard error measurement (SEM) and 95% confidence interval (95% CI) were calculated. Test-retest ICCs for OSI, APSI, and MLSI were 0.85, 0.78, and 0.84 during static condition and were 0.77, 0.77, and 0.65 during dynamic condition, respectively. We concluded that the postural stability assessment using Biodex stability system demonstrates good-to-excellent test-retest reliability over a 1 week time interval.
Induced matter brane gravity and Einstein static universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydarzade, Y.; Darabi, F., E-mail: heydarzade@azaruniv.edu, E-mail: f.darabi@azaruniv.edu
We investigate stability of the Einstein static universe against the scalar, vector and tensor perturbations in the context of induced matter brane gravity. It is shown that in the framework of this model, the Einstein static universe has a positive spatial curvature. In contrast to the classical general relativity, it is found that a stable Einstein static universe against the scalar perturbations does exist provided that the variation of time dependent geometrical equation of state parameter is proportional to the minus of the variation of the scale factor, δ ω{sub g}(t) = −Cδ a(t). We obtain neutral stability against the vector perturbations, and themore » stability against the tensor perturbations is guaranteed due to the positivity of the spatial curvature of the Einstein static universe in induced matter brane gravity.« less
Stability of the Einstein static universe in open cosmological models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canonico, Rosangela; Parisi, Luca; INFN, Sezione di Napoli, GC di Salerno, Via Ponte Don Melillo, I-84081 Baronissi
2010-09-15
The stability properties of the Einstein static solution of general relativity are altered when corrective terms arising from modification of the underlying gravitational theory appear in the cosmological equations. In this paper the existence and stability of static solutions are considered in the framework of two recently proposed quantum gravity models. The previously known analysis of the Einstein static solutions in the semiclassical regime of loop quantum cosmology with modifications to the gravitational sector is extended to open cosmological models where a static neutrally stable solution is found. A similar analysis is also performed in the framework of Horava-Lifshitz gravitymore » under detailed balance and projectability conditions. In the case of open cosmological models the two solutions found can be either unstable or neutrally stable according to the admitted values of the parameters.« less
ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, L. R.; Prather, K.; Ralph, R.
The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associatedmore » with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.« less
NASA Astrophysics Data System (ADS)
Kaluza, Thorsten; Hoor, Peter; Kunkel, Daniel
2017-04-01
Studies of baroclinic life cycles recently revelead that the tropopause inversion layer (TIL) in the extratropics is significantly strengthened by diabatic processes related to moist tropospheric dynamics as well as by breaking of the baroclinic wave itself. However, these findings summarize the results from idealized model simulations and the contribution from processes related to baroclinic life cycles relative to other processes enhancing the lower stratospheric static stability (stratospheric dynamics, seasonal variation of radiative feedbacks) to the observed TIL at midlatitudes has yet to be assessed. Further the role of the TIL for stratosphere-troposphere exchange (STE) is currently still under debate. In preparation of the up-coming field campaign WISE (Wave driven isentropic exchange) we explore the state and variability of the TIL over the North Atlantic between August and October in analysis model data. We use high resolution operational analysis from the European Center for Medium Range Weather Forecast to study the mesoscale structure of the TIL. The main focus is on case studies of the TIL in real baroclinic life cycles, in particular on small scale enhancements within the baroclinic disturbances and the relation to STE. Moreover, a summary is presented about the quasi climatological state of the tropopause location and sharpness over the North Atlantic over recent years.
Numerical Modeling of Sliding Stability of RCC dam
NASA Astrophysics Data System (ADS)
Mughieda, O.; Hazirbaba, K.; Bani-Hani, K.; Daoud, W.
2017-06-01
Stability and stress analyses are the most important elements that require rigorous consideration in design of a dam structure. Stability of dams against sliding is crucial due to the substantial horizontal load that requires sufficient and safe resistance to develop by mobilization of adequate shearing forces along the base of the dam foundation. In the current research, the static sliding stability of a roller-compacted-concrete (RCC) dam was modelled using finite element method to investigate the stability against sliding. A commercially available finite element software (SAP 2000) was used to analyze stresses in the body of the dam and foundation. A linear finite element static analysis was performed in which a linear plane strain isoperimetric four node elements was used for modelling the dam-foundation system. The analysis was carried out assuming that no slip will occur at the interface between the dam and the foundation. Usual static loading condition was applied for the static analysis. The greatest tension was found to develop in the rock adjacent to the toe of the upstream slope. The factor of safety against sliding along the entire base of the dam was found to be greater than 1 (FS>1), for static loading conditions.
NASA Technical Reports Server (NTRS)
Clark, L. E.; Richie, C. B.
1977-01-01
The hypersonic aerodynamic characteristics of an air-launched, delta-wing research aircraft concept were investigated at Mach 6. The effect of various components such as nose shape, wing camber, wing location, center vertical tail, wing tip fins, forward delta wing, engine nacelle, and speed brakes was also studied. Tests were conducted with a 0.021 scale model at a Reynolds number, based on model length, of 10.5 million and over an angel of attack range from -4 deg to 20 deg. Results show that most configurations with a center vertical tail have static longitudinal stability at trim, static directional stability at angles of attack up to 12 deg, and static lateral stability throughout the angle of attack range. Configurations with wing tip fins generally have static longitudinal stability at trim, have lateral stability at angles of attack above 8 deg, and are directionally unstable over the angle of attack range.
Pinkney, S; Fernie, G
2001-01-01
A three-dimensional (3D) lumped-parameter model of a powered wheelchair was created to aid the development of the Rocket prototype wheelchair and to help explore the effect of innovative design features on its stability. The model was developed using simulation software, specifically Working Model 3D. The accuracy of the model was determined by comparing both its static stability angles and dynamic behavior as it passed down a 4.8-cm (1.9") road curb at a heading of 45 degrees with the performance of the actual wheelchair. The model's predictions of the static stability angles in the forward, rearward, and lateral directions were within 9.3, 7.1, and 3.8% of the measured values, respectively. The average absolute error in the predicted position of the wheelchair as it moved down the curb was 2.2 cm/m (0.9" per 3'3") traveled. The accuracy was limited by the inability to model soft bodies, the inherent difficulties in modeling a statically indeterminate system, and the computing time. Nevertheless, it was found to be useful in investigating the effect of eight design alterations on the lateral stability of the wheelchair. Stability was quantified by determining the static lateral stability angles and the maximum height of a road curb over which the wheelchair could successfully drive on a diagonal heading. The model predicted that the stability was more dependent on the configuration of the suspension system than on the dimensions and weight distribution of the wheelchair. Furthermore, for the situations and design alterations studied, predicted improvements in static stability were not correlated with improvements in dynamic stability.
NASA Technical Reports Server (NTRS)
Boyden, Richmond P.; Dress, David A.; Fox, Charles H., Jr.; Huffman, Jarrett K.; Cruz, Christopher I.
1993-01-01
The paper describes the procedure used for and the results obtained of wind-tunnel tests of the National Aerospace Plane (NASP) configuration, which were conducted in the NASA Langley Research Center High Speed Tunnel using a blended body NASP configuration designed by the research center. Static and dynamic stability characteristics were measured at Mach numbers 0.3, 0.6, and 0.8. In addition to tests of the baseline configuration, component buildup tests with a canard surface and with a body flap were carried out. Results demonstrated a positive static stability of the baseline configuration, except at the higher angles of attack at Mach 0.8. A good agreement was found between the inphase dynamic parameters and the corresponding static data.
NASA Astrophysics Data System (ADS)
Sentić, Stipo; Sessions, Sharon L.
2017-06-01
The weak temperature gradient (WTG) approximation is a method of parameterizing the influences of the large scale on local convection in limited domain simulations. WTG simulations exhibit multiple equilibria in precipitation; depending on the initial moisture content, simulations can precipitate or remain dry for otherwise identical boundary conditions. We use a hypothesized analogy between multiple equilibria in precipitation in WTG simulations, and dry and moist regions of organized convection to study tropical convective organization. We find that the range of wind speeds that support multiple equilibria depends on sea surface temperature (SST). Compared to the present SST, low SSTs support a narrower range of multiple equilibria at higher wind speeds. In contrast, high SSTs exhibit a narrower range of multiple equilibria at low wind speeds. This suggests that at high SSTs, organized convection might occur with lower surface forcing. To characterize convection at different SSTs, we analyze the change in relationships between precipitation rate, atmospheric stability, moisture content, and the large-scale transport of moist entropy and moisture with increasing SSTs. We find an increase in large-scale export of moisture and moist entropy from dry simulations with increasing SST, which is consistent with a strengthening of the up-gradient transport of moisture from dry regions to moist regions in organized convection. Furthermore, the changes in diagnostic relationships with SST are consistent with more intense convection in precipitating regions of organized convection for higher SSTs.
NASA Technical Reports Server (NTRS)
Wolhart, Walter D.; Thomas, David F., Jr.
1955-01-01
An experimental investigation has been made in the Langley stability tunnel to determine the low-speed yawing, pitching, and static stability characteristics of a 1/10-scale model of the Grumman F9F-9 airplane. Tests were made to determine the effects of duct-entrance-fairing plugs on the static lateral and longitudinal stability characteristics of the complete model in the clean condition. The remaining tests were concerned with determining tail contributions as well as the effect of duct-entrance-fairing plugs, slats, flaps, and landing gear on the yawing and pitching stability derivatives. These data are presented without analysis in order to expedite distribution.
The Rise of the Hindu Kush and its Role in the South Asian Monsoon
NASA Astrophysics Data System (ADS)
Molnar, P. H.; Bendick, R. O.; Boos, W. R.
2017-12-01
The emergence of the Hindu Kush to its mean elevation of 3000 m since 10 Ma may have profoundly affected summer rainfall over the Indian subcontinent - the South Asian Monsoon. General Circulation Model runs of climate with different surface heights suggest that the Hindu Kush in Afghanistan may be the most important high terrain that affects the timing and strength of the South Asian monsoon [Chakraborty, Nanjundiah, and Srinivasan, 2002, 2006]. That high terrain, more than the Tibetan Plateau and the Himalaya, blocks warm dry air, with low moist static energy, from mixing with warm moist air from the Bay of Bengal and over India, and therefore enables a moist static energy maximum to be generated by local sources in the northern edges of the Indian subcontinent, facilitating a strong monsoon circulation. Boos and Hurley [2013] showed that if the Hindu Kush is smoothed too much, so that its maximum height is only 1000 m, nearly all General Circulation Model runs yield atmospheric temperature profiles inconsistent with those of monsoons. Fault plane solutions of earthquakes show underthrusting of the Tajik Depression beneath the Hindu Kush, and GPS velocities require 30-35 mm/yr of convergence between India and the Depression. Some of that convergence might be absorbed by subduction of lithosphere with thin crust, but GPS measurements suggest at least 10 and more likely 20 mm/yr of shortening across the Hindu Kush. For a belt 300 km wide with a mean elevation of its crest of 3 km, isostatic balance of 900 km^2 of excess elevation calls for 6000 km^2 of excess crust in a transect across the Hindu Kush. If crust 30-40 km in thickness were shortened horizontally at 20 (10) km/Myr, then 10-7.5 (20-15) Myr would be needed to build the entire range. If a range 1000 m high would have had little effect on the South Asian Monsoon, and if a height of 2000 m were necessary, at current rates of convergence only a few million years would be needed to raise the Hindu Kush from a height of 1000 m to 2000 (or 3000) m. If the South Asian monsoon strengthened at 10 Ma, a rise of the Hindu Kush since 10 Ma may have played a key role in that event.
Contemori, Samuele; Biscarini, Andrea; Botti, Fabio Massimo; Busti, Daniele; Panichi, Roberto; Pettorossi, Vito Enrico
2017-06-12
Isolated infraspinatus muscle atrophy (IIMA) only affects the hitting shoulder of overhead-activity athletes, and is caused by suprascapular nerve neuropathy. No study has assessed the static and dynamic stability of the shoulder in overhead professional athletes with IIMA to reveal possible shoulder sensorimotor alterations. To assess the shoulder static stability, dynamic stability, and strength in professional volleyball players with IIMA and in healthy control players. Cross-sectional study. Research laboratory. Twenty-four male professional volleyball players (12 players with diagnosed IIMA and 12 healthy players) recruited from local volleyball teams. Static stability was evaluated with two independent force platforms and dynamic stability was assessed with the "Upper Quarter Y Balance Test". The static stability assessment was conducted in different support (single hand and both hand) and vision (open and closed eyes) conditions. Data from each test were analyzed with ANOVA and paired t-test models, to highlight statistical differences within and between groups. In addition to reduced abduction and external rotation strength, athletes with IIMA consistently demonstrated significant less static (P < 0.001) and dynamic stability (P < 0,001), compared with the contralateral shoulder and with healthy athletes. Closed eyes condition significantly enhanced the static stability deficit of the shoulder with IIMA (P = 0.039 and P = 0.034 for both hand and single hand support, respectively), but had no effect in healthy contralateral and healthy players' shoulders. This study highlights an impairment of the sensorimotor control system of the shoulder with IIMA, which likely results from both proprioceptive and strength deficits. This condition could yield subtle alteration in the functional use of the shoulder and predispose it to acute or overuse injuries. The results of this study may help athletic trainers and physical/physiotherapists to prevent shoulder injuries and create specific proprioceptive and neuromuscular training programs.
14 CFR 23.173 - Static longitudinal stability.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static longitudinal stability. 23.173 Section 23.173 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... airplane trimmed as indicated, the characteristics of the elevator control forces and the friction within...
14 CFR 23.173 - Static longitudinal stability.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static longitudinal stability. 23.173 Section 23.173 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... airplane trimmed as indicated, the characteristics of the elevator control forces and the friction within...
14 CFR 23.173 - Static longitudinal stability.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static longitudinal stability. 23.173 Section 23.173 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... airplane trimmed as indicated, the characteristics of the elevator control forces and the friction within...
14 CFR 23.173 - Static longitudinal stability.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static longitudinal stability. 23.173 Section 23.173 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... airplane trimmed as indicated, the characteristics of the elevator control forces and the friction within...
14 CFR 23.173 - Static longitudinal stability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static longitudinal stability. 23.173 Section 23.173 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... airplane trimmed as indicated, the characteristics of the elevator control forces and the friction within...
Piloted simulator evaluation of a relaxed static stability fighter at high angle-of-attack
NASA Technical Reports Server (NTRS)
Lapins, M.; Klein, R. W.; Martorella, R. P.; Cangelosi, J.; Neely, W. R., Jr.
1982-01-01
A piloted simulator evaluation of the stability and control characteristics of a relaxed static stability fighter aircraft was conducted using a differential maneuvering simulator. The primary purpose of the simulation was to evaluate the effectiveness of the limiters in preventing departure from controlled flight. The simulation was conducted in two phases, the first consisting of open-loop point stability evaluations over a range of subsonic flight conditions, the second concentrating on closed-loop tracking of a preprogrammed target in low speed, high angle-of-attack air combat maneuvering. The command limiters were effective in preventing departure from controlled flight while permitting competent levels of sustained maneuvering. Parametric variations during the study included the effects of pitch control power and wing-body static margin. Stability and control issues were clearly shown to impact the configuration design.
NASA Technical Reports Server (NTRS)
Grantham, William D.; Person, Lee H., Jr.; Brown, Philip W.; Becker, Lawrence E.; Hunt, George E.; Rising, J. J.; Davis, W. J.; Willey, C. S.; Weaver, W. A.; Cokeley, R.
1985-01-01
Piloted simulation studies have been conducted to evaluate the effectiveness of two pitch active control systems (PACS) on the flying qualities of a wide-body transport airplane when operating at negative static margins. These two pitch active control systems consisted of a simple 'near-term' PACS and a more complex 'advanced' PACS. Eight different flight conditions, representing the entire flight envelope, were evaluated with emphasis on the cruise flight conditions. These studies were made utilizing the Langley Visual/Motion Simulator (VMS) which has six degrees of freedom. The simulation tests indicated that (1) the flying qualities of the baseline aircraft (PACS off) for the cruise and other high-speed flight conditions were unacceptable at center-of-gravity positions aft of the neutral static stability point; (2) within the linear static stability flight envelope, the near-term PACS provided acceptable flying qualities for static stabilty margins to -3 percent; and (3) with the advanced PACS operative, the flying qualities were demonstrated to be good (satisfactory to very acceptable) for static stabilty margins to -20 percent.
NASA Technical Reports Server (NTRS)
Skoog, Richard B
1957-01-01
A theoretical analysis has been made of the effects of aeroelasticity on the static longitudinal stability and elevator angle required for balance of an airplane. The analysis is based on the familiar stability equation expressing the contribution of wing and tail to longitudinal stability. Effects of wing, tail, and fuselage flexibility are considered. Calculated effects are shown for a swept-wing bomber of relatively high flexibility.
NASA Astrophysics Data System (ADS)
Wang, Rui; Tomikawa, Yoshihiro; Nakamura, Takuji; Huang, Kaiming; Zhang, Shaodong; Zhang, Yehui; Yang, Huigen; Hu, Hongqiao
2016-10-01
The mechanism to explain the variations of tropopause and tropopause inversion layer (TIL) in the Arctic region during a sudden stratospheric warming (SSW) in 2009 was studied with the Modern-Era Retrospective analysis for Research and Applications reanalysis data and GPS/Constellation Observing system for Meteorology, Ionosphere, and Climate (COSMIC) temperature data. During the prominent SSW in 2009, the cyclonic system changed to the anticyclonic system due to the planetary wave with wave number 2 (wave2). The GPS/COSMIC temperature data showed that during the SSW in 2009, the tropopause height in the Arctic decreased accompanied with the tropopause temperature increase and the TIL enhancement. The variations of the tropopause and TIL were larger in higher latitudes. A static stability analysis showed that the variations of the tropopause and TIL were associated with the variations of the residual circulation and the static stability due to the SSW. Larger static stability appeared in the upper stratosphere and moved downward to the narrow region just above the tropopause. The descent of strong downward flow was faster in higher latitudes. The static stability tendency analysis showed that the strong downward residual flow induced the static stability change in the stratosphere and around the tropopause. The strong downwelling in the stratosphere was mainly induced by wave2, which led to the tropopause height and temperature changes due to the adiabatic heating. Around the tropopause, a pair of downwelling above the tropopause and upwelling below the tropopause due to wave2 contributed to the enhancement of static stability in the TIL immediately after the SSW.
NASA Astrophysics Data System (ADS)
Tomikawa, Y.; Yamanouchi, T.
2010-08-01
An analysis of the static stability and ozone vertical gradient in the ozone tropopause based (OTB) coordinate is applied to the ozonesonde data at 10 stations in the Southern Hemisphere (SH) extratropics. The tropopause inversion layer (TIL) with a static stability maximum just above the tropopause shows similar seasonal variations at two Antarctic stations, which are latitudinally far from each other. Since the sunshine hour varies with time in a quite different way between these two stations, it implies that the radiative heating due to solar ultraviolet absorption of ozone does not contribute to the seasonal variation of the TIL. A meridional section of the static stability in the OTB coordinate shows that the static stability just above the tropopause has a large latitudinal gradient between 60° S and 70° S in austral winter because of the absence of the TIL over the Antarctic. It is accompanied by an increase of westerly shear with height above the tropopause, so that the polar-night jet is formed above this latitude region. This result suggests a close relationship between the absence of the TIL and the stratospheric polar vortex in the Antarctic winter. A vertical gradient of ozone mixing ratio, referred to as ozone vertical gradient, around the tropopause shows similar latitudinal and seasonal variations with the static stability in the SH extratropics. In a height region above the TIL, a small ozone vertical gradient in the midlatitudes associated with the Antarctic ozone hole is observed in a height region of the subvortex but not around the polar vortex. This is a clear evidence of active latitudinal mixing between the midlatitudes and subvortex.
NASA Astrophysics Data System (ADS)
Blanco, Joaquín. E.; Nolan, David S.; Mapes, Brian E.
2016-10-01
This second part of a two-part study uses Weather Research and Forecasting simulations with aquachannel and aquapatch domains to investigate the time evolution of convectively coupled Kelvin waves (CCKWs). Power spectra, filtering, and compositing are combined with object-tracking methods to assess the structure and phase speed propagation of CCKWs during their strengthening, mature, and decaying phases. In this regard, we introduce an innovative approach to more closely investigate the wave (Kelvin) versus entity (super cloud cluster or "SCC") dualism. In general, the composite CCKW structures represent a dynamical response to the organized convective activity. However, pressure and thermodynamic fields in the boundary layer behave differently. Further analysis of the time evolution of pressure and low-level moist static energy finds that these fields propagate eastward as a "moist" Kelvin wave (MKW), faster than the envelope of organized convection or SCC. When the separation is sufficiently large the SCC dissipates, and a new SCC generates to the east, in the region of strongest negative pressure perturbations. We revisit the concept itself of the "coupling" between convection and dynamics, and we also propose a conceptual model for CCKWs, with a clear distinction between the SCC and the MKW components.
14 CFR 25.177 - Static lateral-directional stability.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static lateral-directional stability. 25.177 Section 25.177 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... operation of the airplane, the aileron and rudder control movements and forces must be substantially...
A study of static stability of airships
NASA Technical Reports Server (NTRS)
Rizzo, Frank
1924-01-01
The first section deals with the theoretical side of statical stability of airships in general. The second section deals with preliminary tests of the model and experiments for the determination of effects due to change of tail area, aspect ratio, tail form, and tail thickness.
Bifurcation and stability in a model of moist convection in a shearing environment
NASA Technical Reports Server (NTRS)
Shirer, H. N.
1980-01-01
The truncated spectral system (model I) of shallow moist two-dimensional convection discussed by Shirer and Dutton (1979) is expanded to eleven coefficients (model II) in order to include a basic wind. Cloud streets, the atmospheric analog of the solutions to model II, are typically observed in an environment containing a shearing basic motion field. Analysis of the branching behavior of solutions to mode II shows that, if the basic wind direction varies with height, very complex temporal behavior is possible as the modified Rayleigh number HR is increased sufficiently. The first convective solution is periodic, corresponding to a cloud band that propagates downwind; but secondary branching to a two-dimensional torus can occur for larger values of HR. Orientation band formulas are derived whose predictions generally agree with the results of previous studies.
MATLAB Stability and Control Toolbox Trim and Static Stability Module
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Crespo, Luis
2012-01-01
MATLAB Stability and Control Toolbox (MASCOT) utilizes geometric, aerodynamic, and inertial inputs to calculate air vehicle stability in a variety of critical flight conditions. The code is based on fundamental, non-linear equations of motion and is able to translate results into a qualitative, graphical scale useful to the non-expert. MASCOT was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental nonlinear equations of motion, MASCOT then calculates vehicle trim and static stability data for the desired flight condition(s). Available flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind, and sideslip, plus three take-off rotation conditions. Results are displayed through a unique graphical interface developed to provide the non-stability and control expert conceptual design engineer a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. If desired, the user can also examine the detailed, quantitative results.
14 CFR 25.173 - Static longitudinal stability.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static longitudinal stability. 25.173 Section 25.173 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... forces (including friction) must be as follows: (a) A pull must be required to obtain and maintain speeds...
14 CFR 25.173 - Static longitudinal stability.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Static longitudinal stability. 25.173 Section 25.173 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... forces (including friction) must be as follows: (a) A pull must be required to obtain and maintain speeds...
14 CFR 25.173 - Static longitudinal stability.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Static longitudinal stability. 25.173 Section 25.173 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... forces (including friction) must be as follows: (a) A pull must be required to obtain and maintain speeds...
14 CFR 25.173 - Static longitudinal stability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static longitudinal stability. 25.173 Section 25.173 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... forces (including friction) must be as follows: (a) A pull must be required to obtain and maintain speeds...
14 CFR 25.173 - Static longitudinal stability.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static longitudinal stability. 25.173 Section 25.173 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... forces (including friction) must be as follows: (a) A pull must be required to obtain and maintain speeds...
Stability of the Einstein static universe in Einstein-Cartan theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir
The existence and stability of the Einstein static solution have been built in the Einstein-Cartan gravity. We show that this solution in the presence of perfect fluid with spin density satisfying the Weyssenhoff restriction is cyclically stable around a center equilibrium point. Thus, study of this solution is interesting because it supports non-singular emergent cosmological models in which the early universe oscillates indeterminately about an initial Einstein static solution and is thus past eternal.
Estimation of dynamic stability parameters from drop model flight tests
NASA Technical Reports Server (NTRS)
Chambers, J. R.; Iliff, K. W.
1981-01-01
The overall remotely piloted drop model operation, descriptions, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods are discussed. Static and dynamic stability derivatives were obtained for an angle attack range from -20 deg to 53 deg. It is indicated that the variations of the estimates with angle of attack are consistent for most of the static derivatives, and the effects of configuration modifications to the model were apparent in the static derivative estimates.
Matlab Stability and Control Toolbox: Trim and Static Stability Module
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.
2006-01-01
This paper presents the technical background of the Trim and Static module of the Matlab Stability and Control Toolbox. This module performs a low-fidelity stability and control assessment of an aircraft model for a set of flight critical conditions. This is attained by determining if the control authority available for trim is sufficient and if the static stability characteristics are adequate. These conditions can be selected from a prescribed set or can be specified to meet particular requirements. The prescribed set of conditions includes horizontal flight, take-off rotation, landing flare, steady roll, steady turn and pull-up/ push-over flight, for which several operating conditions can be specified. A mathematical model was developed allowing for six-dimensional trim, adjustable inertial properties, asymmetric vehicle layouts, arbitrary number of engines, multi-axial thrust vectoring, engine(s)-out conditions, crosswind and gyroscopic effects.
NASA Technical Reports Server (NTRS)
Axelson, John A.; Crown, J. Conrad
1948-01-01
An analysis is presented of the influence of wing aspect ratio and tail location on the effects of compressibility upon static longitudinal stability. The investigation showed that the use of reduced wing aspect ratios or short tail lengths leads to serious reductions in high-speed stability and the possibility of high-speed instability.
NASA Technical Reports Server (NTRS)
1980-01-01
Parasite drag reduction evaluation is composed of wind tunnel tests with a standard L-1011 tail and two reduced area tail configurations. Trim drag reduction is evaluated by rebalancing the airplane for relaxed static stability. This is accomplished by pumping water to tanks in the forward and aft of the airplane to acheive desired center of gravity location. Also, the L-1011 is modified to incorporate term and advanced augmented systems. By using advanced wings and aircraft relaxed static stability significant fuel savings can be realized. An airplane's dynamic stability becomes more sensitive for decreased tail size, relaxed static stability, and advanced wing configurations. Active control pitch augmentation will be used to acheive the required handling qualities. Flight tests will be performed to evaluate the pitch augmentation systems. The effect of elevator downrig on stabilizer/elevator hinge moments will be measured. For control system analysis, the normal acceleration feedback and pitch rate feedback are analyzed.
14 CFR 23.175 - Demonstration of static longitudinal stability.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Demonstration of static longitudinal stability. 23.175 Section 23.175 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... must be shown as follows: (a) Climb. The stick force curve must have a stable slope at speeds between...
14 CFR 25.177 - Static lateral-directional stability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static lateral-directional stability. 25.177 Section 25.177 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... movements and forces must be substantially proportional to the angle of sideslip in a stable sense; and the...
14 CFR 23.177 - Static directional and lateral stability.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Static directional and lateral stability. 23.177 Section 23.177 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... these tests must be appropriate to the type of airplane. The rudder pedal force must not reverse at...
14 CFR 23.175 - Demonstration of static longitudinal stability.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Demonstration of static longitudinal stability. 23.175 Section 23.175 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... must be shown as follows: (a) Climb. The stick force curve must have a stable slope at speeds between...
14 CFR 25.177 - Static lateral-directional stability.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Static lateral-directional stability. 25.177 Section 25.177 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... movements and forces must be substantially proportional to the angle of sideslip in a stable sense; and the...
NASA Technical Reports Server (NTRS)
Lopez, Armando E.; Buell, Donald A.; Tinling, Bruce E.
1959-01-01
Wind-tunnel measurements were made of the static and dynamic rotary stability derivatives of an airplane model having sweptback wing and tail surfaces. The Mach number range of the tests was from 0.23 to 0.94. The components of the model were tested in various combinations so that the separate contribution to the stability derivatives of the component parts and the interference effects could be determined. Estimates of the dynamic rotary derivatives based on some of the simpler existing procedures which utilize static force data were found to be in reasonable agreement with the experimental results at low angles of attack. The results of the static and dynamic measurements were used to compute the short-period oscillatory characteristics of an airplane geometrically similar to the test model. The results of these calculations are compared with military flying qualities requirements.
NASA Technical Reports Server (NTRS)
Sizlo, T. R.; Berg, R. A.; Gilles, D. L.
1979-01-01
An augmentation system for a 230 passenger, twin engine aircraft designed with a relaxation of conventional longitudinal static stability was developed. The design criteria are established and candidate augmentation system control laws and hardware architectures are formulated and evaluated with respect to reliability, flying qualities, and flight path tracking performance. The selected systems are shown to satisfy the interpreted regulatory safety and reliability requirements while maintaining the present DC 10 (study baseline) level of maintainability and reliability for the total flight control system. The impact of certification of the relaxed static stability augmentation concept is also estimated with regard to affected federal regulations, system validation plan, and typical development/installation costs.
Flight-test data on the static fore-and-aft stability of various German airplanes
NASA Technical Reports Server (NTRS)
Hubner, Walter
1933-01-01
The static longitudinal stability of an airplane with locked elevator is usually determined by analysis and model tests. The present report proposes to supply the results of such measurements. The method consisted of recording the dynamic pressure versus elevator displacement at different center-of-gravity positions in unaccelerated flight.
Approximation method for determining the static stability of a monoplane glider
NASA Technical Reports Server (NTRS)
Lippisch, A
1927-01-01
The calculations in this paper afford an approximate solution of the static stability. A derivation of the formulas for moment coefficient of a wing, moment coefficient of elevator, and the total moment of the combined wing and elevator and the moment coefficient with reference to the center of gravity are provided.
NASA Astrophysics Data System (ADS)
Mbengue, Cheikh Oumar; Woollings, Tim; Dacre, Helen F.; Hodges, Kevin I.
2018-04-01
Summer seasonal forecast skill in the North Atlantic sector is lower than winter skill. To identify potential controls on predictability, the sensitivity of North Atlantic baroclinicity to atmospheric drivers is quantified. Using ERA-INTERIM reanalysis data, North Atlantic storm-track baroclinicity is shown to be less sensitive to meridional temperature-gradient variability in summer. Static stability shapes the sector's interannual variability by modulating the sensitivity of baroclinicity to variations in meridional temperature gradients and tropopause height and by modifying the baroclinicity itself. High static stability anomalies at upper levels result in more zonal extratropical cyclone tracks and higher eddy kinetic energy over the British Isles in the summertime. These static stability anomalies are not strongly related to the summer NAO; but they are correlated with the suppression of convection over the tropical Atlantic and with a poleward-shifted subtropical jet. These results suggest a non-local driver of North Atlantic variability. Furthermore, they imply that improved representations of convection over the south-eastern part of North America and the tropical Atlantic might improve summer seasonal forecast skill.
Development of an advanced pitch active control system for a wide body jet aircraft
NASA Technical Reports Server (NTRS)
Guinn, Wiley A.; Rising, Jerry J.; Davis, Walt J.
1984-01-01
An advanced PACS control law was developed for a commercial wide-body transport (Lockheed L-1011) by using modern control theory. Validity of the control law was demonstrated by piloted flight simulation tests on the NASA Langley visual motion simulator. The PACS design objective was to develop a PACS that would provide good flying qualities to negative 10 percent static stability margins that were equivalent to those of the baseline aircraft at a 15 percent static stability margin which is normal for the L-1011. Also, the PACS was to compensate for high-Mach/high-g instabilities that degrade flying qualities during upset recoveries and maneuvers. The piloted flight simulation tests showed that the PACS met the design objectives. The simulation demonstrated good flying qualities to negative 20 percent static stability margins for hold, cruise and high-speed flight conditions. Analysis and wind tunnel tests performed on other Lockheed programs indicate that the PACS could be used on an advanced transport configuration to provide a 4 percent fuel savings which results from reduced trim drag by flying at negative static stability margins.
NASA Technical Reports Server (NTRS)
Greathouse, James S.; Schwing, Alan M.
2015-01-01
This paper explores use of computational fluid dynamics to study the e?ect of geometric porosity on static stability and drag for NASA's Multi-Purpose Crew Vehicle main parachute. Both of these aerodynamic characteristics are of interest to in parachute design, and computational methods promise designers the ability to perform detailed parametric studies and other design iterations with a level of control previously unobtainable using ground or flight testing. The approach presented here uses a canopy structural analysis code to define the inflated parachute shapes on which structured computational grids are generated. These grids are used by the computational fluid dynamics code OVERFLOW and are modeled as rigid, impermeable bodies for this analysis. Comparisons to Apollo drop test data is shown as preliminary validation of the technique. Results include several parametric sweeps through design variables in order to better understand the trade between static stability and drag. Finally, designs that maximize static stability with a minimal loss in drag are suggested for further study in subscale ground and flight testing.
NASA Technical Reports Server (NTRS)
Palazzo, Edward B.; Spearman, M. Leroy
1954-01-01
An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 1.41 to determine the static stability and control and drag characteristics of a l/l5-scale model of the Grunman F9F-9 airplane. The effects of alternate fuselage shapes, wing camber, wing fences, and fuselage dive brakes on the aerodynamic characteristics were also investigated. These tests were made at a Reynolds number of 1.96 x l0 (exp 6) based on the wing mean aerodynamic chord of 0.545 foot. The basic configuration had a static margin of stability of 38.4 percent of the mean aerodynamic chord and a minimum drag coefficient of 0.049. For the maximum horizontal tail deflection investigated (-l0 deg), the maximum trim lift coefficient was 0.338. The basic configuration had positive static lateral stability at zero angle of attack and positive directional control throughout the angle-of-attack range investigated up to ll deg.
Thermal stabilization of static single-mirror Fourier transform spectrometers
NASA Astrophysics Data System (ADS)
Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.
2017-05-01
Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.
Role of organic matter on aggregate stability and related mechanisms through organic amendments
NASA Astrophysics Data System (ADS)
Zaher, Hafida
2010-05-01
To date, only a few studies have tried to simultaneously compare the role of neutral and uronic sugars and lipids on soil structural stability. Moreover, evidence for the mechanisms involved has often been established following wetting of moist aggregates after various pre-treatments thus altering aggregate structure and resulting in manipulations on altered aggregates on which the rapid wetting process may not be involved anymore. To the best of our knowledge, the objective of this work was to study the role of neutral and uronic sugars and lipids in affecting key mechanisms (swelling rate, pressure evolution) involved in the stabilization of soil structure. A long-term incubation study (48-wk) was performed on a clay loam and a silty-clay loam amended with de-inking-secondary sludge mix at three rates (8, 16 and 24 Mg dry matter ha-1), primary-secondary sludge mix at one rate (18 Mg oven-dry ha-1) and composted de-inking sludge at one rate (24 Mg ha-1). Different structural stability indices (stability of moist and dry aggregates, the amount of dispersible clay and loss of soil material following sudden wetting) were measured on a regular basis during the incubation, along with CO2 evolved, neutral and uronic sugar, and lipid contents. During the course of the incubations, significant increases in all stability indices were measured for both soil types. In general, the improvements in stability were proportional to the amount of C added as organic amendments. These improvements were linked to a very intense phase of C mineralization and associated with increases in neutral and uronic sugars as well as lipid contents. The statistical relationships found between the different carbonaceous fractions and stability indices were all highly significant and indicated no clear superiority of one fraction over another. Paper sludge amendments also resulted in significant decreases in maximum internal pressure of aggregate and aggregate swelling following immersion in water, two mechanisms affecting structural stability. Overall, the results suggest that reduction in maximum internal pressure induced by organic amendments most likely resulted from increases in pore surface roughness and pore occlusion rather than by increase in surface wetting angles. This study also supports the view of a non specific action of the lipids, neutral and uronic sugars on aggregate stability to rapid wetting. Key words: soil aggregate stability, polysaccharides, lipids, mechanisms, organic matter
NASA Technical Reports Server (NTRS)
Sliwa, S. M.
1980-01-01
Direct constrained parameter optimization was used to optimally size a medium range transport for minimum direct operating cost. Several stability and control constraints were varied to study the sensitivity of the configuration to specifying the unaugmented flying qualities of transports designed to take maximum advantage of relaxed static stability augmentation systems. Additionally, a number of handling qualities related design constants were studied with respect to their impact on the design.
An Analysis of a Developing and Non-Developing Disturbance During the Predict Experiment
2015-09-25
convection. As the wave propagates primarily westwards, the flow establishes dynamic flow boundaries (a Kelvin cat’s eye) that effectively trap moist...stability, the navy will need to be effective at anticipating the vast destruction caused by tropical cyclones. A thorough understanding of 6 genesis...the most current and innovative approaches for effective tasking, collection, process- ing, exploitation, and dissemination of tropical cyclone decision
NASA Astrophysics Data System (ADS)
Zhang, Y.; Klein, S. A.
2009-12-01
11 years of summertime observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site are used to investigate mechanisms controlling the transition from shallow to deep convection over land. A more humid environment above the boundary layer favors the occurrence of late-afternoon heavy precipitation events. The higher moisture content is brought by wind from south. Greater boundary layer inhomogeneity in moist static energy (MSE) is correlated to larger rain rates at the initial stage of precipitation. MSE inhomogeneity is attributed to both moisture and temperature fields, and is correlated with westerly winds. In an examination of afternoon rain statistics, higher relative humidity above the boundary layer is correlated to an earlier onset and longer duration of precipitation, while greater boundary layer inhomogeneity and atmospheric instability are positively correlated to the total rain amount and the maximum rain rate. On balance, these observations favor theories for the transition that involve a moist free troposphere and boundary layer heterogeneity in preference to those that involve convective available potential energy or convective inhibition. Thus the evidence presented here supports the current emphasis in the modeling community on the entraining nature of convection and the role of boundary layer cold pools in triggering new convection.
NASA Astrophysics Data System (ADS)
Ando, H.; Fukuhara, T.; Takagi, M.; Imamura, T.; Sugimoto, N.; Sagawa, H.
2017-12-01
The radio occultation technique is one of the most useful methods to retrieve vertical temperature profiles in planetary atmospheres. Ultra-Stable Oscillator (USO) onboard Venus Climate Orbiter, Akatsuki, enables us to investigate the thermal structure of the Venus atmosphere between about 40-90 km levels. It is expected that 35 temperature profiles will be obtained by the radio occultation measurements of Akatsuki until August 2017. Static stability derived from the temperature profiles shows its local time dependence above the cloud top level at low-latitudes equatorward of 25˚. The vertical profiles of the static stability in the dawn and dusk regions have maxima at 77 km and 82 km levels, respectively. A general circulation model (GCM) for the Venus atmosphere (AFES-Venus) reproduced the thermal structures above the cloud top qualitatively consistent with the radio occultation measurements; the maxima of the static stability are seen both in the dawn and dusk regions, and the local maximum of the static stability in the dusk region is located at a highler level than in the dawn region. Comparing the thermal structures between the radio occultation measurements and the GCM results, it is suggested that the distribution of the static stability above the cloud top could be strongly affected by the diurnal tide. The thermal tide influences on the thermal structure as well as atmospheric motions above the cloud level. In addition, it is shown that zonally averaged zonal wind at about 80 km altitude could be roughly estimated from the radio occultation measurements using the dispersion relation of the internal gravity wave.
NASA Technical Reports Server (NTRS)
Biechteler, Curt
1934-01-01
The rudder effect of a sport airplane at high angles of attack was to be improved. This made it necessary to make a cut-out in the center of the continuous elevator so as to enlarge the rudder downward. This cut-out which reduced the rudder area by 12.5 percent changed the static stability of the airplane as well as the elevator effect. Flight measurements showed the stability zone with locked elevator to be 1.8 percent less at full throttle and at idling to be 1.3 percent less than the mean wing chord. The effect of the cut-out on the control forces could not be determined owing to insufficient instrumental accuracy at the extremely low existing forces. The measurement of the static controllability resulting from the cut-out manifested an 18 percent drop in elevator effect at full throttle and a 10 to 20 percent drop at idling, depending on lift.
Shin, Ji-won; Song, Gui-bin; Ko, Jooyeon
2017-01-01
[Purpose] The purpose of this case series was to examination the effects of trunk and neck stabilization exercise on the static, dynamic trunk balance abilities of children with cerebral palsy. [Subjects and Methods] The study included 11 school aged children diagnosed with paraplegia due to a premature birth. Each child engaged in exercise treatments twice per week for eight weeks; each treatment lasted for 45 minutes. After conducting a preliminary assessment, exercise treatments were designed based on each child’s level of functioning. Another assessment was conducted after the eight weeks of treatment. [Results] The Trunk Control Measurement Scale evaluation showed that the exercise treatments had a significant effect on static sitting balance, selective movement control, dynamic reaching, and total Trunk Control Measurement Scale scores. [Conclusion] The results indicate that neck and trunk stabilization exercises that require children’s active participation are helpful for improving static and dynamic balance ability among children diagnosed with cerebral palsy. PMID:28533628
NASA Technical Reports Server (NTRS)
Johnson, Joseph L.
1954-01-01
An investigation has been conducted to determine the static stability and control and damping in roll and yaw of a 0.13-scale model of the Convair XFY-1 airplane with propellers off from 0 deg to 90 deg angle of attack. The tests showed that a slightly unstable pitch-up tendency occurred simultaneously with a break in the normal-force curve in the angle-of-attack range from about 27 deg to 36 deg. The top vertical tail contributed positive values of static directional stability and effective dihedral up to an angle of attack of about 35 deg. The bottom tail contributed positive values of static directional stability but negative values of effective dihedral throughout the angle-of-attack range. Effectiveness of the control surfaces decreased to very low values at the high angles of attack, The model had positive damping in yaw and damping in roll about the body axes over the angle-of-attack range but the damping in yaw decreased to about zero at 90 deg angle of attack.
van der Spek, Jaap H; Veltink, Peter H; Hermens, Hermie J; Koopman, Bart F J M; Boom, Herman B K
2003-12-01
The prerequisites for stable crutch supported standing were analyzed in this paper. For this purpose, a biomechanical model of crutch supported paraplegic stance was developed assuming the patient was standing with extended knees. When using crutches during stance, the crutches will put a position constraint on the shoulder, thus reducing the number of degrees of freedom. Additional hip-joint stiffness was applied to stabilize the hip joint and, therefore, to stabilize stance. The required hip-joint stiffness for changing crutch placement and hip-joint offset angle was studied under static and dynamic conditions. Modeling results indicate that, by using additional hip-joint stiffness, stable crutch supported paraplegic standing can be achieved, both under static as well as dynamic situations. The static equilibrium postures and the stability under perturbations were calculated to be dependent on crutch placement and stiffness applied. However, postures in which the hip joint was in extension (C postures) appeared to the most stable postures. Applying at least 60 N x m/rad hip-joint stiffness gave stable equilibrium postures in all cases. Choosing appropriate hip-joint offset angles, the static equilibrium postures changed to more erect postures, without causing instability or excessive arm forces to occur.
Effects of Solar Geoengineering on Meridional Energy Transport and the ITCZ
NASA Astrophysics Data System (ADS)
Russotto, R. D.; Ackerman, T. P.; Frierson, D. M.
2016-12-01
The polar amplification of warming and the ability of the intertropical convergence zone (ITCZ) to shift to the north or south are two very important problems in climate science. Examining these behaviors in global climate models (GCMs) running solar geoengineering experiments is helpful not only for predicting the effects of solar geoengineering, but also for understanding how these processes work under increased CO2. Both polar amplification and ITCZ shifts are closely related to the meridional transport of moist static energy (MSE) by the atmosphere. In this study we examine changes in MSE transport in 10 fully coupled GCMs in Experiment G1 of the Geoengineering Model Intercomparison Project, in which the solar constant is reduced to compensate for abruptly quadrupled CO2 concentrations. In this experiment, poleward MSE transport decreases relative to preindustrial conditions in all models, in contrast to the CMIP5 abrupt4xCO2 experiment, in which poleward MSE transport increases. The increase in poleward MSE transport under increased CO2 is due to latent heat transport, as specific humidity increases faster in the tropics than at the poles; this mechanism is not present under G1 conditions, so the reduction in dry static energy transport due to a weakened equator-to-pole temperature gradient leads to weaker energy transport overall. Changes in cross-equatorial MSE transport in G1, meanwhile, are anticorrelated with shifts in the ITCZ. The northward ITCZ shift in G1 is 0.14 degrees in the multi-model mean and ranges from -0.33 to 0.89 degrees between the models. We examine the specific forcing and feedback terms responsible for changes in MSE transport in G1 by running experiments with a moist energy balance model. This work will help identify the largest sources of uncertainty regarding ITCZ shifts under solar geoengineering, and will help improve our understanding of the reasons for the residual polar amplification that occurs in the G1 experiment.
A climate model diagnostic metric for the Madden-Julian oscillation
NASA Astrophysics Data System (ADS)
Gonzalez, A. O.; Jiang, X.
2016-12-01
Despite its significant impacts on global weather and climate, the Madden-Julian oscillation (MJO) remains a grand challenge for state-of-the-art general circulation models (GCMs). The eastward propagation of the MJO is often poorly simulated in GCMs, represented by a stationary or even westward propagating mode. Recent analyses based on moist static energy processes suggest the horizontal advection of the winter mean moist static energy by the MJO circulation plays a critical role in the observed eastward propagation of the MJO. In this study, we explore relationships between model fidelity in representing the eastward propagation of the MJO and the winter mean lower-tropospheric moisture pattern by analyzing a suite of GCMs from a recent multi-model MJO comparison project. Model capability of reproducing the observed spatial pattern of the 650-900 hPa winter mean specific humidity is a robust indicator of how well they reproduce the MJO's eastward propagation. In particular, model skill in simulating the low-level winter mean specific humidity over the Maritime Continent region (20°S-20°N, 90°-135°E) is highly correlated with model skill of MJO propagation across the 23 GCMs analyzed, with a correlation of about 0.8. Winter mean lower-tropospheric moisture patterns over two other regions, including the western Indian Ocean and an off-equatorial region in the central Indian Ocean, also exhibit high correlations with MJO propagation skill in the model simulations. This study supports recent studies in highlighting the importance of the mean low-level moisture for MJO propagation and it points out a direction for model improvement of the MJO. Meanwhile, it is also suggested that the winter mean low-level moisture pattern over the Indo-Pacific region, particularly over the Maritime Continent region, can serve as a diagnostic metric for the eastward propagation of the MJO in climate model assessments.
Qian, Yun; Yan, Huiping; Berg, Larry K.; ...
2016-10-28
Accuracy of turbulence parameterization in representing Planetary Boundary Layer (PBL) processes in climate models is critical for predicting the initiation and development of clouds, air quality issues, and underlying surface-atmosphere-cloud interactions. In this study, we 1) evaluate WRF model-simulated spatial patterns of precipitation and surface fluxes, as well as vertical profiles of potential temperature, humidity, moist static energy and moisture tendency terms as simulated by WRF at various spatial resolutions and with PBL, surface layer and shallow convection schemes against measurements, 2) identify model biases by examining the moisture tendency terms contributed by PBL and convection processes through nudging experiments,more » and 3) evaluate the dependence of modeled surface latent heat (LH) fluxes onPBL and surface layer schemes over the tropical ocean. The results show that PBL and surface parameterizations have surprisingly large impacts on precipitation, convection initiation and surface moisture fluxes over tropical oceans. All of the parameterizations tested tend to overpredict moisture in PBL and free atmosphere, and consequently result in larger moist static energy and precipitation. Moisture nudging tends to suppress the initiation of convection and reduces the excess precipitation. The reduction in precipitation bias in turn reduces the surface wind and LH flux biases, which suggests that the model drifts at least partly because of a positive feedback between precipitation and surface fluxes. The updated shallow convection scheme KF-CuP tends to suppress the initiation and development of deep convection, consequently decreasing precipitation. The Eta surface layer scheme predicts more reasonable LH fluxes and the LH-Wind Speed relationship than the MM5 scheme, especially when coupled with the MYJ scheme. By examining various parameterization schemes in WRF, we identify sources of biases and weaknesses of current PBL, surface layer and shallow convection schemes in reproducing PBL processes, the initiation of convection and intra-seasonal variability of precipitation.« less
Stratospheric and Tropospheric Contributions to the Flux of Moist Static Energy Across 70ºN
NASA Astrophysics Data System (ADS)
Cardinale, C.; Rose, B. E. J.
2017-12-01
The flux of moist static energy (MSE) across 70ºN plays a key role in the energy budget and climate of the Arctic. This flux, which provides about 100 W/m2 heating of the polar cap, is usually studied from a vertically integrated perspective. Here we examine its vertical structure, using the MERRA-2 reanalysis to compute monthly fluxes of sensible, latent and potential energy across 70ºN for the period 1980-2016. The flux is bimodal, with peaks in the lower troposphere and in the stratosphere around 50 hPa, and is near zero at the tropopause. Distinctly different seasonal cycles are found for the stratospheric and tropospheric components. The fraction of the total integrated MSE flux occurring in the stratosphere is 19% during a typical winter and only 7% during summer. Interannual variability of the stratospheric flux is intimately connected to sudden stratospheric warming (SSW) events. Months in which SSWs are observed feature both an increased total flux and a larger fraction occurring in the stratosphere (up to 35% of the total). For comparison we also compute the MSE flux at 65ºS, and find a large increase in the total flux coincident with the only observed southern hemisphere SSW in 2002. The relationship between the tropospheric and stratospheric fluxes are explored through lead-lag correlations. The strongest correlation (+0.29) is found with the troposphere leading the stratosphere by 1 month. This positive correlation appears to be stronger during SSWs. With the stratosphere leading by 1 month, a weaker correlation of -0.14 is found. Qualitatively similar results are found at 65ºS. No trend is detected in the stratospheric flux. A statistically significant trend of -1.30 W/m2 per decade is found for the NH tropospheric flux.
Computerized dynamic posturography: the influence of platform stability on postural control.
Palm, Hans-Georg; Lang, Patricia; Strobel, Johannes; Riesner, Hans-Joachim; Friemert, Benedikt
2014-01-01
Postural stability can be quantified using posturography systems, which allow different foot platform stability settings to be selected. It is unclear, however, how platform stability and postural control are mathematically correlated. Twenty subjects performed tests on the Biodex Stability System at all 13 stability levels. Overall stability index, medial-lateral stability index, and anterior-posterior stability index scores were calculated, and data were analyzed using analysis of variance and linear regression analysis. A decrease in platform stability from the static level to the second least stable level was associated with a linear decrease in postural control. The overall stability index scores were 1.5 ± 0.8 degrees (static), 2.2 ± 0.9 degrees (level 8), and 3.6 ± 1.7 degrees (level 2). The slope of the regression lines was 0.17 for the men and 0.10 for the women. A linear correlation was demonstrated between platform stability and postural control. The influence of stability levels seems to be almost twice as high in men as in women.
Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong
2017-11-01
We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.
NASA Technical Reports Server (NTRS)
Urie, D. M.
1979-01-01
Relaxed static stability and stability augmentation with active controls were investigated for subsonic transport aircraft. Analytical and simulator evaluations were done using a contemporary wide body transport as a baseline. Criteria for augmentation system performance and unaugmented flying qualities were evaluated. Augmentation control laws were defined based on selected frequency response and time history criteria. Flying qualities evaluations were conducted by pilots using a moving base simulator with a transport cab. Static margin and air turbulence intensity were varied in test with and without augmentation. Suitability of a simple pitch control law was verified at neutral static margin in cruise and landing flight tasks. Neutral stability was found to be marginally acceptable in heavy turbulence in both cruise and landing conditions.
Wind Tunnel Testing of Various Disk-Gap-Band Parachutes
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Mineck, Raymond E.; Keller, Donald F.; Bobskill, Maria V.
2003-01-01
Two Disk-Gap-Band model parachute designs were tested in the NASA Langley Transonic Dynamics Tunnel. The purposes of these tests were to determine the drag and static stability coefficients of these two model parachutes at various subsonic Mach numbers in support of the Mars Exploration Rover mission. The two model parachute designs were designated 1.6 Viking and MPF. These model parachute designs were chosen to investigate the tradeoff between drag and static stability. Each of the parachute designs was tested with models fabricated from MIL-C-7020 Type III or F-111 fabric. The reason for testing model parachutes fabricated with different fabrics was to evaluate the effect of fabric permeability on the drag and static stability coefficients. Several improvements over the Viking-era wind tunnel tests were implemented in the testing procedures and data analyses. Among these improvements were corrections for test fixture drag interference and blockage effects, and use of an improved test fixture for measuring static stability coefficients. The 1.6 Viking model parachutes had drag coefficients from 0.440 to 0.539, while the MPF model parachutes had drag coefficients from 0.363 to 0.428. The 1.6 Viking model parachutes had drag coefficients 18 to 22 percent higher than the MPF model parachute for equivalent fabric materials and test conditions. Model parachutes of the same design tested at the same conditions had drag coefficients approximately 11 to 15 percent higher when manufactured from F-111 fabric as compared to those fabricated from MIL-C-7020 Type III fabric. The lower fabric permeability of the F-111 fabric was the source of this difference. The MPF model parachutes had smaller absolute statically stable trim angles of attack as compared to the 1.6 Viking model parachutes for equivalent fabric materials and test conditions. This was attributed to the MPF model parachutes larger band height to nominal diameter ratio. For both designs, model parachutes fabricated from F-111 fabric had significantly greater statically stable absolute trim angles of attack at equivalent test conditions as compared to those fabricated from MILC-7020 Type III fabric. This reduction in static stability exhibited by model parachutes fabricated from F-111 fabric was attributed to the lower permeability of the F-111 fabric. The drag and static stability coefficient results were interpolated to obtain their values at Mars flight conditions using total porosity as the interpolating parameter.
Brienen, Roel J W; Zuidema, Pieter A; Martínez-Ramos, Miguel
2010-06-01
Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees--those that have not attained the canopy--are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests.
NASA Technical Reports Server (NTRS)
Weil, Joseph; Sleeman, William C , Jr
1949-01-01
The effects of propeller operation on the static longitudinal stability of single-engine tractor monoplanes are analyzed, and a simple method is presented for computing power-on pitching-moment curves for flap-retracted flight conditions. The methods evolved are based on the results of powered-model wind-tunnel investigations of 28 model configurations. Correlation curves are presented from which the effects of power on the downwash over the tail and the stabilizer effectiveness can be rapidly predicted. The procedures developed enable prediction of power-on longitudinal stability characteristics that are generally in very good agreement with experiment.
NASA Technical Reports Server (NTRS)
Skoog, Richard B
1951-01-01
A theoretical analysis of the effects of aeroelasticity on the stick-fixed static longitudinal stability and elevator angle required for balance of an airplane is presented together with calculated effects for a swept-wing bomber of relatively high flexibility. Although large changes in stability due to certain parameters are indicated for the example airplane, the over-all stability change after considering all parameters was quite small, compared to the individual effects, due to the counterbalancing of wing and tail contributions. The effect of flexibility on longitudinal control for the example airplane was found to be of little real importance.
Kim, Mi-Kyoung; Lee, Jung Chul; Yoo, Kyung-Tae
2018-03-01
[Purpose] The purpose of this study was to analyze the effects of pectoralis minor stretching and shoulder strengthening with an elastic band on balance and maximal shoulder muscle strength in young adults with rounded shoulder posture. [Subjects and Methods] Nineteen subjects with rounded shoulder posture were randomly divided into 2 groups: a shoulder stabilization exercise group and a stretching exercise group. The groups performed each exercise for 40 minutes, 3 times a week, for 4 weeks. Static balance (eyes open and closed), dynamic balance (the limits of stability in 4 directions) and shoulder muscle strength in 5 directions were measure before and after the exercises. [Results] The stretching exercise demonstrated a significant difference between the pre- and post-exercise in the static balance with eyes closed and extension and horizontal abduction strength while the stabilization exercise demonstrated significant difference in the left and right directions between the pre- and post-exercise of the dynamic balance and flexion strength. The stabilization exercise demonstrated significant differences shown in the flexion between the pre- and post-test. [Conclusion] The shoulder stabilization and stretching exercises improved the static balance, dynamic balance, and muscle strength.
An Equation for Moist Entropy in a Precipitating and Icy Atmosphere
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Simpson, Joanne; Zeng, Xiping
2003-01-01
Moist entropy is nearly conserved in adiabatic motion. It is redistributed rather than created by moist convection. Thus moist entropy and its equation, as a healthy direction, can be used to construct analytical and numerical models for the interaction between tropical convective clouds and large-scale circulations. Hence, an accurate equation of moist entropy is needed for the analysis and modeling of atmospheric convective clouds. On the basis of the consistency between the energy and the entropy equations, a complete equation of moist entropy is derived from the energy equation. The equation expresses explicitly the internal and external sources of moist entropy, including those in relation to the microphysics of clouds and precipitation. In addition, an accurate formula for the surface flux of moist entropy from the underlying surface into the air above is derived. Because moist entropy deals "easily" with the transition among three water phases, it will be used as a prognostic variable in the next generation of cloud-resolving models (e. g. a global cloud-resolving model) for low computational noise. Its equation that is derived in this paper is accurate and complete, providing a theoretical basis for using moist entropy as a prognostic variable in the long-term modeling of clouds and large-scale circulations.
NASA Astrophysics Data System (ADS)
Fajber, R. A.; Kushner, P. J.; Laliberte, F. B.
2017-12-01
In the midlatitude atmosphere, baroclinic eddies are able to raise warm, moist air from the surface into the midtroposphere where it condenses and warms the atmosphere through latent heating. This coupling between dynamics and moist thermodynamics motivates using a conserved moist thermodynamic variable, such as the equivalent potential temperature, to study the midlatitude circulation and associated heat transport since it implicitly accounts for latent heating. When the equivalent potential temperature is used to zonally average the circulation, the moist isentropic circulation takes the form of a single cell in each hemisphere. By utilising the statistical transformed Eulerian mean (STEM) circulation we are able to parametrize the moist isentropic circulation in terms of second order dynamic and moist thermodynamic statistics. The functional dependence of the STEM allows us to analytically calculate functional derivatives that reveal the spatially varying sensitivity of the moist isentropic circulation to perturbations in different statistics. Using the STEM functional derivatives as sensitivity kernels we interpret changes in the moist isentropic circulation from two experiments: surface heating in an idealised moist model, and a climate change scenario in a comprehensive atmospheric general circulation model. In both cases we find that the changes in the moist isentropic circulation are well predicted by the functional sensitivities, and that the total heat transport is more sensitive to changes in dynamical processes driving local changes in poleward heat transport than it is to thermodynamic and/or radiative processes driving changes to the distribution of equivalent potential temperature.
Postural Stability in Cigarette Smokers and During Abstinence from Alcohol
Schmidt, Thomas Paul; Pennington, David Louis; Durazzo, Timothy Craig; Meyerhoff, Dieter Johannes
2014-01-01
Background Static postural instability is common in alcohol dependent individuals (ALC). Chronic alcohol consumption has deleterious effects on the neural and perceptual systems subserving postural stability. However, little is known about the effects of chronic cigarette smoking on postural stability and its changes during abstinence from alcohol. Methods A modified Fregly ataxia battery was administered to a total of 115 smoking (sALC) and non-smoking ALC (nsALC) and to 74 smoking (sCON) and non-smoking light/non-drinking controls (nsCON). Subgroups of abstinent ALC were assessed at 3 time points (approximately 1 week, 5 weeks, 34 weeks of abstinence from alcohol); a subset of nsCON was re-tested at 40 weeks. We tested if cigarette smoking affects postural stability in CON and in ALC during extended abstinence from alcohol, and we used linear mixed effects modeling to measure change across time points within ALC. Results Chronic smoking was associated with reduced performance on the Sharpened Romberg eyes-closed task in abstinent ALC at all three time points and in CON. The test performance of nsALC increased significantly between 1 and 32 weeks of abstinence, whereas the corresponding increases for sALC between 1 and 35 weeks was non-significant. With long-term abstinence from alcohol, nsALC recovered into the range of nsCON and sALC recovered into the range of sCON. Static postural stability decreased with age and correlated with smoking variables but not with drinking measures. Conclusions Chronic smoking was associated with reduced static postural stability with eyes closed and with lower increases of postural stability during abstinence from alcohol. Smoking cessation in alcohol dependence treatment may facilitate recovery from static postural instability during abstinence. PMID:24721012
Postural stability in cigarette smokers and during abstinence from alcohol.
Schmidt, Thomas P; Pennington, David L; Durazzo, Timothy C; Meyerhoff, Dieter J
2014-06-01
Static postural instability is common in alcohol-dependent individuals (ALC). Chronic alcohol consumption has deleterious effects on the neural and perceptual systems subserving postural stability. However, little is known about the effects of chronic cigarette smoking on postural stability and its changes during abstinence from alcohol. A modified Fregly ataxia battery was administered to a total of 115 smoking (sALC) and nonsmoking ALC (nsALC) and to 71 smoking (sCON) and nonsmoking light/nondrinking controls (nsCON). Subgroups of abstinent ALC were assessed at 3 time points (TPs; approximately 1, 5, 34 weeks of abstinence from alcohol); a subset of nsCON was retested at 40 weeks. We tested whether cigarette smoking affects postural stability in CON and in ALC during extended abstinence from alcohol, and we used linear mixed effects modeling to measure change across TPs within ALC. Chronic smoking was associated with reduced performance on the Sharpened Romberg eyes-closed task in abstinent ALC at all 3 TPs and in CON. The test performance of nsALC increased significantly between 1 and 32 weeks of abstinence, whereas the corresponding increases for sALC between 1 and 35 weeks were nonsignificant. With long-term abstinence from alcohol, nsALC recovered into the range of nsCON and sALC recovered into the range of sCON. Static postural stability decreased with age and correlated with smoking variables but not with drinking measures. Chronic smoking was associated with reduced static postural stability with eyes closed and with lower increases of postural stability during abstinence from alcohol. Smoking cessation in alcohol dependence treatment may facilitate recovery from static postural instability during abstinence. Copyright © 2014 by the Research Society on Alcoholism.
A Discrete Constraint for Entropy Conservation and Sound Waves in Cloud-Resolving Modeling
NASA Technical Reports Server (NTRS)
Zeng, Xi-Ping; Tao, Wei-Kuo; Simpson, Joanne
2003-01-01
Ideal cloud-resolving models contain little-accumulative errors. When their domain is so large that synoptic large-scale circulations are accommodated, they can be used for the simulation of the interaction between convective clouds and the large-scale circulations. This paper sets up a framework for the models, using moist entropy as a prognostic variable and employing conservative numerical schemes. The models possess no accumulative errors of thermodynamic variables when they comply with a discrete constraint on entropy conservation and sound waves. Alternatively speaking, the discrete constraint is related to the correct representation of the large-scale convergence and advection of moist entropy. Since air density is involved in entropy conservation and sound waves, the challenge is how to compute sound waves efficiently under the constraint. To address the challenge, a compensation method is introduced on the basis of a reference isothermal atmosphere whose governing equations are solved analytically. Stability analysis and numerical experiments show that the method allows the models to integrate efficiently with a large time step.
NASA Technical Reports Server (NTRS)
Mclaughlin, M. D.
1977-01-01
Classical drag equations were used to calculate total and induced drag and ratios of stabilizer lift to wing lift for a variety of conventional and canard configurations. The Flight efficiencies of such configurations that are trimmed in pitch and have various values of static margin are evaluated. Classical calculation methods are compared with more modern lifting surface theory.
Zuidema, Pieter A.; Martínez-Ramos, Miguel
2009-01-01
Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees—those that have not attained the canopy—are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests. Electronic supplementary material The online version of this article (doi:10.1007/s00442-009-1540-5) contains supplementary material, which is available to authorized users. PMID:20033820
Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP)
NASA Astrophysics Data System (ADS)
Kravitz, Ben; Caldeira, Ken; Boucher, Olivier; Robock, Alan; Rasch, Philip J.; Alterskjær, Kari; Karam, Diana Bou; Cole, Jason N. S.; Curry, Charles L.; Haywood, James M.; Irvine, Peter J.; Ji, Duoying; Jones, Andy; Kristjánsson, Jón Egill; Lunt, Daniel J.; Moore, John C.; Niemeier, Ulrike; Schmidt, Hauke; Schulz, Michael; Singh, Balwinder; Tilmes, Simone; Watanabe, Shingo; Yang, Shuting; Yoon, Jin-Ho
2013-08-01
geoengineering—deliberate reduction in the amount of solar radiation retained by the Earth—has been proposed as a means of counteracting some of the climatic effects of anthropogenic greenhouse gas emissions. We present results from Experiment G1 of the Geoengineering Model Intercomparison Project, in which 12 climate models have simulated the climate response to an abrupt quadrupling of CO2 from preindustrial concentrations brought into radiative balance via a globally uniform reduction in insolation. Models show this reduction largely offsets global mean surface temperature increases due to quadrupled CO2 concentrations and prevents 97% of the Arctic sea ice loss that would otherwise occur under high CO2 levels but, compared to the preindustrial climate, leaves the tropics cooler (-0.3 K) and the poles warmer (+0.8 K). Annual mean precipitation minus evaporation anomalies for G1 are less than 0.2 mm day-1 in magnitude over 92% of the globe, but some tropical regions receive less precipitation, in part due to increased moist static stability and suppression of convection. Global average net primary productivity increases by 120% in G1 over simulated preindustrial levels, primarily from CO2 fertilization, but also in part due to reduced plant heat stress compared to a high CO2 world with no geoengineering. All models show that uniform solar geoengineering in G1 cannot simultaneously return regional and global temperature and hydrologic cycle intensity to preindustrial levels.
Climate Model Response from the Geoengineering Model Intercomparison Project (GeoMIP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Benjamin S.; Caldeira, Ken; Boucher, Olivier
2013-08-09
Solar geoengineering—deliberate reduction in the amount of solar radiation retained by the Earth—has been proposed as a means of counteracting some of the climatic effects of anthropogenic greenhouse gas emissions. We present results from Experiment G1 of the Geoengineering Model Intercomparison Project, in which 12 climate models have simulated the climate response to an abrupt quadrupling of CO2 from preindustrial concentrations brought into radiative balance via a globally uniform reduction in insolation. Models show this reduction largely offsets global mean surface temperature increases due to quadrupled CO2 concentrations and prevents 97% of the Arctic sea ice loss that would otherwisemore » occur under high CO2 levels but, compared to the preindustrial climate, leaves the tropics cooler (-0.3 K) and the poles warmer (+0.8 K). Annual mean precipitation minus evaporation anomalies for G1 are less than 0.2mmday-1 in magnitude over 92% of the globe, but some tropical regions receive less precipitation, in part due to increased moist static stability and suppression of convection. Global average net primary productivity increases by 120% in G1 over simulated preindustrial levels, primarily from CO2 fertilization, but also in part due to reduced plant heat stress compared to a high CO2 world with no geoengineering. All models show that uniform solar geoengineering in G1 cannot simultaneously return regional and global temperature and hydrologic cycle intensity to preindustrial levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, William K. M.; Kim, Kyu-Myong; Ruby Leung, L.
Using model outputs from CMIP5 historical integrations, we have investigated the relative roles of anthropogenic emissions of greenhouse gases (GHG) and aerosols in changing the characteristics of the large-scale circulation and rainfall in Asian summer monsoon (ASM) regions. Under GHG warming, a strong positive trend in low-level moist static energy (MSE) is found over ASM regions, associated with increasing large-scale land–sea thermal contrast from 1870s to present. During the same period, a mid-tropospheric convective barrier (MCB) due to widespread reduction in relative humidity in the mid- and lower troposphere is strengthening over the ASM regions, in conjunction with expanding areasmore » of anomalous subsidence associated with the Deep Tropical Squeeze (Lau and Kim in Proc Natl Acad Sci 12:3630–3635, 2015). The opposing effects of MSE and MCB lead to enhanced total ASM rainfall, but only a partial strengthening of the southern portion of the monsoon meridional circulation, coupled to anomalous multi-cellular overturning motions over ASM land. Including anthropogenic aerosol emissions strongly masks MSE but enhances MCB via increased stability in the lower troposphere, resulting in an overall weakened ASM circulation with suppressed rainfall. Analyses of rainfall characteristics indicate that under GHG, overall precipitation efficiency over the ASM region is reduced, manifesting in less moderate but more extreme heavy rain events. Under combined effects of GHG and aerosols, precipitation efficiency is unchanged, with more moderate, but less extreme rainfall.« less
NASA Astrophysics Data System (ADS)
Lau, William K. M.; Kim, Kyu-Myong; Ruby Leung, L.
2017-12-01
Using model outputs from CMIP5 historical integrations, we have investigated the relative roles of anthropogenic emissions of greenhouse gases (GHG) and aerosols in changing the characteristics of the large-scale circulation and rainfall in Asian summer monsoon (ASM) regions. Under GHG warming, a strong positive trend in low-level moist static energy (MSE) is found over ASM regions, associated with increasing large-scale land-sea thermal contrast from 1870s to present. During the same period, a mid-tropospheric convective barrier (MCB) due to widespread reduction in relative humidity in the mid- and lower troposphere is strengthening over the ASM regions, in conjunction with expanding areas of anomalous subsidence associated with the Deep Tropical Squeeze (Lau and Kim in Proc Natl Acad Sci 12:3630-3635, 2015). The opposing effects of MSE and MCB lead to enhanced total ASM rainfall, but only a partial strengthening of the southern portion of the monsoon meridional circulation, coupled to anomalous multi-cellular overturning motions over ASM land. Including anthropogenic aerosol emissions strongly masks MSE but enhances MCB via increased stability in the lower troposphere, resulting in an overall weakened ASM circulation with suppressed rainfall. Analyses of rainfall characteristics indicate that under GHG, overall precipitation efficiency over the ASM region is reduced, manifesting in less moderate but more extreme heavy rain events. Under combined effects of GHG and aerosols, precipitation efficiency is unchanged, with more moderate, but less extreme rainfall.
2014-06-01
6000 s. 7 Table 1: Case 3. Comparative results of front location at 900s. LES (SEM), VMS (FE), WRF -ARW V2.2 (FD), f-wave (FV), filtered Spectral Elements...NO 14629 VMS [15] (75 m) NO 14487 VMS [15] (100 m) NO 14355 WRF -ARW 50 m YES 14470 SE [6] 50m YES 14767 DG [6] 50m YES 14767 f-wave (FV) [1] 50 m YES
NASA Technical Reports Server (NTRS)
Brandon, J. M.; Murri, D. G.; Nguyen, L. T.
1986-01-01
A series of low-speed wind tunnel tests on a generic airplane model with a cylindrical fuselage were made to investigate the effects of forebody shape and fitness ratio, and fuselage/wing proximity on static and dynamic lateral/directional stability. In addition, some preliminary testing to determine the effectiveness of deflectable forebody strakes for high angle of attack yaw control was conducted. During the stability investigation, 11 forebodies were tested including three different cross-sectional shapes with fineness ratios of 2, 3, and 4. In addition, the wing was tested at two longitudinal positions to provide a substantial variation in forebody/wing proximity. Conventional force tests were conducted to determine static stability characteristics, and single-degree-of-freedom free-to-roll tests were conducted to study the wing rock characteristics of the model with the various forebodies. Flow visualization data were obtained to aid in the analysis of the complex flow phenomena involved. The results show that the forebody cross-sectional shape and fineness ratio and forebody/wing proximity can strongly affect both static and dynamic (roll) stability at high angles of attack. These characteristics result from the impact of these factors on forebody vortex development, the behavior of the vortices in sideslip, and their interaction with the wing flow field. Preliminary results from the deflectable strake investigation indicated that forebody flow control using this concept can provide very large yaw control moments at stall and post-stall angles of attack.
On convection and static stability during the AMMA SOP3 campaign
NASA Astrophysics Data System (ADS)
Embolo Embolo, G. B.; Lenouo, André; Nzeukou, Armand T.; Vondou, Derbetini A.; Kamga, F. Mkankam
2017-01-01
Using radiosonde dataset from 15 weather stations over West Africa, this paper investigates the contribution of the couple convection-static stability in the framework of the African monsoon multidisciplinary analyses Special Observing Period 3 (AMMA SOP3) experiment. Within this 31-day period, the boundary layer-winds depictions have revealed the West African monsoon's (WAM) depth (around 1500 m) is not thick enough to trigger intense convection. However, the midlevel winds distribution (700-600 hPa) has shown the average African easterly jet core strength (15 m s-1) is sufficient to allow the development of African easterly waves (AEWs) necessary for squall lines activities. In return, in the upper levels (200-100 hPa), the speed (below 18 m s-1) of the mean Tropical easterly jet (TEJ) core cannot favor midlevel updrafts. The free tropospheric humidity (FTH) depiction has indicated convective events are more likely in the western Sahel where the highest FTH (FTH >50 %) are recorded. The static stability analysis has testified that convection is stronger in the semi-arid (SA) area during night time (0000 GMT). However, convective activities are inhibited in the wet equatorial (WE) region due to mean low-level stability. We used METEOSAT Second Generation (MSG) infrared (IR10.8) imagery of the 8th September 2006 to confirm that result. Furthermore, a maximum midtropospheric static stability combined with maximum relative humidity (RH) was found on the fringe of the Saharan air layer's (SAL) top (altitude around 5.3 km) in the WE region.
Systematic errors in Monsoon simulation: importance of the equatorial Indian Ocean processes
NASA Astrophysics Data System (ADS)
Annamalai, H.; Taguchi, B.; McCreary, J. P., Jr.; Nagura, M.; Miyama, T.
2015-12-01
H. Annamalai1, B. Taguchi2, J.P. McCreary1, J. Hafner1, M. Nagura2, and T. Miyama2 International Pacific Research Center, University of Hawaii, USA Application Laboratory, JAMSTEC, Japan In climate models, simulating the monsoon precipitation climatology remains a grand challenge. Compared to CMIP3, the multi-model-mean (MMM) errors for Asian-Australian monsoon (AAM) precipitation climatology in CMIP5, relative to GPCP observations, have shown little improvement. One of the implications is that uncertainties in the future projections of time-mean changes to AAM rainfall may not have reduced from CMIP3 to CMIP5. Despite dedicated efforts by the modeling community, the progress in monsoon modeling is rather slow. This leads us to wonder: Has the scientific community reached a "plateau" in modeling mean monsoon precipitation? Our focus here is to better understanding of the coupled air-sea interactions, and moist processes that govern the precipitation characteristics over the tropical Indian Ocean where large-scale errors persist. A series idealized coupled model experiments are performed to test the hypothesis that errors in the coupled processes along the equatorial Indian Ocean during inter-monsoon seasons could potentially influence systematic errors during the monsoon season. Moist static energy budget diagnostics has been performed to identify the leading moist and radiative processes that account for the large-scale errors in the simulated precipitation. As a way forward, we propose three coordinated efforts, and they are: (i) idealized coupled model experiments; (ii) process-based diagnostics and (iii) direct observations to constrain model physics. We will argue that a systematic and coordinated approach in the identification of the various interactive processes that shape the precipitation basic state needs to be carried out, and high-quality observations over the data sparse monsoon region are needed to validate models and further improve model physics.
NASA Astrophysics Data System (ADS)
Irsyad Lukman, E.; Agoes Moelyadi, M.
2018-04-01
A High Altitude Long Endurance (HALE) Unamanned Aerial Vehicle (UAV) is currently being researched in Bandung Institute of Technology. The HALE is designed to be a pseudo-sattelite for information and communication purpose in Indonesia. This paper would present the longitudinal static stability of the aircraft that was analysed using DATCOM as well as simulation of the wing using ANSYS CFX. Result shows that the aircraft has acceptable stability and the wake from the wing at climbing condition cannot be ignored, however it does not affect the horizontal tail.
Stability Limits and Dynamics of Nonaxisymmetric Liquid Bridges
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.
1998-01-01
Theoretical and experimental investigation of the stability of nonaxisymmetric and nonaxisymmetric bridges contained between equal and unequal radii disks as a function of Bond and Weber number with emphasis on the transition from unstable axisymmetric to stable nonaxisymmetric shapes. Numerical analysis of the stability of nonaxisymmetric bridges for various orientations of the gravity vector for equal and unequal disks. Experimental and theoretical investigation of large (nonaxisymmetric) oscillations and breaking of liquid bridges. This project involves both experimental and theoretical work. Static and dynamic experiments are conducted in a Plateau tank which makes a range of static Bond numbers accessible.
NASA Technical Reports Server (NTRS)
Wolhart, Walter D.; Thomas, David F., Jr.
1955-01-01
An experimental investigation has been made in the Langley stability tunnel to determine the low-speed yawing, pitching, and static stability characteristics of a 1/10-scale model of the Grumman F9F-9 airplane. Tests were made to determine the effects of duct-entrance-fairing plugs on the static lateral and longitudinal stability characteristics of the complete model in the clean condition. The remaining tests were concerned with determining tail contributions as well as the effect of duct-entrance-fairing plugs, slats, flaps, and landing gear on the yawing and pitching stability derivatives. These data are presented without analysis in order to expedite distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troyon, F.
1963-12-01
The stability of a field-free homogeneous column of plasma confined to an axial static field and the sum of an alternating and static B/sub tt/ field is considered in the freeparticle model. Conditions for the existence of a positive average restoring force are derived, and it is shown that for small deformations the column is stable for sufficientiy high frequency. (auth)
NASA Technical Reports Server (NTRS)
Hofstetter, William R.
1957-01-01
The static longitudinal and lateral stability charaetefistics of an 0 .065-scale model of the XRSSM-N-9a (REGULUS II) Missile at Mach number range of 1.6 to 2.0 at a Reynolds number per foot of 2.0(exp 8)
NASA Technical Reports Server (NTRS)
Svalbonas, V.
1973-01-01
The theoretical analysis background for the STARS-2 (shell theory automated for rotational structures) program is presented. The theory involved in the axisymmetric nonlinear and unsymmetric linear static analyses, and the stability and vibrations (including critical rotation speed) analyses involving axisymmetric prestress are discussed. The theory for nonlinear static, stability, and vibrations analyses, involving shells with unsymmetric loadings are included.
NASA Technical Reports Server (NTRS)
Hyun, J. M.
1981-01-01
Quasi-geostrophic disturbance instability characteristics are studied in light of a linearized, two-layer Eady model in which both the static stability and the zonal current shear are uniform but different in each layer. It is shown that the qualitative character of the instability is determined by the sign of the basic-state potential vorticity gradient at the layer interface, and that there is a qualitative similarity between the effects of Richardson number variations due to changes in static stability and those due to changes in shear. The two-layer model is also used to construct an analog of the Williams (1974) continuous model of generalized Eady waves, the basic state in that case having zero potential vorticity gradient in the interior. The model results are in good agreement with the earlier Williams findings.
NASA Technical Reports Server (NTRS)
Smith, P. M.
1978-01-01
Tests have been conducted to extend the existing low speed aerodynamic data base of advanced supersonic-cruise arrow wing configurations. Principle configuration variables included wing leading-edge flap deflection, wing trailing-edge flap deflection, horizontal tail effectiveness, and fuselage forebody strakes. A limited investigation was also conducted to determine the low speed aerodynamic effects due to slotted training-edge flaps. Results of this investigation demonstrate that deflecting the wing leading-edge flaps downward to suppress the wing apex vortices provides improved static longitudinal stability; however, it also results in significantly reduced static directional stability. The use of a selected fuselage forebody strakes is found to be effective in increasing the level of positive static directional stability. Drooping the fuselage nose, which is required for low-speed pilot vision, significantly improves the later-directional trim characteristics.
NASA Technical Reports Server (NTRS)
Park, Michael A.; Green, Lawrence L.; Montgomery, Raymond C.; Raney, David L.
1999-01-01
With the recent interest in novel control effectors there is a need to determine the stability and control derivatives of new aircraft configurations early in the design process. These derivatives are central to most control law design methods and would allow the determination of closed-loop control performance of the vehicle. Early determination of the static and dynamic behavior of an aircraft may permit significant improvement in configuration weight, cost, stealth, and performance through multidisciplinary design. The classical method of determining static stability and control derivatives - constructing and testing wind tunnel models - is expensive and requires a long lead time for the resultant data. Wind tunnel tests are also limited to the preselected control effectors of the model. To overcome these shortcomings, computational fluid dynamics (CFD) solvers are augmented via automatic differentiation, to directly calculate the stability and control derivatives. The CFD forces and moments are differentiated with respect to angle of attack, angle of sideslip, and aircraft shape parameters to form these derivatives. A subset of static stability and control derivatives of a tailless aircraft concept have been computed by two differentiated inviscid CFD codes and verified for accuracy with central finite-difference approximations and favorable comparisons to a simulation database.
NASA Astrophysics Data System (ADS)
Yosef, G.; Avissar, R.; Walko, R. L.; Yakir, D.
2017-12-01
Land-cover change from low-level shrubs to forest over semi-arid monsoon regions such as the Sahel, can significantly influence the surface energy budget and, in turn, the local atmospheric circulation. These regions, influenced at the summer by the monsoon rain following the migration of the tropical convergence zones (ITCZ). And low-level easterly jet that acts as a barrier to the penetration of the precipitation into the semi arid areas. In this study we follow-up first the results of large-scale afforestation numerical experiment in the Sahel that changes the local and regional atmospheric circulation and, consequently, increasing of precipitation. We aim for explicitly investigation of the change in the sources and pathways of humidity in the terrestrial water cycle over the Sahel as result afforestation. The GCM OLAM was used to performing simulations of afforestation scenarios in the Sahel. The area (Sahel 2.6 E6 km2) was afforested with a mature pine forest, using the extensive data form the long-term semi-arid Yatir forest in Israel as a reference forest for surface parameterization. The regional effect of the afforestation was analyzed using the following parameters; the index of water recycling (WR), which refers to the contribution of local ET fluxes to precipitation; the Moist Static Energy (MSE), is the sum of the potential, inertial and latent energy; and the vertical motion. The result shows increases of the WR in the south of the afforested area and north of the footprint, mainly as consequences of increasing in the vertical integrated moist flux convergence (MFC). Explaining this mechanism in terms of MSE shows that although the forest area become cooler and stabilizes the atmospheric column, its shift and weaken the African Easterly Jet enable the penetration of additional humidity to increase the MFC. On the other hand positive MSE observed over the northern footprint area mainly as a results of increasing the leant energy (e.g. humidity). Over all the result shows a self-sustainable system, where water is recharged to the atmosphere through ET, supported by the convergence process, as can be seen over the west part of the Sahel. As a consequence the forest system is not reliant on external water alone and also uses recycled water from its own ET to increase precipitation.
NASA Astrophysics Data System (ADS)
Moernaut, J.; Verschuren, D.; Charlet, F.; Kristen, I.; Fagot, M.; De Batist, M.
2010-02-01
Seismic-reflection data from crater lake Challa (Mt. Kilimanjaro, equatorial East Africa) reveal a ˜ 210-m thick sedimentary infill containing distinct seismic-stratigraphic signatures of late-Quaternary lake-level fluctuations. Extrapolation of a well-constrained age model on the cored upper part of the sequence suggests that these lake-level fluctuations represent a detailed and continuous record of moisture-balance variation in equatorial East Africa over the last 140 kyr. This record indicates that the most severe aridity occurred during peak Penultimate glaciation immediately before ˜ 128 kyr BP (coeval with Heinrich event 11) and during a Last Interglacial 'megadrought' period between ˜ 114 and ˜ 97 kyr BP; in comparison, Last Glacial Maximum (LGM) aridity was modest. It was preceded by ˜ 75 000 years of relatively stable and moist climate conditions interrupted by eleven short-lived dry spells, five of which match the timing of Heinrich events 2 to 6. Climate history near the East African equator reflects variation in the precessional forcing of monsoon rainfall modulated by orbital eccentricity, but precession-driven moisture fluctuations were less extreme than those observed in northern and southern tropical Africa. The near-continuous moist climate from ˜ 97 to 20.5 kyr BP recorded in the Lake Challa record contrasts with the trend towards greater aridity after ˜ 70 kyr BP documented in equatorial West Africa. This long period of moist glacial climate and a short, relatively modest LGM drought can be attributed to greater independence of western Indian Ocean monsoon dynamics from northern high-latitude glaciation than those in the tropical Atlantic Ocean. This rather persistent moist glacial climate regime may have helped maintain high biodiversity in the tropical forest ecosystems of the Eastern Arc mountains in Tanzania.
NASA Astrophysics Data System (ADS)
Rostami, Masoud; Zeitlin, Vladimir
2017-01-01
Analysis of the influence of condensation and related latent heat release upon developing barotropic and baroclinic instabilities of large-scale low Rossby-number shielded vortices on the f-plane is performed within the moist-convective rotating shallow water model, in its barotropic (one-layer) and baroclinic (two-layer) versions. Numerical simulations with a high-resolution well-balanced finite-volume code, using a relaxation parameterisation for condensation, are made. Evolution of the instability in four different environments, with humidity (i) behaving as passive scalar, (ii) subject to condensation beyond a saturation threshold, (iii) subject to condensation and evaporation, with three different parameterisations of the latter, are inter-compared. The simulations are initialised with unstable modes determined from the detailed linear stability analysis in the "dry" version of the model. In a configuration corresponding to low-level mid-latitude atmospheric vortices, it is shown that the known scenario of evolution of barotropically unstable vortices, consisting in formation of a pair of dipoles (dipolar breakdown) is substantially modified by condensation and related moist convection, especially in the presence of surface evaporation. No enhancement of the instability due to precipitation was detected in this case. Cyclone-anticyclone asymmetry with respect to sensitivity to the moist effects is evidenced. It is shown that inertia-gravity wave emission during the vortex evolution is enhanced by the moist effects. In the baroclinic configuration corresponding to idealised cut-off lows in the atmosphere, it is shown that the azimuthal structure of the leading unstable mode is sensitive to the details of stratification. Scenarios of evolution are completely different for different azimuthal structures, one leading to dipolar breaking, and another to tripole formation. The effects of moisture considerably enhance the perturbations in the lower layer, especially in the tripole formation scenario.
Bayraktar, Deniz; Guclu-Gunduz, Arzu; Lambeck, Johan; Yazici, Gokhan; Aykol, Sukru; Demirci, Harun
2016-01-01
To determine and compare the effects of core stability exercise programs performed in two different environments in lumbar disc herniation (LDH) patients. Thirty-one patients who were diagnosed with LDH and were experiencing pain or functional disability for at least 3 months were randomly divided into two groups as land-based exercises or water specific therapy. Also, 15 age-sex-matched healthy individuals were recruited as healthy controls. Both groups underwent an 8-week (3 times/week) core stabilization exercise program. Primary outcomes were pain, trunk muscle static endurance and perceived disability level. The secondary outcome was health-related quality of life. Level of static endurance of trunk muscles was found to be lower in the patients compared to the controls at baseline (p < 0.05). Both treatment groups showed significant improvements in all outcomes (p < 0.05) after 8-week intervention. When two treatment groups were compared, no differences were found in the amount of change after the intervention (p > 0.05). After the treatment, static endurance of trunk muscles of the LDH patients became similar to controls (p > 0.05). According to these results, core stabilization exercise training performed on land or in water both could be beneficial in LDH patients and there is no difference between the environments. An 8-week core stabilization program performed in water or on land decrease pain level and improve functional status in LDH patients. Both programs seem beneficial to increase health-related quality of life and static endurance of trunk muscles. Core stability exercises could be performed in water as well, no differences were found between methods due to environment.
Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers
NASA Technical Reports Server (NTRS)
Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.
1989-01-01
Hydrogen-oxygen SPE fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. The SPE cells have demonstrated a ten year life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton-exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluroride loss rates and average expected ultimate cell life. Several features were introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability were demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density. The SPE electrolyzers have demonstrated the same at 1000 ASF. Many future extraterrestrial applications for fuel cells require that they be self recharged. To translate the proven SPE cell life and stability into a highly reliable extraterrestrial electrical energy storage system, a simplification of supporting equipment is required. Static phase separation, static fluid transport and static thermal control will be most useful in producting required system reliability. Although some 200,000 SPE fuel cell hours were recorded in earth orbit with static fluid phase separation, no SPE electrolyzer has, as yet, operated in space.
NASA Astrophysics Data System (ADS)
Rusconi, C. C.; Pöchhacker, V.; Cirac, J. I.; Romero-Isart, O.
2017-10-01
We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field. We show that, apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical Levitron), the quantum spin origin of its magnetization provides two additional mechanisms to stably levitate the system. Despite the Earnshaw theorem, such stable phases are present even in the absence of mechanical rotation. For large magnetic fields, the Larmor precession of the quantum magnetic moment stabilizes the system in full analogy with magnetic trapping of a neutral atom. For low magnetic fields, the magnetic anisotropy stabilizes the system via the Einstein-de Haas effect. These results are obtained with a linear stability analysis of a single magnetic domain rigid nanosphere with uniaxial anisotropy in a Ioffe-Pritchard magnetic field.
NASA Astrophysics Data System (ADS)
Qiu, Hao; Mizutani, Tomoko; Saraya, Takuya; Hiramoto, Toshiro
2015-04-01
The commonly used four metrics for write stability were measured and compared based on the same set of 2048 (2k) six-transistor (6T) static random access memory (SRAM) cells by the 65 nm bulk technology. The preferred one should be effective for yield estimation and help predict edge of stability. Results have demonstrated that all metrics share the same worst SRAM cell. On the other hand, compared to butterfly curve with non-normality and write N-curve where no cell state flip happens, bit-line and word-line margins have good normality as well as almost perfect correlation. As a result, both bit line method and word line method prove themselves preferred write stability metrics.
Stability characteristics of the mesopause region above the Andes
NASA Astrophysics Data System (ADS)
Yang, F.; Liu, A. Z.
2017-12-01
The structure and seasonal variations of static and dynamic (shear) instabilities in the upper atmosphere (80 to 110 km) are examined using 3-year high-resolution wind and temperature data obtained with the Na Lidar at Andes Lidar Observatory (30S,71W). The stabilities are primarily determined by background temperature and wind, but strongly affected by tidal and gravity wave variations. Gravity waves perturb the atmosphere, causing intermittent unstable layers. The stabilities are characterized by their vertical and seasonal distributions of probability of instabilities. As have been found in previous studies, there is a correlation between high static stability (large N2) and strong vertical wind shear. The mechanism for this relationship is investigated in the context of gravity waves interacting with varying background.
Estimation of dynamic stability parameters from drop model flight tests
NASA Technical Reports Server (NTRS)
Chambers, J. R.; Iliff, K. W.
1981-01-01
A recent NASA application of a remotely-piloted drop model to studies of the high angle-of-attack and spinning characteristics of a fighter configuration has provided an opportunity to evaluate and develop parameter estimation methods for the complex aerodynamic environment associated with high angles of attack. The paper discusses the overall drop model operation including descriptions of the model, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods used. Static and dynamic stability derivatives were obtained for an angle-of-attack range from -20 deg to 53 deg. The results of the study indicated that the variations of the estimates with angle of attack were consistent for most of the static derivatives, and the effects of configuration modifications to the model (such as nose strakes) were apparent in the static derivative estimates. The dynamic derivatives exhibited greater uncertainty levels than the static derivatives, possibly due to nonlinear aerodynamics, model response characteristics, or additional derivatives.
NASA Technical Reports Server (NTRS)
Wells, James; Scherrer, John; Van Noord, Jonathan; Law, Richard
2015-01-01
In response to the recommendations made in the National Research Council' s Ear th Science and Applications 2007 Decadal Sur vey, NASA has initiated the Ear th Venture line of mission oppor tunities. The fir st orbital mission chosen for this competitively selected, cost and schedule constrained, Pr incipal Investigator -led oppor tunity is the CYclone Global Navigation Satellite System (CYGNSS). The goal of CYGNSS is to understand the coupling between ocean sur face proper ties, moist atmospher ic thermodynamics, radiation, and convective dynamics in the inner core of a tropical cyclone. The CYGNSS mission is compr ised of eight Low Ear th Obser ving (LEO) micr osatellites that use GPS bi-static scatterometry to measure ocean sur face winds.
NASA Astrophysics Data System (ADS)
Churchill, A. C.; Bowman, W. D.
2016-12-01
Plant communities are assemblages of species with unique traits, and by comparing different communities we can infer how those traits affect ecosystem processes. In particular, plant feedbacks affecting the N cycle can drive processing of N in numerous pools within an ecosystem, both as individuals and as a part of the larger community. Global nitrogen (N) deposition rates have increased dramatically since the industrial revolution and an understanding of how plant feedbacks may contribute to ecosystem responses is needed. We used an enriched 15N isotope tracer to compare ecosystem N pools associated with plant processing of N among three alpine plant communities (dry, moist, and wet meadows) with diverse characteristics. We applied NH4NO3 as a fertilizer at two treatment levels, ambient deposition (control) and 30 kg N ha-1 yr-1 (fertilized) and collected measurements of enrichment in ecosystem plant and soil N pools following two growing seasons after our application of the isotopic tracer (fall 2014 and fall 2015). We found that the 15N enrichment (‰) of aboveground plant litter declined in all communities between 2014 and 2015, with greater loss of enrichment in fertilized plots in both the dry and wet meadow communities. This decline between years is expected, as litter is decomposed or if plants translocate N into belowground structures, however these results suggest that increased N deposition promotes plant N leakiness for communities with higher species diversity. Despite this trend, aboveground litter from fertilized plots remained more enriched than controls in both the dry and wet meadow communities, perhaps associated with overall greater capacity of those plant individuals to retain N. For control plots, the 15N enrichment of aboveground plant litter was comparable among the dry and moist communities, but the wet meadow was more enriched relative to the moist meadow. Fertilized plots showed a different pattern of enrichment: moist meadow < dry meadow < wet meadow. In both instances microbial processing of soil N may promote enrichment of plant available N during the growing season following our tracer application, however moist meadows have more water availability than dry meadows suggesting examination of other N pools will be necessary to determine where the tracer is being stabilized.
NASA Astrophysics Data System (ADS)
Yang, Zhichun; Zhou, Jian; Gu, Yingsong
2014-10-01
A flow field modified local piston theory, which is applied to the integrated analysis on static/dynamic aeroelastic behaviors of curved panels, is proposed in this paper. The local flow field parameters used in the modification are obtained by CFD technique which has the advantage to simulate the steady flow field accurately. This flow field modified local piston theory for aerodynamic loading is applied to the analysis of static aeroelastic deformation and flutter stabilities of curved panels in hypersonic flow. In addition, comparisons are made between results obtained by using the present method and curvature modified method. It shows that when the curvature of the curved panel is relatively small, the static aeroelastic deformations and flutter stability boundaries obtained by these two methods have little difference, while for curved panels with larger curvatures, the static aeroelastic deformation obtained by the present method is larger and the flutter stability boundary is smaller compared with those obtained by the curvature modified method, and the discrepancy increases with the increasing of curvature of panels. Therefore, the existing curvature modified method is non-conservative compared to the proposed flow field modified method based on the consideration of hypersonic flight vehicle safety, and the proposed flow field modified local piston theory for curved panels enlarges the application range of piston theory.
Some Static Oscillatory and Free Body Tests of Blunt Bodies at Low Subsonic Speeds
NASA Technical Reports Server (NTRS)
Lichtenstein, Jacob H.; Fisher, Lewis R.; Scher, Stanley H.; Lawrence, George F.
1959-01-01
Some blunt-body shapes considered suitable for entry into the earth's atmosphere were tested by both static and oscillatory methods in the Langley stability tunnel. In addition, free-fall tests of some similar models were made in the Langley 20-foot free-spinning tunnel. The results of the tests show that increasing the flare of the body shape increased the dynamic stability and that for flat-faced shapes increasing the corner radius increased the stability. The test data from the Langley stability tunnel were used to compute the damping factor for the models tested in the langley 20-foot free-spinning tunnel. For these cases in which the damping factor was low, -1/2 or less, the stability was critical and sensitive to disturbance. When the damping factor was about -2, damping was generally obtained.
Characterization of Heat Waves in the Sahel and associated mechanisms
NASA Astrophysics Data System (ADS)
Oueslati, Boutheina; Pohl, Benjamin; Moron, Vincent; Rome, Sandra
2016-04-01
Large efforts are made to investigate the heat waves (HW) in developed countries because of their devastating impacts on society, economy and environment. This interest increased after the intense event over Europe during summer 2003. However, HWs are still understudied over developing countries. This is particularly true in West Africa, and especially in the Sahel, where temperatures recurrently reach critical values, such as during the 2010 HW event. Understanding the Sahelian HWs and associated health risks constitute the main objective of ACASIS, a 4-year project funded by the French Agence Nationale de la Recherche. Our work contributes to this project and aims at characterizing the Sahelian HWs and understanding the mechanisms associated with such extreme events. There is no universal definition of a HW event, since it is highly dependent on the sector (human health, agriculture, transport...) and region of interest. In our case, a HW is defined when the heat index of the day and of the night exceeds the 90th percentile for at least 3 consecutive days (Rome et al. 2016, in preparation). This index combines temperature and relative humidity in order to determine the human-perceived equivalent temperature (definition adapted from Steadman, 1979). Intrinsic properties of Sahelian HW are analyzed from the Global Summary of the Day (GSOD) synoptic observations and ERA-interim reanalyses over 1979-2014 during boreal spring seasons (April-May-June), the warmest period of the year in the Central Sahel. ERA-interim captures well the observed interannual variability and seasonal cycle at the regional scale, as well as the 1979-2014 increasing linear trend of springtime HW occurrences in the Sahel. Reanalyses, however, overestimate the duration, spatial extent of HW, and underestimate their intensity. For both GSOD and ERA-interim, we show that, over the last three decades, Sahelian HWs tend to become more frequent, last longer, cover larger areas and reach higher intensities. The physical mechanisms associated with HWs are examined to assess the respective roles of atmospheric dynamics, radiative and turbulent fluxes, in the establishment of such events, by analyzing the atmospheric moist static energy budget. The results suggest that the greenhouse effect of water vapor is the main driver of HWs in the Sahel, increasing minimum temperatures by the long-wave radiation radiated back to the surface. Maximum temperature anomalies are explained by increased downward shortwave radiation due to a reduction in cloud albedo. Atmospheric circulation plays an important role in sustaining these warm anomalies by advecting dry static energy from the Sahara and both dry and moist static energy from the Atlantic Ocean into the Sahel.
Herrera-Rangel, Aline; Aranda-Moreno, Catalina; Mantilla-Ochoa, Teresa; Zainos-Saucedo, Lylia; Jáuregui-Renaud, Kathrine
2014-01-01
To assess the influence of peripheral neuropathy, gender, and obesity on the postural stability of patients with type 2 diabetes mellitus. 151 patients with no history of otology, neurology, or orthopaedic or balance disorders accepted to participate in the study. After a clinical interview and neuropathy assessment, postural stability was evaluated by static posturography (eyes open/closed on hard/soft surface) and the "Up & Go" test. During static posturography, on hard surface, the length of sway was related to peripheral neuropathy, gender, age, and obesity; on soft surface, the length of sway was related to peripheral neuropathy, gender, and age, the influence of neuropathy was larger in males than in females, and closing the eyes increased further the difference between genders. The mean time to perform the "Up & Go" test was 11.6 ± 2.2 sec, with influence of peripheral neuropathy, gender, and age. In order to preserve the control of static upright posture during conditions with deficient sensory input, male patients with type 2 diabetes mellitus with no history of balance disorders may be more vulnerable than females, and obesity may decrease the static postural control in both males and females.
Transonic static and dynamic stability characteristics of a finned projectile configuration
NASA Technical Reports Server (NTRS)
Boyden, R. P.; Brooks, C. W., Jr.; Davenport, E. E.
1978-01-01
Static and dynamic stability tests were made of a finned projectile configuration with the aft-mounted fins arranged in a cruciform pattern. The tests were made at free stream Mach numbers of 0.7, 0.9, 1.1, and 1.2 in the Langley 8-foot transonic pressure tunnel. Some of the parameters measured during the tests were lift, drag, pitching moment, pitch damping, and roll damping. Configurations tested included the body with undeflected fins, the body with various fin deflections for control, and the body with fins removed. Theoretical estimates of the stability derivatives were made for the fins on configuration.
Static and dynamic stability of the guidance force in a side-suspended HTS maglev system
NASA Astrophysics Data System (ADS)
Zhou, Dajin; Cui, Chenyu; Zhao, Lifeng; Zhang, Yong; Wang, Xiqing; Zhao, Yong
2017-02-01
The static and dynamic stability of the guidance force in a side-suspended HTS-PMG (permanent magnetic guideway) system were studied theoretically and experimentally. It is found that there are two types of guidance force that exist in the HTS-PMG system, which are sensitive to the levitation gap and the arrangement of YBCO bulks around the central axis of the PMG. An optimized YBCO array was used to stabilize the system, which enabled a side-suspended HTS-PMG maglev vehicle to run stably at 102 km h-1 on a circular test track with 6.5 m in diameter.
The motion control of a statically stable biped robot on an uneven floor.
Shih, C L; Chiou, C J
1998-01-01
This work studies the motion control of a statically stable biped robot having seven degrees of freedom. Statically stable walking of the biped robot is realized by maintaining the center-of-gravity inside the convex region of the supporting foot and/or feet during both single-support and double-support phases. The main points of this work are framing the stability in an easy and correct way, the design of a bipedal statically stable walker, and walking on sloping surfaces and stairs.
Venkatachalam, Mahesh; Teuber, Suzanne S; Peterson, W Rich; Roux, Kenneth H; Sathe, Shridhar K
2006-02-22
Rabbit polyclonal antibody-based inhibition ELISA as well as immunoblotting analyses of proteins extracted from variously processed pecans (cv. Desirable) indicate that pecan proteins are antigenically stable. Pecan antigens were more sensitive to moist heat than dry heat processing treatments. SDS-PAGE and immunoblotting analysis of the native and heat-denatured proteins that were previously subjected to in vitro simulated gastric fluid digestions indicate that stable antigenic peptides were produced. Both enzyme-to-substrate ratio and digestion time were influential in determining the stability of pecan polypeptides. The stable antigenic polypeptides may serve as useful markers in developing assays suitable for the detection of trace amounts of pecans in foods.
The addition of body armor diminishes dynamic postural stability in military soldiers.
Sell, Timothy C; Pederson, Jonathan J; Abt, John P; Nagai, Takashi; Deluzio, Jennifer; Wirt, Michael D; McCord, Larry J; Lephart, Scott M
2013-01-01
Poor postural stability has been identified as a risk factor for lower extremity musculoskeletal injury. The additional weight of body armor carried by Soldiers alters static postural stability and may predispose Soldiers to lower extremity musculoskeletal injuries. However, static postural stability tasks poorly replicate the dynamic military environment, which places considerable stress on the postural control system during tactical training and combat. Therefore, the purpose of this study was to examine the effects of body armor on dynamic postural stability during single-leg jump landings. Thirty-six 101st Airborne Division (Air Assault) Soldiers performed single-leg jump landings in the anterior direction with and without wearing body armor. The dynamic postural stability index and the individual stability indices (medial-lateral stability index, anterior-posterior stability index, and vertical stability index) were calculated for each condition. Paired sample t-tests were performed to determine differences between conditions. Significant differences existed for the medial-lateral stability index, anterior-posterior stability index, vertical stability index, and dynamic postural stability index (p < 0.05). The addition of body armor resulted in diminished dynamic postural stability, which may result in increased lower extremity injuries. Training programs should address the altered dynamic postural stability while wearing body armor in attempts to promote adaptations that will result in safer performance during dynamic tasks.
Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.
2018-01-01
Abstract An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large‐amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller‐amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying. PMID:29576994
NASA Astrophysics Data System (ADS)
Fritts, David C.; Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.
2018-01-01
An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large-amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller-amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying.
NASA Astrophysics Data System (ADS)
Eid, A.
2017-11-01
In the framework of Darmois-Israel formalism, the dynamics of motion equations of spherically symmetric thin shell wormholes that are supported by a modified Chaplygin gas in Einstein-Hoffman-Born-Infeld theory are constructed. The stability analysis of a thin shell wormhole is also discussed using a linearized radial perturbation around static solutions at the wormhole throat. The existence of stable static solutions depends on the value of some parameters of dynamical shell.
Stability of cylindrical thin shell wormholes supported by MGCG in f(R) gravity
NASA Astrophysics Data System (ADS)
Eid, A.
2018-02-01
In the framework of f(R) modified theory of gravity, the dynamical equations of motion of a cylindrical thin shell wormholes supported by a modified generalized Chaplygin gas are constructed, using the cut and paste scheme (Darmois Israel formalism). The mechanical stability analysis of a cylindrical thin shell wormhole is discussed using a linearized radial perturbation around static solutions at the wormhole throat. The presence of stable static solutions depends on the suitable values of some parameters of dynamical shell.
Park, Jaeyeong; Jo, Min Cheol; Jeong, Hyeok Jae; Sohn, Seok Su; Kwak, Jai-Hyun; Kim, Hyoung Seop; Lee, Sunghak
2017-11-16
Phenomena occurring in duplex lightweight steels under dynamic loading are hardly investigated, although its understanding is essentially needed in applications of automotive steels. In this study, quasi-static and dynamic tensile properties of duplex lightweight steels were investigated by focusing on how TRIP and TWIP mechanisms were varied under the quasi-static and dynamic loading conditions. As the annealing temperature increased, the grain size and volume fraction of austenite increased, thereby gradually decreasing austenite stability. The strain-hardening rate curves displayed a multiple-stage strain-hardening behavior, which was closely related with deformation mechanisms. Under the dynamic loading, the temperature rise due to adiabatic heating raised the austenite stability, which resulted in the reduction in the TRIP amount. Though the 950 °C-annealed specimen having the lowest austenite stability showed the very low ductility and strength under the quasi-static loading, it exhibited the tensile elongation up to 54% as well as high strain-hardening rate and tensile strength (1038 MPa) due to appropriate austenite stability under dynamic loading. Since dynamic properties of the present duplex lightweight steels show the excellent strength-ductility combination as well as continuously high strain hardening, they can be sufficiently applied to automotive steel sheets demanded for stronger vehicle bodies and safety enhancement.
Bond strengths of Scotchbond Multi-Purpose to moist dentin and enamel.
Swift, E J; Triolo, P T
1992-12-01
This in vitro study tested the shear bond strengths of the Scotchbond Multi-Purpose adhesive system to moist and dry enamel and dentin. After the tooth was etched, the surface was either dried with compressed air or blotted with tissue paper, leaving the surface visibly moist. Primer and adhesive were applied according to the manufacturer's directions. Resin composite posts were applied, and the specimens were thermocycled. Shear bond strengths were determined using an Instron universal testing machine. For both enamel and dentin, mean shear bond strengths were higher when the surface was left visibly moist after etching. Bond strengths to moist and dry dentin were 21.8 and 17.8 MPa, respectively. Enamel bond strengths were slightly lower, with values of 17.0 and 14.2 MPa to moist and dry enamel, respectively.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stability § 25.171 General. The airplane must be.... In addition, suitable stability and control feel (static stability) is required in any condition normally encountered in service, if flight tests show it is necessary for safe operation. [Doc. No. 5066...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stability § 25.171 General. The airplane must be.... In addition, suitable stability and control feel (static stability) is required in any condition normally encountered in service, if flight tests show it is necessary for safe operation. [Doc. No. 5066...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stability § 23.171 General....181. In addition, the airplane must show suitable stability and control “feel” (static stability) in any condition normally encountered in service, if flight tests show it is necessary for safe operation. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stability § 23.171 General....181. In addition, the airplane must show suitable stability and control “feel” (static stability) in any condition normally encountered in service, if flight tests show it is necessary for safe operation. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Stability § 25.171 General. The airplane must be.... In addition, suitable stability and control feel (static stability) is required in any condition normally encountered in service, if flight tests show it is necessary for safe operation. [Doc. No. 5066...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Stability § 23.171 General....181. In addition, the airplane must show suitable stability and control “feel” (static stability) in any condition normally encountered in service, if flight tests show it is necessary for safe operation. ...
NASA Astrophysics Data System (ADS)
Meyer, Jonathan D. D.; Jin, Jiming
2017-07-01
A 20-km regional climate model (RCM) dynamically downscaled the Community Climate System Model version 4 (CCSM4) to compare 32-year historical and future "end-of-the-century" climatologies of the North American Monsoon (NAM). CCSM4 and other phase 5 Coupled Model Intercomparison Project models have indicated a delayed NAM and overall general drying trend. Here, we test the suggested mechanism for this drier NAM where increasing atmospheric static stability and reduced early-season evapotranspiration under global warming will limit early-season convection and compress the mature-season of the NAM. Through our higher resolution RCM, we found the role of accelerated evaporation under a warmer climate is likely understated in coarse resolution models such as CCSM4. Improving the representation of mesoscale interactions associated with the Gulf of California and surrounding topography produced additional surface evaporation, which overwhelmed the convection-suppressing effects of a warmer troposphere. Furthermore, the improved land-sea temperature gradient helped drive stronger southerly winds and greater moisture transport. Finally, we addressed limitations from inherent CCSM4 biases through a form of mean bias correction, which resulted in a more accurate seasonality of the atmospheric thermodynamic profile. After bias correction, greater surface evaporation from average peak GoC SSTs of 32 °C compared to 29 °C from the original CCSM4 led to roughly 50 % larger changes to low-level moist static energy compared to that produced by the downscaled original CCSM4. The increasing destabilization of the NAM environment produced onset dates that were one to 2 weeks earlier in the core of the NAM and northern extent, respectively. Furthermore, a significantly more vigorous NAM signal was produced after bias correction, with >50 mm month-1 increases to the June-September precipitation found along east and west coasts of Mexico and into parts of Texas. A shift towards more extreme daily precipitation was found in both downscaled climatologies, with the bias-corrected climatology containing a much more apparent and extreme shift.
Effect of nose shape and tail length on supersonic stability characteristics of a projectile
NASA Technical Reports Server (NTRS)
Sawyer, W. C.; Collins, I. K.
1973-01-01
The effect of nose shape and tail length on the static stability of a fin-stabilized projectile has been investigated in the Langley Unitary Plan with tunnel at angles of attack to about 12 deg for a Mach number range from 1.5 to 2.5. The tests were made at a constant Reynolds number of 6.56 x 1,000,000 per meter. The results of the investigation showed that nose shape had no effect on the static stability. Increasing the tail length resulted in a progressively stabilizing tendency. However, only the 1.5-caliber-tail-length configuration was stable over the test angle-of-attack range at Mach number 1.5. This configuration was marginally stable or unstable at the higher Mach numbers, and the shorter configurations were unstable at all Mach numbers for either part of or the entire test angle-of-attack range.
The seasonal cycle of low stratiform clouds
NASA Technical Reports Server (NTRS)
Klein, Stephen A.; Hartmann, Dennis L.
1993-01-01
The seasonal cycle of low stratiform clouds is studied using data from surface-based cloud climatologies. The impact of low clouds on the radiation budget is illustrated by comparison of data from the Earth Radiation Budget Experiment with the cloud climatologies. Ten regions of active stratocumulus convection are identified. These regions fall into four categories: subtropical marine, midlatitude marine, Arctic stratus, and Chinese stratus. With the exception of the Chinese region, all the regions with high amounts of stratus clouds are over the oceans. In all regions except the Arctic, the season of maximum stratus corresponds to the season of greatest lower-troposphere static stability. Interannual variations in stratus cloud amount also are related to changes in static stability. A linear analysis indicates that a 6 percent increase in stratus fractional area coverage is associated with each 1 C increase in static stability. Over midlatitude oceans, sky-obscuring fog is a large component of the summertime stratus amount. The amount of fog appears to be related to warm advection across sharp gradients of SST.
The Seasonal Cycle of Low Stratiform Clouds.
NASA Astrophysics Data System (ADS)
Klein, Stephen A.; Hartmann, Dennis L.
1993-08-01
The seasonal cycle of low stratiform clouds is studied using data from surface-based cloud climatologies. The impact of low clouds on the radiation budget is illustrated by comparison of data from the Earth Radiation Budget Experiment with the cloud climatologies. Ten regions of active stratocumulus convection are identified. These regions fall into four categories: subtropical marine, midlatitude marine, Arctic stratus, and Chinese stratus. With the exception of the Chinese region, all the regions with high amounts of stratus clouds are over the oceans.In all regions except the Arctic, the season of maximum stratus corresponds to the season of greatest lower-troposphere static stability. Interannual variations in stratus cloud amount also are related to changes in static stability. A linear analysis indicates that a 6% increase in stratus fractional area coverage is associated with each 1°C increase in static stability. Over midlatitude oceans, sky-obscuring fog is a large component of the summertime stratus amount. The amount of fog appears to be related to warm advection across sharp gradients of SST.
NASA Astrophysics Data System (ADS)
Wu, Longtao; Wong, Sun; Wang, Tao; Huffman, George J.
2018-01-01
Simulation of moist convective processes is critical for accurately representing the interaction among tropical wave activities, atmospheric water vapor transport, and clouds associated with the Indian monsoon Intraseasonal Oscillation (ISO). In this study, we apply the Weather Research and Forecasting (WRF) model to simulate Indian monsoon ISO with three different treatments of moist convective processes: (1) the Betts-Miller-Janjić (BMJ) adjustment cumulus scheme without explicit simulation of moist convective processes; (2) the New Simplified Arakawa-Schubert (NSAS) mass-flux scheme with simplified moist convective processes; and (3) explicit simulation of moist convective processes at convection permitting scale (Nest). Results show that the BMJ experiment is unable to properly reproduce the equatorial Rossby wave activities and the corresponding phase relationship between moisture advection and dynamical convergence during the ISO. These features associated with the ISO are approximately captured in the NSAS experiment. The simulation with resolved moist convective processes significantly improves the representation of the ISO evolution, and has good agreements with the observations. This study features the first attempt to investigate the Indian monsoon at convection permitting scale.
Long-term stability and properties of zirconia ceramics for heavy duty diesel engine components
NASA Technical Reports Server (NTRS)
Larsen, D. C.; Adams, J. W.
1985-01-01
Physical, mechanical, and thermal properties of commercially available transformation-toughened zirconia are measured. Behavior is related to the material microstructure and phase assemblage. The stability of the materials is assessed after long-term exposure appropriate for diesel engine application. Properties measured included flexure strength, elastic modulus, fracture toughness, creep, thermal shock, thermal expansion, internal friction, and thermal diffusivity. Stability is assessed by measuring the residual property after 1000 hr/1000C static exposure. Additionally static fatigue and thermal fatigue testing is performed. Both yttria-stabilized and magnesia-stabilized materials are compared and contrasted. The major limitations of these materials are short term loss of properties with increasing temperature as the metastable tetragonal phase becomes more stable. Fine grain yttria-stabilized material (TZP) is higher strength and has a more stable microstructure with respect to overaging phenomena. The long-term limitation of Y-TZP is excessive creep deformation. Magnesia-stabilized PSZ has relatively poor stability at elevated temperature. Overaging, decomposition, and/or destabilization effects are observed. The major limitation of Mg-PSZ is controlling unwanted phase changes at elevated temperature.
Azarpaikan, Atefeh; Taheri Torbati, Hamidreza
2017-10-23
The aim of this study was to assess the effectiveness of balance training with somatosensory and neurofeedback training on dynamic and static balance in healthy, elderly adults. The sample group consisted of 45 healthy adults randomly assigned to one of the three test groups: somatosensory, neurofeedback, and a control. Individualization of the balance program started with pre-tests for static and dynamic balances. Each group had 15- and 30-min training sessions. All groups were tested for static (postural stability) and dynamic balances (Berg Balance Scale) in acquisition and transfer tests (fall risk of stability and timed up and go). Improvements in static and dynamic balances were assessed by somatosensory and neurofeedback groups and then compared with the control group. Results indicated significant improvements in static and dynamic balances in both test groups in the acquisition test. Results revealed a significant improvement in the transfer test in the neurofeedback and somatosensory groups, in static and dynamic conditions, respectively. The findings suggest that these methods of balance training had a significant influence on balance. Both the methods are appropriate to prevent falling in adults. Neurofeedback training helped the participants to learn static balance, while somatosensory training was effective on dynamic balance learning. Further research is needed to assess the effects of longer and discontinuous stimulation with somatosensory and neurofeedback training on balance in elderly adults.
Response of eddy activities to localized diabatic heating in Held-Suarez simulations
NASA Astrophysics Data System (ADS)
Lin, Yanluan; Zhang, Jishi; Li, Xingrui; Deng, Yi
2018-01-01
Widespread air pollutions, such as black carbon over East Asia in recent years, could induce a localized diabatic heating, and thus lead to localized static stability and meridional temperature gradient (MTG) changes. Although effect of static stability and MTG on eddies has been addressed by the linear baroclinic instability theory, impacts of a localized heating on mid-latitude eddy activities have not been well explored and quantified. Via a series of idealized global Held-Suarez simulations with different magnitudes of localized heating at different altitudes and latitudes, responses of mid-latitude eddy activity and circulation to these temperature perturbations are systematically investigated. Climatologically, the localized heating in the lower atmosphere induces a wave-like response of eddy activity near the mid-latitude jet stream. Over the heating region, eddy activity tends to be weakening due to the increased static stability. However, there are cyclonic anomalies over the upstream and downstream of the heating region. The zonal mean eddy activity weakens along the baroclinic zone due to reduced MTG and increased static stability. Furthermore, the response of eddy activity increased as the heating magnitude is increased and moved to higher altitudes. The influence of the heating decreases as the heating is prescribed further away from the climatological mid-latitude jet. This implies that the localized heating is most effective over the region with the maximum baroclinicity. Besides, enhanced storm track downstream of the localized heating area found here suggests that increased aerosols over East Asia might strengthen the North Pacific storm track.
On the thermal stability of coronal loop plasma
NASA Technical Reports Server (NTRS)
Antiochos, S. K.; Emslie, A. G.; Shoub, E. C.; An, C. H.
1982-01-01
The stability to thermal perturbation of static models of coronal loops is considered including the effects of cool, radiatively stable material at the loop base. The linear stability turns out to be sensitive only to the boundary conditions assumed on the velocity at the loop base. The question of the appropriate boundary conditions is discussed, and it is concluded that the free surface condition (the pressure perturbation vanishes), rather than the rigid wall (the velocity vanishes), is relevant to the solar case. The static models are found to be thermally unstable, with a growth time of the order of the coronal cooking time. The physical implications of these results for the solar corona and transition region are examined.
NASTRAN/FLEXSTAB procedure for static aeroelastic analysis
NASA Technical Reports Server (NTRS)
Schuster, L. S.
1984-01-01
Presented is a procedure for using the FLEXSTAB External Structural Influence Coefficients (ESIC) computer program to produce the structural data necessary for the FLEXSTAB Stability Derivatives and Static Stability (SD&SS) program. The SD&SS program computes trim state, stability derivatives, and pressure and deflection data for a flexible airplane having a plane of symmetry. The procedure used a NASTRAN finite-element structural model as the source of structural data in the form of flexibility matrices. Selection of a set of degrees of freedom, definition of structural nodes and panels, reordering and reformatting of the flexibility matrix, and redistribution of existing point mass data are among the topics discussed. Also discussed are boundary conditions and the NASTRAN substructuring technique.
Thermal stability of static coronal loops: Part 1: Effects of boundary conditions
NASA Technical Reports Server (NTRS)
Antiochos, S. K.; Shoub, E. C.; An, C. H.; Emslie, A. G.
1985-01-01
The linear stability of static coronal-loop models undergoing thermal perturbations was investigated. The effect of conditions at the loop base on the stability properties of the models was considered in detail. The question of appropriate boundary conditions at the loop base was considered and it was concluded that the most physical assumptions are that the temperature and density (or pressure) perturbations vanish there. However, if the base is taken to be sufficiently deep in the chromosphere, either several chromospheric scale heights or several coronal loop lengths in depth, then the effect of the boundary conditions on loop stability becomes negligible so that all physically acceptable conditions are equally appropriate. For example, one could as well assume that the velocity vanishes at the base. The growth rates and eigenmodes of static models in which gravity is neglected and in which the coronal heating is a relatively simple function, either constant per-unit mass or per-unit volume were calculated. It was found that all such models are unstable with a growth rate of the order of the coronal cooling time. The physical implications of these results for the solar corona and transition region are discussed.
Longitudinal quasi-static stability predicts changes in dog gait on rough terrain
Reeve, Michelle A.; Haynes, G. Clark; Revzen, Shai; Koditschek, Daniel E.; Spence, Andrew J.
2017-01-01
ABSTRACT Legged animals utilize gait selection to move effectively and must recover from environmental perturbations. We show that on rough terrain, domestic dogs, Canis lupus familiaris, spend more time in longitudinal quasi-statically stable patterns of movement. Here, longitudinal refers to the rostro-caudal axis. We used an existing model in the literature to quantify the longitudinal quasi-static stability of gaits neighbouring the walk, and found that trot-like gaits are more stable. We thus hypothesized that when perturbed, the rate of return to a stable gait would depend on the direction of perturbation, such that perturbations towards less quasi-statically stable patterns of movement would be more rapid than those towards more stable patterns of movement. The net result of this would be greater time spent in longitudinally quasi-statically stable patterns of movement. Limb movement patterns in which diagonal limbs were more synchronized (those more like a trot) have higher longitudinal quasi-static stability. We therefore predicted that as dogs explored possible limb configurations on rough terrain at walking speeds, the walk would shift towards trot. We gathered experimental data quantifying dog gait when perturbed by rough terrain and confirmed this prediction using GPS and inertial sensors (n=6, P<0.05). By formulating gaits as trajectories on the n-torus we are able to make tractable the analysis of gait similarity. These methods can be applied in a comparative study of gait control which will inform the ultimate role of the constraints and costs impacting locomotion, and have applications in diagnostic procedures for gait abnormalities, and in the development of agile legged robots. PMID:28264903
Longitudinal quasi-static stability predicts changes in dog gait on rough terrain.
Wilshin, Simon; Reeve, Michelle A; Haynes, G Clark; Revzen, Shai; Koditschek, Daniel E; Spence, Andrew J
2017-05-15
Legged animals utilize gait selection to move effectively and must recover from environmental perturbations. We show that on rough terrain, domestic dogs, Canis lupus familiaris , spend more time in longitudinal quasi-statically stable patterns of movement. Here, longitudinal refers to the rostro-caudal axis. We used an existing model in the literature to quantify the longitudinal quasi-static stability of gaits neighbouring the walk, and found that trot-like gaits are more stable. We thus hypothesized that when perturbed, the rate of return to a stable gait would depend on the direction of perturbation, such that perturbations towards less quasi-statically stable patterns of movement would be more rapid than those towards more stable patterns of movement. The net result of this would be greater time spent in longitudinally quasi-statically stable patterns of movement. Limb movement patterns in which diagonal limbs were more synchronized (those more like a trot) have higher longitudinal quasi-static stability. We therefore predicted that as dogs explored possible limb configurations on rough terrain at walking speeds, the walk would shift towards trot. We gathered experimental data quantifying dog gait when perturbed by rough terrain and confirmed this prediction using GPS and inertial sensors ( n =6, P <0.05). By formulating gaits as trajectories on the n -torus we are able to make tractable the analysis of gait similarity. These methods can be applied in a comparative study of gait control which will inform the ultimate role of the constraints and costs impacting locomotion, and have applications in diagnostic procedures for gait abnormalities, and in the development of agile legged robots. © 2017. Published by The Company of Biologists Ltd.
Tropical Ocean Surface Energy Balance Variability: Linking Weather to Climate Scales
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Clayson, Carol Anne
2013-01-01
Radiative and turbulent surface exchanges of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing the spatiotemporal variability of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. These fluxes are integral components to tropical ocean-atmosphere variability; they can drive ocean mixed layer variations and modify the atmospheric boundary layer properties including moist static stability, thereby influencing larger-scale tropical dynamics. Non-parametric cluster-based classification of atmospheric and ocean surface properties has shown an ability to identify coherent weather regimes, each typically associated with similar properties and processes. Using satellite-based observational radiative and turbulent energy flux products, this study investigates the relationship between these weather states and surface energy processes within the context of tropical climate variability. Investigations of surface energy variations accompanying intraseasonal and interannual tropical variability often use composite-based analyses of the mean quantities of interest. Here, a similar compositing technique is employed, but the focus is on the distribution of the heat and moisture fluxes within their weather regimes. Are the observed changes in surface energy components dominated by changes in the frequency of the weather regimes or through changes in the associated fluxes within those regimes? It is this question that the presented work intends to address. The distribution of the surface heat and moisture fluxes is evaluated for both normal and non-normal states. By examining both phases of the climatic oscillations, the symmetry of energy and water cycle responses are considered.
Keulen, A; van Zomeren, A; Harpe, P; Aarnink, W; Simons, H A E; Brouwers, H J H
2016-03-01
Municipal solid waste incineration bottom ash was treated with specially designed dry and wet treatment processes, obtaining high quality bottom ash granulate fractions (BGF) suitable for up to 100% replacement of natural gravel in concrete. The wet treatment (using only water for separating and washing) significantly lowers the leaching of e.g. chloride and sulfate, heavy metals (antimony, molybdenum and copper) and dissolved organic carbon (DOC). Two potential bottom ash granulate fractions, both in compliance with the standard EN 12620 (aggregates for concrete), were added into earth-moist concrete mixtures. The fresh and hardened concrete physical performances (e.g. workability, strength and freeze-thaw) of high strength concrete mixtures were maintained or improved compared with the reference mixtures, even after replacing up to 100% of the initial natural gravel. Final element leaching of monolithic and crushed granular state BGF containing concretes, showed no differences with the gravel references. Leaching of all mixtures did not exceed the limit values set by the Dutch Soil Quality Degree. In addition, multiple-life-phase emission (pH static test) for the critical elements of input bottom ash, bottom ash granulate (BGF) and crushed BGF containing concrete were assessed. Simulation pH lowering or potential carbonation processes indicated that metal (antimony, barium, chrome and copper) and sulfate element leaching behavior are mainly pH dominated and controlled, although differ in mechanism and related mineral abundance. Copyright © 2016 Elsevier Ltd. All rights reserved.
South Asian summer monsoon breaks: Process-based diagnostics in HIRHAM5
NASA Astrophysics Data System (ADS)
Hanf, Franziska S.; Annamalai, H.; Rinke, Annette; Dethloff, Klaus
2017-05-01
This study assesses the ability of a high-resolution downscaling simulation with the regional climate model (RCM) HIRHAM5 in capturing the monsoon basic state and boreal summer intraseasonal variability (BSISV) over South Asia with focus on moist and radiative processes during 1979-2012. A process-based vertically integrated moist static energy (MSE) budget is performed to understand the model's fidelity in representing leading processes that govern the monsoon breaks over continental India. In the climatology (June-September) HIRHAM5 simulates a dry bias over central India in association with descent throughout the free troposphere. Sources of dry bias are interpreted as (i) near-equatorial Rossby wave response forced by excess rainfall over the southern Bay of Bengal promotes anomalous descent to its northwest and (ii) excessive rainfall over near-equatorial Arabian Sea and Bay of Bengal anchor a "local Hadley-type" circulation with descent anomalies over continental India. Compared with observations HIRHAM5 captures the leading processes that account for breaks, although with generally reduced amplitudes over central India. In the model too, anomalous dry advection and net radiative cooling are responsible for the initiation and maintenance of breaks, respectively. However, weaker contributions of all adiabatic MSE budget terms, and an inconsistent relationship between negative rainfall anomalies and radiative cooling reveals shortcomings in HIRHAM5's moisture-radiation interaction. Our study directly implies that process-based budget diagnostics are necessary, apart from just checking the northward propagation feature to examine RCM's fidelity to simulate BSISV.
Subsonic Static and Dynamic Aerodynamics of Blunt Entry Vehicles
NASA Technical Reports Server (NTRS)
Mitcheltree, Robert A.; Fremaux, Charles M.; Yates, Leslie A.
1999-01-01
The incompressible subsonic aerodynamics of four entry-vehicle shapes with variable c.g. locations are examined in the Langley 20-Foot Vertical Spin Tunnel. The shapes examined are spherically-blunted cones with half-cone angles of 30, 45, and 60 deg. The nose bluntness varies between 0.25 and 0.5 times the base diameter. The Reynolds number based on model diameter for these tests is near 500,000. Quantitative data on attitude and location are collected using a video-based data acquisition system and reduced with a six deg-of-freedom inverse method. All of the shapes examined suffered from strong dynamic instabilities which could produced limit cycles with sufficient amplitudes to overcome static stability of the configuration. Increasing cone half-angle or nose bluntness increases drag but decreases static and dynamic stability.
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.; Spencer, B., Jr.
1980-01-01
Tests were conducted in the 8 foot transonic pressure tunnel to obtain wind tunnel data for comparison with static stability and control parameters measured on the space shuttle orbiter approach and landing flight tests. The longitudinal stability, elevon effectiveness, lateral directional stability, and aileron effectiveness derivatives were determined from the wind tunnel data and compared with the flight test results. The comparison covers a range of angles of attack from approximately 2 deg to 10 deg at subsonic Mach numbers of 0.41 to 0.56. In general the wind tunnel results agreed well with the flight test results, indicating the wind tunnel data is applicable to the design of entry vehicles for subsonic speeds over the angle of attack range studied.
NASA Technical Reports Server (NTRS)
Allen, E.
1974-01-01
Experimental aerodynamic investigations of the configuration 4 space shuttle orbiter were conducted in the 14-inch trisonic wind tunnel during November and December 1973. Elevon, aileron, bodyflap, speedbrake, rudder effectiveness, and effects of ventral fins were investigated at angles of attack from -10 deg to 40 deg, angles of sideslip from -10 deg to +10 deg, and Mach numbers from 0.6 to 4.96. Resulting six-component static stability data and associated test information are presented.
NASA Technical Reports Server (NTRS)
Stone, H. W.; Powell, R. W.
1977-01-01
A six-degree-of-freedom simulation analysis was conducted to examine the effects of longitudinal static aerodynamic stability and control uncertainties on the performance of the space shuttle orbiter automatic (no manual inputs) entry guidance and control systems. To establish the acceptable boundaries, the static aerodynamic characteristics were varied either by applying a multiplier to the aerodynamic parameter or by adding an increment. With either of two previously identified control system modifications included, the acceptable longitudinal aerodynamic boundaries were determined.
NASA Technical Reports Server (NTRS)
Queijo, M J; Wolhart, Walter D
1951-01-01
An investigation was made to determine the effects of vertical-tail size and length and of fuselage shape and length on the static lateral stability characteristics of a model with wing and vertical tails having the quarter-chord lines swept back 45 degrees. The results indicate that the directional instability of the various isolated fuselages was about two-thirds as large as that predicted by classical theory.
NASA Technical Reports Server (NTRS)
Hunter, Paul A.; Reeder, John P.
1946-01-01
In conjunction with a program of research on the general problem of stability of airplanes in the climbing condition, tests have been made of a spring-loaded tb which. is referred to as a ?springy tab,? installed on the elevator of a low-wing scout bomber. The tab was arranged to deflect upward with decrease in speed which caused an increase in the pull force required to trim at low speeds and thereby increased the stick-free static longitudinal stability of the airplane. It was found that the springy tab would increase the stick-free stability in all flight conditions, would reduce the danger of inadvertent stalling because of the definite pull force required to stall the airplane with power on, would reduce the effect of center-of-gravity position on stick-free static stability, and would have little effect on the elevator stick forces in accelerated f11ght. Another advantage of the springy tab is that it might be used to provide almost any desired variation of elevator stick force with speed by adjusting the tab hinge-moment characteristics and the variation of spring moment with tab deflection. Unlike the bungee and the bobweight, the springy tab would provide stick-free static stability without requiring a pull force to hold the stick back while taxying. A device similar to the springy tab may be used on the rudder or ailerons to eliminate undesirable trim-force variations with speed.
Static and dynamic stability of pneumatic vibration isolators and systems of isolators
NASA Astrophysics Data System (ADS)
Ryaboy, Vyacheslav M.
2014-01-01
Pneumatic vibration isolation is the most widespread effective method for creating vibration-free environments that are vital for precise experiments and manufacturing operations in optoelectronics, life sciences, microelectronics, nanotechnology and other areas. The modeling and design principles of a dual-chamber pneumatic vibration isolator, basically established a few decades ago, continue to attract attention of researchers. On the other hand, behavior of systems of such isolators was never explained in the literature in sufficient detail. This paper covers a range of questions essential for understanding the mechanics of pneumatic isolation systems from both design and application perspectives. The theory and a model of a single standalone isolator are presented in concise form necessary for subsequent analysis. Then the dynamics of a system of isolators supporting a payload is considered with main attention directed to two aspects of their behavior: first, the static stability of payloads with high positions of the center of gravity; second, dynamic stability of the feedback system formed by mechanical leveling valves. The direct method of calculating the maximum stable position of the center of gravity is presented and illustrated by three-dimensional stability domains; analytic formulas are given that delineate these domains. A numerical method for feedback stability analysis of self-leveling valve systems is given, and the results are compared with the analytical estimates for a single isolator. The relation between the static and dynamic phenomena is discussed.
Moist synoptic transport of CO2 along the mid-latitude storm track
NASA Astrophysics Data System (ADS)
Parazoo, N. C.; Denning, A. S.; Berry, J. A.; Wolf, A.; Randall, D. A.; Kawa, S. R.; Pauluis, O.; Doney, S. C.
2011-05-01
Atmospheric mixing ratios of CO2 are strongly seasonal in the Arctic due to mid-latitude transport. Here we analyze the seasonal influence of moist synoptic storms by diagnosing CO2 transport from a global model on moist isentropes (to represent parcel trajectories through stormtracks) and parsing transport into eddy and mean components. During winter when northern plants respire, warm moist air, high in CO2, is swept poleward into the polar vortex, while cold dry air, low in CO2, that had been transported into the polar vortex earlier in the year is swept equatorward. Eddies reduce seasonality in mid-latitudes by ˜50% of NEE (˜100% of fossil fuel) while amplifying seasonality at high latitudes. Transport along stormtracks is correlated with rising, moist, cloudy air, which systematically hides this CO2 transport from satellites. We recommend that (1) regional inversions carefully account for meridional transport and (2) inversion models represent moist and frontal processes with high fidelity.
The Meandering Margin of the Meteorological Moist Tropics
NASA Astrophysics Data System (ADS)
Mapes, Brian E.; Chung, Eui Seok; Hannah, Walter M.; Masunaga, Hirohiko; Wimmers, Anthony J.; Velden, Christopher S.
2018-01-01
Bimodally distributed column water vapor (CWV) indicates a well-defined moist regime in the Tropics, above a margin value near 48 kg m-2 in current climate (about 80% of column saturation). Maps reveal this margin as a meandering, sinuous synoptic contour bounding broad plateaus of the moist regime. Within these plateaus, convective storms of distinctly smaller convective and mesoscales occur sporadically. Satellite data composites across the poleward most margin reveal its sharpness, despite the crude averaging: precipitation doubles within 100 km, marked by both enhancement and deepening of cloudiness. Transported patches and filaments of the moist regime cause consequential precipitation events within and beyond the Tropics. Distinguishing synoptic flows that
NASA Technical Reports Server (NTRS)
Greenberg, Harry; Sternfield, Leonard
1944-01-01
The relation between the elevator hinge moment parameters and the control forces for changes in forward speed and in maneuvers is shown for several values of static stability and elevator mass balance. The stability of the short period oscillations is shown as a series of boundaries giving the limits of the stable regions in terms of the elevator hinge moment parameters. The effects of static stability, elevator moment of inertia, elevator mass unbalance, and airplane density are also considered. Dynamic instability is likely to occur if there is mass unbalance of the elevator control system combined with a small restoring tendency (high aerodynamic balance). This instability can be prevented by a rearrangement of the unbalancing weights which, however, involves an increase of the amount of weight necessary. It can also be prevented by the addition of viscous friction to the elevator control system provided the airplane center of gravity is not behind a certain critical position. For high values of the density parameter, which correspond to high altitudes of flight, the addition of moderate amounts of viscous friction may be destabilizing even when the airplane is statically stable. In this case, increasing the viscous friction makes the oscillation stable again. The condition in which viscous friction causes dynamic instability of a statically stable airplane is limited to a definite range of hinge moment parameters. It is shown that, when viscous friction causes increasing oscillations, solid friction will produce steady oscillations having an amplitude proportional to the amount of friction.
21 CFR 890.5250 - Moist steam cabinet.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Moist steam cabinet. 890.5250 Section 890.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam...
21 CFR 890.5250 - Moist steam cabinet.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Moist steam cabinet. 890.5250 Section 890.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam...
21 CFR 890.5250 - Moist steam cabinet.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Moist steam cabinet. 890.5250 Section 890.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam...
21 CFR 890.5250 - Moist steam cabinet.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Moist steam cabinet. 890.5250 Section 890.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam...
21 CFR 890.5250 - Moist steam cabinet.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Moist steam cabinet. 890.5250 Section 890.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam...
Woody plant richness and NDVI response to drought events in Catalonian (northeastern Spain) forests.
Lloret, F; Lobo, A; Estevan, H; Maisongrande, P; Vayreda, J; Terradas, J
2007-09-01
The role of species diversity on ecosystem resistance in the face of strong environmental fluctuations has been addressed from both theoretical and experimental viewpoints to reveal a variety of positive and negative relationships. Here we explore empirically the relationship between the richness of forest woody species and canopy resistance to extreme drought episodes. We compare richness data from an extensive forest inventory to a temporal series of satellite imagery that estimated drought impact on forest canopy as NDVI (normalized difference vegetation index) anomalies of the dry summer in 2003 in relation to records of previous years. We considered five different types of forests that are representative of the main climatic and altitudinal gradients of the region, ranging from lowland Mediterranean to mountain boreal-temperate climates. The observed relationship differed among forest types and interacted with the climate, summarised by the Thorntwaite index. In Mediterranean Pinus halepensis forests, NDVI decreased during the drought. This decrease was stronger in forests with lower richness. In Mediterranean evergreen forests of Quercus ilex, drought did not result in an overall NDVI loss, but lower NDVI values were observed in drier localities with lower richness, and in more moist localities with higher number of species. In mountain Pinus sylvestris forests NDVI decreased, mostly due to the drought impact on drier localities, while no relation to species richness was observed. In moist Fagus sylvatica forests, NDVI only decreased in plots with high richness. No effect of drought was observed in the high mountain Pinus uncinata forests. Our results show that a shift on the diversity-stability relationship appears across the regional, climatic gradient. A positive relationship appears in drier localities, supporting a null model where the probability of finding a species able to cope with drier conditions increases with the number of species. However, in more moist localities we hypothesize that the proportion of drought-sensitive species would increase in richer localities, due to a higher likelihood of co-occurrence of species that share moist climatic requirements. The study points to the convenience of considering the causes of disturbance in relation to current environmental gradients and historical environmental constraints on the community.
A New Approach to Attitude Stability and Control for Low Airspeed Vehicles
NASA Technical Reports Server (NTRS)
Lim, K. B.; Shin, Y-Y.; Moerder, D. D.; Cooper, E. G.
2004-01-01
This paper describes an approach for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The large thrust vector that characterizes such vehicles can be modulated to provide control forces and moments to the airframe, but such modulation is accompanied by significant unsteady flow effects. These effects are difficult to model, and can compromise the practical value of thrust vectoring in closed-loop attitude stability, even if the thrust vectoring machinery has sufficient bandwidth for stabilization. The stabilization approach described in this paper is based on using internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other "outer loop" control functions. The three main components of this approach are: (1) a z-body axis angular momentum bias enhances static attitude stability, reducing the amount of control activity needed for stabilization, (2) optionally, gimbaled reaction wheels provide high-bandwidth control torques for additional stabilization, or agility, and (3) the resulting strongly coupled system dynamics are controlled by a multivariable controller. A flight test vehicle is described, and nonlinear simulation results are provided that demonstrate the efficiency of the approach.
NASA Technical Reports Server (NTRS)
Barret, C.
1997-01-01
This publication presents the control requirements, the details of the designed Flight Control Augmentor's (FCA's), the static stability and dynamic stability wind tunnel test programs, the static stability and control analyses, the dynamic stability characteristics of the experimental Launch Vehicle (LV) with the designed FCA's, and a consideration of the elastic vehicle. Dramatic improvements in flight stability have been realized with all the FCA designs; these ranged from 41 percent to 72 percent achieved by the blunt TE design. The control analysis showed that control increased 110 percent with only 3 degrees of FCA deflection. The dynamic stability results showed improvements with all FCA designs tested at all Mach numbers tested. The blunt TE FCA's had the best overall dynamic stability results. Since the lowest elastic vehicle frequency must be well separated from that of the control system, the significant frequencies and modes of vibration have been identified, and the response spectra compared for the experimental LV in both the conventional and the aft cg configuration. Although the dynamic response was 150 percent greater in the aft cg configuration, the lowest bending mode frequency decreased by only 2.8 percent.
Stability of nonuniform rotor blades in hover using a mixed formulation
NASA Technical Reports Server (NTRS)
Stephens, W. B.; Hodges, D. H.; Avila, J. H.; Kung, R. M.
1980-01-01
A mixed formulation for calculating static equilibrium and stability eigenvalues of nonuniform rotor blades in hover is presented. The static equilibrium equations are nonlinear and are solved by an accurate and efficient collocation method. The linearized perturbation equations are solved by a one step, second order integration scheme. The numerical results correlate very well with published results from a nearly identical stability analysis based on a displacement formulation. Slight differences in the results are traced to terms in the equations that relate moments to derivatives of rotations. With the present ordering scheme, in which terms of the order of squares of rotations are neglected with respect to unity, it is not possible to achieve completely equivalent models based on mixed and displacement formulations. The one step methods reveal that a second order Taylor expansion is necessary to achieve good convergence for nonuniform rotating blades. Numerical results for a hypothetical nonuniform blade, including the nonlinear static equilibrium solution, were obtained with no more effort or computer time than that required for a uniform blade.
NASA Technical Reports Server (NTRS)
Alford, William J., Jr.
1952-01-01
The static longitudinal stability characteristics of a 0.15-scale model of the Hermes A-lE2 missile have been determined in the Langley high-speed 7- by 10-foot tunnel over a Mach number range of 0.50 to 0.98, corresponding to Reynolds numbers, based on body length, of 12.3 x 10(exp 6) to 17.1 x 10(exp 6). This paper presents results obtained with body alone and body-fins combinations at 0 degrees (one set of fins vertical and the other set horizontal) and 45 degree angle of roll. The results indicate that the addition of the fins to the body insures static longitudinal stability and provides essentially linear variations of the lift and pitching moment at small angles of attack throughout the Mach number range. The slopes of the lift and pitching-moment curves vary slightly with Mach number and show only small effects due to the angle of roll.
Atmospheric Dynamics on Venus, Jupiter, and Saturn: An Observational and Analytical Study
NASA Technical Reports Server (NTRS)
Bridger, Alison; Magalhaes, Julio A.; Young, Richard E.
2000-01-01
Determining the static stability of Jupiter's atmosphere below the visible cloud levels is important for understanding the dynamical modes by which energy and momentum are transported through Jupiter's deep troposphere. The Galileo Probe Atmospheric Structure Investigation (ASI) employed pressure and temperature sensors to directly measure these state variables during the parachute-descent phase, which started at a pressure (p) of 0.4 bars and ended at p= 22 bars. The internal temperature of the probe underwent large temperature fluctuations which significantly exceeded design specifications. Corrections for these anomalous interior temperatures have been evaluated based on laboratory data acquired after the mission using the flight spare hardware. The corrections to the pressure sensor readings was particularly large and the uncertainties in the atmospheric pressures derived from the p sensor measurements may still be significant. We have sought to estimate the formal uncertainties in the static stability derived from the p and T sensor measurements directly and to devise means of assessing the static stability of Jupiter's atmosphere which do not rely on the p sensor data.
Destabilization of Human Balance Control by Static and Dynamic Head Tilts
NASA Technical Reports Server (NTRS)
Paloski, William H.; Wood, Scott J.; Feiveson, Alan H.; Black, F. Owen; Hwang, Emma Y.; Reschke, Millard F.
2004-01-01
To better understand the effects of varying head movement frequencies on human balance control, 12 healthy adult humans were studied during static and dynamic (0.14,0.33,0.6 Hz) head tilts of +/-30deg in the pitch and roll planes. Postural sway was measured during upright stance with eyes closed and altered somatosensory inputs provided by a computerized dynamic posturography (CDP) system. Subjects were able to maintain upright stance with static head tilts, although postural sway was increased during neck extension. Postural stability was decreased during dynamic head tilts, and the degree of destabilization varied directly with increasing frequency of head tilt. In the absence of vision and accurate foot support surface inputs, postural stability may be compromised during dynamic head tilts due to a decreased ability of the vestibular system to discern the orientation of gravity.
NASA Technical Reports Server (NTRS)
Perry, B., III
1982-01-01
The relationships between elevon deflection and static margin using elements from static and dynamic stability and control and from classical control theory are emphasized. Expressions are derived and presented for calculating elevon deflections required to trim the vehicle in lg straight-and-level flight and to perform specified longitudinal and lateral maneuvers. Applications of this methodology are made at several flight conditions for the ARW-2 wing. On the basis of these applications, it appears possible to trim and maneuver the vehicle with the existing elevons at -15% static margin.
21 CFR 890.5730 - Moist heat pack.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Moist heat pack. 890.5730 Section 890.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5730 Moist heat pack. (a...
21 CFR 890.5730 - Moist heat pack.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Moist heat pack. 890.5730 Section 890.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5730 Moist heat pack. (a...
21 CFR 890.5730 - Moist heat pack.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Moist heat pack. 890.5730 Section 890.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5730 Moist heat pack. (a...
21 CFR 890.5730 - Moist heat pack.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Moist heat pack. 890.5730 Section 890.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5730 Moist heat pack. (a...
21 CFR 890.5730 - Moist heat pack.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Moist heat pack. 890.5730 Section 890.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5730 Moist heat pack. (a...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
... Veterinary Drug Products Terminally Sterilized by Moist Heat Processes; Availability AGENCY: Food and Drug... Release of Human and Veterinary Drug Products Terminally Sterilized by Moist Heat Processes.'' This... for sterile products terminally sterilized by moist heat when submitting a new drug application (NDA...
NASA Astrophysics Data System (ADS)
Hyhlík, Tomáš
2017-09-01
The article deals with an evaluation of moist air state above counterflow wet-cooling tower fill. The results based on Klimanek & Białecky model are compared with results of Merkel model and generalised Merkel model. Based on the numerical simulation it is shown that temperature is predicted correctly by using generalised Merkel model in the case of saturated or super-saturated air above the fill, but the temperature is underpredicted in the case of unsaturated moist air above the fill. The classical Merkel model always under predicts temperature above the fill. The density of moist air above the fill, which is calculated using generalised Merkel model, is strongly over predicted in the case of unsaturated moist air above the fill.
NASA Technical Reports Server (NTRS)
Snyder, C. T.; Fry, E. B.; Drinkwater, F. J., III; Forrest, R. D.; Scott, B. C.; Benefield, T. D.
1972-01-01
A ground-based simulator investigation was conducted in preparation for and correlation with an-flight simulator program. The objective of these studies was to define minimum acceptable levels of static longitudinal stability for landing approach following stability augmentation systems failures. The airworthiness authorities are presently attempting to establish the requirements for civil transports with only the backup flight control system operating. Using a baseline configuration representative of a large delta wing transport, 20 different configurations, many representing negative static margins, were assessed by three research test pilots in 33 hours of piloted operation. Verification of the baseline model to be used in the TIFS experiment was provided by computed and piloted comparisons with a well-validated reference airplane simulation. Pilot comments and ratings are included, as well as preliminary tracking performance and workload data.
NASA Technical Reports Server (NTRS)
Jordan, Frank L., Jr.; Hahne, David E.
1992-01-01
An investigation was conducted in the Langley 30- by 60-Foot Tunnel and the Langley 12-Foot Low-Speed Tunnel to identify factors contributing to a directional divergence at high angles of attack for the EA-6B airplane. The study consisted of static wind-tunnel tests, smoke and tuft flow-visualization tests, and free-flight tests of a 1/8.5-scale model of the airplane. The results of the investigation indicate that the directional divergence of the airplane is brought about by a loss of directional stability and effective dihedral at high angles of attack. Several modifications were tested that significantly alleviate the stability problem. The results of the free-flight study show that the modified configuration exhibits good dynamic stability characteristics and could be flown at angles of attack significantly higher than those of the unmodified configuration.
NASA Technical Reports Server (NTRS)
Matheny, N. W.; Gatlin, D. H.
1978-01-01
A TF-8A airplane was equipped with a transport type supercritical wing and fuselage fairings to evaluate predicted performance improvements for cruise at transonic speeds. A comparison of aerodynamic derivatives extracted from flight and wind tunnel data showed that static longitudinal stability, effective dihedral, and aileron effectiveness, were higher than predicted. The static directional stability derivative was slower than predicted. The airplane's handling qualities were acceptable with the stability augmentation system on. The unaugmented airplane exhibited some adverse lateral directional characteristics that involved low Dutch roll damping and low roll control power at high angles of attack and roll control power that was greater than satisfactory for transport aircraft at cruise conditions. Longitudinally, the aircraft exhibited a mild pitchup tendency. Leading edge vortex generators delayed the onset of flow separation, moving the pitchup point to a higher lift coefficient and reducing its severity.
Madden-Julian Oscillation: Western Pacific and Indian Ocean
NASA Astrophysics Data System (ADS)
Fuchs, Z.; Raymond, D. J.
2016-12-01
The MJO has been and still remains a "holy grail" of today's atmospheric science research. Why does the MJO propagate eastward? What makes it unstable? What is the scaling for the MJO, i.e. why does it prefer long wavelengths or planetary wavenumbers 1-3? The MJO has the strongest signal in the Indian ocean and in the West Pacific, but the average vertical structure is very different in each of those basins. We look at the reanalysis/analysis FNL, ERAI vertical structure of temperature and moisture as well as the surface zonal winds for two ocean basins. We also look at data from DYNAMO and TOGA_COARE in great detail (saturation fraction, temperature, entropy, surface zonal winds, gross moist stability, etc). The findings from observations and field projects for the two ocean basins are then compared to a linear WISHE model on an equatorial beta plane. Though linear WISHE has long been discounted as a plausible model for the MJO, the version we have developed explains many of the observed features of this phenomenon, in particular, the preference for large zonal scale, the eastward propagation, the westward group velocity, and the thermodynamic structure. There is no need to postulate large-scale negative gross moist stability, as destabilization occurs via WISHE at long wavelengths only. This differs from early WISHE models because we take a moisture adjustment time scale of order one day in comparison to the much shorter time scales assumed in earlier models. Linear modeling cannot capture all of the features of the MJO, so we are in the process of adding nonlinearity.
Side slope stability of articulated-frame logging tractors
H.G. Gibson; K.C. Elliott; S.P.E. Persson
1971-01-01
Many log or pulpwood transporting machines have hinged or articulated frames for steering. The articulated frame offers advantages for these machines, but the design introduces some problems in stability. We formulated and analyzed a mathematical model simulating stability of a 4-wheel-drive, articulated frame logging tractor (wheeled skidder) at static or low constant...
NASA Technical Reports Server (NTRS)
Stone, H. W.; Powell, R. W.
1977-01-01
A six-degree-of-freedom simulation analysis was conducted to examine the effects of the lateral-directional static aerodynamic stability and control uncertainties on the performance of the automatic (no manual inputs) entry-guidance and control systems of the space shuttle orbiter. To establish the acceptable boundaries of the uncertainties, the static aerodynamic characteristics were varied either by applying a multiplier to the aerodynamic parameter or by adding an increment. Control-system modifications were identified that decrease the sensitivity to off-nominal aerodynamics. With these modifications, the acceptable aerodynamic boundaries were determined.
Dynamic stability and handling qualities tests on a highly augmented, statically unstable airplane
NASA Technical Reports Server (NTRS)
Gera, Joseph; Bosworth, John T.
1987-01-01
Novel flight test and analysis techniques in the flight dynamics and handling qualities area are described. These techniques were utilized at NASA Ames-Dryden during the initial flight envelope clearance of the X-29A aircraft. It is shown that the open-loop frequency response of an aircraft with highly relaxed static stability can be successfully computed on the ground from telemetry data. Postflight closed-loop frequency response data were obtained from pilot-generated frequency sweeps and it is found that the current handling quality requirements for high-maneuverability aircraft are generally applicable to the X-29A.
NASA Astrophysics Data System (ADS)
Kayser, Lyle D.
1986-07-01
Wind tunnel test results on a typical projectile shape with small nose bluntness are reported. Flat and hemispherical nose tip results are shown in addition to sharp nose tip results. The effects of nose bluntness on static stability are shown to be negligible at both Mach 0.91 and 3.02. The effects of nose bluntness on Magnus force and Magnus moment were not large, but of sufficient magnitude to indicate that such bluntness should not be neglected in a numerical flow field computation.
Evers, Julia; Lakemeier, Martin; Wähnert, Dirk; Schulze, Martin; Richter, Martinus; Raschke, Michael J; Ochman, Sabine
2017-05-01
Although retrograde intramedullary nails for tibiotalocalcaneal arthrodesis (TTCA) are an established fixation method, few studies have evaluated the stability of the available nail systems. The purpose of this study was to compare biomechanically the primary stability of 2 nail-systems, A3 (Small Bone Innovations) and HAN (Synthes), in human cadavers and analyze the exact point of instability in TTCA by means of optical measurement. In 6 pairs of lower legs (n = 12) of fresh-frozen human cadavers with osteoporotic bone structure, bone mineral density (BMD) was determined. Pairwise randomized implantation of either an HAN or A3 nail was executed. Performance and stability were measured by quasi-static tests using 3D motion tracking (NDI Optotrak-Certus) followed by cyclic loading tests during dorsi- and plantarflexion. 3D optical analysis in quasi-static tests showed a significantly lower degree of movement for the HAN nail in rotational and dorsi-/plantarflexion, especially in the subtalar joint. Cyclic loading tests were consistent with quasi-static tests. The A3 nail offered lower stability during axial torsion in the ankle and subtalar joints and during plantar- and dorsiflexion in the subtalar joint in osteoporotic bones. This study was the first to examine the primary stability of different arthrodesis nails in TTCA and their bony parts with a 3D motion analysis. The better stability of the locking-only HAN nail in this osteoporotic test setup could lead to more favorable results in comparison to the A3 nail in clinical use.
Prospective Evaluation of Severe Skin Toxicity and Pain During Postmastectomy Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pignol, Jean-Philippe, E-mail: j.p.pignol@erasmusmc.nl; Vu, Thi Trinh Thuc; Mitera, Gunita
Purpose: To prospectively capture acute toxicities and pain associated with postmastectomy radiation therapy (PMRT), to analyze patient and treatment risk factors for severe side effects. Methods and Materials: Women referred for PMRT were prospectively enrolled and assessed weekly during and after radiation therapy. The endpoint included severe National Cancer Institute Common Terminology Criteria for Adverse Effects grade 3 moist desquamation, other skin symptoms, and pain. Results: Of 257 patients, 73 (28.4%) experienced extensive moist desquamation, 84 (32.7%) Common Terminology Criteria for Adverse Effects skin toxicity grade 3, and 57 (22.2%) a pain impacting on daily life activities. Among symptoms only grademore » 3 moist desquamation was significantly associated with severe pain (P<.001). On multivariate analysis, smoking, high-energy photons, and skin bolus were significantly associated with severe moist desquamation. Skin toxicity doubled for smokers, with 40% severe pain, 48% grade 3 moist desquamation, and 64% grade 3 skin toxicity. Without skin bolus 4.2% had severe pain, none moist desquamation, and 2.1% grade 3 skin toxicity. When skin bolus was used on alternate days, the frequency increased to 15% for pain, 22% for moist desquamation, and 26% for grade 3 skin toxicity. When bolus was used daily, 32% had pain, 41% moist desquamation, and 47% grade 3 skin toxicity. Symptoms peaked 1 to 2 weeks after the end of PMRT. Conclusions: The present cohort study suggests excessive radiation toxicity after PMRT. Among factors associated with an increase of toxicity are smoking habits and the use of skin bolus.« less
Valorisation of Sugarcane Bagasse Ash in the Manufacture of Lime-Stabilized Blocks
NASA Astrophysics Data System (ADS)
James, Jijo; Pandian, Pitchai Kasinatha
2016-06-01
The study investigated the potential of lime in the manufacture of stabilized soil blocks and the valorisation of a solid waste, Bagasse Ash (BA), in its manufacture. A locally available soil was collected from a field and characterized in the soil laboratory as a clay of intermediate plasticity. This soil was stabilized using lime, the quantity of which was determined from the Eades and Grim pH test. The soil was stabilized using this lime content, amended with various BA contents during mixing, and moulded into blocks of 19 cm x 9 cm x 9 cm. The blocks were then moist cured for a period of 28 days, following which they were subjected to compressive strength, water absorption and efflorescence tests. The results of the tests revealed that the addition of BA resulted in enhanced compressive strength of the blocks, increased the water absorption marginally, and resulted in no efflorescence in any of the combinations, although the limited combinations in the study could not produce enough strength to meet the specifications of the Bureau of Indian Standards. The study revealed that BA can be effectively valorised in the manufacture of stabilized soil blocks.
Parameter optimization for reproducible cardiac 1 H-MR spectroscopy at 3 Tesla.
de Heer, Paul; Bizino, Maurice B; Lamb, Hildo J; Webb, Andrew G
2016-11-01
To optimize data acquisition parameters in cardiac proton MR spectroscopy, and to evaluate the intra- and intersession variability in myocardial triglyceride content. Data acquisition parameters at 3 Tesla (T) were optimized and reproducibility measured using, in total, 49 healthy subjects. The signal-to-noise-ratio (SNR) and the variance in metabolite amplitude between averages were measured for: (i) global versus local power optimization; (ii) static magnetic field (B 0 ) shimming performed during free-breathing or within breathholds; (iii) post R-wave peak measurement times between 50 and 900 ms; (iv) without respiratory compensation, with breathholds and with navigator triggering; and (v) frequency selective excitation, Chemical Shift Selective (CHESS) and Multiply Optimized Insensitive Suppression Train (MOIST) water suppression techniques. Using the optimized parameters intra- and intersession myocardial triglyceride content reproducibility was measured. Two cardiac proton spectra were acquired with the same parameters and compared (intrasession reproducibility) after which the subject was removed from the scanner and placed back in the scanner and a third spectrum was acquired which was compared with the first measurement (intersession reproducibility). Local power optimization increased SNR on average by 22% compared with global power optimization (P = 0.0002). The average linewidth was not significantly different for pencil beam B 0 shimming using free-breathing or breathholds (19.1 Hz versus 17.5 Hz; P = 0.15). The highest signal stability occurred at a cardiac trigger delay around 240 ms. The mean amplitude variation was significantly lower for breathholds versus free-breathing (P = 0.03) and for navigator triggering versus free-breathing (P = 0.03) as well as for navigator triggering versus breathhold (P = 0.02). The mean residual water signal using CHESS (1.1%, P = 0.01) or MOIST (0.7%, P = 0.01) water suppression was significantly lower than using frequency selective excitation water suppression (7.0%). Using the optimized parameters an intrasession limits of agreement of the myocardial triglyceride content of -0.11% to +0.04%, and an intersession of -0.15% to +0.9%, were achieved. The coefficient of variation was 5% for the intrasession reproducibility and 6.5% for the intersession reproducibility. Using approaches designed to optimize SNR and minimize the variation in inter-average signal intensities and frequencies/phases, a protocol was developed to perform cardiac MR spectroscopy on a clinical 3T system with high reproducibility. J. Magn. Reson. Imaging 2016;44:1151-1158. © 2016 International Society for Magnetic Resonance in Medicine.
MASCOT - MATLAB Stability and Control Toolbox
NASA Technical Reports Server (NTRS)
Kenny, Sean; Crespo, Luis
2011-01-01
MASCOT software was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental non-linear equations of motion, MASCOT then calculates vehicle trim and static stability data for any desired flight condition. Common predefined flight conditions are included. The predefined flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind and sideslip, plus three takeoff rotation conditions. Results are displayed through a unique graphical interface developed to provide stability and control information to the conceptual design engineers using a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. This software allows the user to prescribe the vehicle s CG location, mass, and inertia tensor so that any loading configuration between empty weight and maximum take-off weight can be analyzed. The required geometric and aerodynamic data as well as mass and inertia properties may be entered directly, passed through data files, or come from external programs such as Vehicle Sketch Pad (VSP). The current version of MASCOT has been tested with VSP used to compute the required data, which is then passed directly into the program. In VSP, the vehicle geometry is created and manipulated. The aerodynamic coefficients, stability and control derivatives, are calculated using VorLax, which is now available directly within VSP. MASCOT has been written exclusively using the technical computing language MATLAB . This innovation is able to bridge the gap between low-fidelity conceptual design and higher-fidelity stability and control analysis. This new tool enables the conceptual design engineer to include detailed static stability and trim constraints in the conceptual design loop. The unique graphical interface developed for this tool presents the stability data in a format that is understandable by the conceptual designer, yet also provides the detailed quantitative results if desired.
2011-01-01
changed consumer preferences . Hence, static stability limits initial performance deviation (e.g., maintaining desired airplane altitude, maintaining...by changed consumer preferences . Hence, dynamic stability limits the duration of performance deviation (e.g., maintaining desired airplane altitude...altitude from wind gust. Initial resistance to deviation in profit level from change in consumer preferences . Dynamic stability Quickness of a
NASA Astrophysics Data System (ADS)
Martinez, P.; Kasper, M.; Costille, A.; Sauvage, J. F.; Dohlen, K.; Puget, P.; Beuzit, J. L.
2013-06-01
Context. Observing sequences have shown that the major noise source limitation in high-contrast imaging is the presence of quasi-static speckles. The timescale on which quasi-static speckles evolve is determined by various factors, mechanical or thermal deformations, among others. Aims: Understanding these time-variable instrumental speckles and, especially, their interaction with other aberrations, referred to as the pinning effect, is paramount for the search for faint stellar companions. The temporal evolution of quasi-static speckles is, for instance, required for quantifying the gain expected when using angular differential imaging (ADI) and to determining the interval on which speckle nulling techniques must be carried out. Methods: Following an early analysis of a time series of adaptively corrected, coronagraphic images obtained in a laboratory condition with the high-order test bench (HOT) at ESO Headquarters, we confirm our results with new measurements carried out with the SPHERE instrument during its final test phase in Europe. The analysis of the residual speckle pattern in both direct and differential coronagraphic images enables the characterization of the temporal stability of quasi-static speckles. Data were obtained in a thermally actively controlled environment reproducing realistic conditions encountered at the telescope. Results: The temporal evolution of the quasi-static wavefront error exhibits a linear power law, which can be used to model quasi-static speckle evolution in the context of forthcoming high-contrast imaging instruments, with implications for instrumentation (design, observing strategies, data reduction). Such a model can be used for instance to derive the timescale on which non-common path aberrations must be sensed and corrected. We found in our data that quasi-static wavefront error increases with ~0.7 Å per minute.
30 CFR 784.16 - Reclamation plan: Siltation structures, impoundments, and refuse piles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Resources Conservation Service's Web site athttp://www.info.usda.gov/scripts/lpsiis.dll/TR/TR_210_60.htm... State program approval process engineering design standards that ensure stability comparable to a 1.3 minimum static safety factor in lieu of engineering tests to establish compliance with the minimum static...
Diurnal forcing of planetary atmospheres
NASA Technical Reports Server (NTRS)
Houben, Howard C.
1991-01-01
A free convection parameterization has been introduced into the Mars Planetary Boundary Layer Model (MPBL). Previously, the model would fail to generate turbulence under conditions of zero wind shear, even when statically unstable. This in turn resulted in erroneous results at the equator, for example, when the lack of Coriolis forcing allowed zero wind conditions. The underlying cause of these failures was the level 2 second-order turbulence closure scheme which derived diffusivities as algebraic functions of the Richardson number (the ratio of static stability to wind shear). In the previous formulation, the diffusivities were scaled by the wind shear--a convenient parameter since it is non-negative. This was the drawback that all diffusivities are zero under conditions of zero shear (viz., the free convection case). The new scheme tests for the condition of zero shear in conjunction with static instability and recalculates the diffusivities using a static stability scaling. The results for a simulation of the equatorial boundary layer at autumnal equinox are presented. (Note that after some wind shear is generated, the model reverts to the traditional diffusivity calculation.)
Safieddine, Doha; Chkeir, Aly; Herlem, Cyrille; Bera, Delphine; Collart, Michèle; Novella, Jean-Luc; Dramé, Moustapha; Hewson, David J; Duchêne, Jacques
2017-11-01
Falls are a major cause of death in older people. One method used to predict falls is analysis of Centre of Pressure (CoP) displacement, which provides a measure of balance quality. The Balance Quality Tester (BQT) is a device based on a commercial bathroom scale that calculates instantaneous values of vertical ground reaction force (Fz) as well as the CoP in both anteroposterior (AP) and mediolateral (ML) directions. The entire testing process needs to take no longer than 12 s to ensure subject compliance, making it vital that calculations related to balance are only calculated for the period when the subject is static. In the present study, a method is presented to detect the stabilization period after a subject has stepped onto the BQT. Four different phases of the test are identified (stepping-on, stabilization, balancing, stepping-off), ensuring that subjects are static when parameters from the balancing phase are calculated. The method, based on a simplified cumulative sum (CUSUM) algorithm, could detect the change between unstable and stable stance. The time taken to stabilize significantly affected the static balance variables of surface area and trajectory velocity, and was also related to Timed-up-and-Go performance. Such a finding suggests that the time to stabilize could be a worthwhile parameter to explore as a potential indicator of balance problems and fall risk in older people. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Coordination exercise and postural stability in elderly people: Effect of Tai Chi Chuan.
Wong, A M; Lin, Y C; Chou, S W; Tang, F T; Wong, P Y
2001-05-01
To evaluate the effects of coordination exercise on postural stability in older individuals by Chinese shadow boxing, Tai Chi Chuan (TCC). Cross-sectional study. Research project in a hospital-based biomechanical laboratory. The TCC group (n = 25) had been practicing TCC regularly for 2 to 35 years. The control group (n = 14) included healthy and active older subjects. Static postural stability test: progressively harder sequential tests with 6 combinations of vision (eyes open, eyes closed, sway-referenced) and support (fixed, sway-referenced); and dynamic balance test: 3 tests of weight shifting (left to right, forward-backward, multidirectional) at 3 speeds. Static and dynamic balance of Sensory Organization Testing (SOT) of the Smart Balance Master System. In static postural control, the results showed no differences between the TCC or control group in the more simple conditions, but in the more complicated SOT (eyes closed with sway surface, sway vision with sway surface), the TCC group had significantly better results than the control group. The TCC group also had significantly better results in the rhythmic forward-backward weight-shifting test. Duration of practice did not seem to affect the stability of elder people. The elderly people who regularly practiced TCC showed better postural stability in the more challenged conditions than those who do not (eg, the condition with simultaneous disturbance of vision and proprioception). TCC as a coordination exercise may reduce the risk of a fall through maintaining the ability of posture control.
Water Source and Isotope changes through the Deglaciation and Holocene
NASA Astrophysics Data System (ADS)
LeGrande, A. N.; Carlson, A. E.; Ullman, D. J.; Nusbaumer, J. M.
2017-12-01
The deglacial period saw radical shifts in climate across the globe. Water isotopologues provide some of the most wide-spread proxy archives of these climate changes. Here we present new analyses on a suite of 12 water isotope-enabled coupled atmosphere-ocean GCM simulations from GISS ModelE-R that span 24kya to the pre-industrial period. We show how millennial scale co-variability in water isotopes and climate (temperature, precipitation, humidity, and moist-static energy) is distinct from regional scale spatial slopes, consistent with proxy archives (e.g., Cuffey et al 1995). We supplement this set of simulations with a new ensemble of deglacial simulations that contain a complementary suite of tracers that determine moisture provenance changes through the deglaciation. We diagnose regions that have had significant changes in moisture provenance and compare this information against simulated changes in the water isotope changes.
Satake, Toshihiko; Muto, Mayu; Nagashima, Yu; Haga, Shoko; Homma, Yuki; Nakasone, Reiko; Kadokura, Marina; Kou, Seiko; Fujimoto, Hiroshi; Maegawa, Jiro
2018-04-01
We describe a new wound management technique using a soft dressing material to stabilize the areola skin graft and protect the nipple after nipple-areola reconstruction at the final stage of breast reconstruction. We introduced a center-fenestrated multilayered hydrocellular polyurethane foam dressing material that provides adequate pressure and retains a moist environment for a smooth skin graft "take." Moreover, the reconstructed nipple can be monitored at any time through the fenestrated window for adequate blood circulation. Altogether, this simple and inexpensive wound dressing technique improves the clinical outcome. Level of Evidence IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Structural Evolution of a Warm Frontal Precipitation Band During GCPEx
NASA Technical Reports Server (NTRS)
Colle, Brian A.; Naeger, Aaron; Molthan, Andrew; Nesbitt, Stephen
2015-01-01
A warm frontal precipitation band developed over a few hours 50-100 km to the north of a surface warm front. The 3-km WRF was able to realistically simulate band development, although the model is somewhat too weak. Band genesis was associated with weak frontogenesis (deformation) in the presence of weak potential and conditional instability feeding into the band region, while it was closer to moist neutral within the band. As the band matured, frontogenesis increased, while the stability gradually increased in the banding region. Cloud top generating cells were prevalent, but not in WRF (too stable). The band decayed as the stability increased upstream and the frontogenesis (deformation) with the warm front weakened. The WRF may have been too weak and short-lived with the band because too stable and forcing too weak (some micro issues as well).
Xiaoshan, Wang; Zhixi, Li; Liang, Liang; Shuchun, Luo; Xia, Wang; Yuyi, Wang; Feng, Luo
2014-09-01
Abstract Objective: A case series is presented to investigate the efficacy and safety of Erhegao for patients with breast cancer who have radiotherapy-induced moist desquamation. Eighteen women with breast cancer who received radiotherapy and developed moist desquamation were enrolled. Erhegao cream, a Traditional Chinese Medicine formula consisting of zinc oxide powder, calamine powder, and lithospermum oil, was applied on areas of moist desquamation. Application was repeated once a day until healing. The primary end point for efficacy was the time to healing of the moist desquamation areas. A numerical rating scale was used to measure wound pain relief daily. Incidence of toxicity was also assessed. The average time to healing of the moist desquamation area was 13.56 days. The mean pain scores on the first, third, and seventh days were 5.22, 2.94, and 0.83, respectively. Eight-three percent of patients reported pain relief after the first 3 days, and 94%, after the first week. The mean daily reduction in the pain score was 0.40. None of the patients developed clinical infections or reported any toxicity. This formula is effective and safe, especially for pain relief, and may be an alternative treatment for radiotherapy-induced moist desquamation in patients with breast cancer. Future randomized, controlled studies are needed to better evaluate the efficacy of Erhegao cream.
Alpert, H R; Koh, H; Connolly, G N
2008-10-01
From 2000 to 2006, moist snuff sales have increased and now account for 71% of the smokeless tobacco market. Previous research has shown that major manufacturers of smokeless tobacco products manipulated free nicotine, the form most readily absorbed, to promote tolerance and addiction. This study examines the possibility that company-specific and brand-specific strategies of the major moist snuff manufacturers involve controlling free nicotine content and ease of dosing with products that are designed and targeted to specific groups. This study looks at the current total US moist snuff market with product design data from the Massachusetts Department of Public Health; moist snuff use from the National Survey on Drug Use and Health; market data from ACNielsen; and magazine advertising expenditures from TNS Media Intelligence. (1) The levels of free nicotine of moist snuff products have increased over time for several major manufacturers; (2) the number and variety of sub-brands have increased over time; (3) changes in design, as reflected by variation in free nicotine associated with pH or tobacco leaf, or both, have enhanced the ease and uniformity of dosing; (4) marketing through price and advertising has increased; and (5) youth use has increased. A combination of factors including brand proliferation, control of free nicotine and product design has most likely resulted in the expanded consumption of moist snuff, particularly among young people.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majda, Andrew J.; Xing, Yulong; Mohammadian, Majid
Determining the finite-amplitude preconditioned states in the hurricane embryo, which lead to tropical cyclogenesis, is a central issue in contemporary meteorology. In the embryo there is competition between different preconditioning mechanisms involving hydrodynamics and moist thermodynamics, which can lead to cyclogenesis. Here systematic asymptotic methods from applied mathematics are utilized to develop new simplified moist multi-scale models starting from the moist anelastic equations. Three interesting multi-scale models emerge in the analysis. The balanced mesoscale vortex (BMV) dynamics and the microscale balanced hot tower (BHT) dynamics involve simplified balanced equations without gravity waves for vertical vorticity amplification due to moist heatmore » sources and incorporate nonlinear advective fluxes across scales. The BMV model is the central one for tropical cyclogenesis in the embryo. The moist mesoscale wave (MMW) dynamics involves simplified equations for mesoscale moisture fluctuations, as well as linear hydrostatic waves driven by heat sources from moisture and eddy flux divergences. A simplified cloud physics model for deep convection is introduced here and used to study moist axisymmetric plumes in the BHT model. A simple application in periodic geometry involving the effects of mesoscale vertical shear and moist microscale hot towers on vortex amplification is developed here to illustrate features of the coupled multi-scale models. These results illustrate the use of these models in isolating key mechanisms in the embryo in a simplified content.« less
CFD Assessment of Aerodynamic Degradation of a Subsonic Transport Due to Airframe Damage
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Pirzadeh, Shahyar Z.; Atkins, Harold L.; Viken, Sally A.; Morrison, Joseph H.
2010-01-01
A computational study is presented to assess the utility of two NASA unstructured Navier-Stokes flow solvers for capturing the degradation in static stability and aerodynamic performance of a NASA General Transport Model (GTM) due to airframe damage. The approach is to correlate computational results with a substantial subset of experimental data for the GTM undergoing progressive losses to the wing, vertical tail, and horizontal tail components. The ultimate goal is to advance the probability of inserting computational data into the creation of advanced flight simulation models of damaged subsonic aircraft in order to improve pilot training. Results presented in this paper demonstrate good correlations with slope-derived quantities, such as pitch static margin and static directional stability, and incremental rolling moment due to wing damage. This study further demonstrates that high fidelity Navier-Stokes flow solvers could augment flight simulation models with additional aerodynamic data for various airframe damage scenarios.
9 CFR 381.165 - “(Kind) barbecued prepared with moist heat.”
Code of Federal Regulations, 2014 CFR
2014-01-01
... heat.â 381.165 Section 381.165 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Standards of Identity or Composition § 381.165 “(Kind) barbecued prepared with moist heat.” Such product consists of ready-to-cook poultry of the kind indicated that has been cooked by the action of moist heat in...
9 CFR 381.165 - “(Kind) barbecued prepared with moist heat.”
Code of Federal Regulations, 2012 CFR
2012-01-01
... heat.â 381.165 Section 381.165 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Standards of Identity or Composition § 381.165 “(Kind) barbecued prepared with moist heat.” Such product consists of ready-to-cook poultry of the kind indicated that has been cooked by the action of moist heat in...
9 CFR 381.165 - “(Kind) barbecued prepared with moist heat.”
Code of Federal Regulations, 2013 CFR
2013-01-01
... heat.â 381.165 Section 381.165 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Standards of Identity or Composition § 381.165 “(Kind) barbecued prepared with moist heat.” Such product consists of ready-to-cook poultry of the kind indicated that has been cooked by the action of moist heat in...
9 CFR 381.165 - “(Kind) barbecued prepared with moist heat.”
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false â(Kind) barbecued prepared with moist heat.â 381.165 Section 381.165 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Standards of Identity or Composition § 381.165 “(Kind) barbecued prepared with moist heat.” Such product...
9 CFR 381.165 - “(Kind) barbecued prepared with moist heat.”
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false â(Kind) barbecued prepared with moist heat.â 381.165 Section 381.165 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Standards of Identity or Composition § 381.165 “(Kind) barbecued prepared with moist heat.” Such product...
Water Vapor Feedback and Links to Mechanisms of Recent Tropical Climate Variations
NASA Technical Reports Server (NTRS)
Robertson, F. R.; Miller, Tim L.
2008-01-01
Recent variations of tropical climate on interannual to near-decadal scales have provided a useful target for studying feedback processes. A strong warm/cold ENSO couplet (e.g. 1997-2000) along with several subsequent weaker events are prominent interannual signals that are part of an apparent longer term strengthening of the Walker circulation during the mid to late1990 s with some weakening thereafter. Decadal scale changes in tropical SST structure during the 1990s are accompanied by focusing of precipitation over the Indo-Pacific warm pool and an increase in tropical ocean evaporation of order 1.0 %/decade. Here we use a number of diverse satellite measurements to explore connections between upper-tropospheric humidity (UTH) variations on these time scales and changes in other water and energy fluxes. Precipitation (GPCP, TRMM), turbulent fluxes (OAFlux), and radiative fluxes (ERBE / CERES, SRB) are use to analyze vertically-integrated divergence of moist static energy, divMSE, and its dry and moist components. Strong signatures of MSE flux transport linking ascending and descending regions of tropical circulations are found. Relative strengths of these transports compared to radiative flux changes are interpreted as a measure of efficiency in the overall process of heat rejection during episodes of warm or cold SST forcing. In conjunction with the diagnosed energy transports we explore frequency distributions of upper-tropospheric humidity as inferred from SSM/T-2 and AMSU-B passive microwave measurements. Relating these variations to SST changes suggests positive water vapor feedback, but at a level reduced from constant relative humidity.
The Role of the Persian Gulf in Shaping Southwest Asian Surface Climate
NASA Astrophysics Data System (ADS)
Pal, J. S.; Eltahir, E. A. B.
2015-12-01
Summer surface climate of the Persian Gulf region is characterized by hot and humid conditions. Despite such conditions - which in other regions tends to trigger moist convection - typically this region experiences clear sky conditions and very little rainfall in the summer. In this study, we customize the MIT Regional Climate Model specifically for the Southwest Asia region and apply it at a 25-km grid spacing using reanalysis boundary conditions for present-day climate (1975-2005). Specific customizations include accurate representations of surface albedo and emissivity as well as mineral dust processes, all of which improve model bias. To assess the role of the Persian Gulf in shaping the region's climate, a 30-year experiment is performed without the Persian Gulf characterized. Results suggest that observed conditions over the Persian Gulf are due to a combination of physical processes involving adiabatic and diabatic descent. First, virtually clear sky conditions, due to subsidence during summer associated with the rising air motion over the monsoon region to the east, suppress upward motion and deep convection and increase incoming solar radiation. Second, the low surface albedo of the Persian Gulf results in enhanced absorption of solar radiation and total heat flux. Third, high evaporation rates increase water vapor, and therefore trap heat at the surface via the greenhouse effect for water vapor. Fourth, the relatively shallow boundary layer over the Persian Gulf concentrates water vapor and heat close to the surface. These combined factors maximize the total flux of heat in the boundary layer and hence moist static energy over the Persian Gulf.
Linear and nonlinear stability characteristics of whistlers
NASA Technical Reports Server (NTRS)
Brinca, A. L.
1972-01-01
Linear and nonlinear propagating characteristics of right-hand polarized, slow electromagnetic, magnetoplasma waves (whistlers) are discussed in terms of stability and dispersion. An analysis of the stability of whistlers propagating at an angle to the static magnetic field is presented. A new mechanism is derived for the onset of stimulated emissions, and modulational instability for nonlinear whistlers are discussed.
Permit application modifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
This document contains the Permit Application Modifications for the Y-12 Industrial Landfill V site on the Oak Ridge Reservation. These modifications include the assessment of stability of the proposed Landfill V under static and loading conditions. Analyses performed include the general slope stability, veneer stability of the bottom liner and cover system, and a liquefaction potential assessment of the foundation soils.
Bubble dynamics in a standing sound field: the bubble habitat.
Koch, P; Kurz, T; Parlitz, U; Lauterborn, W
2011-11-01
Bubble dynamics is investigated numerically with special emphasis on the static pressure and the positional stability of the bubble in a standing sound field. The bubble habitat, made up of not dissolving, positionally and spherically stable bubbles, is calculated in the parameter space of the bubble radius at rest and sound pressure amplitude for different sound field frequencies, static pressures, and gas concentrations of the liquid. The bubble habitat grows with static pressure and shrinks with sound field frequency. The range of diffusionally stable bubble oscillations, found at positive slopes of the habitat-diffusion border, can be increased substantially with static pressure.
CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes
NASA Technical Reports Server (NTRS)
Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.
2012-01-01
Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.
Definition and application of longitudinal stability derivatives for elastic airplanes
NASA Technical Reports Server (NTRS)
Kemp, W. B., Jr.
1972-01-01
A set of longitudinal stability derivatives for elastic airplanes is defined from fundamental principles allowing perturbations in forward speed. Application of these derivatives to longitudinal stability analysis by use of approximate expressions for static stability and control parameters as well as the dynamic equations of motion is illustrated. One commonly used alternative formulation for elastic airplanes is shown to yield significant inaccuracies because of inappropriate interpretation of inertial effects.
Mechanisms of northeastern Brazil rainfall anomalies due to Southern Tropical Atlantic variability
NASA Astrophysics Data System (ADS)
Neelin, J.; Su, H.
2004-05-01
Observational studies have shown that the rainfall anomalies in eastern equatorial South America, including Nordeste Brazil, have a positive correlation with tropical southern Atlantic sea surface temperature (SST) anomalies. Such relationships are reproduced in model simulations with the quasi-equilibrium tropical circulation model (QTCM), which includes a simple land model. A suite of model ensemble experiments is analysed using observed SST over the tropical oceans, the tropical Atlantic and the tropical southern Atlantic (30S-0), respectively (with climatological SST in the remainder of the oceans). Warm tropical south Atlantic SST anomalies yield positive precipitation anomalies over the Nordeste and the southern edge of the Atlantic marine intertropical convergence zone (ITCZ). Mechanisms associated with moisture variations are responsible for the land precipitation changes. Increases in moisture over the Atlantic cause positive anomalies in moisture advection, spreading increased moisture downwind. Where the basic state is far from the convective stability threshold, moisture changes have little effect, but the margins of the climatological convection zone are affected. The increased moisture supply due to advection is enhanced by increases in low-level convergence required by moist static energy balances. The moisture convergence term is several times larger, but experiments altering the moisture advection confirm that the feedback is initiated by wind acting on moisture gradient. This mechanism has several features in common with the recently published "upped-ante" mechanism for El Nino impacts on this region. In that case, the moisture gradient is initiated by warm free tropospheric temperature anomalies increasing the typical value of low-level moisture required to sustain convection in the convection zones. Both mechanisms suggest the usefulness of coordinating ocean and land in situ observations of boundary layer moisture.
NASA Astrophysics Data System (ADS)
Clayson, C. A.; Roberts, J.
2016-02-01
The Madden-Julian Oscillation (MJO) represents a prominent mode of intraseasonal tropical variability as manifest by coherent large-scale changes in atmospheric circulation, convection, and thermodynamic processes. Its impacts are far-reaching with influences on monsoons, flooding, droughts, and tropical storms. The characteristic timescale of the MJO is positioned in a gap between synoptic forecasting and longer range seasonal to interannual predictions, but has been shown to be dependent on diurnally-varying sea surface temperature (SST). In this work, we leverage a wide suite of satellite products with in situ oceanographic data over the 2002-2012 period to investigate the rectification effects of strong ocean diurnal warming onto the development of intraseasonal SST variability, and whether there a detectable influence on the diurnal cycle of cloud-radiative effects in the suppressed phase of the MJO. Diurnally-varying SST is used as a conditional sampling parameter, along with AIRS/AMSU-A temperature and moisture profiles, surface winds, radiative and turbulent surface fluxes, and precipitation. We use composite daily average atmospheric BL depths, changes in lower-tropospheric stability, and moist static energy to evaluate changes in convective inhibition based on the diurnal variability of surface parcel characteristics due to turbulent heat fluxes, and compare with diurnal changes in cloud-radiative effects and precipitation. Argo floats and ocean modeling experiments are used to examine the upper ocean response. An ensemble of MJO simulations are generated using Argo profiles and satellite-derived surface forcing from which the systematic impacts of diurnal variability on the generation of the intraseasonal SST warming are evaluated. These simulations inform the importance of diurnal variations in surface boundary forcing to upper ocean mixing and the integrated contribution to SST warming over the typical duration of a suppressed phase of the MJO.
Responses of Mean and Extreme Precipitation to Deforestation in the Maritime Continent
NASA Astrophysics Data System (ADS)
Chen, C. C.; Lo, M. H.; Yu, J. Y.
2017-12-01
Anthropogenic land use and land cover change, including tropical deforestation, could have substantial effects on local surface energy and water budgets, and thus on the atmospheric stability which may result in changes in precipitation. Maritime Continent has undergone severe deforestation in recent decades but has received less attention than Amazon or Congo rainforests. Therefore, this study is to decipher the precipitation response to deforestation in the Maritime Continent. We conduct deforestation experiments using Community Earth System Model (CESM) and through converting the tropical rainforest into grassland. The results show that deforestation in Maritime Continent leads to an increase in both mean temperature and mean precipitation. Moisture budget analysis indicates that the increase in precipitation is associated with the vertically integrated vertical moisture advection, especially the dynamic component (changes in convection). In addition, through moist static energy (MSE) budget analysis, we find the atmosphere among deforested areas become unstable owing to the combined effects of positive specific humidity anomalies at around 850 hPa and anomalous warming extended from the surface to 750 hPa. This instability will induce anomalous ascending motion, which could enhance the low-level moisture convergence, providing water vapor from the surrounding warm ocean. To further evaluate the precipitation response to deforestation, we examine the precipitation changes under La Niña events and global warming scenario using CESM Atmospheric Model Intercomparison Project (AMIP) simulations and Representative Concentration Pathway (RCP) 8.5 simulations. We find that the precipitation increase caused by deforestation in Maritime Continent is comparable in magnitude to that generated by either natural variability or global warming forcing. Besides the changes in mean precipitation, preliminary results show the extreme precipitation also increases. We will further explore how the extreme precipitation changes with the deforestation forcing.
NASA Technical Reports Server (NTRS)
Greenberg, Harry; Sternfield, Leonard
1944-01-01
The relation between the elevator hinge-moment parameters and the control-forces for changes in forward speed and in maneuvers is shown for several values of static stability and elevator mass balance.
Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James
2010-06-29
A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.
NASA Technical Reports Server (NTRS)
Houser, J. F.; Runciman, W. H.
1971-01-01
Experimental aerodynamic investigations were made in the Grumman 36-inch hypersonic wind tunnel on a .00435 scale model of the H-32 reusable space shuttle booster. The objectives of the test were to determine the static stability characteristics and control surface effectiveness at hypersonic speeds. Data were taken at M = 8.12 over a range of angles of attack between -5 and 85 deg at beta = 0 deg and over a range of side slip angles between -10 and 10 deg at alpha = 0 and 70 deg. Six component balance data and base-cavity pressure data were recorded.
Non-Static error tracking control for near space airship loading platform
NASA Astrophysics Data System (ADS)
Ni, Ming; Tao, Fei; Yang, Jiandong
2018-01-01
A control scheme based on internal model with non-static error is presented against the uncertainty of the near space airship loading platform system. The uncertainty in the tracking table is represented as interval variations in stability and control derivatives. By formulating the tracking problem of the uncertainty system as a robust state feedback stabilization problem of an augmented system, sufficient condition for the existence of robust tracking controller is derived in the form of linear matrix inequality (LMI). Finally, simulation results show that the new method not only has better anti-jamming performance, but also improves the dynamic performance of the high-order systems.
Structural diagnostics of the tropopause inversion layer and its evolution
NASA Astrophysics Data System (ADS)
Gettelman, A.; Wang, T.
2015-01-01
The Tropopause Inversion Layer (TIL) is marked by a peak in static stability directly above the tropopause. The TIL is quantitatively defined with new diagnostics using Global Positioning System Radio Occultation temperature soundings and reanalysis data. A climatology of the TIL is developed from reanalysis data (1980-2011) using diagnostics for the position, depth, and strength of the TIL based on the TIL peak in static stability. TIL diagnostics have defined relationships to the synoptic situation in the Upper Troposphere and Lower Stratosphere. The TIL is present nearly all the time. The TIL becomes hard to define in the subtropics where tropical air overlies midlatitude air, in a region of complex static stability profiles. The mean position of the subtropical TIL gradient is sharp and is co-located with the subtropical tropopause break. Over the period 1980-2011 the TIL depth below the tropopause has decreased by 5% per decade and increased above the tropical tropopause by a similar percentage. Furthermore, the latitude of the abrupt change in the TIL from tropical to extratropical in the lower stratosphere appears to have shifted poleward in each hemisphere by ˜1° latitude per decade, depending on the diagnostic examined. Reanalysis trends should be treated with caution.
Epidemiologic perspectives on smokeless tobacco marketing and population harm.
Tomar, Scott L
2007-12-01
Moist snuff is the most popular form of orally-used smokeless tobacco in North America and parts of Europe. Because moist snuff use conveys lower risks for morbidity or mortality than does cigarette smoking, its use has been proposed as a tobacco harm-reduction strategy. This article critically reviews new and published epidemiologic evidence on health effects of moist snuff and its patterns of use relative to smoking in the United States, Sweden, and Norway. The available evidence suggests that: (1) moist snuff is a human carcinogen and toxin, (2) increased promotion of moist snuff has led to increased sales in those countries, (3) the uptake of moist snuff in these three countries during the past several decades has occurred primarily among adolescent and young adult men, (4) increased prevalence of snuff use has not been associated consistently with a reduction in smoking initiation or prevalence, (5) moist snuff use apparently plays a very minor role in smoking cessation in the U.S. and an inconsistent role in Sweden, (6) U.S. states with the lowest smoking prevalence also tend to have the lowest prevalence of snuff use, (7) there are no data on the efficacy of snuff as a smoking-cessation method, (8) the prevalence of cigarette smoking is relatively high among people who use snuff, and (9) snuff use is more consistently associated with partial substitution for smoking than with complete substitution. The evidence base for promotion of snuff use as a public health strategy is weak and inconsistent.
Rectification of the Diurnal Cycle and the Impact of Islands on the Tropical Climate
NASA Astrophysics Data System (ADS)
Cronin, T. W.; Emanuel, K.
2012-12-01
Tropical islands are observed to be rainier than nearby ocean areas, and rainfall over the islands of the Maritime Continent plays an important role in the atmospheric general circulation. Convective heating over tropical islands is also strongly modulated by the diurnal cycle of solar insolation and surface enthalpy fluxes, and convective parameterizations in general circulation models are known to reproduce the phase and amplitude of the observed diurnal cycle of convection rather poorly. Connecting these ideas suggests that poor representation of the diurnal cycle of convection and precipitation over tropical islands in climate models may be a significant source of model biases. Here, we explore how a highly idealized island, which differs only in heat capacity from the surrounding ocean, could rectify the diurnal cycle and impact the tropical climate, especially the spatial distribution of rainfall. We perform simulations of radiative-convective equilibrium with the System for Atmospheric Modeling cloud-system-resolving model, with interactive surface temperature and a varied surface heat capacity. For the case of relatively small-scale simulations, where a shallow (~5 cm) slab-ocean "swamp island" surface is embedded in a deeper (~1 m) slab-ocean domain, the precipitation rate over the island is more than double the domain average value, with island rainfall occurring primarily in a strong regular convective event each afternoon. In addition to this island precipitation enhancement, the upper troposphere also warms with the inclusion of a low- heat capacity island. We discuss two radiative mechanisms that contribute to both island precipitation enhancement and free tropospheric warming, by producing a top-of-atmosphere radiative surplus over the island. The first radiative mechanism is a clear-sky effect, related to nonlinearities in the surface energy budget, and differences in how surface energy balance is achieved over surfaces of different heat capacities. The second radiative mechanism is a cloudy-sky effect, related to the timing of clouds with respect to solar forcing, as well as to the mean cloud fraction and height. We also discuss an advective mechanism for island precipitation enhancement, related to both the moist static energy convergence by the diurnally-reversing land/sea breeze, and the enhanced variability of moist static energy in the island subcloud layer. Preliminary results from larger-domain equatorial beta-channel simulations are also discussed, with potentially greater applicability to the impacts of islands on the large-scale tropical circulation.
Dynamics and statics of nonaxisymmetric liquid bridges
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Resnick, Andy; Zhang, Yiqiang; Fedoseyev, A.
1994-01-01
We finished the construction of the experimental apparatus and the design and testing of some of the visualization and data acquisition techniques. Experimental work focused on three areas: force measurements, loss of stability to nonaxisymmetric bridges, and vibration behavior. The experimental work is summarized in section 2. Selected results from our force measurement experiments are outlined in section 3. In addition we worked on the theory of the dynamic stability of axisymmetric bridges and undertook numerical simulation of the effects of inclined gravity vectors on the minimum volume stability limit for static bridges. The results and status of our theoretical work and numerical simulation are described in section 4. Papers published and in preparation, conference presentations, etc., are described in section 5. Work planned for the third year is discussed in section 6. References cited in the report are listed in section 7.
Strength and stability of microbial plugs in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, A.K.; Sharma, M.M.; Georgiou, G.
1995-12-31
Mobility reduction induced by the growth and metabolism of bacteria in high-permeability layers of heterogeneous reservoirs is an economically attractive technique to improve sweep efficiency. This paper describes an experimental study conducted in sandpacks using an injected bacterium to investigate the strength and stability of microbial plugs in porous media. Successful convective transport of bacteria is important for achieving sufficient initial bacteria distribution. The chemotactic and diffusive fluxes are probably not significant even under static conditions. Mobility reduction depends upon the initial cell concentrations and increase in cell mass. For single or multiple static or dynamic growth techniques, permeability reductionmore » was approximately 70% of the original permeability. The stability of these microbial plugs to increases in pressure gradient and changes in cell physiology in a nutrient-depleted environment needs to be improved.« less
Room-Temperature Micron-Scale Exciton Migration in a Stabilized Emissive Molecular Aggregate.
Caram, Justin R; Doria, Sandra; Eisele, Dörthe M; Freyria, Francesca S; Sinclair, Timothy S; Rebentrost, Patrick; Lloyd, Seth; Bawendi, Moungi G
2016-11-09
We report 1.6 ± 1 μm exciton transport in self-assembled supramolecular light-harvesting nanotubes (LHNs) assembled from amphiphillic cyanine dyes. We stabilize LHNs in a sucrose glass matrix, greatly reducing light and oxidative damage and allowing the observation of exciton-exciton annihilation signatures under weak excitation flux. Fitting to a one-dimensional diffusion model, we find an average exciton diffusion constant of 55 ± 20 cm 2 /s, among the highest measured for an organic system. We develop a simple model that uses cryogenic measurements of static and dynamic energetic disorder to estimate a diffusion constant of 32 cm 2 /s, in agreement with experiment. We ascribe large exciton diffusion lengths to low static and dynamic energetic disorder in LHNs. We argue that matrix-stabilized LHNS represent an excellent model system to study coherent excitonic transport.
Demonstration of relaxed static stability on a commercial transport
NASA Technical Reports Server (NTRS)
Rising, J. J.; Davis, W. J.; Willey, C. S.; Cokeley, R. C.
1984-01-01
Increasing jet aircraft fuel costs from 25 percent to nearly 60 percent of the aircraft direct operating costs have led to a heavy emphasis on the development of transport aircraft with significantly improved aerodynamic performance. The application of the concept of relaxed static stability (RSS) and the utilization of an active control stability augmentation system make it possible to design an aircraft with reduced aerodynamic trim drag due to a farther-aft cg balance. Reduced aerodynamic parasite drag and lower structural weight due to a smaller horizontal tail surface can also be obtained. The application of RSS has been studied under a NASA-sponsored program to determine ways of improving the energy efficiency in current and future transport aircraft. Attention is given to a near-term pitch active control system, an advanced pitch active control system, and an operational overview.
NASA Astrophysics Data System (ADS)
Lau, W. K. M.; Kim, K. M.
2016-12-01
In this study, we investigate the relative roles of greenhouse gas (GHG) warming and aerosol forcing on the Asian monsoon. A baseline for global warming response is established from analysis of the multi-model mean (MMM) of 33 CMIP5 models based on a 140-year integration of 1% per year CO2 experiment. The relative roles of GHG warming and aerosol forcing on Asian monsoon precipitation changes are then assessed based on the 20th century historical runs, under a) all-forcing including GHG and aerosols, and b) GHG only. Results show that under CO2 warming, the Asian monsoon atmosphere can get wetter, no change, or drier regionally, depending on changes in moisture availability, atmospheric moist static stability, and topography. Rainfall is generally increased over the Asian monsoon tropical land and adjacent oceanic regions. However, in subtropical and extratropical land region over East Asia, monsoon rainfall increase is minimal, unchanged, or even suppressed. This is due to increased subsidence, and reduction of mid-tropopsheric relative humidity from an enhanced Hadley circulation, which weakens the monsoon meridional overturning circulation. These create the apparent paradox of a monsoon with increased rainfall, but weakened monsoon circulation under GHG warming. The monsoon response to GHG-only forcing in the historical run is similar to the baseline. On the other hand, as inferred from the difference of the all-forcing and the GHG-only runs, aerosols through solar dimming (SDM) and semi-direct effects suppress monsoon precipitation, causing a further weakening of the Asian monsoon. A scale analysis of precipitation shows that under a hypothetical GHG-only forcing in the past century, the "effective precipitation efficiency" (EPE) would have to be strongly reduced in order to achieve water balance between dynamics and thermodynamics. Under all-forcing (including aerosol), the reduction in EPE is much smaller. Here, the weaker monsoon circulation needed for water balance can be achieved via the aerosol semi-direct effect in increased atmospheric stability, and aerosol solar dimming effect in lessening the GHG induced land-sea thermal contrast between Eurasia and the surrounding oceans.
Existence and stability of circular orbits in general static and spherically symmetric spacetimes
NASA Astrophysics Data System (ADS)
Jia, Junji; Liu, Jiawei; Liu, Xionghui; Mo, Zhongyou; Pang, Xiankai; Wang, Yaoguang; Yang, Nan
2018-02-01
The existence and stability of circular orbits (CO) in static and spherically symmetric (SSS) spacetime are important because of their practical and potential usefulness. In this paper, using the fixed point method, we first prove a necessary and sufficient condition on the metric function for the existence of timelike COs in SSS spacetimes. After analyzing the asymptotic behavior of the metric, we then show that asymptotic flat SSS spacetime that corresponds to a negative Newtonian potential at large r will always allow the existence of CO. The stability of the CO in a general SSS spacetime is then studied using the Lyapunov exponent method. Two sufficient conditions on the (in)stability of the COs are obtained. For null geodesics, a sufficient condition on the metric function for the (in)stability of null CO is also obtained. We then illustrate one powerful application of these results by showing that three SSS spacetimes whose metric function is not completely known will allow the existence of timelike and/or null COs. We also used our results to assert the existence and (in)stabilities of a number of known SSS metrics.
Postural Stability Assessment of University Marching Musicians Using Force Platform Measures.
Magnotti, Trevor D; McElhiney, Danielle; Russell, Jeffrey A
2016-09-01
Lower extremity injury is prevalent in marching musicians, and poor postural stability is a possible risk factor for this. The external load of an instrument may predispose these performers to injury by decreasing postural stability. The purpose of this study was to determine the relationship between instrument load and static and dynamic postural stability in this population. Fourteen university marching musicians were recruited and completed a balance assessment protocol on a force platform with and without their instrument. Mean center of pressure (CoP) displacement was then calculated for each exercise in the anterior/posterior and medial/lateral planes. Mean anterior/posterior CoP displacement significantly increased in the instrument condition for the static surface, eyes closed, 2 feet condition (p≤0.005; d=0.89). No significant differences were found in the medial/lateral plane between non-instrument and instrument conditions. Significant differences were not found between test stance conditions independent of group. Comparisons between the non-instrument-loaded and instrument-loaded conditions revealed possible significance of instrument load on postural stability in the anterior/posterior plane. Mean differences indicated that an unstable surface created a greater destabilizing effect on postural stability than instrument load.
NASA Technical Reports Server (NTRS)
Welstead, Jason
2014-01-01
This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.
NASA Astrophysics Data System (ADS)
Vedartham, Padmaja B.
Snap-through buckling provides an intricate force-displacement relationship for study. With the possibility for multiple limit points and pitchfork bifurcations and large regions of instability, experimental validation of numerical analysis can become difficult. This requires stabilization of unstable static equilibria, for which limited prior research exists. For all but the simplest cases, more than one actuator is needed, increasing the complexity of the experiment to the point of intractability without a control system. In this thesis, the necessary conditions for stabilization of a buckled beam with pinned boundaries under transverse loading were determined. By combining various nonlinear solution methods, a control system was created that could stabilize any branch of the force-displacement response. Experimental traversal of an unstable branch are presented along with other unstable static equilibrium configurations. The control system had numerical limitations, losing convergence near singular points. The groundwork for experimental stabilization was validated and demonstrated.
Exploratory Development of an Ultrafast-Curing Wound Dressing
1988-11-30
removed at will. 0 Control water vapor and oxygen exchange, thus maintaining a moist environment for rapid healing. * Gradually deliver broad-spectrum...removal without precipitating another bjeeding episode, (c) promotion of normal wound healing under moist , aseptic environment, and (d) prevention of...conditions, the field dressing is capable of maintaining the wound moist , but aseptic. And, as explained in the following paragraphs, it is ncm
Theresa B. Jain; Russell T. Graham; Jonathan Sandquist; Matthew Butler; Karen Brockus; Daniel Frigard; David Cobb; Han Sup-Han; Jeff Halbrook; Robert Denner; Jeffrey S. Evans
2008-01-01
Restoration and fuel treatments in the moist forests of the northern Rocky Mountains are complex and far different from those applicable to the dry ponderosa pine forests. In the moist forests, clearcuts are the favored method to use for growing early-seral western white pine and western larch. Nevertheless, clearcuts and their associated roads often affect wildlife...
NASA Technical Reports Server (NTRS)
Paulson, John W.; Shanks, Robert E.
1961-01-01
An investigation of the low-subsonic flight characteristics of a thick 70 deg delta reentry configuration having a diamond cross section has been made in the Langley full-scale tunnel over an angle-of-attack range from 20 to 45 deg. Flight tests were also made at angles of attack near maximum lift (alpha = 40 deg) with a radio-controlled model dropped from a helicopter. Static and dynamic force tests were made over an angle-of-attack range from 0 to 90 deg. The longitudinal stability and control characteristics were considered satisfactory when the model had positive static longitudinal stability. It was possible to fly the model with a small amount of static instability, but the longitudinal characteristics were considered unsatisfactory in this condition. At angles of attack above the stall the model developed a large, constant-amplitude pitching oscillation. The lateral stability characteristics were considered to be only fair at angles of attack from about 20 to 35 deg because of a lightly damped Dutch roll oscillation. At higher angles of attack the oscillation was well damped and the lateral stability was generally satisfactory. The Dutch roll damping at the lower angles of attack was increased to satisfactory values by means of a simple rate-type roll damper. The lateral control characteristics were generally satisfactory throughout the angle- of-attack range, but there was some deterioration in aileron effectiveness in the high angle-of-attack range due mainly to a large increase in damping in roll.
NASA Technical Reports Server (NTRS)
Schuldenfrei, Marvin; Comisarow, Paul; Goodson, Kenneth W
1947-01-01
Tests were made of an airplane model having a 45.1 degree swept-back wing with aspect ratio 2.50 and taper ratio 0.42 and a 42.8 degree swept-back horizontal tail with aspect ratio 3.87 and taper ratio 0.49 to determine its low-speed stability and control characteristics. The test Reynolds number was 2.87 x 10(6) based on a mean aerodynamic chord of 2.47 feet except for some of the aileron tests which were made at a Reynolds number of 2.05 x 10(6). With the horizontal tail located near the fuselage juncture on the vertical tail, model results indicated static longitudinal instability above a lift coefficient that was 0.15 below the lift coefficient at which stall occurred. Static longitudinal stability, however, was manifested throughout the life range with the horizontal tail located near the top of the vertical tail. The use of 10 degrees negative dihedral on the wing had little effect on the static longitudinal stability characteristics. Preliminary tests of the complete model revealed an undesirable flat spot in the yawing-moment curves at low angles of attack, the directional stability being neutral for yaw angles of plus-or-minus 2 degrees. This undesirable characteristic was improved by replacing the thick original vertical tail with a thin vertical tail and by flattening the top of the dorsal fairing.
Huang, Wenzhu; Feng, Shengwen; Zhang, Wentao; Li, Fang
2016-05-30
We report on a high-resolution static strain sensor developed with distributed feedback (DFB) fiber laser. A reference FBG resonator is used for temperature compensation. Locking another independent fiber laser to the resonator using the Pound-Drever-Hall technique results in a strain power spectral density better than Sε(f) = (4.6 × 10-21) ε2/Hz in the frequency range from 1 Hz to 1 kHz, corresponding to a minimum dynamic strain resolution of 67.8 pε/√Hz. This frequency stabilized fiber laser is proposed to interrogate the sensing DFB fiber laser by the beat frequency principle. As a reasonable DFB fiber laser setup is realized, a narrow beat frequency line-width of 3.23 kHz and a high beat frequency stability of 0.036 MHz in 15 minutes are obtained in the laboratory test, corresponding to a minimum static strain resolution of 270 pε. This is the first time that a sub-0.5 nε level for static strain measurement using DFB fiber laser is demonstrated.
Atmospheric stability analysis over statically and dynamically rough surfaces
NASA Astrophysics Data System (ADS)
Maric, Emina; Metzger, Meredith; Singha, Arindam; Sadr, Reza
2011-11-01
The ratio of buoyancy flux to turbulent kinetic energy production in the atmospheric surface layer is investigated experimentally for air flow over two types of surfaces characterized by static and dynamic roughness. In this study, ``static'' refers to the time-invariant nature of naturally-occurring roughness over a mud/salt playa; while, ``dynamic'' refers to the behavior of water waves along an air-water interface. In both cases, time-resolved measurements of the momentum and heat fluxes were acquired from synchronized 3D sonic anemometers mounted on a vertical tower. Field campaigns were conducted at two sites, representing the ``statically'' and ``dynamically'' rough surfaces, respectively: (1) the SLTEST facility in Utah's western desert, and (2) the new Doha airport in Qatar under construction along the coast of the Persian Gulf. Note, at site 2, anemometers were located directly above the water by extension from a tower secured to the end of a 1 km-long pier. Comparisons of the Monin-Obukhov length, flux Richardson number, and gradient Richardson number are presented, and discussed in the context of the observed evolution of the turbulent spectra in response to diurnal variations of atmospheric stability. Supported by the Qatar National Research Fund.
Ionotropic Receptor-dependent moist and dry cells control hygrosensation in Drosophila.
Knecht, Zachary A; Silbering, Ana F; Cruz, Joyner; Yang, Ludi; Croset, Vincent; Benton, Richard; Garrity, Paul A
2017-06-16
Insects use hygrosensation (humidity sensing) to avoid desiccation and, in vectors such as mosquitoes, to locate vertebrate hosts. Sensory neurons activated by either dry or moist air ('dry cells' and 'moist cells') have been described in many insects, but their behavioral roles and the molecular basis of their hygrosensitivity remain unclear. We recently reported that Drosophila hygrosensation relies on three Ionotropic Receptors (IRs) required for dry cell function: IR25a, IR93a and IR40a (Knecht et al., 2016). Here, we discover Drosophila moist cells and show that they require IR25a and IR93a together with IR68a, a conserved, but orphan IR. Both IR68a- and IR40a-dependent pathways drive hygrosensory behavior: each is important for dry-seeking by hydrated flies and together they underlie moist-seeking by dehydrated flies. These studies reveal that humidity sensing in Drosophila , and likely other insects, involves the combined activity of two molecularly related but neuronally distinct hygrosensing systems.
NASA Technical Reports Server (NTRS)
Fritsch, J. Michael; Kain, John S.
1997-01-01
Research efforts during the second year have centered on improving the manner in which convective stabilization is achieved in the Penn State/NCAR mesoscale model MM5. Ways of improving this stabilization have been investigated by (1) refining the partitioning between the Kain-Fritsch convective parameterization scheme and the grid scale by introducing a form of moist convective adjustment; (2) using radar data to define locations of subgrid-scale convection during a dynamic initialization period; and (3) parameterizing deep-convective feedbacks as subgrid-scale sources and sinks of mass. These investigations were conducted by simulating a long-lived convectively-generated mesoscale vortex that occurred during 14-18 Jul. 1982 and the 10-11 Jun. 1985 squall line that occurred over the Kansas-Oklahoma region during the PRE-STORM experiment. The long-lived vortex tracked across the central Plains states and was responsible for multiple convective outbreaks during its lifetime.
Effects of treatment and seed source on germination of eastern redcedar seed
David F. Van Haverbeke; C. W. Comer
1985-01-01
Germination of eastern redcedar (Juniperus virginiana L.) seeds was best with a 96-hour soak in citric acid (10,000 ppm), with 6 weeks of moist-warm (24° C) stratification, and 10 weeks of moist-cold (5° C) stratification. Geographic seed sources responded differently to treatment. Use of fresh seeds could reduce the time in moist-warm stratification, would improve...
Fowler, D.; King, Sammy L.; Weindorf, David C.
2014-01-01
Agriculture and moist-soil management are important management techniques used on wildlife refuges to provide adequate energy for migrant waterbirds. In semi-arid systems, the accumulation of soluble salts throughout the soil profile can limit total production of wetland plants and agronomic crops and thus jeopardize meeting waterbird energy needs. This study evaluates the effect of distinct hydrologic regimes associated with moist-soil management and agricultural production on salt accumulation in a semi-arid floodplain. We hypothesized that the frequency of flooding and quantity of floodwater in a moist-soil management hydroperiod results in a less saline soil profile compared to profiles under traditional agricultural management. Findings showed that agricultural croplands differed (p-value < 0.001, df = 9) in quantities of total soluble salts (TSS) compared to moist-soil impoundments and contained greater concentrations (TSS range = 1,160-1,750 (mg kg-1)) at depth greater than 55 cm below the surface of the profile, while moist-soil impoundments contained lower concentrations (TSS range = 307-531 (mg kg-1)) at the same depths. Increased salts in agricultural may be attributed to the lack of leaching afforded by smaller summer irrigations while larger periodic flooding events in winter and summer flood irrigations in moist-soil impoundments may serve as leaching events.
Cutaneous water collection by a moisture-harvesting lizard, the thorny devil (Moloch horridus).
Comanns, Philipp; Withers, Philip C; Esser, Falk J; Baumgartner, Werner
2016-11-01
Moisture-harvesting lizards, such as the Australian thorny devil, Moloch horridus, have the remarkable ability to inhabit arid regions. Special skin structures, comprising a micro-structured surface with capillary channels in between imbricate overlapping scales, enable the lizard to collect water by capillarity and transport it to the mouth for ingestion. The ecological role of this mechanism is the acquisition of water from various possible sources such as rainfall, puddles, dew, condensation on the skin, or absorption from moist sand, and we evaluate here the potential of these various sources for water uptake by M. horridus The water volume required to fill the skin capillary system is 3.19% of body mass. Thorny devils standing in water can fill their capillary system and then drink from this water, at approximately 0.7 µl per jaw movement. Thorny devils standing on nearly saturated moist sand could only fill the capillary channels to 59% of their capacity, and did not drink. However, placing moist sand on skin replicas showed that the capillary channels could be filled from moist sand when assisted by gravity, suggesting that their field behaviour of shovelling moist sand onto the dorsal skin might fill the capillary channels and enable drinking. Condensation facilitated by thermal disequilibrium between a cool thorny devil and warm moist air provided skin capillary filling to approximately 0.22% of body weight, which was insufficient for drinking. Our results suggest that rain and moist sand seem to be ecologically likely water sources for M. horridus on a regular basis. © 2016. Published by The Company of Biologists Ltd.
Muselík, Jan; Wojnarová, Lenka; Masteiková, Ruta; Sopuch, Tomáš
2013-04-01
Carboxymethyl cellulose, especially its sodium salt, is a versatile pharmaceutical excipient. From a therapeutic point of view, sodium salt of carboxymethyl cellulose is used in the production of modern wound dressings to allow moist wound healing. Wound dressings must be sterile and stable throughout their shelf life and have to be able to withstand different temperature conditions. At the present time, a number of sterilization methods are available. In the case of polymeric materials, the selected sterilization process must not induce any changes in the polymer structure, such as polymer chains cleavage, changes in cross-linking, etc. This paper evaluates the influence of different sterilization methods (γ-radiation, β-radiation, ethylene oxide) on the stability of carboxymethyl cellulose and the results of long-term and accelerated stability testing. Evaluation of samples was performed using size-exclusion chromatography. The obtained results showed that ethylene oxide sterilization was the least aggressive variant of the sterilization methods tested. When the γ-radiation sterilization was used, the changes in the size of the carboxymethyl cellulose molecule occurred. In the course of accelerated and long term stability studies, no further degradation changes were observed, and thus sterilized samples are suitable for long term storage.
Shirima, Deo D; Pfeifer, Marion; Platts, Philip J; Totland, Ørjan; Moe, Stein R
2015-01-01
We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI) and above ground herbaceous biomass (AGBH) along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m), stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps), soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand structure, environmental gradients and disturbance in African forests and woodlands.
Atiyeh, Bishara S; El-Musa, Kusai A; Dham, Ruwayda
2003-01-01
There is growing evidence of improved healing of full- and partial-thickness cutaneous wounds in wet and moist environments. Retention of biologic fluids over the wound prevents desiccation of denuded dermis or deeper tissues and allows faster and unimpeded migration of keratinocytes over the wound surface. It allows also the naturally occurring cytokines and growth factors to exert their beneficial effect on wound contracture and re-epithelialization. Despite all of these documented benefits, applying the moist healing principles to large surface areas, in particular to large burns, is hindered by the major technical handicap of creating and maintaining a sealed moist environment over these areas. From January to September 2001, healing of partial-thickness skin graft donor sites was studied in a prospective comparative study of two types of moist dressings, Tegaderm (3M Health Care, St. Paul, MN), a semipermeable membrane occlusive dressing, and moist exposed burn ointment (MEBO) (Julphar; Gulf Pharmaceutical Industries, United Arab of Emirates), an ointment that can provide a moist environment without the need of an overlying occlusive dressing. Healing was assessed both clinically and with serial measurements of transepidermal water loss (TEWL) and moisture. Following healing, scar quality was evaluated by two members of the team separately using a visual analog scale. Results were statistically analyzed. Faster healing was observed clinically with MEBO application. Physiologic healing as determined by TEWL measurements occurred at an extremely significant earlier stage for MEBO, and this was associated with better scar quality, demonstrating a positive relationship between function and cosmetic appearance. Moreover, the ointment is definitely easier to apply than the occlusive self-adhesive membrane, which requires some degree of dexterity and expertise. MEBO application is an effective and valid alternative to conventional occlusive dressings. Moreover, the observed improved anatomic and physiologic healing indicates that MEBO may have a positive effect on healing more that the mere fact of passive moisture retention.
NASA Technical Reports Server (NTRS)
Allison, Michael; Atkinson, David H.; Hansen, James E. (Technical Monitor)
2001-01-01
Doppler radio tracking of the Galileo probe-to-orbiter relay, previously analyzed for its in situ measure of Jupiter's zonal wind at the equatorial entry site, also shows a record of significant residual fluctuations apparently indicative of varying vertical motions. Regular oscillations over pressure depth in the residual Doppler measurements of roughly 1-8 Hz (increasing upward), as filtered over a 134 sec window, are most plausibly interpreted as gravity waves, and imply a weak, but downward increasing static stability within the 5 - 20 bar region of Jupiter's atmosphere. A matched extension to deeper levels of an independent inertial stability constraint from the measured vertical wind shear at 1 - 4 bars is roughly consistent with a static stability of approximately 0.5 K/km near the 20 bar level, as independently detected by the probe Atmospheric Structure Instrument.
Parametric analysis of swept-wing geometry with sheared wing tips
NASA Technical Reports Server (NTRS)
Fremaux, C. M.; Vijgen, P. M. H. W.; Van Dam, C. P.
1990-01-01
A computational parameter study is presented of potential reductions in induced drag and increases in lateral-directional stability due to sheared wing tips attached to an untwisted wing of moderate sweep and aspect ratio. Sheared tips are swept and tapered wing-tip devices mounted in the plane of the wing. The induced-drag results are obtained using an inviscid, incompressible surface-panel method that models the nonlinear effects due to the deflected and rolled-up wake behind the lifting surface. The induced-drag results with planar sheared tips are compared to straight-tapered tip extensions and nonplanar winglet geometries. The lateral-directional static-stability characteristics of the wing with sheared tips are estimated using a quasi-vortex-lattice method. For certain combinations of sheared-tip sweep and taper, both the induced efficiency of the wing and the relevant static-stability derivatives are predicted to increase compared to the wing with a straight-tapered tip modification.
NASA Technical Reports Server (NTRS)
Jacobs, P. F.; Flechner, S. G.
1976-01-01
A baseline wing and a version of the same wing fitted with winglets were tested. The longitudinal aerodynamic characteristics were determined through an angle-of-attack range from -1 deg to 10 deg at an angle of sideslip of 0 deg for Mach numbers of 0.750, 0.800, and 0.825. The lateral aerodynamic characteristics were determined through the same angle-of-attack range at fixed sideslip angles of 2.5 deg and 5 deg. Both configurations were investigated at Reynolds numbers of 13,000,000, per meter (4,000,000 per foot) and approximately 20,000,000 per meter (6,000,000 per foot). The winglet configuration showed slight increases over the baseline wing in static longitudinal and lateral aerodynamic stability throughout the test Mach number range for a model design lift coefficient of 0.53. Reynolds number variation had very little effect on stability.
Effects of control laws and relaxed static stability on vertical ride quality of flexible aircraft
NASA Technical Reports Server (NTRS)
Roberts, P. A.; Swaim, R. L.; Schmidt, D. K.; Hinsdale, A. J.
1977-01-01
State variable techniques are utilized to generate the RMS vertical load factors for the B-52H and B-1 bombers at low level, mission critical, cruise conditions. A ride quality index is proposed to provide meaningful comparisons between different controls or conditions. Ride quality is shown to be relatively invariant under various popular control laws. Handling quality variations are shown to be major contributors to ride quality variations on both vehicles. Relaxed static stability is artificially implemented on the study vehicles to investigate its effects on ride quality. The B-52H ride quality is generally degraded when handling characteristics are automatically restored by a feedback control to the original values from relaxed stability conditions. The B-1 airplane shows little ride quality sensitivity to the same analysis due to the small rigid body contribution to load factors at the flight condition investigated.
Brownian dynamics of sterically-stabilized colloidal suspensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, W.E.; Radke, C.J.; Denn, M.M.
1994-02-01
One application where microstructure plays a critical role is in the production of specialty ceramics, where colloidal suspensions act as precursors; here the microstructure influences the structural, thermal, optical and electrical properties of the ceramic products. Using Brownian dynamics, equilibrium and dynamic properties are calculated for colloidal suspensions that are stabilized through the Milner, Witten and Cates (1988) steric potential. Results are reported for osmotic pressures, radial distributions functions, static structure factors, and self-diffusion coefficients. The sterically-stabilized systems are also approximated by equivalent hard spheres, with good agreement for osmotic pressure and long-range structure. The suitability of the potential tomore » model the behavior of a real system is explored by comparing static structure factors calculated from Brownian dynamics simulations to those measured using SANS. Finally, the effects of Hamaker and hydrodynamic forces on calculated properties are investigated.« less
On the Stability of a Can of Soda
ERIC Educational Resources Information Center
Benesh, G. A.; Olafsen, J. S.
2014-01-01
Stability is often an important consideration in both static and dynamic systems. While introductory students soon grasp the balance of forces required for constant velocity motion, it generally takes longer for them to reliably identify the various torques involved in producing rotational equilibrium. Accelerating systems have the additional…
Chung, Sheng-Heng; Han, Pauline; Manthiram, Arumugam
2017-06-07
The viability of employing high-capacity sulfur cathodes in building high-energy-density lithium-sulfur batteries is limited by rapid self-discharge, short shelf life, and severe structural degradation during cell resting (static instability). Unfortunately, the static instability has largely been ignored in the literature. We present in this letter a longterm self-discharge study by quantitatively analyzing the control lithium-sulfur batteries with a conventional cathode configuration, which provides meaningful insights into the cathode failure mechanisms during resting. Lastly, utilizing the understanding obtained with the control cells, we design and present low self-discharge (LSD) lithium-sulfur batteries for investigating the long-term self-discharge effect and electrode stability.
NASA Technical Reports Server (NTRS)
Allen, E. C.; Eder, F. W.
1972-01-01
Experimental aerodynamic investigations have been made on a .0035 scale model North American Rockwell/General Dynamics version of the space shuttle. Static stability and control data were obtained on the delta wing booster alone (B-20) and with the delta wing orbiter (134D) mounted in various positions on the booster. Six component aerodynamic force and moment data were recorded over an angle of attack range from -10 deg to 24 deg at 0 deg and 6 deg sideslip angles and from -10 deg to +10 deg sideslip at 0 deg angle of attack. Mach number ranged from 0.6 to 4.96.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Sheng-Heng; Han, Pauline; Manthiram, Arumugam
The viability of employing high-capacity sulfur cathodes in building high-energy-density lithium-sulfur batteries is limited by rapid self-discharge, short shelf life, and severe structural degradation during cell resting (static instability). Unfortunately, the static instability has largely been ignored in the literature. We present in this letter a longterm self-discharge study by quantitatively analyzing the control lithium-sulfur batteries with a conventional cathode configuration, which provides meaningful insights into the cathode failure mechanisms during resting. Lastly, utilizing the understanding obtained with the control cells, we design and present low self-discharge (LSD) lithium-sulfur batteries for investigating the long-term self-discharge effect and electrode stability.
Russell T. Graham; Theresa B. Jain
2007-01-01
The moist forests of the Rocky Mountains typically support late seral western hemlock, moist grand fir, or western redcedar forests. In addition to these species, Douglas-fir, western white pine, western larch, ponderosa pine, and lodgepole pine can occur creating a multitude of species compositions, structures, and successional stages that can be arrayed in a variety...
Magnetic vortex nucleation modes in static magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanatka, Marek; Urbanek, Michal; Jira, Roman
The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal themore » details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.« less
Magnetic vortex nucleation modes in static magnetic fields
Vanatka, Marek; Urbanek, Michal; Jira, Roman; ...
2017-10-03
The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal themore » details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.« less
Optimal placement of FACTS devices using optimization techniques: A review
NASA Astrophysics Data System (ADS)
Gaur, Dipesh; Mathew, Lini
2018-03-01
Modern power system is dealt with overloading problem especially transmission network which works on their maximum limit. Today’s power system network tends to become unstable and prone to collapse due to disturbances. Flexible AC Transmission system (FACTS) provides solution to problems like line overloading, voltage stability, losses, power flow etc. FACTS can play important role in improving static and dynamic performance of power system. FACTS devices need high initial investment. Therefore, FACTS location, type and their rating are vital and should be optimized to place in the network for maximum benefit. In this paper, different optimization methods like Particle Swarm Optimization (PSO), Genetic Algorithm (GA) etc. are discussed and compared for optimal location, type and rating of devices. FACTS devices such as Thyristor Controlled Series Compensator (TCSC), Static Var Compensator (SVC) and Static Synchronous Compensator (STATCOM) are considered here. Mentioned FACTS controllers effects on different IEEE bus network parameters like generation cost, active power loss, voltage stability etc. have been analyzed and compared among the devices.
NASA Astrophysics Data System (ADS)
Kirchengast, Gottfried; Li, Ying; Scherllin-Pirscher, Barbara; Schwärz, Marc; Schwarz, Jakob; Nielsen, Johannes K.
2017-04-01
The GNSS radio occultation (RO) technique is an important remote sensing technique for obtaining thermodynamic profiles of temperature, humidity, and pressure in the Earth's troposphere. However, due to refraction effects of both dry ambient air and water vapor in the troposphere, retrieval of accurate thermodynamic profiles at these lower altitudes is challenging and requires suitable background information in addition to the RO refractivity information. Here we introduce a new moist air retrieval algorithm aiming to improve the quality and robustness of retrieving temperature, humidity and pressure profiles in moist air tropospheric conditions. The new algorithm consists of four steps: (1) use of prescribed specific humidity and its uncertainty to retrieve temperature and its associated uncertainty; (2) use of prescribed temperature and its uncertainty to retrieve specific humidity and its associated uncertainty; (3) use of the previous results to estimate final temperature and specific humidity profiles through optimal estimation; (4) determination of air pressure and density profiles from the results obtained before. The new algorithm does not require elaborated matrix inversions which are otherwise widely used in 1D-Var retrieval algorithms, and it allows a transparent uncertainty propagation, whereby the uncertainties of prescribed variables are dynamically estimated accounting for their spatial and temporal variations. Estimated random uncertainties are calculated by constructing error covariance matrices from co-located ECMWF short-range forecast and corresponding analysis profiles. Systematic uncertainties are estimated by empirical modeling. The influence of regarding or disregarding vertical error correlations is quantified. The new scheme is implemented with static input uncertainty profiles in WEGC's current OPSv5.6 processing system and with full scope in WEGC's next-generation system, the Reference Occultation Processing System (rOPS). Results from both WEGC systems, current OPSv5.6 and next-generation rOPS, are shown and discussed, based on both insights from individual profiles and statistical ensembles, and compared to moist air retrieval results from the UCAR Boulder and ROM-SAF Copenhagen centers. The results show that the new algorithmic scheme improves the temperature, humidity and pressure retrieval performance, in particular also the robustness including for integrated uncertainty estimation for large-scale applications, over the previous algorithms. The new rOPS-implemented algorithm will therefore be used in the first large-scale reprocessing towards a tropospheric climate data record 2001-2016 by the rOPS, including its integrated uncertainty propagation.
Passivity-Based Control for Two-Wheeled Robot Stabilization
NASA Astrophysics Data System (ADS)
Uddin, Nur; Aryo Nugroho, Teguh; Agung Pramudito, Wahyu
2018-04-01
A passivity-based control system design for two-wheeled robot (TWR) stabilization is presented. A TWR is a statically-unstable non-linear system. A control system is applied to actively stabilize the TWR. Passivity-based control method is applied to design the control system. The design results in a state feedback control law that makes the TWR closed loop system globally asymptotically stable (GAS). The GAS is proven mathematically. The TWR stabilization is demonstrated through computer simulation. The simulation results show that the designed control system is able to stabilize the TWR.
Mückley, Thomas; Hoffmeier, Konrad; Klos, Kajetan; Petrovitch, Alexander; von Oldenburg, Geert; Hofmann, Gunther O
2008-03-01
Retrograde intramedullary nailing is an established procedure for tibiotalocalcaneal arthrodesis. The goal of this study was to evaluate the effects of angle-stable locking or compressed angle-stable locking on the initial stability of the nails and on the behavior of the constructs under cyclic loading conditions. Tibiotalocalcaneal arthrodesis was performed in fifteen third-generation synthetic bones and twenty-four fresh-frozen cadaver legs with use of retrograde intramedullary nailing with three different locking modes: a Stryker nail with compressed angle-stable locking, a Stryker nail with angle-stable locking, and a statically locked Biomet nail. Analyses were performed of the initial stability of the specimens (range of motion) and the laxity of the constructs (neutral zone) in dorsiflexion/plantar flexion, varus/valgus, and external rotation/internal rotation. Cyclic testing up to 100,000 cycles was also performed. The range of motion and the neutral zone in dorsiflexion/plantar flexion at specific cycle increments were determined. In both bone models, the intramedullary nails with compressed angle-stable locking and those with angle-stable locking were significantly superior, in terms of a smaller range of motion and neutral zone, to the statically locked nails. The compressed angle-stable nails were superior to the angle-stable nails only in the synthetic bone model, in external/internal rotation. Cyclic testing showed the nails with angle-stable locking and those with compressed angle-stable locking to have greater stability in both models. In the synthetic bone model, compressed angle-stable locking was significantly better than angle-stable locking; in the cadaver bone model, there was no significant difference between these two locking modes. During cyclic testing, five statically locked nails in the cadaver bone model failed, whereas one nail with angle-stable locking and one with compressed angle-stable locking failed. Regardless of the bone model, the nails with angle-stable or compressed angle-stable locking had better initial stability and better stability following cycling than did the nails with static locking.
Aerodynamic characteristics of the National Launch System (NLS) 1 1/2 stage launch vehicle
NASA Technical Reports Server (NTRS)
Springer, A. M.; Pokora, D. C.
1994-01-01
The National Aeronautics and Space Administration (NASA) is studying ways of assuring more reliable and cost effective means to space. One launch system studied was the NLS which included the l l/2 stage vehicle. This document encompasses the aerodynamic characteristics of the 1 l/2 stage vehicle. To support the detailed configuration definition two wind tunnel tests were conducted in the NASA Marshall Space Flight Center's 14x14-Inch Trisonic Wind Tunnel during 1992. The tests were a static stability and a pressure test, each utilizing 0.004 scale models. The static stability test resulted in the forces and moments acting on the vehicle. The aerodynamics for the reference configuration with and without feedlines and an evaluation of three proposed engine shroud configurations were also determined. The pressure test resulted in pressure distributions over the reference vehicle with and without feedlines including the reference engine shrouds. These pressure distributions were integrated and balanced to the static stability coefficients resulting in distributed aerodynamic loads on the vehicle. The wind tunnel tests covered a Mach range of 0.60 to 4.96. These ascent flight aerodynamic characteristics provide the basis for trajectory and performance analysis, loads determination, and guidance and control evaluation.
Lohman, Everett B.; Bains, Gurinder S.; Lohman, Trevor; DeLeon, Michael; Petrofsky, Jerrold Scott
2011-01-01
Summary Background Circulation plays an essential role in tissue healing. Moist heat and warm water immersion have been shown to increase skin circulation; however, these heating modalities can cause burns. Recent research has shown that passive vibration can also increase circulation but without the risk of burns. Material/Methods The aim of this study is to compare the effects of short-duration vibration, moist heat, and a combination of the two on skin blood flow (SBF) and skin temperature (ST). Ten (10) subjects, 5 female and 5 male, aged 20–30 years of age, received two interventions a day for 3 consecutive days: Intervention 1 – Active vibration only (vibration exercise), Intervention 2 – passive vibration only, Intervention 3 – moist heat only, Intervention 4 – passive vibration combined with moist heat, Intervention 5 – a commercial massaging heating pad, and Intervention 6 – no intervention, resting in supine only (control). SBF and ST were measured using a laser Doppler imager during the 10 minute intervention and then throughout the nine minute recovery period. Results The mean skin blood flow following a ten-minute intervention of the combination of passive vibration and moist heat was significantly different from the control, active vibration, and the commercial massaging heating pad. Skin temperature following the ten-minute interventions of moist heat alone and passive vibration alone were both significantly different from the commercial massaging heating pad and active vibration interventions. Conclusions The combination of passive vibration and moist heat produced the greatest increase in skin blood flow and the second highest increase in skin blood flow nine minutes post application. PMID:21873956
Carbohydrate storage and light requirements of tropical moist and dry forest tree species.
Poorter, Lourens; Kitajima, Kaoru
2007-04-01
In many plant communities, there is a negative interspecific correlation between relative growth rates and survival of juveniles. This negative correlation is most likely caused by a trade-off between carbon allocation to growth vs. allocation to defense and storage. Nonstructural carbohydrates (NSC) stored in stems allow plants to overcome periods of stress and should enhance survival. In order to assess how species differ in carbohydrate storage in relation to juvenile light requirements, growth, and survival, we quantified NSC concentrations and pool sizes in sapling stems of 85 woody species in moist semi-evergreen and dry deciduous tropical forests in the rainy season in Bolivia. Moist forest species averaged higher NSC concentrations than dry forest species. Carbohydrate concentrations and pool sizes decreased with the light requirements of juveniles of the species in the moist forest but not in the dry forest. Combined, these results suggest that storage is especially important for species that regenerate in persistently shady habitats, as in the understory of moist evergreen forests. For moist forest species, sapling survival rates increased with NSC concentrations and pool sizes while growth rates declined with the NSC concentrations and pool sizes. No relationships were found for dry forest species. Carbon allocation to storage contributes to the growth-survival trade-off through its positive effect on survival. And, a continuum in carbon storage strategies contributes to a continuum in light requirements among species. The link between storage and light requirements is especially strong in moist evergreen forest where species sort out along a light gradient, but disappears in dry deciduous forest where light is a less limiting resource and species sort out along drought and fire gradients.
Damage instability and Earthquake nucleation
NASA Astrophysics Data System (ADS)
Ionescu, I. R.; Gomez, Q.; Campillo, M.; Jia, X.
2017-12-01
Earthquake nucleation (initiation) is usually associated to the loss of the stability of the geological structure under a slip-weakening friction acting on the fault. The key parameters involved in the stability of the fault are the stress drop, the critical slip distance but also the elastic stiffness of the surrounding materials (rocks). We want to explore here how the nucleation phenomena are correlated to the material softening during damage accumulation by dynamic and/or quasi-static processes. Since damage models are describing micro-cracks growth, which is generally an unstable phenomenon, it is natural to expect some loss of stability on the associated micro-mechanics based models. If the model accurately captures the material behavior, then this can be due to the unstable nature of the brittle material itself. We obtained stability criteria at the microscopic scale, which are related to a large class of damage models. We show that for a given continuous strain history the quasi-static or dynamic problems are instable or ill-posed (multiplicity of material responses) and whatever the selection rule is adopted, shocks (time discontinuities) will occur. We show that the quasi-static equilibria chosen by the "perfect delay convention" is always stable. These stability criteria are used to analyze how NIC (Non Interacting Crack) effective elasticity associated to "self similar growth" model work in some special configurations (one family of micro-cracks in mode I, II and III and in plane strain or plain stress). In each case we determine a critical crack density parameter and critical micro-crack radius (length) which distinguish between stable and unstable behaviors. This critical crack density depends only on the chosen configuration and on the Poisson ratio.
Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam
2016-10-26
Sulfur exhibits a high theoretical capacity of 1675 mA h g -1 via a distinct conversion reaction, which is different from the insertion reactions in commercial lithium-ion batteries. In consideration of its conversion reaction battery chemistry, a custom design for electrode materials could establish the way for attaining high-loading capability while simultaneously maintaining high electrochemical utilization and stability. In this study, this process is undertaken by introducing carbon cotton as an attractive electrode-containment material for enhancing the dynamic and static stabilities of lithium-sulfur (Li-S) batteries. The carbon cotton possessing a hierarchical macro-/microporous architecture exhibits a high surface area of 805more » m 2 g -1 and high microporosity with a micropore area of 557 m 2 g -1. The macroporous channels allow the carbon cotton to load and stabilize a high amount of active material. The abundant microporous reaction sites spread throughout the carbon cotton facilitate the redox chemistry of the high-loading/content Li-S system. As a result, the high-loading carbon-cotton cathode exhibits (i) enhanced cycle stability with a good dynamic capacity retention of 70% after 100 cycles and (ii) improved cellstorage stability with a high static capacity retention of above 93% and a low time-dependent self-discharge rate of 0.12% per day after storing for a long period of 60 days. In conclusion, these carbon-cotton cathodes with the remarkably highest values reported so far of both sulfur loading (61.4 mg cm -2) and sulfur content (80 wt %) demonstrate enhanced electrochemical utilization with the highest areal, volumetric, and gravimetric capacities simultaneously.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam
Sulfur exhibits a high theoretical capacity of 1675 mA h g -1 via a distinct conversion reaction, which is different from the insertion reactions in commercial lithium-ion batteries. In consideration of its conversion reaction battery chemistry, a custom design for electrode materials could establish the way for attaining high-loading capability while simultaneously maintaining high electrochemical utilization and stability. In this study, this process is undertaken by introducing carbon cotton as an attractive electrode-containment material for enhancing the dynamic and static stabilities of lithium-sulfur (Li-S) batteries. The carbon cotton possessing a hierarchical macro-/microporous architecture exhibits a high surface area of 805more » m 2 g -1 and high microporosity with a micropore area of 557 m 2 g -1. The macroporous channels allow the carbon cotton to load and stabilize a high amount of active material. The abundant microporous reaction sites spread throughout the carbon cotton facilitate the redox chemistry of the high-loading/content Li-S system. As a result, the high-loading carbon-cotton cathode exhibits (i) enhanced cycle stability with a good dynamic capacity retention of 70% after 100 cycles and (ii) improved cellstorage stability with a high static capacity retention of above 93% and a low time-dependent self-discharge rate of 0.12% per day after storing for a long period of 60 days. In conclusion, these carbon-cotton cathodes with the remarkably highest values reported so far of both sulfur loading (61.4 mg cm -2) and sulfur content (80 wt %) demonstrate enhanced electrochemical utilization with the highest areal, volumetric, and gravimetric capacities simultaneously.« less
Beyerman, Kathleen L; Palmerino, Mark B; Zohn, Lee E; Kane, Gary M; Foster, Kathy A
2006-02-01
To evaluate the efficacy of chiropractic spinal manipulation, manual flexion/distraction, and hot pack application for the treatment of low back pain from osteoarthritis (OA) compared with moist heat alone. Two hundred fifty-two patients with low back pain secondary to OA were randomly assigned to either the treatment group (moist hot pack plus chiropractic care) or the moist heat group subjects, which attended 20 treatment sessions over several weeks. At sessions 1, 5, 10, 15, and 20, they rated pain using a visual analog pain scale, activities of daily living using the Oswestry Low Back Pain Questionnaire, and a range of motion (ROM) using the J-Tech Dual Digital Inclinometer (JTECH Medical Model no. AA036). Session I ratings indicated that the two groups were equivalent on all pain and flexion scores. The treatment group reported greater and more rapid pain reduction and greater and more rapid ROM improvement than the moist heat group. The treatment group also had greater improvements than the moist heat group in daily living activities in 4 of the 9 areas measured. Chiropractic care combined with heat is more effective than heat alone for treating OA-based lower back pain. Pain reduction occurs more rapidly and to a greater degree, and ROM increases more rapidly and to a greater degree.
Cutaneous Heat Loss with Three Surgical Drapes, One Impervious to Moisture
Maglinger, Paul E.; Sessler, Daniel I.; Lenhardt, Rainer
2005-01-01
A new surgical drape, which is impervious to moisture, presumably reduces evaporative heat loss. We compared cutaneous heat loss and skin temperature in volunteers covered with this drape to two conventional surgical drapes (Large Surgical Drape and Medline Proxima). With IRB approval and informed consent, we calculated cutaneous heat loss and skin-surface temperatures from 15 area-weighted thermal flux transducers in 8 volunteers. In random order, each of the drapes was evaluated with dry transducers and moistened transducers (simulating wet skin). After a 20-minute uncovered control period, volunteers were covered from the neck down for 40 minutes. Data were recorded continuously and averaged over 10-minutes. Results were similar for all three drapes for dry or moist conditions. Under dry conditions, baseline heat loss was 82±14 watts (W) and decreased 30% with a surgical drape (P<0.001). Under moist conditions, baseline heat loss was 231±45 W and decreased 29% with a drape covering (P<0.001). Moist skin increased heat loss 282% (P<0.001). There were no clinically important differences in skin temperature among the covers with dry or moist skin. Moist skin increased heat loss nearly three-fold, but there were no differences among the drapes. We conclude that loss is comparable with impervious and conventional drapes with either moist or dry skin. PMID:15728062
REVIEW OF THE STABILITY ANALYSIS FOR THE LANL BSL-3 BUILDING FOUNDATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heuze, F E; Wagoner, J L
2006-11-30
This work was performed upon request from Dr. Richard Thorpe from NNSA after his review of the LANL report on BSL-3 seismic stability [1]. The authors also reviewed report [1] and concluded, as did Dr. Thorpe, that the stability analysis was inappropriate. There are several reasons for that conclusion: (1) the assumption of a circular failure surface through the combined fill-and-rock foundation does not recognize the geologic structure involved. (2) the assumption of an equivalent static force to an earthquake loading does not represent the multiple cycles of shear loads created by a seismic event that can engender a substantialmore » degradation of shear modulus and shear strength of the soil under the building [2]. (3) there was no credible in-situ strength of the foundation materials (fill and rock mass) available for input into the stability analysis. Following that review, on September 26 the authors made a site visit and held discussions with LANL personnel connected to the BSL-3 building project. No information or evidence was presented to the authors indicating that the static stability of BSL-3 could be an issue. Accordingly, this report focuses on the topic of the BSL-3 site stability under seismic loading.« less
A class of stabilizing controllers for flexible multibody systems
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.; Kelkar, Atul G.; Maghami, Peiman G.
1995-01-01
The problem of controlling a class of nonlinear multibody flexible space systems consisting of a flexible central body to which a number of articulated appendages are attached is considered. Collocated actuators and sensors are assumed, and global asymptotic stability of such systems is established under a nonlinear dissipative control law. The stability is shown to be robust to unmodeled dynamics and parametric uncertainties. For a special case in which the attitude motion of the central body is small, the system, although still nonlinear, is shown to be stabilized by linear dissipative control laws. Two types of linear controllers are considered: static dissipative (constant gain) and dynamic dissipative. The static dissipative control law is also shown to provide robust stability in the presence of certain classes of actuator and sensor nonlinearities and actuator dynamics. The results obtained for this special case can also be readily applied for controlling single-body linear flexible space structures. For this case, a synthesis technique for the design of a suboptimal dynamic dissipative controller is also presented. The results obtained in this paper are applicable to a broad class of multibody and single-body systems such as flexible multilink manipulators, multipayload space platforms, and space antennas. The stability proofs use the Lyapunov approach and exploit the inherent passivity of such systems.
Rood, Akkie; Hannink, Gerjon; Lenting, Anke; Groenen, Karlijn; Koëter, Sander; Verdonschot, Nico; van Kampen, Albert
2015-10-01
Reconstructing the medial patellofemoral ligament (MPFL) has become a key procedure for stabilizing the patella. Different techniques to reconstruct the MPFL have been described: static techniques in which the graft is fixed rigidly to the bone or dynamic techniques with soft tissue fixation. Static MPFL reconstruction is most commonly used. However, dynamic reconstruction deforms more easily and presumably functions more like the native MPFL. The aim of the study was to evaluate the effect of the different MPFL fixation techniques on patellofemoral pressures compared with the native situation. The hypothesis was that dynamic reconstruction would result in patellofemoral pressures closer to those generated in an intact knee. Controlled laboratory study. Seven fresh-frozen knee specimens were tested in an in vitro knee joint loading apparatus. Tekscan pressure-sensitive films fixed to the retropatellar cartilage measured mean patellofemoral and peak pressures, contact area, and location of the center of force (COF) at fixed flexion angles from 0° to 110°. Four different conditions were tested: intact, dynamic, partial dynamic, and static MPFL reconstruction. Data were analyzed using linear mixed models. Static MPFL reconstruction resulted in higher peak and mean pressures from 60° to 110° of flexion (P < .001). There were no differences in pressure between the 2 different dynamic reconstructions and the intact situation (P > .05). The COF in the static reconstruction group moved more medially on the patella from 50° to 110° of flexion compared with the other conditions. The contact area showed no significant differences between the test conditions. After static MPFL reconstruction, the patellofemoral pressures in flexion angles from 60° to 110° were 3 to 5 times higher than those in the intact situation. The pressures after dynamic MPFL reconstruction were similar as compared with those in the intact situation, and therefore, dynamic MPFL reconstruction could be a safer option than static reconstruction for stabilizing the patella. This study showed that static MPFL reconstruction results in higher patellofemoral pressures and thus enhances the chance of osteoarthritis in the long term, while dynamic reconstruction results in more normal pressures. © 2015 The Author(s).
A Low Mach Number Model for Moist Atmospheric Flows
Duarte, Max; Almgren, Ann S.; Bell, John B.
2015-04-01
A low Mach number model for moist atmospheric flows is introduced that accurately incorporates reversible moist processes in flows whose features of interest occur on advective rather than acoustic time scales. Total water is used as a prognostic variable, so that water vapor and liquid water are diagnostically recovered as needed from an exact Clausius–Clapeyron formula for moist thermodynamics. Low Mach number models can be computationally more efficient than a fully compressible model, but the low Mach number formulation introduces additional mathematical and computational complexity because of the divergence constraint imposed on the velocity field. Here in this paper, latentmore » heat release is accounted for in the source term of the constraint by estimating the rate of phase change based on the time variation of saturated water vapor subject to the thermodynamic equilibrium constraint. Finally, the authors numerically assess the validity of the low Mach number approximation for moist atmospheric flows by contrasting the low Mach number solution to reference solutions computed with a fully compressible formulation for a variety of test problems.« less
A Low Mach Number Model for Moist Atmospheric Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duarte, Max; Almgren, Ann S.; Bell, John B.
A low Mach number model for moist atmospheric flows is introduced that accurately incorporates reversible moist processes in flows whose features of interest occur on advective rather than acoustic time scales. Total water is used as a prognostic variable, so that water vapor and liquid water are diagnostically recovered as needed from an exact Clausius–Clapeyron formula for moist thermodynamics. Low Mach number models can be computationally more efficient than a fully compressible model, but the low Mach number formulation introduces additional mathematical and computational complexity because of the divergence constraint imposed on the velocity field. Here in this paper, latentmore » heat release is accounted for in the source term of the constraint by estimating the rate of phase change based on the time variation of saturated water vapor subject to the thermodynamic equilibrium constraint. Finally, the authors numerically assess the validity of the low Mach number approximation for moist atmospheric flows by contrasting the low Mach number solution to reference solutions computed with a fully compressible formulation for a variety of test problems.« less
Method and apparatus for extracting water from air
Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.
2002-01-01
The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.
Qualification of a rapid readout biological indicator with moist heat sterilization.
McCormick, Patrick; Finocchario, Catherine; Manchester, Robert; Glasgow, Louis; Costanzo, Stephen
2003-01-01
Biological indicators are recognized as an important component in the validation and routine monitoring of moist heat (steam) sterilization processes. Due to the need to allow for the recovery and outgrowth of test organisms that may have been sub-lethally injured, between 2-5 days of incubation are typically required before the outcome of sterilization processing can be reliably interpreted. Rapid readout biological indicators that incorporate the response of a heat resistant enzyme provide a means for assessing the efficacy of moist heat sterilization within hours of processing. This study describes the qualification of the 3M Attest 1292 Rapid Readout Biological Indicator with moist heat sterilization according to the procedures described in the PDA Technical Report No. 33, "Evaluation, Validation and Implementation of New Microbiological Testing Methods".
Evolution of brain-body allometry in Lake Tanganyika cichlids.
Tsuboi, Masahito; Kotrschal, Alexander; Hayward, Alexander; Buechel, Severine Denise; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas
2016-07-01
Brain size is strongly associated with body size in all vertebrates. This relationship has been hypothesized to be an important constraint on adaptive brain size evolution. The essential assumption behind this idea is that static (i.e., within species) brain-body allometry has low ability to evolve. However, recent studies have reported mixed support for this view. Here, we examine brain-body static allometry in Lake Tanganyika cichlids using a phylogenetic comparative framework. We found considerable variation in the static allometric intercept, which explained the majority of variation in absolute and relative brain size. In contrast, the slope of the brain-body static allometry had relatively low variation, which explained less variation in absolute and relative brain size compared to the intercept and body size. Further examination of the tempo and mode of evolution of static allometric parameters confirmed these observations. Moreover, the estimated evolutionary parameters indicate that the limited observed variation in the static allometric slope could be a result of strong stabilizing selection. Overall, our findings suggest that the brain-body static allometric slope may represent an evolutionary constraint in Lake Tanganyika cichlids. © 2016 The Author(s).
NASA Technical Reports Server (NTRS)
Purser, Paul E.; Spear, Margaret F.
1947-01-01
A wind-tunnel investigation has been made to determine the effects of unsymmetrical horizontal-tail arrangements on the power-on static longitudinal stability of a single-engine single-rotation airplane model. Although the tests and analyses showed that extreme asymmetry in the horizontal tail indicated a reduction in power effects on longitudinal stability for single-engine single-rotation airplanes, the particular "practical" arrangement tested did not show marked improvement. Differences in average downwash between the normal tail arrangement and various other tail arrangements estimated from computed values of propeller-slipstream rotation agreed with values estimated from pitching-moment test data for the flaps-up condition (low thrust and torque) and disagreed for the flaps-down condition (high thrust and torque). This disagreement indicated the necessity for continued research to determine the characteristics of the slip-stream behind various propeller-fuselage-wing combinations. Out-of-trim lateral forces and moments of the unsymmetrical tail arrangements that were best from consideration of longitudinal stability were no greater than those of the normal tail arrangement.
Choi, Seungbeom; Jo, Jeong-Wan; Kim, Jaeyoung; Song, Seungho; Kim, Jaekyun; Park, Sung Kyu; Kim, Yong-Hoon
2017-08-09
Here, we report static and dynamic water motion-induced instability in indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) and its effective suppression with the use of a simple, solution-processed low-k (ε ∼ 1.9) fluoroplastic resin (FPR) passivation layer. The liquid-contact electrification effect, in which an undesirable drain current modulation is induced by a dynamic motion of a charged liquid such as water, can cause a significant instability in IGZO TFTs. It was found that by adopting a thin (∼44 nm) FPR passivation layer for IGZO TFTs, the current modulation induced by the water-contact electrification was greatly reduced in both off- and on-states of the device. In addition, the FPR-passivated IGZO TFTs exhibited an excellent stability to static water exposure (a threshold voltage shift of +0.8 V upon 3600 s of water soaking), which is attributed to the hydrophobicity of the FPR passivation layer. Here, we discuss the origin of the current instability caused by the liquid-contact electrification as well as various static and dynamic stability tests for IGZO TFTs. On the basis of our findings, we believe that the use of a thin, solution-processed FPR passivation layer is effective in suppressing the static and dynamic water motion-induced instabilities, which may enable the realization of high-performance and environment-stable oxide TFTs for emerging wearable and skin-like electronics.
Preliminary results of dancing exercise on postural stability in adolescent females.
Cheng, Hsu-Sheng; Law, Cheung-Lun; Pan, Hui-Fang; Hsiao, Yueh-Ping; Hu, Jeng-Ho; Chuang, Fu-Kai; Huang, Mao-Hsiung
2011-12-01
Twenty-six female student dancers of Chung-hua school of Art (mean age 17.5 ± 0.5 years) and twenty-five healthy active female collegiate students (mean age 18.1 ± 1.0 years) participated in this study to investigate the effects of dancing exercise on postural stability of adolescent female through a comparison study of two cohorts. The groups were matched in height and weight. Participants were excluded for left-side dominance, sustained lower extremity injury, any known vestibular system dysfunction, uncorrected visual problems, and other neurological conditions. Static and dynamic standing balances were measured by means of Biodex Stability System in six conditions include bilateral, dominant, and nondominant single leg stances with eye-open and eye-closed conditions. To investigate the difference between static and dynamic stabilities, two protocols were performed: the first protocol consisted of four positions including static position, Level 8, Level 4, and Level 1, respectively. They were instructed to maintain a level platform as stably as possible for a period of 30 seconds for each test and given a 30-second rest between tests. The second protocol was descending stability level that was gradually changed from Level 12 to Level 1 for 60 seconds. Balance indices included overall stability index, anterior-posterior stability index (APSI), and medial-lateral stability index. The results of first protocol showed that there were significant differences in overall stability index score between study and control groups at Level 8 with dominant single leg standing in the eye-open condition and the APSI score at Level 8 and at Level 4 with dominant single-leg standing in the eye-closed condition. There was no significant difference in the second protocol. The possible explanation is loss of familiarization adaptation because of level change consequently in both the groups, not step-by-step as in the first protocol study. Furthermore, a positive correlation was found between the dancing experience and the APSI at Level 8 and Level 4 with dominant single-leg standing in the eye-closed condition. In conclusion the findings implied that dancing exercise results in better postural stability and less visual dependence on postural control in adolescent females. Copyright © 2011. Published by Elsevier B.V.
Static aeroelastic behavior of a subsonic plate wing
NASA Astrophysics Data System (ADS)
Berci, M.
2017-07-01
The static aeroelastic behavior of a subsonic plate wing is here described by semi-analytical means. Within a generalised modal formulation, any distribution of the plate's properties is allowed. Modified strip theory is employed for the aerodynamic modelling and a linear aeroelastic model is eventually derived. Numerical results are then shown for the plate's aeroelastic stability in terms of divergence speed, with respect to the most relevant aero-structural parameters.
Chuter, V H; de Jonge, X A K Janse; Thompson, B M; Callister, R
2015-03-01
Poor core stability is linked to a range of musculoskeletal pathologies and core-strengthening programmes are widely used as treatment. Treatment outcomes, however, are highly variable, which may be related to the method of delivery of core strengthening programmes. We investigated the effect of identical 8 week core strengthening programmes delivered as either supervised or home-based on measures of core stability. Participants with poor core stability were randomised into three groups: supervised (n=26), home-based (n=26) or control (n=26). Primary outcomes were the Sahrmann test and the Star Excursion Balance Test (SEBT) for dynamic core stability and three endurance tests (side-bridge, flexor and Sorensen) for static core stability. The exercise programme was devised and supervised by an exercise physiologist. Analysis of covariance on the change from baseline over the 8 weeks showed that the supervised group performed significantly better on all core stability measures than both the home-based and control group. The home-based group produced significant improvements compared to the control group in all static core stability tests, but not in most of the dynamic core stability tests (Sahrmann test and two out of three directions of the SEBT). Our results support the use of a supervised core-strengthening programme over a home-based programme to maximise improvements in core stability, especially in its dynamic aspects. Based on our findings in healthy individuals with low core stability, further research is recommended on potential therapeutic benefits of supervised core-strengthening programmes for pathologies associated with low core stability. ACTRN12613000233729. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Feurtado, J Allan; Ambrose, Stephen J; Cutler, Adrian J; Ross, Andrew R S; Abrams, Suzanne R; Kermode, Allison R
2004-02-01
Western white pine (Pinus monticola) seeds exhibit deep dormancy at maturity and seed populations require several months of moist chilling to reach their uppermost germination capacities. Abscisic acid (ABA) and its metabolites, phaseic acid (PA), dihydrophaseic acid (DPA), 7'-hydroxy ABA (7'OH ABA) and ABA-glucose ester (ABA-GE), were quantified in western white pine seeds during dormancy breakage (moist chilling) and germination using an HPLC-tandem mass spectrometry method with multiple reaction monitoring and internal standards incorporating deuterium-labeled analogs. In the seed coat, ABA and metabolite levels were high in dry seeds, but declined precipitously during the pre-moist-chilling water soak to relatively low levels thereafter. In the embryo and megagametophyte, ABA levels decreased significantly during moist chilling, coincident with an increase in the germination capacity of seeds. ABA catabolism occurred via several routes, depending on the stage and the seed tissue. Moist chilling of seeds led to increases in PA and DPA levels in both the embryo and megagametophyte. Within the embryo, 7'OH ABA and ABA-GE also accumulated during moist chilling; however, 7'OH ABA peaked early in germination. Changes in ABA flux, i.e. shifts in the ratio between biosynthesis and catabolism, occurred at three distinct stages during the transition from dormant seed to seedling. During moist chilling, the relative rate of ABA catabolism exceeded ABA biosynthesis. This trend became even more pronounced during germination, and germination was also accompanied by a decrease in the ABA catabolites DPA and PA, presumably as a result of their further metabolism and/or leaching/transport. The transition from germination to post-germinative growth was accompanied by a shift toward ABA biosynthesis. Dormant imbibed seeds, kept in warm moist conditions for 30 days (after an initial 13 days of soaking), maintained high ABA levels, while the amounts of PA, 7'OH ABA, and DPA decreased or remained at steady-state levels. Thus, in the absence of conditions required to break dormancy there were no net changes in ABA biosynthesis and catabolism.
A moist Boussinesq shallow water equations set for testing atmospheric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zerroukat, M., E-mail: mohamed.zerroukat@metoffice.gov.uk; Allen, T.
The shallow water equations have long been used as an initial test for numerical methods applied to atmospheric models with the test suite of Williamson et al. being used extensively for validating new schemes and assessing their accuracy. However the lack of physics forcing within this simplified framework often requires numerical techniques to be reworked when applied to fully three dimensional models. In this paper a novel two-dimensional shallow water equations system that retains moist processes is derived. This system is derived from three-dimensional Boussinesq approximation of the hydrostatic Euler equations where, unlike the classical shallow water set, we allowmore » the density to vary slightly with temperature. This results in extra (or buoyancy) terms for the momentum equations, through which a two-way moist-physics dynamics feedback is achieved. The temperature and moisture variables are advected as separate tracers with sources that interact with the mean-flow through a simplified yet realistic bulk moist-thermodynamic phase-change model. This moist shallow water system provides a unique tool to assess the usually complex and highly non-linear dynamics–physics interactions in atmospheric models in a simple yet realistic way. The full non-linear shallow water equations are solved numerically on several case studies and the results suggest quite realistic interaction between the dynamics and physics and in particular the generation of cloud and rain. - Highlights: • Novel shallow water equations which retains moist processes are derived from the three-dimensional hydrostatic Boussinesq equations. • The new shallow water set can be seen as a more general one, where the classical equations are a special case of these equations. • This moist shallow water system naturally allows a feedback mechanism from the moist physics increments to the momentum via buoyancy. • Like full models, temperature and moistures are advected as tracers that interact through a simplified yet realistic phase-change model. • This model is a unique tool to test numerical methods for atmospheric models, and physics–dynamics coupling, in a very realistic and simple way.« less
Vortex Flap Technology: a Stability and Control Assessment
NASA Technical Reports Server (NTRS)
Carey, K. M.; Erickson, G. E.
1984-01-01
A comprehensive low-speed wind tunnel investigation was performed of leading edge vortex flaps applied to representative aircraft configurations. A determination was made of the effects of analytically- and empirically-designed vortex flaps on the static longitudinal and lateral-directional aerodynamics, stability, and control characteristics of fighter wings having leading-edge sweep angles of 45 to 76.5 degrees. The sensitivity to several configuration modifications was assessed, which included the effects of flap planform, leading- and trailing-edge flap deflection angles, wing location on the fuselage, forebody strakes, canards, and centerline and outboard vertical tails. Six-component forces and moments, wing surface static pressure distributions, and surface flow patterns were obtained using the Northrop 21- by 30-inch low-speed wind tunnel.
NASA Technical Reports Server (NTRS)
Allen, E. C., Jr.; Eder, F. W.
1972-01-01
Experimental aerodynamic investigations have been made on a .0035 scale model North American Rockwell/General Dynamics version of the space shuttle in the NASA/MSFC 14 x 14 Inch Trisonic Wind Tunnel. Static stability and control data were obtained on the delta wing booster alone (B-20) and with the delta wing orbiter (134D) mounted in various positions on the booster. Six component aerodynamic force and moment data were recorded over an angle of attack range from -10 to 24 deg at 0 and 6 deg sideslip angles and from -10 to +10 deg sideslip at 0 deg angle of attack. Mach number ranged from 0.6 to 4.96.
Employing static excitation control and tie line reactance to stabilize wind turbine generators
NASA Technical Reports Server (NTRS)
Hwang, H. H.; Mozeico, H. V.; Guo, T.
1978-01-01
An analytical representation of a wind turbine generator is presented which employs blade pitch angle feedback control. A mathematical model was formulated. With the functioning MOD-0 wind turbine serving as a practical case study, results of computer simulations of the model as applied to the problem of dynamic stability at rated load are also presented. The effect of the tower shadow was included in the input to the system. Different configurations of the drive train, and optimal values of the tie line reactance were used in the simulations. Computer results revealed that a static excitation control system coupled with optimal values of the tie line reactance would effectively reduce oscillations of the power output, without the use of a slip clutch.
NASA Technical Reports Server (NTRS)
Cannon, Michael D.
1956-01-01
Static longitudinal and lateral stability and control data are presented of an investigation on a l/15-scale model of the Goodyear XZP5K airship over a pitch and yaw range of +/-20 deg and 0 deg to 30 deg, respectively, for various rudder and elevator deflections. Two tail configurations of different plan forms were tested and wake and boundary-layer surveys were conducted. Testing was conducted in the Langley full-scale tunnel at a Reynolds number of approximately 16.5 x 10(exp 6) based on hull length, and corresponds to a Mach number of about 0.12.
Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling
NASA Astrophysics Data System (ADS)
Huang, Qihong; Wu, Puxun; Yu, Hongwei
2018-01-01
The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity.
Determination of Static and Dynamic Stability Derivatives Using Beggar
2008-03-01
applies a symmetric Gauss - Seidel method , which solves the generic equation [A]x = b for x by dividing [A] into [A] = ([D][L])[U ] (2.68) 37 where D is...oscillations. Convergence studies on each of these parameters were performed to ensure both convergence and solution independence. Roll stability derivatives...aerodynamic stability parame- ters made dynamic solutions more difficult to compute and less reliable, but modern methods and resources are making this process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taraphdar, Sourav; Leung, Lai-Yung R.; Hagos, Samson M.
2015-01-28
Warm sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations show that the NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower atmosphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main developmentmore » region (50W–20E; 10N–20N) of Atlantic TC. By modulating multiple processes associated with the African monsoon, this study demonstrates that warm NAMED SST explains 8% of interannual variability of Atlantic TC frequency. Thus NAME SST may provide useful predictability for Atlantic TC activity on seasonal-to-interannual time scale.« less
Wang, Shuguang; Sobel, Adam H.; Fridlind, Ann; ...
2015-09-25
The recently completed CINDY/DYNAMO field campaign observed two Madden-Julian oscillation (MJO) events in the equatorial Indian Ocean from October to December 2011. Prior work has indicated that the moist static energy anomalies in these events grew and were sustained to a significant extent by radiative feedbacks. We present here a study of radiative fluxes and clouds in a set of cloud-resolving simulations of these MJO events. The simulations are driven by the large scale forcing dataset derived from the DYNAMO northern sounding array observations, and carried out in a doubly-periodic domain using the Weather Research and Forecasting (WRF) model. simulatedmore » cloud properties and radiative fluxes are compared to those derived from the S-Polka radar and satellite observations. Furthermore, to accommodate the uncertainty in simulated cloud microphysics, a number of single moment (1M) and double moment (2M) microphysical schemes in the WRF model are tested.« less
75 FR 11195 - Central Arkansas National Wildlife Refuge Complex, Arkansas
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-10
... units, moist-soil units, open water areas, grassland/scrub- shrub areas, and the Big Lake Wilderness. We... forest, moist-soil, scrub- shrub, grassland, and aquatic management programs in order to increase...
Method and apparatus for extracting water from air
Spletzer, Barry L.
2001-01-01
The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.
An Analysis of Stochastic Jovian Oscillation Excitation by Moist Convection
NASA Astrophysics Data System (ADS)
Dederick, Ethan; Jackiewicz, Jason; Guillot, Tristan
2018-03-01
Recent observations of Jupiter have suggested the existence of global oscillatory modes at millihertz frequencies, yet the source mechanism responsible for driving these modes is still unknown. However, the energies necessary to produce observable surface oscillations have been predicted. Here we investigate if moist convection in Jupiter’s upper atmosphere can be responsible for driving the global oscillations and what moist convective energy requirements are necessary to achieve these theoretical mode energies and surface amplitudes. We begin by creating a one-dimensional moist convective cloud model and find that the available kinetic energy of the rising cloud column falls below theoretical estimates of oscillation energies. That is, mode excitation cannot occur with a single storm eruption. We then explore stochastic excitation scenarios of the oscillations by moist convective storms. We find that mode energies and amplitudes can reach theoretical estimates if the storm energy available to the modes is more than just kinetic. In order for the modes to be excited, we find that they require 5 × 1027 to 1028 erg per day. However, even for a large storm eruption each day, the available kinetic energy from the storms falls two orders of magnitude short of the required driving energy. Although our models may oversimplify the true complexity of the coupling between Jovian storms and global oscillations, our findings reveal that enough thermal energy is associated with moist convection to drive the modes, should it be available to them.
Thermal static bending of deployable interlocked booms
NASA Technical Reports Server (NTRS)
Staugaitis, C. L.; Predmore, R. E.
1973-01-01
Metal ribbons processed with a heat-forming treatment are enabled to form tubelike structures when deployed from a roll. Deployable booms of this have been utilized for gravity-gradient stabilization on the RAE, ATS, and Nimbus D satellites. An experimental thermal-mechanics test apparatus was developed to measure the thermal static bending and twist of booms up to 3 meters long. The apparatus was calibrated by using the correlation between calculated and observed thermal bending of a seamless tube. Thermal static bending values of 16 interlocked deployable booms were observed to be within a factor of 2.5 of the values calculated from seamless-tube theory. Out-of-Sun-plane thermal bending was caused by complex heat transfer across the interlocked seam. Significant thermal static twisting was not observed.
NASA Technical Reports Server (NTRS)
Klemin, Alexander; Warner, Edward P; Denkinger, George M
1918-01-01
Part 1 gives details of models tested and methods of testing of the Eiffel 36 wing alone and the JN2 aircraft. Characteristics and performance curves for standard JN are included. Part 2 presents a statistical analysis of the following: lift and drag contributed by body and chassis tested without wings; lift and drag contributed by tail, tested without wings; the effect on lift and drift of interference between the wings of a biplane combination; lift and drag contributed by the addition of body, chassis, and tail to a biplane combination; total parasite resistance; effect of varying size of tail, keeping angle of setting constant; effect of varying length of body and size of tail at the same time, keeping constant moment of tail surface about the center of gravity; forces on the tail and the effects of downwash; effect of size and setting of tail on statical longitudinal stability effects of length of body on stability; the effects of the various elements of an airplane on longitudinal stability and the placing of the force vectors. Part 3 presents the fundamental principals of dynamical stability; computations of resistance derivatives; solution of the stability equation; dynamical stability of the Curtiss JN2; tabulation of resistance derivatives; discussion of the resistance derivatives; formation and solution of stability equations; physical conceptions of the resistance derivatives; elements contributing to damping and an investigation of low speed conditions. Part 4 includes a summary of the results of the statistical investigation and a summary of the results for dynamic stability.
2006-10-10
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Don Holt installing projectile & powder charge
2006-10-10
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF Chuck Cornelison operating 'Firing' control pannel
Self-aggregation of clouds in conditionally unstable moist convection
Pauluis, Olivier; Schumacher, Jörg
2011-01-01
The behavior of moist Rayleigh–Bénard convection is investigated using a Boussinesq model with a simplified thermodynamics for phase transitions. This idealized configuration makes the problem accessible to high-resolution three-dimensional direct numerical simulations without small-scale parameterizations of the turbulence for extended layers with aspect ratios up to 64. Our study is focused on the frequently observed conditionally unstable environment that is stably stratified for unsaturated air, but is unstable for cloudy air. We find that no sharp threshold for the transition to convective turbulence exists, a situation similar to wall-bounded shear flows. Rather, the transition depends on the amplitude of the initial perturbation of the quiescent equilibrium and on the aspect ratio of the convective domain. In contrast to the classical dry Rayleigh–Bénard case, convection is highly asymmetric with respect to the vertical direction. Moist upwelling air inside turbulent cloud aggregates is surrounded by ambient regions of slowly descending unsaturated air. It is also found that conditionally unstable moist convection is inefficient at transporting energy. Our study suggests that there is an upper bound on the Nusselt number in moist convection that is lower than that of the classical dry case. PMID:21768333
A new device to estimate abundance of moist-soil plant seeds
Penny, E.J.; Kaminski, R.M.; Reinecke, K.J.
2006-01-01
Methods to sample the abundance of moist-soil seeds efficiently and accurately are critical for evaluating management practices and determining food availability. We adapted a portable, gasoline-powered vacuum to estimate abundance of seeds on the surface of a moist-soil wetland in east-central Mississippi and evaluated the sampler by simulating conditions that researchers and managers may experience when sampling moist-soil areas for seeds. We measured the percent recovery of known masses of seeds by the vacuum sampler in relation to 4 experimentally controlled factors (i.e., seed-size class, sample mass, soil moisture class, and vacuum time) with 2-4 levels per factor. We also measured processing time of samples in the laboratory. Across all experimental factors, seed recovery averaged 88.4% and varied little (CV = 0.68%, n = 474). Overall, mean time to process a sample was 30.3 ? 2.5 min (SE, n = 417). Our estimate of seed recovery rate (88%) may be used to adjust estimates for incomplete seed recovery, or project-specific correction factors may be developed by investigators. Our device was effective for estimating surface abundance of moist-soil plant seeds after dehiscence and before habitats were flooded.
Chief Characteristics and Advantages of Tailless Airplanes
NASA Technical Reports Server (NTRS)
Dufaure De Lajarte, A
1936-01-01
This study will be concerned with the critical examination of two main questions, mainly, susceptibility of centering and more generally, the conditions of static stability, longitudinal equilibrium, and the question of dynamic stability, or at least the damping of longitudinal vibrations about a position of equilibrium that may result from a small variation in the angle of attack.
14 CFR 23.177 - Static directional and lateral stability.
Code of Federal Regulations, 2013 CFR
2013-01-01
... positive for any landing gear and flap position appropriate to the takeoff, climb, cruise, approach, and... larger angles of sideslip, up to that at which full rudder is used or a control force limit in § 23.143... stability, as shown by the tendency to raise the low wing in a sideslip with the aileron controls free, may...
Bhadauria, Esha A; Gurudut, Peeyoosha
2017-08-01
The aim of the present study was to compare three different forms of exercises namely lumbar stabilization, dynamic strengthening, and Pilates on chronic low back pain (LBP) in terms of pain, range of motion, core strength and function. In this study, 44 subjects suffering from non-specific LBP for more than 3 months were randomly allocated into the lumbar stabilization group, the dynamic strengthening group, and the Pilates group. Ten sessions of exercises for 3 weeks were prescribed along with interferential current and hot moist pack. Pain was assessed by visual analog scale, functional affection by modified Oswestry Disability Questionnaire, range of motion by assessing lumbar flexion and extension by modified Schober test and core strength was assessed by pressure biofeedback on day 1 and day 10 of the treatment. There was reduction of pain, improvement in range of motion, functional ability and core strength in all the 3 exercise groups. The improvement was significantly greater in the lumbar stabilization group for all the outcome measures, when compared the posttreatment after 10th session. Pairwise comparison showed that there was greater reduction of disability in the Pilates group than the dynamic strengthening group. It was concluded that the lumbar stabilization is more superior compared to the dynamic strengthening and Pilates in chronic nonspecific LBP. However, long-term benefits need to be assessed and compared with prospective follow-up studies.
2010-04-01
to be 700 km. The scale of devel- opment is therefore within the fast -growing, smaller wavenumber portion of the large cyclone growth regime...the baroclinic conversion term CA increases about half as fast as it does in the corresponding moist experiment. In the moist case, CA reaches its...conversion of mean-state APE to eddy APE is slower, so the occlusion process is delayed and the system con- tinues deepening, although not as fast as in the
Results from the balance rehabilitation unit in benign paroxysmal positional vertigo.
Kasse, Cristiane Akemi; Santana, Graziela Gaspar; Scharlach, Renata Coelho; Gazzola, Juliana Maria; Branco, Fátima Cristina Barreiro; Doná, Flávia
2010-01-01
Posturography is a useful new tool to study the influence of vestibular diseases on balance. to compare the results from the Balance Rehabilitation Unit (BRU) static posturography in elderly patients with Benign Paroxysmal Positional Vertigo (BPPV), before and after Epley's maneuver. a prospective study of 20 elderly patients with a diagnosis of BPPV. The patients underwent static posturography and the limit of stability (LE) and ellipse area were measured. We also applied the Dizziness Handicap Inventory (DHI) questionnaire to study treatment effectiveness. 80% were females, with a mean age of 68.15 years. After the maneuver, the LE increased significantly (p=0.001). The elliptical area of somatosensory, visual and vestibular conflicts (2,7,8,9 situations) in BRU and the DHI scores decreased significantly (p<0.05) after treatment. the study suggests that elderly patients with BPPV may present static postural control impairment and that the maneuver is effective for the remission of symptoms, to increase in the stability and improvement in postural control in situations of visual, somatosensory and vestibular conflicts.
THE RELATIONSHIP BETWEEN VARIOUS MODES OF SINGLE LEG POSTURAL CONTROL ASSESSMENT
Schmitz, Randy
2012-01-01
Purpose/Background: While various techniques have been developed to assess the postural control system, little is known about the relationship between single leg static and functional balance. The purpose of the current study was to determine the relationship between the performance measures of several single leg postural stability tests. Methods: Forty six recreationally active college students (17 males, 29 females, 21±3 yrs, 173±10 cm) performed six single leg tests in a counterbalanced order: 1) Firm Surface-Eyes Open, 2) Firm Surface-Eyes Closed, 3) Multiaxial Surface-Eyes Open, 4) Multiaxial Surface-Eyes Closed, 5) Star Excursion Balance Test (posterior medial reach), 6) Single leg Hop-Stabilization Test. Bivariate correlations were conducted between the six outcome variables. Results: Mild to moderate correlations existed between the static tests. No significant correlations existed involving either of the functional tests. Conclusions: The results indicate that while performance of static balance tasks are mildly to moderately related, they appear to be unrelated to functional reaching or hopping movements, supporting the utilization of a battery of tests to determine overall postural control performance. Level of Evidence: 3b PMID:22666640
NASA Technical Reports Server (NTRS)
Stewart, E. C.
1976-01-01
The results of an analytical study of a system using stability derivatives determined in static wind tunnel tests of a 1/6 scale model of a popular, high wing, light airplane equipped with the gust alleviation system are reported. The longitudinal short period mode dynamics of the system are analyzed, and include the following: (1) root loci, (2) airplane frequency responses to vertical gusts, (3) power spectra of the airplane responses in a gust spectrum, (4) time history responses to vertical gusts, and (5) handling characteristics. The system reduces the airplane's normal acceleration response to vertical gusts while simultaneously increasing the pitching response and reducing the damping of the longitudinal short period mode. The normal acceleration response can be minimized by using the proper amount of static alleviation and a fast response system with a moderate amount of damping. The addition of a flap elevator interconnect or a pitch damper system further increases the alleviation while moderating the simultaneous increase in pitching response. The system provides direct lift control and may reduce the stick fixed longitudinal static stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
A geotechnical study has been completed in H-Area for the In-Tank Precipitation Facility (ITP) and the balance of the H-Area Tank Farm (HTF) at the Savannah River Site (SRS) in South Carolina. The study consisted of subsurface field exploration, field and laboratory testing, and engineering analyses. The purpose of these investigations is to evaluate the overall stability of the H-Area tanks under static and dynamic conditions. The objectives of the study are to define the site-specific geological conditions at ITP and HTF, obtain engineering properties for the assessment of the stability of the native soils and embankment under static andmore » dynamic loads (i.e., slope stability, liquefaction potential, and potential settlements), and derive properties for soil-structure interaction studies. This document (Volume 5) contains the laboratory test results for the In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) Geotechnical Report.« less
NASA Technical Reports Server (NTRS)
Queijo, M J; Jaquet, Byron M; Wolhart, Walter D
1954-01-01
Low-speed tests of a model with a wing swept back 35 degrees at the 0.33-chord line and a horizontal tail located well above the extended wing-chord plane indicated static longitudinal instability at moderate angles of attack for all configurations tested. An investigation therefore was made to determine whether the longitudinal stability could be improved by the use of chordwise wing fences, by lowering the horizontal tail, or by a combination of both. The results of the investigation showed that the longitudinal stability characteristics of the model with slats retracted could be improved at moderate angles of attack by placing chordwise wing fences at a spanwise station of about 73 percent of the wing semispan from the plane of symmetry provided the nose of the fence extended slightly beyond or around the wing leading edge.
Flight Dynamics of an Aeroshell Using an Attached Inflatable Aerodynamic Decelerator
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Schoenenberger, Mark; Axdahl, Erik; Wilhite, Alan
2009-01-01
An aeroelastic analysis of the behavior of an entry vehicle utilizing an attached inflatable aerodynamic decelerator during supersonic flight is presented. The analysis consists of a planar, four degree of freedom simulation. The aeroshell and the IAD are assumed to be separate, rigid bodies connected with a spring-damper at an interface point constraining the relative motion of the two bodies. Aerodynamic forces and moments are modeled using modified Newtonian aerodynamics. The analysis includes the contribution of static aerodynamic forces and moments as well as pitch damping. Two cases are considered in the analysis: constant velocity flight and planar free flight. For the constant velocity and free flight cases with neutral pitch damping, configurations with highly-stiff interfaces exhibit statically stable but dynamically unstable aeroshell angle of attack. Moderately stiff interfaces exhibit static and dynamic stability of aeroshell angle of attack due to damping induced by the pitch angle rate lag between the aeroshell and IAD. For the free-flight case, low values of both the interface stiffness and damping cause divergence of the aeroshell angle of attack due to the offset of the IAD drag force with respect to the aeroshell center of mass. The presence of dynamic aerodynamic moments was found to influence the stability characteristics of the vehicle. The effect of gravity on the aeroshell angle of attack stability characteristics was determined to be negligible for the cases investigated.
2006-10-10
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Bon Bowling machining sabot to find dimensions
Statical longitudinal stability of airplanes
NASA Technical Reports Server (NTRS)
Warner, Edward P
1921-01-01
This report, which is a continuation of the "Preliminary report on free flight testing" (report no. NACA-TR-70), presents a detailed theoretical analysis of statical stability with free and locked controls and also the results of many free flight test on several types of airplanes. In developing the theory of stability with locked controls an expression for pitching moment is derived in simple terms by considering the total moment as the sum of the moments due to wings and tail surface. This expression, when differentiated with respect to angle of incidence, enables an analysis to be made of the factors contributing to the pitching moment. The effects of slipstream and down wash are also considered and it is concluded that the C. G. Location has but slight effect or stability, and that stability is much improved by increasing the efficiency of the tail surfaces, which may be done by using an "inverted" tail plane. The results of free flight tests with locked controls are discussed at length and it is shown that the agreement between the experimental results and theory is very satisfactory. The theory of stability with free controls is not amendable to the simple mathematical treatment used in the case of locked controls, but a clear statement of the conditions enables several conclusions to be drawn, one of which is that the fixed tail surfaces should be much larger than the movable surfaces.
Steady-State Computation of Constant Rotational Rate Dynamic Stability Derivatives
NASA Technical Reports Server (NTRS)
Park, Michael A.; Green, Lawrence L.
2000-01-01
Dynamic stability derivatives are essential to predicting the open and closed loop performance, stability, and controllability of aircraft. Computational determination of constant-rate dynamic stability derivatives (derivatives of aircraft forces and moments with respect to constant rotational rates) is currently performed indirectly with finite differencing of multiple time-accurate computational fluid dynamics solutions. Typical time-accurate solutions require excessive amounts of computational time to complete. Formulating Navier-Stokes (N-S) equations in a rotating noninertial reference frame and applying an automatic differentiation tool to the modified code has the potential for directly computing these derivatives with a single, much faster steady-state calculation. The ability to rapidly determine static and dynamic stability derivatives by computational methods can benefit multidisciplinary design methodologies and reduce dependency on wind tunnel measurements. The CFL3D thin-layer N-S computational fluid dynamics code was modified for this study to allow calculations on complex three-dimensional configurations with constant rotation rate components in all three axes. These CFL3D modifications also have direct application to rotorcraft and turbomachinery analyses. The modified CFL3D steady-state calculation is a new capability that showed excellent agreement with results calculated by a similar formulation. The application of automatic differentiation to CFL3D allows the static stability and body-axis rate derivatives to be calculated quickly and exactly.
A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thatcher, Diana R.; Jablonowski, Christiane
A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held–Suarez (HS) test that was developed for dry simulations on “a flat Earth” and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics–physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat betweenmore » the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics–dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. Furthermore, the new moist variant of the HS test can be considered a test case of intermediate complexity.« less
A moist aquaplanet variant of the Held–Suarez test for atmospheric model dynamical cores
Thatcher, Diana R.; Jablonowski, Christiane
2016-04-04
A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the Held–Suarez (HS) test that was developed for dry simulations on “a flat Earth” and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the nonlinear dynamics–physics moisture feedbacks without the complexity of full-physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary-layer mixing, and the exchange of latent and sensible heat betweenmore » the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of the National Center for Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics–dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. Furthermore, the new moist variant of the HS test can be considered a test case of intermediate complexity.« less
Song, Min-Ae; Marian, Catalin; Brasky, Theodore M; Reisinger, Sarah; Djordjevic, Mirjana; Shields, Peter G
2016-03-14
Use of smokeless tobacco products (STPs) is associated with oral cavity cancer and other health risks. Comprehensive analysis for chemical composition and toxicity is needed to compare conventional and newer STPs with lower tobacco-specific nitrosamines (TSNAs) yields. Seven conventional and 12 low-TSNA moist snuff products purchased in the U.S., Sweden, and South Africa were analyzed for 18 chemical constituents (International Agency for Research on Cancer classified carcinogens), pH, nicotine, and free nicotine. Chemicals were compared in each product using Wilcoxon rank-sum test and principle component analysis (PCA). Conventional compared to low-TSNA moist snuff products had higher ammonia, benzo[a]pyrene, cadmium, nickel, nicotine, nitrate, and TSNAs and had lower arsenic in dry weight content and per mg nicotine. Lead and chromium were significantly higher in low-TSNA moist snuff products. PCA showed a clear difference for constituents between conventional and low-TSNA moist snuff products. Differences among products were reduced when considered on a per mg nicotine basis. As one way to contextualize differences in constituent levels, probabilistic lifetime cancer risk was estimated for chemicals included in The University of California's carcinogenic potency database (CPDB). Estimated probabilistic cancer risks were 3.77-fold or 3-fold higher in conventional compared to low-TSNA moist snuff products under dry weight or under per mg nicotine content, respectively. In vitro testing for the STPs indicated low level toxicity and no substantial differences. The comprehensive chemical characterization of both conventional and low-TSNA moist snuff products from this study provides a broader assessment of understanding differences in carcinogenic potential of the products. In addition, the high levels and probabilistic cancer risk estimates for certain chemical constituents of smokeless tobacco products will further inform regulatory decision makers and aid them in their efforts to reduce carcinogen exposure in smokeless tobacco products. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Vega, Juan F.; Vicente-Alique, Ernesto; Núñez-Ramírez, Rafael; Wang, Yang; Martínez-Salazar, Javier
2016-01-01
The stabilization of human papillomavirus type 16 virus-like particles has been examined by means of different techniques including dynamic and static light scattering, transmission electron microscopy and electrophoretic mobility. All these techniques provide different and often complementary perspectives about the aggregation process and generation of stabilized virus-like particles after a period of time of 48 hours at a temperature of 298 K. Interestingly, static light scattering results point towards a clear colloidal instability in the initial systems, as suggested by a negative value of the second virial coefficient. This is likely related to small repulsive electrostatic interactions among the particles, and in agreement with relatively small absolute values of the electrophoretic mobility and, hence, of the net surface charges. At this initial stage the small repulsive interactions are not able to compensate binding interactions, which tend to aggregate the particles. As time proceeds, an increase of the size of the particles is accompanied by strong increases, in absolute values, of the electrophoretic mobility and net surface charge, suggesting enhanced repulsive electrostatic interactions and, consequently, a stabilized colloidal system. These results show that electrophoretic mobility is a useful methodology that can be applied to screen the stabilization factors for virus-like particles during vaccine development. PMID:26885635
NASA Technical Reports Server (NTRS)
Keynton, Robert J.
1961-01-01
Tests were conducted at Mach numbers of 3.96 and 4.65 in the Langley Unitary Plan wind tunnel to determine the static longitudinal stability characteristics of a fin-stabilized rocket-vehicle configuration which had a rearward facing step located upstream of the fins. Two fin sizes and planforms, a delta and a clipped delta, were tested. The angle of attack was varied from 6 deg to -6 deg and the Reynolds number based on model 6 length was about 10 x 10. The configuration with the larger fins (clipped delta) had a center of pressure slightly rearward of and an initial normal-force-curve slope slightly higher than that of the configuration with the smaller fins (delta) as would be expected. Calculations of the stability parameters gave a slightly lower initial slope of the normal-force curve than measured data, probably because of boundary-layer separation ahead of the step. The calculated center of pressure agreed well with the measured data. Measured and calculated increments in the initial slope of the normal-force curve and in the center of pressure, due to changing fins, were in excellent agreement indicating that separated flow downstream of the step did not influence flow over the fins. This result was consistent with data from schlieren photographs.
NASA Technical Reports Server (NTRS)
Buchholz, R. E.
1972-01-01
The results are presented that were obtained from a wind tunnel tests to improve space shuttle booster baseline lateral-directional stability, control characteristics, and cruise engine location optimization. Tests were conducted in a 7 x 10-foot transonic wind tunnel. The model employed was a 0.015-scale replica of a space shuttle booster. The three major objectives of this test were to determine the following: (1) force, static stability, and control effectiveness characteristics for varying angles of positive and negative wing dihedral and various combinations of wing tip and centerline dorsal fins; (2) force and static stability characteristics of cruise engines location on the body below the high aerodynamic canard; and (3) control effectiveness for the low-mounted wing configuration. The wing dihedral study was conducted at a cruise Mach number of 0.40 and simulated altitude of 10,000 feet. Portions of the test were conducted to determine the control surfaces stability and control characteristics over the Mach number range of 0.4 to 1.2. The aerodynamic characteristics determined are based on a unit Reynolds number of approximately 2 million per foot. Boundary layer trip strips were employed to induce boundary layer transition.
Sewage sludge dewatering using flowing liquid metals
Carlson, Larry W.
1986-01-01
A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.
A nonlinear steady model for moist hydrostatic mountain waves
NASA Technical Reports Server (NTRS)
Barcilon, A.; Fitzjarrald, D.
1985-01-01
The dynamics of hydrostatic gravity waves generated by the passage of a steady, stably stratified, moist flow over a two-dimensional topography is considered. Coriolis effects are neglected. The cloud region is determined by the dynamics, and within that region the Brunt-Vaisala frequency takes on a value smaller than the outside value. In both the dry and cloudy regions the Brunt-Vaisala frequency is constant with height. The moist layer is considered to be either next to the mountain or at midlevels and to be deep enough so that an entire cloud forms in that layer. The nonlinearity in the flow and lower boundary affects the dynamics of these waves and wave drag. The latter is found to depend upon: (1) the location of the moist layer with respect to the ground, (2) the amount of moisture, (3) the degree of nonlinearity and (4) the departure from symmetry in the bottom topography.
In vitro biomechanical comparison of multistrand cables with conventional cervical stabilization.
Weis, J C; Cunningham, B W; Kanayama, M; Parker, L; McAfee, P C
1996-09-15
The biomechanical stability of six different methods of cervical spine stabilization, three using multistrand cables, were evaluated in a bovine model. To quantify and compare the in vitro biomechanical properties of multistrand cables used for posterior cervical wiring to standard cervical fixation techniques. Fixation of the posterior cervical spine with monofilament stainless steel wire is a proven technique for stabilization of the cervical spine. Recently, multistrand braided cables have been used as a substitute for monofilament stainless steel wires. These cables, made of stainless steel, titanium, or polyethylene, are reported to be stronger, more flexible, and fatigue resistant than are monofilament wire based on mechanical testing. However, no in vitro biomechanical studies have been performed testing a standard posterior cervical wiring technique using multistrand cables. Thirty-six fresh frozen cervical calf spines consistent in size and age were mounted and fixed rigidly to isolate the C4-C5 motion segment. Six different reconstruction techniques were evaluated for Rogers' posterior cervical wiring technique using: 1) 20-gauge stainless steel monofilament wire, 2) stainless steel cable, 3) titanium cable, 4) polyethylene cables, 5) anterior locking plate construct with interbody graft, and 6) posterior plate construct. Six cervical spines were included in each group (n = 6), with each specimen statically evaluated under three stability conditions: 1) intact, 2) reconstructed, and 3) postfatigue. The instability model created before the reconstruction consisted of a distractive flexion Stage 3 injury at C4-C5. Nondestructive static biomechanical testing, performed on an material testing machine (MTS 858 Bionix test system, Minneapolis, MN), included axial compression, axial rotation, flexion-extension, and lateral bending. After reconstruction and static analysis, the specimens were fatigued for 1500 cycles and then statically retested. Data analysis included normalization of the reconstructed and postfatigue data to the intact condition. The calculated static parameters included operative functional unit stiffness and range of motion. Posterior cervical reconstruction with stainless steel monofilament wire proved inadequate under fatigue testing. Two of the six specimens failed with fatigue, and this construct permitted the greatest degree of flexion-extension motion after fatigue in comparison with all other constructs (P < 0.05). There were no significant differences in flexural stiffness or range of motion between stainless steel, titanium, or polyethylene cable constructs before or after fatigue testing. The posterior cervical plate constructs were the stiffest constructs under flexion, extension, and lateral bending modes, before and after fatigue testing (P < 0.05). Multistrand cables were superior to monofilament wire with fatigue testing using an in vitro calf cervical spine model. There were no failures or detectable differences in elongation after fatigue testing between the stainless steel, titanium, and polyethylene cables, as shown by the flexion-extension range of motion. The posterior cervical plate construct offered the greatest stability compared with all other constructs.
Free and Convectively Coupled Equatorial Waves Simulated by CMIP5 Climate Models
NASA Astrophysics Data System (ADS)
Marques, Carlos A. F.; Castanheira, José M.
2015-04-01
It is well known that precipitation in the equatorial belt does not occur randomly, but is often organized into synoptic to planetary-scale disturbances with time scales smaller than a season. Several studies have shown that a large fraction of the convection variability in such disturbances is associated with dynamical Equatorial Waves, such as the Kelvin, Equatorial Rossby, Mixed Rossby-Gravity, Eastward and Westward Inertio-Gravity waves (e.g. Kiladis et al., Rev. Geophys., 2009). The horizontal structures and dispersion characteristics of such Convectively Coupled Equatorial Waves (CCEWs) correspond to the solutions of the shallow water (SW) equations on an equatorial β-plane obtained by Matsuno (J. Meteor. Soc. Japan, 1966). CCEWs have broad impacts within the tropics, but their simulation in general circulation models is still problematic. Using space-time spectral analyses of a proxy field for tropical convection (e.g. outgoing long wave radiation (OLR)), it has been shown the existence of spectral peaks aligned along the dispersion curves of equatorially trapped wave modes of SW theory, which have been interpreted as the effect of equatorial wave processes (e.g. Takayabu, J. Meteor. Soc. Japan, 1994; Wheeler and Kiladis, JAS, 1999). However, different equatorial modes may not be well separated in the wavenumber-frequency domain due to a vertical variation of the horizontal basic flow, that may introduce Doppler shiftings and changes in the vertical heating profiles which may distort the theoretical dispersion curves (Yang et al., JAS, 2003). In this communication, we present a new methodology for the diagnosis of CCEWs, which is based on a pre-filtering of the geopotential and horizontal wind, via three-dimensional (3-D) normal mode functions of the adiabatic linearized equations of a resting atmosphere, followed by a space-time power and cross spectral analysis applied to the 3-D normal mode filtered fields and the OLR (or other fields that may be proxies of tropical convection) to identify the spectral regions of coherence. The advantage of such an approach is that the theoretical vertical as well as horizontal structure functions are taken into account in the projection method, and so the structures obtained are better defined with respect to the theoretical normal modes of a 3-D atmosphere compared to other approaches. The methodology has been applied to the (u,v,φ) and OLR fields simulated by various of the most recent climate models (CMIP5). The methodology has been also applied to the ERA-Interim geopotential and horizontal wind fields and to the interpolated OLR data produced by the National Oceanic and Atmospheric Administration, against which model simulations are evaluated. This new diagnosis method permits a direct detection of various types of equatorial waves, compares the dispersion characteristics of the coupled waves with the theoretical dispersion curves and allows an identification of which vertical modes are more involved in the convection. Moreover, it is able to show the existence of free dry waves and moist coupled waves with a common vertical structure, which is in conformity with the effect of convective heating/cooling on the effective static stability, as deduced from the gross moist stability concept (Kiladis et al., Rev. Geophys., 2009). The methodology is also sensitive to wave's interactions. Deficiencies found in the models' simulations should help the identification of which physical processes need to be improved in climate models.
2006-10-04
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Chuck Cornelison viewing 8x10 shadowgraph images
NASA Technical Reports Server (NTRS)
Buchholz, R. E.; Gamble, M.
1972-01-01
This test was run as a continuation of a prior investigation of aerodynamic performance and static stability tests for a parametric space shuttle launch vehicle. The purposes of this test were: (1) to obtain a more complete set of data in the transonic flight region, (2) to investigate new H-0 tank noseshapes and tank diameters, (3) to obtain control effectiveness data for the orbiter at 0 degree incidence and with a smaller diameter H-0 tank, and (4) to determine the effects of varying solid rocket motor-to-H0 tank gap size. Experimental data were obtained for angles of attack from -10 to +10 degrees and for angles of sideslip from +10 to -10 degrees at Mach numbers ranging from .6 to 4.96.
Examining market trends in the United States smokeless tobacco use: 2005–2011
Delnevo, Cristine D; Wackowski, Olivia A; Giovenco, Daniel P; Manderski, Michelle T Bover; Hrywna, Mary; Ling, Pamela M
2012-01-01
Background While cigarette consumption in the USA continues to decline, promotion for and consumption of smokeless tobacco (SLT) is growing. However, little research has explored what product features are driving SLT growth, despite awareness that product-level factors may be important in SLT use. This study analyses national sales data to better understand the impact of product features on SLT sales. Methods Data on sales of SLT in US convenience stores from 2005 to 2011 were obtained from Nielsen Research Company. Each listed product was coded for attributes such as type, brand, flavouring and form to calculate their respective total sales, market share and contribution to overall SLT growth. Results Sales of moist snuff products (including snus) increased by 65.6% between 2005 and 2011. Sales of pouched and flavoured forms of moist snuff increased by 333.8% and 72.1%, respectively, and contributed to 28% and 59.4% of the total growth in the moist snuff category, respectively. Value/discount brands accounted for 42% of moist snuff sales in 2011 among the top 10 selling brands, largely driven by Grizzly. After 2 years on the national market, Camel Snus was also one of the top 10 selling moist snuff brands. Conclusions Sales of moist snuff, both overall and for particular styles, are increasing. Growing pouch use may be attributed to new SLT users, which may include cigarette smokers using them as starter SLT products. Increased sales of flavoured and discounted snuff raise concerns about use and appeal to youth. Continued surveillance of SLT sales trends is warranted. PMID:23117999
Examining market trends in the United States smokeless tobacco use: 2005-2011.
Delnevo, Cristine D; Wackowski, Olivia A; Giovenco, Daniel P; Manderski, Michelle T Bover; Hrywna, Mary; Ling, Pamela M
2014-03-01
While cigarette consumption in the USA continues to decline, promotion for and consumption of smokeless tobacco (SLT) is growing. However, little research has explored what product features are driving SLT growth, despite awareness that product-level factors may be important in SLT use. This study analyses national sales data to better understand the impact of product features on SLT sales. Data on sales of SLT in US convenience stores from 2005 to 2011 were obtained from Nielsen Research Company. Each listed product was coded for attributes such as type, brand, flavouring and form to calculate their respective total sales, market share and contribution to overall SLT growth. Sales of moist snuff products (including snus) increased by 65.6% between 2005 and 2011. Sales of pouched and flavoured forms of moist snuff increased by 333.8% and 72.1%, respectively, and contributed to 28% and 59.4% of the total growth in the moist snuff category, respectively. Value/discount brands accounted for 42% of moist snuff sales in 2011 among the top 10 selling brands, largely driven by Grizzly. After 2 years on the national market, Camel Snus was also one of the top 10 selling moist snuff brands. Sales of moist snuff, both overall and for particular styles, are increasing. Growing pouch use may be attributed to new SLT users, which may include cigarette smokers using them as starter SLT products. Increased sales of flavoured and discounted snuff raise concerns about use and appeal to youth. Continued surveillance of SLT sales trends is warranted.
Do Emotions Spark Interest in Alternative Tobacco Products?
Popova, Lucy; So, Jiyeon; Sangalang, Angeline; Neilands, Torsten B; Ling, Pamela M
2017-08-01
Exposure to advertisements for tobacco products and tobacco warning labels evokes emotions. This study evaluated the association of discrete positive and negative emotions with interest in alternative tobacco products. In 2013, 1,226 U.S. adult nonsmokers and current smokers viewed advertisements for moist snuff, snus, and electronic cigarettes (e-cigarettes) with various warning labels and then indicated their emotional responses in terms of anger, anxiety, sadness, guilt, disgust, discouragement, hope, and contentment. Outcomes were openness to using moist snuff, snus, and e-cigarettes in the future and interest in a free sample of each product. Data were analyzed in 2016. Hope was positively associated with openness and interest across all alternative tobacco products as was contentment for moist snuff and snus. Anger was negatively associated with openness to moist snuff and e-cigarettes, disgust negatively to moist snuff and snus, and anxiety negatively to e-cigarettes. Being a current smoker, ever trying a corresponding product, being male, and younger age were associated with greater openness to and interest in moist snuff and snus. For e-cigarettes, being a current smoker, ever trying e-cigarettes, and being female were associated with greater openness, and being a current smoker was associated with greater odds of selecting a free sample. Positive emotions, particularly hope, were consistently positively associated with interest in alternative tobacco products. Hope is widely used by tobacco and e-cigarette companies to advertise their products. Antitobacco messages should aim to lower hope associated with tobacco products but increase hope for cessation or life without tobacco.
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.
1983-01-01
Both measurements and model calculations of the temporal dispersion of peak HCl (g + aq) concentration in Titan III exhaust clouds are found to be well characterized by one-term power-law decay expressions. The respective coefficients and decay exponents, however, are found to vary widely with meteorology. The HCl (g), HCl (g + aq), dewpoint, and temperature-pressure-altitude data for Titan III exhaust clouds are consistent with accurately calculated HCl/H2O vapor-liquid compositions for a model quasi-equilibrated flat surface aqueous aerosol. Some cloud evolution characteristics are also defined. Rapid and extensive condensation of aqueous acid clearly occurs during the first three min of cloud rise. Condensation is found to be intensified by the initial entrainment of relatively moist ambient air from lower levels, that is, from levels below eventual cloud stabilization. It is pointed out that if subsequent dilution air at stabilization altitude is significantly drier, a state of maximum condensation soon occurs, followed by an aerosol evaporation phase.
The tropical tropopause inversion layer: variability and modulation by equatorial waves
NASA Astrophysics Data System (ADS)
Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl
2016-09-01
The tropical tropopause layer (TTL) acts as a transition layer between the troposphere and the stratosphere over several kilometers, where air has both tropospheric and stratospheric properties. Within this region, a fine-scale feature is located: the tropopause inversion layer (TIL), which consists of a sharp temperature inversion at the tropopause and the corresponding high static stability values right above, which theoretically affect the dispersion relations of atmospheric waves like Rossby or inertia-gravity waves and hamper stratosphere-troposphere exchange (STE). Therefore, the TIL receives increasing attention from the scientific community, mainly in the extratropics so far. Our goal is to give a detailed picture of the properties, variability and forcings of the tropical TIL, with special emphasis on small-scale equatorial waves and the quasi-biennial oscillation (QBO).We use high-resolution temperature profiles from the COSMIC satellite mission, i.e., ˜ 2000 measurements per day globally, between 2007 and 2013, to derive TIL properties and to study the fine-scale structures of static stability in the tropics. The situation at near tropopause level is described by the 100 hPa horizontal wind divergence fields, and the vertical structure of the QBO is provided by the equatorial winds at all levels, both from the ERA-Interim reanalysis.We describe a new feature of the equatorial static stability profile: a secondary stability maximum below the zero wind line within the easterly QBO wind regime at about 20-25 km altitude, which is forced by the descending westerly QBO phase and gives a double-TIL-like structure. In the lowermost stratosphere, the TIL is stronger with westerly winds. We provide the first evidence of a relationship between the tropical TIL strength and near-tropopause divergence, with stronger (weaker) TIL with near-tropopause divergent (convergent) flow, a relationship analogous to that of TIL strength with relative vorticity in the extratropics.To elucidate possible enhancing mechanisms of the tropical TIL, we quantify the signature of the different equatorial waves on the vertical structure of static stability in the tropics. All waves show, on average, maximum cold anomalies at the thermal tropopause, warm anomalies above and a net TIL enhancement close to the tropopause. The main drivers are Kelvin, inertia-gravity and Rossby waves. We suggest that a similar wave modulation will exist at mid- and polar latitudes from the extratropical wave modes.
Effect of textured foot orthotics on static and dynamic postural stability in middle-aged females.
Wilson, Marjorie L; Rome, Keith; Hodgson, David; Ball, Peter
2008-01-01
Foot orthotics (FO) may be prescribed for a range of lower limb and foot conditions. Prior studies report use of FO in enhancing postural stability in healthy younger adults, and do not control for footwear type. Currently, interest in the effects of FO on postural stability in older adults has increased. Limited reports exist of the effects on postural stability of FO made of combinations of materials, thicknesses and surface textures. In this study 40 healthy females (51.1+/-5.8 years) recruited into a within subject test-retest randomised clinical trial were provided with identical footwear and randomised into four FO conditions (control, grid, dimple and plain, n=10 for each condition). Participants wore the footwear for 4 weeks, a minimum of 6h/day. A Kistler force plate was used to determine postural stability variables (anterior-posterior displacements and medial-lateral displacements) for each participant in a static position, with eyes open and eyes closed. Base of support was evaluated using the GAITRite system. Each outcome measure was measured at baseline and 4 weeks. Postural stability variables demonstrated no significant differences between the four FO conditions. No significant differences were observed with base of support between the four conditions. We have demonstrated no detrimental effects on postural stability in older females after 4 weeks. This is regardless of orthotic texture and is independent of footwear. Biomechanical or sensory effects of FO on postural stability are still to be determined. These may be dependent on the geometry and texture of the orthotic.
Static stability and control effectiveness of a parametric launch vehicle
NASA Technical Reports Server (NTRS)
Ellis, R. R.; Gamble, M.
1972-01-01
An investigation is reported to determine the static aerodynamic characteristics of a space shuttle parametric launch configuration. The orbiter control surfaces were deflected to obtain the control effectiveness for use in launch vehicle control studies. Experimental data were obtained for Mach number from 0.6 to 4.96, angles of attack from minus 10 to plus 10 degrees and angles of sideslip from minus six to six degrees at zero degrees angle of attack.
2006-09-05
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images
2006-10-12
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images
2006-09-05
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images
2006-09-05
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images
2006-09-05
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - scans of shadowgraphs from 8x10 film images
Applying Aerodynamics Inspired Organizational Dynamic Fit Model Disaster Relief Endeavors
2010-12-01
gusts, and a dynamically stable organization returns quickly to its intended profit level, for instance, after deviation by changed consumer preferences . Hence...dynamic stability limits the level, for instance, by changed consumer preferences . Hence static stability limits initial performance... consumer preferences Maneuverability Quickness of a controlled system’s planned change from one trajectory to another Quickness of planned
ERIC Educational Resources Information Center
Canu, Michael; Duque, Mauricio; de Hosson, Cécile
2017-01-01
Engineering students on control courses lack a deep understanding of equilibrium and stability that are crucial concepts in this discipline. Several studies have shown that students find it difficult to understand simple familiar or academic static equilibrium cases as well as dynamic ones from mechanics even if they know the discipline's criteria…
Existence and stability of circular orbits in static and axisymmetric spacetimes
NASA Astrophysics Data System (ADS)
Jia, Junji; Pang, Xiankai; Yang, Nan
2018-04-01
The existence and stability of timelike and null circular orbits (COs) in the equatorial plane of general static and axisymmetric (SAS) spacetime are investigated in this work. Using the fixed point approach, we first obtained a necessary and sufficient condition for the non-existence of timelike COs. It is then proven that there will always exist timelike COs at large ρ in an asymptotically flat SAS spacetime with a positive ADM mass and moreover, these timelike COs are stable. Some other sufficient conditions on the stability of timelike COs are also solved. We then found the necessary and sufficient condition on the existence of null COs. It is generally shown that the existence of timelike COs in SAS spacetime does not imply the existence of null COs, and vice-versa, regardless whether the spacetime is asymptotically flat or the ADM mass is positive or not. These results are then used to show the existence of timelike COs and their stability in an SAS Einstein-Yang-Mills-Dilaton spacetimes whose metric is not completely known. We also used the theorems to deduce the existence of timelike and null COs in some known SAS spacetimes.
A new approach to stability and oscillations of constrained drops and capillary bridges
NASA Astrophysics Data System (ADS)
Fabre, David; Chireux, Veronique; Risso, Frederic; Tordjeman, Philippe
2014-11-01
Static equilibria of liquid inclusions under the effect of gravity and capillarity is a large class of situations which encompasses drops hanging from a ceiling or from a capillary, sessile drops, liquid bridges, etc... In such equilibria the surface shape is governed by the Yong-Laplace equation, which is usually solved in a local way using a ``shooting'' method. We introduce a new method which solves the Laplace-Young in a global way, using an iterative deformation of the shape towards the equilibrium shape. The method is easy to implement and versatile, and allows to prescribe constraints such as the volume of liquid, the angle of attachment, etc... We subsequently consider the issue of stability and oscillations of such configurations. Using finite elements and considering small-amplitude displacements of the surface with respect to the static configuration previously computed, we introduce a global stability approach which allows to predict the stability limits, the oscillation frequencies and the eigenmode shapes for quite general geometries. The approach will be illustrated and compared with experiments in two situations, namely a drop attached to a capilary and a liquid bridge resulting from the coalescence of two facing millimetric drops.
Spatial Cues Provided by Sound Improve Postural Stabilization: Evidence of a Spatial Auditory Map?
Gandemer, Lennie; Parseihian, Gaetan; Kronland-Martinet, Richard; Bourdin, Christophe
2017-01-01
It has long been suggested that sound plays a role in the postural control process. Few studies however have explored sound and posture interactions. The present paper focuses on the specific impact of audition on posture, seeking to determine the attributes of sound that may be useful for postural purposes. We investigated the postural sway of young, healthy blindfolded subjects in two experiments involving different static auditory environments. In the first experiment, we compared effect on sway in a simple environment built from three static sound sources in two different rooms: a normal vs. an anechoic room. In the second experiment, the same auditory environment was enriched in various ways, including the ambisonics synthesis of a immersive environment, and subjects stood on two different surfaces: a foam vs. a normal surface. The results of both experiments suggest that the spatial cues provided by sound can be used to improve postural stability. The richer the auditory environment, the better this stabilization. We interpret these results by invoking the “spatial hearing map” theory: listeners build their own mental representation of their surrounding environment, which provides them with spatial landmarks that help them to better stabilize. PMID:28694770
The Aerodynamics of Axisymmetric Blunt Bodies Flying at Angle of Attack
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark; Kutty, Prasad; Queen, Eric; Karlgaard, Chris
2014-01-01
The Mars Science Laboratory entry capsule is used as an example to demonstrate how a blunt body of revolution must be treated as asymmetric in some respects when flying at a non-zero trim angle of attack. A brief description of the axisymmetric moment equations are provided before solving a system of equations describing the lateral-directional moment equations for a blunt body trimming at an angle of attack. Simplifying assumptions are made which allow the solution to the equations to be rearranged to relate the roll and yaw stability with sideslip angle to the frequency of oscillation of the vehicle body rates. The equations show that for a blunt body the roll and yaw rates are in phase and proportional to each other. The ratio of the rates is determined by the static stability coefficients and mass properties about those axes. A trajectory simulation is used to validate the static yaw stability parameter identification equation and a simple method of identifying the oscillation frequency from the body rates. The approach is shown to successfully extract the modeled yaw stability coefficient along a simulated Mars entry in agreement with data earlier analysis of MSL flight data.
Gong, Wontae
2015-01-01
[Purpose] The present study sought to investigate the influence on static and dynamic lumbar stability of bridge exercise accompanied by an abdominal drawing-in maneuver (ADIM) performed on an uneven support surface. [Subjects] A total of 30 participants were divided into an experimental group (15 participants) and a control group (15 participants). [Methods] The experimental group performed bridge exercise on an unstable surface, whereas the control group performed bridge exercise on a stable surface. The respective bridge exercises were performed for 30 minutes, 3 times per week, for 6 weeks. The static lumbar stability (SLS) and dynamic lumbar stability (DLS) of both the experimental group and the control group were measured using a pressure biofeedback unit. [Results] In the comparison of the initial and final results of the experimental and control groups, only the SLS and DLS of the experimental group were found to be statistically significant. [Conclusion] The results of the present study show that when using bridge exercise to improve SLS and DLS, performing the bridge exercise accompanied by ADIM on an uneven surface is more effective than performing the exercise on a stable surface.
NASA Technical Reports Server (NTRS)
Gardner, William N.; Edmondson, James L.
1950-01-01
A flight test was made to determine the servoplane effectiveness and stability characteristics of the free-floating horizontal stabilizer to be used on the XF10F airplane. The results of this test indicate that servoplane effectiveness is practically constant through the speed range up to a Mach number of 1.15, and the stabilizer static stability is satisfactory. A loss of damping occurs over a narrow Mach number range near M = 1.0, resulting in dynamic instability of the stabilizer in this narrow range. Above M = 1.0 there is a gradual positive trim change of the stabilizer.
Increasing the Stability of Metal-Organic Frameworks
Bosch, Mathieu; Zhang, Muwei; Zhou, Hong-Cai
2014-01-01
Metal-organic frameworks (MOFs) are a new category of advanced porous materials undergoing study by many researchers for their vast variety of both novel structures and potentially useful properties arising from them. Their high porosities, tunable structures, and convenient process of introducing both customizable functional groups and unsaturated metal centers have afforded excellent gas sorption and separation ability, catalytic activity, luminescent properties, and more. However, the robustness and reactivity of a given framework are largely dependent on its metal-ligand interactions, where the metal-containing clusters are often vulnerable to ligand substitution by water or other nucleophiles, meaning that the frameworks may collapsemore » upon exposure even to moist air. Other frameworks may collapse upon thermal or vacuum treatment or simply over time. This instability limits the practical uses of many MOFs. In order to further enhance the stability of the framework, many different approaches, such as the utilization of high-valence metal ions or nitrogen-donor ligands, were recently investigated. This review details the efforts of both our research group and others to synthesize MOFs possessing drastically increased chemical and thermal stability, in addition to exemplary performance for catalysis, gas sorption, and separation.« less
2012-09-01
be seen that the constant of horizontal subgrade reaction is lower for submerged sites than for “dry” (or more precisely, moist) sites. This is...constant of horizontal subgrade reaction for submerged sites and dry or moist sites can be seen in Figure 3-4. ERDC/ITL TR-12-3 46 Table 3-2...moist sand, proposed values for nh tcf 7 21 56 pcf 14,000 42,000 112,000 pci 8.10 24.31 64.81 Submerged sand, proposed values for nh tcf 4 14 34
Varying selection differential throughout the climatic range of Norway spruce in Central Europe.
Kapeller, Stefan; Dieckmann, Ulf; Schueler, Silvio
2017-01-01
Predicting species distribution changes in global warming requires an understanding of how climatic constraints shape the genetic variation of adaptive traits and force local adaptations. To understand the genetic capacity of Norway spruce populations in Central Europe, we analyzed the variation in tree heights at the juvenile stage in common garden experiments established from the species' warm-dry to cold-moist distribution limits. We report the following findings: First, 47% of the total tree height variation at trial sites is attributable to the tree populations irrespective of site climate. Second, tree height variation within populations is higher at cold-moist trial sites than at warm-dry sites and higher within populations originating from cold-moist habitats than from warm-dry habitats. Third, for tree ages of 7-15 years, the variation within populations increases at cold-moist trial sites, whereas it remains constant at warm-dry sites. Fourth, tree height distributions are right-skewed at cold-moist trial sites, whereas they are nonskewed, but platykurtic at warm-dry sites. Our results suggest that in cold environments, climatic conditions impose stronger selection and probably restrict the distribution of spruce, whereas at the warm distribution limit, the species' realized niche might rather be controlled by external drivers, for example, forest insects.
Dominant side in single-leg stance stability during floor oscillations at various frequencies
2014-01-01
Background We investigated lateral dominance in the postural stability of single-leg stance with anteroposterior floor oscillations at various frequencies. Methods Thirty adults maintained a single-leg stance on a force platform for 20 seconds per trial. Trials were performed with no oscillation (static condition) and with anteroposterior floor oscillations (2.5-cm amplitude) at six frequencies: 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5 Hz (dynamic condition). A set of three trials was performed on each leg in each oscillation frequency in random order. The mean speed of the center of pressure in the anteroposterior direction (CoPap) was calculated as an index of postural stability, and frequency analysis of CoPap sway was performed. Footedness for carrying out mobilizing activities was assessed with a questionnaire. Results CoPap speed exponentially increased as oscillation frequency increased in both legs. The frequency analysis of CoPap showed a peak <0.3 Hz at no oscillation. The frequency components at 0.25-Hz oscillation included common components with no oscillation and those at 1.5-Hz oscillation showed the maximum amplitude among all conditions. Postural stability showed no significant difference between left- and right-leg stance at no oscillation and oscillations ≤1.25 Hz, but at 1.5-Hz oscillation was significantly higher in the right-leg stance than in the left-leg stance. For the lateral dominance of postural stability at individual levels, the lateral difference in postural stability at no oscillation was positively correlated with that at 0.25-Hz oscillation (r = 0.51) and negatively correlated with that at 1.5-Hz oscillation (r = -0.53). For 70% of subjects, the dominant side of postural stability was different at no oscillation and 1.5-Hz oscillation. In the subjects with left- or right-side dominance at no oscillation, 94% or 38% changed their dominant side at 1.5-Hz oscillation, with a significant difference between these percentages. In the 1.5-Hz oscillation, 73% of subjects had concordance between the dominant side of postural stability and that of mobilizing footedness. Conclusion In static conditions, there was no lateral dominance of stability during single-leg stance. At 1.5-Hz oscillation, the highest frequency, right-side dominance of postural stability was recognized. Functional role in supporting leg may be divided between left and right legs according to the change of balance condition from static to dynamic. PMID:25127541
Etude de la stabilite d'un avion BWB (Blended Wing Body) de 200 passagers
NASA Astrophysics Data System (ADS)
Legros, Clement
The Blended Wing Body (BWB) is a type of innovative aircraft, based on the flying wing concept. This new type of airplane shows several advantages compared to the conventional airplanes : economy of fuel, reduction of the weight of the structure, reduction of the noise and less impact on the environment, increased payload capacity. However, this kind of aircraft has a lack of stability due to the absence of vertical tail. Several studies of stability were already realized on reduced size models of BWB, but there is no study on a 200 passengers BWB. That's why, the main objective of this present study is to integrate the engines and theirs pylons into the existing conceptual design of the BWB to analyze of their impact on its static and dynamic stability over the flight envelope. The conception of the BWB was realized with the platform of design CEASIOM. The airplane, the engines and theirs pylons were obtained in the geometrical module AcBuilder of CEASIOM. The various aerodynamic coefficients are calculated thanks to Tornado program. These coefficients allow realizing the calculations of stability, in particular with the longitudinal and lateral matrices of stability. Afterward, the BWB flight envelope is created based on aeronautical data of a similar airplane, the Airbus A320. From this flight envelope, we get back several thousand possible points of flight. The last step is to check the static and dynamic stability, using the longitudinal and lateral matrices of stability and the Flying Qualities Requirements, for every point of flight. To validate our study of stability, the already existing studies of stability of the Boeing 747 will be used and compared with our model.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, A. K.
1978-01-01
A description is presented of six simulation cases investigating the effect of the variation of static-dynamic Coulomb friction on servo system stability/performance. The upper and lower levels of dynamic Coulomb friction which allowed operation within requirements were determined roughly to be three times and 50% respectively of nominal values considered in a table. A useful application for the nonlinear time response simulation is the sensitivity analysis of final hardware design with respect to such system parameters as cannot be varied realistically or easily in the actual hardware. Parameters of the static/dynamic Coulomb friction fall in this category.
NASA Astrophysics Data System (ADS)
Linehan, Thomas; Mohseni, Kamran
2017-11-01
The relationship between lateral static stability derivative, Clβ,lift coefficient, CL, and angle of attack was investigated for rectangular wings of aspect ratio A R =0.75 ,1 ,1.5 , and 3 using Stereo-Digital Particle Image Velocimetry (S-DPIV) and direct force and moment measurements. When the product Cl βA R is plotted with respect to CL, the lateral stability curves of each wing collapse to a single line for CL<0.7 . For CL>0.7 , the linearity and scaling of Clβwith respect to CL is lost. S-DPIV is used to elucidate the flow physics in this nonlinear regime. At α =10∘ , the leading-edge separation region emerges on the leeward portion of the sideslipped wing by means of vortex shedding. For the A R ≤1.5 wings at α >15∘ , the tip vortex downwash is sufficient to restrict the shedding of leading-edge vorticity thereby sustaining the lift of the leading-edge separation region at high angles of attack. Concurrently, the windward tip vortex grows in size and strength with increasing angle of attack, displacing the leading-edge separation region further toward the leeward wing. This reorganization of lift-generating vorticity results in the initial nonlinearities between Cl β and CL at angles of attack for which CL is still increasing. At angles of attack near that of maximum lift for the A R ≤1 wings, the windward tip vortex lifts off the wing, decreasing the lateral static stability of the wing prior to lift stall. For the A R =3 wing at α >10∘ , nonlinear trends in Cl β versus CL occur due to the spanwise evolution of stalled flow.
NASA Technical Reports Server (NTRS)
Hieser, Gerald; Reid, Charles F.
1954-01-01
The transonic longitudinal aerodynamic characteristics of a 0.0858-scale model of the Lockheed XF-104 airplane have been obtained from tests at the Langley 16-foot transonic tunnel. The results of the investigation provide some general information applicable to the transonic properties of thin, low-aspect-ratio, unswept wing configurations utilizing a high horizontal tail . The model employs a horizontal tail mounted at the top of the vertical tail and a wing with an aspect ratio of 2.5, a taper ratio of 0.385, and 3.4-percent-thick airfoil sections. The lift, drag, and static longitudinal pitching moment were measured at Mach numbers from 0.80 t o 1.09 and angles of attack from -2.5 deg to 22.5 deg. Some of the dynamic longitudinal stability properties of the airplane have been predicted from the test results. In addition, some visual flow studies on the wing surfaces obtained at Mach numbers of 0.80 and 1.00 are included. Results of the investigation show that the transonic rise in drag coefficient at zero lift is about 0.030. At high angles of attack, the model becomes longitudinally unstable at Mach numbers from 0.80 t o 0.90, whereas a reduction in static stability is experienced when very high angles of attack are reached at Mach numbers above 0.90. Longitudinal dynamic stability calculations show that the longitudinal control is good at angles of attack below the unstable break in the static pitching-moment curves, but a typical corrective control applied after the occurrence of neutral stability has little effect in averting pitch-up.
NASA Astrophysics Data System (ADS)
Larachi, Faïçal; Daldoul, Insaf; Beaudoin, Georges
2010-06-01
A detailed study of low-pressure gas-solid carbonation of chrysotile in dry and humid environments has been carried out. The evolving structure of chrysotile and its reactivity as a function of temperature (300-1200 °C), humidity (0-10 mol %) and CO 2 partial pressure (20-67 mol %), thermal preconditioning, and alkali metal doping (Li, Na, K, Cs) have been monitored through in-situ X-ray photoelectron spectroscopy, isothermal thermogravimetry/mass spectrometry, ex-situ X-ray powder diffraction, and water and nitrogen adsorption/desorption. Based on chrysotile crystalline structure and its nanofibrilar orderliness, a multistep carbonation mechanism was elaborated to explain the role of water during chrysotile partial amorphisation, formation of periclase, brucite, and hydromagnesite crystalline phases, and surface passivation thereof, during humid carbonation. The weak carbonation reactivity was rationalized in terms of incongruent CO 2 van der Waals molecular diameters with the octahedral-tetrahedral lattice constants of chrysotile. This lack of reactivity appeared to be relatively indifferent to the facilitated water crisscrossing during chrysotile core dehydroxylation/pseudo-amorphisation and surface hydroxylation induced product stabilization during humid carbonation. Thermodynamic stability domains of the species observed at low pressure have been thoroughly discussed on the basis of X-ray powder diffraction patterns and X-ray photoelectron spectroscopy evidence. The highest carbon dioxide uptake occurred at 375 °C in moist atmospheres. On the basis of chrysotile fresh N 2 BET area, nearly 15 atoms out of 100 of the surface chrysotile brucitic Mg moiety have been carbonated at this temperature which was tantamount to the carbonation of about 2.5 at. % of the total brucitic Mg moiety in chrysotile. The carbonation of brucite (Mg(OH) 2) impurities coexisting in chrysotile was minor and estimated to contribute by less than 17.6 at. % of the total converted magnesium. The presence of cesium traces (3 Cs atoms per 100 Mg atoms) was found to boost chrysotile carbonation capacity by a factor 2.7.
Theoretical Study of Various Airplane Motions After Initial Disturbance
NASA Technical Reports Server (NTRS)
Haus, FR
1938-01-01
The present investigation may be considered as preliminary to the study of automatic stabilizers. We have sought to determine first how an airplane of average characteristics reacts against the principal disturbances it may encounter. Without entering into the general study of automatic stabilizers, the present work suggests the idea of a stabilizer whose sensitive member would be a wind vane or pressure plate. The elements considered as variable were the coefficients of static stability - that is, the derivatives of the coefficients of the moments with respect to the angles of attack and of yaw; these angles may be determined by the vanes.
Oechel, Walt [San Diego State University; Zona, Donatella [San Diego State University
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Atq Atqasuk. Site Description - This site is 100 km south of Barrow, Alaska, Variety of moist-wet coastal sedge tundra, and moist-tussock tundra surfaces in the more well-drained upland.
2006-10-04
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Don Holt (L) & Don Bowling (r) in control room examining poloroids
2006-09-20
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - model M-1 in 40 degree initial launch angle with sabot
2006-09-20
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - model M-1 in 40 degree initial launch angle with sabot
Stepanov, Irina; Villalta, Peter W.; Knezevich, Aleksandar; Jensen, Joni; Hatsukami, Dorothy; Hecht, Stephen S.
2009-01-01
Smokeless tobacco contains 28 known carcinogens and causes precancerous oral lesions and oral and pancreatic cancer. A recent study conducted by our research team identified 8 different polycyclic aromatic hydrocarbons (PAH) in U.S. moist snuff, encouraging further investigations of this group of toxicants and carcinogens in smokeless tobacco products. In this study, we developed a gas chromatography-mass spectrometry method that allows simultaneous analysis of 23 various PAH in smokeless tobacco after a simple two-step extraction and purification procedure. The method produced coefficients of variation under 10% for most PAH. The limits of quantitation for different PAH varied between 0.3 ng/g tobacco and 11 ng/g tobacco, starting with a 300-mg sample. The recovery of the stable isotope-labeled internal standards averaged 87%. The method was applied to analysis of 23 moist snuff samples that include various flavors of the most popular U.S. moist snuff brands, as well as 17 samples representing the currently marketed brands of spit-free tobacco pouches, a relatively new type of smokeless tobacco. The sum of all detected PAH in conventional moist snuff averaged 11.6 (± 3.7) µg/g dry weight, 20% of this amount being comprised by carcinogenic PAH. The levels of PAH in new spit-free tobacco products were much lower than those in moist snuff, the sum of all detected PAH averaging 1.3 (±0.28) µg/g dry weight. Our findings render PAH one of the most prevalent groups of carcinogens in smokeless tobacco, along with tobacco-specific nitrosamines. Urgent measures are required from the U.S. tobacco industry to modify manufacturing processes so that the levels of these toxicants and carcinogens in the U.S. moist snuff are greatly reduced. PMID:19860436
2011-07-13
Anton A. Stoorvogel b, Håvard Fjær Grip a aSchool of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164-2752...utwente.nl ( Anton A. Stoorvogel), grip@ieee.org (Håvard Fjær Grip). of a double integrator controlled by a saturating linear static state feedback...References Chitour, Y., 2001. On the Lp stabilization of the double integrator subject to input saturation. ESAIM: Control, Optimization and Calculus
A Numerical Study of Automated Dynamic Relaxation for Nonlinear Static Tensioned Structures.
1987-10-01
sytem f dscree fnit element equations, i.e., an algebraic system. The form of these equa- tions is the same for all nonlinear kinematic structures that...the first phase the solu- tion to the static, prestress configuration is sought. This phase is also referred to as form finding, shape finding, or the...does facilitate stability of the numerical solution. The system of equations, which is the focus of the solution methods presented, is formed by a
ERIC Educational Resources Information Center
Cherng, Rong-Ju; Lin, Hui-Chen; Ju, Yun-Huei; Ho, Chin-Shan
2009-01-01
The purpose of this study was to examine the effect of seat surface inclination on postural stability and forward reaching efficiency in 10 children with spastic cerebral palsy (CP) and 16 typically developing (TD) children. The children performed a static sitting and a forward reaching task while sitting on a height- and inclination-adjustable…
NASA Astrophysics Data System (ADS)
Faghihi, Mustafa; Scheffel, Jan; Spies, Guenther O.
1988-05-01
Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure.
NASA Technical Reports Server (NTRS)
Syvertson, Clarence A; Gloria, Hermilo R; Sarabia, Michael F
1958-01-01
A study is made of aerodynamic performance and static stability and control at hypersonic speeds. In a first part of the study, the effect of interference lift is investigated by tests of asymmetric models having conical fuselages and arrow plan-form wings. The fuselage of the asymmetric model is located entirely beneath the wing and has a semicircular cross section. The fuselage of the symmetric model was centrally located and has a circular cross section. Results are obtained for Mach numbers from 3 to 12 in part by application of the hypersonic similarity rule. These results show a maximum effect of interference on lift-drag ratio occurring at Mach number of 5, the Mach number at which the asymmetric model was designed to exploit favorable lift interference. At this Mach number, the asymmetric model is indicated to have a lift-drag ratio 11 percent higher than the symmetric model and 15 percent higher than the asymmetric model when inverted. These differences decrease to a few percent at a Mach number of 12. In the course of this part of the study, the accuracy to the hypersonic similarity rule applied to wing-body combinations is demonstrated with experimental results. These results indicate that the rule may prove useful for determining the aerodynamic characteristics of slender configurations at Mach numbers higher than those for which test equipment is really available. In a second part of the study, the aerodynamic performance and static stability and control characteristics of a hypersonic glider are investigated in somewhat greater detail. Results for Mach numbers from 3 to 18 for performance and 0.6 to 12 for stability and control are obtained by standard text techniques, by application of the hypersonic stability rule, and/or by use of helium as a test medium. Lift-drag ratios of about 5 for Mach numbers up to 18 are shown to be obtainable. The glider studied is shown to have acceptable longitudinal and directional stability characteristics through the range of Mach numbers studied. Some roll instability (negative effective dihedral) is found at Mach numbers near 12.
Structure and composition of moist coastal forests in Dorado, Puerto Rico
Julio C. Figueroa; Luis Totti; Ariel E. Lugo; Roy O. Woodbury
1984-01-01
Changes in forest structure and area over a 44-year period in coastal moist forests in Puerto Rico show succession toward a single climax on white sands. A Pterocarpus forest has not changed and is considered a climax on flooded soils.
Enhancing moist forest restoration opportunities in riparian systems
Theresa Benavidez Jain; Russell T. Graham
2004-01-01
In northern Rocky Mountain moist forests, riparian systems contain many attributes that create unique biophysical conditions that alter disturbances and microenvironments; thus creating distinct forest structures, species composition, and management challenges. For example, browsing, limited opening size, competition from surrounding ground vegetation, high soil...
D'Hernoncourt, J; Merkin, J H; De Wit, A
2007-09-01
Traveling fronts can become transversally unstable either because of a diffusive instability arising when the key variables diffuse at sufficiently different rates or because of a buoyancy-driven Rayleigh-Taylor mechanism when the density jump across the front is statically unfavorable. The interaction between such diffusive and buoyancy instabilities of fronts is analyzed theoretically for a simple model system. Linear stability analysis and nonlinear simulations show that their interplay changes considerably the stability properties with regard to the pure Rayleigh-Taylor or diffusive instabilities of fronts. In particular, an instability scenario can arise which triggers convection around statically stable fronts as a result of differential diffusion. Moreover, spatiotemporal chaos can be observed when both buoyancy and diffusive effects cooperate to destabilize the front. Experimental conditions to test our predictions are suggested.
NASA Technical Reports Server (NTRS)
Allen, E. C.; Tuttle, T.
1973-01-01
Static stability and control effectiveness characteristics of two 0.004 scale models of the vehicle 3 configuration are reported. The components investigated consisted of a single aft body, vertical/rudder, OMS pods with two interchangeable wings, four interchangeable forward bodies, four trimmers, and a spoiler. The test was conducted in 14 x 14 inch trisonic wind tunnel over a Mach number range from 0.6 to 4.96. Angles of attack from 0 to 60 degrees and angles of sideslip from -10 to 10 degrees at 0, 10, 20,30, and 40 degrees angle of attack were tested. Elevon, body flap, and speed brake deflection composed the parametric considerations. No grit was placed on the models during the test. The tabulated source data and incremental data figures are presented.
Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, C. E.; Yamada, M.; Ji, H.
Solar eruptions are often driven by magnetohydrodynamic instabilities such as the torus and kink instabilities that act on line-tied magnetic flux ropes. We designed our recent laboratory experiments to study these eruptive instabilities which have demonstrated the key role of both dynamic (Myers et al 2015 Nature 528 526) and quasi-static (Myers et al 2016 Phys. Plasmas 23 112102) magnetic tension forces in contributing to the equilibrium and stability of line-tied magnetic flux ropes. In our paper, we synthesize these laboratory results and explore the relationship between the dynamic and quasi-static tension forces. And while the quasi-static tension force ismore » found to contribute to the flux rope equilibrium in a number of regimes, the dynamic tension force is substantial mostly in the so-called failed torus regime where magnetic self-organization events prevent the flux rope from erupting.« less
Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes
Myers, C. E.; Yamada, M.; Ji, H.; ...
2016-11-22
Solar eruptions are often driven by magnetohydrodynamic instabilities such as the torus and kink instabilities that act on line-tied magnetic flux ropes. We designed our recent laboratory experiments to study these eruptive instabilities which have demonstrated the key role of both dynamic (Myers et al 2015 Nature 528 526) and quasi-static (Myers et al 2016 Phys. Plasmas 23 112102) magnetic tension forces in contributing to the equilibrium and stability of line-tied magnetic flux ropes. In our paper, we synthesize these laboratory results and explore the relationship between the dynamic and quasi-static tension forces. And while the quasi-static tension force ismore » found to contribute to the flux rope equilibrium in a number of regimes, the dynamic tension force is substantial mostly in the so-called failed torus regime where magnetic self-organization events prevent the flux rope from erupting.« less
NASA Astrophysics Data System (ADS)
Salafian, Iman; Stewart, Blake; Newman, Matthew; Zygielbaum, Arthur I.; Terry, Benjamin
2017-04-01
A four cable-driven parallel manipulator (CDPM), consisting of sophisticated spectrometers and imagers, is under development for use in acquiring phenotypic and environmental data over an acre-sized crop field. To obtain accurate and high quality data from the instruments, the end effector must be stable during sensing. One of the factors that reduces stability is the center of mass offset of the end effector, which can cause a pendulum effect or undesired tilt angle. The purpose of this work is to develop a system and method for balancing the center of mass of a 12th-scale CDPM to minimize vibration that can cause error in the acquired data. A simple method for balancing the end effector is needed to enable end users of the CDPM to arbitrarily add and remove sensors and imagers from the end effector as their experiments may require. A Center of Mass Balancing System (CMBS) is developed in this study which consists of an adjustable system of weights and a gimbal for tilt mitigation. An electronic circuit board including an orientation sensor, wireless data communication, and load cells was designed to validate the CMBS. To measure improvements gained by the CMBS, several static and dynamic experiments are carried out. In the experiments, the dynamic vibrations due to the translational motion and static orientation were measured with and without CMBS use. The results show that the CMBS system improves the stability of the end-effector by decreasing vibration and static tilt angle.
High Static Stability in the Mixed Layer Above the Extratropical Tropopause
NASA Astrophysics Data System (ADS)
Kunz, A.; Konopka, P.; Müller, R.; Schiller, C.
2008-12-01
A strong relationship between the static stability N2 and the strength of mixing in the mixed layer above the extratropical tropopause is evident from in-situ data observed during the SPURT aircraft campaigns. We present a method for quantifying the strength of mixing from O3/CO tracer correlations and we find that N2 is positively correlated with the strength of mixing. Age of air simulations with the CLaMS model reveal two different types of mixed regions. One type consisting of older airmasses with higher values of N2 which are created by radiative adjustment after a mixing event. These airmasses are within the TIL (Tropopause Inversion Layer), considering the TIL as part of the mixing layer. The second type comprises younger airmasses with somehow lower stratospheric N2 values within the mixing layer, because of recent intrusion processes due to the permeability or so-called mid-latitude-breaks associated with the jet stream. With the help of radiative transfer calculations we simulate the influence of trace gases such as O3 and H2O on the temperature gradient and thus on the static stability above the tropopause in the idealized case of non-mixing (L-shape) O3 and H2O profiles and in the reference case of mixed profiles. Within the altitude range of the SPURT campaigns the mean vertical SPURT profiles are used as reference, which are fitted to the HALOE climatological profiles above the UT/LS.
High static stability in the mixing layer above the extratropical tropopause
NASA Astrophysics Data System (ADS)
Kunz, A.; Konopka, P.; Müller, R.; Pan, L. L.; Schiller, C.; Rohrer, F.
2009-08-01
The relationship between the static stability N2 and the mixing in the tropopause inversion layer (TIL) is investigated using in situ aircraft observations during SPURT (trace gas transport in the tropopause region). With a new simple measure of mixing degree based on O3-CO tracer correlations, high N2 related to an enhanced mixing in the extratropical mixing layer is found. This relation becomes even more pronounced if fresh mixing events are excluded, indicating that mixing within the TIL occurs on a larger than synoptic timescale. A temporal variance analysis of N2 suggests that processes responsible for the composition of the TIL take place on seasonal timescales. Using radiative transfer calculations, we simulate the influence of a change in O3 and H2O vertical gradients on the temperature gradient and thus on the static stability above the tropopause, which are contrasted in an idealized nonmixed atmosphere and in a reference mixed atmosphere. The results show that N2 increases with enhanced mixing degree near the tropopause. At the same time, the temperature above the tropopause decreases together with the development of an inversion and the TIL. In the idealized case of nonmixed profiles the TIL vanishes. Furthermore, the results suggest that H2O plays a major role in maintaining the temperature inversion and the TIL structure compared to O3. The results substantiate the link between the extratropical mixing layer and the TIL.
High Static Stability in the Mixed Layer Above the Extratropical Tropopause
NASA Astrophysics Data System (ADS)
Kunz, A.; Konopka, P.; Müller, R.; Pan, L. L.; Schiller, C.
2009-04-01
A strong relationship between the static stability N2 in the tropopause inversion layer (TIL) and the intensity of mixing is evident from in-situ observations during SPURT. With a new simple measure of mixing intensity based on O3/CO tracer correlations, a very high mixing intensity connected to a high N2 is found in the extratropical mixing layer. Using radiative transfer calculations we simulate the influence of trace gases such as O3 and H2O on the temperature gradient and thus on the static stability above the tropopause in an idealized (L-shaped) non-mixed and reference mixed atmosphere. N2 enhances due to an intensifying mixing in the LS. At the same time the temperature decreases together with a development of an inversion and the TIL. Hereby H2O plays the dominant role in maintenance the temperature inversion and the TIL structure. In case of non mixed profiles the TIL vanishes. The results motivate a link between the mixing layer and the TIL. The mixing layer contains on the one hand older air masses, with high values of N2 due to radiative adjustment. This part of the mixing layer is spatial identically to the TIL. On the other hand, there are younger air masses with somehow lower N2 values within the mixing layer, because of fast intrusion processes from the troposphere due to the permeability or so-called mid-latitude-breaks associated with the jet.
NASA Astrophysics Data System (ADS)
Hood, Lon L.
2017-04-01
The Madden-Julian oscillation (MJO), also known as the 30-60 day oscillation, is the strongest of the intraseasonal climate oscillations in the tropics and has significant derivative effects on extratropical circulation and intraseasonal climate. It has recently been shown that the stratospheric quasi-biennial oscillation (QBO) modulates the amplitude of the boreal winter MJO such that MJO amplitudes are larger on average during the easterly phase (QBOE) than during the westerly phase (QBOW). A major possible mechanism is the decrease in static stability in the lowermost stratosphere under QBOE conditions resulting from relative upwelling associated with the QBO-induced meridional circulation. Here evidence is presented that tropical upwelling changes related to the 11 year solar cycle also modulate the boreal winter MJO. Based on 37.3 years of MJO amplitude data, the largest amplitudes and occurrence rates, and the weakest static stabilities in the tropical lower stratosphere, occur during the QBOE phase under solar minimum (SMIN) conditions while the smallest amplitudes and strongest static stabilities occur during the QBOW phase under solar maximum (SMAX) conditions. Conversely, when the QBO and solar forcings are opposed (QBOW/SMIN and QBOE/SMAX), the difference in occurrence rates becomes statistically insignificant. During the coming solar minimum, at least one additional winter in the QBOE/SMIN category should occur (possibly as early as 2017/2018) during which especially large MJO amplitudes are expected and an initial test of these results will be possible.
Neuromuscular control of lumbar instability following static work of various loads.
Le, Brook; Davidson, Bradley; Solomonow, Deborah; Zhou, Bing He; Lu, Yun; Patel, Vikas; Solomonow, Moshe
2009-01-01
Neuromuscular control of lumbar stability following exposure to prolonged static work, under low and high loads, was assessed in the in vivo feline model. Six sessions of 10 min work at 20N with 10 min between rest was compared to a group subjected to the same protocol but carrying high loads of 60N. Displacement and tension developed in the spine at the instant the multifidus muscles applied stabilizing contractions, and their amplitudes were obtained from their electromyogram (EMG). Significant (P < 0.001) laxity developed in the various viscoelastic tissues of the lumbar spine that did not recover during and up to 7 h of rest postwork. Simultaneously, there was a significant (P < 0.001) decrease in muscular activity in the 3-4 h immediately postwork under low load but only during the first hour in the high load group. After that period the musculature compensated for the laxity of the viscoelastic tissues by a significant (P < 0.001) increase in activity in the high-load group and a nonsignificant increase in the low group. It was concluded that during 1-3 h immediately poststatic work a significant decrease in the stabilizing function of viscoelastic tissues together with a significant decrease in muscular activity is present, and they render the spine unstable and exposed to high risk of injury. Performance of prolonged static work under low loads, while not harmful during the work, cannot be designated as a "no-risk" condition, as it may result in injury postwork.
Bonte, Anja; Schweiger, Rabea; Pons, Caroline; Wagner, Claudia; Brühl, Ludger; Matthäus, Bertrand; Müller, Caroline
2017-12-20
Virgin rapeseed (Brassica napus) oil is a valuable niche product, if delivered with a high quality. In this study, the effects of moist storage of B. napus seeds for 1 to 4 days on the seed metabolome and the chemo-sensory properties of the produced oils were determined. The concentrations of several primary metabolites, including monosaccharides and amino acids, rapidly increased in the seeds, probably indicating the breakdown of storage compounds to support seed germination. Seed concentrations of indole glucosinolates increased with a slight time offset suggesting that amino acids may be used to modify secondary metabolism. The volatile profiles of the oils were pronouncedly influenced by moist seed storage, with the sensory quality of the oils decreasing. This study provides a direct time-resolved link between seed metabolism under moist conditions and the quality of the resulting oils, thereby emphasizing the crucial role of dry seed storage in ensuring high oil quality.
Funk, Shany; Jacob, T; Ben-Dov, D; Yanovich, E; Tirosh, O; Steinberg, N
2018-02-01
Optimal functioning of the lower extremities under repeated movements on unstable surfaces is essential for military effectiveness. Intervention training to promote proprioceptive ability should be considered in order to limit the risk for musculoskeletal injuries. The aim of this study was to assess the effect of a proprioceptive intervention programme on static and dynamic postural balance among Israel Defense Forces combat soldiers. Twenty-seven male soldiers, aged 18-20 years, from a physical fitness instructor's course, were randomly divided into two groups matched by age and army unit. The intervention group (INT) underwent 4 weeks of proprioceptive exercises for 10 min daily; the control group underwent 4 weeks of upper body stretching exercises for 10 min daily. All participants were tested pre and postintervention for both static and dynamic postural balance. Significant interaction (condition*pre-post-test*group) was found for static postural balance, indicating that for the INT group, in condition 3 (on an unstable surface-BOSU), the post-test result was significantly better compared with the pretest result (p<0.05). Following intervention, the INT group showed significant correlations between static postural stability in condition 2 (eyes closed) and the dynamic postural stability (length of time walked on the beam following fatigue) ( r ranged from 0.647 to 0.822; p<0.05). The proprioceptive intervention programme for combat soldiers improved static postural balance on unstable surfaces, and improved the correlation between static postural balance in the eyes closed condition and dynamic postural balance following fatigue. Further longitudinal studies are needed to verify the relationship between proprioception programmes, additional weight bearing and the reduction of subsequent injuries in combat soldiers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Kofotolis, Nikolaos D; Vlachopoulos, Symeon P; Kellis, Eleftherios
2008-02-01
To examine the effectiveness of rhythmic stabilization exercises and transcutaneous electrical nerve stimulation (TENS) and their combination in treating women with chronic low back pain. Sequentially allocated, single-blinded and controlled study, with a two-month follow-up. The data were collected in a patient rehabilitation setting. A total of 92 women (34-46 years old) with chronic low back pain were studied. Sequential allocation was undertaken into four groups: ;rhythmic stabilization' (n=23), ;rhythmic stabilization - TENS' (n=23), TENS (n=23), and a placebo group (n = 23). Each programme lasted for four weeks. All outcome measures were assessed prior to, immediately after, four weeks and eight weeks post intervention. Data were obtained on functional disability, pain intensity, trunk extension range of motion, dynamic endurance of trunk flexion and static endurance of trunk extension. A total of 88 patients provided two-month follow-up data. The ;rhythmic stabilization' and the ;rhythmic stabilization - TENS' groups displayed statistically significant (P<0.05) improvements in functional disability and pain intensity (ranging from 21.2 to 42.8%), trunk extension range of motion (ranging from 6.5 to 25.5%), dynamic endurance of trunk flexion and static endurance of trunk extension (ranging from 13.5 to 74.3%) compared with the remaining groups. The rhythmic stabilization programmes resulted in more gains in women with chronic low back pain regarding the present outcome variables compared with the other groups; therefore, its application in female chronic low back pain patients aged 34-46 years is recommended.
do Nascimento, J A; Silva, C C; Dos Santos, H H; de Almeida Ferreira, J J; de Andrade, P R
2017-12-01
The aim of this study was to evaluate the postural control of obese young adults with normal body mass index during different static (bipedic and unipedic support) and dynamic postural conditions (gait velocity and limits of stability) in order to compare the static and dynamic balance of these individuals. A cross-sectional quantitative study was carried out to evaluate static and dynamic balance in 25 sedentary individuals. The sample was divided into two groups, 10 in the normal-weight group (24.70 ± 3.89 years and 21.5 ± 1.66 kg m -2 ) and 15 in the obese group (26.80 ± 5.16 years and 35.66 ± 4.29 kg m -2 ). Postural evaluation was performed through visual inspection, and balance analyses were performed using the Timed Up & Go test (TUGT) and Balance System (Biodex). Descriptive analyses, Fisher's exact test and Mann Whitney U-tests were performed using the Statistical Package for Social Sciences (SPSS - 20.0, Armonk, NY) software. Most of the obese volunteers presented postural alterations, such as head protrusion (47.6%), hyperkyphosis (46.7%) and hyperlordosis (26.7%). Medial-lateral dynamic displacement, risk of falls and mean time to perform the limits of stability test and TUGT were higher for obese subjects (P < 0.05), while there were no significant differences between the groups (P > 0.05) for static balance tests for either bipedal or unipedal tasks. The disadvantage presented by the young obese subjects occurs in dynamic activities, representing worse balance and an increase in time needed to accomplish these activities. © 2017 World Obesity Federation.
Moist-soil seed abundance in managed wetlands in the Mississippi Alluvial Valley
Kross, J.; Kaminski, R.M.; Reinecke, K.J.; Penny, E.J.; Pearse, A.T.
2008-01-01
Managed moist-soil units support early succession herbaceous vegetation that produces seeds, tubers, and other plant parts used by waterfowl in the Mississippi Alluvial Valley (MAV), USA. We conducted a stratified multi-stage sample survey on state and federal lands in the MAV of Arkansas, Louisiana, Mississippi, and Missouri during autumns 2002?2004 to generate a contemporary estimate of combined dry mass of seeds and tubers (herein seed abundance) in managed moist-soil units for use by the Lower Mississippi Valley Joint Venture (LMVJV) of the North American Waterfowl Management Plan. We also examined variation in mean seed abundance among moist-soil units in 2003 and 2004 in relation to management intensity (active or passive), soil pH and nutrient levels, proportional occurrence of plant life-forms (e.g., grass, flatsedge, and forb; vine; woody plants), and unit area. Estimates of mean seed abundance were similar in 2002 (X over bar = 537.1 kg/ha, SE = 100.1) and 2004 (X over bar = 555.2 kg/ha, SE = 105.2) but 35?40% less in 2003 (X over bar = 396.8 kg/ha, SE = 116.1). Averaged over years, seed abundance was 496.3 kg/ha (SE = 62.0; CV = 12.5%). Multiple regression analysis indicated seed abundance varied among moist-soil units inversely with proportional occurrence of woody vegetation and unit area and was greater in actively than passively managed units (R2adj = 0.37). Species of early succession grasses occurred more frequently in actively than passively managed units (P < 0.09), whereas mid- and late-succession plants occurred more often in passively managed units (P < 0.02). We recommend the LMVJV consider 556 kg/ha as a measure of seed abundance for use in estimating carrying capacity in managed moist-soil units on public lands in the MAV. We recommend active management of moist-soil units to achieve maximum potential seed production and further research to determine recovery rates of seeds of various sizes from core samples and the relationship between seed abundance and unit area.
Heating Capacity of ReBound Shortwave Diathermy and Moist Hot Packs at Superficial Depths
Hawkes, Amanda R.; Draper, David O.; Johnson, A. Wayne; Diede, Mike T.; Rigby, Justin H.
2013-01-01
Context: The effectiveness of a new continuous diathermy unit, ReBound, as a heating modality is unknown. Objective: To compare the effects of ReBound diathermy with silicate-gel moist hot packs on tissue temperature in the human triceps surae muscle. Design: Crossover study. Setting: University research laboratory. Patients or Other Participants: A total of 12 healthy, college-aged volunteers (4 men, 8 women; age = 22.2 ± 2.25 years, calf subcutaneous fat thickness = 7.2 ± 1.9 mm). Intervention(s): On 2 different days, 1 of 2 modalities (ReBound diathermy, silicate-gel moist hot pack) was applied to the triceps surae muscle of each participant for 30 minutes. After 30 minutes, the modality was removed, and temperature decay was recorded for 20 minutes. Main Outcome Measure(s): Medial triceps surae intramuscular tissue temperature at a depth of 1 cm was measured using an implantable thermocouple inserted horizontally into the muscle. Measurements were taken every 5 minutes during the 30-minute treatment and every minute during the 20-minute temperature decay, for a total of 50 minutes. Treatment was analyzed through a 2 × 7 mixed-model analysis of variance with repeated measures. Temperature decay was analyzed through a 2 × 21 mixed-model analysis of variance with repeated measures. Results: During the 30-minute application, tissue temperatures at a depth of 1 cm increased more with the ReBound diathermy than with the moist hot pack (F6,66 = 7.14, P < .001). ReBound diathermy and moist hot packs increased tissue temperatures 3.69°C ± 1.50°C and 2.82°C ± 0.90°C, respectively, from baseline. Throughout the temperature decay, ReBound diathermy produced a greater rate of heat dissipation than the moist hot pack (F20,222 = 4.42, P < .001). Conclusions: During a 30-minute treatment at a superficial depth, the ReBound diathermy increased tissue temperature to moderate levels, which were greater than the levels reached with moist hot packs. PMID:23855362
Cyclonic Vortices in Polar Airmasses
NASA Astrophysics Data System (ADS)
Businger, Steven
Cyclonic vortices in polar airmasses are investigated to determine their storm-scale and mesoscale structures and the nature of the environments conducive to their formation. Case studies of polar low outbreaks show that the environments conducive to the development of strong polar lows include deep outflow of arctic air over open water and a broad closed-low aloft. Once favorable environmental conditions for the formation of polar lows have developed, several storms may form in close proximity to each other during a relatively short time interval. Furthermore, these conditions may persist for several days. To develope a climatology of the synoptic environments conducive to the formation of polar lows, NMC gridded data were composited. The results reveal the presence of significant negative anomalies in the temperature and height fields at the 500 mb level on the days when mature polar lows were present, indicating the presence of strong positive vorticity and low static stability over the area. Aircraft observations made during the 1984 FOX field study indicate that convection in an incipient comma cloud was organized into distinct rainbands ((TURN)50 km wavelength), with tops extending to the tropopause. Equivalent -potential vorticity, computed from cross sections of the dropwindsonde data, showed that the region in which the convective activity was embedded was unstable to moist -symmetric overturnings. As the comma cloud approached a pre-existing polar front, a wave cyclone rapidly developed on the front. Surface data showed unexpectedly strong winds and heavy rain squalls when the comma cloud passed Juneau. Comprehensive data sets were collected in two comma cloud systems during CYCLES. Rainbands, with a wavelength of (TURN)50 km, were present in both comma-cloud systems. Precipitation cores, produced by embedded convection within the rainbands contained updraft speeds of (TURN)1-2 m s('-1) and relatively high liquid water counts; they retained their identities over periods of several hours. The spacing and orientation of the rainbands may be explained by the theory for mixed dynamic/convective instability developed by Sun (1978).
Absorbing aerosols facilitate transition of Indian monsoon breaks to active spells
NASA Astrophysics Data System (ADS)
Manoj, M. G.; Devara, P. C. S.; Safai, P. D.; Goswami, B. N.
2011-12-01
While some long breaks of monsoon intraseasonal oscillations (MISOs) are followed by active spells (BFA), some others are not (BNFA). The circulation during BFA (BNFA) cases helps (prevents) accumulation of absorbing aerosols over central India (CI) resulting in almost three times larger Aerosol Index (AI) over CI, during BFA cases compared to BNFA cases. A seminal role played by the absorbing aerosols in the transition from break to active spells is unraveled through modification of the north-south temperature gradient at lower levels. The meridional gradient of temperature at low level (∆ T) between aerosol-rich CI and pristine equatorial Indian Ocean is large (>6°C) and sustains for long time (>10 days) during BFA leading to significant moisture convergence to CI. The stability effect arising from surface cooling by the aerosols is overcome by the enhanced moisture convergence creating a moist static unstable atmosphere conducive for the large-scale organized convection over the CI region leading to the resurgence of active spells. The moisture convergence induced by ∆ T was also able to overcome possible aerosol indirect effect (Twomey effect) and initiate deep convection and transition to active condition. During BNFA cases, however the maximum ∆ T, which was weaker than the BFA cases by more than 1.5°C, could not sustain required moisture convergence and failed to lead to a sustained active spell. Using data from MODIS (MODerate resolution Imaging Spectroradiometer) onboard Terra and several other input parameters from various satellites for the period 2000-2009, the aerosol induced radiative forcing representative of two regions—the CI to the north and the pristine ocean to the south—were estimated and support the differences in observed ∆ T during the two cases. Our results highlight the need for proper inclusion of absorbing aerosols in dynamical models for simulation of the observed variability of MISOs and their extended range prediction.
Ettler, Vojtěch; Tomášová, Zdeňka; Komárek, Michael; Mihaljevič, Martin; Šebek, Ondřej; Michálková, Zuzana
2015-04-09
An amorphous manganese oxide (AMO) and a Pb smelter-polluted agricultural soil amended with the AMO and incubated for 2 and 6 months were subjected to a pH-static leaching procedure (pH 3-8) to verify the chemical stabilization effect on metals and metalloids. The AMO stability in pure water was pH-dependent with the highest Mn release at pH 3 (47% dissolved) and the lowest at pH 8 (0.14% dissolved). Secondary rhodochrosite (MnCO3) was formed at the AMO surfaces at pH>5. The AMO dissolved significantly less after 6 months of incubation. Sequential extraction analysis indicated that "labile" fraction of As, Pb and Sb in soil significantly decreased after AMO amendment. The pH-static experiments indicated that no effect on leaching was observed for Cd and Zn after AMO treatments, whereas the leaching of As, Cu, Pb and Sb decreased down to 20%, 35%, 7% and 11% of the control, respectively. The remediation efficiency was more pronounced under acidic conditions and the time of incubation generally led to increased retention of the targeted contaminants. The AMO was found to be a promising agent for the chemical stabilization of polluted soils. Copyright © 2015 Elsevier B.V. All rights reserved.
Static network structure can stabilize human cooperation.
Rand, David G; Nowak, Martin A; Fowler, James H; Christakis, Nicholas A
2014-12-02
The evolution of cooperation in network-structured populations has been a major focus of theoretical work in recent years. When players are embedded in fixed networks, cooperators are more likely to interact with, and benefit from, other cooperators. In theory, this clustering can foster cooperation on fixed networks under certain circumstances. Laboratory experiments with humans, however, have thus far found no evidence that fixed network structure actually promotes cooperation. Here, we provide such evidence and help to explain why others failed to find it. First, we show that static networks can lead to a stable high level of cooperation, outperforming well-mixed populations. We then systematically vary the benefit that cooperating provides to one's neighbors relative to the cost required to cooperate (b/c), as well as the average number of neighbors in the network (k). When b/c > k, we observe high and stable levels of cooperation. Conversely, when b/c ≤ k or players are randomly shuffled, cooperation decays. Our results are consistent with a quantitative evolutionary game theoretic prediction for when cooperation should succeed on networks and, for the first time to our knowledge, provide an experimental demonstration of the power of static network structure for stabilizing human cooperation.
Static stability and thermal wind in an atmosphere of variable composition Applications to Mars
NASA Technical Reports Server (NTRS)
Hess, S. L.
1979-01-01
Radiometric measurements of the temperature of the south polar cap of Mars in winter have yielded values significantly below the expected 148 K. One proposed explanation for this result is a substantial reduction in the CO2 content of the atmosphere and a lowering of the mean molecule weight near the surface. The meteorological consequences of this explanation are explored by deriving a criterion for vertical static stability and a thermal wind law for an atmosphere of variable composition. The atmosphere proves to be statically unstable unless the anomaly in the CO2 mixing ratio extends to heights of tens of kilometers. The effect of varying molecular weight exceeds the effect of temperature gradient, producing shears with height of reversed sign. The shears are baroclinically unstable, and this instability would eradicate the latitudinal gradient of molecular weight. This inconsistency can be resolved by invoking a reasonable elevation of the central polar cap and by imposing an adequate zonal wind. It is concluded that if the explanation requiring a change in atmospheric composition is correct, it must be accompanied by other special circumstances to make it meteorologically consistent.
Static network structure can stabilize human cooperation
Rand, David G.; Nowak, Martin A.; Fowler, James H.; Christakis, Nicholas A.
2014-01-01
The evolution of cooperation in network-structured populations has been a major focus of theoretical work in recent years. When players are embedded in fixed networks, cooperators are more likely to interact with, and benefit from, other cooperators. In theory, this clustering can foster cooperation on fixed networks under certain circumstances. Laboratory experiments with humans, however, have thus far found no evidence that fixed network structure actually promotes cooperation. Here, we provide such evidence and help to explain why others failed to find it. First, we show that static networks can lead to a stable high level of cooperation, outperforming well-mixed populations. We then systematically vary the benefit that cooperating provides to one’s neighbors relative to the cost required to cooperate (b/c), as well as the average number of neighbors in the network (k). When b/c > k, we observe high and stable levels of cooperation. Conversely, when b/c ≤ k or players are randomly shuffled, cooperation decays. Our results are consistent with a quantitative evolutionary game theoretic prediction for when cooperation should succeed on networks and, for the first time to our knowledge, provide an experimental demonstration of the power of static network structure for stabilizing human cooperation. PMID:25404308
Analysis of Wind Tunnel Oscillatory Data of the X-31A Aircraft
NASA Technical Reports Server (NTRS)
Smith, Mark S.
1999-01-01
Wind tunnel oscillatory tests in pitch, roll, and yaw were performed on a 19%-scale model of the X-31A aircraft. These tests were used to study the aerodynamic characteristics of the X-31A in response to harmonic oscillations at six frequencies. In-phase and out-of-phase components of the aerodynamic coefficients were obtained over a range of angles of attack from 0 to 90 deg. To account for the effect of frequency on the data, mathematical models with unsteady terms were formulated by use of two different indicial functions. Data from a reduced set of frequencies were used to estimate model parameters, including steady-state static and dynamic stability derivatives. Both models showed good prediction capability and the ability to accurately fit the measured data. Estimated static stability derivatives compared well with those obtained from static wind tunnel tests. The roll and yaw rate derivative estimates were compared with rotary-balanced wind tunnel data and theoretical predictions. The estimates and theoretical predictions were in agreement at small angles of attack. The rotary-balance data showed, in general, acceptable agreement with the steady-state derivative estimates.
NASA Technical Reports Server (NTRS)
Rhodes, Graham Scott
1990-01-01
An exploratory wind tunnel investigation was performed in the 30 x 60 foot wind tunnel to determine the low speed static stability and control characteristics into the deep stall regime of an advanced turboprop aircraft with the propellers located over the horizontal tail. By this arrangement, the horizontal tail could potentially provide acoustic shielding to reduce the high community noise caused by the propeller blades. The current configuration was a generic turboprop model equipped with 1 foot diameter single rotating eight bladed propellers that were designed for efficient cruise operation at a Mach number of 0.8. The data presented is static force data. The effects of power on the configuration characteristics were generally favorable. An arrangement with the propellers rotating with the outboard blades moving down was found to have significantly higher installed thrust than an arrangement with the propellers rotating with the inboard blades moving down. The primary unfavorable effect was a large pitch trim change which occurred with power, but the trim change could be minimized with a proper configuration design.
Injury incidence and balance in rugby players.
M, Jaco Ras; Puckree, Threethambal
2014-01-01
Objective : This study determined and correlated injury incidence and balance in rugby players. A prospective survey with balance testing was conducted on first year rugby academy players (N= 114). Injury incidence, static and dynamic balance were tested pre and post-season using a Biosway portable balance system. The data was analysed using paired and independent samples t-tests at p<0.05, Odds ratios, and Spearman's correlation coefficients. 75.50% participated, 71.40% were 18 years old, and 71.40% were White. Injury was sustained by 83% of players with the knee (25%) most commonly injured. Injury incidence was 1.52 per player with an injury rate of 5.95 injuries per 1000 match playing hours. The Stability Index increased significantly (p=0.03) by 15% in the medial/lateral direction post-season compared to pre-season. Significant differences in post-test anterior posterior and overall static and front and front right dynamic stability between injured and uninjured players were noted. Risk factors for injury included the scrum-half (14.80%) playing position, injuries in the 2nd half of the match (57%), and during contact (67%). Conclusion : Injury incidence was related to static and dynamic balance in forward right direction only.
Injury incidence and balance in rugby players
M, Jaco Ras; Puckree, Threethambal
2014-01-01
Objective : This study determined and correlated injury incidence and balance in rugby players. Methods: A prospective survey with balance testing was conducted on first year rugby academy players (N= 114). Injury incidence, static and dynamic balance were tested pre and post-season using a Biosway portable balance system. The data was analysed using paired and independent samples t-tests at p<0.05, Odds ratios, and Spearman’s correlation coefficients. Results: 75.50% participated, 71.40% were 18 years old, and 71.40% were White. Injury was sustained by 83% of players with the knee (25%) most commonly injured. Injury incidence was 1.52 per player with an injury rate of 5.95 injuries per 1000 match playing hours. The Stability Index increased significantly (p=0.03) by 15% in the medial/lateral direction post-season compared to pre-season. Significant differences in post-test anterior posterior and overall static and front and front right dynamic stability between injured and uninjured players were noted. Risk factors for injury included the scrum-half (14.80%) playing position, injuries in the 2nd half of the match (57%), and during contact (67%). Conclusion : Injury incidence was related to static and dynamic balance in forward right direction only. PMID:25674136
Balaguer García, Ramón; Pitarch Corresa, Salvador; Baydal Bertomeu, José María; Morales Suárez-Varela, María M
2012-01-01
Posturography allows evaluating postural control. This study showed the posturographic parameters that were useful for assessing the functional ability to maintain balance in our sample of vestibular patients. Of a total of 89 patients, 59 were healthy subjects and 30 had a peripheral vestibular disorder. The subjects were studied using the posturographic NedSVE/IBV system, combining static (Romberg) and dynamic (stability limits and rhythmic weight shifts) tests. We then compared the measurements found in the groups. Normal subjects showed significantly lower oscillations than our patients in all of the posturographic parameters studied (except the displacement angle). In testing the limits of stability, although normal subjects achieved maximum displacements greater than the subjects with the disorder, the differences found were not significant. In rhythmic weight shift tests, normal subjects showed more favourable results than did the vestibular patients, with significant differences in 3 of the 4 parameters studied: 1) anteroposterior ability, 2) mediolateral ability, and 3) anteroposterior control and efficiency. Rhythmic weight shift tests and the static posturography test parameters used were useful in discriminating among the normal and pathological subjects in this study. Copyright © 2011 Elsevier España, S.L. All rights reserved.
Bhadauria, Esha A.; Gurudut, Peeyoosha
2017-01-01
The aim of the present study was to compare three different forms of exercises namely lumbar stabilization, dynamic strengthening, and Pilates on chronic low back pain (LBP) in terms of pain, range of motion, core strength and function. In this study, 44 subjects suffering from non-specific LBP for more than 3 months were randomly allocated into the lumbar stabilization group, the dynamic strengthening group, and the Pilates group. Ten sessions of exercises for 3 weeks were prescribed along with interferential current and hot moist pack. Pain was assessed by visual analog scale, functional affection by modified Oswestry Disability Questionnaire, range of motion by assessing lumbar flexion and extension by modified Schober test and core strength was assessed by pressure biofeedback on day 1 and day 10 of the treatment. There was reduction of pain, improvement in range of motion, functional ability and core strength in all the 3 exercise groups. The improvement was significantly greater in the lumbar stabilization group for all the outcome measures, when compared the posttreatment after 10th session. Pairwise comparison showed that there was greater reduction of disability in the Pilates group than the dynamic strengthening group. It was concluded that the lumbar stabilization is more superior compared to the dynamic strengthening and Pilates in chronic nonspecific LBP. However, long-term benefits need to be assessed and compared with prospective follow-up studies. PMID:29114516
NASA Astrophysics Data System (ADS)
Rostami, M.; Zeitlin, V.
2017-12-01
We show how the properties of the Mars polar vortex can be understood in the framework of a simple shallow-water type model obtained by vertical averaging of the adiabatic “primitive” equations, and “improved” by inclusion of thermal relaxation and convective fluxes due to the phase transitions of CO 2, the major constituent of the Martian atmosphere. We perform stability analysis of the vortex, show that corresponding mean zonal flow is unstable, and simulate numerically non-linear saturation of the instability. We show in this way that, while non-linear adiabatic saturation of the instability tends to reorganize the vortex, the diabatic effects prevent this, and thus provide an explanation of the vortex form and longevity.
NASA Technical Reports Server (NTRS)
Crabill, Norman L.
1956-01-01
The National Advisory Committee for Aeronautics has conducted a flight test of a model approximating the McDonnell F3H-lN airplane configuration to determine its pitch-up and buffet boundaries, as well as the usual longitudinal stability derivatives obtainable from the pulsed- tail technique. The test was conducted by the freely flying rocket- boosted model technique developed at the Langley Laboratory; results were obtained at Mach numbers from 0.40 to 1.27 at corresponding Reynolds numbers of 2.6 x 10(exp 6) and 9.0 x 10(exp 6). The phenomena of pitch-up, buffet, and maximum lift were encountered at Mach numbers between 0.42 and 0.85. The lift-curve slope and wing-root bending-moment slope increased with increasing angle of attack, whereas the static stability decreased with angle of attack at subsonic speeds and increased at transonic speeds. There was little change in trim at low lift at transonic speeds.
Drexler, Judith Z.; Krauss, Ken W.; Sasser, M. Craig; Fuller, Christopher C.; Swarzenski, Christopher M.; Powell, Amber; Swanson, Kathleen M.; Orlando, James L.
2013-01-01
Carbon storage was compared between impounded and naturally tidal freshwater marshes along the Lower Waccamaw River in South Carolina, USA. Soil cores were collected in (1) naturally tidal, (2) moist soil (impounded, seasonally drained since ~1970), and (3) deeply flooded “treatments” (impounded, flooded to ~90 cm since ~2002). Cores were analyzed for % organic carbon, % total carbon, bulk density, and 210Pb and 137Cs for dating purposes. Carbon sequestration rates ranged from 25 to 200 g C m−2 yr−1 (moist soil), 80–435 g C m−2 yr−1 (naturally tidal), and 100–250 g C m−2 yr−1 (deeply flooded). The moist soil and naturally tidal treatments were compared over a period of 40 years. The naturally tidal treatment had significantly higher carbon storage (mean = 219 g C m−2 yr−1 vs. mean = 91 g C m−2 yr−1) and four times the vertical accretion rate (mean = 0.84 cm yr−1 vs. mean = 0.21 cm yr−1) of the moist soil treatment. The results strongly suggest that the long drainage period in moist soil management limits carbon storage over time. Managers across the National Wildlife Refuge system have an opportunity to increase carbon storage by minimizing drainage in impoundments as much as practicable.
Ornelas-Paz, José de Jesús; Yahia, Elhadi M
2014-04-01
The effectiveness of hot air treatments in controlling decay and insects in mango fruit has been demonstrated and has usually been assessed as a function of the temperature of the heated air and the duration of the treatment. However, the contribution of the moisture content of the heated air has received little attention, especially with regard to fruit quality. In this study, mango fruits (cv. Manila) at mature-green stage were treated with moist (95% relative humidity (RH)) or dry (50% RH) hot forced air (43 °C, at 2.5 m s(-1) for 220 min) and then held at 20 °C for 9 days and evaluated periodically. The heating rate was higher with moist air. Treatments with moist and dry air did not cause injury to the fruit. Treatment with moist air temporarily slowed down color development, softening, weight loss and β-carotene biosynthesis. This slowing down was clearly observed during the first 4-5 days at 20 °C. However, non-heated fruit and fruit heated with dry air showed similar quality at the end of storage. The moisture content of the heating air differentially modulated the postharvest ripening of 'Manila' mangoes. Moist air temporarily slowed down the ripening process of this mango cultivar. © 2013 Society of Chemical Industry.
Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests.
Poorter, Lourens
2009-03-01
Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found in forests under different climatic control. Here, adult leaf and metamer traits were measured for 39 tree species from a tropical moist semi-evergreen forest (1580 mm rain yr(-1)) and 41 species from a dry deciduous forest (1160 mm yr(-1)) in Bolivia. Twenty-six functional traits were measured and related to species regeneration light requirements.Adult leaf traits were clearly associated with shade tolerance. Different, rather than stronger, shade adaptations were found for moist compared with dry forest species. Shade adaptations exclusively found in the evergreen moist forest were related to tough and persistent leaves, and shade adaptations in the dry deciduous forest were related to high light interception and water use.These results suggest that, for forests differing in rainfall seasonality, there is a shift in the relative importance of functional leaf traits and performance trade-offs that control light partitioning. In the moist evergreen forest leaf traits underlying the growth-survival trade-off are important, whereas in the seasonally deciduous forest leaf traits underlying the growth trade-off between low and high light might become important.
2006-10-10
CEV (Crew Escape Vehicle) capsule Balistic Range testing to examine static and dynamic stability characteristics (at the Hypervelocity Free-Flight Facility) HFF - Don Bowling (l) attaching firing cable to breeth cap as Don Holt (r) looks on
Domnick, Christoph; Frosch, Karl-Heinz; Raschke, Michael J; Vogel, Nils; Schulze, Martin; von Glahn, Mathias; Drenck, Tobias C; Herbort, Mirco
2017-10-01
To determine the static stabilizing effects of different anatomical structures of the posterolateral corner (PLC) of the knee in the lateral collateral ligament (LCL)-intact state. Thirteen fresh-frozen human cadaveric knees were dissected and tested using an industrial robot with an optical tracking system. Kinematics were determined for 134 N anterior/posterior loads, 10 N m valgus/varus loads, and 5 N m internal/external rotatory loads in 0°, 20°, 30°, 60°, and 90° of knee flexion. The PLC structures were dissected and consecutively released: (I) intact knee joint, (II) with released posterior cruciate ligament (PCL), (III) popliteomeniscal fibers, (IV) popliteofibular ligament, (V) arcuat and popliteotibial fibers, (VI) popliteus tendon (PLT), and (VII) LCL. Repeated-measures analysis of variance was performed with significance set at P < .05. After releasing the PCL, posterior tibial translation increased by 5.2 mm at 20° to 9.4 mm at 90° of joint flexion (P < .0001). A mild 1.8° varus instability was measured in 0° of flexion (P = .0017). After releasing the PLC structures, posterior tibial translation further increased by 2.9 mm at 20° to 5.9 mm at 90° of flexion (P < .05) and external rotation angle increased by 2.6° at 0° to 7.9° at 90° of flexion (P < .05, vs II). Varus stability did not decrease. Mild differences between states V and VI were found in 60° and 90° external rotation tests (2.1° and 3.1°; P < .05). The connecting ligaments/fibers to the PLT act as a primary static stabilizer against external rotatory loads and a secondary stabilizer against posterior tibial loads (when PCL is injured). After releasing these structures, most static stabilizing function of the intact PLT is lost. The PLC has no varus-stabilizing function in the LCL-intact knee. Anatomy and function of these structures for primary and secondary joint stability should be considered for clinical diagnostics and when performing surgery in the PLC. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Yang, Mingyang; Zheng, Xinqian; Zhang, Yangjun; Bamba, Takahiro; Tamaki, Hideaki; Huenteler, Joern; Li, Zhigang
2013-03-01
This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.
Impact of longitudinal flying qualities upon the design of a transport with active controls
NASA Technical Reports Server (NTRS)
Sliwa, S. M.
1980-01-01
Direct constrained parameter optimization was used to optimally size a medium range transport for minimum direct operating cost. Several stability and control constraints were varied to study the sensitivity of the configuration to specifying the unaugmented flying qualities of transports designed with relaxed static stability. Additionally, a number of handling quality related design constants were studied with respect to their impact to the design.
Piana, Mariana; Silva, Mariane Arnoldi; Trevisan, Gabriela; de Brum, Thiele Faccim; Silva, Cássia Regina; Boligon, Aline Augusti; Oliveira, Sara Marchesan; Zadra, Marina; Hoffmeister, Carin; Rossato, Mateus Fortes; Tonello, Raquel; Laporta, Luciane Varini; de Freitas, Robson Borba; Belke, Bianca Vargas; Jesus, Roberta da Silva; Ferreira, Juliano; Athayde, Margareth Linde
2013-11-25
Viola tricolor, popularly known as heartsease has been empirically used in several skin disorders, including burns. The objective of this study was investigate the antinociceptive and antiinflammatory effect of a gel containing extract of Viola tricolor flowers on thermal burn induced by UVB irradiation and to perform gel stability study. The antinociceptive and antiinflammatory effect were evaluated by static and dynamic mechanical allodynia model, paw edema, and neutrophilic cell infiltration. Metabolites compounds were quantified by HPLC. The gel stability study was performed analyzing organoleptical aspects, besides pH, viscosity, and quantification of rutin by HPLC. In the results were evidenced changes in threshold in statical and dynamic mechanical allodynia (I(max)=100 ± 10% and 49 ± 10%, respectively), paw edema (I(max)=61 ± 6%), and myeloperoxidase activity (I(max)=89 ± 5%). Such effects may be attributed, in part, to rutin, salicylic and chlorogenic acids, and others compounds found in this species. No important changes were detected in the stability study, in all aspects analyzed in temperature below 25 °C. These findings suggest that Viola tricolor gel has an antinociceptive and antiinflammatory effect in the ultraviolet-B-induced burn, since maintain the temperature below 25 °C. © 2013 Elsevier Ireland Ltd. All rights reserved.
Interventions for increasing ankle joint dorsiflexion: a systematic review and meta-analysis.
Young, Rebekah; Nix, Sheree; Wholohan, Aaron; Bradhurst, Rachael; Reed, Lloyd
2013-11-14
Ankle joint equinus, or restricted dorsiflexion range of motion (ROM), has been linked to a range of pathologies of relevance to clinical practitioners. This systematic review and meta-analysis investigated the effects of conservative interventions on ankle joint ROM in healthy individuals and athletic populations. Keyword searches of Embase, Medline, Cochrane and CINAHL databases were performed with the final search being run in August 2013. Studies were eligible for inclusion if they assessed the effect of a non-surgical intervention on ankle joint dorsiflexion in healthy populations. Studies were quality rated using a standard quality assessment scale. Standardised mean differences (SMDs) and 95% confidence intervals (CIs) were calculated and results were pooled where study methods were homogenous. Twenty-three studies met eligibility criteria, with a total of 734 study participants. Results suggest that there is some evidence to support the efficacy of static stretching alone (SMDs: range 0.70 to 1.69) and static stretching in combination with ultrasound (SMDs: range 0.91 to 0.95), diathermy (SMD 1.12), diathermy and ice (SMD 1.16), heel raise exercises (SMDs: range 0.70 to 0.77), superficial moist heat (SMDs: range 0.65 to 0.84) and warm up (SMD 0.87) in improving ankle joint dorsiflexion ROM. Some evidence exists to support the efficacy of stretching alone and stretching in combination with other therapies in increasing ankle joint ROM in healthy individuals. There is a paucity of quality evidence to support the efficacy of other non-surgical interventions, thus further research in this area is warranted.
Interventions for increasing ankle joint dorsiflexion: a systematic review and meta-analysis
2013-01-01
Background Ankle joint equinus, or restricted dorsiflexion range of motion (ROM), has been linked to a range of pathologies of relevance to clinical practitioners. This systematic review and meta-analysis investigated the effects of conservative interventions on ankle joint ROM in healthy individuals and athletic populations. Methods Keyword searches of Embase, Medline, Cochrane and CINAHL databases were performed with the final search being run in August 2013. Studies were eligible for inclusion if they assessed the effect of a non-surgical intervention on ankle joint dorsiflexion in healthy populations. Studies were quality rated using a standard quality assessment scale. Standardised mean differences (SMDs) and 95% confidence intervals (CIs) were calculated and results were pooled where study methods were homogenous. Results Twenty-three studies met eligibility criteria, with a total of 734 study participants. Results suggest that there is some evidence to support the efficacy of static stretching alone (SMDs: range 0.70 to 1.69) and static stretching in combination with ultrasound (SMDs: range 0.91 to 0.95), diathermy (SMD 1.12), diathermy and ice (SMD 1.16), heel raise exercises (SMDs: range 0.70 to 0.77), superficial moist heat (SMDs: range 0.65 to 0.84) and warm up (SMD 0.87) in improving ankle joint dorsiflexion ROM. Conclusions Some evidence exists to support the efficacy of stretching alone and stretching in combination with other therapies in increasing ankle joint ROM in healthy individuals. There is a paucity of quality evidence to support the efficacy of other non-surgical interventions, thus further research in this area is warranted. PMID:24225348
ENSO/PDO-Like Variability of Tropical Ocean Surface Energy Fluxes Over the Satellite Era
NASA Technical Reports Server (NTRS)
Robertson, F. R.; Miller, Tim L.
2008-01-01
Recent variations of tropical climate on interannual to near-decadal scales have provided a useful target for studying the nature of climate feedback processes. A strong warm / cold ENSO couplet (e.g. 1997-2000) along with several subsequent weaker events are prominent interannual signals that are part of an apparent longer term strengthening of the Walker circulation during the mid to late 1990's with some weakening thereafter. Decadal scale changes in tropical SST structure during the 1990s are accompanied by focusing of precipitation over the Indo-Pacific warm pool and an increase in tropical ocean evaporation of order 1.0 % /decade. Associated with ENSO and PDO-like tropical SST changes are surface freshwater and radiative fluxes which have important implications for heat and energy transport variations. In this study we examine how surface fluxes attending interannual to decadal SST fluctuations, e.g. precipitation (GPCP, TRMM), turbulent fluxes (OAFlux), and radiative fluxes (ERBE/CERES, SRB) are coupled. Using these data we analyze vertically-integrated divergence of moist static energy, divMSE, and its dry static energy and latent energy components. We examine consistency between these data sets and explore relationships between SST variations, flux changes and modulation of tropical Walker and Hadley circulations. Strong signatures ofMSE flux transport linking ascending and descending regions of tropical circulations are found. Relative strengths of these fluxes and transports are interpreted as a measure of efficiency in the overall process of tropical heat balance during episodes of warm or cold tropical SST.
Vehicle anti-rollover control strategy based on load transferring rate
NASA Astrophysics Data System (ADS)
Dai, W. T.; Du, H. Q.; Zhang, L.
2018-03-01
When vehicles is drived on a low adhesion road or going on a high speed and sharp turn, it is prone to product some lateral stability problems, such as lateral sideslip or rollover. In order to improve the vehicle anti-rollover stability under these limited conditions, a SUV vehicle model with high mass center was built based on the software of CarSim and the rollover stability controller was designed using the static threshold value method for the lateral load transferring rate (LTR). The simulations are shown that the vehicle anti-rollover stability under limit conditions is improved using the SUV model.
NASA Technical Reports Server (NTRS)
Rising, J. J.
1982-01-01
The L-1011 has been flight tested to demonstrate the relaxed static stability concept as a means of obtaining significant drag benefits to achieve a more energy efficient transport. Satisfactory handling qualities were maintained with the design of an active control horizontal tail for stability and control augmentation to allow operation of the L-1011 at centers of gravity close to the neutral point. Prior to flight test, a motion base visual flight simulator program was performed to optimize the augmentation system. The system was successfully demonstrated in a test program totaling forty-eight actual flight hours.
Variable Speed CMG Control of a Dual-Spin Stabilized Unconventional VTOL Air Vehicle
NASA Technical Reports Server (NTRS)
Lim, Kyong B.; Moerder, Daniel D.; Shin, J-Y.
2004-01-01
This paper describes an approach based on using both bias momentum and multiple control moment gyros for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The stabilization approach described in this paper uses these internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other outer loop control functions, including CMG stabilization/ desaturation under persistent external disturbances. Simulation results show the feasibility of (1) improved vehicle performance beyond bias momentum assisted vector thrusting control, and (2) using control moment gyros to significantly reduce the external torque required from the vector thrusting machinery.
Energy transport, polar amplification, and ITCZ shifts in the GeoMIP G1 ensemble
NASA Astrophysics Data System (ADS)
Russotto, Rick D.; Ackerman, Thomas P.
2018-02-01
The polar amplification of warming and the ability of the Intertropical Convergence Zone (ITCZ) to shift to the north or south are two very important problems in climate science. Examining these behaviors in global climate models (GCMs) running solar geoengineering experiments is helpful not only for predicting the effects of solar geoengineering but also for understanding how these processes work under increased carbon dioxide (CO2). Both polar amplification and ITCZ shifts are closely related to the meridional transport of moist static energy (MSE) by the atmosphere. This study examines changes in MSE transport in 10 fully coupled GCMs in experiment G1 of the Geoengineering Model Intercomparison Project (GeoMIP), in which the solar constant is reduced to compensate for the radiative forcing from abruptly quadrupled CO2 concentrations. In G1, poleward MSE transport decreases relative to preindustrial conditions in all models, in contrast to the Coupled Model Intercomparison Project phase 5 (CMIP5) abrupt4xCO2 experiment, in which poleward MSE transport increases. We show that since poleward energy transport decreases rather than increases, and local feedbacks cannot change the sign of an initial temperature change, the residual polar amplification in the G1 experiment must be due to the net positive forcing in the polar regions and net negative forcing in the tropics, which arise from the different spatial patterns of the simultaneously imposed solar and CO2 forcings. However, the reduction in poleward energy transport likely plays a role in limiting the polar warming in G1. An attribution study with a moist energy balance model shows that cloud feedbacks are the largest source of uncertainty regarding changes in poleward energy transport in midlatitudes in G1, as well as for changes in cross-equatorial energy transport, which are anticorrelated with ITCZ shifts.
NASA Astrophysics Data System (ADS)
Popke, Dagmar; Bony, Sandrine; Mauritsen, Thorsten; Stevens, Bjorn
2015-04-01
Model simulations with state-of-the-art general circulation models reveal a strong disagreement concerning the simulated regional precipitation patterns and their changes with warming. The deviating precipitation response even persists when reducing the model experiment complexity to aquaplanet simulation with forced sea surface temperatures (Stevens and Bony, 2013). To assess feedbacks between clouds and radiation on precipitation responses we analyze data from 5 models performing the aquaplanet simulations of the Clouds On Off Klima Intercomparison Experiment (COOKIE), where the interaction of clouds and radiation is inhibited. Although cloud radiative effects are then disabled, the precipitation patterns among models are as diverse as with cloud radiative effects switched on. Disentangling differing model responses in such simplified experiments thus appears to be key to better understanding the simulated regional precipitation in more standard configurations. By analyzing the local moisture and moist static energy budgets in the COOKIE experiments we investigate likely causes for the disagreement among models. References Stevens, B. & S. Bony: What Are Climate Models Missing?, Science, 2013, 340, 1053-1054
Performance assessment of MSE abutment walls in Indiana : final report.
DOT National Transportation Integrated Search
2017-05-01
This report presents a numerical investigation of the behavior of steel strip-reinforced mechanically stabilized earth (MSE) direct bridge abutments under static loading. Finite element simulations were performed using an advanced two-surface boundin...
Evaluation of effect of oil film of rotor bearing
NASA Astrophysics Data System (ADS)
Alekseeva, L. B.; Maksarov, V. V.
2018-03-01
The high-rpm rotors were subjected to the dynamic analysis. Oscillations of a rotor spinning in gapped bearings were considered. It was stated that the rotor necks motion pattern depends on a lot of factors: a ratio of static and dynamic loads on the bearing, radial clearance size, presence of oil film between a neck and a bearing, elastic and inertial properties of a mounting group. The most unfavourable mode where static and dynamic loads are equal was detected without taking into account the oil film impact. The impact of oil film on the bearing assembly dynamics is significant in high-rpm rotors. The presence of oil film can possibly cause rotor buckling failure and self-starting. Rotor motion stability in small was studied. Herewith, various schemes were considered. Expressions, determining the stability zones of a rigid rotor on the fixed support and the supports with elastic and inertial elements, were given.
NASA Technical Reports Server (NTRS)
Ellis, R. R.; Buchholz, R. E.; Moore, J. A.
1972-01-01
Two 0.00325-scale models of a space shuttle orbiter were tested in trisonic wind tunnel to obtain force, static stability, and control effectiveness data by six component internal strain gauge balance. Two separate configurations were tested; however, the fuselage and basic wing were of one-piece construction. The configurations were varied by replacing the straight wing tip extensions with upswept wing tips. Directional stability was provided for one configuration by a centerline vertical tail. Due to the one-piece body/wing construction, no body-alone data were obtained. The effect of tip fins and vertical tail size were, however, investigated. Both configurations were tested over a Mach range of 0.6 to 4.96 with data taken at angles of attack from minus 4 deg to 60 deg and at angles of sideslip from minus 4 deg to 10 deg.
NASA Astrophysics Data System (ADS)
Aydan, Ö.; Ito, T.
2015-11-01
It is well known that some sinkholes or subsidence take place from time to time in the areas where abandoned room and pillar type mines exist. The author has been involved with the stability of abandoned mines beneath urbanized residential areas in Tokai region and there is a great concern about the stability of these abandoned mines during large earthquakes as well as in the long term. The 2003 Miyagi Hokubu and 2011 Great East Japan earthquakes caused great damage to abandoned mines and resulted in many collapses. The author presents the effect of the depth and groundwater on the formation of sinkholes or ground subsidence associated with abandoned room and pillar lignite mines under static and dynamic conditions and discusses the implications on the areas above abandoned lignite mines in this paper.
Estimation of Rotary Stability Derivatives at Subsonic and Transonic Speeds
NASA Technical Reports Server (NTRS)
Tobak, Murray; Lessing, Henry C.
1961-01-01
The first part of this paper pertains to the estimation of subsonic rotary stability derivatives of wings. The unsteady potential flow problem is solved by a superposition of steady flow solutions. Numerical results for the damping coefficients of triangular wings are presented as functions of aspect ratio and Mach number, and are compared with experimental results over the Mach number range 0 to 1. In the second part, experimental results are used. to point out a close correlation between the nonlinear variations with angle of attack of the static pitching-moment curve slope and the damping-in-pitch coefficient. The underlying basis for the correlation is found as a result of an analysis in which the indicial function concept and. the principle of super-position are adapted to apply to the nonlinear problem. The form of the result suggests a method of estimating nonlinear damping coefficients from results of static wind-tunnel measurements.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Menees, Gene P.
1959-01-01
Results of an investigation of the static longitudinal stability and control characteristics of an aspect-ratio-3.1, unswept wing configuration equipped with an aspect-ratio-4, unswept horizontal tail are presented without analysis for the Mach number range from 0.70 to 2.22. The hinge line of the all-movable horizontal tail was in the extended wing chord plane, 1.66 wing mean aerodynamic chords behind the reference center of moments. The ratio of the area of the exposed horizontal-tail panels to the total area of the wing was 13.3 percent and the ratio of the total areas was 19.9 percent. Data are presented at angles of attack ranging"from -6 deg to +18 deg for the horizontal tail set at angles ranging from +5 deg to -20 deg and for the tail removed.
Mobility performance analysis of an innovation lunar rover with diameter-variable wheel
NASA Astrophysics Data System (ADS)
Sun, Gang; Gao, Feng; Sun, Peng; Xu, Guoyan
2007-11-01
To achieve excellent mobility performance, a four-wheel, all-wheel drive lunar rover with diameter-variable wheel was presented, the wheel can be contracted and extended by the motor equipped in the wheel hub, accompanied with wheel diameter varying from 200mm to 390mm. The wheel sinkage and drawbar pull force were predicated with terramechanics formulae and lunar regolith mechanic parameters employed, furthermore, the slope traversability was investigated through quasi-static modeling mechanic analysis, also the obstacle resistance and the maximum negotiable obstacle height for different wheel radius were derived from the equations of static equilibrium of the rover. Analysis results show that for the innovation lunar rover presented, it will bring much better slope traveling stability and obstacle climbing capability than rovers with normal wheels, these will improve the rover mobility performance and stabilize the rover's frame, smooth the motion of sensors.
Ramírez-Barahona, Santiago; Eguiarte, Luis E
2013-01-01
The increasing aridity during the Last Glacial Maximum (LGM) has been proposed as a major factor affecting Neotropical species. The character and intensity of this change, however, remains the subject of ongoing debate. This review proposes an approach to test contrasting paleoecological hypotheses by way of their expected demographic and genetic effects on Neotropical cloud forest species. We reviewed 48 paleoecological records encompassing the LGM in the Neotropics. The records show contrasting evidence regarding the changes in precipitation during this period. Some regions remained fairly moist and others had a significantly reduced precipitation. Many paleoecological records within the same region show apparently conflicting evidence on precipitation and forest stability. From these data, we propose and outline two demographic/genetic scenarios for cloud forests species based on opposite precipitation regimes: the dry refugia and the moist forests hypotheses. We searched for studies dealing with the population genetic structure of cloud forest and other montane taxa and compared their results with the proposed models. To date, the few available molecular studies show insufficient genetic evidence on the predominance of glacial aridity in the Neotropics. In order to disentangle the climatic history of the Neotropics, the present study calls for a general multi-disciplinary approach to conduct future phylogeographic studies. Given the contradictory paleoecological information, population genetic data on Neotropical cloud forest species should be used to explicitly test the genetic consequences of competing paleoecological models. PMID:23531632
Moist Baroclinic Life Cycles in an Idealized Model with Varying Hydrostasy
NASA Astrophysics Data System (ADS)
Hsieh, T. L.; Garner, S.; Held, I.
2016-12-01
Baroclinic life cycles are simulated in a limited-area model having varying degrees of hydrostasy to examine their interaction with explicitly resolved moist convection. The life cycles are driven by an idealized sea surface temperature field in an f-plane channel, and no convective parameterization is used. The hydrostasy is controlled by rescaling the model equations following the hypohydrostatic rescaling and by changing the resolution. In experiments having the same ratio between the grid spacing and the rescaling factor, the simulated convection is shown to have the same hydrostasy, suggesting that the low resolution models have been rescaled to be as nonhydrostatic as the high resolution model without additional computational cost. The nonhydrostatic convective cells in the rescaled models are found to be wider and slower than those in the unscaled models, consistent with predictions of the similarity theory. For the same resolution, although the wider cells in the rescaled models have better resolved structure, the total latent heating is insensitive to the rescaling factor. This is because latent heating is constrained by long-wave cooling which is found to be insensitive to the model hydrostasy, requiring a non-similarity in the frequency and distribution of convection. Consequently, the resolved nonhydrostatic convection maintains the same stability profile as the unresolved hydrostatic convection, so the statistics of the life cycles are also insensitive to the rescaling factor. The findings suggest that the mean climate and internal variability would be unaffected by the hypohydrostatic rescaling when the self-organization of convection is not important.