Use of Edible Laminate Layers in Intermediate Moisture Food Rations to Inhibit Moisture Migration
2016-04-29
methylcellulose, propylene glycol, citric acid, modified starch , white beeswax Water resistant coating on one side Watson, Inc. Dual-sided HPMC moisture...barrier film Hydroxypropyl methylcellulose, propylene glycol, citric acid, modified starch , white beeswax Water resistant coating on both sides...Moisture Barrier (BWMB) film #1 Pullulan*, beeswax, glycerin, propylene glycol, starch , polysorbate 80 Water soluble Watson, Inc. Pullulan BWMB film
The hygroscopicity of moisture barrier film coatings.
Mwesigwa, Enosh; Buckton, Graham; Basit, Abdul W
2005-12-01
The hygroscopicity of three commercial moisture-barrier film coatings, namely, Eudragit L30 D-55 (methacrylic acid-ethyl acrylate copolymer), Opadry AMB (polyvinyl alcohol based system), and Sepifilm LP 014 (hypromellose, microcrystalline cellulose, and stearic acid based formulation), was investigated using a dynamic vapor sorption apparatus. Moisture uptake by cast films and uncoated and coated tablet cores, which were designed to be hygroscopic, low hygroscopic, and waxy, was measured following exposure to repeat relative humidity (RH) cycles of 0-50-0-50-0%, 0-75-0-75-0%, and 0-90-0-90-0% RH at 25 degrees C. Eudragit cast film exhibited the fastest equilibration but was also the least hygroscopic. Sepifilm had the fastest sorption and took up the greatest mass of water. The rate of uptake for Opadry film was similar to Sepifilm. However, this film continued to sorb moisture for a longer period. When returned to 0% RH it retained moisture in the film showing that it had a high affinity for moisture within the film. The data for the different cores indicated that there was very little benefit in using a moisture barrier film on cores with low hygroscopicity, the mass gain being a sum of that which would be expected to sorb to the film and that which sorbs to the uncoated core. There was, however, some advantage for hygroscopic cores where, even though the barrier coatings allowed substantial water sorption into the core, the extent of this was less and the rate of uptake lower than for the uncoated sample.
Bourlieu, C; Guillard, V; Vallès-Pamiès, B; Guilbert, S; Gontard, N
2009-05-01
Control of moisture transfer inside composite food products or between food and its environment remains today a major challenge in food preservation. A wide rage of film-forming compounds is now available and facilitates tailoring moisture barriers with optimized functional properties. Despite these huge potentials, a realistic assessment of the film or coating efficacy is still critical. Due to nonlinear water sorption isotherms, water-dependent diffusivities, and variations of physical state, modelling transport phenomena through edible barriers is complex. Water vapor permeability can hardly be considered as an inherent property of films and only gives a relative indication of the barrier efficacy. The formal or mechanistic models reported in literature that describe the influence of testing conditions on the barrier properties of edible films are reviewed and discussed. Most of these models have been validated on a narrow range of conditions. Conversely, few original predictive models based on Fick's Second Law have been developed to assess shelf-life extension of food products including barriers. These models, assuming complex and realistic hypothesis, have been validated in various model foods. The development of nondestructive methods of moisture content measurement should speed up model validation and allow a better comprehension of moisture transfer through edible films.
Pan, Hongyang; Jiang, Bo; Chen, Jie; Jin, Zhengyu
2014-11-04
Multi-component substances made through direct blending or blending with co-drying can form films on the surfaces of intermediate moisture foods (IMFs), which help retain moisture and protect food texture and flavor. An IMF film system based on pullulan, with glycerol serving as the plasticizer, was studied using alginate and four different types of polysaccharides (propyleneglycol alginate, pectin, carrageenan, and aloe polysaccharide) as the blend-modified substances. The physical, mechanical, color, transparency, and moisture-retention properties of the co-blended films with the polysaccharides were assessed. A new formula was established for the average moisture retention property, water barrier, tensile strength, elongation at break, and oxygen barrier property of the ternary co-blended films using the Design Expert software. The new model established for moisture content measurement used an indirect method of film formation on food surfaces by humectants, which should expedite model validation and allow a better comprehension of moisture transfer through edible films. Copyright © 2014 Elsevier Ltd. All rights reserved.
Moisture barrier properties of xylan composite films
Amit Saxena; Thomas J. Elder; Arthur J. Ragauskas
2011-01-01
Moisture barrier properties of films based on xylan reinforced with several cellulosic resources including nanocrystalline cellulose, acacia bleached kraft pulp fibers and softwood kraft fibers have been evaluated. Measurements of water vapor transmission rate (WVTR) were performed by a modification of the wet cup method described by ASTM E 96-95, indicating that...
NASA Astrophysics Data System (ADS)
Nagai, Shingo
2013-11-01
We report estimation of the effective diffusion coefficient of moisture through a barrier coating to develop an encapsulation technology for the thin-film electronics industry. This investigation targeted a silicon oxide (SiOx) film that was deposited on a plastic substrate by a large-process-area web coater. Using the finite difference method based on diffusion theory, our estimation of the effective diffusion coefficient of a SiOx film corresponded to that of bulk glass that was previously reported. This result suggested that the low diffusivities of barrier films can be obtained on a mass-production level in the factory. In this investigation, experimental observations and mathematical confirmation revealed the limit of the water vapor transmission rate on the single barrier coating.
Kim, Jung Min; Lee, Min Hyeock; Ko, Jung A; Kang, Dong Ho; Bae, Hojae; Park, Hyun Jin
2018-02-01
This study investigates the potential complications in applying nanoclay-based waterborne coating to packaging films for food with high moisture content. Multilayer packaging films were prepared by dry laminating commercially available polyvinyl alcohol (PVA)/vermiculite nanocomposite coating films and linear low-density polyethylene film, and the changes in oxygen barrier properties were investigated according to different relative humidity using 3 types of food simulants. When the relative humidity was above 60%, the oxygen permeability increased sharply, but this was reversible. Deionized water and 3% acetic acid did not cause any large structural change in the PVA/vermiculite nanocomposite but caused a reversible deterioration of the oxygen barrier properties. In contrast, 50% ethanol, a simulant for the semifatty food, induced irreversible structural changes with deterioration of the oxygen barrier property. These changes are due to the characteristics of PVA rather than vermiculite. We believe this manuscript would be of interest to the wide group of researchers, organizations, and companies in the field of developing nanoclay-based gas barrier packaging for foods with high moisture content. Hence, we wish to diffuse our knowledge to the scientific community. © 2018 Institute of Food Technologists®.
Flexible Ultra Moisture Barrier Film for Thin-Film Photovoltaic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
David M. Dean
2012-10-30
Flexible Thin-film photovoltaic (TFPV) is a low cost alternative to incumbent c-Si PV products as it requires less volume of costly semiconductor materials and it can potentially reduce installation cost. Among the TFPV options, copper indium gallium diselenide (CIGS) has the highest efficiency and is believed to be one of the most attractive candidates to achieve PV cost reduction. However, CIGS cells are very moisture sensitive and require module water vapor transmission rate (WVTR) of less than 1x10-4 gram of water per square meter per day (g-H2O/m2/day). Successful development and commercialization of flexible transparent ultra moisture barrier film is themore » key to enable flexible CIGS TFPV products, and thus enable ultimate PV cost reduction. At DuPont, we have demonstrated at lab scale that we can successfully make polymer-based flexible transparent ultra moisture barrier film by depositing alumina on polymer films using atomic layer deposition (ALD) technology. The layer by layer ALD approach results in uniform and amorphous structure which effectively reduces pinhole density of the inorganic coating on the polymer, and thus allow the fabrication of flexible barrier film with WVTR of 10-5 g-H2O/m2/day. Currently ALD is a time-consuming process suitable only for high-value, relatively small substrates. To successfully commercialize the ALD-on-plastic technology for the PV industry, there is the need to scale up this technology and improve throughput. The goal of this contract work was to build a prototype demonstrating that the ALD technology could be scaled-up for commercial use. Unfortunately, the prototype failed to produce an ultra-barrier film by the close of the project.« less
Water vapor barrier and sorption properties of edible films from pullulan and rice wax.
USDA-ARS?s Scientific Manuscript database
Edible films were prepared by using various ratios of pullulan and rice wax. Freestanding composite films were obtained with up to 46.4% rice wax. Water vapor barrier properties of the film were improved with increased addition of rice wax. Moisture sorption isotherms were also studied to examine...
Phan The, D; Péroval, C; Debeaufort, F; Despré, D; Courthaudon, J L; Voilley, A
2002-01-16
This work is a contribution to better knowledge of the influence of the structure of films on their functional properties obtained from emulsions based on arabinoxylans, hydrogenated palm kernel oil (HPKO), and emulsifiers. The sucroesters (emulsifiers) have a great effect on the stabilization of the emulsified film structure containing arabinoxylans and hydrogenated palm kernel oil. They improve the moisture barrier properties. Several sucroesters having different esterification degrees were tested. Both lipophilic (90% of di and tri-ester) and hydrophilic (70% of mono-ester) sucrose esters can ensure the stability of the emulsion used to form the film, especially during preparation and drying. These emulsifiers confer good moisture barrier properties to emulsified films.
Mwesigwa, Enosh; Basit, Abdul W; Buckton, Graham
2008-10-01
Moisture sorption and permeability characteristics of polymer films were studied and their effectiveness to protect a hydrolyzable drug assessed. Cast films were prepared from Eudragit L30 D-55, Eudragit EPO, Opadry AMB and Sepifilm LP dispersions, which were also applied onto tablet cores formulated with aspirin as a model moisture sensitive active ingredient. Sorption studies were undertaken using dynamic vapour sorption, ranging between 0% and 90% RH at 25 degrees C. Cast films exhibited fast equilibration (
Moisture barrier properties of single-layer graphene deposited on Cu films for Cu metallization
NASA Astrophysics Data System (ADS)
Gomasang, Ploybussara; Abe, Takumi; Kawahara, Kenji; Wasai, Yoko; Nabatova-Gabain, Nataliya; Thanh Cuong, Nguyen; Ago, Hiroki; Okada, Susumu; Ueno, Kazuyoshi
2018-04-01
The moisture barrier properties of large-grain single-layer graphene (SLG) deposited on a Cu(111)/sapphire substrate are demonstrated by comparing with the bare Cu(111) surface under an accelerated degradation test (ADT) at 85 °C and 85% relative humidity (RH) for various durations. The change in surface color and the formation of Cu oxide are investigated by optical microscopy (OM) and X-ray photoelectron spectroscopy (XPS), respectively. First-principle simulation is performed to understand the mechanisms underlying the barrier properties of SLG against O diffusion. The correlation between Cu oxide thickness and SLG quality are also analyzed by spectroscopic ellipsometry (SE) measured on a non-uniform SLG film. SLG with large grains shows high performance in preventing the Cu oxidation due to moisture during ADT.
Edible bioactive fatty acid-cellulosic derivative composites used in food-packaging applications.
Sebti, Issam; Ham-Pichavant, Frédérique; Coma, Véronique
2002-07-17
To develop biodegradable packaging that both acts as a moisture barrier and as antimicrobial activity, nisin and stearic acid were incorporated into a hydroxy propyl methyl cellulose (HPMC) based film. Fifteen percent (w/w HPMC) of stearic acid improved film moisture barrier. However, film mechanical resistance and film antimicrobial activity on Listeria monocytogenes and Staphylococcus aureus pathogenic strains were both reduced. This lower film inhibitory activity was due to interactions between nisin and stearic acid. The molecular interaction was modeled, and an equation was developed to calculate the nisin concentration needed to be incorporated into the film matrix to obtain a desired residual antimicrobial activity. Because the molecular interactions were pH dependent, the impact of the pH of the film-forming solution on film inhibitory activity was investigated. Adjusting the pH to 3 totally avoided stearic acid and nisin interaction, inducing a high film inhibitory activity.
Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy
2015-04-21
A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.
NASA Astrophysics Data System (ADS)
Sehgal, Akhil
Electronic components such as organic light emitting diodes (OLED) and photo-voltaics have been of more focus with the advancement of technology. These electronics are susceptible to degradable in the presence of gases such as water vapor and oxygen. Being that these gases are constituents of the atmosphere and can be found in nearly every environment, certain protocols must take place to mitigate the issues that occur. New generation electronics are sensitive to oxidation and corrosion in the presence of extremely low concentrations of moisture and oxygen and therefore the development and improvements of gas barriers are vital for advancements in electronics technology. The improvements of appliances such as flexible solar cells and OLEDs require barriers that need to be flexible in order to achieve high longevity. The area of research has been focused on designing flexible polymer films with composite nanoparticles and cross-linking agents that have low permeability to moisture and oxygen gas. The polymers studied are in the family of methacrylates. Due to the properties of methacrylate polymers, it has been proposed that they are capable of having efficient barrier properties due to their ability to cross link and form crystalline structures with low chain mobility. The change in intensities of the FTIR peaks of different functional groups indicates the cross-linking and crystallinity of the polymer films. The UV-Vis data indicates high transparency of the films. SEM images of the films show continuous and well cured surfaces with minimal deviations, pores and defects. The addition of cross-linking agents and nanoparticles increased polymerization and cross-linking of the methacrylate polymer chains, therefore increasing inter-chain density and long range order. The incorporation of these additives increased the crystallinity of the films and by decreasing the distances and number of voids between polymer chains along with having minimal sorption sites for gases to bond to, the ability of gases such as moisture and oxygen to penetrate through the films has decreased.
NASA Astrophysics Data System (ADS)
Majee, Subimal; Fátima Cerqueira, Maria; Tondelier, Denis; Geffroy, Bernard; Bonnassieux, Yvan; Alpuim, Pedro; Bourée, Jean Eric
2014-01-01
The reliability and stability are key issues for the commercial utilization of organic photovoltaic devices based on flexible polymer substrates. To increase the shelf-lifetime of these devices, transparent moisture barriers of silicon nitride (SiNx) films are deposited at low temperature by hot wire CVD (HW-CVD) process. Instead of the conventional route based on organic/inorganic hybrid structures, this work defines a new route consisting in depositing multilayer stacks of SiNx thin films, each single layer being treated by argon plasma. The plasma treatment allows creating smoother surface and surface atom rearrangement. We define a critical thickness of the single layer film and focus our attention on the effect of increasing the number of SiNx single-layers on the barrier properties. A water vapor transmission rate (WVTR) of 2 × 10-4 g/(m2·day) is reported for SiNx multilayer stack and a physical interpretation of the plasma treatment effect is given.
Hu, Long; Shao, Gang; Jiang, Tao; Li, Dengbing; Lv, Xinlin; Wang, Hongya; Liu, Xinsheng; Song, Haisheng; Tang, Jiang; Liu, Huan
2015-11-18
Organometal halide perovskites have recently emerged as outstanding semiconductors for solid-state optoelectronic devices. Their sensitivity to moisture is one of the biggest barriers to commercialization. In order to identify the effect of moisture in the degradation process, here we combined the in situ electrical resistance measurement with time-resolved X-ray diffraction analysis to investigate the interaction of CH3NH3PbI(3-x)Cl(x) perovskite films with moisture. Upon short-time exposure, the resistance of the perovskite films decreased and it could be fully recovered, which were ascribed to a mere chemisorption of water molecules, followed by the reversible hydration into CH3NH3PbI(3-x)Cl(x)·H2O. Upon long-time exposure, however, the resistance became irreversible due to the decomposition into PbI2. The results demonstrated the formation of monohydrated intermediate phase when the perovskites interacted with moisture. The role of moisture in accelerating the thermal degradation at 85 °C was also demonstrated. Furthermore, our study suggested that the perovskite films with fewer defects may be more inherently resistant to moisture.
Shankar, Shiv; Reddy, Jeevan Prasad; Rhim, Jong-Whan
2015-11-01
Biodegradable composite films were prepared using two renewable resources based biopolymers, agar and lignin alkali. The lignin was used as a reinforcing material and agar as a biopolymer matrix. The effect of lignin concentration (1, 3, 5, and 10wt%) on the performance of the composite films was studied. In addition, the mechanical, water vapor barrier, UV light barrier properties, FE-SEM, and TGA of the films were analyzed. The agar/lignin films exhibited higher mechanical and UV barrier properties along with lower water vapor permeability compared to the neat agar film. The FTIR and SEM results showed the compatibility of lignin with agar polymer. The swelling ratio and moisture content of agar/lignin composite films were decreased with increase in lignin content. The thermostability and char content of agar/lignin composite films increased with increased lignin content. The results suggested that agar/lignin films have a potential to be used as a UV barrier food packaging material for maintaining food safety and extending the shelf-life of the packaged food. Copyright © 2015 Elsevier B.V. All rights reserved.
Flexible fluoropolymer filled protective coatings
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Mirtich, Michael J.; Sovey, James S.; Nahra, Henry; Rutledge, Sharon K.
1991-01-01
Metal oxide films such as SiO2 are known to provide an effective barrier to the transport of moisture as well as gaseous species through polymeric films. Such thin film coatings have a tendency to crack upon flexure of the polymeric substrate. Sputter co-deposition of SiO2 with 4 to 15 percent fluoropolymers was demonstrated to produce thin films with glass-like barrier properties that have significant increases in strain to failure over pure glass films which improves their tolerance to flexure on polymeric substrates. Deposition techniques capable of producing these films on polymeric substrates are suitable for durable food packaging and oxidation/corrosion protection applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hyunsoo; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741; Choi, Hagyoung
2013-11-07
In the present study, we investigated the gas and moisture permeation barrier properties of Al{sub 2}O{sub 3} films deposited on polyethersulfone films (PES) by capacitively coupled plasma (CCP) type Remote Plasma Atomic Layer Deposition (RPALD) at Radio Frequency (RF) plasma powers ranging from 100 W to 400 W in 100 W increments using Trimethylaluminum [TMA, Al(CH{sub 3}){sub 3}] as the Al source and O{sub 2} plasma as the reactant. To study the gas and moisture permeation barrier properties of 100-nm-thick Al{sub 2}O{sub 3} at various plasma powers, the Water Vapor Transmission Rate (WVTR) was measured using an electrical Ca degradationmore » test. WVTR decreased as plasma power increased with WVTR values for 400 W and 100 W of 2.6 × 10{sup −4} gm{sup −2}day{sup −1} and 1.2 × 10{sup −3} gm{sup −2}day{sup −1}, respectively. The trends for life time, Al-O and O-H bond, density, and stoichiometry were similar to that of WVTR with improvement associated with increasing plasma power. Further, among plasma power ranging from 100 W to 400 W, the highest power of 400 W resulted in the best moisture permeation barrier properties. This result was attributed to differences in volume and amount of ion and radical fluxes, to join the ALD process, generated by O{sub 2} plasma as the plasma power changed during ALD process, which was determined using a plasma diagnosis technique called the Floating Harmonic Method (FHM). Plasma diagnosis by FHM revealed an increase in ion flux with increasing plasma power. With respect to the ALD process, our results indicated that higher plasma power generated increased ion and radical flux compared with lower plasma power. Thus, a higher plasma power provides the best gas and moisture permeation barrier properties.« less
USDA-ARS?s Scientific Manuscript database
It has been stated that hydroxypropyl methyl cellulose (HPMC) based films have promising applications in the food industry because of their environmental appeal, low cost, flexibility and transparency. Nevertheless, their mechanical and moisture barrier properties should be improved. The aim of th...
Wei, Xueqin; Pang, Jie; Zhang, Changfeng; Yu, Chengcheng; Chen, Han; Xie, Bingqing
2015-03-15
A series of moisture-resistant konjac glucomannan films were prepared by coating shellac/stearic acid emulsion on deacetylated konjac glucomannan films (dKGM). The effect of stearic acid content on structure and properties of the coated films were investigated by field emission scanning electron microscopy (FE SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet spectroscopy (UV), water vapor permeability (WVP), water uptake, water contact angle, and tensile testing. The results revealed that shellac in the coating adhered intimately to the surface of dKGM film, and provided a substrate for the dispersion of stearic acid which played an important role in enhancement of the moisture barrier properties and mechanical properties of the coated films. The WVP of the coated films decreased from 2.63×10(-11) to 0.37×10(-11)g/(msPa) and the water contact angle increased from 68° to 101.2° when stearic acid content increased from 0wt% to 40wt%, showing the potential applications in food preservation. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sakorikar, Tushar; Kavitha, M. K.; Tong, Shi Wun; Vayalamkuzhi, Pramitha; Loh, Kian Ping; Jaiswal, Manu
2018-05-01
Graphene: polymer composite based electrically conducting films are realized by a facile solution processable method. Ultraviolet Photoelectron Spectroscopy (UPS) measurements on the composite films, reveal a low work function of reduced graphene oxide (rGO) obtained from hydrazine hydrate reduction of graphene oxide (GO). We suggest that the low work function could potentially make rGO: PMMA composite suitable for electron conducting layer in perovskite solar cells in place of traditionally used expensive PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) layer. Further, we demonstrate from the gravimetric experiments conducted on rGO: PMMA films, that the same coating is also resistant to moisture permeation. This latter property can be used to realize a protective coating layer for perovskite films, which are prone to moisture induced degradation. Thus, dual functionality of rGO-PMMA films is demonstrated towards integration with perovskite solar cells. Architecture of perovskite solar cell based on these concepts is proposed.
Effect of starch type on the physico-chemical properties of edible films.
Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric
2017-05-01
Food preservation is mostly related to packaging in oil-based plastics, inducing environmental problems, but this drawback could be limited by using edible/biodegradable films and coatings. Physical and chemical properties were assessed and reflect the role of the starch type (wheat, corn or potato) and thus that of the amylose/amylopectin ratio, which influences thickness, colour, moisture, wettability, thermal, surface and mechanical properties. Higher amylose content in films induces higher moisture sensitivity, and thus affects the mechanical and barrier properties. Films made from potato starch constitute a greater barrier for oxygen and water vapour though they have weaker mechanical properties than wheat and corn starch films. Starch species with higher amylose content have lower wettability properties, and better mechanical resistance, which strongly depends on the water content due to the hydrophilic nature of starch films, so they could be used for products with higher water activity, such as cheese, fruits and vegetables. It especially concerns wheat starch systems, and the contact angle indicates less hydrophilic surfaces (above 90°) than those of corn and potato starch films (below 90°). The starch origin influences optical properties and thickness: with more amylose, films are opalescent and thicker; with less, they are transparent and thinner. Copyright © 2017 Elsevier B.V. All rights reserved.
Colussi, Rosana; Pinto, Vânia Zanella; El Halal, Shanise Lisie Mello; Biduski, Bárbara; Prietto, Luciana; Castilhos, Danilo Dufech; Zavareze, Elessandra da Rosa; Dias, Alvaro Renato Guerra
2017-04-15
Biodegradable films from native or acetylated starches with different amylose levels were prepared. The films were characterized according to the mechanical, water vapor barrier, thermal, and biodegradability properties. The films from acetylated high amylose starches had higher moisture content and water solubility than the native high amylose starch film. However, the acetylation did not affect acid solubility of the films, regardless of the amylose content. Films made from high and medium amylose rice starches were obtained; however low amylose rice starches, whether native or acetylated, did not form films with desirable characteristics. The acetylation decreased the tensile strength and increased the elongation of the films. The acetylated starch-based films had a lower decomposition temperature and higher thermal stability than native starch films. Acetylated starches films exhibited more rapid degradation as compared with the native starches films. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhu, Jun-You; Tang, Chuan-He; Yin, Shou-Wei; Yang, Xiao-Quan
2018-02-01
Biodegradable food packaging is sustainable and has a great application prospect. PLA is a promising alternative for petroleum-derived polymers. However, PLA packaging suffers from poor barrier properties compared with petroleum-derived ones. To address this issue, we designed bilayer films based on PLA and Pickering emulsions. The formed bilayer films were compact and uniform and double layers were combined firmly. This strategy enhanced mechanical resistance, ductility and moisture barrier of Pickering emulsion films, and concomitantly enhanced the oxygen barrier for PLA films. Thymol loadings in Pickering emulsion layer endowed them with antimicrobial and antioxidant activity. The release profile of thymol was well fitted with Fick's second law. The antimicrobial activity of the films depended on film types, and Pickering emulsion layer presented larger inhibition zone than PLA layer, hinting that the films possessed directional releasing role. This study opens a promising route to fabricate bilayer architecture creating synergism of each layer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C
2016-06-01
Biaxially oriented polypropylene (BOPP) is widely used in packaging. Although its orientation increases mechanical strength and clarity, BOPP suffers from a high oxygen transmission rate (OTR). Multilayer thin films are deposited from water using layer-by-layer (LbL) assembly. Polyethylenimine (PEI) is combined with either poly(acrylic acid) (PAA) or vermiculite (VMT) clay to impart high oxygen barrier. A 30-bilayer PEI/VMT nanocoating (226 nm thick) improves the OTR of 17.8 μm thick BOPP by more than 30X, rivaling most inorganic coatings. PEI/PAA multilayers achieve comparable barrier with only 12 bilayers due to greater thickness, but these films exhibit increased oxygen permeability at high humidity. The PEI/VMT coatings actually exhibit improved oxygen barrier at high humidity (and also improve moisture barrier by more than 40%). This high barrier BOPP meets the criteria for sensitive food and some electronics packaging applications. Additionally, this water-based coating technology is cost effective and provides an opportunity to produce high barrier polypropylene film on an industrial scale. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Syarifuddin, A.; Hasmiyani; Dirpan, A.; Mahendradatta, M.
2017-12-01
The development of mixed emulsion-based films formed by sodium alginate/gelatin incorporated with canola oil can offer particular properties such as water vapor barrier properties. The different ratios of sodium alginate/gelatin and sodium alginate/gelatin emulsion-based films incorporated with canola oil were developed and their effects on films’ physical, mechanical and barrier properties were assessed. Here we set out to examine whether canola oil addition and different ratio of sodium alginate/gelatin modified physical, mechanical, and barrier properties of films. To do so, the films were prepared by vary the ratio of sodium alginate/gelatin (2.5, 1, 0.5). Canola oil addition induced changes in moisture content, thickness, solubility, water vapor transmission rate (WVTR), percent elongation at break (p<0.05). In addition, it is apparent that varying ratio of sodium alginate to gelatin induced change the mechanical properties of films. The reduction of sodium alginate to gelatin decreased the tensile strength of both films. Improved values of WVTR, tensile strength and solubility at break were observed when the ratio of sodium alginate/gelatin emulsion film incorporated with canola oil was 2.5. Therefore, different ratio of sodium alginate/gelatin incorporated with canola oil can be used to tailor emulsion films with enhanced water vapor barrier and mechanical properties.
Wang, Hualin; Chen, Minmin; Jin, Chongyang; Niu, Baicheng; Jiang, Suwei; Li, Xingjiang; Jiang, Shaotong
2018-01-24
The objective of present work was to construct antibacterial [2-(methacryloyloxy) ethyl] trimethylammonium chloride functionalized reduced graphene oxide/poly(ethylene-co-vinyl alcohol) (MTAC-rGO/EVOH) multilayer barrier films by using layer-by-layer assembly under a parallel electric field. Besides barrier and mechanical properties, the antibacterial activities of the film and cytotoxicity of MTAC-rGO nanosheets were extensively investigated. The functionalization of rGO was achieved by grafting MTAC onto a graphene framework through C (sp 3 )-C bonds. The assembly of MTAC-rGO on the EVOH matrix not only significantly improved film mechanical strength, but also endowed the targeting film with outstanding moisture barrier even under a relative humidity of 99% (e.g., 0.019 g m -2 s -1 atm -1 for (MTAC-rGO/EVOH) 20 ) besides good oxygen barrier (e.g., 0.07 cm 3 m -2 d -1 atm -1 for (MTAC-rGO/EVOH) 20 ). Among the testing films, MTAC-rGO/EVOH film had the best antibacterial activity, and the activity against S. aureus was better than E. coli. Meanwhile, the cytotoxicity of MTAC-rGO nanosheets was very low. Results suggest that MTAC-rGO/EVOH film may have great potential in food active packaging.
Competitive Advantage Market Analysis | Energy Analysis | NREL
Study An NREL market assessment of raw and intermediate materials, equipment, and products for equipment for c-Si PV Abundant raw materials for production of moisture barrier films, glass, aluminum
Liu, Pengfei; Wang, Rui; Kang, Xuemin; Cui, Bo; Yu, Bin
2018-06-01
To investigate the effect of ultrasonic treatment on the properties of sweet potato starch and sweet potato starch-based films, the complexing index, thermograms and diffractograms of the sweet potato starch-lauric acid composite were tested, and light transmission, microstructure, and mechanical and moisture barrier properties of the films were measured. The results indicated that the low power density ultrasound was beneficial to the formation of an inclusion complex. In thermograms, the gelatinization enthalpies of the ultrasonically treated starches were lower than those of the untreated sample. With the ultrasonic amplitude increased from 40% to 70%, the melting enthalpy (ΔH) of the inclusion complex gradually decreased. X-ray diffraction revealed that the diffraction intensity of the untreated samples was weaker than that of the ultrasonically treated samples. When the ultrasonic amplitude was above 40%, the diffraction intensity and relative crystallinity of inclusion complex gradually decreased. The scanning electronic microscope showed that the surface of the composite films became smooth after being treated by ultrasonication. Ultrasonication led to a reduction in film surface roughness under atomic force microscopy analysis. The films with ultrasonic treatment exhibited higher light transmission, lower elongation at break, higher tensile strength and better moisture barrier property than those without ultrasonic treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Kwang Hong; Bao, Shuyu; Wang, Yue; Fitzgerald, Eugene A.; Seng Tan, Chuan
2018-01-01
The material properties and bonding behavior of silane-based silicon oxide layers deposited by plasma-enhanced chemical vapor deposition were investigated. Fourier transform infrared spectroscopy was employed to determine the chemical composition of the silicon oxide films. The incorporation of hydroxyl (-OH) groups and moisture absorption demonstrates a strong correlation with the storage duration for both as-deposited and annealed silicon oxide films. It is observed that moisture absorption is prevalent in the silane-based silicon oxide film due to its porous nature. The incorporation of -OH groups and moisture absorption in the silicon oxide films increase with the storage time (even in clean-room environments) for both as-deposited and annealed silicon oxide films. Due to silanol condensation and silicon oxidation reactions that take place at the bonding interface and in the bulk silicon, hydrogen (a byproduct of these reactions) is released and diffused towards the bonding interface. The trapped hydrogen forms voids over time. Additionally, the absorbed moisture could evaporate during the post-bond annealing of the bonded wafer pair. As a consequence, defects, such as voids, form at the bonding interface. To address the problem, a thin silicon nitride capping film was deposited on the silicon oxide layer before bonding to serve as a diffusion barrier to prevent moisture absorption and incorporation of -OH groups from the ambient. This process results in defect-free bonded wafers.
Su, Nan-Yao; Ban, Paul; Scheffrahn, Rudolf H
2004-04-01
Polyethylene film impregnated with lambda-cyhalothrin was placed over a sand plot and covered with a concrete slab to allow insecticide movement into the sand for a period of 5.5 yr. Discs of polyethylene film and sand beneath them were sampled annually for 5 yr and at 5.5 yr for bioassay with the Formosan and eastern subterranean termite. Results demonstrated that sufficient quantities of lambda-cyhalothrin were released from the impregnated polyethylene film into adjacent sand to prevent termite penetration. The impregnated film has less environmental impact than conventional liquid termiticides because the insecticide is held in the polymer. Other advantages include its dual function as a construction moisture barrier and ease in verifying its proper installation.
Diamondlike carbon as a moisture barrier and antireflecting coating on optical materials
NASA Technical Reports Server (NTRS)
Woollam, John A.; De, Bhola N.; Chen, L. Y.; Pouch, John J.; Alterovitz, Samuel A.
1990-01-01
Diamondlike carbon (DLC) is amorphous, hard, semitransparent, and is under consideration for use as a coating material for infrared optics. DLC is also designated as a-C:H to indicate its amorphous nature as well as to indicate the presence of large (20 to 55 percent) amounts of hydrogen in the film. Two important questions arise with respect to use of DLC in infrared optics. Will the lack of grain boundaries help to keep moisture from penetrating the film. Secondly, application as an antireflection coating places restrictions on the allowed values of the index of refraction of the film relative to the particular substrate material being used. Will DLC have the correct index range. These two questions are addressed in this paper.
Song, Ah Young; Choi, Ha Young; Lee, Eun Song; Han, Jaejoon; Min, Sea C
2018-04-01
Films containing microencapsulated cinnamon oil (CO) were developed using a large-scale production system to protect against the Indian meal moth (Plodia interpunctella). CO at concentrations of 0%, 0.8%, or 1.7% (w/w ink mixture) was microencapsulated with polyvinyl alcohol. The microencapsulated CO emulsion was mixed with ink (47% or 59%, w/w) and thinner (20% or 25%, w/w) and coated on polypropylene (PP) films. The PP film was then laminated with a low-density polyethylene (LDPE) film on the coated side. The film with microencapsulated CO at 1.7% repelled P. interpunctella most effectively. Microencapsulation did not negatively affect insect repelling activity. The release rate of cinnamaldehyde, an active repellent, was lower when CO was microencapsulated than that in the absence of microencapsulation. Thermogravimetric analysis exhibited that microencapsulation prevented the volatilization of CO. The tensile strength, percentage elongation at break, elastic modulus, and water vapor permeability of the films indicated that microencapsulation did not affect the tensile and moisture barrier properties (P > 0.05). The results of this study suggest that effective films for the prevention of Indian meal moth invasion can be produced by the microencapsulation of CO using a large-scale film production system. Low-density polyethylene-laminated polypropylene films printed with ink incorporating microencapsulated cinnamon oil using a large-scale film production system effectively repelled Indian meal moth larvae. Without altering the tensile and moisture barrier properties of the film, microencapsulation resulted in the release of an active repellent for extended periods with a high thermal stability of cinnamon oil, enabling commercial film production at high temperatures. This anti-insect film system may have applications to other food-packaging films that use the same ink-printing platform. © 2018 Institute of Food Technologists®.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rolston, Nicholas; Printz, Adam D.; Hilt, Florian
Here in this paper, we report on submicron organosilicate barrier films produced rapidly in air by a scalable spray plasma process that improves both the stability and efficiency of perovskite solar cells. The plasma is at sufficiently low temperature to prevent damage to the underlying layers. Oxidizing species and heat from the plasma improve device performance by enhancing both interfacial contact and the conductivity of the hole transporting layer. The thickness of the barrier films is tunable and transparent over the entire visible spectrum. The morphology and density of the barrier are shown to improve with the addition of amore » fluorine-based precursor. Devices with submicron coatings exhibited significant improvements in stability, maintaining 92% of their initial power conversion efficiencies after more than 3000 h in dry heat (85 °C, 25% RH) while also being resistant to degradation under simulated operational conditions of continuous exposure to light, heat, and moisture. X-ray diffraction measurements performed while heating showed the barrier film dramatically slows the formation of PbI 2. The barrier films also are compatible with flexible devices, exhibiting no signs of cracking or delamination after 10000 bending cycles on a 127 μm substrate with a bending radius of 1 cm.« less
Rolston, Nicholas; Printz, Adam D.; Hilt, Florian; ...
2017-10-27
Here in this paper, we report on submicron organosilicate barrier films produced rapidly in air by a scalable spray plasma process that improves both the stability and efficiency of perovskite solar cells. The plasma is at sufficiently low temperature to prevent damage to the underlying layers. Oxidizing species and heat from the plasma improve device performance by enhancing both interfacial contact and the conductivity of the hole transporting layer. The thickness of the barrier films is tunable and transparent over the entire visible spectrum. The morphology and density of the barrier are shown to improve with the addition of amore » fluorine-based precursor. Devices with submicron coatings exhibited significant improvements in stability, maintaining 92% of their initial power conversion efficiencies after more than 3000 h in dry heat (85 °C, 25% RH) while also being resistant to degradation under simulated operational conditions of continuous exposure to light, heat, and moisture. X-ray diffraction measurements performed while heating showed the barrier film dramatically slows the formation of PbI 2. The barrier films also are compatible with flexible devices, exhibiting no signs of cracking or delamination after 10000 bending cycles on a 127 μm substrate with a bending radius of 1 cm.« less
El Halal, Shanise Lisie Mello; Colussi, Rosana; Biduski, Bárbara; Evangelho, Jarine Amaral do; Bruni, Graziella Pinheiro; Antunes, Mariana Dias; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa
2017-01-01
Biodegradable films of native or acetylated starches with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. The tensile strength of the acetylated starch film was lower than those of the native starch film, without fibers. The addition of fibers increased the tensile strength and decreased the elongation and the moisture of native and acetylated starches films. The acetylated starch film showed higher water solubility when compared to native starch film. The addition of cellulose fibers reduced the water solubility of the acetylated starch film. The films reinforced with cellulose fiber exhibited a higher initial decomposition temperature and thermal stability. The mechanical, barrier, solubility, and thermal properties are factors which direct the type of the film application in packaging for food products. The films elaborated with acetylated starches of low degree of substitution were not effective in a reduction of the water vapor permeability. The addition of the cellulose fiber in acetylated and native starches films can contribute to the development of more resistant films to be applied in food systems that need to maintain their integrity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Protecting the radiation-damaged skin from friction: a mini review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herst, Patries M
2014-06-15
Radiation-induced skin reactions are an unavoidable side effect of external beam radiation therapy, particularly in areas prone to friction and excess moisture such as the axilla, head and neck region, perineum and skin folds. Clinical studies investigating interventions for preventing or managing these reactions have largely focussed on formulations with moisturising, anti-inflammatory, anti-microbial and wound healing properties. However, none of these interventions has emerged as a consistent candidate for best practice. Much less emphasis has been placed on evaluating ways to protect the radiation-damaged skin from friction and excess moisture. This mini review analyses the clinical evidence for barrier productsmore » that form a protective layer by adhering very closely to the skin folds and do not cause further trauma to the radiation-damaged skin upon removal. A database search identified only two types of barrier products that fitted these criteria and these were tested in two case series and six controlled clinical trials. Friction protection was most effective when the interventions were used from the start of treatment and continued for several weeks after completion of treatment. Soft silicone dressings (Mepilex Lite and Mepitel Film) and Cavilon No Sting Barrier Film, but not Cavilon Moisturizing Barrier Cream, decreased skin reaction severity, most likely due to differences in formulation and skin build-up properties. It seems that prophylactic use of friction protection of areas at risk could be a worthwhile addition to routine care of radiation-damaged skin.« less
Protecting the radiation-damaged skin from friction: a mini review
Herst, Patries M
2014-01-01
Radiation-induced skin reactions are an unavoidable side effect of external beam radiation therapy, particularly in areas prone to friction and excess moisture such as the axilla, head and neck region, perineum and skin folds. Clinical studies investigating interventions for preventing or managing these reactions have largely focussed on formulations with moisturising, anti-inflammatory, anti-microbial and wound healing properties. However, none of these interventions has emerged as a consistent candidate for best practice. Much less emphasis has been placed on evaluating ways to protect the radiation-damaged skin from friction and excess moisture. This mini review analyses the clinical evidence for barrier products that form a protective layer by adhering very closely to the skin folds and do not cause further trauma to the radiation-damaged skin upon removal. A database search identified only two types of barrier products that fitted these criteria and these were tested in two case series and six controlled clinical trials. Friction protection was most effective when the interventions were used from the start of treatment and continued for several weeks after completion of treatment. Soft silicone dressings (Mepilex Lite and Mepitel Film) and Cavilon No Sting Barrier Film, but not Cavilon Moisturizing Barrier Cream, decreased skin reaction severity, most likely due to differences in formulation and skin build-up properties. It seems that prophylactic use of friction protection of areas at risk could be a worthwhile addition to routine care of radiation-damaged skin. PMID:26229646
Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric
2017-02-01
Starch and whey protein isolate and their mixtures were used for making edible films. Moisture sorption isotherms, water vapour permeability, sorption of aroma compounds, microstructure, water contact angle and surface properties were investigated. With increasing protein content, the microstructure changes became more homogeneous. The water vapour permeability increases with both the humidity gradient and the starch content. For all films, the hygroscopicity increases with starch content. Surface properties change according to the starch/whey protein ratio and are mainly related to the polar component of the surface tension. Films composed of 80% starch and 20% whey proteins have more hydrophobic surfaces than the other films due to specific interactions. The effect of carbohydrate/protein ratio significantly influences the microstructure, the surface wettability and the barrier properties of wheat starch-whey protein blend films. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Antimicrobial and enzymatic antibrowning film used as coating for bamboo shoot quality improvement.
Badwaik, Laxmikant S; Borah, Pallab Kumar; Deka, Sankar C
2014-03-15
Edible films were prepared with varying proportion of alginate and starch in the ratio of 2:0(F1), 2:1(F2), 1:1(F3), 1:1.5(F4), 1:2(F5), 0:2(F6) with added carboxymethyl cellulose (15%, w/w of starch). The film F5 had superior barrier, mechanical and thermal properties over the other films. Water vapor permeability, moisture absorption, water solubility, breakage strength and elongation capacity of F5 film were reported as 1.21 × 10(-9)g/Pa h m, 9.37%, 40%, 977.3g and 14.62 mm respectively. However, surface characteristics showed the smooth and uniform film and thermal decomposition took place above 200 °C. The film forming solution of selected F5 film, added with antioxidant and antimicrobial extracts was coated on bamboo shoots and stored for 5 days. The film was successful in lowering the browning of bamboo shoots, and also successfully inhibited surface microbial load. Moreover, the moisture loss of coated shoot was less compared to uncoated. Copyright © 2013 Elsevier Ltd. All rights reserved.
Binsi, P K; Ravishankar, C N; Srinivasa Gopal, T K
2013-04-01
An edible composite film was prepared from an emulsion system based on chitosan and virgin coconut oil (VCO). The effect of incorporation of VCO was evaluated at various concentrations and the optimum concentration was chosen based on resultant changes in the properties of the film. Addition of VCO in film forming solution resulted in increase in film thickness and marginal reduction in film transparency. Compatibility of VCO with chitosan was better at lower concentration of VCO as indicated by the microstructure of composite film in scanning electron micrographs. Phase separation was evident at higher level of oil incorporation and the optimal oil/chitosan ratio was determined to be at 0.5 to 1 mL/g chitosan. Furthermore, chemical interaction took place between VCO and chitosan as revealed by Fourier transform infrared spectroscopy data. Even though control chitosan films exhibited superior gas barrier properties, composite film with optimum VCO concentration revealed better mechanical and moisture sorption properties. © 2013 Institute of Food Technologists®
Balasubramanian, R; Kim, Sam Soo; Lee, Jaewoong
2018-06-24
The aim is to develop novel synergistic transparent k-Carrageenan/Xanthan gum/Gellan gum (k-C/X/G) hydrogel films with different weight ratio composition and to study the effect of these compositions on the physical properties of the films. The structure and morphological properties of the films were investigated by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimeter (DSC). Results for FT-IR, DSC and SEM analysis showed a clear interaction between k-C, X, and G to form a new material. The mechanical, thermal and water barrier properties such as water vapor permeability (WVP), water contact angle (WCA) and moisture content were determined. The temperature at 5% weight loss (T 5% ) are in the range of 64.2-121.9 °C. The WVP exhibits are in the range of 1.8-2.4, contact angle are in the range of 32-65.8° and moisture content 16.5-21.51. The hydrogel film had good tensile strength of 19.1-31.0 MPa and elongation at break of 13-19% and tensile modulus of 1.6-2.4 GPa. The UV results indicate that the films were very transparent. The range of properties of the ternary k-C/X/G hydrogel films suggest that the presence molecular interaction and cross linking within the blends. Copyright © 2018. Published by Elsevier B.V.
Effects of lamination and coating with drying oils on tensile and barrier properties of zein films.
Rakotonirainy, A M; Padua, G W
2001-06-01
Zein films plasticized with oleic acid have been considered potentially useful for biodegradable packaging applications. However, moisture was found to affect their tensile and gas barrier properties. We investigated the effects of two converting processes, fusion lamination and coating with drying oils, on tensile properties and gas permeability of zein films. Zein films were laminated to 4-ply sheets in a Carver press and coated with tung oil, linseed oil, or a mixture of tung and soybean oils. Tensile properties and permeability to water vapor, oxygen, and carbon dioxide were measured according to ASTM methods. Laminated films were clearer, tougher, and more flexible, and had a smoother finish than nontreated sheets. Lamination decreased O(2) and CO(2) permeability by filling in voids and pinholes in the film structure. Coating increased tensile strength and elongation and decreased water vapor permeability. Coatings acted as a composite layer preventing crack propagation and increasing film strength. They also formed a highly hydrophobic surface that prevented film wetting.
Lee, Jun Suk; Sahu, Bibhuti Bhusan; Han, Jeon Geon
2016-11-30
Due to the problem of degradation by moisture or oxygen, there is growing interest in efficient gas diffusion barriers for organic optoelectronic devices. Additionally, for the continuous and long-term operation of a device, dedicated flexible thin film encapsulation is required, which is the foremost challenge. Many efforts are being undertaken in the plasma assisted deposition process control for the optimization of film properties. Control of the plasma density along with the energy of the principal plasma species is critical to inducing alteration of the plasma reactivity, chemistry, and film properties. Here, we have used the radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) technique to deposit amorphous silicon nitride (SiN x ) barrier films onto a plastic substrate at different pressures. A large part of our efforts is devoted to a detailed study of the process parameters controlling the plasma treatment. Numerous plasma diagnostic techniques combined with various characterization tools are purposefully used to characterize and investigate the plasma environment and the associated film properties. This contribution also reports a study of the correlations between the plasma chemistry and the chemical, mechanical, barrier, and optical properties of the deposited films. The data reveal that the film possesses a very low stress for the condition where the net energy imparted on the substrate is at a minimum. Simultaneously, a relatively high ion flux and high energy of the ions impinging on the film growth surfaces are crucial for controlling the film stress and the resulting barrier properties.
Thin film electronic devices with conductive and transparent gas and moisture permeation barriers
Simpson, Lin Jay
2015-07-28
Thin film electronic devices (or stacks integrated with a substrate) that include a permeation barrier formed of a thin layer of metal that provides a light transmitting and electrically conductive layer, wherein the electrical conductive layer is formed on a surface of the substrate or device layer such as a transparent conducting material layer with pin holes or defects caused by manufacturing and the thin layer of metal is deposited on the conductive layer and formed from a self-healing metal that forms self-terminating oxides. A permeation plug or block is formed in or adjacent to the thin film of metal at or proximate to the pin holes to block further permeation of contaminants through the pin holes.
Development and characterization of bilayer films of FucoPol and chitosan.
Ferreira, Ana R V; Torres, Cristiana A V; Freitas, Filomena; Sevrin, Chantal; Grandfils, Christian; Reis, Maria A M; Alves, Vítor D; Coelhoso, Isabel M
2016-08-20
Bilayer films of FucoPol and chitosan were prepared and characterized in terms of optical, morphologic, hygroscopic, mechanical and barrier properties, to evaluate their potential application in food packaging. Bilayer films have shown dense and homogeneous layers, and presented enhanced properties when comparing to monolayer FucoPol films. Though, a high swelling degree in contact with liquid water (263.3%) and a high water vapour permeability (0.75×10(-11)mol/msPa), typical of polysaccharide films, was still observed. However, they presented a low permeability to O2 and CO2 (0.47×10(-16)molm/m(2)sPa and 5.8×10(-16)molm/m(2)sPa, respectively). Tensile tests revealed a flexible and resistant film with an elongation at break of 38% and an elastic modulus of 137MPa. The studied properties, in particular the excellent barrier to gases, impart these bilayer films potential to be used in packaging of low moisture content products, as well as in multilayered hydrophobic/hydrophilic/hydrophobic barriers for food products with a broader range of water content. Copyright © 2016 Elsevier Ltd. All rights reserved.
Andringa, Anne-Marije; Perrotta, Alberto; de Peuter, Koen; Knoops, Harm C M; Kessels, Wilhelmus M M; Creatore, Mariadriana
2015-10-14
Encapsulation of organic (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, and field-effect transistors, is required to minimize device degradation induced by moisture and oxygen ingress. SiNx moisture permeation barriers have been fabricated using a very recently developed low-temperature plasma-assisted atomic layer deposition (ALD) approach, consisting of half-reactions of the substrate with the precursor SiH2(NH(t)Bu)2 and with N2-fed plasma. The deposited films have been characterized in terms of their refractive index and chemical composition by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). The SiNx thin-film refractive index ranges from 1.80 to 1.90 for films deposited at 80 °C up to 200 °C, respectively, and the C, O, and H impurity levels decrease when the deposition temperature increases. The relative open porosity content of the layers has been studied by means of multisolvent ellipsometric porosimetry (EP), adopting three solvents with different kinetic diameters: water (∼0.3 nm), ethanol (∼0.4 nm), and toluene (∼0.6 nm). Irrespective of the deposition temperature, and hence the impurity content in the SiNx films, no uptake of any adsorptive has been observed, pointing to the absence of open pores larger than 0.3 nm in diameter. Instead, multilayer development has been observed, leading to type II isotherms that, according to the IUPAC classification, are characteristic of nonporous layers. The calcium test has been performed in a climate chamber at 20 °C and 50% relative humidity to determine the intrinsic water vapor transmission rate (WVTR) of SiNx barriers deposited at 120 °C. Intrinsic WVTR values in the range of 10(-6) g/m2/day indicate excellent barrier properties for ALD SiNx layers as thin as 10 nm, competing with that of state-of-the-art plasma-enhanced chemical vapor-deposited SiNx layers of a few hundred nanometers in thickness.
Influence of barrier absorption properties on laser patterning thin organic films
NASA Astrophysics Data System (ADS)
Naithani, Sanjeev; Mandamparambil, Rajesh; van Assche, Ferdie; Schaubroeck, David; Fledderus, Henri; Prenen, An; Van Steenberge, Geert; Vanfleteren, Jan
2012-06-01
This paper presents a study of selective ablation of thin organic films (LEP- Light Emitting Polymer, PEDOT:PSS- Poly 3,4-ethylenedioxythiophene: polystyrene sulfonate) by using 248 nm Excimer laser, on various kinds of multilayered SiN barrier foils for the development of Organic Light Emitting Diodes (OLED). Different Silicon Nitride (SiN) barrier foils with dedicated absorption spectra are taken into account for this purpose. The drive for looking into different types of SiN originates from the fact that the laser selective removal of a polymer without damage to the barrier layer underneath is challenging in the dynamic laser processing of thin films. The barrier is solely responsible for the proper encapsulation of the OLED stack. The main limitation of current OLED design is its shorter life span, which is directly related to the moisture or water permeation into the stack, leading to black spots. An optimization of laser parameters like fluence and number of shots has been carried out for the various types of SiN barrier foils. We are able to obtain a wider working process window for the selective removal of LEP and PEDOT:PSS from SiN barrier, by variation of the different types of SiN.
A Comparative Study of Some Properties of Cassava and Tree Cassava Starch Films
NASA Astrophysics Data System (ADS)
Belibi, P. C.; Daou, T. J.; Ndjaka, J. M. B.; Nsom, B.; Michelin, L.; Durand, B.
Cassava and tree cassava starch films plasticized with glycerol were produced by casting method. Different glycerol contents (30, 35, 40 and 45 wt. % on starch dry basis) were used and the resulting films were fully characterized. Their water barrier and mechanical properties were compared. While increasing glycerol concentration, moisture content, water solubility, water vapour permeability, tensile strength, percent elongation at break and Young's modulus decreased for both cassava and tree cassava films. Tree cassava films presented better values of water vapour permeability, water solubility and percent elongation at break compared to those of cassava films, regardless of the glycerol content.
Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films.
Goh, Kunli; Heising, Jenneke K; Yuan, Yang; Karahan, Huseyin E; Wei, Li; Zhai, Shengli; Koh, Jia-Xuan; Htin, Nanda M; Zhang, Feimo; Wang, Rong; Fane, Anthony G; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan
2016-04-20
Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor and oxygen barrier properties compared to many petroleum-derived ones. A key challenge is, therefore, to simultaneously enhance both the water vapor and oxygen barrier properties of the PLA food packaging. To address this issue, we design a sandwich-architectured PLA-graphene composite film, which utilizes an impermeable reduced graphene oxide (rGO) as the core barrier and commercial PLA films as the outer protective encapsulation. The synergy between the barrier and the protective encapsulation results in a significant 87.6% reduction in the water vapor permeability. At the same time, the oxygen permeability is reduced by two orders of magnitude when evaluated under both dry and humid conditions. The excellent barrier properties can be attributed to the compact lamellar microstructure and the hydrophobicity of the rGO core barrier. Mechanistic analysis shows that the large rGO lateral dimension and the small interlayer spacing between the rGO sheets have created an extensive and tortuous diffusion pathway, which is up to 1450-times the thickness of the rGO barrier. In addition, the sandwiched architecture has imbued the PLA-rGO composite film with good processability, which increases the manageability of the film and its competency to be tailored. Simulations using the PLA-rGO composite food packaging film for edible oil and potato chips also exhibit at least eight-fold extension in the shelf life of these oxygen and moisture sensitive food products. Overall, these qualities have demonstrated the high potential of a sandwich-architectured PLA-graphene composite film for food packaging applications.
Mwesigwa, Enosh; Basit, Abdul W
2016-01-30
Barrier coatings are frequently employed on solid oral dosage forms under the assumption that they prevent moisture sorption into tablet cores thereby averting premature degradation of moisture-sensitive active ingredients. However, the efficacy of moisture barrier coatings remains unproven and they may actually accelerate degradation. This study aimed to investigate the barrier performance of four coating systems following application onto a low hygroscopic tablet formulation containing aspirin as a model moisture sensitive drug. Tablets were prepared by direct compaction and coated with aqueous dispersions of Eudragit(®) L30 D-55, Eudragit(®) EPO, Opadry(®) AMB and Sepifilm(®) LP at the vendors' recommended weight gains. Moisture uptake was studied by dynamic vapor sorption at 0 and 75% RH (25°C). Accelerated stability studies were undertaken at 75% RH/25°C for 90 days and HPLC assay was used to determine aspirin content. Uncoated tablet cores equilibrated rapidly and took up very little water (0.09%). The mean water uptake for coated cores was higher than for the uncoated formulation and varied as follows: 0.19% (Eudragit(®) L30 D-55), 0.35% (Opadry(®) AMB), 0.49% (Sepifilm(®) LP) and 0.76% (Eudragit(®) EPO). The level of aspirin decreased in all the samples such that by the time the study was terminated, the mean aspirin recovered was as follows: uncoated cores 80.0%; Eudragit® L30 D-55 coated cores 78.8%; Opadry(®) AMB coated cores 76.2%, Sepifilm(®) LP coated cores 76.0% and Eudragit(®) EPO coated samples 66.5%. From these results, it is concluded that the efficacy of moisture barrier polymer coatings on low hygroscopic cores is limited, and application of these coatings can, instead, enhance drug degradation in solid dosage forms. Copyright © 2015 Elsevier B.V. All rights reserved.
Scarfato, P; Garofalo, E; Di Maio, L; Incarnato, L
2017-06-01
Transport, mechanical and global migration data concern multilayer food packaging films with different layouts, all incorporating a layered silicate/polyamide nanocomposite as oxygen barrier layer, and a low-density polyethylene (LDPE) as moisture resistant layer in direct contact with food. The data are related to "Tuning of co-extrusion processing conditions and film layout to optimize the performances of PA/PE multilayer nanocomposite films for food packaging" by Garofalo et al. (2017) [1]. Nanocomposite multilayer films, with different relative layer thicknesses and clay types, were produced using a laboratory scale co-extrusion blown-film equipment and were analyzed in terms of transport to oxygen and water vapor, mechanical properties and overall migration. The results have shown that all the multilayer hybrid films, based on the copolyamide layer filled with Cloisite 30B, displayed the most significant oxygen barrier improvements and the best mechanical properties compared to the unfilled films. No significant alteration of the overall migration values was observed, as expectable [2], [3], [4]. The performance improvement was more relevant in the case of the film with the thinner nanocomposite layer.
Trout skin gelatin-based edible film development.
Kim, Dayeon; Min, Sea C
2012-09-01
Edible biopolymer films were developed from gelatin extracted from trout skin (TSG) using thermal protein denaturation conditions and plasticizer (glycerol) concentration as variables. The amino acid composition of the TSG, elastic modulus, viscous modulus, and the viscosity of film-forming solutions, and tensile properties, water vapor permeability, solubility in water, and color of TSG-based films were determined. A 6.8% (w/w, wet basis) trout skin-extracted gelatin solution containing 9, 17, or 23% (w/w, dry basis) glycerol was heated at 80, 90, or 100 °C for 30, 45, or 60 min to prepare a film-forming solution. TSG can be characterized as a gelatin containing high contents of methionine and aspartic acid. The gelation temperature of the film-forming solution was 7 °C and the solution was subjected to heating to form a stable matrix for a film. Increased heating time of the film-forming solution reduced the film solubility (P < 0.05). Heating at 90 °C for 30 min was suggested as the requirement for film formation. As the concentration of glycerol in the film increased, film strength and moisture barrier properties decreased, while film stretchability increased (P < 0.05). Trout skin by-products can be used as a natural protein source for fabricating biopolymer films stable at ambient conditions with certain physical and moisture barrier properties by controlling thermal treatment conditions and glycerol concentrations. The fishing industry produces a significant amount of waste, including fish skin, due to fish processing. Trout skin waste has potential value as a protein source that can be used to form biopolymer edible films for packaging low and intermediate water activity food products, and thus may have practical applications in the food industry, which could be one way to cut waste disposal in the trout processing industry. © 2012 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Nyoung Jang, Jin; Jong Lee, You; Jang, YunSung; Yun, JangWon; Yi, Seungjun; Hong, MunPyo
2016-06-01
In this study, we confirm that bombardment by high energy negative oxygen ions (NOIs) is the key origin of electro-optical property degradations in indium tin oxide (ITO) thin films formed by conventional plasma sputtering processes. To minimize the bombardment effect of NOIs, which are generated on the surface of the ITO targets and accelerated by the cathode sheath potential on the magnetron sputter gun (MSG), we introduce a magnetic field shielded sputtering (MFSS) system composed of a permanent magnetic array between the MSG and the substrate holder to block the arrival of energetic NOIs. The MFSS processed ITO thin films reveal a novel nanocrystal imbedded polymorphous structure, and present not only superior electro-optical characteristics but also higher gas diffusion barrier properties. To the best of our knowledge, no gas diffusion barrier composed of a single inorganic thin film formed by conventional plasma sputtering processes achieves such a low moisture permeability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankow, J. W.; Glick, S. H.
2006-05-01
Flexible polymer substrates coated with inorganic oxide moisture barriers are a potential replacement for glass backsheets in thin-film PV (photovoltaic) modules. Silicon oxynitride (SiO{sub x}N{sub y}) deposited by plasma enhanced chemical vapor deposition (PECVD) on polyethylene terephthalate (PET) represents one potential new backsheet candidate. Barrier deposition runs at NREL have included a nitrogen-rich plasma pretreatment prior to barrier deposition with the intention of cleaning the PET surface and enhancing adhesion of the SiO{sub x}N{sub y} barrier film to PET; however, test coupons of PET/barrier/EVA/TPE failed after damp-heat exposure. (EVA is ethylene vinyl acetate and TPE is Tedlar{reg_sign}-PET-EVA). PET substrates exposedmore » to plasma conditions similar to those used in pretreatment were examined by X-ray photoelectron spectroscopy (XPS) to reveal that new low molecular weight PET fragments were created at the PET surface. These fragments are responsible for barrier/PET interfacial failure and barrier transfer to the EVA encapsulant side following damp heat exposure.« less
Antimicrobial edible films and coatings for meat and meat products preservation.
Sánchez-Ortega, Irais; García-Almendárez, Blanca E; Santos-López, Eva María; Amaro-Reyes, Aldo; Barboza-Corona, J Eleazar; Regalado, Carlos
2014-01-01
Animal origin foods are widely distributed and consumed around the world due to their high nutrients availability but may also provide a suitable environment for growth of pathogenic and spoilage microorganisms. Nowadays consumers demand high quality food with an extended shelf life without chemical additives. Edible films and coatings (EFC) added with natural antimicrobials are a promising preservation technology for raw and processed meats because they provide good barrier against spoilage and pathogenic microorganisms. This review gathers updated research reported over the last ten years related to antimicrobial EFC applied to meat and meat products. In addition, the films gas barrier properties contribute to extended shelf life because physicochemical changes, such as color, texture, and moisture, may be significantly minimized. The effectiveness showed by different types of antimicrobial EFC depends on meat source, polymer used, film barrier properties, target microorganism, antimicrobial substance properties, and storage conditions. The perspective of this technology includes tailoring of coating procedures to meet industry requirements and shelf life increase of meat and meat products to ensure quality and safety without changes in sensory characteristics.
Antimicrobial Edible Films and Coatings for Meat and Meat Products Preservation
Sánchez-Ortega, Irais; García-Almendárez, Blanca E.; Santos-López, Eva María; Amaro-Reyes, Aldo; Barboza-Corona, J. Eleazar; Regalado, Carlos
2014-01-01
Animal origin foods are widely distributed and consumed around the world due to their high nutrients availability but may also provide a suitable environment for growth of pathogenic and spoilage microorganisms. Nowadays consumers demand high quality food with an extended shelf life without chemical additives. Edible films and coatings (EFC) added with natural antimicrobials are a promising preservation technology for raw and processed meats because they provide good barrier against spoilage and pathogenic microorganisms. This review gathers updated research reported over the last ten years related to antimicrobial EFC applied to meat and meat products. In addition, the films gas barrier properties contribute to extended shelf life because physicochemical changes, such as color, texture, and moisture, may be significantly minimized. The effectiveness showed by different types of antimicrobial EFC depends on meat source, polymer used, film barrier properties, target microorganism, antimicrobial substance properties, and storage conditions. The perspective of this technology includes tailoring of coating procedures to meet industry requirements and shelf life increase of meat and meat products to ensure quality and safety without changes in sensory characteristics. PMID:25050387
Lu, Peng; Xiao, Huining; Zhang, Weiwei; Gong, Glen
2014-10-13
Nanofibrillated cellulose (NFC) easily forms a high strength film but is unable to withstand the influence of water vapor when used in high moisture situations. The water vapor transmission rate (WVTR) of a NFC film was as high as 5088 g/m(2)24h (38 °C, 90% RH). The addition of beeswax latex in a NFC casting film (NFX) lowered the WVTR to 3918 g/m(2)24h. To further reduce the WVTR, a coating agent comprised of acrylated epoxidized soybean oil (AESO) and 3-aminopropyltriethoxysilane (APTS) was applied onto the NFX film using a rod coater. A combination of the suitable AESO/APTS ratio, initiator dosing, curing time and temperature could reduce the WVTR to 188 g/m(2) 24h when the coat weight was 5 g/m(2). Moreover, the coated NFX film was highly hydrophobic along with the improved transparency and thermal stability. This biodegradable polymer-coated NFC film can be used as potential packaging barrier in certain areas. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rice stubble as a new biopolymer source to produce carboxymethyl cellulose-blended films.
Rodsamran, Pattrathip; Sothornvit, Rungsinee
2017-09-01
Rice stubble is agricultural waste consisting of cellulose which can be converted to carboxymethyl cellulose from rice stubble (CMCr) as a potential biomaterial. Plasticizer types (glycerol and olive oil) and their contents were investigated to provide flexibility for use as food packaging material. Glycerol content enhanced extensibility, while olive oil content improved the moisture barrier of films. Additionally, CMCr showed potential as a replacement for up to 50% of commercial CMC without any changes in mechanical and permeability properties. A mixture of plasticizers (10% glycerol and 10% olive oil) provided blended film with good water barrier and mechanical properties comparable with 20% individual plasticizer. Principle component (PC) analysis with 2 PCs explained approximately 81% of the total variance, was a useful tool to select a suitable plasticizer ratio for blended film production. Therefore, CMCr can be used to form edible film and coating as a renewable environmentally friendly packaging material. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thin film electronic devices with conductive and transparent gas and moisture permeation barriers
Simpson, Lin Jay
2013-12-17
A thin film stack (100, 200) is provided for use in electronic devices such as photovoltaic devices. The stack (100, 200) may be integrated with a substrate (110) such as a light transmitting/transmissive layer. A electrical conductor layer (120, 220) is formed on a surface of the substrate (110) or device layer such as a transparent conducting (TC) material layer (120,220) with pin holes or defects (224) caused by manufacturing. The stack (100) includes a thin film (130, 230) of metal that acts as a barrier for environmental contaminants (226, 228). The metal thin film (130,230) is deposited on the conductor layer (120, 220) and formed from a self-healing metal such as a metal that forms self-terminating oxides. A permeation plug or block (236) is formed in or adjacent to the thin film (130, 230) of metal at or proximate to the pin holes (224) to block further permeation of contaminants through the pin holes (224).
Low-cost, flexible battery packaging materials
NASA Astrophysics Data System (ADS)
Jansen, Andrew N.; Amine, Khalil; Newman, Aron E.; Vissers, Donald R.; Henriksen, Gary L.
2002-03-01
Considerable cost savings can be realized if the metal container used for lithium-based batteries is replaced with a flexible multi-laminate containment commonly used in the food packaging industry. This laminate structure must have air, moisture, and electrolyte barrier capabilities, be resistant to hydrogen-fluoride attack, and be heat-sealable. After extensive screening of commercial films, the polyethylene and polypropylene classes of polymers were found to have an adequate combination of mechanical, permeation, and seal-strength properties. The search for a better film and adhesive is ongoing.
NASA Astrophysics Data System (ADS)
Kiese, Sandra; Kücükpinar, Esra; Reinelt, Matthias; Miesbauer, Oliver; Ewender, Johann; Langowski, Horst-Christian
2017-02-01
Flexible organic electronic devices are often protected from degradation by encapsulation in multilayered films with very high barrier properties against moisture and oxygen. However, metrology must be improved to detect such low quantities of permeants. We therefore developed a modified ultra-low permeation measurement device based on a constant-flow carrier-gas system to measure both the transient and stationary water vapor permeation through high-performance barrier films. The accumulation of permeated water vapor before its transport to the detector allows the measurement of very low water vapor transmission rates (WVTRs) down to 2 × 10-5 g m-2 d-1. The measurement cells are stored in a temperature-controlled chamber, allowing WVTR measurements within the temperature range 23-80 °C. Differences in relative humidity can be controlled within the range 15%-90%. The WVTR values determined using the novel measurement device agree with those measured using a commercially available carrier-gas device from MOCON®. Depending on the structure and quality of the barrier film, it may take a long time for the WVTR to reach a steady-state value. However, by using a combination of the time-dependent measurement and the finite element method, we were able to estimate the steady-state WVTR accurately with significantly shorter measurement times.
Determining ultra-low moisture permeation measurement for sealants on OLED encapsulation
NASA Astrophysics Data System (ADS)
Choi, Byung Il; Woo, Sang Bong; Kim, Jong Chul; Kim, Seung Hun; Seo, Sang Joon
2012-12-01
As the next-generation flexible display elements are very vulnerable to moisture, securing proper encapsulation is a decisive factor in enabling a long working life. Therefore, together with the recent development of plastic barrier films with very low permeabilities, interest in the permeabilities of sealants used for perimetric sealing has been increasing. In this study, equipment with a resolution of approximately ˜10-7 g·day-1 to measure moisture permeability in perimetric sealing was established, and the permeabilities of different sealants were measured. This equipment could have applications not only in the display industry but also in other sectors requiring encapsulation technology, such as the semiconductor and solar cell industries.
Zhang, Siran; Kim, Nayeon; Yokoyama, Wallace; Kim, Yookyung
2018-03-15
Yuba is the skin formed at the surface during the heating of soymilk. The 3rd, 7th, and 11th films were evaluated for properties at different RH. At 39% RH, the 11th film had the lowest moisture, while the 3rd film had the highest moisture. However, at 75% RH, reverse moisture results were obtained. The tensile strengths of the 3rd and 11th films were highest at 15% moisture, whereas the tensile strength of the 7th film was highest at 25% moisture. Elongation of the 3rd (127%) and 11th (85%) films were highest at 25% moisture. The light transmittance of the films was low and opaque at 5% moisture. The films were transparent at 23%-28% moisture, but became opaque as the moisture increased. The films at 39% RH (ΔH, 113-203J/g) had higher thermal stability than those at 87% RH (ΔH, 315-493J/g). Moisture content markedly changed the yuba film properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Han, Yingying; Wang, Lijuan
2017-03-01
Antibacterial films were prepared using sodium alginate (SA) and carboxymethyl cellulose (CMC) as a matrix, glycerin as a plasticizer and CaCl 2 as a cross-linking agent, and by incorporating the natural antibacterial agent pyrogallic acid (PA). The present study describes the microstructure and the physical, barrier, mechanical, optical and antibacterial properties of blended films prepared by incorporating different concentrations of PA into the SA/CMC matrix. The microstructure of the films was investigated by Fourier transform infrared spectroscopy and scanning electron microscopy, which revealed that PA interacts with the SA/CMC matrix through hydrogen bonding. Moreover, the incorporation of PA increased the moisture content, water vapor permeability and oxygen permeability of SA/CMC films. Films containing 40 g kg -1 of PA had the highest elongation at break result (39.60%). Compared with pure SA/CMC films, the incorporation of PA improved the barrier properties against ultraviolet light; however, it decreased the color parameter L* value and increased the a* and b* values of the films. Furthermore, films with PA, especially at higher concentrations, were more effective against Escherichia coli and Staphylococcus aureus. Antibacterial SA/CMC films incorporating PA appear to have good potential to enhance the safety of foods and food products. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Wiltz, B.A.; Woodson, W.D.; Puterka, G.J.
2010-01-01
Effects of three particle film products on Formosan subterranean termites, Coptotermes formosanus Shiraki, were evaluated in feeding, tunneling, and contact assays. The particle films, hydrophobic M96-018 and hydrophilic Surround and Surround WP are based on the inert clay mineral kaolin. In 2-week long no-choice feeding tests, significant mortality occurred only with M96-018-coated wood. When a choice was provided, M96-018 and Surround were consumed at higher rates than untreated wood. Surround WP did not differ from controls in either test. In the tunneling assay termites were given the option of crossing a kaolin-sand mixture to reach an alternate food source. After 3-weeks, rates of 1% and 5% M96-018 provided an effective barrier to Formosan termite tunneling, while termites were not stopped by rates as high as 20% Surround and Surround WP. Dust treatments of all three formulations caused significant increases in mortality within 24 h, with mortality rates ranging from 72.0 - 97.3% within 72 h of treatment. The particle films were most effective when moisture levels were low, suggesting that desiccation was the mechanism for mortality. All particle films showed potential for use in above ground applications while hydrophobic M06-018 has the most potential as a soil barrier to subterranean termites.
Encapsulation of organic light emitting diodes
NASA Astrophysics Data System (ADS)
Visweswaran, Bhadri
Organic Light Emitting Diodes (OLEDs) are extremely attractive candidates for flexible display and lighting panels due to their high contrast ratio, light weight and flexible nature. However, the materials in an OLED get oxidized by extremely small quantities of atmospheric moisture and oxygen. To obtain a flexible OLED device, a flexible thin-film barrier encapsulation with low permeability for water is necessary. Water permeates through a thin-film barrier by 4 modes: microcracks, contaminant particles, along interfaces, and through the bulk of the material. We have developed a flexible barrier film made by Plasma Enhanced Chemical Vapor Deposition (PECVD) that is devoid of any microcracks. In this work we have systematically reduced the permeation from the other three modes to come up with a barrier film design for an operating lifetime of over 10 years. To provide quantitative feedback during barrier material development, techniques for measuring low diffusion coefficient and solubility of water in a barrier material have been developed. The mechanism of water diffusion in the barrier has been identified. From the measurements, we have created a model for predicting the operating lifetime from accelerated tests when the lifetime is limited by bulk diffusion. To prevent the particle induced water permeation, we have encapsulated artificial particles and have studied their cross section. A three layer thin-film that can coat a particle at thicknesses smaller than the particle diameter is identified. It is demonstrated to protect a bottom emission OLED device that was contaminated with standard sized glass beads. The photoresist and the organic layers below the barrier film causes sideways permeation that can reduce the lifetime set by permeation through the bulk of the barrier. To prevent the sideways permeation, an impermeable inorganic grid made of the same barrier material is designed. The reduction in sideways permeation due to the impermeable inorganic grid is demonstrated in an encapsulated OLED. In this work, we have dealt with three permeation mechanisms and shown solution to each of them. These steps give us reliable flexible encapsulation that has a lifetime of greater than 10 years.
Tseng, I-Hsiang; Tsai, Mei-Hui; Chung, Chi-Wei
2014-08-13
Unique two-dimensional alumina nanosheets (Alns) using graphene oxide (GO) as templates are fabricated and successfully incorporated with organo-soluble polyimide (PI) to obtain highly transparent PI nanocomposite films with improved moisture barrier property. The effects of filler types and contents on water vapor transmission rate (WVTR) and transparency of PI are systematically studied. The hydroxyl groups on GO react with aluminum isopropoxide via sol-gel process to obtain alumina coverd-GO (Al-GO), and then thermal decomposition is applied to obtain Alns. Alns are the most efficient fillers among others to restrict the diffusion of water vapor within PI matrix and simultaneously maintain the transparency of PI. XRD pattern, TEM, and AFM images confirm the sheet-like morphology of Alns with ultrahigh aspect ratio. With only 0.01 wt % of Alns, the PI nanocomposite film exhibits the most significant reduction of 95% in WVTR as compared to that of pure PI film. Most importantly, the resultant PI/Alns-0.01 film exhibits excellent optical transparency and high mechanical strength and great thermal stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maindron, Tony, E-mail: tony.maindron@cea.fr; Jullien, Tony; André, Agathe
2016-05-15
Al{sub 2}O{sub 3} [20 nm, atomic layer deposition (ALD)] and SiO films' [25 nm, physical vacuum deposition (PVD)] single barriers as well as hybrid barriers of the Al{sub 2}O{sub 3}/SiO or SiO/Al{sub 2}O{sub 3} have been deposited onto single 100 nm thick tris-(8-hydroxyquinoline) aluminum (AlQ{sub 3}) organic films made onto silicon wafers. The defects in the different barrier layers could be easily observed as nonfluorescent AlQ{sub 3} black spots, under ultraviolet light on the different systems stored into accelerated aging conditions (85 °C/85% RH, ∼2000 h). It has been observed that all devices containing an Al{sub 2}O{sub 3} layer present a lag time τ frommore » which defect densities of the different systems start to increase significantly. This is coherent with the supposed pinhole-free nature of fresh, ALD-deposited, Al{sub 2}O{sub 3} films. For t > τ, the number of defect grows linearly with storage time. For devices with the single Al{sub 2}O{sub 3} barrier layer, τ has been estimated to be 64 h. For t > τ, the defect occurrence rate has been calculated to be 0.268/cm{sup 2}/h. Then, a total failure of fluorescence of the AlQ{sub 3} film appears between 520 and 670 h, indicating that the Al{sub 2}O{sub 3} barrier has been totally degraded by the hot moisture. Interestingly, the device with the hybrid barrier SiO/Al{sub 2}O{sub 3} shows the same characteristics as the device with the single Al{sub 2}O{sub 3} barrier (τ = 59 h; 0.246/cm{sup 2}/h for t > τ), indicating that Al{sub 2}O{sub 3} ALD is the factor that limits the performance of the barrier system when it is directly exposed to moisture condensation. At the end of the storage period (1410 h), the defect density for the system with the hybrid SiO/Al{sub 2}O{sub 3} barrier is 120/cm{sup 2}. The best sequence has been obtained when Al{sub 2}O{sub 3} is passivated by the SiO layer (Al{sub 2}O{sub 3}/SiO). In that case, a large lag time of 795 h and a very low defect growth rate of 0.032/cm{sup 2}/h (t > τ) have been measured. At the end of the storage test (2003 h), the defect density remains very low, i.e., only 50/cm{sup 2}. On the other hand, the device with the single PVD-deposited SiO barrier layer shows no significant lag time (τ ∼ 0), and the number of defects grows linearly from initial time with a high occurrence rate of 0.517/cm{sup 2}/h. This is coherent with the pinhole-full nature of fresh, PVD-deposited, SiO films. At intermediate times, a second regime shows a lower defect occurrence rate of 0.062/cm{sup 2}/h. At a longer time span (t > 1200 h), the SiO barrier begins to degrade, and a localized crystallization onto the oxide surface, giving rise to new defects (occurrence rate 0.461/cm{sup 2}/h), could be observed. At the end of the test (2003 h), single SiO films show a very high defect density of 600/cm{sup 2}. Interestingly, the SiO surface in the Al{sub 2}O{sub 3}/SiO device does not appeared crystallized at a high time span, suggesting that the crystallization observed on the SiO surface in the AlQ{sub 3}/SiO device rather originates into the AlQ{sub 3} layer, due to high humidity ingress on the organic layer through SiO pinholes. This has been confirmed by atomic force microscopy surface imaging of the AlQ{sub 3}/SiO surface showing a central hole in the crystallization zone with a 60 nm depth, deeper than SiO thickness (25 nm). Using the organic AlQ{sub 3} sensor, the different observations made in this work give a quantitative comparison of defects' occurrence and growth in ALD-deposited versus PVD-deposited oxide films, as well as in their combination PVD/ALD and ALD/PVD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hyunsoo; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741; Jeon, Heeyoung
2014-02-21
Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition have been used for thin film encapsulation of organic light emitting diode. In this study, a multi-density layer structure consisting of two Al{sub 2}O{sub 3} layers with different densities are deposited with different deposition conditions of O{sub 2} plasma reactant time. This structure improves moisture permeation barrier characteristics, as confirmed by a water vapor transmission rate (WVTR) test. The lowest WVTR of the multi-density layer structure was 4.7 × 10{sup −5} gm{sup −2} day{sup −1}, which is one order of magnitude less than WVTR for the reference single-density Al{submore » 2}O{sub 3} layer. This improvement is attributed to the location mismatch of paths for atmospheric gases, such as O{sub 2} and H{sub 2}O, in the film due to different densities in the layers. This mechanism is analyzed by high resolution transmission electron microscopy, elastic recoil detection, and angle resolved X-ray photoelectron spectroscopy. These results confirmed that the multi-density layer structure exhibits very good characteristics as an encapsulation layer via location mismatch of paths for H{sub 2}O and O{sub 2} between the two layers.« less
Unraveling the Water Impermeability Discrepancy in CVD-Grown Graphene.
Kwak, Jinsung; Kim, Se-Yang; Jo, Yongsu; Kim, Na Yeon; Kim, Sung Youb; Lee, Zonghoon; Kwon, Soon-Yong
2018-06-11
Graphene has recently attracted particular interest as a flexible barrier film preventing permeation of gases and moistures. However, it has been proved to be exceptionally challenging to develop large-scale graphene films with little oxygen and moisture permeation suitable for industrial uses, mainly due to the presence of nanometer-sized defects of obscure origins. Here, the origins of water permeable routes on graphene-coated Cu foils are investigated by observing the micrometer-sized rusts in the underlying Cu substrates, and a site-selective passivation method of the nanometer-sized routes is devised. It is revealed that nanometer-sized holes or cracks are primarily concentrated on graphene wrinkles rather than on other structural imperfections, resulting in severe degradation of its water impermeability. They are found to be predominantly induced by the delamination of graphene bound to Cu as a release of thermal stress during the cooling stage after graphene growth, especially at the intersection of the Cu step edges and wrinkles owing to their higher adhesion energy. Furthermore, the investigated routes are site-selectively passivated by an electron-beam-induced amorphous carbon layer, thus a substantial improvement in water impermeability is achieved. This approach is likely to be extended for offering novel barrier properties in flexible films based on graphene and on other atomic crystals. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ren, Lili; Yan, Xiaoxia; Zhou, Jiang; Tong, Jin; Su, Xingguang
2017-12-01
The active packaging films based on corn starch and chitosan were prepared through mixing the starch solution and the chitosan solution (1:1) by casting. The aim of this work was to characterize and analyze the effects of the chitosan concentrations (0, 21, 41, 61 and 81wt% of starch) on physicochemical, mechanical and water vapor barrier properties as well as morphological characteristics of the corn starch/chitosan (CS/CH) films. Starch molecules and chitosan could interact through hydrogen bonding as confirmed from the shift of the main peaks to higher wavenumbers in FTIR and the reduction of crystallinity in XRD. Results showed that the incorporation of chitosan resulted in an increase in film solubility, total color differences, tensile strength and elongation at break and a decrease in Young's modulus and water vapor permeability (WVP). Elongation at break of the CS/CH films increased with increasing of chitosan concentration, and reached a maximum at 41 wt%, then declined at higher chitosan concentration. The WVP of CS/CH films increased with an increase of chitosan concentration and the same tendency observed for the moisture content. The results suggest that this biodegradable CS/CH films could potentially be used as active packaging films for food and pharmaceutical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Cherpinski, Adriane; Torres-Giner, Sergio; Cabedo, Luis; Lagaron, Jose M
2017-10-01
Polyhydroxyalkanoates (PHAs) are one of the most researched family of biodegradable polymers based on renewable materials due to their thermoplastic nature and moisture resistance. The present study was targeted to investigate the preparation and characterization of poly(3-hydroxybutyrate) (PHB) films obtained through the electrospinning technique. To convert them into continuous films and then to increase their application interest in packaging, the electrospun fiber mats were subsequently post-processed by different physical treatments. Thus, the effect of annealing time and cooling method on morphology, molecular order, thermal, optical, mechanical, and barrier properties of the electrospun submicron PHB fibers was studied. Annealing at 160°C, well below the homopolyester melting point, was found to be the minimum temperature at which homogeneous transparent films were produced. The film samples that were cooled slowly after annealing showed the lowest permeability to oxygen, water vapor, and limonene. The optimally post-processed electrospun PHB fibers exhibited similar rigidity to conventional compression-molded PHA films, but with enhanced elongation at break and toughness. Films made by this electrospinning technique have many potential applications, such as in the design of barrier layers, adhesive interlayers, and coatings for fiber- and plastic-based food packaging materials.
Takahashi, Kiyonori; Ishii, Ryo; Nakamura, Takashi; Suzuki, Asami; Ebina, Takeo; Yoshida, Manabu; Kubota, Munehiro; Nge, Thi Thi; Yamada, Tatsuhiko
2017-05-01
Requirements for flexible electronic substrate are successfully accomplished by green nanocomposite film fabricated with two natural components: glycol-modified biomass lignin and Li + montmorillonite clay. In addition to these major components, a cross-linking polymer between the lignin is incorporated into montmorillonite. Multilayer-assembled structure is formed due to stacking nature of high aspect montmorillonite, resulting in thermal durability up to 573 K, low thermal expansion, and oxygen barrier property below measurable limit. Preannealing for montmorillonite and the cross-linking formation enhance moisture barrier property superior to that of industrial engineering plastics, polyimide. As a result, the film has advantages for electronic film substrate. Furthermore, these properties can be achieved at the drying temperature up to 503 K, while the polyimide films are difficult to fabricate by this temperature. In order to examine its applicability for substrate film, flexible electrodes are finely printed on it and touch sensor device can be constructed with rigid elements on the electrode. In consequence, this nanocomposite film is expected to contribute to production of functional materials, progresses in expansion of biomass usage with low energy consumption, and construction of environmental friendly flexible electronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of plasticizer on moisture sorption isotherm of sugar palm (Arenga Pinnata) starch film
NASA Astrophysics Data System (ADS)
Jatmiko, Tri Hadi; Poeloengasih, Crescentiana D.; Prasetyo, Dwi Joko; Rosyida, Vita Taufika
2016-02-01
The effect of plasticizer type (glycerol, sorbitol) and plasticizer concentrations (30, 35, 40, 45% w/w polymer) on the moisture sorption isotherm characteristics of sugar palm (Arenga pinnata) starch films were investigated. Moisture affinity of sugar palm starch films was influenced by the plasticizer type and plasticizer concentration. The affinity of the glycerol plasticized film is stronger than that of sorbitol plasticized film. Sugar palm starch film with a higher concentration of glycerol absorbs more moisture with higher initial absorption rate than that of with sorbitol. Films with higher plasticizer concentration of glycerol and sorbitol show higher equilibrium moisture contents at the given relative humidity. The moisture sorption isotherm characteristic of sugar palm starch films can be described very well with the semi empirical 4 parameter Peleg's model.
Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air
NASA Astrophysics Data System (ADS)
Zhang, Jian; Xu, Wu; Liu, Wei
In this work, nonaqueous electrolyte-based Li-air batteries with an O 2-selective membrane have been developed for operation in ambient air of 20-30% relative humidity (RH). The O 2 gas is continuously supplied through a membrane barrier layer at the interface of the cathode and ambient air. The membrane allows O 2 to permeate through while blocking moisture. Such membranes can be prepared by loading O 2-selective silicone oils into porous supports such as porous metal sheets and Teflon (PTFE) films. It was found that the silicone oil of high viscosity shows better performance. The immobilized silicone oil membrane in the porous PTFE film enabled the Li-air batteries with carbon black air electrodes to operate in ambient air (at 20% RH) for 16.3 days with a specific capacity of 789 mAh g -1 carbon and a specific energy of 2182 Wh kg -1 carbon. Its performance is much better than a reference battery assembled with a commercial, porous PTFE diffusion membranes as the moisture barrier layer on the cathode, which only had a discharge time of 5.5 days corresponding to a specific capacity of 267 mAh g -1 carbon and a specific energy of 704 Wh kg -1 carbon. The Li-air battery with the present selective membrane barrier layer even showed better performance in ambient air operation (20% RH) than the reference battery tested in the dry air box (<1% RH).
Hu, Xiaorong; Chen, Lin; Tao, Dandan; Ma, Zhaocheng; Liu, Shilin
2017-01-05
The hydrophilic property of cellulose is a key limiting factor for its wide application. Here, a novel solution impregnation pathway was developed to increase the hydrophobic properties of cellulose. When compared with the regenerated cellulose (RC), the composite films showed a decrease in water uptake ability towards water vapor, and an increase of the water contact angle from 29° to 65° with increasing resin content in the composites, with only a slight change in the transmittance. Furthermore, the Young's modulus value increased from 3.2 GPa (RC film) to 5.1 GPa (RCBEA50 film). The results indicated that the composites had combined the advantages of cellulose and biphenyl A epoxy acrylate prepolymer (BEA) resin. The presented method has great potential for the preparation of biocomposites with improved properties. The overall results suggest that composite films can be used as high-performance packaging materials.
Hu, Xiaorong; Chen, Lin; Tao, Dandan; Ma, Zhaocheng; Liu, Shilin
2017-01-01
The hydrophilic property of cellulose is a key limiting factor for its wide application. Here, a novel solution impregnation pathway was developed to increase the hydrophobic properties of cellulose. When compared with the regenerated cellulose (RC), the composite films showed a decrease in water uptake ability towards water vapor, and an increase of the water contact angle from 29° to 65° with increasing resin content in the composites, with only a slight change in the transmittance. Furthermore, the Young’s modulus value increased from 3.2 GPa (RC film) to 5.1 GPa (RCBEA50 film). The results indicated that the composites had combined the advantages of cellulose and biphenyl A epoxy acrylate prepolymer (BEA) resin. The presented method has great potential for the preparation of biocomposites with improved properties. The overall results suggest that composite films can be used as high-performance packaging materials. PMID:28772399
Ballesteros, Lina F; Cerqueira, Miguel A; Teixeira, José A; Mussatto, Solange I
2018-01-01
Extracts rich in polysaccharides were obtained by alkali pretreatment (PA) or autohydrolysis (PB) of spent coffee grounds, and incorporated into a carboxymethyl cellulose (CMC)-based film aiming at the development of bio-based films with new functionalities. Different concentrations of PA or PB (up to 0.20% w/v) were added to the CMC-based film and the physicochemical properties of the final films were determined. Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, as well as determinations of optical and mechanical properties, moisture content, solubility in water, water vapor permeability, contact angle and sorption isotherms were performed. The addition of PA or PB resulted in important changes in the properties of the CMC-based film, mainly in color and opacity. The polysaccharides incorporation significantly improved the light barrier of the film and provided an enhancement or at least a preservation in the physicochemical properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Thermal Insulation System for Non-Vacuum Applications Including a Multilayer Composite
NASA Technical Reports Server (NTRS)
Fesmire, James E. (Inventor)
2017-01-01
The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern. The thermal insulation system provides physical resilience against damaging mechanical effects including compression, flexure, impact, vibration, and thermal expansion/contraction.
de Morais Lima, Maria; Carneiro, Lucia Cesar; Bianchini, Daniela; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa; Prentice, Carlos; Moreira, Angelita da Silveira
2017-03-01
Films based on chitosan and xanthan gum were prepared using casting technique aiming to investigate the potential of these polymers as packaging materials. Six formulations of films were studied varying the proportion of chitosan and xanthan gum: 100:0 (chitosan:xanthan gum, w/w, C100XG0 film); 90:10 (chitosan:xanthan gum, w/w, C90XG10 film); 80:20 (chitosan:xanthan gum, w/w, C80XG20 film); 70:30 (chitosan:xanthan gum, w/w, C70XG30 film); 60:40 (chitosan:xanthan gum, w/w, C60XG40 film); and 50:50 (chitosan:xanthan gum, w/w, C50XG50 film). The total quantity of solids (chitosan and xanthan gum) in the filmogenic solution was 1.5 g per 100 mL of aqueous solution for all treatments, according to the proportion of each polymer. The films were evaluated by their functional groups, structural, thermal, morphological, physical, mechanical, and barrier properties. All films have presented endothermic peaks in the range of 122 to 175 °C and broad exothermic peaks above 200 °C, which were assigned to the melting temperature and thermal decomposition, respectively. These results demonstrated that films with xanthan gum have the highest T m and Δ m H. The films containing higher content of xanthan gum show also the highest tensile strength and the lowest elongation. Xanthan gum addition did not affect the water vapor permeability, solubility, and moisture of films. This set of data suggests the formation of chitosan-xanthan complexes in the films. © 2017 Institute of Food Technologists®.
Stability of perovskite solar cells on flexible substrates
NASA Astrophysics Data System (ADS)
Tam, Ho Won; Chen, Wei; Liu, Fangzhou; He, Yanling; Leung, Tik Lun; Wang, Yushu; Wong, Man Kwong; Djurišić, Aleksandra B.; Ng, Alan Man Ching; He, Zhubing; Chan, Wai Kin; Tang, Jinyao
2018-02-01
Perovskite solar cells are emerging photovoltaic technology with potential for low cost, high efficiency devices. Currently, flexible devices efficiencies over 15% have been achieved. Flexible devices are of significant interest for achieving very low production cost via roll-to-roll processing. However, the stability of perovskite devices remains a significant challenge. Unlike glass substrate which has negligible water vapor transmission rate (WVTR), polymeric flexible film substrates suffer from high moisture permeability. As PET and PEN flexible substrates exhibit higher water permeability then glass, transparent flexible backside encapsulation should be used to maximize light harvesting in perovskite layer while WVTR should be low enough. Wide band gap materials are transparent in the visible spectral range low temperature processable and can be a moisture barrier. For flexible substrates, approaches like atomic layer deposition (ALD) and low temperature solution processing could be used for metal oxide deposition. In this work, ALD SnO2, TiO2, Al2O3 and solution processed spin-on-glass was used as the barrier layer on the polymeric side of indium tin oxide (ITO) coated PEN substrates. The UV-Vis transmission spectra of the prepared substrates were investigated. Perovskite solar cells will be fabricated and stability of the devices were encapsulated with copolymer films on the top side and tested under standard ISOS-L-1 protocol and then compared to the commercial unmodified ITO/PET or ITO/PEN substrates. In addition, devices with copolymer films laminated on both sides successfully surviving more than 300 hours upon continuous AM1.5G illumination were demonstrated.
Advanced Anticorrosion Coating Materials Derived from Sunflower Oil with Bifunctional Properties.
Balakrishnan, Thiruparasakthi; Sathiyanarayanan, Sadagopan; Mayavan, Sundar
2015-09-09
High-performance barrier films preventing permeation of moisture, aggressive chloride ions, and corrosive acids are important for many industries ranging from food to aviation. In the current study, pristine sunflower oil was used to form uniform adherent films on iron (Fe) via a simple single-step thermal treatment (without involving any initiator/mediator/catalyst). Oxidation of oil on heating results in a highly conjugated (oxidized) crystalline lamellar network with interlayer separation of 0.445 nm on Fe. The electrochemical corrosion tests proved that the coating exhibits superior anticorrosion performance with high coating resistance (>10(9) ohm cm2) and low capacitance values (<10(-10) F cm(-2)) as compared to bare Fe, graphene, and conducting polymer based coatings in 1 M hydrochloric acid solutions. The electrochemical analyses reveal that the oil coatings developed in this study provided a two-fold protection of passivation from the oxide layer and barrier from polymeric films. It is clearly observed that there is no change in structure, morphology, or electrochemical properties even after a prolonged exposure time of 80 days. This work indicates the prospect of developing highly inert, environmentally green, nontoxic, and micrometer level passivating barrier coatings from more sustainable and renewable sources, which can be of interest for numerous applications.
The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication.
Eperon, Giles E; Habisreutinger, Severin N; Leijtens, Tomas; Bruijnaers, Bardo J; van Franeker, Jacobus J; deQuilettes, Dane W; Pathak, Sandeep; Sutton, Rebecca J; Grancini, Giulia; Ginger, David S; Janssen, Rene A J; Petrozza, Annamaria; Snaith, Henry J
2015-09-22
Moisture, in the form of ambient humidity, has a significant impact on methylammonium lead halide perovskite films. In particular, due to the hygroscopic nature of the methylammonium component, moisture plays a significant role during film formation. This issue has so far not been well understood and neither has the impact of moisture on the physical properties of resultant films. Herein, we carry out a comprehensive and well-controlled study of the effect of moisture exposure on methylammonium lead halide perovskite film formation and properties. We find that films formed in higher humidity atmospheres have a less continuous morphology but significantly improved photoluminescence, and that film formation is faster. In photovoltaic devices, we find that exposure to moisture, either in the precursor solution or in the atmosphere during formation, results in significantly improved open-circuit voltages and hence overall device performance. We then find that by post-treating dry films with moisture exposure, we can enhance photovoltaic performance and photoluminescence in a similar way. The enhanced photoluminescence and open-circuit voltage imply that the material quality is improved in films that have been exposed to moisture. We determine that this improvement stems from a reduction in trap density in the films, which we postulate to be due to the partial solvation of the methylammonium component and "self-healing" of the perovskite lattice. This work highlights the importance of controlled moisture exposure when fabricating high-performance perovskite devices and provides guidelines for the optimum environment for fabrication. Moreover, we note that often an unintentional water exposure is likely responsible for the high performance of solar cells produced in some laboratories, whereas careful synthesis and fabrication in a dry environment will lead to lower-performing devices.
NASA Astrophysics Data System (ADS)
Han, Jin-Woo; Kang, Hee-Jin; Kim, Jong-Yeon; Kim, Gwi-Yeol; Seo, Dae-Shik
2006-12-01
In this study, inorganic multilayer thin-film encapsulation is adopted for the first time to protect an organic layer from moisture and oxygen. Inorganic multilayer thin-film encapsulation is deposited onto poly(ethylene terephthalate) (PET) using an electron beam and sputtering. The SiON/SiO2 and parylene layer show the most suitable properties. Under these conditions, the water vapor transmission rate (WVTR) for PET can be reduced from a level of 0.57 g m-2 day-1 (bare substrate) to 1× 10-5 g m-2 day-1 after the application of a SiON and SiO2 layer. These results indicate that PET/parylene/SiO2/SiON barrier coatings have high potential for flexible organic light-emitting diode (OLED) applications.
Evaluation of soil moisture barrier.
DOT National Transportation Integrated Search
2000-06-01
This report is an extension report and examines one of the measures being tried to stabilize the development : of pavement damage on expansive soils, which is the use of horizontal moisture barriers. The moisture barrier : will not stop horizontal fl...
Ethylene vinyl alcohol: a review of barrier properties for packaging shelf stable foods.
Mokwena, K Khanah; Tang, Juming
2012-01-01
Ethylene vinyl alcohol (EVOH) is one of the best known flexible thermoplastic oxygen barrier materials in use today. It is especially important for refrigerated and shelf-stable foods where oxygen deteriorates the quality of packaged products and reduces their shelf life. EVOH accounts for a majority of thermoplastic barrier materials used for rigid or semi-rigid retortable food containers. However. it is of limited use in flexible packages or lid films for rigid trays used for packaging thermally processed shelf-stable low acid foods due to its moisture sensitivity. Nevertheless, current use of other oxygen barrier materials such as polyvinylidene chloride and aluminum foil creates environmental concerns. Innovations in food processing technologies provide opportunities for increased use of EVOH in food packaging. The aim of this review is to give an overview of research on the oxygen barrier properties of EVOH from the perspective of structure-barrier property relationships and the consequences of food processing conditions.
Norrlid, Hanna; Hjalte, Frida; Lundqvist, Adam; Svensson, Åke; Tennvall, Gunnel Ragnarson
2016-02-01
Atopic dermatitis is a chronic skin disorder with high prevalence, especially in the Nordic countries. Effective maintenance therapy during symptom-free episodes may prolong the time to eczema relapse according to a previously published clinical trial. The present study evaluates the cost-effectiveness of a barrier-strengthening moisturizer containing 5% urea, compared with a moisturizer with no active ingredients during eczema-free periods. A health economic microsimulation model, based on efficacy data from the randomized clinical trial, analysed the cost-effectiveness of the barrier-strengthening treatment in Finland, Norway and Sweden. The barrier-strengthening moisturizer was cost-saving compared with the moisturizer with no active ingredients in all 3 countries. The result was confirmed in all but one sensitivity analysis. In conclusion, the barrier-strengthening moisturizer is cost-effective as maintenance therapy for patients with atopic dermatitis compared with a moisturizer with no active ingredients.
Moisture and shelf life in sugar confections.
Ergun, R; Lietha, R; Hartel, R W
2010-02-01
From hardening of marshmallow to graining of hard candies, moisture plays a critical role in determining the quality and shelf life of sugar-based confections. Water is important during the manufacturing of confections, is an important factor in governing texture, and is often the limiting parameter during storage that controls shelf life. Thus, an understanding of water relations in confections is critical to controlling quality. Water content, which is controlled during candy manufacturing through an understanding of boiling point elevation, is one of the most important parameters that governs the texture of candies. For example, the texture of caramel progresses from soft and runny to hard and brittle as the moisture content decreases. However, knowledge of water content by itself is insufficient to controlling stability and shelf life. Understanding water activity, or the ratio of vapor pressures, is necessary to control shelf life. A difference in water activity, either between candy and air or between two domains within the candy, is the driving force for moisture migration in confections. When the difference in water activity is large, moisture migration is rapid, although the rate of moisture migration depends on the nature of resistances to water diffusion. Barrier packaging films protect the candy from air whereas edible films inhibit moisture migration between different moisture domains within a confection. More recently, the concept of glass transition, or the polymer science approach, has supplemented water activity as a critical parameter related to candy stability. Confections with low moisture content, such as hard candy, cotton candy, and some caramels and toffees, may contain sugars in the amorphous or glassy state. As long as these products remain below their glass transition temperature, they remain stable for very long times. However, certain glassy sugars tend to be hygroscopic, rapidly picking up moisture from the air, which causes significant changes that lead to the end of shelf life. These products need to be protected from moisture uptake during storage. This review summarizes the concepts of water content, water activity, and glass transition and documents their importance to quality and shelf life of confections.
Luangtana-Anan, Manee; Soradech, Sitthiphong; Saengsod, Suthep; Nunthanid, Jurairat; Limmatvapirat, Sontaya
2017-12-01
The aim of this investigation was to develop the high moisture protective ability and stable pectin through the design of composite films based on varying shellac concentrations. A film casting method was applied to prepare a free film. The moisture protective properties and mechanical properties were investigated. The findings was the composite films exhibited the reductions in the hydrophilicity, water vapor permeability, and the moisture content compared with pectin films. The single and composite films were then study for their stability at 40 °C and 75% RH for 90 d. Among the concentrations of shellac, 50% (w/w) could improve stability in terms of moisture protection after 90 d of storage, whereas lower concentrations of shellac (10% to 40%) could not achieve this. However, the higher shellac content also contributed to weaker mechanical properties. The mechanical improvement and stability of composite films with the incorporation of plasticizers were further investigated. Polyethylene glycol 400 and diethyl phthalate at a concentration of 10% were used. The results indicated that both plasticizers could enhance the mechanical characteristics and had a slight effect on moisture protection. The stability of pectin in terms of moisture protective properties could, therefore, be modified through the fabrication of composite films with hydrophobic polymers, that is, shellac and the addition of proper plasticizers to enhance mechanical properties, which could offer wide applications for edible film in food, agro, and pharmaceutical industries. The composite film with 50% shellac could improve moisture protective properties of pectin film. Adding a plasticizer could build up the higher mechanical characteristics of composite film. Stability of pectin could be modified by fabrication of composite films with proper content of shellac and plasticizer. © 2017 Institute of Food Technologists®.
NASA Technical Reports Server (NTRS)
Gaines, G. B.; Carmichael, D. C.; Sliemers, F. A.; Brockway, M. C.; Bunk, A. R.; Nance, G. P.
1978-01-01
Three encapsulation designs for silicon photovoltaic arrays based on cells with silk-screened Ag metallization have been evaluated: transparent polymeric coatings over cells laminated between two films or sheets of polymeric materials; cells adhesively bonded to a glass cover with a polymer pottant and a glass or other substrate component. Silicone and acrylic coatings were assessed, together with acrylic sheet, 0.635 mm fiberglass-reinforced polyester sheet, 0.102 mm polycarbonate/acrylic dual-layer film, 0.127 mm fluorocarbon film, soda-lime glass, borosilicate glass, low-iron glass, and several adhesives. The encapsulation materials were characterized by light transmittance measurements, determination of moisture barrier properties and bond strengths, and by the performance of cells before and after encapsulation. Silicon and acrylic coatings provided inadequate protection. Acrylic and fluorocarbon films displayed good weatherability and acceptable optical transmittance. Borosilicate, low-iron and soda-lime-float glasses were found to be acceptable candidate encapsulants for most environments.
NASA Astrophysics Data System (ADS)
Shinbo, Kazunari; Ishikawa, Hiroshi; Baba, Akira; Ohdaira, Yasuo; Kato, Keizo; Kaneko, Futao
2012-03-01
We fabricated a hybrid sensor utilizing quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) spectroscopy. We confirmed its effectiveness by observing QCM frequency shifts and SPR wavelength changes for two processes: deposition of various transparent polymer thin films and moisture sorption. For thin-film deposition, the relationship between the QCM frequency and SPR wavelength was found to depend on the refractive index of the film material. For moisture sorption, the direction of SPR wavelength shift depended on the film thickness. This was estimated to be caused by film swelling and decrease in refractive index induced by moisture.
Extended Pulse-Powered Humidity-Freeze Cycling for Testing Module-Level Power Electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hacke, Peter L; Rodriguez, Miguel; Kempe, Michael D
An EMI suppression capacitor (polypropylene film type) failed by 'popcorning' due to vapor outgassing in pulse powered humidity-freeze cycles. No shorts or shunts could be detected despite mildly corroded metallization visible in the failed capacitor. Humidity-freeze cycling is optimized to break into moisture barriers. However, further studies will be required on additional module level power electronic (MLPE) devices to optimize the stress testing for condensation to precipitate any weakness to short circuiting and other humidity/bias failure modes.
Liu, Yang; Lv, Huilin; Ren, Li; Xue, Guanhua; Wang, Yingjun
2016-01-01
Cornea disease is the second cause of blindness and keratoplasty is the most commonly performed option for visual rehabilitation of patients with corneal blindness. However, the clinical treatment has been drastically limited due to a severe shortage of high-quality donor corneas. Although collagen film with outstanding biocompatibility has promising application in corneal tissue engineering, the moisturizing properties of collagen-based materials must be further improved to satisfy the requirements of clinical applications. This paper describes a novel collagen-based film with high moisture capacity reinforced by surface grafting of chondroitin sulfate. The collagen-chondroitin sulfate (abbreviated as Col-CS) film was analyzed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy and its hydrophilic property, moisture retention, optical property, and mechanical performance had been tested. The moisture-retaining capacity is found to be improved with the introduction of chondroitin sulfate, and the Col-CS membrane performs better mechanical properties than the collagen film. Moreover, the modified film proves excellent biocompatibility for the proliferation of human corneal epithelial cells in vitro. This Col-CS film with good moisturizing properties can reduce the risk of xerophthalmia and is expected to increase the implant success rate in clinic patients with corneal defects.
Water Sorption Isotherm of Pea Starch Edible Films and Prediction Models.
Saberi, Bahareh; Vuong, Quan V; Chockchaisawasdee, Suwimol; Golding, John B; Scarlett, Christopher J; Stathopoulos, Costas E
2015-12-24
The moisture sorption isotherm of pea starch films prepared with various glycerol contents as plasticizer was investigated at different storage relative humidities (11%-96% RH) and at 5 ± 1, 15 ± 1, 25 ± 1 and 40 ± 1 °C by using gravimetric method. The results showed that the equilibrium moisture content of all films increased substantially above a w = 0.6. Films plasticized with glycerol, under all temperatures and RH conditions (11%-96%), adsorbed more moisture resulting in higher equilibrium moisture contents. Reduction of the temperature enhanced the equilibrium moisture content and monolayer water of the films. The obtained experimental data were fitted to different models including two-parameter equations (Oswin, Henderson, Brunauer-Emmitt-Teller (BET), Flory-Huggins, and Iglesias-Chirife), three-parameter equations Guggenhiem-Anderson-deBoer (GAB), Ferro-Fontan, and Lewicki) and a four-parameter equation (Peleg). The three-parameter Lewicki model was found to be the best-fitted model for representing the experimental data within the studied temperatures and whole range of relative humidities (11%-98%). Addition of glycerol increased the net isosteric heat of moisture sorption of pea starch film. The results provide important information with estimating of stability and functional characteristics of the films in various environments.
Water Sorption Isotherm of Pea Starch Edible Films and Prediction Models
Saberi, Bahareh; Vuong, Quan V.; Chockchaisawasdee, Suwimol; Golding, John B.; Scarlett, Christopher J.; Stathopoulos, Costas E.
2015-01-01
The moisture sorption isotherm of pea starch films prepared with various glycerol contents as plasticizer was investigated at different storage relative humidities (11%–96% RH) and at 5 ± 1, 15 ± 1, 25 ± 1 and 40 ± 1 °C by using gravimetric method. The results showed that the equilibrium moisture content of all films increased substantially above aw = 0.6. Films plasticized with glycerol, under all temperatures and RH conditions (11%–96%), adsorbed more moisture resulting in higher equilibrium moisture contents. Reduction of the temperature enhanced the equilibrium moisture content and monolayer water of the films. The obtained experimental data were fitted to different models including two-parameter equations (Oswin, Henderson, Brunauer–Emmitt–Teller (BET), Flory–Huggins, and Iglesias–Chirife), three-parameter equations Guggenhiem–Anderson–deBoer (GAB), Ferro–Fontan, and Lewicki) and a four-parameter equation (Peleg). The three-parameter Lewicki model was found to be the best-fitted model for representing the experimental data within the studied temperatures and whole range of relative humidities (11%–98%). Addition of glycerol increased the net isosteric heat of moisture sorption of pea starch film. The results provide important information with estimating of stability and functional characteristics of the films in various environments. PMID:28231096
Hambleton, Alicia; Debeaufort, Frédéric; Beney, Laurent; Karbowiak, Thomas; Voilley, Andrée
2008-03-01
Edible films made of iota-carrageenans display interesting advantages: good mechanical properties, stabilization of emulsions, and reduction of oxygen transfers. Moreover, the addition of lipids to iota-carrageenan-based films to form emulsified films decreases the transfer of water vapor and can be considered to encapsulate active molecules as flavors. The aim of this study was to better understand the influence of the composition and the structure of the carrageenan-based film matrices on its barrier properties and thus on its capacity to encapsulate and to protect active substances encapsulated. Granulometry, differential scanning calorimetry, and Fourier transform infrared spectroscopy characterizations of films with or without flavor and/or fat showed that the flavor compound modifies the film structure because of interactions with the iota-carrageenan chains. The study of the water vapor permeability (WVP), realized at 25 and 35 degrees C and for three relative humidity differentials (30-100%, 30-84%, 30-75%), showed that the flavor compound increases significantly the WVP, especially for the weaker gradients, but has no effect on the oxygen permeability. This study brings new understanding of the role of carrageenan as a film matrix and on its capacity to protect encapsulated flavors.
Chen, Guo; Zhang, Bin; Zhao, Jun
2015-01-01
The cellulose sulfate (CS) is a newly developed cellulose derivative. The work aimed to investigate the effect of oleic acid (OA) content on properties of CS-OA film. The process of oleic acid dispersion into film was described to evaluate its effect on the properties of the film. Among the formulations evaluated, the OA addition decreased the solubility and water vapor permeability of the CS-OA film. The surface contact angle changed from 64.2° to 94.0° by increasing CS/OA ratio from 1:0 to 1:0.25 (w/w). The TS increased with OA content below 15% and decreased with OA over 15%, but the ε decreased with higher OA content. The micro-cracking matrices and micro pores in the film indicated the condense structure of the film destroyed by the incorporation of oleic acid. No chemical interaction between the OA and CS was observed in the XRD and FTIR spectrum. Film formulation containing 2% (w/w) CS, 0.3% (w/w) glycerol and 0.3% (w/w) OA, showed good properties of mechanic, barrier to moisture and homogeneity.
Wang, Qi; Chen, Bo; Liu, Ye; ...
2017-01-01
The stability of perovskite solar cells has shown a huge variation with respect to the film process and film morphology, while the underlining mechanism for the morphology-dependent degradation of the perovskite film has remained elusive. Herein, we report a scaling behavior of moisture-induced grain degradation in polycrystalline CH 3NH 3PbI 3 films. The degradation rates of CH 3NH 3PbI 3 films in moisture were shown to be sensitive to the grain sizes. The duration that was needed for different films to degrade by the same percent showed a linear relationship with the grain size, despite the fact that the filmsmore » were formed by five different deposition methods. This scaling behavior can be explained by the degradation along the in-plane direction, which is initiated at the grain boundary (GB). The GBs of CH 3NH 3PbI 3 films consist of an amorphous intergranular layer, which allows quick diffusion of moisture into the perovskite films. It was found that thermal annealing induced surface self-passivation plays a critical role in stabilizing the surfaces of thin films and single crystals by reducing the moisture-sensitive methylammonium ions at the surface. Finally, the determination of the scaling behavior of grain degradation highlights the importance of stabilizing the GBs to improve the stability of perovskite solar cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qi; Chen, Bo; Liu, Ye
The stability of perovskite solar cells has shown a huge variation with respect to the film process and film morphology, while the underlining mechanism for the morphology-dependent degradation of the perovskite film has remained elusive. Herein, we report a scaling behavior of moisture-induced grain degradation in polycrystalline CH 3NH 3PbI 3 films. The degradation rates of CH 3NH 3PbI 3 films in moisture were shown to be sensitive to the grain sizes. The duration that was needed for different films to degrade by the same percent showed a linear relationship with the grain size, despite the fact that the filmsmore » were formed by five different deposition methods. This scaling behavior can be explained by the degradation along the in-plane direction, which is initiated at the grain boundary (GB). The GBs of CH 3NH 3PbI 3 films consist of an amorphous intergranular layer, which allows quick diffusion of moisture into the perovskite films. It was found that thermal annealing induced surface self-passivation plays a critical role in stabilizing the surfaces of thin films and single crystals by reducing the moisture-sensitive methylammonium ions at the surface. Finally, the determination of the scaling behavior of grain degradation highlights the importance of stabilizing the GBs to improve the stability of perovskite solar cells.« less
NASA Astrophysics Data System (ADS)
Kumar, Lokesh; Kumar, Shailesh; Khan, S. A.; Islam, Tariqul
2012-10-01
A moisture sensor was fabricated based on porous thin film of γ-Al2O3 formed between the parallel gold electrodes. The sensor works on capacitive technique. The sensing film was fabricated by dipcoating of aluminium hydroxide sol solution obtained from the sol-gel method. The porous structure of the film of γ-Al2O3 phase was obtained by sintering the film at 450 °C for 1 h. The electrical parameters of the sensor have been determined by Agilent 4294A impedance analyzer. The sensor so obtained is found to be sensitive in moisture range 100-600 ppmV. The response time of the sensor in ppmV range moisture is very low ~ 24 s and recovery time is ~ 37 s.
Moisture adsorption in optical coatings
NASA Technical Reports Server (NTRS)
Macleod, H. Angus
1988-01-01
The thin film filter is a very large aperture component which is exceedingly useful because of its small size, flexibility and ease of mounting. Thin film components, however, do have defects of performance and especially of stability which can cause problems in systems, particularly where long-term measurements are being made. Of all of the problems, those associated with moisture absorption are the most serious. Moisture absorption occurs in the pore-shaped voids inherent in the columnar structure of the layers. Ion-assisted deposition is a promising technique for substantially reducing moisture adsorption effects in thin film structures.
Fast Postmoisture Treatment of Luminescent Perovskite Films for Efficient Light-Emitting Diodes.
Wang, Haoran; Li, Xiaomin; Yuan, Mingjian; Yang, Xuyong
2018-04-01
Despite the recent advances in the performance of perovskite light-emitting diodes (PeLEDs), the effects of water on the perovskite emissive layer and its electroluminescence are still unclear, even though it has been previously demonstrated that moisture has a significant impact on the quality of perovskite films in the fabrication process of perovskite solar cells and is a prerequisite for obtaining high-performance PeLEDs. Here, the effects of postmoisture on the luminescent CH 3 NH 3 PbBr 3 (MAPbBr 3 ) perovskite films are systematically investigated. It is found that postmoisture treatment can efficiently control the morphology and growth of perovskite films and only a fast moisture exposure at a 60% high relative humidity results in significantly improved crystallinity, carrier lifetime, and photoluminescence quantum yield of perovskite films. With the optimized moisture-treated perovskite films, a high-performance PeLED is fabricated, exhibiting a maximum current efficiency of 20.4 cd A -1 , which is an almost 20-fold enhancement when compared with perovskite films without moisture treatment. The results provide valuable insights into the moisture-assisted growth of luminescent perovskite films and will aid in the development of high-performance perovskite light-emitting devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ramírez-Hernández, A; Aparicio-Saguilán, A; Reynoso-Meza, G; Carrillo-Ahumada, J
2017-02-10
Multi-objective optimization was used to evaluate the effect of adding banana (Musa paradisiaca L.) starch and natural rubber (cis-1,4-poliisopreno) at different ratios (1-13w/w) to the manufacturing process of biodegradable films, specifically the effect on the biodegradability, crystallinity and moisture of the films. A structural characterization of the films was performed by X-ray diffraction, Fourier transform infrared spectroscopy and SEM, moisture and biodegradability properties were studied. The models obtained showed that degradability vs. moisture tend to be inversely proportional and crystallinity vs. degradability tend to be directly proportional. With respect to crystallinity vs. moisture behavior, it is observed that crystallinity remains constant when moisture values remain between 27 and 41%. Beyond this value there is an exponential increase in crystallinity. These results allow for predictions on the mechanical behavior that can occur in starch/rubber films. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brown, Hayley Louise
The development of flexible lightweight OLED devices requires oxygen/moisture barrier layer thin films with water vapour transmission rates (WVTR) of < 10-6 g/m2/day. This thesis reports on single and multilayer architecture barrier layers (mostly based on SiO2, Al2O3 and TiO2) deposited onto glass, Si and polymeric substrates using remote plasma sputtering. The reactive sputtering depositions were performed on Plasma Quest S500 based sputter systems and the morphology, nanostructure and composition of the coatings have been examined using SEM, EDX, STEM, XPS, XRD and AFM. The WVTR has been determined using industry standard techniques (e.g. MOCON) but, for rapid screening of the deposited layers, an in-house permeation test was also developed. SEM, XRD and STEM results showed that the coatings exhibited a dense, amorphous structure with no evidence of columnar growth. However, all of the single and multilayer coatings exhibited relatively poor WVTRs of > 1 x 10-1 g/m2/day at 38 °C and 85 % RH. Further characterisation indicated that the barrier films were failing due to the presence of substrate asperities and airborne particulates. Different mechanisms were investigated in an attempt to reduce the density of film defects including incorporation of a getter layer, modification of growth kinetics, plasma treatment and polymer planarising, but none were successful in lowering the WVTR. Review of this issue indicated that the achievement of good barrier layers was likely to be problematic in commercial practice due to the cost implications of adequately reducing particulate density and the need to cover deliberately non-planar surfaces and fabricated 3D structures. Conformal coverage would therefore be required to bury surface structures and to mitigate particulate issues. Studies of the remote plasma system showed that it both inherently delivered an ionised physical vapour deposition (IPVD) process and was compatible with bias re-sputtering of substrates. Accordingly, a process using RF substrate bias to conformally coat surfaces was developed to encapsulate surface particulates and seal associated permeation paths. An order of magnitude improvement in WVTR (6.7 x 10-2 g/m2/day) was measured for initial Al2O3 coatings deposited with substrate bias. The development of substrate bias to enhance conformal coverage provides significant new commercial benefit. Furthermore, conformal coverage of 5:1 aspect ratio structures have been demonstrated by alternating the substrate bias between -222 V and -267 V, with a 50 % dwell time at each voltage. Further development and optimisation of the substrate bias technique is required to fully explore the potential for further improving barrier properties and conformal coverage of high aspect ratio and other 3D structures.
Castro Freitas, Daniela D G
2005-09-01
Studies analyzing cereal bars have reported on consumer characteristics and preferences in sensory analyses and on their market growth, however little has been published on their physicochemical data and texture properties. Thus the objective of this research was to provide information about the storage of a cereal bar formulation with high protein and vitamin levels based on soy protein and wheat germ, packaged in 3 different films (A: PET/PEBD; B: PETmet/PEBD; C: PET/PEBD/AL/PEBD), during 6 months under environmental conditions of temperature (25 +/- 2 degrees C) and relative humidity (56%). The moisture content, water activity, pH and total acidity of the cereal bars were determined. The textural measurements accompanied during storage were breaking strength, hardness and cohesiveness. The cereal bars presented variations in water activity (Aw), moisture content and total acidity during storage. The moisture content of the bars tended to increase, which led to a significant (p = 0.05) influence on the texture characteristics of breaking strength and hardness, in the different packaging films tested. The increase in the values for breaking strength (A: 4756,5N; B: 5093,0N; C: 5575,6N) at 45 days of storage was attributed to a possible crystallization of the agglutinating syrup used for the bars. The textured soy protein used in the formulation could also have contributed to this fact due to its hygroscopic character, also interfering in the decrease in the cohesiveness measurements (deformation) with time. The effect of the different barrier properties of the packaging films tested was significant (p < 0.05) in the stability of the cereal bars during storage.
Hazaveh, Parham; Mohammadi Nafchi, Abdorreza; Abbaspour, Hossein
2015-08-01
Sugars were incorporated into CWFG solutions at different ratios (0%, 2%, 4%, and 6% w/w). Functional properties of the modified films were characterized following American standard test methods, and moisture sorption isotherm was characterized by polynomial and GAB models. Permeation to water vapor and oxygen of the modified films decreased compared to that of the control CWFG films. Moisture content, solubility, and monolayer water content of CWFG films decreased with the increase of sugar content. The addition of sugars significantly increased the Tensile strength of CWFG films from 30 to 40 MPa for ribose, and 30 to 35 MPa for fructose whereas elongation at the breaks decreased from 60% to 30% for ribose, and from 60% to 45% for that which incorporated fructose sugars. Moisture sorption isotherm curve significantly shifted to lower moisture content in aw<0.6. In aw>0.6, ribose-incorporated CWFG films, had similar function to hydrogel materials. In all the characterizations, the effects of ribose were significantly higher than those of fructose. Results of this research can be explored for commercial use, depending on the application for either packaging purposes or in the cosmetics industries. Copyright © 2015 Elsevier B.V. All rights reserved.
Making and Breaking of Lead Halide Perovskites.
Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V
2016-02-16
A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization kinetics can be tailored to yield improved thin film homogeneity. Because degradation of the as-formed perovskite film is in many ways analogous to its initial formation, the same suite of monitoring techniques reveals the moisture-induced transformation of low band gap methylammonium lead iodide (CH3NH3PbI3) to wide band gap hydrate compounds. The rate of degradation is increased upon exposure to light. Interestingly, the hydration process is reversible under certain conditions. This facile formation and subsequent chemical lability raises the question of whether CH3NH3PbI3 and its analogues are thermodynamically stable phases, thus posing a significant challenge to the development of transformative perovskite photovoltaics. Adequately addressing issues of structural and chemical stability under real-world operating conditions is paramount if perovskite solar cells are to make an impact beyond the benchtop. Expanding our fundamental knowledge of lead halide perovskite formation and degradation pathways can facilitate fabrication of stable, high-quality perovskite thin films for the next generation of photovoltaic and light emitting devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manser, Joseph S.; Saidaminov, Makhsud I.; Christians, Jeffrey A.
A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapidmore » degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization kinetics can be tailored to yield improved thin film homogeneity. Because degradation of the as-formed perovskite film is in many ways analogous to its initial formation, the same suite of monitoring techniques reveals the moisture-induced transformation of low band gap methylammonium lead iodide (CH 3NH 3PbI 3) to wide band gap hydrate compounds. The rate of degradation is increased upon exposure to light. Interestingly, the hydration process is reversible under certain conditions. This facile formation and subsequent chemical lability raises the question of whether CH 3NH 3PbI 3 and its analogues are thermodynamically stable phases, thus posing a significant challenge to the development of transformative perovskite photovoltaics. Adequately addressing issues of structural and chemical stability under real-world operating conditions is paramount if perovskite solar cells are to make an impact beyond the benchtop. Expanding our fundamental knowledge of lead halide perovskite formation and degradation pathways can facilitate fabrication of stable, high-quality perovskite thin films for the next generation of photovoltaic and light emitting devices.« less
Making and Breaking of Lead Halide Perovskites
Manser, Joseph S.; Saidaminov, Makhsud I.; Christians, Jeffrey A.; ...
2016-01-20
A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapidmore » degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization kinetics can be tailored to yield improved thin film homogeneity. Because degradation of the as-formed perovskite film is in many ways analogous to its initial formation, the same suite of monitoring techniques reveals the moisture-induced transformation of low band gap methylammonium lead iodide (CH 3NH 3PbI 3) to wide band gap hydrate compounds. The rate of degradation is increased upon exposure to light. Interestingly, the hydration process is reversible under certain conditions. This facile formation and subsequent chemical lability raises the question of whether CH 3NH 3PbI 3 and its analogues are thermodynamically stable phases, thus posing a significant challenge to the development of transformative perovskite photovoltaics. Adequately addressing issues of structural and chemical stability under real-world operating conditions is paramount if perovskite solar cells are to make an impact beyond the benchtop. Expanding our fundamental knowledge of lead halide perovskite formation and degradation pathways can facilitate fabrication of stable, high-quality perovskite thin films for the next generation of photovoltaic and light emitting devices.« less
NASA Technical Reports Server (NTRS)
St. Clair, Anne K.; St. Clair, Terry L.; Winfree, William P.; Emerson, Bert R., Jr.
1989-01-01
New process developed to produce aromatic condensation polyimide films and coatings having dielectric constants in range of 2.4 to 3.2. Materials better electrical insulators than state-of-the-art commercial polyimides. Several low-dielectric-constant polyimides have excellent resistance to moisture. Useful as film and coating materials for both industrial and aerospace applications where high electrical insulation, resistance to moisture, mechanical strength, and thermal stability required. Applicable to production of high-temperature and moisture-resistance adhesives, films, photoresists, and coatings. Electronic applications include printed-circuit boards, both of composite and flexible-film types and potential use in automotive, aerospace, and electronic industries.
Kanmani, Paulraj; Rhim, Jong-Whan
2014-02-15
The use of synthetic petroleum based packaging films caused serious environmental problems due to their difficulty in recycling and poor biodegradability. Therefore, present study was aimed to develop natural biopolymer-based antimicrobial packaging films as an alternative for the synthetic packaging films. As a natural antimicrobial agent, grapefruit seed extract (GSE) has been incorporated into agar to prepare antimicrobial packaging film. The films with different concentrations of GSE were prepared by a solvent casting method and the resulting composite films were examined physically and mechanically. In addition, the films were characterized by FE-SEM, XRD, FT-IR and TGA. The incorporation of GSE caused increase in color, UV barrier, moisture content, water solubility and water vapor permeability, while decrease in surface hydrophobicity, tensile strength and elastic modulus of the films. As the concentration of GSE increased from 0.6 to 13.3 μg/mL, the physical and mechanical properties of the films were affected significantly. The addition of GSE changed film microstructure of the film, but did not influence the crystallinity of agar and thermal stability of the agar-based films. The agar/GSE films exhibited distinctive antimicrobial activity against three test food pathogens, such as Listeria monocytogenes, Bacillus cereus and Escherichia coli. These results suggest that agar/GSE films have potential to be used in an active food packaging systems for maintaining food safety and extending the shelf-life of the packaged food. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yang, Bin; Dyck, Ondrej K.; Univ. of Tennessee, Knoxville, TN; ...
2016-11-04
The chemical stability of organometallic halide perovskites is a major barrier facing their application in the fast rising field of next generation photovoltaics. These materials were shown to undergo degradation due to the influence of heat or moisture, significantly limiting the lifetime of associated devices. To overcome this stability issue, a fundamental understanding of degradation mechanisms is of foremost importance. Here, high resolution in situ transmission electron microscopy and electron energy loss spectroscopy elemental mapping were applied to probe morphological and structural changes in perovskite films during controlled environmental exposure treatments. Both moisture and oxygen in ambient air are revealedmore » to facilitate degradation in CH 3NH 3PbI 3 perovskites through decomposition and oxidation pathways, respectively. In addition, even in moisture- and oxygen-free environment evident degradation could be induced by heating at the solar cell s real-field operating temperature and the degradation was found to originate from defect sites. These findings provide fundamental insight to prevent degradation of perovskite materials and associated devices for realistic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bin; Dyck, Ondrej K.; Univ. of Tennessee, Knoxville, TN
The chemical stability of organometallic halide perovskites is a major barrier facing their application in the fast rising field of next generation photovoltaics. These materials were shown to undergo degradation due to the influence of heat or moisture, significantly limiting the lifetime of associated devices. To overcome this stability issue, a fundamental understanding of degradation mechanisms is of foremost importance. Here, high resolution in situ transmission electron microscopy and electron energy loss spectroscopy elemental mapping were applied to probe morphological and structural changes in perovskite films during controlled environmental exposure treatments. Both moisture and oxygen in ambient air are revealedmore » to facilitate degradation in CH 3NH 3PbI 3 perovskites through decomposition and oxidation pathways, respectively. In addition, even in moisture- and oxygen-free environment evident degradation could be induced by heating at the solar cell s real-field operating temperature and the degradation was found to originate from defect sites. These findings provide fundamental insight to prevent degradation of perovskite materials and associated devices for realistic applications.« less
Chaudhary, Bhumika; Kulkarni, Ashish; Jena, Ajay Kumar; Ikegami, Masashi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Miyasaka, Tsutomu
2017-06-09
It is well known that the surface trap states and electronic disorders in the solution-processed CH 3 NH 3 PbI 3 perovskite film affect the solar cell performance significantly and moisture sensitivity of photoactive perovskite material limits its practical applications. Herein, we show the surface modification of a perovskite film with a solution-processable hydrophobic polymer (poly(4-vinylpyridine), PVP), which passivates the undercoordinated lead (Pb) atoms (on the surface of perovskite) by its pyridine Lewis base side chains and thereby eliminates surface-trap states and non-radiative recombination. Moreover, it acts as an electron barrier between the perovskite and hole-transport layer (HTL) to reduce interfacial charge recombination, which led to improvement in open-circuit voltage (V oc ) by 120 to 160 mV whereas the standard cell fabricated in same conditions showed V oc as low as 0.9 V owing to dominating interfacial recombination processes. Consequently, the power conversion efficiency (PCE) increased by 3 to 5 % in the polymer-modified devices (PCE=15 %) with V oc more than 1.05 V and hysteresis-less J-V curves. Advantageously, hydrophobicity of the polymer chain was found to protect the perovskite surface from moisture and improved stability of the non-encapsulated cells, which retained their device performance up to 30 days of exposure to open atmosphere (50 % humidity). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Peter H., E-mail: peter.graham@sesiahs.health.nsw.gov.au; Plant, Natalie; Graham, Jennifer L.
2013-05-01
Purpose: A previous, unblinded study demonstrated that an alcohol-free barrier film containing an acrylate terpolymer (ATP) was effective in reducing skin reactions compared with a 10% glycerine cream (sorbolene). The different appearances of these products precluded a blinded comparison. To test the acrylate terpolymer principle in a double-blinded manner required the use of an alternative cream formulation, a moisturizing durable barrier cream (MDBC); the study was conducted by the Trans Tasman Radiation Oncology Group (TROG) as protocol 04.01. Methods and Materials: A total of 333 patients were randomized; 1 patient was ineligible and 14 patients withdrew or had less thanmore » 7 weeks' observations, leaving 318 for analysis. The chest wall was divided into medial and lateral compartments, and patients were randomized to have MDBC applied daily to the medial or lateral compartment and sorbolene to the other compartment. Weekly observations, photographs, and symptom scores (pain and pruritus) were collected to week 12 or resolution of skin reactions if earlier. Skin dose was confirmed by centrally calibrated thermoluminescent dosimeters. Results: Rates of medial and lateral compartment Common Toxicity Criteria (CTC), version 3, greater than or equal to grade 3 skin reactions were 23% and 41%, but rates by skin care product were identical at 32%. There was no significant difference between MDBC and sorbolene in the primary endpoint of peak skin reactions or secondary endpoints of area-under-the-curve skin reaction scores. Conclusions: The MDBC did not reduce the peak skin reaction compared to sorbolene. It is possible that this is related to the difference in the formulation of the cream compared with the film formulation. Skin dosimetry verification and double blinding are essential for radiation skin care comparative studies.« less
Sanyang, M L; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J
2016-01-01
In this study, sugar palm starch (SPS) films were developed using glycerol (G), sorbitol (S) or their combination (GS) as plasticizers at the ratio of 15, 30 and 45 (wt)% using casting technique. The addition of plasticizers to SPS film-forming solutions helped to overcome the brittle and fragile nature of unplasticized SPS films. Increased plasticizer concentration resulted to an increase in film thickness, moisture content and solubility. On the contrary, density and water absorption of plasticized films decreased with increasing plasticizer concentration. Raising the plasticizer content from 15 to 45 % showed less effect on the moisture content and water absorption of S-plasticized films. Films containing glycerol and glycerol-sorbitol plasticizer (G, and GS) demonstrated higher moisture content, solubility and water absorption capacity compared to S-plasticized films. The results obtained in this study showed that plasticizer type and concentration significantly improves film properties and enhances their suitability for food packaging applications.
Larsson, Per A; Berglund, Lars A; Wågberg, Lars
2014-06-09
Cellulosic materials have many desirable properties such as high mechanical strength and low oxygen permeability and will be an important component in a sustainable biomaterial-based society, but unfortunately they often lack the ductility and formability offered by petroleum-based materials. This paper describes the fabrication and characterization of nanocomposite films made of core-shell modified cellulose nanofibrils (CNFs) surrounded by a shell of ductile dialcohol cellulose, created by heterogeneous periodate oxidation followed by borohydride reduction of the native cellulose in the external parts of the individual fibrils. The oxidation with periodate selectively produces dialdehyde cellulose, and the process does not increase the charge density of the material. Yet the modified cellulose fibers could easily be homogenized to CNFs. Prior to film fabrication, the CNF was shown by atomic force microscopy to be 0.5-2 μm long and 4-10 nm wide. The films were fabricated by filtration, and besides uniaxial tensile testing at different relative humidities, they were characterized by scanning electron microscopy and oxygen permeability. The strength-at-break at 23 °C and 50% RH was 175 MPa, and the films could, before rupture, be strained, mainly by plastic deformation, to about 15% and 37% at 50% RH and 90% RH, respectively. This moisture plasticization was further utilized to form a demonstrator consisting of a double-curved structure with a nominal strain of 24% over the curvature. At a relative humidity of 80%, the films still acted as a good oxygen barrier, having an oxygen permeability of 5.5 mL·μL/(m(2)·24 h·kPa). These properties indicate that this new material has a potential for use as a barrier in complex-shaped structures and hence ultimately reduce the need for petroleum-based plastics.
Yeh, Pei-Ying; Chen, Hsiao-Ping; Wu, Jing-Yi
2018-04-01
Simultaneous pancreas-kidney (SPK) transplantation is the primary surgical treatment for type I diabetes mellitus with end-stage renal disease. However, this transplant surgery has a high-risk of surgical complications, including duodenal anastomotic leakage, which may lead to pancreas transplantation failure if the leakage worsens. This case report describes a patient who suffered from duodenal anastomotic leakage after SPK transplantation. The digestive enzymes eroded the wound and skin around the wound, resulting in periwound moisture-associated dermatitis. During the period of nursing care, the wound-care intervention was determined by interdisciplinary cooperation. In our case report, the periwound moisture-associated dermatitis healed completely under inter-hospital care. In clinical nursing practice, periwound moisture-associated dermatitis should be cared in combination with macerated wounds. We suggest the following: (1) control the moisture source; (2) use advanced dressings as the primary dressing with sterile gauze as a secondary dressing and silver antimicrobial dressings for infected wounds; (3) consider using negative pressure wound therapy for complicated chronic wounds; and (4) use a pH-neutral skin cleanser with non-woven gauze to clean the periwound skin and keep the skin clean and dry. Finally, we suggest isolating and protecting the skin with No Sting Barrier Film and a hydrocolloid dressing. We hope this nursing care experiences serves as a reference for the nursing care of periwound moisture-associated dermatitis resulting from duodenal anastomotic leakage during / after SPK transplantation.
Optical in situ monitoring of plasma-enhanced atomic layer deposition process
NASA Astrophysics Data System (ADS)
Zeeshan Arshad, Muhammad; Jo, Kyung Jae; Kim, Hyun Gi; Jeen Hong, Sang
2018-06-01
An optical in situ process monitoring method for the early detection of anomalies in plasma process equipment is presented. Cyclic process steps of precursor treatment and plasma reaction for the deposition of an angstrom-scale film increase their complexity to ensure the process quality. However, a small deviation in process parameters, for instance, gas flow rate, process temperature, or RF power, may jeopardize the deposited film quality. As a test vehicle for the process monitoring, we have investigated the aluminum-oxide (Al2O3) encapsulation process in plasma-enhanced atomic layer deposition (PEALD) to form a moisture and oxygen diffusion barrier in organic-light emitting diodes (OLEDs). By optical in situ monitoring, we successfully identified the reduction in oxygen flow rates in the reaction steps, which resulted in a 2.67 times increase in the water vapor transmission ratio (WVTR) of the deposited Al2O3 films. Therefore, we are convinced that the suggested in situ monitoring method is useful for the detection of process shifts or drifts that adversely affect PEALD film quality.
Compositional and moisture content effects on the biodegradability of zein/ethylcellulose films.
Romero-Bastida, Claudia A; Flores-Huicochea, Eduardo; Martin-Polo, Martha O; Velazquez, Gonzalo; Torres, J Antonio
2004-04-21
The effect of moisture content and film composition on biodegradability is the focus of this study. Flexible films were first characterized for the effect on water sorption isotherms of relative humidity, temperature, zein content, and the addition of the plasticizers stearic acid, poly(ethylene glycol), or etoxylated ricine oil. Zein/ethylcellulose (EC) mixture films had a behavior between that for pure zein and EC films, which had the lowest water sorption. For films with plasticizer, the lowest water sorption at 25 degrees C was observed for those with stearic acid. Biodegradability of zein/EC films, evaluated using bacterial cultures selected for their zein proteolytic activity and isolated from a local solid waste landfill and a lagoon, showed no plasticizer effect even though its effect on moisture content was significant. Large differences were observed at different film zein concentration with the highest biodegradability for 100% zein. However, biodegradability did not mimic the water sorption behavior of zein/EC mixture films.
Liao, Wayne C; Hsueh, Chiu-Yen; Chan, Chin-Feng
2014-01-01
This study showed that both water extracts (WAF-W) and ethanol extracts (EAF-W) of Auricularia fuscosuccinea (Montagne) Farlow, white strain (AF-W) demonstrated significantly stronger antioxidative effects than did commercially available Tremella fuciformis sporocarp extracts (WSK; with the exception of EAF-W in terms of superoxide radical scavenging activity levels). The moisture retention capacity of WAF-W is as potent as that of sodium hyaluronate (SHA), but less than that of WSK. No corrugation or fissures were observed in WAF-W film; only the SHA and WSK films demonstrated such effects in low-moisture conditions. The WAF-W solution also exhibited stable viscosity at high temperatures, indicating that the WAF-W film was more stable compared with the SHA and WSK films. WAF-W induced no adverse effects when a hen's egg test was performed on the chorioallantoic membrane (CAM). This study demonstrated that WAF-W exhibits excellent potential as a topical material for skin moisturizing and anti-aging effects.
Photoinduced smart, self-healing polymer sealant for photovoltaics.
Banerjee, Sanjib; Tripathy, Ranjan; Cozzens, David; Nagy, Tibor; Keki, Sandor; Zsuga, Miklos; Faust, Rudolf
2015-01-28
Polyisobutylene (PIB)-based polymer networks potentially useful as smart coatings for photovoltaic devices have been developed. Low molecular weight coumarin functional triarm star PIB was synthesized via a single step SN2 reaction of bromoallyl functional triarm star PIB with 4-methylumbelliferone or umbelliferone in the presence of sodium hydride. Quantitative end functionality was confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. UVA (λmax = 365 nm) induced reversible photodimerization of the coumarin moieties resulted in cross-linked elastomeric films exhibiting self-healing behavior. The extent of photodimerization/photoscission was monitored by UV-vis spectroscopy. The low oxygen (1.9 × 10(-16) mol m m(-2) s(-1) Pa(-1)) and moisture (46 × 10(-16) mol m m(-2) s(-1) Pa(-1)) permeability of the cross-linked polymer films suggest excellent barrier properties of the cross-linked polymer films. The self-healing process was studied by atomic force microscopy (AFM). For this, mechanical cuts were introduced in the cross-linked PIB films through micromachining with an AFM tip and the rate of healing induced by UV, sunlight, or both was followed by taking AFM images of the film at different time intervals during the repair process.
Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging.
Muller, Justine; González-Martínez, Chelo; Chiralt, Amparo
2017-08-15
The massive use of synthetic plastics, in particular in the food packaging area, has a great environmental impact, and alternative more ecologic materials are being required. Poly(lactic) acid (PLA) and starch have been extensively studied as potential replacements for non-degradable petrochemical polymers on the basis of their availability, adequate food contact properties and competitive cost. Nevertheless, both polymers exhibit some drawbacks for packaging uses and need to be adapted to the food packaging requirements. Starch, in particular, is very water sensitive and its film properties are heavily dependent on the moisture content, exhibiting relatively low mechanical resistance. PLA films are very brittle and offer low resistance to oxygen permeation. Their combination as blend or multilayer films could provide properties that are more adequate for packaging purposes on the basis of their complementary characteristics. The main characteristics of PLA and starch in terms of not only the barrier and mechanical properties of their films but also of their combinations, by using blending or multilayer strategies, have been analyzed, identifying components or processes that favor the polymer compatibility and the good performance of the combined materials. The properties of some blends/combinations have been discussed in comparison with those of pure polymer films.
Development of Seaweed-based Biopolymers for Edible Films and Lectins
NASA Astrophysics Data System (ADS)
Praseptiangga, D.
2017-04-01
Marine macroalgae (seaweeds) as one of important groups of biopolymers play an important role in human life. Biopolymers have been studied regarding their film-forming properties to produce edible films intended as food packaging and active ingredient carriers. Edible film, a thin layer or which is an integral part of food and can be eaten together with, have been used to avoid food quality deterioration due to physico-chemical changes, texture changes, or chemical reactions. Film-forming materials can be utilized individually or as mixed composite blends. Proteins and polysaccharides used for their mechanical and structural properties, and hydrophobic substances (lipids, essential oils, and emulsifiers) to provide good moisture barrier properties. In addition, bioactive substances from marine natural products, including seaweeds, have been explored for being used in the fields of medicine, food science, pharmaceutical science, biochemistry, and glycobiology. Among them, lectins or carbohydrate-binding proteins from seaweeds have recently been remarked. Lectins (hemagglutinins) are widely distributed in nature and also good candidates in such prospecting of seaweeds. They are useful as convenient tools to discriminate differences in carbohydrate structures and reveal various biological activities through binding and interacting to carbohydrates, suggesting that they are promising candidates for medicinal and clinical application.
Thakur, Rahul; Saberi, Bahareh; Pristijono, Penta; Golding, John; Stathopoulos, Costas; Scarlett, Christopher; Bowyer, Michael; Vuong, Quan
2016-12-01
The main aim of this study was to develop rice starch (RS), ι-carrageenan (ι-car) based film. Different formulations of RS (1-4%, w/w), ι-car (0.5-2%, w/w) was blended with stearic acid (SA; 0.3-0.9%, w/w) and glycerol (1%, w/w) as a plasticizer. The effect of film ingredients on the thickness, water vapour permeability (WVP), film solubility (FS), moisture content (MC), colour, film opacity (FO), tensile strength (TS), elongation-at-break (EAB) of film was examined. Interactions and miscibility of partaking components was studied by using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Hydrocolloid suspension solution of mix polysaccharides imparted a significant impact (p<0.05) on the important attributes of resulting edible film. TS and EAB of film were improved significantly (p<0.05) when ι-car was increased in the film matrix. Formulation F1 comprising 2% ι-car, 2% RS, 0.3% SA, Gly 30% w/w and 0.2% surfactant (tween ® 20) provided film with good physical, mechanical and barrier properties. FT-IR and XRD results reveal that molecular interactions between RS-ι-car have a great impact on the film properties confining the compatibility and miscibility of mixed polysaccharide. Results of the study offers new biodegradable formulation for application on fruit and vegetables. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Heya, Akira; Niki, Toshikazu; Takano, Masahiro; Yonezawa, Yasuto; Minamikawa, Toshiharu; Muroi, Susumu; Minami, Shigehira; Izumi, Akira; Masuda, Atsushi; Umemoto, Hironobu; Matsumura, Hideki
2004-12-01
Highly moisture-resistive SiNx films on a Si substrate are obtained at substrate temperatures of 80°C by catalytic chemical vapor deposition (Cat-CVD) using a source gas with H2. Atomic hydrogen effected the selective etching of a weak-bond regions and an increase in atomic density induced by the energy of the surface reaction. It is concluded that Cat-CVD using H2 is a promising candidate for the fabrication of highly moisture-resistive SiNx films at low temperatures.
Gonçalves, Giovana M; Brianezi, Gabrielli; Miot, Hélio Amante
2017-01-01
The pH of the skin is slightly acidic (4.6 to 5.8) which is important for appropriate antibacterial, antifungal, constitution of barrier function, as well as structuring and maturation of the stratum corneum. This study aimed to evaluate the pH of the main commercial moisturizers and liquid soaps in Brazil. Thus, pH of the products was quantified by pH meter in three measurements. A total of 38 moisturizers and six commercial liquid soaps were evaluated. Mean pH of 63% and 50% of the moisturizing and liquid soaps presented results above 5.5, disfavoring repair, function, and synthesis of dermal barrier.
Storage stability of packaged baby formula in poly(lactide)-whey protein isolate laminated pouch.
Phupoksakul, Thunyaluck; Leuangsukrerk, Manusawee; Somwangthanaroj, Anongnat; Tananuwong, Kanitha; Janjarasskul, Theeranun
2017-08-01
The use of biodegradable polymeric materials has been proposed as an environmentally-friendly alternative to petroleum-based packaging. To extend the shelf life of food products, these bioplastics must possess appropriate barrier properties and food-package stability. In the present study, shelf life analysis of packaged baby formula in biopolymeric, multilayer film, fabricated from poly(lactide) (PLA) and whey protein isolate (WPI), PLA/WPI/PLA and PLA pouches was performed at 4-35 o C and 50-59% relative humidity. Despite the possible sorption of food components into contact PLA surfaces, the results demonstated that the transparency and barrier properties of PLA-based pouches were insignificantly changed over time (P > 0.05), although the films showed a slow rate of color change. The baby formula packaged in PLA/WPI/PLA had a delayed lipid oxidation compared to the sample in the PLA pouch, especially at a higher temperature. The application of WPI in the multilayer structure shifted the shelf life determination factor from lipid oxidation to moisture gain. The results indicate that the PLA/WPI/PLA pouch has good storage stability. The film could be used to package dry food properly at 4-35 o C and 50-59% relative humidity for an extended period of time. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Hoeller, Timothy
2007-06-01
Samples of EVOH films from compositions of 29 - 44 mol% ethylene content were exposed to thermal aging with and without light exposure. The results of Dielectric Spectroscopy on select samples showed Cole-Cole plots of skewed dielectric constant indicating multiple distributions of dipole relaxation times. The onset for decreases in dielectric response occurs earlier in samples exposed to elevated temperature under light exposure. Lower permittivity is exhibited in samples of higher ethylene content. Results from heat exposed samples are presented. Colorimetric analysis indicates only a slight film yellowing in one case. Raman spectroscopy on untreated films discerns changes in the C-C-O stretch associated with the alcohol. The effects of aging on microstructure may cause hindrance of molecular motion from moisture desorption. Slight material degradation occurs from film hardening presumably due to crosslinking. An electrical circuit model of the conduction processes associated with the EVOH films is presented. Dielectric analysis shows promise for monitoring material changes related to deterioration. We are also using these methods to understand Fluorescence Imaging which has been recently released for paper and plastic materials analysis. Future work may include refinement of these techniques for identification of changes in material properties correlated to packaging material barrier resistance.
Schmid, M; Krimmel, B; Grupa, U; Noller, K
2014-09-01
This study examined how and to what extent the degree of denaturation affected the technological-functional properties of whey protein isolate (WPI)-based coatings. It was observed that denaturation affected the material properties of WPI-coated films significantly. Surface energy decreased by approximately 20% compared with native coatings. Because the surface energy of a coating should be lower than that of the substrate, this might result in enhanced wettability characteristics between WPI-based solution and substrate surface. Water vapor barrier properties increased by about 35% and oxygen barrier properties increased by approximately 33%. However, significant differences were mainly observed between coatings made of fully native WPI and ones with a degree of denaturation of 25%. Higher degrees of denaturation did not lead to further improvement of material properties. This observation offers cost-saving potential: a major share of denatured whey proteins may be replaced by fully native ones that are not exposed to energy-intensive heat treatment. Furthermore, native WPI solutions can be produced with higher dry matter content without gelatinizing. Hence, less moisture has to be removed through drying, resulting in reduced energy consumption. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Lodén, Marie; Wirén, Karin; Smerud, Knut; Meland, Nils; Hønnås, Helge; Mørk, Gro; Lützow-Holm, Claus; Funk, Jörgen; Meding, Birgitta
2010-11-01
Hand eczema influences the quality of life. Management strategies include the use of moisturizers. In the present study the time to relapse of eczema during treatment with a barrier-strengthening moisturizer (5% urea) was compared with no treatment (no medical or non-medicated preparations) in 53 randomized patients with successfully treated hand eczema. The median time to relapse was 20 days in the moisturizer group compared with 2 days in the no treatment group (p = 0.04). Eczema relapsed in 90% of the patients within 26 weeks. No difference in severity was noted between the groups at relapse. Dermatology Life Quality Index (DLQI) increased significantly in both groups; from 4.7 to 7.1 in the moisturizer group and from 4.1 to 7.8 in the no treatment group (p < 0.01) at the time of relapse. Hence, the application of moisturizers seems to prolong the disease-free interval in patients with controlled hand eczema. Whether the data is applic-able to moisturizers without barrier-strengthening properties remains to be elucidated.
Adhesive flexible barrier film, method of forming same, and organic electronic device including same
Blizzard, John Donald; Weidner, William Kenneth
2013-02-05
An adhesive flexible barrier film comprises a substrate and a barrier layer disposed on the substrate. The barrier layer is formed from a barrier composition comprising an organosilicon compound. The adhesive flexible barrier film also comprises an adhesive layer disposed on the barrier layer and formed from an adhesive composition. A method of forming the adhesive flexible barrier film comprises the steps of disposing the barrier composition on the substrate to form the barrier layer, disposing the adhesive composition on the barrier layer to form the adhesive layer, and curing the barrier layer and the adhesive layer. The adhesive flexible barrier film may be utilized in organic electronic devices.
Effect of size and moisture on the mechanical behavior of SU-8 thin films
NASA Astrophysics Data System (ADS)
Robin, C. J.; Jonnalagadda, K. N.
2016-02-01
The mechanical properties of SU-8 were investigated in conjunction with size effect, mechanical anisotropy and moisture absorption. Uniaxial tensile experiments were conducted on SU-8 films of 500 nm and 2 μm thickness. A spin coating process was used to fabricate the films with one set from a single coat (single layer) and the others containing multiple coats (multilayer) with pre-baking in between. The stress versus strain response was obtained from in situ optical experiments and a digital image correlation method. Compared to single layer films, the multilayer films showed a significant increase in mechanical properties as well as in-plane anisotropy. This anisotropy was confirmed using Fourier transform infrared spectroscopy and attributed to the spin coating process, which resulted in higher crosslinking density in the film, and molecular orientation in the radial direction. Moisture absorption studies revealed that the mechanical properties were affected by water, which exists in both the free and bonded form in the polymer and acts as a plasticizer. The effect of moisture was similar in both the single and multilayer films, but was higher for the latter due to multiple processing steps as well as the existence of higher percentage of epoxy polar groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Hagyoung; Shin, Seokyoon; Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr
2016-01-15
The authors developed a high throughput (70 Å/min) and scalable space-divided atomic layer deposition (ALD) system for thin film encapsulation (TFE) of flexible organic light-emitting diode (OLED) displays at low temperatures (<100 °C). In this paper, the authors report the excellent moisture barrier properties of Al{sub 2}O{sub 3} films deposited on 2G glass substrates of an industrially relevant size (370 × 470 mm{sup 2}) using the newly developed ALD system. This new ALD system reduced the ALD cycle time to less than 1 s. A growth rate of 0.9 Å/cycle was achieved using trimethylaluminum as an Al source and O{sub 3} as an O reactant. Themore » morphological features and step coverage of the Al{sub 2}O{sub 3} films were investigated using field emission scanning electron microscopy. The chemical composition was analyzed using Auger electron spectroscopy. These deposited Al{sub 2}O{sub 3} films demonstrated a good optical transmittance higher than 95% in the visible region based on the ultraviolet visible spectrometer measurements. Water vapor transmission rate lower than the detection limit of the MOCON test (less than 3.0 × 10{sup −3} g/m{sup 2} day) were obtained for the flexible substrates. Based on these results, Al{sub 2}O{sub 3} deposited using our new high-throughput and scalable spatial ALD is considered a good candidate for preparation of TFE films of flexible OLEDs.« less
Thermoplastic processing of proteins for film formation--a review.
Hernandez-Izquierdo, V M; Krochta, J M
2008-03-01
Increasing interest in high-quality food products with increased shelf life and reduced environmental impact has encouraged the study and development of edible and/or biodegradable polymer films and coatings. Edible films provide the opportunity to effectively control mass transfer among different components in a food or between the food and its surrounding environment. The diversity of proteins that results from an almost limitless number of side-chain amino-acid sequential arrangements allows for a wide range of interactions and chemical reactions to take place as proteins denature and cross-link during heat processing. Proteins such as wheat gluten, corn zein, soy protein, myofibrillar proteins, and whey proteins have been successfully formed into films using thermoplastic processes such as compression molding and extrusion. Thermoplastic processing can result in a highly efficient manufacturing method with commercial potential for large-scale production of edible films due to the low moisture levels, high temperatures, and short times used. Addition of water, glycerol, sorbitol, sucrose, and other plasticizers allows the proteins to undergo the glass transition and facilitates deformation and processability without thermal degradation. Target film variables, important in predicting biopackage performance under various conditions, include mechanical, thermal, barrier, and microstructural properties. Comparisons of film properties should be made with care since results depend on parameters such as film-forming materials, film formulation, fabrication method, operating conditions, testing equipment, and testing conditions. Film applications include their use as wraps, pouches, bags, casings, and sachets to protect foods, reduce waste, and improve package recyclability.
Gonçalves, Giovana M; Brianezi, Gabrielli; Miot, Hélio Amante
2017-01-01
The pH of the skin is slightly acidic (4.6 to 5.8) which is important for appropriate antibacterial, antifungal, constitution of barrier function, as well as structuring and maturation of the stratum corneum. This study aimed to evaluate the pH of the main commercial moisturizers and liquid soaps in Brazil. Thus, pH of the products was quantified by pH meter in three measurements. A total of 38 moisturizers and six commercial liquid soaps were evaluated. Mean pH of 63% and 50% of the moisturizing and liquid soaps presented results above 5.5, disfavoring repair, function, and synthesis of dermal barrier. PMID:29166523
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nehm, F., E-mail: frederik.nehm@iapp.de; Müller-Meskamp, L.; Klumbies, H.
A major failure mechanism is identified in electrical calcium corrosion tests for quality assessment of high-end application moisture barriers. Accelerated calcium corrosion is found at the calcium/electrode junction, leading to an electrical bottleneck. This causes test failure not related to overall calcium loss. The likely cause is a difference in electrochemical potential between the aluminum electrodes and the calcium sensor, resulting in a corrosion element. As a solution, a thin, full-area copper layer is introduced below the calcium, shifting the corrosion element to the calcium/copper junction and inhibiting bottleneck degradation. Using the copper layer improves the level of sensitivity formore » the water vapor transmission rate (WVTR) by over one order of magnitude. Thin-film encapsulated samples with 20 nm of atomic layer deposited alumina barriers this way exhibit WVTRs of 6 × 10{sup −5} g(H{sub 2}O)/m{sup 2}/d at 38 °C, 90% relative humidity.« less
Ethanolic extract of propolis for biodegradable films packaging enhanced with chitosan
NASA Astrophysics Data System (ADS)
Ismail, M. I.; Roslan, A.; Saari, N. S.; Hashim, K. H.; Kalamullah, M. R.
2017-09-01
The use of industrial organic waste which are chitosan and propolis as materials for the development of biodegradable and active packaging is economical and environmentally appealing. Processing of propolis-chitosan film can minimize waste, and produce low-cost added value biopolymer packaging films for targeted applications. This aims of this research is to develop and characterize a biodegradable films by incorporating chitosan with propolis extract to enhance the functional properties for potential use as active food packaging. The film's moisture content, solubility and antimicrobial activity increase due to increasing volume of propolis extract which are 0 ml, 1.2 ml and 2.4 ml of propolis extract. Propolis-chitosan film with 2.4 ml of propolis extract is more soluble in water compared to propolis-chitosan film with 0 ml of propolis extract and 1.2 ml of propolis extract. The higher the volume of the propolis extract used, the higher the solubility of film in the water. The moisture content also will increase when higher volume of propolis extract used. Characterization of moisture content, solubility and antimicrobial activities revealed the benefits of adding propolis extract into chitosan films and the potential of using the developed film as active food packaging.
Kim, Ki Seok; Kim, Ki Hyun; Ji, You Jin; Park, Jin Woo; Shin, Jae Hee; Ellingboe, Albert Rogers; Yeom, Geun Young
2017-10-19
Depositing a barrier film for moisture protection without damage at a low temperature is one of the most important steps for organic-based electronic devices. In this study, the authors investigated depositing thin, high-quality SiN x film on organic-based electronic devices, specifically, very high-frequency (162 MHz) plasma-enhanced chemical vapor deposition (VHF-PECVD) using a multi-tile push-pull plasma source with a gas mixture of NH 3 /SiH 4 at a low temperature of 80 °C. The thin deposited SiN x film exhibited excellent properties in the stoichiometry, chemical bonding, stress, and step coverage. Thin film quality and plasma damage were investigated by the water vapor transmission rate (WVTR) and by electrical characteristics of organic light-emitting diode (OLED) devices deposited with SiN x , respectively. The thin deposited SiN x film exhibited a low WVTR of 4.39 × 10 -4 g (m 2 · day) -1 for a single thin (430 nm thick) film SiN x and the electrical characteristics of OLED devices before and after the thin SiN x film deposition on the devices did not change, which indicated no electrical damage during the deposition of SiN x on the OLED device.
Monitoring the Vadose Zone Moisture Regime Below a Surface Barrier
NASA Astrophysics Data System (ADS)
Zhang, Z. F.; Strickland, C. E.; Field, J. G.
2009-12-01
A 6000 m2 interim surface barrier has been constructed over a portion of the T Tank Farm in the Depart of Energy’s Hanford site. The purpose of using a surface barrier was to reduce or eliminate the infiltration of meteoric precipitation into the contaminated soil zone due to past leaks from Tank T-106 and hence to reduce the rate of movement of the plume. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier on the reduction of soil moisture flow. A vadose zone monitoring system was installed to measure soil water conditions at four horizontal locations (i.e., instrument Nests A, B, C, and D) outside, near the edge of, and beneath the barrier. Each instrument nest consists of a capacitance probe with multiple sensors, multiple heat-dissipation units, and a neutron probe access tube used to measure soil-water content and soil-water pressure. Nest A serves as a control by providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess barrier edge effects. Nests C and D are used to assess the impact of the surface barrier on soil-moisture conditions beneath it. Monitoring began in September 2006 and continues to the present. To date, the monitoring system has provided high-quality data. Results show that the soil beneath the barrier has been draining from the shallower depth. The lack of climate-caused seasonal variation of soil water condition beneath the barrier indicates that the surface barrier has minimized water exchange between the soil and the atmosphere.
Chang, Ching-Hsien; Liu, Hsia-Wei; Huang, Ching-Cheng
2014-01-01
A series of designed drug-release systems were prepared and established for clear moisture healing. These systems were designed to have an interpenetrating polymer network (IPN) structure, which contained a breathable polyurethane film, hydrocolloidlayer, and polyacrylate adhesive layer. Breathable polyurethane film (2000 g/m(2)/24 hr) with high moisture permeability was employed as a base for new drug-release systems or wound dressings. All drug-release systems having a polyurethane film-backed hydrocolloid acrylated adhesive layer showed an increase of water uptakes with increasing time. After 114 hours, high water uptakes of drug-release systems with 20% hydrocolloid components were observed in the values of 160, 1100, and 1870% for different additional hydrocolloid components of carboxymethylcellulose, sodium alginate, and carbomer U10, respectively. New drug-release systems of polyurethane film-backed hydrocolloid/adhesive layers could be designed and established for wound care managements.
Effect of EMA and antioxidants on properties of thermoplastic starch blown films
NASA Astrophysics Data System (ADS)
Threepopnatkul, P.; Kulsetthanchalee, C.; Sittattrakul, A.; Kaewjinda, E.
2015-07-01
The objectives of this study were to investigate the effect of poly(ethylene-co-methyl acrylate) (EMA) at 10, 30 and 50 wt% on the morphological properties, moisture sorption, water vapor permeability and biodegradability of thermoplastic starch (TPS). Urea and formamide were used as a mixed plasticizer. In addition, the effect of antioxidants namely, 3,5-di-tert-butyl-4-hydroxyhydrocinnamate (DTBH), butylated hydroxytoluene (BHT) and bis(octadecyl)hydroxylamine (BOH) at 1 wt% on the properties of TPS/EMA film was investigated. TPS/EMA films were produced by a blown film molding machine and characterized by scanning electron microscropy, moisture sorption, water vapor permeability and biodegradability measurement. Results found that the increment of EMA content in the TPS matrix could improve the water sorption, water vapor permeability and biodegradability properties of TPS/EMA films. For biodegradation, the weight loss of the blended films was directly proportional to TPS content. Regarding the antioxidants effect, the water vapor permeability of TPS/EMA films containing DTBH was higher than the one with BOH and BHT. However, the antioxidants contributed little to the biodegradability of TPS/EMA films and had no effect on the moisture sorption of TPS/EMA films.
Development of oxidised and heat-moisture treated potato starch film.
Zavareze, Elessandra da Rosa; Pinto, Vânia Zanella; Klein, Bruna; El Halal, Shanise Lisie Mello; Elias, Moacir Cardoso; Prentice-Hernández, Carlos; Dias, Alvaro Renato Guerra
2012-05-01
This study investigated the effects of sodium hypochlorite oxidation and a heat-moisture treatment of potato starch on the physicochemical, pasting and textural properties of potato starches in addition to the water vapour permeability (WVP) and mechanical properties of potato starch films produced from these starches. The carbonyl contents, carboxyl contents, swelling power, solubility, pasting properties and gel texture of the native, oxidised and heat-moisture treated (HMT) starches were evaluated. The films made of native, oxidised and HMT starches were characterised by thickness, water solubility, colour, opacity, mechanical properties and WVP. The oxidised and HMT starches had lower viscosity and swelling power compared to the native starch. The films produced from oxidised potato starch had decreased solubility, elongation and WVP values in addition to increased tensile strength compared to the native starch films. The HMT starch increased the tensile strength and WVP of the starch films compared to the native starch. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gutiérrez, Tomy J; Alvarez, Vera A
2017-12-01
The data given below relates to the research paper entitled: "Eco-friendly films prepared from plantain flour/PCL blends under reactive extrusion conditions using zirconium octanoate as a catalyst", recently published by our research group [1]. This article provides information concerning the physicochemical properties of the above-mentioned film systems: thickness, density, opacity, moisture content and surface moisture.
Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging
González-Martínez, Chelo; Chiralt, Amparo
2017-01-01
The massive use of synthetic plastics, in particular in the food packaging area, has a great environmental impact, and alternative more ecologic materials are being required. Poly(lactic) acid (PLA) and starch have been extensively studied as potential replacements for non-degradable petrochemical polymers on the basis of their availability, adequate food contact properties and competitive cost. Nevertheless, both polymers exhibit some drawbacks for packaging uses and need to be adapted to the food packaging requirements. Starch, in particular, is very water sensitive and its film properties are heavily dependent on the moisture content, exhibiting relatively low mechanical resistance. PLA films are very brittle and offer low resistance to oxygen permeation. Their combination as blend or multilayer films could provide properties that are more adequate for packaging purposes on the basis of their complementary characteristics. The main characteristics of PLA and starch in terms of not only the barrier and mechanical properties of their films but also of their combinations, by using blending or multilayer strategies, have been analyzed, identifying components or processes that favor the polymer compatibility and the good performance of the combined materials. The properties of some blends/combinations have been discussed in comparison with those of pure polymer films. PMID:28809808
Park, Hye-Yeon; Kim, Sung-Jin; Kim, Ki Myong; You, Young-Sun; Kim, So Yeon; Han, Jaejoon
2012-10-01
Functional active packaging materials were successfully developed by incorporating antioxidant agents into corn-zein-laminated linear low-density polyethylene (LLDPE) film. The minimum effective concentrations of the active compounds (for example, thymol, carvacrol, eugenol) were determined and these compounds were then laminated into LLDPE films to develop corn-zein-laminated films with antioxidant agents. The release rate of antioxidant agents in gas and liquid media were determined along with the mechanical and water barrier properties of the films containing these compounds. Tensile strength and percentage elongation at break were reduced in the corn-zein-laminated LLDPE films when compared to typical LLDPE film. Furthermore, the ability of the corn-zein-laminated films to repel moisture decreased by approximately 12.2%, but was improved by incorporating hydrophobic antioxidant compounds in the corn-zein layer. Examination of release kinetics in the gas and liquid phases verified that antioxidants were effectively released from the films and inhibited oxidation during testing. Finally, the films were used for fresh ground beef packaging, and effectively inhibited lipid oxidation and had a positive effect on the color stability of beef patties during storage. These results indicate that the developed antioxidant films are a novel active packaging material that can be effectively implemented by the food industry to improve the quality and safety of foods. Zein protein, a by-product of corn processing industry, was laminated into plastic films in combination with natural phenolic compounds to develop antioxidant packaging films. The films demonstrated their efficient release patterns of antioxidant compounds, which are suitable for packaging applications and food protection. © 2012 Institute of Food Technologists®
USDA-ARS?s Scientific Manuscript database
Edible films may be used in food packaging, for which they must deliver good barrier and mechanical properties. Films based on proteins have good gas barrier and mechanical properties, but poor water barrier properties. Films made from lipids have good water barrier properties, but poor mechanical p...
Thirunathan, Praveena; Arnz, Patrik; Husny, Joeska; Gianfrancesco, Alessandro; Perdana, Jimmy
2018-03-01
Accurate description of moisture diffusivity is key to precisely understand and predict moisture transfer behaviour in a matrix. Unfortunately, measuring moisture diffusivity is not trivial, especially at low moisture values and/or elevated temperatures. This paper presents a novel experimental procedure to accurately measure moisture diffusivity based on thermogravimetric approach. The procedure is capable to measure diffusivity even at elevated temperatures (>70°C) and low moisture values (>1%). Diffusivity was extracted from experimental data based on "regular regime approach". The approach was tailored to determine diffusivity from thin film and from poly-dispersed powdered samples. Subsequently, measured diffusivity was validated by comparing to available literature data, showing good agreement. Ability of this approach to accurately measure diffusivity at a wider range of temperatures provides better insight on temperature dependency of diffusivity. Thus, this approach can be crucial to ensure good accuracy of moisture transfer description/prediction especially when involving elevated temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shakerardekani, Ahmad; Karim, Roselina
2013-04-01
Pistachio nut (Pistacia vera L.) is one of the popular tree nuts in the world. Proper selection of packaging materials is necessary to prevent absorption of moisture and aflatoxin formation which will influence the overall product quality and safety. This research is undertaken to study the effect of different type of flexible packaging films on the moisture and aflatoxin contents of whole pistachio nuts during storage at ambient temperature (22-28 °C) and relative humidity of 85-100%. Five types of plastic films tested were low density polyethylene (LDPE) which serves as the control, food-grade polyvinyl chloride (PVC), nylon (LDPE/PA), polyamide/polypropylene (PA/PP) and polyethylene terephthalate (PET). The moisture content and aflatoxin content of pistachio nuts were measured using oven drying method and HPLC, respectively. Sample were analysed at 0, 2, 4, 6, 8 and 10 months during the storage period. Results showed that there was an increase in moisture content with the increase in storage time of pistachio nuts. The increase in moisture content was associated with the aflatoxin level of pistachio nuts during storage time. All the packaging materials except LDPE delayed the moisture absorption and aflatoxin formation of the product. The most suitable packaging materials for maintaining the quality and safety of pistachio nuts is PET films followed by nylon, PA/PP and PVC. The shelf-life of pistachio can be extended from 2 months (Control) to 5 months when PET is used as the packaging material.
Reliability Improvement By Adopting Ti-barrier Metal For Porous Low-k ILD Structure
NASA Astrophysics Data System (ADS)
Sakata, A.; Yamashita, S.; Omoto, S.; Hatano, M.; Wada, J.; Higashi, K.; Yamaguchi, H.; Yosho, T.; Imamizu, K.; Yamada, M.; Hasunuma, M.; Takahashi, S.; Yamada, A.; Hasegawa, T.; Motoyama, K.; Tagami, M.; Kitano, T.; Kaneko, H.
2007-10-01
Titanium (Ti) has been proposed as an excellent barrier metal (BM) material for ULSI's Cu metallization from the stand point of two characteristics. One is the oxidation property, especially for the porous low-k ILD materials for 45 nm node device; the other is the interface behavior of Ti with Cu. Both stress induced voiding (SIV) suppression and one order longer electromigration (EM) lifetime were obtained by the adoption of Ti-BM instead of the conventional Tantalum (Ta)-BM. SIV failure is accelerated in porous low-k ILD by the following steps; 1) BM oxidation by the absorbed moisture in porous low-k ILD, 2) Adhesion degradation caused by the BM oxidation results in micro delamination of Cu film (void nucleation), 3) Void growth induced by the stress gradient in the Cu interconnect. It has been considered that the small volume change of Ti oxidation and the existence of metallic Ti-O solid-solution phase would be the reason for control of moisture penetration from the low-k ILD materials. In addition, Ti/Cu intermetallic reaction and the segregation of Ti atoms at Cu grain boundaries suppress Cu migration at BM/Cu interface and Cu grain boundaries, respectively. This is supported by higher EM activation energy of Cu line with Ti-BM than that with Ta-BM. These phenomena contribute to higher interconnect reliability.
Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor
NASA Technical Reports Server (NTRS)
Smialek, James L.
2010-01-01
For some time the oxidation community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cool down, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of thermal barrier coatings (TBCs) refer to this process. It is most apparent for relatively adherent alumina scales that have survived initial cool down in a dry environment, have built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sensitive zone" can be described that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement. Hydrogen is derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen-induced effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic-tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen detection as a reaction product or interfacial species. Further support is provided by critical experiments that recreate the moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H 2-containing atmospheres or cathodic hydrogen charging. Accordingly, they strongly indicate that interfacial hydrogen, derived from moisture, is the key chemical species accounting for delayed alumina scale spallation.
NASA Technical Reports Server (NTRS)
Hare, David A.; Moore, Thomas C., Sr.
2000-01-01
The Langley Research Center uses strain gages in a wide variety of demanding test environments. Strain gage installations, depending on the testing scenario, may see high temperatures, cryogenic temperature, moisture accumulation, mechanical abuse, or any combination of these conditions. At Langley, there is often a need to provide protection for strain gages against moisture and mechanical abuse, especially when large-scale, harsh environment testing is to be encountered. This technical memorandum discusses the evaluation of a room temperature curing silicone rubber sealant manufactured by the General Electric Company for consideration as a moisture-barrier for certain strain gage installations.
Villarruel, S; Giannuzzi, L; Rivero, S; Pinotti, A
2015-11-01
This work was focused on: i) developing single and blend films based on carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVOH) studying their properties, ii) analyzing the interactions between CMC and PVOH and their modifications UV-induced in the presence of sodium benzoate (SB), and iii) evaluating the antimicrobial capacity of blend films containing SB with and without UV treatment. Once the blend films with SB were exposed to UV radiation, they exhibited lower moisture content as well as a greater elongation at break and rougher surfaces compared to those without treatment. Considering oxygen barrier properties, the low values obtained would allow their application as packaging with selective oxygen permeability. Moreover, the characteristics of the amorphous phase of the matrix prevailed with a rearrangement of the structure of the polymer chain, causing a decrease of the crystallinity degree. These results were supported by X-rays and DSC analysis. FT-IR spectra reflected some degree of polymer-polymer interaction at a molecular level in the amorphous regions. The incorporation of sodium benzoate combined with UV treatment in blend films was positive from the microbial point of view because of the growth inhibition of a wide spectrum of microorganisms. From a physicochemical perspective, the UV treatment of films also changed their morphology rendering them more insoluble in water, turning the functionalized blend films into a potential material to be applied as food packaging. Copyright © 2015 Elsevier B.V. All rights reserved.
Electronic Devices with Strontium Barrier Film and Process for Making Same
1998-08-20
structure of the barrier film on an atomic level where the barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows another...another embodiment where the barrier film is comprised of a plurality of contiguous monolayers in which different monolayers thereof are formed of...High Energy Electron 10 Diffraction (RHEED) diagnostic system directed toward the substrate 26. A diffusion barrier precursor compound effusion
Electronic Devices with Composite Atomic Barrier Film and Process for Making Same
1998-08-20
structure of the barrier film on an atomic level where the barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows...another embodiment where the barrier film is comprised of a plurality of contiguous monolayers in which different monolayers thereof are formed of...High Energy Electron 10 Diffraction (RHEED) diagnostic system directed toward the substrate 26. A diffusion barrier precursor compound effusion
NASA Technical Reports Server (NTRS)
Nicolet, M. A.
1983-01-01
The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.
Flexible barrier film, method of forming same, and organic electronic device including same
Blizzard, John; Tonge, James Steven; Weidner, William Kenneth
2013-03-26
A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.
Electronic Devices with Barium Barrier Film and Process for Making Same
1998-08-20
structure of the barrier film on an atomic level 15 where the barrier .film is comprised of a plurality of contiguous monolayers, while FIG. 7B...yet another embodiment where the barrier film is comprised of a plurality of 20 contiguous monolayers in which different monolayers thereof are...barrier precursor compound effusion cell, for example a barium fluoride, strontium fluoride or the like effusion cell, is provided at 32, and has a
Zhang, Wei; Chen, Longkun; Chen, Jialin; Wang, Lingshuang; Gui, Xuexian; Ran, Jisheng; Xu, Guowei; Zhao, Hongshi; Zeng, Mengfeng; Ji, Junfeng; Qian, Li; Zhou, Jianda; Ouyang, Hongwei; Zou, Xiaohui
2017-05-01
Due to its excellent biological and mechanical properties, silk fibroin has been intensively explored for tissue engineering and regenerative medicine applications. However, lack of translational evidence has hampered its clinical application for tissue repair. Here a silk fibroin film is developed and its translational potential is investigated for skin repair by performing comprehensive preclinical and clinical studies to fully evaluate its safety and effectiveness. The silk fibroin film fabricated using all green chemistry approaches demonstrates remarkable characteristics, including transmittance, fluid handling capacity, moisture vapor permeability, waterproofness, bacterial barrier properties, and biocompatibility. In vivo rabbit full-thickness skin defect study shows that the silk fibroin film effectively reduces the average wound healing time with better skin regeneration compared with the commercial wound dressings. Subsequent assessment in porcine model confirms its long-term safety and effectiveness for full-thickness skin defects. Finally, a randomized single-blind parallel controlled clinical trial with 71 patients shows that the silk fibroin film significantly reduces the time to wound healing and incidence of adverse events compared to commercial dressing. Therefore, the study provides systematic preclinical and clinical evidence that the silk fibroin film promotes wound healing thereby establishing a foundation towards its application for skin repair and regeneration in the clinic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kon, Yuka; Ichikawa-Shigeta, Yoshie; Iuchi, Terumi; Nakajima, Yukari; Nakagami, Gojiro; Tabata, Keiko; Sanada, Hiromi; Sugama, Junko
The purpose of this study was to examine the effects of a skin barrier cream with moisturization and skin-protectant characteristics for improving the severity of incontinence-associated dermatitis (IAD) pertaining to the skin physiology and appearance. We measured the following outcomes: (1) skin physiological characteristics indicating skin protection and enhancement of the skin's moisture barrier (stratum corneum hydration, dermis hydration level, transepidermal water loss, and skin pH); and (2) changes in skin appearance (the degree of erythema and pigmentation, and the sulcus cutis condition). Single-blind, cluster randomized controlled trial. The study was conducted in a long-term care facility in Japan between November 7, 2011, and May 6, 2012. We used block randomization to obtain a random sample of 6 (4 experimental and 2 control) out of 10 available wards. All subjects were elderly women with IAD of the buttock or inner thigh. We assessed 295 patients, but only 33 met inclusion criteria; 18 were allocated to the experimental group and 15 were allocated to the control group. All participants were managed with cleansing with a skin cleanser and application of a moisturizer daily. In addition, a skin barrier cream designed to enhance the skin's moisture barrier and act as a protective barrier was applied to the skin of patients in the experimental group 3 times a day when absorptive briefs were changed. Skin physiological and appearance characteristics were scored only at the buttock or thigh area. All data were collected on days 1 and 14 of the study. Univariate analysis found that the erythema index was lower in the intervention group than in the control group at day 14 (P = .004). Multivariate analysis found significant associations between use of the skin barrier cream and increased stratum corneum hydration (β= .443, P = .031), decreased skin pH (β=-.439, P = .020), and magnitude of erythema (β=-.451, P = .018). Study findings suggest that a barrier cream designed to enhance the skin's moisture barrier and act as a skin protectant increased stratum corneum hydration, reduced cutaneous pH, and reduced erythema.
Experimental study on the drying of natural latex medical gloves
NASA Astrophysics Data System (ADS)
Chankrachang, Mano; Yongyingsakthavorn, Pisit; Tohsan, Atitaya; Nontakaew, Udomkiat
2018-01-01
The purpose of this research was to study latex film drying at 70 °C using a laboratory drying oven. Two different total solid content (TSC) latex compounds, which 45% TSC and 35% TSC were used. The undried latex films were prepared according to the common procedures used in latex gloves manufacturers, that is, by dry coagulant dipping process. The experimental results such as initial moisture content, the amount of moisture and drying time of latex films in each latex compound formula were determined. After that, the results were projected to calculate on the production capacity expand by 1 million piece/day of natural latex medical gloves. Finally, the rate of moisture entering the latex drying oven and the energy consumption of the drying oven were estimated. The results indicated that when the 35% TSC of latex compound was used. The initial moisture content of latex film was higher than 45% TSC of latex compound about 7%. The drying time of 35% TSC was longer than 45% TSC for 2.5 min and consume more energy about 10%. As a result, the 45% TSC latex compound was the better way to saving energy and managing humidity in the production line. Therefore, it was found to very useful to an approximate design length and size of actual of latex drying oven and the rate of moisture entering the oven as well.
M. A. Tshabalala; C. Starr; N. R. Sutherland
2010-01-01
In this study, wood specimens were coated with water-borne silsesquioxane oligomers by an in situ sol-gel deposition process. The effect of these water-borne sol-gel thin films on weathering characteristics and moisture-uptake properties of the wood specimens were investigated. The weathering characteristics were investigated by exposure of the specimens to artificial...
Transparent and robust siloxane-based hybrid lamella film as a water vapor barrier coating.
Tokudome, Yasuaki; Hara, Takaaki; Abe, Risa; Takahashi, Masahide
2014-11-12
Water vapor barriers are important in various application fields, such as food packaging and sealants in electronic devices. Polymer/clay composites are well-studied water vapor barrier materials, but their transparency and mechanical strength degrade with increasing clay loading. Herein, we demonstrate films with good water vapor barrier properties, high transparency, and mechanical/thermal stability. Water vapor barrier films were prepared by the solution crystallization of siloxane hybrid lamellae. The films consist of highly crystallized organic/inorganic hybrid lamellae, which provide high transparency, hardness, and thermal stability and inhibit the permeation of water vapor. The water permeability of a 6 μm thick hybrid film is comparable to that of a 200 μm thick silicon rubber film.
Gentle cleansing and moisturizing for patients with atopic dermatitis and sensitive skin.
Cheong, Wai Kwong
2009-01-01
Atopic dermatitis is a common condition characterized by pruritus, inflammation, and dryness of the skin. Inflammation disrupts the barrier function of the stratum corneum, predisposing the skin to be dry, and increases susceptibility to irritants and secondary bacterial infection. Sensitive skin is common, reported by 40-50% of women and 30% of men in the US, Europe, and Japan. Basic requirements in managing eczema and sensitive skin include effective cleansers that do not compromise skin barrier integrity, alleviation of skin dryness, and restoration of skin barrier function through the use of therapeutic moisturizers. The selection of a skin cleanser is therefore an important part of managing these conditions. Studies have reported clinical improvement with the use of soap-free cleansers in combination with topical treatments. While topical corticosteroids and immunosuppressive agents are mainstays of treatment for atopic dermatitis, therapeutic moisturizers are important adjuncts. Moisturizers improve skin hydration, reduce susceptibility to irritation, restore the integrity of the stratum corneum, and enhance the efficacy of topical corticosteroids.
Recent innovations in edible and/or biodegradable packaging materials.
Guilbert, S; Cuq, B; Gontard, N
1997-01-01
Certain newly discovered characteristics of natural biopolymers should make them a choice material to be used for different types of wrappings and films. Edible and/or biodegradable packagings produced from agricultural origin macromolecules provide a supplementary and sometimes essential means to control physiological, microbiological, and physicochemical changes in food products. This is accomplished (i) by controlling mass transfers between food product and ambient atmosphere or between components in heterogeneous food product, and (iii) by modifying and controlling food surface conditions (pH, level of specific functional agents, slow release of flavour compounds), it should be stressed that the material characteristics (polysaccharide, protein, or lipid, plasticized or not, chemically modified or not, used alone or in combination) and the fabrication procedures (casting of a film-forming solution, thermoforming) must be adapted to each specific food product and usage condition (relative humidity, temperature). Some potential uses of these materials (e.g. wrapping of various fabricated foods; protection of fruits and vegetables by control of maturation; protection of meat and fish; control of internal moisture transfer in pizzas), which are hinged on film properties (e.g. organoleptic, mechanical, gas and solute barrier) are described with examples.
Mandla A. Tshabalala; Ryan Libert; Christian M. Schaller
2011-01-01
In recent years, there has been increased interest in the use of inorganic UV blocking nanoparticles for photostabilization of wood surfaces. Photostability and moisture uptake properties of wood veneers coated with a combination of hybrid inorganic-organic thin sol-gel films and organic light stabilizers was investigated. The light stabilizers were applied by brushing...
Ultrasound treated potato peel and sweet lime pomace based biopolymer film development.
Borah, Purba Prasad; Das, Pulak; Badwaik, Laxmikant S
2017-05-01
Treatment and management of food processing waste is a major challenge for food industry. Potato processing industry generates tremendous amount of peel and consider it as zero valued waste. Again, pomace generated after juice extraction from sweet lime pulp is considered as waste and not properly utilized. Whereas these waste could be utilized for the development of biodegradable packaging film to overcome environmental issues. Composite films were prepared with varying proportion of potato peel powder (PP) and sweet lime pomace (SLP) in the ratio of 0:1(A), 0.5:1(B), 1:1(C), 1:0.5(D), 1:0(E) with an ultrasound treatment of 45min, and 0:1(F), 0.5:1(G), 1:1(H), 1:0.5(I), 1:0(J) with an ultrasound treatment of 60min. Ultrasound was applied for 45 and 60min to film forming solutions to break down biopolymer particles small enough to form a film. All the films were analyzed for their barrier and mechanical properties. It was observed that increasing ultrasound treatment times gives better result in film properties and less PP content also gives better film properties, from these observations film G prepared with 0.5:1 (PP:SLP) showed better characteristics among all other films. Water vapor permeability, moisture absorption, water solubility, breakage strength and elongation capacity of G film were reported as 7.25×10 -9 g/Pahm, 12.88±0.348%, 38.92±0.702%, 242.01±3.074g and 7.61±0.824mm respectively. However, thermal decomposition for film G took place above 200°C. The film forming solution of selected G film, added with clove essential oil (1.5%) as an antimicrobial agent was wrapped on bread and stored it for 5days. The film was successful in lowering the weight loss, reducing the hardness and inhibition of surface microbial load from bread sample. Copyright © 2016 Elsevier B.V. All rights reserved.
Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H
2018-02-28
This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.
Electronic Devices with Barrier Film and Process for Making Same
1998-08-20
the barrier film on an atomic level where the barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows another...embodiment where the barrier film is comprised of a plurality of contiguous monolayers in which different monolayers thereof are formed of different...compound effusion cell, for example a barium fluoride, strontium fluoride or the like effusion cell, is provided at 32, and has a shutter 33. A
Kumar, P; Sandeep, K P; Alavi, S; Truong, V D; Gorga, R E
2010-06-01
The nonbiodegradable and nonrenewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). Bio-nanocomposite films based on soy protein isolate (SPI) and modified montmorillonite (MMT) were prepared using melt extrusion. The effect of different type (Cloisite 20A and Cloisite 30B) and content (0% to 15%) of modified MMT on the structure (degree of intercalation and exfoliation) and properties (color, mechanical, dynamic mechanical, thermal stability, and water vapor permeability) of SPI-MMT bio-nanocomposite films were investigated. Extrusion of SPI and modified MMTs resulted in bio-nanocomposites with exfoliated structures at lower MMT content (5%). At higher MMT content (15%), the structure of bio-nanocomposites ranged from intercalated for Cloisite 20A to disordered intercalated for Cloisite 30B. At an MMT content of 5%, bio-nanocomposite films based on modified MMTs (Cloisite 20A and Cloisite 30B) had better mechanical (tensile strength and percent elongation at break), dynamic mechanical (glass transition temperature and storage modulus), and water barrier properties as compared to those based on natural MMT (Cloisite Na(+)). Bio-nanocomposite films based on 10% Cloisite 30B had mechanical properties comparable to those of some of the plastics that are currently used in food packaging applications. However, much higher WVP values of these films as compared to those of existing plastics might limit the application of these films to packaging of high moisture foods such as fresh fruits and vegetables.
Christman, Jeremy C; Fix, Deborah K; Lucus, Sawanna C; Watson, Debrah; Desmier, Emma; Wilkerson, Rolanda J Johnson; Fixler, Charles
2012-01-01
Despite numerous body moisturizers being available, cosmetic xerosis continues to be a leading skin problem for consumers. We performed two 35-day studies to evaluate the ability of a variety of body moisturizers containing various levels of oils/lipids, humectants, as well as other ingredients (e.g., niacinamide) to improve stratum corneum integrity. 63 and 58 female subjects were enrolled and randomized in an incomplete block design to six of nine products (eight moisturizers or no treatment control) in studies 1 and 2, respectively. The primary endpoints included visual dryness by a qualified skin grader, skin hydration as measured by Corneometer, and barrier integrity as measured by transepidermal water loss (TEWL). The primary comparisons for the two niacinamide/glycerin moisturizers were to the other six moisturizers and to the no treatment control for each endpoint. The two niacinamide/glycerin moisturizers demonstrated an overall better solution towards rapid and prolonged improvement of cosmetic xerosis due to functional improvement of stratum corneum barrier function compared to no treatment and the other moisturizers tested. These studies establish the benefit of including niacinamide in a body moisturizer to improve the integrity of the stratum corneum and thus reduce cosmetic xerosis over time.
Electronic Devices with Cesium Barrier Film and Process for Making Same
1998-08-20
interfacial structure of the barrier film on an atomic level where the barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows...another 20 embodiment where the barrier film is comprised of a plurality of contiguous monolayers in which different monolayers thereof are formed...compound effusion cell, for example a barium fluoride, strontium fluoride or the like effusion cell, is provided at 32, and has a shutter 33. A
1998-08-20
structure of the barrier film on an atomic level where the barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows...another embodiment where the barrier film is comprised of a plurality of i contiguous monolayers in which different monolayers thereof are formed... effusion cell, for example a barium fluoride, strontium fluoride or the like effusion cell, is provided at 32, and has a shutter 33. A 15 shutter 35
NASA Astrophysics Data System (ADS)
Rehman, Mohammad Mutee ur; Kim, Kwang Tae; Na, Kyoung Hoan; Choi, Kyung Hyun
2017-11-01
In this study, organic polymer poly-vinyl acetate (PVA) and inorganic aluminum oxide (Al2O3) have been used together to fabricate a hybrid barrier thin film for the protection of PET substrate. The organic thin films of PVA were developed through roll to roll electrohydrodynamic atomization (R2R-EHDA) whereas the inorganic thin films of Al2O3 were grown by roll to roll spatial atmospheric atomic layer deposition (R2R-SAALD) for mass production. The use of these two technologies together to develop a multilayer hybrid organic-inorganic barrier thin films under atmospheric conditions is reported for the first time. These multilayer hybrid barrier thin films are fabricated on flexible PET substrate. Each layer of Al2O3 and PVA in barrier thin film exhibited excellent morphological, chemical and optical properties. Extremely uniform and atomically thin films of Al2O3 with average arithmetic roughness (Ra) of 1.64 nm and 1.94 nm respectively concealed the non-uniformity and irregularities in PVA thin films with Ra of 2.9 nm and 3.6 nm respectively. The optical transmittance of each layer was ∼ 80-90% while the water vapor transmission rate (WVTR) of hybrid barrier was in the range of ∼ 2.3 × 10-2 g m-2 day-1 with a total film thickness of ∼ 200 nm. Development of such hybrid barrier thin films with mass production and low cost will allow various flexible electronic devices to operate in atmospheric conditions without degradation of their properties.
NASA Astrophysics Data System (ADS)
Murugesan, M.; Obara, H.; Yamasaki, H.; Kosaka, S.
2006-12-01
High temperature superconductor (HTS) thin films have been systematically investigated for their corrosion resistance against moisture by studying the role of external factors such as temperature (T), relative humidity (RH), and the type of substrates in the corrosion. In general, (i) the corrosion is progressed monotonously with increasing T as well as RH, (ii) a threshold level of water vapor is needed to cause degradation, and (iii) between T and RH, the influence of T is more dominant. HTS films on SrTiO3 and CeO2 buffered sapphire (cbs) substrates showed better corrosion stability and a low rate of degradation in the critical current density as compared to that of the film grown on MgO substrate. Between DyBa2Cu3Oz (DBCO) and YBa2Cu3Oz, the former is reproducibly found to have many fold higher corrosion resistance against moisture. This observed enhancement in the corrosion resistance in DBCO could be explained by the improved microstructure in the films and the better lattice matching with the substrate. Thus, the dual advantage of DBCO/cbs films, i.e., the enhanced corrosion stability of DBCO and the appropriate dielectric properties of sapphire, can be readily exploited for the use of DBCO/cbs films in the microwave and power devices.
Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets.
Priolo, Morgan A; Holder, Kevin M; Guin, Tyler; Grunlan, Jaime C
2015-05-01
Layer-by-layer (LbL) assembly has emerged as the leading non-vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide-based barrier films. This Feature Article is a mini-review of LbL-based multilayer thin films with a 'nanobrick wall' microstructure comprising polymeric mortar and nano-platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water-based thin films exhibit oxygen transmission rates below 5 × 10(-3) cm(3) m(-2) day(-1) atm(-1) and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake-filled polymers are briefly reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lepidium perfoliatum seed gum: a new source of carbohydrate to make a biodegradable film.
Seyedi, Samira; Koocheki, Arash; Mohebbi, Mohebbat; Zahedi, Younes
2014-01-30
Microstructural, physical, mechanical and thermal properties of a novel biodegradable film based on Lepidium perfoliatum seed gum (LPSG) were investigated. LPSG films were successfully prepared by incorporation of four levels of glycerol (40%, 50%, 60% and 70%, w/w). As expected, increasing glycerol concentration from 40 to 70% (w/w), increased water vapor permeability (WVP), elongation at break (EB%), moisture content, moisture adsorption and water solubility of LPSG films; whilst, elastic modulus (EM), contact angle, melting point (Tm), enthalpy of melting (ΔHm) and glass transition point (Tg) decreased significantly. LPSG films became slightly greenish and yellowish in color but still transparent in appearance. The images taken from electron scanning microscopy indicated uniform surface, compact sheets with no holes or fracture. This study demonstrates that LPSG based films with desired properties can be obtained by adjusting glycerol content. Copyright © 2013 Elsevier Ltd. All rights reserved.
Thin-film metal coated insulation barrier in a Josephson tunnel junction. [Patent application
Hawkins, G.A.; Clarke, J.
1975-10-31
A highly stable, durable, and reproducible Josephson tunnel junction consists of a thin-film electrode of a hard superconductor, a thin oxide insulation layer over the electrode constituting a Josephson tunnel junction barrier, a thin-film layer of stabilizing metal over the barrier, and a second thin-film hard superconductive electrode over the stabilizing film. The thin stabilizing metal film is made only thick enough to limit penetration of the electrode material through the insulation layer so as to prevent a superconductive short.
NASA Astrophysics Data System (ADS)
Khoirunnisa, Assifa Rahma; Joni, I. Made; Panatarani, Camellia; Rochima, Emma; Praseptiangga, Danar
2018-02-01
This study aims to develop film for food packaging application with high UV-screening, transparency and water barrier properties. Semi refined iota carrageenan (SRiC) nanocomposite films prepared by addition of zinc oxide (ZnO) nanoparticles as nanofiller using solution casting method. The effect of nanofiller with different concentration (0%, 0.5%, 1.0%, 1.5% w/w carrageenan) on UV-screening, transparency and water barrier properties of films were tested. The water barrier properties of the films were studied by measuring water vapor permeability (WVP) and the optical properties of the films were studied by using UV-Vis spectrophotometer at 280 nm for UV-screening test and at 660 nm for transparency test. WVP value of carrageenan films with addition of ZnO is low compared to a control carrageenan film and the lowest WVP value was found for the film with addition of 1.5% of ZnO. These result indicate that the addition of ZnO had a positive effect on the water barrier properties of the carrageenan matrix. Increase in the concentration of nanofiller leads to an increase in the UV-screening properties. Among all the films, carrageenan film with 1.5% ZnO has the highest UV-screening. The result showed that adding 0.5% and 1.0% of ZnO was insignificantly affect transparency of the films, however the transparency decreased sligthly when 1.5% ZnO was added. In conclusion, incorporating no more than 1.0% of ZnO to the films can obtain films with high UV-screening, transparency and water barrier properties and suitable for food packaging application.
Modelling of moisture adsorption for sugar palm (Arenga pinnata) starch film
NASA Astrophysics Data System (ADS)
Jatmiko, Tri Hadi; Poeloengasih, Crescentiana D.; Prasetyo, Dwi Joko; Hernawan
2017-03-01
Sorption characteristic of food products is important for design, optimization, storage and modelling. Sugar palm starch film with two different plasticizers (sorbitol and glycerol) with varied concentration studied for its adsorption isotherm characteristic. The data of adsorption isotherm fitted with GAB, Oswin, Smith and Peleg models. All models describe the experiment data well, but Peleg model is better than the other models on both sugar palm starch film plasticized with sorbitol and glycerol. Moisture sorption of sugar palm starch increased linearly with plasticizer concentration. A new model by taking account of plasticizer concentration describes the experiment data well with an average of coefficients of determination (R2) 0.9913 and 0.9939 for film plasticized with glycerol and sorbitol respectively.
Optical properties of thin gold films applied to Schottky barrier solar cells
NASA Technical Reports Server (NTRS)
YEH Y. M.
1974-01-01
The Schottky barrier solar cell is considered a possible candidate for converting solar to electrical energy both for space and terrestrial applications. Knowledge of the optical constants of the ultrathin metal film used in the cell is essential for analyzing and designing higher efficiency Schottky barrier cells. The optical constants of 7.5 -nm (75-A) gold films on gallium arsenide have been obtained. In addition, the absolute collection efficiency of Schottky barrier solar cells has been determined from measured spectral response and optical constants of the gold film.
Moisture ingress prediction in polyisobutylene-based edge seal with molecular sieve desiccant
Kempe, Michael D.; Nobles, Dylan L.; Postak, Lori; ...
2017-10-26
Often photovoltaic modules are constructed with materials that are sensitive to water. This is most often the case with thin film technologies, including perovskite cells, where the active layers are a few microns thick and can be sensitive to moisture, liquid water or both. When moisture or liquid water can ingress, a small amount of water can lead to corrosion and depending on the resulting reactions, a larger local detrimental effect is possible. To prevent moisture from contacting photovoltaic components, impermeable frontsheets and backsheets are used with a polyisobutylene (PIB)-based edge seal material around the perimeter. Here, we evaluate themore » ability of a PIB-based edge seal using a molecular sieve desiccant to keep moisture out for the expected module lifetime. Moisture ingress is evaluated using test coupons where the edge seal is placed between 2 pieces of glass, one of which has a metallic calcium film on it, and monitoring the moisture ingress distance as a function of time. We expose samples to different temperature and humidity conditions to create permeation models useful for extrapolation to field use. This extrapolation indicates that this PIB material is capable of keeping moisture out of a module for the desired lifetime.« less
Moisture ingress prediction in polyisobutylene-based edge seal with molecular sieve desiccant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempe, Michael D.; Nobles, Dylan L.; Postak, Lori
Often photovoltaic modules are constructed with materials that are sensitive to water. This is most often the case with thin film technologies, including perovskite cells, where the active layers are a few microns thick and can be sensitive to moisture, liquid water or both. When moisture or liquid water can ingress, a small amount of water can lead to corrosion and depending on the resulting reactions, a larger local detrimental effect is possible. To prevent moisture from contacting photovoltaic components, impermeable frontsheets and backsheets are used with a polyisobutylene (PIB)-based edge seal material around the perimeter. Here, we evaluate themore » ability of a PIB-based edge seal using a molecular sieve desiccant to keep moisture out for the expected module lifetime. Moisture ingress is evaluated using test coupons where the edge seal is placed between 2 pieces of glass, one of which has a metallic calcium film on it, and monitoring the moisture ingress distance as a function of time. We expose samples to different temperature and humidity conditions to create permeation models useful for extrapolation to field use. This extrapolation indicates that this PIB material is capable of keeping moisture out of a module for the desired lifetime.« less
Preliminary results of SAR soil moisture experiment, November 1975
NASA Technical Reports Server (NTRS)
Choudhury, B. J.; Chang, A. T. C.; Schmugge, T. J.; Salomonson, V. V.; Wang, J. R.
1979-01-01
The experiment was performed using the Environmental Research Institute of Michigan's (ERIM) dual-frequency and dual-polarization side-looking SAR system on board a C-46 aircraft. For each frequency, horizontally polarized pulses were transmitted and both horizontally and vertically polarized return signals were recorded on the signal film simultaneously. The test sites were located in St. Charles, Missouri; Centralia, Missouri; and Lafayette, Indiana. Each test site was a 4.83 km by 8.05 km (3 mile by 5 mile) rectangular strip of terrain. Concurrent with SAR overflight, ground soil samples of 0-to-2.5 cm and 0-to-15 cm layers were collected for soil moisture estimation. The surface features were also noted. Hard-copy image films and the digital data produced via optical processing of the signal films are analyzed in this report to study the relationship of radar backscatter to the moisture content and the surface roughness. Many difficulties associated with processing and analysis of the SAR imagery are noted. In particular, major uncertainty in the quantitative analysis appeared due to the difficulty of quality reproduction of digital data from the signal films.
Seedling establishment and physiological responses to temporal and spatial soil moisture changes
Jeremy Pinto; John D. Marshall; Kas Dumroese; Anthony S. Davis; Douglas R. Cobos
2016-01-01
In many forests of the world, the summer season (temporal element) brings drought conditions causing low soil moisture in the upper soil profile (spatial element) - a potentially large barrier to seedling establishment. We evaluated the relationship between initial seedling root depth, temporal and spatial changes in soil moisture during drought after...
Amorphous-Metal-Film Diffusion Barriers
NASA Technical Reports Server (NTRS)
Nicolet, M. A.
1987-01-01
Incorporation of N into Ni/W films reduces reactivity with Si substrate. Paper describes reactions between Si substrates and deposited amorphous Ni/W or Ni/N/W films. Thermal stability of amorphous Ni/W films as diffusion barriers in Si markedly improved by introduction of N into Ni/W films during deposition.
Perrotta, Alberto; García, Santiago J; Michels, Jasper J; Andringa, Anne-Marije; Creatore, Mariadriana
2015-07-29
Water permeation in inorganic moisture permeation barriers occurs through macroscale defects/pinholes and nanopores, the latter with size approaching the water kinetic diameter (0.27 nm). Both permeation paths can be identified by the calcium test, i.e., a time-consuming and expensive optical method for determining the water vapor transmission rate (WVTR) through barrier layers. Recently, we have shown that ellipsometric porosimetry (i.e., a combination of spectroscopic ellipsometry and isothermal adsorption studies) is a valid method to classify and quantify the nanoporosity and correlate it with the WVTR values. Nevertheless, no information is obtained about the macroscale defects or the kinetics of water permeation through the barrier, both essential in assessing the quality of the barrier layer. In this study, electrochemical impedance spectroscopy (EIS) is shown as a sensitive and versatile method to obtain information on nanoporosity and macroscale defects, water permeation, and diffusivity of moisture barrier layers, complementing the barrier property characterization obtained by means of EP and calcium test. EIS is performed on thin SiO2 barrier layers deposited by plasma enhanced-CVD. It allows the determination of the relative water uptake in the SiO2 layers, found to be in agreement with the nanoporosity content inferred by EP. Furthermore, the kinetics of water permeation is followed by EIS, and the diffusivity (D) is determined and found to be in accordance with literature values. Moreover, differently from EP, EIS data are shown to be sensitive to the presence of local macrodefects, correlated with the barrier failure during the calcium test.
The Role of Moisturizers in Addressing Various Kinds of Dermatitis: A Review
Indrastuti, Niken; Danarti, Retno; Saefudin, Tatan
2017-01-01
Moisturizer is a major component of basic daily skin care, particularly in presence of epidermal barrier alteration and reduced epidermal water content. It is an important part of a dermatologist’s strategy to maintain skin health as well as treating various dermatoses which co-exist with skin dryness and are linked to impaired skin barrier function, such as in atopic disorders as well as other types of dermatitis. Mastering the knowledge regarding mechanism of action, application, dosage, adverse effects as well as specific clinical usage of moisturizers is a must for a dermatologist in order to support their use, particularly for evidence-based, therapeutic purposes. This review discusses the use of moisturizer both for skin health maintenance as well as a definitive or adjuvant therapy for many kinds of dermatitis. PMID:29229630
Ghazzal, Mohamed Nawfal; Aubry, Eric; Chaoui, Nouari; Robert, Didier
2015-01-01
We investigate the effect of the thickness of the silicon nitride (SiN x ) diffusion barrier on the structural and photocatalytic efficiency of TiO2 films obtained with different processes. We show that the structural and photocatalytic efficiency of TiO2 films produced using soft chemistry (sol-gel) and physical methods (reactive sputtering) are affected differentially by the intercalating SiN x diffusion barrier. Increasing the thickness of the SiN x diffusion barrier induced a gradual decrease of the crystallite size of TiO2 films obtained by the sol-gel process. However, TiO2 obtained using the reactive sputtering method showed no dependence on the thickness of the SiN x barrier diffusion. The SiN x barrier diffusion showed a beneficial effect on the photocatalytic efficiency of TiO2 films regardless of the synthesis method used. The proposed mechanism leading to the improvement in the photocatalytic efficiency of the TiO2 films obtained by each process was discussed.
Baggetto, Loic; Charvillat, Cedric; Thebault, Yannick; ...
2015-12-02
Ti/Al 2O 3 bilayer stacks are used as model systems to investigate the role of atomic layer deposition (ALD) and chemical vapor deposition (CVD) to prepare 30-180 nm thick amorphous alumina films as protective barriers for the medium temperature oxidation (500-600⁰C) of titanium, which is employed in aeronautic applications. X-ray diffraction (XRD), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), and X-ray photoelectron spectroscopy (XPS) results show that the films produced from the direct liquid injection (DLI) CVD of aluminum tri-isopropoxide (ATI) are poor oxygen barriers. The films processed using the ALD of trimethylaluminum (TMA) show good barriermore » properties but an extensive intermixing with Ti which subsequently oxidizes. In contrast, the films prepared from dimethyl aluminum isopropoxide (DMAI) by CVD are excellent oxygen barriers and show little intermixing with Ti. Overall, these measurements correlate the effect of the alumina coating thickness, morphology, and stoichiometry resulting from the preparation method to the oxidation barrier properties, and show that compact and stoichiometric amorphous alumina films offer superior barrier properties.« less
Liquid crystalline composites containing phyllosilicates
Chaiko,; David, J [Naperville, IL
2007-05-08
The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.
Electronic Devices with Rubidium Barrier Film and Process for Making Same
1998-08-20
barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows another embodiment of the 20 invention where the barrier film is... plurality of contiguous monolayers in which different monolayers thereof are formed of different types of metal atoms. -10- FIG. 8 is a schematic...system directed toward the substrate 26. A diffusion barrier precursor compound effusion cell, for example a barium fluoride, strontium fluoride or the
Shrestha, Shikha; Diaz, Jairo A; Ghanbari, Siavash; Youngblood, Jeffrey P
2017-05-08
The coefficient of hygroscopic swelling (CHS) of self-organized and shear-oriented cellulose nanocrystal (CNC) films was determined by capturing hygroscopic strains produced as result of isothermal water vapor intake in equilibrium. Contrast enhanced microscopy digital image correlation enabled the characterization of dimensional changes induced by the hygroscopic swelling of the films. The distinct microstructure and birefringence of CNC films served in exploring the in-plane hygroscopic swelling at relative humidity values ranging from 0% to 97%. Water vapor intake in CNC films was measured using dynamic vapor sorption (DVS) at constant temperature. The obtained experimental moisture sorption and kinetic profiles were analyzed by fitting with Guggenheim, Anderson, and deBoer (GAB) and Parallel Exponential Kinetics (PEK) models, respectively. Self-organized CNC films showed isotropic swelling, CHS ∼0.040 %strain/%C. By contrast, shear-oriented CNC films exhibited an anisotropic swelling, resulting in CHS ∼0.02 and ∼0.30 %strain/%C, parallel and perpendicular to CNC alignment, respectively. Finite element analysis (FEA) further predicted moisture diffusion as the predominant mechanism for swelling of CNC films.
NASA Astrophysics Data System (ADS)
Noborisaka, Mayui; Hirako, Tomoaki; Shirakura, Akira; Watanabe, Toshiyuki; Morikawa, Masashi; Seki, Masaki; Suzuki, Tetsuya
2012-09-01
Diamond-like carbon (DLC) films were synthesized by the dielectric barrier discharge-based plasma deposition at atmospheric pressure and their hardness and gas barrier properties were measured. A decrease in size of grains and heating substrate temperature improved nano-hardness up to 3.3 GPa. The gas barrier properties of DLC-coated poly(ethylene terephthalate) (PET) sheets were obtained by 3-5 times of non-coated PET with approximately 0.5 µm in film thickness. The high-gas-barrier DLC films deposited on PET sheets are expected to wrap elevated bridge of the super express and prevent them from neutralization of concrete. We also deposited DLC films inside PET bottles by the microwave surface-wave plasma chemical vapor deposition (CVD) method at near-atmospheric pressure. Under atmospheric pressure, the films were coated uniformly inside the PET bottles, but did not show high gas barrier properties. In this paper, we summarize recent progress of DLC films synthesized at atmospheric pressure with the aimed of food packaging and concrete pillar.
Effect of intermediate layers on atomic layer deposition-aluminum oxide protected silver mirrors
NASA Astrophysics Data System (ADS)
Fryauf, David M.; Diaz Leon, Juan J.; Phillips, Andrew C.; Kobayashi, Nobuhiko P.
2017-07-01
This work investigates intermediate materials deposited between silver (Ag) thin-film mirrors and an aluminum oxide (AlOx) barrier overlayer and compares the effects on mirror durability to environmental stresses. Physical vapor deposition of various fluorides, oxides, and nitrides in combination with AlOx by atomic layer deposition (ALD) is used to develop several coating recipes. Ag-AlOx samples with different intermediate materials undergo aggressive high-temperature (80°C), high-humidity (80%) (HTHH) testing for 10 days. Reflectivity of mirror samples is measured before and after HTHH testing, and image processing techniques are used to analyze the specular surface of the samples after HTHH testing. Among the seven intermediate materials used in this work, TiN, MgAl2O4, NiO, and Al2O3 intermediate layers offer more robust protection against chemical corrosion and moisture when compared with samples with no intermediate layer. In addition, results show that the performance of the ALD-AlOx barrier overlayer depends significantly on the ALD-growth process temperature. Because higher durability is observed in samples with less transparent TiN and NiO layers, we propose a figure of merit based on post-HTHH testing reflectivity change and specular reflective mirror surface area remaining after HTHH testing to judge overall barrier performance.
Zolfi, Mohsen; Khodaiyan, Faramarz; Mousavi, Mohammad; Hashemi, Maryam
2015-06-01
Physico-mechanical, thermal and structural characteristics of nanocomposite film composed of kefiran-whey protein isolate (WPI)-montmorillonite (MMT; 1, 3 and 5 % w/w) were studied. Incorporation of MMT significantly affected the mechanical attributes of the kefiran-WPI films. The tensile strength and Young's modulus increased and the percentage of elongation at break decreased as the MMT content increased. Moisture content, moisture absorption and water solubility decreased as the MMT concentration increased. Differential scanning calorimetry indicated that the glass transition temperature for kefiran-WPI film was -12.5 °C and was noticeably affected by an increase in MMT. X-ray diffraction analysis showed formation of an exfoliated structure with the addition of small amounts of MMT to the kefiran-WPI matrix. Intercalation and some exfoliation occurred up to 5 % (wt) increase in MMT. Scanning electron microscopy demonstrated ideal dispersion for MMT nanoparticles into the structure of the bio-nanocomposite films.
NASA Astrophysics Data System (ADS)
Malik, Neetu; Shrivastava, Sharad; Bandhu Ghosh, Subrata
2018-04-01
Bio composite materials were fabricated using mixing biodegradable polymer polycaptalactone (PCL) and Organo Modified Montmorillonite Clay (OMMT) through solution casting. Various samples of bio composite films were prepared by varying the OMMT wt% composition by 0.1%, 0.5%, 1% and 1.5%. Thereafter, the density and water absorption of the composites were investigated with respect to immersion time in water. The moisture absorption results show that with an increase in weight percentage (from 0.1 to wt 1.5%) of OMMT within the bio polymer films, the absorption value of bio-nanocomposite films reduced rapidly from 34.4% to 22.3%. The density of hybrid composites also increased with increase in weight percentage of OMMT. The swelling characteristic of PCL increased with increasing % of OMMT clay. These results indicate that the optimized composition of constituents in composite membrane could effectively reduce the anhydrous conditions of bio-composite film.
Effect of moisture on the traction-separation behavior of cellulose nanocrystal interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinko, Robert; Keten, Sinan, E-mail: s-keten@northwestern.edu; Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Room A136, Evanston, Illinois 60208
2014-12-15
Interfaces and stress transfer between cellulose nanocrystals (CNCs) dictate the mechanical properties of hierarchical cellulose materials such as neat films and nanocomposites. An interesting question that remains is how the behavior of these interfaces changes due to environmental stimuli, most notably moisture. We present analyses on the traction-separation behavior between Iβ CNC elementary fibrils, providing insight into how the presence of a single atomic layer of water at these interfaces can drastically change the mechanical behavior. We find that molecular water at the interface between hydrophilic CNC surfaces has a negligible effect on the tensile separation adhesion energy. However, whenmore » water cannot hydrogen bond easily to the surface (i.e., hydrophobic surface), it tends to maintain hydrogen bonds with other water molecules across the interface and form a capillary bridge that serves to increase the energy required to separate the crystals. Under shear loading, water lowers the energy barriers to sliding by reducing the atomic friction and consequently the interlayer shear modulus between crystals. Our simulations indicate that these nanoscale interfaces and physical phenomena such as interfacial adhesion, interlayer shear properties, and stick-slip friction behavior can be drastically altered by the presence of water.« less
[Double mulching application for Panax notoginseng growing seedlings].
Ou, Xiao-Hong; Fang, Yan; Shi, Ya-Na; Guo, Lan-Ping; Wang, Li; Yang, Yan; Jin, Hang; Liu, Da-Hui
2014-02-01
In order to improve the irrigation for Panax notginseng growing seedlings, different mulching ways were carried out to investigate the effects of double mulching. Field experiment was applied to study soil moisture, soil temperature and bulk density of different mulching ways while the germination rate and seedlings growth also were investigated. Compared with the traditional single mulching with pine leaves or straw, double mulching using plastic film combined with pine leaves or straw could reduce 2/3 volumes of irrigation at the early seedling time Double mulching treatments didn't need to irrigate for 40 days from seeding to germination, and kept soil moisture and temperature steady at whole seedling time about 30% and 9.0-16.6 degrees C, respectively. The steady soil moisture and temperature benefited to resist late spring cold and germinate earlier while kept germination regularly, higher rate and seedlings quality. In contrast, single mulching using pine leaves or straw had poor soil moisture and temperature preserving, needed to irrigate every 12-day, meanwhile dropped the germination and booming time 14 days and 24-26 days, respectively, reduced germination rate about 11.3%-8.7%. However, single pine leaves mulching was better than straw mulching. In addition, though better effects of soil moisture and temperature preserving as well as earlier and higher rate of germination with single plastic films mulching had, some disadvantages had also been observed, such as daily soil temperature changed greatly, seedling bed soil hardened easily, more moss and weeds resulted difficulty in later management. To the purpose of saving water and labor as well as getting higher germination rate and seedlings quality, double mulching using plastic films combined pine leaves at the early time and single mulching removing plastic films at the later time is suggested to apply in the growing seedlings of P. notoginseng.
Physicochemical properties of sugar palm starch film: Effect of concentration and plasticizer type
NASA Astrophysics Data System (ADS)
Prasetyo, D. J.; Apriyana, W.; Jatmiko, T. H.; Hernawan; Hayati, S. N.; Rosyida, V. T.; Pranoto, Y.; Poeloengasih, C. D.
2017-07-01
In order to find the best formula for capsule shell production, this present work dealt with exploring physicochemical properties of sugar palm (Arenga pinnata) starch film as a function of different kinds and various concentrations of plasticizers. The films were prepared by casting method at different formula: starch 9-11%, glycerol or sorbitol 35-45% and polyethylene-glycol 400 (PEG 400) 5-9%. Appearance, thickness, retraction ratio, moisture content, swelling behavior and solubility of the film in water were analyzed. Both glycerol and sorbitol are compatible with starch matrix. On the contrary, PEG 400 did not form a film with suitable characteristics. The result reveals that glycerol- and sorbitol-plasticized films appeared translucent, homogenous, smooth and slightly brown in all formulas. Different type and concentration of plasticizers altered the physicochemical of film in different ways. The sorbitol-plasticized film had lower moisture content (≤ 10%) than that of glycerol-plasticized film (≥ 18%). In contrast, film plasticized with sorbitol showed higher solubility in water (28-35%) than glycerol-plasticized film (22-28%). As the concentration of both plasticizers increased, there was an increasing tendency on thickness and solubility in water. Conversely, retraction ratio and swelling degree decreased when both plasticizers concentration increased. In conclusion, the sorbitol-plasticized film showed a potency to be developed as hard capsule material.
Clinical use of a ceramide-based moisturizer for treating dogs with atopic dermatitis
Jung, Ji-young; Nam, Eui-hwa; Park, Seol-hee; Han, Seung-hee
2013-01-01
In humans, skin barrier dysfunction is thought to be responsible for enhanced penetration of allergens. Similar to conditions seen in humans, canine atopic dermatitis (CAD) is characterized by derangement of corneocytes and disorganization of intercellular lipids in the stratum corenum (SC) with decreased ceramide levels. This study was designed to evaluate the effects of a moisturizer containing ceramide on dogs with CAD. Dogs (n = 20, 3~8 years old) with mild to moderate clinical signs were recruited and applied a moisturizer containing ceramide for 4 weeks. Transepidermal water loss (TEWL), skin hydration, pruritus index for canine atopic dermatitis (PICAD) scores, and canine atopic dermatitis extent and severity index (CADESI) scores of all dogs were evaluated. Skin samples from five dogs were also examined with transmission electron microscopy (TEM) using ruthenium tetroxide. TEWL, PICAD, and CADESI values decreased (p < 0.05) and skin hydration increased dramatically over time (p < 0.05). Electron micrographs showed that the skin barrier of all five dogs was partially restored (p < 0.05). In conclusion, these results demonstrated that moisturizer containing ceramide was effective for treating skin barrier dysfunction and CAD symptoms. PMID:23814473
Evaluation of moisture barrier coatings on carbon-phenolic SRM nozzle materials
NASA Technical Reports Server (NTRS)
Mcnutt, Ronald C.
1986-01-01
The carbon-phenolic composite ablative material used on the Solid Rocket Motor (SRM) nozzle is known to absorb moisture from the atmosphere. This could cause problems such as pocketing during firing. Several moisture barrier coatings were tested on the SRM nozzle material. Data are presented for six of the 12 coatings to be tested. The data were obtained from immersion of coated samples in an environmental chamber at 100 F and 100% relative humidity and by using a modified TGA (thermal gravimetric analysis) technique. The TGA technique involved allowing wet nitrogen (25 C, 80% relative humidity) to flow across a small sample at about 65 cu cm per minute while continually monitoring the weight increase. These preliminary results show Kel-F-800, a material supplied by 3M Corporation to be the better moisture barrier. A second task was to collect data on the relative absorption of water and kerosene into the carbon-phenolic SRM nozzle material. These data indicate that water absorbs into the nozzle material to a much greater extent than kerosene. Thus kerosene is the more likely solvent in which to make specific gravity measurements on the SRM nozzle material.
Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor.
Kojima, Yuki; Shigeta, Ryo; Miyamoto, Naoya; Shirahama, Yasutomo; Nishioka, Kazuhiro; Mizoguchi, Masaru; Kawahara, Yoshihiro
2016-08-15
Soil moisture is an important property for agriculture, but currently commercialized soil moisture sensors are too expensive for many farmers. The objective of this study is to develop a low-cost soil moisture sensor using capacitors on a film substrate and a capacitive touch integrated circuit. The performance of the sensor was evaluated in two field experiments: a grape field and a mizuna greenhouse field. The developed sensor captured dynamic changes in soil moisture at 10, 20, and 30 cm depth, with a period of 10-14 days required after sensor installation for the contact between capacitors and soil to settle down. The measured soil moisture showed the influence of individual sensor differences, and the influence masked minor differences of less than 0.05 m³·m(-3) in the soil moisture at different locations. However, the developed sensor could detect large differences of more than 0.05 m³·m(-3), as well as the different magnitude of changes, in soil moisture. The price of the developed sensor was reduced to 300 U.S. dollars and can be reduced even more by further improvements suggested in this study and by mass production. Therefore, the developed sensor will be made more affordable to farmers as it requires low financial investment, and it can be utilized for decision-making in irrigation.
Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor
Kojima, Yuki; Shigeta, Ryo; Miyamoto, Naoya; Shirahama, Yasutomo; Nishioka, Kazuhiro; Mizoguchi, Masaru; Kawahara, Yoshihiro
2016-01-01
Soil moisture is an important property for agriculture, but currently commercialized soil moisture sensors are too expensive for many farmers. The objective of this study is to develop a low-cost soil moisture sensor using capacitors on a film substrate and a capacitive touch integrated circuit. The performance of the sensor was evaluated in two field experiments: a grape field and a mizuna greenhouse field. The developed sensor captured dynamic changes in soil moisture at 10, 20, and 30 cm depth, with a period of 10–14 days required after sensor installation for the contact between capacitors and soil to settle down. The measured soil moisture showed the influence of individual sensor differences, and the influence masked minor differences of less than 0.05 m3·m−3 in the soil moisture at different locations. However, the developed sensor could detect large differences of more than 0.05 m3·m−3, as well as the different magnitude of changes, in soil moisture. The price of the developed sensor was reduced to 300 U.S. dollars and can be reduced even more by further improvements suggested in this study and by mass production. Therefore, the developed sensor will be made more affordable to farmers as it requires low financial investment, and it can be utilized for decision-making in irrigation. PMID:27537881
Reactive diffusion in the presence of a diffusion barrier: Experiment and model
NASA Astrophysics Data System (ADS)
Mangelinck, D.; Luo, T.; Girardeaux, C.
2018-05-01
Reactions in thin films and diffusion barriers are important for applications such as protective coatings, electrical contact, and interconnections. In this work, the effect of a barrier on the kinetics of the formation for a single phase by reactive diffusion is investigated from both experimental and modeling point of views. Two types of diffusion barriers are studied: (i) a thin layer of W deposited between a Ni film and Si substrate and (ii) Ni alloy films, Ni(1%W) and Ni(5%Pt), that form a diffusion barrier during the reaction with the Si substrate. The effect of the barriers on the kinetics of δ-Ni2Si formation is determined by in situ X ray diffraction and compared to models that explain the kinetic slowdown induced by both types of barrier. A linear parabolic growth is found for the deposited barrier with an increasing linear contribution for increasing barrier thickness. On the contrary, the growth is mainly parabolic for the barrier formed by the reaction between an alloy film and the substrate. The permeability of the two types of barrier is determined and discussed. The developed models fit well with the dedicated model experiments, leading to a better understanding of the barrier effect on the reactive diffusion and allowing us to predict the barrier behaviour in various applications.
Graphene-Based Environmental Barriers
Guo, Fei; Silverberg, Gregory; Bowers, Shin; Kim, Sang-Pil; Datta, Dibakar; Shenoy, Vivek; Hurt, Robert H.
2012-01-01
Many environmental technologies rely on containment by engineered barriers that inhibit the release or transport of toxicants. Graphene is a new, atomically thin, two-dimensional sheet material, whose aspect ratio, chemical resistance, flexibility, and impermeability make it a promising candidate for inclusion in a next generation of engineered barriers. Here we show that ultrathin graphene oxide (GO) films can serve as effective barriers for both liquid and vapor permeants. First, GO deposition on porous substrates is shown to block convective flow at much lower mass loadings than other carbon nanomaterials, and can achieve hydraulic conductivities of 5×10−12 cm/s or lower. Second we show that ultrathin GO films of only 20 nm thickness coated on polyethylene films reduce their vapor permeability by 90% using elemental mercury as a model vapor toxicant. The barrier performance of GO in this thin-film configuration is much better than the Nielsen model limit, which describes ideal behavior of flake-like fillers uniformly imbedded in a polymer. The Hg barrier performance of GO films is found to be sensitive to residual water in the films, which is consistent with molecular dynamics (MD) simulations that show lateral diffusion of Hg atoms in graphene interlayer spaces that have been expanded by hydration. PMID:22717015
Riaz, Asad; Lei, Shicheng; Akhtar, Hafiz Muhammad Saleem; Wan, Peng; Chen, Dan; Jabbar, Saqib; Abid, Muhammad; Hashim, Malik Muhammad; Zeng, Xiaoxiong
2018-07-15
In the present study, apple peel polyphenols (APP) were incorporated into chitosan (CS) to develop a novel functional film. Scanning electron microscopy, Fourier transform-infrared spectroscopy and thermogravimetric analyses were performed to study the structure, potential interaction and thermal stability of the prepared films. Physical properties including moisture content, density, color, opacity, water solubility, swelling ration and water vapor permeability were measured. The results revealed that addition of APP into CS significantly improved the physical properties of the film by increasing its thickness, density, solubility, opacity and swelling ratio whereas moisture content and water vapor permeability were decreased. Tensile strength and elongation at break of the CS-APP film with 1% APP was 16.48MPa and 13.33%, respectively, significantly lower than those for CS control film. Thermal stability of the prepared films was decreased while antioxidant and antimicrobial activities of the CS-based APP film were significantly increased. CS-APP film with 0.50% APP concentration exhibited good mechanical and antimicrobial properties, indicating that it could be developed as bio-composite food packaging material for the food industry. Copyright © 2018 Elsevier B.V. All rights reserved.
Morphological characteristics and barrier properties of thermoplastic starch/chitosan blown film.
Dang, Khanh Minh; Yoksan, Rangrong
2016-10-05
Fabrication of starch-based edible film using blown film extrusion is challenging and interesting because this process provides continuous operation with shorter production time and lower energy consumption, is less labor intensive, and results in higher productivity than the conventional solution casting technique. Previously, we reported on the preparation and some properties of thermoplastic starch/chitosan (TPS/CTS) blown films; however, their morphological characteristics and barrier properties had not yet been elucidated. The present work thus aims to investigate the effect of chitosan (0.37-1.45%) on morphological characteristics, water vapor and oxygen barrier properties as well as hydrophilicity of the TPS and TPS/CTS films. The relationship between morphological characteristics and properties of the films was also discussed. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS) confirmed the distribution and deposition of chitosan on the film surface. The existence of chitosan on the surface imparted the improved water vapor and oxygen barrier properties and the reduced surface hydrophilicity to the film. The results suggest that this biodegradable bio-based TPS/CTS film could potentially be used as an edible film for food and pharmaceutical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cinelli, Patrizia; Schmid, Markus; Bugnicourt, Elodie; Coltelli, Maria Beatrice; Lazzeri, Andrea
2016-06-14
Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET)/polyethylene (PE) multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at yield, stress and elongation at break, evaluated by tensile testing on films before and after cleaning, were are not significantly affected by washing with enzymatic detergents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyunjung; Park, Jingyu; Jeon, Heeyoung
Diffusion barrier characteristics of tungsten–nitride–carbide (WN{sub x}C{sub y}) thin films interposed between Cu and SiO{sub 2} layers were studied. The WN{sub x}C{sub y} films were deposited by remote plasma atomic layer deposition (RPALD) using a metal organic source, ({sup Me}Cp)W(CO){sub 2}(NO), and ammonia. Auger electron spectroscopy analysis indicated the WN{sub x}C{sub y} films consisted of tungsten, nitrogen, carbon, and oxygen. X-ray diffraction (XRD) analysis showed that the film deposited at 350 °C was nanocrystalline. The resistivity of WN{sub x}C{sub y} film deposited by RPALD was very low compared to that in previous research because of the lower nitrogen content and differentmore » crystal structures of the WN{sub x}C{sub y}. To verify the diffusion barrier characteristics of the WN{sub x}C{sub y} film, Cu films were deposited by physical vapor deposition after WN{sub x}C{sub y} film was formed by RPALD on Si substrate. The Cu/WN{sub x}C{sub y}/Si film stack was annealed in a vacuum by rapid thermal annealing at 500 °C. Cu diffusion through the barrier layer was verified by XRD. Stable film properties were observed up to 500 °C, confirming that WN{sub x}C{sub y} film is suitable as a Cu diffusion barrier in microelectronic circuits.« less
Mohamad, Soad A; Sarhan, Hatem A; Abdelkader, Hamdy; Mansour, Heba F
2017-07-01
This study aimed to formulate and evaluate vitamin B12-loaded buccal mucoadhesive hydrogel films. Various film formulations were prepared using chitosan and polyvinyl alcohol. The prepared films were characterized for thickness, weight variation, drug content, percentage moisture uptake and moisture content, surface pH, mechanical properties, in vitro release, and mucoadhesion. Vitamin B12 bioavailability from the optimized formulation was studied on rabbits by the aid of enzyme-linked immunosorbent assay. Neuroton ® I.M. injection was used for comparison. The films had acceptable mechanical and mucoadhesion properties. The percentages of moisture content of the optimized formulation were 3.2 ± 0.95, whereas the percentage drug released was 98.59 ± 1.41% at the end of 40 min. FTIR revealed the incidence of drug/polymer interaction. Differential scanning calorimetry revealed the possibility of the dispersion of cyanocobalamin in a molecular state with complete amorphization in the polymers. The estimated AUC 0-8h showed 1.5-fold increases in the bioavailability of cyanocobalamin from the optimized formulation compared with the marketed I.M. injection. These findings warrant that vitamin B12 buccal film formulation can be considered as an effective alternative portal with noninvasive and more convenient characteristics compared with the I.M. injection dosage form. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Biodegradable Zein-Based Blend Films: Structural, Mechanical and Barrier Properties
Filho, José Francisco Lopes
2015-01-01
Summary The effect of adding a hydrocolloid on the structural, mechanical and barrier properties of zein-based blend films is evaluated. Zein-oleic acid blend film with added xanthan gum (Z-OA-XG) showed higher water solubility (13.09%) and opacity (8.49 AU/mm) than zein-oleic acid (Z-OA) film (10.80% and 5.19 AU/mm, respectively). Furthermore, Z-OA film had greater flexibility with lower Young’s Modulus (YM=5.02 MPa) and higher elongation at break (η=10.62%); nonetheless, it was less resistant to tension (tensile strength σ=8.5 MPa) than Z-OA-XG film, which showed YM, η and σ of 6.38 MPa, 6.66% and 10.485 MPa, respectively. Both films had glossy and homogeneous structure with comparable water vapour and oxygen barrier properties around 4.39·10–11 and 1.82·10–13 g/(Pa·s·m), respectively. Based on that, xanthan gum structure influenced mainly mechanical and light barrier properties of zein-oleic acid blend films. PMID:27904368
Controlled Release of Antimicrobial ClO2 Gas from a Two-Layer Polymeric Film System.
Bai, Zhifeng; Cristancho, Diego E; Rachford, Aaron A; Reder, Amy L; Williamson, Alexander; Grzesiak, Adam L
2016-11-16
We report a two-component label system comprising a chlorite-containing polymer film and an acid-containing polymer film that can release antimicrobial ClO 2 gas upon adhering the two films together to enable a reaction of the chlorite and acid under moisture exposure. The chlorite-containing film comprises a commercial acrylate-based pressure-sensitive adhesive polymer impregnated with sodium chlorite. The acid-containing film comprises a commercial poly(vinyl alcohol) polymer loaded with tartaric acid. Both of the films were prepared on low ClO 2 -absorbing substrate films from stable aqueous systems of the polymers with high reagent loading. Rapid and sustained releases of significant amounts of ClO 2 gas from the label system were observed in an in situ quantification system using UV-vis spectroscopy. It was found that the ClO 2 release is slower at a lower temperature and can be accelerated by moisture in the atmosphere and the films. Controlled release of ClO 2 gas from the label system was demonstrated by tailoring film composition and thickness. A model was developed to extract release kinetics and revealed good conversions of the label system. This two-component system can potentially be applied as a two-part label without premature release for applications in food packaging.
Stephen-Haynes, Jackie; Stephens, Claire
2013-12-01
The study involves 95 subjects within a UK Primary Care Organisation and was undertaken in two arms. The objective was to determine the clinical outcomes and clinical acceptability of a newly available range of no-sting barrier film and no-sting barrier cream products offering significant financial benefits. The importance of undertaking this study is underpinned by evidence in the literature relating to the use of no-sting barrier preparations within clinical practice. The first part of the study (arm 1) involved extensive evaluation of either the film or cream barrier in 36 patients and was compared to existing standardised barrier protection care within the organisation. The results indicated that the new product range met all the criteria for formulary inclusion and following this the barrier range was further evaluated in arm 2, 33 patients with barrier cream and 26 patients with barrier film. The entire study was conducted over a 3-month period with patient treatment lasting a minimum of 2 days to a maximum 4-week period adhering to the agreed evaluation protocol as approved by clinical governance. In arm 1 (n = 36), the clinical expectation of the product was met in 32 cases relating to ease of use, conformability, no-sting, quick drying, ease of absorption, compatibility with devices, frequency of application, prevention and management including visual skin improvement resulting in a recommendation for formulary listing in 31 of 36 cases. In arm 2 (n = 59), barrier film and barrier cream performance was consistently rated same as, better than or much better than the existing barrier used. A formulary listing recommendation was made in 51 of 59 cases. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.
Films based on neutralized chitosan citrate as innovative composition for cosmetic application.
Libio, Illen C; Demori, Renan; Ferrão, Marco F; Lionzo, Maria I Z; da Silveira, Nádya P
2016-10-01
In this work, citrate and acetate buffers, were investigated as neutralizers to chitosan salts in order to provide biocompatible and stable films. To choose the appropriate film composition for this study, neutralized chitosan citrate and acetate films, with and without the plasticizer glycerol, were prepared and characterized by thickness, moisture content, degree of swelling, total soluble matter in acid medium, simultaneous thermal analysis and differential scanning calorimetry. Chitosan films neutralized in citrate buffer showed greater physical integrity resulted from greater thicknesses, lower moisture absorbance, lower tendency to solubility in the acid medium, and better swelling capacities. According to thermal analyses, these films had higher interaction with water which is considered an important feature for cosmetic application. Since the composition prepared in citrate buffer without glycerol was considered to present better physical integrity, it was applied to investigate hyaluronic acid release in a skin model. Skins treated with those films, with or without hyaluronic acid, show stratum corneum desquamation and hydration within 10min. The results suggest that the neutralized chitosan citrate film prepared without glycerol promotes a cosmetic effect for skin exfoliation in the presence or absence of hyaluronic acid. Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluation of the permeability of agricultural films to various fumigants.
Qian, Yaorong; Kamel, Alaa; Stafford, Charles; Nguyen, Thuy; Chism, William J; Dawson, Jeffrey; Smith, Charles W
2011-11-15
A variety of agricultural films are commercially available for managing emissions and enhancing pest control during soil fumigation. These films are manufactured using different materials and processes which can ultimately result in different permeability to fumigants. A systematic laboratory study of the permeability of the agricultural films to nine fumigants was conducted to evaluate the performance of commonly used film products, including polyethylene, metalized, and high-barrier films. The permeability, as expressed by mass transfer coefficient (cm/h), of 27 different films from 13 manufacturers ranged from below 1 × 10(-4) cm/h to above 10 cm/h at 25 °C under ambient relative humidity test conditions. The wide range in permeability of commercially available films demonstrates the need to use films which are appropriate for the fumigation application. The effects of environmental factors, such as temperature and humidity, on the film permeability were also investigated. It was found that high relative humidity could drastically increase the permeability of the high-barrier films. The permeability of some high-barrier films was increased by 2-3 orders of magnitude when the films were tested at high relative humidity. Increasing the temperature from 25 to 40 °C increased the permeability for some high-barrier films up to 10 times more than the permeability at 25 °C, although the effect was minimal for several of these films. Analysis of the distribution of the permeability of the films under ambient humidity conditions to nine fumigants indicated that the 27 films largely followed the material type, although the permeability varied considerably among the films of similar material.
NASA Astrophysics Data System (ADS)
Praseptiangga, Danar; Giovani, Sarah; Manuhara, Godras Jati; Muhammad, Dimas Rahadian Aji
2017-09-01
Novel composite films based on semi-refined iota-carrageenan (SRIC) incorporating palmitic acid (PA) were prepared by an emulsification method. Palmitic acid (PA) as hydrophobic material was incorporated into semi-refined iota-carrageenan edible films in order to improve water vapor barrier properties. Composite SRIC-based films with varying concentrations of PA (10%, 20%, and 30% w/w) were obtained by a solvent casting method. Their mechanical and barrier properties were investigated. Results showed that the incorporation of PA in films caused a significant increase (p < 0.05) in thickness as the concentration of PA increased (from 10% to 30% w/w). The mechanical properties of semi-refined iota-carrageenan were also affected by PA incorporation; increasing the concentration of PA (from 10% to 30% w/w) in films improved the tensile strength (TS). Interestingly, the TS value increased to a peak at 20% w/w PA. However, the TS value showed a decrease when PA were added at 30% w/w. Elongation-at-break (EAB) were significantly (p < 0.05) decreased when the concentration of PA in films increased (from 10% to 30% w/w). Furthermore, the incorporation of PA also affected the water vapor barrier properties of the films. Water vapor transmission rate (WVTR) of the composite semi-refined iota-carrageenan-based edible film decreased significantly (p < 0.05) as the concentration of palmitic acid increased (from 10% to 30% w/w). Composite SRIC-based edible film incorporating 30% w/w of PA presented better water vapor barrier properties as compared to other films with 10% and 20% w/w PA incorporation. Thus, formulation containing 30% w/w palmitic acid promoted films with a highly beneficial to improve water vapor barrier properties and it has the potential for food packaging applications.
Jiménez, Alberto; Fabra, María José; Talens, Pau; Chiralt, Amparo
2012-06-20
Edible films based on corn starch, hydroxypropyl methylcellulose (HPMC) and their mixtures were prepared by using two different procedures to homogenize the film forming dispersions (rotor-stator and rotor-stator plus microfluidizer). The influence of both HPMC-starch ratio and the homogenization method on the structural, optical, tensile and barrier properties of the films was analysed. The ageing of the films was also studied by characterizing them after 5 weeks' storage. Starch re-crystallization in newly prepared and stored films was analysed by means of X-ray diffraction. HPMC-corn starch films showed phase separation of polymers, which was enhanced when microfluidization was applied to the film forming dispersion. Nevertheless, HPMC addition inhibited starch re-crystallization during storage, giving rise to more flexible films at the end of the period. Water barrier properties of starch films were hardly affected by the addition of HPMC, although oxygen permeability increased due to its poorer oxygen barrier properties. Copyright © 2012 Elsevier Ltd. All rights reserved.
Skin Barrier Restoration and Moisturization Using Horse Oil-Loaded Dissolving Microneedle Patches.
Lee, Chisong; Eom, Younghyon Andrew; Yang, Huisuk; Jang, Mingyu; Jung, Sang Uk; Park, Ye Oak; Lee, Si Eun; Jung, Hyungil
2018-01-01
Horse oil (HO) has skin barrier restoration and skin-moisturizing effects. Although cream formulations have been used widely and safely, their limited penetration through the stratum corneum is a major obstacle to maximizing the cosmetic efficacy of HO. Therefore, we aimed to encapsulate HO in a cosmetic dissolving microneedle (DMN) for efficient transdermal delivery. To overcome these limitations of skin permeation, HO-loaded DMN (HO-DMN) patches were developed and evaluated for their efficacy and safety using in vitro and clinical studies. Despite the lipophilic nature of HO, the HO-DMN patches had a sharp shape and uniform array, with an average length and tip diameter of 388.36 ± 16.73 and 38.54 ± 5.29 µm, respectively. The mechanical strength of the HO-DMN patches was sufficient (fracture force of 0.29 ± 0.01 N), and they could successfully penetrate pig skin. During the 4-week clinical evaluation, HO-DMN patches caused significant improvements in skin and dermal density, skin elasticity, and moisturization. Additionally, a brief safety assessment showed that the HO-DMN patches induced negligible adverse events. The HO-DMNs are efficient, safe, and convenient for wide use in cosmetic applications for skin barrier restoration and moisturization. © 2018 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J.E.
1997-12-31
This paper describes application of a soil-plant cover system (SPCS) to preclude water from reaching interred wastes in arid and semiarid regions. Where potential evapotranspiration far exceeds precipitation, water can be kept from reaching buried wastes by (1) providing a sufficiently deep cap of soil to store precipitation that falls while plants are dormant and (2) maintaining plant cover to deplete soil moisture during the growing season, thereby emptying the storage reservoir. Research at the Idaho National Engineering Laboratory (INEL) has shown that 2 m of soil is adequate to store moisture from snowmelt and spring rains. Healthy stands ofmore » perennial grasses and shrubs adapted to the INEL climate use all available soil moisture, even during a very wet growing season. However, burrowing by small mammals or ants may affect the performance of a SPCS by increasing infiltration of water. Intrusion barriers of gravel and cobble can be used to restrict burrowing, but emplacement of such barriers affects soil moisture storage and plant rooting depths. A replicated field experiment to investigate the implications of those effects is in progress. Incorporation of an SPCS should be considered in the design of isolation barriers for shallow land burial of hazardous wastes in and regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyungchul; Singh, Ankit Kumar; Wang, Cheng-Yin
In the development of ultrabarrier films for packaging electronics, the effective water vapor transmission rate is a combination of permeation through pinhole defects and the intrinsic permeation through the actual barrier film. While it is possible to measure the effective permeation rate through barriers, it is important to develop a better understanding of the contribution from defects to the overall effective barrier performance. Here, we demonstrate a method to investigate independently defect-assisted permeation and intrinsic permeation rates by observing the degradation of a calcium layer encapsulated with a hybrid barrier film, that is, prepared using atomic layer deposition (ALD) andmore » plasma enhanced deposition (PECVD). The results are rationalized using an analytical diffusion model to calculate the permeation rate as a function of spatial position within the barrier. It was observed that a barrier film consisting of a PECVD SiN{sub x} layer combined with an ALD Al{sub 2}O{sub 3}/HfO{sub x} nanolaminate resulted in a defect-assisted water vapor transmission rate (WVTR) of 4.84 × 10{sup −5} g/m{sup 2} day and intrinsic WVTR of 1.41 × 10{sup −4} g/m{sup 2} day at 50 °C/85% RH. Due to the low defect density of the tested barrier film, the defect-assisted WVTR was found to be three times lower than the intrinsic WVTR, and an effective (or total) WVTR value was 1.89 × 10{sup −4} g/m{sup 2} day. Thus, improvements of the barrier performance should focus on reducing the number of defects while also improving the intrinsic barrier performance of the hybrid layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempe, Michael D.; Dameron, Arrelaine A.; Reese, Matthew O.
2013-05-14
Many thin film photovoltaic (PV) technologies can be sensitive to corrosion induced by the presence of water vapor in the packaging materials. Typically impermeable front and backsheets are used in conjunction with an edge-seal around the perimeter to prevent water vapor ingress. These edge-seal materials are often made of a polyisobutylene resin filled with desiccant, which dramatically increases the time for moisture to reach sensitive module components. While edge-seals can prevent moisture ingress, even the lowest diffusivity transparent encapsulant materials are insufficient for the lifetime of a module. To evaluate the performance of edge-seal and encapsulant materials in a mannermore » that simulates their function in a PV module, an optical method was devised where ingress is detected by reaction of a Ca film with water. Using this method, we have exposed test samples to heat and humidity allowing quantitative comparison of different edge-seal and encapsulant materials. Next, we use measurements of polymer diffusivity and solubility to evaluate the ability to model this moisture ingress. Here, we find good agreement between these two methods highlighting the much greater ability of polyisobutylene materials to keep moisture out as compared with typical encapsulant materials used in the PV industry.« less
USDA-ARS?s Scientific Manuscript database
Protein-based and other hydrophilic thin films are promising materials for the manufacture of edible food packaging and other food and non-food applications. Calcium caseinate (CaCas) films are highly hygroscopic and physical characterization under broad environmental conditions is critical to appli...
NASA Astrophysics Data System (ADS)
Asgary, Somayeh; Hantehzadeh, Mohammad Reza; Ghoranneviss, Mahmood
2017-11-01
The amorphous W/WN films with various thickness (10, 30 and 40 nm) and excellent thermal stability were successfully prepared on SiO2/Si substrate with evaporation and reactive evaporation method. The W/WN bilayer has technological importance because of its low resistivity, high melting point, and good diffusion barrier properties between Cu and Si. The thermal stability was evaluated by X-ray diffractometer (XRD) and Scanning Electron Microscope (SEM). In annealing process, the amorphous W/WN barrier crystallized and this phenomenon is supposed to be the start of Cu atoms diffusion through W/WN barrier into Si. With occurrence of the high-resistive Cu3Si phase, the W/WN loses its function as a diffusion barrier. The primary mode of Cu diffusion is the diffusion through grain boundaries that form during heat treatments. The amorphous structure with optimum thickness is the key factor to achieve a superior diffusion barrier characteristic. The results show that the failure temperature increased by increasing the W/WN film thickness from 10 to 30 nm but it did not change by increasing the W/WN film thickness from 30 to 40 nm. It is found that the 10 and 40 nm W/WN films are good diffusion barriers at least up to 800°C while the 30 nm W/WN film shows superior properties as a diffusion barrier, but loses its function as a diffusion barrier at about 900°C (that is 100°C higher than for 10 and 40 nm W/WN films).
Acoustic wave (AW) based moisture sensor for use with corrosive gases
Pfeifer, Kent B.; Frye, Gregory C.; Schneider, Thomas W.
1996-01-01
Moisture corrosive gas stream is measured as a function of the difference in resonant frequencies between two acoustic wave (AW) devices, each with a film which accepts at least one of the components of the gas stream. One AW is located in the gas stream while the other is located outside the gas stream but in the same thermal environment. In one embodiment, the film is a hydrophilic material such as SiO.sub.2. In another embodiment, the SiO.sub.2 is covered with another film which is impermeable to the corrosive gas, such that the AW device in the gas stream measures only the water vapor. In yet another embodiment, the film comprises polyethylene oxide which is hydrophobic and measures only the partial pressure of the corrosive gas. Other embodiments allow for compensation of drift in the system.
Acoustic wave (AW) based moisture sensor for use with corrosive gases
Pfeifer, K.B.; Frye, G.C.; Schneider, T.W.
1996-11-05
Moisture corrosive gas stream is measured as a function of the difference in resonant frequencies between two acoustic wave (AW) devices, each with a film which accepts at least one of the components of the gas stream. One AW is located in the gas stream while the other is located outside the gas stream but in the same thermal environment. In one embodiment, the film is a hydrophilic material such as SiO{sub 2}. In another embodiment, the SiO{sub 2} is covered with another film which is impermeable to the corrosive gas, such that the AW device in the gas stream measures only the water vapor. In yet another embodiment, the film comprises polyethylene oxide which is hydrophobic and measures only the partial pressure of the corrosive gas. Other embodiments allow for compensation of drift in the system. 8 figs.
Liquid and vapour water transfer through whey protein/lipid emulsion films.
Kokoszka, Sabina; Debeaufort, Frederic; Lenart, Andrzej; Voilley, Andree
2010-08-15
Edible films and coatings based on protein/lipid combinations are among the new products being developed in order to reduce the use of plastic packaging polymers for food applications. This study was conducted to determine the effect of rapeseed oil on selected physicochemical properties of cast whey protein films. Films were cast from heated (80 degrees C for 30 min) aqueous solutions of whey protein isolate (WPI, 100 g kg(-1) of water) containing glycerol (50 g kg(-1) of WPI) as a plasticiser and different levels of added rapeseed oil (0, 1, 2, 3 and 4% w/w of WPI). Measurements of film microstructure, laser light-scattering granulometry, differential scanning calorimetry, wetting properties and water vapour permeability (WVP) were made. The emulsion structure in the film suspension changed significantly during drying, with oil creaming and coalescence occurring. Increasing oil concentration led to a 2.5-fold increase in surface hydrophobicity and decreases in WVP and denaturation temperature (T(max)). Film structure and surface properties explain the moisture absorption and film swelling as a function of moisture level and time and consequently the WVP behaviour. Small amounts of rapeseed oil favourably affect the WVP of WPI films, particularly at higher humidities. Copyright (c) 2010 Society of Chemical Industry.
Controlling the hydration of the skin though the application of occluding barrier creams
Sparr, Emma; Millecamps, Danielle; Isoir, Muriel; Burnier, Véronique; Larsson, Åsa; Cabane, Bernard
2013-01-01
The skin is a barrier membrane that separates environments with profoundly different water contents. The barrier properties are assured by the outer layer of the skin, the stratum corneum (SC), which controls the transepidermal water loss. The SC acts as a responding membrane, since its hydration and permeability vary with the boundary condition, which is the activity of water at the outer surface of the skin. We show how this boundary condition can be changed by the application of a barrier cream that makes a film with a high resistance to the transport of water. We present a quantitative model that predicts hydration and water transport in SC that is covered by such a film. We also develop an experimental method for measuring the specific resistance to water transport of films made of occluding barrier creams. Finally, we combine the theoretical model with the measured properties of the barrier creams to predict how a film of cream changes the activity of water at the outer surface of the SC. Using the known variations of SC permeability and hydration with the water activity in its environment (i.e. the relative humidity), we can thus predict how a film of barrier cream changes SC hydration. PMID:23269846
Controlling the hydration of the skin though the application of occluding barrier creams.
Sparr, Emma; Millecamps, Danielle; Isoir, Muriel; Burnier, Véronique; Larsson, Åsa; Cabane, Bernard
2013-03-06
The skin is a barrier membrane that separates environments with profoundly different water contents. The barrier properties are assured by the outer layer of the skin, the stratum corneum (SC), which controls the transepidermal water loss. The SC acts as a responding membrane, since its hydration and permeability vary with the boundary condition, which is the activity of water at the outer surface of the skin. We show how this boundary condition can be changed by the application of a barrier cream that makes a film with a high resistance to the transport of water. We present a quantitative model that predicts hydration and water transport in SC that is covered by such a film. We also develop an experimental method for measuring the specific resistance to water transport of films made of occluding barrier creams. Finally, we combine the theoretical model with the measured properties of the barrier creams to predict how a film of cream changes the activity of water at the outer surface of the SC. Using the known variations of SC permeability and hydration with the water activity in its environment (i.e. the relative humidity), we can thus predict how a film of barrier cream changes SC hydration.
Biodegradation of poly(hydroxy butanoic acid) copolymer mulch films in soil
NASA Astrophysics Data System (ADS)
Kukade, Pranav
Agricultural mulch films that are used to cover soil of crop rows contribute to earlier maturation of crops and higher yield. Incineration and landfill disposals are the most common means of disposal of the incumbent polyethylene (PE) mulch films; however, these are not environment friendly options. Biodegradable mulch films that can be rototilled into the soil after crop harvest are a promising alternative to offset problems such as landfill disposal, film retrieval and disposal costs. In this study, an in-house laboratory scale test method was developed in which the rate of disintegration, as a result of biodegradation of films based on polyhydroxybutanoic acid (PHB) copolymers was investigated in a soil environment using the residual weight loss method. The influence of soil composition, moisture levels in the soil, and industry-standard anti-microbial additive in the film composition on the rate of disintegration of PHB copolymer films was investigated. The soil composition has significant effect on the disintegration kinetics of PHB copolymer films, since the increasing compost levels in the soil lowered the rate of disintegration of the film. Also, with the increase in moisture level up to a threshold limit, the microbial activity and, hence, the rate of disintegration increased. Lastly, the developed lab-scale test protocol was found to be sensitive to even small concentrations of industry-standard antimicrobial additive in the film composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahato, S., E-mail: som.phy.ism@gmail.com; Shiwakoti, N.; Kar, A. K.
2015-06-24
This article reports the measurement of temperature-dependent barrier height and ideality factor of n-CdSe/Cu Schottky barrier diode. The Cadmium Selenide (CdSe) thin films have been deposited by simple electrodeposition technique. The XRD measurements ravels the deposited single phase CdSe films are highly oriented on (002) plane and the average particle size has been calculated to be ~18 nm. From SEM characterization, it is clear that the surface of CdSe thin films are continuous, homogeneous and the film is well adhered to the substrate and consists of fine grains which are irregular in shape and size. Current-Voltage characteristics have been measured atmore » different temperatures in the range (298 K – 353 K). The barrier height and ideality factor are found to be strongly temperature dependent. The inhomogenious barrier height increases and ideality factor decreases with increase in temperature. The expectation value has been calculated and its value is 0.30 eV.« less
Orientation filtering for crystalline films
Smith, Henry I.; Atwater, Harry A.; Thompson, Carl V.; Geis, Michael W.
1986-12-30
A substrate is coated with a film to be recrystallized. A pattern of crystallization barriers is created in the film, for example, by etching voids in the film. An encapsulation layer is generally applied to protect the film, fill the voids and otherwise enhance a recrystallization process. Recrystallization is carried out such that certain orientations pass preferentially through the barrier, generally as a result of growth-velocity anisotropy. The result is a film of a specific predetermined crystallographic orientation, a range of orientations or a set of discrete orientations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consiglio, S.; Dey, S.; Yu, K.
2016-01-01
Ultrathin TaN and Ta 1-xAl xN y films with x = 0.21 to 0.88 were deposited by atomic layer deposition (ALD) and evaluated for Cu diffusion barrier effectiveness compared to physical vapor deposition (PVD) grown TaN. Cu diffusion barrier effectiveness was investigated using in-situ ramp anneal synchrotron X-ray diffraction (XRD) on Cu/1.8 nm barrier/Si stacks. A Kissinger-like analysis was used to assess the kinetics of Cu 3Si formation and determine the effective activation energy (E a) for Cu silicidation. Compared to the stack with a PVD TaN barrier, the stacks with the ALD films exhibited a higher crystallization temperature (Tmore » c) for Cu silicidation. The Ea values of Cu 3Si formation for stacks with the ALD films were close to the reported value for grain boundary diffusion of Cu whereas the Ea of Cu 3Si formation for the stack with PVD TaN is closer to the reported value for lattice diffusion. For 3 nm films, grazing incidence in-plane XRD showed evidence of nanocrystallites in an amorphous matrix with broad peaks corresponding to high density cubic phase for the ALD grown films and lower density hexagonal phase for the PVD grown film further elucidating the difference in initial failure mechanisms due to differences in barrier crystallinity and associated phase.« less
Bulusu, Anuradha; Singh, Ankit K.; Wang, Cheng-Yin; ...
2015-08-28
Direct deposition of barrier films by atomic layer deposition (ALD) onto printed electronics presents a promising method for packaging devices. Films made by ALD have been shown to possess desired ultrabarrier properties, but face challenges when directly grown onto surfaces with varying composition and topography. Challenges include differing nucleation and growth rates across the surface, stress concentrations from topography and coefficient of thermal expansion (CTE) mismatch, elastic mismatch, and particle contamination that may impact the performance of the ALD barrier. In such cases, a polymer smoothing layer may be needed to coat the surface prior to ALD barrier film deposition.more » We present the impact of architecture on the performance of aluminum oxide (Al2O3)/hafnium oxide (HfO2) ALD nanolaminate barrier films deposited on fluorinated polymer layer using an optical calcium (Ca) test under damp heat. It is found that with increasing polymer thickness, the barrier films with residual tensile stress are prone to cracking resulting in rapid failure of the Ca sensor at 50{degree sign}C/85% RH. Inserting a SiNx layer with residual compressive stress between the polymer and ALD layers is found to prevent cracking over a range of polymer thicknesses with more than 95% of the Ca sensor remaining after 500 h of testing. These results suggest that controlling mechanical properties and film architecture play an important role in the performance of direct deposited ALD barriers.« less
Effect of Si in reactively sputtered Ti-Si-N films on structure and diffusion barrier performance
NASA Astrophysics Data System (ADS)
Sun, X.; Kolawa, E.; Im, S.; Garland, C.; Nicolet, M.-A.
Two ternary films about 100 nm thick, Ti34Si23N43 (b3) and Ti35Si13N52 (c3), are synthesized by reactively sputtering a Ti5Si3 or a Ti3Si target, respectively. The silicon-lean film (c3) has a columnar structure closely resembling that of TiN. As a diffusion barrier between a shallow Si n+p junction diode and a Cu overlayer, this material is effective up to 700 °C for 30 min annealing in vacuum, a performance similar to that for TiN. The silicon-rich (b3) film contains nanocrystals of TiN, randomly oriented and embedded in an amorphous matrix. A film of (b3) maintains the stability of the same diode structure up to 850 °C for 30 min in vacuum. This film (b3) is clearly superior to TiN or to (c3). Similar experiments performed with Al instead of Cu overlayers highlight the importance of the thermodynamic stability of a barrier layer and demonstrate convincingly that for stable barriers the microstructure is a parameter that directly determines the barrier performance.
Nouri, Leila; Mohammadi Nafchi, Abdorreza
2014-05-01
The antimicrobial, mechanical and barrier properties and light transmission of sago starch film incorporated with different percentage of Betel leaf extract (5%, 10%, 20%, and 30%) were evaluated. With regard to mechanical properties, tensile strength decreased when the percentage of extract increased. Elongation at break (%) and seal strength (N/m) increased with increasing percentage of extract from 5% to 20%, while decreased for films containing 30% extract due to heterogeneity of films in this percentage. With regard to barrier properties, water vapour and oxygen barrier properties decreased in all samples when percentage of the extract increased. Antimicrobial activity of all the films increased against both Gram positive and Gram negative bacteria as percentage of Betel leaf extract increased, except for Psuedomonas aeruginosa, which was not susceptible at any percentage of the extract. Copyright © 2014 Elsevier B.V. All rights reserved.
Super Gas Barrier Thin Films via Layer-by-Layer Assembly of Polyelectrolytes and Clay
NASA Astrophysics Data System (ADS)
Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime
2010-03-01
Thin composite films of branched polyethylenimine (PEI), polyacrylic acid (PAA) and sodium montmorillonite clay (MMT) platelets were prepared using layer-by-layer assembly. Film thickness, mass deposited per layer, and barrier were shown to increase exponentially with the number of deposition cycles. After 32 layers (i.e., eight PEI/PAA/PEI/MMT quadlayers) are deposited, the resulting transparent film exhibits an oxygen transmission rate below the detection limit of commercial instrumentation (< 0.005 cm^3/m^2 . day). This level of oxygen barrier is believed to be due to a nano-brick wall microstructure comprised of exfoliated clay bricks in polymeric mortar, where the enhanced spacing between MMT layers, provided by PEI and PAA, creates channels perpendicular concentration gradient that delay the permeating molecule. These films are good candidates for flexible electronics, food, and pharmaceutical packaging due to their transparency, super gas barrier (that rivals SiOx) and lack of metal.
Laboratory and test-site testing of moisture-cured urethanes on steel in salt-rich environment.
DOT National Transportation Integrated Search
2000-11-01
Three 3-coat moisture-cured (MC) urethane commercial products formulated for protecting new steel (SSPC-SP 10) and power : tool-cleaned steel (SSPC-SP 3) surfaces against corrosion were evaluated; the total coating film thickness was about 75 : micro...
Laboratory and test-site testing of moisture-cured urethanes on steel in salt-rich environment
DOT National Transportation Integrated Search
2000-12-01
Three 3-coat moisture-cured (MC) urethane commercial products formulated for protecting new steel (SSPC-SP 10) and power tool-cleaned steel (SSPC-SP 3) surfaces against corrosion were evaluated; the total coating film thickness was about 75 microns. ...
Development of biodegradable materials; balancing degradability and performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, J.M.; Allen, A.L.; Dell, P.A.
1993-12-31
The development of biodegradable materials suitable for packaging must take into consideration various performance criteria such as mechanical and barrier properties, as well as rate of biodegradability in given environments. Individual or blended biopolymer films were obtained commercially or blown into film in the laboratory and tested for tensile strength, ultimate elongation and oxygen barrier. These films were then subjected to accelerated marine biodegradation tests as well as simulated marine respirometry. Starch/ethylene vinyl alcohol films exhibited good mechanical and excellent oxygen barrier properties, but were very slow to biodegrade in the simulated and excellent oxygen barrier properties, but were verymore » slow to biodegrade in the simulated marine environment. Polyhydroxyalkanoates had good mechanical properties, average oxygen barrier and good biodegradability. Data indicate that performance and biodegradability of packaging can be tailored to needs by combining individual biopolymers in different proportions in blends and laminates.« less
NASA Astrophysics Data System (ADS)
Praseptiangga, D.; Maimuni, B. H.; Manuhara, G. J.; Muhammad, D. R. A.
2018-03-01
Kappa-carrageenan (KC) is one of the most interesting biopolymers that is composed of a linear chain of sulfated galactans and extracted from red seaweed, Kappaphycus alvarezii. It shows good potential for development as a source of biodegradable or edible films. However, KC films do not have good water vapor barrier properties, as they are intrinsically hydrophilic. Palmitic acid (PA) as hydrophobic material was incorporated into semi-refined kappa-carrageenan (SRKC) edible films in order to improve water vapor barrier properties. In this study, composite films based on SRKC incorporating PA were prepared and their applications on minimally processed chicken breast fillet were evaluated. Composite SRKC-based films with varying concentrations of PA (5%, 10%, and 15% w/w) were obtained by a solvent casting method. Their mechanical and barrier properties were investigated. Results showed that the incorporation of PA in films caused an increase in thickness, but decrease in water vapor transmission rate (WVTR) as the concentration of PA increased (from 5% to 15% w/w). Composite SRKC-based edible film incorporating 15% w/w of PA presented better water vapor barrier properties as compared to other films with 5% and 10% w/w PA incorporation. Thus, formulation containing 15% w/w PA was used as a wrapping material for film application on minimally processed chicken breast fillet. The application results showed that the incorporation of PA in film caused an effect (p < 0.05) on preventing of weight loss significantly compare to control (non-wrapping), however it did not significantly (p >0.05) change the color of minimally processed chicken breast fillet.
NASA Astrophysics Data System (ADS)
Fisher, Dallas A.
Organic-metal halide perovskites have brought about a new wave of research in the photovoltaic community due to their ideally suited optical and electronic parameters. In less than a decade, perovskite solar cell performance has skyrocketed to unprecedented efficiencies with numerous reported methodologies. Perovskites face many challenges with high-quality film morphology, interfacial layers, and long-term stability. In this work, these active areas are explored through a combination of studies. First, the importance of perovskite film precursor ratios is explored with an in-depth study of carrier lifetime and solvent-grain effects. It was found that excess lead iodide precursor greatly improves the film morphology by reducing pinholes in the solar absorber. Dimethyl sulfoxide (DMSO) solvent was found to mend grains, as well as improve carrier lifetime and device performance, possibly by passivation of grain boundary traps. Second, applications of perovskite with tandem cells is investigated, with an emphasis for silicon devices. Perovskites can easily be integrated with silicon, which already has strong market presence. Additionally, both materials' bandgaps are ideally suited for maximum tandem efficiency. The silicon/perovskite tandem device structure necessitated the optimization of inverted (p-i-n) structure devices. PEDOT:PSS, copper oxide, and nickel oxide p-type layers were explored through a combination of photoluminescent, chemical reactivity, and solar simulation results. Results were hindered due to resistive ITO and rough silicon substrates, but tandem devices displayed Voc indicative of proper monolithic performance. Third, replacement of titanium dioxide n-type layer with iron oxide (Fe 2O3, common rust) was studied. Iron oxide experiences less ultraviolet instability than that of titanium dioxide under solar illumination. It was found that current density slightly decreased due to parasitic absorption from the rust, but that open circuit voltage decreased drastically due to poor band alignment. Fe2O3 appears to be better suited to a narrower band gap material than methylammonium lead iodide perovskite. Finally, encapsulation of perovskite devices with epoxy coatings is explored as a method to improve long-term stability. Perovskites are sensitive to a variety of conditions, but most importantly water and polar molecules. Encapsulants act as a moisture/oxygen barrier, but also prevent outgassing of the organic components. Three epoxies were tested in high heat and high humidity conditions. Important factors in the curing process were uncovered such as the sensitivity of UV-epoxies to amine functional groups found in common p-type dopants and perovskite layers. Moisture ingress was the failure point for high-humidity/heat devices which was confirmed through conversion to yellow lead iodide. A revised device fabrication method is proposed to reduce moisture ingress for future experiments.
Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Periolatto, M.; Spena, P. Russo; Sangermano, M.
A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.
Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties
NASA Astrophysics Data System (ADS)
Periolatto, M.; Sangermano, M.; Spena, P. Russo
2016-05-01
A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.
Fusion of Night Vision and Thermal Images
2006-12-01
with the walls of the MCP channels. Thus, a thin metal oxide coating commonly known as an ion barrier film is added to the input side of the MCP to...with film ion barrier to filmless gated tubes. An important improvement for Gen 4 products is a greater target identification range and higher target...Metal Seals with S-25 Cathode Mircro-channel plate Ceramic/Metal Seals with GaAS Cathode Mircro-channel plate with ion barrier film Ceramic
1980-12-01
Film Records..........................33 Discussion and Interpretation..................34 CRIB FIRE EXTINGUISHMENT BY BLAST ................... 36...48 Phototransistor Records ................... 53 Film Records and Visual Observation. ............ 54 v Discussion and Interpretation...deflection by the barrier and a region of reverse flow behind the barrier; film coverage (with fires) indicates that fuel reignition occurs in the large
Impermeable flexible liquid barrier film for encapsulation of DSSC metal electrodes
Yang, Junghee; Min, Misook; Yoon, Yeoheung; Kim, Won Jung; Kim, Sol; Lee, Hyoyoung
2016-01-01
Encapsulation of electronic devices such as dye-sensitized solar cells (DSSCs) is prone to degradation under normal atmospheric conditions, even with hermetic barriers on the metal electrodes. Overcoming this problem is crucial to increasing DSSC lifetimes and making them commercially viable. Herein, we report a new impermeable flexible liquid barrier film using polyvinyl alcohol (PVA) and partially reduced graphene oxide (PrGO), which dramatically enhances the lifetime of Ag metal electrodes (typically used in DSSCs) immersed in a highly acidic iodolyte solution. The Ag metal electrode encapsulated by the PVA/PrGO film survived for over 500 hrs, superior to existing barriers of glass frits, epoxy resins and polymers. The PVA/PrGO film strongly adheres to the Ag metal surface, and the resulting PVA/PrGO/Ag electrode is stable even on a curved substrate, with a sheet resistance nearly independent of curvature. These results give new insight for the design of high-performance and solution-processable flexible liquid barrier films for a wide range of applications, in particular for the encapsulation of electronic devices with liquid electrolytes. PMID:27263654
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polster, S.; Jank, M. P. M.; Frey, L.
2016-01-14
The correlation of defect content and film morphology with the charge-carrier transport in field-effect devices based on zinc oxide nanoparticles was investigated. Changes in the defect content and the morphology were realized by annealing and sintering of the nanoparticle thin films. Temperature-dependent electrical measurements reveal that the carrier transport is thermally activated for both the unsintered and sintered thin films. Reduced energetic barrier heights between the particles have been determined after sintering. Additionally, the energetic barrier heights between the particles can be reduced by increasing the drain-to-source voltage and the gate-to-source voltage. The changes in the barrier height are discussedmore » with respect to information obtained by scanning electron microscopy and photoluminescence measurements. It is found that a reduction of surface states and a lower roughness at the interface between the particle layer and the gate dielectric lead to lower barrier heights. Both surface termination and layer morphology at the interface affect the barrier height and thus are the main criteria for mobility improvement and device optimization.« less
Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties
NASA Astrophysics Data System (ADS)
Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu
2015-12-01
By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07647a
Guizhen H. Xu; Jinping Dong; Steven J. Severtson; Carl J. Houtman; Larry E. Gwin
2009-01-01
Migration of surfactants in water-based, pressure-sensitive adhesive (PSA) films exposed to static and cyclic relative humidity conditions was investigated using confocal Raman microscopy (CRM) and atomic force microscopy (AFM). Studied PSA films contain monomers n-butyl acrylate, vinyl acetate, and methacrylic acid and an equal mass mixture of anionic and nonionic...
Yonezawa, Kaori; Haruna, Megumi; Matsuzaki, Masayo; Shiraishi, Mie; Kojima, Reiji
2018-01-01
An effective newborn skincare protocol has not been established. We aimed to evaluate the effects of moisturizing skincare, including using lotion and reducing routine bathing. Our hypothesis was that moisturizing skincare would improve skin barrier function. This randomized controlled trial included 227 healthy Asian newborns between 1 week and 3 months old. We compared moisturizing skincare (bathing every 2 days and using lotion daily; intervention, n = 113) to daily bathing without lotion (control, n = 114). We assessed the skin barrier function (transepidermal water loss [TEWL], stratum corneum hydration [SCH], skin pH and sebum secretion) as a primary outcome at 3 months old. We also assessed the incidence of skin problems according to parents' diary reports. Compared with the control, the intervention group had a lower face TEWL (mean ± standard deviation, 14.69 ± 7.38 vs 17.08 ± 8.26 g/m 2 per h, P = 0.033), higher face SCH (60.38 ± 13.66 vs 53.52 ± 14.55, P = 0.001) and higher body SCH (58.89 ± 12.96 vs 53.02 ± 10.08, P < 0.001). Compared with the control, newborns in the intervention group had significantly lower rates of diaper dermatitis between birth and 1 month old (6.3% vs 15.9%, P = 0.022), and tended to have lower rates of body skin problems between 1 and 3 months (42.1% vs 55.2%, P = 0.064). Moisturizing skincare was effective for improving skin barrier function and preventing newborns' diaper dermatitis. The results of our study may help parents make informed decisions about newborn skincare. © 2017 Japanese Dermatological Association.
Orientation filtering for crystalline films
Smith, H.I.; Atwater, H.A.; Thompson, C.V.; Geis, M.W.
1986-12-30
A substrate is coated with a film to be recrystallized. A pattern of crystallization barriers is created in the film, for example, by etching voids in the film. An encapsulation layer is generally applied to protect the film, fill the voids and otherwise enhance a recrystallization process. Recrystallization is carried out such that certain orientations pass preferentially through the barrier, generally as a result of growth-velocity anisotropy. The result is a film of a specific predetermined crystallographic orientation, a range of orientations or a set of discrete orientations. 7 figs.
Brinkmann, K.O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R.; Oszajca, M. F.; Luechinger, N. A.; Rogalla, D.; Chen, Y.; Cheng, B.; Riedl, T
2017-01-01
The area of thin-film photovoltaics has been overwhelmed by organometal halide perovskites. Unfortunately, serious stability concerns arise with perovskite solar cells. For example, methyl-ammonium lead iodide is known to decompose in the presence of water and, more severely, even under inert conditions at elevated temperatures. Here, we demonstrate inverted perovskite solar cells, in which the decomposition of the perovskite is significantly mitigated even at elevated temperatures. Specifically, we introduce a bilayered electron-extraction interlayer consisting of aluminium-doped zinc oxide and tin oxide. We evidence tin oxide grown by atomic layer deposition does form an outstandingly dense gas permeation barrier that effectively hinders the ingress of moisture towards the perovskite and—more importantly—it prevents the egress of decomposition products of the perovskite. Thereby, the overall decomposition of the perovskite is significantly suppressed, leading to an outstanding device stability. PMID:28067308
Method Producing an SNS Superconducting Junction with Weak Link Barrier
NASA Technical Reports Server (NTRS)
Hunt, Brian D. (Inventor)
1999-01-01
A method of producing a high temperature superconductor Josephson element and an improved SNS weak link barrier element is provided. A YBaCuO superconducting electrode film is deposited on a substrate at a temperature of approximately 800 C. A weak link barrier layer of a nonsuperconducting film of N-YBaCuO is deposited over the electrode at a temperature range of 520 C. to 540 C. at a lower deposition rate. Subsequently a superconducting counter-electrode film layer of YBaCuO is deposited over the weak link barrier layer at approximately 800 C. The weak link barrier layer has a thickness of approximately 50 A and the SNS element can be constructed to provide an edge geometry junction.
Investigation of the proposed solar-driven moisture phenomenon in asphalt shingle roofs
Boudreaux, Philip; Pallin, Simon; Jackson, Roderick
2016-01-19
We report that unvented, sealed or conditioned attics are an energy efficiency measure to reduce the thermal load of the home and decrease the space conditioning energy consumption. This retrofit is usually done by using spray polyurethane foam underneath the roof sheathing and on the gables and soffits of an attic to provide a thermal and air barrier. Unvented attics perform well from this perspective but from a moisture perspective sometimes the unvented attic homes have high interior humidity or moisture damage to the roof. As homes become more air tight and energy efficient, an understanding of the hygrothermal dynamicsmore » of the home become more important. One proposed reason for high unvented attic humidity has been that moisture can come through the asphalt shingle roof system and increase the moisture content of the roof sheathing and attic air. This has been called solar driven moisture. Oak Ridge National Laboratory (ORNL) investigated this proposed phenomenon by examining the physical properties of a roof and the physics required for the phenomenon. Results showed that there are not favorable conditions for solar driven moisture to occur. ORNL also conducted an experimental study on an unvented attic home and compared the humidity below the roof sheathing before and after a vapor impermeable underlayment was installed. There was no statistically significant difference in absolute humidity before and after the vapor barrier was installed. Finally, the outcome of the theoretical and experimental study both suggest that solar driven moisture does not occur in any significant amount.« less
Papadatou, Zoi; Cooper, Kay; Klein, Susan; MacDuff, Colin; Steiner, Markus
2016-10-01
The objective of this quantitative systematic review is to identify, appraise and synthesize the best available evidence on the effectiveness of moisturizers, barrier creams, protective gloves, skin protection education and complex interventions (a combination of two or more of the interventions listed) in preventing occupational irritant hand dermatitis (OIHD) in wet workers. These interventions will be compared to an alternative intervention or to usual care (workers regular skin care regime). The specific review question is: "What is the effectiveness of moisturizers, barrier creams, protective gloves, skin protection education and complex interventions in preventing OIHD in wet workers?"
Barrier SiO2-like coatings for archaeological artefacts preservation
NASA Astrophysics Data System (ADS)
Prochazka, M.; Blahova, L.; Krcma, F.
2016-10-01
Thin film chemical vapour deposition technique has been used for more than 50 years. Introducing organo-silicones as precursors, e.g. hexamethyldisiloxane (HMDSO) or tetraethyl orthosilicate (TEOS), brought new possibilities to this method. Barrier properties of thin films have become an important issue, especially for army and emergency services as well as for food and drink manufacturers. Our work is focused on protective HMDSO thin films for encapsulating cleaned archaeological artefacts, preventing the corrosion from destroying these historical items.Thin films are deposited via plasma enhanced chemical vapour deposition (PECVD) technique using low pressure capacitively coupled pasma in flow regime. Oxygen transmission rate (OTR) measurement was chosen as the most important one for characterization of barrier properties of deposited thin films. Lowest OTR reached for 50 nm thin film thickness was 120 cm3 m-2 atm-1 day-1. Samples were also analyzed by Fourier Transform Infrared spectrometry (FTIR) to determine their composition. Optical emission spectra and thin film thickness were measured during the deposition process. We optimized the deposition parameters for barrier layers by implementation of pulsed mode of plasma and argon plasma pre-treatment into the process.
Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties.
Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu
2016-01-14
By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudreaux, Philip; Pallin, Simon; Jackson, Roderick
We report that unvented, sealed or conditioned attics are an energy efficiency measure to reduce the thermal load of the home and decrease the space conditioning energy consumption. This retrofit is usually done by using spray polyurethane foam underneath the roof sheathing and on the gables and soffits of an attic to provide a thermal and air barrier. Unvented attics perform well from this perspective but from a moisture perspective sometimes the unvented attic homes have high interior humidity or moisture damage to the roof. As homes become more air tight and energy efficient, an understanding of the hygrothermal dynamicsmore » of the home become more important. One proposed reason for high unvented attic humidity has been that moisture can come through the asphalt shingle roof system and increase the moisture content of the roof sheathing and attic air. This has been called solar driven moisture. Oak Ridge National Laboratory (ORNL) investigated this proposed phenomenon by examining the physical properties of a roof and the physics required for the phenomenon. Results showed that there are not favorable conditions for solar driven moisture to occur. ORNL also conducted an experimental study on an unvented attic home and compared the humidity below the roof sheathing before and after a vapor impermeable underlayment was installed. There was no statistically significant difference in absolute humidity before and after the vapor barrier was installed. Finally, the outcome of the theoretical and experimental study both suggest that solar driven moisture does not occur in any significant amount.« less
NASA Astrophysics Data System (ADS)
Mahajan, Viabhav
Biodegradation of polymeric films used for mulch film applications in agriculture not only eliminates problems of sorting out and disposal of plastics films, but also ensures increased yields in crop growth and cost reduction. One such polymer which is completely biodegradable in the soil is poly 3-hydroxy butanoic acid copolymer, which is a promising alternative to non-biodegradable incumbent polyethylene mulch films. The purpose of mulch film made of poly 3-hydroxy butanoic acid copolymers is to sustain itself during the crop growth and disintegrate and eventually biodegrade back to nature after the crop cycle is over. The disintegration phase of the biodegradation process was evaluated for poly 3-hydroxy butanoic acid copolymer incorporated with no additive, antimicrobial additives, varying amount of crystallinities, another biodegradable polymer, and in different soils, with or without varying soil moisture content. The tools used for quantification were weight loss and visual observation. The test method was standardized using repeatability tests. The onset of disintegration was optimized with addition of right anti-microbial additives, higher crystallinity of film, blending with other biodegradable polymers, compared to virgin poly 3-hydroxy butanoic acid copolymer film. The onset of disintegration time was reduced when soil moisture content was reduced. After the onset of disintegration, the polymer film was physically and mechanically deteriorated, withering away in soil, which is possible to tailor with the crop growth cycle.
Formulation and evaluation of herbal anti-acne moisturizer.
Rasheed, Arun; Shama, Shaik Neelufar; Joy, Jyothi Mulanjananiyil; Reddy, Bobbu Sravya; Roja, Chirra
2012-10-01
The moisture content present in human skin makes it look young and the use of moisturizer results in fastening the moisture with a surface film of oil. Acne vulgaris is one of the most commonly seen diseases among the youth. The present study is focused on the use of herbs as moisturizer for acne treatment. The anti-acne moisturizer was formulated from herbal crude extracts and investigated the physico-chemical parameters as well as antibacterial activity of the formulation. The study revealed that ethanol extract of Andrographis paniculata, Glycyrrhiza glabra, Ocimum sanctum, Azadiracta indica and Green tea possessed the potential for inhibiting acne. It was observed that the optimal formula of anti-acne moisturizer was satisfactorily effective to control acne inducing bacteria i.e., Staphylococcus epidermis and Propionibacterium. The physico-chemical parameters of the formulation were also optimal with no signs of irritation.
Wang, Li-Juan; Yin, Ye-Chong; Yin, Shou-Wei; Yang, Xiao-Quan; Shi, Wei-Jian; Tang, Chuan-He; Wang, Jin-Mei
2013-11-20
This work attempted to develop novel high barrier zein/SC nanoparticle (ZP)-stabilized emulsion films through microfluidic emulsification (ZPE films) or in combination with solvent (ethyl acetate) evaporation techniques (ZPE-EA films). Some physical properties, including tensile and optical properties, water vapor permeability (WVP), and surface hydrophobicity, as well as the microstructure of ZP-stabilized emulsion films were evaluated and compared with SC emulsion (SCE) films. The emulsion/solvent evaporation approach reduced lipid droplets of ZP-stabilized emulsions, and lipid droplets of ZP-stabilized emulsions were similar to or slightly lower than that of SC emulsions. However, ZP- and SC-stabilized emulsion films exhibited a completely different microstructure, nanoscalar lipid droplets were homogeneously distributed in the ZPE film matrix and interpenetrating protein-oil complex networks occurred within ZPE-EA films, whereas SCE films presented a heterogeneous microstructure. The different stabilization mechanisms against creaming or coalescence during film formation accounted for the preceding discrepancy of the microstructures between ZP-and SC-stabilized emulsion films. Interestingly, ZP-stabilized emulsion films exhibited a better water barrier efficiency, and the WVP values were only 40-50% of SCE films. A schematic representation for the formation of ZP-stabilized emulsion films was proposed to relate the physical performance of the films with their microstructure and to elucidate the possible forming mechanism of the films.
NASA Technical Reports Server (NTRS)
Shi, Frank G.
1994-01-01
A method is introduced to measure the free-energy barrier W(sup *), the activation energy, and activation entropy to nucleation of crystallites in amorphous solids, independent of the energy barrier to growth. The method allows one to determine the temperature dependence of W(sup *), and the effect of the preparation conditions of the initial amorphous phase, the dopants, and the crystallization methds on W(sup *). The method is applied to determine the free-energy barrier to nucleation of crystallites in amorphous silicon (a-Si) thin films. For thermally induced nucleation in a-Si thin films with annealing temperatures in the range of from 824 to 983 K, the free-energy barrier W(sup *) to nucleation of silicon crystals is about 2.0 - 2.1 eV regardless of the preparation conditions of the films. The observation supports the idea that a-Si transforms into an intermediate amorphous state through the structural relaxation prior to the onset of nucleation of crystallites in a-Si. The observation also indicates that the activation entropy may be an insignificant part of the free-energy barrier for the nucleation of crystallites in a-Si. Compared with the free-energy barrier to nucleation of crystallites in undoped a-Si films, a significant reduction is observed in the free-energy barrier to nucleation in Cu-doped a-Si films. For a-Si under irradiation of Xe(2+) at 10(exp 5) eV, the free-energy barrier to ion-induced nucleation of crystallites is shown to be about half of the value associated with thermal-induced nucleation of crystallites in a-Si under the otherwise same conditions, which is much more significant than previously expected. The present method has a general kinetic basis; it thus should be equally applicable to nucleation of crystallites in any amorphous elemental semiconductors and semiconductor alloys, metallic and polymeric glasses, and to nucleation of crystallites in melts and solutions.
Petrus, Michiel L; Hu, Yinghong; Moia, Davide; Calado, Philip; Leguy, Aurélien M A; Barnes, Piers R F; Docampo, Pablo
2016-09-22
We investigated the influence of moisture on methylammonium lead iodide perovskite (MAPbI 3 ) films and solar cells derived from non-stoichiometric precursor mixtures. We followed both the structural changes under controlled air humidity through in situ X-ray diffraction, and the electronic behavior of devices prepared from these films. A small PbI 2 excess in the films improved the stability of the perovskite compared to stoichiometric samples. We assign this to excess PbI 2 layers at the perovskite grain boundaries or to the termination of the perovskite crystals with Pb and I. In contrast, the MAI-excess films composed of smaller perovskite crystals showed increased electronic disorder and reduced device performance owing to poor charge collection. Upon exposure to moisture followed by dehydration (so-called solvent annealing), these films recrystallized to form larger, highly oriented crystals with fewer electronic defects and a remarkable improvement in photocurrent and photovoltaic efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Relevance of nanocomposite packaging on the stability of vacuum-packed dry cured ham.
Lloret, Elsa; Fernandez, Avelina; Trbojevich, Raul; Arnau, Jacint; Picouet, Pierre A
2016-08-01
In this study effects of a novel high barrier multilayer polyamide film containing dispersed nanoclays (PAN) on the stability of vacuum packed dry-cured ham were investigated during 90days refrigerated storage in comparison with non-modified multilayer polyamide (PA) and a commercial high barrier film. Characteristic bands of the mineral in FT-IR spectra confirmed the presence of nanoclays in PAN, enhancing oxygen transmission barrier properties and UV protection. Packaging in PAN films did not originate significant changes on colour or lipid oxidation during prolonged storage of vacuum-packed dry-cured ham. Larger oxygen transmission rates in PA films caused changes in CIE b* during refrigerated storage. Ham quality was not affected by light exposition during 90days and only curing had a significant benefit on colour and TBARS, being cured samples more stable during storage in all the packages used. Packaging of dry-cured ham in PAN was equivalent to commercial high barrier films. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transparent, Ultrahigh-Gas-Barrier Films with a Brick-Mortar-Sand Structure.
Dou, Yibo; Pan, Ting; Xu, Simin; Yan, Hong; Han, Jingbin; Wei, Min; Evans, David G; Duan, Xue
2015-08-10
Transparent and flexible gas-barrier materials have shown broad applications in electronics, food, and pharmaceutical preservation. Herein, we report ultrahigh-gas-barrier films with a brick-mortar-sand structure fabricated by layer-by-layer (LBL) assembly of XAl-layered double hydroxide (LDH, X=Mg, Ni, Zn, Co) nanoplatelets and polyacrylic acid (PAA) followed by CO2 infilling, denoted as (XAl-LDH/PAA)n-CO2. The near-perfectly parallel orientation of the LDH "brick" creates a long diffusion length to hinder the transmission of gas molecules in the PAA "mortar". Most significantly, both the experimental studies and theoretical simulations reveal that the chemically adsorbed CO2 acts like "sand" to fill the free volume at the organic-inorganic interface, which further depresses the diffusion of permeating gas. The strategy presented here provides a new insight into the perception of barrier mechanism, and the (XAl-LDH/PAA)n-CO2 film is among the best gas barrier films ever reported. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sadeghi-Varkani, Atina; Emam-Djomeh, Zahra; Askari, Gholamreza
2018-03-01
This paper reports the synthesis of a novel edible film from Balangu seed mucilage (BSM) as a new carbohydrate source. Optimal formulation of the proposed edible film was found through fabricating several distinct films with different concentrations of BSM and glycerol. The effect of these formulation variables on the physical, mechanical, thermal, barrier, and microstructural properties of the manufactured films was then investigated. Optimal formulation of the BSM edible film was then determined based on the measured mechanical and barrier characteristics. These characteristics were found to deteriorate with an excessive use of glycerol which caused non-homogeneity of the films as observed through scanning electron micrographs. In-depth analysis of the optimal BSM film properties was performed through investigating its oxygen permeability, Fourier transform infrared spectroscopy, atomic force microscopy, X-ray diffraction, and water sorption isotherm. The superior mechanical and barrier characteristics of the obtained optimal BSM edible film make it a potential candidate for packaging that aim at an extended shelf-life. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, G. S.; Chen, S. T.
2000-06-01
Tantalum-related thin films containing different amounts of nitrogen are sputter deposited at different argon-to-nitrogen flow rate ratios on (100) silicon substrates. Using x-ray diffractometry, transmission electron microscopy, composition and resistivity analyses, and bending-beam stress measurement technique, this work examines the impact of varying the nitrogen flow rate, particularly on the crystal structure, composition, resistivity, and residual intrinsic stress of the deposited Ta2N thin films. With an adequate amount of controlled, reactive nitrogen in the sputtering gas, thin films of the tantalum nitride of nominal formula Ta2N are predominantly amorphous and can exist over a range of nitrogen concentrations slightly deviated from stoichiometry. The single-layered quasi-amorphous Ta2N (a-Ta2N) thin films yield intrinsic compressive stresses in the range 3-5 GPa. In addition, the use of the 40-nm-thick a-Ta2N thin films with different nitrogen atomic concentrations (33% and 36%) and layering designs as diffusion barriers between silicon and copper are also evaluated. When subjected to high-temperature annealing, the single-layered a-Ta2N barrier layers degrade primarily by an amorphous-to-crystalline transition of the barrier layers. Crystallization of the single-layered stoichiometric a-Ta2N (Ta67N33) diffusion barriers occurs at temperatures as low as 450 °C. Doing so allows copper to preferentially penetrate through the grain boundaries or thermal-induced microcracks of the crystallized barriers and react with silicon, sequentially forming {111}-facetted pyramidal Cu3Si precipitates and TaSi2 Overdoping nitrogen into the amorphous matrix can dramatically increase the crystallization temperature to 600 °C. This temperature increase slows down the inward diffusion of copper and delays the formation of both silicides. The nitrogen overdoped Ta2N (Ta64N36) diffusion barriers can thus be significantly enhanced so as to yield a failure temperature 100 °C greater than that of the Ta67N33 diffusion barriers. Moreover, multilayered films, formed by alternately stacking the Ta67N33 and Ta64N36 layers with an optimized bilayer thickness (λ) of 10 nm, can dramatically reduce the intrinsic compressive stress to only 0.7 GPa and undergo high-temperature annealing without crystallization. Therefore, the Ta67N33/Ta64N36 multilayered films exhibit a much better barrier performance than the highly crystallization-resistant Ta64N36 single-layered films.
Aqueous-Containing Precursor Solutions for Efficient Perovskite Solar Cells.
Liu, Dianyi; Traverse, Christopher J; Chen, Pei; Elinski, Mark; Yang, Chenchen; Wang, Lili; Young, Margaret; Lunt, Richard R
2018-01-01
Perovskite semiconductors have emerged as competitive candidates for photovoltaic applications due to their exceptional optoelectronic properties. However, the impact of moisture instability on perovskite films is still a key challenge for perovskite devices. While substantial effort is focused on preventing moisture interaction during the fabrication process, it is demonstrated that low moisture sensitivity, enhanced crystallization, and high performance can actually be achieved by exposure to high water content (up to 25 vol%) during fabrication with an aqueous-containing perovskite precursor. The perovskite solar cells fabricated by this aqueous method show good reproducibility of high efficiency with average power conversion efficiency (PCE) of 18.7% and champion PCE of 20.1% under solar simulation. This study shows that water-perovskite interactions do not necessarily negatively impact the perovskite film preparation process even at the highest efficiencies and that exposure to high contents of water can actually enable humidity tolerance during fabrication in air.
Energy barrier analysis of Nd-Fe-B thin films
NASA Astrophysics Data System (ADS)
Goto, R.; Okamoto, S.; Kikuchi, N.; Kitakami, O.
2015-05-01
The magnetization reversal mechanism of a permanent magnet has long been a controversial issue, which is closely related to the so-called coercivity problem. It is well known that the energy barrier for magnetization reversal contains essential information on reversal process. In this study, we propose a method to analyze the energy barrier function for the magnetization reversal. Preferentially (001) oriented Nd-Fe-B films with and without a Nd overlayer are used as model magnets. By combining the magnetic viscosity and time dependent coercivity measurements, the barrier function has been successfully evaluated. As a result, although the Nd-Fe-B films with and without Nd overlayer exhibit different magnetic behaviors, the power indices for their energy barrier are almost the same, suggesting that the magnetization reversal proceeds in a similar mode.
Nur Hanani, Zainal A.; Beatty, Eddie; Roos, Yrjo H.; Morris, Mick A.; Kerry, Joseph P.
2012-01-01
The objectives of this study were to develop composite films using various gelatin sources with corn oil (CO) incorporation (55.18%) and to investigate the mechanical and physical properties of these films as potential packaging films. There were increases (p < 0.05) in the tensile strength (TS) and puncture strength (PS) of films when the concentration of gelatin increased. The mechanical properties of these films were also improved when compared with films produced without CO. Conversely, the water barrier properties of composite films decreased (p < 0.05) when the concentration of gelatin in composite films increased. Comparing with pure gelatin films, water and oxygen barrier properties of gelatin films decreased when manufactured with the inclusion of CO. PMID:28239092
Kim, Hyeongmin; Kim, Jeong Tae; Barua, Sonia; Yoo, Seung-Yup; Hong, Seong-Chul; Lee, Kyung Bin; Lee, Jaehwi
2018-01-01
An adequate hydration level is essential to maintain epidermal barrier functions and normal physiological activities of skin tissues. Diverse moisturizing agents and pharmaceutical formulations for dermal deliveries have thus extensively been investigated. This review comprehensively discusses scientific outcomes of moisturizing agents and pharmaceutical vehicles for skin moisturization, thereby providing insight into designing innovative pharmaceutical formulations for effective skin moisturization. Areas covered: We discussed the functions of various moisturizing agents ranging from conventional creams to novel moisturizers which has recently been explored. In addition, novel pharmaceutical formulations for efficient dermal delivery of the moisturizers, in particular, nanocarriers, were discussed along with their uses in commercial products. Expert opinion: Although various moisturizing agents have demonstrated their promising effects, exploitation of pharmaceutical formulations for their dermal delivery have been limited to few commonly used moisturizing agents. Thus, combinatorial investigation of novel moisturizers and pharmaceutical vehicles should be further conducted. As a new concept for improving skin moisturization, skin regeneration technologies using therapeutic cells have recently shown great promise for skin moisturization, but major challenges remain, such as efficient delivery and prolonged survival of such cells. Thus, novel approaches for improving skin moisturization require continuous efforts of pharmaceutical scientists to address the remaining problems.
Moisture-barrier performance of ground covers in basementless homes
Jesse D. Diller
1958-01-01
The use of ground covers in crawl-space under houses is now widely accepted by builders, maintenance men, and home owners. Such covers are practical for reducing decay in subfloor timbers. They also effectively prevent soil moisture from moving upward into the house, and thus aid in preventing swelling and buckling of floors.
Muizzuddin, Neelam; Ingrassia, Michael; Marenus, Kenneth D; Maes, Daniel H; Mammone, Thomas
2013-01-01
Human skin maintains an optimal permeability barrier function in a terrestrial environment that varies considerably in humidity. Cells cultured under hyperosmotic stress accumulate osmolytes including sorbitol. Epidermal keratinocytes experience similar high osmolality under dry environmental conditions because of increased transepidermal water loss (TEWL) and concomitant drying of the skin. This study was designed to determine if epidermal keratinocytes, in vitro, could be protected from high osmotic stress, with the exogenous addition of sorbitol. In addition, we evaluated the effect of a formulation containing topical sorbitol on skin barrier and moisturization of subjects living in arid and humid regions in summer as well as in winter. Results from in vitro experiments showed that 50 mM sorbitol protected epidermal keratinocytes from osmotic toxicity induced by sodium chloride. Clinical studies indicated that skin chronically exposed to hot, dry environment appeared to exhibit stronger skin barrier and a lower baseline TEWL. In addition, skin barrier was stronger in summer than in winter. Sorbitol exhibited significant improvement in both barrier repair and moisturization, especially in individuals subjected to arid environmental conditions.
Cinelli, Patrizia; Schmid, Markus; Bugnicourt, Elodie; Coltelli, Maria Beatrice; Lazzeri, Andrea
2016-01-01
Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET)/polyethylene (PE) multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at yield, stress and elongation at break, evaluated by tensile testing on films before and after cleaning, were are not significantly affected by washing with enzymatic detergents. PMID:28773592
NASA Astrophysics Data System (ADS)
Chen, Cong; Wang, Can; Ning, Tingyin; Lu, Heng; Zhou, Yueliang; Ming, Hai; Wang, Pei; Zhang, Dongxiang; Yang, Guozhen
2011-10-01
An enhanced nonlinear current-voltage behavior has been observed in Au nanoparticle dispersed CaCu 3Ti 4O 12 composite films. The double Schottky barrier model is used to explain the enhanced nonlinearity in I-V curves. According to the energy-band model and fitting result, the nonlinearity in Au: CCTO film is mainly governed by thermionic emission in the reverse-biased Schottky barrier. This result not only supports the mechanism of double Schottky barrier in CCTO, but also indicates that the nonlinearity of current-voltage behavior could be improved in nanometal composite films, which has great significance for the resistance switching devices.
Field Testing of an Unvented Roof with Fibrous Insulation, Tiles, and Vapor Diffusion Venting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.; Lstiburek, J. W.
This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane.more » As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design.« less
Effects of core sealing methods on the preservation of pore water
Striffler, Pete; Peters, Charles A.
1993-01-01
Five general core sealing methods (using Protecore, Lexan, wax, Protecore with wax, and Protecore with Lexan) were studied over a two year period to determine their moisture retention capabilities. Results indicate that the multibarrier methods (Protecore with wax and Protecore with Lexan) and the single barrier methods (Protecore and wax) provide successful means of retaining moisture in cores. Additional testing indicated that a tight wrap of Saran is effective in: 1) protecting the outer vapor barriers from puncture, 2) containing any condensate in close proximity to where it was condensed, and 3) retarding condensation. Tests conducted to determine the moisture adsorption potential of wax and the use of applying a positive or negative pressure to Protecore packets proved inconclusive, but warrant further investigation. The importance of proper and timely handling of core samples in the field, including refrigeration and weighing of samples, can not be overstated.
Integration of Product, Package, Process, and Environment: A Food System Optimization
NASA Technical Reports Server (NTRS)
Cooper, Maya R.; Douglas, Grace L.
2015-01-01
The food systems slated for future NASA missions must meet crew nutritional needs, be acceptable for consumption, and use resources efficiently. Although the current food system of prepackaged, moderately stabilized food items works well for International Space Station (ISS) missions, many of the current space menu items do not maintain acceptability and/or nutritive value beyond 2 years. Longer space missions require that the food system can sustain the crew for 3 to 5 years without replenishment. The task "Integration of Product, Package, Process, and Environment: A Food System Optimization" has the objective of optimizing food-product shelf life for the space-food system through product recipe adjustments, new packaging and processing technologies, and modified storage conditions. Two emergent food processing technologies were examined to identify a pathway to stable, wet-pack foods without the detrimental color and texture effects. Both microwave-assisted thermal sterilization (MATS) and pressure-assisted thermal stabilization (PATS) were evaluated against traditional retort processing to determine if lower heat inputs during processing would produce a product with higher micronutrient quality and longer shelf life. While MATS products did have brighter color and better texture initially, the advantages were not sustained. The non-metallized packaging film used in the process likely provided inadequate oxygen barrier. No difference in vitamin stability was evident between MATS and retort processed foods. Similarly, fruit products produced using PATS showed improved color and texture through 3 years of storage compared to retort fruit, but the vitamin stability was not improved. The final processing study involved freeze drying. Five processing factors were tested in factorial design to assess potential impact of each to the quality of freeze-dried food, including the integrity of the microstructure. The initial freezing rate and primary freeze drying temperature and pressure were linked to final product quality in freeze-dried corn, indicating processing modifications that could lead to improved product shelf life. Storage temperatures and packaging systems were also assessed for the impact to food quality. Reduced temperature storage had inconclusive impact to the progression of rancidity in butter cookies. Frozen storage was detrimental to fruit and vegetable textural attributes but refrigerated storage helped to sustain color and organoleptic ratings for plant-based foods. With regard to packaging systems, the metallized film overwrap significantly decreased the progression of the rancidity of butter cookies as compared to the highest barrier non-metallized film. The inclusion of oxygen scavengers resulted in noticeable moisture gains in butter cookies over time, independent of packaging film systems. Neither emergent processing technology nor the freeze dry optimization resulted in compelling quality differences from current space food provisions such that a five-year shelf life is likely with these processing changes alone. Using a combination of refrigeration and PATS processing is expected to result in organoleptically-acceptable fruit quality for most fruits through five years. The vitamin degradation will be aided somewhat by the cold temperatures but, given the labile nature of vitamin C, a more stable fortification method, such as encapsulation, should also be investigated to ensure vitamin delivery throughout the product life. Similarly, significant improvement to the packaging film used in the MATS processing, optimization of formulation for dielectric properties, vitamin fortification, and reduced temperature storage should be investigated as a hurdle approach to reach a five year shelf life in wet-pack entrees and soups. Baked goods and other environmentally-sensitive spaceflight foods will require an almost impenetrable barrier to protect the foods from oxygen and moisture ingress but scavengers and reduced storage temperature did not improve baked good shelf life and are not recommended at this time for these foods.
Wang, Yingying; Liu, Fuguo; Liang, Chunxuan; Yuan, Fang; Gao, Yanxiang
2014-11-01
Edible films based on Maillard reaction products (MRPs) of ε-polylysine and chitosan, without the use of any plasticiser, were prepared by solution casting. The effect of Maillard reaction parameters (reaction time and the ratio of polylysine/chitosan) of ε-polylysine and chitosan on the structure, moisture content, water solubility, total colour difference and mechanical properties of edible films formed by MRPs were systematically evaluated. Scanning electron microscopy confirmed that edible films prepared by the MRPs of ε-polylysine and chitosan through the Maillard reaction exhibited a more compact and dense structure than those from the mixture of biopolymers without the presence of MRPs. The tensile strength and % elongation values of films from the mixture were decreased significantly with the rise of ε-polylysine (P < 0.05). The moisture content of the films was not significantly affected by Maillard reaction, whereas water solubility was decreased and total colour difference was increased significantly (P < 0.05) with the extension of Maillard reaction time. In addition, antimicrobial activity of chitosan films against E. coli and S. aureus. could be achieved by incorporating ε-polylysine into chitosan. These films can ensure food quality and safety, especially for coating highly perishable foods, such as meat products. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.
Ding, Junsheng; Wu, Xiaomeng; Qi, Xiaona; Guo, Heng; Liu, Anjun; Wang, Wenhang
2018-05-01
In this paper, two kinds of commonly used vegetable carbon black (VCB, 3000 mesh; nano) at 50 g kg -1 concentration (based on dried gelatin) were added to 48 g kg -1 of fish gelatin (GEL) solutions and their effects on mechanical, barrier and anti-photooxidation properties of GEL films were investigated. From the SEM images, it was shown that compared with 3000 mesh VCB (1-2 μm), nano VCB (100-200 nm) made the microstructure of GEL film more compact and more gelatin chains were cross-linked by nano VCB. The addition of nano VCB significantly increased gelatin film strength with the greatest tensile strength of 52.589 MPa and stiffness with the highest Young's modulus of 968.874 MPa, but led to the reduction of film elongation. Also, the VCB presence significantly improved water vapour and oxygen barrier properties of GEL film. Importantly, nano VCB increased GEL film with better UV barrier property due to its stronger UV absorption nature when compared with micron VCB. This property could help in the preservation of oil samples in the photooxidation accelerated test. With improved properties, the nano VCB-reinforced GEL film may have great potential for application in the edible packaging field, especially for the anti-photooxidation property. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Graphene-based stretchable and transparent moisture barrier
NASA Astrophysics Data System (ADS)
Won, Sejeong; Van Lam, Do; Lee, Jin Young; Jung, Hyun-June; Hur, Min; Kim, Kwang-Seop; Lee, Hak-Joo; Kim, Jae-Hyun
2018-03-01
We propose an alumina-deposited double-layer graphene (2LG) as a transparent, scalable, and stretchable barrier against moisture; this barrier is indispensable for foldable or stretchable organic displays and electronics. Both the barrier property and stretchability were significantly enhanced through the introduction of 2LG between alumina and a polymeric substrate. 2LG with negligible polymeric residues was coated on the polymeric substrate via a scalable dry transfer method in a roll-to-roll manner; an alumina layer was deposited on the graphene via atomic layer deposition. The effect of the graphene layer on crack generation in the alumina layer was systematically studied under external strain using an in situ micro-tensile tester, and correlations between the deformation-induced defects and water vapor transmission rate were quantitatively analyzed. The enhanced stretchability of alumina-deposited 2LG originated from the interlayer sliding between the graphene layers, which resulted in the crack density of the alumina layer being reduced under external strain.
Ultrathin Cr added Ru film as a seedless Cu diffusion barrier for advanced Cu interconnects
NASA Astrophysics Data System (ADS)
Hsu, Kuo-Chung; Perng, Dung-Ching; Yeh, Jia-Bin; Wang, Yi-Chun
2012-07-01
A 5 nm thick Cr added Ru film has been extensively investigated as a seedless Cu diffusion barrier. High-resolution transmission electron microscopy micrograph, X-ray diffraction (XRD) pattern and Fourier transform-electron diffraction pattern reveal that a Cr contained Ru (RuCr) film has a glassy microstructure and is an amorphous-like film. XRD patterns and sheet resistance data show that the RuCr film is stable up to 650 °C, which is approximately a 200 °C improvement in thermal stability as compared to that of the pure Ru film. X-ray photoelectron spectroscopy depth profiles show that the RuCr film can successfully block Cu diffusion, even after a 30-min 650 °C annealing. The leakage current of the Cu/5 nm RuCr/porous SiOCH/Si stacked structure is about two orders of magnitude lower than that of a pristine Ru sample for electric field below 1 MV/cm. The RuCr film can be a promising Cu diffusion barrier for advanced Cu metallization.
Thin film encapsulation for flexible AM-OLED: a review
NASA Astrophysics Data System (ADS)
Park, Jin-Seong; Chae, Heeyeop; Chung, Ho Kyoon; In Lee, Sang
2011-03-01
Flexible organic light emitting diode (OLED) will be the ultimate display technology to customers and industries in the near future but the challenges are still being unveiled one by one. Thin-film encapsulation (TFE) technology is the most demanding requirement to prevent water and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This work provides a review of promising thin-film barrier technologies as well as the basic gas diffusion background. Topics include the significance of the device structure, permeation rate measurement, proposed permeation mechanism, and thin-film deposition technologies (Vitex system and atomic layer deposition (ALD)/molecular layer deposition (MLD)) for effective barrier films.
Ambient-Stable and Durable Conductive Ag-Nanowire-Network 2-D Films Decorated with a Ti Layer.
Kim, Yoon-Mi; Hwang, Bu-Yeon; Lee, Ki-Wook; Kim, Jin-Yeol
2018-05-11
Highly stable and durable conductive silver nanowire (Ag NW) network electrode films were prepared through decoration with a 5-nm-thick Ti layer. The Ag NW network 2-D films showed sheet resistance values as low as 32 ohm/sq at 88% transparency when decorated with Ti. These 2-D films exhibited a 30% increase in electrical conductivity while maintaining good stability of the films through enhanced resistance to moisture and oxygen penetration as a result of the protective effect of the Ti layer.
Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties.
Shankar, Shiv; Tanomrod, Nattareya; Rawdkuen, Saroat; Rhim, Jong-Whan
2016-11-01
Silver nanoparticles (AgNPs) was synthesized by a green method using an aqueous extract of Caesalpinia mimosoides Lamk (CMLE) as reducing and stabilizing agents, and they were used for the preparation of pectin-based antimicrobial composite films. The AgNPs were spherical in shape with the size in the range of 20-80nm and showed the absorption peak around 500nm. The pectin/AgNPs composite film exhibited characteristic absorption peak of AgNPs at 480nm. The surface color and light transmittance of the pectin films were greatly influenced by the addition of AgNPs. The lightness of the films decreased, however, redness and yellowness of the films increased after incorporation of AgNPs. UV-light barrier property of the pectin film increased significantly with a little decrease in the transparency. Though there were no structural changes in the pectin film by the incorporation of CMLE and AgNPs as indicated by the FTIR results, the film properties such as thermal stability, mechanical strength, and water vapor barrier properties of the pectin films increased. The pectin/AgNPs nanocomposite films exhibited strong antibacterial activity against food-borne pathogenic bacteria, Escherichia coli and Listeria monocytogenes. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua
Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in themore » temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180–914 cm{sup −1}) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention. - Graphical abstract: The fabrication process of LLDPE/LDH composite films. - Highlights: • LDH with basal spacing of 4.07 nm was synthesized by high-energy ball milling. • LLDPE composite films with homogeneous LDH dispersion were fabricated. • The properties of LLDPE/LDH composite films were improved. • LLDPE/LDH composite films show superior heat retention property.« less
Schmid, Markus
2013-01-01
Whey protein isolate (WPI)-based cast films are very brittle, due to several chain interactions caused by a large amount of different functional groups. In order to overcome film brittleness, plasticizers, like glycerol, are commonly used. As a result of adding plasticizers, the free volume between the polymer chains increases, leading to higher permeability values. The objective of this study was to investigate the effect of partially substituting glycerol by hydrolysed whey protein isolate (h-WPI) in WPI-based cast films on their mechanical, optical and barrier properties. As recently published by the author, it is proven that increasing the h-WPI content in WPI-based films at constant glycerol concentrations significantly increases film flexibility, while maintaining the barrier properties. The present study considered these facts in order to increase the barrier performance, while maintaining film flexibility. Therefore glycerol was partially replaced by h-WPI in WPI-based cast films. The results clearly indicate that partially replacing glycerol by h-WPI reduces the oxygen permeability and the water vapor transmission rate, while the mechanical properties did not change significantly. Thus, film flexibility was maintained, even though the plasticizer concentration was decreased. PMID:28811434
Extension of green bell pepper shelf life using oilseed-derived lipid films from soapstock.
USDA-ARS?s Scientific Manuscript database
Edible films have been used for decades on fresh produce to create a semipermeable membrane on the surface to suppress respiration, control moisture loss, and more recently to provide a delivery mechanism for inclusion of functional components. Scientists at the Southern Regional Research Center (S...
Extension of green bell pepper shelf life using oilseed-derived lipid films from soapstock.
USDA-ARS?s Scientific Manuscript database
Edible films have been used for decades on fresh produce to create a semi-permeable membrane on the surface to suppress respiration, control moisture loss, and more recently, to provide a delivery mechanism for addition of functional components. Scientists at the Southern Regional Research Center (...
Growth and gas exchange of different ponderosa pine stock types on dry sites
Jeremiah Ray Pinto
2009-01-01
Successful seedling establishment following outplanting relies heavily on a seedling's ability to access soil moisture. In the Inland Northwest USA, the summer season brings drought conditions causing low soil moisture in the upper soil profile - a potentially large barrier to seedling establishment. During the 2007 growing season, three studies examined the...
R. J. Ansley; T. W. Boutton; P. W. Jacoby
2007-01-01
This study quantified honey mesquite (Prosopis glandulosa) root growth and water use efficiency following chronic soil drought or wetness on a clay loam site in north Texas. Root systems of mature trees were containerized with barriers inserted into the soil. Soil moisture within containers was manipulated with irrigation (Irrigated) or rain...
New Water Vapor Barrier Film Based on Lamellar Aliphatic-Monoamine-Bridged Polysilsesquioxane.
Zhang, Cong; Zhang, Ce; Ding, Ruimin; Cui, Xinmin; Wang, Jing; Zhang, Qinghua; Xu, Yao
2016-06-15
Siloxane-based hybrid lamellar materials with ordered nanostructure units paralleling to the substrate have been widely used for water vapor barrier. However, it is very difficult to control the orientation of the lamellar units at molecular level. In this Research Article, a new lamellar bridged polysilsesquioxane (BPSQ) film, whose voids between lamellae were filled by pendant alkyl chains in the organic bridge, was prepared via the stoichiometric reaction between 3-glycidoxypropyltrimethoxysilane and aliphatic monoamine at 60 °C without catalyst. Experimental evidence obtained from FT-IR, MS, NMR, and GIXRD techniques suggested that the as-prepared BPSQ films were constructed by lamellar units with disordered orientation. Nonetheless, they possessed satisfactory water vapor barrier performance for potassium dihydrogen phosphate (KDP) and deuterated potassium dihydrogen phosphate (DKDP) optical crystals, and the water vapor transmission rate through BPSQ film with thickness of 25 μm was as low as 20.3 g·m(-2)·d(-1). Those results proved that filling the voids between molecular lamellae with alkyl chains greatly weakened the effect of lamellar unit orientation on the vapor barrier property of BPSQ film.
The effect of the stretching of PLA extruded films on their crystallinity and gas barrier properties
NASA Astrophysics Data System (ADS)
Guinault, A.; Menary, G. H.; Courgneau, C.; Griffith, D.; Ducruet, V.; Miri, V.; Sollogoub, C.
2011-05-01
Driven by environmental concerns, new polymers based on renewable resources are arriving on the market to replace conventional polymers, obtained from petroleum, for different applications like food packaging. One of the most prominent polymers among these materials is poly(lactic acid) (PLA), a biodegradable, thermoplastic, aliphatic polyester derived from renewable resources, such as corn starch (in the USA) or sugarcanes (in the rest of the world). However this polymer presents different disadvantages and especially low gas barrier properties [1]. Thermal crystallization can be used to increase its gas barrier properties but long times are necessary [2] and are not compatible with an industrial process. Another way to increase the gas barrier properties consists in stretching the film in order to increase its crystallinity and so its diffusion coefficient. We have prepared stretched PLA films with different stretch ratio and we have studied the effect of the stretching parameters on the gas barrier properties of PLA films. Finally we compared this process with the isothermal crystallization process by taking into account the crystallinity degree and the crystalline morphology.
Development of Spray on Bag for manufacturing of large composites parts: Diffusivity analysis
NASA Astrophysics Data System (ADS)
Dempah, Maxime Joseph
Bagging materials are utilized in many composites manufacturing processes. The selection is mainly driven by cost, temperature requirements, chemical compatibility and tear properties of the bag. The air barrier properties of the bag are assumed to be adequate or in many cases are not considered at all. However, the gas barrier property of a bag is the most critical parameter, as it can negatively affect the quality of the final laminate. The barrier property is a function of the bag material, uniformity, thickness and temperature. Improved barrier properties are needed for large parts, high pressure consolidated components and structures where air stays entrapped on the part surface. The air resistance property of the film is defined as permeability and is investigated in this thesis. A model was developed to evaluate the gas transport through the film and an experimental cell was implemented to characterize various commercial films. Understanding and characterizing the transport phenomena through the film allows optimization of the bagging material for various manufacturing processes. Spray-on-Bag is a scalable alternative bagging method compared to standard films. The approach allows in-situ fabrication of the bag on large and complex geometry structures where optimization of the bag properties can be varied on a local level. An experimental setup was developed and implemented using a six axis robot and an automated spraying system. Experiments were performed on a flat surface and specimens were characterized and compared to conventional films. Air barrier properties were within range of standard film approaches showing the potential to fabricate net shape bagging structures in an automated process.
NASA Astrophysics Data System (ADS)
Padiyar, Sumant Devdas
2003-09-01
Current and future performance requirements for high- speed integrated circuit (IC) devices have placed great emphasis on the introduction of novel materials, deposition techniques and improved metrology techniques. The introduction of copper interconnects and more currently low-k dielectric materials in IC fabrication are two such examples. This introduction necessitates research on the compatibility of these materials and process techniques with adjacent diffusion barrier materials. One candidate, which has attracted significant attention is tantalum-silicon-nitride (TaSiN) on account of its superior diffusion barrier performance and high recrystallization temperature1. The subject of this dissertation is an investigation of the integration compatibility and performance of TaSiN barrier layers with a low-k dielectric polymer (SiLK ®2). A plasma- enhanced chemical vapor deposition (PECVD) approach is taken for growth of TaSiN films in this work due to potential advantages in conformal film coverage compared to more conventional physical vapor deposition methods. A Design of Experiment (DOE) methodology was introduced for PECVD of TaSiN on SiLK to optimize film properties such as film composition, resistivity, growth rate and film roughness with respect to the predictors viz. substrate temperature, precursor gas flow and plasma power. The first pass study determined the response window for optimized TaSiN film composition, growth rate and low halide contamination and the compatibility of the process with an organic polymer substrate, i.e. SiLK. Second-pass studies were carried out to deposit ultra- thin (10nm) films on: (a)blanket SiLK to investigate the performance of TaSiN films against copper diffusion, and (b)patterned SiLK to evaluate step coverage and conformality. All TaSiN depositions were carried out on SiO2 substrates for baseline comparisons. A second purpose of the diffusion barrier in IC processing is to improve interfacial adhesion between the barrier and the adjacent dielectric material; especially important for an organic polymer like SiLK. Hence, a detailed study was undertaken to evaluate the interfacial adhesion of TaSiN with SiLK and SiO2 and study the dependence of the adhesion with the film composition. The results of diffusion barrier performance studies, conformality studies, and interfacial adhesion studies of TaSiN films are discussed in relation to the elemental compositions of the films. 1J. S. Reid, M. Nicolet, J. Appl. Phys. 79 (2) p. 1109 (1996). 2SiLK is a low-k dielectric candidate registered by Dow Chemical Company, MI.
A fast method to produce strong NFC films as a platform for barrier and functional materials.
Osterberg, Monika; Vartiainen, Jari; Lucenius, Jessica; Hippi, Ulla; Seppälä, Jukka; Serimaa, Ritva; Laine, Janne
2013-06-12
In this study, we present a rapid method to prepare robust, solvent-resistant, nanofibrillated cellulose (NFC) films that can be further surface-modified for functionality. The oxygen, water vapor, and grease barrier properties of the films were measured, and in addition, mechanical properties in the dry and wet state and solvent resistance were evaluated. The pure unmodified NFC films were good barriers for oxygen gas and grease. At a relative humidity below 65%, oxygen permeability of the pure and unmodified NFC films was below 0.6 cm(3) μm m(-2) d(-1) kPa(-1), and no grease penetrated the film. However, the largest advantage of these films was their resistance to various solvents, such as water, methanol, toluene, and dimethylacetamide. Although they absorbed a substantial amount of solvent, the films could still be handled after 24 h of solvent soaking. Hot-pressing was introduced as a convenient method to not only increase the drying speed of the films but also enhance the robustness of the films. The wet strength of the films increased due to the pressing. Thus, they can be chemically or physically modified through adsorption or direct chemical reaction in both aqueous and organic solvents. Through these modifications, the properties of the film can be enhanced, introducing, for example, functionality, hydrophobicity, or bioactivity. Herein, a simple method using surface coating with wax to improve hydrophobicity and oxygen barrier properties at very high humidity is described. Through this modification, the oxygen permeability decreased further and was below 17 cm(3) μm m(-2) d(-1) kPa(-1) even at 97.4% RH, and the water vapor transmission rate decreased from 600 to 40 g/m(2) day. The wax treatment did not deteriorate the dry strength of the film. Possible reasons for the unique properties are discussed. The developed robust NFC films can be used as a generic, environmentally sustainable platform for functional materials.
NASA Technical Reports Server (NTRS)
Orzeszko, S.; De, Bhola N.; Woollam, John A.; Pouch, John J.; Alterovitz, Samuel A.
1988-01-01
This paper reports on the successful application of variable-angle spectroscopic ellipsometry to quantitative thin-film hermeticity evaluation. It is shown that, under a variety of film preparations and moisture introduction conditions, water penetrates only a very thin diamondlike carbon (DLC) top surface-roughness region. Thus, DLC is an excellent candidate for use as protective coatings in adverse chemical and aqueous environments.
Galus, Sabina; Kadzińska, Justyna
2016-03-01
The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters ( d 32 ) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness ( L* ≈90). Parameter a * decreased and parameter b* and total colour difference (∆ E ) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg's equation (R 2 ≥0.99). The tensile strength, Young's modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased.
Spatial characterization of the edge barrier in wide superconducting films
NASA Astrophysics Data System (ADS)
Sivakov, A. G.; Turutanov, O. G.; Kolinko, A. E.; Pokhila, A. S.
2018-03-01
The current-induced destruction of superconductivity is discussed in wide superconducting thin films, whose width is greater than the magnetic field penetration depth, in weak magnetic fields. Particular attention is paid to the role of the boundary potential barrier (the Bin-Livingston barrier) in critical state formation and detection of the edge responsible for this critical state with different mutual orientations of external perpendicular magnetic field and transport current. Critical and resistive states of the film were visualized using the space-resolving low-temperature laser scanning microscopy (LTLSM) method, which enables detection of critical current-determining areas on the film edges. Based on these observations, a simple technique was developed for investigation of the critical state separately at each film edge, and for the estimation of residual magnetic fields in cryostats. The proposed method only requires recording of the current-voltage characteristics of the film in a weak magnetic field, thus circumventing the need for complex LTLSM techniques. Information thus obtained is particularly important for interpretation of studies of superconducting film single-photon light emission detectors.
Processing and characteristics of canola protein-based biodegradable packaging: A review.
Zhang, Yachuan; Liu, Qiang; Rempel, Curtis
2018-02-11
Interest increased recently in manufacturing food packaging, such as films and coatings, from protein-based biopolymers. Among various protein sources, canola protein is a novel source for manufacturing polymer films. It can be concentrated or isolated by aqueous extraction technology followed by protein precipitation. Using this procedure, it was claimed that more than 99% of protein was extracted from the defatted canola meal, and protein recovery was 87.5%. Canola protein exhibits thermoplastic properties when plasticizers are present, including water, glycerol, polyethylene glycol, and sorbitol. Addition of these plasticizers allows the canola protein to undergo glass transition and facilitates deformation and processability. Normally, canola protein-based bioplastics showed low mechanical properties, which had tensile strength (TS) of 1.19 to 4.31 MPa. So, various factors were explored to improve it, including blending with synthetic polymers, modifying protein functionality through controlled denaturation, and adding cross-linking agents. Canola protein-based bioplastics were reported to have glass transition temperature, T g , below -50°C but it highly depends on the plasticizer content. Canola protein-based bioplastics have demonstrated comparable mechanical and moisture barrier properties compared with other plant protein-based bioplastics. They have great potential in food packaging applications, including their use as wraps, sacks, sachets, or pouches.
L-band radar sensing of soil moisture. [Kern County, California
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Atwater, S.; Salomonson, V. V.; Estes, J. E.; Simonett, D. S.; Bryan, M. L.
1980-01-01
The performance of an L-band, 25 cm wavelength imaging synthetic aperture radar was assessed for soil moisture determination, and the temporal variability of radar returns from a number of agricultural fields was studied. A series of three overflights was accomplished over an agricultural test site in Kern County, California. Soil moisture samples were collected from bare fields at nine sites at depths of 0-2, 2-5, 5-15, and 15-30 cm. These gravimetric measurements were converted to percent of field capacity for correlation to the radar return signal. The initial signal film was optically correlated and scanned to produce image data numbers. These numbers were then converted to relative return power by linear interpolation of the noise power wedge which was introduced in 5 dB steps into the original signal film before and after each data run. Results of correlations between the relative return power and percent of field capacity (FC) demonstrate that the relative return power from this imaging radar system is responsive to the amount of soil moisture in bare fields. The signal returned from dry (15% FC) and wet (130% FC) fields where furrowing is parallel to the radar beam differs by about 10 dB.
Effect of Gallic acid on mechanical and water barrier properties of zein-oleic acid composite films.
Masamba, Kingsley; Li, Yue; Hategekimana, Joseph; Liu, Fei; Ma, Jianguo; Zhong, Fang
2016-05-01
In this study, the effect of gallic acid on mechanical and water barrier properties of zein-oleic acid 0-4 % composite films was investigated. Molecular weight distribution analysis was carried out to confirm gallic acid induced cross linking through change in molecular weight in fraction containing zein proteins. Results revealed that gallic acid treatment increased tensile strength from 17.9 MPa to 26.0 MPa, decreased water vapour permeability from 0.60 (g mm m(-2) h(-1) kPa(-1)) to 0.41 (g mm m(-2) h(-1) kPa(-1)), increased solubility from 6.3 % to 10.2 % and marginally increased elongation at break from 3.7 % to 4.2 % in zein films only. However, gallic acid treatment in zein-oleic composite films did not significantly influence mechanical and water barrier properties and in most instances irrespective of oleic acid concentration, the properties were negatively affected. Results from scanning electron microscopy showed that both gallic acid treated and untreated zein films and composite films containing 3 % oleic acid had a compact and homogeneous structure while those containing 4 % oleic acid had inhomogeneous structure. The findings have demonstrated that gallic acid treatment can significantly improve mechanical and water barrier properties especially in zein films only as opposed to when used in composite films using zein and oleic acid.
Effect of Fatty acids and beeswax addition on properties of sodium caseinate dispersions and films.
Fabra, M J; Jiménez, A; Atarés, L; Talens, P; Chiralt, A
2009-06-08
Edible films based on sodium caseinate and different saturated fatty acids, oleic acid, or beeswax were formulated. Film-forming emulsions were characterized in terms of particle size distribution, rheological behavior and surface tension. In order to evaluate the influence of lipids on sodium caseinate matrices, mechanical, optical, and water vapor barrier properties were studied, taking into account the effect of water content and film structure on such properties. Saturated fatty acids affected the film properties in a particular way due to the formation of bilayer structures which limited water vapor permeability, giving rise to nonflexible and more opaque films. Oleic acid and beeswax were less effective as water vapor barriers, although the former imparted more flexibility to the caseinate films and did not reduce the film transparency notably.
Chen, Haixin; Liu, Jingjing; Zhang, Afeng; Chen, Jing; Cheng, Gong; Sun, Benhua; Pi, Xiaomin; Dyck, Miles; Si, Bingcheng; Zhao, Ying; Feng, Hao
2017-02-01
Mulching practices have long been used to modify the soil temperature and moisture conditions and thus potentially improve crop production in dryland agriculture, but few studies have focused on mulching effects on soil gaseous emissions. We monitored annual greenhouse gas (GHG) emissions under the regime of straw and plastic film mulching using a closed chamber method on a typical winter-wheat (Triticum aestivum L. cv Xiaoyan 22) and summer-maize (Zea mays L. cv Qinlong 11) rotation field over two-year period in the Loess Plateau, northwestern China. The following four field treatments were included: T1 (control, no mulching), T2 (4000kgha -1 wheat straw mulching, covering 100% of soil surface), T3 (half plastic film mulching, covering 50% of soil surface), and T4 (complete plastic film mulching, covering 100% of soil surface). Compared with the control, straw mulching decreased soil temperature and increased soil moisture, whereas plastic film mulching increased both soil temperature and moisture. Accordingly, straw mulching increased annual crop yields over both cycles, while plastic film mulching significantly enhanced annual crop yield over cycle 2. Compared to the no-mulching treatment, all mulching treatments increased soil CO 2 emission over both cycles, and straw mulching increased soil CH 4 absorption over both cycles, but patterns of soil N 2 O emissions under straw or film mulching are not consistent. Overall, compared to T1, annual GHG intensity was significantly decreased by 106%, 24% and 26% under T2, T3 and T4 over cycle 1, respectively; and by 20%, 51% and 29% under T2, T3 and T4 over cycle 2, respectively. Considering the additional cost and environmental issues associated with plastic film mulching, the application of straw mulching might achieve a balance between food security and GHG emissions in the Chinese Loess Plateau. However, further research is required to investigate the perennial influence of different mulching applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Santos, Tiffany; Jain, Shikha; Hirotsune, Akemi; Hellwig, Olav
2015-03-01
MgO is the underlayer material of choice for granular FePt thin film media for heat assisted magnetic recording, because MgO (001) seeds L10-ordered FePt with c-axis perpendicular to the film plane and high perpendicular magnetic anisotropy. MgO is also an effective diffusion barrier between the FePt grains and the metallic underlayers beneath the MgO. However, there are possible concerns associated with using MgO in the media structure. MgO is highly sensitive to moisture, and hydration of MgO could potentially degrade film properties. In addition, many particulates are incorporated into the film during the RF-sputter process, which can be sources of delamination, pinholes and damage to the low-flying recording heads. TiN is an attractive alternative to MgO because it is chemically and mechanically robust, and TiN can be DC-sputtered, which produces fewer particles and has a faster deposition rate. Even though TiN has the same rocksalt crystal structure and lattice constant as MgO, the higher surface energy of TiN causes more wetting of the FePt grains on the TiN surface. As a result, deposition of granular FePt on TiN most often produces inter-connected, worm-like grains with low coercivity. We will show that by optimizing the deposition of FePt and segregant material on the TiN underlayer, we are able to fabricate FePt media with well-isolated grains and high coercivity reaching nearly 4 Tesla. In addition, the FePt has excellent structural properties with a high degree of L10 atomic ordering and minimal c-axis in-plane oriented grains.
NASA Astrophysics Data System (ADS)
Bedane, T.; Di Maio, L.; Scarfato, P.; Incarnato, L.; Marra, F.
2015-12-01
The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values of poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction in the permeability and oxygen transfer rate values. Scavenging capacity of the multilayer film increased linearly with the increase of the reactive layer thickness and the oxygen absorption reaction at short times decreased proportionally with the thickness of the external PET layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedane, T.; Di Maio, L.; Scarfato, P.
The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values ofmore » poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction in the permeability and oxygen transfer rate values. Scavenging capacity of the multilayer film increased linearly with the increase of the reactive layer thickness and the oxygen absorption reaction at short times decreased proportionally with the thickness of the external PET layer.« less
The application of the barrier-type anodic oxidation method to thickness testing of aluminum films
NASA Astrophysics Data System (ADS)
Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi
2014-09-01
The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision.
NASA Astrophysics Data System (ADS)
Fukagawa, Hirohiko; Morii, Katsuyuki; Hasegawa, Munehiro; Gouda, Shun; Tsuzuki, Toshimitsu; Shimizu, Takahisa; Yamamoto, Toshihiro
2015-10-01
The OLED is one of the key devices for realizing future flexible displays and lightings. One of the biggest challenges left for the OLED fabricated on a flexible substrate is the improvement of its resistance to oxygen and moisture. A high barrier layer [a water vapor transmission rate (WVTR) of about 10-6 g/m2/day] is proposed to be necessary for the encapsulation of conventional OLEDs. Some flexible high barrier layers have recently been demonstrated; however, such high barrier layers require a complex process, which makes flexible OLEDs expensive. If an OLED is prepared without using air-sensitive materials such as alkali metals, no stringent encapsulation is necessary for such an OLED. In this presentation, we will discuss our continuing efforts to develop an inverted OLED (iOLED) prepared without using alkali metals. iOLEDs with a bottom cathode are considered to be effective for realizing air-stable OLEDs since the electron injection layer (EIL) can be prepared by fabrication processes that might damage the organic layers, resulting in the enhanced range of materials suitable for EILs. We have demonstrated that a highly efficient and relatively air-stable iOLED can be realized by employing poly(ethyleneimine) as an EIL. Dark spot formation was not observed after 250 days in the poly(ethyleneimine)-based iOLED encapsulated by a barrier film with a WVTR of 10-4 g/m2/day. In addition, we have demonstrated the fabrication of a highly operational stable iOLED utilizing a newly developed EIL. The iOLED exhibits an expected half-lifetime of over 10,000 h from an initial luminance of 1,000 cd/m2.
Covering solid, film cooled surfaces with a duplex thermal barrier coating
NASA Technical Reports Server (NTRS)
Liebert, C. H. (Inventor)
1983-01-01
Thermal barrier coating systems were applied to hardware having passageways in the walls connecting apertures in the surface to a gas supply for film cooling. An inert gas, such as argon, is discharged through the apertures during the application of the thermal barrier coating system by plasma spraying. This flow of inert gas reduces both blocking of the holes and base metal oxidation during the coating operation.
Electronic Devices with Diffusion Barrier and Process for Making Same
2001-05-09
conductivity metallization materials such as gold , silver, and platinum. As can be appreciated from the foregoing, a barrier film is needed which... gold ), as well as platinum. These metals are highly attractive 10 for interconnect strategies on account of there intrinsic low resistivity and...the monolayer portion of the barrier -7- material. The monolayer ( monoatomic ) layer of metal atoms and the homoepitaxial film of metal halide
Development and characterization of the kefiran-whey protein isolate-TiO2 nanocomposite films.
Zolfi, Mohsen; Khodaiyan, Faramarz; Mousavi, Mohammad; Hashemi, Maryam
2014-04-01
Biodegradable kefiran-whey protein isolate (WPI)-titanium dioxide (TiO2) blend films were developed and characterized as a function of incorporating amount of TiO2 nanoparticles (1, 3 and 5% wt.). Results showed that the water vapor permeability, moisture content, moisture absorption and water solubility decreased by increasing the nano-TiO2 content. Mechanical tests revealed the plasticizing effect of TiO2 nanoparticles on the kefiran-WPI-TiO2 film. Addition of TiO2 nanoparticles to kefiran-WPI films significantly decreased tensile strength and Young's modulus, while increased its elongation at break. Differential scanning calorimetry data indicated that the glass transition temperature significantly changed by adding nano-TiO2. X-ray diffraction analysis also demonstrated that crystal type in kefiran-WPI was not affected by incorporation of TiO2 nanoparticles. A uniform distribution at 1 and 3% wt. loading levels of TiO2 nanoparticles was observed using scanning electron microscopy (SEM) micrographs. Copyright © 2014 Elsevier B.V. All rights reserved.
Mandla A. Tshabalala; Vina Yang; Ryan Libert
2009-01-01
Hybrid inorganic/organic thin films deposited on wood substrates have been shown to lower the rate of moisture sorption of the wood. Deposition of such thin films can be accomplished by solâgel deposition or by plasma-enhanced chemical vapor deposition. This paper describes in situ solâgel deposition of hybrid inorganic/organic thin films on wood substrates using...
NASA Astrophysics Data System (ADS)
Wang, Yunquan; Ma, Jinzhu; Guan, Huade; Zhu, Gaofeng
2017-06-01
Difficulty in measuring hydraulic conductivity, particularly under dry conditions, calls for methods of predicting the conductivity from easily obtained soil properties. As a complement to the recently published EMFX model, a method based on two specific suction conditions is proposed to estimate saturated film conductivity from the soil water retention curve. This method reduces one fitting parameter in the previous EMFX model, making it possible to predict the hydraulic conductivity from the soil water retention curve over the complete moisture range. Model performance is evaluated with published data of soils in a broad texture range from sand to clay. The testing results indicate that 1) the modified EMFX model (namely the EMFX-K model), incorporating both capillary and adsorption forces, provides good agreement with the conductivity data over the entire moisture range; 2) a value of 0.5 for the tortuosity factor in the EMFX-K model as that in the Mualem's model gives comparable estimation of the relative conductivity associated with the capillary force; and 3) a value of -1.0 × 10-20 J for the Hamaker constant, rather than the commonly used value of -6.0 × 10-20 J, appears to be more appropriate to represent solely the effect of the van der Waals forces and to predict the film conductivity. In comparison with the commonly used van Genuchten-Mualem model, the EMFX-K model significantly improves the prediction of hydraulic conductivity under dry conditions. The sensitivity analysis result suggests that the uncertainty in the film thickness estimation is important in explaining the model underestimation of hydraulic conductivity for the soils with fine texture, in addition to the uncertainties from the measurements and the model structure. High quality data that cover the complete moisture range for a variety of soil textures are required to further test the method.
Korasa, Klemen; Hudovornik, Grega; Vrečer, Franc
2016-10-10
Although process analytical technology (PAT) guidance has been introduced to the pharmaceutical industry just a decade ago, this innovative approach has already become an important part of efficient pharmaceutical development, manufacturing, and quality assurance. PAT tools are especially important in technologically complex operations which require strict control of critical process parameters and have significant effect on final product quality. Manufacturing of prolonged release film coated pellets is definitely one of such processes. The aim of the present work was to study the applicability of the at-line near-infrared spectroscopy (NIR) approach in the monitoring of pellet film coating and curing steps. Film coated pellets were manufactured by coating the active ingredient containing pellets with film coating based on polymethacrylate polymers (Eudragit® RS/RL). The NIR proved as a useful tool for the monitoring of the curing process since it was able to determine the extent of the curing and hence predict drug release rate by using partial least square (PLS) model. However, such approach also showed a number of limitations, such as low reliability and high susceptibility to pellet moisture content, and was thus not able to predict drug release from pellets with high moisture content. On the other hand, the at-line NIR was capable to predict the thickness of Eudragit® RS/RL film coating in a wide range (up to 40μm) with good accuracy even in the pellets with high moisture content. To sum up, high applicability of the at-line NIR in the monitoring of the prolonged release pellets production was demonstrated in the present study. The present findings may contribute to more efficient and reliable PAT solutions in the manufacturing of prolonged release dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.
Lim, Jung Hoon; Kim, Jeong Ae; Ko, Jung A; Park, Hyun Jin
2015-11-01
Beeswax and a plasticizer (ATBC) were added to polylactic acid (PLA) films in order to enhance the water vapor barrier properties of the films. Beeswax improved the barrier properties; the water vapor permeability in the composite containing 1% beeswax was 58% lower than that of the neat PLA. Fourier transform infrared spectroscopy and X-ray diffraction analysis revealed that the incorporation of beeswax and ATBC had so little effect on the PLA structure. In addition, the structure of PLA did not vary substantially with the additions. The surfaces of the composites were examined by using field emission scanning electron microscopy. Differential scanning calorimetry results showed that the degree of crystallinity of the PLA films increased with the addition of beeswax and ATBC. However, the tensile strength and elongation at break of the composites containing beeswax were up to approximately 50% lower than those of the neat PLA. Although further study is needed to improve the mechanical properties, the aforementioned results showed that the PLA barrier properties can be improved by the incorporation of a small amount of beeswax and ATBC. The results of this study can be applied for the preparation of PLA composite films with improved barrier properties. Such biodegradable films are extremely useful for applications in the food packaging industry. © 2015 Institute of Food Technologists®
Copper diffusion in Ti Si N layers formed by inductively coupled plasma implantation
NASA Astrophysics Data System (ADS)
Ee, Y. C.; Chen, Z.; Law, S. B.; Xu, S.; Yakovlev, N. L.; Lai, M. Y.
2006-11-01
Ternary Ti-Si-N refractory barrier films of 15 nm thick was prepared by low frequency, high density, inductively coupled plasma implantation of N into TixSiy substrate. This leads to the formation of Ti-N and Si-N compounds in the ternary film. Diffusion of copper in the barrier layer after annealing treatment at various temperatures was investigated using time-of-flight secondary ion mass spectrometer (ToF-SIMS) depth profiling, X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and sheet resistance measurement. The current study found that barrier failure did not occur until 650 °C annealing for 30 min. The failure occurs by the diffusion of copper into the Ti-Si-N film to form Cu-Ti and Cu-N compounds. FESEM surface morphology and EDX show that copper compounds were formed on the ridge areas of the Ti-Si-N film. The sheet resistance verifies the diffusion of Cu into the Ti-Si-N film; there is a sudden drop in the resistance with Cu compound formation. This finding provides a simple and effective method of monitoring Cu diffusion in TiN-based diffusion barriers.
Hagen, David A; Saucier, Lauren; Grunlan, Jaime C
2014-12-24
Polymer-clay thin films constructed via layer-by-layer (LbL) assembly, with a nanobrick wall structure (i.e., clay nanoplatelets as bricks surrounded by a polyelectrolyte mortar), are known to exhibit a high oxygen barrier. Further barrier improvement can be achieved by lowering the pH of the clay suspension in the polyethylenimine (PEI) and montmorillonite (MMT) system. In this case, the charge of the deposited PEI layer is increased in the clay suspension environment, which causes more clay to be deposited. At pH 4, MMT platelets deposit with near perfect ordering, observed with transmission electron microscopy, enabling a 5× improvement in the gas barrier for a 10 PEI/MMT bilayer thin film (85 nm) relative to the same film made with pH 10 MMT. This improved gas barrier approaches that achieved with much higher aspect ratio vermiculite clay. In essence, lower pH is generating a higher effective aspect ratio for MMT due to greater induced surface charge in the PEI layers, which causes heavier clay deposition. These flexible, transparent nanocoatings have a wide range of possible applications, from food and electronics packaging to pressurized bladders.
Use of aluminum oxide as a permeation barrier for producing thin films on aluminum substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provo, James L., E-mail: jlprovo@verizon.net
2016-07-15
Aluminum has desirable characteristics of good thermal properties, good electrical characteristics, good optical properties, and the characteristic of being nonmagnetic and having a low atomic weight (26.98 g atoms), but because of its low melting point (660 °C) and ability as a reactive metal to alloy with most common metals in use, it has been ignored as a substrate material for use in processing thin films. The author developed a simple solution to this problem, by putting a permeation barrier of alumina (Al{sub 2}O{sub 3}) onto the surface of pure Al substrates by using a standard chemical oxidation process of the surfacemore » (i.e., anodization), before additional film deposition of reactive metals at temperatures up to 500 °C for 1-h, without the formation of alloys or intermetallic compounds to affect the good properties of Al substrates. The chromic acid anodization process used (MIL-A-8625) produced a film barrier of ∼(500–1000) nm of alumina. The fact that refractory Al{sub 2}O{sub 3} can inhibit the reaction of metals with Al at temperatures below 500 °C suggests that Al is a satisfactory substrate if properly oxidized prior to film deposition. To prove this concept, thin film samples of Cr, Mo, Er, Sc, Ti, and Zr were prepared on anodized Al substrates and studied by x-ray diffraction, Rutherford ion back scattering, and Auger/argon sputter surface profile analysis to determine any film substrate interactions. In addition, a major purpose of our study was to determine if ErD{sub 2} thin films could be produced on Al substrates with fully hydrided Er films. Thus, a thin film of ErD{sub 2} on an anodized Al substrate was prepared and studied, with and without the alumina permeation barrier. Films for study were prepared on 1.27 cm diameter Al substrates with ∼500 nm of the metals studied after anodization. Substrates were weighed, cleaned, and vacuum fired at 500 °C prior to use. The Al substrates were deposited using standard electron beam cold crucible evaporation techniques, and after deposition the Er film was hydrided with D{sub 2} gas using a standard nonair exposure hydriding technique. All processing was conducted in an all metal ion pumped ultrahigh vacuum system. Results showed that e-beam deposition of films studied onto Al substrates could be successfully performed, if a permeation barrier of Al{sub 2}O{sub 3} from 500 to 1000 nm was made prior to thin film deposition up to temperatures of 500 °C for 1-h. Hydrides also, could be produced with full gas/metal atomic ratios of ∼2.0 as evidenced by the ErD{sub 2} films produced. Thus, the use of a simple permeation barrier of Al{sub 2}O{sub 3} on Al substrates prior to additional metal film deposition was proven to be a successful method of producing both thin metal films and hydride films of various types for many applications.« less
USDA-ARS?s Scientific Manuscript database
The present study investigated the effects of dielectric barrier discharge atmospheric cold plasma (DACP) treatment on the inactivation of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus (TV) on Romaine lettuce, assessing the influences of moisture vaporization, modifi...
Barrier island community change: What controls it?
NASA Astrophysics Data System (ADS)
Dows, B.; Young, D.; Zinnert, J.
2014-12-01
Conversion from grassland to woody dominated communities has been observed globally. In recent decades, this pattern has been observed in coastal communities along the mid-Atlantic U.S. In coastal environments, a suite of biotic and abiotic factors interact as filters to determine plant community structure and distribution. Microclimatic conditions: soil and air temperature, soil moisture and salinity, and light attenuation under grass cover were measured across a grassland-woody encroachment gradient on a Virginia barrier island; to identify the primary factors that mediate this change. Woody establishment was associated with moderately dense (2200 shoots/m2) grass cover, but reduced at high (> 6200 shoots/ m2) and low (< 1250 shoots/ m2) densities. Moderately dense grass cover reduced light attenuation (82.50 % reduction) to sufficiently reduce soil temperature thereby limiting soil moisture evaporation. However, high grass density reduced light attenuation (98.7 % reduction) enough to inhibit establishment of woody species; whereas low grass density attenuated much less light (48.7 % reduction) which allowed for greater soil moisture evaporation. Soil salinity was dynamic as rainfall, tidal inundation, and sea spray produce spatiotemporal variation throughout the barrier island landscape. The importance of light and temperature were compounded as they also indirectly affect soil salinity via their affects on soil moisture. Determining how these biotic and abiotic factors relate to sea level rise and climate change will improve understanding coastal community response as global changes proceed. Understanding how community shifts affect ecosystem function and their potential to affect adjacent systems will also improve predictive ability of coastal ecosystem responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pern, F. J.; Noufi, R.
A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. Themore » best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of BZO layers on CIGS cell pieces was observed that was not seen on BZO/glass, and a CdS/CIGS sample displayed a small darkening and then flaking feature. Additionally, standard AlNi grid contact was less stable than thin Ni grid contact at T/RH ≥ 70/70. The edge sealant and moisture-blocking films were effective to block moisture ingress, as evidenced by the good stability of most CIGS solar cells and device components at T/RH = 85/70 for 704 h, and by preservation of the initial blue color on the RH indicator strips. The SSADT experiment is ongoing to be completed at T/RH = 85/85.« less
Kadzińska, Justyna
2016-01-01
Summary The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters (d32) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness (L*≈90). Parameter a* decreased and parameter b* and total colour difference (∆E) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg’s equation (R2≥0.99). The tensile strength, Young’s modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased. PMID:27904396
Organic-Inorganic Hybrid Interfacial Layer for High-Performance Planar Perovskite Solar Cells.
Yang, Hao; Cong, Shan; Lou, Yanhui; Han, Liang; Zhao, Jie; Sun, Yinghui; Zou, Guifu
2017-09-20
4,7-Diphenyl-1,10-phenanthroline (Bphen) is an efficient electron transport and hole blocking material in organic photoelectric devices. Here, we report cesium carbonate (Cs 2 CO 3 ) doped Bphen as cathode interfacial layer in CH 3 NH 3 PbI 3-x Cl x based planar perovskite solar cells (PSCs). Investigation finds that introducing Cs 2 CO 3 suppresses the crystallization of Bphen and benefits a smooth interface contact between the perovskite and electrode, resulting in the decrease in carrier recombination and the perovskite degradation. In addition, the matching energy level of Bphen film in the PSCs effectively blocks the holes diffusion to cathode. The resultant power conversion efficiency (PCE) achieves as high as 17.03% in comparison with 12.67% of reference device without doping. Besides, experiments also demonstrate the stability of PSCs have large improvement because the suppressed crystallization of Bphen by doping Cs 2 CO 3 as a superior barrier layer blocks the Ag atom and surrounding moisture access to the vulnerable perovskite layer.
Effects of fluoride residue on thermal stability in Cu/porous low-k interconnects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Y.; Ozaki, S.; Nakamura, T.
2014-06-19
We have investigated the effects of fluoride residue on the thermal stability of a Cu/barrier metal (BM)/porous low-k film (k < 2.3) structure. We confirmed that the Cu agglomerated more on a BM/inter layer dielectric (ILD) with a fluoride residue. To consider the effect of fluoride residue on Cu agglomeration, the structural state at the Cu/BM interface was evaluated with a cross-section transmission electron microscope (TEM) and atomic force microscope (AFM). In addition, the chemical bonding state at the Cu/BM interface was evaluated with the interface peeling-off method and X-ray photoelectron spectroscopy (XPS). Moreover, we confirmed the ionization of fluoridemore » residue and oxidation of Cu with fluoride and moisture to clarify the effect of fluoride residue on Cu. Our experimental results indicated that the thermal stability in Cu/porous low-k interconnects was degraded by enhancement of Cu oxidation with fluoride ions diffusion as an oxidizing catalyst.« less
Templeton, Allen C; Placek, Jiri; Xu, Hui; Mahajan, Rajiv; Hunke, William A; Reed, Robert A
2003-01-01
The purpose of the present study is to apply and contrast several analytical techniques to understand the change in moisture content of 20 mm diameter bromobutyl rubber stoppers as a function of typical stopper processing conditions. Three separate methods were examined and Karl-Fischer titration and techniques based on capacitance measurements at a thin-film sensor were found to provide comparable results. Stopper moisture levels were examined in stoppers: (i) as received from the manufacturer, (ii) following steam sterilization, (iii) as a function of various drying cycles, and (iv) during simulated hold conditions prior to use. Finally, the transfer of moisture from stopper to an actual product is examined on storage and general agreement observed between stopper drying conditions and cake moisture levels.
Messin, Tiphaine; Follain, Nadège; Guinault, Alain; Sollogoub, Cyrille; Gaucher, Valérie; Delpouve, Nicolas; Marais, Stéphane
2017-08-30
Multilayer coextrusion processing was applied to produce 2049-layer film of poly(butylene succinate-co-butylene adipate) (PBSA) confined against poly(lactic acid) (PLA) using forced assembly, where the PBSA layer thickness was about 60 nm. This unique technology allowed to process semicrystalline PBSA as confined polymer and amorphous PLA as confining polymer in a continuous manner. The continuity of PBSA layers within the 80/20 wt % PLA/PBSA layered films was clearly evidenced by atomic force microscopy (AFM). Similar thermal events to the reference films were revealed by thermal studies; indicating no diffusion of polymers during the melt-processing. Mechanical properties were measured for the multilayer film and the obtained results were those expected considering the fraction of each polymer, revealing the absence of delamination in the PLA/PBSA multinanolayer film. The confinement effect induced by PLA led to a slight orientation of the crystals, an increase of the rigid amorphous fraction (RAF) in PBSA with a densification of this fraction without changing film crystallinity. These structural changes allowed to strongly improve the water vapor and gas barrier properties of the PBSA layer into the multilayer film up to two decades in the case of CO 2 gas. By confining the PBSA structure in very thin and continuous layers, it was then possible to improve the barrier performances of a biodegradable system and the resulting barrier properties were successfully correlated to the effect of confinement on the microstructure and the chain segment mobility of the amorphous phase. Such investigation on these multinanolayers of PLA/PBSA with the aim of evidencing relationships between microstructure implying RAF and barrier performances has never been performed yet. Besides, gas and water permeation results have shown that the barrier improvement obtained from the multilayer was mainly due to the reduction of solubility linked to the reduction of the free volume while the tortuosity effect, as usually expected, was not really observed. This work brings new insights in the field of physicochemical behaviors of new multilayer films made of biodegradable polyesters but also in interfacial processes due to the confinement effect induced in these multinanolayer structures obtained by the forced assembly coextrusion. This original coextrusion process was a very advantageous technique to produce eco-friendly materials with functional properties without the help of tie layer, additives, solvents, surface treatments, or inorganic fillers.
USDA-ARS?s Scientific Manuscript database
Baked foam films were prepared from four sources of starch: corn, potato, tapioca and chayotextle, and stored at relative moisture conditions of 0 to 75% and at temperatures of 4 and 65 °C. Then, the structural and mechanical properties of the films were evaluated. The results showed that the source...
NASA Astrophysics Data System (ADS)
Lee, Jun S.; Shin, Kyung S.; Sahu, B. B.; Han, Jeon G.
2015-09-01
In this work, silicon nitride (SiNx) thin films were deposited on polyethylene terephthalate (PET) substrates as barrier layers by plasma enhanced chemical vapor deposition (PECVD) system. Utilizing a combination of very high-frequency (VHF 40.68 MHz) and radio-frequency (RF 13.56 MHz) plasmas it was possible to adopt PECVD deposition at low-temperature using the precursors: Hexamethyldisilazane (HMDSN) and nitrogen. To investigate relationship between film properties and plasma properties, plasma diagnostic using optical emission spectroscopy (OES) was performed along with the film analysis using Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). OES measurements show that there is dominance of the excited N2 and N2+ emissions with increase in N2 dilution, which has a significant impact on the film properties. It was seen that all the deposited films contains mainly silicon nitride with a small content of carbon and no signature of oxygen. Interestingly, upon air exposure, films have shown the formation of Si-O bonds in addition to the Si-N bonds. Measurements and analysis reveals that SiNx films deposited with high content of nitrogen with HMDSN plasma can have lower gas barrier properties as low as 7 . 3 ×10-3 g/m2/day. Also at Chiang Mai University.
de Moraes, J Oliveira; Müller, C M O; Laurindo, J B
2012-02-01
The addition of nanoclay or cellulose fibers has been presented in the literature as a suitable alternative for reinforcing starch films. The aim of the present work was to evaluate the effect of the simultaneous incorporation of nanoclay (bentonite) and cellulose fibers on the mechanical and water barrier properties of the resultant composite-films. Films were prepared by casting with 3% in weight of cassava starch, using glycerol as plasticizer (0.30 g per g of starch), cellulose fibers at a concentration of 0.30 g of fibers per g of starch and nanoclay (0.05 g clay per g starch and 0.10 g clay per g starch). The addition of cellulose fibers and nanoclay increased the tensile strength of the films 8.5 times and the Young modulus 24 times but reduced the elongation capacity 14 times. The water barrier properties of the composite-films to which bentonite and cellulose fibers were added were approximately 60% inferior to those of starch films. Diffractograms showed that the nanoclay was intercalated in the polymeric matrix. These results indicate that the simultaneous addition of bentonite and cellulose fibers is a suitable alternative to increase the tensile strength of the films and decrease their water vapor permeabilities.
Biodegradable films produced from the bacterial polysaccharide FucoPol.
Ferreira, Ana R V; Torres, Cristiana A V; Freitas, Filomena; Reis, Maria A M; Alves, Vítor D; Coelhoso, Isabel M
2014-11-01
FucoPol, an exopolysaccharide produced by Enterobacter A47, grown in bioreactor with glycerol as carbon source, was used with citric acid to obtain biodegradable films by casting. The films were characterized in terms of optical, hygroscopic, mechanical and barrier properties. These films have shown to be transparent, but with a brown tone, imparting small colour changes when applied over coloured surfaces. They were hydrophilic, with high permeability to water vapour (1.01×10(-11)mol/msPa), but presented good barrier properties to oxygen and carbon dioxide (0.7×10(-16)molm/m(2)sPa and 42.7×10(-16)molm/m(2)sPa, respectively). Furthermore, films have shown mechanical properties under tensile tests characteristic of ductile films with high elongation at break, low tension at break and low elastic modulus. Although the obtained results are promising, films properties can be improved, namely by testing alternative plasticizers, crosslinking agents and blends with other biopolymers. Taking into account the observed ductile mechanical properties, good barrier properties to gases when low water content is used and their hydrophilic character, it is foreseen a good potential for FucoPol films to be incorporated as inner layer of a multilayer packaging material. Copyright © 2014 Elsevier B.V. All rights reserved.
Mazumder, Sonal; Pavurala, Naresh; Manda, Prashanth; Xu, Xiaoming; Cruz, Celia N; Krishnaiah, Yellela S R
2017-07-15
The present investigation was carried out to understand the impact of formulation and process variables on the quality of oral disintegrating films (ODF) using Quality by Design (QbD) approach. Lamotrigine (LMT) was used as a model drug. Formulation variable was plasticizer to film former ratio and process variables were drying temperature, air flow rate in the drying chamber, drying time and wet coat thickness of the film. A Definitive Screening Design of Experiments (DoE) was used to identify and classify the critical formulation and process variables impacting critical quality attributes (CQA). A total of 14 laboratory-scale DoE formulations were prepared and evaluated for mechanical properties (%elongation at break, yield stress, Young's modulus, folding endurance) and other CQA (dry thickness, disintegration time, dissolution rate, moisture content, moisture uptake, drug assay and drug content uniformity). The main factors affecting mechanical properties were plasticizer to film former ratio and drying temperature. Dissolution rate was found to be sensitive to air flow rate during drying and plasticizer to film former ratio. Data were analyzed for elucidating interactions between different variables, rank ordering the critical materials attributes (CMA) and critical process parameters (CPP), and for providing a predictive model for the process. Results suggested that plasticizer to film former ratio and process controls on drying are critical to manufacture LMT ODF with the desired CQA. Published by Elsevier B.V.
Review of Graphene as a Solid State Diffusion Barrier.
Morrow, Wayne K; Pearton, Stephen J; Ren, Fan
2016-01-06
Conventional thin-film diffusion barriers consist of 3D bulk films with high chemical and thermal stability. The purpose of the barrier material is to prevent intermixing or penetration from the two materials that encase it. Adhesion to both top and bottom materials is critical to the success of the barrier. Here, the effectiveness of a single atomic layer of graphene as a solid-state diffusion barrier for common metal schemes used in microelectronics is reviewed, and specific examples are discussed. Initial studies of electrical contacts to graphene show a distinct separation in behavior between metallic groups that strongly or weakly bond to it. The two basic classes of metal reactions with graphene are either physisorbed metals, which bond weakly with graphene, or chemisorbed metals, which bond strongly to graphene. For graphene diffusion barrier testing on Si substrates, an effective barrier can be achieved through the formation of a carbide layer with metals that are chemisorbed. For physisorbed metals, the barrier failure mechanism is loss of adhesion at the metal–graphene interface. A graphene layer encased between two metal layers, in certain cases, can increase the binding energy of both films with graphene, however, certain combinations of metal films are detrimental to the bonding with graphene. While the prospects for graphene's future as a solid-state diffusion barrier are positive, there are open questions, and areas for future research are discussed. A better understanding of the mechanisms which influence graphene's ability to be an effective diffusion barrier in microelectronic applications is required, and additional experiments are needed on a broader range of metals, as well as common metal stack contact structures used in microelectronic applications. The role of defects in the graphene is also a key area, since they will probably influence the barrier properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Growth of <111>-oriented Cu layer on thin TaWN films
NASA Astrophysics Data System (ADS)
Takeyama, Mayumi B.; Sato, Masaru
2017-07-01
In this study, we examine the growth of a <111>-oriented Cu layer on a thin TaWN ternary alloy barrier for good electromigration reliability. The strongly preferentially oriented Cu(111) layer is observed on a thin TaWN barrier even in the as-deposited Cu (100 nm)/TaWN (5 nm)/Si system. Also, this system tolerates annealing at 700 °C for 1 h without silicide reaction. It is revealed that the TaWN film is one of the excellent barriers with thermal stability and low resistivity. Simultaneously, the TaWN film is a candidate for a superior underlying material to achieve the Cu(111) preferential orientation.
High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation
NASA Astrophysics Data System (ADS)
Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun
2018-02-01
The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.
Corrosion-resistant multilayer structures with improved reflectivity
Soufli, Regina; Fernandez-Perea, Monica; Robinson, Jeff C.
2013-04-09
In one general embodiment, a thin film structure includes a substrate; a first corrosion barrier layer above the substrate; a reflective layer above the first corrosion barrier layer, wherein the reflective layer comprises at least one repeating set of sub-layers, wherein one of the sub-layers of each set of sub-layers being of a corrodible material; and a second corrosion barrier layer above the reflective layer. In another general embodiment, a system includes an optical element having a thin film structure as recited above; and an image capture or spectrometer device. In a further general embodiment, a laser according to one embodiment includes a light source and the thin film structure as recited above.
High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation
NASA Astrophysics Data System (ADS)
Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun
2018-05-01
The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.
Humidity-activated shape memory effect on plasticized starch-based biomaterials.
Sessini, Valentina; Arrieta, Marina P; Fernández-Torres, Alberto; Peponi, Laura
2018-01-01
Humidity-activated shape memory behavior of plasticized starch-based films reinforced with the innovative combination of starch nanocrystals (SNCs) and catechin as antioxidant were studied. In a previous work, we reported the processing of gelatinized starch-based films filled with SNCs and catechin as antioxidant agent, and we observed that this novel combination leads to starch-based film with enhanced thermal and mechanical performance. In this work, the humidity-activated shape memory behavior of the previous developed starch-based films was characterized. The moisture loss as well as the moisture absorption were studied since they are essential parameters in humidity-activated shape memory polymers to fix the temporary shape and to recover the original shape, respectively. Therefore, the effect of the incorporation of SNCs and catechin on the humidity-activated shape memory properties of plasticized starch was also studied. Moreover, the effectiveness of catechin to increase the polymer stability under oxidative atmosphere and the thermo-mechanical relaxation of all the starch-based materials were studied. The combination of plasticized starch matrix loaded with both, SNCs and catechin, leads to a multifunctional starch-based films with increased hydrophilicity and with excellent humidity-activated shape memory behavior with interest for potential biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Robust Guar Gum/Cellulose Nanofibrils Multilayer Films with Good Barrier Properties.
Dai, Lei; Long, Zhu; Chen, Jie; An, Xingye; Cheng, Dong; Khan, Avik; Ni, Yonghao
2017-02-15
The pursuit of sustainable functional materials requires development of materials based on renewable resources and efficient fabrication methods. Hereby, we fabricated all-polysaccharides multilayer films using cationic guar gum (CGG) and anionic cellulose nanofibrils (i.e., TEMPO-oxidized cellulose nanofibrils, TOCNs) through a layer-by-layer casting method. This technique is based on alternate depositions of oppositely charged water-based CGG and TOCNs onto laminated films. The resultant polyelectrolyte multilayer films were transparent, ductile, and strong. More importantly, the self-standing films exhibited excellent gas (water vapor and oxygen) and oil barrier performances. Another outstanding feature of these resultant films was their resistance to various organic solvents including methanol, acetone, N,N-dimethylacetamide (DMAc) and tetrahydrofuran (THF). The proposed film fabrication process is environmentally benign, cost-effective, and easy to scale-up. The developed CGG/TOCNs multilayer films can be used as a renewable material for industrial applications such as packaging.
Aroma barrier properties of sodium caseinate-based films.
Fabra, Maria José; Hambleton, Alicia; Talens, Pau; Debeaufort, Fréderic; Chiralt, Amparo; Voilley, Andrée
2008-05-01
The mass transport of six different aroma compounds (ethyl acetate, ethyl butyrate, ethyl hexanoate, 2-hexanone, 1-hexanol, and cis-3-hexenol) through sodium caseinate-based films with different oleic acid (OA)/beeswax (BW) ratio has been studied. OA is less efficient than BW in reducing aroma permeability, which can be attributed to its greater polarity. Control film (without lipid) and films prepared with 0:100 OA/BW ratio show the lowest permeability. OA involves a decrease in aroma barrier properties of the sodium caseinate-based films due to its plasticization ability. Preferential sorption and diffusion occurs through OA instead of caseinate matrix and/or BW. The efficiency of sodium caseinate-based films to retain or limit aroma compound transfers depend on the affinity of the volatile compound to the films, which relates physicochemical interaction between volatile compound and film. Specific interactions (aroma compound-hydrocolloid and aroma compound-lipid) induce structural changes during mass transfer.
Development of a Solar Cell Back Sheet with Excellent UV Durability and Thermal Conductivity.
Kang, Seong-Hwan; Choi, Jaeho; Lee, Sung-Ho; Song, Young-Hoon; Park, Jong-Se; Jung, In-Sung; Jung, Jin-Su; Kim, Chong-Yeal; Yang, O-Bong
2018-09-01
The back sheet is one of the most important materials in photovoltaic (PV) modules. It plays an important role in protecting the solar cell from the environment by preventing moisture penetration. In the back sheet, the outermost layer is composed of a polyester (PET) film to protect the PV module from moisture, and the opposite layer is composed of a TiO2 + PE material. Nowadays, PV modules are installed in the desert. Therefore, methods to improve the power generation efficiency of PV modules need to be investigated as the efficiency is affected by temperature resulting from the heat radiation effect. Using a back sheet with a high thermal conductivity, the module output efficiency can be increased as heat is efficiently dissipated. In this study, a thermally conductive film was fabricated by mixing a reference film (TiO2 + PE) and a non-metallic material, MgO, with high thermal conductivity. UV irradiation tests of the film were conducted. The thermally conductive film (TiO2 + PE + MgO) showed higher conductivity than a reference film. No visible cracks and low yellowing degree were found in thermally conductive film, confirming its excellent UV durability characteristics. The sample film was bonded to a PET layer, and a back sheet was fabricated. The yellowing of the back sheet was also analyzed after UV irradiation. In addition, mini modules with four solar cell were fabricated using the developed back sheet, and a comparative outdoor test was conducted. The results showed that power generation improved by 1.38%.
Physical-mechanical properties of agar/κ-carrageenan blend film and derived clay nanocomposite film.
Rhim, Jong-Whan
2012-12-01
Binary blend films with different mixing ratio of agar and κ-carrageenan were prepared using a solution casting method with and without nanoclay and the effect of their composition on the mechanical, water vapor barrier, and water resistance properties was tested. The tensile strength (TS) of the κ-carrageenan film was greater than that of agar film. The water vapor permeability (WVP) of the agar film was lower than that of κ-carrageenan film, the swelling ratio (SR) and water solubility (WS) of κ-carrageenan film were higher than those of agar film. Each property of the binary blend films varied proportionately depending on the mixing ratio of each component. The XRD result indicated that the nanocomposite with agar/κ-carrageenan/clay (Cloisite(®) Na(+)) was intercalated. Consequently, the mechanical strength, water vapor barrier properties, and water contact angle (CA) were significantly (P < 0.05) improved through nanocomposite formation. © 2012 Institute of Food Technologists®
USDA-ARS?s Scientific Manuscript database
Cellulose fibers were miniaturized by microfluidics technology and incorporated in hydroxypropyl methylcellulose (HPMC) films to study the effect of the addition of such fibers on the mechanical and barrier properties of HPMC films suitable for food packaging applications. The particle size of the f...
NASA Astrophysics Data System (ADS)
Zheng, Yan-Zhen; Li, Xi-Tao; Zhao, Er-Fei; Lv, Xin-Ding; Meng, Fan-Li; Peng, Chao; Lai, Xue-Sen; Huang, Meilan; Cao, Guozhong; Tao, Xia; Chen, Jian-Feng
2018-02-01
Simultaneously achieving the long-term device stability and reproducibility has proven challenging in perovskite solar cells because solution-processing produced perovskite film with grain boundary is sensitive to moisture. Herein, we develop a hexamethylenetetramine (HMTA)-mediated one-step solution-processing deposition strategy that leads to the formation of high-purity and grain-boundary-passivation CH3NH3PbI3 film and thereby advances cell optoelectronic performance. Through morphological and structural characterizations and theoretical calculations, we demonstrate that HMTA fully occupies the moisture-exposed surface to build a bridge across grain boundary and coordinates with Pb ions to inhibit the formation of detrimental PbI2. Such HMTA-mediated grown CH3NH3PbI3 films achieves a decent augmentation of power conversion efficiency (PCE) from 12.70% to 17.87%. A full coverage of PbI2-free CH3NH3PbI3 surface on ZnO also boosts the device's stability and reproducibility.
Highly Sensitive and Fast Response Colorimetric Humidity Sensors Based on Graphene Oxides Film.
Chi, Hong; Liu, Yan Jun; Wang, FuKe; He, Chaobin
2015-09-16
Uniform graphene oxide (GO) film for optical humidity sensing was fabricated by dip-coating technique. The resulting GO thin film shows linear optical shifts in the visible range with increase of humidity in the whole relative humidity range (from dry state to 98%). Moreover, GO films exhibit ultrafast sensing to moisture within 250 ms because of the unique atomic thinness and superpermeability of GO sheets. The humidity sensing mechanism was investigated using XRD and computer simulation. The ultrasensitive humidity colorimetric properties of GOs film may enable many potential applications such as disposable humidity sensors for packaging, health, and environmental monitoring.
NASA Astrophysics Data System (ADS)
Tari, Alireza; Wong, William S.
2018-02-01
Dual-dielectric SiOx/SiNx thin-film layers were used as back-channel and gate-dielectric barrier layers for bottom-gate InGaZnO (IGZO) thin-film transistors (TFTs). The concentration profiles of hydrogen, indium, gallium, and zinc oxide were analyzed using secondary-ion mass spectroscopy characterization. By implementing an effective H-diffusion barrier, the hydrogen concentration and the creation of H-induced oxygen deficiency (H-Vo complex) defects during the processing of passivated flexible IGZO TFTs were minimized. A bilayer back-channel passivation layer, consisting of electron-beam deposited SiOx on plasma-enhanced chemical vapor-deposition (PECVD) SiNx films, effectively protected the TFT active region from plasma damage and minimized changes in the chemical composition of the semiconductor layer. A dual-dielectric PECVD SiOx/PECVD SiNx gate-dielectric, using SiOx as a barrier layer, also effectively prevented out-diffusion of hydrogen atoms from the PECVD SiNx-gate dielectric to the IGZO channel layer during the device fabrication.
Thick adherent dielectric films on plastic substrates and method for depositing same
Wickboldt, Paul; Ellingboe, Albert R.; Theiss, Steven D.; Smith, Patrick M.
2002-01-01
Thick adherent dielectric films deposited on plastic substrates for use as a thermal barrier layer to protect the plastic substrates from high temperatures which, for example, occur during laser annealing of layers subsequently deposited on the dielectric films. It is desirable that the barrier layer has properties including: a thickness of 1 .mu.m or greater, adheres to a plastic substrate, does not lift-off when cycled in temperature, has few or no cracks and does not crack when subjected to bending, resistant to lift-off when submersed in fluids, electrically insulating and preferably transparent. The thick barrier layer may be composed, for example, of a variety of dielectrics and certain metal oxides, and may be deposited on a variety of plastic substrates by various known deposition techniques. The key to the method of forming the thick barrier layer on the plastic substrate is maintaining the substrate cool during deposition of the barrier layer. Cooling of the substrate maybe accomplished by the use of a cooling chuck on which the plastic substrate is positioned, and by directing cooling gas, such as He, Ar and N.sub.2, between the plastic substrate and the cooling chucks. Thick adherent dielectric films up to about 5 .mu.m have been deposited on plastic substrates which include the above-referenced properties, and which enable the plastic substrates to withstand laser processing temperatures applied to materials deposited on the dielectric films.
NASA Astrophysics Data System (ADS)
Huang, Cheng-Lin; Lai, Chih-Huang; Tsai, Po-Hao; Kuo, Yu-Lin; Lin, Jing-Cheng; Lee, Chiapyng
2014-05-01
In this study, we investigated the thermal stability, wettability, adhesion and reliability of (Ti,Zr)N x films used as the diffusion barrier between Cu and Si. (Ti,Zr)N x films were prepared by DC reactive magnetron sputtering from a Ti-5 at. % Zr alloy target in N2/Ar gas mixtures. A minimum film resistivity of 59.3 µω cm was obtained at an N2/Ar flow ratio of 2.75, which corresponds to the near stoichiometric composition (N/(Ti,Zr) ratio ˜0.95). The sheet resistance of Cu/(Ti,Zr)N0.95/Si was not significantly increased until annealing above 750°C, indicating good thermal stability. On the other hand, the adhesion energy between Cu and the (Ti,Zr)Nx film was reduced as the N/Ti ratio was increased. To obtain reliable performance on stress-induced-voiding (SIV) and electromigration (EM) tests, we proposed to use (Ti,Zr)/(Ti,Zr)N x /(Ti,Zr) tri-layers. We suggest that the interfacial adhesion between barrier and Cu plays an important role in reliability. The proposed tri-layer structure may be a promising candidate for a barrier, as it exhibits excellent reliability without increasing resistance.
NASA Astrophysics Data System (ADS)
Ahmadi, Elaheh; Oshima, Yuichi; Wu, Feng; Speck, James S.
2017-03-01
Coherent β-(AlxGa1-x)2O3 films (x = 0, 0.038, 0.084, 0.164) were grown successfully on a Sn-doped β-Ga2O3 (010) substrate using plasma-assisted molecular beam epitaxy. Atom probe tomography, transmission electron microscopy, and high resolution x-ray diffraction were used to verify the alloy composition and high quality of the films. Schottky diodes were then fabricated using Ni as the Schottky metal. Capacitance-voltage measurements revealed a very low (<7 × 1015 cm-3) free charge density in the nominally undoped films. The barrier height and ideality factor were estimated by current-voltage (I-V) measurements performed at temperatures varying from 300 K to 500 K on the Schottky diodes. These measurements revealed that the apparent Schottky barrier height could have similar values for different compositions of β-(AlxGa1-x)2O3. We believe this is attributed to the lateral fluctuation in the alloy’s composition. This results in a lateral variation in the barrier height. Therefore, the average Schottky barrier height extracted from I-V measurements could be similar for β-(AlxGa1-x)2O3 films with different compositions.
NASA Astrophysics Data System (ADS)
Thellen, Christopher T.
The objective of this research was to investigate the use of nanocomposite and multilayer co-extrusion technologies for the development of high gas barrier packaging that is more environmentally friendly than many current packaging system. Co-extruded bio-based and biodegradable polymers that could be composted in a municipal landfill were one direction that this research was aimed. Down-gauging of high performance barrier films using nanocomposite technology and co-extrusion was also investigated in order to reduce the amount of solid waste being generated by the packaging. Although the research is focused on military ration packaging, the technologies could easily be introduced into the commercial flexible packaging market. Multilayer packaging consisting of poly(m-xylylene adipamide) nanocomposite layers along with adhesive and tie layers was co-extruded using both laboratory and pilot-scale film extrusion equipment. Co-extrusion of biodegradable polyhydroxyalkanoates (PHA) along with polyvinyl alcohol (PVOH) and tie layers was also accomplished using similar co-extrusion technology. All multilayer films were characterized for gas barrier, mechanical, and thermal properties. The biodegradability of the PVOH and PHA materials in a marine environment was also investigated. The research has shown that co-extrusion of these materials is possible at a research and pilot level. The use of nanocomposite poly(m-xylylene adipamide) was effective in down-gauging the un-filled barrier film to thinner structures. Bio-based PHA/PVOH films required the use of a malefic anhydride grafted PHA tie layer to improve layer to layer adhesion in the structure to avoid delamination. The PHA polymer demonstrated a high rate of biodegradability/mineralization in the marine environment while the rate of biodegradation of the PVOH polymer was slower.
Development of methods for skin barrier peeling tests.
Omura, Yuko; Kazuharu, Seki; Kenji, Oishi
2006-01-01
We sought to develop a more effective method to evaluate the adhesive properties of skin barriers. The experimental design used was based on 3 principles: partial control, randomization, and repetition. Using these principles, the 180-degree peeling tests were conducted as specified in a standardized methodology (JIS Z0297) to the extent possible. However, the use of a stainless steel plate as a proxy for skin barrier application may result in the stretching and breaking of the skin barrier, making it impossible to obtain suitable measurements. Tests were conducted in constant temperature/ humidity chambers using a Tensilon Automatic Elongation Tester, where a sample was fixed on the side of a sample immobilization device, a sturdy metal (aluminum) box from which the air in the box was drawn off with a vacuum pump. A fluorocarbon polymer film was applied to the adhesive surface of a sample skin barrier. The film was peeled off in the volte-face (180-degree) direction in order to measure adhesive strengths. The films exhibit such properties as (a) ease of removal from the adhesive surface, (b) no resistance to a 180-degree fold back due to the thinness and flexibility of the material, and (c) tolerance of elongation. The adhesive properties of skin barriers were measured by peeling the fluorocarbon polymers in a 180-degree direction. Twelve specimen skin barrier products were selected for measurement, providing results with satisfactory reproducibility. Results based on the conventional stainless steel plate-based testing method acted as a control. The newly developed testing method enables chronological measurement results for skin barriers applied to fluorocarbon polymer films after 24 hours, 48 hours, and longer period.
NASA Astrophysics Data System (ADS)
Shukla, Vivek Kumar; Maitra, Jaya
2013-06-01
The organic small molecules like Bis (8-hydroxy quinoline) Zinc, (Znq2), used in organic light emitting diodes (OLEDs) are sensitive to environment species like moisture and air. Using characterization tools like photoluminescence (PL), FTIR and DSC, we investigated that as deposited films of Znq2 have a significant component of Znq2 tetramer and less dihydrate component. The stability of films deposited at higher deposition rates may be due to higher component of tetramer.
NASA Astrophysics Data System (ADS)
Xu, Fei; Zhang, Yaning; Jin, Guangri; Li, Bingxi; Kim, Yong-Song; Xie, Gongnan; Fu, Zhongbin
2018-04-01
A three-phase model capable of predicting the heat transfer and moisture migration for soil freezing process was developed based on the Shen-Chen model and the mechanisms of heat and mass transfer in unsaturated soil freezing. The pre-melted film was taken into consideration, and the relationship between film thickness and soil temperature was used to calculate the liquid water fraction in both frozen zone and freezing fringe. The force that causes the moisture migration was calculated by the sum of several interactive forces and the suction in the pre-melted film was regarded as an interactive force between ice and water. Two kinds of resistance were regarded as a kind of body force related to the water films between the ice grains and soil grains, and a block force instead of gravity was introduced to keep balance with gravity before soil freezing. Lattice Boltzmann method was used in the simulation, and the input variables for the simulation included the size of computational domain, obstacle fraction, liquid water fraction, air fraction and soil porosity. The model is capable of predicting the water content distribution along soil depth and variations in water content and temperature during soil freezing process.
NASA Astrophysics Data System (ADS)
Yamanaka, Soichiro; Hayakawa, Kei; Cojocaru, Ludmila; Tsuruta, Ryohei; Sato, Tomoya; Mase, Kazuhiko; Uchida, Satoshi; Nakayama, Yasuo
2018-04-01
Methylammonium lead triiodide (CH3NH3PbI3) is the fundamental material used in perovskite solar cells, and its electronic properties have, therefore, attracted a great deal of attention as a potential key to highly efficient solar cell performance. However, the deterioration of perovskite solar cells when exposed to high temperature and humidity remains a serious obstacle to the material's use, and the clarification of the degradation mechanisms has been keenly anticipated. In this study, the valence electronic structures and depth-dependence of the chemical states of CH3NH3PbI3 thin films are investigated using ultraviolet photoelectron spectroscopy and excitation energy dependent X-ray photoelectron spectroscopy. Additionally, the effects of high temperature and a moisture rich atmosphere on the CH3NH3PbI3 thin films are examined. It is confirmed that the high temperature and moist atmosphere facilitate the oxidation of CH3NH3PbI3, whereas the Pb:I stoichiometry of the CH3NH3PbI3 thin films is found to be preserved at its original ratio (1:3) after thermal annealing and exposure to a moist atmosphere.
Magnetic tunnel junctions utilizing diamond-like carbon tunnel barriers
NASA Astrophysics Data System (ADS)
Cadieu, F. J.; Chen, Li; Li, Biao
2002-05-01
We have devised a method whereby thin particulate-free diamond-like carbon films can be made with good adhesion onto even room-temperature substrates. The method employs a filtered ionized carbon beam created by the vacuum impact of a high-energy, approximately 1 J per pulse, 248 nm excimer laser onto a carbon target. The resultant deposition beam can be steered and deflected by magnetic and electric fields to paint a specific substrate area. An important aspect of this deposition method is that the resultant films are particulate free and formed only as the result of atomic species impact. The vast majority of magnetic tunnel junctions utilizing thin metallic magnetic films have employed a thin oxidized layer of aluminum to form the tunnel barrier. This has presented reproducibility problems because the indicated optimal barrier thickness is only approximately 13 Å thick. Magnetic tunnel junctions utilizing Co and permalloy films made by evaporation and sputtering have been fabricated with an intervening diamond-like carbon tunnel barrier. The diamond-like carbon thickness profile has been tapered so that seven junctions with different barrier thickness can be formed at once. Magnetoresistive (MR) measurements made between successive permalloy strip ends include contributions from two junctions and from the permalloy and Co strips that act as current leads to the junctions. Magnetic tunnel junctions with thicker carbon barriers exhibit MR effects that are dominated by that of the permalloy strips. Since these tunnel barriers are formed without the need for oxygen, complete tunnel junctions can be formed with all high-vacuum processing.
Application of moisturizer to neonates prevents development of atopic dermatitis.
Horimukai, Kenta; Morita, Kumiko; Narita, Masami; Kondo, Mai; Kitazawa, Hiroshi; Nozaki, Makoto; Shigematsu, Yukiko; Yoshida, Kazue; Niizeki, Hironori; Motomura, Ken-Ichiro; Sago, Haruhiko; Takimoto, Tetsuya; Inoue, Eisuke; Kamemura, Norio; Kido, Hiroshi; Hisatsune, Junzo; Sugai, Motoyuki; Murota, Hiroyuki; Katayama, Ichiro; Sasaki, Takashi; Amagai, Masayuki; Morita, Hideaki; Matsuda, Akio; Matsumoto, Kenji; Saito, Hirohisa; Ohya, Yukihiro
2014-10-01
Recent studies have suggested that epidermal barrier dysfunction contributes to the development of atopic dermatitis (AD) and other allergic diseases. We performed a prospective, randomized controlled trial to investigate whether protecting the skin barrier with a moisturizer during the neonatal period prevents development of AD and allergic sensitization. An emulsion-type moisturizer was applied daily during the first 32 weeks of life to 59 of 118 neonates at high risk for AD (based on having a parent or sibling with AD) who were enrolled in this study. The onset of AD (eczematous symptoms lasting >4 weeks) and eczema (lasting >2 weeks) was assessed by a dermatology specialist on the basis of the modified Hanifin and Rajka criteria. The primary outcome was the cumulative incidence of AD plus eczema (AD/eczema) at week 32 of life. A secondary outcome, allergic sensitization, was evaluated based on serum levels of allergen-specific IgE determined by using a high-sensitivity allergen microarray of diamond-like carbon-coated chips. Approximately 32% fewer neonates who received the moisturizer had AD/eczema by week 32 than control subjects (P = .012, log-rank test). We did not show a statistically significant effect of emollient on allergic sensitization based on the level of IgE antibody against egg white at 0.34 kUA/L CAP-FEIA equivalents. However, the sensitization rate was significantly higher in infants who had AD/eczema than in those who did not (odds ratio, 2.86; 95% CI, 1.22-6.73). Daily application of moisturizer during the first 32 weeks of life reduces the risk of AD/eczema in infants. Allergic sensitization during this time period is associated with the presence of eczematous skin but not with moisturizer use. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Su, Peixi; Zhao, Aifen; Du, Mingwu
2004-09-01
During 2001-2002, the effects of different cultivation modes including winter irrigation and zero tillage, crop-grass intercropping, and early spring film mulching on sand entrainment, wind velocity gradient and soil moisture conservation were studied in the middle reaches of the Heihe River in the Hexi Corridor region. The results showed that all these modes could reduce soil wind erosion and halt sand entrainment to different degrees. Compared with the bare fields exposed by spring plowing, early spring film mulching could increase soil moisture storage by 35.6%. At present, spring plowing and sowing was a main factor responsible to the occurrence of sand storms and the increase in suspended dust content. Farmlands in the upper and middle reaches of the Heihe River generally produced a dust transport up to 4.8-6.0 million tons per year, which was higher than that of sandy desert in the same region. In the Hexi Corridor region, the suspended dust amount produced from 1 hm2 farmland was equivalent to that of 1.5 hm2 desert.
Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra
2016-01-01
The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258
Plastic Schottky barrier solar cells
Waldrop, James R.; Cohen, Marshall J.
1984-01-24
A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.
Electrical Conductivity and Barrier Properties of Lithium Niobate Thin Films
NASA Astrophysics Data System (ADS)
Gudkov, S. I.; Baklanova, K. D.; Kamenshchikov, M. V.; Solnyshkin, A. V.; Belov, A. N.
2018-04-01
The thin-film structures made of LiNbO3 and obtained via laser ablation and magnetron sputtering are studied with volt-farad and volt-ampere characteristics. A potential barrier on the Si-LiNbO3 interface was found for both types of the films with the capacitance-voltage characteristics. The current-voltage characteristics showed that there are several conduction mechanisms in the structures studied. The Poole-Frenkel effect and the currents limited by a space charge mainly contribute to the electrical conductivity in the LiNbO3 film produced with the laser ablation method. The currents limited by a space charge contribute to the main mechanism in the film heterostructure obtained with the magnetron sputtering method.
Physicochemical, mechanical and thermal properties of chitosan films with and without sorbitol.
Liu, Mei; Zhou, Yibin; Zhang, Yang; Yu, Chen; Cao, Shengnan
2014-09-01
The effect of sorbitol on the physicochemical, mechanical and thermal properties of chitosan films with different degrees of deacetylation (DD; i.e., DD85% and DD95%) was investigated. The thickness, moisture content (MC), water solubility (WS) and water-vapor permeability (WVP) of the films were evaluated. Sorbitol addition reduced MC, increased WS and significantly (p<0.01) reduced WVP of both film types. DD95% films had lower MC and WVP, and higher WS than DD85% films. Static (thermomechanical analysis) and dynamic (dynamic mechanical analysis) tests indicated that sorbitol increased the strain and decreased stress for both DD films, but DD95% could sustain higher strain and DD85% could sustain higher stress. Thermogravimetrics analysis and differential scanning calorimetry showed that sorbitol elicited a lower degradation temperature for both films, and that DD95% films exhibited higher thermal stability than DD85% films. Copyright © 2014 Elsevier B.V. All rights reserved.
The Use of Feature Parameters to Asses Barrier Properties of ALD coatings for Flexible PV Substrates
NASA Astrophysics Data System (ADS)
Blunt, Liam; Robbins, David; Fleming, Leigh; Elrawemi, Mohamed
2014-03-01
This paper reports on the recent work carried out as part of the EU funded NanoMend project. The project seeks to develop integrated process inspection, cleaning, repair and control systems for nano-scale thin films on large area substrates. In the present study flexible photovoltaic films have been the substrate of interest. Flexible PV films are the subject of significant development at present and the latest films have efficiencies at or beyond the level of Si based rigid PV modules. These flexible devices are fabricated on polymer film by the repeated deposition, and patterning, of thin layer materials using roll-to-roll processes, where the whole film is approximately 3um thick prior to encapsulation. Whilst flexible films offer significant advantages in terms of mass and the possibility of building integration (BIPV) they are at present susceptible to long term environmental degradation as a result of water vapor transmission through the barrier layers to the CIGS (Copper Indium Gallium Selenide CuInxGa(1-x)Se2) PV cells thus causing electrical shorts and efficiency drops. Environmental protection of the GIGS cell is provided by a thin (40nm) barrier coating of Al2O3. The highly conformal aluminium oxide barrier layer is produced by atomic layer deposition (ALD) where, the ultra-thin Al2O3 layer is deposited onto polymer thin films before these films encapsulate the PV cell. The surface of the starting polymer film must be of very high quality in order to avoid creating defects in the device layers. Since these defects reduce manufacturing yield, in order to prevent them, a further thin polymer coating (planarization layer) is generally applied to the polymer film prior to deposition. The presence of surface irregularities on the uncoated film can create defects within the nanometre-scale, aluminium oxide, barrier layer and these are measured and characterised. This paper begins by reporting the results of early stage measurements conducted to characterise the uncoated and coated polymer film surface topography using feature parameter analysis. The measurements are carried out using a Taylor Hobson Coherence Correlation Interferometer an optical microscope and SEM. Feature parameter analysis allows the efficient separation of small insignificant defects from large defects. The presence of both large and insignificant defects is then correlated with the water vapour transmission rate as measured on representative sets of films using at standard MOCON test. The paper finishes by drawing conclusions based on analysis of WVTR and defect size, where it is postulated that small numbers of large defects play a significant role in higher levels of WVTR.
NASA Astrophysics Data System (ADS)
Truman, James Kelly
1992-01-01
The commercial application of superconducting rm YBa_2Cu_3O_{7 -x} thin films requires the development of deposition methods which can be used to reproducibly deposit films with good superconducting properties on insulating and semiconducting substrates. Sputter deposition is the most popular method to fabricate Y-Ba-Cu-O superconductor thin films, but when used in the standard configuration suffers from a deviation between the compositions of the Y-Ba-Cu-O sputter target and deposited films, which is thought to be primarily due to resputtering of the film by negative ions sputtered from the target. In this study, the negative ions were explicitly identified and were found to consist predominantly O^-. The sputter yield of O^- was found to depend on the Ba compound used in the fabrication of Y -Ba-Cu-O targets and was related to the electronegativity difference between the components. An unreacted mixture of rm Y_2O_3, CuO, and BaF_2 was found to have the lowest O^- yield among targets with Y:Ba:Cu = 1:2:3. The high yield of O^- from rm YBa_2Cu_3O _{7-x} was found to depend on the target temperature and be due to the excess oxygen present. The SIMS negative ion data supported the composition data for sputter-deposited Y-Ba-Cu-O films. Targets using BaF _2 were found to improve the Ba deficiency, the run-to-run irreproducibility and the nonuniformity of the film composition typically found in sputtered Y -Ba-Cu-O films. Superconducting Y-Ba-Cu-O films were formed on SrTiO_3 substrates by post-deposition heat treatment of Y-Ba-Cu-O-F films in humid oxygen. The growth of superconducting rm YBa_2Cu_3O_{7-x}, thin films on common substrates such as sapphire or silicon requires the use of a barrier layer to prevent the deleterious interaction which occurs between Y-Ba-Cu-O films and these substrates. Barrier layers of SrTiO_3 were studied and found to exhibit textured growth with a preferred (111) orientation on (100) Si substrates. However, SrTiO_3 was found to be unsuitable as a barrier layer for the growth of rm YBa _2Cu_3O_{7-x}, on Si since Ba reacted with the si after migrating through the SrTiO_3 layer. For sapphire, no textured growth of SrTiO_3 was observed but it was found to be a suitable barrier layer since it prevented any interaction between Y-Ba-Cu-O films and sapphire substrates.
Mechanical and Tear Properties of Fabric/Film Laminates
NASA Technical Reports Server (NTRS)
Said, Magdi A.
1998-01-01
Films reinforced with woven fabrics are being considered for the development of a material suitable for long duration scientific balloons under a program managed by the National Aeronautics and Space Administration (NASA). Recently developed woven fabrics provide a relatively high strength to weight ratio compared to standard homogenous films. Woven fabrics also have better crack propagation resistance and rip stop capabilities when compared to homogenous lightweight, high strength polymeric films such as polyester and nylon. If joining is required, such as in the case of scientific balloons, woven fabrics have the advantage over polymeric thin films to utilize traditional textile methods as well as other techniques including hot sealing, adhesion, and ultrasonic means. Woven fabrics, however, lack the barrier properties required for helium filled scientific balloons, therefore lamination with homogenous films is required to provide the gas barrier capabilities required in these applications.
Film forming microbial biopolymers for commercial applications--a review.
Vijayendra, S V N; Shamala, T R
2014-12-01
Microorganisms synthesize intracellular, structural and extracellular polymers also referred to as biopolymers for their function and survival. These biopolymers play specific roles as energy reserve materials, protective agents, aid in cell functioning, the establishment of symbiosis, osmotic adaptation and support the microbial genera to function, adapt, multiply and survive efficiently under changing environmental conditions. Viscosifying, gelling and film forming properties of these have been exploited for specific significant applications in food and allied industries. Intensive research activities and recent achievements in relevant and important research fields of global interest regarding film forming microbial biopolymers is the subject of this review. Microbial polymers such as pullulan, kefiran, bacterial cellulose (BC), gellan and levan are placed under the category of exopolysaccharides (EPS) and have several other functional properties including film formation, which can be used for various applications in food and allied industries. In addition to EPS, innumerable bacterial genera are found to synthesis carbon energy reserves in their cells known as polyhydroxyalkanoates (PHAs), microbial polyesters, which can be extruded into films with excellent moisture and oxygen barrier properties. Blow moldable biopolymers like PHA along with polylactic acid (PLA) synthesized chemically in vitro using lactic acid (LA), which is produced by LA bacteria through fermentation, are projected as biodegradable polymers of the future for packaging applications. Designing and creating of new property based on requirements through controlled synthesis can lead to improvement in properties of existing polysaccharides and create novel biopolymers of great commercial interest and value for wider applications. Incorporation of antimicrobials such as bacteriocins or silver and copper nanoparticles can enhance the functionality of polymer films especially in food packaging applications either in the form of coatings or wrappings. Use of EPS in combinations to obtain desired properties can be evaluated to increase the application range. Controlled release of active compounds, bioactive protection and resistance to water can be investigated while developing new technologies to improve the film properties of active packaging and coatings. An holistic approach may be adopted in developing an economical and biodegradable packaging material with acceptable properties. An interdisciplinary approach with new innovations can lead to the development of new composites of these biopolymers to enhance the application range. This current review focuses on linking and consolidation of recent research activities on the production and applications of film forming microbial polymers like EPS, PHA and PLA for commercial applications.
Picouet, P A; Fernandez, A; Realini, C E; Lloret, E
2014-01-01
A masterbatch of polyamide 6 (PA6) containing dispersed nanoclays, was used to fabricate a novel multilayer film for vacuum packed meat. Performance of the nanocomposite was compared to a control PA6 multilayer and a high barrier commercial film. Addition of nanoclays improved oxygen barrier properties, UV-blocking capability and stiffness. Beef loins were vacuum-aged using the three films for 0 7, 14 and 21 days at 2°C. After each ageing time, beef steaks were packaged in commercial trays and high oxygen atmosphere and stored at 4°C for 9 days. Beef quality parameters and gas content were studied during display time in MAP (1, 3, 6 and 9 d). Beef quality parameters were not influenced by the packaging materials used during ageing and the performance of nanocomposites was comparable to high barrier films. Ageing had a positive impact on the stabilization of redness up to day 6 in MAP. Thereafter, oxymyoglobin content and oxidation levels were negatively influenced by ageing. © 2013.
Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G
2010-04-01
The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.
The Barrier Properties of PET Coated DLC Film Deposited by Microwave Surface-Wave PECVD
NASA Astrophysics Data System (ADS)
Yin, Lianhua; Chen, Qiang
2017-12-01
In this paper we report the investigation of diamond-like carbon (DLC) deposited by microwave surface-wave plasma enhanced chemical vapor deposition (PECVD) on the polyethylene terephthalate (PET) web for the purpose of the barrier property improvement. In order to characterize the properties of DLC coatings, we used several substrates, silicon wafer, glass, and PET web and KBr tablet. The deposition rate was obtained by surface profiler based on the DLC deposited on glass substrates; Fourier transform infrared spectroscope (FTIR) was carried out on KBr tablets to investigate chemical composition and bonding structure; the morphology of the DLC coating was analyzed by atomic force microscope (AFM) on Si substrates. For the barrier properties of PET webs, we measured the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) after coated with DLC films. We addressed the film barrier property related to process parameters, such as microwave power and pulse parameter in this work. The results show that the DLC coatings can greatly improve the barrier properties of PET webs.
Ballistic Electron Emission Microscopy Studies of Ferromagnet - Semiconductor Interfaces
NASA Astrophysics Data System (ADS)
Mather, P. G.; Perrella, A. C.; Yurtsever, A.; Buhrman, R. A.
2004-03-01
Devices that employ spin as well as charge effects have been the subjects of extensive study recently. The magnetic tunneling transistor (1) is one important device that demonstrates an electrical means of injecting spin-polarized electrons into a semiconductor. A Schottky barrier lies at the heart of the device, and a high quality spatially homogenous and uniform barrier formed on GaAs is highly desirable. We have used ballistic electron emission microscopy (BEEM) to study CoFe, Fe and permalloy deposited on a GaAs substrate to give nanometer resolved evaluation of hot electron transport through the films and across the Schottky barrier. All films give a homogenous, uniform barrier as compared with evaporated Au/GaAs and Ag/GaAs interfaces. We will report on BEEM measurements of the hot electron transfer ratio across the Schottky barrier for the different ferromagnetic materials, and on the energy and spin-dependent hot electron attenuation lengths of the CoFe, Fe, and permalloy films. (1) Sebastiaan van Dijken, Xin Jiang, Stuart S. P. Parkin, APL, 80, 3364.
One Single Graphene Oxide Film for Responsive Actuation.
Cheng, Huhu; Zhao, Fei; Xue, Jiangli; Shi, Gaoquan; Jiang, Lan; Qu, Liangti
2016-09-22
Graphene, because of its superior electrical/thermal conductivity, high surface area, excellent mechanical flexibility, and stability, is currently receiving significant attention and benefit to fabricate actuator devices. Here, a sole graphene oxide (GO) film responsive actuator with an integrated self-detecting sensor has been developed. The film exhibits an asymmetric surface structure on its two sides, creating a promising actuation ability triggered by multistimuli, such as moisture, thermals, and infrared light. Meanwhile, the built-in laser-writing reduced graphene oxide (rGO) sensor in the film can detect its own deformation in real time. Smart perceptual fingers in addition to rectangular-shaped and even four-legged walking robots have been developed based on the responsive GO film.
NASA Astrophysics Data System (ADS)
Jian, Li-Yi; Lee, Hsin-Ying; Lin, Yung-Hao; Lee, Ching-Ting
2018-02-01
To study the self-heating effect, aluminum oxide (Al2O3) barrier layers of various thicknesses have been inserted between the channel layer and insulator layer in bottom-gate-type indium gallium zinc aluminum oxide (IGZAO) thin-film transistors (TFTs). Each IGZAO channel layer was deposited on indium tin oxide (ITO)-coated glass substrate by using a magnetron radiofrequency cosputtering system with dual targets composed of indium gallium zinc oxide (IGZO) and Al. The 3 s orbital of Al cation provided an extra transport pathway and widened the conduction-band bottom, thus increasing the electron mobility of the IGZAO films. The Al-O bonds were able to sustain the oxygen stability of the IGZAO films. The self-heating behavior of the resulting IGZAO TFTs was studied by Hall measurements on the IGZAO films as well as the electrical performance of the IGZAO TFTs with Al2O3 barrier layers of various thicknesses at different temperatures. IGZAO TFTs with 50-nm-thick Al2O3 barrier layer were stressed by positive gate bias stress (PGBS, at gate-source voltage V GS = 5 V and drain-source voltage V DS = 0 V); at V GS = 5 V and V DS = 10 V, the threshold voltage shifts were 0.04 V and 0.2 V, respectively, much smaller than for the other IGZAO TFTs without Al2O3 barrier layer, which shifted by 0.2 V and 1.0 V when stressed under the same conditions.
Choi, Inyoung; Chang, Yoonjee; Shin, So-Hyang; Joo, Eunmi; Song, Hyun Ju; Eom, Haeyoung; Han, Jaejoon
2017-01-01
Biopolymer films based on apple skin powder (ASP) and carboxymethylcellulose (CMC) were developed with the addition of apple skin extract (ASE) and tartaric acid (TA). ASP/CMC composite films were prepared by mixing CMC with ASP solution using a microfluidization technique to reduce particle size. Then, various concentrations of ASE and TA were incorporated into the film solution as an antioxidant and an antimicrobial agent, respectively. Fourier transform infrared (FTIR), optical, mechanical, water barrier, and solubility properties of the developed films were then evaluated to determine the effects of ASE and TA on physicochemical properties. The films were also analyzed for antioxidant effect on 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and antimicrobial activities against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, and Shigella flexneri. From the results, the ASP/CMC film containing ASE and TA was revealed to enhance the mechanical, water barrier, and solubility properties. Moreover, it showed the additional antioxidant and antimicrobial properties for application as an active packaging film. PMID:28617325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS- b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less
Sharmin, Nusrat; Khan, Ruhul A; Salmieri, Stephane; Dussault, Dominic; Bouchard, Jean; Lacroix, Monique
2012-01-18
Methylcellulose (MC)-based films were prepared by solution casting from its 1% aqueous suspension containing 0.25% glycerol. Trimethylolpropane trimethacrylate (TMPTMA) monomer (0.1-2% by wt) along with the glycerol was added to the MC suspension. The films were cast and irradiated from a radiation dose varied from 0.1 to 10 kGy. Then the mechanical properties such as tensile strength (TS), tensile modulus (TM), and elongation at break (Eb) and barrier properties of the films were evaluated. The highest TS (47.88 PMa) and TM (1791.50 MPa) of the films were found by using 0.1% monomer at 5 kGy dose. The lowest water vapor permeability (WVP) of the films was found to be 5.57 g·mm/m(2)·day·kPa (at 0.1% monomer and 5 kGy dose), which is 12.14% lower than control MC-based films. Molecular interactions due to incorporation of TMPTMA were supported by FTIR spectroscopy. A band at 1720 cm(-1) was observed due to the addition of TMPTMA in MC-based films, which indicated the typical (C═O) carbonyl stretching. For the further improvement of the mechanical and barrier properties of the film, 0.025-1% nanocrystalline cellulose (NCC) was added to the MC-based suspension containing 1% TMPTMA. Addition of NCC led to a significant improvement in the mechanical and barrier properties. The novelty of this investigation was to graft insoluble monomer using γ radiation with MC-based films and use of biodegradable NCC as the reinforcing agent.
Carlos Baez; John Considine; Robert Rowlands
2014-01-01
Nanofibrillated cellulose (NFC) is a renewable and biodegradable fibril that possesses high strength and stiffness resulting from high level hydrogen bonding. Films made from NFC shrink and distort as they transition from a wet state (20 wt% solids) to a state of moisture equilibrium (90 wt% solids at 50 % RH, 23 °C). Material distortions are driven by development of...
Trace moisture detection in oil filled transformer by ceramic sensor
NASA Astrophysics Data System (ADS)
Saha, Debdulal; Sengupta, K.
2015-02-01
This paper reports on the suitability of thin film nano porous γ-alumina sensor for sensing parts per million (ppm) moisture present in transformer oil. Transformer oil degrades slowly by weathering, causing dielectric break down voltage of the oil to fall down. For improving this break down voltage, water must be removed from the transformer oil. Flash point of the transformer oil ranges from 150°C to 200°C.When the oil is slowly heated up to 75°C water vapour comes out from oil which is detected by ceramic sensor. The sensor is prepared from organo-metallic precursor by sol-gel process. Gold coated α-alumina substrate was dipped within the alumina hydra-sol and a thin film of γ-alumina formed on the substrate. The sensor capacitance was measured as a function of ppm moisture level. The circuit produces an output voltage which is precisely related to the absolute value of the capacitance of the dielectric material. In order to improve the sensitivity, parallel electrode structure was patterned on the nano porous dielectric. The response is sufficiently linear in extremely low ppm level moisture. A prototype hygrometer was built for detection of trace moisture in transformer oil. Porous alumina can be produced at a relatively low cost and in a variety of structural configurations. Sol- gel processing of alumina allows superior control on pore morphology, phase formation, purity and product microstructure compared to the more traditional techniques like Anodic oxidation of alumina sheets, tape cast by different sizes of alumina powder etc.
Moisture effect on interfacial integrity of epoxy-bonded system: a hierarchical approach
NASA Astrophysics Data System (ADS)
Tam, Lik-ho; Lun Chow, Cheuk; Lau, Denvid
2018-01-01
The epoxy-bonded system has been widely used in various applications across different scale lengths. Prior investigations have indicated that the moisture-affected interfacial debonding is the major failure mode of such a system, but the fundamental mechanism remains unknown, such as the basis for the invasion of water molecules in the cross-linked epoxy and the epoxy-bonded interface. This prevents us from predicting the long-term performance of the epoxy-related applications under the effect of the moisture. Here, we use full atomistic models to investigate the response of the epoxy-bonded system towards the adhesion test, and provide a detailed analysis of the interfacial integrity under the moisture effect and the associated debonding mechanism. Molecular dynamics simulations show that water molecules affect the hierarchical structure of the epoxy-bonded system at the nanoscale by disrupting the film-substrate interaction and the molecular interaction within the epoxy, which leads to the detachment of the epoxy thin film, and the final interfacial debonding. The simulation results show good agreement with the experimental results of the epoxy-bonded system. Through identifying the relationship between the epoxy structure and the debonding mechanism at multiple scales, it is shown that the hierarchical structure of the epoxy-bonded system is crucial for the interfacial integrity. In particular, the available space of the epoxy-bonded system, which consists of various sizes ranging from the atomistic scale to the macroscale and is close to the interface facilitates the moisture accumulation, leading to a distinct interfacial debonding when compared to the dry scenario.
2011-07-13
Expected I-V curve of the CNT- metal Schottky barrier; (c), Band diagrams of Aluminum and the p-type doped CNT film; (d) – (f), The band diagrams of the Al...I-V Characteristics of the CNT- metal Schottky barrier. The CNT- metal Schottky diode turns on at ~ 0.5V. The Fermi-level of the CNF film is...Figure 9. Simplified energy band diagrams of the CNT and metal interface: (a) before contact; (b) after contact. A barrier V0 is formed between the
‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China
NASA Astrophysics Data System (ADS)
Liu, E. K.; He, W. Q.; Yan, C. R.
2014-09-01
Plastic film mulching has played an important role in Chinese agriculture due to its soil warming and moisture conservation effects. With the help of plastic film mulch technology, grain and cash crop yields have increased by 20-35% and 20-60%, respectively. The area of plastic film coverage in China reached approximately 20 million hectares, and the amount of plastic film used reached 1.25 million tons in 2011. While producing huge benefits, plastic film mulch technology has also brought on a series of pollution hazards. Large amounts of residual plastic film have detrimental effects on soil structure, water and nutrient transport and crop growth, thereby disrupting the agricultural environment and reducing crop production. To control pollution, the Chinese government urgently needs to elevate plastic film standards. Meanwhile, research and development of biodegradable mulch film and multi-functional mulch recovery machinery will help promote effective control and management of residual mulch pollution.
Aulin, Christian; Karabulut, Erdem; Tran, Amy; Wågberg, Lars; Lindström, Tom
2013-08-14
The layer-by-layer (LbL) deposition method was used for the build-up of alternating layers of nanofibrillated cellulose (NFC) or carboxymethyl cellulose (CMC) with a branched, cationic polyelectrolyte, polyethyleneimine (PEI) on flexible poly (lactic acid) (PLA) substrates. With this procedure, optically transparent nanocellulosic films with tunable gas barrier properties were formed. 50 layer pairs of PEI/NFC and PEI/CMC deposited on PLA have oxygen permeabilities of 0.34 and 0.71 cm(3)·μm/m(2)·day·kPa at 23 °C and 50% relative humidity, respectively, which is in the same range as polyvinyl alcohol and ethylene vinyl alcohol. The oxygen permeability of these multilayer nanocomposites outperforms those of pure NFC films prepared by solvent-casting. The nanocellulosic LbL assemblies on PLA substrates was in detailed characterized using a quartz crystal microbalance with dissipation (QCM-D). Atomic force microscopy (AFM) reveals large structural differences between the PEI/NFC and the PEI/CMC assemblies, with the PEI/NFC assembly showing a highly entangled network of nanofibrils, whereas the PEI/CMC surfaces lacked structural features. Scanning electron microscopy images showed a nearly perfect uniformity of the nanocellulosic coatings on PLA, and light transmittance results revealed remarkable transparency of the LbL-coated PLA films. The present work demonstrates the first ever LbL films based on high aspect ratio, water-dispersible nanofibrillated cellulose, and water-soluble carboxymethyl cellulose polymers that can be used as multifunctional films and coatings with tailorable properties, such as gas barriers and transparency. Owing to its flexibility, transparency and high-performance gas barrier properties, these thin film assemblies are promising candidates for several large-scale applications, including flexible electronics and renewable packaging.
Use of Gallic Acid to Enhance the Antioxidant and Mechanical Properties of Active Fish Gelatin Film.
Limpisophon, Kanokrat; Schleining, Gerhard
2017-01-01
This study explores the potential roles of gallic acid in fish gelatin film for improving mechanical properties, UV barrier, and providing antioxidant activities. Glycerol, a common used plasticizer, also impacts on mechanical properties of the film. A factorial design was used to investigate the effects of gallic acid and glycerol concentrations on antioxidant activities and mechanical properties of fish gelatin film. Increasing the amount of gallic acid increased the antioxidant capacities of the film measured by radical scavenging assay and the ferric reducing ability of plasma assay. The released antioxidant power of gallic acid from the film was not reduced by glycerol. The presence of gallic acid not only increased the antioxidant capacity of the film, but also increased the tensile strength, elongation at break, and reduced UV absorption due to interaction between gallic acid and protein by hydrogen bonding. Glycerol did not affect the antioxidant capacities of the film, but increased the elasticity of the films. Overall, this study revealed that gallic acid entrapped in the fish gelatin film provided antioxidant activities and improved film characteristics, namely UV barrier, strength, and elasticity of the film. © 2016 Institute of Food Technologists®.
Experimental study of interfacial fracture toughness in a SiN(x)/PMMA barrier film.
Kim, Yongjin; Bulusu, Anuradha; Giordano, Anthony J; Marder, Seth R; Dauskardt, Reinhold; Graham, Samuel
2012-12-01
Organic/inorganic multilayer barrier films play an important role in the semihermetic packaging of organic electronic devices. With the rise in use of flexible organic electronics, there exists the potential for mechanical failure due to the loss of adhesion/cohesion when exposed to harsh environmental operating conditions. Although barrier performance has been the predominant metric for evaluating these encapsulation films, interfacial adhesion between the organic/inorganic barrier films and factors that influence their mechanical strength and reliability has received little attention. In this work, we present the interfacial fracture toughness of a model organic/inorganic multilayer barrier (SiN(x)-PMMA). Data from four point bending (FPB) tests showed that adhesive failure occurred between the SiN(x) and PMMA, and that the adhesion increased from 4.8 to 10 J/m(2) by using a variety of chemical treatments to vary the surface energy at the interface. Moreover, the adhesion strength increased to 28 J/m(2) by creating strong covalent bonds at the interface. Overall, three factors were found to have the greatest impact on the interfacial fracture toughness which were (a) increasing the polar component of the surface energy, (b) creating strong covalent bonds at the organic/inorganic interface, and (c) by increasing the plastic zone size at the crack tip by increasing the thickness of the PMMA layer.
Mesoporous Nitrogen Doped Carbon-Glass Ceramic Cathode for High Performance Lithium-Oxygen Battery
2012-06-01
dry room with controlled moisture content. Composite 3 films on nickel foam were used as working cathodes along with lithium metal as anode and the...cathode formulation [6,7,8,9,10], efficient oxygen reduction catalysts [11,12], electrolyte compositions [13,14], effect of moisture [15], etc...specimens. Structure and purity of these materials were performed by powder X-ray diffraction (XRD) on a Rigaku D/MAX-2250 diffractometer fitted with CuKα
NASA Astrophysics Data System (ADS)
Xu, Jun; Mills, Allen P.; Case, Carlye
2005-08-01
Diffusion barriers for capping porous low dielectric constant films are important for preventing metal migration into a semiconductor circuit. Using the fact that positrons implanted into a porous dielectric form ortho-positronium (o-Ps) copiously, Gidley et al. [D. W. Gidley, W. F. Frieze, T. L. Dull, J. Sun, A. F. Yee, C. V. Nguyen, and D. Y. Yoon, Appl. Phys. Lett. 76, 1282 (2000)], have been able to measure open area fractions as low as 10-5 in porous dielectric film barrier layers from the increase in the ortho-positronium lifetime and intensity associated with positronium escape into vacuum. We demonstrate that it is possible to obtain comparable sensitivities by measuring the gamma-ray energy spectrum of the escaping positronium.
Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors.
Samant, Saumil P; Grabowski, Christopher A; Kisslinger, Kim; Yager, Kevin G; Yuan, Guangcui; Satija, Sushil K; Durstock, Michael F; Raghavan, Dharmaraj; Karim, Alamgir
2016-03-01
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ∼50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the "barrier effect", where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.
Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors
Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim; ...
2016-03-04
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (E BD) and dielectric permittivity (ε r) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher E BD over that ofmore » component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS- b-PMMA system show ~50% enhancement in E BD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in E BD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in E BD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less
Scanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films
2011-01-01
The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCTO thin films have been studied and the evidence of internal barriers in CCTO thin films has been provided. The role of internal barriers and the possible explanation for the extrinsic origin of the giant dielectric response in CCTO has been evaluated. PMID:21711646
Scanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films
NASA Astrophysics Data System (ADS)
Fiorenza, Patrick; Lo Nigro, Raffaella; Raineri, Vito
2011-12-01
The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCTO thin films have been studied and the evidence of internal barriers in CCTO thin films has been provided. The role of internal barriers and the possible explanation for the extrinsic origin of the giant dielectric response in CCTO has been evaluated.
Scanning Probe Microscopy on heterogeneous CaCu3Ti4O12 thin films.
Fiorenza, Patrick; Lo Nigro, Raffaella; Raineri, Vito
2011-02-04
The conductive atomic force microscopy provided a local characterization of the dielectric heterogeneities in CaCu3Ti4O12 (CCTO) thin films deposited by MOCVD on IrO2 bottom electrode. In particular, both techniques have been employed to clarify the role of the inter- and sub-granular features in terms of conductive and insulating regions. The microstructure and the dielectric properties of CCTO thin films have been studied and the evidence of internal barriers in CCTO thin films has been provided. The role of internal barriers and the possible explanation for the extrinsic origin of the giant dielectric response in CCTO has been evaluated.
Field Testing of an Unvented Roof with Fibrous Insulation, Tiles and Vapor Diffusion Venting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.; Lstiburek, J. W.
This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane.more » As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane.more » As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).« less
M. Lake Maner; James Hanula; S. Kristine Braman
2013-01-01
Fine mesh screen was used to create a physical barrier to prevent redbay ambrosia beetles, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), from accessing various parts of the boles of redbay trees, Persea borbonia (L.) Sprengel, and infecting them with the laurel wilt fungus, Raffaelea lauricola...
Thin-Film Material Science and Processing | Materials Science | NREL
, a prime example of this research is thin-film photovoltaics (PV). Thin films are important because have developed a quantitative high-throughput technique that can measure many barriers in parallel with
NASA Astrophysics Data System (ADS)
Chytiri, Stavroula; Goulas, Antonios E.; Badeka, Anastasia; Riganakos, Kyriakos A.; Petridis, Dimitrios; Kontominas, Michael G.
2008-09-01
Volatile and non-volatile radiolysis products and sensory changes of five-layer food packaging films have been determined after gamma irradiation (5-60 kGy). Barrier films were based on polyamide (PA) and low-density polyethylene (LDPE). Each film contained a middle buried layer of recycled LDPE or 100% virgin LDPE (control samples). Data showed that a large number of radiolysis products were produced such as hydrocarbons, alcohols, carbonyl compounds, carboxylic acid. These compounds were detected in the food simulant after contact with all films even at the lower absorbed doses of 5 and 10 kGy. The type and concentration of radiolysis products increased progressively with radiation dose, while no new compounds were detected as a result of the presence of recycled LDPE. In addition, irradiation dose appears to influence the sensory properties of table water in contact with films.
Sung, Soo Hyun; Chang, Yoonjee; Han, Jaejoon
2017-08-01
Bio-nanocomposite films based on polylactic acid (PLA) matrix reinforced with cellulose nanocrystals (CNCs) were developed using a twin-screw extruder. The CNCs were extracted from coffee silverskin (CS), which is a by-product of the coffee roasting process. They were extracted by alkali treatment followed by sulfuric acid hydrolysis. They were used as reinforcing agents to obtain PLA/CNC nanocomposites by addition at different concentrations (1%, 3%, and 5% CNCs). Morphological, tensile, and barrier properties of the bio-nanocomposites were analyzed. The tensile strength and Young's modulus increased with both 1% and 3% CNCs. The water vapor permeability decreased gradually with increasing addition of CNCs up to 3% and good oxygen barrier properties were found for all nanocomposites. These results suggest that CNCs from CS can improve the physical properties of PLA-based biopolymer film. The developed PLA/CNC bio-nanocomposite films can potentially be used for biopolymer materials with enhanced barrier and mechanical properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Grebenyuk, G. S.; Gomoyunova, M. V.; Pronin, I. I.; Vyalikh, D. V.; Molodtsov, S. L.
2016-03-01
Ultrathin (∼2 nm) films of Co2FeSi ferromagnetic alloy were formed on silicon by solid-phase epitaxy and studied in situ. Experiments were carried out in an ultrahigh vacuum (UHV) using substrates of Si(1 1 1) single crystals covered with a 5 nm thick CaF2 barrier layer. The elemental and phase composition as well as the magnetic properties of the synthesized films were analyzed by photoelectron spectroscopy using synchrotron radiation and by magnetic linear dichroism in photoemission of Fe 3p and Co 3p electrons. The study shows that the synthesis of the Co2FeSi ferromagnetic alloy occurs in the temperature range of 200-400 °C. At higher temperatures, the films become island-like and lose their ferromagnetic properties, as the CaF2 barrier layer is unable to prevent a mass transfer between the film and the Si substrate, which violates the stoichiometry of the alloy.
Chemical nature of the barrier in Pb/YBa2Cu3O(7-x) tunneling structures
NASA Technical Reports Server (NTRS)
Vasquez, R. P.; Foote, M. C.; Hunt, B. D.; Bajuk, L.
1991-01-01
Several reports of reproducible tunneling measurements on YBa2Cu3O(7-x) thin films or single crystals with a Pb counterelectrode have recently appeared. The nature of the tunnel barrier, formed by air exposure, in these structures has been unknown. In the present work, the chemical nature of the tunnel barrier is studied with X-ray photoelectron spectroscopy (XPS). Laser-ablated films grown on LaAlO3 which have been chemically etched and heated in air are found to form nonsuperconducting surface Ba species, evident in an increase of the high binding energy Ba 3d and O 1s signals. A deposited Pb film about 10 A thick is found to be oxidized, and Cu(+2) is partially reduced to Cu(+1). The tunneling barrier thus appears to consist of species resulting from a combination of the air exposure and a reaction between the superconductor and the deposited Pb counterelectrode.
DiMeo, Jr., Frank; Baum, Thomas H.
2003-07-22
The present invention provides a hydrogen sensor including a thin film sensor element formed by metal organic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a micro-hotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magneto resistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen permeable barrier may comprise species to scavenge oxygen and other like species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.
NASA Astrophysics Data System (ADS)
Shirafuji, Tatsuru; Nakamura, Yusuke; Azuma, Shiori; Sotoda, Naoya; Isshiki, Toshiyuki
2018-01-01
A wine-red free-standing thin film has been formed by irradiating dielectric barrier discharge plasma on an aqueous solution containing HAuCl4 and gelatin. The film has a fibrous structure with an inhomogeneous thickness profile and is composed of cross-linked gelatin, as confirmed by optical microscopy and infrared absorption spectroscopy. The film has embedded Au nanoparticles (GNPs), as confirmed by transmission electron microscopy. In the region with a relatively small film thickness, the number density of GNPs is relatively low, and the sizes of GNPs range from 5.3 to 34.3 nm. In the region with a relatively large film thickness, on the other hand, GNPs are highly accumulated, and the sizes of GNPs range from 10.0 to 26.7 nm. The aqueous solution remains transparent even after the film growth process, which indicates that the plasma-induced processes involving GNP formation and film growth are confined near the surface of the aqueous solution. A possible film growth mechanism is discussed on the basis of the experimental results of this study.
Liu, Dong; Li, Hongli; Jiang, Lin; Chuan, Yongming; Yuan, Minglong; Chen, Haiyun
2016-05-27
Antimicromial and antioxidant bioactive films based on poly(lactic acid)/poly(trimenthylene carbonate) films incorporated with different concentrations of oregano essential oil (OEO) were prepared by solvent casting. The antimicrobial, antioxidant, physical, thermal, microstructural, and mechanical properties of the resulting films were examined. Scanning electron microscopy analysis revealed that the cross-section of films became rougher when OEO was incorporated into PLA/PTMC blends. Differential scanning calorimetry analysis indicated that crystallinity of PLA phase decreased by the addition of OEO, but this did not affect the thermal stability of the films. Water vapor permeability of films slightly increased with increasing concentration of OEO. However, active PLA/PTMC/OEO composite films showed adequate barrier properties for food packaging application. The antimicrobial and antioxidant capacities were significantly improved with the incorporation of OEO (p < 0.05). The results demonstrated that an optimal balance between the mechanical, barrier, thermal, antioxidant, and antimicrobial properties of the films was achieved by the incorporation of 9 wt % OEO into PLA/PTMC blends.
Wang, Wenhang; Zhang, Xiuling; Li, Cong; Du, Guanhua; Zhang, Hongjie; Ni, Yonghao
2018-06-01
Collagen-based films including casings with a promising application in meat industry are still needed to improve its inferior performance. In the present study, the reinforcement of carboxylated cellulose nanofibers (CNF) for collagen film, based on inter-/intra- molecular electrostatic interaction between cationic acid-swollen collagen fiber and anionic carboxylated CNF, was investigated. Adding CNF decreased the zeta-potential but increased particle size of collagen fiber suspension, with little effect on pH. Furthermore, CNF addition led to a higher tensile strength but a lower elongation, and the water vapor and oxygen barrier properties were improved remarkably. Because the CNF content was 50 g kg -1 or lower, the films had a homogeneous interwoven network, and CNF homogeneously embedded into collagen fiber matrix according to the scanning electron microscopy and atomic force microscopy analysis. Additionally, CNF addition increased film thickness and opacity, as well as swelling rate. The incorporation of CNF endows collagen fiber films good mechanical and barrier properties over a proper concentration range (≤ 50 g kg -1 collagen fiber), which is closely associated with electrostatic reaction of collagen fiber and CNF and, subsequently, the form of the homogenous, compatible spatial network, indicating a potential applications of CNF in collagenous protein films, such as edible casings. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Moisture and Structural Analysis for High Performance Hybrid Wall Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grin, A.; Lstiburek, J.
2012-09-01
Based on past experience in the Building America program, BSC has found that combinations of materials and approaches—in other words, systems—usually provide optimum performance. Integration is necessary, as described in this research project. The hybrid walls analyzed utilize a combination of exterior insulation, diagonal metal strapping, and spray polyurethane foam and leave room for cavity-fill insulation. These systems can provide effective thermal, air, moisture, and water barrier systems in one assembly and provide structure.
Ratz-Łyko, A.; Arct, J.; Pytkowska, K.
2016-01-01
Centella asiatica extract is a rich source of natural bioactive substances, triterpenoid saponins, flavonoids, phenolic acids, triterpenic steroids, amino acids and sugars. Thus, many scavenging free radicals, exhibit antiinflammatory activity and affect on the stratum corneum hydration and epidermal barrier function. The aim of the present study was to evaluate the in vivo moisturizing and antiinflammatory properties of cosmetic formulations (oil-in-water emulsion cream and hydrogel) containing different concentrations of Centella asiatica extract. The study was conducted over four weeks on a group of 25 volunteers after twice a day application of cosmetic formulations with Centella asiatica extract (2.5 and 5%, w/w) on their forearms. The measurement of basic skin parameters (stratum corneum hydration and epidermal barrier function) was performed once a week. The in vivo antiinflammatory activity based on the methyl nicotinate model of microinflammation in human skin was evaluated after four weeks application of tested formulations. In vivo tests formulations containing 5% of Centella asiatica extract showed the best efficacy in improving skin moisture by increase of skin surface hydration state and decrease in transepidermal water loss as well as exhibited antiinflammatory properties based on the methyl nicotinate model of microinflammation in human skin. Comparative tests conducted by corneometer, tewameter and chromameter showed that cosmetic formulations containing Centella asiatica extract have the moisturizing and antiinflammatory properties. PMID:27168678
Surface pre-treatment for barrier coatings on polyethylene terephthalate
NASA Astrophysics Data System (ADS)
Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.
2013-02-01
Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.
Slavutsky, Aníbal M; Bertuzzi, María A
2014-09-22
Water transport in edible films based on hydrophilic materials such as starch, is a complex phenomenon due to the strong interaction of sorbed water molecules with the polymeric structure. Cellulose nanocrystals (CNC) were obtained from sugarcane bagasse. Starch and starch/CNC films were formulated and their water barrier properties were studied. The measured film solubility, contact angle, and water sorption isotherm indicated that reinforced starch/CNC films have a lower affinity to water molecules than starch films. The effects that the driving force and the water activity (aw) values at each side of the film have on permeability were analyzed. Permeability, diffusivity, and solubility coefficients indicated that the permeation process depends mostly on the tortuous pathway formed by the incorporation of CNC and therefore were mainly controlled by water diffusion. The interaction between CNC and starch chain is favoured by the chemical similarities of both molecules. Copyright © 2014 Elsevier Ltd. All rights reserved.
Synthesis and characterization of heteroleptic titanium MOCVD precursors for TiO2 thin films.
Kim, Euk Hyun; Lim, Min Hyuk; Lah, Myoung Soo; Koo, Sang Man
2018-02-13
Heteroleptic titanium alkoxides with three different ligands, i.e., [Ti(O i Pr)(X)(Y)] (X = tridentate, Y = bidentate ligands), were synthesized to find efficient metal organic chemical vapor deposition (MOCVD) precursors for TiO 2 thin films. Acetylacetone (acacH) or 2,2,6,6-tetramethyl-3,5-heptanedione (thdH) was employed as a bidentate ligand, while N-methyldiethanolamine (MDEA) was employed as a tridentate ligand. It was expected that the oxygen and moisture susceptibility of titanium alkoxides, as well as their tendency to form oligomers, would be greatly reduced by placing multidentate and bulky ligands around the center Ti atom. The synthesized heteroleptic titanium alkoxides were characterized both physicochemically and crystallographically, and their thermal behaviors were also investigated. [Ti(O i Pr)(MDEA)(thd)] was found to be monomeric and stable against moisture; it also showed good volatility in the temperature window between volatilization and decomposition. This material was used as a single-source precursor during MOCVD to generate TiO 2 thin films on silicon wafers. The high thermal stability of [Ti(O i Pr)(MDEA)(thd)] enabled the fabrication of TiO 2 films over a wide temperature range, with steady growth rates between 500 and 800 °C.
Release behavior and stability of encapsulated D-limonene from emulsion-based edible films.
Marcuzzo, Eva; Debeaufort, Frédéric; Sensidoni, Alessandro; Tat, Lara; Beney, Laurent; Hambleton, Alicia; Peressini, Donatella; Voilley, Andrée
2012-12-12
Edible films may act as carriers of active molecules, such as flavors. This possibility confers to them the status of active packaging. Two different film-forming biopolymers, gluten and ι-carrageenans, have been compared. D-Limonene was added to the two film formulations, and its release kinetics from emulsion-based edible films was assessed with HS-SPME. Results obtained for edible films were compared with D-limonene released from the fatty matrix called Grindsted Barrier System 2000 (GBS). Comparing ι-carrageenans with gluten-emulsified film, the latter showed more interesting encapsulating properties: in fact, D-limonene was retained by gluten film during the process needed for film preparation, and it was released gradually during analysis time. D-Limonene did not show great affinity to ι-carrageenans film, maybe due to high aroma compound hydrophobicity. Carvone release from the three different matrices was also measured to verify the effect of oxygen barrier performances of edible films to prevent D-limonene oxidation. Further investigations were carried out by FT-IR and liquid permeability measurements. Gluten film seemed to better protect D-limonene from oxidation. Gluten-based edible films represent an interesting opportunity as active packaging: they could retain and release aroma compounds gradually, showing different mechanical and nutritional properties from those of lipid-based ingredients.
Bhutani, Hemant; Mariappan, T T; Singh, Saranjit
2004-07-01
An investigation was carried out to explore the possible reason for the physical instability of a marketed strip packaged anti-TB fixed dose combination (FDC) tablet containing 300 mg of isoniazid (H) and 800 mg of ethambutol hydrochloride (E). The instability was in the form of distribution of white powder inside the strip pockets. High-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS-MS) studies confirmed that both H and E were present in the powder. The same was also confirmed through Fourier-transform infrared (FTIR) spectroscopy, which also indicated absence of interaction between the two drugs. No sublimation of the drugs was observed up to 110 degrees C, indicating that the observed instability was not due to this reason. Subsequently, attention was paid to the possibility of moisture gain by the tablets through defective packaging (which was established) due to hygroscopicity of E. To understand the phenomenon further, pure drugs and their mixtures were stored under accelerated conditions of temperature and humidity [40 degrees C/75% relative humidity (RH)] and both increase in weight and physical changes were recorded periodically. The mixtures gained moisture at a higher rate than pure E and those with higher content of E became liquid, which on withdrawal from the chambers, became crystallized. The drug mixture containing H:E at a ratio of 30:70 w/w, which was similar to the ratio of the drugs in the tablets (27:73 w/w), crystallized fastest, indicating formation of a rapid crystallizing saturated system at this ratio of the drugs. It is postulated that the problem of instability arises because of the formation of a saturated layer of drugs upon moisture gain through the defective packaging material and drying of this layer with time. The study suggests that barrier packaging free from defects and alternatively (or in combination) film coating of the tablets with water-resistant polymers are essential for this formulation.
Del Rosso, James Q; Lehman, Paul A; Raney, Sam G
2009-03-01
The medical management of rosacea increasingly has involved not only the appropriate selection of topical medication but also patient education and specific recommendations regarding appropriate skin care. The recognition that epidermal barrier dysfunction and transepidermal water loss (TEWL) play a pathophysiologic role in rosacea and that skin moisturization may help to mitigate signs and symptoms of the disease has led to a deeper appreciation of the importance of proper skin care in the treatment of rosacea. Data from a percutaneous penetration study performed using human skin suggest that any of the tested moisturizer lotions may be applied either before or after azelaic acid gel 15% without a major change in the percutaneous absorption profile of azelaic acid.
Characterization of Thin Film Polymers Through Dynamic Mechanical Analysis and Permeation
NASA Technical Reports Server (NTRS)
Herring, Helen
2003-01-01
Thin polymer films are being considered, as candidate materials to augment the permeation resistance of cryogenic hydrogen fuel tanks such as would be required for future reusable launch vehicles. To evaluate performance of candidate films after environmental exposure, an experimental study was performed to measure the thermal/mechanical and permeation performance of six, commercial-grade materials. Dynamic storage modulus, as measured by Dynamic Mechanical Analysis, was found over a range of temperatures. Permeability, as measured by helium gas diffusion, was found at room temperature. Test data was correlated with respect to film type and pre-test exposure to moisture, elevated temperature, and cryogenic temperature. Results indicated that the six films were comparable in performance and their resistance to environmental degradation.
A study of physical properties of ODPA-p-PDA polyimide films
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Eftekhari, Abe; St.clair, Terry L.
1990-01-01
Physical properties were investigated of ODPA-p-PDA polyimide films, including their lower molecular weight versions with phthalimide endcaps. Free volume, determined by low energy positron annihilation in the test films, was the major parameter of interest since all other physical properties are ostensibly related to it. It affects the dielectric constant as well as the saturation moisture pickup of the test films. An empirical relation was developed between the free volume and molecular weight of the test films, comparable to the Mark-Houwink relation between the polymer solution viscosity and the molecular weight. Development of such a relation constitutes a unique achievement since it enables researchers to estimate the molecular weight of an intractable polymer in solid state for the first time.
Practical Considerations of Moisture in Baled Biomass Feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
William A. Smith; Ian J. Bonner; Kevin L. Kenney
2013-01-01
Agricultural residues make up a large portion of the immediately available biomass feedstock for renewable energy markets. Current collection and storage methods rely on existing feed and forage practices designed to preserve nutrients and properties of digestibility. Low-cost collection and storage practices that preserve carbohydrates across a range of inbound moisture contents are needed to assure the economic and technical success of the emerging biomass industry. This study examines the movement of moisture in storage and identifies patterns of migration resulting from several on-farm storage systems and their impacts on moisture measurement and dry matter recovery. Baled corn stover andmore » energy sorghum were stored outdoors in uncovered, tarp-covered, or wrapped stacks and sampled periodically to measure moisture and dry matter losses. Interpolation between discrete sampling locations in the stack improved bulk moisture content estimates and showed clear patterns of accumulation and re-deposition. Atmospheric exposure, orientation, and contact with barriers (i.e., soil, tarp, and wrap surfaces) were found to cause the greatest amount of moisture heterogeneity within stacks. Although the bulk moisture content of many stacks remained in the range suitable for aerobic stability, regions of high moisture were sufficient to support microbial activity, thus support dry matter loss. Stack configuration, orientation, and coverage methods are discussed relative to impact on moisture management and dry matter preservation. Additionally, sample collection and data analysis are discussed relative to assessment at the biorefinery as it pertains to stability in storage, queuing, and moisture carried into processing.« less
Evidence-based treatment of atopic dermatitis with topical moisturizers.
Micali, Giuseppe; Paternò, Valentina; Cannarella, Rossella; Dinotta, Franco; Lacarrubba, Francesco
2018-06-01
Skin barrier restoration represents the mainstay of the treatment of atopic dermatitis and the use of moisturizers is recommended by several international guidelines. The aim of the study was to investigate through an evidence-based medicine analysis the effectiveness and safety of different moisturizing products available for a non-pharmacological treatment of atopic dermatitis. A total of 92 randomized controlled trials (RCTs) have been identified and analyzed. The results confirm the presence of a reasonable number of studies highlighting moisturizers safety and effectiveness in the treatment of atopic dermatitis by improving disease severity, increasing the time of relapse and reducing the time of flares. Moisturizers containing urea, glycerin or glycyrrhetinic acid seem to show the greater evidence of efficacy being supported by more clinical trials. Among the existing moisturizers, those containing a single agent generally work although the heterogeneity of RCTs does not allow reaching more definitive conclusions. Moisturizers made of a mixture of substances seem to be more effective thanks to the presence of different active substances that may exert a synergistic effect. A meta-analysis of 4 RCTs confirms the efficacy of a medical device containing glycyrrhetinic acid, hyaluronic acid, shea butter, telmesteine, and vitis vinifera in the treatment of atopic dermatitis.
Topical use of dexpanthenol: a 70th anniversary article.
Proksch, Ehrhardt; de Bony, Raymond; Trapp, Sonja; Boudon, Stéphanie
2017-12-01
Approximately 70 years ago, the first topical dexpanthenol-containing formulation (Bepanthen™ Ointment) has been developed. Nowadays, various topical dexpanthenol preparations exist, tailored according to individual requirements. Topical dexpanthenol has emerged as frequently used formulation in the field of dermatology and skin care. Various studies confirmed dexpanthenol's moisturizing and skin barrier enhancing potential. It prevents skin irritation, stimulates skin regeneration and promotes wound healing. Two main directions in the use of topical dexpanthenol-containing formulations have therefore been pursued: as skin moisturizer/skin barrier restorer and as facilitator of wound healing. This 70th anniversary paper reviews studies with topical dexpanthenol in skin conditions where it is most frequently used. Although discovered decades ago, the exact mechanisms of action of dexpanthenol have not been fully elucidated yet. With the adoption of new technologies, new light has been shed on dexpanthenol's mode of action at the molecular level. It appears that dexpanthenol increases the mobility of stratum corneum molecular components which are important for barrier function and modulates the expression of genes important for wound healing. This review will update readers on recent advances in this field.
Observation of spin superfluidity: YIG magnetic films and beyond
NASA Astrophysics Data System (ADS)
Sonin, Edouard
2018-03-01
From topology of the order parameter of the magnon condensate observed in yttrium-iron-garnet (YIG) magnetic films one must not expect energetic barriers making spin supercurrents metastable. But we show that some barriers of dynamical origin are possible nevertheless until the gradient of the phase (angle of spin precession) does not exceed the critical value (analog of the Landau critical velocity in superfluids). On the other hand, recently published claims of experimental detection of spin superfluidity in YIG films and antiferromagnets are not justified, and spin superfluidity in magnetically ordered solids has not yet been experimentally confirmed.
NASA Astrophysics Data System (ADS)
Das, Amit Kumar; Chatterjee, Piyali; Meikap, Ajit Kumar
2018-04-01
Tungsten oxide (WO3) nanoplates have been synthesized via hydrothermal method. The average crystallite size of the nanoplates is 28.9 ± 0.5 nm. The direct and indirect band gap of WO3 is observed. The AC conductivity of PVA-WO3 composite film has been observed and carrier transport mechanism follows correlated barrier hopping model. The maximum barrier height of the composite film is 0.1 eV. The electric modulus reflects the non-Debye type behaviour of relaxation time which is simulated by Kohlrausch-Willims-Watts (KWW) function.
NASA Astrophysics Data System (ADS)
Qashou, Saleem I.; Darwish, A. A. A.; Rashad, M.; Khattari, Z.
2017-11-01
Both Alternating current (AC) conductivity and dielectric behavior of n-type organic thin films of N, N‧-Dimethyl-3,4,9,10-perylenedicarboximide (DMPDC) have been investigated. Fourier transformation infrared (FTIR) spectroscopy is used for identifying both powder and film bonds which confirm that there are no observed changes in the bonds between the DMPDC powder and evaporated films. The dependence of AC conductivity on the temperature for DMPDC evaporated films was explained by the correlated barrier hopping (CBH) model. The calculated barrier height using CBH model shows a decreasing behavior with increasing temperature. The mechanism of dielectric relaxation was interpreted on the basis of the modulus of the complex dielectric. The calculated activation energy of the relaxation process was found to be 0.055 eV.
Physical aspects of colossal dielectric constant material CaCu3Ti4O12 thin films
NASA Astrophysics Data System (ADS)
Deng, Guochu; He, Zhangbin; Muralt, Paul
2009-04-01
The underlying physical mechanism of the so-called colossal dielectric constant phenomenon in CaCu3Ti4O12 (CCTO) thin films were investigated by using semiconductor theories and methods. The semiconductivity of CCTO thin films originated from the acceptor defect at a level ˜90 meV higher than valence band. Two contact types, metal-semiconductor and metal-insulator-semiconductor junctions, were observed and their barrier heights, and impurity concentrations were theoretically calculated. Accordingly, the Schottky barrier height of metal-semiconductor contact is about 0.8 eV, and the diffusion barrier height of metal-insulator-semiconductor contact is about 0.4-0.7 eV. The defect concentrations of both samples are quite similar, of the magnitude of 1019 cm-3, indicating an inherent feature of high defect concentration.
Fabra, María José; López-Rubio, Amparo; Cabedo, Luis; Lagaron, Jose M
2016-12-01
This work compares the effect of adding different biopolyester electrospun coatings made of polycaprolactone (PCL), polylactic acid (PLA) and polyhydroxybutyrate (PHB) on oxygen and water vapour barrier properties of a thermoplastic corn starch (TPCS) film. The morphology of the developed multilayer structures was also examined by Scanning Electron Microscopy (SEM). Results showed a positive linear relationship between the amount of the electrospun coatings deposited onto both sides of the TPCS film and the thickness of the coating. Interestingly, the addition of electrospun biopolyester coatings led to an exponential oxygen and water vapour permeability drop as the amount of the electrospun coating increased. This study demonstrated the versatility of the technology here proposed to tailor the barrier properties of food packaging materials according to the final intended use. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Jun; Mills, Allen P. Jr.; Case, Carlye
2005-08-01
Diffusion barriers for capping porous low dielectric constant films are important for preventing metal migration into a semiconductor circuit. Using the fact that positrons implanted into a porous dielectric form ortho-positronium (o-Ps) copiously, Gidley et al. [D. W. Gidley, W. F. Frieze, T. L. Dull, J. Sun, A. F. Yee, C. V. Nguyen, and D. Y. Yoon, Appl. Phys. Lett. 76, 1282 (2000)], have been able to measure open area fractions as low as 10{sup -5} in porous dielectric film barrier layers from the increase in the ortho-positronium lifetime and intensity associated with positronium escape into vacuum. We demonstrate thatmore » it is possible to obtain comparable sensitivities by measuring the gamma-ray energy spectrum of the escaping positronium.« less
Yu, Xing Xiu; Xui, Miao Miao; Zhao, Jin Hui; Zhang, Jia Peng; Wang, Wei; Guo, Ya Li; Xiao, Juan Hua
2018-04-01
The objective of this study was to investigate the rate of nitrogen mineralization in various soil layers (0-10, 10-20, and 20-30 cm) and its influencing factors under plastic film mulching ridge-furrow in a corn field of Wulongchi small watershed, Danjiangkou Reservoir Area. Results showed that the rate of soil ammonification decreased with soil depth during the entire maize growth period. The rate of nitrification in seedling, jointing, and heading stages decreased in the following order: 10-20 cm > 0-10 cm > 20-30 cm, while it increased with soil depth in maturation stage. The rate of soil nitrogen mineralization decreased with the increases in soil depth in the seedling, jointing and heading stages, whereas an opposite pattern was observed in maturation stage. Compared with non-filming, film mulching promoted the soil ammonification process in 0-10 cm and the soil nitrification and nitrogen mineralization processes in jointing, heading, and maturation stages in both 0-10 and 10-20 cm. However, the rates of soil nitrification and nitrogen mineralization under film mulching were much lower than those under non-filming in seedling stage. The stepwise regression analysis indicated that the main factors influencing soil nitrogen mineralization rate varied with soil depth. Soil moisture and total N content were the dominant controller for variation of soil nitrogen mineralization in 0-10 cm layer. Soil temperature, moisture, and total N content were dominant controller for that in 10-20 cm layer. Soil temperature drove the variation of soil nitrogen mineralization in 20-30 cm layer.
NITRILE ELASTOMER-NYLON LAMINATES INCLUDING BARRIER FILMS.
ADHESIVES, *NYLON, *NITRILE RUBBER , LAMINATES, LAMINATES, FILMS, TEXTILES, RUBBER COATINGS, BUTADIENES, ACRYLONITRILE POLYMERS, BONDING, ADHESION... DEGRADATION , MOISTUREPROOFING, PHENOLIC PLASTICS, HALOGENATED HYDROCARBONS, ISOCYANATES, CURING AGENTS, ELASTOMERS.
Physical properties and biocompatibility of oligochitosan membrane film as wound dressing.
Ujang, Zanariah; Abdul Rashid, Ahmad Hazri; Suboh, Siti Kasmarizawaty; Halim, Ahmad Sukari; Lim, Chin Keong
2014-12-30
The physical and biological characteristics of oligochitosan (O-C) film, including its barrier and mechanical properties, in vitro cytotoxicity and in vivo biocompatibility, were studied to assess its potential use as a wound dressing. Membrane films were prepared from water-soluble O-C solution blended with various concentrations of glycerol to modify the physical properties of the films. In vitro and in vivo biocompatibility evaluations were performed using primary human skin fibroblast cultures and subcutaneous implantation in a rat model, respectively. Addition of glycerol significantly influenced the barrier and mechanical properties of the films. Water absorption capacity was in the range of 80%-160%, whereas water vapor transmission rate varied from 1,180 to 1,618 g/m2 per day. Both properties increased with increasing glycerol concentration. Tensile strength decreased while elongation at break increased with the addition of glycerol. O-C films were found to be noncytotoxic to human fibroblast cultures and histological examination proved that films are biocompatible. These results indicate that the membrane film from O-C has potential application as a wound-dressing material.
Tian, Mingliang; Xu, Shengyong; Wang, Jinguo; Kumar, Nitesh; Wertz, Eric; Li, Qi; Campbell, Paul M; Chan, Moses H W; Mallouk, Thomas E
2005-04-01
A simple method for penetrating the barrier layer of an anodic aluminum oxide (AAO) film and for detaching the AAO film from residual Al foil was developed by reversing the bias voltage in situ after the anodization process is completed. With this technique, we have been able to obtain large pieces of free-standing AAO membranes with regular pore sizes of sub-10 nm. By combining Ar ion milling and wetting enhancement processes, Au nanowires were grown in the sub-10 nm pores of the AAO films. Further scaling down of the pore size and extension to the deposition of nanowires and nanotubes of materials other than Au should be possible by further optimizing this procedure.
Plastic Schottky-barrier solar cells
Waldrop, J.R.; Cohen, M.J.
1981-12-30
A photovoltaic cell structure is fabricated from an active medium including an undoped polyacetylene, organic semiconductor. When a film of such material is in rectifying contact with a metallic area electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates a magnesium layer on the undoped polyacetylene film. With the proper selection and location of elements a photovoltaic cell structure and solar cell are obtained.
2015-12-07
Wallen, B., K.M. Smits and S.E. Howington. Thermal conductivity of binary sand mixtures evaluated through the full range of saturation. Hydrology Days...and T.H. Illangasekare. 2011. Thermal conductivity of soils as affected by temperature, Proceedings from Hydrology Days. Colorado State University...is mixed with very fine soil). Although it is well known that the apparent thermal conductivity (λ) of partially wet soil is a function of water (θ
Coating processes for increasing the moisture resistance of polyurethane baffle material
NASA Technical Reports Server (NTRS)
Bilow, N.; Sawko, P.
1974-01-01
An investigation was conducted with the objective to improve the hydrolytic stability of reticulated polyurethane baffle material. This material is used in fuel tanks of aircraft and ground vehicles. The most commonly used foam of this type is hydrolytically unstable. Potential moisture barrier coatings which were evaluated include Parylene, epoxy-polysulfide, polyether based polyurethanes, polysulfides, polyolefin rubbers, and several other materials. Parylene coatings of at least 0.2 mil were found to provide the greatest improvement in hydrolytic stability.
Moisture-Induced Delamination Video of an Oxidized Thermal Barrier Coating
NASA Technical Reports Server (NTRS)
Smialek, James L.; Zhu, Dongming; Cuy, Michael D.
2008-01-01
PVD TBC coatings were thermally cycled to near-failure at 1150 C. Normal failure occurred after 200-300 1-hr cycles with only moderate weight gains (0.5 mg/cm2). Delamination and buckling was often delayed until well after cooldown (desktop spallation), but could be instantly induced by the application of water drops, as shown in an accompanying video-recording. Moisture therefore plays a primary role in delayed desktop TBC failure. Hydrogen embrittlement is proposed as the underlying mechanism.
NASA Technical Reports Server (NTRS)
Wingard, Charles D.; Whitaker, Ann F. (Technical Monitor)
2000-01-01
White Hypalon paint is brush-applied as a moisture barrier coating over cork surfaces on each of the two Space Shuttle SRBs. Fine cracks have been observed in the Hypalon coating three times historically on laboratory witness panels, but never on flight hardware. Samples of the cracked and standard ("good") Hypalon were removed from witness panel cork surfaces, and were tested in 1998 by Thermogravimetric Analysis (TGA), TMA and Differential Scanning Calorimetry (DSC) thermal analysis techniques. The TGA data showed that at 700C, where only paint pigment solids remain, the cracked material had about 9 weight percent more material remaining than the standard material, probably indicating incomplete mixing of the paint before it was brush-applied to produce the cracked material. Use of the TMA film/fiber technique showed that the average modulus (stiffness) vs. temperature was about 3 to 6 times higher for the cracked material than for the standard material. The TMA data also showed that an increase in coating thickness for the cracked Hypalon was not a factor in the anomaly.
Coupled Heat and Moisture Transport Simulation on the Re-saturation of Engineered Clay Barrier
NASA Astrophysics Data System (ADS)
Huang, W. H.; Chuang, Y. F.
2014-12-01
Engineered clay barrier plays a major role for the isolation of radioactive wastes in a underground repository. This paper investigates the resaturation processes of clay barrier, with emphasis on the coupling effects of heat and moisture during the intrusion of groundwater to the repository. A reference bentonite and a locally available clay were adopted in the laboratory program. Soil suction of clay specimens was measured by psychrometers embedded in clay specimens and by vapor equilibrium technique conducted at varying temperatures so as to determine the soil water characteristic curves of the two clays at different temperatures. And water uptake tests were conducted on clay specimens compacted at various densities to simulate the intrusion of groundwater into the clay barrier. Using the soil water characteristic curve, an integration scheme was introduced to estimate the hydraulic conductivity of unsaturated clay. It was found that soil suction decreases as temperature increases, resulting in a reduction in water retention capability. The finite element method was then employed to carry out the numerical simulation of the saturation process in the near field of a repository. Results of the numerical simulation were validated using the degree of saturation profile obtained from the water uptake tests on the clays. The numerical scheme was then extended to establish a model simulating the resaturation process after the closure of a repository. Finally, the model was then used to evaluate the effect of clay barrier thickness on the time required for groundwater to penetrate the clay barrier and approach saturation. Due to the variation in clay suction and thermal conductivity with temperature of clay barrier material, the calculated temperature field shows a reduction as a result of incorporating the hydro-properties in the calculations.
Antioxidant migration resistance of SiOx layer in SiOx/PLA coated film.
Huang, Chongxing; Zhao, Yuan; Su, Hongxia; Bei, Ronghua
2018-02-01
As novel materials for food contact packaging, inorganic silicon oxide (SiO x ) films are high barrier property materials that have been developed rapidly and have attracted the attention of many manufacturers. For the safe use of SiO x films for food packaging it is vital to study the interaction between SiO x layers and food contaminants, as well as the function of a SiO x barrier layer in antioxidant migration resistance. In this study, we deposited a SiO x layer on polylactic acid (PLA)-based films to prepare SiO x /PLA coated films by plasma-enhanced chemical vapour deposition. Additionally, we compared PLA-based films and SiO x /PLA coated films in terms of the migration of different antioxidants (e.g. t-butylhydroquinone [TBHQ], butylated hydroxyanisole [BHA], and butylated hydroxytoluene [BHT]) via specific migration experiments and then investigated the effects of a SiO x layer on antioxidant migration under different conditions. The results indicate that antioxidant migration from SiO x /PLA coated films is similar to that for PLA-based films: with increase of temperature, decrease of food simulant polarity, and increase of single-sided contact time, the antioxidant migration rate and amount in SiO x /PLA coated films increase. The SiO x barrier layer significantly reduced the amount of migration of antioxidants with small and similar molecular weights and similar physical and chemical properties, while the degree of migration blocking was not significantly different among the studied antioxidants. However, the migration was affected by temperature and food simulant. Depending on the food simulants considered, the migration amount in SiO x /PLA coated films was reduced compared with that in PLA-based films by 42-46%, 44-47%, and 44-46% for TBHQ, BHA, and BHT, respectively.
NASA Astrophysics Data System (ADS)
Turnbull, Matthew J.; Vaccarello, Daniel; Yiu, Yun Mui; Sham, Tsun-Kong; Ding, Zhifeng
2016-11-01
Solar cell performance is most affected by the quality of the light absorber layer. For thin-film devices, this becomes a two-fold problem of maintaining a low-cost design with well-ordered nanocrystal (NC) structure. The use of Cu2ZnSnS4 (CZTS) NCs as the light absorber films forms an ideal low-cost design, but the quaternary structure makes it difficult to maintain a well-ordered layer without the use of high-temperature treatments. There is little understanding of how CZTS NC structures affect the photoconversion efficiency, the charge-carriers, and therefore the performance of the device manufactured from it. To examine these relationships, the measured photoresponse from the photo-generation of charge-carrier electron-hole pairs was compared against the crystal structure, as short-range and long-range crystal orders for the films. The photoresponse simplifies the electronic properties into three basic steps that can be associated with changes in energy levels within the band structure. These changes result in the formation of barriers to charge-carrier flow. The extent of these barriers was determined using synchrotron-based X-ray absorbance fine structure to probe the individual metal centers in the film, and comparing these to molecular simulations of the ideal extended x-ray absorbance fine structure scattering. This allowed for the quantification of bond lengths, and thus an interpretation of the distortions in the crystal lattice. The various characteristics of the photoresponse were then correlated to the crystallographic order and used to gain physical insight into barriers to charge-carriers in the bulk and surface regions of CZTS films.
Xie, Lan; Xu, Huan; Chen, Jing-Bin; Zhang, Zi-Jing; Hsiao, Benjamin S; Zhong, Gan-Ji; Chen, Jun; Li, Zhong-Ming
2015-04-22
The traditional approach toward barrier property enhancement of poly(lactic acid) (PLA) is the incorporation of sheet-like fillers such as nanoclay and graphene, unfortunately leading to the sacrificed biocompatibility and degradability. Here we unveil the first application of a confined flaking technique to establish the degradable nanolaminar poly(butylene succinate) (PBS) in PLA films based on PLA/PBS in situ nanofibrillar composites. The combination of high pressure (10 MPa) and appropriate temperature (160 °C) during the flaking process desirably enabled sufficient deformation of PBS nanofibrils and retention of ordered PLA channels. Particularly, interlinked and individual nanosheets were created in composite films containing 10 and 20 wt % PBS, respectively, both of which presented desirable alignment and large width/thickness ratio (nanoscale thickness with a width of 428±13.1 and 76.9±8.2 μm, respectively). With the creation of compact polymer "nano-barrier walls", a dramatic decrease of 86% and 67% in the oxygen permeability coefficient was observed for the film incorporated with well-organized 20 wt % PBS nanosheets compared to pure PLA and pure PBS (1.4 and 0.6×10(-14) cm3·cm·cm(-2)·s(-1)·Pa(-1)), respectively. Unexpectedly, prominent increases of 21% and 28% were achieved in the tensile strength and modulus of composite films loaded 20 wt % PBS nanosheets compared to pure PLA films, although PBS intrinsically presents poor strength and stiffness. The unusual combination of barrier and mechanical performances established in the fully degradable system represent specific properties required in packaging beverages, food and medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Custer, Jonathan S.; Fleming, James G.; Roherty-Osmun, Elizabeth
Refractory ternary nitride films for diffusion barriers in microelectronics have been grown using chemical vapor deposition. Thin films of titanium-silicon-nitride, tungsten-boron-nitride, and tungsten-silicon-nitride of various compositions have been deposited on 150 mm Si wafers. The microstructure of the films are either fully amorphous for the tungsten based films, or nauocrystalline TiN in an amorphous matrix for titanium-silicon-nitride. All films exhibit step coverages suitable for use in future microelectronics generations. Selected films have been tested as diffusion barriers between copper and silicon, and generally perform extremely weH. These fiIms are promising candidates for advanced diffusion barriers for microelectronics applications. The manufacturingmore » of silicon wafers into integrated circuits uses many different process and materials. The manufacturing process is usually divided into two parts: the front end of line (FEOL) and the back end of line (BEOL). In the FEOL the individual transistors that are the heart of an integrated circuit are made on the silicon wafer. The responsibility of the BEOL is to wire all the transistors together to make a complete circuit. The transistors are fabricated in the silicon itself. The wiring is made out of metal, currently aluminum and tungsten, insulated by silicon dioxide, see Figure 1. Unfortunately, silicon will diffuse into aluminum, causing aluminum spiking of junctions, killing transistors. Similarly, during chemical vapor deposition (CVD) of tungsten from ~fj, the reactivity of the fluorine can cause "worn-holes" in the silicon, also destroying transistors. The solution to these problems is a so-called diffusion barrier, which will allow current to pass from the transistors to the wiring, but will prevent reactions between silicon and the metal.« less
Lubrication and failure mechanisms of molybdenum disulfide films. 1: Effect of atmosphere
NASA Technical Reports Server (NTRS)
Fusaro, R. L.
1978-01-01
Friction, wear, and wear lives of rubbed molybdenum disulfide (MoS2 films applied to sanded 440C HT steel surfaces were evaluated in moist air, dry air, and dry argon. Optical microscope observations were made as a function of sliding distance to determine the effect of moisture and oxygen on the lubricating and failure mechanisms of MoS2 films. In general, the lubrication process consisted of the formation of a thin, metallic colored, coalesced film of MoS2 that flowed between the surfaces in relative motion. In air, failure was due to the transformation of the metallic colored, coalesced films to a black, powdery material. Water in the air appeared to accelerate the transformation rate. In argon, no transformation of MoS2 was observed with the microscope, but cracking and spalling of the coalesced film occurred and resulted in the gradual depletion of the film.
Non-hydrolytic metal oxide films for perovskite halide overcoating and stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinson, Alex B.; Kim, In Soo
A method of protecting a perovskite halide film from moisture and temperature includes positioning the perovskite halide film in a chamber. The chamber is maintained at a temperature of less than 200 degrees Celsius. An organo-metal compound is inserted into the chamber. A non-hydrolytic oxygen source is subsequently inserted into the chamber. The inserting of the organo-metal compound and subsequent inserting of the non-hydrolytic oxygen source into the chamber is repeated for a predetermined number of cycles. The non-hydrolytic oxygen source and the organo-metal compound interact in the chamber to deposit a non-hydrolytic metal oxide film on perovskite halide film.more » The non-hydrolytic metal oxide film protects the perovskite halide film from relative humidity of greater than 35% and a temperature of greater than 150 degrees Celsius, respectively.« less
Engineering Design Handbook: Environmental Series. Part Two. Natural Environmental Factors
1975-04-01
pockets of air trapped between the substrate and the film produces blisters. These eventually break and peel off. Resins containing active...paint films and the surface. The most undesirable failure of paint is peeling , which occurs upon the loss of ad- hesion between the paint ftlm and...the sub- strate to which it has been applied. Peeling is related to several factors, including the nature of the substrate, the amount of moisture
NASA Astrophysics Data System (ADS)
Podzorova, M. V.; Tertyshnaya, Yu. V.; Pantyukhov, P. V.; Shibryaeva, L. S.; Popov, A. A.; Nikolaeva, S.
2016-11-01
Influence of different environmental factors on the degradation of film samples based on polylactic acid and low density polyethylene with the addition of oxidized polyethylene was studied in this work. Different methods were used to find the relationship between degradation and ultraviolet, moisture, oxygen. It was found that the addition of oxidized polyethylene, used as a model of recycled polyethylene, promotes the degradation of blends.
Guide for Airborne Infrared Roof Moisture Surveys
1978-01-01
larger), but it takes more flight lines (and more film ) to cover an area at low altitudes than it does at higher altitudes. 13. Flight-line spacing...normally provided in rolls as negatives or trans- parent positives. For ease of interpretation, the film should be cut into strips representing...interpretation. Items other than a light table that are helpful include a large magnifying glass and a pocket stereoscope (such as those used to intepret
Hjalte, F; Asseburg, C; Tennvall, G R
2010-04-01
Atopic dermatitis (AD) affects health and quality of life and it has great impact on both health-care costs and costs to the society. The objective of this study was to develop a model to analyse the cost-effectiveness of a barrier-strengthening moisturizing cream as maintenance therapy compared with no treatment after initial treatment with betamethasone valerate in adult patients with AD in Sweden. A further aim was to apply a similar health-economic analysis for Denmark, Norway and Finland. A Markov simulation model was developed including data from three sources: (i) efficacy data from a randomized controlled trial including patients with moderate AD treated with either a moisturizing cream or no treatment, (ii) resource utilization and quality of life data, and (iii) unit prices from official price lists. A societal perspective was used and the analysis was performed according to treatment practice in Sweden. The model simulation was also applied for Denmark, Norway and Finland with inclusion of country-specific unit costs. Sensitivity analyses were performed to test the robustness of the results. The results from the present analyses of treatment for patients with moderate AD indicate that maintenance treatment with a moisturizing cream during eczema-free periods could be cost-effective in a societal perspective. Similar results were obtained for Sweden, Denmark, Norway and Finland. According to the analysis, treatment with a moisturizing cream was found to be a cost-effective option compared with no treatment in eczema-free periods in adult patients with AD in the four Nordic countries.
Solvent Effects of Model Polymeric Corrosion Control Coatings on Water Transport and Corrosion Rate
NASA Astrophysics Data System (ADS)
Konecki, Christina
Industrial coating formulations are often made for volatile organic content compliance and ease of application, with little regard for the solvent impact on resultant performance characteristics. Our research objective was to understand the effect of both solvent retention and chemical structure on water transport through polymer films and resultant corrosion area growth of coated steel substrates. A clear, unpigmented Phenoxy(TM) thermoplastic polymer (PKHH) was formulated into resin solutions with three separate solvent blends selected by Hansen solubility parameter (HSP), boiling point, and ability to solubilize PKHH. Polymer films cast from MEK/PGME (methyl ethyl ketone/ propylene glycol methyl ether), dried under ambient conditions (AMB, > 6wt.% residual solvent) produced a porous morphology, which resulted in a corrosion area greater than 50%. We attributed this to the water-soluble solvent used in film preparation, which enabled residual PGME to be extracted by water. The resin solution prepared with CYCOH/DXL (Cyclohexanol/ 1,3 dioxolane) was selected because CYCOH is a solid at room temperature which acts as a pigment in the final film. Therefore, increasing the tortuosity of water transport, as well as a high hydrogen bonding character, which caused more interactions with water, slowing diffusion, producing a nodular morphology, and 37% less corrosion area than MEK/PGME AMB. The HSP of PKHH and EEP (ethyl 3-ethoxypropionate) are within 5% of each other, which produced a homogeneous morphology and resulted in comparable corrosion rates regardless of residual solvent content. We utilized electrochemical techniques and attenuated total reflectance- Fourier transform infrared spectroscopy to elucidate dynamic water absorption and solvent extraction in the exposed model formulations. We found that water absorption resulted in a loss of barrier properties, and increased corrosion due to the voids formed by solvent extraction. The polymer films were rejuvenated (removal of water) as an attempt to decrease the number of water transport pathways during exposure. Results found that samples rejuvenated at temperatures above the glass transition temperature of the samples achieved lower moisture content and consequently, lower corrosion growth rates. In commercial systems, rejuvenation lowered the corrosion rate up to 60% indicating better coating formulations and maintenance cycles would control the corrosion rate.
Sari, H; Uzunoglu, T; Capan, R; Serin, N; Serin, T; Tarimci, C; Hassan, A K; Namli, H; Turhan, O
2007-08-01
ZnS nanoparticles have been formed in a newly synthesized 1,3-bis-(p-iminobenzoic acid) indane (IBI) by exposing Zn2+ doped multilayered Langmuir-Blodgett (LB) film to H2S gas after the growth. The formation of ZnS nanoparticles in the LB film structure was verified by measuring UV-Visible absorption spectra. DC electrical measurements were carried out for thin films of IBI prepared in a metal/LB films/metal sandwich structure with and without ZnS nanoparticles. It was observed that ZnS nanoparticles in the LB films cause a blue-shift in the absorption spectra as well as a decrease in both capacitance and conductivity values. By analysing I-V curves and assuming a Schottky conduction mechanism the barrier height was found to be about 1.13 eV and 1.21 eV for IBI LB films without and with ZnS nanoparticles, respectively. It is thought that the presence of ZnS nanoparticles influences the barrier height at the metal-organic film interface and causes a change in electrical conduction properties of LB films.
Woranuch, Sarekha; Yoksan, Rangrong; Akashi, Mitsuru
2015-01-22
The aim of the present research was to study the thermal stability of ferulic acid after coupling onto chitosan, and the possibility of using ferulic acid-coupled chitosan (FA-CTS) as an antioxidant for biodegradable active packaging film. FA-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperatures up to 150°C followed by blown film extrusion at temperatures up to 175°C. Although incorporation of FA-CTS with a content of 0.02-0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the biodegradable films possessed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of film containing FA-CTS were higher than those of film containing naked ferulic acid, by about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by the addition of FA-CTS with a content of 0.02-0.08% (w/w). The above results suggested that FA-CTS could potentially be used as an antioxidant for active packaging film. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xie, Jiazhuo; Wang, Haijun; Wang, Zhou; Zhao, Qinghua; Yang, Yuechao; Waterhouse, Geoffrey I N; Hao, Lei; Xiao, Zihao; Xu, Jing
2018-01-08
Herein, we reported the successful development of novel nanocomposite films based on linear low density polyethylene (LLDPE) with enhanced anti-drop, optical, mechanical, thermal and water vapor barrier properties by introducing organophilic layered double hydroxides (OLDHs) nanosheets. OLDHs loadings were varied from 0-6 wt.%. Structural analyses using the Fourier transform infrared spectrum (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) indicated that the OLDHs nanosheets were homogeneously dispersed with an ordered alignment in the LLDPE matrix. The LLDPE film containing 2 wt.% OLDHs (denoted as OLDHs-2) showed the optimal mechanical, thermal and water vapor barrier properties, whilst the anti-drop and optical performance of the films improved with increasing OLDHs content. The enhanced antidrop properties of the composite films relative to pristine LLDPE can be expected to effectively reduce agricultural losses to disease when the films are applied as agricultural films, whilst the superior light transmittance and water-retaining properties of the composite films will boost agricultural production. Results presented suggest that multifunctional LLDPE/OLDHs nanocomposites show great promise as low cost agricultural plastic films.
Zhang, Wei; Chen, Jiwang; Chen, Yue; Xia, Wenshui; Xiong, Youling L; Wang, Hongxun
2016-03-15
Chitosan/whey protein isolate film incorporated with sodium laurate-modified TiO2 nanoparticles was developed. The nanocomposite film was characterized by scanning electron microscopy, X-ray diffraction and differential scanning calorimetry, and investigated in physicochemical properties as color, tensile strength, elongation at break, water vapor permeability and water adsorption isotherm. Our results showed that the nanoparticles improved the compatibility of whey protein isolate and chitosan. Addition of nanoparticles increased the whiteness of chitosan/whey protein isolate film, but decreased its transparency. Compared with binary film, the tensile strength and elongation at break of nanocomposite film were increased by 11.51% and 12.01%, respectively, and water vapor permeability was decreased by 7.60%. The equilibrium moisture of nanocomposite film was lower than binary film, and its water sorption isotherm of the nanocomposite film fitted well to Guggenheim-Anderson-deBoer model. The findings contributed to the development of novel food packaging materials. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aqlil, Meryem; Moussemba Nzenguet, Annie; Essamlali, Younes; Snik, Asmae; Larzek, Mohamed; Zahouily, Mohamed
2017-12-06
In this study, graphene oxide (GO) was investigated as a potential nanoreinforcing agent in starch/lignin (ST/L) biopolymer matrix. Bionanocomposite films based on ST/L blend matrix and GO were prepared by solution-casting technique of the corresponding film-forming solution. The structures, morphologies, and properties of bionanocomposite films were characterized by Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), ultraviolet-visible (UV-vis), SEM, and tensile tests. The experimental results showed that content of GO have a significant influence on the mechanical properties of the produced films. The results revealed that the interfacial interaction formed in the bionanocomposite films improved the compatibility between GO fillers and ST/L matrix. The addition of GO also reduced moisture uptake (Mu) and water vapor permeability of ST/L blend film. In addition, TGA showed that the thermal stability of bionanocomposite films was better than that of neat starch film. These findings confirmed the effectiveness of the proposed approach to produce biodegradable films with enhanced properties, which may be used in packaging applications.
Zhao, Jingjing; Deng, Yehao; Wei, Haotong; Zheng, Xiaopeng; Yu, Zhenhua; Shao, Yuchuan; Shield, Jeffrey E.; Huang, Jinsong
2017-01-01
Organic-inorganic hybrid perovskite (OIHP) solar cells have achieved comparable efficiencies to those of commercial solar cells, although their instability hinders their commercialization. Although encapsulation techniques have been developed to protect OIHP solar cells from external stimuli such as moisture, oxygen, and ultraviolet light, understanding of the origin of the intrinsic instability of perovskite films is needed to improve their stability. We show that the OIHP films fabricated by existing methods are strained and that strain is caused by mismatched thermal expansion of perovskite films and substrates during the thermal annealing process. The polycrystalline films have compressive strain in the out-of-plane direction and in-plane tensile strain. The strain accelerates degradation of perovskite films under illumination, which can be explained by increased ion migration in strained OIHP films. This study points out an avenue to enhance the intrinsic stability of perovskite films and solar cells by reducing residual strain in perovskite films. PMID:29159287
High oxygen nanocomposite barrier films based on xylan and nanocrystalline cellulose
Amit Saxena; Thomas J. Elder; Jeffrey Kenvin; Arthur J. Ragauskas
2010-01-01
The goal of this work is to produce nanocomposite film with low oxygen permeability by casting an aqueous solution containing xylan, sorbitol and nanocrystalline cellulose. The morphology of the resulting nanocomposite films was examined by scanning electron microscopy and atomic force microscopy which showed that control films containing xylan and sorbitol had a more...
Gianfrancesco, Anthony G; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V; Vasudevan, Rama K
2015-11-13
The controlled growth of epitaxial films of complex oxides requires an atomistic understanding of key parameters determining final film morphology, such as termination dependence on adatom diffusion, and height of the Ehrlich-Schwoebel (ES) barrier. Here, through an in situ scanning tunneling microscopy study of mixed-terminated La5/8Ca3/8MnO3 (LCMO) films, we image adatoms and observe pile-up at island edges. Image analysis allows determination of the population of adatoms at the edge of islands and fractions on A-site and B-site terminations. A simple Monte-Carlo model, simulating the random walk of adatoms on a sinusoidal potential landscape using Boltzmann statistics is used to reproduce the experimental data, and provides an estimate of the ES barrier as ∼0.18 ± 0.04 eV at T = 1023 K, similar to those of metal adatoms on metallic surfaces. These studies highlight the utility of in situ imaging, in combination with basic Monte-Carlo methods, in elucidating the factors which control the final film growth in complex oxides.
NASA Astrophysics Data System (ADS)
Gianfrancesco, Anthony G.; Tselev, Alexander; Baddorf, Arthur P.; Kalinin, Sergei V.; Vasudevan, Rama K.
2015-11-01
The controlled growth of epitaxial films of complex oxides requires an atomistic understanding of key parameters determining final film morphology, such as termination dependence on adatom diffusion, and height of the Ehrlich-Schwoebel (ES) barrier. Here, through an in situ scanning tunneling microscopy study of mixed-terminated La5/8Ca3/8MnO3 (LCMO) films, we image adatoms and observe pile-up at island edges. Image analysis allows determination of the population of adatoms at the edge of islands and fractions on A-site and B-site terminations. A simple Monte-Carlo model, simulating the random walk of adatoms on a sinusoidal potential landscape using Boltzmann statistics is used to reproduce the experimental data, and provides an estimate of the ES barrier as ˜0.18 ± 0.04 eV at T = 1023 K, similar to those of metal adatoms on metallic surfaces. These studies highlight the utility of in situ imaging, in combination with basic Monte-Carlo methods, in elucidating the factors which control the final film growth in complex oxides.
Enigmatic Moisture Effects on Al2O3 Scale and TBC Adhesion
NASA Technical Reports Server (NTRS)
Smialek, James L.
2008-01-01
Alumina scale adhesion to high temperature alloys is known to be affected primarily by sulfur segregation and reactive element additions. However, adherent scales can become partially compromised by excessive strain energy and cyclic cracking. With time, exposure of such scales to moisture can lead to spontaneous interfacial decohesion, occurring while the samples are maintained at ambient conditions. Examples of this Moisture-Induced Delayed Spallation (MIDS) are presented for NiCrAl and single crystal superalloys, becoming more severe with sulfur level and cyclic exposure conditions. Similarly, delayed failure or Desk Top Spallation (DTS) results are reviewed for thermal barrier coatings (TBCs), culminating in the water drop failure test. Both phenomena are discussed in terms of moisture effects on bulk alumina and bulk aluminides. A mechanism is proposed based on hydrogen embrittlement and is supported by a cathodic hydrogen charging experiment. Hydroxylation of aluminum from the alloy interface appears to be the relevant basic reaction.
Light management in flexible OLEDs
NASA Astrophysics Data System (ADS)
Harkema, Stephan; Pendyala, Raghu K.; Geurts, Christian G. C.; Helgers, Paul L. J.; Levell, Jack W.; Wilson, Joanne S.; MacKerron, Duncan
2014-10-01
Organic light-emitting diodes (OLEDs) are a promising lighting technology. In particular OLEDs fabricated on plastic foils are believed to hold the future. These planar devices are subject to various optical losses, which requires sophisticated light management solutions. Flexible OLEDs on plastic substrates are as prone to losses related to wave guiding as devices on glass. However, we determined that OLEDs on plastic substrates are susceptible to another loss mode due to wave guiding in the thin film barrier. With modeling of white polymer OLEDs fabricated on PEN substrates, we demonstrate that this loss mode is particularly sensitive to polarized light emission. Furthermore, we investigated how thin film barrier approaches can be combined with high index light extraction layers. Our analysis shows that OLEDs with a thin film barrier consisting of an inorganic/organic/inorganic layer sequence, a low index inorganic negatively affects the OLED efficiency. We conclude that high index inorganics are more suitable for usage in high efficiency flexible OLEDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Namsu, E-mail: nkim@keti.re.kr; Components and Materials Physics Research Center, #68 Yatop-dong, Korea Electronics Technology Institute, Bundang-gu, 463-816; Graham, Samuel
2014-10-15
Highlights: • High performance thin-film barrier structure for encapsulation was fabricated. • By annealing parylene in encapsulation structure, the barrier performance was improved. • The effective water vapor transmission rate is 7.2 ± 3.0 × 10{sup −6} g/m{sup 2}/day. - Abstract: A multilayered barrier structure was fabricated by chemical vapor deposition of parylene and subsequent plasma-enhanced chemical vapor deposition of SiO{sub x} or SiN{sub x}. The barrier performance against water vapor ingress was significantly improved by annealing the parylene layer before the deposition of either SiO{sub x} or SiN{sub x}. The mechanism of this enhancement was investigated using atomic forcemore » microscopy, Raman spectroscopy, and X-ray diffraction. The surface roughness of the parylene before the deposition of either SiO{sub x} or SiN{sub x} was found to correlate closely with the barrier performance of the multilayered structures. In addition, removing absorbed water vapor in the film by annealing results in a lower water vapor transmission rate in the transient region and a longer lag time. Annealing the parylene leads to a large decrease in the effective water vapor transmission rate, which reaches 7.2 ± 3.0 × 10{sup −6} g/m{sup 2}/day.« less
An integrated approach to extend the shelf life of a composite pastry product (cannoli).
Del Nobile, M A; Muratore, G; Conte, A; Incoronato, A L; Panza, O
2009-12-01
In this study, a combined approach is proposed to extend the shelf life of a composite pastry product (cannoli). In particular, to delay moisture migration, one, two, or three layers of a zein-based coating were studied. A three-layer coating represented the most effective solution to prevent rapid pastry softening. A subsequent experimental trial was aimed to prolong the shelf life of the ricotta-based stuffing. To this aim, two different antimicrobial compounds (lysozyme and lemon extract) at three concentrations (2,000, 3,000, and 4,000 ppm) were investigated separately from a microbiological and a sensorial point of view. Lemon extract was the active compound that received a better score, thus suggesting using 2,000 ppm of citrus extract in the last step. In the final experimental trial, cannoli were coated with three layers of zein, stuffed with ricotta containing the selected active agent, and packaged in two microperforated films. The use of zein-based coating and the lemon extract in the ricotta stuffing, combined with the barrier properties of the selected packaging materials, allowed a significant prolongation of cannoli shelf life, regardless of the type of film: a shelf life of more than 3 days was recorded, compared with the control samples, which were acceptable for less than 2 days. It is reasonable to assume that the proposed integrated approach could boost the distribution of the investigated typical pastry beyond local borders.
Effects of Graphene Oxide Addition on Mechanical and Thermal Properties of Evoh Films
NASA Astrophysics Data System (ADS)
González-Ruiz, Jesús; Yataco-Lazaro, Lourde; Virginio, Sueli; das Graças da Silva-Valenzuela, Maria; Moura, Esperidiana; Valenzuela-Díaz, Francisco
Currently, ethylene vinyl alcohol (EVOH) is one of the oxygen barrier materials most used for food packaging. The addition of graphene oxide nanosheets to the EVOH matrix is employed to improve their mechanic al and barrier properties. In this work, films of EVOH-based composites reinforced with graphene oxide were prepared by melt extrusion, using a twin screw extruder machine and blown extrusion process. The graphene oxide was prepared via chemical oxidation of natural graphite and then was exfoliated into nanosheets using the sonochemical method. The composite films samples were characterized using FTIR and DSC analysis. In addition, their mechanical properties were also determined.
Study of Nickel Silicide as a Copper Diffusion Barrier in Monocrystalline Silicon Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kale, Abhijit; Beese, Emily; Saenz, Theresa
NiSi as a conductive diffusion barrier to silicon has been studied. We demonstrate that the NiSi films formed using the single step annealing process are as good as the two step process using XRD and Raman. Quality of NiSi films formed using e-beam Ni and electroless Ni process has been compared. Incomplete surface coverage and presence of constituents other than Ni are the main challenges with electroless Ni. We also demonstrate that Cu reduces the thermal stability of NiSi films. The detection of Cu has proven to be difficult due to temperature limitations.
Liu, Xingpeng; Peng, Bin; Zhang, Wanli; Zhu, Jun; Liu, Xingzhao; Wei, Meng
2017-12-01
In order to develop film electrodes for the surface acoustic wave (SAW) devices operating in harsh high-temperature environments, novel Al₂O₃/Pt/ZnO/Al₂O₃ multilayered film electrodes were prepared by laser molecular beam epitaxy (LMBE) at 150 °C. The first Al₂O₃ layer was used as a barrier layer to prevent the diffusion of Ga, La, and Si atoms from the La₃Ga₅SiO 14 (LGS) substrate to the film electrode and thus improved the crystalline quality of ZnO and Pt films. It was found that the resistance of the Al₂O₃/Pt/ZnO/Al₂O₃ electrode did not vary up to a temperature of 1150 °C, suggesting a high reliability of electrode under harsh high-temperature environments. The mechanism of the stable resistance of the Al₂O₃/Pt/ZnO/Al₂O₃ film electrodes at high temperature was investigated by analyzing its microstructure. The proposed Al₂O₃/Pt/ZnO/Al₂O₃ film electrode has great potential for application in high-temperature SAW devices.
Blend-modification of soy protein/lauric acid edible films using polysaccharides.
Pan, Hongyang; Jiang, Bo; Chen, Jie; Jin, Zhengyu
2014-05-15
Different types of polysaccharides (propyleneglycol alginate (PGA), pectin, carrageenan and aloe polysaccharide) were incorporated into soy protein isolate (SPI)/lauric acid (La) films using a co-drying process or by direct addition to form biodegradable composite films with modified water vapour permeability (WVP) and mechanical properties. The WVP of SPI/La/polysaccharide films decreased when polysaccharides were added using the co-drying process, regardless of the type of polysaccharide. The tensile strength of SPI/La film was increased by the addition of polysaccharides, and the percentage elongation at break was increased by incorporating PGA using the co-drying process. Regarding oxygen-barrier performance, no notable differences were observed between the SPI/La and SPI/La/polysaccharide films. The most significant improvement was observed by blending PGA, with the co-dried preparation exhibiting better properties than the direct-addition preparation. Scanning electron microscopy (SEM) revealed that the microstructures of the films are the basis for the differences in the barrier and mechanical properties of the modified blends of SPI, polysaccharides and La. Copyright © 2013 Elsevier Ltd. All rights reserved.
Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films
NASA Astrophysics Data System (ADS)
Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya
Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.
USDA-ARS?s Scientific Manuscript database
This study aimed to develop and characterize biodegradable films containing mucilage, chitosan and polyvinyl alcohol (PVA) in different concentrations. The films were prepared by casting on glass plates using glycerol as plasticizer. Mechanical properties, water vapor and oxygen barrier, as well as ...
Polybenzoxazole Nanofiber-Reinforced Moisture-Responsive Soft Actuators.
Chen, Meiling; Frueh, Johannes; Wang, Daolin; Lin, Xiankun; Xie, Hui; He, Qiang
2017-04-10
Hydromorphic biological systems, such as morning glory flowers, pinecones, and awns, have inspired researchers to design moisture-sensitive soft actuators capable of directly converting the change of moisture into motion or mechanical work. Here, we report a moisture-sensitive poly(p-phenylene benzobisoxazole) nanofiber (PBONF)-reinforced carbon nanotube/poly(vinyl alcohol) (CNT/PVA) bilayer soft actuator with fine performance on conductivity and mechanical properties. The embedded PBONFs not only assist CNTs to form a continuous, conductive film, but also enhance the mechanical performance of the actuators. The PBONF-reinforced CNT/PVA bilayer actuators can unsymmetrically adsorb and desorb water, resulting in a reversible deformation. More importantly, the actuators show a pronounced increase of conductivity due to the deformation induced by the moisture change, which allows the integration of a moisture-sensitive actuator and a humidity sensor. Upon changing the environmental humidity, the actuators can respond by the deformation for shielding and report the humidity change in a visual manner, which has been demonstrated by a tweezer and a curtain. Such nanofiber-reinforced bilayer actuators with the sensing capability should hold considerable promise for the applications such as soft robots, sensors, intelligent switches, integrated devices, and material storage.
Stommel, Martijn W J; Strik, Chema; ten Broek, Richard P G; van Goor, Harry
2014-09-26
Adhesions develop in over 90% of patients after intra-abdominal surgery. Adhesion barriers are rarely used despite the high morbidity caused by intra-abdominal adhesions. Only one of the currently available adhesion barriers has demonstrated consistent evidence for reducing adhesions in visceral surgery. This agent has limitations through poor handling characteristics because it is sticky on both sides. C-Qur™ Film is a novel thin film adhesion barrier and it is sticky on only one side, resulting in better handling characteristics. The objective of this study is to assess efficacy and safety of C-Qur™ Film to decrease the incidence of adhesions after colorectal surgery. This is a prospective, investigator initiated, randomized, double-blinded, multicenter trial. Eligible patients undergoing colorectal resection requiring temporary loop ileostomy or loop/split colostomy by laparotomy or hand assisted laparoscopy will be included in the trial. Before closure, patients are randomized 1:1 to either the treatment arm (C-Qur™ Film) or control arm (no adhesion barrier). Patients will return 8 to 16 weeks post-colorectal resection for take down of their ostomy. During ostomy takedown, adhesions will be evaluated for incidence, extent, and severity. The primary outcome evaluation will be assessment of adhesions to the incision site. It is hypothesized that the use of C-Qur™ Film underneath the primary incision reduces the incidence of adhesion at the incision by 30%. To demonstrate 30% reduction in the incidence of adhesions, a sample size of 84 patients (32 + 10 per group (25% drop out)) is required (two-sided test, α = 0.05, 80% power). Results of this study add to the evidence on the use of anti-adhesive barriers in open and laparoscopic 'hand-assisted' colorectal surgery. We chose incidence of adhesions to the incision site as primary outcome measure since clinical outcomes such as small bowel obstruction, secondary infertility and adhesiolysis related complications are considered multifactorial and difficult to interpret. Incidence of adhesions at repeat surgery is believed to be the most valuable surrogate endpoint for clinically relevant adhesion prevention, since small bowel obstruction and adhesiolysis at repeat surgery are not likely to occur when complete adhesion reduction in a patient is accomplished. ClinicalTrials.gov Identifier NCT01872650, registration date 6 June 2013.
Films based on protein isolated from croaker (Micropogonias furnieri) and palm oil.
Halal, Shanise Lisie Mello El; Zavareze, Elessandra da Rosa; Rocha, Meritaine da; Pinto, Vânia Zanella; Nunes, Michael Ramos; Luvielmo, Márcia de Mello; Prentice, Carlos
2016-05-01
The microstructure and the physical, mechanical, barrier and thermal properties of films based on different concentrations of protein isolated from croaker waste (CPI) and palm oil (PO) were analyzed. Films were elaborated by a casting technique using 2, 3 and 4 g CPI 100 g(-1) of a filmogenic solution and 0, 10 and 20 g of PO 100 g(-1) CPI. Microstructure of the film surfaces of CPI with PO showed no presence of lipid droplets dispersed in the filmogenic matrix, although a rough surface was present. Films with 3% and 4% CPI and 20% PO had the lowest rates of water vapor permeability. When there was an addition of PO to the reduced tensile strength of the films, regardless of the concentration of CPI, this addition reduced the elongation of films with 3% and 4% CPI; however, it did not influence films with 2% CPI, which did not differ from the control film (0% OP). Thermal analysis revealed that films with the highest PO percentage had a lower initial weight loss when compared with other films, due to higher hydrophobicity. The use of protein isolate obtained from fish residues of low commercial value and palm oil is viable for the production of biodegradable films because the latter constitute good barrier properties and thermal stability. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Eça, Kaliana S; Machado, Mariana T C; Hubinger, Miriam D; Menegalli, Florencia C
2015-11-01
Pectin films containing fruit extracts were developed and tested in relation to ultraviolet light transmission, phytochemical contents, and antioxidant capacity during 90 d shelf life storage. Aqueous and alcoholic extracts from 5 different fruits (acerola, cashew apple, papaya, pequi, and strawberry) were obtained. Because the alcoholic extracts from acerola, cashew apple, and strawberry presented the highest phytochemical content and antioxidant capacity, they were incorporated into pectin films individually or as a mixture. Incorporation of these extracts into pectin films provided antioxidant capacity while retaining the physical properties. The pectin films containing fruit extract acted as adequate light barrier and prevented photooxidation. Among the prepared films, the pectin film containing acerola extract afforded the highest antioxidant capacity, with a half-life of 99 d. Overall, the results revealed that incorporation of fruit extracts into pectin films potentially produces antioxidant films and coatings for different food applications. The production of pectin films incorporated with fruit extract is based on combination of the antioxidant activity, natural color, and optical barrier properties from fruit phytochemical components to the active film. This film could be potentially used as active packing on food products in order to protect their nutrients against free radicals action and photooxidation and, hence, preserve the quality, integrity, and safety of food during the storage period. © 2015 Institute of Food Technologists®
MoRe-based tunnel junctions and their characteristics
NASA Astrophysics Data System (ADS)
Shaternik, V.; Larkin, S.; Noskov, V.; Chubatyy, V.; Sizontov, V.; Miroshnikov, A.; Karmazin, A.
2008-02-01
Perspective Josephson Mo-Re alloy-oxide-Pb, Mo-Re alloy-normal metal-oxide-Pb and Mo-Re alloy-normal metal-oxide-normal metal-Mo-Re alloy junctions have been fabricated and investigated. Thin (~50-100 nm) MoRe superconducting films are deposited on Al2O3 substrates by using a dc magnetron sputtering of MoRe target. Normal metal (Sn, Al) thin films are deposited on the MoRe films surfaces by thermal evaporation of metals in vacuum and oxidized to fabricate junctions oxide barriers. Quasiparticle I-V curves of the fabricated junctions were measured in wide range of voltages. To investigate a transparency spread for the fabricated junctions barriers the computer simulation of the measured quasiparticle I-V curves have been done in framework of the model of multiple Andreev reflections in double-barrier junction interfaces. It's demonstrated the investigated junctions can be described as highly asymmetric double-barrier Josephson junctions with great difference between the two barrier transparencies. The result of the comparison of experimental quasiparticle I-V curves and calculated ones is proposed and discussed. Also I-V curves of the fabricated junctions have been measured under microwave irradiation with 60 GHz frequency, clear Shapiro steps in the measured I-V curves were observed and discussed.
Patterning of organic photovoltaic on R2R processed thin film barriers using IR laser sources
NASA Astrophysics Data System (ADS)
Fledderus, H.; Akkerman, H. B.; Salem, A.; Friedrich Schilling, N.; Klotzbach, U.
2017-02-01
We present the development of laser processes for flexible OPV on roll-to-roll (RR2R) produced thin film barrier with indium tin oxide (ITO) as transparent conductive (TC) bottom electrode. Direct laser structuring of ITO on such barrier films (so-called P1 process) is very challenging since the layers are all transparent, a complete electrical isolation is required, and the laser process should not influence the barrier performance underneath the scribes. Based on the optical properties off the SiN and ITTO, ultra-short pulse lasers inn picosecond and femtosecond regime with standard infrared (IR) wavelength as well as lasers with new a wavelength (22 μm regime) are tested for this purpose. To determine a process window for a specific laser a fixed methodology is adopted. Single pulse ablation tests were followed by scribing experiments where the pulse overlap was tuned by varying laser pulse fluence, writing speed and frequency. To verify that the laser scribing does not result inn barrier damage underneath, a new test method was developed based on the optical Ca-test. This method shows a clear improvement in damage analysis underneath laser scribes over normal optical inspection methods (e.g. microscope, optical profiler, SEM). This way clear process windows can be obtained for IR TC patterning.
Ren, Xiao-Long; Zhang, Peng; Chen, Xiao-Li; Jia, Zhi-Kuan
2016-08-01
Plastic-covered ridge-furrow farming systems for rainfall concentration (RC) improve the water availability for crops and increase the water use efficiency (WUE), thereby stabilizing high yields. In this study, we optimized the mulching patterns for RC planting to mitigate the risks of drought during crop production in semiarid agricultural areas. We conducted a 4-year field study to determine the RC effects on corn production of mulching in furrows with 8% biodegradable films (RCSB ), liquid film (RCSL ), bare furrow (RCSN ) and conventional flat (CF) farming. We found that RC significantly (P > 0.05) increased the soil moisture in the top 0-100 cm layer and the topsoil temperature (0-20 cm) during the corn-growing period. Mulching with different materials in planting furrows further improved the rain-harvesting, moisture-retaining and yield-increasing effects of RC planting. Compared with CF, the 4-year average total dry matter amount per plant for RCSB , RCSL and RCSN treatments increased by 42.1%, 30.8% and 17.2%, respectively. The grain yield increased by 59.7%, 53.4% and 32.6%, respectively. Plastic-covered ridge and furrow mulched with biodegradable film and liquid film is recommended for use in the semiarid Loess Plateau of China to alleviate the effects of drought on crop production. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
A review on the role of moisturizers for atopic dermatitis
Hebert, Adelaide Ann; Dizon, Maria Victoria; Van Bever, Hugo; Tiongco-Recto, Marysia; Kim, Kyu-Han; Soebono, Hardyanto; Munasir, Zakiudin; Diana, Inne Arline; Luk, David Chi Kang
2016-01-01
Effective management of atopic dermatitis (AD) involves the treatment of a defective skin barrier. Patients with AD are therefore advised to use moisturizers regularly. To date, there are few comparative studies involving moisturizers in patients with AD, and no classification system exists to objectively determine which types of moisturizers are best suited to specific AD phenotypes. With this in mind, a group of experts from allergy and immunology, adult and pediatric dermatology, and pediatrics centers within Southeast Asia met to review current data and practice, and to develop recommendations regarding the use of moisturizers in patients with AD within the Asia-Pacific region. Chronicity and severity of AD, along with patient age, treatment compliance, and economic background should all be taken into account when selecting an appropriate moisturizer for AD patients. Other considerations include adjuvant properties of the product, cosmetic acceptability, and availability over the counter. Well-defined clinical phenotypes of AD could optimally benefit from specific moisturizers. It is hoped that future studies may identify such differences by means of filaggrin mutation subtypes, confocal microscopic evaluation, pH, transepidermal water loss or presence of allergy specific IgE. Recommendations to improve the regular use of moisturizers among AD patients include measures that focus on treatment compliance, patient and caregiver education, appropriate treatment goals, avoidance of sensitizing agents, and collaboration with other relevant specialists. PMID:27141486
Bajpai, M; Bajpai, S K; Jyotishi, Pooja
2016-03-01
In this work, aqueous solutions of chitosan (Ch) and [poly(acrylamide(AAm)-co-itaconicacid(IA)] have been mixed to yield Ch/poly(AAm-co-IA) Inter-polyelectrolyte complex (IPC) films. The films were characterized by FTIR, X-ray diffraction (XRD) and thermo gravimetric analysis (TGA). There was remarkable increase in the crystalline nature of IPC films. The films were investigated for their water absorption capacity in the physiological fluid (PF) of pH 7.4 at 37 °C. The amount of IA present in the film forming solutions affected the water absorption behavior of the resulting films. The dynamic water uptake data were interpreted by various kinetic models. The effect of pH on the swelling ratio (SR) indicated that the films showed highest swelling in lower as well as higher pH media. The water vapor transmission rates (WVTR) were obtained in the range of 6000-6645 g/m(2)/day. Copyright © 2015 Elsevier B.V. All rights reserved.
Universal Pinning Energy Barrier for Driven Domain Walls in Thin Ferromagnetic Films
NASA Astrophysics Data System (ADS)
Jeudy, V.; Mougin, A.; Bustingorry, S.; Savero Torres, W.; Gorchon, J.; Kolton, A. B.; Lemaître, A.; Jamet, J.-P.
2016-07-01
We report a comparative study of magnetic field driven domain wall motion in thin films made of different magnetic materials for a wide range of field and temperature. The full thermally activated creep motion, observed below the depinning threshold, is shown to be described by a unique universal energy barrier function. Our findings should be relevant for other systems whose dynamics can be modeled by elastic interfaces moving on disordered energy landscapes.
Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Phosphor Thermometry
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
2016-01-01
While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness for jet engine components are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. Phosphor thermometry offers several advantages for mapping temperatures of air film cooled surfaces. While infrared thermography has been typically applied to study air film cooling effectiveness, temperature accuracy depends on knowing surface emissivity (which may change) and correcting for effects of reflected radiation. Because decay time-based full-field phosphor thermometry is relatively immune to these effects, it can be applied advantageously to temperature mapping of air film-cooled TBC-coated surfaces. In this presentation, an overview will be given of efforts at NASA Glenn Research Center to perform temperature mapping of air film-cooled TBC-coated surfaces in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and the strengths and limitations of this method for studying air film cooling effectiveness are discussed.
Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films.
Humood, Mohammad; Chowdhury, Shahla; Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C; Polycarpou, Andreas A
2016-05-04
Nanoindentation and nanoscratch experiments were performed on thin multilayer films manufactured using the layer-by-layer (LbL) assembly technique. These films are known to exhibit high gas barrier, but little is known about their durability, which is an important feature for various packaging applications (e.g., food and electronics). Films were prepared from bilayer and quadlayer sequences, with varying thickness and composition. In an effort to evaluate multilayer thin film surface and mechanical properties, and their resistance to failure and wear, a comprehensive range of experiments were conducted: low and high load indentation, low and high load scratch. Some of the thin films were found to have exceptional mechanical behavior and exhibit excellent scratch resistance. Specifically, nanobrick wall structures, comprising montmorillonite (MMT) clay and polyethylenimine (PEI) bilayers, are the most durable coatings. PEI/MMT films exhibit high hardness, large elastic modulus, high elastic recovery, low friction, low scratch depth, and a smooth surface. When combined with the low oxygen permeability and high optical transmission of these thin films, these excellent mechanical properties make them good candidates for hard coating surface-sensitive substrates, where polymers are required to sustain long-term surface aesthetics and quality.
NASA Astrophysics Data System (ADS)
Munoz, Trinidad, Jr.
1998-12-01
Molecular sieves are one class of crystalline low density metal oxides which are made up of one-, two-, and three dimensional pores and/or cages. We have investigated the synthesis and characterization of metal substituted aluminophosphates and all silica molecular sieves for thin film applications. A new copper substituted aluminophosphate, CuAPO-5 has been synthesized and characterized using x-ray powder diffraction, FT-IR spectroscopy and scanning electron microscopy. Electron spin resonance and electron spin echo modulation provided supporting evidence of framework incorporation of Cu(II) ions. Thus, an exciting addition has been added to the family of metal substituted aluminophosphates where substitution of the metal has been demonstrated as framework species. Also presented here is the synthesis and characterization of an iron substituted aluminophosphate, FeAPO-5, and an all silica zeolite, UTD-1 for thin film applications. Pulsed laser ablation has been employed as the technique to generate thin films. Here an excimer laser (KrFsp*, 248 nm) was used to deposit the molecular sieves on a variety of substrates including polished silicon, titanium nitride, and porous stainless steel disks. The crystallinity of the deposited films was enhanced by a post hydrothermal treatment. A vapor phase treatment of the laser deposited FeAPO-5 films has been shown to increase the crystallinity of the film without increasing film thickness. Thin films of the FeAPO-5 molecular sieves were subsequently used as the dielectric phase in capacitive type chemical sensors. The capacitance change of the FeAPO-5 devices to the relative moisture makes them potential humidity sensors. The all silica zeolite UTD-1 thin films were deposited on polished silicon and porous supports. A brief post hydrothermal treatment of the laser deposited films deposited on polished silicon and porous metal supports resulted in oriented film growth lending these films to applications in gas separations and catalysis. The oriented UTD-1 membrane was evaluated for the separation of n-heptane/toluene mixture. Practicum two. It has been previously observed that residual moisture plays a role in ETV-ICP-MS by altering signal intensity. Here is reported observed signal intensities with ETV-ICP-MS, resulting from the use of hydrogen, nitrogen and ascorbic acid. The use of ascorbic acid yielded enhanced signal intensity, reproducibility and linearity compared to inorganic modifiers'.
Feasibility study for detection and quantification of corrosion in bridge barrier rails.
DOT National Transportation Integrated Search
2013-04-01
Technical challenges exist with infrastructure that can be addressed by nondestructive evaluation (NDE) methods, such as detecting corrosion damage to reinforcing steel that anchor concrete bridge railings to bridge road decks. Moisture and chloride ...
Ng, Rachel Qiao-Ming; Tok, E S; Kang, H Chuan
2009-07-28
At low temperatures, hydrogen desorption is known to be the rate-limiting process in silicon germanium film growth via chemical vapor deposition. Since surface germanium lowers the hydrogen desorption barrier, Si(x)Ge((1-x)) film growth rate increases with the surface germanium fraction. At high temperatures, however, the molecular mechanisms determining the epitaxial growth rate are not well established despite much experimental work. We investigate these mechanisms in the context of disilane adsorption because disilane is an important precursor used in film growth. In particular, we want to understand the molecular steps that lead, in the high temperature regime, to a decrease in growth rate as the surface germanium increases. In addition, there is a need to consider the issue of whether disilane adsorbs via silicon-silicon bond dissociation or via silicon-hydrogen bond dissociation. It is usually assumed that disilane adsorption occurs via silicon-silicon bond dissociation, but in recent work we provided theoretical evidence that silicon-hydrogen bond dissociation is more important. In order to address these issues, we calculate the chemisorption barriers for disilane on silicon germanium using first-principles density functional theory methods. We use the calculated barriers to estimate film growth rates that are then critically compared to the experimental data. This enables us to establish a connection between the dependence of the film growth rate on the surface germanium content and the kinetics of the initial adsorption step. We show that the generally accepted mechanism where disilane chemisorbs via silicon-silicon bond dissociation is not consistent with the data for film growth kinetics. Silicon-hydrogen bond dissociation paths have to be included in order to give good agreement with the experimental data for high temperature film growth rate.
USDA-ARS?s Scientific Manuscript database
Effects of three particle film products on Formosan subterranean termites, Coptotermes formosanus Shiraki, were evaluated in feeding, tunneling, and contact assays. The particle films, hydrophobic M96-018 and hydrophilic Surround and Surround WP are based on the inert clay mineral kaolin. In 2-week ...
Costa, Samantha Serra; Druzian, Janice Izabel; Machado, Bruna Aparecida Souza; de Souza, Carolina Oliveira; Guimarães, Alaíse Gil
2014-01-01
The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4%) and glycerol (1.0%), reinforced with cellulose nanocrystals (0–1%) and activated with alcoholic extracts of red propolis (0.4 to 1.0%). The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage. PMID:25383783
A new radiochromic dosimeter film
NASA Astrophysics Data System (ADS)
Sidney, L. N.; Lynch, D. C.; Willet, P. S.
By employing acid-sensitive leuco dyes in a chlorine-containing polymer matrix, a new radiochromic dosimeter film has been developed for gamma, electron beam, and ultraviolet radiation. These dosimeter films undergo a color change from colorless to royal blue, red fuchsia, or black, depending on dye selection, and have been characterized using a visible spectrophotometer over an absorbed dose range of 1 to 100 kGy. The primary features of the film are improved color stability before and after irradiation, whether stored in the dark or under artificial lights, and improved moisture resistance. The effects of absorbed dose, dose rate, and storage conditions on dosimeter performance are discussed. The dosimeter material may be produced as a free film or coated onto a transparent substrate and optionally backed with adhesive. Potential applications for these materials include gamma sterilization indicator films for food and medical products, electron beam dosimeters, and in-line radiation monitors for electron beam and ultraviolet processing.
Costa, Samantha Serra; Druzian, Janice Izabel; Machado, Bruna Aparecida Souza; de Souza, Carolina Oliveira; Guimarães, Alaíse Gil
2014-01-01
The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4%) and glycerol (1.0%), reinforced with cellulose nanocrystals (0-1%) and activated with alcoholic extracts of red propolis (0.4 to 1.0%). The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage.
Effects of plasticizers on sorption and optical properties of gum cordia based edible film.
Haq, Muhammad Abdul; Jafri, Feroz Alam; Hasnain, Abid
2016-06-01
The present study aimed to characterize a biodegradable film produced from the polysaccharide of an indigenous plant Cordia myxa. Effect of plasticizer type (Glycerol, Sorbitol, PEG200 and PEG 400) and concentration (0-30 %) was studied on sorption and optical properties of the casted film. Increase in plasticizer concentration resulted in increase in equilibrium moisture content of the film and was supported by GAB model of sorption indicating that isotherms were of Type II. The monolayer value increased with the increase in plasticizer concentration with a peak of 0.93 g.g-1 for glycerol. Addition of plasticizers improved the total color (ΔE) with glycerol showing the highest effects. All films showed resistance to UV light in the range of 280-200 nm. The polysaccharide of the fruit of C.myxa can be used to prepare an edible film with improved properties as compared to other available edible coatings.
40 CFR 60.715 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... base film (i.e., the sample shall include any dilution solvent or other VOC added during the... for gas analysis. (f) Method 4 is used for stack gas moisture. (g) Methods 2, 2A, 2C, 2D, 3, and 4...
Moisture-Induced Delamination Video of an Oxidized Thermal Barrier Coating
NASA Technical Reports Server (NTRS)
Smialek, James L.; Zhu, Dongming; Cuy, Michael D.
2008-01-01
PVD TBC coatings were thermally cycled to near-failure at 1150 C. Normal failure occurred after 200 to 300 1-hr cycles with only moderate weight gains (0.5 mg/sq cm). Delamination and buckling was often delayed until well after cooldown (desktop spallation), but could be instantly induced by the application of water drops, as shown in a video clip which can be viewed by clicking on figure 2 of this report. Moisture therefore plays a primary role in delayed desktop TBC failure. Hydrogen embrittlement is proposed as the underlying mechanism.
Borate cross-linked graphene oxide-chitosan as robust and high gas barrier films
NASA Astrophysics Data System (ADS)
Yan, Ning; Capezzuto, Filomena; Lavorgna, Marino; Buonocore, Giovanna G.; Tescione, Fabiana; Xia, Hesheng; Ambrosio, Luigi
2016-05-01
Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ~160% compared to pristine chitosan, whereas their oxygen permeability reduces by ~90%. This is ascribed to the chemical crosslinking between chitosan and GO nanoplatelets through borate ions, as well as the formation of a layered morphology with graphene nanoplatelets oriented parallel to the sample surface. The exceptional robust and high gas barrier film has promising application in the packaging industry. The borate-crosslinking chemistry represents the potential strategy for improving properties of other polymer nanocomposites.Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ~160% compared to pristine chitosan, whereas their oxygen permeability reduces by ~90%. This is ascribed to the chemical crosslinking between chitosan and GO nanoplatelets through borate ions, as well as the formation of a layered morphology with graphene nanoplatelets oriented parallel to the sample surface. The exceptional robust and high gas barrier film has promising application in the packaging industry. The borate-crosslinking chemistry represents the potential strategy for improving properties of other polymer nanocomposites. Electronic supplementary information (ESI) available: Detailed characterization methods and survey XPS spectra. See DOI: 10.1039/c6nr00377j
Properties of gelatin film from horse mackerel (Trachurus japonicus) scale.
Le, Thuy; Maki, Hiroki; Takahashi, Kigen; Okazaki, Emiko; Osako, Kazufumi
2015-04-01
Optimal conditions for extracting gelatin and preparing gelatin film from horse mackerel scale, such as extraction temperature and time, as well as the protein concentration of film-forming solutions were investigated. Yields of extracted gelatin at 70 °C, 80 °C, and 90 °C for 15 min to 3 h were 1.08% to 3.45%, depending on the extraction conditions. Among the various extraction times and temperatures, the film from gelatin extracted at 70 °C for 1 h showed the highest tensile strength and elongation at break. Horse mackerel scale gelatin film showed the greatly low water vapor permeability (WVP) compared with mammalian or fish gelatin films, maybe due to its containing a slightly higher level of hydrophobic amino acids (total 653 residues per 1000 residues) than that of mammalian, cold-water fish and warm-water fish gelatins. Gelatin films from different preparation conditions showed excellent UV barrier properties at wavelength of 200 nm, although the films were transparent at visible wavelength. As a consequence, it can be suggested that gelatin film from horse mackerel scale extracted at 70 °C for 1 h can be applied to food packaging material due to its lowest WVP value and excellent UV barrier properties. © 2015 Institute of Food Technologists®
Field emission from amorphous carbon films grown by electrochemical deposition using methanol liquid
NASA Astrophysics Data System (ADS)
Kiyota, H.; Higashi, M.; Kurosu, T.; Iida, M.
2006-05-01
The field emission from an amorphous carbon (a-C) film grown by electrochemical deposition has been studied. The deposition of the a-C film was accomplished by applying a direct-current potential to a substrate that was immersed in methanol. Both scanning electron microscopy and Raman results indicate that smooth and homogeneous a-C films are grown on specific substrates such as Ti and Al. Field emission measurements demonstrate excellent emission properties such as threshold fields as low as 5 V/μm. Enhancement factors are estimated to be in the range of 1300-1500; these are attributed to local field enhancements around sp2 carbon clusters that are embedded in the a-C films. Emission properties of a-C films grown on Si exhibit a current saturation under higher applied fields. These saturation characteristics are explained by effects of a potential barrier at the interface between the a-C film and the substrate. The interface barrier is reduced by formation of the Ti interfacial layer, suggesting that the formation of TiC decreases the contact resistance between the substrate and the a-C film. Therefore, an approach to use carbide formation at the interface is verified as useful to improve the emission properties of a-C films.
A computational model for doctoring fluid films in gravure printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hariprasad, Daniel S., E-mail: dshari@unm.edu; Grau, Gerd; Schunk, P. Randall
2016-04-07
The wiping, or doctoring, process in gravure printing presents a fundamental barrier to resolving the micron-sized features desired in printed electronics applications. This barrier starts with the residual fluid film left behind after wiping, and its importance grows as feature sizes are reduced, especially as the feature size approaches the thickness of the residual fluid film. In this work, various mechanical complexities are considered in a computational model developed to predict the residual fluid film thickness. Lubrication models alone are inadequate, and deformation of the doctor blade body together with elastohydrodynamic lubrication must be considered to make the model predictivemore » of experimental trends. Moreover, model results demonstrate that the particular form of the wetted region of the blade has a significant impact on the model's ability to reproduce experimental measurements.« less
Bionanocomposite films based on polysaccharides from banana peels.
Oliveira, Túlio Ítalo S; Rosa, Morsyleide F; Ridout, Michael J; Cross, Kathryn; Brito, Edy S; Silva, Lorena M A; Mazzetto, Selma E; Waldron, Keith W; Azeredo, Henriette M C
2017-08-01
Pectin and cellulose nanocrystals (CNCs) isolated from banana peels were used to prepare films. The effects of a reinforcing phase (CNCs) and a crosslinker (citric acid, CA) on properties of pectin films were studied. Glycerol-plasticized films were prepared by casting, with different CNC contents (0-10wt%), with or without CA. Overall tensile properties were improved by intermediate CNC contents (around 5wt%). The water resistance and water vapor barrier properties were also enhanced by CNC. Evidences were found from Fourier Transform Infrared (FTIR) spectra supporting the occurrence of crosslinking by CA. Additionally, the tensile strength, water resistance and barrier to water vapor were improved by the presence of CA. The 13 C ssNMR spectra indicated that both CA and CNC promoted stiffening of the polymer chains. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Audier, P.; Fénot, M.; Bénard, N.; Moreau, E.
2016-02-01
The case presented here deals with plasma flow control applied to a cross-flow configuration, more specifically to a film cooling system. The ability of a plasma dielectric barrier discharge actuator for film cooling effectiveness enhancement is investigated through an experimental set-up, including a film injection from an elongated slot into a thermally uniform cross-flow. Two-dimensional particle image velocimetry and infrared-thermography measurements are performed for three different blowing ratios of M = 0.4, 0.5, and 1. Results show that the effectiveness can be increased when the discharge is switched on, as predicted by the numerical results available in literature. Whatever the blowing ratio, the actuator induces a deflection of the jet flow towards the wall, increases its momentum, and delays its diffusion in the cross-flow.
Yersak, Alexander S; Lewis, Ryan J; Tran, Jenny; Lee, Yung C
2016-07-13
Reflectometry was implemented as an in situ thickness measurement technique for rapid characterization of the dissolution dynamics of thin film protective barriers in elevated water temperatures above 100 °C. Using this technique, multiple types of coatings were simultaneously evaluated in days rather than years. This technique enabled the uninterrupted characterization of dissolution rates for different coating deposition temperatures, postdeposition annealing conditions, and locations on the coating surfaces. Atomic layer deposition (ALD) SiO2 and wet thermally grown SiO2 (wtg-SiO2) thin films were demonstrated to be dissolution-predictable barriers for the protection of metals such as copper. A ∼49% reduction in dissolution rate was achieved for ALD SiO2 films by increasing the deposition temperatures from 150 to 300 °C. ALD SiO2 deposited at 300 °C and followed by annealing in an inert N2 environment at 1065 °C resulted in a further ∼51% reduction in dissolution rate compared with the nonannealed sample. ALD SiO2 dissolution rates were thus lowered to values of wtg-SiO2 in water by the combination of increasing the deposition temperature and postdeposition annealing. Thin metal films, such as copper, without a SiO2 barrier corroded at an expected ∼1-2 nm/day rate when immersed in room temperature water. This measurement technique can be applied to any optically transparent coating.
The Evaluation and Validation of New Creep Barrier Films for Prevention of Oil Loss by Migration
NASA Astrophysics Data System (ADS)
Hampson, Matthew R.; Wardzinski, Ben
2015-09-01
Creep barrier films are used to prevent loss of oil by surface migration. This paper gives an overview of studies to select, characterise and validate creep barrier materials for spacecraft mechanisms [1].One of the more commonly used materials, Fluorad FC- 725, is no longer manufactured, and there is a need to identify a replacement.A survey of available materials was carried out, and after a series of trial tests, three materials were down- selected for the validation exercise: two new materials - 3M Novec 2708 and Dr Tillwich E2 Concentrate - alongside the obsolete Fluorad FC-725 used as a baseline.A validation procedure is defined, which may be applied to other new creep barrier materials in future. Testing confirmed that either of the new materials would be suitable for use.
A single-layer permeation barrier for organic light-emitting displays
NASA Astrophysics Data System (ADS)
Mandlik, Prashant; Gartside, Jonathan; Han, Lin; Cheng, I.-Chun; Wagner, Sigurd; Silvernail, Jeff A.; Ma, Rui-Qing; Hack, Michael; Brown, Julie J.
2008-03-01
Films of a hybrid material with part-SiO2 part-silicone character are deposited as environmental barriers on bottom-emitting and on transparent organic light-emitting diodes. Devices coated with this barrier have lifetimes of up to ˜7500h when stored at 65°C and 85% relative humidity, by far exceeding the industrial requirement of 1000h. The intensity of the Si-O-Si absorption at the wavenumber of 1075cm-1, the wetting angle by water, and the indentation hardness support the interpretation of a homogeneous material with the properties of a SiO2-silicone hybrid. The films remain intact over 58600cycles of bending to ˜0.2% tensile strain.
Durable, Low-Surface-Energy Treatments
NASA Technical Reports Server (NTRS)
Willis, Paul B.; Mcelroy, Paul M.; Hickey, Gregory S.
1992-01-01
Chemical treatment for creation of durable, low-surface-energy coatings for glass, ceramics and other protonated surfaces easily applied, and creates very thin semipermanent film with extremely low surface tension. Exhibits excellent stability; surfaces retreated if coating becomes damaged or eroded. Uses include water-repellent surfaces, oil-repellent surfaces, antimigration barriers, corrosion barriers, mold-release agents, and self-cleaning surfaces. Film resists wetting by water, alcohols, hydrocarbon solvents, and silicone oil. Has moderate resistance to abrasion, such as rubbing with cloths, and compression molding to polymers and composite materials.
The synthesis and characterization of xerogel silica films for interlayer dielectric applications
NASA Astrophysics Data System (ADS)
Chow, Loren Anton
1999-11-01
Lowering the dielectric constant, k, of the interlayer dielectric in microprocessors leads to a decrease in power consumption, crosstalk between interconnects and RC time delay. Because of its low density, porous silica, as derived from the sol-gel process, has been widely praised as having the lowest dielectric constant of all viable "low-k" materials. Presented in this work are the results of an investigation featuring the synthesis and characterization of xerogel silica films. Synthesized were xerogel films derived from a tetrafanctional precursor. Such a material was found to be brittle and given to cracking and delamination during curing. it was found, however, that organic modification of the xerogel film led to a compliant material that remained crack-free throughout the curing process. This "hybrid" material filled 0.35 mum trenches without voids, cracks or delamination. The dielectric constant was found to be extremely sensitive to moisture. Although the moisture content was lower than that detectable by Fourier-transform infrared spectroscopy, the dielectric constant in ambient conditions was 80% higher than a dry film. The voltage breakdown was 3.4 MV/cm and the leakage current during bias temperature stressing (at 200 V and 200°C) was negligibly low. There was a critical film thickness at which the film cracked. This critical film thickness was dependent on the elastic constants of the substrate and the film. Because the strain energy released by the cracking film is commensurate with the compliance of the substrate, cracks formed preferentially in the <100> directions; that is, the directions of lowest substrate modulus. The critical thickness for the <100> direction for the hybrid film cured at 500°C was found to be 1.10 mum. Furthermore, it was found that cracks from the xerogel penetrated into the Si substrate to a depth of 0.8 mum. Using substrates of different elastic constants, the biaxial modulus and the coefficient of thermal expansion were found to be respectively 56 GPa and 2.11 x 10-6/°C. With knowledge of the biaxial modulus, the depth of cracking into the Si substrate and an assumption on Poisson's ratio, the critical crack energy release rate of the film was found to be 1.8 J/m2.
Chang, Man-Jau; Huang, Huey-Chun; Chang, Hsien-Cheh; Chang, Tsong-Min
2008-07-01
Retention of water in the stratum corneum of skin epidermis plays an important role in regulation of skin function. Loss of water may decline skin appearance gradually and lead to irregular skin disorders. The root extract of Lithospermum erythrorhizon (LES) is known for its various pharmacological activities. However, the potential skin care effect of LES is not clear. The aim of this study was to evaluate the moisturizing efficacy and skin barrier repairing activity of LES. For this study, 30 healthy Asian females (age 20-30) with healthy skin had applied the test emulsions twice daily over a period of 28 days. The skin properties were measured by skin bioengineering techniques. Our preliminary results indicated that LES show moisturizing effect on skin hydration in a time- and dose-dependent pattern, and the maximum increase in skin humidity was 11.77 +/- 1.18% for emulsion LES5.00. Particularly, LES-containing emulsions significantly improve skin barrier function by decreasing the value of transepidermal water loss (TEWL) in a time- and dose-dependent pattern, and the maximum decrease in TEWL value was 7.68 +/- 0.79% for emulsion LES5.00. Taken together, our data demonstrate that LES is more effective in increasing skin humidity and decreasing the TEWL values, indicating the potential skin care effects of LES.
NASA Astrophysics Data System (ADS)
Jiao, Guohua; Liu, Bo; Li, Qiran
2015-08-01
Ultrathin RuMoC amorphous films prepared by magnetron co-sputtering with Ru and MoC targets in a sandwiched scheme Si/ p-SiOC:H/RuMoC/Cu were investigated as barrier in copper metallization. The evolution of final microstructure of RuMoC alloy films show sensitive correlation with the content of doped Mo and C elements and can be easily controlled by adjusting the sputtering power of the MoC target. There was no signal of interdiffusion between the Cu and SiOC:H layer in the sample of Cu/RuMoC/ p-SiOC:H/Si, even annealing up to 500 °C. Very weak signal of oxygen have been confirmed in the RuMoC barrier layer both as-deposited and after being annealed, and a good performance on preventing oxygen diffusion has been proved. Leakage current and resistivity evaluations also reveal the excellent thermal reliability of this Si/ p-SiOC:H/RuMoC/Cu film stack at the temperatures up to 500 °C, indicating its potential application in the advanced barrierless Cu metallization.