Development of a compact freeze vacuum drying for jelly fish (Schypomedusae)
NASA Astrophysics Data System (ADS)
Alhamid, M. Idrus; Yulianto, M.; Nasruddin
2012-06-01
A new design of a freeze vacuum drying with internal cooling and heater from condenser's heat loss was built and tested. The dryer was used to dry jelly fish (schypomedusae), to study the effect of drying parameters such as the temperature within the drying chamber on mass losses (evaporation) during the freezing stage and the moisture ratio at the end of the drying process. The midili thin layer mathematical drying model was used to estimate and predict the moisture ratio curve based on different drying chamber temperatures. This experiment shows that decreasing the drying chamber temperature with constant pressure results in less mass loss during the freezing stage Drying time was reduced with an increase in drying temperature. Decreasing the drying chamber temperature results in lower pressure saturation of the material has no effect of drying chamber pressure on mass transfer.
NASA Astrophysics Data System (ADS)
Wei, Yunbo; Chen, Kouping; Wu, Jichun; Zhu, Xiaobin
2018-06-01
In the present study, the moisture distribution on the wetting front during drainage and imbibition in a 2D sand chamber is studied thoroughly. Based on the high-resolution data measured by light transmission method, the moisture distribution is observed and then analyzed quantitatively. During drainage and imbibition, different moisture distributions are observed: (a) during drainage, moisture contents fluctuate in a larger range and fingers can be seen on the wetting front; (b) while during imbibition, moisture contents fluctuate in a smaller range and the wetting front is more regular. The Hurst coefficients are successful in capturing different characteristics of the moisture distribution between drainage and imbibition. During imbibition, the Hurst coefficients are around 0.2 on the wetting front; while during drainage, the Hurst coefficients are around 0.5. As the porosity changes from 0.336 to 0.383, the moisture distribution in the sand chamber does not display obvious change. While as the imbibition rate increases from 5 ml/min to 400 ml/min, the moisture distribution on the wetting front becomes more uniform.
EVALUATION OF RADON EMANATION FROM SOIL WITH VARYING MOISTURE CONTENT IN A SOIL CHAMBER
The paper describes measurements to quantitatively identify the extent to which moisture affects radon emanation and diffusive transport components of a sandy soil radon concentration gradient obtained in the EPA test chamber. The chamber (2X2X4 m long) was constructed to study t...
Effects of experimental warming on soil temperature, moisture and respiration in northern Mongolia
NASA Astrophysics Data System (ADS)
Sharkhuu, A.; Plante, A. F.; Casper, B. B.; Helliker, B. R.; Liancourt, P.; Boldgiv, B.; Petraitis, P.
2010-12-01
Mean annual air temperature in the Lake Hövsgöl region of northern Mongolia has increased by 1.8 °C over the last 40 years, greater than global average temperature increases. A decrease of soil moisture due to changes in precipitation regime is also predicted over the northern region of Mongolia. Warmer temperatures generally result in higher soil CO2 efflux, but responses of soil efflux to climate change may differ among ecosystems due to response variations in soil temperature and moisture regime. The objectives of our study were to examine the environmental responses (soil temperature and moisture) to experimental warming, and to test responses of soil CO2 efflux to experimental warming, in three different ecozones. The experimental site is located in Dalbay Valley, on the eastern shore of Lake Hövsgöl in northern Mongolia (51.0234° N 100.7600° E; 1670 m elevation). Replicate plots with ITEX-style open-top passive warming chambers (OTC) and non-warmed control areas were installed in three ecosystems: (1) semi-arid grassland on the south-facing slope not underlain by permafrost, (2) riparian zone, and (3) larch forest on the north-facing slope underlain by permafrost. Aboveground air temperature and belowground soil temperature and moisture (10 and 20 cm) were monitored using sensors and dataloggers. Soil CO2 efflux was measured periodically using a portable infra-red gas analyzer with an attached soil respiration chamber. The warming chambers were installed and data collected during the 2009 and 2010 growing seasons. Passive warming chambers increased nighttime air temperatures; more so in grassland compared to the forest. Increases in daytime air temperatures were observed in the grassland, but were not significant in the riparian and forest areas. Soil temperatures in warmed plots were consistently higher in all three ecozones at 10 cm depth but not at 20 cm depth. Warming chambers had a slight drying effect in the grassland, but no consistent effect in forest and riparian areas. Measured soil CO2 efflux rates were highest in riparian area, and lowest in the grassland. Initial results of soil efflux measurements suggest that the effect of warming treatment significantly depends on the ecosystem type: soil efflux rates differed between warming treatments in forest plots, but not in riparian and grassland plots.
Method and apparatus for de-watering biomass materials in a compression drying process
Haygreen, John G.
1986-01-01
A method and apparatus for more effectively squeezing moisture from wood chips and/or other "green" biomass materials. A press comprising a generally closed chamber having a laterally movable base at the lower end thereof, and a piston or ram conforming in shape to the cross-section of the chamber is adapted to periodically receive a charge of biomass material to be dehydrated. The ram is forced against the biomass material with suffcient force to compress the biomass and to crush the matrix in which moisture is contained within the material with the face of the ram being configured to cause a preferential flow of moisture from the center of the mass outwardly to the grooved walls of the chamber. Thus, the moisture is effectively squeezed from the biomass and flows through the grooves formed in the walls of the chamber to a collecting receptacle and is not drawn back into the mass by capillary action when the force is removed from the ram.
Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng
2011-10-01
A plug-flow bio-reactor of 700 L working volume for sludge bioleaching was used in this study. The reactor was operationally divided into six sections along the direction of the sludge movement. Ten duration of continuous operation of sludge bioleaching with Acidibacillus spp. and 1.2 m3 x h(-1) aeration amount was conducted. In this system, sludge retention time was 2.5 d, and the added amount of microbial nutritional substance was 4 g x L(-1). During sludge bioleaching, the dynamic changes of pH, dewaterability (specific resistance to filtration, SRF) of sewage sludge in different sections, the moisture content and moisture evaporation rate of dewatered bioleached sludge cake obtained by chamber filter press were investigated. The results showed that the SRF of sludge significantly decreased from initial 1.50 x 10(13) m x kg(-1) to the final 0.34 x 10(13) m x kg(-1). The wasted bioleached sludge was collected and dewatered by chamber filter press under the following pressures as 0.3 MPa for 4 h (2 h for feeding sludge, 2 h for holding pressure), 3 h (1.5 h for feeding sludge, 1.5 h for holding pressure), 2 h (1 h for feeding sludge, 1 h for holding pressure), and 1 h (0.5 h for feeding sludge, 0.5 h for holding pressure). Correspondingly, the moisture of dewatered sludge was reduced to 57.9%, 59.2%, 59.6%, and 63.4% of initial moisture, respectively. Moreover, the moisture content of bioleached sludge cake was reduced to about 45% and less than 10% if the cake was placed at 25 degrees C for 15 h and 96 h, respectively. Obviously, sludge bioleaching followed by sludge dewatering using chamber filter press is a promising attractive approach for sludge half-dryness treatment in engineering application.
Method for lowering the VOCS emitted during drying of wood products
Banerjee, Sujit; Boerner, James Robert; Su, Wei
2000-01-01
The present invention is directed to a method for removal of VOCs from wood products prior to drying the wood products. The method of the invention includes the steps of providing a chamber having an opening for receiving wood and loading the chamber with green wood. The wood is loaded to an extent sufficient to provide a limited headspace in the chamber. The chamber is then closed and the wood is heated in the chamber for a time and at a temperature sufficient to saturate the headspace with moisture and to substantially transfer VOCs from the wood product to the moisture in the headspace.
Vacuum leak detector and method
Edwards, Jr., David
1983-01-01
Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.
Collick, A S; Fogarty, E A; Ziegler, P E; Walter, M T; Bowman, D D; Steenhuis, T S
2006-01-01
Pathogen contamination of the public drinking water supply in the New York City watersheds is a serious concern. New York City's Watershed Agriculture Program is working with dairy farms in the watersheds to implement management practices that will reduce the risk of pathogens contaminating the water supply. Solar calf housing (SCH) was suggested as a best management practice (BMP) to control Cryptosporidium parvum, a common protozoan parasite that causes disease in humans. This BMP targets young calves because they are the primary source of C. parvum in dairy herds. The objective of this project was to assess and compare the survivability of C. parvum in SCH and in conventional calf housing (CCH), usually located in the main barn. C. parvum oocysts were secured in sentinel chambers and placed in SCH and CCH bedding on four farms. The chambers were in thermal, chemical, and moisture equilibrium with their microenvironments. An oocyst-filled control chamber, sealed from its surroundings, was placed near each chamber. Chambers and controls were sampled after 4, 6, and 8 wk. Oocyst viability in the chambers decreased to less than 10% in warm months and between 15 and 30% in the winter months. The viability of the control oocysts was similar to the chambers during warm months and generally higher during winter months. There was no significant (P > 0.05) difference in the viability decrease between SCH and CCH. Although oocyst viability was similar in both types of calf housing, SCH allow contaminated calf manure to be isolated from the main barn manure and potentially managed differently and in a way to decrease the number of viable oocysts entering the environment during field spreading.
Kim, Jae Yong; Kim, Myoung Joon; Lim, Byeong Gak
2016-01-01
Purpose. To assess the effect of three-dimensional (3D) printed personalized moisture chamber spectacles (PMCS) on the periocular humidity. Methods. Facial computed tomography (CT) scanning was conducted on 10 normal subjects. PMCS was designed based on volume rendered CT images and produced using a 3D printer. Periocular humidity of PMCS and commercially available uniformed moisture chamber spectacles (UMCS) were measured for 30 minutes via microhydrometer. Results. The mean ambient humidity was 15.76 ± 1.18%. The mean periocular humidity was 52.14 ± 3.00% in PMCS and 37.67 ± 8.97% in UMCS. The difference was significant (P < 0.001). Additionally, PMCS always demonstrated lower humidity than dew points. Conclusion. PMCS made by 3D printer provides appropriate fitness for the semiclosed humid chamber. PMCS showed higher performance than UMCS. The wearing of PMCS would be an effective method to provide high enough periocular humidity in low humidity environment. PMID:27843644
Moisture separator reheater with round tube bundle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byerley, W. M.
1984-11-27
A moisture separator reheater having a central chamber with cylindrical wall protions and a generally round tube bundle, the tube bundle having arcuate plates disposed on each side of the bundle which form a wrapper on each side of the bundle and having a tongue and groove juncture between the wrapper and cylindrical wall portions to provide a seal therebetween and a track for installing and removing the tube bundle from the central chamber.
Laboratory experiments of heat and moisture fluxes through supraglacial debris
NASA Astrophysics Data System (ADS)
Nicholson, Lindsey; Mayer, Christoph; Wirbel, Anna
2014-05-01
Inspired by earlier work (Reznichenko et al., 2010), we have carried out experiments within a climate chamber to explore the best ways to measure the heat and moisture fluxes through supraglacial debris. Sample ice blocks were prepared with debris cover of varying lithology, grain size and thickness and were instrumented with a combination of Gemini TinyTag temperature/relative humidity sensors and Decagon soil moisture sensors in order to monitor the heat and moisture fluxes through the overlying debris material when the experiment is exposed to specified solar lamp radiation and laminar airflow within the temperature-controlled climate chamber. Experimental results can be used to determine the optimal set up for numerical models of heat and moisture flux through supraglacial debris and also indicate the performance limitations of such sensors that can be expected in field installations. Reznichenko, N., Davies, T., Shulmeister, J. and McSaveney, M. (2010) Effects of debris on ice-surface melting rates: an experimental study. Journal of Glaciology, Volume 56, Number 197, 384-394.
Design and Applications of a Climatic Chamber for in-situ Neutron Imaging Experiments
NASA Astrophysics Data System (ADS)
Mannes, David; Schmid, Florian; Wehmann, Timon; Lehmann, Eberhard
Due to the high sensitivity for hydrogen, the detection and quantification of moisture and moisture transport processes are some of the key topics in neutron imaging. Especially when dealing with hygroscopic material, such as wood and other porous media, it is crucial for quantitative analyses to know and control the ambient conditions of the sample precisely. In this work, a neutron transparent climatic chamber is presented, which was designed and built for the imaging facilities at the Paul Scherrer Institut (PSI), Villigen (CH). The air-conditioned measuring system consists of the actual sample chamber and a moisture generator providing air with adjustable temperature and relative humidity (%RH) (up to a dew point temperature of 70 °C). The two components are connected with a flexible tube, which features insulation, a heating system and temperature sensors to prevent condensation within the tube. The sample chamber itself is equipped with neutron transparent windows, insulating double walls with three feed-through openings for the rotation stage, sensors for humidity and temperature. Thermoelectric modules allow to control the chamber temperature in the range of -20 °C to 100 °C. The chamber allows to control the climatic conditions either in a static mode (stable temperature and %RH) or in dynamic mode (humidity or temperature cycles). The envisaged areas of application are neutron radiography and tomography investigations of dynamic processes in building materials (e.g. wood, concrete), food science and any other application necessitating the control of the climatic conditions.
Peltoniemi, Krista; Laiho, Raija; Juottonen, Heli; Kiikkilä, Oili; Mäkiranta, Päivi; Minkkinen, Kari; Pennanen, Taina; Penttilä, Timo; Sarjala, Tytti; Tuittila, Eeva-Stiina; Tuomivirta, Tero; Fritze, Hannu
2015-07-01
Impacts of warming with open-top chambers on microbial communities in wet conditions and in conditions resulting from moderate water-level drawdown (WLD) were studied across 0-50 cm depth in northern and southern boreal sedge fens. Warming alone decreased microbial biomass especially in the northern fen. Impact of warming on microbial PLFA and fungal ITS composition was more obvious in the northern fen and linked to moisture regime and sample depth. Fungal-specific PLFA increased in the surface peat in the drier regime and decreased in layers below 10 cm in the wet regime after warming. OTUs representing Tomentella and Lactarius were observed in drier regime and Mortierella in wet regime after warming in the northern fen. The ectomycorrhizal fungi responded only to WLD. Interestingly, warming together with WLD decreased archaeal 16S rRNA copy numbers in general, and fungal ITS copy numbers in the northern fen. Expectedly, many results indicated that microbial response on warming may be linked to the moisture regime. Results indicated that microbial community in the northern fen representing Arctic soils would be more sensitive to environmental changes. The response to future climate change clearly may vary even within a habitat type, exemplified here by boreal sedge fen. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dai, S F; Gao, F; Xu, X L; Zhang, W H; Song, S X; Zhou, G H
2012-01-01
1. An experiment was conducted to evaluate the effects of dietary glutamine (Gln, 0 and 5 g/kg) and gamma-aminobutyric acid (GABA, 0 and 100 mg/kg) on raw breast meat colour, pH, composition and water-holding characteristic of broilers under cyclic heat stress (HS). 2. A total of 360 21-d-old Arbor Acres male chicks were randomly assigned to 5 treatment groups (6 replicates of 12 birds per cage). The positive control (PC) broilers were kept in a thermoneutral chamber (22-24°C) and fed on the basal diet. The other 4 groups were kept in a cyclic HS chamber (30-34°C) for 9 h (from 09:00 to 18:00). 3. A significant increase was observed in breast meat lightness at 28, 35 and 42 d; and pH values at 28, 35 and 42 d; while a significant decrease was observed in breast meat cooking loss (CL) and contents of moisture, crude protein (CP), crude fat (CF) and crude ash (CA) due to HS. 4. The supplementation with 0·5 g Gln/kg decreased lightness at 28, 35 and 42 d; while increasing redness at 28 d, yellowness at 35 d, contents of CP, CF and CA, thawing loss (TL) and drip loss (DL). The addition of 100 mg GABA/kg decreased lightness at 28 and 35 d, pH value at 28, 35 and 42 d, and TL; while increasing redness at 28 d, 35 and 42 d, contents of moisture, CP and CF. 5. The lightness, redness, and pH value; contents of moisture, CP, CF and CA; and TL, DL and CL of breast meat of broilers fed with the mixture of Gln and GABA under cyclic HS were similar to those of the broilers in the PC group. 6. Significant interactions were found between Gln and GABA for yellowness at 28 and 35 d; pH at 28, 35 and 42 d; moisture content, CP content, water-holding capacity and TL. 7. These results demonstrated that dietary Gln and GABA offer a potential nutritional strategy to prevent cyclic HS-related depression in broiler meat chemical composition and quality.
NASA Astrophysics Data System (ADS)
Schubert, B.; Jahren, A. H.
2017-12-01
Hundreds of chamber and field experiments have shown an increase in C3 plant biomass in response to elevated atmospheric carbon dioxide (pCO2); however, secondary water and nutrient deficits are thought to limit this response. Some have hypothesized that secondary limitation might be self-alleviating under elevated pCO2 as greater root biomass imparts enhanced access to water and nutrients. Here we present results of growth chamber experiments designed to test this hypothesis: we grew 206 Arabidopsis thaliana plants within 5 growth chambers, each set at a different level of pCO2: 390, 685, 1075, 1585, and 2175 ppmv. Within each growth chamber, soil moisture content (θm) was maintained across a spectrum: 1.50, 0.83, 0.44, and 0.38 g g-1. After 3 weeks of total growth, tissues were analyzed for both biomass and net carbon isotope discrimination (Δ13C) value. From these values, we calculated Δresidual, which represents the residual effect of water stress after subtraction of the effect of pCO2 due to photorespiration. Across the full range of moisture content, Δresidual displayed a significant 2.5‰ increase with increasing pCO2. This further implies a 0.1 unit increase in ci/ca, consistent with decreased water stress at elevated pCO2. The influence of CO2 fertilization on the alleviation of water stress was further evidenced in a positive correlation between percent biomass change and Δresidual, such that a doubling of plant biomass yielded a 1.85‰ increase in carbon isotope discrimination. In addition to providing new insight into water uptake in plants growing under elevated carbon dioxide, these data underscore the importance of separating the effects of increased pCO2 (via photorespiration) and altered ci/ca (via stomatal conductance) when considering changes in the Δ13C value of C3 land plants during the Anthropocene, or across any geological period that includes a marked change in global carbon cycling.
NASA Astrophysics Data System (ADS)
Pilli, Siva P.
Moisture plays a significant role in influencing the mechanical behavior and long-term durability of composites. The objective of this dissertation was to understand the basic concepts of moisture transport in polymeric composites. Humidity test chambers were used in combination with D2O water to characterize the diffusion of D2O using Nuclear Reaction Analysis (NRA). Moisture content was measured as a function of through-thickness depth using NRA. In this study a novel method to measure the orthotropic diffusivities of polymer matrix composites has been demonstrated. This was achieved by soaking the samples in D2O vapor and subsequently characterizing the diffusion of D2O at all edges of the coupon using NRA. The diffusivity through the surface was 3½ times higher than the diffusivity through the edges. A direct comparison of experimental data with models using orthotropic diffusivities was in relatively good agreement. Surface moisture content was also measured as a function of time using NRA. It was shown that the surface concentration reaches an intermediate value of 79% Mm very rapidly and is followed by a slow linear increase to the saturation level (Mm). This research also interrogates the effect of pressure on diffusion. Test chambers were built to maintain a constant relative humidity of 80% at 60°C at three different pressures (0.101 MPa, 0.517 MPa and 1.034 MPa) including a liquid water immersion test chamber at 60°C. In this study it was observed that the time to saturation increased with increasing chamber pressure. This was primarily due to the increased maximum moisture content at higher pressures. Liquid immersion of the test samples provided the upper bound for maximum moisture content and a lower bound for time to saturation. The effects of material systems and layups on humidity measurements were also studied using two different polymer composite material systems, Cycom and Toray. Diffusivity results were identical for different layups whereas differences were observed for different material systems. Finally three-dimensional numeric models were developed, using ANSYS, to compare with the measured moisture content. Models incorporating the time-dependent and 3-D diffusion have shown an improved correlation with experiments.
Continuous microwave regeneration apparatus for absorption media
Smith, Douglas D.
1999-01-01
A method and apparatus for continuously drying and regenerating ceramic beads for use in process gas moisture drying operations such as glove boxes. A microwave energy source is coupled to a process chamber to internally heat the ceramic beads and vaporize moisture contained therein. In a preferred embodiment, the moisture laden ceramic beads are conveyed toward the microwave source by a screw mechanism. The regenerated beads flow down outside of the screw mechanism and are available to absorb additional moisture.
Searles, James A; Aravapalli, Sridhar; Hodge, Cody
2017-10-01
Secondary drying is the final step of lyophilization before stoppering, during which water is desorbed from the product to yield the final moisture content. We studied how chamber pressure and partial pressure of water vapor during this step affected the time course of water content of aqueous solutions of polyvinylpyrrolidone (PVP) in glass vials. The total chamber pressure had no effect when the partial pressure of water vapor was very low. However, when the vapor phase contained a substantial fraction of water vapor, the PVP moisture content was much higher. We carried out dynamic vapor sorption experiments (DVS) to demonstrate that the higher PVP moisture content was a straightforward result of the higher water vapor content in the lyophilizer. The results highlight that the partial pressure of water vapor is extremely important during secondary drying in lyophilization, and that lower chamber pressure set points for secondary drying may sometimes be justified as a strategy for ensuring low partial pressure of water vapor, especially for lyophilizers that do not inject dry gas to control pressure. These findings have direct application for process transfers/scale ups from freeze-dryers that do not inject dry gas for pressure control to those that do, and vice versa.
Effect of Soil Water Potential on Growth of Apple Trees Infected with Pratylenchus penetrans
Jaffee, B. A.; Mai, W. F.
1979-01-01
Malling-Merton 106 apple rootstocks inoculated with Pratylenchus penetrans, or uninoculated, were grown in a growth chamber in pots of loamy sand maintained at two moisture levels, 0 to -0.4 bar or 0 to -10 bars. Either inoculation or low soil moisture suppressed shoot growth and increased root necrosis. However, the nematode-soil moisture interaction was not significant. PMID:19305552
Tom, Asha P; Pawels, Renu; Haridas, Ajit
2016-03-01
Municipal solid waste with high moisture content is the major hindrance in the field of waste to energy conversion technologies and here comes the importance of biodrying process. Biodrying is a convective evaporation process, which utilizes the biological heat developed from the aerobic reactions of organic components. The numerous end use possibilities of the output are making the biodrying process versatile, which is possible by achieving the required moisture reduction, volume reduction and bulk density enhancement through the effective utilization of biological heat. In the present case study the detailed research and development of an innovative biodrying reactor has been carried out for the treatment of mixed municipal solid waste with high moisture content. A pilot scale biodrying reactor of capacity 565 cm(3) was designed and set up in the laboratory. The reactor dimensions consisted of an acrylic chamber of 60 cm diameter and 200 cm height, and it was enveloped by an insulation chamber. The insulation chamber was provided to minimise the heat losses through the side walls of the reactor. It simulates the actual condition in scaling up of the reactor, since in bigger scale reactors the heat losses through side walls will be negligible while comparing the volume to surface area ratio. The mixed municipal solid waste with initial moisture content of 61.25% was synthetically prepared in the laboratory and the reactor was fed with 109 kg of this substrate. Aerobic conditions were ensured inside the reactor chamber by providing the air at a constant rate of 40 litre per minute, and the direction of air flow was from the specially designed bottom air chamber to the reactor matrix top. The self heating inside reactor matrix was assumed in the range of 50-60°C during the design stage. Innovative biodrying reactor was found to be efficiently working with the temperature inside the reactor matrix rising to a peak value of 59°C by the fourth day of experiment (the peak observed at a height of 60 cm from the air supply). The process analyses results were promising with a reduction of 56.5% of volume, and an increase of 52% of bulk density of the substrate at the end of 33 days of biodrying. Also the weight of mixed MSW substrate has been reduced by 33.94% in 20 days of reaction and the average moisture reduction of the matrix was 20.81% (reduced from the initial value of 61.25% to final value of 48.5%). The moisture reduction would have been higher, if the condensation of evaporated water at the reactor matrix has been avoided. The non-homogeneous moisture reduction along the height of the reactor is evident and this needs further innovation. The leachate production has been completely eliminated in the innovative biodrying reactor and that is a major achievement in the field of municipal solid waste management technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Monitoring of the secondary drying in freeze-drying of pharmaceuticals.
Fissore, Davide; Pisano, Roberto; Barresi, Antonello A
2011-02-01
This paper is focused on the in-line monitoring of the secondary drying phase of a lyophilization process. An innovative software sensor is presented to estimate reliably the residual moisture in the product and the time required to complete secondary drying, that is, to reach the target value of the residual moisture or of the desorption rate. Such results are obtained by coupling a mathematical model of the process and the in-line measurement of the solvent desorption rate and by means of the pressure rise test or another sensors (e.g., windmills, laser sensors) that can measure the vapor flux in the drying chamber. The proposed method does not require extracting any vial during the operation or using expensive sensors to measure off-line the residual moisture. Moreover, it does not require any preliminary experiment to determine the relationship between the desorption rate and residual moisture in the product. The effectiveness of the proposed approach is demonstrated by means of experiments carried out in a pilot-scale apparatus: in this case, some vials were extracted from the drying chamber and the moisture content was measured to validate the estimations provided by the soft-sensor. Copyright © 2010 Wiley-Liss, Inc.
High temperature causes negative whole-plant carbon balance under mild drought.
Zhao, Junbin; Hartmann, Henrik; Trumbore, Susan; Ziegler, Waldemar; Zhang, Yiping
2013-10-01
Theoretically, progressive drought can force trees into negative carbon (C) balance by reducing stomatal conductance to prevent water loss, which also decreases C assimilation. At higher temperatures, negative C balance should be initiated at higher soil moisture because of increased respiratory demand and earlier stomatal closure. Few data are available on how these theoretical relationships integrate over the whole plant. We exposed Thuja occidentalis to progressive drought under three temperature conditions (15, 25, and 35°C), and measured C and water fluxes using a whole-tree chamber design. High transpiration rates at higher temperatures led to a rapid decline in soil moisture. During the progressive drought, soil moisture-driven changes in photosynthesis had a greater impact on the whole-plant C balance than respiration. The soil moisture content at which whole-plant C balance became negative increased with temperature, mainly as a result of higher respiration rates and an earlier onset of stomatal closure under a warmer condition. Our results suggest that the effect of drought on whole-plant C balance is highly temperature-dependent. High temperature causes a negative C balance even under mild drought and may increase the risk of C starvation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
The impact of extreme environmental factors on the mineralization potential of the soil
NASA Astrophysics Data System (ADS)
Zinyakova, Natalia; Semenov, Vyacheslav
2016-04-01
Warming, drying, wetting are the prevalent disturbing natural impacts that affect the upper layers of uncultivated and arable soils. The effect of drying-wetting cycles act as a physiological stress for the soil microbial community and cause changes in its structure, the partial death or lysis of the microbial biomass. The mobilization of the SOM and the stabilization of the potentially mineralizable components lead to change of mineralization potential in the soil. To test the effects of different moisture regime on plant growth and soil biological properties, plot experiment with the gray forest soil including trials with plants (corn) and bare fallow was performed. Different regimes of soil moisture (conditionally optimal, relatively deficient soil moisture and repeated cycles of drying-wetting) were created. Control of soil moisture was taken every two or three days. Gas sampling was carried out using closed chambers. Soil samples were collected at the end of the pot experiment. The potentially mineralizable content of soil organic carbon (SOC) was measured by biokinetic method based on (1) aerobic incubation of soil samples under constant temperature and moisture conditions during 158 days, (2) quantitation of C-CO2, and (3) fitting of C-CO2 cumulative curve by a model of first-order kinetic. Total soil organic carbon was measured by Tyrin's wet chemical oxidation method. Permanent deficient moisture in the soil favored the preservation of potentially mineralizable SOC. Two repeated cycles of drying-wetting did not reduce the potentially mineralizable carbon content in comparison with control under optimal soil moisture during 90 days of experiment. The emission loss of C-CO2 from the soil with plants was 1.4-1.7 times higher than the decrease of potentially mineralizable SOC due to the contribution of root respiration. On the contrary, the decrease of potentially mineralized SOC in the soil without plants was 1.1-1.2 times larger than C-CO2 emissions from the soil as a result of stabilization processes. Thus, the alternation of drying-wetting cycles results in 1) the death of microbial biomass and recolonization of the soil microorganisms; 2) favors the splitting and degradation of soil aggregates, as well as the reaggregation and stabilization of aggregates; 3) contributes to the mobilization of the SOM and also 4) initiates the stabilization of the potentially mineralizable components. The effect of drying-wetting cycles is expressed not so much in the loss of the total soil organic carbon as in the degradation of the SOM quality with decreasing its mineralization potential. We can conclude that different soil moisture regimes lead to essential changes of mineralization potential in the gray forest soil. The amount of mineralization loss soil carbon via C-CO2 emission is directly associated with the decrease of potentially mineralizable carbon. Deficient moisture is a reason for temporarily sequestration of SOC potentially mineralizable under optimal moisture. This work was supported by RSF. Project number 14-14-00625
Tensiometer and method of determining soil moisture potential in below-grade earthen soil
Hubbell, J.M.; Mattson, E.D.; Sisson, J.B.
1998-06-02
A tensiometer to in-situ determine below-grade soil moisture, potential of earthen soil includes, (a) an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and, comprising; (b) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; (c) a first fluid conduit extending outwardly of the first fluid chamber; (d) a first controllable isolation valve provided within the first fluid conduit, the first controllable isolation valve defining a second fluid chamber in fluid communication with the first fluid chamber through the first fluid conduit and the isolation valve, the first controllable isolation valve being received within the below-grade portion; and (e) a pressure transducer in fluid communication with the first fluid chamber, the pressure transducer being received within the below-grade portion. An alternate embodiment includes an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and including: (1) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; and (2) a pressure sensing apparatus in fluid communication with the first fluid chamber, the pressure sensing apparatus being entirely received within the below-grade portion. A method is also disclosed using the above and other apparatus. 6 figs.
Tensiometer and method of determining soil moisture potential in below-grade earthen soil
Hubbell, Joel M.; Mattson, Earl D.; Sisson, James B.
1998-01-01
A tensiometer to in situ determine below-grade soil moisture, potential of earthen soil includes, a) an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and, comprising; b) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; c) a first fluid conduit extending outwardly of the first fluid chamber; d) a first controllable isolation valve provided within the first fluid conduit, the first controllable isolation valve defining a second fluid chamber in fluid communication with the first fluid chamber through the first fluid conduit and the isolation valve, the first controllable isolation valve being received within the below-grade portion; and e) a pressure transducer in fluid communication with the first fluid chamber, the pressure transducer being received within the below-grade portion. An alternate embodiment includes an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and including: i) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; and ii) a pressure sensing apparatus in fluid communication with the first fluid chamber, the pressure sensing apparatus being entirely received within the below-grade portion. A method is also disclosed using the above and other apparatus.
Effect of soil moisture on the temperature sensitivity of Northern soils
NASA Astrophysics Data System (ADS)
Minions, C.; Natali, S.; Ludwig, S.; Risk, D.; Macintyre, C. M.
2017-12-01
Arctic and boreal ecosystems are vast reservoirs of carbon and are particularly sensitive to climate warming. Changes in the temperature and precipitation regimes of these regions could significantly alter soil respiration rates, impacting atmospheric concentrations and affecting climate change feedbacks. Many incubation studies have shown that both temperature and soil moisture are important environmental drivers of soil respiration; this relationship, however, has rarely been demonstrated with in situ data. Here we present the results of a study at six field sites in Alaska from 2016 to 2017. Low-power automated soil gas systems were used to measure soil surface CO2 flux from three forced diffusion chambers and soil profile concentrations from three soil depth chambers at hourly intervals at each site. HOBO Onset dataloggers were used to monitor soil moisture and temperature profiles. Temperature sensitivity (Q10) was determined at each site using inversion analysis applied over different time periods. With highly resolved data sets, we were able to observe the changes in soil respiration in response to changes in temperature and soil moisture. Through regression analysis we confirmed that temperature is the primary driver in soil respiration, but soil moisture becomes dominant beyond a certain threshold, suppressing CO2 flux in soils with high moisture content. This field study supports the conclusions made from previous soil incubation studies and provides valuable insights into the impact of both temperature and soil moisture changes on soil respiration.
The paper presents an analysis of steady-state diffusion in the soil for two different conditions of moisture. The model accounts for multiphase emanation and transport. When the position dependence of the moisture profile is taken into account, the model and measurements agree w...
Zong, Ning; Shi, Peili; Jiang, Jing; Song, Minghua; Xiong, Dingpeng; Ma, Weiling; Fu, Gang; Zhang, Xianzhou; Shen, Zhenxi
2013-01-01
Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N) deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m(3) m(-3). N addition enhanced ecosystem respiration (Reco); nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems.
Shi, Peili; Jiang, Jing; Song, Minghua; Xiong, Dingpeng; Ma, Weiling; Fu, Gang; Zhang, Xianzhou; Shen, Zhenxi
2013-01-01
Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N) deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m3 m−3. N addition enhanced ecosystem respiration (Reco); nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems. PMID:24459432
NASA Astrophysics Data System (ADS)
Thanthong, P.; Mustafa, Y.; Ngamrungroj, D.
2017-09-01
Today, dried shrimp in the market were refused food colour and drying until shrimp are colourful and tasty. Meanwhile, Community groups, women’s health trying to produce food products come from herbs. As an alternative to consumers. The production process is also a traditional way to dry. In order to extend the shelf life longer. Sometimes, potential risks, both in quality and quantity of products. As a result, consumers are enormous. Thus, this research aims to study the possibility to produce shrimp dried mixed with turmeric and salt. Then dried shrimp mixed with turmeric and salt to keep up the quality criteria of the Food and Drug Administration-FDA It can reduce the risk of the consumer and can keep up in a kitchen Thailand. When buying shrimp from the fisherman’s boat Will be made clear, clean impurities and shaking the sand to dry. Prepare a mixture of turmeric and salt. The shrimp were dipped into a beef with stirrer for 3 minutes. And scoop up centrifugal shrimp with dried. Measurement of initial moisture content averaging 78%wb. Then drying technique Spouted enter the rectangular chamber a continuous manner. Until average moisture content to 17%wb. The air temperature in the drying chamber at 180 °C and hot air speed 4.5 m/s, a state heat transfer Mass and moisture within the shrimp. In chamber when drying, the shrimp have moved freely behaviour can spit water out faster does not burn. Shaving legs of shrimp shell fragments lightweight is sorting out the top of drying chamber. Private shrimp were dried out to the front of the quad drying chamber. Power consumption 27.5 MJ/kg, divided into electrical energy 12.3 MJ/kg and thermal energy is 15.2 MJ/kg. The hot air comes from burning LPG gas burner with dual automatic. And can adjustable to room temperature drying characteristics modulation setting.
Partitioning evapotranspiration in sparsely vegetated rangeland using a portable chamber
Stannard, David I.; Weltz, Mark A.
2006-01-01
A portable chamber was used to separate evapotranspiration (ET) from a sparse, mixed‐species shrub canopy in southeastern Arizona, United States, into vegetation and soil components. Chamber measurements were made of ET from the five dominant species, and from bare soil, on 3 days during the monsoon season when the soil surface was dry. The chamber measurements were assembled into landscape ET using a simple geometric model of the vegetated land surface. Chamber estimates of landscape ET were well correlated with, but about 26% greater than, simultaneous eddy‐correlation measurements. Excessive air speed inside the chamber appears to be the primary cause of the overestimate. Overall, transpiration accounted for 84% of landscape ET, and bare soil evaporation for 16%. Desert zinnia, a small (∼0.1 m high) but abundant species, was the greatest water user, both per unit area of shrub and of landscape. Partitioning of ETinto components varied as a function of air temperature and shallow soil moisture. Transpiration from shorter species was more highly correlated with air temperature whereas transpiration from taller species was more highly correlated with shallow soil moisture. Application of these results to a full drying cycle between rainfalls at a similar site suggests that during the monsoon, ET at such sites may be about equally partitioned between transpiration and bare soil evaporation.
Mass transfer parameters of celeriac during vacuum drying
NASA Astrophysics Data System (ADS)
Beigi, Mohsen
2017-04-01
An accurate prediction of moisture transfer parameters is very important for efficient mass transfer analysis, accurate modelling of drying process, and better designing of new dryers and optimization of existing drying process. The present study aimed to investigate the influence of temperature (e.g., 55, 65 and 75 °C) and chamber pressure (e.g., 0.1, 3, 7, 10, 13 and 17 kPa) on effective diffusivity and convective mass transfer coefficient of celeriac slices during vacuum drying. The obtained Biot number indicated that the moisture transfer in the celeriac slices was controlled by both internal and external resistance. The effective diffusivity obtained to be in the ranges of 7.5231 × 10-10-3.8015 × 10-9 m2 s-1. The results showed that the diffusivity increased with increasing temperature and decreasing pressure. The mass transfer coefficient values varied from 4.6789 × 10-7 to 1.0059 × 10-6 m s-1, and any increment in drying temperature and pressure caused an increment in the coefficient.
Sidewall tensiometer and method of determining soil moisture potential in below-grade earthen soil
Hubbell, Joel M.; Sisson, James B.
2001-01-01
A sidewall tensiometer to in situ determine below-grade soil moisture potential of earthen soil includes, a) a body adapted for insertion into an opening in earthen soil below grade, the body having lateral sidewalls; b) a laterally oriented porous material provided relative to the body lateral sidewalls, the laterally oriented porous material at least in part defining a fluid chamber within the body; c) a pressure a sensor in fluid communication with the fluid chamber; and d) sidewall engaging means for engaging a portion of a sidewall of an earth opening to laterally urge the porous material into hydraulic communication with earthen soil of another portion of the opening sidewall. Methods of taking tensiometric measurements are also disclosed.
Carbon dioxide and methane fluxes from the transitional zone of a Virginia ephemeral wetland
NASA Astrophysics Data System (ADS)
Atkins, J. W.; Epstein, H. E.; Welsch, D. L.
2014-12-01
The spatial and temporal controls mediating the switch between anaerobic and aerobic respiration within soils located in transitional zones adjacent to ephemeral wetlands remains unclear. As ephemeral wetlands dry down, a soil moisture gradient develops in adjacent transitional zones resulting in changes to the soil environment—moving from anoxic to oxic conditions. Under oxic conditions, aerobic decomposition and CO2 fluxes should dominate, while under anoxic conditions, anaerobic decomposition and CH4 emissions should be more prominent. To investigate the spatial controls and temporal dynamics of anaerobic and aerobic respiration we ran three 20 m transects starting from the late spring peak wetland edge (June 1, 2014 max. lake extent) of Lake Arnold, an ephemeral wetland located at Blandy Experimental Farm in Boyce, Virginia. At 10 m intervals along each transect, high-resolution soil moisture and temperature sensors were installed at three depth levels in the soil (5 cm, 20 cm, and 50 cm). Soil surface CO2 efflux was measured weekly at 5 m intervals using a portable, infra-red gas analyzer and surface chamber (EGM-4 and SRC-1; PP Systems; Amherst, MA). CH4 emissions were sampled weekly using a non-steady state chamber at 10 m intervals along each transect and analyzed in the lab using gas chromatography. Redox potential was measured weekly at two soil depths (5 cm and 20 cm) at 5 m intervals using platinum electrodes and a Ag/Cl reference electrode. Lake Arnold water levels decreased at a rate of 18.16 mm day-1 during the month of July. Preliminary results show a distinct drop in soil moisture at 5 and 20 cm depths at the 0 and 10 m distances along each transect. At 50 cm, soil moisture shows no distinct trend. Late July measurements of redox potential ranged from -196 mV to 865 mV and was correlated with soil moisture (R2 = 0.52). Rates of soil CO2 efflux were diminished at volumetric water contents (VWC) above 45% (ranging from 2.45 - 7.3 µmol CO2 m-2 sec-1). Below 45% VWC, soil CO2 efflux rates ranged from 4.5 - 9.6 µmol CO2 m-2 sec-1.
Tensiometer and method of determining soil moisture potential in below-grade earthen soil
Hubbell, Joel M.; Sisson, James B.
1997-01-01
A portable tensiometer to in situ determine below-grade soil moisture potential of earthen soil includes, a) a body having opposing first and second ends and being adapted for complete insertion into earthen soil below grade; b) a porous material provided at the first body end, the porous material at least in part defining a fluid chamber within the body at the first body end, the fluid chamber being fluidically sealed within the body but for the porous material; c) a degassed liquid received within the fluid chamber; d) a pressure transducer mounted in fluid communication with the fluid chamber; e) the body, pressure transducer and degassed liquid having a combined mass; f) a flexible suspension line connected to the body adjacent the second body end, the flexible line being of sufficient strength to gravitationally freely self suspend the combined mass; and c) the combined mass being sufficient to effectively impart hydraulic communication between below-grade earthen soil contacted by the porous material under the weight of the combined mass. Tensiometers configured to engage the sidewalls of an earthen opening are also disclosed. Methods of taking tensiometric measurements are also disclosed.
Tensiometer and method of determining soil moisture potential in below-grade earthen soil
Hubbell, J.M.; Sisson, J.B.
1997-07-08
A portable tensiometer to in-situ determine below-grade soil moisture potential of earthen soil includes, (a) a body having opposing first and second ends and being adapted for complete insertion into earthen soil below grade; (b) a porous material provided at the first body end, the porous material at least in part defining a fluid chamber within the body at the first body end, the fluid chamber being fluidically sealed within the body but for the porous material; (c) a degassed liquid received within the fluid chamber; (d) a pressure transducer mounted in fluid communication with the fluid chamber; (e) the body, pressure transducer and degassed liquid having a combined mass; (f) a flexible suspension line connected to the body adjacent the second body end, the flexible line being of sufficient strength to gravitationally freely self suspend the combined mass; and (g) the combined mass being sufficient to effectively impart hydraulic communication between below-grade earthen soil contacted by the porous material under the weight of the combined mass. Tensiometers configured to engage the sidewalls of an earthen opening are also disclosed. Methods of taking tensiometric measurements are also disclosed. 12 figs.
Space Technology for Crop Drying
NASA Technical Reports Server (NTRS)
1980-01-01
McDonnell Douglas came up with a new method of drying agricultural crops derived from vacuum chamber technology called MIVAC, a compression of microwave vacuum drying system. A distant cousin of the home microwave oven, MIVAC dries by means of electrically- generated microwaves introduced to a crop-containing vacuum chamber. Microwaves remove moisture quickly and the very low pressure atmosphere in the chamber permits effective drying at much lower than customary temperatures. Thus energy demand is doubly reduced by lower heat requirement and by the shorter time electric power is needed.
NASA Astrophysics Data System (ADS)
Roh, Y.; Li, G.; Han, S. H.; Abu Salim, K.; Son, Y.
2017-12-01
Since coarse woody debris (CWD) respiration (Rcwd) has an important role in carbon (C) cycling in forest ecosystems, it is a significant parameter in an investigation of CWD decomposition rate. Rcwd is known as to be influenced not only by environmental factors but also by CWD properties (e.g., moisture content). This study investigated the effects of CWD moisture content on Rcwd in a lowland mixed Dipterocarp tropical rainforest of Brunei Darussalam. CWDs in the forest were selected and categorized into two decay classes (sound and partially decomposed), and three diameter classes (10-20 cm, 20-30 cm, more than 30 cm). Samplings of CWDs were conducted in February and October, 2016. The fresh weight and Rcwd of the samples were measured within 24 h of sampling. Rcwd measurements were conducted using a closed chamber system with a diffusion-type, non-dispersive infrared (NDIR) sensor. In February, the fresh weight and Rcwd of the samples were remeasured, after submerging them in the fresh water for 24, 48, and 72 h. The Rcwd increased significantly with moisture content in February (r2=0.25, p<0.01). During the study period from February to October, 2016, the mean value of Rcwd (±SE) decreased from 18.26 (3.45) to 14.92 (2.67) mg C kg-1 h-1 (p<0.05), although the moisture content did not change significantly (p>0.05). Rcwd was lowest in the largest diameter class (p<0.01), and not significantly different between the decay classes (p>0.05). On the basis of these results, the Rcwd in this site was in the range of Rcwd in previous studies conducted in other tropical rainforests. Rcwd increased with moisture content, however, the contribution of moisture content to changes in Rcwd might not be influential during the eight months study period.*Supported by research grants from the Korea Forest Service (2017044B10-1719-BB01).
Zero Power Warming (ZPW) Chamber Prototype Measurements, Barrow, Alaska, 2016
Shawn Serbin; Alistair Rogers; Kim Ely
2017-02-10
Data were collected during one season of prototyping associated with the development of a passive warming technology. An experimental chamber, the Zero Power Warming (ZPW) chamber, was fitted with apparatus to modulate venting of a field enclosure and enhance elevation of air temperature by solar radiation. The ZPW chamber was compared with a control chamber (Control) and an ambient open air plot (Ambient). The control chamber was identical to the ZPW chamber but lacked the apparatus necessary to modulate venting, the chamber vents in the control chamber were fixed open for the majority of the trial period. The three plots were located over Carex aquatilis growing in an area of moderately degraded permafrost. Chambers were placed on the same footprints that were used for a similar exercise in 2015 (no data) and therefore those plots had experienced some thaw and degradation prior to 2016. The following data were collected for 80 days at 1 minute intervals from within two chambers and an ambient plot: solar input, chamber venting, air temperature, relative humidity, soil temperature (at 5, 10 and 15 cm), soil moisture, downward and upward NIR.
Shibata, Marília; Medeiros Coelho, Cileide Maria
2016-06-01
Araucaria angustifolia is a conifer native to Brazil and is an endangered species. Since this species seeds have a short period of viability, its vulnerability is higher. Thus the aim of this study was to evaluate the physiological quality of A. angustifolia seeds during the development and post-storage periods. For this, cones of A. angustifolia were collected from a natural population in Curitibanos, Santa Catarina, Brazil, in March, April, May and June 2012. The collected seeds were classified into developmental stages of cotyledonary, I, II and III according to the month of collection; a total of 10 cones were collected for each stage. Seeds were stored in a refrigerator for 60 and 120 days, and were submitted to a chamber germination test (25 °C-photoperiod 12 h). Additionally, seeds were tested for moisture content (105 °C for 24 hours), tetrazolium (0.1 % for 1 hour) and vigor (electric conductivity [75 mL distilled water at 25 °C], germination speed index, and shoot and root length). Our results showed that during seed development, moisture content decreased from the cotyledonary stage (66.54 %) to stage III (49.69 %), and vigor increased in the last stage. During storage, moisture content at cotyledonary stage and stage I was stable. On the other hand, stored seeds exhibited a decrease in moisture content after 120 days at stages II and III. Physiological quality at the cotyledonary stage resulted in an increased germination rate of 86 % and 93 % after 60 and 120 days of storage, respectively; unlike stages II and III exhibited a decrease in seed viability and vigor after storage. Electrical conductivity was higher for fresh seeds at the cotyledonary stage, than for those stored for 60 and 120 days. However, in other stages, released leachate content after 120 days of storage, increased with the advance of the collection period. Germination speed index and shoot and root lengths after storage were highest for seeds at the cotyledonary stage and stage I; unlike stages II and III which had short root and shoot lengths during storage. Thus, the maintenance of seed moisture content during storage was variable and dependent on the period of collection. Furthermore, the physiological quality differed among earlier and later stages. Early collection favored seed physiological quality, and may be a strategy for better conservation of A. angustifolia seeds.
FDR Soil Moisture Sensor for Environmental Testing and Evaluation
NASA Astrophysics Data System (ADS)
Linmao, Ye; longqin, Xue; guangzhou, Zhang; haibo, Chen; likuai, Shi; zhigang, Wu; gouhe, Yu; yanbin, Wang; sujun, Niu; Jin, Ye; Qi, Jin
To test the affect of environmental stresses on a adaptability of soil moisture capacitance sensor(FDR) a number of stresses were induced including vibrational shock as well as temperature and humidity through the use of a CH-I constant humidity chamber with variable temperature. A Vibrational platform was used to exam the resistance and structural integrity of the sensor after vibrations simulating the process of using, transporting and handling the sensor. A Impactive trial platform was used to test the resistance and structural integrity of the sensor after enduring repeated mechanical shocks. An CH-I constant humidity chamber with high-low temperature was used to test the adaptability of sensor in different environments with high temperature, low temperature and constant humidity. Otherwise, scope of magnetic force line of sensor was also tested in this paper. Test show:the capacitance type soil moisture sensor spread a feeling machine to bear heat, high wet and low temperature, at bear impact and vibration experiment in pass an examination, is a kind of environment to adapt to ability very strong instrument;Spread a feeling machine moreover electric field strength function radius scope 7 cms.
NASA Astrophysics Data System (ADS)
Rostuntsova, I. A.; Novichkov, S. V.; Zakharov, O. V.; Kochetkov, A. V.
2017-11-01
The analysis of the trial-industrial research of the effectiveness of burning water fuel mixtures in steam boilers of medium and high pressure at the combustion of natural gas and fuel oil is carried out. As a result of a research decrease in nitrogen oxide concentration is depending on the amount of moisture pumped to the boilers and type of the incinerated fuel. The theoretical model of the formation of nitrogen oxides in the furnace of the boiler in order to optimize the combustion process with the introduction of moisture, whereby to determine the concentrations of nitrogen oxides formed in the combustion process of the method of expansion of the exponential is received. The dependences of the maximal temperature of a torch, reaction rate of formation of nitrogen oxides, the conditional time of reaction, theoretical concentration of nitrogen oxides taking into account input of moisture in a fire chamber of a copper and coefficient of an exit of nitrogen oxides are defined at combustion of fuel taking into account moisture input. The divergence between the experimental and the theoretical value of the NOx concentration does not exceed 3.8%. The methodical provisions of the economic assessment of concentrations of pollutants reduction when entering the water are drafted. The rate the net present value (NPV) is applied. The optimal water-fuel ratio is selected based on the maximum value of the net present value (NPV). The evaluation of the application of environmental protection measures carried out taking into account the fact that by reducing the emission values in the implementation of this activity will decrease the amount of payment for emissions of polluting substances, which are collected from the profits of the enterprise. The cost estimate for the implementation of environmental activities carried out on the basis of lump-sum costs and current costs in environmental technology (increased fuel and water consumption).
Non-hydrolytic metal oxide films for perovskite halide overcoating and stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinson, Alex B.; Kim, In Soo
A method of protecting a perovskite halide film from moisture and temperature includes positioning the perovskite halide film in a chamber. The chamber is maintained at a temperature of less than 200 degrees Celsius. An organo-metal compound is inserted into the chamber. A non-hydrolytic oxygen source is subsequently inserted into the chamber. The inserting of the organo-metal compound and subsequent inserting of the non-hydrolytic oxygen source into the chamber is repeated for a predetermined number of cycles. The non-hydrolytic oxygen source and the organo-metal compound interact in the chamber to deposit a non-hydrolytic metal oxide film on perovskite halide film.more » The non-hydrolytic metal oxide film protects the perovskite halide film from relative humidity of greater than 35% and a temperature of greater than 150 degrees Celsius, respectively.« less
NASA Astrophysics Data System (ADS)
Gutenberg, L. W.; Krauss, K.; Qu, J. J.; Hogan, D. M.; Zhu, Z.; Xu, C.
2017-12-01
The Great Dismal Swamp in Virginia and North Carolina, USA, has been greatly impacted by human use and management for the last few hundred years through logging, ditching, and draining. Today, the once dominant cedar, cypress and pocosin forest types are fragmented due to logging and environmental change. Maple-gum forest has taken over more than half the remaining area of the swamp ecosystem, which is now a National Wildlife Refuge and State Park. The peat soils and biomass store a vast quantity of carbon compared with the size of the refuge, but this store is threatened by fire and drying. This study looks at three of the main forest types in the GDS— maple-sweet gum, tall pine pocosin, and Atlantic white cedar— in terms of their carbon dioxide and methane soil flux. Using static chambers to sample soil gas flux in locally representative sites, we found that cedar sites showed a higher carbon dioxide flux rate as the soil temperature increased than maple sites, and the rate of carbon dioxide flux decreased as soil moisture increased faster in cedar sites than in maple sites. Methane flux increased as temperature increased for pocosin, but decreased with temperature for cedar and maple. All of the methane fluxes increased as soil moisture increased. Cedar average carbon dioxide flux was statistically significantly different from both maple and pocosin. These results show that soil carbon gas flux depends on soil moisture and temperature, which are factors that are changing due to human actions, as well as on forest type, which is also the result of human activity. Some of these variables may be adjustable by the managers of the land. Variables other than forest type, temperature and soil moisture/inundation may also play a role in influencing soil flux, such as stand age, tree height, composition of the peat and nutrient availability, and source of moisture as some sites are more influenced by groundwater from ditches and some more by rainfall depending on the direction of groundwater lateral flow. Increasing temperatures and changes in precipitation and soil moisture may impact the carbon storage and health of this ecosystem, although it is already strongly influenced by anthropogenic activities such as past logging and water level management.
NASA Astrophysics Data System (ADS)
Yoshikawa, K.; Ueyama, M.; Takagi, K.; Kominami, Y.
2015-12-01
Methane (CH4) budget in forest ecosystems have not been accurately quantified due to limited measurements and considerable spatiotemporal heterogeneity. In order to quantify CH4 fluxes at temperate forest at various spatiotemporal scales, we have continuously measured CH4 fluxes at two upland forests based on the micrometeorological hyperbolic relaxed eddy accumulation (HREA) and automated dynamic closed chamber methods.The measurements have been conducted at Teshio experimental forest (TSE) since September 2013 and Yamashiro forest meteorology research site (YMS) since November 2014. Three automated chambers were installed on each site. Our system can measure CH4 flux by the micrometeorological HREA, vertical concentration profile at four heights, and chamber measurements by a laser-based gas analyzer (FGGA-24r-EP, Los Gatos Research Inc., USA).Seasonal variations of canopy-scale CH4 fluxes were different in each site. CH4 was consumed during the summer, but was emitted during the fall and winter in TSE; consequently, the site acted as a net annual CH4 source. CH4 was steadily consumed during the winter, but CH4 fluxes fluctuated between absorption and emission during the spring and summer in YMS. YMS acted as a net annual CH4 sink. CH4 uptake at the canopy scale generally decreased with rising soil temperature and increased with drying condition for both sites. CH4 flux measured by most of chambers showed the consistent sensitivity examined for the canopy scale to the environmental variables. CH4 fluxes from a few chambers located at a wet condition were independent of variations in soil temperature and moisture at both sites. Magnitude of soil CH4 uptake was higher than the canopy-scale CH4 uptake. Our results showed that the canopy-scale CH4 fluxes were totally different with the plot-scale CH4 fluxes by chambers, suggesting the considerable spatial heterogeneity in CH4 flux at the temperate forests.
Use of Coatings on Hydraulic Steel Structures: Part 2-Supplemental Information
2016-09-01
the “salt fog” chamber contains a 5% sodium chloride (NaCl) atmosphere, which is not a real environment anywhere on the earth ; in fact, that...moisture levels. The premise for this test is that if moisture goes through the coating, then the coating has failed. However, from a corrosion...perspec- tive, the substrate will only rust if gaseous oxygen also passes through the coating. EIS monitoring was tried in Okinawa, Japan, but was not
Sopori, Bhushan L.
1995-01-01
A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth's surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO.sub.2 and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO.sub.2 and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO.sub.2 and moisture.
Sopori, B.L.
1995-06-20
A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.
NASA Astrophysics Data System (ADS)
Ingemi, Christopher M.; Owusu Twumasi, Jones; Yu, Tzuyang
2018-03-01
Detection and quantification of moisture content inside wood (timber) is key to ensuring safety and reliability of timber structures. Moisture inside wood attracts insects and fosters the development of fungi to attack the timber, causing significant damages and reducing the load bearing capacity during their design life. The use of non-destructive evaluation (NDE) techniques (e.g., microwave/radar, ultrasonic, stress wave, and X-ray) for condition assessment of timber structures is a good choice. NDE techniques provide information about the level of deterioration and material properties of timber structures without obstructing their functionality. In this study, microwave/radar NDE technique was selected for the characterization of wood at different moisture contents. A 12 in-by-3.5 in-by-1.5 in. white spruce specimen (picea glauca) was imaged at different moisture contents using a 10 GHz synthetic aperture radar (SAR) sensor inside an anechoic chamber. The presence of moisture was found to increase the SAR image amplitude as expected. Additionally, integrated SAR amplitude was found beneficial in modeling the moisture content inside the wood specimen.
Wolters, André; Kromer, Thomas; Linnemann, Volker; Schäffer, Andreas; Vereecken, Harry
2003-04-01
Volatilization from soil and plant surfaces after application is an important source of pesticide residues to the atmosphere. The laboratory photovolatility chamber allows the simultaneous measurement of volatilization and photodegradation of 14C-labeled pesticides under controlled climatic conditions. Both continuous air sampling, which quantifies volatile organic compounds and 14CO2 separately, and the detection of surface-located residues allow for a mass balance of radioactivity. The setup of the photovolatility chamber was optimized, and additional sensors were installed to characterize the influence of soil moisture, soil temperature, and evaporation on volatilization. The modified flow profile in the glass dome of the chamber arising from the use of a high-performance metal bellows pump was measured. Diminished air velocity near the soil surface and a wind velocity of 0.2 m/s in 3 cm height allowed the requirements of the German guideline on assessing pesticide volatilization for registration purposes to be fulfilled. Determination of soil moisture profiles of the upper soil layer illustrated that defined water content in the soil up to a depth of 4 cm could be achieved by water saturation of air. Cumulative volatilization of [phenyl-UL-14C]parathion-methyl ranged from 2.4% under dry conditions to 32.9% under moist conditions and revealed the clear dependence of volatilization on the water content in the top layer.
Wood Combustion Behaviour in a Fixed Bed Combustor
NASA Astrophysics Data System (ADS)
Tokit, Ernie Mat; Aziz, Azhar Abdul; Ghazali, Normah Mohd
2010-06-01
Waste wood is used as feedstock for Universiti Teknologi Malaysia's newly-developed two-stage incinerator system. The research goals are to optimize the operation of the thermal system to the primary chamber, to improve its combustion efficiency and to minimize its pollutants formation. The combustion process is evaluated with the variation of fuel's moisture content. For optimum operating condition, where the gasification efficiency is 95.53%, the moisture content of the fuel is best set at 17%; giving outlet operating temperature of 550°C and exhaust gas concentrations with 1213 ppm of CO, 6% of CO2 and 14% of O2 respectively. In line to the experimental work, a computational fluid dynamics software, Fluent is used to simulate the performance of the primary chamber. Here the predicted optimum gasification efficiency stands at 95.49% with CO, CO2 and O2 concentrations as 1301 ppm, 6.5% and 13.5% respectively.
Effect of decompression drying treatment on physical properties of solid foods.
Morikawa, Takuya; Takada, Norihisa; Miura, Makoto
2017-04-01
This study used a decompression drying instrument to investigate the effects of a drying treatment on the physical properties of solid foods. Commercial tofu was used as a model food and was treated at different temperature and pressure conditions in a drying chamber. Overall, high temperatures resulted in better drying. Additionally, pressure in the chamber influenced the drying conditions of samples. Differences in physical properties, such as food texture, shrinkage, and color were observed among some samples, even with similar moisture content. This was caused by differences in moisture distribution in the food, which seems to have manifested as a thin, dried film on the surfaces of samples. It caused inefficient drying and changes in physical properties. Control of the drying conditions (i.e. pressure and heat supply) has relations with not only physical properties, but also the drying efficiency of solid foods.
Is the Pearl River basin, China, drying or wetting? Seasonal variations, causes and implications
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Li, Jianfeng; Gu, Xihui; Shi, Peijun
2018-07-01
Soil moisture plays crucial roles in the hydrological cycle and is also a critical link between land surface and atmosphere. The Pearl River basin (PRb) is climatically subtropical and tropical and is highly sensitive to climate changes. In this study, seasonal soil moisture changes across the PRb were analyzed using the Variable Infiltration Capacity (VIC) model forced by the gridded 0.5° × 0.5° climatic observations. Seasonal changes of soil moisture in both space and time were investigated using the Mann-Kendall trend test method. Potential influencing factors behind seasonal soil moisture changes such as precipitation and temperature were identified using the Maximum Covariance Analysis (MCA) technique. The results indicated that: (1) VIC model performs well in describing changing properties of soil moisture across the PRb; (2) Distinctly different seasonal features of soil moisture can be observed. Soil moisture in spring decreased from east to west parts of the PRb. In summer however, soil moisture was higher in east and west parts but was lower in central parts of the PRb; (3) A significant drying trend was identified over the PRb in autumn, while no significant drying trends can be detected in other seasons; (4) The increase/decrease in precipitation can generally explain the wetting/drying tendency of soil moisture. However, warming temperature contributed significantly to the drying trends and these drying trends were particularly evident during autumn and winter; (5) Significant decreasing precipitation and increasing temperature combined to trigger substantially decreasing soil moisture in autumn. In winter, warming temperature is the major reason behind decreased soil moisture although precipitation is in slightly decreasing tendency. Season variations of soil moisture and related implications for hydro-meteorological processes in the subtropical and tropical river basins over the globe should arouse considerable human concerns.
Differential atmospheric tritium sampler
Griesbach, O.A.; Stencel, J.R.
1987-10-02
An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.
NASA Astrophysics Data System (ADS)
Sihi, D.; Davidson, E. A.; Savage, K. E.; Liang, D.
2017-12-01
Production and consumption of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) are affected by complex interactions of temperature, moisture, and substrate supply, that is further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked conceptually to explain unusual observations like consumption of atmospheric N2O (reduction) in upland soils that co-occur with CH4 uptake (oxidation). To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis-Menten (DAMM) model, to apply it consistently for all three greenhouse gases (GHGs) with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O2) as substrate or inhibitor for each process. Chamber-based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model. The area under a soil chamber is partitioned according to a bivariate lognormal probability distribution function of soil carbon (C) and moisture across a range of microsites, that leads to a distribution of heterotrophic respiration and O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates a broad range of microsite concentrations of O2 that determines the distribution of microsites that produce or consume CH4 and N2O, such that a range of microsite concentrations occur both above and below ambient values for both GHGs. At lower mean soil moisture, some microsites of methanogenesis still occur, but most become sites of methanotrophy. Likewise, concentrations of below ambient N2O (hotspots of N2O reduction) occur in microsites with high C and high moisture (further accentuated at high temperature). Net consumption and production of CH4 and N2O is simulated within a chamber based on the sum of the distribution of soil microsites. Results demonstrate that it is numerically feasible for microsites of N2O reduction and CH4 oxidation to co-occur under a single chamber. Simultaneous simulation of all three GHGs in a parsimonious modeling framework is challenging but affords confidence that agreement between simulations and measurements is based on skillful numerical representation of processes across a heterogeneous environment.
Effect of sorbed water on disintegrant performance of four brands of Polacrilin Potassium NF.
Bele, Mrudula H; Derle, Diliprao V
2012-03-01
Polacrilin Potassium NF is a commonly used weak cation exchange resin disintegrant in pharmaceutical tablets. The objective of this research was to evaluate the effects of sorbed moisture on physical characteristics and disintegrant performance of four brands of Polacrilin Potassium NF. The disintegrants were stored in five different relative humidity chambers and their dynamic vapor adsorption-desorption analysis, effect of moisture on their compressibility, compactability, particle size, morphology, water uptake rate, and disintegration ability were studied. Moisture seemed to plasticize the disintegrants, reducing their yield pressures. However, certain optimum amount of moisture was found to be useful in increasing the compactablity of the tablets containing disintegrants. The tablets, however, lost their tensile strengths beyond this optimum moisture content. Moisture caused two brands of the disintegrants to swell; however, two other brands aggregated upon exposure to moisture. Swelling without aggregation increased the water uptake, and in turn the disintegrant performance. However, aggregation probably reduced the porosities of the disintegrants, reducing their water uptake rate and disintegrant performance. Different brands of Polacrilin Potassium NF differed in the abilities to withstand the effects of moisture on their functionality. Effect of moisture on disintegrant performance of Polacrilin Potassium NF needs to be considered before its use in tablets made by wet granulation.
Chamber for Growing and Observing Fungi
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Molina, Thomas C.
2005-01-01
A chamber has been designed to enable growth and observation of microcolonies of fungi in isolation from the external environment. Unlike prior fungus-growing apparatuses, this chamber makes it possible to examine a fungus culture without disrupting it. Partly resembling a small picture frame, the chamber includes a metal plate having a rectangular through-thethickness opening with recesses for a top and a bottom cover glass, an inlet for air, and an inlet for water. The bottom cover glass is put in place and held there by clips, then a block of nutrient medium and a moisture pad are placed in the opening. The block is inoculated, then the top cover glass is put in place and held there by clips. Once growth is evident, the chamber can be sealed with tape. Little (if any) water evaporates past the edges of the cover glasses, and, hence there is little (if any) need to add water. A microscope can be used to observe the culture through either cover glass. Because the culture is sealed in the chamber, it is safe to examine the culture without risking contamination. The chamber can be sterilized and reused.
NASA Astrophysics Data System (ADS)
van Straaten, O.; Veldkamp, E.; Köhler, M.; Anas, I.
2009-12-01
Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao) - Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month replicated experiment, we measured soil surface CO2 efflux (soil respiration) in three simulated drought plots compared with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture and decreased under increasingly dry conditions (drought induced), but also decreased when soils became water saturated, as evidenced in control plots. The simulated drought plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease). The strength of the drought effect was spatially variable - while some measurement chamber sites reacted strongly ("responsive") to the decrease in soil water content (up to R2=0.70) (n=11), others did not react at all ("non-responsive") (n=7). The degree of soil CO2 respiration drought response was highest around cacao tree stems and decreased with distance from the stem (R2=0.22). A significant correlation was measured between "responsive" soil respiration chamber sites and sap flux density ratios of cacao (R=0.61) and Gliricidia (R=0.65). Leaf litter CO2 respiration decreased as conditions became drier. During dry periods the litter layer contributed approximately 3-4% of the total CO2 efflux and up to 40% during wet periods. A CO2 flush was recorded during the rewetting phase that lasted for approximately two weeks, during which time accumulated labile carbon stocks mineralized. The net effect on soil CO2 emissions over the duration of the experiment was neutral, control plots respired 11.1±0.5 Mg C ha-1 yr-1, while roof plots respired 10.5±0.5 Mg C ha-1 yr-1.
Biological/Horticultural Internship Final Report
NASA Technical Reports Server (NTRS)
Palmer, Shane R.; Spencer, Lashelle (Editor)
2017-01-01
A study was conducted to determine water use requirements of genetically modified (GMO) dwarf plum. GMO plum and unmodified standard plum plants were grown in a controlled environment chamber under varying CO2 concentrations (400 ppm, 1500 ppm, and 5000 ppm). Pepper plants were also grown in the chamber for additional comparison. Leaf stomatal conductance, biomass accumulation, soil moisture and pot weights were measured; Stomatal conductance of GMO plum and pepper plants decreased at sustained elevated CO2 concentrations. The stomatal conductance rates of the standard plums, however, increased at sustained elevated CO2 concentrations. Further data analysis (statistical analysis, biomass, soil moisture and pot weight measurements) is ongoing and required to gain better understanding of the data. An additional proof-of-concept study was undertaken to determine the feasibility of grafting unmodified standard plum scions onto genetically modified rootstocks as a propagation method. Bud grafts were performed on three GMO plum rootstocks: NASA-5, NASA-10, and NASA-11. All of the standard plum buds grafted onto NASA-5 and NASA-10 rootstocks began growing, indicating that this grafting method is highly successful for the formation of a graft union and initial bud growth. However, bud growth during stem elongation was curtailed on several grafts due to a combination of nutritional deficiency and physical damage/obstruction of the grafted tissues. Bud growth on the NASA-5 rootstock occurred sooner than in grafts on the NASA-10 rootstock, while only one bud graft has shown growth on the NASA-11 rootstock thus far. These marked differences in the onset of bud growth suggest genotypic differences between the rootstocks may affect bud graft vigor. Mature standard plum scions grown on the NASA-5 rootstock appeared to retain most or all of the physical characteristics of the standard plum donor plant.
Efficacy of Metarhizium anisopliae isolate MAX-2 from Shangri-la, China under desiccation stress
2014-01-01
Background Metarhizium anisopliae, a soil-borne entomopathogen found worldwide, is an interesting fungus for biological control. However, its efficacy in the fields is significantly affected by environmental conditions, particularly moisture. To overcome the weakness of Metarhizium and determine its isolates with antistress capacity, the efficacies of four M. anisopliae isolates, which were collected from arid regions of Yunnan Province in China during the dry season, were determined at different moisture levels, and the efficacy of the isolate MAX-2 from Shangri-la under desiccation stress was evaluated at low moisture level. Results M. anisopliae isolates MAX-2, MAC-6, MAL-1, and MAQ-28 showed gradient descent efficacies against sterile Tenebrio molitor larvae, and gradient descent capacities against desiccation with the decrease in moisture levels. The efficacy of MAX-2 showed no significant differences at 35% moisture level than those of the other isolates. However, significant differences were found at 8% to 30% moisture levels. The efficacies of all isolates decreased with the decrease in moisture levels. MAX-2 was relatively less affected by desiccation stress. Its efficacy was almost unaffected by the decrease at moisture levels > 25%, but slowly decreased at moisture levels < 25%. By contrast, the efficacies of other isolates rapidly decreased with the decrease in moisture levels. MAX-2 caused different infection characteristics on T. molitor larvae under desiccation stress and in wet microhabitat. Local black patches were found on the cuticles of the insects, and the cadavers dried without fungal growth under desiccation stress. However, dark black internodes and fungal growth were found after death of the insects in the wet microhabitat. Conclusions MAX-2 showed significantly higher efficacy and superior antistress capacity than the other isolates under desiccation stress. The infection of sterile T. molitor larvae at low moisture level constituted a valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress. PMID:24383424
Efficacy of Metarhizium anisopliae isolate MAX-2 from Shangri-la, China under desiccation stress.
Chen, Zi-Hong; Xu, Ling; Yang, Feng-lian; Ji, Guang-Hai; Yang, Jing; Wang, Jian-Yun
2014-01-03
Metarhizium anisopliae, a soil-borne entomopathogen found worldwide, is an interesting fungus for biological control. However, its efficacy in the fields is significantly affected by environmental conditions, particularly moisture. To overcome the weakness of Metarhizium and determine its isolates with antistress capacity, the efficacies of four M. anisopliae isolates, which were collected from arid regions of Yunnan Province in China during the dry season, were determined at different moisture levels, and the efficacy of the isolate MAX-2 from Shangri-la under desiccation stress was evaluated at low moisture level. M. anisopliae isolates MAX-2, MAC-6, MAL-1, and MAQ-28 showed gradient descent efficacies against sterile Tenebrio molitor larvae, and gradient descent capacities against desiccation with the decrease in moisture levels. The efficacy of MAX-2 showed no significant differences at 35% moisture level than those of the other isolates. However, significant differences were found at 8% to 30% moisture levels. The efficacies of all isolates decreased with the decrease in moisture levels. MAX-2 was relatively less affected by desiccation stress. Its efficacy was almost unaffected by the decrease at moisture levels > 25%, but slowly decreased at moisture levels < 25%. By contrast, the efficacies of other isolates rapidly decreased with the decrease in moisture levels. MAX-2 caused different infection characteristics on T. molitor larvae under desiccation stress and in wet microhabitat. Local black patches were found on the cuticles of the insects, and the cadavers dried without fungal growth under desiccation stress. However, dark black internodes and fungal growth were found after death of the insects in the wet microhabitat. MAX-2 showed significantly higher efficacy and superior antistress capacity than the other isolates under desiccation stress. The infection of sterile T. molitor larvae at low moisture level constituted a valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress.
Moisture sorption isotherms and thermodynamic properties of bovine leather
NASA Astrophysics Data System (ADS)
Fakhfakh, Rihab; Mihoubi, Daoued; Kechaou, Nabil
2018-04-01
This study was aimed at the determination of bovine leather moisture sorption characteristics using a static gravimetric method at 30, 40, 50, 60 and 70 °C. The curves exhibit type II behaviour according to the BET classification. The sorption isotherms fitting by seven equations shows that GAB model is able to reproduce the equilibrium moisture content evolution with water activity for moisture range varying from 0.02 to 0.83 kg/kg d.b (0.9898 < R2 < 0.999). The sorption isotherms exhibit hysteresis effect. Additionally, sorption isotherms data were used to determine the thermodynamic properties such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. Net isosteric heat of sorption and differential entropy were evaluated through direct use of moisture isotherms by applying the Clausius-Clapeyron equation and used to investigate the enthalpy-entropy compensation theory. Both sorption enthalpy and entropy for desorption increase to a maximum with increasing moisture content, and then decrease sharply with rising moisture content. Adsorption enthalpy decreases with increasing moisture content. Whereas, adsorption entropy increases smoothly with increasing moisture content to a maximum of 6.29 J/K.mol. Spreading pressure increases with rising water activity. The net integral enthalpy seemed to decrease and then increase to become asymptotic. The net integral entropy decreased with moisture content increase.
Influence of soil environmental parameters on thoron exhalation rate.
Hosoda, M; Tokonami, S; Sorimachi, A; Ishikawa, T; Sahoo, S K; Furukawa, M; Shiroma, Y; Yasuoka, Y; Janik, M; Kavasi, N; Uchida, S; Shimo, M
2010-10-01
Field measurements of thoron exhalation rates have been carried out using a ZnS(Ag) scintillation detector with an accumulation chamber. The influence of soil surface temperature and moisture saturation on the thoron exhalation rate was observed. When the variation of moisture saturation was small, the soil surface temperature appeared to induce a strong effect on the thoron exhalation rate. On the other hand, when the variation of moisture saturation was large, the influence of moisture saturation appeared to be larger than the soil surface temperature. The number of data ranged over 405, and the median was estimated to be 0.79 Bq m(-2) s(-1). Dependence of geology on the thoron exhalation rate from the soil surface was obviously found, and a nationwide distribution map of the thoron exhalation rate from the soil surface was drawn by using these data. It was generally high in the southwest region than in the northeast region.
Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J
2009-01-01
To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers' humidifying performance. Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37 degrees C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers.
NASA Astrophysics Data System (ADS)
van Straaten, O.; Veldkamp, E.; Köhler, M.; Anas, I.
2010-04-01
Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao) - Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month experiment, we compared soil surface CO2 efflux (soil respiration) from three roof plots with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture conditions and decreased under increasingly dry conditions (drought induced), or increasingly wet conditions (as evidenced in control plots). The roof plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease). The strength of the drought effect was spatially variable - while some measurement chamber sites reacted strongly (responsive) to the decrease in soil water content (up to R2=0.70) (n=11), others did not react at all (non-responsive) (n=7). A significant correlation was measured between responsive soil respiration chamber sites and sap flux density ratios of cacao (R=0.61) and Gliricidia (R=0.65). Leaf litter CO2 respiration decreased as conditions became drier. The litter layer contributed approximately 3-4% of the total CO2 efflux during dry periods and up to 40% during wet periods. Within days of roof opening soil CO2 efflux rose to control plot levels. Thereafter, CO2 efflux remained comparable between roof and control plots. The cumulative effect on soil CO2 emissions over the duration of the experiment was not significantly different: the control plots respired 11.1±0.5 Mg C ha-1 yr-1, while roof plots respired 10.5±0.5 Mg C ha-1 yr-1. The relatively mild decrease measured in soil CO2 efflux indicates that this agroforestry ecosystem is capable of mitigating droughts with only minor stress symptoms.
Moment Analysis Characterizing Water Flow in Repellent Soils from On- and Sub-Surface Point Sources
NASA Astrophysics Data System (ADS)
Xiong, Yunwu; Furman, Alex; Wallach, Rony
2010-05-01
Water repellency has a significant impact on water flow patterns in the soil profile. Flow tends to become unstable in such soils, which affects the water availability to plants and subsurface hydrology. In this paper, water flow in repellent soils was experimentally studied using the light reflection method. The transient 2D moisture profiles were monitored by CCD camera for tested soils packed in a transparent flow chamber. Water infiltration experiments and subsequent redistribution from on-surface and subsurface point sources with different flow rates were conducted for two soils of different repellency degrees as well as for wettable soil. We used spatio-statistical analysis (moments) to characterize the flow patterns. The zeroth moment is related to the total volume of water inside the moisture plume, and the first and second moments are affinitive to the center of mass and spatial variances of the moisture plume, respectively. The experimental results demonstrate that both the general shape and size of the wetting plume and the moisture distribution within the plume for the repellent soils are significantly different from that for the wettable soil. The wetting plume of the repellent soils is smaller, narrower, and longer (finger-like) than that of the wettable soil compared with that for the wettable soil that tended to roundness. Compared to the wettable soil, where the soil water content decreases radially from the source, moisture content for the water-repellent soils is higher, relatively uniform horizontally and gradually increases with depth (saturation overshoot), indicating that flow tends to become unstable. Ellipses, defined around the mass center and whose semi-axes represented a particular number of spatial variances, were successfully used to simulate the spatial and temporal variation of the moisture distribution in the soil profiles. Cumulative probability functions were defined for the water enclosed in these ellipses. Practically identical cumulative probability functions (beta distribution) were obtained for all soils, all source types, and flow rates. Further, same distributions were obtained for the infiltration and redistribution processes. This attractive result demonstrates the competence and advantage of the moment analysis method.
Examining diel patterns of soil and xylem moisture using electrical resistivity imaging
NASA Astrophysics Data System (ADS)
Mares, Rachel; Barnard, Holly R.; Mao, Deqiang; Revil, André; Singha, Kamini
2016-05-01
The feedbacks among forest transpiration, soil moisture, and subsurface flowpaths are poorly understood. We investigate how soil moisture is affected by daily transpiration using time-lapse electrical resistivity imaging (ERI) on a highly instrumented ponderosa pine and the surrounding soil throughout the growing season. By comparing sap flow measurements to the ERI data, we find that periods of high sap flow within the diel cycle are aligned with decreases in ground electrical conductivity and soil moisture due to drying of the soil during moisture uptake. As sap flow decreases during the night, the ground conductivity increases as the soil moisture is replenished. The mean and variance of the ground conductivity decreases into the summer dry season, indicating drier soil and smaller diel fluctuations in soil moisture as the summer progresses. Sap flow did not significantly decrease through the summer suggesting use of a water source deeper than 60 cm to maintain transpiration during times of shallow soil moisture depletion. ERI captured spatiotemporal variability of soil moisture on daily and seasonal timescales. ERI data on the tree showed a diel cycle of conductivity, interpreted as changes in water content due to transpiration, but changes in sap flow throughout the season could not be interpreted from ERI inversions alone due to daily temperature changes.
Moisture effects in heat transfer through clothing systems for wildland firefighters.
Lawson, Lelia K; Crown, Elizabeth M; Ackerman, Mark Y; Dale, J Douglas
2004-01-01
Wildland firefighters work in unfavourable environments involving both heat and moisture. Moisture in clothing systems worn by wildland firefighters may increase or decrease heat transfer, depending on its source and location in the clothing system, location on the body, timing of application and degree of sorption. In this experiment, 4 outerwear/underwear combinations were exposed to 1 of 5 different conditions varying on amount and location of moisture. The fabric systems were then exposed to either a high-heat-flux flame exposure (83 kW/m(2)) or a low-heat-flux radiant exposure (10 kW/m(2)). Under high-heat-flux flame exposures, external moisture tended to decrease heat transfer through the fabric systems, while internal moisture tended to increase heat transfer. Under low-heat-flux radiant exposures, internal moisture decreased heat transfer through the fabric systems. The nature and extent of such differences was fabric dependent. Implications for test protocol development are discussed.
Counter flow cooling drier with integrated heat recovery
Shivvers, Steve D [Prole, IA
2009-08-18
A drier apparatus for removing water or other liquids from various materials includes a mixer, drying chamber, separator and regenerator and a method for use of the apparatus. The material to be dried is mixed with a heated media to form a mixture which then passes through the chamber. While passing through the chamber, a comparatively cool fluid is passed counter current through the mixture so that the mixture becomes cooler and drier and the fluid becomes hotter and more saturated with moisture. The mixture is then separated into drier material and media. The media is transferred to the regenerator and heated therein by the hot fluid from the chamber and supplemental heat is supplied to bring the media to a preselected temperature for mixing with the incoming material to be dried. In a closed loop embodiment of the apparatus, the fluid is also recycled from the regenerator to the chamber and a chiller is utilized to reduce the temperature of the fluid to a preselected temperature and dew point temperature.
EVALUATION OF FUNGAL GROWTH (PENICILLIUM GLABRUM) ON A CEILING TILE
The paper gives results of a study employing static chambers to study the impact of different equilibrium relative humidities (RHs) and moisture conditions on the ability of a new ceiling tile to support fungal growth. Amplification of the mold, Penicillium glabrum, occurred at R...
Influence of moisture on the apical seal of root canal fillings with five different types of sealer.
Roggendorf, Matthias Johannes; Ebert, Johannes; Petschelt, Anselm; Frankenberger, Roland
2007-01-01
The aim of this study was to evaluate the influence of moisture on apical leakage using five different types of sealer. There were 120 single-rooted teeth instrumented to .02/#60 and randomly assigned to 10 experimental groups, one control group (AH Plus, lateral condensation) (n = 10) or positive/negative controls (n = 5). Before obturation teeth were dried thoroughly, followed by recontamination with moisture in a wet chamber (moist groups; 37 degrees C for 7 days). The teeth of the experimental groups (a, dry; b, moist) were obturated with sealer (groups 1, AH Plus; 2, Apexit; 3, Ketac-Endo; 4, RoekoSeal; 5, Tubli-Seal) and a single gutta-percha cone .02/#55. Teeth were centrifuged (30 x g for 3 minutes) in 5% methylene blue. Linear dye penetration was measured under a stereomicroscope. Moisture led to less microleakage for Apexit, RoekoSeal, and Tubli-Seal and higher values for AH Plus and Ketac-Endo. Multifactorial ANOVA displayed a significant dependence of leakage on sealer (p < 0.001) and the combination sealer or moisture (p < 0.01). It depends on the sealer type in which way moisture affects the apical seal.
Boyle, Richard K A; McAinsh, Martin; Dodd, Ian C
2016-01-01
Soil water deficits applied at different rates and for different durations can decrease both stomatal conductance (gs ) and leaf water potential (Ψleaf ). Understanding the physiological mechanisms regulating these responses is important in sustainable irrigation scheduling. Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at various fractions of plant evapotranspiration (100, 75 and 50% ET) for 20 days or irrigation was withheld for 4 days. Xylem sap was collected and gs and Ψleaf were measured on days 15 and 20, and on days 16-19 for the respective treatments. Xylem sap pH and NO3 (-) and Ca(2+) concentrations did not differ between irrigation treatments. Xylem abscisic acid (ABA) concentrations ([ABA]xyl ) increased within 24 h of irrigation being withheld whilst gs and Ψleaf decreased. Supplying irrigation at a fraction of daily ET produced a similar relationship between [ABA]xyl and gs , but did not change Ψleaf . Treatment differences occurred independently of whether Ψleaf was measured in whole leaves with a pressure chamber, or in the lamina with a thermocouple psychrometer. Plants that were irrigated daily showed lower [ABA]xyl than plants from which irrigation was withheld, even at comparable soil moisture content. This implies that regular re-watering attenuates ABA signaling due to maintenance of soil moisture in the upper soil levels. Crucially, detached leaves supplied with synthetic ABA showed a similar relationship between [ABA]xyl and gs as intact plants, suggesting that stomatal closure of P. hortorum in response to soil water deficit is primarily an ABA-induced response, independent of changes in Ψleaf . © 2015 Scandinavian Plant Physiology Society.
A Method to Preclude Moisture Condensation in Plated Tissue Cultures
Alex M. Diner
1992-01-01
Excessive condensate normally accumulates in in vitro-illuminated petri dishes containing plant tissue cultures, causing avariety of problems. A dark-colored rubber net-mesh placed over the petri dishes prevented such condensation, even when charcoal-supplemented media are used under high light intensity in a growth chamber.
Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J
2009-01-01
OBJECTIVES: To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. INTRODUCTION: Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers’ humidifying performance. METHODS: Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37°C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. RESULTS: Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. CONCLUSIONS: Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers. PMID:19578664
Sui, Zhongquan; Yao, Tianming; Zhao, Yue; Ye, Xiaoting; Kong, Xiangli; Ai, Lianzhong
2015-04-15
Changes in the properties of normal maize starch (NMS) and waxy maize starch (WMS) after heat-moisture treatment (HMT) under various reaction conditions were investigated. NMS and WMS were adjusted to moisture levels of 20%, 25% and 30% and heated at 100 °C for 2, 4, 8 and 16 h. The results showed that moisture content was the most important factor in determining pasting properties for NMS, whereas the heating length was more important for WMS. Swelling power decreased in NMS but increased in WMS, and while the solubility index decreased for both samples, the changes were largely determined by moisture content. The gelatinisation temperatures of both samples increased with increasing moisture content but remained unchanged with increasing heating length. The Fourier transform infrared (FT-IR) absorbance ratio was affected to different extents by the moisture levels but remained constant with increasing the heating length. The X-ray intensities increased but relative crystallinity decreased to a greater extent with increasing moisture content. This study showed that the levels of moisture content and length of heating had significant impacts on the structural and physicochemical properties of normal and waxy maize starches but to different extents. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cole, S.; Mahall, B. E.
2007-05-01
Much effort has been focused on identifying plant and root growth responses to heterogeneous supplies of soil nutrients. However, in many circumstances, soil water may limit plant growth and it too can have a patchy distribution. In our research we asked: 1) What is the ecological significance of soil moisture heterogeneity to plant growth in a California coastal dune habitat? 2) How does growth of whole plants and roots respond to soil moisture heterogeneity? and 3) Can roots of these species sense and grow towards moisture-rich areas (hydrotropism) in a natural medium? To address these questions: we conducted comparative field studies of water relations and growth of Artemisia californica and Eriogonum parvifolium; we performed a growth rate study of roots and plants in experimental pots with either patchy or homogeneous distributions of soil water; and we analyzed individual root growth in sand-filled observation chambers in response to moisture-rich patches and resultant soil water gradients. In the field, correlations between daily photosynthetic rates, active leaf display and predawn xylem pressure potentials (ΨPD) indicated that access to water limited growth in A. californica and E. parvifolium. These species, common in habit and habitat, differed in their ability to access water with E. parvifolium having overall higher ΨPD than A. californica (repeated measures ANOVA, P < 0.01). Our growth rate study revealed that patchy supplies of water did not reduce the relative growth rate or average size of E. parvifolium (two-tailed t-tests, P > 0.25). It appears that modified partitioning of growth both at the whole plant and root system level permitted E. parvifolium to maintain growth in patchy soil water conditions. We found that E. parvifolium increased allocation to roots and proliferated in moisture-rich patches in the patchy soil water treatment. Root length density and the proportion of root mass present in the patch was 20- to >100-fold greater in and near the moisture-rich patch than in a comparable but drier soil location (one-tailed matched pairs t-tests, P ≤ 0.05). While root hydrotropism could be a means by which plants are able to locate moisture-rich patches, from our chamber studies we found no compelling evidence for hydrotropic root behavior in seedlings of these two dune shrubs and suggest that roots instead may encounter patches of soil water serendipitously.
NASA Astrophysics Data System (ADS)
Lüpke, M.
2015-12-01
Plants emit biogenic volatile organic compounds (BVOCs) to e.g. communicate and to defend herbivores. Yet BVOCs also impact atmospheric chemistry processes, and lead to e.g. the built up of secondary organic aerosols. Abiotic stresses, such as drought, however highly influence plant physiology and subsequently BVOCs emission rates. In this study, we investigated the effect of drought stress on BVOCs emission rates of Scots pine trees, a de novo and pool emitter, under controlled climate chamber conditions within a dynamic enclosure system consisting of four plant chambers. Isotopic labeling with 13CO2 was used to detect which ratio of emissions of BVOCs derives from actual synthesis and from storage organs under different treatments. Additionally, the synthesis rate of the BVOCs synthesis can be determined. The experiment consisted of two campaigns (July 2015 and August 2015) of two control and two treated trees respectively in four controlled dynamic chambers simultaneously. Each campaign lasted for around 21 days and can be split into five phases: adaptation, control, dry-out, drought- and re-watering phase. The actual drought phase lasted around five days. During the campaigns two samples of BVOCs emissions were sampled per day and night on thermal desorption tubes and analyzed by a gas chromatograph coupled with a mass spectrometer and a flame ionization detector. Additionally, gas exchange of water and CO2, soil moisture, as well as leaf and chamber temperature was monitored continuously. 13CO2 labeling was performed simultaneously in all chambers during the phases control, drought and re-watering for five hours respectively. During the 13CO2 labeling four BVOCs emission samples per chamber were taken to identify the labeling rate on emitted BVOCs. First results show a decrease of BVOCs emissions during the drought phase and a recovery of emission after re-watering, as well as different strength of reduction of single compounds. The degree of labeling with 13CO2 differed between the emitted compounds, indicating different sources (pool / de novo) within the plant.
Du, She-ni; Bai, Gang-shuan; Liang, Yin-li
2011-04-01
A pot experiment with artificial shading was conducted to study the effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash variety "Jingyingyihao". Under all test soil moisture conditions, 30% shading promoted the growth of "Jingyingyihao", with the highest yield at 70% - 80% soil relative moisture contents. 70% shading inhibited plant growth severely, only flowering and not bearing fruits, no economic yield produced. In all treatments, there was a similar water consumption trend, i. e., both the daily and the total water consumption decreased with increasing shading and decreasing soil moisture content. Among all treatments, 30% shading and 70% - 80% soil relative moisture contents had the highest water use efficiency (2.36 kg mm(-1) hm(-2)) and water output rate (1.57 kg mm(-1) hm(-2)). The net photosynthetic rate, transpiration rate, stomatal conductance, and chlorophyll content of squash leaves decreased with increasing shading, whereas the intercellular CO2 concentration was in adverse. The leaf protective enzyme activity and proline content decreased with increasing shading, and the leaf MAD content decreased in the order of 70% shading, natural radiation, and 30% shading. Under the three light intensities, the change characteristics of squash leaf photosynthesis, protective enzyme activity, and proline and MAD contents differed with the increase of soil relative moisture content.
Sumargo, Franklin; Gulati, Paridhi; Weier, Steven A; Clarke, Jennifer; Rose, Devin J
2016-11-15
The influence of pinto bean flour and processing moisture on the physical properties and in vitro digestibility of rice-bean extrudates has been investigated. Brown rice: pinto bean flour (0%, 15%, 30%, and 45% bean flour) were extruded under 5 moisture conditions (17.2%, 18.1%, 18.3%, 19.5%, and 20.1%). Physical properties [bulk density, unit density, radial expansion, axial expansion, overall expansion, specific volume, hardness, color, water solubility index, and water absorption index] and in vitro starch and protein digestibilities were determined. Increasing bean flour and processing moisture increased density and hardness while decreasing expansion. Rapidly digestible starch decreased and resistant starch increased as bean substitution and processing moisture increased. In vitro protein digestibility increased with increasing bean flour or with decreasing processing moisture. Incorporating bean flour into extruded snacks can negatively affect physical attributes (hardness, density, and expansion) while positively affecting in vitro starch (decrease) and protein (increase) digestibilities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Low methane flux from a constructed boreal wetland
NASA Astrophysics Data System (ADS)
Clark, M. G.; Humphreys, E.; Carey, S. K.
2016-12-01
The Sandhill Fen Watershed project in northern Alberta, Canada, is a pilot study in reconstructing a mixed upland and lowland boreal plain ecosystem. The physical construction of the 50 ha area was completed in 2012 and revegetation programs, through planting and seeding, began that same year and continued into 2013. Since then, the vegetation has developed a substantial cover over the reclaimed soil and peat substrates used to cap the engineered topography constructed from mine tailings. To monitor the dynamics of carbon cycling processes in this novel ecosystem, near weekly gas chamber measurements of methane fluxes were carried out over 3 growing seasons. Soil moisture, temperature and ion flux measurements, using Plant Root Simulator probes, were also collected alongside the gas flux plots. In the 3rd season, a transect was established in the lowlands along a moisture gradient to collect continuous reduction-oxidation potential measurements along with these other variables. Overall, methane effluxes remained low relative to what is expected for rewetted organic substrates. However, there is a trend over time towards increasing methane gas emissions that coincides with increasing fluxes of reduced metal ions and decreasing fluxes of sulphate in the fully saturated substrates. The suppressed levels of methane fluxes are possibly due to naturally occurring high levels of sulphate in the donor materials used to cap the ecosystem construction.
The paper gives results of a series of experiments, each lasing 6 weeks, conducted in static environmental chambers to assess some of the conditions that may impact the ability of a variety of fiberglass materials to support the growth of a fungus, Penicillium chrysogenum. (NOTE:...
Heat and Mass Transfer Measurements for Tray-Fermented Fungal Products
NASA Astrophysics Data System (ADS)
Jou, R.-Y.; Lo, C.-T.
2011-01-01
In this study, heat and mass transfer in static tray fermentation, which is widely used in solid-state fermentation (SSF) to produce fungal products, such as enzymes or koji, is investigated. Specifically, kinetic models of transport phenomena in the whole-tray chamber are emphasized. The effects of temperature, moisture, and humidity on microbial growth in large-scale static tray fermentation are essential to scale-up SSF and achieve uniform fermentation. In addition, heat and mass transfer of static tray fermentation of Trichoderma fungi with two tray setups—traditional linen coverings and stacks in a temperature-humidity chamber is examined. In both these setups, the following factors of fermentation were measured: air velocity, air temperature, illumination, pH, carbon dioxide (CO2) concentration, and substrate temperature, and the effects of bed height, moisture of substrate, and relative humidity of air are studied. A thin (1 cm) bed at 28 °C and 95 % relative humidity is found to be optimum. Furthermore, mixing was essential for achieving uniform fermentation of Trichoderma fungi. This study has important applications in large-scale static tray fermentation of fungi.
Soil Carbon Dioxide and Methane Fluxes in a Costa Rican Premontane Wet Forest
NASA Astrophysics Data System (ADS)
Hempel, L. A.; Schade, G. W.; Pfohl, A.
2011-12-01
A significant amount of the global terrestrial biomass is found in tropical forests, and soil respiration is a vital part of its carbon cycling. However, data on soil trace gas flux rates in the tropics are sparse, especially from previously disturbed regions. To expand the database on carbon cycling in the tropics, this study examined soil flux rate and its variability for CO2 and CH4 in a secondary premontane wet forest south of Arenal Volcano in Costa Rica. Data were collected over a six-week period in June and July 2011 during the transition from dry to wet season. Trace gas sampling was performed at three sub-canopy sites of different elevations. The soil is of volcanic origin with a low bulk density, likely an Andisol. An average KCl pH of 4.8 indicates exchangeable aluminum is present, and a NaF pH>11 indicates the soil is dominated by short-range order minerals. Ten-inch diameter PVC rings were used as static flux chambers without soil collars. To find soil CO2 efflux rates, a battery-powered LICOR 840A CO2-H2O Gas Analyzer was used to take measurements in the field, logging CO2 concentration every ten seconds. Additionally, six, 10-mL Nylon syringes were filled with gas samples at 0, 1, 7, 14, 21, and 28 minutes after closing the chambers. These samples were analyzed the same day with a SRI 8610 Gas Chromatograph for concentrations of CO2 and CH4. The average CO2 efflux calculated was 1.7±0.8E-2 g/m2/min, and did not differ between the applied analytical methods. Soil respiration depended strongly on soil moisture, with decreasing efflux rates at higher water-filled pore space values. An annual soil respiration rate of 8.5E3 g/m2/yr was estimated by applying the observed relationship between soil moisture and CO2 efflux to annual soil moisture measurements. The relatively high respiration rates could be caused by the high soil moisture and low soil bulk density, providing optimal conditions for microbial respiration. Several diurnal sampling periods at one site showed that respiration was highest in the early evening, possibly caused by increased root respiration lagging daytime photosynthesis. Measured average CH4 flux was -7.9±6.2E-6 g/m2/min, similar to literature values; its variability was high with no temperature or soil moisture dependence discernible. However, calculated rates show that the forest was a net sink for methane, indicating that the soils were sufficiently well-drained despite high precipitation rates. Future measurements in this NSF-REU program will evaluate the role of water and root respiration in greater detail and will also incorporate sub-canopy and boundary layer gradient measurements to investigate other aspects of the carbon cycle in this environment.
The effect of dryer load on freeze drying process design.
Patel, Sajal M; Jameel, Feroz; Pikal, Michael J
2010-10-01
Freeze-drying using a partial load is a common occurrence during the early manufacturing stages when insufficient amounts of active pharmaceutical ingredient (API) are available. In such cases, the immediate production needs are met by performing lyophilization with less than a full freeze dryer load. However, it is not obvious at what fractional load significant deviations from full load behavior begin. The objective of this research was to systematically study the effects of variation in product load on freeze drying behavior in laboratory, pilot and clinical scale freeze-dryers. Experiments were conducted with 5% mannitol (high heat and mass flux) and 5% sucrose (low heat and mass flux) at different product loads (100%, 50%, 10%, and 2%). Product temperature was measured in edge as well as center vials with thermocouples. Specific surface area (SSA) was measured by BET gas adsorption analysis and residual moisture was measured by Karl Fischer. In the lab scale freeze-dryer, the molar flux of inert gas was determined by direct flow measurement using a flowmeter and the molar flux of water vapor was determined by manometric temperature measurement (MTM) and tunable diode laser absorption spectroscopy (TDLAS) techniques. Comparative pressure measurement (capacitance manometer vs. Pirani) was used to determine primary drying time. For both 5% mannitol and 5% sucrose, primary drying time decreases and product temperature increases as the load on the shelves decreases. No systematic variation was observed in residual moisture and vapor composition as load decreased. Further, SSA data suggests that there are no significant freezing differences under different load conditions. Independent of dryer scale, among all the effects, variation in radiation heat transfer from the chamber walls to the product seems to be the dominant effect resulting in shorter primary drying time as the load on the shelf decreases (i.e., the fraction of edge vials increases).
Ileleji, Klein E; Garcia, Arnoldo A; Kingsly, Ambrose R P; Clementson, Clairmont L
2010-01-01
This study quantified the variability among 14 standard moisture loss-on-drying (gravimetric) methods for determination of the moisture content of corn distillers dried grains with solubles (DDGS). The methods were compared with the Karl Fischer (KF) titration method to determine their percent variation from the KF method. Additionally, the thermo-balance method using a halogen moisture analyzer that is routinely used in fuel ethanol plants was included in the methods investigated. Moisture contents by the loss-on-drying methods were significantly different for DDGS samples from three fuel ethanol plants. The percent deviation of the moisture loss-on-drying methods decreased with decrease in drying temperature and, to a lesser extent, drying time. This was attributed to an overestimation of moisture content in DDGS due to the release of volatiles at high temperatures. Our findings indicate that the various methods that have been used for moisture determination by moisture loss-on-drying will not give identical results and therefore, caution should be exercised when selecting a moisture loss-on-drying method for DDGS.
Chemical modification : a non-toxic approach to wood preservation
Roger M. Rowell
2006-01-01
Wood can be chemically modified to reduce the moisture content of the cell wall and increases decay resistance. As the level of bonded chemical increases, the cell wall equilibrium moisture content decreases and the resistance to attack by white-and brown-rot fungi increases. There is a direct relationship between the decrease in cell wall moisture Content and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lydia Vaughn; Margaret Torn; Rachel Porras
Dataset includes Delta14C measurements made from CO2 that was collected and purified in 2012-2014 from surface soil chambers, soil pore space, and background atmosphere. In addition to 14CO2 data, dataset includes co-located measurements of CO2 and CH4 flux, soil and air temperature, and soil moisture. Measurements and field samples were taken from intensive study site 1 areas A, B, and C, and the site 0 and AB transects, from specified positions in high-centered, flat-centered, and low centered polygons.
Jussila, Kirsi; Rissanen, Sirkka; Parkkola, Kai; Anttonen Hannu
2014-12-01
Prehospital maritime transportation in northern areas sets high demands on hypothermia prevention. To prevent body cooling and hypothermia of seriously-ill or injured casualties during transportation, casualty coverings must provide adequate thermal insulation and protection against cold, wind, moisture, and water splashes. The aim of this study was to determine the thermal protective properties of different types of casualty coverings and to evaluate which would be adequate for use under difficult maritime conditions (cold, high wind speed, and water splashes). In addition, the study evaluated the need for thermal protection of a casualty and verified the optimum system for maritime casualty transportation. The study consisted of two parts: (1) the definition and comparison of the thermal protective properties of different casualty coverings in a laboratory; and (2) the evaluation of the chosen optimum protective covering for maritime prehospital transportation. The thermal insulations of ten different casualty coverings were measured according to the European standard for sleeping bags (EN 13537) using a thermal manikin in a climate chamber (-5°C) with wind speeds of 0.3 m/s and 4.0 m/s, and during moisture simulations. The second phase consisted of measurements of skin and core temperatures, air temperature, and relative humidity inside the clothing of four male test subjects during authentic maritime prehospital transportation in a partially-covered motor boat. Wind (4 m/s) decreased the total thermal insulation of coverings by 11%-45%. The decrement of thermal insulation due to the added moisture inside the coverings was the lowest (approximately 22%-29%) when a waterproof reflective sheet inside blankets or bubble wrap was used, whereas vapor-tight rescue bags and bubble wrap provide the most protection against external water splashes. During authentic maritime transportation lasting 30 minutes, mean skin temperature decreased on average by 0.5°C when a windproof and water-resistant rescue bag was used over layered winter clothing. The selected optimum rescue bag consisted of insulating and water-resistant layers providing sufficient protection against cold, wind, and water splashes during prehospital transportation lasting 30 minutes in the uncovered portion of a motor boat. The minimum thermal insulation for safe maritime transportation (30 minutes) is 0.46 m²K/W at a temperature of -5°C and a wind speed of 10 m/s.
Zhu, Zhuozhuo; Guo, Wenchuan
2017-08-24
To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε') and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε' decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25-35 °C), both ε' and ε″ increased with increasing moisture content. At low moisture contents (15.1-19.5% w.b.), they increased with increasing temperature. The change trends of ε' and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d p ) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.
Model for heat and mass transfer in freeze-drying of pellets.
Trelea, Ioan Cristian; Passot, Stéphanie; Marin, Michèle; Fonseca, Fernanda
2009-07-01
Lyophilizing frozen pellets, and especially spray freeze-drying, have been receiving growing interest. To design efficient and safe freeze-drying cycles, local temperature and moisture content in the product bed have to be known, but both are difficult to measure in the industry. Mathematical modeling of heat and mass transfer helps to determine local freeze-drying conditions and predict effects of operation policy, and equipment and recipe changes on drying time and product quality. Representative pellets situated at different positions in the product slab were considered. One-dimensional transfer in the slab and radial transfer in the pellets were assumed. Coupled heat and vapor transfer equations between the temperature-controlled shelf, the product bulk, the sublimation front inside the pellets, and the chamber were established and solved numerically. The model was validated based on bulk temperature measurement performed at two different locations in the product slab and on partial vapor pressure measurement in the freeze-drying chamber. Fair agreement between measured and calculated values was found. In contrast, a previously developed model for compact product layer was found inadequate in describing freeze-drying of pellets. The developed model represents a good starting basis for studying freeze-drying of pellets. It has to be further improved and validated for a variety of product types and freeze-drying conditions (shelf temperature, total chamber pressure, pellet size, slab thickness, etc.). It could be used to develop freeze-drying cycles based on product quality criteria such as local moisture content and glass transition temperature.
Kobayashi, Kenichiro; Ryu, Masahiro; Izumi, Sachi; Ueda, Takayuki; Sakurai, Kaoru
2017-01-01
To evaluate the effect of oral cleaning using a mouthwash and a mouth moisturizing gel on the number of bacteria and moisture level of the tongue surface of older adults requiring nursing care. The 60 participants were randomly divided into groups according to their use of oral cleaning procedures as follows: group 1, mouthwash and a moisturizing gel (M + m); group 2, mouthwash (M); group 3, water and a moisturizing gel (W + m); and group 4, water (W). The number of anaerobic bacteria, tongue coating index and moisture level of the tongue surface were measured at baseline, and after 1 and 2 weeks after cleaning commenced to compare the effectiveness of oral cleaning among the groups. There was no significant difference in baseline measurements among the groups. The numbers of anaerobic bacteria decreased for all groups, and there were significant differences in the rates of decrease after 2 weeks between the M + m and W + m groups, M + m and W groups, and M and W groups. The tongue coating index decreased for all groups. There was no significant difference in the rate of decrease among the groups after 1 week, and there was a significant difference after 2 weeks between the M + m and W groups. The moisture levels of all groups increased, and there were significant differences after 2 weeks between the M + m and M groups, the M + m and W groups, and the W + m and W groups. The most effective cleaning technique was the combination of a mouthwash and a moisturizing gel. Geriatr Gerontol Int 2017; 17: 116-121. © 2015 Japan Geriatrics Society.
Appearance benefits of skin moisturization.
Jiang, Z-X; DeLaCruz, J
2011-02-01
Skin hydration is essential for skin health. Moisturized skin is generally regarded as healthy and healthy looking. It is thus speculated that there may be appearance benefits of skin moisturization. This means that there are corresponding changes in the optical properties when skin is moisturized. The appearance of the skin is the result of light reflection, scattering and absorption at various skin layers of the stratum corneum, epidermis, dermis and beyond. The appearance benefits of skin moisturization are likely primarily due to the changes in the optical properties of the stratum corneum. We hypothesize that the major optical effect of skin moisturization is the decrease of light scattering at the skin surface, i.e., the stratum corneum. This decrease of surface scattering corresponds to an increase of light penetration into the deeper layers of the skin. An experiment was conducted to measure the corresponding change in skin spectral reflectance, the skin scattering coefficient and skin translucency with a change in skin hydration. In the experiment, skin hydration was decreased with the topical application of acetone and alcohol and increased with the topical application of known moisturizers and occlusives such as PJ. It was found that both the skin spectral reflectance and the skin scattering coefficient increased when the skin was dehydrated and decreased when the skin was hydrated. Skin translucency increased as the skin became moisturized. The results agree with the hypothesis that there is less light scattering at the skin surface and more light penetration into the deeper skin layers when the skin is moisturized. As a result, the skin appears darker, more pinkish and more translucent. © 2010 John Wiley & Sons A/S.
Phase Sensitiveness to Soil Moisture in Controlled Anechoic Chamber: Measurements and First Results
NASA Astrophysics Data System (ADS)
Ben Khadhra, K.; Nolan, M.; Hounam, D.; Boerner, T.
2005-12-01
To date many radar methods and models have been reported for the estimation of soil moisture, such as the Oh-model or the Dubois model. Those models, which use only the magnitude of the backscattered signal, show results with 5 to 10 % accuracy. In the last two decades SAR Interferometry (InSAR) and differential InSAR (DInSAR), which uses the phase of the backscattered signal, has been shown to be a useful tool for the creation of Digital Elevation Models (DEMs), and temporal changes due to earthquakes, subsidence, and other ground motions. Nolan (2003) also suggested the possibility to use DINSAR penetration depth as a proxy to estimate the soil moisture. The principal is based on the relationship between the penetration depth and the permittivity, which varies as a function of soil moisture. In this paper we will present new interferometric X-band laboratory measurements, which have been carried out in the Bistatic Measurement Facility at the DLR Oberpfaffenhofen, Microwaves and Radar Institute in Germany. The bistatic geometry enables us to have interferometric pairs with different baseline and different soil moistures controlled by a TDR (Time Domain Reflectivity) system. After calibration of the measuring system using a large metal plate, the sensitivity of phase and reflectivity with regard to moisture variation and therefore the penetration depth was evaluated. The effect of the surface roughness has been also reported. Current results demonstrate a non-linear relationship between the signal phase and the soil moisture, as expected, confirming the possibility of using DInSAR to measure variations in soil moisture.
Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören
2014-01-01
Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.
Development of a method to relate the moisture content of a building material to its water activity.
Macher, J M; Mendell, M J; Chen, W; Kumagai, K
2017-05-01
Subjective indicators of building dampness consistently have been linked to health, but they are, at best, semi-quantitative, and objective and quantitative assessments of dampness are also needed to study dampness-related health effects. Investigators can readily and non-destructively measure the "moisture content" (MC) of building materials with hand-held moisture meters. However, MC does not indicate the amount of the water in a material that is available to microorganisms for growth, that is, the "water activity" (A w ). Unfortunately, A w has not been readily measurable in the field and is not relatable to MC unless previously determined experimentally, because for the same moisture meter reading, A w can differ across materials as well as during moisture adsorption vs desorption. To determine the A w s that correspond to MC levels, stable air relative humidities were generated in a glove box above saturated, aqueous salt solutions, and the A w of gypsum board and the relative humidity of the chamber air were tracked until they reached equilibrium. Strong correlations were observed between meter readings and gravimetrically determined MC (r=.91-1.00), among readings with three moisture meters (r=.87-.98), and between meter readings and gypsum board A w (r=.77-.99). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hellinger, Walter C; Hasan, Saiyid A; Bacalis, Laura P; Thornblom, Deborah M; Beckmann, Susan C; Blackmore, Carina; Forster, Terri S; Tirey, Jason F; Ross, Mary J; Nilson, Christian D; Mamalis, Nick; Crook, Julia E; Bendel, Rick E; Shetty, Rajesh; Stewart, Michael W; Bolling, James P; Edelhauser, Henry F
2006-03-01
Toxic anterior segment syndrome (TASS), a complication of cataract surgery, is a sterile inflammation of the anterior chamber of the eye. An outbreak of TASS was recognized at an outpatient surgical center and its affiliated hospital in December 2002. Medical records of patients who underwent cataract surgery during the outbreak were reviewed, and surgical team members who participated in the operations were interviewed. Potential causes of TASS were identified and eliminated. Feedwater from autoclave steam generators and steam condensates were analyzed by use of spectroscopy and ion chromatography. During the outbreak, 8 (38%) of 21 cataract operations were complicated by TASS, compared with 2 (0.07%) of 2,713 operations performed from January 1996 through November 2002. Results of an initial investigation suggested that cataract surgical equipment may have been contaminated by suboptimal equipment reprocessing or as a result of personnel changes. The frequency of TASS decreased (1 of 44 cataract operations) after reassignment of personnel and revision of equipment reprocessing procedures. Further investigation identified the presence of impurities (eg, sulfates, copper, zinc, nickel, and silica) in autoclave steam moisture, which was attributed to improper maintenance of the autoclave steam generator in the outpatient surgical center. When impurities in autoclave steam moisture were eliminated, no cases of TASS were observed after more than 1,000 cataract operations. Suboptimal reprocessing of cataract surgical equipment may evolve over time in busy, multidisciplinary surgical centers. Clinically significant contamination of surgical equipment may result from inappropriate maintenance of steam sterilization systems. Standardization of protocols for reprocessing of cataract surgical equipment may prevent outbreaks of TASS and may be of assistance during outbreak investigations.
Bingham, Marcus A; Simard, Suzanne W
2011-01-01
Facilitation of tree establishment by ectomycorrhizal (EM) networks (MNs) may become increasingly important as drought stress increases with climate change in some forested regions of North America. The objective of this study was to determine (1) whether temperature, CO2 concentration ([CO2]), soil moisture, and MNs interact to affect plant establishment success, such that MNs facilitate establishment when plants are the most water stressed, and (2) whether transfer of C and water between plants through MNs plays a role in this. We established interior Douglas-fir (Pseudotsuga menziesiivar.glauca) seedlings in root boxes with and without the potential to form MNs with nearby conspecific seedlings that had consistent access to water via their taproots. We varied temperature, [CO2], and soil moisture in growth chambers. Douglas-fir seedling survival increased when the potential existed to form an MN. Growth increased with MN potential under the driest soil conditions, but decreased with temperature at 800 ppm [CO2]. Transfer of 13C to receiver seedlings was unaffected by potential to form an MN with donor seedlings, but deuterated water (D2O) transfer increased with MN potential under ambient [CO2]. Chlorophyll fluorescence was reduced when seedlings had the potential to form an MN under high [CO2] and cool temperatures. We conclude that Douglas-fir seedling establishment in laboratory conditions is facilitated by MN potential where Douglas-fir seedlings have consistent access to water. Moreover, this facilitation appears to increase as water stress potential increases and water transfer via networks may play a role in this. These results suggest that conservation of MN potential may be important to forest regeneration where drought stress increases with climate change. PMID:22393502
Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature.
Arend, M; Brem, A; Kuster, T M; Günthardt-Goerg, M S
2013-01-01
Oaks are commonly considered as drought- and heat-tolerant trees that might benefit from a warmer and drier climate. Their tolerance to drought has been frequently studied in the past, whereas studies dealing with elevated temperature or its combination with drought are very limited in number. In this study we investigated seasonal photosynthetic patterns in three European oak species (Quercus robur, Q. petraea, Q. pubescens) exposed in lysimeter-based open-top chambers (OTC) to elevated daytime temperature, drought and their combination. Stomatal and non-stomatal traits of photosynthesis were followed over an entire growing season and related to changes in daytime temperature, soil moisture and pre-dawn leaf water potential (Ψ(PD) ). Elevated daytime temperature enhanced net photosynthesis (P(N) ) in a season-dependent manner, with higher mid-summer rates than in controls exposed to ambient temperature. Drought imposed in early and mid-summer reduced the soil moisture content and caused a gradual decline in Ψ(PD) , stomatal conductance (g(S) ) and P(N) . Drought effects on Ψ(PD) and P(N) were exacerbated when drought was combined with elevated daytime temperature. In general, P(N) tended to be more affected by low soil moisture content or low Ψ(PD) in Q. robur than in Q. petraea and Q. pubescens. Non-stomatal limitations may have contributed to the drought-induced decline of P(N) in Q. robur, as indicated by a down-regulation of PSII photochemistry (F(V) /F(M) ) and decreased chlorophyll content. Taken together, our findings show that European oaks may benefit from elevated temperature, but detrimental effects can be expected when elevated temperature occurs simultaneously with drought. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Hydrologic control on redox and nitrogen dynamics in a peatland soil.
Rubol, Simonetta; Silver, Whendee L; Bellin, Alberto
2012-08-15
Soils are a dominant source of nitrous oxide (N(2)O), a potent greenhouse gas. However, the complexity of the drivers of N(2)O production and emissions has hindered our ability to predict the magnitude and spatial dynamics of N(2)O fluxes. Soil moisture can be considered a key driver because it influences oxygen (O(2)) supply, which feeds back on N(2)O sources (nitrification versus denitrification) and sinks (reduction to dinitrogen). Soil water content is directly linked to O(2) and redox potential, which regulate microbial metabolism and chemical transformations in the environment. Despite its importance, only a few laboratory studies have addressed the effects of hydrological transient dynamics on nitrogen (N) cycling in the vadose zone. To further investigate these aspects, we performed a long term experiment in a 1.5 m depth soil column supplemented by chamber experiments. With this experiment, we aimed to investigate how soil moisture dynamics influence redox sensitive N cycling in a peatland soil. As expected, increased soil moisture lowered O(2) concentrations and redox potential in the soil. The decline was more severe for prolonged saturated conditions than for short events and at deep than at the soil surface. Gaseous and dissolved N(2)O, dissolved nitrate (NO(3)(-)) and ammonium (NH(4)(+)) changed considerably along the soil column profile following trends in soil O(2) and redox potential. Hot spots of N(2)O concentrations corresponded to high variability in soil O(2) in the upper and lower parts of the column. Results from chamber experiments confirmed high NO(3)(-) reduction potential in soils, particularly from the bottom of the column. Under our experimental conditions, we identified a close coupling of soil O(2) and N(2)O dynamics, both of which lagged behind soil moisture changes. These results highlight the relationship among soil hydrologic properties, redox potential and N cycling, and suggest that models working at a daily scale need to consider soil O(2) dynamics in addition to soil moisture dynamics to accurately predict patterns in N(2)O fluxes. Copyright © 2012 Elsevier B.V. All rights reserved.
Differential atmospheric tritium sampler
Griesbach, Otto A.; Stencel, Joseph R.
1990-01-01
An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.
Moisture variation associated with water input and evaporation during sewage sludge bio-drying.
Cai, Lu; Gao, Ding; Chen, Tong-Bin; Liu, Hong-Tao; Zheng, Guo-Di; Yang, Qi-Wei
2012-08-01
The variation of moisture during sewage sludge bio-drying was investigated. In situ measurements were conducted to monitor the bulk moisture and water vapor, while the moisture content, water generation, water evaporation and aeration water input of the bio-drying bulk were calculated based on the water mass balance. The moisture in the sewage sludge bio-drying material decreased from 66% to 54% in response to control technology for bio-drying. During the temperature increasing and thermophilic phases of sewage sludge bio-drying, the moisture content, water generation and water evaporation of the bulk initially increased and then decreased. The peak water generation and evaporation occurred during the thermophilic phase. During the bio-drying, water evaporation was much greater than water generation, and aeration facilitated the water evaporation. Copyright © 2012. Published by Elsevier Ltd.
Ward, R L; Yeager, J G; Ashley, C S
1981-01-01
Two studies were carried out to determine the influence of moisture content of the survival of bacteria in raw wastewater sludge. The first study involved the effect of water loss by evaporation on the bacterial population. The second used these dewatered samples to measure the effects of moisture content on the inactivation of bacteria sludge by ionizing radiation. Both studies involved survival measurements of six representative fecally associated bacteria grown separately in sterilized sludge as well as survival data on bacteria indigenous to sludge. Growth of bacteria was stimulated in sludge during the initial phase of moisture removal by evaporation, but the reduction of moisture content below about 50% by weight caused a proportional decrease in bacterial numbers. In comparison with the original sludge, this decrease reached about one-half to one order of magnitude in all dried samples except those containing Proteus mirabilis, which decreased about four orders of magnitude. The rates of inactivation of bacteria by ionizing radiation in sludge were usually modified to some degrees by variations in moisture content. Most bacteria were found to be somewhat protected from ionizing radiation at reduced moisture levels. The largest effect was found with Salmonella typhimurium, whose radiation resistance approximately doubled in dried sludge. However, no excessively large D10 values were found for any bacterial species tested. PMID:6789765
NASA Astrophysics Data System (ADS)
Yin, Yunhe; Wu, Shaohong; Zhao, Dongsheng
2013-10-01
evaporative demand has decreased worldwide during the past several decades. This trend is also noted on the Tibetan Plateau, a region that is particularly sensitive to climate change. However, patterns and trends of evapotranspiration and their relationship to drought stress on the Tibetan Plateau are complex and poorly understood. Here, we analyze spatiotemporal changes in evapotranspiration and effective moisture (defined as the ratio of actual evapotranspiration (ETa) to reference crop evapotranspiration (ETo)) based on the modified Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ). Climate data from 80 meteorological stations on the Tibetan Plateau were compiled for the period 1981-2010 and future climate projections were generated by a regional climate model through the 21st century. The results show regional trends towards decreasing ETo and statistically significant increases in ETa (p < 0.05) and effective moisture during the period 1981-2010 (p < 0.001). A transition from significant negative to positive ETo occurred in 1997. Additionally, a pronounced increase in effective moisture occurred during the period 1981-1997 because of significant decreased ETo before 1997. In the future, regional ETo and ETa are projected to increase, thus reducing drought stress, because of generally increased effective moisture. Future regional differences are most pronounced in terms of effective moisture, which shows notable increases in the northwestern plateau and decreases in the southeastern plateau. Moreover, the reduced magnitude of effective moisture is likely to intensify in the long term, due mainly to increased evaporative demand.
NASA Astrophysics Data System (ADS)
Bargsten, A.; Andreae, M. O.; Meixner, F. X.
2009-04-01
Within the framework of the EGER project (ExchanGE processes in mountainous Regions) soil samples have been taken from the spruce forest site "Weidenbrunnen" (Fichtelgebirge, Germany) in September 2008 to determine the NO exchange in the laboratory and for a series of soil analyses. The soil was sampled below different understorey vegetation covers: young Norway spruce, moss/litter, blueberries and grass. We investigated the net NO release rate from corresponding organic layers as well as from the A horizon of respective soils. Additionally we measured pH, C/N ratio, contents of ammonium, nitrate, and organic C, bulk density, the thickness of the organic layer and the quality of the organic matter. Net NO release rates (as well as the NO production and NO consumption rates) from the soil samples were determined by a fully automated laboratory incubation & fumigation system. Purified dry air passed five dynamic incubation chambers, four containing water saturated soil samples and one reference chamber. By this procedure, the soil samples dried out slowly (within 2-6 days), covering the full range of soil moisture (0-300% gravimetric soil moisture). To quantify NO production and NO consumption rates separately, soil samples were fumigated with zero-air (approx. 0 ppb NO) and air of 133 ppb NO. The chambers were placed in a thermostatted cabinet for incubation at 10 an 20Ë C. NO and H2O concentrations at the outlet of the five dynamic chambers were measured sequentially by chemiluminescence and IR-absorption based analyzers, switching corresponding valves every two minutes. Net NO release rates were determined from the NO concentration difference between soil containing and reference chambers. Corresponding measurements of H2O mixing ratio yielded the evaporation loss of the soil samples, which (referenced to the gravimetric soil water content before and after the incubation experiment) provided the individual soil moisture contents of each soil samples during the incubation experiment. Our contribution focus net NO release rates, NO production and NO consumption rates of spruce forest soils sampled under different understorey vegetation covers. Generally, organic layers show significant higher NO production and NO consumption rates than the soils from the corresponding A horizons. Soils under the understorey vegetation cover "moos/litter" revealed the lowest NO production and NO consumption rates. Net NO release rates, NO production and NO consumption rates of soil samples obtained below the four different under- storey vegetation covers will be discussed in terms of pH, C/N ratio, contents of ammonium, nitrate, and organic C, bulk density, thickness of organic layer, as well as quality of the organic matter.
Internal Water Balance of Barley Under Soil Moisture Stress 1
Millar, Agustin A.; Duysen, Murray E.; Wilkinson, Guy E.
1968-01-01
Leaf water potential, leaf relative water content, and relative transpiration of barley were determined daily under greenhouse conditions at 3 growth stages: tillering to boot, boot to heading, and heading to maturity. The leaf moisture characteristic curve (relative water content versus leaf water potential) was the same for leaves of the same age growing in the same environment for the first 2 stages of growth, but shifted at the heading to maturity stage to higher leaf relative water content for a given leaf water potential. Growth chamber experiments showed that the leaf moisture characteristic curve was not the same for plants growing in different environments. Relative transpiration data indicated that barley stomates closed at a water potential of about −22 bars at the 3 stages studied. The water potential was measured for all the leaves on barley to determine the variation of water potential with leaf position. Leaf water potential increased basipetally with plant leaf position. In soil with a moisture content near field capacity a difference of about 16.5 bars was observed between the top and bottom leaves on the same plant, while in soil with a moisture content near the permanent wilting point the difference was only 5.6 bars between the same leaf positions. PMID:16656869
Response of Stem Respiration of Two Tropical Species to an Imposed Drought
NASA Astrophysics Data System (ADS)
Brigham, L.; Van Haren, J. L. M.
2015-12-01
Increased instances of drought are predicted for tropical forests; therefore, it is important to better understand how drought will affect individual aspects of the forest carbon cycle. Through photosynthesis, CO2 is assimilated into sugars, a dominant portion of which goes to the stems where it is used for growth and cell maintenance. Both processes produce CO2 through respiration, which leaves the stem through the bark. This investigation focused on how stem CO2 efflux differs between two tree species in the tropical rainforest biome of Biosphere 2 in Oracle, Arizona—a species of legume (Clitoria racemosa) and a species of non-legume (Phytolacca dioica). A flexible chamber was strapped to each tree and the CO2 that diffused across the bark was measured with a LI-7000. A 4-week long drought was imposed in an effort to simulate future conditions resulting from climate change. It was found that C. racemosa had an overall higher CO2 efflux than P. dioica. C. racemosa has thinner bark than P. dioica, which displays a secondary thickening of its stem as a result of successive cambia; therefore, CO2 could more easily diffuse from the stems of C. racemosa. The results also indicate that decreased soil moisture, as a result of the drought, leads to a significantly lower CO2 efflux from C. racemosa whereas no significant change was observed in P. dioica. This suggests that C. racemosa is more sensitive to water stress than P. dioica, which may have greater water storage capabilities due to its successive cambia. The differing reactions of C. racemosa and P. dioica to decreased soil moisture could be important for calculating carbon stocks and modeling the response of tropical trees to drought.
NASA Astrophysics Data System (ADS)
Trifonov, N. N.; Kovalenko, E. V.; Nikolaenkova, E. K.; Tren'kin, V. B.
2012-09-01
The intermediate separation and steam reheating system and its equipment are described. Problems concerned with the presence of condensate in the stack's lower chamber and in the removing chamber, with cavitation failure of the separated moisture pumps, with misalignment of heating steam flowrates, with unstable draining of heating steam condensate, with occurrence of self oscillations, etc. are considered. A procedure for determining the level in removing heating steam condensate from steam reheater elements is proposed. Technical solutions for ensuring stable operation of the intermediate separation and steam reheating system and for achieving smaller misalignment between the apparatuses are developed.
Use of visible, near-infrared, and thermal infrared remote sensing to study soil moisture
NASA Technical Reports Server (NTRS)
Blanchard, M. B.; Greeley, R.; Goettelman, R.
1974-01-01
Two methods are described which are used to estimate soil moisture remotely using the 0.4- to 14.0 micron wavelength region: (1) measurement of spectral reflectance, and (2) measurement of soil temperature. The reflectance method is based on observations which show that directional reflectance decreases as soil moisture increases for a given material. The soil temperature method is based on observations which show that differences between daytime and nighttime soil temperatures decrease as moisture content increases for a given material. In some circumstances, separate reflectance or temperature measurements yield ambiguous data, in which case these two methods may be combined to obtain a valid soil moisture determination. In this combined approach, reflectance is used to estimate low moisture levels; and thermal inertia (or thermal diffusivity) is used to estimate higher levels. The reflectance method appears promising for surface estimates of soil moisture, whereas the temperature method appears promising for estimates of near-subsurface (0 to 10 cm).
Use of visible, near-infrared, and thermal infrared remote sensing to study soil moisture
NASA Technical Reports Server (NTRS)
Blanchard, M. B.; Greeley, R.; Goettelman, R.
1974-01-01
Two methods are used to estimate soil moisture remotely using the 0.4- to 14.0-micron wavelength region: (1) measurement of spectral reflectance, and (2) measurement of soil temperature. The reflectance method is based on observations which show that directional reflectance decreases as soil moisture increases for a given material. The soil temperature method is based on observations which show that differences between daytime and nighttime soil temperatures decrease as moisture content increases for a given material. In some circumstances, separate reflectance or temperature measurements yield ambiguous data, in which case these two methods may be combined to obtain a valid soil moisture determination. In this combined approach, reflectance is used to estimate low moisture levels; and thermal inertia (or thermal diffusivity) is used to estimate higher levels. The reflectance method appears promising for surface estimates of soil moisture, whereas the temperature method appears promising for estimates of near-subsurface (0 to 10 cm).
Huart, F; Malumba, P; Odjo, S; Al-Izzi, W; Béra, F; Beckers, Y
2018-06-11
1. This study assessed the impact of drying temperature (54, 90, and 130°C) and maize grain moisture content at harvest (36% and 29%) on in vitro digestibility, the growth performance and ileal digestibility of broiler chickens. 2. In contrast to the results from the in vitro digestibility, apparent ileal digestibility of starch and energy decreased when the drying temperature was raised from 54 to 130°C, and this effect was more pronounced in maize grain harvested at high initial moisture content (36%). Ileal protein digestibility of maize grain decreased significantly when dried at the intermediate temperature (90°C) and with a high harvest moisture content (36%). Drying temperature and initial moisture content did not significantly affect AMEn. 3. When maize was dried at 130°C, the particle sizes of flour recovered after standard milling procedures decreased significantly, which would influence animal growth performance and in vivo digestibility through animal feed selection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heagle, A.S.; Rebbeck, J.; Shafer, S.R.
Most field studies relating seasonal ozone (O3) exposure to crop yield have been performed in the absence of plant moisture stress. The authors examined the response of a mixture of ladino clover and tall fescue to chronic doses of O3 at two soil-moisture levels over two growing seasons. The soil-moisture treatments, obtained by differential irrigation, were well-watered or water-stressed. A soil-moisture deficit occurred intermittently in water-stressed plots during both seasons. Shoots were harvested when plants reached a height of 20-25 cm. Total forage yield in the water stressed plots was 12-14% less than that in the well-watered plots. Clover wasmore » much more sensitive than fescue to O3. The decrease in total forage yield and decreased quality caused by decreased growth of clover suggest a need for ladino clover lines that are tolerant to O3.« less
Effects of hot boning and moisture enhancement on the eating quality of cull cow beef.
Pivotto, L M; Campbell, C P; Swanson, K; Mandell, I B
2014-01-01
The effects of chilling method and moisture enhancement were examined for improving eating quality of semimembranosus (SM) and longissimus lumborum (LL) from 62 cull beef cows. Chilling method included hot boning muscles after 45 to 60 min postmortem or conventional chilling for 24 h. Moisture enhancement included 1) a non-injected control (CONT) or injection processing (10% of product weight) using 2) Sodium Tripolyphosphate/salt (Na/STP), 3) Sodium Citrate (NaCIT), 4) Calcium Ascorbate (CaASC), or 5) Citrus Juices (CITRUS). Chilling method by moisture enhancement treatment interactions (P<0.09) were due to decreased hue, chroma and sarcomere length values in hot boned vs. conventionally chilled product (SM and LL) for CaASC vs. other moisture enhancement treatments. Chilling method by moisture enhancement treatment interactions (P<0.05) were due to decreased shear force and increased tenderness in conventionally chilled vs. hot boned LL using CaASC vs. Na/STP. Moisture enhancement can improve tenderness of cull cow beef depending on combinations of chilling method and moisture enhancement treatments used. © 2013.
Chen, Haixin; Liu, Jingjing; Zhang, Afeng; Chen, Jing; Cheng, Gong; Sun, Benhua; Pi, Xiaomin; Dyck, Miles; Si, Bingcheng; Zhao, Ying; Feng, Hao
2017-02-01
Mulching practices have long been used to modify the soil temperature and moisture conditions and thus potentially improve crop production in dryland agriculture, but few studies have focused on mulching effects on soil gaseous emissions. We monitored annual greenhouse gas (GHG) emissions under the regime of straw and plastic film mulching using a closed chamber method on a typical winter-wheat (Triticum aestivum L. cv Xiaoyan 22) and summer-maize (Zea mays L. cv Qinlong 11) rotation field over two-year period in the Loess Plateau, northwestern China. The following four field treatments were included: T1 (control, no mulching), T2 (4000kgha -1 wheat straw mulching, covering 100% of soil surface), T3 (half plastic film mulching, covering 50% of soil surface), and T4 (complete plastic film mulching, covering 100% of soil surface). Compared with the control, straw mulching decreased soil temperature and increased soil moisture, whereas plastic film mulching increased both soil temperature and moisture. Accordingly, straw mulching increased annual crop yields over both cycles, while plastic film mulching significantly enhanced annual crop yield over cycle 2. Compared to the no-mulching treatment, all mulching treatments increased soil CO 2 emission over both cycles, and straw mulching increased soil CH 4 absorption over both cycles, but patterns of soil N 2 O emissions under straw or film mulching are not consistent. Overall, compared to T1, annual GHG intensity was significantly decreased by 106%, 24% and 26% under T2, T3 and T4 over cycle 1, respectively; and by 20%, 51% and 29% under T2, T3 and T4 over cycle 2, respectively. Considering the additional cost and environmental issues associated with plastic film mulching, the application of straw mulching might achieve a balance between food security and GHG emissions in the Chinese Loess Plateau. However, further research is required to investigate the perennial influence of different mulching applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Singh, Randhir; Kim, Jinkyung; Shepherd, Marion W; Luo, Feng; Jiang, Xiuping
2011-06-01
A three-strain mixture of Escherichia coli O157:H7 was inoculated into fresh dairy compost (ca. 10(7) CFU/g) with 40 or 50% moisture and was placed in an environmental chamber (ca. 70% humidity) that was programmed to ramp from room temperature to selected composting temperatures in 2 and 5 days to simulate the early composting phase. The surviving E. coli O157:H7 population was analyzed by direct plating and enrichment. Optimal and suboptimal compost mixes, with carbon/nitrogen (C/N) ratios of 25:1 and 16:1, respectively, were compared in this study. In the optimal compost mix, E. coli O157:H7 survived for 72, 48, and 24 h in compost with 40% moisture and for 72, 24, and 24 h with 50% moisture at 50, 55, and 60°C, respectively, following 2 days of come-up time (rate of heating up). However, in the suboptimal compost mix, the pathogen survived for 288, 72, and 48 h in compost with 40% moisture and for 240, 72, 24 h in compost with 50% moisture at the same temperatures, respectively. Pathogen survival was longer, with 5 days of come-up time compared with 2 days of come-up. Overall, E. coli O157:H7 was inactivated faster in the compost with 50% moisture than in the compost with 40% at 55 and 60°C. Both moisture and come-up time were significant factors affecting Weibull model parameters. Our results suggest that slow come-up time at the beginning of composting can extend pathogen survival during composting. Additionally, both the C/N ratio and the initial moisture level in the compost mix affect the rate of pathogen inactivation as well.
Singh, Randhir; Kim, Jinkyung; Shepherd, Marion W.; Luo, Feng; Jiang, Xiuping
2011-01-01
A three-strain mixture of Escherichia coli O157:H7 was inoculated into fresh dairy compost (ca. 107 CFU/g) with 40 or 50% moisture and was placed in an environmental chamber (ca. 70% humidity) that was programmed to ramp from room temperature to selected composting temperatures in 2 and 5 days to simulate the early composting phase. The surviving E. coli O157:H7 population was analyzed by direct plating and enrichment. Optimal and suboptimal compost mixes, with carbon/nitrogen (C/N) ratios of 25:1 and 16:1, respectively, were compared in this study. In the optimal compost mix, E. coli O157:H7 survived for 72, 48, and 24 h in compost with 40% moisture and for 72, 24, and 24 h with 50% moisture at 50, 55, and 60°C, respectively, following 2 days of come-up time (rate of heating up). However, in the suboptimal compost mix, the pathogen survived for 288, 72, and 48 h in compost with 40% moisture and for 240, 72, 24 h in compost with 50% moisture at the same temperatures, respectively. Pathogen survival was longer, with 5 days of come-up time compared with 2 days of come-up. Overall, E. coli O157:H7 was inactivated faster in the compost with 50% moisture than in the compost with 40% at 55 and 60°C. Both moisture and come-up time were significant factors affecting Weibull model parameters. Our results suggest that slow come-up time at the beginning of composting can extend pathogen survival during composting. Additionally, both the C/N ratio and the initial moisture level in the compost mix affect the rate of pathogen inactivation as well. PMID:21498743
Singh, R; Kim, J; Jiang, X
2012-05-01
The purpose of this study was to determine the effect of moisture on thermal inactivation of Salmonella spp. in poultry litter under optimal composting conditions. Thermal inactivation of Salmonella was studied in fresh poultry compost by simulating early phase of composting process. A mixture of three Salmonella serotypes grown in Tryptic soy broth with rifampin (TSB-R) was inoculated in fresh compost with 40 or 50% moisture at a final concentration of c. 7 log CFU g(-1). The inoculated compost was kept in an environmental chamber which was programmed to rise from room temperature to target composting temperatures in 2 days. In poultry compost with optimal moisture content (50%), Salmonella spp. survived for 96, 72 and 24 h at 50, 55 and 60°C, respectively, as compared with 264, 144 and 72 h at 50, 55 and 60°C, respectively, in compost with suboptimal moisture (40%). Pathogen decline was faster during the come-up time owing to higher ammonia volatilization. Our results demonstrated that Salmonella spp. survived longer in fresh poultry compost with suboptimal moisture of 40% than in compost with optimal moisture of 50% during thermophilic composting. High nitrogen content of the poultry compost is an additional factor contributing to Salmonella inactivation through ammonia volatilization during thermal exposure. This research validated the effectiveness of the current composting guidelines on Salmonella inactivation in fresh poultry compost. Both initial moisture level and ammonia volatilization are important factors affecting microbiological safety and quality of compost product. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Exchange of carbonyl sulfide (OCS) between soils and atmosphere under various CO2 concentrations
NASA Astrophysics Data System (ADS)
Bunk, Rüdiger; Behrendt, Thomas; Yi, Zhigang; Andreae, Meinrat O.; Kesselmeier, Jürgen
2017-06-01
A new continuous integrated cavity output spectroscopy analyzer and an automated soil chamber system were used to investigate the exchange processes of carbonyl sulfide (OCS) between soils and the atmosphere under laboratory conditions. The exchange patterns of OCS between soils and the atmosphere were found to be highly dependent on soil moisture and ambient CO2 concentration. With increasing soil moisture, OCS exchange ranged from emission under dry conditions to an uptake within an optimum moisture range, followed again by emission at high soil moisture. Elevated CO2 was found to have a significant impact on the exchange rate and direction as tested with several soils. There is a clear tendency toward a release of OCS at higher CO2 levels (up to 7600 ppm), which are typical for the upper few centimeters within soils. At high soil moisture, the release of OCS increased sharply. Measurements after chloroform vapor application show that there is a biotic component to the observed OCS exchange. Furthermore, soil treatment with the fungi inhibitor nystatin showed that fungi might be the dominant OCS consumers in the soils we examined. We discuss the influence of soil moisture and elevated CO2 on the OCS exchange as a change in the activity of microbial communities. Physical factors such as diffusivity that are governed by soil moisture also play a role. Comparing KM values of the enzymes to projected soil water CO2 concentrations showed that competitive inhibition is unlikely for carbonic anhydrase and PEPCO but might occur for RubisCO at higher CO2 concentrations.
A multi-model analysis of moisture changes during the last glacial maximum
NASA Astrophysics Data System (ADS)
Liu, Shanshan; Jiang, Dabang; Lang, Xianmei
2018-07-01
This study investigates terrestrial moisture changes and associated mechanisms during the last glacial maximum (LGM; approximately 21,000 calendar years ago) using multi-model simulations from the Paleoclimate Modelling Intercomparison Project phase 3 (PMIP3). Considering that terrestrial moisture is not determined solely by precipitation, an aridity index (AI) is employed for measuring the terrestrial moisture by combining the effects of both precipitation and potential evapotranspiration (PET), where the latter represents atmospheric water demand and is greatly decreased mainly by the intense cooling during the LGM. Compared to the preindustrial period, the magnitude of global mean terrestrial moisture change is small, as the wetness brought by decreased PET counteracts the dryness induced by decreased precipitation. Regionally, the moisture changes depend on the different combinations of changes in precipitation and PET: (i) drying occurs where precipitation deceases and PET hardly changes, such as the northern tropical Americas and Southeast Asia; (ii) wetting is found in regions with precipitation increases and PET decreases (e.g., northwestern Africa and the central Andes), and their contributions are comparable; (iii) in particular, wetting can also occur in regions of decreased precipitation if a sufficient decrease in PET also occurs (i.e., southeastern North America and the northern and southern parts of eastern Asia), with the latter wetting effect reversing the former drying effect. The multi-model median field is consistent with available paleo-records in southern North America, the northern tropical Americas, the Andes, northwestern Africa, the southern Iberian Peninsula, southwestern Africa, the central part of eastern Asia, and Java but disagrees with proxies in Australia, central Brazil, southeastern Africa, the northern Iberian Peninsula, and the southern part of eastern Asia.
NASA Astrophysics Data System (ADS)
Naveed, M.; Kawamoto, K.; Hamamoto, S.; Sakaki, T.; Moldrup, P.; Komatsu, T.
2010-12-01
The transport and fate of gases in the soil are governed by gas advection, diffusion and dispersion phenomena. Among three gas transport phenomena, gas dispersion is least understood. Main objective of this study is to investigate the gas dispersion phenomena, emphasising on the effect of moisture content, sand particle shape, particle size, particle size distribution, and scale dependency on gas dispersion. One dimensional laboratory column experiments, in an apparatus consisting of an acrylic column attached to inlet and outlet chambers (Hamamoto et al., SSAJ, 2009), were conducted for the measurements of gas dispersion coefficient (DH). Various types of sands (Narita and Toyoura sands from Japan, and Granusils and Accusands from United States) and glass beads with variable moisture contents were used as porous media. Shape of the sand particles were characterized in terms of sphericity and roundness. The changes in the oxygen concentration within the soil column and in the inlet and outlet chambers were monitored. In addition the air pressure at inlet and middle of the soil column was also monitored to ensure the uniform density of porous media along the column. The measured breakthrough curves were fitted with the analytical solution of the advection dispersion equation to determine dispersion coefficients. The measured dispersion coefficient (DH) showed linear increase with pore velocity (u0). Measured dispersivity (λ= DH/u0) increases with decrease in air filled porosity induced by adding moisture contents in sands. Its values varies from 0 to 3 cm on decreasing air filled porosity from 0.50 (air dry) to 0.25 (field capacity). Shape of the sand particles has no significant effect on gas dispersion. When gas dispersion phenomena was studied on different shape of the sand particles at various air filled porosities, it was found that for angular sand particles initially gas dispersivity increases more rapidly as compared to rounded sand particles and finally both attains nearly same values at field capacity. Particle size has no significant effect on gas dispersion but particle size distribution has considerable effect on it. For the same sand when a coefficient of uniformity (Uc) increases from 1 to 4, gas dispersivity increases by 1.5 times. Gas dispersion coefficient was measured with two different sized columns and it was found that there is no effect of diameter and length of the column on gas dispersion for sandy soils. Therefore it can be concluded that only air filled porosity and particle size distribution should be considered for modeling the gas dispersivity in porous media.
Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings wer...
CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1
Margaret Torn
2015-01-14
This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Rock, B. N.; Salas, W. A.; Smith, K.; Williams, D. L.
1992-01-01
Data were collected for dominant conifer species. Dielectric properties of trunk wood were measured using a C-band dielectric probe. For certain specimens, electrical resistance was also measured using a shigometer. The water status of the trees studies was determined either by use of a Scholander pressure chamber on branch samples collected simultaneously with dielectric measurements or by fresh-weight/dry-weight assessment of wood core samples extracted and analyzed with the dielectric probe and shigometer. Diurnal delectric properties and xylem water column tension are inversely correlated such that real and imaginary dielectric values drop as tension increases. The dielectric properties were positively correlated with wood core moisture content while electrical resistance was poorly correlated with wood core moisture content in one species studied. Results support the view that dielectric properties are strongly correlated with moisture status in trunk wood, and possibly ion concentrations associated with decay processes in damaged specimens.
Zhou, J; Fang, W; Cao, Q; Yang, L; Chang, V W-C; Nazaroff, W W
2017-05-01
Utilizing the ultraviolet light-induced fluorescence (UV-LIF) measurement technique as embodied in the Waveband Integrated Bioaerosol Sensor (WIBS-4A), we evaluated the fluorescent particle emissions associated with human shedding while walking in a chamber. The mean emission rates of supermicron (1-10 μm) fluorescent particles were in the range 6.8-7.5 million particles per person-h (~0.3 mg per person-h) across three participants, for conditions when the relative humidity was 60%-70% and no moisturizer was applied after showering. The fluorescent particles displayed a lognormal distribution with the geometric mean diameter in the range 2.5-4 μm and exhibited asymmetry factors that increased with particle size. Use of moisturizer was associated with changes in number and mass emission rates, size distribution, and particle shape. Emission rates were lower when the relative humidity was reduced, but these differences were not statistically significant. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Evaluation of moisture barrier coatings on carbon-phenolic SRM nozzle materials
NASA Technical Reports Server (NTRS)
Mcnutt, Ronald C.
1986-01-01
The carbon-phenolic composite ablative material used on the Solid Rocket Motor (SRM) nozzle is known to absorb moisture from the atmosphere. This could cause problems such as pocketing during firing. Several moisture barrier coatings were tested on the SRM nozzle material. Data are presented for six of the 12 coatings to be tested. The data were obtained from immersion of coated samples in an environmental chamber at 100 F and 100% relative humidity and by using a modified TGA (thermal gravimetric analysis) technique. The TGA technique involved allowing wet nitrogen (25 C, 80% relative humidity) to flow across a small sample at about 65 cu cm per minute while continually monitoring the weight increase. These preliminary results show Kel-F-800, a material supplied by 3M Corporation to be the better moisture barrier. A second task was to collect data on the relative absorption of water and kerosene into the carbon-phenolic SRM nozzle material. These data indicate that water absorbs into the nozzle material to a much greater extent than kerosene. Thus kerosene is the more likely solvent in which to make specific gravity measurements on the SRM nozzle material.
Redman, Regina S.; Kim, Yong Ok; Woodward, Claire J. D. A.; Greer, Chris; Espino, Luis; Doty, Sharon L.; Rodriguez, Rusty J.
2011-01-01
Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients. Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions. The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization). These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands. PMID:21750695
Redman, R.S.; Kim, Y.-O.; Woodward, C.J.D.A.; Greer, C.; Espino, L.; Doty, S.L.; Rodriguez, R.J.
2011-01-01
Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients. Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions. The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization). These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.
Moisture sorption isotherms and thermodynamic properties of mexican mennonite-style cheese.
Martinez-Monteagudo, Sergio I; Salais-Fierro, Fabiola
2014-10-01
Moisture adsorption isotherms of fresh and ripened Mexican Mennonite-style cheese were investigated using the static gravimetric method at 4, 8, and 12 °C in a water activity range (aw) of 0.08-0.96. These isotherms were modeled using GAB, BET, Oswin and Halsey equations through weighed non-linear regression. All isotherms were sigmoid in shape, showing a type II BET isotherm, and the data were best described by GAB model. GAB model coefficients revealed that water adsorption by cheese matrix is a multilayer process characterized by molecules that are strongly bound in the monolayer and molecules that are slightly structured in a multilayer. Using the GAB model, it was possible to estimate thermodynamic functions (net isosteric heat, differential entropy, integral enthalpy and entropy, and enthalpy-entropy compensation) as function of moisture content. For both samples, the isosteric heat and differential entropy decreased with moisture content in exponential fashion. The integral enthalpy gradually decreased with increasing moisture content after reached a maximum value, while the integral entropy decreased with increasing moisture content after reached a minimum value. A linear compensation was found between integral enthalpy and entropy suggesting enthalpy controlled adsorption. Determination of moisture content and aw relationship yields to important information of controlling the ripening, drying and storage operations as well as understanding of the water state within a cheese matrix.
Moisture variations in brine-salted pasta filata cheese.
Kindstedt, P S
2001-01-01
A study was made of the moisture distribution in brine-salted pasta filata cheese. Brine-salted cheeses usually develop reasonably smooth and predictable gradients of decreasing moisture from center to surface, resulting from outward diffusion of moisture in response to inward diffusion of salt. However, patterns of moisture variation within brine-salted pasta filata cheeses, notably pizza cheese, are more variable and less predictable because of the peculiar conditions that occur when warm cheese is immersed in cold brine. In this study, cold brining resulted in less moisture loss from the cheese surface to the brine. Also it created substantial temperature gradients within the cheese, which persisted after brining and influenced the movement of moisture within the cheese independently of that caused by the inward diffusion of salt. Depending on brining conditions and age, pizza cheese may contain decreasing, increasing, or irregular gradients of moisture from center to surface, which may vary considerably at different locations within a single block. This complicates efforts to obtain representative samples for moisture and composition testing. Dicing the entire block into small (e.g., 1.5 cm) cubes and collecting a composite sample after thorough mixing may serve as a practical sampling approach for manufacturers and users of pizza cheese that have ready access to dicing equipment.
Molecular Modeling for Calculation of Mechanical Properties of Epoxies with Moisture Ingress
NASA Technical Reports Server (NTRS)
Clancy, Thomas C.; Frankland, Sarah J.; Hinkley, J. A.; Gates, T. S.
2009-01-01
Atomistic models of epoxy structures were built in order to assess the effect of crosslink degree, moisture content and temperature on the calculated properties of a typical representative generic epoxy. Each atomistic model had approximately 7000 atoms and was contained within a periodic boundary condition cell with edge lengths of about 4 nm. Four atomistic models were built with a range of crosslink degree and moisture content. Each of these structures was simulated at three temperatures: 300 K, 350 K, and 400 K. Elastic constants were calculated for these structures by monitoring the stress tensor as a function of applied strain deformations to the periodic boundary conditions. The mechanical properties showed reasonably consistent behavior with respect to these parameters. The moduli decreased with decreasing crosslink degree with increasing temperature. The moduli generally decreased with increasing moisture content, although this effect was not as consistent as that seen for temperature and crosslink degree.
Influence of moisture content on physical properties of minor millets.
Balasubramanian, S; Viswanathan, R
2010-06-01
Physical properties including 1000 kernel weight, bulk density, true density, porosity, angle of repose, coefficient of static friction, coefficient of internal friction and grain hardness were determined for foxtail millet, little millet, kodo millet, common millet, barnyard millet and finger millet in the moisture content range of 11.1 to 25% db. Thousand kernel weight increased from 2.3 to 6.1 g and angle of repose increased from 25.0 to 38.2°. Bulk density decreased from 868.1 to 477.1 kg/m(3) and true density from 1988.7 to 884.4 kg/m(3) for all minor millets when observed in the moisture range of 11.1 to 25%. Porosity decreased from 63.7 to 32.5%. Coefficient of static friction of minor millets against mild steel surface increased from 0.253 to 0.728 and coefficient of internal friction was in the range of 1.217 and 1.964 in the moisture range studied. Grain hardness decreased from 30.7 to 12.4 for all minor millets when moisture content was increased from 11.1 to 25% db.
Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China
NASA Astrophysics Data System (ADS)
Yang, Lei; Wei, Wei; Chen, Liding; Mo, Baoru
2012-12-01
SummarySoil moisture is an effective water source for plant growth in the semi-arid Loess Plateau of China. Characterizing the response of deep soil moisture to land use and afforestation is important for the sustainability of vegetation restoration in this region. In this paper, the dynamics of soil moisture were quantified to evaluate the effect of land use on soil moisture at a depth of 2 m. Specifically, the gravimetric soil moisture content was measured in the soil layer between 0 and 8 m for five land use types in the Longtan catchment of the western Loess Plateau. The land use types included traditional farmland, native grassland, and lands converted from traditional farmland (pasture grassland, shrubland and forestland). Results indicate that the deep soil moisture content decreased more than 35% after land use conversion, and a soil moisture deficit appeared in all types of land with introduced vegetation. The introduced vegetation decreased the soil moisture content to levels lower than the reference value representing no human impact in the entire 0-8 m soil profile. No significant differences appeared between different land use types and introduced vegetation covers, especially in deeper soil layers, regardless of which plant species were introduced. High planting density was found to be the main reason for the severe deficit of soil moisture. Landscape management activities such as tillage activities, micro-topography reconstruction, and fallowed farmland affected soil moisture in both shallow and deep soil layers. Tillage and micro-topography reconstruction can be used as effective countermeasures to reduce the soil moisture deficit due to their ability to increase soil moisture content. For sustainable vegetation restoration in a vulnerable semi-arid region, the plant density should be optimized with local soil moisture conditions and appropriate landscape management practices.
Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun
2015-01-01
Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as "scale" effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments.
Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun
2015-01-01
Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as “scale” effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments. PMID:26273836
Solar powered dehumidifier apparatus
Jebens, Robert W.
1980-12-30
A thermally insulated light transmitting housing forms a chamber containing a desiccant and having a first gas port open to the ambient and a second gas port connected by a two way valve to a volume to be dried. Solar energy transmitted through the housing heats and dries the desiccant. The increased air pressure due to the heating of the volume to be dried causes the air from the volume to be expelled through the valve into the chamber. The desiccant is then cooled by shielding it from solar energy before the volume cools thereby increasing its moisture absorbing capacity. Then the volume is allowed to cool drawing dehumidified air through the desiccant and the valve into the volume to be dried. This cycle is then repeated.
Teba, Carla da Silva; Silva, Erika Madeira Moreira da; Chávez, Davy William Hidalgo; Carvalho, Carlos Wanderlei Piler de; Ascheri, José Luis Ramírez
2017-08-01
The influence of whey protein concentrate (WPC), feed moisture and temperature on the physicochemical properties of rice-based extrudates has been investigated. WPC (0.64-7.36g/100g rice) was extruded under 5 moisture (16.64-23.36g/100g) and 5 temperature (106.36-173.64°C) established by a 3 2 central composite rotational design. Physicochemical properties [color, porosimetry, crystallinity, water solubility and absorption, pasting properties, reconstitution test, proximate composition, amino acids, minerals and electrophoresis] were determined. WPC and feed moisture increased redness, yellowness and decreased luminosity. Feed moisture and temperature increased density and total volume pore. WPC and moisture increased crystallinity, but only WPC increased solubility and decrease the retrogradation tendency. Increasing temperature increased the viscosity of the extrudates. The addition of WPC improved the nutritional composition of the extrudates, especially proteins. It is suggested that the extrusion process positively affected the retention of most of the polypeptides chains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nitrous oxide fluxes from a claypan soil overlying nitrate-enriched glacial drift
Pomes, M.L.; Wilkison, D.H.; McMahon, P.B.
1998-01-01
The closed chamber method was used to assess nitrous oxide (N2O) fluxes from corn (Zea mays, L.) fields during the 1995 growing season. The study area was characterized by a claypan soil overlying a nitrate (NO31-)-enriched glacial-drift aquifer. Denitrification produced N2O fluxes of 0.2-6.9 g ha-1 hr-1 early in the growing season. Fluxes increased with increasing soil temperature, soil water potential, and soil saturation. However, greatly diminished N2O fluxes (0.001-0.09 gha-1 hr-1) occurred when soil saturation increased to 94 percent. Losses of N2O increased linearly during the day and decreased at night, probably because of declining soil temperatures. Declines in soil saturation (less than 80 percent) and soil moisture potential (less than -10 kPa) produced late season N2O fluxes (0.03-0.8 g ha-1 hr-1) attributable to nitrification. Results indicate that denitrification would not significantly reduce claypan soil NO31- concentrations.
NASA Astrophysics Data System (ADS)
Juszczak, R.; Pihlatie, M.; Christiansen, J. R.; Giebels, M.; Schreiber, P.; Aaltonen, H.; Korhonen, J.; Rasilo, T.; Chojnicki, B. H.; Urbaniak, M.
2009-04-01
Closed static chambers are often used for greenhouse gas flux measurements from soils. The type of chamber, chamber handling and sampling protocol can influence the measurements. In most cases the calculated fluxes are suspected to be underestimated mainly because of reduction of gas diffusion from the soil to chamber headspace due to changed trace gas concentration gradient. Thus, fans are often applied to obtain better mixing of the air inside the chamber headspace and in turn reduce the negative effect of decreased concentration gradient. The open question is, however, to which extent the fluxes are changed by fans and whether they still remain underestimated or may even be overestimated? On the other hand, different sampling protocols are used assuming that they do not affect the flux measurements. To test different types of static chambers and different sampling procedures applied for measurement of greenhouse gas (CH4 and N2O) fluxes a chamber calibration campaign was organized at Hyytiälä Forestry Field Station in Southern Finland during August-October 2008. The main aim of the campaign was to quantitatively assess the uncertaintities and errors related to static chamber measurements. During this campaign static chambers were tested for 5 different CH4 and N2O flux levels with 3 different soil conditions (moisture and porosity) in a calibration tank described by Pumpanen et al. (2004). Among the different experiments, several special tests were carried out with the closed static chambers. Here, results of two special tests are presented to document whether 1) the air mixing inside the chamber headspace, 2) different sampling procedures influence the CH4 fluxes, and 3) how different calculation methods lead to varying results. Two static chambers of different volumes (65.5 and 195 liters) but with the same circular shape and surface area were connected to a LOS GATOS fats methane analyzer. The CH4 concentration inside the chamber headspace was monitored continuously with 1Hz frequency. Additionally, two different manual samplings procedures were tested and gas samples from chamber headspace were taken for gas chromatograph (GC) and analysed in two different laboratories. Gas concentrations in the calibration tank were monitored with a GC and an automatic gas analyzer (INNOVA). The preliminary results showed that air mixing inside the chamber headspace, the way of chamber handling and sampling procedures could have pronounced influence on the trace gas concentration detection inside a chamber, and as a consequence the calculated chamber fluxes. The moment of chamber enclosure can lead to a rapid increase in CH4 concentration due to a pressure effect in the chambers without a vent tube. Thus, it is essential to critically estimate the time of the first sampling so that it is early enough after chamber enclosure, but not disturbed by the initial chamber handling. It was also observed that manual sampling of gas can change the CH4 concentration in the chamber headspace. When mixing the chamber headspace air by a syringe, the subsequent gas sampling in the syringe may affect the diffusion of gas between the soil and the chamber headspace, and hence affect the calculated fluxes. It was observed that mixing the chamber headspace with a fan instead of syringes, reduced this effect during the chamber enclosure. Overall, fluxes measured with chamber equipped with a fan always gave higher fluxes (up to 40%) as compared to fluxes measured from chambers without a fan. Results of our experiment lead to the assumption that these differences were generally larger the higher the chamber was, the less porous the soil was, and the higher the fluxes were. We conclude from our experiment that static chambers used for greenhouse gas flux measurements should be equipped with at least one fan and a vent tube to increase mixing and reduce pressure propagation in the chamber-soil system, and that special attention should be paid to the handling of the chamber and to the timing of the gas sampling. References: Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinistö, S., Lohila, A., Larmola, T., Morero, M., Pihlatie, M., Janssens, I., Curiel Yuste, J., Grünzweig, J. M., Reth, S., Subke, J.-A., Savage, K., Kutsch, W., Østreng, G., Ziegler, W., Anthoni, P., Lindroth, A. & Hari, P. 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology 123, 159-176.
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Zulia Mayari; Papuga, Shirley A.
2014-01-01
We present an observational analysis examining soil moisture control on surface energy dynamics and planetary boundary layer characteristics. Understanding soil moisture control on land-atmosphere interactions will become increasingly important as climate change continues to alter water availability. In this study, we analyzed 4 years of data from the Santa Rita Creosote Ameriflux site. We categorized our data independently in two ways: (1) wet or dry seasons and (2) one of the four cases within a two-layer soil moisture framework for the root zone based on the presence or absence of moisture in shallow (0-20 cm) and deep (20-60 cm) soil layers. Using these categorizations, we quantified the soil moisture control on surface energy dynamics and planetary boundary layer characteristics using both average responses and linear regression. Our results highlight the importance of deep soil moisture in land-atmosphere interactions. The presence of deep soil moisture decreased albedo by about 10%, and significant differences were observed in evaporative fraction even in the absence of shallow moisture. The planetary boundary layer height (PBLh) was largest when the whole soil profile was dry, decreasing by about 1 km when the whole profile was wet. Even when shallow moisture was absent but deep moisture was present the PBLh was significantly lower than when the entire profile was dry. The importance of deep moisture is likely site-specific and modulated through vegetation. Therefore, understanding these relationships also provides important insights into feedbacks between vegetation and the hydrologic cycle and their consequent influence on the climate system.
Spore collection and elimination apparatus and method
Czajkowski, Carl [South Jamesport, NY; Warren, Barbara Panessa [Port Jefferson, NY
2007-04-03
The present invention is for a spore collection apparatus and its method of use. The portable spore collection apparatus includes a suction source, a nebulizer, an ionization chamber and a filter canister. The suction source collects the spores from a surface. The spores are activated by heating whereby spore dormancy is broken. Moisture is then applied to the spores to begin germination. The spores are then exposed to alpha particles causing extinction.
Vercruysse, Jurgen; Toiviainen, Maunu; Fonteyne, Margot; Helkimo, Niko; Ketolainen, Jarkko; Juuti, Mikko; Delaet, Urbain; Van Assche, Ivo; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas
2014-04-01
Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system. Copyright © 2013 Elsevier B.V. All rights reserved.
Modeling the effects of ozone on soybean growth and yield.
Kobayashi, K; Miller, J E; Flagler, R B; Heck, W W
1990-01-01
A simple mechanistic model was developed based on an existing growth model in order to address the mechanisms of the effects of ozone on growth and yield of soybean [Glycine max. (L.) Merr. 'Davis'] and interacting effects of other environmental stresses. The model simulates daily growth of soybean plants using environmental data including shortwave radiation, temperature, precipitation, irrigation and ozone concentration. Leaf growth, dry matter accumulation, water budget, nitrogen input and seed growth linked to senescence and abscission of leaves are described in the model. The effects of ozone are modeled as reduced photosynthate production and accelerated senescence. The model was applied to the open-top chamber experiments in which soybean plants were exposed to ozone under two levels of soil moisture regimes. After calibrating the model to the growth data and seed yield, goodness-of-fit of the model was tested. The model fitted well for top dry weight in the vegetative growth phase and also at maturity. The effect of ozone on seen yield was also described satisfactorily by the model. The simulation showed apparent interaction between the effect of ozone and soil moisture stress on the seed yield. The model revealed that further work is needed concerning the effect of ozone on the senescence process and the consequences of alteration of canopy microclimate by the open-top chambers.
NASA Astrophysics Data System (ADS)
Wang, Jun; Feng, Jinming; Yan, Zhongwei
2018-04-01
In this study, we conducted nested high-resolution simulations using the Weather Research and Forecasting model coupled with a single-layer urban canopy model to investigate the impact of extensive urbanization on regional precipitation over the Beijing-Tianjin-Hebei region in China. The results showed that extensive urbanization decreased precipitation considerably over and downwind of Beijing city. The prevalence of impermeable urban land inhibits local evaporation that feeds moisture into the overlying atmosphere, decreasing relative humidity and atmospheric instability. The dynamic precipitation recycling model was employed to estimate the precipitation that originates from local surface evaporation and large-scale advection of moisture. Results showed that about 11% of the urbanization-induced decrease in total precipitation over the Greater Beijing Region and its surroundings was contributed by the decrease in local recycled precipitation, while the other part (89%) was due to decreasing large-scale advected precipitation. Results suggest that the low evaporation from urban land surfaces not only reduces the supply of water vapor for local recycled precipitation directly but also decreases the convective available potential energy and hence the conversion efficiency of atmospheric moisture into rainfall. The urbanization-induced variations in local recycled precipitation were found to be correlated with the net atmospheric moisture flux on a monthly time scale.
Dehydration Effects on Imbibitional Leakage from Desiccation-Sensitive Seeds 1
Becwar, Michael R.; Stanwood, Phillip C.; Roos, Eric E.
1982-01-01
Changes in electrolyte leakage and viability in response to dehydration stress were examined in two species of seeds that do not survive desiccation. Leakage from silver maple (Acer saccharinum L.) seeds increased markedly as seed moisture contents decreased from 45 to 35% (fresh weight basis) and germination decreased from 97 to 5%, coincidentally. Time course curves of imbibitional leakage from areca palm (Chrysalido-carpus lutescens [Bory] Wendl.) embryos showed an increase in both initial leakage and steady-state leakage rates in response to dehydration from an original moisture content of 84 to as low as 53%. Absorbance at 530 nanometers of extracts from triphenyl tetrazolium chloride stained embryos of areca palm was used as a measure of viability. Absorbance decreased significantly in response to dehydration as embryo moisture content decreased from 80 to 30%. Collectively, the data suggest that membranes in the desiccation-sensitive seed tissues studied are damaged by dehydration below a critical moisture content, 40% in silver maple seed and 55% in areca palm embryos, and that the membrane damage contributes to loss of viability. PMID:16662357
Kim, JiSu; Kim, Mi-Ja; Lee, JaeHwan
2018-09-30
Effects of different moisture contents and oxidised compounds on the critical micelle concentration (CMC) of lecithin were determined in bulk oils and in medium-chain triacylglycerols (MCT). CMC of lecithin in MCT was significantly higher than that in other vegetable oils including olive, soybean, corn, and rapeseed oils (p < 0.05). Presence of moisture significantly affected the CMC of lecithin in MCT (p < 0.05). CMC of lecithin was high when the moisture content was below 900 ppm, whereas at a moisture content of 1000 ppm, CMC of lecithin decreased significantly (p < 0.05), and then started to increase. Addition of total polar materials (TPM), which are oxidation products, at 3 and 5% concentrations, decreased CMC of lecithin significantly (p < 0.05) in MCT, compared to when 0, 1, and 1.5% of TPM was added to MCT. As the degree of oxidation increased in corn oil, CMC of lecithin gradually decreased. Additionally, under different moisture contents, corn oils showed a similar pattern of CMC of lecithin in MCT, whereas oxidised corn oil had a little lower CMC of lecithin than unoxidised corn oil. The results clearly showed that the concentration of lecithin for the formation of micelles is greatly influenced by the presence of oxidation products and the moisture content in bulk oils. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Yi-Hao; Wang, Yan-Hui; Li, Zhen-Hua; Yu, Peng-Tao; Xiong, Wei; Hao, Jia; Duan, Jian
2012-10-01
From March 2009 to November 2011, an investigation was conducted on the spatiotemporal variation of soil moisture and its effects on the needle-fall in Masson pine (Pinus massoniana) forests in acid rain region of Chongqing, Southeast China, with the corresponding soil moisture thresholds determined. No matter the annual precipitation was abundant, normal or less than average, the seasonal variation of soil moisture in the forests could be obviously divided into four periods, i.e., sufficient (before May), descending (from June to July), drought (from August to September), and recovering (from October to November). With increasing soil depth, the soil moisture content increased after an initial decrease, but the difference of the soil moisture content among different soil layers decreased with decreasing annual precipitation. The amount of monthly needle-fall in the forests in growth season was significantly correlated with the water storage in root zone (0-60 cm soil layer), especially in the main root zone (20-50 cm soil layer). Soil field capacity (or capillary porosity) and 82% of field capacity (or 80% of capillary porosity) were the main soil moisture thresholds affecting the litter-fall. It was suggested that in acid rain region, Masson pine forest was easily to suffer from water deficit stress, especially in dry-summer period. The water deficit stress, together with already existed acid rain stress, would further threaten the health of the Masson forest.
Wang, Yan-Ping; Han, Ming-Yu; Zhang, Lin-Sen; Dang, Yong-Jian; Qu, Jun-Tao
2012-03-01
To have an overall understanding on the soil moisture characteristics in the apple orchards of Luochuan County can not only provide theoretical basis for selecting apple orchard sites, choosing the best root-stock combination, and improving the soil water management, but also has reference importance in increasing the productive efficiency of our apple orchards. In this study, a fixed-point continuous monitoring was conducted on the overall soil moisture environment and the variation characteristics of soil moisture in the County apple orchards differed in age class, stand type, and tree type (standard or dwarfed). For the apple orchards in the County, the rhizosphere (0-200 cm) soils of most apple trees were water-deficient, and the deficit in 0-60 cm soil layer was less than that in 60-200 cm layer. During growth season, the water storage in 0-60 cm soil layer had the same variation trend as the rainfall pattern. The relative soil moisture content in most orchards was less than 60% , and seasonal drought was quite severe. The coefficient of variation of soil moisture content decreased with soil depth. With the increasing age of the orchards, soil water storage decreased. At the same planting density, the orchards with dwarfed trees had more water storage in 0-5 m soil layer than the orchards with standard trees. However, when the orchards were planted with dwarfed trees at a higher density, the soil water storage in the orchards with dwarfed trees was lesser than that in the standard orchards. The mature orchards on highland had the highest soil moisture content, followed by the mature orchards on flat land, and on terraced land. Tree density had great effects on the soil moisture content. When the tree density was the same, planting dwarfed trees could decrease the water consumption, and increase the soil moisture content significantly. To decrease the planting density through the removal of trees would be an effective way to maintain the soil water balance of apple orchards, and achieve the sustainable development of the orchards.
The utilization of an ocular wound chamber on corneal epithelial wounds
McDaniel, Jennifer S; Holt, Andrew W; Por, Elaine D; Eriksson, Elof; Johnson, Anthony J; Griffith, Gina L
2018-01-01
Purpose Currently available ocular moisture chambers are not adequate to manage the treatment of periocular burns, corneal injuries, and infection. The purpose of these studies was to demonstrate that a flexible, semi-transparent ocular wound chamber device adapted from technology currently used on dermal wounds is safe for use on corneal epithelial injuries. Materials and methods A depilatory cream (Nair™, 30 seconds) was utilized to remove the excess hair surrounding the left eyes of anesthetized Institute Armand Frappier (IAF) hairless, female guinea pigs (Crl:HA-Hrhr). A 4 mm corneal epithelium defect was created using a corneal rust ring remover (Algerbrush®II). Epithelial defects were either left untreated or the eyes were fitted with an ocular wound chamber and 0.5 mL of hydroxypropyl methylcellulose (HPMC) gel (GenTeal®) or HPMC liquid (GenTeal®) was injected into each chamber (N=5 per group). At 0, 24, 48, and 72 hours fluorescein and optical coherence tomography imaging was collected and the intraocular pressure (IOP) was measured. H&E staining was performed on corneal and eyelid skin samples and evaluated by a veterinary pathologist. Results Corneal epithelial wounds demonstrated 100% closure rates when left untreated or treated with an ocular wound chamber containing HPMC gel at 72 hours while wounds treated with an ocular wound chamber containing HPMC liquid were 98% healed. No significant differences were found in corneal thickness and wound healing, IOP, or eyelid skin pathology in any treatment group when compared to controls. Conclusions This study indicates that adapted wound chamber technology can be safely used on sterile, corneal epithelial wounds without adverse effects on periocular or ocular tissue when filled with a liquid or gel. PMID:29785086
Soil CO2 Flux in the Amargosa Desert, Nevada, during El Nino 1998 and La Nina 1999
Riggs, Alan C.; Stannard, David I.; Maestas, Florentino B.; Karlinger, Michael R.; Striegl, Robert G.
2009-01-01
Mean annual soil CO2 fluxes from normally bare mineral soil in the Amargosa Desert in southern Nevada, United States, measured with clear and opaque soil CO2-flux chambers (autochambers) were small - <5 millimoles per square meter per day - during both El Nino 1998 and La Nina 1999. The 1998 opaque-chamber flux exceeded 1999 opaque-chamber flux by an order of magnitude, whereas the 1998 clear-chamber flux exceeded 1999 clear-chamber flux by less than a factor of two. These data suggest that above-normal soil moisture stimulated increased metabolic activity, but that much of the extra CO2 produced was recaptured by plants. Fluxes from warm moist soil were the largest sustained fluxes measured, and their hourly pattern is consistent with enhanced soil metabolic activity at some depth in the soil and photosynthetic uptake of a substantial portion of the CO2 released. Flux from cool moist soil was smaller than flux from warm moist soil. Flux from hot dry soil was intermediate between warm-moist and cool-moist fluxes, and clear-chamber flux was more than double the opaque-chamber flux, apparently due to a chamber artifact stemming from a thermally controlled CO2 reservoir near the soil surface. There was no demonstrable metabolic contribution to the very small flux from cool dry soil, which was dominated by diffusive up-flux of CO2 from the water table and temperature-controlled CO2-reservoir up- and down-fluxes. These flux patterns suggest that transfer of CO2 across the land surface is a complex process that is difficult to accurately measure.
USDA-ARS?s Scientific Manuscript database
As soil moisture increases, slope stability decreases. Remotely sensed soil moisture data can provide routine updates of slope conditions necessary for landslide predictions. For regional scale landslide investigations, only remote sensing methods have the spatial and temporal resolution required to...
Sharkhuu, Anarmaa; Plante, Alain F; Enkhmandal, Orsoo; Gonneau, Cédric; Casper, Brenda B; Boldgiv, Bazartseren; Petraitis, Peter S
2016-05-01
Globally, soil respiration is one of the largest fluxes of carbon to the atmosphere and is known to be sensitive to climate change, representing a potential positive feedback. We conducted a number of field experiments to study independent and combined impacts of topography, watering, grazing and climate manipulations on bare soil and vegetated soil (i.e., ecosystem) respiration in northern Mongolia, an area known to be highly vulnerable to climate change and overgrazing. Our results indicated that soil moisture is the most important driving factor for carbon fluxes in this semi-arid ecosystem, based on smaller carbon fluxes under drier conditions. Warmer conditions did not result in increased respiration. Although the system has local topographical gradients in terms of nutrient, moisture availability and plant species, soil respiration responses to OTC treatments were similar on the upper and lower slopes, implying that local heterogeneity may not be important for scaling up the results. In contrast, ecosystem respiration responses to OTCs differed between the upper and the lower slopes, implying that the response of vegetation to climate change may override microbial responses. Our results also showed that light grazing may actually enhance soil respiration while decreasing ecosystem respiration, and grazing impact may not depend on climate change. Overall, our results indicate that soil and ecosystem respiration in this semi-arid steppe are more sensitive to precipitation fluctuation and grazing pressure than to temperature change.
Sharkhuu, Anarmaa; Plante, Alain F.; Enkhmandal, Orsoo; Gonneau, Cédric; Casper, Brenda B.; Boldgiv, Bazartseren; Petraitis, Peter S.
2017-01-01
Globally, soil respiration is one of the largest fluxes of carbon to the atmosphere and is known to be sensitive to climate change, representing a potential positive feedback. We conducted a number of field experiments to study independent and combined impacts of topography, watering, grazing and climate manipulations on bare soil and vegetated soil (i.e., ecosystem) respiration in northern Mongolia, an area known to be highly vulnerable to climate change and overgrazing. Our results indicated that soil moisture is the most important driving factor for carbon fluxes in this semi-arid ecosystem, based on smaller carbon fluxes under drier conditions. Warmer conditions did not result in increased respiration. Although the system has local topographical gradients in terms of nutrient, moisture availability and plant species, soil respiration responses to OTC treatments were similar on the upper and lower slopes, implying that local heterogeneity may not be important for scaling up the results. In contrast, ecosystem respiration responses to OTCs differed between the upper and the lower slopes, implying that the response of vegetation to climate change may override microbial responses. Our results also showed that light grazing may actually enhance soil respiration while decreasing ecosystem respiration, and grazing impact may not depend on climate change. Overall, our results indicate that soil and ecosystem respiration in this semi-arid steppe are more sensitive to precipitation fluctuation and grazing pressure than to temperature change. PMID:28239190
Hachisuka, K; Matsushima, Y; Ohmine, S; Shitama, H; Shinkoda, K
2001-09-01
The purpose of this study was to examine the moisture permeability properties of materials used for total surface bearing (TSB) socket with a silicone liner, a combination of Silicone Suction Socket or Icelandic Roll-On Silicone Socket (ICEROSS) and an acrylic plastic sheet (Degaplast), patella-tendon bearing (PTB) socket, a combination of Pe-Lite and Degaplast, and wooden socket made of poplar. Moisture permeability of the socket materials was measured as the diminution of water in a container after 12 hours in a climatic chamber. Eight containers with their open, top side were uncovered (no material) or sealed with one of the socket materials; the experiment was repeated four times. One-way analysis of variance followed by Bonferroni's test was applied to examine the differences in moisture permeability. Moisture permeability levels were as follows: no material, 85.9 +/- 1.3 g; poplar, 4.3 +/- 0.4 g; Silicone Suction Socket, 1.1 +/- 0.2 g; ICEROSS, 1.0 +/- 0.2 g; Pe-Lite, 0.8 +/- 0.1 g; 3S + Degaplast, 0.8 +/- 0.1 g; ICEROSS + Degaplast, 0.8 +/- 0.2 g; and Pe-Lite + Degaplast, 0.8 +/- 0.1 g. There were significant differences between the uncovered container and the others, and between poplar and the others (P < 0.05). We concluded that the TSB socket with a silicone liner is not superior to the PTB socket with regard to moisture permeability, and that it is necessary to develop a new prosthetic socket that allows heat release and drainage of sweat.
Healy, Richard W.; Striegl, Robert G.; Russell, Thomas F.; Hutchinson, Gordon L.; Livingston, Gerald P.
1996-01-01
The exchange of gases between soil and atmosphere is an important process that affects atmospheric chemistry and therefore climate. The static-chamber method is the most commonly used technique for estimating the rate of that exchange. We examined the method under hypothetical field conditions where diffusion was the only mechanism for gas transport and the atmosphere outside the chamber was maintained at a fixed concentration. Analytical and numerical solutions to the soil gas diffusion equation in one and three dimensions demonstrated that gas flux density to a static chamber deployed on the soil surface was less in magnitude than the ambient exchange rate in the absence of the chamber. This discrepancy, which increased with chamber deployment time and air-filled porosity of soil, is attributed to two physical factors: distortion of the soil gas concentration gradient (the magnitude was decreased in the vertical component and increased in the radial component) and the slow transport rate of diffusion relative to mixing within the chamber. Instantaneous flux density to a chamber decreased continuously with time; steepest decreases occurred so quickly following deployment and in response to such slight changes in mean chamber headspace concentration that they would likely go undetected by most field procedures. Adverse influences of these factors were reduced by mixing the chamber headspace, minimizing deployment time, maximizing the height and radius of the chamber, and pushing the rim of the chamber into the soil. Nonlinear models were superior to a linear regression model for estimating flux densities from mean headspace concentrations, suggesting that linearity of headspace concentration with time was not necessarily a good indicator of measurement accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, P., E-mail: pkrishnan@iari.res.in; Singh, Ravender; Verma, A.P.S.
Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate ofmore » seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.« less
Thermodynamic analysis on heavy metals partitioning impacted by moisture during the MSW incineration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yanguo; Li Qinghai; Jia Jinyan
2012-12-15
Highlights: Black-Right-Pointing-Pointer Partitioning of HMs affected by moisture was investigated by thermodynamic analysis. Black-Right-Pointing-Pointer Increase in moisture and in temperature was opposite impact on HMs contribution. Black-Right-Pointing-Pointer The extent of temperature decreased by increase in moisture determines the impact. - Abstract: A thermodynamic calculation was carried out to predict the behavior and speciation of heavy metals (HMs), Pb, Zn, Cu, and Cd, during municipal solid waste (MSW) incineration with the different moisture levels. The calculation was based on the minimization of the total Gibbs free energy of the multi-components and multi-phases closed system reaching chemical equilibrium. The calculation also indicatedmore » the reaction directions and tendencies of HMs components. The impacts of chlorine additives (No PVC, 1%PVC, and 5%PVC) and moisture on the behavior of HMs were investigated at different temperature levels in the system (750 Degree-Sign C, 950 Degree-Sign C, and 1150 Degree-Sign C). Furthermore, because the incineration temperature falls down with the increase in moisture in waste, the co-influence of moisture and temperature in combusting MSW on the HMs was also studied with the given chlorine (as 1%PVC + 0.5%NaCl). The results showed that in the non-chlorine system, the impact of the moisture on Pb, Zn, and Cu was not significant, and the ratio of compound transformation was less than 10%, except the Cd compounds at 950 Degree-Sign C and 1150 Degree-Sign C. In the system with low chlorine (as 1%PVC) at constant temperature, the chlorides of HMs (Cd, Pb, Zn, and Cu) transferred to oxides, and when the content of chlorine rose up (as 5%PVC), the ratio of the chlorides of HMs (Cd, Pb, Zn, and Cu) transferring to oxides fell down noticeably. When the moisture varied together with the temperature, the Zn and Cu compounds transferred from chlorides to oxides with increase in moisture as well as decrease in temperature. At the temperature of 700-1000 Degree-Sign C, the impact of temperature on Pb and Cd was little and the moisture was the main factor; while at the temperature of 1000-1200 Degree-Sign C, the impact of increase in moisture and decrease in temperature on Pb and Cd was almost equal and reversed.« less
Moisture effect in prompt gamma measurements from soil samples.
Naqvi, A A; Khiari, F Z; Liadi, F A; Khateeb-Ur-Rehman; Raashid, M A; Isab, A H
2016-09-01
The variation in intensity of 1.78MeV silicon, 6.13MeV oxygen, and 2.22MeV hydrogen prompt gamma rays from soil samples due to the addition of 5.1, 7.4, 9.7, 11.9 and 14.0wt% water was studied for 14MeV incident neutron beams utilizing a LaBr3:Ce gamma ray detector. The intensities of 1.78MeV and 6.13MeV gamma rays from silicon and oxygen, respectively, decreased with increasing sample moisture. The intensity of 2.22MeV hydrogen gamma rays increases with moisture. The decrease in intensity of silicon and oxygen gamma rays with moisture concentration indicates a loss of 14MeV neutron flux, while the increase in intensity of 2.22MeV gamma rays with moisture indicates an increase in thermal neutron flux due to increasing concentration of moisture. The experimental intensities of silicon, oxygen and hydrogen prompt gamma rays, measured as a function of moisture concentration in the soil samples, are in good agreement with the theoretical results obtained through Monte Carlo calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Soil moisture mediates alpine life form and community productivity responses to warming.
Winkler, Daniel E; Chapin, Kenneth J; Kueppers, Lara M
2016-06-01
Climate change is expected to alter primary production and community composition in alpine ecosystems, but the direction and magnitude of change is debated. Warmer, wetter growing seasons may increase productivity; however, in the absence of additional precipitation, increased temperatures may decrease soil moisture, thereby diminishing any positive effect of warming. Since plant species show individual responses to environmental change, responses may depend on community composition and vary across life form or functional groups. We warmed an alpine plant community at Niwot Ridge, Colorado continuously for four years to test whether warming increases or decreases productivity of life form groups and the whole community. We provided supplemental water to a subset of plots to alleviate the drying effect of warming. We measured annual above-ground productivity and soil temperature and moisture, from which we calculated soil degree days and adequate soil moisture days. Using an information-theoretic approach, we observed that positive productivity responses to warming at the community level occur only when warming is combined with supplemental watering; otherwise we observed decreased productivity. Watering also increased community productivity in the absence of warming. Forbs accounted for the majority of the productivity at the site and drove the contingent community response to warming, while cushions drove the generally positive response to watering and graminoids muted the community response. Warming advanced snowmelt and increased soil degree days, while watering increased adequate soil moisture days. Heated and watered plots had more adequate soil moisture days than heated plots. Overall, measured changes in soil temperature and moisture in response to treatments were consistent with expected productivity responses. We found that available soil moisture largely determines the responses of this forb-dominated alpine community to simulated climate warming. © 2016 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Lianhong; Meyers, T. P.; Pallardy, Stephen G.
2006-01-01
The purpose of this paper is to examine the mechanism that controls the variation of surface energy partitioning between latent and sensible heat fluxes at a temperate deciduous forest site in central Missouri, USA. Taking advantage of multiple micrometeorological and ecophysiological measurements and a prolonged drought in the middle of the 2005 growing season at this site, we studied how soil moisture, atmospheric vapor pressure deficit (VPD), and net radiation affected surface energy partitioning. We stratified these factors to minimize potential confounding effects of correlation among them. We found that all three factors had direct effects on surface energy partitioning,more » but more important, all three factors also had crucial indirect effects. The direct effect of soil moisture was characterized by a rapid decrease in Bowen ratio with increasing soil moisture when the soil was dry and by insensitivity of Bowen ratio to variations in soil moisture when the soil was wet. However, the rate of decrease in Bowen ratio when the soil was dry and the level of soil moisture above which Bowen ratio became insensitive to changes in soil moisture depended on atmospheric conditions. The direct effect of increased net radiation was to increase Bowen ratio. The direct effect of VPD was very nonlinear: Increased VPD decreased Bowen ratio at low VPD but increased Bowen ratio at high VPD. The indirect effects were much more complicated. Reduced soil moisture weakened the influence of VPD but enhanced the influence of net adiation on surface energy partitioning. Soil moisture also controlled how net radiation influenced the relationship between surface energy partitioning and VPD and how VPD affected the relationship between surface energy partitioning and net radiation. Furthermore, both increased VPD and increased net radiation enhanced the sensitivity of Bowen ratio to changes in soil moisture and the effect of drought on surface energy partitioning. The direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning identified in this paper provide a target for testing atmospheric general circulation models in their representation of land-atmosphere coupling.« less
Sampling Soil CO2 for Isotopic Flux Partitioning: Non Steady State Effects and Methodological Biases
NASA Astrophysics Data System (ADS)
Snell, H. S. K.; Robinson, D.; Midwood, A. J.
2014-12-01
Measurements of δ13C of soil CO2 are used to partition the surface flux into autotrophic and heterotrophic components. Models predict that the δ13CO2 of the soil efflux is perturbed by non-steady state (NSS) diffusive conditions. These could be large enough to render δ13CO2 unsuitable for accurate flux partitioning. Field studies sometimes find correlations between efflux δ13CO2 and flux or temperature, or that efflux δ13CO2 is not correlated as expected with biological drivers. We tested whether NSS effects in semi-natural soil were comparable with those predicted. We compared chamber designs and their sensitivity to changes in efflux δ13CO2. In a natural soil mesocosm, we controlled temperature to generate NSS conditions of CO2 production. We measured the δ13C of soil CO2 using in situ probes to sample the subsurface, and dynamic and forced-diffusion chambers to sample the surface efflux. Over eight hours we raised soil temperature by 4.5 OC to increase microbial respiration. Subsurface CO2 concentration doubled, surface efflux became 13C-depleted by 1 ‰ and subsurface CO2 became 13C-enriched by around 2 ‰. Opposite changes occurred when temperature was lowered and CO2 production was decreasing. Different chamber designs had inherent biases but all detected similar changes in efflux δ13CO2, which were comparable to those predicted. Measurements using dynamic chambers were more 13C-enriched than expected, probably due to advection of CO2 into the chamber. In the mesocosm soil, δ13CO2 of both efflux and subsurface was determined by physical processes of CO2 production and diffusion. Steady state conditions are unlikely to prevail in the field, so spot measurements of δ13CO2 and assumptions based on the theoretical 4.4 ‰ diffusive fractionation will not be accurate for estimating source δ13CO2. Continuous measurements could be integrated over a period suitable to reduce the influence of transient NSS conditions. It will be difficult to disentangle biologically driven changes in soil δ13CO2 from physical controls, particularly as they occur on similar timescales and are driven by the same environmental variables, such as temperature, moisture and daylight.
Changes in effective moisture on the Tibetan Plateau during the period 1981-2010
NASA Astrophysics Data System (ADS)
Yin, Y.; Wu, S.; Zhao, D.
2013-12-01
Observed evaporative demand has decreased worldwide during the past several decades. This trend is also noted on the Tibetan Plateau, a region that is particularly sensitive to climate change. However, actual evapotranspiration trends and their relationship to drought stress on the Tibetan Plateau are poorly understood. We analyzed the spatiotemporal changes in potential evapotranspiration(PET), actual evapotranspiration(AET) and effective moisture (defined as AET/PET) during 1981-2010. Climate data from 80 meteorological stations on the Tibetan Plateau were compiled for the period 1981-2010. New plant functional types were defined for the Tibetan Plateau and evapotranspiration is simulated by the modified Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ). The results show regional trends towards decreasing PET and statistically significant increases in AET (p < 0.05) and effective moisture (p < 0.001) during the period 1981-2010. A transition from significant negative to positive PET occurred in 1997. Additionally, a pronounced increase in effective moisture occurred during the period 1981-1997 because of significant decreased PET before 1997.
Simha, H V Vikram; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Kumar, P Arun; Manimala, K
2016-06-01
Moisture sorption isotherms of spray-dried milk-foxtail millet powder were determined at 10, 25 and 40 °C. Sorption data was fitted using classical and soft-computing approaches. The isotherms were of type II, and equilibrium moisture content (EMC) was temperature dependent. The BET monolayer moisture content decreased from 3.30 to 2.67 % as temperature increased from 10 to 40 °C. Amongst the classical models, Ferro-Fontan gave the best fit of EMC-aw data. However, the Sugeno-type adaptive neuro-fuzzy inference system (ANFIS) with generalized bell-shaped membership function performed better than artificial neural network and classical models with RMSE as low as 0.0099. The isosteric heat of sorption decreased from 150.32 kJ mol(-1) at 1 % moisture content to 44.11 kJ mol(-1) at 15 % moisture. The enthalpy-entropy compensation theory was validated, and the isokinetic and harmonic mean temperatures were determined as 333.1 and 297.5 K, respectively.
Morel, Aude; Bedek, Gauthier; Salaün, Fabien; Dupont, Daniel
2014-01-01
Protective clothing with high insulation properties helps to keep the wearer safe from flames and other types of hazards. Such protection presents some drawbacks since it hinders movement and decreases comfort, in particular due to heat stress. In fact, sweating causes the accumulation of moisture which directly influences firefighters' performance, decreasing protection due to the increase in radiant heat flux. Vaporisation and condensation of hot moisture also induces skin burn. To evaluate the heat protection of protective clothing, Henrique's equation is used to predict the time leading to second-degree burn. The influence of moisture on protection is complex, i.e., at low radiant heat flux, an increase in moisture content increases protection, and also changes thermal properties. Better understanding of heat and mass transfer in protective clothing is required to develop enhanced protection and to prevent burn injuries. This paper aims to contribute to a better understanding of heat and mass transfer inside firefighters' protective clothing to enhance safety. The focus is on the influence of moisture content and the prevention of steam burn.
NASA Astrophysics Data System (ADS)
Wang, Jie; Inokuchi, Yasuhiro; Kunii, Yasuo
2007-01-01
Low-temperature (<750 °C) surface preparation for epitaxial growth poses extra challenges for both hardware of a vertical batch epitaxial reactor and chemistry of in situ pre-epi treatments. The vacuum load-lock chamber of the vertical batch tool has been improved to ensure that residual moisture and oxygen concentrations are suppressed to less than 0.1 ppm. Si-based and Cl-based gases or a mixture of these gases are investigated in terms of effectiveness to remove interfacial residual oxygen at low temperatures (<750 °C). Under an optimized process condition, we found that interfacial oxygen can be reduced to less than 1 × 1012 cm-2 levels by low-temperature treatment with a mixture of Si-based and Cl-based gases.
Teramoto, Munemasa; Liang, Naishen; Takagi, Masahiro; Zeng, Jiye; Grace, John
2016-10-17
To examine global warming's effect on soil organic carbon (SOC) decomposition in Asian monsoon forests, we conducted a soil warming experiment with a multichannel automated chamber system in a 55-year-old warm-temperate evergreen broadleaved forest in southern Japan. We established three treatments: control chambers for total soil respiration, trenched chambers for heterotrophic respiration (R h ), and warmed trenched chambers to examine warming effect on R h . The soil was warmed with an infrared heater above each chamber to increase soil temperature at 5 cm depth by about 2.5 °C. The warming treatment lasted from January 2009 to the end of 2014. The annual warming effect on R h (an increase per °C) ranged from 7.1 to17.8% °C -1 . Although the warming effect varied among the years, it averaged 9.4% °C -1 over 6 years, which was close to the value of 10.1 to 10.9% °C -1 that we calculated using the annual temperature-efflux response model of Lloyd and Taylor. The interannual warming effect was positively related to the total precipitation in the summer period, indicating that summer precipitation and the resulting soil moisture level also strongly influenced the soil warming effect in this forest.
Teramoto, Munemasa; Liang, Naishen; Takagi, Masahiro; Zeng, Jiye; Grace, John
2016-01-01
To examine global warming’s effect on soil organic carbon (SOC) decomposition in Asian monsoon forests, we conducted a soil warming experiment with a multichannel automated chamber system in a 55-year-old warm-temperate evergreen broadleaved forest in southern Japan. We established three treatments: control chambers for total soil respiration, trenched chambers for heterotrophic respiration (Rh), and warmed trenched chambers to examine warming effect on Rh. The soil was warmed with an infrared heater above each chamber to increase soil temperature at 5 cm depth by about 2.5 °C. The warming treatment lasted from January 2009 to the end of 2014. The annual warming effect on Rh (an increase per °C) ranged from 7.1 to17.8% °C−1. Although the warming effect varied among the years, it averaged 9.4% °C−1 over 6 years, which was close to the value of 10.1 to 10.9% °C−1 that we calculated using the annual temperature–efflux response model of Lloyd and Taylor. The interannual warming effect was positively related to the total precipitation in the summer period, indicating that summer precipitation and the resulting soil moisture level also strongly influenced the soil warming effect in this forest. PMID:27748424
Wernerehl, Robert W.; Givnish, Thomas J.
2015-01-01
Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis’ continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward “drier” sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500–1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward “wetter” sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This study is the first to quantify the effects of soil mechanical impedance on community ecology. PMID:26368936
Wernerehl, Robert W; Givnish, Thomas J
2015-01-01
Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis' continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward "drier" sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500-1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward "wetter" sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This study is the first to quantify the effects of soil mechanical impedance on community ecology.
Stability of fragrance patch test preparations applied in test chambers.
Mowitz, M; Zimerson, E; Svedman, C; Bruze, M
2012-10-01
Petrolatum patch test preparations are for practical reasons often applied in test chambers in advance, several hours or even days before the patient is tested. As many fragrance compounds are volatile it may be suspected that petrolatum preparations applied in test chambers are not stable over time. To investigate the stability of petrolatum preparations of the seven chemically defined components in the fragrance mix (FM I) when stored in test chambers. Samples of petrolatum preparations applied in test chambers stored at room temperature and in a refrigerator for between 4 and 144 h were analysed using liquid chromatographic methods. The concentration decreased by ≥ 20% within 8 h in four of seven preparations stored in Finn chambers at room temperature. When stored in a refrigerator only the preparation of cinnamal had decreased by ≥ 20% within 24 h. The stability of preparations of cinnamal stored in IQ chambers with a plastic cover was slightly better, but like the preparations applied in Finn chambers, the concentration decreased by ≥ 20% within 4 h at room temperature and within 24 h in a refrigerator. Cinnamal and cinnamyl alcohol were found to be more stable when analysed as ingredients in FM I compared with when analysed in individual preparations. Within a couple of hours several fragrance allergens evaporate from test chambers to an extent that may affect the outcome of the patch test. Application to the test chambers should be performed as close to the patch test occasion as possible and storage in a refrigerator is recommended. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.
NASA Astrophysics Data System (ADS)
Drake, B.; Powell, T.; Li, J.; Hinkle, R.; Rasse, D.
2007-12-01
Stomatal opening in plant leaves control carbon and water exchange between vegetation and the atmosphere. Closure of these water-gates in response to increased atmospheric CO2 mixing ratio's, reduces transpiration under most laboratory and short term experimental conditions. Does this imply however, as atmospheric CO2 rises, and plant canopies expand, that evapo-transpiration (ETR), soil moisture content (SMC), and ecosystem water use efficiency (WUE) will increase? To test this question, field experiments have been and still are conducted using open top chambers. We have exposed native species in Florida Scrub to a carbon dioxide mixing ratio of nearly 700 ppmv CO2 for the past ten years and in Chesapeake Bay wetlands for 21 years. As a result of this treatment, in both ecosystems there was an increase in net ecosystem CO2 exchange and leaf area but a reduction of stomatal conductance, stem flow, transpiration, and ETR. For Florida scrub oak, these changes were also accompanied by an increase in soil moisture content as well.
NASA Astrophysics Data System (ADS)
O'Connell, C.; Silver, W. L.; Ruan, L.
2016-12-01
Global circulation models suggest that climate change will increase the frequency and severity of drought in the humid tropics (Neelin et al., 2006). There is considerable uncertainty about the effects of drought on biogeochemical cycling in these ecosystems (Chambers et al., 2012), which play a key role in global carbon (C) and nitrogen (N) budgets (Vitousek & Sanford, 1986; Wright, 2005; Le Quéré et al., 2009). We used an automated sensor array to determine the effects of a recent severe drought on soil moisture, oxygen (O2), greenhouse gas emissions, and key nutrients across a wet tropical forest landscape. The onset of drought led to a rapid decline in soil moisture (46% drop in 21 days) and an associated rise in soil aeration. Drying also led to significant declines in inorganic P concentrations, an element commonly limiting to net primary productivity (NPP) in humid tropical forests (Cleveland et al. 2011). Drought increased soil carbon dioxide (CO2) emissions from slopes by 60% (from 3.79 ± 2.92 to 6.06 ± 4.26 µmol m-2 s-1) and valleys by 163% (from 0.57 ± 0.17 to 1.51 ± 0.75 µmol m-2 s-1). Methane (CH4) fluxes declined by 90% in valleys after the drought (from 17.43 ± 29.60 to 1.67 ± 4.09 nmol m-2 s-1) but increased above pre-drought baseline by tenfold and hundredfold in ridges and slopes, respectively, post-drought, offsetting the initial decline in soil CH4 emissions. Soil moisture and soil O2 concentrations were slow to recover after the onset of rains, effectively increasing the length of the drought effect by up to 65%. Results indicate that drought is likely to result in soil C losses and increased soil P limitation, potentially decreasing tropical forest C uptake and storage in the future.
Jeong, Seul-Gi; Kang, Dong-Hyun
2014-04-17
The influence of moisture content during radio-frequency (RF) heating on heating rate, dielectric properties, and inactivation of foodborne pathogens was investigated. The effect of RF heating on the quality of powdered red and black pepper spices with different moisture ranges was also investigated. Red pepper (12.6%, 15.2%, 19.1%, and 23.3% dry basis, db) and black pepper (10.1%, 17.2%, 23.7%, and 30.5% db) inoculated with Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium were treated in a RF heating system with 27.12 MHz. The heating rate of the sample was dependent on moisture content up to 19.1% (db) of red pepper and 17.2% (db) of black pepper, but there was a significant decrease in the heating rate when the moisture content was increased beyond these levels. The dielectric properties of both samples increased with a rise in moisture content. As the moisture content increased, treatment time required to reduce E. coli O157:H7 and S. Typhimurium by more than 7 log CFU/g (below the detection limit, 1 log CFU/g) decreased and then increased again without affecting product quality when the moisture content exceeded a level corresponding to the peak heating rate. RF treatment significantly (P<0.05) reduced moisture content of both spices. These results suggest that RF heating can be effectively used to not only control pathogens but also reduce moisture levels in spices and that the effect of inactivation is dependent on moisture content. Copyright © 2014 Elsevier B.V. All rights reserved.
An example of nighttime drying in the Santa Ana mountains
Michael A. Fosberg; Mark J. Schroeder
1965-01-01
Humidity patterns near the 500- to 1,000-meter level on California's coastal mountains often show an anomolous decrease in the moisture content at night and early morning. A study in the Santa Ana mountains suggests that nighttime downslope winds provide the most satisfactory explanation for the decrease in moisture because of their effect on the marine layer....
Responses to Soil Moisture Deficiency by Seedlings of Three Hardwood Species
F. T. Bonner
1968-01-01
Growth of terminal shoots of potted sycamore, sweetgum, and Nuttall oak seedlings began to decrease when leaf water deficits reached 6 to 9 percent. Growth limiting soil moisture tensions were much lower and occurred much sooner in Commerce silt loam than in Sharkey clay. Transpiration was greatest in the fastest growing individuals; it decreased steadily as tension...
NASA Technical Reports Server (NTRS)
Rao, R. G. S.; Ulaby, F. T.
1977-01-01
The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.
Evaluation of soil pH and moisture content on in-situ ozonation of pyrene in soils.
Luster-Teasley, S; Ubaka-Blackmoore, N; Masten, S J
2009-08-15
In this study, pyrene spiked soil (300 ppm) was ozonated at pH levels of 2, 6, and 8 and three moisture contents. It was found that soil pH and moisture content impacted the effectiveness of PAH oxidation in unsaturated soils. In air-dried soils, as pH increased, removal increased, such that pyrene removal efficiencies at pH 6 and pH 8 reached 95-97% at a dose of 2.22 mg O(3)/mg pyrene. Ozonation at 16.2+/-0.45 mg O(3)/ppm pyrene in soil resulted in 81-98% removal of pyrene at all pH levels tested. Saturated soils were tested at dry, 5% or 10% moisture conditions. The removal of pyrene was slower in moisturized soils, with the efficiency decreasing as the moisture content increased. Increasing the pH of the soil having a moisture content of 5% resulted in improved pyrene removals. On the contrary, in the soil having a moisture content of 10%, as the pH increased, pyrene removal decreased. Contaminated PAH soils were stored for 6 months to compare the efficiency of PAH removal in freshly contaminated soil and aged soils. PAH adsorption to soil was found to increase with longer exposure times; thus requiring much higher doses of ozone to effectively oxidize pyrene.
NASA Astrophysics Data System (ADS)
Davidson, Eric; Sihi, Debjani; Savage, Kathleen
2017-04-01
Soil fluxes of greenhouse gases (GHGs) play a significant role as biotic feedbacks to climate change. Production and consumption of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. Models of belowground processes of these GHGs should be internally consistent with respect to the biophysical processes of gaseous production, consumption, and transport within the soil, including the contrasting effects of oxygen (O2) as either substrate or inhibitor. We installed automated chambers to simultaneously measure soil fluxes of CO2 (using LiCor-IRGA), CH4, and N2O (using Aerodyne quantum cascade laser) along soil moisture gradients at the Howland Forest in Maine, USA. Measured fluxes of these GHGs were used to develop and validate a merged model. While originally intended for aerobic respiration, the core structure of the Dual Arrhenius and Michaelis-Menten (DAMM) model was modified by adding M-M and Arrhenius functions for each GHG production and consumption process, and then using the same diffusion functions for each GHG and for O2. The area under a soil chamber was partitioned according to a log-normal probability distribution function, where only a small fraction of microsites had high available-C. The probability distribution of soil C leads to a simulated distribution of heterotrophic respiration, which translates to a distribution of O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates microsite concentrations of O2, which then determine the distribution of microsite production and consumption of CH4 and N2O, and subsequently their microsite concentrations using the same diffusion function. At many moisture values, there are some microsites of production and some of consumption for each gas, and the resulting simulated microsite concentrations of CH4 and N2O range from below ambient to above ambient atmospheric values. As soil moisture or temperature increase, the skewness of the microsite distributions of heterotrophic respiration and CH4 concentrations shifts toward a larger fraction of high values, while the skewness of microsite distributions of O2 and N2O concentrations shifts toward a larger fraction of low values. This approach of probability distribution functions for each gas simulates the importance of microsite hotspots of methanogenesis and N2O reduction at high moisture (and temperature). In addition, the model demonstrates that net consumption of atmospheric CH4 and N2O can occur simultaneously within a chamber due to the distribution of soil microsite conditions, which is consistent with some episodes of measured fluxes. Because soil CO2, N2O and CH4 fluxes are linked through substrate supply and O2 effects, the multiple constraints of simultaneous measurements of all three GHGs proved to be effective when applied to our combined model. Simulating all three GHGs simultaneously in a parsimonious modeling framework provides confidence that the most important mechanisms are skillfully simulated using appropriate parameterization and good process representation.
Effect of pregelatination on rheology, cooking and antioxidant activity of pasta.
Rafiq, Aasima; Sharma, Savita; Singh, Baljit
2018-05-01
The present study explores the possibility of using twin screw extruder for preparation of pregelatinized pasta. The effects of extrusion parameters feed moisture (28 and 32%), barrel temperature (60-105 °C) and screw speed (100-200 rpm) on pregelatinized pasta were investigated. Prepared pasta was analysed for quality characteristics in terms of cooking quality, degree of gelatinization, color, texture, pasting properties, bioactive composition. Results indicated that higher screw speed improved the cooking quality of pasta and decreased gruel solid loss. Degree of gelatinization revealed positive relation with temperature and feed moisture. Extrusion conditions, altered the color of pasta, a decrease in L*, increase in a* and b* values was observed. Higher peak viscosity was observed at lower barrel temperature and feed moisture. A significant retention in total phenolic content and flavonoid content was observed with higher feed moisture. Extrusion leads to increase in antioxidant activity and firmness upon increasing screw speed and feed moisture.
NASA Astrophysics Data System (ADS)
Thongkhao, Thanakrit; Phantuwongraj, Sumet; Choowong, Montri; Thitimakorn, Thanop; Charusiri, Punya
2015-11-01
One devastating landslide event in northern Thailand occurred in 2006 at Ban Nong Pla village, Chiang Klang highland of Nan province after, a massive amount of residual soil moved from upstream to downstream, via creek tributaries, into a main stream after five days of unusual heavy rainfall. In this paper, the geological and engineering properties of residual soil derived fromsedimentary rocks were analyzed and integrated. Geological mapping, electrical resistivity survey and test pits were carried out along three transect lines together with systematic collection of undisturbed and disturbed residual soil samples. As a result, the average moisture content in soil is 24.83% with average specific gravity of 2.68,whereas the liquid limit is 44.93%, plastic limit is 29.35% and plastic index is 15.58%. The cohesion of soil ranges between 0.096- 1.196 ksc and the angle of internal friction is between 11.51 and 35.78 degrees. This suggests that the toughness properties of soil change when moisture content increases. Results from electrical resistivity survey reveal that soil thicknesses above the bedrock along three transects range from 2 to 9 m. The soil shear strength reach the rate of high decreases in the range of 72 to 95.6% for residual soil from shale, siltstone and sandstone, respectively. Strength of soil decreaseswhen the moisture content in soil increases. Shear strength also decreases when the moisture content changes. Therefore, the natural soil slope in the study area will be stable when the moisture content in soil level is equal to one, but when the moisture content between soil particle increases, strength of soil will decrease resulting in soil strength decreasing.
NASA Astrophysics Data System (ADS)
Selva Valero, Daniel
In 2006 the two-dimensional interferometric radiometer MIRAS will be launched in a satellite by ESA. MIRAS is a Y-shaped array of 64 antennas that provides a radiometric resolution of 1K and a spatial resolution of 10-20Km, a perfect performance for Earth Observation. For the first time it will be taking global direct measures of soil moisture and ocean salinity for three years. Since these parameters are of main importance in weather prediction, they are very useful in studies of Climatic change. Aperture synthesis radiometers reach the same performance than total power ones, but with a major advantage: a much lower mass. This kind of passive radar provides measures of the cross-correlations between each pair of antennas in the array, being each correlation a sample of the visibility function. The brightness temperature distribution can be obtained by Inverse Fourier transform of the visibility function. The image of the brightness temperature will be processed in order to obtain the soil moisture and the ocean salinity. Before the launching a hard work on design and testing the instrument has to be done. Software simulators are necessary to design and predict the behavior of the instrument, but once the instrument is developed, a prototype must be built and all the features have to be tested in anechoic chambers and natural scenarios. When the instrument will be in orbit it will be in far-field from the earth, but this doesn't apply in the chamber. Although it is true that the target is in far-field from every element of the antenna, it is not far enough from the array to consider far-field from the set of antennas. Hence, some corrections must be done in order to transform the results obtained in near-field to the ones that would be obtained in far field. The main contribution of this paper is the expression of the corrections that we must apply to make the measures in anechoic chambers.
Effects of Drought Stress and Ozone Exposure on Isoprene Emissions from Oak Seedlings in Texas
NASA Astrophysics Data System (ADS)
Madronich, M. B.; Harte, A.; Schade, G. W.
2014-12-01
Isoprene is the dominant hydrocarbon emitted by plants to the atmosphere with an approximate global emission of 550 Tg C yr-1. Isoprene emission studies have elucidated plants' isoprene production capacity, and the controlling factors of instantaneous emissions. However, it is not yet well understood how long-term climatic factors such as drought and increasing ozone concentrations affect isoprene emission rates. Drought reduces photosynthetic activity and is thus expected to reduce isoprene emission rate, since isoprene production relies on photosynthates. On the other hand, ozone is also known to negatively affect photosynthesis rates, but can instead increase isoprene emissions. These apparent inconsistencies and a lack of experimental data make it difficult to accurately parameterize isoprene emission responses to changing environmental conditions. The objective of this work is to reduce some of these uncertainties, using oak seedlings as a study system. Our project focuses on isoprene emission responses of oak trees to typical summer drought and high ozone conditions in Texas. We report on experiments conducted using a laboratory whole-plant chamber and leaf-level data obtained from greenhouse-grown seedlings. The chamber experiment studied the effects of ozone and drought on isoprene emissions from >3 year old oak seedlings under controlled conditions of photosynthetically active radiation (PAR), temperature, soil-moisture and the chamber's air composition. Stress in plants was induced by manipulating potted soil-moisture and ozone concentration in the chamber. The greenhouse study focused on understanding the effects of drought under Texas climatic conditions. For this study we used two year old seedlings of water oak (Quercus nigra) and post oak (Quercus stellata). Temperature, humidity and light in the greenhouse followed local conditions. Leaf-level conductance, photosynthesis measurements and isoprene sampling were carried out under controlled leaf temperature and PAR. The only variable manipulated was the water added to the plants. Seedling isoprene and other VOC emissions were identified and quantified using GC-FID techniques. The results of our work may allow for an improved parameterization of isoprene emissions in VOC inventories, particularly for Texas.
NASA Astrophysics Data System (ADS)
AlSayegh, George
Cross Laminated Timber (CLT) is a new wood-based material composed of cross laminated wood boards that form a structural panel. This study focuses on identifying the appropriate methods to determine the hygrothermal properties of CLTs fabricated with Canadian and European Lumber. The laboratory tests carried out in this study will help establish heat, air and moisture response properties to be used for hygrothermal simulation to assess the durability of CLTs in building envelope construction. Measurement of water vapour permeability, liquid water absorption, sorption isotherms, thermal conductivity, and air permeability were performed on three Canadian CLT specimens composed of Hem-Fir, Eastern Spruce-Pine-Fir, and Western Spruce-Pine-Fir and one European specimen composed of Spruce. The hygrothermal properties of CLT, considered in this study, appear to be similar to commonly used wood specimens reported in the literature. However, liquid water absorption coefficients of CLT were found to be generally lower than common wood species, possibly due to the presence of glue between the wood layers which limits the moisture movement across the specimen. On the other hand, the air permeability across the CLT specimens varied due to the glue discontinuity within the specimen which led some CLTs to be permeable, however all the European specimens were found to be impermeable. This study also critically analyzed the significance of equilibrium moisture content (EMC) of wood at high relative humidity, measured by means of a pressure plate apparatus and humidity chambers, on the moisture management performance of a wood-frame stucco wall, using the hygrothermal simulation tool hygIRC-2D. The simulation results indicate that the prediction of the moisture response of a wood-frame stucco wall assembly depends significantly on the method adopted to derive the EMC of wood at high RH.
Schwerbrock, R; Leuschner, C
2016-07-01
(1) Most ferns are restricted to moist and shady habitats, but it is not known whether soil moisture or atmospheric water status are decisive limiting factors, or if both are equally important. (2) Using the rare temperate woodland fern Polystichum braunii, we conducted a three-factorial climate chamber experiment (soil moisture (SM) × air humidity (RH) × air temperature (T)) to test the hypotheses that: (i) atmospheric water status (RH) exerts a similarly large influence on the fern's biology as soil moisture, and (ii) both a reduction in RH and an increase in air temperature reduce vigour and growth. (3) Nine of 11 morphological, physiological and growth-related traits were significantly influenced by an increase in RH from 65% to 95%, leading to higher leaf conductance, increased above- and belowground productivity, higher fertility, more epidermal trichomes and fewer leaf deformities under high air humidity. In contrast, soil moisture variation (from 66% to 70% in the moist to ca. 42% in the dry treatment) influenced only one trait (specific leaf area), and temperature variation (15 °C versus 19 °C during daytime) only three traits (leaf conductance, root/shoot ratio, specific leaf area); RH was the only factor affecting productivity. (4) This study is the first experimental proof for a soil moisture-independent air humidity effect on the growth of terrestrial woodland ferns. P. braunii appears to be an air humidity hygrophyte that, whithin the range of realistic environmental conditions set in this study, suffers more from a reduction in RH than in soil moisture. A climate warming-related increase in summer temperatures, however, seems not to directly threaten this endangered species. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
The effect of added fullness and ventilation holes in T-shirt design on thermal comfort.
Ho, Chupo; Fan, Jintu; Newton, Edward; Au, Raymond
2011-04-01
This paper reports on an experimental investigation on the effect of added fullness and ventilation holes in T-shirt design on clothing comfort measured in terms of thermal insulation and moisture vapour resistance. Four T-shirts in four different sizes (S, M, L, XL) were cut under the traditional sizing method while another (F-1) was cut with specially added fullness to create a 'flared' drape. A thermal manikin 'Walter' was used to measure the thermal insulation and moisture vapour resistance of the T-shirts in a chamber with controlled temperature, relative humidity and air velocity. The tests included four conditions: manikin standing still in the no-wind and windy conditions and walking in the no-wind and windy condition. It was found that adding fullness in the T-shirt design (F-1) to create the 'flared' drape can significantly reduce the T-shirt's thermal insulation and moisture vapour resistance under walking or windy conditions. Heat and moisture transmission through the T-shirt can be further enhanced by creating small apertures on the front and back of the T-shirt with specially added fullness. STATEMENT OF RELEVANCE: The thermal comfort of the human body is one of the key issues in the study of ergonomics. When doing exercise, a human body will generate heat, which will eventually result in sweating. If heat and moisture are not released effectively from the body, heat stress may occur and the person's performance will be negatively affected. Therefore, contemporary athletic T-shirts are designed to improve the heat and moisture transfer from the wearer. Through special cutting, such athletic T-shirts can be designed to improve the ventilation of the wearer.
Effects of open-top chambers on Valencia' orange trees. [Citrus sinensis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszyk, D.M.; Takemoto, B.K.; Kats, G.
Open-top field chambers are the most widely used technology for evaluating the impacts of air pollutants on vegetation. This study was conducted to evaluate the long-term effects of chambers on Valencia orange trees (Citrus sinensis (L.) Osbeck). The trees were exposed to ambient ozone (O{sub 3}) for 51 months in large (4.3-m diam. by 2.9-m high) nonfiltered open-top chambers (NF) and in ambient air without chambers (AA). Results suggest that the yield increases for NF compared to AA trees could, in part, be accounted for by decreased flux of O{sub 3} into leaves (based on decreased O{sub 3} exposure andmore » leaf conductance). However, other factors, i.e., increased tree growth, altered leaf C allocation, and lack of wind stress occurring only in chambers, likely contributed to higher NF tree yields.« less
2008-04-01
antibody:blocking buffer overnight at 4°C in a moisture chamber. To measure auto - fluorescence , cells were incubated overnight at 4°C with blocking buffer...as a monomer and are auto -inhibited by virtue of two inhibitory regions that flank the DBD. Disinhibition, resulting in enhancement of ETS DBD...placenta, lung, kidney, prostate, intestine, breast, skin, retina and other epithelia (7-10). During mouse embryo development, Elf3 mRNA expression
Preparation of a Frozen Regolith Simulant Bed for ISRU Component Testing in a Vacuum Chamber
NASA Technical Reports Server (NTRS)
Klenhenz, Julie; Linne, Diane
2013-01-01
In-Situ Resource Utilization (ISRU) systems and components have undergone extensive laboratory and field tests to expose hardware to relevant soil environments. The next step is to combine these soil environments with relevant pressure and temperature conditions. Previous testing has demonstrated how to incorporate large bins of unconsolidated lunar regolith into sufficiently sized vacuum chambers. In order to create appropriate depth dependent soil characteristics that are needed to test drilling operations for the lunar surface, the regolith simulant bed must by properly compacted and frozen. While small cryogenic simulant beds have been created for laboratory tests, this scale effort will allow testing of a full 1m drill which has been developed for a potential lunar prospector mission. Compacted bulk densities were measured at various moisture contents for GRC-3 and Chenobi regolith simulants. Vibrational compaction methods were compared with the previously used hammer compaction, or "Proctor", method. All testing was done per ASTM standard methods. A full 6.13 m3 simulant bed with 6 percent moisture by weight was prepared, compacted in layers, and frozen in a commercial freezer. Temperature and desiccation data was collected to determine logistics for preparation and transport of the simulant bed for thermal vacuum testing. Once in the vacuum facility, the simulant bed will be cryogenically frozen with liquid nitrogen. These cryogenic vacuum tests are underway, but results will not be included in this manuscript.
Hazaveh, Parham; Mohammadi Nafchi, Abdorreza; Abbaspour, Hossein
2015-08-01
Sugars were incorporated into CWFG solutions at different ratios (0%, 2%, 4%, and 6% w/w). Functional properties of the modified films were characterized following American standard test methods, and moisture sorption isotherm was characterized by polynomial and GAB models. Permeation to water vapor and oxygen of the modified films decreased compared to that of the control CWFG films. Moisture content, solubility, and monolayer water content of CWFG films decreased with the increase of sugar content. The addition of sugars significantly increased the Tensile strength of CWFG films from 30 to 40 MPa for ribose, and 30 to 35 MPa for fructose whereas elongation at the breaks decreased from 60% to 30% for ribose, and from 60% to 45% for that which incorporated fructose sugars. Moisture sorption isotherm curve significantly shifted to lower moisture content in aw<0.6. In aw>0.6, ribose-incorporated CWFG films, had similar function to hydrogel materials. In all the characterizations, the effects of ribose were significantly higher than those of fructose. Results of this research can be explored for commercial use, depending on the application for either packaging purposes or in the cosmetics industries. Copyright © 2015 Elsevier B.V. All rights reserved.
Effects of Soil Temperature and Moisture on Soil Respiration on the Tibetan Plateau
Chang, Xiaofeng; Wang, Shiping; Xu, Burenbayin; Luo, Caiyun; Zhang, Zhenhua; Wang, Qi; Rui, Yichao; Cui, Xiaoying
2016-01-01
Understanding of effects of soil temperature and soil moisture on soil respiration (Rs) under future warming is critical to reduce uncertainty in predictions of feedbacks to atmospheric CO2 concentrations from grassland soil carbon. Intact cores with roots taken from a full factorial, 5-year alpine meadow warming and grazing experiment in the field were incubated at three different temperatures (i.e. 5, 15 and 25°C) with two soil moistures (i.e. 30 and 60% water holding capacity (WHC)) in our study. Another experiment of glucose-induced respiration (GIR) with 4 h of incubation was conducted to determine substrate limitation. Our results showed that high temperature increased Rs and low soil moisture limited the response of Rs to temperature only at high incubation temperature (i.e. 25°C). Temperature sensitivity (Q10) did not significantly decrease over the incubation period, suggesting that substrate depletion did not limit Rs. Meanwhile, the carbon availability index (CAI) was higher at 5°C compared with 15 and 25°C incubation, but GIR increased with increasing temperature. Therefore, our findings suggest that warming-induced decrease in Rs in the field over time may result from a decrease in soil moisture rather than from soil substrate depletion, because warming increased root biomass in the alpine meadow. PMID:27798671
Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate Esters)
2014-10-01
Distribution A: Approved for public release; distribution is unlimited. 1 Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate...when analogous networks containing a single methyl group ortho- to each aryl- cyanurate linkage were prepared by reduction and acid-catalyzed coupling...of salicylic acid followed by treatment with cyanogen bromide and subsequent cyclotrimerization. The differences in water uptake were observed
Modelling of nectarine drying under near infrared - Vacuum conditions.
Alaei, Behnam; Chayjan, Reza Amiri
2015-01-01
Drying of nectarine slices was performed to determine the thermal and physical properties in order to reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because nectarine slices are sensitive to heat with long drying period, the selection of a suitable drying approach is a challenging task. Infrared-vacuum drying can be used as an appropriate method for susceptible materials with high moisture content such as nectarine slices. Modelling of nectarine slices drying was carried out in a thin layer near infraredvacuum conditions. Drying of the samples was implemented at the absolute pressures of 20, 40 and 60 kPa and drying temperatures of 50, 60 and 70°C. Drying behaviour of nectarine slices, as well as the effect of drying conditions on moisture loss trend, drying rate, effective diffusion coefficient, activation energy, shrinkage, colour and energy consumption of nectarine slices, dried in near infrared-vacuum dryer are discussed in this study. Six mathematical models were used to predict the moisture ratio of the samples in thin layer drying. The Midilli model had supremacy in prediction of nectarine slices drying behaviour. The maximum drying rates of the samples were between 0.014-0.047 gwater/gdry material·min. Effective moisture diffusivity of the samples was estimated in the ranges of 2.46·10-10 to 6.48·10-10 m2/s. Activation energy were computed between 31.28 and 35.23 kJ/mol. Minimum shrinkage (48.4%) and total colour difference (15.1) were achieved at temperature of 50°C and absolute pressure of 20 kPa. Energy consumption of the tests was estimated in the ranges of 0.129 to 0.247 kWh. Effective moisture diffusivity was increased with decrease of vacuum pressure and increase of drying temperature but effect of drying temperature on effective moisture diffusivity of nectarine slices was more than vacuum pressure. Activation energy was decreased with decrease in absolute pressure. Total colour difference and shrinkage of nectarine slices on near infrared-vacuum drying was decreased with decrease of vacuum pressure and decrease of drying temperature.
Xie, Ting-Ting; Su, Pei-Xi; Gao, Song
2010-06-01
The measurement system of Li-8100 carbon flux and the modified assimilation chamber were used to study the photosynthetic characteristics of cotton (Gossypium hirsutum L.) canopy in the oasis edge region in middle reach of Heihe River Basin, mid Hexi Corridor of Gansu. At the experimental site, soil respiration and evaporation rates were significantly higher in late June than in early August, and the diurnal variation of canopy photosynthetic rate showed single-peak type. The photosynthetic rate was significantly higher (P < 0.01) in late June than in early August, with the daily average value being (43.11 +/- 1.26) micromol CO2 x m(-2) x s(-1) and (24.53 +/- 0.60) micromol CO2 x m(-2) x s(-1), respectively. The diurnal variation of canopy transpiration rate also presented single-peak type, with the daily average value in late June and early August being (3.10 +/- 0.34) mmol H2O x m(-2) x s(-1) and (1.60 +/- 0.26) mmol H2O x m(-2) x s(-1), respectively, and differed significantly (P < 0.01). The daily average value of canopy water use efficiency in late June and early August was (15.67 +/- 1.77) mmol CO2 x mol(-1) H2O and (23.08 +/- 5.54) mmol CO2 x mol(-1) H2O, respectively, but the difference was not significant (P > 0.05). Both in late June and in early August, the canopy photosynthetic rate was positively correlated with air temperature, PAR, and soil moisture content, suggesting that there was no midday depression of photosynthesis in the two periods. In August, the canopy photosynthetic rate and transpiration rate decreased significantly, because of the lower soil moisture content and leaf senescence, but the canopy water use efficiency had no significant decrease.
Stress-wave velocity of wood-based panels: effect of moisture, product type, and material direction
Guangping Han; Qinglin Wu; Xiping Wang
2006-01-01
The effect of moisture on longitudinal stress-wave velocity (SWV), bending stiffness. and bending strength of commercial oriented strandboard, plywood. particleboard. and southern pine lumber was evaluated. It was shown that the stress-wave verocity decreased in general with increases in panel moisture content (MC). At a given MC level. SWV varied with panel type and...
J.D. Helvey; J.N. Kochenderfer; J.N. Kochenderfer
1990-01-01
Reports results of soil density and soil moisture measurements on two roads in the central Appalachians over a 30-month period. Density increased slightly during the measurement period at most locations. Almost all of the density changes occurred during the first few months after construction. Moisture content decreased during the first few months after construction,...
The use of three-dimensional printing to produce in vitro slice chambers
Hyde, James; MacNicol, Melanie; Odle, Angela; Garcia-Rill, Edgar
2014-01-01
Background In recent years, 3D printing technology has become inexpensive and simple enough that any lab can own and use one of these printers. New Method We explored the potential use of 3D printers for quickly and easily producing in vitro slice chambers for patch clamp electrophysiology. Slice chambers were produced using five available plastics: ABS, PLA, Nylon 618, Nylon 680, and T-glase. These “lab-made” chambers were also made using stereolithography through a professional printing service (Shapeways). This study measured intrinsic membrane properties of neurons in the brain stem pedunculopontine nucleus (PPN) and layer V pyramidal neurons in retrosplenial cortex. Results Nylon 680 and T-glase significantly hyperpolarized PPN neurons. ABS increased input resistance, decreased action potential amplitude, and increased firing frequency in pyramidal cortical neurons. To test long term exposure to each plastic, human neuroblastoma SHSY5Y cell cultures were exposed to each plastic for 1 week. ABS decreased cell counts while Nylon 618 and Shapeways plastics eliminated cells. Primary mouse pituitary cultures were also tested for 24-hour exposure. ABS decreased cell counts while Nylon 618 and Shapeways plastics decreased cell counts. Comparison to Existing Methods Chambers can be quickly and inexpensively printed in the lab. ABS, PLA, Nylon 680, and T-glase plastics would suffice for many experiments instead of commercially produced slice chambers. Conclusions While these technologies are still in their infancy, they represent a powerful addition to the lab environment. With careful selection of print material, slice chambers can be quickly and inexpensively manufactured in the lab. PMID:25251556
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru
2014-03-01
A flat die pellet mill was used to understand the effect of high levels of feedstock moisture content in the range of 28–38% (w.b.), with die rotational speeds of 40–60 Hz, and preheating temperatures of 30–110 °C on the pelleting characteristics of 4.8 mm screen size ground corn stover using an 8 mm pellet die. The physical properties of the pelletised biomass studied are: (a) pellet moisture content, (b) unit, bulk and tapped density, and (c) durability. Pelletisation experiments were conducted based on central composite design. Analysis of variance (ANOVA) indicated that feedstock moisture content influenced all of the physicalmore » properties at P < 0.001. Pellet moisture content decreased with increase in preheating temperature to about 110 °C and decreasing the feedstock moisture content to about 28% (w.b.). Response surface models developed for quality attributes with respect to process variables has adequately described the process with coefficient of determination (R2) values of >0.88. The other pellet quality attributes such as unit, bulk, tapped density, were maximised at feedstock moisture content of 30–33% (w.b.), die speeds of >50 Hz and preheating temperature of >90 °C. In case of durability a medium moisture content of 33–34% (w.b.) and preheating temperatures of >70 °C and higher die speeds >50 Hz resulted in high durable pellets. It can be concluded from the present study that feedstock moisture content, followed by preheating, and die rotational speed are the interacting process variables influencing pellet moisture content, unit, bulk and tapped density and durability.« less
Development of a Test Facility for Air Revitalization Technology Evaluation
NASA Technical Reports Server (NTRS)
Lu, Sao-Dung; Lin, Amy; Campbell, Melissa; Smith, Frederick; Curley, Su
2007-01-01
Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat of up to eight persons. A multitude of gas analyzers and dew point sensors are used to monitor the chamber atmosphere upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space. A reliable data acquisition and control system is required to connect all the subsystems together. This paper presents the capabilities of the integrated test facility and some of the issues encountered during the integration.
NASA Astrophysics Data System (ADS)
Fahim, A. M.; Shen, R.; Yue, Z.; Di, W.; Mushtaq Shah, S.
2015-12-01
Moisture in the upper most layer of soil column from 14 different models under Coupled Model Intercomparison Project Phase-5 (CMIP5) project were analyzed for four seasons of the year. Aim of this study was to explore variability in soil moisture over south Asia using multi model ensemble and relationship between summer rainfall and soil moisture for spring and summer season. GLDAS (Global Land Data Assimilation System) dataset set was used for comparing CMIP5 ensemble mean soil moisture in different season. Ensemble mean represents soil moisture well in accordance with the geographical features; prominent arid regions are indicated profoundly. Empirical Orthogonal Function (EOF) analysis was applied to study the variability. First component of EOF explains 17%, 16%, 11% and 11% variability for spring, summer, autumn and winter season respectively. Analysis reveal increasing trend in soil moisture over most parts of Afghanistan, Central and north western parts of Pakistan, northern India and eastern to south eastern parts of China, in spring season. During summer, south western part of India exhibits highest negative trend while rest of the study area show minute trend (increasing or decreasing). In autumn, south west of India is under highest negative loadings. During winter season, north western parts of study area show decreasing trend. Summer rainfall has very week (negative or positive) spatial correlation, with spring soil moisture, while possess higher correlation with summer soil moisture. Our studies have significant contribution to understand complex nature of land - atmosphere interactions, as soil moisture prediction plays an important role in the cycle of sink and source of many air pollutants. Next level of research should be on filling the gaps between accurately measuring the soil moisture using satellite remote sensing and land surface modelling. Impact of soil moisture in tracking down different types of pollutant will also be studied.
Antioxidant potential and quality characteristics of vegetable-enriched corn-based extruded snacks.
Bisharat, G I; Lazou, A E; Panagiotou, N M; Krokida, M K; Maroulis, Z B
2015-07-01
Phenolic content, antioxidant activity and sensory characteristics of vegetable-enriched extrudates were investigated as a result of extrusion conditions, including extrusion temperature (140-180 °C), screw rotation speed (150-250 rpm) and feed moisture content (14-19 % w.b.). Broccoli flour and olive paste was used in mixtures with corn flour at a ratio of 4 to 10 % (broccoli/corn) and 4 to 8 % (olive paste/corn). A simple power model was developed for the prediction of phenolic content and antioxidant activity of extrudates by extrusion conditions and feed composition. Phenolic content and antioxidant activity of broccoli enriched extrudates increased with extrusion temperature and broccoli addition and decreased with feed moisture content. The antioxidant activity of olive paste extrudates increased with material ratio and decreased with feed moisture content and screw rotation. Sensory porosity, homogenous structure, crispness, cohesiveness and melting decreased with feed moisture content, while the latter increased the mealy flavor and hardness of extrudates. Acceptable snacks containing broccoli flour or olive paste can be produced by selecting the appropriate process conditions.
Control of nonenzymatic browning in intermediate-moisture foods
NASA Technical Reports Server (NTRS)
Buckle, K. A.; Labruza, T. P.; Warmbier, H. C.
1975-01-01
Series of compounds called humectants were found to decrease rate of browning when added to intermediate-moisture foods. Twenty percent level of humectant can increase shelf life of foods by factor of 5 or 6.
Feicht, W; Buchner, A; Riesenberg, R
2001-05-01
Trifunctional bispecific antibodies open up new immunological possibilities in tumour treatment. Prior to clinical application, comprehensive investigations using animal models and in vitro examinations need to be done. To investigate long-term interactions between various immunologically active blood cells and individual tumour cells in the presence of antibodies, we developed an incubation system for experimental cell cultures on an inverted microscope. The system consists of a perspex box with a central moisture chamber with integrated water reservoir, external air circulation heating, and a CO2 supply. The sterile cell cultures are located in the wells of a slide positioned within a depression in the water reservoir. The newly developed incubation system enables continuous observation over the long term of experiments under optimal cell cultures conditions in combination with modern video techniques.
NASA Astrophysics Data System (ADS)
Hasibuan, R.; Zamzami, M. A.
2017-03-01
Ginger (Zingiber officinale Roscoe) is an agricultural product that can be used as beverages and snacks, and especially for traditional medicines. One of the important stages in the processing of ginger is drying. The drying process intended to reduce the water content of 85-90% to 8-10%, making it safe from the influence of fungi or insecticide. During the drying takes place, the main ingredient contained in ginger is homologous ketone phenolic known as gingerol are chemically unstable at high temperatures, for the drying technology is an important factor in maintaining the active ingredient (gingerol) which is in ginger. The combination of solar energy and molecular sieve dryer that are used in the research is capable of operating 24 hours. The purpose of this research is to study the effect of operating conditions (in this case the air velocity) toward the drying characteristics and the quality of dried ginger using the combination of solar energy and molecular sieve dryer. Drying system consist of three main parts which is: desiccator, solar collector, and the drying chamber. To record data changes in the mass of the sample, a load cell mounted in the drying chamber, and then connected to the automated data recording system using a USB data cable. All data of temperature and RH inside the dryer box and the change of samples mass recorded during the drying process takes place and the result is stored in the form of Microsoft Excel. The results obtained, shows that the air velocity is influencing the moisture content and ginger drying rate, where the moisture content equilibrium of ginger for the air velocity of 1.3 m/s was obtained on drying time of 360 minutes and moisture content of 2.8%, at 1.0 m/s was obtained on drying time of 300 minutes and moisture content of 1.4%, at 0, 8 m/s was obtained at 420 minutes drying time and the moisture content is 2.0%. The drying characteristics shows that there are two drying periods, which is: the increasing drying rate, and the falling drying rate, while the constant drying rate is not visible. The result of ginger quality shows that there are no significant changes in the organoleptic analysis, the ash content is about 7.52-7.94% and the oil content is 0.79-0.83%.
NASA Astrophysics Data System (ADS)
Gimeno-Sotelo, Luis; Nieto, Raquel; Vázquez, Marta; Gimeno, Luis
2018-05-01
In this study we use the term moisture transport for precipitation for a target region as the moisture coming to this region from its major moisture sources resulting in precipitation over the target region (MTP). We have identified changes in the pattern of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains concurrent with the major sea ice decline that occurred in 2003. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion. The pattern is statistically significant and consistent with changes in the vertically integrated moisture fluxes and frequency of circulation types. The results of this paper also reveal that the assumed and partially documented enhanced poleward moisture transport from lower latitudes as a consequence of increased moisture from climate change seems to be less simple and constant than typically recognised in relation to enhanced Arctic precipitation throughout the year in the present climate.
Huang, Yuh-Tyng; Tsai, Tong-Rong; Cheng, Chun-Jen; Cham, Thau-Ming; Lai, Tsun-Fwu; Chuo, Wen-Ho
2007-04-01
Pyridostigmine bromide (PB) sustained-release (SR) pellets were developed by extrusion-spheronization and fluid-bed methods using Taguchi experimental and 2(3) full factorial design. In vitro studies, the 2(3) full factorial design was utilized to search for the optimal SR pellets with specific release rate at different time intervals (release percent of 2, 6, 12, and 24 hr were 6.24, 33.48, 75.18, and 95.26%, respectively) which followed a zero-order mechanism (n=0.93). The results of moisture absorption by Karl Fischer has shown the optimum SR pellets at 25 degrees C/60% RH, 30 degrees C/65% RH, and 40 degrees C/75% RH chambers from 1 hr-4 weeks, attributing that the moisture absorption was not significantly increased. In the in vivo study, the results of the bioavailability data showed the Tmax (from 0.65+/-0.082 hr-4.82+/-2.12 hr) and AUC0-30 hr (from 734.88+/-230.68 ng/mL.hr-1454.86+/-319.28 ng/mL.hr) were prolonged and increased, as well as Cmax (from 251.87+/-27.51 ng/mL-115.08+/-14.87 ng/mL) was decreased for optimum SR-PB pellets when compared with commercial immediate-release (IR) tablets. Furthermore, a good linear regression relationship (r=0.9943) was observed between the fraction dissolution and fraction absorption for the optimum SR pellets. In this study, the formulation design not only improved the hygroscopic character of PB but also achieved the SR effect.
Delarue, Frédéric; Buttler, Alexandre; Bragazza, Luca; Grasset, Laurent; Jassey, Vincent E J; Gogo, Sébastien; Laggoun-Défarge, Fatima
2015-04-01
Several studies on the impact of climate warming have indicated that peat decomposition/mineralization will be enhanced. Most of these studies deal with the impact of experimental warming during summer when prevalent abiotic conditions are favorable to decomposition. Here, we investigated the effect of experimental air warming by open-top chambers (OTCs) on water-extractable organic matter (WEOM), microbial biomasses and enzymatic activities in two contrasted moisture sites named Bog and Fen sites, the latter considered as the wetter ones. While no or few changes in peat temperature and water content appeared under the overall effect of OTCs, we observed that air warming smoothed water content differences and led to a decrease in mean peat temperature at the warmed Bog sites. This thermal discrepancy between the two sites led to contrasting changes in microbial structure and activities: a rise in hydrolytic activity at the warmed Bog sites and a relative enhancement of bacterial biomass at the warmed Fen sites. These features were not associated with any change in WEOM properties namely carbon and sugar contents and aromaticity, suggesting that air warming did not trigger any shift in OM decomposition. Using various tools, we show that the use of single indicators of OM decomposition can lead to fallacious conclusions. Lastly, these patterns may change seasonally as a consequence of complex interactions between groundwater level and air warming, suggesting the need to improve our knowledge using a high time-resolution approach. Copyright © 2015 Elsevier B.V. All rights reserved.
Pires, L A; Cardoso, V J M; Joly, C A; Rodrigues, R R
2009-08-01
The germination response of Ocotea pulchella (Nees) Mez seeds to light, temperature, water level and pulp presence is introduced. The laboratory assays were carried out in germination chambers and thermal-gradient apparatus, whereas the field assays were performed in environments with distinct light, temperature and soil moisture conditions within a permanent parcel of Restinga forest of the Parque Estadual da Ilha do Cardoso, Cananéia, São Paulo. The seeds do not exhibit dormancy, they are non photoblastic, and a loss of viability in dry stored seeds can be related to a decrease in water content of the seed. The presence of the pulp and the flooded substratum influenced negatively the germination of O. pulchella seeds tested in the laboratory. Otherwise, light and temperature probably are not limiting factors of the germination of O. pulchella seeds in the natural environment of Restinga. The optimum temperature range for germination of Ocotea pulchella seeds was 20 to 32 degrees C, the minimum or base temperature estimated was 11 degrees C and the maximum ranged between 33 and 42 degrees C. The isotherms exhibited a sigmoidal pattern well described by the Weibull model in the sub-optimal temperature range. The germinability of O. pulchella seeds in the understorey, both in wet and dry soil, was higher than in gaps. Germination was not affected by fluctuations in soil moisture content in the understorey environment, whereas in gaps, germination was higher in wet soils. Thus, the germination of this species involves the interaction of two or more factors and it cannot be explained by a single factor.
NASA Technical Reports Server (NTRS)
Clements, L. L.
1986-01-01
Optical microscopy and SEM have been used to examine the tensile failure surfaces of (0-deg)8 T300/5208 graphite-epoxy specimens, and fractography is employed to determine how moisture content and temperature, together with specimen preparation, affect failure modes. A low energy failure morphology is noted in defective specimens; specimens made from nondefective prepregs appeared to exhibit a decrease in flaw sensitivity and increasing strength with either temperature or moisture, although moisture also seemed to increase interfacial debonding between filament and matrix. The combination of temperature and moisture degraded performance by increasing interfacial debonding, and rendering the epoxy more prone to fracture.
NASA Astrophysics Data System (ADS)
Siswanto, Henri; Supriyanto, Bambang; Pranoto, Pranoto; Chandra, Pria Rizky; Hakim, Arief Rahman
2017-09-01
The objective of this experimental research is to evaluate moisture damage in Asphalt Concrete (AC) with Crumb Rubber Modified (CRM) motorcycle tire waste passing #50 and retaining #100 sieve size. Two gradations were used in this research, the first gradation is usual for asphalt concrete base (ACB) and the second gradation is for asphalt concrete wearing course (ACWC). Marshall testing apparatus was used for testing the Marshall specimens. Seven levels of CRM content were used, namely 0%, 0.5%, 1%, 1.5%, 3%, 4.5% and 6% by weight of mixtures. Retained stability represent the level of moisture damage of AC pavement. The result indicates that addition CRM to the AC mixture increases their the stability to a maximum value and subsequent addition decrease the stability. The addition CRM to AC decreases their moisture damage susceptibility. AC with 1% CRM is the best asphalt-CRM mix.
Method oil shale pollutant sorption/NO.sub.x reburning multi-pollutant control
Boardman, Richard D [Idaho Falls, ID; Carrington, Robert A [Idaho Falls, ID
2008-06-10
A method of decreasing pollutants produced in a combustion process. The method comprises combusting coal in a combustion chamber to produce at least one pollutant selected from the group consisting of a nitrogen-containing pollutant, sulfuric acid, sulfur trioxide, carbonyl sulfide, carbon disulfide, chlorine, hydroiodic acid, iodine, hydrofluoric acid, fluorine, hydrobromic acid, bromine, phosphoric acid, phosphorous pentaoxide, elemental mercury, and mercuric chloride. Oil shale particles are introduced into the combustion chamber and are combusted to produce sorbent particulates and a reductant. The at least one pollutant is contacted with at least one of the sorbent particulates and the reductant to decrease an amount of the at least one pollutant in the combustion chamber. The reductant may chemically reduce the at least one pollutant to a benign species. The sorbent particulates may adsorb or absorb the at least one pollutant. A combustion chamber that produces decreased pollutants in a combustion process is also disclosed.
A microwave systems approach to measuring root zone soil moisture
NASA Technical Reports Server (NTRS)
Newton, R. W.; Paris, J. F.; Clark, B. V.
1983-01-01
Computer microwave satellite simulation models were developed and the program was used to test the ability of a coarse resolution passive microwave sensor to measure soil moisture over large areas, and to evaluate the effect of heterogeneous ground covers with the resolution cell on the accuracy of the soil moisture estimate. The use of realistic scenes containing only 10% to 15% bare soil and significant vegetation made it possible to observe a 60% K decrease in brightness temperature from a 5% soil moisture to a 35% soil moisture at a 21 cm microwave wavelength, providing a 1.5 K to 2 K per percent soil moisture sensitivity to soil moisture. It was shown that resolution does not affect the basic ability to measure soil moisture with a microwave radiometer system. Experimental microwave and ground field data were acquired for developing and testing a root zone soil moisture prediction algorithm. The experimental measurements demonstrated that the depth of penetration at a 21 cm microwave wavelength is not greater than 5 cm.
Impact of rainfall on the moisture content of large woody fuels
Helen H. Mohr; Thomas A. Waldrop
2013-01-01
This unreplicated case study evaluates the impact of rainfall on large woody fuels over time. We know that one rainfall event may decrease the Keetch-Byram Drought Index, but this study shows no real increase in fuel moisture in 1,000- hour fuels after just one rainfall. Several rain events over time are required for the moisture content of large woody fuels to...
Technical Review of the Laboratory Biosphere Closed Ecological System Facility
NASA Astrophysics Data System (ADS)
Dempster, W.; van Thillo, M.; Alling, A.; Allen, J.; Silverstone, S.; Nelson, M.
The "Laboratory Biosphere", a new closed ecological system facility in Santa Fe, New Mexico (USA) has been constructed and became operational in May 2002. Built and operated by the Global Ecotechnics consortium (Biosphere Technologies and Biosphere Foundation with Biospheric Design Inc., and the Institute of Ecotechnics), the research apparatus for intensive crop growth, biogeochemical cycle dynamics and recycling of inedible crop biomass comprises a sealed cylindrical steel chamber and attached variable volume chamber (lung) to prevent pressures caused by the expansion and contraction of the contained air. The cylindrical growing chamber is 3.7m (12 feet) long and 3.7m (12 foot) diameter, giving an internal volume of 34 m3 (1200 ft 3 ). The two crop growth beds cover 5.5 m2, with a soil depth of 0.3m (12 inches), with 12 x 1000 watt high-pressure sodium lights capable of variable lighting of 40-70 mol per m2 per day. A small soil bed reactor in the chamber can be activated to help with metabolism of chamber trace gases. The volume of the attached variable volume chamber (lung) can range between 0-11 m3 (0-400 ft 3 ). Evapotranspired and soil leachate water are collected, combined and recycled to water the planting beds. Sampling ports enable testing of water quality of leachate, condensate and irrigation water. Visual inspection windows provide views of the entire interior and growing beds. The chamber is also outfitted with an airlock to minimize air exchange when people enter and work in the chamber. Continuous sensors include atmospheric CO2 and oxygen, temperature, humidity, soil moisture, light level and water levels in reservoirs. Both "sniffer" (air ports) and "sipper" (water ports) will enable collection of water or air samples for detailed analysis. This paper reports on the development of this new soil-based bioregenerative life support closed system apparatus and its technical challenges and capabilities.
Detection of moisture and moisture related phenomena from Skylab. [Texas
NASA Technical Reports Server (NTRS)
Eagleman, J. R.; Pogge, E. C.; Moore, R. K. (Principal Investigator); Hardy, N.; Lin, W.; League, L.
1973-01-01
The author has identified the following significant results. This is a preliminary report on the ability to detect soil moisture variation from the two different sensors on board Skylab. Initial investigations of S190A and Sl94 Skylab data and ground truth has indicated the following significant results. (1) There was a decrease in Sl94 antenna temperature from NW to SE across the Texas test site. (2) Soil moisture increases were measured from NW to SE across the test site. (3) There was a general increase in precipitation distribution and radar echoes from NW to SE across the site for the few days prior to measurements. This was consistent with the soil moisture measurements and gives more complete coverage of the site. (4) There are distinct variations in soil textures over the test site. This affects the moisture holding capacity of soils and must be considered. (5) Strong correlation coefficients were obtained between S194 antenna temperature and soil moisutre content. As the antenna temperature decreases soil moisture increases. (6) The Sl94 antenna temperature correlated best with soil mositure content in the upper two inches of the soil. A correlation coefficient of .988 was obtained. (7) Sl90A photographs in the red-infrared region were shown to be useful for identification of Abilene clay loam and for determining the distribution of this soil type.
Self-compensating tensiometer and method
Hubbell, Joel M.; Sisson, James B.
2003-01-01
A pressure self-compensating tensiometer and method to in situ determine below grade soil moisture potential of earthen soil independent of changes in the volume of water contained within the tensiometer chamber, comprising a body having first and second ends, a porous material defining the first body end, a liquid within the body, a transducer housing submerged in the liquid such that a transducer sensor within the housing is kept below the working fluid level in the tensiometer and in fluid contact with the liquid and the ambient atmosphere.
Experimental investigation of wood combustion in a fixed bed with hot air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markovic, Miladin, E-mail: m.markovic@utwente.nl; Bramer, Eddy A.; Brem, Gerrit
Highlights: • Upward combustion is a new combustion concept with ignition by hot primary air. • Upward combustion has three stages: short drying, rapid devolatilization and char combustion. • Variation of fuel moisture and inert content have little influence on the combustion. • Experimental comparison between conventional and upward combustion is presented. - Abstract: Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignitionmore » occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated. The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented.« less
Bilateral spontaneous crystalline lens dislocation to the anterior chamber: a case report.
Jovanović, Milos
2013-01-01
There are various reasons for the lens dislocation. Spontaneous dislocation of a clear lens is extremely rare, especially its dislocation to the anterior chamber. The author presents a case of spontaneous clear lens dislocation to the anterior chamber in both eyes in a patient without the history of any trauma. Dislocation occurred spontaneously, first in the left eye, along with a sudden decrease of vision. The ophthalmologist found a clear lens in the anterior chamber, without any sign of an elevated intraocular pressure, as should have been expected. The dislocated lens was removed surgically (intracapsular extraction) with the preventive basal iridectomy. Two years later, the same happened in the right eye: clear lens moved spontaneously to the anterior chamber, with a decrease of vision, but again without any rise of intraocular pressure and/or any pain. Intracapsular extraction of the lens with basal iridectomy was done again. The presented case demonstrates that spontaneous dislocation of the transparent lens to the eye anterior chamber can occur in both eyes at different time intervals. We suggest the removal of dislocated lens in the anterior chamber by the intracapsular extraction.
NASA Astrophysics Data System (ADS)
Larionova, A. A.; Maltseva, A. N.; Lopes de Gerenyu, V. O.; Kvitkina, A. K.; Bykhovets, S. S.; Zolotareva, B. N.; Kudeyarov, V. N.
2017-04-01
The mineralization and humification of leaf litter collected in a mixed forest of the Prioksko-Terrasny Reserve depending on temperature (2, 12, and 22°C) and moisture (15, 30, 70, 100, and 150% of water holding capacity ( WHC)) has been studied in long-term incubation experiments. Mineralization is the most sensitive to temperature changes at the early stage of decomposition; the Q 10 value at the beginning of the experiment (1.5-2.7) is higher than at the later decomposition stages (0.3-1.3). Carbon losses usually exceed nitrogen losses during decomposition. Intensive nitrogen losses are observed only at the high temperature and moisture of litter (22°C and 100% WHC). Humification determined from the accumulation of humic substances in the end of incubation decreases from 34 to 9% with increasing moisture and temperature. The degree of humification CHA/CFA is maximum (1.14) at 12°C and 15% WHC; therefore, these temperature and moisture conditions are considered optimal for humification. Humification calculated from the limit value of litter mineralization is almost independent of temperature, but it significantly decreases from 70 to 3% with increasing moisture. A possible reason for the difference between the humification values measured by two methods is the conservation of a significant part of hemicelluloses, cellulose, and lignin during the transformation of litter and the formation of a complex of humic substances with plant residues, where HSs fulfill a protectoral role and decrease the decomposition rate of plant biopolymers.
Monitoring Wetlands Area Using Microwave, Optical And In-Situ Data
NASA Astrophysics Data System (ADS)
Dabrowska, Katarzyna; Zielinska, Maria Budzynska
2011-01-01
The study of Wetlands has been continue within the PECS Project: “Study and implement remote sensing techniques for the assessment of carbon balances for different biomasses and soil moistures within various ecosystems”. The research has been conducted in Biebrza valley, one of the largest wetland in Europe, since 2003. Recently, to existing data base of wetlands monitoring Carbon flux measurements using the Chamber Method and Eddy Correlation Method have been included. The study aims at monitoring and mapping various soil-vegetation variables and the assessment of the level of carbon balance using optical and microwave satellite data along with ground truth observations. Optical images have been used for classification of wetlands vegetation and calculation of LAI and biomass. For the assessment of water balance, energy budget approach has been applied. Microwave images have been used for the assessment of soil moisture and biomass.
Breaking tester for examining strength of consolidated starch
NASA Astrophysics Data System (ADS)
Stasiak, Mateusz; Molenda, Marek; Bańda, Maciej; Wiącek, Joanna; Dobrzański, Bohdan; Parafiniuk, Piotr
2017-04-01
A new method based on the measurement of force required to break by bending a vertical column of consolidated powder was elaborated, and its results were compared with the ones obtained from the Jenike shear test. A new apparatus was built based on a vertical cylindrical chamber divided into two cylinders connected with a horizontal hinge. The apparatus was tested with samples of potato, maize and wheat starches with moisture content of 6, 12 and 17% and with the addition of a lubricant. Results of testing revealed significant differences in measured force required to rotate the upper part of the cylinder away from the lower one. The average force varied from 0.138 N for maize starch to 0.143 N for potato starch, while, for various moisture contents, the measured force varied from 0.135 N for 6% to 0.143 N for 17% mc. The results were compared with the results of a direct shear test.
Strain rate, temperature, and humidity on strength and moduli of a graphite/epoxy composite
NASA Technical Reports Server (NTRS)
Lifshitz, J. M.
1981-01-01
Results of an experimental study of the influence of strain rate, temperature and humidity on the mechanical behavior of a graphite/epoxy fiber composite are presented. Three principal strengths (longitudinal, transverse and shear) and four basic moduli (E1, E2, G12 and U12) of a unidirectional graphite/epoxy composite were followed as a function of strain rate, temperature and humidity. Each test was performed at a constant tensile strain rate in an environmental chamber providing simultaneous temperature and humidity control. Prior to testing, specimens were given a moisture preconditioning treatment at 60 C. Values for the matrix dominated moduli and strength were significantly influenced by both environmental and rate parameters, whereas the fiber dominated moduli were not. However, the longitudinal strength was significantly influenced by temperature and moisture content. A qualitative explanation for these observations is presented.
Avrahami, Sharon; Bohannan, Brendan J M
2007-02-01
Very little is known regarding the ecology of Nitrosospira sp. strain AF-like bacteria, a unique group of ammonia oxidizers within the Betaproteobacteria. We studied the response of Nitrosospira sp. strain AF-like ammonia oxidizers to changing environmental conditions by applying molecular methods and physiological measurements to Californian grassland soil manipulated in the laboratory. This soil is naturally high in Nitrosospira sp. strain AF-like bacteria relative to the much-better-studied Nitrosospira multiformis-like ammonia-oxidizing bacteria. Increases in temperature, soil moisture, and fertilizer interacted to reduce the relative abundance of Nitrosospira sp. strain AF-like bacteria, although they remained numerically dominant. The overall abundance of ammonia-oxidizing bacteria increased with increasing soil moisture and decreased with increasing temperature. Potential nitrification activity was altered by interactions among temperature, soil moisture, and fertilizer, with activity tending to be higher when soil moisture and temperature were increased. The increase in potential nitrification activity with increased temperature was surprising, given that the overall abundance of ammonia-oxidizing bacteria decreased significantly under these conditions. This observation suggests that (i) Nitrosospira sp. strain AF-like bacteria may respond to increased temperature with an increase in activity, despite a decrease in abundance, or (ii) that potential nitrification activity in these soils may be due to organisms other than bacteria (e.g., archaeal ammonia oxidizers), at least under conditions of increased temperature.
Avrahami, Sharon; Bohannan, Brendan J. M.
2007-01-01
Very little is known regarding the ecology of Nitrosospira sp. strain AF-like bacteria, a unique group of ammonia oxidizers within the Betaproteobacteria. We studied the response of Nitrosospira sp. strain AF-like ammonia oxidizers to changing environmental conditions by applying molecular methods and physiological measurements to Californian grassland soil manipulated in the laboratory. This soil is naturally high in Nitrosospira sp. strain AF-like bacteria relative to the much-better-studied Nitrosospira multiformis-like ammonia-oxidizing bacteria. Increases in temperature, soil moisture, and fertilizer interacted to reduce the relative abundance of Nitrosospira sp. strain AF-like bacteria, although they remained numerically dominant. The overall abundance of ammonia-oxidizing bacteria increased with increasing soil moisture and decreased with increasing temperature. Potential nitrification activity was altered by interactions among temperature, soil moisture, and fertilizer, with activity tending to be higher when soil moisture and temperature were increased. The increase in potential nitrification activity with increased temperature was surprising, given that the overall abundance of ammonia-oxidizing bacteria decreased significantly under these conditions. This observation suggests that (i) Nitrosospira sp. strain AF-like bacteria may respond to increased temperature with an increase in activity, despite a decrease in abundance, or (ii) that potential nitrification activity in these soils may be due to organisms other than bacteria (e.g., archaeal ammonia oxidizers), at least under conditions of increased temperature. PMID:17158615
Acute shallowing of the anterior chamber.
Mapstone, R
1981-01-01
In aging eyes phenylephrine drops have no significant effect on the depth of the anterior chamber, whereas pilocarpine drops produce a significant shallowing. If both drugs are instilled simultaneously, a significantly greater decrease in anterior chamber depth occurs. The effect is seen in normal, glaucomatous, and hypertensive eyes, and in eyes with shallow anterior chambers. It did not occur in eyes that had had an iridectomy. During the course of a positive provocative test an acute reduction in anterior depth occurs which is reversed when the angle opens and pressure returns to normal levels. It is concluded that the depth of the anterior chamber is not a static dimension but that changes can occur which are rapid and transient. The mechanism of shallowing and deepening depends on an increase or a decrease in the pupil block force. It is a necessary consequence too that eyes with nonshallow anterior chambers can get closed-angle glaucoma and that this possibility cannot be detected by a conventional gonioscopic approach. PMID:6455153
Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa L.
Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO 2 and CH 4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected tomore » two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO 2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity ( Q 10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH 4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH 4 fluxes. The cumulative production of C from CO 2 was over 6 orders of magnitude higher than that from CH 4; cumulative CO 2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52–73 % lower C. Cumulative CH 4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Furthermore, deep but unfrozen high-latitude soils have been shown to be strongly affected by long-term experimental warming, and these results provide insight into their future dynamics and feedback potential with future climate change.« less
Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils
Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa L.
2016-12-21
Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO 2 and CH 4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected tomore » two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO 2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity ( Q 10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH 4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH 4 fluxes. The cumulative production of C from CO 2 was over 6 orders of magnitude higher than that from CH 4; cumulative CO 2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52–73 % lower C. Cumulative CH 4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Furthermore, deep but unfrozen high-latitude soils have been shown to be strongly affected by long-term experimental warming, and these results provide insight into their future dynamics and feedback potential with future climate change.« less
Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils
NASA Astrophysics Data System (ADS)
Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa
2016-12-01
Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO2 and CH4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected to two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity (Q10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH4 fluxes. The cumulative production of C from CO2 was over 6 orders of magnitude higher than that from CH4; cumulative CO2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52-73 % lower C. Cumulative CH4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Deep but unfrozen high-latitude soils have been shown to be strongly affected by long-term experimental warming, and these results provide insight into their future dynamics and feedback potential with future climate change.
A model of the CO2 exchanges between biosphere and atmosphere in the tundra
NASA Technical Reports Server (NTRS)
Labgaa, Rachid R.; Gautier, Catherine
1992-01-01
A physical model of the soil thermal regime in a permafrost terrain has been developed and validated with soil temperature measurements at Barrow, Alaska. The model calculates daily soil temperatures as a function of depth and average moisture contents of the organic and mineral layers using a set of five climatic variables, i.e., air temperature, precipitation, cloudiness, wind speed, and relative humidity. The model is not only designed to study the impact of climate change on the soil temperature and moisture regime, but also to provide the input to a decomposition and net primary production model. In this context, it is well known that CO2 exchanges between the terrestrial biosphere and the atmosphere are driven by soil temperature through decomposition of soil organic matter and root respiration. However, in tundra ecosystems, net CO2 exchange is extremely sensitive to soil moisture content; therefore it is necessary to predict variations in soil moisture in order to assess the impact of climate change on carbon fluxes. To this end, the present model includes the representation of the soil moisture response to changes in climatic conditions. The results presented in the foregoing demonstrate that large errors in soil temperature and permafrost depth estimates arise from neglecting the dependence of the soil thermal regime on soil moisture contents. Permafrost terrain is an example of a situation where soil moisture and temperature are particularly interrelated: drainage conditions improve when the depth of the permafrost increases; a decrease in soil moisture content leads to a decrease in the latent heat required for the phase transition so that the heat penetrates faster and deeper, and the maximum depth of thaw increases; and as excepted, soil thermal coefficients increase with moisture.
Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow
Ganjurjav, Hasbagan; Gao, Qingzhu; Schwartz, Mark W.; Zhu, Wenquan; Liang, Yan; Li, Yue; Wan, Yunfan; Cao, Xujuan; Williamson, Matthew A.; Jiangcun, Wangzha; Guo, Hongbao; Lin, Erda
2016-01-01
Since 2000, the phenology has advanced in some years and at some locations on the Qinghai-Tibetan Plateau, whereas it has been delayed in others. To understand the variations in spring vegetation growth in response to climate, we conducted both regional and experimental studies on the central Qinghai-Tibetan Plateau. We used the normalized difference vegetation index to identify correlations between climate and phenological greening, and found that greening correlated negatively with winter-spring time precipitation, but not with temperature. We used open top chambers to induce warming in an alpine meadow ecosystem from 2012 to 2014. Our results showed that in the early growing season, plant growth (represented by the net ecosystem CO2 exchange, NEE) was lower in the warmed plots than in the control plots. Late-season plant growth increased with warming relative to that under control conditions. These data suggest that the response of plant growth to warming is complex and non-intuitive in this system. Our results are consistent with the hypothesis that moisture limitation increases in early spring as temperature increases. The effects of moisture limitation on plant growth with increasing temperatures will have important ramifications for grazers in this system. PMID:26983697
Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow
NASA Astrophysics Data System (ADS)
Ganjurjav, Hasbagan; Gao, Qingzhu; Schwartz, Mark W.; Zhu, Wenquan; Liang, Yan; Li, Yue; Wan, Yunfan; Cao, Xujuan; Williamson, Matthew A.; Jiangcun, Wangzha; Guo, Hongbao; Lin, Erda
2016-03-01
Since 2000, the phenology has advanced in some years and at some locations on the Qinghai-Tibetan Plateau, whereas it has been delayed in others. To understand the variations in spring vegetation growth in response to climate, we conducted both regional and experimental studies on the central Qinghai-Tibetan Plateau. We used the normalized difference vegetation index to identify correlations between climate and phenological greening, and found that greening correlated negatively with winter-spring time precipitation, but not with temperature. We used open top chambers to induce warming in an alpine meadow ecosystem from 2012 to 2014. Our results showed that in the early growing season, plant growth (represented by the net ecosystem CO2 exchange, NEE) was lower in the warmed plots than in the control plots. Late-season plant growth increased with warming relative to that under control conditions. These data suggest that the response of plant growth to warming is complex and non-intuitive in this system. Our results are consistent with the hypothesis that moisture limitation increases in early spring as temperature increases. The effects of moisture limitation on plant growth with increasing temperatures will have important ramifications for grazers in this system.
Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow.
Ganjurjav, Hasbagan; Gao, Qingzhu; Schwartz, Mark W; Zhu, Wenquan; Liang, Yan; Li, Yue; Wan, Yunfan; Cao, Xujuan; Williamson, Matthew A; Jiangcun, Wangzha; Guo, Hongbao; Lin, Erda
2016-03-17
Since 2000, the phenology has advanced in some years and at some locations on the Qinghai-Tibetan Plateau, whereas it has been delayed in others. To understand the variations in spring vegetation growth in response to climate, we conducted both regional and experimental studies on the central Qinghai-Tibetan Plateau. We used the normalized difference vegetation index to identify correlations between climate and phenological greening, and found that greening correlated negatively with winter-spring time precipitation, but not with temperature. We used open top chambers to induce warming in an alpine meadow ecosystem from 2012 to 2014. Our results showed that in the early growing season, plant growth (represented by the net ecosystem CO2 exchange, NEE) was lower in the warmed plots than in the control plots. Late-season plant growth increased with warming relative to that under control conditions. These data suggest that the response of plant growth to warming is complex and non-intuitive in this system. Our results are consistent with the hypothesis that moisture limitation increases in early spring as temperature increases. The effects of moisture limitation on plant growth with increasing temperatures will have important ramifications for grazers in this system.
R. E. Farmer
1967-01-01
Germination energy of cottonwood seed decreased gradually as moisture stress increased from 0.0 to 10.0 atm; 15.0 atm inhibited germination except at 32 and 38 C. Temperature extremes of 15 and 38 C drastically reduced germination energy, and the reductive effect of 38 C was particularly marked after storage. Only 15-atm moisture stress or 15 C greatly reduced total...
Moisture patterns in douglas-fir and tanoak slash
Norman C. Scott
1964-01-01
Moisture content in Douglas-fir cull logs and boles of felled tanoaks was sampled periodically at 2-inch intervals to a depth of 6 inches from October 1960-0ctober 1961. The study area had been clear cut in 1958 and the hardwoods felled in 1959. Analysis of the data showed that the moisture level in tanoak stems decreased at an increasing rate from a 6-inch depth to...
Suppressor for reducing the muzzle blast and flash of a firearm
Klett, James W
2014-09-30
Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases.
NASA Astrophysics Data System (ADS)
Hua, Lijuan; Zhong, Linhao; Ma, Zhuguo
2017-12-01
The northwestern corner of China (NWCC) experienced a decadal transition in summer precipitation during 1982-2010, with a significant upward trend in 1982-2000 (P1) but a downward one in 2001-2010 (P2). A spatially unbounded dynamic recycling model is developed to estimate the moisture sources and moisture transport variations based on ERA-Interim data. The results suggest that more than 88% of NWCC precipitation has external moisture origins in the southwest and northwest terrestrial areas. The increasing precipitation trend during P1 can be explained by the increasing moisture contribution from the southwest and decreasing contribution from the northwest. However, the opposite trends cause the decreasing precipitation trend during P2. In general, the decadal precipitation transition is mainly determined by the variation of short-distance moisture transport from central Asia, although opposite moisture transport variations exist in the Ural Mountains and Northeast Europe. The variation of the precipitation trend is closely associated with a well-organized wave train propagation from the North Atlantic to central Asia. During P1, the wave train structure consists of a titled positive phase North Atlantic Oscillation (NAO), an anticyclonic circulation over Europe, and a cyclonic anomaly over central Asia, which promotes the southwest moisture flux to NWCC. But the opposite circulation pattern dominates P2. The energy dispersion due to the breakdown of the NAO determines the phase and strength of the downstream wave anomalies over Eurasia. This suggests that the summer NAO might influence the decadal variation of NWCC precipitation through the decadal modulation of the Eurasia wave train.
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Zulia Mayari; Papuga, Shirley A.
2017-11-01
In semiarid regions, where water resources are limited and precipitation dynamics are changing, understanding land surface-atmosphere interactions that regulate the coupled soil moisture-precipitation system is key for resource management and planning. We present a modeling approach to study soil moisture and albedo controls on planetary boundary layer height (PBLh). We used Santa Rita Creosote Ameriflux and Tucson Airport atmospheric sounding data to generate empirical relationships between soil moisture, albedo, and PBLh. Empirical relationships showed that ˜50% of the variation in PBLh can be explained by soil moisture and albedo with additional knowledge gained by dividing the soil profile into two layers. Therefore, we coupled these empirical relationships with soil moisture estimated using a two-layer bucket approach to model PBLh under six precipitation scenarios. Overall we observed that decreases in precipitation tend to limit the recovery of the PBL at the end of the wet season. However, increases in winter precipitation despite decreases in summer precipitation may provide opportunities for positive feedbacks that may further generate more winter precipitation. Our results highlight that the response of soil moisture, albedo, and the PBLh will depend not only on changes in annual precipitation, but also on the frequency and intensity of this change. We argue that because albedo and soil moisture data are readily available at multiple temporal and spatial scales, developing empirical relationships that can be used in land surface-atmosphere applications have great potential for exploring the consequences of climate change.
NASA Astrophysics Data System (ADS)
Decock, Charlotte; Lee, Juhwan; Barthel, Matti; Mikita, Chris; Wilde, Benjamin; Verhoeven, Elizabeth; Hund, Andreas; Abiven, Samuel; Friedli, Cordula; Conen, Franz; Mohn, Joachim; Wolf, Benjamin; Six, Johan
2016-04-01
It has been suggested that crops with deeper root systems could improve agricultural sustainability, because scavenging of nitrogen (N) in the subsoil would increase overall N retention and use efficiency in the system. However, the effect of plant root depth and root architecture on N-leaching and emissions of the potent greenhouse N2O remains largely unknown. We aimed to assess the effect of plant rooting depth on N-cycling and N2O production and reduction within the plant-soil system and throughout the soil profile. We hypothesized that greater root depth and root biomass will (1) increase N use efficiency and decrease N losses in the form of N leaching and N2O emissions; (2) increase N retention by shifting the fate of NH4+ from more nitrification toward more plant uptake and microbial immobilization; and (3) increase the depth of maximum N2O production and decrease the ratio of N2O:(N2O+N2) in denitrification end-products. To test these hypotheses, 4 winter wheat cultivars were grown in lysimeters (1.5 m tall, 0.5 m diameter, 3 replications per cultivar) under greenhouse conditions. Each lysimeter was equipped with an automated flux chamber for the determination of N2O surface fluxes. At 7.5, 30, 60, 90 and 120 cm depth, sampling ports were installed for the determination of soil moisture contents, as well as the collection of soil pore air and soil pore water samples. We selected two older and two newer varieties from the Swiss winter wheat breeding program, spanning a 100-year breeding history. The selection was based on previous experiments indicating that the older varieties have deeper rooting systems than the newer varieties under well watered conditions. N2O fluxes were determined twice per day on a quantum cascade laser absorption spectrometer interfaced with the automated flux chambers. Once per week, we determined concentrations of mineral N in pore water and of CO2 and N2O in the pore air. For mineral N and N2O, also natural abundance isotope deltas were determined, to obtain in situ process-level information on N-cycling. Preliminary results show lower soil moisture content and higher subsurface N2O and CO2 concentrations for the old varieties compared to the new varieties. Currently, we are performing isotope analyses, surface flux analyses, and we are harvesting the plants for determination of root- and aboveground biomass, and C and N contents therein. Results from these analyses are expected before April 2016, and will allow us to reconstruct the N budget and further explore to what extent our hypotheses are corroborated.
Transpiration and CO/sub 2/ fixation of selected desert shrubs as related to soil-water potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, S.B.; Letey, J. Jr.; Lunt, O.R.
1980-01-01
In desert plants, transpiration rates decreased before photosynthetic rates when plants were entering a period of water stress. This may have adaptive consequences. A difference of -5 bars in the soil-moisture potential had considerable importance in reducing the rate of transpiration. In Helianthus annuus L. (sunflower) the photosynthetic rate decreased before the transpiration rate in contrast to Great Basin-Mojave Desert plants, and the changes occurred with a -1 bar difference in soil-moisture potential. Morphological changes in three desert plant species (Artemisia tridentata Nutt., Ambrosia dumosa (Gray) Payne, Larrea tridentata (Ses. Moc. ex DC) Cov.) as the soil-moisture potential decreased aremore » given. With a mesic species, H. annuus, 20% reduction in photosynthesis and transpiration was reached at higher soil-moisture potentials than with the desert plants. Loss of net photosynthesis occurred in A. dumosa (a summer deciduous shrub) as PSI soil reached -48 bars in the field, whereas L. tridentata (an evergreen shrub) at the same time was able to maintain a water potential difference between soil and plant of -10 to -15 bars and continue net CO/sub 2/ gain well into the summer months.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
In the summer of 1985, under the joint program of US Department of Energy, Carbon Dioxide Division, and Tuskegee University, experiments were conducted to study growth, yield, photosynthesis and plant water relationships in sweet potato plants grown in an enriched CO/sub 2/ environment. The main experiment utilized open top chambers to study the effects of CO/sub 2/ and soil moisture on growth, yield and photosynthesis of field-grown plants. In addition, potted plants in open top chambers were utilized in a study of the effects of different CO/sub 2/ concentrations on growth pattern, relative growth rate, net assimilation rate and biomassmore » increment at different stages of development. The interaction effects of enriched CO/sub 2/ and water stress on biomass production, yield, xylem potential, and stomatal conductance were also investigated. 29 refs., 18 figs., 41 tabs.« less
Hygrothermal behavior for a clay brick wall
NASA Astrophysics Data System (ADS)
Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.
2018-06-01
In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.
Hygrothermal behavior for a clay brick wall
NASA Astrophysics Data System (ADS)
Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.
2018-01-01
In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.
Drying kinetics and mathematical modeling of hot air drying of coconut coir pith.
Fernando, J A K M; Amarasinghe, A D U S
2016-01-01
Drying kinetics of coir pith was studied and the properties of compressed coir pith discs were analyzed. Coir pith particles were oven dried in the range of temperatures from 100 to 240 °C and the rehydration ability of compressed coir pith was evaluated by finding the volume expansion. The optimum drying temperature was found to be 140 °C. Hot air drying was carried out to examine the drying kinetics by allowing the coir pith particles to fluidize and circulate inside the drying chamber. Particle motion within the drying chamber closely resembled the particle motion in a flash dryer. The effective moisture diffusivity was found to increase from 1.18 × 10(-8) to 1.37 × 10(-8) m(2)/s with the increase of air velocity from 1.4 to 2.5 m/s respectively. Correlation analysis and residual plots were used to determine the adequacy of existing mathematical models for describing the drying behavior of coir pith. The empirical models, Wang and Singh model and Linear model, were found to be adequate for accurate prediction of drying behavior of coir pith. A new model was proposed by modifying the Wang and Singh model and considering the effect of air velocity. It gave the best correlation between observed and predicted moisture ratio with high value of coefficient of determination (R(2)) and lower values of root mean square error, reduced Chi square (χ(2)) and mean relative deviation (E%).
Freeze-drying process monitoring using a cold plasma ionization device.
Mayeresse, Y; Veillon, R; Sibille, P H; Nomine, C
2007-01-01
A cold plasma ionization device has been designed to monitor freeze-drying processes in situ by monitoring lyophilization chamber moisture content. This plasma device, which consists of a probe that can be mounted directly on the lyophilization chamber, depends upon the ionization of nitrogen and water molecules using a radiofrequency generator and spectrometric signal collection. The study performed on this probe shows that it is steam sterilizable, simple to integrate, reproducible, and sensitive. The limitations include suitable positioning in the lyophilization chamber, calibration, and signal integration. Sensitivity was evaluated in relation to the quantity of vials and the probe positioning, and correlation with existing methods, such as microbalance, was established. These tests verified signal reproducibility through three freeze-drying cycles. Scaling-up studies demonstrated a similar product signature for the same product using pilot-scale and larger-scale equipment. On an industrial scale, the method efficiently monitored the freeze-drying cycle, but in a larger industrial freeze-dryer the signal was slightly modified. This was mainly due to the positioning of the plasma device, in relation to the vapor flow pathway, which is not necessarily homogeneous within the freeze-drying chamber. The plasma tool is a relevant method for monitoring freeze-drying processes and may in the future allow the verification of current thermodynamic freeze-drying models. This plasma technique may ultimately represent a process analytical technology (PAT) approach for the freeze-drying process.
Mäkelä, Mikko; Fraikin, Laurent; Léonard, Angélique; Benavente, Verónica; Fullana, Andrés
2016-03-15
The effects of hydrothermal treatment on the drying properties of sludge were determined. Sludge was hydrothermally treated at 180-260 °C for 0.5-5 h using NaOH and HCl as additives to influence reaction conditions. Untreated sludge and attained hydrochar samples were then dried under identical conditions with a laboratory microdryer and an X-ray microtomograph was used to follow changes in sample dimensions. The effective moisture diffusivities of sludge and hydrochar samples were determined and the effect of process conditions on respective mean diffusivities evaluated using multiple linear regression. Based on the results the drying time of untreated sludge decreased from approximately 80 min to 37-59 min for sludge hydrochar. Drying of untreated sludge was governed by the falling rate period where drying flux decreased continuously as a function of sludge moisture content due to heat and mass transfer limitations and sample shrinkage. Hydrothermal treatment increased the drying flux of sludge hydrochar and decreased the effect of internal heat and mass transfer limitations and sample shrinkage especially at higher treatment temperatures. The determined effective moisture diffusivities of sludge and hydrochar increased as a function of decreasing moisture content and the mean diffusivity of untreated sludge (8.56·10(-9) m(2) s(-1)) and sludge hydrochar (12.7-27.5·10(-9) m(2) s(-1)) were found statistically different. The attained regression model indicated that treatment temperature governed the mean diffusivity of hydrochar, as the effects of NaOH and HCl were statistically insignificant. The attained results enabled prediction of sludge drying properties through mean moisture diffusivity based on hydrothermal treatment conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shongwe, M.
2014-12-01
The warming rates projected by an ensemble of the Coupled Model Intercomparion Project Phase 5 (CMIP5) global climate models (GCMs) over southern Africa (south of 10 degrees latitude) are investigated. In all RCPs, CMIP5 models project a higher warming rate over the southwestern parts centred around the arid Kalahari and Namib deserts. The higher warming rates over these areas outpace global warming by up to a factor 2 in some GCMs. The projected warming is associated with an increase in heat waves. There is notable consensus across the models with little intermodel spread, suggesting a strong robustness of the projections. Mechanisms underlying the enhanced warming are investigated. A positive soil moisture-temperature feedback is suggested to contribute to the accelerated temperature increase. A decrease in soil moisture is projected by the GCMs over the area of highest warming. The reduction in soil wetness reduces evapotranspiration rates over the area where evaporation is dependent on available soil moisture. The reduction is evapotranspiration affects the partitioning of turbulent energy fluxes from the soil surface into the atmosphere and translates into an increase of the Bowen ratio featuring an increase in sensible relative to latent heat flux. An increase in sensible heat flux leads to an increase in near-surface temperature. The increase in temperature leads to a higher vapour pressure deficit and evaporative demand and evapotranspiration from the dry soils, possibly leading to a further decrease in soil moisture. A precipitation-soil moisture feedback is also suggested. A decrease in mean precipitation and an increase in drought conditions are projected over the area of enhanced warming. The reduced precipitation results in drier soils. The drier soil translates to reduced evapotranspiration for cloud and rainfall formation. However, the role played by the soil moisture-precipitation feedback loop is still inconclusive and characterized by some degree of uncertainty given that the strength of the local moisture recycling has not been explicitly quantified. An alternative mechanism involving the impact of soil moisture anomalies on boundary-layer stability and precipitation formation will be investigated.
NASA Astrophysics Data System (ADS)
Koyama, A.; Webb, C. T.; Johnson, N. G.; Brewer, P. E.; von Fischer, J. C.
2015-12-01
Methane uptake rates are known to have temporal variation in response to changing soil moisture levels. However, the relative importance of soil diffusivity vs. methanotroph physiology has not been disentangled to date. Testing methanotroph physiology in the laboratory can lead to misleading results due to changes in the fine-scale habitat where methanotrophs reside. To assay the soil moisture sensitivity of methanotrophs under field conditions, we studied 22 field plots scattered across eight Great Plains grassland sites that differed in precipitation regime and soil moisture, making ca. bi-weekly measures during the growing seasons over three years. Quantification of methanotroph activity was achieved from chamber-based measures of methane uptake coincident with SF6-derived soil diffusivity, and interpretation in a reaction-diffusion model. At each plot, we also measured soil water content (SWC), soil temperature and inorganic nitrogen (N) contents. We also assessed methanotroph community composition via 454 sequencing of the pmoA gene. Statistical analyses showed that methanotroph activity had a parabolic response with SWC (concave down), and significant differences in the shape of this response among sites. Moreover, we found that the SWC at peak methanotroph activity was strongly correlated with mean annual precipitation (MAP) of the site. The sequence data revealed distinct composition patterns, with structure that was associated with variation in MAP and soil texture. These results suggest that local precipitation regime shapes methanotroph community composition, which in turn lead to unique sensitivity of methane uptake rates with soil moisture. Our findings suggest that methanotroph activity may be more accurately modeled when the biological and environmental responses are explicitly described.
Surface treatments and coatings to maintain fresh cut mango quality in storage
USDA-ARS?s Scientific Manuscript database
Edible coatings prevent moisture loss and may decrease gas exchange, thereby retaining moisture and flavor of fresh-cut fruit. Previous experiments showed that carboxymethylcellulose (CMC) with added maltodextrin maintained visual quality of stored mango slices also treated with calcium ascorbate an...
NASA Astrophysics Data System (ADS)
Orlik, V. G.; Reznik, L. B.
1984-02-01
A method, instruments and devices were developed and model and field studies were performed of the flow of steam and moisture downstream from the last stage of a K-300-240 turbine in the vicinity of the vertical separating rib. The quantity of moisture flowing toward the drive wheel of the last stage over the inner cone of the exhaust tube was measured, and found to decrease with increasing temperature, disappearing at 140 C. When the turbine is loaded, moisture appears on the cone at approximately 60 MW, reaching 60 kg/hr at nominal mode and increasing with decreasing steam superheating temperature, to 80 kg/hr at 60 MW and 365 C. The steam receiving section of the condenser was found to be overloaded since the cross section of its drains was not designed to receive steam with excess moisture content. Excessive twisting of the steam flow beyond the last stage in the direction of rotation was experimentally determined. The quantity of erosion-dangerous moisture downstream from the last stage depends on the temperature difference between turbine exhaust and the machine room in which it is located.
Ming, Jiao; Zhao, Yun-Ge; Xu, Ming-Xiang; Yang, Li-Na; Wang, Ai-Guo
2013-07-01
Based on field survey, the biological soil crusts at their stable development stage were collected from the water erosion region, water-wind erosion region, and wind erosion region on the Loess Plateau, aimed to study the effects of the variations of moisture and temperature on the crusts nitrogenase activity (NA). The NA of the crusts in the erosion regions decreased in the order of water erosion region (127.7 micromol x m(-2) x h(-1)) > water-wind erosion region (34.6 micromol x m(-2) x h(-1)) > wind erosion region (6.0 micromol x m(-2) x h(-1)), and the optimal temperature for the crust nitrogen fixation was 35 degrees C, 25 degrees C, and 15 degrees C, respectively. At the optimal temperature and 100% -40% field water-holding capacity, the NA of the crusts from the water erosion and water-wind erosion regions had no significant difference. The NA of the crusts from the wind erosion region was more sensitive to the variation of moisture, showing a dramatic decline when the moisture decreased to 80% field water-holding capacity, and totally lost when the moisture decreased to 20% field water-holding capacity. The differences in the NA of the crusts from the three erosion regions and the responses of the NA to the variations of moisture and temperature were likely associated with the climate, environment, and the crust species composition.
NASA Astrophysics Data System (ADS)
Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.
2012-12-01
Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.
[How much does partially hydrolyzed guar gum affect the weight, moisture and hardness of feces?].
Sakata, Yukiko; Shimbo, Shinichiro
2006-04-01
The ministry of Health, Labor and Welfare recommends Japanese people to intake a certain amount of dietary fiber, believing that incorporating more dietary fiber into our diet can reduce the risk of colorectal cancer. The present study aimed to demonstrate and confirm the theory's validity by applying it to reality-to what extent is the intake of partially hydrolyzed guar gum (PHGG) useful in promoting bowel movements, and what problems are involved? We therefore investigated to what extent PHGG affects the weight, moisture and hardness of feces when healthy female students consumed PHGG as a supplement. During two fourteen-day sessions in spring and autumn, 9 healthy female students took the same diets. During the first session, the students were provided a strict dietary formula, while during the second session, they were administered an amount of 12.5 g/day PHGG (purity 80%, equivalent to 10 g of dietary fiber) dissolved in adequate amount of water at the end of each meal. Feces of the subjects were collected and weighted just after defection. A moisture meter was used to measure fecal moisture and a rheometer was used to measure fecal hardness. Fecal conditions and intestinal motility were also examined. (1) Due to the PHGG intake, the fecal bulk increased in 4 subjects and decreased in 2 subjects, significantly, out of 9. (2) Due to the PHGG intake, the fecal condition softened in 3 subjects while significantly hardening in 4 subjects. (3) The PHGG intake induced an increased of fecal moisture in 5 subjects, while moisture decreased in 2 subjects. (4) Fecal hardness measured more than 150 g/cm when it is classified as "frozen hard". (5) A significant inverse correlation could be seen between fecal hardness and fecal bulk, and between fecal hardness and its moisture. When PHGG was administered a significant inverse correlation could be seen between fecal hardness and its moisture. The conclusion is that the PHGG intake resulted in increase of the fecal bulk for 4 subjects and fecal moisture for 5 out of 9 subjects, but decrease of fecal hardness in 3 subjects; the benefit of bowel movements provided by the PHGG intake, however, varied greatly among the subjects.
Atmospheric Spray Freeze-Drying: Numerical Modeling and Comparison With Experimental Measurements.
Borges Sebastião, Israel; Robinson, Thomas D; Alexeenko, Alina
2017-01-01
Atmospheric spray freeze-drying (ASFD) represents a novel approach to dry thermosensitive solutions via sublimation. Tests conducted with a second-generation ASFD equipment, developed for pharmaceutical applications, have focused initially on producing a light, fine, high-grade powder consistently and reliably. To better understand the heat and mass transfer physics and drying dynamics taking place within the ASFD chamber, 3 analytical models describing the key processes are developed and validated. First, by coupling the dynamics and heat transfer of single droplets sprayed into the chamber, the velocity, temperature, and phase change evolutions of these droplets are estimated for actual operational conditions. This model reveals that, under typical operational conditions, the sprayed droplets require less than 100 ms to freeze. Second, because understanding the heat transfer throughout the entire freeze-drying process is so important, a theoretical model is proposed to predict the time evolution of the chamber gas temperature. Finally, a drying model, calibrated with hygrometer measurements, is used to estimate the total time required to achieve a predefined final moisture content. Results from these models are compared with experimental data. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nillius, B.; Frank, F.; Bingemer, H.; Curtius, J.; Bundke, U.
2013-05-01
In this work we present IN measurements at Mt. Zugspitze, Germany, 2650 m.a.s.l., Mt. Puy de Dôme, France, 1464 m.a.s.l. and Jungfraujoch, Switzerland, 3580 m a.s.l during fall and winter 2012 with the instrument FINCH HALO (Fast Ice Nucleus Chamber for the High Altitude and LOng range research aircraft HALO). In this device the temperature and super saturation for activation of Ice Nuclei (IN) and the growth to ice crystals is obtained by mixing three gas flows of different temperatures and moisture. After the growth of IN and Cloud Condensation Nuclei (CCN) to macroscopic ice crystals and super-cooled water droplets in the development chamber, they are counted using an optical detector. The discrimination between ice and water is made by measuring the circular depolarization ratio of the backscattered laser light of each individual particle. IN are classified as biological particles by measuring their individual intrinsic-fluorescence during the winter campaigns in average 30-40 % of the IN show an intrinsic fluorescence and are supposed to be of biological origin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluru, Jaya Shankar
The quality and specific energy consumption (SEC) of the biomass pellets produced depend upon pelleting process conditions. The present study includes understanding the effect of feedstock moisture in the range of 28–38% (wet basis [w.b.]) and preheating in the range of 30–110°C at two die speeds of 40 and 60 Hz on the physical properties and SEC. A flat die pellet mill fitted with a 6 mm die was used in the present study. The physical properties of pellets such as moisture content, unit, bulk and tapped density, durability, and expansion ratio and SEC of the pelleting process are measured.more » The results indicate that the pellets produced have durability values in the range of 87–98%, and unit bulk and tapped density in the range of 670–1100, 375–575, and 420–620 kg/m³. Increasing the feedstock moisture content from 33% to 38% (w.b) decreased the unit, bulk and tapped density by about 30–40%. Increasing feedstock moisture content increased the expansion ratio and decreased the density values. A higher feedstock moisture content of 38% (w.b.) and higher preheating temperature of 110°C resulted in lower density and a higher expansion ratio, which can be attributed to flash off of moisture as the material extrudes out of the die. The SEC was in the range of 75–275 kWh/ton. Higher feedstock moisture content of 38% (w.b.) and a lower die speed of 40 Hz increased the SEC, whereas lower to medium preheating temperature (30–70°C), medium feedstock moisture content of 33% (w.b.), and a higher die speed of 60 Hz minimized the SEC to <100 kWh/ton.« less
Land surface-precipitation feedback and ramifications on storm dynamics.
NASA Astrophysics Data System (ADS)
Baisya, H.; PV, R.; Pattnaik, S.
2017-12-01
A series of numerical experiments are carried out to investigate the sensitivity of a landfalling monsoon depression to land surface conditions using the Weather Research and Forecasting (WRF) model. Results suggest that precipitation is largely modulated by moisture influx and precipitation efficiency. Three cloud microphysical schemes (WSM6, WDM6, and Morrison) are examined, and Morrison is chosen for assessing the land surface-precipitation feedback analysis, owing to better precipitation forecast skills. It is found that increased soil moisture facilitates Moisture Flux Convergence (MFC) with reduced moisture influx, whereas a reduced soil moisture condition facilitates moisture influx but not MFC. A higher Moist Static Energy (MSE) is noted due to increased evapotranspiration in an elevated moisture scenario which enhances moist convection. As opposed to moist surface, sensible heat dominates in a reduced moisture scenario, ensued by an overall reduction in MSE throughout the Planetary Boundary Layer (PBL). Stability analysis shows that Convective Available Potential Energy (CAPE) is comparable in magnitude for both increased and decreased moisture scenarios, whereas Convective Inhibition (CIN) shows increased values for the reduced moisture scenario as a consequence of drier atmosphere leading to suppression of convection. Simulations carried out with various fixed soil moisture levels indicate that the overall precipitation features of the storm are characterized by initial soil moisture condition, but precipitation intensity at any instant is modulated by soil moisture availability. Overall results based on this case study suggest that antecedent soil moisture plays a crucial role in modulating precipitation distribution and intensity of a monsoon depression.
Automatically operable self-leveling load table
NASA Technical Reports Server (NTRS)
Burch, J. L. (Inventor)
1974-01-01
A self-leveling load table is described which is automatically maintained level by selectively opening and closing solenoid valves for inserting and removing air from chambers under the table. The table is floated in a fluid by nine air chambers beneath the top of the table. These chambers are open at the bottom and four oppositely located chambers are used for leveling the table by having the air increased or decreased by means of a flexible hose. Air bearing pendulums are used for selectively energizing solenoid valves which either apply pressurized air to the chamber or evacuate air from the chamber by means of a vacuum source.
Ganjurjav, Hasbagan; Gao, Qingzhu; Zhang, Weina; Liang, Yan; Li, Yawei; Cao, Xujuan; Wan, Yunfan; Li, Yue; Danjiu, Luobu
2015-01-01
To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai-Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and dependent on the year. Under conditions of warming, mean gross ecosystem productivity (GEP) during the growing season increased significantly in 2012 and 2014 (P < 0.05); however, ecosystem respiration (ER) increased substantially only in 2012 (P < 0.05). The net ecosystem CO2 exchange (NEE) increased marginally in 2012 (P = 0.056), did not change in 2013(P > 0.05), and increased significantly in 2014 (P = 0.034) under conditions of warming. The GEP was more sensitive to climate variations than was the ER, resulting in a large increase in net carbon uptake under warming in the alpine meadow. Under warming, the 3-year averages of GEP, ER, and NEE increased by 19.6%, 15.1%, and 21.1%, respectively. The seasonal dynamic patterns of GEP and NEE, but not ER, were significantly impacted by warming. Aboveground biomass, particularly the graminoid biomass increased significantly under conditions of warming. Soil moisture, soil temperature, and aboveground biomass were the main factors that affected the variation of the ecosystem CO2 fluxes. The effect of warming on inter- and intra-annual patterns of ecosystem CO2 fluxes and the mechanism of different sensitivities in GEP and ER to warming, require further researched.
Ganjurjav, Hasbagan; Gao, Qingzhu; Zhang, Weina; Liang, Yan; Li, Yawei; Cao, Xujuan; Wan, Yunfan; Li, Yue; Danjiu, Luobu
2015-01-01
To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai–Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and dependent on the year. Under conditions of warming, mean gross ecosystem productivity (GEP) during the growing season increased significantly in 2012 and 2014 (P < 0.05); however, ecosystem respiration (ER) increased substantially only in 2012 (P < 0.05). The net ecosystem CO2 exchange (NEE) increased marginally in 2012 (P = 0.056), did not change in 2013(P > 0.05), and increased significantly in 2014 (P = 0.034) under conditions of warming. The GEP was more sensitive to climate variations than was the ER, resulting in a large increase in net carbon uptake under warming in the alpine meadow. Under warming, the 3-year averages of GEP, ER, and NEE increased by 19.6%, 15.1%, and 21.1%, respectively. The seasonal dynamic patterns of GEP and NEE, but not ER, were significantly impacted by warming. Aboveground biomass, particularly the graminoid biomass increased significantly under conditions of warming. Soil moisture, soil temperature, and aboveground biomass were the main factors that affected the variation of the ecosystem CO2 fluxes. The effect of warming on inter- and intra-annual patterns of ecosystem CO2 fluxes and the mechanism of different sensitivities in GEP and ER to warming, require further researched. PMID:26147223
Impacts of hydraulic redistribution on overstory-understory interactions in a semiarid savanna
NASA Astrophysics Data System (ADS)
Barron-Gafford, G.; Minor, R. L.; Hendryx, S.; Lee, E.; Sutter, L., Jr.; Colella, A.; Murphy, P.; Sanchez-Canete, E. P.; Hamerlynck, E. P.; Kumar, P.; Scott, R. L.
2016-12-01
Hydraulic redistribution (HR) is an important ecohydrological process in dryland environments by which plants preferentially move water from wet to dry soil layers. How does this water movement by the overstory influence physiological activity in the understory? Are there periods of facilitation when the tree is lifting water and periods of competition when the water is being moved deeper in the profile? We combined trunk, lateral root, and taproot sap flow data, and linked these measures with shallow and deep soil moisture data to show that soil moisture gradients control hydraulic redistribution in overstory mesquite trees. During prolonged inter-rain periods of drought and in response to periods of high vapor pressure deficits, mesquites drew upon this deeper, stored water to meet biological demands. We created plots under mesquite that experienced HR and plots where HR was physically prohibited to quantify the impacts of HR on understory performance. We measured carbon and water exchange at the leaf-level on mesquite and understory grass and for entire understory ecosystem using a large, portable chamber. We found that HR provided a drought-buffering capacity for the overstory mesquite and a significant decrease in mesquite photosynthesis in trees where the capacity for HR was reduced. While we had hypothesized that water lifted by the mesquite in periods of drought would facilitate understory grass function, we found no evidence for this. In fact, we found that grasses actually conducted higher rates of photosynthesis in plots where HR was eliminated. Ultimately, we found that HR in upland savannas, where there is little to no access to deep water, yields a competitive interaction between overstory mesquites and understory grasses at the scale of individual precipitation pulse events and across entire growing seasons.
Variability of soil moisture proxies and hot days across the climate regimes of Australia
NASA Astrophysics Data System (ADS)
Holmes, A.; Rüdiger, C.; Mueller, B.; Hirschi, M.; Tapper, N.
2017-07-01
The frequency of extreme events such as heat waves are expected to increase due to the effect of climate change, particularly in semiarid regions of Australia. Recent studies have indicated a link between soil moisture deficits and heat extremes, focusing on the coupling between the two. This study investigates the relationship between the number of hot days (Tx90) and four soil moisture proxies (Standardized Precipitation Index, Antecedent Precipitation Index, Mount's Soil Dryness Index, and Keetch-Byram Drought Index), and how the strength of this relationship changes across various climate regimes within Australia. A strong anticorrelation between Tx90 and each moisture index is found, particularly for tropical savannas and temperate regions. However, the magnitude of the increase in Tx90 with decreasing moisture is strongest in semiarid and arid regions. It is also shown that the Tx90-soil moisture relationship strengthens during the El Niño phases of El Niño-Southern Oscillation in regions which are more sensitive to changes in soil moisture.
Bauweraerts, Ingvar; Wertin, Timothy M; Ameye, Maarten; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy
2013-02-01
The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO2 ] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO2 ] (380 or 700 μmol CO2 mol(-1) ) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4-week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO2 ] and well-watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO2 ]. Low soil moisture significantly decreased net photosynthesis (Anet ) and biomass in all [CO2 ] and temperature treatments. The +12 °C heat wave reduced afternoon Anet by 23% in ambient [CO2 ]. Although this reduction was relatively greater under elevated [CO2 ], Anet values during this heat wave were still 34% higher than under ambient [CO2 ]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO2 ] and soil moisture conditions. © 2012 Blackwell Publishing Ltd.
Experimental investigation of wood combustion in a fixed bed with hot air.
Markovic, Miladin; Bramer, Eddy A; Brem, Gerrit
2014-01-01
Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T>220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated. The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented. Copyright © 2013 Elsevier Ltd. All rights reserved.
Andringa, Anne-Marije; Perrotta, Alberto; de Peuter, Koen; Knoops, Harm C M; Kessels, Wilhelmus M M; Creatore, Mariadriana
2015-10-14
Encapsulation of organic (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, and field-effect transistors, is required to minimize device degradation induced by moisture and oxygen ingress. SiNx moisture permeation barriers have been fabricated using a very recently developed low-temperature plasma-assisted atomic layer deposition (ALD) approach, consisting of half-reactions of the substrate with the precursor SiH2(NH(t)Bu)2 and with N2-fed plasma. The deposited films have been characterized in terms of their refractive index and chemical composition by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). The SiNx thin-film refractive index ranges from 1.80 to 1.90 for films deposited at 80 °C up to 200 °C, respectively, and the C, O, and H impurity levels decrease when the deposition temperature increases. The relative open porosity content of the layers has been studied by means of multisolvent ellipsometric porosimetry (EP), adopting three solvents with different kinetic diameters: water (∼0.3 nm), ethanol (∼0.4 nm), and toluene (∼0.6 nm). Irrespective of the deposition temperature, and hence the impurity content in the SiNx films, no uptake of any adsorptive has been observed, pointing to the absence of open pores larger than 0.3 nm in diameter. Instead, multilayer development has been observed, leading to type II isotherms that, according to the IUPAC classification, are characteristic of nonporous layers. The calcium test has been performed in a climate chamber at 20 °C and 50% relative humidity to determine the intrinsic water vapor transmission rate (WVTR) of SiNx barriers deposited at 120 °C. Intrinsic WVTR values in the range of 10(-6) g/m2/day indicate excellent barrier properties for ALD SiNx layers as thin as 10 nm, competing with that of state-of-the-art plasma-enhanced chemical vapor-deposited SiNx layers of a few hundred nanometers in thickness.
NASA Astrophysics Data System (ADS)
Liu, Qi; Hao, Yonghong; Stebler, Elaine; Tanaka, Nobuaki; Zou, Chris B.
2017-12-01
Mapping the spatiotemporal patterns of soil moisture within heterogeneous landscapes is important for resource management and for the understanding of hydrological processes. A critical challenge in this mapping is comparing remotely sensed or in situ observations from areas with different vegetation cover but subject to the same precipitation regime. We address this challenge by wavelet analysis of multiyear observations of soil moisture profiles from adjacent areas with contrasting plant functional types (grassland, woodland, and encroached) and precipitation. The analysis reveals the differing soil moisture patterns and dynamics between plant functional types. The coherence at high-frequency periodicities between precipitation and soil moisture generally decreases with depth but this is much more pronounced under woodland compared to grassland. Wavelet analysis provides new insights on soil moisture dynamics across plant functional types and is useful for assessing differences and similarities in landscapes with heterogeneous vegetation cover.
Land-atmosphere coupling and soil moisture memory contribute to long-term agricultural drought
NASA Astrophysics Data System (ADS)
Kumar, S.; Newman, M.; Lawrence, D. M.; Livneh, B.; Lombardozzi, D. L.
2017-12-01
We assessed the contribution of land-atmosphere coupling and soil moisture memory on long-term agricultural droughts in the US. We performed an ensemble of climate model simulations to study soil moisture dynamics under two atmospheric forcing scenarios: active and muted land-atmosphere coupling. Land-atmosphere coupling contributes to a 12% increase and 36% decrease in the decorrelation time scale of soil moisture anomalies in the US Great Plains and the Southwest, respectively. These differences in soil moisture memory affect the length and severity of modeled drought. Consequently, long-term droughts are 10% longer and 3% more severe in the Great Plains, and 15% shorter and 21% less severe in the Southwest. An analysis of Coupled Model Intercomparsion Project phase 5 data shows four fold uncertainty in soil moisture memory across models that strongly affects simulated long-term droughts and is potentially attributable to the differences in soil water storage capacity across models.
Divergent surface and total soil moisture projections under global warming
Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.
2017-01-01
Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.
NASA Technical Reports Server (NTRS)
Spar, J.; Cohen, C.
1981-01-01
The effects of terrain elevation, soil moisture, and zonal variations in sea/surface temperature on the mean daily precipitation rates over Australia, Africa, and South America in January were evaluated. It is suggested that evaporation of soil moisture may either increase or decrease the model generated precipitation, depending on the surface albedo. It was found that a flat, dry continent model best simulates the January rainfall over Australia and South America, while over Africa the simulation is improved by the inclusion of surface physics, specifically soil moisture and albedo variations.
Locke, Anna M.; Ort, Donald R.
2014-01-01
Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K leaf), a measure of the leaf’s water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K leaf would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g s) and leaf water potential (Ψleaf) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K leaf was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K leaf were further correlated with decreases in g s, although the relationship was not as strong as that with A. Separate experiments investigating the response of K leaf to drought demonstrated no acclimation of K leaf to drought conditions to protect against cavitation or loss of g s during drought and confirmed the effect of leaf age in K leaf observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K leaf becoming limiting to transpiration water flux. PMID:25281701
Tumuluru, Jaya Shankar
2015-06-15
The quality and specific energy consumption (SEC) of the biomass pellets produced depend upon pelleting process conditions. The present study includes understanding the effect of feedstock moisture in the range of 28–38% (wet basis [w.b.]) and preheating in the range of 30–110°C at two die speeds of 40 and 60 Hz on the physical properties and SEC. A flat die pellet mill fitted with a 6 mm die was used in the present study. The physical properties of pellets such as moisture content, unit, bulk and tapped density, durability, and expansion ratio and SEC of the pelleting process are measured.more » The results indicate that the pellets produced have durability values in the range of 87–98%, and unit bulk and tapped density in the range of 670–1100, 375–575, and 420–620 kg/m³. Increasing the feedstock moisture content from 33% to 38% (w.b) decreased the unit, bulk and tapped density by about 30–40%. Increasing feedstock moisture content increased the expansion ratio and decreased the density values. A higher feedstock moisture content of 38% (w.b.) and higher preheating temperature of 110°C resulted in lower density and a higher expansion ratio, which can be attributed to flash off of moisture as the material extrudes out of the die. The SEC was in the range of 75–275 kWh/ton. Higher feedstock moisture content of 38% (w.b.) and a lower die speed of 40 Hz increased the SEC, whereas lower to medium preheating temperature (30–70°C), medium feedstock moisture content of 33% (w.b.), and a higher die speed of 60 Hz minimized the SEC to <100 kWh/ton.« less
NASA Astrophysics Data System (ADS)
Kara, Cem; Doymaz, İbrahim
2015-07-01
Drying of apple pomace representing by-products from apple juice processing was studied. The results obtained show that moisture content of the pomace decreases with time and temperature. The Midilli et al. model was selected as the best mathematical model for describing the drying kinetics of the apple pomace. The effective moisture diffusivity varied from 1.73 × 10-10 to 4.40 × 10-10 m2/s and the activation energy was calculated to be 29.65 kJ/mol.
High vacuum measurements and calibrations, molecular flow fluid transient effects
Leishear, Robert A.; Gavalas, Nickolas A.
2015-04-29
High vacuum pressure measurements and calibrations below 1 × 10 -8 Torr are problematic. Specifically, measurement accuracies change drastically for vacuum gauges when pressures are suddenly lowered in vacuum systems. How can gauges perform like this? A brief system description is first required to answer this question. Calibrations were performed using a vacuum calibration chamber with attached vacuum gauges. To control chamber pressures, vacuum pumps decreased the chamber pressure while nitrogen tanks increased the chamber pressure. By balancing these opposing pressures, equilibrium in the chamber was maintained at selected set point pressures to perform calibrations. When pressures were suddenly decreasedmore » during set point adjustments, a sudden rush of gas from the chamber also caused a surge of gas from the gauges to decrease the pressures in those gauges. Gauge pressures did not return to equilibrium as fast as chamber pressures due to the sparse distribution of gas molecules in the system. This disparity in the rate of pressure changes caused the pressures in different gauges to be different than expected. This discovery was experimentally proven to show that different gauge designs return to equilibrium at different rates, and that gauge accuracies vary for different gauge designs due to fluid transients in molecular flow.« less
Examination of Soil Moisture Retrieval Using SIR-C Radar Data and a Distributed Hydrological Model
NASA Technical Reports Server (NTRS)
Hsu, A. Y.; ONeill, P. E.; Wood, E. F.; Zion, M.
1997-01-01
A major objective of soil moisture-related hydrological-research during NASA's SIR-C/X-SAR mission was to determine and compare soil moisture patterns within humid watersheds using SAR data, ground-based measurements, and hydrologic modeling. Currently available soil moisture-inversion methods using active microwave data are only accurate when applied to bare and slightly vegetated surfaces. Moreover, as the surface dries down, the number of pixels that can provide estimated soil moisture by these radar inversion methods decreases, leading to less accuracy and, confidence in the retrieved soil moisture fields at the watershed scale. The impact of these errors in microwave- derived soil moisture on hydrological modeling of vegetated watersheds has yet to be addressed. In this study a coupled water and energy balance model operating within a topographic framework is used to predict surface soil moisture for both bare and vegetated areas. In the first model run, the hydrological model is initialized using a standard baseflow approach, while in the second model run, soil moisture values derived from SIR-C radar data are used for initialization. The results, which compare favorably with ground measurements, demonstrate the utility of combining radar-derived surface soil moisture information with basin-scale hydrological modeling.
Suppressors made from intermetallic materials
Klett, James W; Muth, Thomas R; Cler, Dan L
2014-11-04
Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases. These and other exemplary suppressors are made from an intermetallic material composition for enhanced strength and oxidation resistance at high operational temperatures.
The influence of hair lipids in ethnic hair properties.
Martí, M; Barba, C; Manich, A M; Rubio, L; Alonso, C; Coderch, L
2016-02-01
Biochemical studies have mainly focused on the composition of hair. African hair exhibited lower moisturization and less radial swelling when flushing with water compared with Asian or Caucasian hair, and they assumed a possible lipid differentiation among human populations. This study consists in the lipid characterization of different ethnic hairs (Caucasian, Asian and African hairs) and the influence of these lipids in different hair properties such as humidity and mechanical properties. Evaluation of water sorption and desorption of the different ethnic hairs and with and without lipids is also studied mainly to determine permeation changes of the keratin fibres. Extractions of exogenous and endogenous lipids with different organic solvents were performed; lipid analysis and its quantification using thin-layer chromatography coupled to an automated flame ionization detector (TLC/FID) were performed. Absorption and desorption curves were obtained in a thermogravimetric balance equipped with a controlled humidity chamber, the Q5000SA Sorption Analyzer (TA Instruments, New Castle, IL, U.S.A.). Also, mechanical properties (breaking stress and breaking elongation) were analysed using a computer programmable dynamometer (Instron 5500R). Lipid extraction showed the highest amount of total lipids for the African hair which may come from external sebaceous lipids compared with Asian or Caucasian hair. Caucasian fibres were found to be the most hydrated fibre, and a decrease in moisture was found in the extracted fibres, again, which is more important for the Caucasian hair. A superior lineal mass was found for the Asian fibres which supported their higher strength. The results obtained from the analysis of the mechanical properties of delipidized fibres indicate a surprising increase in the strength of African and Caucasian fibres. Perhaps this increase in strength could be related to the humidity decrease in lipid-extracted hair fibres. Results of water uptake and desorption indicate that Asian and Caucasian hairs present the lower diffusion coefficients compared with the African ones. At least for the African fibre, an extraction of its lipids that mainly account for apolar lipids ameliorates the fibre structure, decreasing its permeability to water and increasing its tensile strength. The ethnic hairs were assessed related to their lipid composition, and some differences between them were found in terms of water uptake and mechanical properties. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
NASA Astrophysics Data System (ADS)
Baisya, Himadri; Pattnaik, Sandeep; Rajesh, P. V.
2017-03-01
A series of numerical experiments are carried out to investigate the sensitivity of a landfalling monsoon depression to land surface conditions using the Weather Research and Forecasting (WRF) model. Results suggest that precipitation is largely modulated by moisture influx and precipitation efficiency. Three cloud microphysical schemes (WSM6, WDM6, and Morrison) are examined, and Morrison is chosen for assessing the land surface-precipitation feedback analysis, owing to better precipitation forecast skills. It is found that increased soil moisture facilitates Moisture Flux Convergence (MFC) with reduced moisture influx, whereas a reduced soil moisture condition facilitates moisture influx but not MFC. A higher Moist Static Energy (MSE) is noted due to increased evapotranspiration in an elevated moisture scenario which enhances moist convection. As opposed to moist surface, sensible heat dominates in a reduced moisture scenario, ensued by an overall reduction in MSE throughout the Planetary Boundary Layer (PBL). Stability analysis shows that Convective Available Potential Energy (CAPE) is comparable in magnitude for both increased and decreased moisture scenarios, whereas Convective Inhibition (CIN) shows increased values for the reduced moisture scenario as a consequence of drier atmosphere leading to suppression of convection. Simulations carried out with various fixed soil moisture levels indicate that the overall precipitation features of the storm are characterized by initial soil moisture condition, but precipitation intensity at any instant is modulated by soil moisture availability. Overall results based on this case study suggest that antecedent soil moisture plays a crucial role in modulating precipitation distribution and intensity of a monsoon depression.
Biodegradation of Jatropha curcas phorbol esters in soil.
Devappa, Rakshit K; Makkar, Harinder Ps; Becker, Klaus
2010-09-01
Jatropha curcas seed cake is generated as a by-product during biodiesel production. Seed cake containing toxic phorbol esters (PEs) is currently used as a fertiliser and thus it is of eco-toxicological concern. In the present study the fate of PEs in soil was studied. Two approaches for the incorporation of PEs in soil were used. In the first, silica was bound to PEs, and in the second, seedcake was used. At day 0, the concentration of PEs in soil was 2.6 and 0.37 mg g(-1) for approach 1 and 2 respectively. PEs from silica bound PEs were completely degraded after 19, 12, 12 days (at 130 g kg(-1) moisture) and after 17, 9, 9 days (at 230 g kg(-1) moisture) at room temperature, 32 degrees C and 42 degrees C respectively. Similarly at these temperatures PEs from seed cake were degraded after 21, 17 and 17 days (at 130 g kg(-1) moisture) and after 23, 17, and 15 days (at 230 g kg(-1) moisture). Increase in temperature and moisture increased rate of PEs degradation. Using the snail (Physa fontinalis) bioassay, mortality by PE-amended soil extracts decreased with the decrease in PE concentration in soil. Jatropha PEs are biodegradable. The degraded products are innocuous. Copyright 2010 Society of Chemical Industry.
Yu, Ya-Jen; Hearon, Keith; Wilson, Thomas S; Maitland, Duncan J
2011-08-01
The effect of moisture absorption on the glass transition temperature (T(g)) and stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To our best knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the T(g) of the foam, with a maximum water uptake shifting the T(g) from 67 °C to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h.
Yu, Ya-Jen; Hearon, Keith; Wilson, Thomas S.; Maitland, Duncan J.
2011-01-01
The effect of moisture absorption on the glass transition temperature (Tg) and stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To our best knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the Tg of the foam, with a maximum water uptake shifting the Tg from 67 °C to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h. PMID:21949469
NASA Astrophysics Data System (ADS)
Yu, Ya-Jen; Hearon, Keith; Wilson, Thomas S.; Maitland, Duncan J.
2011-08-01
The effect of moisture absorption on the glass transition temperature (Tg) and the stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood-contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To the best of our knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the Tg of the foam, with a maximum water uptake shifting the Tg from 67 to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h.
Niu, Yanxing; Jiang, Mulan; Guo, Mian; Wan, Chuyun; Hu, Shuangxi; Jin, Hu; Huang, Fenghong
2015-01-01
We analyzed and compared the difference in sinapine concentration in rapeseed meal between the filamentous fungus, Trametes sp 48424, and the yeast, Saccharomyces cerevisiae, in both liquid and solid-state fermentation. During liquid and solid-state fermentation by Trametes sp 48424, the sinapine concentration decreased significantly. In contrast, the liquid and solid-state fermentation process by Saccharomyces cerevisiae just slightly decreased the sinapine concentration (P ≤ 0.05). After the solid-state fermented samples were dried, the concentration of sinapine in rapeseed meal decreased significantly in Saccharomyces cerevisiae. Based on the measurement of laccase activity, we observed that laccase induced the decrease in the concentration of sinapine during fermentation with Trametes sp 48424. In order to eliminate the influence of microorganisms and the metabolites produced during fermentation, high moisture rapeseed meal and the original rapeseed meal were dried at 90°C and 105°C, respectively. During drying, the concentration of sinapine in high moisture rapeseed meal decreased rapidly and we obtained a high correlation coefficient between the concentration of sinapine and loss of moisture. Our results suggest that drying and enzymes, especially laccase that is produced during the solid-state fermentation process, may be the main factors that affect the concentration of sinapine in rapeseed meal. PMID:25606856
Effect of different drying methods on moisture ratio and rehydration of pumpkin slices.
Seremet Ceclu, Liliana; Botez, Elisabeta; Nistor, Oana-Viorela; Andronoiu, Doina Georgeta; Mocanu, Gabriel-Danut
2016-03-15
This study was carried to determine the influence of hot air drying process and combined methods on physicochemical properties of pumpkin (Cucurbita moschata) samples. The experiments in hot air chamber were lead at 50, 60 and 70 °C. The combined method consists of a triple combination of the main drying techniques. Thus, in first stage the samples were dried in hot air convection at 60 °C followed by hot air ventilation at 40 °C simultaneous with microwave. The time required to reduce the moisture content to any given level was highly dependent on the drying conditions. So, the highest value of drying time in hot air has been 540 min at 50 °C, while the lowest time has been 189 min in hot air combined by microwave at 40 °C and a power of 315 W. The samples dried by hot air shows a higher rehydration capacity than samples dried by combined method. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qu, Y. H.; Lin, C.; Zhou, W.; Li, Y.; Chen, B.; Chen, G. Q.
2009-01-01
The dynamic fluctuations of CO 2 concentration in the tissue culture growth chamber after transplantation of petunia, chrysanthemum and tomato plantlets were recorded with a real-time control system to determine the critical CO 2 concentration levels of 35 μl l -1 at which CO 2 enrichment is needed. The experimental data showed that the tissue-cultured plantlets of petunia, chrysanthemum and tomato had the same CO 2 concentration dynamics. The results indicated that CO 2 enrichment was proper on the second day after transplantation. Petunia plantlets were used to conduct experiments under PPFD of 80 μmol m -2 s -1, and CO 2 concentrations of 350 ± 50 μl l -1, 650 ± 50 μl l -1 and 950 ± 50 μl l -1 as well as medium moisture contents of 60%, 70% and 80%, with the result that plantlets grew better under CO 2 concentration of 650 ± 50 μl l -1 than under the other two concentrations with all the different media water contents. Three media water contents under the same CO 2 concentration produced plantlets with the same quality. The impacts of CO 2 concentrations on plantlets are more important than those of the media water contents. Sugar-free tissue culture, as compared with the conventional culture, showed that CO 2 enrichment to 350 ± 50 μl l -1 can promote the growth of the cultured plantlets. Sugar-free tissue culture produced healthy plantlets with thick roots, almost equivalent to the common plantlets.
Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization
NASA Astrophysics Data System (ADS)
Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin
2017-02-01
To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.
Baeza, M J; De Luís, M; Raventós, J; Escarré, A
2002-06-01
Fire behaviour under experimental conditions is described in nine Mediterranean gorse shrublands ranging from 3-12 years of age with different fuel loads. Significant differences in the fire-line intensity, fuel load and rate of fire spread have been found to be related to the stage of development of the communities. Fire spread is correlated with fuel moisture using multiple regression techniques. Differences in fuel moisture between mature and young communities under moderate weather conditions have been found. The lower moisture content identified in the mature shrubland is due both to the decreasing moisture content of senescent shrubland in some species, mainly in live fractions of Ulex parviflorus Pour. fuel, and to a substantial increase in dead fuel fractions with low percentages of moisture content. The result is that the older the shrubland is, the greater will be the decrease in the total moisture content of the vegetation. In these moderate weather conditions, the fire intensity of the mature community was as high as the maximum intensity recommended for prescribed fires. This fact seems to indicate that, even under moderate conditions, prescribed burning as an alternative management tool in the mature shrubland must always take into account fuel control; on the other hand, this technique could be applied more easily when the shrubland is at an intermediate growth stage (4-5 years of age). Therefore, more frequent low-intensity prescribed fires are indicated to abate the risk of catastrophic fire.
Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin
2017-02-10
To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R 2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.
NASA Astrophysics Data System (ADS)
Yang, Yang; Dou, Yanxing; Liu, Dong; An, Shaoshan
2017-07-01
Spatial pattern and heterogeneity of soil moisture is important for the hydrological process on the Loess Plateau. This study combined the classical and geospatial statistical techniques to examine the spatial pattern and heterogeneity of soil moisture along a transect scale (e.g. land use types and topographical attributes) on the Loess Plateau. The average values of soil moisture were on the order of farmland > orchard > grassland > abandoned land > shrubland > forestland. Vertical distribution characteristics of soil moisture (0-500 cm) were similar among land use types. Highly significant (p < 0.01) negative correlations were found between soil moisture and elevation (h) except for shrubland (p > 0.05), whereas no significant correlations were found between soil moisture and plan curvature (Kh), stream power index (SPI), compound topographic index (CTI) (p > 0.05), indicating that topographical attributes (mainly h) have a negative effect on the soil moisture spatial heterogeneity. Besides, soil moisture spatial heterogeneity decreased from forestland to grassland and farmland, accompanied by a decline from 15° to 1° alongside upper to lower slope position. This study highlights the importance of land use types and topographical attributes on the soil moisture spatial heterogeneity from a combined analysis of the structural equation model (SEM) and generalized additive models (GAMs), and the relative contribution of land use types to the soil moisture spatial heterogeneity was higher than that of topographical attributes, which provides insights for researches focusing on soil moisture varitions on the Loess Plateau.
Playa Soil Moisture and Evaporation Dynamics During the MATERHORN Field Program
NASA Astrophysics Data System (ADS)
Hang, Chaoxun; Nadeau, Daniel F.; Jensen, Derek D.; Hoch, Sebastian W.; Pardyjak, Eric R.
2016-06-01
We present an analysis of field data collected over a desert playa in western Utah, USA in May 2013, the most synoptically active month of the year, as part of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. The results show that decreasing surface albedo, decreasing Bowen ratio and increasing net radiation with increasing soil moisture sustained a powerful positive feedback mechanism promoting large evaporation rates immediately following rain events. Additionally, it was found that, while nocturnal evaporation was negligible during dry periods, it was quite significant (up to 30 % of the daily cumulative flux) during nights following rain events. Our results further show that the highest spatial variability in surface soil moisture is found under dry conditions. Finally, we report strong spatial heterogeneities in evaporation rates following a rain event. The cumulative evaporation for the different sampling sites over a five-day period varied from ≈ 0.1 to ≈ 6.6 mm. Overall, this study allows us to better understand the mechanisms underlying soil moisture dynamics of desert playas as well as evaporation following occasional rain events.
NASA Astrophysics Data System (ADS)
Shanmugasundaram, Jothiganesh; Lee, Eungul
2018-03-01
The association of North-East Indian Monsoon rainfall (NEIMR) over the southeastern peninsular India with the oceanic and atmospheric conditions over the adjacent ocean regions at pentad time step (five days period) was investigated during the months of October to December for the period 1985-2014. The non-parametric correlation and composite analyses were carried out for the simultaneous and lagged time steps (up to four lags) of oceanic and atmospheric variables with pentad NEIMR. The results indicated that NEIMR was significantly correlated: 1) positively with both sea surface temperature (SST) led by 1-4 pentads (lag 1-4 time steps) and latent heat flux (LHF) during the simultaneous, lag 1 and 2 time steps over the equatorial western Indian Ocean, 2) positively with SST but negatively with LHF (less heat flux from ocean to atmosphere) during the same and all the lagged time steps over the Bay of Bengal. Consistently, during the wet NEIMR pentads over the southeastern peninsular India, SST significantly increased over the Bay of Bengal during all the time steps and the equatorial western Indian Ocean during the lag 2-4 time steps, while the LHF decreased over the Bay of Bengal (all time steps) and increased over the Indian Ocean (same, lag 1 and 2). The investigation on ocean-atmospheric interaction revealed that the enhanced LHF over the equatorial western Indian Ocean was related to increased atmospheric moisture demand and increased wind speed, whereas the reduced LHF over the Bay of Bengal was associated with decreased atmospheric moisture demand and decreased wind speed. The vertically integrated moisture flux and moisture transport vectors from 1000 to 850 hPa exhibited that the moisture was carried away from the equatorial western Indian Ocean to the strong moisture convergence regions of the Bay of Bengal during the same and lag 1 time steps of wet NEIMR pentads. Further, the moisture over the Bay of Bengal was transported to the southeastern peninsular India through stronger cyclonic circulations, which were confirmed by the moisture transport vectors and positive vorticity. The identified ocean and atmosphere processes, associated with the wet NEIMR conditions, could be a valuable scientific input for enhancing the rainfall predictability, which has a huge socioeconomic value to agriculture and water resource management sectors in the southeastern peninsular India.
Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics
NASA Technical Reports Server (NTRS)
Kenny, R Jeremy; Hulka, James R.
2008-01-01
Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.
Stress and nutritional quality of broilers.
Tankson, J D; Vizzier-Thaxton, Y; Thaxton, J P; May, J D; Cameron, J A
2001-09-01
Broiler chicks were reared in environmental chambers. All birds were started under ideal conditions, i.e., 30.6 C with 35% RH. Beginning at Day 36, half of the chicks were maintained at 24 C and 35% RH. The other half were subjected to a cyclic temperature-RH regime that approximated a typical August day in central Mississippi (heat treatment). Half of each of the described groups received implants of osmotic pumps that released adrenocorticotropin (ACTH) at 8 IU/kg BW/d for 7 d. The remaining birds received placebo pumps. The main effects of ACTH and heat treatments were similar. Both treatments caused reductions in BW, carcass weight (CW), carcass protein (CP), and muscle calorie (C) content. ACTH, but not heat, reduced carcass moisture (M). Carcass fat and ash, however, were not affected. Most changes were not reversed after 1 wk of recovery. Although visible signs of pale, soft, exudative muscle (PSE) were present, "white" areas of muscle were absent. The decreased meat yield and detrimental changes in meat quality suggest that stress, whether induced hormonally or by exposure to over-heating, caused losses that were as severe as those associated with PSE under field conditions.
Pathway for recovery of photo-degraded polymer solar cells by post degradation thermal anneal
Bhattacharya, J.; Joshi, P. H.; Biswas, Rana; ...
2017-02-16
The photo-degradation of polymer solar cells is a critical challenge preventing its commercial deployment. We experimentally fabricate organic solar cells and characterize their degradation under solar simulators in an environmental chamber under nitrogen flow, without exposure to oxygen and moisture. We have developed a thermally stable inverted organic solar cell architecture in which light induced degradation of device characteristics can be reversibly annealed to the pristine values. The stable inverted cells utilized MoO x layers that are thermally treated immediately after their deposition on the organic layer, and before metal cathode deposition. Organic solar cells that are photo-degraded in themore » presence of oxygen, however show irreversible degradation that cannot be thermally recovered. The decrease of organic solar cell characteristics correlates with increases in mid-gap electronic states, measured using capacitance spectroscopy and dark current. It is likely the photo-induced defect states caused by local H motion from the alkyl chains to the aromatic backbone, can be reversibly annealed at elevated temperatures after photo-degradation. Finally, our results provide a pathway for improving the stability of organic photovoltaics.« less
Degradation and ESR Failures in MnO2 Chip Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2017-01-01
Equivalent series resistance (ESR) of chip tantalum capacitors determines the rate of energy delivery and power dissipation thus affecting temperature and reliability of the parts. Employment of advanced capacitors with reduced ESR decreases power losses and improves efficiency in power systems. Stability of ESR is essential for correct operations of power units and might cause malfunctioning and failures when ESR becomes too high or too low. Several cases with ESR values in CWR29 capacitors exceeding the specified limit that were observed recently raised concerns regarding environmental factors affecting ESR and the adequacy of the existing screening and qualification testing. In this work, results of stress testing of various types of military and commercial capacitors obtained over years by GSFC test lab and NEPP projects that involved ESR measurements are described. Environmental stress tests include testing in humidity and vacuum chambers, temperature cycling, long-term storage at high temperatures, and various soldering simulation tests. Note that in many cases parts failed due to excessive leakage currents or reduced breakdown voltages. However, only ESR-related degradation and failures are discussed. Mechanisms of moisture effect are discussed and recommendations to improve screening and qualification system are suggested.
Pathway for recovery of photo-degraded polymer solar cells by post degradation thermal anneal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, J.; Joshi, P. H.; Biswas, Rana
The photo-degradation of polymer solar cells is a critical challenge preventing its commercial deployment. We experimentally fabricate organic solar cells and characterize their degradation under solar simulators in an environmental chamber under nitrogen flow, without exposure to oxygen and moisture. We have developed a thermally stable inverted organic solar cell architecture in which light induced degradation of device characteristics can be reversibly annealed to the pristine values. The stable inverted cells utilized MoO x layers that are thermally treated immediately after their deposition on the organic layer, and before metal cathode deposition. Organic solar cells that are photo-degraded in themore » presence of oxygen, however show irreversible degradation that cannot be thermally recovered. The decrease of organic solar cell characteristics correlates with increases in mid-gap electronic states, measured using capacitance spectroscopy and dark current. It is likely the photo-induced defect states caused by local H motion from the alkyl chains to the aromatic backbone, can be reversibly annealed at elevated temperatures after photo-degradation. Finally, our results provide a pathway for improving the stability of organic photovoltaics.« less
NASA Astrophysics Data System (ADS)
Shinbo, Kazunari; Ishikawa, Hiroshi; Baba, Akira; Ohdaira, Yasuo; Kato, Keizo; Kaneko, Futao
2012-03-01
We fabricated a hybrid sensor utilizing quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) spectroscopy. We confirmed its effectiveness by observing QCM frequency shifts and SPR wavelength changes for two processes: deposition of various transparent polymer thin films and moisture sorption. For thin-film deposition, the relationship between the QCM frequency and SPR wavelength was found to depend on the refractive index of the film material. For moisture sorption, the direction of SPR wavelength shift depended on the film thickness. This was estimated to be caused by film swelling and decrease in refractive index induced by moisture.
Laubhan, M.K.; Shaffer, T.L.
2006-01-01
Cirsium arvense and Lepidium latifolium are species that can aggressively invade wetland margins and potentially reduce biodiversity and alter ecosystem function. Although expansion of these species primarily occurs via rhizomatous growth, seeds are thought to be important in initial establishment. We conducted this study to investigate differences in seed germination of C. arvense and L. latifolium in montane wetlands of Colorado and Wyoming, USA. We used germination chambers to simulate environmental conditions (photoperiod, day/night temperature) during three periods of the growing season at each site and evaluated seed germination in relation to three soil moisture levels and two soil depths. A combination of shallow (<1 cm) seed burial and wet conditions resulted in the greatest germination probability of C. arvense (x = 63.0%), 95% CI = 41.2-80.5%), whereas deep (2-3 cm) seed burial and saturated moisture conditions resulted in almost no germination (x?? = 0.3%, 95% CI = 0.1-1.3%). The maximum germination probability of 44.0% (CI = 28.1-61.4%) for L. latifolium also occurred in the shallow burial and wet treatment; however, only effects of seed burial were significant (P < 0.05). The estimated mean germination probability of deeply buried seeds was <1.0% (CI = 0.3-1.4%) compared to 32% (CI = 19.7-47.9%) for shallowly buried seeds. Our results suggest that each species has the ability to germinate at similar rates throughout the growing season and across a large portion of the moisture gradient. This suggests that management actions, including water-level manipulations, at any time during the growing season may stimulate germination. Although burial of seed to depths of 2-3 cm reduced the germination potential of both species, the use of mechanical implements may be problematic in established stands because new plants of both species easily sprout from root buds. Further, disturbance resulting from such actions diminishes the density and vigor of other plants already present, which may ultimately decrease the competitive resistance of the disturbed environment to invasion by outside species. Detection of new invasions is a critical component of any integrated weed management program. Our results indicate that the incidence of C. arvense and L. latifolium germination is most likely in areas with seeds that are within 1 cm of the soil surface and soil moisture is 75-100% of field capacity for extended periods. ?? 2006, The Society of Wetland Scientists.
NASA Astrophysics Data System (ADS)
Leger, E.; Dafflon, B.; Thorpe, M.; Kreitinger, A.; Laura, D.; Haivala, J.; Peterson, J.; Spangler, L.; Hubbard, S. S.
2016-12-01
While subsurface storage of CO2 in geological formations offers significant potential to mitigate atmospheric greenhouse gasses, approaches are needed to monitor the efficacy of the strategy as well as possible negative consequences, such as leakage of CO2 or brine into groundwater or release of fugitive gaseous CO2. Groundwater leakages can cause subsequent reactions that may also be deleterious. For example, a release of dissolved CO2 into shallow groundwatersystems can decrease groundwater pH which can potentiallymobilize naturally occurring trace metals and ions. In this perspective, detecting and assessing potential leak requires development of novel monitoring techniques.We present the results of using surface electrical resistivity tomography (ERT) and a novel CO2 sensitive Lidar-based sensor to monitor a controlled CO2 release at the ZeroEmission Research and Technology Center (Bozeman, Montana). Soil temperature and moisture sensors, wellbore water quality measurements as well as chamber-based CO2 flux measurements were used in addition to the ERT and a novel Lidar-based sensor to detect and assess potential leakage into groundwater, vadose zone and atmosphere. The three-week release wascarried out in the vadose and the saturated zones. Well sampling of pH and conductivity and surface CO2 fluxes and concentrations measurements were acquired during the release and are compared with complex electricalresistivity time-lapse measurements. The novel Lidar-based image of the CO2 plume were compared to chamber-based CO2 flux and concentration measurements. While a continuous increase in subsurface ERT and above ground CO2 was documented, joint analysis of the above and below ground data revealed distinct transport behavior in the vadose and saturated zones. Two type of transport were observed, one in the vadoze zone, monitored by CO2 flux chamber and ERT, and the other one in the saturated zone, were ERT and wellsampling were carried. The experiment suggests how a range of geophysical, remote sensing, hydrological and geochemical measurement approaches can be optimally configured to detect the distribution and explore behavior of possible CO2 leakages in distinct compartments, including groundwater, vadose zone, and atmosphere.
Effects of extrusion variables on the properties of waxy hulless barley extrudates.
Köksel, Hamit; Ryu, Gy-Hyung; Başman, Arzu; Demiralp, Hande; Ng, Perry K W
2004-02-01
The objective of this research was to investigate the extrudability of waxy hulless barley flour under various extrusion conditions. Waxy hulless barley flour was processed in a laboratory-scale corotating twin-screw extruder with different levels of feed moisture content (22.3, 26.8, and 30.7%) and die temperature (130, 150, and 170 degrees C) to develop a snack food with high beta-glucan content. The effects of extrusion condition variables (screw configuration, moisture, and temperature) on the system variables (pressure and specific mechanical energy), the extrudate physical properties (sectional expansion index, bulk density), starch gelatinization, pasting properties (cold peak viscosity, trough viscosity, and final viscosity), and beta-glucan contents were determined. Results were evaluated by using response surface methodology. Increased extrusion temperature and feed moisture content resulted in decreases in exit die pressure and specific mechanical energy values. For extrudates extruded under low shear screw configuration (LS), increased barrel temperature decreased sectional expansion index (SEI) values at both low and high moisture contents. The feed moisture seems to have an inverse relationship with SEI over the range studied. Bulk density was higher at higher moisture contents, for both low and high barrel temperatures, for samples extruded under high shear screw configuration (HS) and LS. Cold peak viscosities (CV) were observed in all samples. The CV increased with the increase in extrusion temperature and feed moisture content. Although beta-glucan contents of the LS extrudates were comparable to that of barley flour sample, HS samples had generally lower beta-glucan contents. The extrusion cooking technique seems to be promising for the production of snack foods with high beta-glucan content, especially using LS conditions.
The effect of skin moisture on the density distribution of OH and O close to the skin surface
NASA Astrophysics Data System (ADS)
Wu, F.; Li, J.; Liu, F.; Zhou, X.; Lu, X.
2018-03-01
OH radicals and O atoms are believed to be two of the most important reactive species in various biomedical applications of atmospheric pressure plasma jets. In this study, the effect of the skin moisture on the density distribution of OH and O close to the surface of the ex vivo pig skin is investigated by using laser-induced fluorescence technology. The skin moistures used in this study are 20%, 40%, 60%, and 80%, respectively. The experiment results indicate that, at a gas flow rate of 0.5 L/min, when the skin moisture is increased, the OH density close to the skin surface increases, while the O density decreases. On the other hand, when the gas flow rate is increased to 1 L/min, the OH density close to the skin surface is less sensitive with the moisture of the skin surface. Besides, when the skin moisture is 80%, the OH density increases with the increase in the concentration of H2O in the working gas and it reaches its maximum 7.9 × 1013 cm-3 when the concentration of H2O in the working gas is about 500 ppm. The OH density starts to decrease while the H2O concentration in the working gas keeps increasing. On the order hand, the O density shows a maximum 7.4 × 1014 cm-3 when the gas flow rate is 0.5 L/min with no O2 added and the skin moisture is 20%. But, when the gas flow rate is increased to about 1 to 2 L/min, the O density achieves its maximum when 0.5% of O2 is added to the working gas. The possible reasons for these observations are discussed.
Observation of local cloud and moisture feedbacks over high ocean and desert surface temperatures
NASA Technical Reports Server (NTRS)
Chahine, Moustafa T.
1995-01-01
New data on clouds and moisture, made possible by reanalysis of weather satellite observations, show that the atmosphere reacts to warm clusters of very high sea surface temperatures in the western Pacific Ocean with increased moisture, cloudiness, and convection, suggesting a negative feedback limiting the sea surface temperature rise. The reverse was observed over dry and hot deserts where both moisture and cloudiness decrease, suggesting a positive feedback perpetuating existing desert conditions. In addition, the observations show a common critical surface temperature for both oceans and land; the distribution of atmospheric moisture is observed to reach a maximum value when the daily surface temperatures approach 304 +/- 1 K. These observations reveal complex dynamic-radiative interactions where multiple processes act simultaneously at the surface as well as in the atmosphere to regulate the feedback processes.
NASA Astrophysics Data System (ADS)
Singh, Gurjeet; Panda, Rabindra K.; Mohanty, Binayak P.; Jana, Raghavendra B.
2016-05-01
Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA's Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected at two nested scale extents (0.5 km and 3 km) to understand the trend of soil moisture variability across these scales. This ground-based soil moisture sampling was conducted in the 500 km2 Rana watershed situated in eastern India. The study area is characterized as sub-humid, sub-tropical climate with average annual rainfall of about 1456 mm. Three 3x3 km square grids were sampled intensively once a day at 49 locations each, at a spacing of 0.5 km. These intensive sampling locations were selected on the basis of different topography, soil properties and vegetation characteristics. In addition, measurements were also made at 9 locations around each intensive sampling grid at 3 km spacing to cover a 9x9 km square grid. Intensive fine scale soil moisture sampling as well as coarser scale samplings were made using both impedance probes and gravimetric analyses in the study watershed. The ground-based soil moisture samplings were conducted during the day, concurrent with the SMAP descending overpass. Analysis of soil moisture spatial variability in terms of areal mean soil moisture and the statistics of higher-order moments, i.e., the standard deviation, and the coefficient of variation are presented. Results showed that the standard deviation and coefficient of variation of measured soil moisture decreased with extent scale by increasing mean soil moisture.
NASA Astrophysics Data System (ADS)
Lohse, K. A.; Fellows, A.; Flerchinger, G. N.; Seyfried, M. S.
2017-12-01
The spatial and temporal variation of carbon dioxide effluxes and their environmental controls are poorly constrained in cold shrub steppe ecosystems. The objectives of this study were to 1) analyze environmental parameters in determining soil CO2 efflux, 2) assess the level of agreement between manual chambers and force diffusion (FD) soil CO2 efflux chambers, when both measurements are extrapolated across the growing season, and lastly to compare respiration fluxes to modeled ecosystem respiration fluxes. We installed FD chambers at four sites co-located with eddy covariance (EC) towers and soil moisture and temperature sensors along an elevation gradient in the Reynolds Creek Critical Zone Observatory in SW Idaho. FD chamber fluxes were collected continuously at 15-minute intervals. We sampled soil CO2 efflux with manual chambers at plant and interplant spaces in five plots at each site biweekly to monthly during the growing season. The sites included a Wyoming big sagebrush site, a low sagebrush site, a post-fire mountain big sagebrush site, and a mountain big sagebrush site located at elevations of 1425, 1680, 1808 and 2111 m. Climate variation followed the montane elevation gradient; mean annual precipitation (MAP) at the sites is 290, 337, 425, and 795 mm, respectively, and mean annual temperature is 8.9, 8.4, 6.1, 5.4°C. Automated force diffusion chambers detected large differences in carbon dioxide pulse dynamics along the elevation gradient. Growing season carbon dioxide fluxes were 3 times higher at the 425 mm MAP site compared than the lowest elevation sites at 290 and 337 MAP sites and >1.5 higher than the 795 mm MAP site over the same period. Manual fluxes showed similar seasonal patterns as FD chamber fluxes but often higher and greater spatial variability in fluxes than FD chamber fluxes. Plant and interplant flux differences were surprisingly similar, especially at higher elevations. Soil respiration ranged from 0.2-0.48 of ecosystem respiration suggesting that aboveground maintenance costs were relatively high at all of these sites. We conclude that coupled FD chamber, EC tower, and manual estimates hold promise in helping to partition and scale carbon fluxes from the plot to landscape scale.
Jenkins, M. B.; Walker, M. J.; Bowman, D. D.; Anthony, L. C.; Ghiorse, W. C.
1999-01-01
A small-volume sentinel chamber was developed to assess the effects of environmental stresses on survival of sucrose-Percoll-purified Cryptosporidium parvum oocysts in soil and animal wastes. Chambers were tested for their ability to equilibrate with external chemical and moisture conditions. Sentinel oocysts were then exposed to stresses of the external environment that affected their viability (potential infectivity), as indicated by results of a dye permeability assay. Preliminary laboratory experiments indicated that temperatures between 35 and 50°C and decreases in soil water potential (−0.003 to −3.20 MPa) increased oocyst inactivation rates. The effects of two common animal waste management practices on oocyst survival were investigated on three dairy farms in Delaware County, N.Y., within the New York City watershed: (i) piling wastes from dairy youngstock (including neonatal calves) and (ii) spreading wastes as a soil amendment on an agricultural field. Sentinel containers filled with air-dried and sieved (2-mm mesh) youngstock waste or field soil were wetted and inoculated with 2 million oocysts in an aqueous suspension and then placed in waste piles on two different farms and in soil within a cropped field on one farm. Controls consisted of purified oocysts in either phosphate-buffered saline or distilled water contained in sealed microcentrifuge tubes. Two microdata loggers recorded the ambient temperature at each field site. Sentinel experiments were conducted during the fall and winter (1996 to 1997) and winter (1998). Sentinel containers and controls were removed at 2- to 4-week intervals, and oocysts were extracted and tested by the dye permeability assay. The proportions of potentially infective oocysts exposed to the soil and waste pile material decreased more rapidly than their counterpart controls exposed to buffer or water, indicating that factors other than temperature affected oocyst inactivation in the waste piles and soil. The effect of soil freeze-thaw cycles was evident in the large proportion of empty sentinel oocysts. The potentially infective sentinel oocysts were reduced to <1% while the proportions in controls did not decrease below 50% potentially infective during the first field experiment. Microscopic observations of empty oocyst fragments indicated that abrasive effects of soil particles were a factor in oocyst inactivation. A similar pattern was observed in a second field experiment at the same site. PMID:10223991
Jenkins, M B; Walker, M J; Bowman, D D; Anthony, L C; Ghiorse, W C
1999-05-01
A small-volume sentinel chamber was developed to assess the effects of environmental stresses on survival of sucrose-Percoll-purified Cryptosporidium parvum oocysts in soil and animal wastes. Chambers were tested for their ability to equilibrate with external chemical and moisture conditions. Sentinel oocysts were then exposed to stresses of the external environment that affected their viability (potential infectivity), as indicated by results of a dye permeability assay. Preliminary laboratory experiments indicated that temperatures between 35 and 50 degrees C and decreases in soil water potential (-0.003 to -3.20 MPa) increased oocyst inactivation rates. The effects of two common animal waste management practices on oocyst survival were investigated on three dairy farms in Delaware County, N.Y., within the New York City watershed: (i) piling wastes from dairy youngstock (including neonatal calves) and (ii) spreading wastes as a soil amendment on an agricultural field. Sentinel containers filled with air-dried and sieved (2-mm mesh) youngstock waste or field soil were wetted and inoculated with 2 million oocysts in an aqueous suspension and then placed in waste piles on two different farms and in soil within a cropped field on one farm. Controls consisted of purified oocysts in either phosphate-buffered saline or distilled water contained in sealed microcentrifuge tubes. Two microdata loggers recorded the ambient temperature at each field site. Sentinel experiments were conducted during the fall and winter (1996 to 1997) and winter (1998). Sentinel containers and controls were removed at 2- to 4-week intervals, and oocysts were extracted and tested by the dye permeability assay. The proportions of potentially infective oocysts exposed to the soil and waste pile material decreased more rapidly than their counterpart controls exposed to buffer or water, indicating that factors other than temperature affected oocyst inactivation in the waste piles and soil. The effect of soil freeze-thaw cycles was evident in the large proportion of empty sentinel oocysts. The potentially infective sentinel oocysts were reduced to <1% while the proportions in controls did not decrease below 50% potentially infective during the first field experiment. Microscopic observations of empty oocyst fragments indicated that abrasive effects of soil particles were a factor in oocyst inactivation. A similar pattern was observed in a second field experiment at the same site.
NASA Astrophysics Data System (ADS)
McClurg, Jack Albert
The objective set forth in this study was to thoroughly document the effects of heat, moisture, and loading conditions on a variety of pultruded unidirectional fiberglass reinforced composite materials. This study incorporated the use of two environmental control chambers and two water immersion tanks in order to provide the necessary range of environmental exposure conditions. A set of specially designed stainless steel loading fixtures was produced in order to introduce the factor of external loading of the specimens while exposed to the predetermined environmental condition and how that would affect the mechanical and physical properties in question. The properties of interest were the flexural strength (determined using the three-point flexural bending method), flexural modulus (determined using the three-point flexural bending method), and glass transition temperature of the material (determined using differential scanning calorimetry). Other data that was noted during the conditioning and testing of the specimens was the break type (flexural tension, compression, shear, etc...), the change in dimensions (prior to exposure vs. after exposure), and the change in weight (prior to exposure vs. after exposure). Using all of the information that was obtained from this study, a more detailed understanding of how and why fiberglass reinforced materials react the way they do when exposed to moisture and elevated temperature was drawn. This study is different from most others in that it explores the interactions of three independent variables (heat, moisture, and loading condition) on three different fiberglass reinforced composite systems (epoxy, vinylester, and polyester resin).
Zahir, Z A; Munir, A; Asghar, H N; Shaharoona, B; Arshad, M
2008-05-01
A series of experiments were conducted to assess the effectiveness of rhizobacteria containing 1-aminocyclopropane- 1-carboxylate (ACC) deaminase for growth promotion of peas under drought conditions. Ten rhizobacteria isolated from the rhizosphere of different crops (peas, wheat, and maize) were screened for their growth promoting ability in peas under axenic condition. Three rhizobacterial isolates, Pseudomonas fluorescens biotype G (ACC-5), P. fluorescens (ACC-14), and P. putida biotype A (Q-7), were selected for pot trial on the basis of their source, ACC deaminase activity, root colonization, and growth promoting activity under axenic conditions. Inoculated and uninoculated (control) seeds of pea cultivar 2000 were sown in pots (4 seeds/pot) at different soil moisture levels (25, 50, 75, and 100% of field capacity). Results revealed that decreasing the soil moisture levels from 100 to 25% of field capacity significantly decreased the growth of peas. However, inoculation of peas with rhizobacteria containing ACC deaminase significantly decreased the "drought stress imposed effects" on growth of peas, although with variable efficacy at different moisture levels. At the lowest soil moisture level (25% field capacity), rhizobacterial isolate Pseudomonas fluorescens biotype G (ACC-5) was found to be more promising compared with the other isolates, as it caused maximum increases in fresh weight, dry weight, root length, shoot length, number of leaves per plant, and water use efficiency on fresh and dry weight basis (45, 150, 92, 45, 140, 46, and 147%, respectively) compared with respective uninoculated controls. It is highly likely that rhizobacteria containing ACC deaminase might have decreased the drought-stress induced ethylene in inoculated plants, which resulted in better growth of plants even at low moisture levels. Therefore, inoculation with rhizobacteria containing ACC deaminase could be helpful in eliminating the inhibitory effects of drought stress on the growth of peas.
Sinthusamran, Sittichoke; Benjakul, Soottawat
2015-12-01
Swim bladder is generated as a by-product during evisceration. It has been used for the production of fish maw, in which several processing parameters determine the characteristics or quality of the resulting fish maw. The present study aimed to investigate the characteristics of fish maws from seabass swim bladder as influenced by drying and frying conditions. The expansion ratio and oil uptake content of fish maw increased as the moisture content of swim bladder increased (P < 0.05). Nevertheless, the expansion ratio of fish maw decreased when the moisture content was higher than 150 g kg(-1) . The L*-value decreased, whilst the a*- and b*-values of fish maw increased with increasing moisture content. When pre-frying and frying temperatures increased, the expansion ratio of fish maw increased (P < 0.05). However, the expansion ratio decreased when the frying was performed at a temperature higher than 200 °C. The oil uptake contents of fish maw with frying temperatures of 180 and 200 °C were in the range of 451.06-578.06 g kg(-1) , whereas the lower contents (378.60-417.17 g kg(-1) ) were found in those having frying temperatures of 220-240 °C. Hardness of fish maw decreased but no changes in fracturability were observed with increasing pre-frying temperature when subsequent frying was carried out 200 °C. Drying temperatures, moisture content, pre-frying and frying temperatures were the factors influencing the characteristics and properties of fish maws from seabass swim bladder. Fish maw could be prepared by pre-frying swim bladder, dried at 60 °C to obtain 150 g kg(-1) moisture content, at 110 °C for 5 min, followed by frying at 200 °C for 20 s. © 2014 Society of Chemical Industry.
Soil moisture variation patterns observed in Hand County, South Dakota
NASA Technical Reports Server (NTRS)
Jones, E. B.; Owe, M.; Schmugge, T. J. (Principal Investigator)
1981-01-01
Soil moisture data were taken during 1976 (April, June, October), 1977 (April, May, June), and 1978 (May, June, July) Hand County, South Dakota as part of the ground truth used in NASA's aircraft experiments to study the use of microwave radiometers for the remote sensing of soil moisture. The spatial variability observed on the ground during each of the sampling events was studied. The data reported are the mean gravimetric soil moisture contained in three surface horizon depths: 0 to 2.5, 0 to 5 and 0 to 10 cm. The overall moisture levels ranged from extremely dry conditions in June 1976 to very wet in May 1978, with a relatively even distribution of values within that range. It is indicated that well drained sites have to be partitioned from imperfectly drained areas when attempting to characterize the general moisture profile throughout an area of varying soil and cover type conditions. It is also found that the variability in moisture content is greatest in the 0 to 2.5 cm measurements and decreases as the measurements are integrated over a greater depth. It is also determined that the sampling intensity of 10 measurements per km is adequate to estimate the mean moisture with an uncertainty of + or - 3 percent under average moisture conditions in areas of moderate to good drainage.
NASA Technical Reports Server (NTRS)
Mikhaylov, Rebecca; Dawson, Douglas; Kwack, Eug
2014-01-01
NASA's Earth observing Soil Moisture Active & Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 km near-polar, sun synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its 3 year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 rpm, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within 3 days. In order to make the necessary precise surface emission measurements from space, a temperature knowledge of 60 deg C for the mesh reflector is required. In order to show compliance, a thermal vacuum test was conducted using a portable solar simulator to illuminate a non flight, but flight-like test article through the quartz window of the vacuum chamber. The molybdenum wire of the antenna mesh is too fine to accommodate thermal sensors for direct temperature measurements. Instead, the mesh temperature was inferred from resistance measurements made during the test. The test article was rotated to five separate angles between 10 deg and 90 deg via chamber breaks to simulate the maximum expected on-orbit solar loading during the mission. The resistance measurements were converted to temperature via a resistance versus temperature calibration plot that was constructed from data collected in a separate calibration test. A simple thermal model of two different representations of the mesh (plate and torus) was created to correlate the mesh temperature predictions to within 60 deg C. The on-orbit mesh temperature will be predicted using the correlated analytical thermal model since direct measurements from in-situ flight thermal sensors are not possible.
Wang, Huifang; Ma, Tao; Xiao, Qiang; Cao, Panrong; Chen, Xuan; Wen, Yuzhen; Xiong, Hongpeng; Qin, Wenquan; Liang, Shiping; Jian, Shengzhe; Li, Yanjun; Sun, Zhaohui; Wen, Xiujun; Wang, Cai
2017-12-08
Ectropis grisescens Warren (Lepidoptera: Geometridae) is one of the most severe pests of tea plants in China. This species commonly pupates in soil; however, little is known about its pupation ecology. In the present study, choice and no-choice tests were conducted to investigate the pupation behaviors and emergence success of E. grisescens in response to different substrates (sand, sandy loam 1, sandy loam 2, and silt loam) and moisture contents (5, 20, 35, 50, 65, and 80%). Moisture-choice bioassays showed that significantly more E. grisescens individuals pupated in or on soil (sandy loam 1 and 2 and silt loam) that was at the intermediate moisture levels, whereas 5%- and 35%-moisture sand was significantly more preferred over 80%-moisture sand for pupating. Substrate-choice bioassays showed that sand was most preferred by E. grisescens individuals at 20%- and 80%-moisture levels, but no preference was detected among the four substrates at 50%-moisture content. No-choice tests showed that the percentage of burrowed E. grisescens individuals and pupation depth were significantly lower when soil was dry (20% moisture) or wet (80% moisture). In addition, 20%-moisture sandy loam 2 and silt loam significantly decreased the body water content of pupae and emergence success of adults compared to 50%-moisture content. However, each measurement (percentage of burrowed individuals, pupation depth, body water content, or emergence success) was similar when compared among different moisture levels of sand. Interestingly, pupae buried with 80%-moisture soil exhibited significantly lower emergence success than that were unburied. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Murakami, Mamoru; Nishi, Yasuhiro; Fujishima, Kei; Nishio, Misaki; Minemoto, Yoko; Kanie, Takahito; Nishimura, Masahiro
2016-10-01
Oral moisturizers need to be selected based on their material properties. The purpose of this study was to investigate the effects of moisturizer type and humidity on the residual weight and viscosity of oral moisturizers. The weight and viscosity of 17 oral moisturizers (7 liquid and 10 gel) at baseline and after 8 hours were measured using an incubator maintained at 37°C at either 85% or 40% relative humidity (RH). The rate of change in weight (RCW) and the rate of change in viscosity (RCV) were calculated. Data were analyzed with two-way analysis of variance (ANOVA) and Scheffe's test to evaluate the effect of the type of moisturizer (liquid or gel) and humidity (85% or 40% RH) on RCW and RCV. Pearson's correlation coefficient was used to evaluate the relationship between RCW and RCV. Two-way ANOVA results indicated that the type of moisturizer and RH had a significant effect on RCW and RCV (p < 0.05); however, the interaction between them was not significant. The results of multiple comparisons showed that gel moisturizers had a significantly lower RCW and higher RCV than liquid moisturizers (p < 0.05). The RCW and RCV at 40% RH were significantly higher than those at 85% RH (p < 0.05). There was no correlation between RCW and RCV in the liquid moisturizer group, but a significant negative correlation was found in the gel moisturizer group (pp = 0.01). Because viscosity of gel moisturizers increases as weight decreases, selecting gel moisturizers with a minimal change in weight and viscosity would be preferable in the case of a long-time application and severe dry mouth. © 2015 by the American College of Prosthodontists.
Implications of variable waste placement conditions for MSW landfills.
Cox, Jason T; Yesiller, Nazli; Hanson, James L
2015-12-01
This investigation was conducted to evaluate the influence of waste placement practices on the engineering response of municipal solid waste (MSW) landfills. Waste placement conditions were varied by moisture addition to the wastes at the time of disposal. Tests were conducted at a California landfill in test plots (residential component of incoming wastes) and full-scale active face (all incoming wastes including residential, commercial, and self-delivered components). The short-term effects of moisture addition were assessed by investigating compaction characteristics and moisture distribution and the long-term effects by estimating settlement characteristics of the variably placed wastes. In addition, effects on engineering properties including hydraulic conductivity and shear strength, as well as economic aspects were investigated. The unit weight of the wastes increased with moisture addition to a maximum value and then decreased with further moisture addition. At the optimum moisture conditions, 68% more waste could be placed in the same landfill volume compared to the baseline conditions. Moisture addition raised the volumetric moisture content of the wastes to the range 33-42%, consistent with values at and above field capacity. Moisture transfer occurred between consecutive layers of compacted wastes and a moisture addition schedule of 2 days of as-received conditions and 1 day of moisture addition was recommended. Settlement of wastes was estimated to increase with moisture addition, with a 34% increase at optimum moisture compared to as-received conditions. Overall, moisture addition during compaction increased unit weight, the amount of incoming wastes disposed in a given landfill volume, biological activity potential, and predicted settlement. The combined effects have significant environmental and economic implications for landfill operations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Device and method for automated separation of a sample of whole blood into aliquots
Burtis, Carl A.; Johnson, Wayne F.
1989-01-01
A device and a method for automated processing and separation of an unmeasured sample of whole blood into multiple aliquots of plasma. Capillaries are radially oriented on a rotor, with the rotor defining a sample chamber, transfer channels, overflow chamber, overflow channel, vent channel, cell chambers, and processing chambers. A sample of whole blood is placed in the sample chamber, and when the rotor is rotated, the blood moves outward through the transfer channels to the processing chambers where the blood is centrifugally separated into a solid cellular component and a liquid plasma component. When the rotor speed is decreased, the plasma component backfills the capillaries resulting in uniform aliquots of plasma which may be used for subsequent analytical procedures.
NASA Astrophysics Data System (ADS)
Mizera, Cestmir; Herak, David; Hrabe, Petr; Kabutey, Abraham
2017-07-01
The mechanical behaviour of natural fibres as composite materials can be affected by changes in temperature and moisture content. The aim of this paper was to describe the effect of temperature and moisture content on tensile strength of false banana fibre (Ensete ventricosum) and to determine its water absorption. Samples of fibres were prepared and tested until rupture point with strain rate of 0.05 min-1 at temperature change between -20 and 220°C as well as moisture content between 10 and 90% wb. The water absorption and release of Ensete fibres at 60 and 90% relative humidity was also determined. Results showed that Ensete fibres exhibited stability of tensile strength in the temperature range from 0 to 100°C but the increase of temperature decreased statistically significantly the tensile strength. The effect of moisture content on tensile strength was not statistically significant. The equilibrium moisture content at 60% relative humidity and 25°C was determined.
Temperature and moisture effect on spore emission in the fungal biofiltration of hydrophobic VOCs.
Vergara-Fernández, Alberto; Salgado-Ísmodes, Vanida; Pino, Miguel; Hernández, Sergio; Revah, Sergio
2012-01-01
The effect of temperature and moisture on the elimination capacity (EC), CO(2) production and spore emission by Fusarium solani was studied in biofilters packed with vermiculite and fed with n- pentane. Three temperatures (15, 25 and 35°C) were tested and the highest average EC (64 g m(-3) h(-1)) and lower emission of spores (2.0 × 10(3) CFU m(-3) air) were obtained at 25°C. The effect of moisture content of the packing material indicates that the highest EC (65 g m(-3) h(-1)) was obtained at 50 % moisture. However, lowest emission (1.3 × 10(3) CFU m(-3) air) was obtained at 80 % moisture. Furthermore, the results show that a slight decrease in spore emission was found with increasing moisture content. In all cases, the depletion of the nitrogen source in the biofilter induced the sporulation, a decay of the EC and increased spore emission.
Derde, Liesbeth J; Gomand, Sara V; Courtin, Christophe M; Delcour, Jan A
2014-07-09
Electrical resistance oven (ERO) baking processes bread dough with little temperature gradient in the baking dough. Heating of the dough by means of an ERO is based on the principles of Joule's first law and Ohm's law. This study compared the changes in moisture distribution and physical changes in starch of breads conventionally baked or using an ERO. The moisture contents in fresh ERO breads are generally lower than those in conventional breads. During storage of conventionally baked breads, water migrates from the crumb to the crust and moisture contents decrease throughout the bread crumb. Evidently, less moisture redistribution occurs in ERO breads. Also, the protons of ERO bread constituents were less mobile than their counterparts in conventional bread. Starch retrogradation occurs to similar extents in conventional and ERO bread. As a result, the changes in proton mobility cannot be attributed to differences in levels of retrograded starch and seem to be primarily determined by the overall lower moisture content.
A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements
NASA Astrophysics Data System (ADS)
Palonen, V.
2015-12-01
We have developed a field-capable sampling system for the collection of CO2 samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO2 concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO2 selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO2 from chambers prior to the CO2 build-up phase and sampling. In addition, both the CO2 and H2O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO2 and the determination of CO2 flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.
The MICE facility - a new tool to study plant-soil C cycling with a holistic approach.
Studer, Mirjam S; Künzli, Roland; Maier, Reto; Schmidt, Michael W I; Siegwolf, Rolf T W; Woodhatch, Ivan; Abiven, Samuel
2017-06-01
Plant-soil interactions are recognized to play a crucial role in the ecosystem response to climate change. We developed a facility to disentangle the complex interactions behind the plant-soil C feedback mechanisms. The MICE ('Multi-Isotope labelling in a Controlled Environment') facility consists of two climate chambers with independent control of the atmospheric conditions (light, CO 2 , temperature, humidity) and the soil environment (temperature, moisture). Each chamber holds 15 plant-soil systems with hermetical separation of the shared above ground (shoots) from the individual belowground compartments (roots, rhizosphere, soil). Stable isotopes (e.g. 13 C, 15 N, 2 H, 18 O) can be added to either compartment and traced within the whole system. The soil CO 2 efflux rate is monitored, and plant material, leached soil water and gas samples are taken frequently. The facility is a powerful tool to improve our mechanistic understanding of plant-soil interactions that drive the C cycle feedback to climate change.
A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements.
Palonen, V
2015-12-01
We have developed a field-capable sampling system for the collection of CO2 samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO2 concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO2 selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO2 from chambers prior to the CO2 build-up phase and sampling. In addition, both the CO2 and H2O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO2 and the determination of CO2 flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2006-01-01
Microcircuits encapsulated in three plastic package styles were stored in different environments at temperatures varying from 130 C to 225 C for up to 4,000 hours in some cases. To assess the effect of oxygen, the parts were aged at high temperatures in air and in vacuum chambers. The effect of humidity was evaluated during long-term highly accelerated temperature and humidity stress testing (HAST) at temperatures of 130 C and 150 C. High temperature storage testing of decapsulated microcircuits in air, vacuum, and HAST chambers was carried out to evaluate the role of molding compounds in the environmentally-induced degradation and failure of wire bonds (WB). This paper reports on accelerating factors of environment and molding compound on WB failures. It has been shown that all environments, including oxygen, moisture, and the presence of molding compounds reduce time-to-failures compared to unencapsulated devices in vacuum conditions. The mechanism of the environmental effect on KB degradation is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-08-01
In the summer of 1985, under the joint program of US Department of Energy, Carbon Dioxide Division, and Tuskegee University, experiments were conducted to study growth, yield, photosynthesis and plant water relationships in sweet potato plants growth in an enriched CO{sub 2} environment. The main experiment utilized open top chambers to study the effects of CO{sub 2} and soil moisture on growth, yield and photosynthesis of field-grown plants. In addition, potted plants in open top chambers were utilized in a study of the effects of different CO{sub 2} concentrations on growth pattern, relative growth rate, net assimilation rate and biomassmore » increment at different stages of development. The interaction effects of enriched CO{sub 2} and water stress on biomass production, yield, xylem potential, and stomatal conductance were also investigated. The overall results of the various studies are described.« less
Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong
2015-01-01
As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change. PMID:25608664
Sub-micron particle sampler apparatus and method for sampling sub-micron particles
Gay, D.D.; McMillan, W.G.
1984-04-12
Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however, the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis. 6 figures.
Sub-micron particle sampler apparatus
Gay, Don D.; McMillan, William G.
1987-01-01
Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar.RTM. and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis.
Method for sampling sub-micron particles
Gay, Don D.; McMillan, William G.
1985-01-01
Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar.RTM. and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis.
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Zulia M.
Uncertainty of predicted change in precipitation frequency and intensity motivates the scientific community to better understand, quantify, and model the possible outcome of dryland ecosystems. In pulse dependent ecosystems (i.e. monsoon driven) soil moisture is tightly linked to atmospheric processes. Here, I analyze three overarching questions; Q1) How does soil moisture presence or absence in a shallow or deep layer influence the surface energy budget and planetary boundary layer characteristics?, Q2) What is the role of vegetation on ecosystem albedo in the presence or absence of deep soil moisture?, Q3) Can we develop empirical relationships between soil moisture and the planetary boundary layer height to help evaluate the role of future precipitation changes in land surface atmosphere interactions? . To address these questions I use a conceptual framework based on the presence or absence of soil moisture in a shallow or deep layer. I define these layers by using root profiles and establish soil moisture thresholds for each layer using four years of observations from the Santa Rita Creosote Ameriflux site. Soil moisture drydown curves were used to establish the shallow layer threshold in the shallow layer, while NEE (Net Ecosystem Exchange of carbon dioxide) was used to define the deep soil moisture threshold. Four cases were generated using these thresholds: Case 1, dry shallow layer and dry deep layer; Case 2, wet shallow layer and dry deep layer; Case 3, wet shallow layer and wet deep layer, and Case 4 dry shallow and wet deep layer. Using this framework, I related data from the Ameriflux site SRC (Santa Rita Creosote) from 2008 to 2012 and from atmospheric soundings from the nearby Tucson Airport; conducted field campaigns during 2011 and 2012 to measure albedo from individual bare and canopy patches that were then evaluated in a grid to estimate the influence of deep moisture on albedo via vegetation cover change; and evaluated the potential of using a two-layer bucket model and empirical relationships to evaluate the link between deep soil moisture and the planetary boundary layer height under changing precipitation regime. My results indicate that (1) the presence or absence of water in two layers plays a role in surface energy dynamics, (2) soil moisture presence in the deep layer is linked with decreased ecosystem albedo and planetary boundary layer height, (3) deep moisture sustains vegetation greenness and decreases albedo, and (4) empirical relationships are useful in modeling planetary boundary layer height from dryland ecosystems. Based on these results we argue that deep soil moisture plays an important role in land surface-atmosphere interactions.
Diamante, Lemuel M; Li, Siwei; Xu, Qianqian; Busch, Janette
2013-09-12
A study was conducted to determine the effects of different levels of apple juice concentrate (AJC), blackcurrant concentrate (BCC) and pectin on the moisture content, water activity, color, texture and ascorbic acid content of apple-blackcurrant fruit leather using the response surface methodology. The results showed the moisture content increased with increasing pectin level and with greater increases at higher AJC and BCC levels while the water activity increased with increasing pectin level and with increasing AJC level, at low pectin levels, but with decreasing AJC, at high pectin levels. The chroma decreased with increasing pectin level and with lower values at the middle AJC level. The puncturing force decreased with increasing AJC level but with a lower value at the middle pectin level. Lastly, the ascorbic acid content increased with increasing BCC level regardless of AJC and pectin levels. There is a need to reduce the drying temperature or time of apple-blackcurrant fruit leather just enough to bring the water activity closer to 0.60, thereby increasing the moisture content resulting in higher product yield.
Diamante, Lemuel M.; Li, Siwei; Xu, Qianqian; Busch, Janette
2013-01-01
A study was conducted to determine the effects of different levels of apple juice concentrate (AJC), blackcurrant concentrate (BCC) and pectin on the moisture content, water activity, color, texture and ascorbic acid content of apple-blackcurrant fruit leather using the response surface methodology. The results showed the moisture content increased with increasing pectin level and with greater increases at higher AJC and BCC levels while the water activity increased with increasing pectin level and with increasing AJC level, at low pectin levels, but with decreasing AJC, at high pectin levels. The chroma decreased with increasing pectin level and with lower values at the middle AJC level. The puncturing force decreased with increasing AJC level but with a lower value at the middle pectin level. Lastly, the ascorbic acid content increased with increasing BCC level regardless of AJC and pectin levels. There is a need to reduce the drying temperature or time of apple-blackcurrant fruit leather just enough to bring the water activity closer to 0.60, thereby increasing the moisture content resulting in higher product yield. PMID:28239127
Soil methane and CO2 fluxes in rainforest and rubber plantations
NASA Astrophysics Data System (ADS)
Lang, Rong; Blagodatsky, Sergey; Goldberg, Stefanie; Xu, Jianchu
2017-04-01
Expansion of rubber plantations in South-East Asia has been a land use transformation trend leading to losses of natural forest cover in the region. Besides impact on ecosystem carbon stocks, this conversion influences the dynamics of greenhouse gas fluxes from soil driven by microbial activity, which has been insufficiently studied. Aimed to understand how land use change affects the soil CO2 and CH4 fluxes, we measured surface gas fluxes, gas concentration gradient, and 13C signature in CH4 and soil organic matter in profiles in a transect in Xishuangbanna, including a rainforest site and three rubber plantation sites with age gradient. Gas fluxes were measured by static chamber method and open chamber respiration system. Soil gases were sampled from installed gas samplers at 5, 10, 30, and 75cm depth at representative time in dry and rainy season. The soil CO2 flux was comparable in rainforest and old rubber plantations, while young rubber plantation had the lowest rate. Total carbon content in the surface soil well explained the difference of soil CO2 flux between sites. All sites were CH4 sinks in dry season and uptake decreased in the order of rainforest, old rubber plantations and young rubber plantation. From dry season to rainy season, CH4 consumption decreased with increasing CH4 concentration in the soil profile at all depths. The enrichment of methane by 13CH4 shifted towards to lowerδ13C, being the evidence of enhanced CH4 production process while net surface methane flux reflected the consumption in wet condition. Increment of CH4 concentration in the profile from dry to rainy season was higher in old rubber plantation compared to rainforest, while the shifting of δ13CH4 was larger in rainforest than rubber sites. Turnover rates of soil CO2 and CH4 suggested that the 0-5 cm surface soil was the most active layer for gaseous carbon exchange. δ13C in soil organic matter and soil moisture increased from rainforest, young rubber plantation to old rubber plantations. Conversion the forest into rubber plantation decreased soil respiration in young plantation and it recovered during rubber development. However, the CH4consumption by tropical upland forest soil decreased in converted rubber plantations of all ages, with more decrement in old plantation. Change forest into rubber plantations weakened the soil function as CH4 sink.
Gillis, A; Miller, D R
2000-10-09
A series of controlled environment experiments were conducted to examine the use of a dynamic flux chamber to measure soil emission and absorption of total gaseous mercury (TGM). Uncertainty about the appropriate airflow rates through the chamber and chamber exposure to ambient wind are shown to be major sources of potential error. Soil surface mercury flux measurements over a range of chamber airflow rates showed a positive linear relationship between flux rates and airflow rate through the chamber. Mercury flux measurements using the chamber in an environmental wind tunnel showed that exposure of the system to ambient winds decreased the measured flux rates by 40% at a wind speed of 1.0 m s(-1) and 90% at a wind speed of 2 m s(-1). Wind tunnel measurements also showed that the chamber footprint was limited to the area of soil inside the chamber and there is little uncertainty of the footprint size in dry soil.
NASA Astrophysics Data System (ADS)
Park, Kyu-Hyun
Various measurement methods to quantify greenhouse gas (GHG) emissions from manure storage or treatment facilities have been used. However, it is difficult to directly compare emission data measured with different methods, which causes uncertainties in national GHG inventories. In the micrometeorological mass balance (MMB) method, a gas flux consists of a horizontal mean flux (MF) and horizontal turbulent flux (TF) terms. In Chapter 2, methane (GH4 ) TF measurements obtained using a sonic anemometer and a tunable diode laser trace gas analyzer are presented. Contrary to previous studies in wind tunnels and flat-level field conditions, an overestimation of only 0.5% was observed by only considering the MF term. This means the MMB method without consideration of TF is suitable in complex field conditions with uneven topography, and farm buildings. In Chapter 3, the MMB method was compared to a floating chamber method. Of these, the floating chamber method has been extensively used for CH4 flux quantification. The MMB method, although providing advantages such as spatial integration of fluxes, requires fast response trace gas analyzers which are not widely available. The mean ratio of CH4 flux measured with the floating chamber method to that measured using the MMB method was 1.25, ranging from 1.07 to 1.83. Flux overestimation by the floating chamber could have been caused by location of the chamber and potential disturbances by the chamber. Frequent changes of the chamber location, use of several chambers, and/or avoiding chamber placement on 'hot spots' are recommended to decrease flux overestimation. In Chapter 4, CH4 fluxes measured with a mega chamber and eight small chambers during the in-vessel composting phase showed similar temporal variation, while nitrous oxide (N2O) fluxes were, significantly lower for the small chambers. The ratios of CH4 fluxes measured with a mega chamber to eight small chambers during the in-vessel composting phase were 0.72 and 1.01, while the ratios of N2O fluxes were 2.74 and 2.01 during two in-vessel composting batches, respectively. Positioning the small chambers on the center line of the composting channels was suitable for quantifying CH4 fluxes, but was not for N 2O. It is recommended to position some chambers in peripheral regions of the composting channel, in order to capture N2O emissions. Methane and N2O fluxes over the initial 50 d of the curing phase were higher than during the in-vessel composting phase. Methane and N2O emissions during the curing phase contributed 95% and 64%, respectively, to overall CH4 and N2O emissions during the composting process (in-vessel composting phase and curing phase). In comparison to liquid swine manure storage over an equivalent time period, composting was estimated to reduce emissions of GHG on a carbon dioxide equivalent (CO2-eq) basis by 35%, which was mainly contributed by a decrease of CH4 emissions. Composting of liquid swine manure with straw has potential for decreasing GHG emissions.
NASA Astrophysics Data System (ADS)
Hagedorn, J.; Zhu, Q.; Davidson, E. A.; Castro, M.
2017-12-01
Managing resources wisely while reducing environmental impact is the backbone of agricultural sustainability. Agricultural practices must develop strategies to effectively reduce nutrient runoff from farmed lands. Preliminary research suggests that one such strategy is drainage water management by which water levels are intentionally elevated following fertilization to favor subsoil denitrification and thereby reduce nitrogen leaching into groundwater and streams. Despite documented success in nitrate reduction, this best management practice (BMP) has not been widely adopted in part because users are not aware of the potential. But before extension agencies begin promoting this practice, evaluation of unintentional consequences must be studied. There is a risk that by elevating water levels for the purpose of creating suitable conditions for denitrification, more potent greenhouse gases such as nitrous oxide (N2O) and methane (CH4) could be produced, in which case the practice would be swapping one form of pollution for another. A multi-scale experimental design, using soil chambers and a tower-based gradient method, was implemented in a drainage water managed corn-soybean system on the Eastern Shore of Maryland. Emissions, soil moisture content, and soil nitrate measurements have been collected and analyzed to evaluate for differences between treatment and control plots as standard farm management practices, such as fertilization, occur. Preliminary results based on monthly sampling of transects of stationary soil chambers characterize the spatial heterogeneity of the fields and reveal that there are detectable differences in N2O and CH4 emissions between fields. There are also significant relationships between soil moisture, soil nitrate content and N2O emissions. The tower-based gradient method with micrometerological measurements provides high temporal resolution at the full field scale that complements the soil chamber work. This multi-scale resolution balance enables us to more accurately quantify this pollution swapping concern and demonstrates the efficacy of reducing nutrient runoff compared to risks of increased greenhouse gas emissions for a BMP that has transformative potential for sustainable agriculture.
Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng; Wang, Dian-Zhan
2011-07-01
To observe the bioleaching effect on sewage sludge dewaterability, three consecutive batch bioleaching experiments were conducted through a bioleaching bio-reactor with 700 L of working volume. Subsequently, the bioleached sludge was dewatered by using chamber filter press. The results show that the 1st batch bioleaching process can be finished within 90 hours if the aeration amount was 1.2 m3/h with the 1: 15 mixing ratio of bioleached sludge to raw sludge. The pH of sludge declines from initial 6.11 to 2.33 while ORP increased from initial -134 mV to finial 507 mV. The specific resistance to filtration (SRF) of the tested sludge was decreased from original 1.00 x 10(13) m/kg to final 0.09 x 10(13) m/kg after bioleaching. For the subsequent two batch trials, the bioleaching process can be finished in 40 hours and 46 hours, respectively. Likewise, sludge SRF is also significantly decreased to 0.19 x 10(13) m/kg and 0.36 x 10(13) m/kg if the mixing ratio of bioleached sludge to fresh sludge is 1:1 although the microbial nutrient substance dosage is reduced by 25% and 50% for 2nd, and 3rd batch experiments, respectively. The harvested bioleached sludge from three batch trails is dewatered by chamber filter press with 0.3-0.4 MPa working pressure for 2 hours. It is found that the moisture of dewatered sludge cake can be reduced to 58%, and that the dewatered sludge cake is of khaki appearance and didn't emit any offensive odor. In addition, it is also observes that sludge organic matter only changed a bit from 52.9% to 48.0%, but 58% of sludge-borne Cu and 88% of sludge-borne Zn can be removed from sludge by bioleaching process. Therefore, dual goals for sludge-borne heavy metal removal and sludge dewatering of high efficiency can be achieved simultaneously through the approach mentioned above. Therefore, bioleaching technique is of great engineering application for the treatment of sewage sludge.
Decreased fertility in mice exposed to environmental air pollution in the city of Sao Paulo.
Mohallem, Soraya Vecci; de Araújo Lobo, Débora Jã; Pesquero, Célia Regina; Assunção, João Vicente; de Andre, Paulo Afonso; Saldiva, Paulo Hilário Nascimento; Dolhnikoff, Marisa
2005-06-01
It has largely been shown that air pollution can affect human health. Effects on human fertility have been shown mainly in males by a decrease in semen quality. Few studies have focused on the environmental effects on female fertility. The aim of the present study was to analyze the effects of air pollution in the city of Sao Paulo on mouse female fertility. Four groups of female Balb/c mice were placed in two chambers 10 days (newborn) or 10 weeks (adults) after birth. Mice were maintained in the chambers 24 h a day, 7 days a week, for 4 months. The first chamber received air that had passed through an air filter (clean chamber) and the second received ambient air (polluted chamber). We measured PM10 and NO2 inside both chambers. Mice belonging to the adult groups were bred to male mice after living for 3 months inside the chambers. The newborn groups mated after reaching reproductive age (12 weeks). After 19 days of pregnancy the numbers of live-born pups, reabsorptions, fetal deaths, corpora lutea, and implantation failures were determined. PM10 and NO2 concentrations in the clean chamber were 50% and 77.5% lower than in the polluted chamber, respectively. Differences in fertility parameters between groups were observed only in animals exposed to air pollution at an early age (10 days after birth). We observed a higher number of live-born pups per animal in the clean chamber than per animal from the polluted chamber (median=6.0 and 4.0, respectively; P=0.037). There was a higher incidence of implantation failures in the polluted group than in the clean group (median=3.5 and 2.0, respectively; P=0.048). There were no significant differences in the other reproductive parameters between groups. These results support the concept that female reproductive health represents a target of air pollutants.
NASA Astrophysics Data System (ADS)
Gherboudj, Imen; Beegum, S. Naseema; Marticorena, Beatrice; Ghedira, Hosni
2015-10-01
The mineral dust emissions from arid/semiarid soils were simulated over the MENA (Middle East and North Africa) region using the dust parameterization scheme proposed by Alfaro and Gomes (2001), to quantify the effect of the soil moisture and clay fraction in the emissions. For this purpose, an extensive data set of Soil Moisture and Ocean Salinity soil moisture, European Centre for Medium-Range Weather Forecasting wind speed at 10 m height, Food Agricultural Organization soil texture maps, MODIS (Moderate Resolution Imaging Spectroradiometer) Normalized Difference Vegetation Index, and erodibility of the soil surface were collected for the a period of 3 years, from 2010 to 2013. Though the considered data sets have different temporal and spatial resolution, efforts have been made to make them consistent in time and space. At first, the simulated sandblasting flux over the region were validated qualitatively using MODIS Deep Blue aerosol optical depth and EUMETSAT MSG (Meteosat Seciond Generation) dust product from SEVIRI (Meteosat Spinning Enhanced Visible and Infrared Imager) and quantitatively based on the available ground-based measurements of near-surface particulate mass concentrations (PM10) collected over four stations in the MENA region. Sensitivity analyses were performed to investigate the effect of soil moisture and clay fraction on the emissions flux. The results showed that soil moisture and soil texture have significant roles in the dust emissions over the MENA region, particularly over the Arabian Peninsula. An inversely proportional dependency is observed between the soil moisture and the sandblasting flux, where a steep reduction in flux is observed at low friction velocity and a gradual reduction is observed at high friction velocity. Conversely, a directly proportional dependency is observed between the soil clay fraction and the sandblasting flux where a steep increase in flux is observed at low friction velocity and a gradual increase is observed at high friction velocity. The magnitude of the percentage reduction/increase in the sandblasting flux decreases with the increase of the friction velocity for both soil moisture and soil clay fraction. Furthermore, these variables are interdependent leading to a gradual decrease in the percentage increase in the sandblasting flux for higher soil moisture values.
NASA Astrophysics Data System (ADS)
Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Fujinuma, Y.; Mukai, H.; Takahashi, Y.; Kakubari, Y.; Wang, Q.; Nakane, K.
2007-12-01
Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux. The system equips 8 to 24 large automated chambers (90*90*50 cm, L*W*H). Since 1997, we have installed the chamber systems in the tundra in west Siberia, boreal forest in Alaska, cool- temperate and temperate forests in Japan, Korea and China, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 effluxes were estimated to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 30 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. From 2007, a big project that funded by Ministry of the Environment of Japan (MOE) has launched to evaluate the response and feedback of soil carbon dynamics of Japanese forest ecosystems to global change. We are installing another 6 chamber systems at the six of Japanese typical forests to conduct the soil warming experiments. For scaling-up the chamber experiments and understanding the mechanisms of soil organic matter (SOM) dynamics to global change, soil samples from about 100 forest ecosystems will be incubated for modeling development. Furthermore, the environmental (temperature and CO2) controlled large open-top chambers have been employed to investigate the balance of SOM (the input from litter falls and loss due to the decomposition) of forest ecosystems with global change.
Physical evaluation of a maize-based extruded snack with curry powder.
Christofides, Vassilis; Ainsworth, Paul; Ibanoğlu, Senol; Gomes, Frances
2004-02-01
Response surface methodology was used to analyze the effect of screw speed (200-280 rpm), feed moisture (13.0-17.0%, wet basis), and curry powder (6.0-9.0%) on the bulk density, lateral expansion, and firmness of maize-based extruded snack with curry powder. Regression equations describing the effect of each variable on the responses were obtained. Responses were most affected by changes in feed moisture followed by screw speed and curry powder (p < 0.05). Lateral expansion increased linearly as the amount of curry powder added was increased whereas a quadratic increase was obtained in lateral expansion with decreasing feed moisture. The firmness of samples was increased with an increase in feed moisture. The bulk density of samples was increased with increasing feed moisture and screw speeds. Radial expansion was found to be a better index to measure the physical properties of the extruded product indicated by a higher correlation coefficient.
Moisture dependence of positron lifetime in Kevlar-49
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Holt, William H.; Mock, Willis, Jr.
1984-01-01
Because of filamentary character of Kevlar-49 aramid fibers, there is some concern about the moisture uptake and its effect on plastic composites reinforced with Kevlar-49 fibers. As part of continuing studies of positron lifetime in polymers, we have measured positron lifetime spectra in Kevlar-49 fibers as a function of their moisture content. The long lifetime component intensities are rather low, being only of the order of 2-3 percent. The measured values of long component lifetimes at various moisture levels in the specimens are as follows: 2072 +/- 173 ps (dry); 2013 +/- 193 ps (20.7 percent saturation); 1665 +/- 85 ps (25.7 percent saturation); 1745 +/- 257 ps (32.1 percent saturation); and 1772 +/- 217 ps (100 percent saturation). It is apparent that the long component lifetime at first decreases and then increases as the specimen moisture content increases. These results have been compared with those inferred from Epon-815 and Epon-815/K-49 composite data.
Moisture Durability with Vapor-Permeable Insulating Sheathing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepage, R.; Lstiburek, J.
2013-09-01
Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However,uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of differentmore » climate zones. This report describes the research project, key research questions, and theprocedures utilized to analyse the problems.« less
Moisture Durability with Vapor-Permeable Insulating Sheathing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepage, R.; Lstiburek, J.
2013-09-01
Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range ofmore » different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.« less
Hernández-Jiménez, Claudia; García-Torrentera, Rogelio; Olmos-Zúñiga, J. Raúl; Jasso-Victoria, Rogelio; Gaxiola-Gaxiola, Miguel O.; Baltazares-Lipp, Matilde; Gutiérrez-González, Luis H.
2014-01-01
The use of dry gases during mechanical ventilation has been associated with the risk of serious airway complications. The goal of the present study was to quantify the plasma levels of TNF-alpha and IL-6 and to determine the radiological, hemodynamic, gasometric, and microscopic changes in lung mechanics in dogs subjected to short-term mechanical ventilation with and without humidification of the inhaled gas. The experiment was conducted for 24 hours in 10 dogs divided into two groups: Group I (n = 5), mechanical ventilation with dry oxygen dispensation, and Group II (n = 5), mechanical ventilation with oxygen dispensation using a moisture chamber. Variance analysis was used. No changes in physiological, hemodynamic, or gasometric, and radiographic constants were observed. Plasma TNF-alpha levels increased in group I, reaching a maximum 24 hours after mechanical ventilation was initiated (ANOVA p = 0.77). This increase was correlated to changes in mechanical ventilation. Plasma IL-6 levels decreased at 12 hours and increased again towards the end of the study (ANOVA p>0.05). Both groups exhibited a decrease in lung compliance and functional residual capacity values, but this was more pronounced in group I. Pplat increased in group I (ANOVA p = 0.02). Inhalation of dry gas caused histological lesions in the entire respiratory tract, including pulmonary parenchyma, to a greater extent than humidified gas. Humidification of inspired gases can attenuate damage associated with mechanical ventilation. PMID:25036811
Hernández-Jiménez, Claudia; García-Torrentera, Rogelio; Olmos-Zúñiga, J Raúl; Jasso-Victoria, Rogelio; Gaxiola-Gaxiola, Miguel O; Baltazares-Lipp, Matilde; Gutiérrez-González, Luis H
2014-01-01
The use of dry gases during mechanical ventilation has been associated with the risk of serious airway complications. The goal of the present study was to quantify the plasma levels of TNF-alpha and IL-6 and to determine the radiological, hemodynamic, gasometric, and microscopic changes in lung mechanics in dogs subjected to short-term mechanical ventilation with and without humidification of the inhaled gas. The experiment was conducted for 24 hours in 10 dogs divided into two groups: Group I (n = 5), mechanical ventilation with dry oxygen dispensation, and Group II (n = 5), mechanical ventilation with oxygen dispensation using a moisture chamber. Variance analysis was used. No changes in physiological, hemodynamic, or gasometric, and radiographic constants were observed. Plasma TNF-alpha levels increased in group I, reaching a maximum 24 hours after mechanical ventilation was initiated (ANOVA p = 0.77). This increase was correlated to changes in mechanical ventilation. Plasma IL-6 levels decreased at 12 hours and increased again towards the end of the study (ANOVA p>0.05). Both groups exhibited a decrease in lung compliance and functional residual capacity values, but this was more pronounced in group I. Pplat increased in group I (ANOVA p = 0.02). Inhalation of dry gas caused histological lesions in the entire respiratory tract, including pulmonary parenchyma, to a greater extent than humidified gas. Humidification of inspired gases can attenuate damage associated with mechanical ventilation.
Bal, Jyotiranjan; Yun, Suk-Hyun; Yeo, Soo-Hwan; Kim, Jung-Mi; Kim, Beom-Tae; Kim, Dae-Hyuk
2017-03-01
The brewing of makgeolli, one of Korea's most popular alcoholic beverages that is gaining popularity globally, is facilitated by nuruk, a traditional Korean cereal starter. The nuruk microbiome greatly influences the fermentation process as well as the nutritional, hygienic, and aromatic qualities of the product. This study is a continuation of our efforts to examine nuruk biodiversity at a depth previously unattainable. In this study, microfloral dynamics in wheat-based nuruk C, composed of traditional ingredients such as barley, green gram, and wheat and fermented under various internal moisture contents of 20% (C20), 26% (C26), and 30% (C30), was evaluated using 454 pyrosequencing during the 30-day fermentation process. Rarefaction analysis and alpha diversity parameters indicated adequate sampling. C20 showed the greatest fungal richness and diversity, C20 and C26 exhibited similar bacterial richness and diversity, while C30 had low fungal and bacterial richness. Fungal taxonomic assignments revealed that the initial moisture content caused selective enrichment of Aspergillus candidus with a decreasing trend during fermentation, whereas Saccharomycetales sp. exhibited increasing relative abundance with increasing moisture content from day 6 of the fermentation process. Depending on initial moisture level, changes in bacterial communities were also observed in the genera Streptomyces, Bacillus, and Staphylococcus, with decreasing trends whereas Saccharopolyspora exhibited a sigmoidal trend with the highest abundance in C26. These findings demonstrate the possible impact of initial moisture content of nuruk on microfloral richness, diversity, and dynamics; this study is thus a step toward our ultimate goal of enhancing the quality of nuruk.
Zhang, Jianguo; Xu, Xinwen; Li, Shengyu; Zhao, Ying; Zhang, Afeng; Zhang, Tibin; Jiang, Rui
2016-01-01
Freshwater resources are scarce in desert regions. Highly saline groundwater of different salinity is being used to drip irrigate the Taklimakan Desert Highway Shelterbelt with a double-branch-pipe system controlling the irrigation cycles. In this study, to evaluate the dynamics of soil moisture and salinity under the current irrigation system, soil samples were collected to a 2-m depth in the shelterbelt planted for different years and irrigated with different groundwater salinities, and soil moisture and salinity were analyzed. The results showed that both depletion of soil moisture and increase of topsoil salinity occurred simultaneously during one irrigation cycle. Soil moisture decreased from 27.4% to 2.4% for a 15-day irrigation cycle and from 26.4% to 2.7% for a 10-day-cycle, respectively. Topsoil electrical conductivity (EC) increased from 0.64 to 3.32 dS/m and 0.70 to 3.99 dS/m for these two irrigation cycles. With increased shelterbelt age, profiled average soil moisture (0–200 cm) reduced from 12.8% (1-year) to 7.1% (10-year); however, soil moisture in 0–20-cm increased, while topsoil salinity decreased. In addition, irrigation salinity mainly affected soil salinity in the 0–20-cm range. We conclude that water supply with the double-branch-pipe is a feasible irrigation method for the Taklimakan Desert Highway Shelterbelt, and our findings provide a model for shelterbelt construction and sustainable management when using highly saline water for irrigation in analogous habitats. PMID:27711244
Response of some Thematic Mapper band ratios to variation in soil water content
NASA Technical Reports Server (NTRS)
Musick, H. Brad; Pelletier, Ramona E.
1986-01-01
Bidirectional reflectance to nadir in the reflective TM bands and the 1.15-1.3-micron band was measured in the laboratory as moisture content was varied in ten soils. Stronger absorption by water in TM5 and TM7 was expected to cause ratios of other bands to TM5 and TM7 to increase with water content, but in most cases these ratios were constant or decreased at low to intermediate water content and increased only at high moisture levels. Because these ratios were found to decrease as illumination elevation angle decreased, it was suggested that increased roughness resulting from the methods of moistening and mixing the soil may have tended to counteract the expected ratio increases.
Upgrading the SPP-500-1 moisture separators-steam reheaters used in the Leningrad NPP turbine units
NASA Astrophysics Data System (ADS)
Legkostupova, V. V.; Sudakov, A. V.
2015-03-01
The specific features of existing designs of moisture separators-steam reheaters (MSRs) and experience gained with using them at nuclear power plants are considered. Main factors causing damage to and failures of MSRs are described: nonuniform distribution of wet steam flow among the separation modules, breakthrough of moisture through the separator (and sometimes also through the steam reheater), which may lead to the occurrence of additional thermal stresses and, hence, to thermal-fatigue damage to or stress corrosion cracking of metal. MSR failure results in a less efficient operation of the turbine unit as a whole and have an adverse effect on the reliability of the low-pressure cylinder's last-stage blades. By the time the design service life of the SPP-500-1 MSRs had been exhausted in power units equipped with RBMK-1000 reactors, the number of damages inflicted to both the separation part and to the pipework and heating surface tubes was so large, that a considerable drop of MSR effectiveness and turbine unit efficiency as a whole occurred. The design of the upgraded separation part used in the SPP-500-1 MSR at the Leningrad NPP is described and its effectiveness is shown, which was confirmed by tests. First, efforts taken to achieve more uniform distribution of moisture content over the perimeter and height of steam space downstream of the separation modules and to bring it to values close to the design ones were met with success. Second, no noticeable effect of the individual specific features of separation modules on the moisture content was revealed. Recommendations on elaborating advanced designs of moisture separators-steam reheaters are given: an MSR arrangement in which the separator is placed under or on the side from the steam reheater; axial admission of wet steam for ensuring its uniform distribution among the separation modules; inlet chambers with an extended preliminary separation system and devices for uniformly distributing steam flows in the separator; separated layout of the of the separator and steam reheater; and use of transversely finned tube bundles for organizing cross flow of steam over the tubes.
Impact of OH Heterogenous Oxidation on the Evolution of Brown Carbon Aerosol Optical Properties
NASA Astrophysics Data System (ADS)
Schnitzler, E.; Abbatt, J.
2017-12-01
The effects of varying relative humidity (RH) on the evolution of brown carbon (BrC) optical properties induced by heterogeneous OH oxidation were investigated in a series of photooxidation chamber experiments. A BrC surrogate was generated from aqueous 1,3-dihydroxybenzene (10 mM) and H2O2 (10 mM) exposed to >300 nm radiation, atomized, passed through a series of trace gas denuders, and injected into the chamber, which was conditioned to about 10 or 60% RH. Following aerosol injection, H2O2 was continuously bubbled into the chamber; an hour later, the chamber was irradiated with black-lights (UV-B) to produce OH. Before irradiation, aerosol absorption and scattering at 405 nm, measured using a photoacoustic spectrometer, decreased due only to deposition and dilution, and single scattering albedo (SSA) was relatively steady. In the presence of gas-phase OH, absorption first increased, despite continued particle losses, and SSA decreased. Subsequently, absorption decreased faster than scattering, and SSA increased uniformly. At 60% RH, colour enhancement, likely associated with functionalization, was greatest after only minutes of reaction. In contrast, at 10% RH, peak colour enhancement occurred after about two hours of reaction, indicating that the decrease in RH and the attendant increase in particle viscosity significantly impeded heterogeneous OH oxidation of the BrC surrogate.
NASA Astrophysics Data System (ADS)
Seyoum, W. M.; Wahls, B.
2017-12-01
The effect of land surface processes (e.g., change in vegetation and snow cover, and change in soil moisture) on climate is well understood. However, the connection between shallow groundwater fluctuation and regional climate variability is still unresolved. This project focuses on sensitivity of climate to shallow groundwater dynamics by analyzing the impact of shallow groundwater on soil moisture and precipitation. The study use co-located measurements of daily soil moisture, depth to groundwater level (DGWL), and climate (precipitation (R) and air temperature) data. Statistical relationship between soil moisture and DGWL at different depth established. Frequency, mean and cumulative climate extremes (R90, R99, R < 1mm) examined and compared with depth to groundwater level information at Bellville station, IL. Result indicate soil moisture has a strong inverse relationship with depth to groundwater level (r -0.75) when DGWL is between 0 to 2 m (critical depth) depth from the ground. Beyond this depth, there is no statistically significant correlation or trend between soil moisture and GWL. Within this critical depth, soil moisture is more or less constant during wet days (R ≥ 1mm) even though DGWL is fluctuating. However, soil moisture decrease exponentially as DGWL declining during dry days (R < 1mm). Thus, soil moisture is highly likely dependent on groundwater feedback in the critical depth. Comparison of DGWL with frequency and cumulative of subsequent summer and fall extreme precipitation (DGWL leading by 4-7 months) indicate higher frequency and magnitude of extreme wet precipitation (Rm > 150 mm) occur when DGWL is within the critical depth. As DGWL decreases below 2 m, frequency and magnitude of extreme precipitation diminishes. On the other hand, DGWL has no significant relationship with subsequent extreme dry condition, there is no statistically significant trend between frequency of R < 1mm and DGWL. Generally, depth to groundwater level influence soil moisture within 0 to 2 m depth form the ground. Groundwater level close to the ground (0 - 2 m) seems likely influence subsequent extreme wet condition while not conclusive is the influence of declining groundwater level (beyond 2 m) to subsequent dry conditions. The result support the broad hypothesis that shallow groundwater can influence climate.
Quantifying the influence of deep soil moisture on ecosystem albedo: The role of vegetation
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Zulia Mayari; Papuga, Shirley Anne; Swetish, Jessica Blaine; van Leeuwen, Willem Jan Dirk; Szutu, Daphne; Hartfield, Kyle
2014-05-01
As changes in precipitation dynamics continue to alter the water availability in dryland ecosystems, understanding the feedbacks between the vegetation and the hydrologic cycle and their influence on the climate system is critically important. We designed a field campaign to examine the influence of two-layer soil moisture control on bare and canopy albedo dynamics in a semiarid shrubland ecosystem. We conducted this campaign during 2011 and 2012 within the tower footprint of the Santa Rita Creosote Ameriflux site. Albedo field measurements fell into one of four Cases within a two-layer soil moisture framework based on permutations of whether the shallow and deep soil layers were wet or dry. Using these Cases, we identified differences in how shallow and deep soil moisture influence canopy and bare albedo. Then, by varying the number of canopy and bare patches within a gridded framework, we explore the influence of vegetation and soil moisture on ecosystem albedo. Our results highlight the importance of deep soil moisture in land surface-atmosphere interactions through its influence on aboveground vegetation characteristics. For instance, we show how green-up of the vegetation is triggered by deep soil moisture, and link deep soil moisture to a decrease in canopy albedo. Understanding relationships between vegetation and deep soil moisture will provide important insights into feedbacks between the hydrologic cycle and the climate system.
Pump having pistons and valves made of electroactive actuators
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph (Inventor)
1997-01-01
The present invention provides a pump for inducing a displacement of a fluid from a first medium to a second medium, including a conduit coupled to the first and second media, a transducing material piston defining a pump chamber in the conduit and being transversely displaceable for increasing a volume of the chamber to extract the fluid from the first medium to the chamber and for decreasing the chamber volume to force the fluid from the chamber to the second medium, a first transducing material valve mounted in the conduit between the piston and the first medium and being transversely displaceable from a closed position to an open position to admit the fluid to the chamber, and control means for changing a first field applied to the piston to displace the piston for changing the chamber volume and for changing a second field applied to the first valve to change the position of the first valve.
Moisture-Mediated Interactions Between Amorphous Maltodextrins and Crystalline Fructose.
Thorat, Alpana; Marrs, Krystin N; Ghorab, Mohamed K; Meunier, Vincent; Forny, Laurent; Taylor, Lynne S; Mauer, Lisa J
2017-05-01
The effects of coformulating amorphous maltodextrins (MDs) and crystalline fructose, a deliquescent solid, on the moisture sorption, deliquescence point (RH 0 ), and glass transition temperature (T g ) behaviors were determined. Moisture sorption profiles of binary fructose:MD mixtures and individual ingredients were generated using controlled relative humidity (RH) desiccators and by dynamic vapor sorption techniques. Blends exhibited synergistic moisture uptake at RHs below the RH 0 of fructose, attributed to partial dissolution of fructose in plasticized MD matrices without a significant reduction in the RH 0 of the undissolved fructose. Increasing storage temperature decreased the onset RH for moisture sorption synergy. At all storage RHs, the measured T g (2nd scan) was significantly reduced in fructose:MD mixtures compared to individual MDs, and was related to both the synergistic moisture uptake in the blends and heat-induced ternary fructose-MD-water interactions in the differential scanning calorimeter. Differences were found between the behavior of fructose:MD blends and previous reports of sucrose:MD and NaCl:MD blends, caused in part by the lower RH 0 of fructose. The enhanced moisture sorption in blends of deliquescent and amorphous ingredients could lead to problematic moisture-induced changes if storage conditions are not controlled. © 2017 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Henneberg, Olga; Ament, Felix; Grützun, Verena
2018-05-01
Soil moisture amount and distribution control evapotranspiration and thus impact the occurrence of convective precipitation. Many recent model studies demonstrate that changes in initial soil moisture content result in modified convective precipitation. However, to quantify the resulting precipitation changes, the chaotic behavior of the atmospheric system needs to be considered. Slight changes in the simulation setup, such as the chosen model domain, also result in modifications to the simulated precipitation field. This causes an uncertainty due to stochastic variability, which can be large compared to effects caused by soil moisture variations. By shifting the model domain, we estimate the uncertainty of the model results. Our novel uncertainty estimate includes 10 simulations with shifted model boundaries and is compared to the effects on precipitation caused by variations in soil moisture amount and local distribution. With this approach, the influence of soil moisture amount and distribution on convective precipitation is quantified. Deviations in simulated precipitation can only be attributed to soil moisture impacts if the systematic effects of soil moisture modifications are larger than the inherent simulation uncertainty at the convection-resolving scale. We performed seven experiments with modified soil moisture amount or distribution to address the effect of soil moisture on precipitation. Each of the experiments consists of 10 ensemble members using the deep convection-resolving COSMO model with a grid spacing of 2.8 km. Only in experiments with very strong modification in soil moisture do precipitation changes exceed the model spread in amplitude, location or structure. These changes are caused by a 50 % soil moisture increase in either the whole or part of the model domain or by drying the whole model domain. Increasing or decreasing soil moisture both predominantly results in reduced precipitation rates. Replacing the soil moisture with realistic fields from different days has an insignificant influence on precipitation. The findings of this study underline the need for uncertainty estimates in soil moisture studies based on convection-resolving models.
Extrusion energy and pressure requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, M.; Hanna, M.A.
1984-01-01
Corn gluten meal samples at moisture contents of 14, 20 and 26% dry basis were extruded at barrel temperatures of 120, 145 and 170/sup 0/C with screw speeds of 100, 150 and 200 rpm. The specific energy requirements and specific operating pressure decreases as the moisture content and temperature were increased. The effect of screw speed on specific energy and pressure was inconclusive.
Effects of Sudden Oak Death on the crown fire ignition potential of tanoak (Lithocarpus densiflorus)
Howard Kuljian; J. Morgan Varner
2010-01-01
In the face of the sudden oak death (SOD) epidemic, decreasing foliar moisture content (FMC) of tanoak (Lithocarpus densiflorus) has land managers, fire managers, and property owners concerned with the increased possibility of crown fire in affected areas. A need exists to link local SOD-affected foliar moisture content (FMC) values and current FMC...
Chemical modification : a non-toxic approach to wood preservation
Roger M. Rowell
2005-01-01
Reaction of wood with anhydrides, isocyanates, and epoxides reduces the moisture content of the cell wall and increases the resistance of the modified wood to attack by fungi. As the level of bonded chemical increases. the cell wall equilibrium moisture content decreases and the resistance to attack by white-and brown-rot fungi increases. There is a direct relationship...
S. Youssefian; J. E. Jakes; N. Rahbar
2017-01-01
A combination of experimental, theoretical and numerical studies is used to investigate the variation of elastic moduli of lignocellulosic (bamboo) fiber cell walls with moisture content (MC). Our Nanoindentation results show that the longitudinal elastic modulus initially increased to a maximum value at about 3% MC and then decreased linearly with increasing MC. In...
CR Boardman; Samuel V. Glass
2015-01-01
The moisture transfer effectiveness (or latent effectiveness) of a cross-flow, membrane based energy recovery ventilator is measured and modeled. Analysis of in situ measurements for a full year shows that energy recovery ventilator latent effectiveness increases with increasing average relative humidity and surprisingly increases with decreasing average temperature. A...
Clinical use of a ceramide-based moisturizer for treating dogs with atopic dermatitis
Jung, Ji-young; Nam, Eui-hwa; Park, Seol-hee; Han, Seung-hee
2013-01-01
In humans, skin barrier dysfunction is thought to be responsible for enhanced penetration of allergens. Similar to conditions seen in humans, canine atopic dermatitis (CAD) is characterized by derangement of corneocytes and disorganization of intercellular lipids in the stratum corenum (SC) with decreased ceramide levels. This study was designed to evaluate the effects of a moisturizer containing ceramide on dogs with CAD. Dogs (n = 20, 3~8 years old) with mild to moderate clinical signs were recruited and applied a moisturizer containing ceramide for 4 weeks. Transepidermal water loss (TEWL), skin hydration, pruritus index for canine atopic dermatitis (PICAD) scores, and canine atopic dermatitis extent and severity index (CADESI) scores of all dogs were evaluated. Skin samples from five dogs were also examined with transmission electron microscopy (TEM) using ruthenium tetroxide. TEWL, PICAD, and CADESI values decreased (p < 0.05) and skin hydration increased dramatically over time (p < 0.05). Electron micrographs showed that the skin barrier of all five dogs was partially restored (p < 0.05). In conclusion, these results demonstrated that moisturizer containing ceramide was effective for treating skin barrier dysfunction and CAD symptoms. PMID:23814473
Waterman, Kenneth Craig
2011-09-01
An isoconversion paradigm, where times in different temperature and humidity-controlled stability chambers are set to provide a fixed degradant level, is shown to compensate for the complex, non-single order kinetics of solid drug products. A humidity-corrected Arrhenius equation provides reliable estimates for temperature and relative humidity effects on degradation rates. A statistical protocol is employed to determine best fits for chemical stability data, which in turn allows for accurate estimations of shelf life (with appropriate confidence intervals) at any storage condition including inside packaging (based on the moisture vapor transmission rate of the packaging and moisture sorption isotherms of the internal components). These methodologies provide both faster results and far better predictions of chemical stability limited shelf life (expiry) than previously possible. Precise shelf-life estimations are generally determined using a 2-week, product-specific protocol. Once the model for a product is developed, it can play a critical role in providing the product understanding necessary for a quality by design (QbD) filing for product approval and enable rational control strategies to assure product stability. Moreover, this Accelerated Stability Assessment Program (ASAP) enables the coupling of product attributes (e.g., moisture content, packaging options) to allow for flexibility in how control strategies are implemented to provide a balance of cost, speed, and other factors while maintaining adequate stability.
NASA Astrophysics Data System (ADS)
Sanchez-Mejia, Z. M.; Papuga, S. A.
2013-12-01
In semiarid regions, where water resources are limited and precipitation dynamics are changing, understanding land surface-atmosphere interactions that regulate the coupled soil moisture-precipitation system is key for resource management and planning. We present a modeling approach to study soil moisture and albedo controls on planetary boundary layer height (PBLh). We used data from the Santa Rita Creosote Ameriflux site and Tucson Airport atmospheric sounding to generate empirical relationships between soil moisture, albedo and PBLh. We developed empirical relationships and show that at least 50% of the variation in PBLh can be explained by soil moisture and albedo. Then, we used a stochastically driven two-layer bucket model of soil moisture dynamics and our empirical relationships to model PBLh. We explored soil moisture dynamics under three different mean annual precipitation regimes: current, increase, and decrease, to evaluate at the influence on soil moisture on land surface-atmospheric processes. While our precipitation regimes are simple, they represent future precipitation regimes that can influence the two soil layers in our conceptual framework. For instance, an increase in annual precipitation, could impact on deep soil moisture and atmospheric processes if precipitation events remain intense. We observed that the response of soil moisture, albedo, and the PBLh will depend not only on changes in annual precipitation, but also on the frequency and intensity of this change. We argue that because albedo and soil moisture data are readily available at multiple temporal and spatial scales, developing empirical relationships that can be used in land surface - atmosphere applications are of great value.
Effect of storage conditions on the calorific value of municipal solid waste.
Nzioka, Antony Mutua; Hwang, Hyeon-Uk; Kim, Myung-Gyun; Yan, Cao Zheng; Lee, Chang-Soo; Kim, Young-Ju
2017-08-01
Storage conditions are considered to be an important factor as far as waste material characteristics are concerned. This experimental investigation was conducted using municipal solid waste (MSW) with a high moisture content and varying composition of organic waste. The objective of this study was to understand the effect of storage conditions and temperature on the moisture content and calorific value of the waste. Samples were subjected to two different storage conditions and investigated at specified temperatures. The composition of sample materials investigated was varied for each storage condition and temperature respectively. Gross calorific value was determined experimentally while net calorific value was calculated using empirical formulas proposed by other researchers. Results showed minimal changes in moisture content as well as in gross and net calorific values when the samples were subjected to sealed storage conditions. Moisture content reduced due to the ventilation process and the rate of moisture removal increased with a rise in storage temperature. As expected, rate of moisture removal had a positive effect on gross and net calorific values. Net calorific values also increased at varying rates with a simultaneous decrease in moisture content. Experimental investigation showed the effectiveness of ventilation in improving the combustion characteristics of the waste.
Gupta, Abhay; Peck, Garnet E; Miller, Ronald W; Morris, Kenneth R
2005-10-01
Effect of variation in the ambient moisture levels on the compaction behavior of a 10% acetaminophen (APAP) powder blend in microcrystalline cellulose (MCC) powder was studied by comparing the physical and mechanical properties of ribbons prepared by roller compaction with those of simulated ribbons, i.e., tablets prepared under uni-axial compression. Relative density, moisture content, tensile strength, and Young's modulus were used as key compact properties for comparison. Moisture was found to facilitate the particle rearrangement of both, the APAP and the MCC particles, as well as the deformation of the MCC particles. The tensile strength of the simulated ribbons also showed an increase with increasing moisture content. An interesting observation was that the tensile strength of the roller compacted samples first increased and then decreased with increasing moisture content. Variation in the ambient moisture during roller compaction was also found to influence the characteristics of tablets produced from the granules obtained post-milling the ribbons. A method to study this influence is also reported. Copyright (c) 2005 Wiley-Liss, Inc. and the American Pharmacists Association
Liu, Hong-lai; Zhang, Wei-hua; Wang, Kun; Zhao, Na
2009-03-01
In the agriculture-pasturage ecotone of Northern China, a typical zone with linear boundary of cropland and grassland was chosen to investigate its soil moisture regime, and the moving split-window technique was adopted to study the edge influence of soil moisture at the boundary. The results showed that the edge influence was 10 m, from 6 m within grassland and 4 m within cropland, and was categorized as the acute change type boundary. Accordingly, the farmland-grassland landscape boundary could be divided into three functional zones, i.e., grassland zone, farmland zone, and compositional ecotone zone. Soil moisture content varied abruptly in the ecotone zone, but presented linear distribution in both grassland zone and farmland zone. The average soil moisture content in grassland was about 1 g x g(-1) higher than that in farmland, which was mainly caused by the decreased capillary moisture capacity of farmland. Owing to the different vegetation cover, farmland and grassland had different transpiration and evaporation, which led to the diverse soil moisture regime, making soil water potential changed and water movement from one ecosystem to another possible.
Hu, Long; Shao, Gang; Jiang, Tao; Li, Dengbing; Lv, Xinlin; Wang, Hongya; Liu, Xinsheng; Song, Haisheng; Tang, Jiang; Liu, Huan
2015-11-18
Organometal halide perovskites have recently emerged as outstanding semiconductors for solid-state optoelectronic devices. Their sensitivity to moisture is one of the biggest barriers to commercialization. In order to identify the effect of moisture in the degradation process, here we combined the in situ electrical resistance measurement with time-resolved X-ray diffraction analysis to investigate the interaction of CH3NH3PbI(3-x)Cl(x) perovskite films with moisture. Upon short-time exposure, the resistance of the perovskite films decreased and it could be fully recovered, which were ascribed to a mere chemisorption of water molecules, followed by the reversible hydration into CH3NH3PbI(3-x)Cl(x)·H2O. Upon long-time exposure, however, the resistance became irreversible due to the decomposition into PbI2. The results demonstrated the formation of monohydrated intermediate phase when the perovskites interacted with moisture. The role of moisture in accelerating the thermal degradation at 85 °C was also demonstrated. Furthermore, our study suggested that the perovskite films with fewer defects may be more inherently resistant to moisture.
NASA Technical Reports Server (NTRS)
Runquist, D. C.
1985-01-01
Six spectral plots, each summarizing single-pixel reflectance for 128 channels of Airborne Imaging Spectrometer (AIS) data, were examined. The six sample pixels were located along a topographic/moisture gradient from lake surface to dune top in the Nebraska Sandhills. AIS spectra for various moisture regimes/vegetative zones appear quite logical, with a general positive relationship between increasing elevation (i.e., decreasing access of plant roots to water) and increasing reflectance in the spectral regions diagnostic of leaf-water content (i.e., bands centered on 1.65 and 2.20 microns).
Przybyłowski, Tadeusz; Ashirbaev, Aibek; Le Roux, Johannes; Zieliński, Jan
2003-01-01
Acute mountain sickness can become life threatening to people traveling at high altitude. Simulated descent with a hyperbaric chamber is a widely accepted way to treat this condition. The aim of this study was to analyze the influence of simulated descent to 2000 m on arterial oxygen saturation (SaO2), periodic breathing and sleep quality in a group of workers of a gold mine situated at 3800 m. Sleep studies were performed twice in stationary hyperbaric chamber with a portable system--MESAM IV in 20 workers. During the first study the chamber was not pressurized and on the second night the barometric pressure was set to mimic descent to 2000 m. During second study, a significant decrease in ODI (Oxygen Desaturation Index), from 9.7 +/- 6/h to 1.8 +/- 3.4/h (p < 0.0001), was noticed; mean SaO2 increased from 84.3 +/- 3.2% do 92.7 +/- 2.8% (p < 0.0001), significant changes in percentage of study time in individual SaO2 ranges were also noticed. The number (12.7 +/- 8.4 vs. 7.5 +/- 5; p < 0.05) and index of changes in body position were decreased (2.0 +/- 1.5 vs. 1.2 +/- 0.9/h; p < 0.05) as well. Simulated descent to 2000 m causes a decrease in number of desaturations, improvement in mean SaO2 during sleep, decrease in heart rate and these data suggest a decrease in periodic breathing during sleep. A decrease in number and index of body position changes suggests improved sleep quality.
NASA Astrophysics Data System (ADS)
Usowicz, J. B.; Marczewski, W.; Usowicz, B.; Lukowski, M. I.; Lipiec, J.; Slominski, J.
2012-04-01
Soil moisture, together with soil and vegetation characteristics, plays an important role in exchange of water and energy between the land surface and the atmospheric boundary layer. Accurate knowledge of current and future spatial and temporal variation in soil moisture is not well known, nor easy to measure or predict. Knowledge of soil moisture in surface and root zone soil moisture is critical for achieving sustainable land and water management. The importance of SM is so high that this ECV is recommended by GCOS (Global Climate Observing System) to any attempts of evaluating of effects the climate change, and therefore it is one of the goals for observing the Earth by the ESA SMOS Mission (Soil Moisture and Ocean Salinity), globally. SMOS provides its observations by means of the interferometric radiometry method (1.4 GHz) from the orbit. In parallel, ten ground based stations are kept by IA PAN, in area of the Eastern Wall in Poland, in order to validate SMOS data and for other ground based agrophysical purposes. Soil moisture measurements obtained from ground and satellite measurements from SMOS were compared using Bland-Altman method of agreement, concordance correlation coefficient (CCC) and total deviation index (TDI). Observed similar changes in soil moisture, but the values obtained from satellite measurements were lower. Minor differences between the compared data are at higher moisture contents of soil and they grow with decreasing soil moisture. Soil moisture trends are maintained in the individual stations. Such distributions of soil moisture were mainly related to soil type. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO3275.
NASA Astrophysics Data System (ADS)
Halladay, Kate; Good, Peter
2017-10-01
We present a detailed analysis of mechanisms underlying the evapotranspiration response to increased CO_2 in HadGEM2-ES, focussed on western Amazonia. We use three simulations from CMIP5 in which atmospheric CO_2 increases at 1% per year reaching approximately four times pre-industrial levels after 140 years. Using 3-hourly data, we found that evapotranspiration (ET) change was dominated by decreased stomatal conductance (g_s), and to a lesser extent by decreased canopy water and increased moisture gradient (specific humidity difference between surface and near-surface). There were large, non-linear decreases in ET in the simulation in which radiative and physiological forcings could interact. This non-linearity arises from non-linearity in the conductance term (includes aerodynamic and stomatal resistance and partitioning between the two, which is determined by canopy water availability), the moisture gradient, and negative correlation between these two terms. The conductance term is non-linear because GPP responds non-linearly to temperature and GPP is the dominant control on g_s in HadGEM2-ES. In addition, canopy water declines, mainly due to increases in potential evaporation, which further decrease the conductance term. The moisture gradient responds non-linearly owing to the non-linear response of temperature to CO_2 increases, which increases the Bowen ratio. Moisture gradient increases resulting from ET decline increase ET and thus constitute a negative feedback. This analysis highlights the importance of the g_s parametrisation in determining the ET response and the potential differences between offline and online simulations owing to feedbacks on ET via the atmosphere, some of which would not occur in an offline simulation.
In-vitro Study on Temperature Changes in the Pulp Chamber Due to Thermo-Cure Glass Ionomer Cements
van Duinen, Raimond NB; Shahid, Saroash; Hill, Robert
2016-01-01
The application of the Glass Ionomer Cements in clinical dentistry is recommended due to properties such as fluoride release, chemical adhesion to tooth, negligible setting shrinkage, and coefficient of thermal expansion close to tooth, low creep, and good color stability. However, the cement is vulnerable to early exposure to moisture due to slow setting characteristics. The uses of external energy such as ultrasound and radiant heat (Thermo-curing) have been reported to provide acceleration of the setting chemistry and enhance physical properties. Aim: The aim of this in vitro study was to analyze temperature changes in the pulpal chamber when using radiant heat to accelerate the setting of GICs. Material and Methods:The encapsulated GIC Equia Forte was used for this study. The temperature changes in the pulp were measured using thermocouple in the cavities which were 2,6 and 4,7mm deep with and without filling. Results:The results showed that a temperature rise (ΔT) in the pulp chamber was 3,7°C. ΔT for the 2.6mm and 4.7mm deep cavity and without placing any restoration the temperature was 4,2°C and 2,6°C respectively. After the restoration has been placed, the ΔT range in the pulp chamber was lower ranging from 1.9°C to 2.4°C. Conclusion: It could be concluded that Thermo-curing of the GIC during the setting is safe for the pulp and can be recommended in clinical practice. PMID:28275275
Ganjurjav, Hasbagan; Hu, Guozheng; Wan, Yunfan; Li, Yue; Danjiu, Luobu; Gao, Qingzhu
2018-02-01
Climate is a driver of terrestrial ecosystem carbon exchange, which is an important product of ecosystem function. The Qinghai-Tibetan Plateau has recently been subjected to a marked increase in temperature as a consequence of global warming. To explore the effects of warming on carbon exchange in grassland ecosystems, we conducted a whole-year warming experiment between 2012 and 2014 using open-top chambers placed in an alpine meadow, an alpine steppe, and a cultivated grassland on the central Qinghai-Tibetan Plateau. We measured the gross primary productivity, net ecosystem CO 2 exchange (NEE), ecosystem respiration, and soil respiration using a chamber-based method during the growing season. The results show that after 3 years of warming, there was significant stimulation of carbon assimilation and emission in the alpine meadow, but both these processes declined in the alpine steppe and the cultivated grassland. Under warming conditions, the soil water content was more important in stimulating ecosystem carbon exchange in the meadow and cultivated grassland than was soil temperature. In the steppe, the soil temperature was negatively correlated with ecosystem carbon exchange. We found that the ambient soil water content was significantly correlated with the magnitude of warming-induced change in NEE. Under high soil moisture condition, warming has a significant positive effect on NEE, while it has a negative effect under low soil moisture condition. Our results highlight that the NEE in steppe and cultivated grassland have negative responses to warming; after reclamation, the natural meadow would subject to loose more C in warmer condition. Therefore, under future warmer condition, the overextension of cultivated grassland should be avoided and scientific planning of cultivated grassland should be achieved.
Lunar Polar Environmental Testing: Regolith Simulant Conditioning
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie
2014-01-01
As ISRU system development approaches flight fidelity, there is a need to test hardware in relevant environments. Extensive laboratory and field testing have involved relevant soil (lunar regolith simulants), but the current design iterations necessitate relevant pressure and temperature conditions. Including significant quantities of lunar regolith simulant in a thermal vacuum chamber poses unique challenges. These include facility operational challenges (dust tolerant hardware) and difficulty maintaining a pre-prepared soil state during pump down (consolidation state, moisture retention).For ISRU purposes, the regolith at the lunar poles will be of most interest due to the elevated water content. To test at polar conditions, the regolith simulant must be doped with water to an appropriate percentage and then chilled to cryogenic temperatures while exposed to vacuum conditions. A 1m tall, 28cm diameter bin of simulant was developed for testing these simulant preparation and drilling operations. The bin itself was wrapped with liquid nitrogen cooling loops (100K) so that the simulant bed reached an average temperature of 140K at vacuum. Post-test sampling was used to determine desiccation of the bed due to vacuum exposure. Depth dependent moisture data is presented from frozen and thawed soil samples.Following simulant only evacuation tests, drill hardware was incorporated into the vacuum chamber to test auguring techniques in the frozen soil at thermal vacuum conditions. The focus of this testing was to produce cuttings piles for a newly developed spectrometer to evaluate. This instrument, which is part of the RESOLVE program science hardware, detects water signatures from surface regolith. The drill performance, behavior of simulant during drilling, and characteristics of the cuttings piles will be offered.
Snow depth manipulation experiments in a dry and a moist tundra
NASA Astrophysics Data System (ADS)
Kwon, M. J.; Czimczik, C. I.; Jung, J. Y.; Kim, M.; Lee, Y. K.; Nam, S.; Wagner, I.
2017-12-01
As a result of global warming, precipitation in the Arctic is expected to increase by 25-50% by the end of this century, mostly in the form of snow. However, precipitation patterns vary considerable in space and time, and future precipitation patterns are highly uncertain at local and regional scales. The amount of snowfall (or snow depth) influences a number of ecosystem properties in Arctic ecosystems, such as soil temperature over winter and soil moisture in the following growing season. These modifications then affect rates of carbon-related soil processes and photosynthesis, thus CO2 exchange rates between terrestrial ecosystems and the atmosphere. In this study, we investigate the effects of snow depth on the magnitude, sources and temporal dynamics of CO2 fluxes. We installed snow fences in a dry dwarf-shrub (Cambridge Bay, Canada; 69° N, 105° W) and a moist low-shrub (Council, Alaska, USA; 64° N, 165° W) tundra in summer 2017, and established control, and increased and reduced snow depth plots at each snow fence. Summertime CO2 flux rates (net ecosystem exchange, ecosystem respiration, gross primary production) and the fractions of autotrophic and heterotrophic respiration to ecosystem respiration were measured using manual chambers and radiocarbon signatures. Wintertime CO2 flux rates will be measured using soda lime adsorption technique and forced diffusion chambers. Soil temperature and moisture at multiple depths, as well as changes in soil properties and microbial communities will be also observed, to research whether these changes affect CO2 flux rates or patterns. Our study will elucidate how future snow depth and its impact on soil physical and biogeochemical properties influence the magnitude and sources of tundra-atmosphere CO2 exchange in the rapidly warming Arctic.
Jin, Lingyun; Zhang, Guangming; Zheng, Xiang
2015-02-01
A key step in sludge treatment is sludge dewatering. However, activated sludge is generally very difficult to be dewatered. Sludge dewatering performance is largely affected by the sludge moisture distribution. Sludge disintegration can destroy the sludge structure and cell wall, so as change the sludge floc structure and moisture distribution, thus affecting the dewatering performance of sludge. In this article, the disintegration methods were ultrasound treatment, K2FeO4 oxidation and KMnO4 oxidation. The degree of disintegration (DDCOD), sludge moisture distribution and the final water content of sludge cake after centrifuging were measured. Results showed that three disintegration methods were all effective, and K2FeO4 oxidation was more efficient than KMnO4 oxidation. The content of free water increased obviously with K2FeO4 and KMnO4 oxidations, while it decreased with ultrasound treatment. The changes of free water and interstitial water were in the opposite trend. The content of bounding water decreased with K2FeO4 oxidation, and increased slightly with KMnO4 oxidation, while it increased obviously with ultrasound treatment. The water content of sludge cake after centrifuging decreased with K2FeO4 oxidation, and did not changed with KMnO4 oxidation, but increased obviously with ultrasound treatment. In summary, ultrasound treatment deteriorated the sludge dewaterability, while K2FeO4 and KMnO4 oxidation improved the sludge dewaterability. Copyright © 2014. Published by Elsevier B.V.
SU-E-T-104: An Examination of Dose in the Buildup and Build-Down Regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tome, W; Kuo, H; Phillips, J
2015-06-15
Purpose: To examine dose in the buildup and build-down regions and compare measurements made with various models and dosimeters Methods: Dose was examined in a 30×30cm {sup 2} phantom of water-equivalent plastic with 10cm of backscatter for various field sizes. Examination was performed with radiochromic film and optically-stimulated-luminescent-dosimeter (OSLD) chips, and compared against a plane-parallel chamber with a correction factor applied to approximate the response of an extrapolation chamber. For the build-down region, a correction factor to account for table absorption and chamber orientation in the posterior-anterior direction was applied. The measurement depths used for the film were halfway throughmore » their sensitive volumes, and a polynomial best fit curve was used to determine the dose to their surfaces. This chamber was also compared with the dose expected in a clinical kernel-based computer model, and a clinical Boltzmann-transport-equation-based (BTE) computer model. The two models were also compared against each other for cases with air gaps in the buildup region. Results: Within 3mm, all dosimeters and models agreed with the chamber within 10% for all field sizes. At the entrance surface, film differed in comparison with the chamber from +90% to +15%, the BTE-model by +140 to +3%, and the kernel-based model by +20% to −25%, decreasing with increasing field size. At the exit surface, film differed in comparison with the chamber from −10% to −15%, the BTE-model by −53% to −50%, the kernel-based model by −55% to −57%, mostly independent of field size. Conclusion: The largest differences compared with the chamber were found at the surface for all field sizes. Differences decreased with increasing field size and increasing depth in phantom. Air gaps in the buildup region cause dose buildup to occur again post-gap, but the effect decreases with increasing phantom thickness prior to the gap.« less
NASA Astrophysics Data System (ADS)
Karssenberg, D.; Wanders, N.; de Roo, A.; de Jong, S.; Bierkens, M. F.
2013-12-01
Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system that is not directly linked to discharge, in particular the unsaturated zone, remains uncalibrated, or might be modified unrealistically. Soil moisture observations from satellites have the potential to fill this gap, as these provide the closest thing to a direct measurement of the state of the unsaturated zone, and thus are potentially useful in calibrating unsaturated zone model parameters. This is expected to result in a better identification of the complete hydrological system, potentially leading to improved forecasts of the hydrograph as well. Here we evaluate this added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: 1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? 2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to approaches that calibrate only with discharge, such that this leads to improved forecasts of soil moisture content and discharge as well? To answer these questions we use a dual state and parameter ensemble Kalman filter to calibrate the hydrological model LISFLOOD for the Upper Danube area. Calibration is done with discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS and ASCAT. Four scenarios are studied: no calibration (expert knowledge), calibration on discharge, calibration on remote sensing data (three satellites) and calibration on both discharge and remote sensing data. Using a split-sample approach, the model is calibrated for a period of 2 years and validated for the calibrated model parameters on a validation period of 10 years. Results show that calibration with discharge data improves the estimation of groundwater parameters (e.g., groundwater reservoir constant) and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate calibration of parameters related to land surface process (e.g., the saturated conductivity of the soil), which is not possible when calibrating on discharge alone. For the upstream area up to 40000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30 % in the RMSE for discharge simulations, compared to calibration on discharge alone. For discharge in the downstream area, the model performance due to assimilation of remotely sensed soil moisture is not increased or slightly decreased, most probably due to the longer relative importance of the routing and contribution of groundwater in downstream areas. When microwave soil moisture is used for calibration the RMSE of soil moisture simulations decreases from 0.072 m3m-3 to 0.062 m3m-3. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models leading to a better simulation of soil moisture content throughout and a better simulation of discharge in upstream areas, particularly if discharge observations are sparse.
Moisture Durability Assessment of Selected Well-insulated Wall Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pallin, Simon B.; Boudreaux, Philip R.; Kehrer, Manfred
2015-12-01
This report presents the results from studying the hygrothermal performance of two well-insulated wall assemblies, both complying with and exceeding international building codes (IECC 2015 2014, IRC 2015). The hygrothermal performance of walls is affected by a large number of influential parameters (e.g., outdoor and indoor climates, workmanship, material properties). This study was based on a probabilistic risk assessment in which a number of these influential parameters were simulated with their natural variability. The purpose of this approach was to generate simulation results based on laboratory chamber measurements that represent a variety of performances and thus better mimic realistic conditions.more » In total, laboratory measurements and 6,000 simulations were completed for five different US climate zones. A mold growth indicator (MGI) was used to estimate the risk of mold which potentially can cause moisture durability problems in the selected wall assemblies. Analyzing the possible impact on the indoor climate due to mold was not part of this study. The following conclusions can be reached from analyzing the simulation results. In a hot-humid climate, a higher R-value increases the importance of the airtightness because interior wall materials are at lower temperatures. In a cold climate, indoor humidity levels increase with increased airtightness. Air leakage must be considered in a hygrothermal risk assessment, since air efficiently brings moisture into buildings from either the interior or exterior environment. The sensitivity analysis of this study identifies mitigation strategies. Again, it is important to remark that MGI is an indicator of mold, not an indicator of indoor air quality and that mold is the most conservative indicator for moisture durability issues.« less
Parameters influencing the regeneration of a green roof's retention capacity via evapotranspiration
NASA Astrophysics Data System (ADS)
Poë, Simon; Stovin, Virginia; Berretta, Christian
2015-04-01
The extent to which the finite hydrological capacity of a green roof is available for retention of a storm event largely determines the scale of its contribution as a Sustainable Drainage System (SuDS). Evapotranspiration (ET) regenerates the retention capacity at a rate that is variably influenced by climate, vegetation treatment, soil and residual moisture content. Experimental studies have been undertaken to monitor the drying cycle behaviour of 9 different extensive green roof configurations with 80 mm substrate depth. A climate-controlled chamber at the University of Sheffield replicated typical UK spring and summer diurnal cycles. The mass of each microcosm, initially at field capacity, was continuously recorded, with changes inferred to be moisture loss/gain (or ET/dew). The ranges of cumulative ET following a 28 day dry weather period (ADWP) were 0.6-1.0 mm/day in spring and 0.7-1.25 mm/day in summer. These ranges reflect the influence of configuration on ET. Cumulative ET was highest from substrates with the greatest storage capacity. Significant differences in ET existed between vegetated and non-vegetated configurations. Initially, seasonal mean ET was affected by climate. Losses were 2.0 mm/day in spring and 3.4 mm/day in summer. However, moisture availability constrained ET, which fell to 1.4 mm/day then 1.0 mm/day (with an ADWP of 7 and 14 days) in spring; compared to 1.0 mm/day and 0.5 mm/day in summer. A modelling approach, which factors Potential Evapotranspiration (PET) according to stored moisture content, predicts daily ET with very good accuracy (PBIAS = 2.0% [spring]; -0.8% [summer]).
NASA Astrophysics Data System (ADS)
Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.
2016-12-01
Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.
Impact of varying area of polluting surface materials on perceived air quality.
Sakr, W; Knudsen, H N; Gunnarsen, L; Haghighat, F
2003-06-01
A laboratory study was performed to investigate the impact of the concentration of pollutants in the air on emissions from building materials. Building materials were placed in ventilated test chambers. The experimental set-up allowed the concentration of pollution in the exhaust air to be changed either by diluting exhaust air with clean air (changing the dilution factor) or by varying the area of the material inside the chamber when keeping the ventilation rate constant (changing the area factor). Four different building materials and three combinations of two or three building materials were studied in ventilated small-scale test chambers. Each individual material and three of their combinations were examined at four different dilution factors and four different area factors. An untrained panel of 23 subjects assessed the air quality from the chambers. The results show that a certain increase in dilution improves the perceived air quality more than a similar decrease in area. The reason for this may be that the emission rate of odorous pollutants increases when the concentration in the chamber decreases. The results demonstrate that, in some cases the effect of increased ventilation on the air quality may be less than expected from a simple dilution model.
Manjunatha, S S; Raju, P S; Bawa, A S
2014-11-01
Thermophysical properties of enzyme clarified lime (Citrus aurantifolia L.) juice were evaluated at different moisture contents ranging from 30.37 % to 89.30 % (wet basis) corresponding to a water activity range of 0.835 to 0.979. The thermophysical properties evaluated were density, Newtonian viscosity, thermal conductivity, specific heat and thermal diffusivity. The investigation showed that density and Newtonian viscosity of enzyme clarified lime juice decreased significantly (p < 0.05) with increase in moisture content and water activity, whereas thermal conductivity and specific heat increased significantly (p < 0.05) with increase in moisture content and water activity and the thermal diffusivity increased marginally. Empirical mathematical models were established relating to thermophysical properties of enzyme clarified lime juice with moisture content/water activity employing regression analysis by the method of least square approximation. Results indicated the existence of strong correlation between thermophysical properties and moisture content/water activity of enzyme clarified lime juice, a significant (p < 0.0001) negative correlation between physical and thermal properties was observed.
Wedemeyer, Gary; Dollar, A.M.
1964-01-01
English sole fillets previously equilibrated with aqueous 0.1% cysteine were dehydrated by three methods to moisture levels ranging from 2 to 72%. Model systems using cellulose to replace the fish tissue were also used. The samples were irradiated at 1 Mrad in an air, nitrogen, or oxygen atmosphere. The destruction of −SH groups was measured and related to the amount and physical state of the tissue water. As free water was removed, destruction steadily increased, reaching a maximum at about 20% moisture. Destruction decreased markedly at moisture levels below 10%, and calorimetric measurements confirmed that 10% moisture was about the level of bound water in this species. These data suggest that dehydration favors the reaction of solute molecules with free radicals formed in the free water of muscle cells. At moisture levels greater than about 20%, simple free radical recombination is more likely than reaction with solute molecules, while below 20% moisture the reverse is true. The calculated α values support this conclusion, as do the results from model systems using cellulose.
Hamzalıoğlu, Aytül; Gökmen, Vural
2018-02-01
In this study, reactions of hydroxymethylfurfural (HMF) with selected amino acids (arginine, cysteine and lysine) were investigated in HMF-amino acid (high moisture) and Coffee-amino acid (low moisture) model systems at 5, 25 and 50°C. The results revealed that HMF reacted efficiently and effectively with amino acids in both high and low moisture model systems. High-resolution mass spectrometry (HRMS) analyses of the reaction mixtures confirmed the formations of Michael adduct and Schiff base of HMF with amino acids. Calculated pseudo-first order reaction rate constants were in the following order; k Cysteine >k Arginine >k Lysine for high moisture model systems. Comparing to these rate constants, the k Cysteine decreased whereas, k Arginine and k Lysine increased under the low moisture conditions of Coffee-amino acid model systems. The temperature dependence of the rate constants was found to obey the Arrhenius law in a temperature range of 5-50°C under both low and high moisture conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Moisture absorption of starch based biocomposites reinforced with water hyacinth fibers
NASA Astrophysics Data System (ADS)
Abral, H.; Hartono, J.
2017-06-01
Bioplastic based on tapioca starch (TSB) is very sensitive on moisture; meanwhile this substance may be used to replace synthetic plastic. This paper reports effect of Water Hyacinth Fibers (WHF) content on performance moisture absorption of starch based biocomposites. WHF content in the TSB matrix was varied in 1, 3, 5, and 10% respectively. The samples were placed in closed room with high relative humidity (RH) of 99% at 250C with different duration for 30 and 960 min respectively. The result showed that moisture absorption in the beginning was increased rapidly, and then achieved a level steady state. After that, significant swelling of the sample occurred for further duration in 960 min. Gradient of the swelling was decreased as increasing the fibers content in the TSB matrix.
Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites
NASA Technical Reports Server (NTRS)
Haque, A.; Jeelani, S.
1992-01-01
The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range of 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming.
Piezoelectric energy harvesting in coupling-chamber excited by the vortex-induced pressure
NASA Astrophysics Data System (ADS)
Cheng, Tinghai; Wang, Yingting; Qin, Feng; Song, Zhaoyang; Lu, Xiaohui; Bao, Gang; Zhao, Xilu
2016-08-01
The performance of a piezoelectric energy harvester with a coupling chamber was investigated under vortex-induced pressure. The harvester consisted of a power chamber, a buffer, and a storage chamber. Different types of vortex (i.e., clockwise or counter-clockwise) could be induced by changing the volume ratio between the power chamber and the storage chamber. The peak voltage of the harvester could be tuned by changing the volume ratio. For example, under a pressure of 0.30 MPa, input cycle of 2.0 s, and flow rate of 200 l/min, the peak voltage decreased from 79.20 to 70.80 V with increasing volume ratio. The optimal volume ratio was 2.03, which resulted in the formation of a clockwise vortex. The corresponding effective power through a 600 kΩ resistor was 1.97 mW.
Modeling the Impact of Soil Conditions on Global Water Balance
NASA Astrophysics Data System (ADS)
Wang, P. L.; Feddema, J. J.
2016-12-01
The amount of water the soil can hold for plant use, defined as soil water-holding capacity (WHC), has a large influence on the water cycle and climatic variables. Although soil properties vary widely worldwide, many climate modeling applications assume WHC to be spatially invariant. This study explores how a more realistic soil WHC estimate affects the global water balance relative to commonly assumed soil properties. We use a modified Thornthwaite water balance model combined with a newly developed soil WHC and soil thickness data at a 30 arc second resolution. The soil WHC data was obtained by integrating WHCs to a depth of 2 m and modified by the soil thickness data on a grid-by-grid basis, and then resampling to the 0.5 degree climatology data. We observed that down scaling soils data before modifying soil depths greatly increases global soil WHCs. This new dataset is compared to WHC information with a fixed 2-m soil depth, and a constant 150-mm soil WHC. Results indicate higher soil WHC results in increased soil moisture, decreased moisture surplus and deficits, and increased actual evapotranspiration (AE), and vice-versa. However, due to high variability in soil characteristics across climate gradients, this generalization does not hold true for regionally averaged outcomes. Compared to using a constant 150-mm WHC, more realistic soil WHC increases global averaged AE 1%, and decreases deficit 2% and surplus 3%. Most change is observed in areas with pronounced wet and dry seasons; using a constant 2-m soil depth doubles the differences. Regionally, Europe was most affected: AE increases 4%, and the deficit and surplus decrease 20% and 12%. Australia shows that regionally averaged results are not equivocal for moisture surplus and deficit; deficit decreases 0.4%, while surplus decreases 9%. This research highlights the importance of soil condition for climate modeling and how a better representation of soil moisture conditions affects global water balance modeling.
Applicability of common stomatal conductance models in maize under varying soil moisture conditions.
Wang, Qiuling; He, Qijin; Zhou, Guangsheng
2018-07-01
In the context of climate warming, the varying soil moisture caused by precipitation pattern change will affect the applicability of stomatal conductance models, thereby affecting the simulation accuracy of carbon-nitrogen-water cycles in ecosystems. We studied the applicability of four common stomatal conductance models including Jarvis, Ball-Woodrow-Berry (BWB), Ball-Berry-Leuning (BBL) and unified stomatal optimization (USO) models based on summer maize leaf gas exchange data from a soil moisture consecutive decrease manipulation experiment. The results showed that the USO model performed best, followed by the BBL model, BWB model, and the Jarvis model performed worst under varying soil moisture conditions. The effects of soil moisture made a difference in the relative performance among the models. By introducing a water response function, the performance of the Jarvis, BWB, and USO models improved, which decreased the normalized root mean square error (NRMSE) by 15.7%, 16.6% and 3.9%, respectively; however, the performance of the BBL model was negative, which increased the NRMSE by 5.3%. It was observed that the models of Jarvis, BWB, BBL and USO were applicable within different ranges of soil relative water content (i.e., 55%-65%, 56%-67%, 37%-79% and 37%-95%, respectively) based on the 95% confidence limits. Moreover, introducing a water response function, the applicability of the Jarvis and BWB models improved. The USO model performed best with or without introducing the water response function and was applicable under varying soil moisture conditions. Our results provide a basis for selecting appropriate stomatal conductance models under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Lavelli, Vera; Corey, Mark; Kerr, William; Vantaggi, Claudia
2011-07-15
Intermediate moisture products made from blanched apple flesh and green tea extract (about 6mg of monomeric flavan 3-ols added per g of dry apple) or blanched apple flesh (control) were produced, and their quality attributes were investigated over storage for two months at water activity (a(w)) levels of 0.55 and 0.75, at 30°C. Products were evaluated for colour (L(∗), a(∗), and b(∗) Hunter's parameters), phytochemical contents (flavan 3-ols, chlorogenic acid, dihydrochalcones, ascorbic acid and total polyphenols), ferric reducing antioxidant potential, 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl radical-scavenging activity and ability to inhibit formation of fructose-induced advanced glycation end-products. During storage of the fortified and unfortified intermediate moisture apples, water availability was sufficient to support various chemical reactions involving phytochemicals, which degraded at different rates: ascorbic acid>flavan 3-ols>dihydrochalcones and chlorogenic acid. Colour variations occurred at slightly slower rates after green tea addition. In the intermediate moisture apple, antioxidant and anti-glycoxidative properties decreased at similar rates (half-life was about 80d at a(w) of 0.75, 30°C). In the green tea-fortified intermediate moisture apple, the antioxidant activity decreased at a slow rate (half-life was 165d at a(w) of 0.75, 30°C) and the anti-glycoxidative properties did not change, indicating that flavan 3-ol degradation involved the formation of derivatives that retained the properties of their parent compounds. Since these properties are linked to oxidative- and advanced glycation end-product-related diseases, these results suggest that green tea fortification of intermediate moisture apple products could be a valuable means of product innovation, to address consumers' nutritional needs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mechanisms of Robust Future Spring Drying in the Southwest U.S. in CMIP5 Models
NASA Astrophysics Data System (ADS)
Ting, M.; Seager, R.; Li, C.; Liu, H.
2017-12-01
The net surface water budget, precipitation minus evaporation (P-E), shows a clear seasonal cycle in the American Southwest with net gain of surface water (positive P-E) in the cold half of the year (October to March) and net loss of water (negative P-E) in the warmer half (April - September), with June and July being the driest time of the year. There is a significant shift of the summer drying toward earlier in the year under CO2 warming scenario, resulting in substantial spring drying (MAM) of the American Southwest, from the near-term future (2021 - 2040) to the end of the current Century with gradually increasing magnitude. While the spring drying has been identified in previous studies, its mechanism has not been fully addressed. Using moisture budget analysis, we found that the drying is mainly due to decreased mean moisture convergence, partially compensated by the increase in transient eddy moisture flux convergence. The decreased mean moisture convergence is further separated into those due to changes in circulation (dynamic changes) and changes in atmospheric moisture content (thermodynamic changes). The drying is found to be dominated by the thermodynamic driven changes in column averaged moisture convergence, due mainly to increased dry zonal advection caused by the climatological land-ocean thermal contrast, rather than by the well-known "dry gets drier" mechanism. Furthermore, the enhanced dry advection in the warming climate is dominated by the robust zonal mean atmospheric warming, thus the spring drying in Southwest US is very robust. We also discuss reasons this future drying is particularly strong in the spring as compared to the other seasons.
Otkin, Jason A.; Anderson, Martha C.; Hain, Christopher; Svoboda, Mark; Johnson, David; Mueller, Richard; Tadesse, Tsegaye; Wardlow, Brian D.; Brown, Jesslyn
2016-01-01
This study examines the evolution of several model-based and satellite-derived drought metrics sensitive to soil moisture and vegetation conditions during the extreme flash drought event that impacted major agricultural areas across the central U.S. during 2012. Standardized anomalies from the remote sensing based Evaporative Stress Index (ESI) and Vegetation Drought Response Index (VegDRI) and soil moisture anomalies from the North American Land Data Assimilation System (NLDAS) are compared to the United States Drought Monitor (USDM), surface meteorological conditions, and crop and soil moisture data compiled by the National Agricultural Statistics Service (NASS).Overall, the results show that rapid decreases in the ESI and NLDAS anomalies often preceded drought intensification in the USDM by up to 6 wk depending on the region. Decreases in the ESI tended to occur up to several weeks before deteriorations were observed in the crop condition datasets. The NLDAS soil moisture anomalies were similar to those depicted in the NASS soil moisture datasets; however, some differences were noted in how each model responded to the changing drought conditions. The VegDRI anomalies tracked the evolution of the USDM drought depiction in regions with slow drought development, but lagged the USDM and other drought indicators when conditions were changing rapidly. Comparison to the crop condition datasets revealed that soybean conditions were most similar to ESI anomalies computed over short time periods (2–4 wk), whereas corn conditions were more closely related to longer-range (8–12 wk) ESI anomalies. Crop yield departures were consistent with the drought severity depicted by the ESI and to a lesser extent by the NLDAS and VegDRI datasets.
Responses of 1-year-old cottonwood to increasing soil moisture tension
F.T. Bonner
1967-01-01
Cottonwood cuttings planted in sandy loam and clay soils showed a sensitive control of water loss as soil moisture tension increased. Transpiration rates began decreasing at leaf water deficits of 2.5 percent in sandy loam and 4.5 percent in clay. There were no significant differences in rates per unit of leaf area or shoot dry weight between plants grown in the two...
NASA Astrophysics Data System (ADS)
Chifflard, Peter; Weishaupt, Philipp; Reiss, Martin
2017-04-01
Spatial and temporal patterns of throughfall can affect the heterogeneity of ecological, biogeochemical and hydrological processes at a forest floor and further the underlying soil. Previous research suggests different factors controlling the spatial and temporal patterns of throughfall, but most studies focus on coniferous forest, where the vegetation coverage is more or less constant over time. In deciduous forests the leaf area index varies due to the leaf fall in autumn which implicates a specific spatial and temporal variability of throughfall and furthermore of the soil moisture. Therefore, in the present study, the measurements of throughfall and soil moisture in a deciduous forest in the low mountain ranges focused especially on the period of leaf fall. The aims of this study were: 1) to detect the spatial and temporal variability of both the throughfall and the soil moisture, 2) to examine the temporal stability of the spatial patterns of the throughfall and soil moisture and 3) relate the soil moisture patterns to the throughfall patterns and further to the canopy characteristics. The study was carried out in a small catchment on middle Hesse (Germany) which is covered by beech forest. Annual mean air temperature is 9.4°C (48.9˚F) and annual mean precipitation is 650 mm. Base materials for soil genesis is greywacke and clay shale from Devonian deposits. The soil type at the study plot is a shallow cambisol. The study plot covers an area of about 150 m2 where 77 throughfall samplers where installed. The throughfall and the soil moisture (FDR-method, 20 cm depth) was measured immediately after every rainfall event at the 77 measurement points. During the period of October to December 2015 altogether 7 events were investigated. The geostatistical method kriging was used to interpolate between the measurements points to visualize the spatial patterns of each investigated parameter. Time-stability-plots were applied to examine temporal scatters of each investigated parameter. The spearmen and pearson correlation coefficients were applied to detect the relationship between the different investigated parameters. First results show that the spatial variability of throughfall decreases if the total amount of the throughfall increases. The soil moisture shows a similar behavior. It`s spatial variability decreases if higher soil moisture values were measured. Concerning the temporal stability of throughfall it can be shown that it is very high during the leaf-free period, although the rainfall events have different total througfall amounts. The soil moisture patterns consists of a low temporal stability and additionally only during one event a significant correlations between throughfall and soil moisture patterns exists. This implies that other factors than the throughfall patterns control the spatial patterns of soil moisture.
Intensity of hydrostimulation for the induction of root hydrotropism and its sensing by the root cap
NASA Technical Reports Server (NTRS)
Takahashi, H.; Scott, T. K.
1993-01-01
Roots of Pisum sativum L. and Zea mays L. were exposed to different moisture gradients established by placing both wet cheesecloth (hydrostimulant) and saturated aqueous solutions of various salts in a closed chamber. Atmospheric conditions with different relative humidity (RH) in a range between 98 and 86% RH were obtained at root level, 2 to 3mm from the water-saturated hydrostimulant. Roots of Silver Queen corn placed vertically with the tips down curved sideways toward the hydrostimulant in response to approximately 94% RH but did not respond positively to RH higher than approximately 95%. The positive hydrotropic response increased linearly as RH was lowered from 95 to 90%. A maximum response was observed at RH between 90 and 86%. However, RH required for the induction of hydrotropism as well as the responsiveness differed among plant species used; gravitropically sensitive roots appeared to require a somewhat greater moisture gradient for the induction of hydrotropism. Decapped roots of corn failed to curve hydrotropically, suggesting the root cap as a major site of hydrosensing.
Implementation of Sensor and Control Designs for Bioregenerative Systems
NASA Technical Reports Server (NTRS)
Rodriguez, Pedro R. (Editor)
1990-01-01
The goal of the Spring 1990 EGM 4001 Design class was to design, fabricate, and test sensors and control systems for a closed loop life support system (CLLSS). The designs investigated were to contribute to the development of NASA's Controlled Ecological Life Support System (CELSS) at Kennedy Space Center (KSC). Designs included a seed moisture content sensor, a porous medium wetness sensor, a plant health sensor, and a neural network control system. The seed group focused on the design and implementation of a sensor that could detect the moisture content of a seed batch. The porous medium wetness group concentrated on the development of a sensor to monitor the amount of nutrient solution within a porous plate incorporating either infrared reflectance or thermal conductance properties. The plant health group examined the possibility of remotely monitoring the health of the plants within the Biomass Production Chamber (BPC) using infrared reflectance properties. Finally, the neural network group concentrated on the ability to use parallel processing in order to control a robot arm and analyze the data from the health sensor to detect regions of a plant.
Effects of ozone on the regrowth and energy reserves of a ladino clover-tall fescue pasture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebbeck, J.; Blum, U.; Heagle, A.S.
A ladino clover and tall fescue pasture was established in September 1983 to determine the impact of ozone and available soil moisture on plants grown in open-top field chambers and exposed for 12 h daily to ozone (O{sub 3}) from April through October in 1984 and 1985. Samples were removed periodically to measure above- and below-ground biomass and energy reserves of the clover and fescue. At the final harvest, clover was the dominant species in below-ambient O{sub 3} while fescue was the dominant species at ambient and above-ambient O{sub 3} concentrations. Ladino clover shoot and root biomass was reduced bymore » O{sub 3} for all harvest when compared to clover grown in the charcoal-filtered-air. Statistically-significant O{sub 3} effects were observed on clover shoots prior to roots. For most harvests, the energy reserves of ladino clover roots were suppressed by increasing O{sub 3} concentrations. Clover shoot starch levels were not greatly affected by O{sub 3} or moisture.« less
Gallastegui, G; Muñoz, R; Barona, A; Ibarra-Berastegi, G; Rojo, N; Elías, A
2011-01-30
The influence of water irrigation on both the long-term and short-term performance of p-xylene biodegradation under several organic loading scenarios was investigated using an organic packing material composed of pelletised sawdust and pig manure. Process operation in a modular biofilter, using no external water supply other than the moisture from the saturated inlet air stream, showed poor p-xylene abatement efficiencies (≈33 ± 7%), while sustained irrigation every 25 days rendered a high removal efficiency (RE) for a critical loading rate of 120 g m(-3)h(-1). Periodic profiles of removal efficiency, temperature and moisture content were recorded throughout the biofilter column subsequent to each biofilter irrigation. Hence, higher p-xylene biodegradation rates were always initially recorded in the upper module, which resulted in a subsequent increase in temperature and a decrease in moisture content. This decrease in the moisture content in the upper module resulted in a higher removal rate in the middle module, while the moisture level in the lower module steadily increased as a result of water condensation. Based on these results, mass balance calculations performed using measured bed temperatures and relatively humidity values were successfully used to account for water balances in the biofilter over time. Finally, the absence of bed compaction after 550 days of continuous operation confirmed the suitability of this organic material for biofiltration processes. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sorí, Rogert; Nieto, Raquel; Drumond, Anita; Vicente-Serrano, Sergio M.; Gimeno, Luis
2017-12-01
The atmospheric branch of the hydrological cycle over the Indus, Ganges, and Brahmaputra river basins (IRB, GRB, and BRB respectively) in the South Asian region was investigated. The 3-dimensional model FLEXPART v9.0 was utilized. An important advantage of this model is that it permits the computation of the freshwater budget on air parcel trajectories both backward and forward in time from 0.1 to 1000 hPa in the atmospheric vertical column. The analysis was conducted for the westerly precipitation regime (WPR) (November-April) and the monsoonal precipitation regime (MPR) (May-October) in the period from 1981 to 2015. The main terrestrial and oceanic climatological moisture sources for the IRB, GRB, and BRB and their contribution to precipitation over the basins were identified. For the three basins, the most important moisture sources for precipitation are (i) in the continental regions, the land masses to the west of the basins (in this case called western Asia), the Indian region (IR), and the basin itself, and (ii) from the ocean, the utmost sources being the Indian Ocean (IO) and the Bay of Bengal (BB), and it is remarkable that despite the amount of moisture reaching the Indus and Ganges basins from land sources, the moisture supply from the IO seems to be first associated with the rapid increase or decrease in precipitation over the sources in the MPR. The technique of the composites was used to analyse how the moisture uptake values spatially vary from the sources (the budget of evaporation minus precipitation (E - P) was computed in a backward experiment from the basins) but during the pre-onset and pre-demise dates of the monsoonal rainfall over each basin; this confirmed that over the last days of the monsoon at the basins, the moisture uptake areas decrease in the IO. The Indian region, the Indian Ocean, the Bay of Bengal, and the basins themselves are the main sources of moisture responsible for negative (positive) anomalies of moisture contribution to the basins during composites of driest (wettest) WPR and MPR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossiord, Charlotte; Sevanto, Sanna Annika; Limousin, Jean -Marc
Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit ( VPD) and soil moisture variations, and the generality of these effects across forest types and environments usingmore » four manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water ( REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Altogether, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.« less
Grossiord, Charlotte; Sevanto, Sanna Annika; Limousin, Jean -Marc; ...
2017-12-14
Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit ( VPD) and soil moisture variations, and the generality of these effects across forest types and environments usingmore » four manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water ( REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Altogether, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossiord, Charlotte; Sevanto, Sanna; Limousin, Jean-Marc
Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit (VPD) and soil moisture variations, and the generality of these effects across forest types and environments using fourmore » manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water (REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Overall, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.« less
Rheological characteristics of intermediate moisture blends of pregelatinized and raw wheat starch.
Alavi, Sajid H; Chen, Kwan-Han; Rizvi, Syed S H
2002-11-06
Rheological properties of intermediate moisture (35-45% wet basis) doughs from pregelatinized and raw wheat starch blends of various ratios were characterized using off-line capillary rheometry and online slit-die extrusion. In the case of capillary rheometer, viscosity of blends decreased by up to 50% as pregel starch concentration increased from 5 to 45%, whereas tests could not be conducted beyond 45% pregel starch concentration. For slit-die extrusion, viscosity was at a minimum at 60% pregel concentration, and it decreased by as much as 65% as pregel concentration increased from 0 to 60%. As pregel concentration increased (from 5 to 45% for the rheometer and from 0 to 60% for the extruder), the amount of water available in the system for gelatinization of existing raw starch granules decreased due to the stronger water-binding capacity of pregelatinized starch. This led to decreased additional conversion in the rheometer and extruder, which in turn caused a decrease in the volume fraction of starch and a reduction in viscosity.
Moisture transfer from stopper to product and resulting stability implications.
Pikal, M J; Shah, S
1992-01-01
Since the stability of a freeze-dried product is often sensitive to the level of moisture, control of residual moisture by attention to the secondary drying phase of the freeze-drying process is of considerable importance. However, several reports in the literature as well as our own experience suggest that low residual moisture immediately after manufacture does not ensure low moisture throughout the shelf life of the product. Equilibration of the product with moisture in the stopper can lead to significant increases in product water content. This research is a study of the kinetic and equilibrium aspects of moisture transfer from stopper to product at 5 degrees C, 25 degrees C, and 40 degrees C for two amorphous materials: vancomycin (highly hygroscopic) and lactose (moderately hygroscopic). Stoppers are 13 mm butyl rubber (#1816, West Co.) slotted freeze-drying stoppers which were studied: (a) "U"-with no treatment; (b) "SV1"-steam-sterilized followed by 1 hr vacuum drying; and (c) "SV8"-steam sterilized followed by 8 hrs vacuum drying. No evidence was found for moisture transmission through the stopper. Rather, the product moisture content increases with time and reaches an apparent equilibrium value characteristic of the product, amount of product, and stopper treatment method ("SV1" much greater than "U" greater than "SV1"). As a first approximation, the rate of approach to "equilibrium" depends only on temperature (t1/2 approximately 10 months at 5 degrees C to approximately 4 days at 40 degrees C) with the "equilibrium" water content being independent of temperature. The "equilibrium" moisture content increases as the dose decreases and is larger for vancomycin than for lactose. The "equilibrium" moisture contents range from 5.0% (25 mg vancomycin, "SV1" stoppers) to 0.68% (100 mg lactose, "SV8" stoppers).
NASA Astrophysics Data System (ADS)
kwatcho Kengdo, S.; Sonwa, D. J.; Njine-Bememba, C. B.; Djatsa, L. D.; Rufino, M. C.; Verchot, L. V.; Tejedor, J.; Dannenmann, M.
2016-12-01
The forests of the Congo Basin are subject to deforestation and land use change, which may severely influence the soil-atmosphere exchange of greenhouse gases (GHG). However, due to absence of analytical capacities in Central Africa, there is a lack of knowledge on fluxes of CO2, CH4 and N2O at the soil-atmosphere interface for natural and managed ecosystems, which introduces large uncertainties into regional and national GHG reporting. The objectives of this study were to quantify GHG emissions from typical land use on the margins of the Congo forests, to analyze seasonal variability and environmental controls of soil-atmosphere GHG fluxes across a land use gradient and explore options of sustainable intensification of maize cultivation. In Cameroon, we quantified fluxes of CO2, CH4, and N2O at the soil - atmosphere interface in secondary forests, cocoa agroforests, unfertilized mixed crop fields, and three different types of maize cultivation: unfertilized control, maize intercropped with N fixing beans, maize applied with mineral nitrogen fertilizer. We used manual static chamber techniques with approximately weekly temporal resolution over a full year and analyzed gas samples using a gas chromatograph. Soil temperature and moisture data were permanently recorded at main sites and soil sampling provided information on soil mineral N content. We found highest CO2 and N2O emissions, net CH4 uptake and soil mineral N concentrations in the secondary forest with lower values observed in cocoa agroforest and in particular in extensive mixed crop. Soil moisture changes were the dominant driver of seasonal changes of GHG fluxes at all study sites. Intercropping with N fixing beans did not alter soil N2O emissions from maize fields. In contrast, application of mineral N increased soil N2O emissions by more than a factor of five. Our work highlights the importance of soil moisture as the driver of GHG fluxes and in particular for N2O indicates a strong decrease in soil emissions after forest conversion to extensive crop fields. Agricultural intensification based on mineral N fertilizer can increase N2O emissions to levels significantly higher than those observed in secondary forests. Our trial with intercropped N fixing beans show promise towards a sustainable intensification of agriculture in the study region.
Vegetation function and non-uniqueness of the hydrological response
NASA Astrophysics Data System (ADS)
Ivanov, V. Y.; Fatichi, S.; Kampf, S. K.; Caporali, E.
2012-04-01
Through local moisture uptake vegetation exerts seasonal and longer-term impacts on the watershed hydrological response. However, the role of vegetation may go beyond the conventionally implied and well-understood "sink" function in the basin soil moisture storage equation. We argue that vegetation function imposes a "homogenizing" effect on pre-event soil moisture spatial storage, decreasing the likelihood that a rainfall event will result in a topographically-driven redistribution of soil water and the consequent formation of variable source areas. In combination with vegetation temporal dynamics, this may lead to the non-uniqueness of the hydrological response with respect to the mean basin wetness. This study designs a set of relevant numerical experiments carried out with two physically-based models; one of the models, HYDRUS, resolves variably saturated subsurface flow using a fully three-dimensional formulation, while the other model, tRIBS+VEGGIE, uses a one-dimensional formulation applied in a quasi-three-dimensional framework in combination with the model of vegetation dynamics. We demonstrate that (1) vegetation function modifies spatial heterogeneity in moisture spatial storage by imposing different degrees of subsurface flow connectivity; explore mechanistically (2) how and why a basin with the same mean soil moisture can have distinctly different spatial soil moisture distributions; and demonstrate (2) how these distinct moisture distributions result in a hysteretic runoff response to precipitation. Furthermore, the study argues that near-surface soil moisture is an insufficient indicator of the initial moisture state of a catchment with the implication of its limited effect on hydrological predictability.
Lin, Songyi; Xue, Peiyu; Yang, Shuailing; Li, Xingfang; Dong, Xiuping; Chen, Feng
2017-08-01
This study has elucidated moisture dynamics in the soybean peptide, Ser-His-Glu-Cys-Asn (SHECN) powder by using dynamic vapor sorption (DVS) and nuclear magnetic resonance (NMR). We also tried to investigate the effects of moisture absorption on the biological activity and chemical properties of SHECN with some effective methods such as mid-infrared (MIR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). DVS results showed that the moisture absorption of SHECN could reach a maximum of 33%, and the SHECN powder after synthesis actually existed in a trihydrate state of SHECN.3H 2 O. Low-field NMR revealed that three water proportions including strong combined water, binding water and bulk water were involved in SHECN moisture absorption and absored water dominantly existed in the form of combined water. Magnetic resonance imaging (MRI) and MIR spectroscopy results indicated that moisture absorption could change the morphology and structure of SHECN. After moisture absorption at 50% and 75% relative humidity, 19 volatiles were identified by GC-MS analysis. Additionally, this study showed that a part of reductive groups in SHECN was oxidized and its antioxidant ability declined significantly (P < 0.05) after moisture absorption. Water absorbed into SHECN powder can significantly change its microstructure and cause its activity to decrease. We must prevent SHECN from absorbing moisture during storage because the water can accelerate the oxidation of samples and promote microbial reactions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Spatiotemporal surface moisture dynamics on a coastal beach
NASA Astrophysics Data System (ADS)
Smit, Y.; Donker, J.; Ruessink, G.
2017-12-01
Surface moisture strongly controls aeolian transport on a beach and, accordingly, understanding its spatiotemporal variability will aid in developing a predictive model for the aeolian input of wind-blown beach sand into the foredune. In our earlier work (Smit et al., 2017, Aeolian Research) we have illustrated that the reflectance signal of a near-infrared Terrestrial Laser Scanner (TLS) corresponds well to gravimetric surface moisture content (in %) over its full range. Here, we analyze TLS-derived surface moisture maps with a 1x1 m spatial and a 15-min temporal resolution and concurrent groundwater measurements collected during a falling and rising tide at Egmond beach, the Netherlands. The maps show that the beach can be conceptualized into three surface moisture zones. First, the swash zone: 18% - 25%. Second, the intertidal zone: 5% - 25% (large fluctuations). A striking result for this zone is that surface moisture can decrease with a rate varying between 2.5% - 4% per hour, and cumulatively 16% during a single falling tide. And third, the back beach zone: 3% - 7%. During falling tide surface moisture fluctuations are strongly linked to the behavior of groundwater depth. A clear `Van Genuchten-type' retention curve can describe the relation between the two. Furthermore, no anticipated processes by capillary forces were observed in advance of the rising tide and no hysteresis was observed over de complete tidal cycle. Concluding, the TLS-derived moisture maps and the groundwater measurements clearly show that groundwater depth is the key control on spatiotemporal surface moisture variations.
NASA Astrophysics Data System (ADS)
Lorenz, Ruth; Argüeso, Daniel; Donat, Markus G.; Pitman, Andrew J.; van den Hurk, Bart; Berg, Alexis; Lawrence, David M.; Chéruy, Frédérique; Ducharne, Agnès.; Hagemann, Stefan; Meier, Arndt; Milly, P. C. D.; Seneviratne, Sonia I.
2016-01-01
We examine how soil moisture variability and trends affect the simulation of temperature and precipitation extremes in six global climate models using the experimental protocol of the Global Land-Atmosphere Coupling Experiment of the Coupled Model Intercomparison Project, Phase 5 (GLACE-CMIP5). This protocol enables separate examinations of the influences of soil moisture variability and trends on the intensity, frequency, and duration of climate extremes by the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) emission scenario. Removing soil moisture variability significantly reduces temperature extremes over most continental surfaces, while wet precipitation extremes are enhanced in the tropics. Projected drying trends in soil moisture lead to increases in intensity, frequency, and duration of temperature extremes by the end of the 21st century. Wet precipitation extremes are decreased in the tropics with soil moisture trends in the simulations, while dry extremes are enhanced in some regions, in particular the Mediterranean and Australia. However, the ensemble results mask considerable differences in the soil moisture trends simulated by the six climate models. We find that the large differences between the models in soil moisture trends, which are related to an unknown combination of differences in atmospheric forcing (precipitation, net radiation), flux partitioning at the land surface, and how soil moisture is parameterized, imply considerable uncertainty in future changes in climate extremes.
Cao, Zhiming; Rossi, Lorenzo; Stowers, Cheyenne; Zhang, Weilan; Lombardini, Leonardo; Ma, Xingmao
2018-01-01
The ongoing global climate change raises concerns over the decreasing moisture content in agricultural soils. Our research investigated the physiological impact of two types of cerium oxide nanoparticles (CeO 2 NPs) on soybean at different moisture content levels. One CeO 2 NP was positively charged on the surface and the other negatively charged due to the polyvinylpyrrolidone (PVP) coating. The results suggest that the effect of CeO 2 NPs on plant photosynthesis and water use efficiency (WUE) was dependent upon the soil moisture content. Both types of CeO 2 NPs exhibited consistently positive impacts on plant photosynthesis at the moisture content above 70% of field capacity (θ fc ). Similar positive impact of CeO 2 NPs was not observed at 55% θ fc , suggesting that the physiological impact of CeO 2 NPs was dependent upon the soil moisture content. The results also revealed that V Cmax (maximum carboxylation rate) was affected by CeO 2 NPs, indicating that CeO 2 NPs affected the Rubisco activity which governs carbon assimilation in photosynthesis. In conclusion, CeO 2 NPs demonstrated significant impacts on the photosynthesis and WUE of soybeans and such impacts were affected by the soil moisture content. Graphical abstract Soil moisture content affects plant cerium oxide nanoparticle interactions.
Kanaujia, Parijat; Lau, Grace; Ng, Wai Kiong; Widjaja, Effendi; Schreyer, Martin; Hanefeld, Andrea; Fischbach, Matthias; Saal, Christoph; Maio, Mario; Tan, Reginald B H
2011-09-01
Enhanced dissolution of poorly soluble active pharmaceutical ingredients (APIs) in amorphous solid dispersions often diminishes during storage due to moisture-induced re-crystallization. This study aims to investigate the influence of moisture protection on solid-state stability and dissolution profiles of melt-extruded fenofibrate (FF) and ketoconazole (KC) solid dispersions. Samples were kept in open, closed and Activ-vials(®) to control the moisture uptake under accelerated conditions. During 13-week storage, changes in API crystallinity were quantified using powder X-ray diffraction (PXRD) (Rietveld analysis) and high sensitivity differential scanning calorimetry (HSDSC) and compared with any change in dissolution profiles. Trace crystallinity was observed by Raman microscopy, which otherwise was undetected by PXRD and HSDSC. Results showed that while moisture protection was ineffective in preventing the re-crystallization of amorphous FF, KC remained X-ray amorphous despite 5% moisture uptake. Regardless of the degree of crystallinity increase in FF, the enhanced dissolution properties were similarly diminished. Moisture uptake above 10% in KC samples also led to re-crystallization and significant decrease in dissolution rates. In conclusion, eliminating moisture sorption may not be sufficient in ensuring the stability of solid dispersions. Analytical quantification of API crystallinity is crucial in detecting subtle increase in crystallinity that can diminish the enhanced dissolution properties of solid dispersions.
NASA Astrophysics Data System (ADS)
Zhao, L.; Hu, G.; Wu, X.; Tian, L.
2017-12-01
Research on the hydrothermal properties of active layer during the thawing and freezing processes was considered as a key question to revealing the heat and moisture exchanges between permafrost and atmosphere. The characteristics of freezing and thawing processes at Tanggula (TGL) site in permafrost regions on the Tibetan Plateau, the results revealed that the depth of daily soil temperature transmission was about 40 cm shallower during thawing period than that during the freezing period. Soil warming process at the depth above 140 cm was slower than the cooling process, whereas they were close below 140 cm depth. Moreover, the hydro-thermal properties differed significantly among different stages. Precipitation caused an obviously increase in soil moisture at 0-20 cm depth. The vertical distribution of soil moisture could be divided into two main zones: less than 12% in the freeze state and greater than 12% in the thaw state. In addition, coupling of moisture and heat during the freezing and thawing processes also showed that soil temperature decreased faster than soil moisture during the freezing process. At the freezing stage, soil moisture exhibited an exponential relationship with the absolute soil temperature. Energy consumed for water-ice conversion during the freezing process was 149.83 MJ/m2 and 141.22 MJ/m2 in 2011 and 2012, respectively, which was estimated by the soil moisture variation.
Effects of climate change on soil moisture over China from 1960-2006
Zhu, Q.; Jiang, H.; Liu, J.
2009-01-01
Soil moisture is an important variable in the climate system and it has sensitive impact on the global climate. Obviously it is one of essential components in the climate change study. The Integrated Biosphere Simulator (IBIS) is used to evaluate the spatial and temporal patterns of soil moisture across China under the climate change conditions for the period 1960-2006. Results show that the model performed better in warm season than in cold season. Mean errors (ME) are within 10% for all the months and root mean squared errors (RMSE) are within 10% except winter season. The model captured the spatial variability higher than 50% in warm seasons. Trend analysis based on the Mann-Kendall method indicated that soil moisture in most area of China is decreased especially in the northern China. The areas with significant increasing trends in soil moisture mainly locate at northwestern China and small areas in southeastern China and eastern Tibet plateau. ?? 2009 IEEE.
Organic amaranth starch: A study of its technological properties after heat-moisture treatment.
Bet, Camila Delinski; de Oliveira, Cristina Soltovski; Colman, Tiago André Denck; Marinho, Marina Tolentino; Lacerda, Luiz Gustavo; Ramos, Augusto Pumacahua; Schnitzler, Egon
2018-10-30
Organic amaranth starch (Amaranthus caudatus) was studied after heat-moisture treatment (HMT) using different moisture contents and different times. The starch extracted by the aqueous method presented low lipid and protein content. After HMT, an increase in the thermal stability was identified. The onset and peak temperatures were higher with an increase in moisture content and the times used in the modification. The gelatinisation enthalpy varied due to the heterogeneity of the crystals formed after the structural reorganisation caused by HMT. The relative crystallinity was lower for the physically modified starches. An increase in the pasting temperature was accompanied by a decrease in the viscosity, setback and breakdown, which were proportional to the moisture and time used. The morphology of the HMT-modified samples was not altered; however, agglomerations were noted. Low levels of dispersion homogeneity and suspension stability were observed for the modified samples due to the strong presence of agglomerates. Published by Elsevier Ltd.
Dynamic moisture sorption characteristics of enzyme-resistant recrystallized cassava starch.
Mutungi, Christopher; Schuldt, Stefan; Onyango, Calvin; Schneider, Yvonne; Jaros, Doris; Rohm, Harald
2011-03-14
The interaction of moisture with enzyme-resistant recrystallized starch, prepared by heat-moisture treatment of debranched acid-modified or debranched non-acid-modified cassava starch, was investigated in comparison with the native granules. Crystallinities of the powdered products were estimated by X-ray diffraction. Moisture sorption was determined using dynamic vapor sorption analyzer and data fitted to various models. Percent crystallinities of native starch (NS), non-acid-modified recrystallized starch (NAMRS), and acid-modified recrystallized starch (AMRS) were 39.7, 51.9, and 56.1%, respectively. In a(w) below 0.8, sorption decreased in the order NS > NAMRS > AMRS in line with increasing sample crystallinities but did not follow this crystallinity dependence at higher a(w) because of condensation and polymer dissolution effects. Adsorbed moisture became internally absorbed in NS but not in NAMRS and AMRS, which might explain the high resistance of the recrystallized starches to digestion because enzyme and starch cannot approach each other over fairly sufficient surface at the molecular level.
2018-03-12
The first growth test of crops in the Advanced Plant Habitat aboard the International Space Station yielded great results. Arabidopsis seeds – small flowering plants related to cabbage and mustard – grew for about six weeks and the dwarf wheat for five weeks. The APH is now ready to support large plant testing on ISS. APH is a fully enclosed, closed-loop system with an environmentally controlled growth chamber. It uses red, blue and green LED lights, and broad spectrum white LED lights. The system's more than 180 sensors will relay real-time information, including temperature, oxygen content and moisture levels back to the team at Kennedy Space Center.
Effect of soil moisture on diurnal convection and precipitation in Large-Eddy Simulations
NASA Astrophysics Data System (ADS)
Cioni, Guido; Hohenegger, Cathy
2017-04-01
Soil moisture and convective precipitation are generally thought to be strongly coupled, although limitations in the modeling set-up of past studies due to coarse resolutions, and thus poorly resolved convective processes, have prevented a trustful determination of the strength and sign of this coupling. In this work the soil moisture-precipitation feedback is investigated by means of high-resolution simulations where convection is explicitly resolved. To that aim we use the LES (Large Eddy Simulation) version of the ICON model with a grid spacing of 250 m, coupled to the TERRA-ML soil model. We use homogeneous initial soil moisture conditions and focus on the precipitation response to increase/decrease of the initial soil moisture for various atmospheric profiles. The experimental framework proposed by Findell and Eltahir (2003) is revisited by using the same atmospheric soundings as initial condition but allowing a full interaction of the atmosphere with the land-surface over a complete diurnal cycle. In agreement with Findell and Eltahir (2003) the triggering of convection can be favoured over dry soils or over wet soils depending on the initial atmospheric sounding. However, total accumulated precipitation is found to always decrease over dry soils regardless of the employed sounding, thus highlighting a positive soil moisture-precipitation feedback (more rain over wetter soils) for the considered cases. To understand these differences and to infer under which conditions a negative feedback may occur, the total accumulated precipitation is split into its magnitude and duration component. While the latter can exhibit a dry soil advantage, the precipitation magnitude strongly correlates with the surface latent heat flux and thus always exhibits a wet soil advantage. The dependency is so strong that changes in duration cannot offset it. This simple argument shows that, in our idealised setup, a negative feedback is unlikely to be observed. The effects of other factors on the soil moisture-precipitation coupling, namely cloud radiative effects, large-scale forcing, winds, and plants are investigated by conducting further sensitivity experiments. All the experiments support a positive soil moisture-precipitation feedback. References: -Findell, K. L., and E. A. Eltahir, 2003: Atmospheric controls on soil moisture-boundary layer interactions. part I: Framework development. Journal of Hydrometeorology, 4 (3), 552-569.
[Effects of wind speed on drying processes of fuelbeds composed of Mongolian oak broad-leaves.
Zhang, Li Bin; Sun, Ping; Jin, Sen
2016-11-18
Water desorption processes of fuel beds with Mongolian oak broad-leaves were observed under conditions with various wind speeds but nearly constant air temperature and humidity. The effects of wind speed on drying coefficients of fuel beds with various moisture contents were analyzed. Three phases of drying process, namely high initial moisture content (>75%) of phase 1, transition state of phase 2, and equilibrium phase III could be identified. During phase 1, water loss rate under higher wind speed was higher than that under lower wind speed. Water loss rate under higher wind speed was lower than that under lower wind speed during phase 2. During phase 3, water loss rates under different wind speeds were similar. The wind effects decreased with the decrease of fuel moisture. The drying coefficient of the Mongolian oak broad-leaves fuel beds was affected by wind speed and fuel bed compactness, and the interaction between these two factors. The coefficient increased with wind speed roughly in a monotonic cubic polynomial form.
Clinical efficacy of facial masks containing yoghurt and Opuntia humifusa Raf. (F-YOP).
Yeom, Gyoseon; Yun, Dae-Myoung; Kang, Yun-Won; Kwon, Ji-Sook; Kang, In-Oh; Kim, Sun Yeou
2011-01-01
Facial packs or masks are popular beauty treatments that are thought to improve skin quality. We formulated a yoghurt pack using natural ingredients (F-YOP), with consideration of skin affinity, safety, health, and beauty. Then, we performed an in vitro assessment of biological activity and in vivo assessments of moisture, TEWL, melanin content, and elasticity. Facial areas treated with F-YOP showed increased moisture compared to control regions: 89±6.26% (forehead), 140.72±10.19% (cheek), and 123.29±6.67% (chin). Transepidermal water loss (TEWL) values were decreased in the treated areas compared to control: 101.38±6.95% (forehead), 50.37±5.93% (cheek), and l57.81±10.88% (chin). Elasticity was decreased in the control region, whereas the treatment region did not change. The initial elasticity was maintained in the cheek. F-YOP exhibited activity on DPPH radical scavenging, SOD-like activity, and lipoxygenase activity. F-YOP treatment successfully improved the moisture, brightness, and elasticity of treated skin.
NASA Astrophysics Data System (ADS)
Lora, Juan M.; Mitchell, Jonathan L.; Risi, Camille; Tripati, Aradhna E.
2017-01-01
Southwestern North America was wetter than present during the Last Glacial Maximum. The causes of increased water availability have been recently debated, and quantitative precipitation reconstructions have been underutilized in model-data comparisons. We investigate the climatological response of North Pacific atmospheric rivers to the glacial climate using model simulations and paleoclimate reconstructions. Atmospheric moisture transport due to these features shifted toward the southeast relative to modern. Enhanced southwesterly moisture delivery between Hawaii and California increased precipitation in the southwest while decreasing it in the Pacific Northwest, in agreement with reconstructions. Coupled climate models that are best able to reproduce reconstructed precipitation changes simulate decreases in sea level pressure across the eastern North Pacific and show the strongest southeastward shifts of moisture transport relative to a modern climate. Precipitation increases of ˜1 mm d-1, due largely to atmospheric rivers, are of the right magnitude to account for reconstructed pluvial conditions in parts of southwestern North America during the Last Glacial Maximum.
Tan, Xiaoyan; Li, Xiaoxi; Chen, Ling; Xie, Fengwei; Li, Lin; Huang, Jidong
2017-04-01
Breadfruit starch was subjected to heat-moisture treatment (HMT) at different moisture content (MC). HMT did not apparently change the starch granule morphology but decreased the molecular weight and increased the amylose content. With increased MC, HMT transformed the crystalline structure (B→A+B→A) and decreased the relative crystallinity. With ≥25% MC, the scattering peak at ca. 0.6nm -1 disappeared, suggesting the lamellar structure was damaged. Compared with native starch, HMT-modified samples showed greater thermostability. Increased MC contributed to a higher pasting temperature, lower viscosity, and no breakdown. The pasting temperature of native and HMT samples ranged from 68.8 to 86.2°C. HMT increased the slowly-digestible starch (SDS) and resistant starch (RS) contents. The SDS content was 13.24% with 35% MC, which was 10.25% higher than that of native starch. The increased enzyme resistance could be ascribed to the rearrangement of molecular chains and more compact granule structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Malekzadeh, Mohammad; Abedini Najafabadi, Hamed; Hakim, Maziar; Feilizadeh, Mehrzad; Vossoughi, Manouchehr; Rashtchian, Davood
2016-02-01
In this research, organic solvent composed of hexane and methanol was used for lipid extraction from dry and wet biomass of Chlorella vulgaris. The results indicated that lipid and fatty acid extraction yield was decreased by increasing the moisture content of biomass. However, the maximum extraction efficiency was attained by applying equivolume mixture of hexane and methanol for both dry and wet biomass. Thermodynamic modeling was employed to estimate the effect of hexane/methanol ratio and moisture content on fatty acid extraction yield. Hansen solubility parameter was used in adjusting the interaction parameters of the model, which led to decrease the number of tuning parameters from 6 to 2. The results indicated that the model can accurately estimate the fatty acid recovery with average absolute deviation percentage (AAD%) of 13.90% and 15.00% for the two cases of using 6 and 2 adjustable parameters, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Temporal and Spatial Variations in Soil CO2 Effluxes of Different Ecosystems
NASA Astrophysics Data System (ADS)
Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Suto, H.; Fujinuma, Y.; Inoue, G.
2005-12-01
Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. Reasons include the lack of automated measurement systems that are commercially available, and the need for frequent servicing to ensure accurate measurements. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux during snow-free seasons. We installed the chamber systems in boreal forest in Alaska, tundra in west Siberia, temperate and cool-temperate forests in Japan and Korea, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 efflux were measured to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 26 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. Soil CO2 efflux of forest ecosystems showed large spatial variation and was correlated with vegetation type and the chamber size.
Operation of an enclosed aquatic ecosystem in the Shenzhou-8 mission
NASA Astrophysics Data System (ADS)
Li, Xiaoyan; Richter, Peter R.; Hao, Zongjie; An, Yanjun; Wang, Gaohong; Li, Dunhai; Liu, Yongding; Strauch, Sebastian M.; Schuster, Martin; Haag, Ferdinand W.; Lebert, Michael
2017-05-01
Long- term spaceflight needs reliable Biological life support systems (BLSS) to supply astronauts with enough food, fresh air and recycle wasters, but the knowledge about the operation pattern and controlling strategy is rear. For this purpose, a miniaturized enclosed aquatic ecosystem was developed and flown on the Chinese spaceship Shenzhou-8. The system with a total volume of about 60 mL was separated into two chambers by means of a gas transparent membrane. The lower chamber was inoculated with Euglena gracilis cells, and the upper chamber was cultured with Chlorella cells and three snails. After 17.5 days flight, the samples were analyzed. It was found that all snails in the ground module (GM) were alive, while in the flight module (FM) only one snail survived. The total cell numbers, assimilation of nutrients like nitrogen and phosphorus, soluble proteins and carbohydrate contents showed a decrease in FM than in GM. The correlation analysis showed upper chambers of both FM and GM had the same positive and negative correlation factors, while differential correlation was found in lower chambers. These results suggested primary productivity in the enclosed system decreased in microgravity, accompanied with nutrients assimilation. The FM chamber endured lacking of domination species to sustain the system development and GM chamber endured richness in population abundance. These results implied photosynthesis intensity should be reduced to keep the system healthy. More Chlorella but less Euglena might be a useful strategy to sustain system stability. It is the first systematic analysis of enclosed systems in microgravity.
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2013-08-01
Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.
Russian thistle for soil mulch in coal mine reclamation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, A.D.; Tucker, T.C.; Thames, J.L.
1979-01-01
The effectiveness of Russian thistle mulch in reducing soil moisture loss from coal mine soil was gauged and compared with the effectiveness of barley straw mulch. The decrease in soil moisture loss after mulch addition was greater in a low temperature, high humidity environment. Russian thistle mulch was as effective as barley straw in reducing soil moisture loss in Red Mesa loam, unmined soil, and coal mine soil. Because Russian thistle can be grown on mine spoils and has a higher organic volume than barley straw mulch has, treatment of mine soil with thistle will improve soil characteristics and plantmore » growth. (14 references, 1 table)« less
Monte Carlo calculation of energy deposition in ionization chambers for tritium measurements
NASA Astrophysics Data System (ADS)
Zhilin, Chen; Shuming, Peng; Dan, Meng; Yuehong, He; Heyi, Wang
2014-10-01
Energy deposition in ionization chambers for tritium measurements has been theoretically studied using Monte Carlo code MCNP 5. The influence of many factors, including carrier gas, chamber size, wall materials and gas pressure, has been evaluated in the simulations. It is found that β rays emitted by tritium deposit much more energy into chambers flowing through with argon than with deuterium in them, as much as 2.7 times higher at pressure 100 Pa. As chamber size gets smaller, energy deposition decreases sharply. For an ionization chamber of 1 mL, β rays deposit less than 1% of their energy at pressure 100 Pa and only 84% even if gas pressure is as high as 100 kPa. It also indicates that gold plated ionization chamber results in the highest deposition ratio while aluminum one leads to the lowest. In addition, simulations were validated by comparison with experimental data. Results show that simulations agree well with experimental data.
NASA Astrophysics Data System (ADS)
Timonen, Hilkka; Karjalainen, Panu; Saukko, Erkka; Saarikoski, Sanna; Aakko-Saksa, Päivi; Simonen, Pauli; Murtonen, Timo; Dal Maso, Miikka; Kuuluvainen, Heino; Bloss, Matthew; Ahlberg, Erik; Svenningsson, Birgitta; Pagels, Joakim; Brune, William H.; Keskinen, Jorma; Worsnop, Douglas R.; Hillamo, Risto; Rönkkö, Topi
2017-04-01
The effect of fuel ethanol content (10, 85 and 100 %) on primary emissions and on subsequent secondary aerosol formation was investigated for a Euro 5 flex-fuel gasoline vehicle. Emissions were characterized during a New European Driving Cycle (NEDC) using a comprehensive set-up of high time-resolution instruments. A detailed chemical composition of the exhaust particulate matter (PM) was studied using a soot particle aerosol mass spectrometer (SP-AMS), and secondary aerosol formation was studied using a potential aerosol mass (PAM) chamber. For the primary gaseous compounds, an increase in total hydrocarbon emissions and a decrease in aromatic BTEX (benzene, toluene, ethylbenzene and xylenes) compounds was observed when the amount of ethanol in the fuel increased. In regard to particles, the largest primary particulate matter concentrations and potential for secondary particle formation was measured for the E10 fuel (10 % ethanol). As the ethanol content of the fuel increased, a significant decrease in the average primary particulate matter concentrations over the NEDC was found. The PM emissions were 0.45, 0.25 and 0.15 mg m-3 for E10, E85 and E100, respectively. Similarly, a clear decrease in secondary aerosol formation potential was observed with a larger contribution of ethanol in the fuel. The secondary-to-primary PM ratios were 13.4 and 1.5 for E10 and E85, respectively. For E100, a slight decrease in PM mass was observed after the PAM chamber, indicating that the PM produced by secondary aerosol formation was less than the PM lost through wall losses or the degradation of the primary organic aerosol (POA) in the chamber. For all fuel blends, the formed secondary aerosol consisted mostly of organic compounds. For E10, the contribution of organic compounds containing oxygen increased from 35 %, measured for primary organics, to 62 % after the PAM chamber. For E85, the contribution of organic compounds containing oxygen increased from 42 % (primary) to 57 % (after the PAM chamber), whereas for E100 the amount of oxidized organics remained the same (approximately 62 %) with the PAM chamber when compared to the primary emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Zhi; Zhang, Mingli; Ma, Wei
Subsurface moisture content is one of the critical factors that control the thermal dynamics of embankments. However, information on the subsurface moisture movement and distribution in embankments is still limited. To better understand the coupled water and heat transport within embankments, subsurface temperature and moisture of an asphalt pavement highway were extensively measured from 2009 to 2011. Collected data indicate that pure heat conduction is the overall main mechanism of heat transport in the embankment and heat convection plays a relatively unimportant role in heat transport. The results also indicate that subsurface moisture and temperature dynamics in the asphalt layermore » is strongly related to the rainfall events, while the subsurface moisture content below the road base course maintains relatively constant. Rainfall in summer leads to rapid cooling of the subsurface soil. Our results suggest that frequent and small rainfall events favour the thermal stability of the embankment due to the loss of latent heat of water evaporation. Moisture migration during freezing still occurred in the gravel fill and the water infiltrated into the active layer during thawing period. Freezing-induced water migration may result in the increase in water content of the embankment and the decrease in compactness of gravel fill.« less
Chiang, Charles; Eichenfield, Lawrence F
2009-01-01
Standard recommendations for skin care for patients with atopic dermatitis stress the importance of skin hydration and the application of moisturizers. However, objective data to guide recommendations regarding the optimal practice methods of bathing and emollient application are scarce. This study quantified cutaneous hydration status after various combination bathing and moisturizing regimens. Four bathing/moisturizer regimens were evaluated in 10 subjects, five pediatric subjects with atopic dermatitis and five subjects with healthy skin. The regimens consisted of bathing alone without emollient application, bathing and immediate emollient application, bathing and delayed application, and emollient application alone. Each regimen was evaluated in all subjects, utilizing a crossover design. Skin hydration was assessed with standard capacitance measurements. In atopic dermatitis subjects, emollient alone yielded a significantly (p < 0.05) greater mean hydration over 90 minutes (206.2% baseline hydration) than bathing with immediate emollient (141.6%), bathing and delayed emollient (141%), and bathing alone (91.4%). The combination bathing and emollient application regimens demonstrated hydration values at 90 minutes not significantly greater than baseline. Atopic dermatitis subjects had a decreased mean hydration benefit compared with normal skin subjects. Bathing without moisturizer may compromise skin hydration. Bathing followed by moisturizer application provides modest hydration benefits, though less than that of simply applying moisturizer alone.
Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haque, A.; Jeelani, S.
1992-02-01
The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range ofmore » 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming. 9 refs.« less
Zhang, Zhaotian; Zhang, Shaochong; Jiang, Xintong; Qiu, Suo; Wei, Yantao
2016-01-04
Glaucoma combined with an extremely shallow anterior chamber and cataracts remains as a complex condition to deal with. And the emergence of microincision vitrectomy surgery (MIVS) system may provide an ideal option for the treatment of that. We report a clinical study of surgical outcomes of 23-gauge transconjunctival pars plana vitrectomy (PPV) combined with lensectomy in the treatment of glaucomatous eyes with extremely shallow anterior chamber and cataract. Prospective, nonrandomized and noncomparative case series study. Consecutive patients with secondary glaucoma, extremely shallow anterior chamber and cataract were recruited to have combined surgeries of 23-gauge transconjunctival pars plana vitrectomy and lensectomy. The main outcomes were best corrected visual acuity (BCVA), intraocular pressure (IOP), anterior chamber depth (ACD), number of anti-glaucoma medications and surgery-associated complications. Seventeen consecutive patients with secondary glaucoma, extremely shallow anterior chamber and cataract were recruited. The mean follow-up was 21.2 ± 8.8 months. Postoperatively, there was no significant improvement of BCVA (P = 0.25). The mean intraocular (IOP) decreased significantly from 43.14 ± 6.53 mmHg to 17.29 ± 1.80 mmHg (P < 0.001), and the mean depth of anterior chamber increased significantly from 0.507 ± 0.212 mm to 3.080 ± 0.313 mm (P < 0.001). The mean number of anti-glaucoma medications decreased from 4.1 ± 0.8 to 0.6 ± 0.8 (P < 0.001). No severe vision-threatening intra- or post-operative complications occurred. Glaucoma with an extremely shallow anterior chamber and cataract can be managed well with the combined surgeries of 23-gauge pars plana vitrectomy and lensectomy. The surgical procedure is an effective and safe method to resolve the pupillary block and deepen the anterior chamber.
NASA Astrophysics Data System (ADS)
Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris
2018-04-01
As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater growing season temporal variability, and reduced levels of soil moisture, whilst projected decreasing summer precipitation may alter the feedbacks between soil moisture and vegetation water use and increase growing season soil moisture deficits.
Edlund, U; Albertsson, A C; Singh, S K; Fogelberg, I; Lundgren, B O
2000-05-01
Biodegradable blends of poly(trimethylene carbonate) (PTMC) and poly(adipic anhydride) (PAA) have been proven to be strong candidates for controlled drug delivery polymers in vitro. We now report on the stability, sterilizability and in vivo local tissue response of these matrices. Blend matrices were sterilized by beta-radiation or ethylene oxide gas treatment, stored at different times and temperatures, and analyzed for changes in physicochemical properties. Moisture uptake at different relative humidities and storage times was determined. Sterilization procedures induced hydrolysis of the matrices. Ethylene oxide gas sterilization had a significantly more marked effect upon the matrix properties than radiation treatment. The onset of degradation was reflected in a decrease of crystallinity and molecular weight along with a change of blend composition. A similar onset of matrix degradation was observed upon storage in air. The physicochemical properties of the blends were well preserved upon storage under argon atmosphere. Biocompatibility of PTMC/PAA implants was assessed in the anterior chamber of rabbits eyes for 1 month. At selected post-operative time points, aqueous humor was analyzed for white blood cells and the corneal thickness was measured. The results suggest good biocompatability of PTMC-rich matrices, whereas fast eroding PAA-rich matrices caused inflammatory responses, due to a burst release of degradation products.
[Effects of diurnal warming on soil N2O emission in soybean field].
Hu, Zheng-Hua; Zhou, Ying-Ping; Cui, Hai-Ling; Chen, Shu-Tao; Xiao, Qi-Tao; Liu, Yan
2013-08-01
To investigate the impact of experimental warming on N2O emission from soil of soybean field, outdoor experiments with simulating diurnal warming were conducted, and static dark chamber-gas chromatograph method was used to measure N2O emission fluxes. Results indicated that: the diurnal warming did not change the seasonal pattern of N2O emissions from soil. In the whole growing season, comparing to the control treatment (CK), the warming treatment (T) significantly enhanced the N2O flux and the cumulative amount of N2O by 17.31% (P = 0.019), and 20.27% (P = 0.005), respectively. The significant correlations were found between soil N2O emission and soil temperature, moisture. The temperature sensitivity values of soil N2O emission under CK and T treatments were 3.75 and 4.10, respectively. In whole growing stage, T treatment significantly increased the crop aboveground and total biomass, the nitrate reductase activity, and total nitrogen in leaves, while significantly decreased NO3(-) -N content in leaves. T treatment significantly increased soil NO3(-) -N content, but had no significant effect on soil organic carbon and total nitrogen contents. The results of this study suggested that diurnal warming enhanced N2O emission from soil in soybean field.
Neutron Scattering Studies of Nano-Scale Wood-Water Interactions
NASA Astrophysics Data System (ADS)
Plaza Rodriguez, Nayomi Z.
Understanding and controlling water in wood is critical to both improving forest products moisture durability and developing new sustainable forest products-based technologies. While wood is known to be hygroscopic, there is still a lack of understanding on the nanoscale wood-water interactions necessary for increased moisture-durability and dimensional stability. My PhD thesis focuses on the development and implementation of neutron scattering methods that can provide insight on both the structural and dynamical changes associated with these interactions so that products with improved moisture durability can be developed efficiently. Using small angle neutron scattering (SANS) and a custom-built in situ relative humidity chamber I studied the anisotropic moisture-induced swelling of wood nanostructure. First, I studied the effects of sample preparation by comparing SANS patterns of wiley milled wood and intact latewood cell walls, and found that scattering from intact wood provide more information about the spatial arrangement of the wood nanostructures inside the cell wall. Comparisons between SANS patterns from earlywood and latewood, also showed that the higher cell wall density of latewood cell walls results in patterns with more pronounced anisotropic features. Then, by measuring latewood loblolly pine sections obtained from the same growth ring and prepared in each of the primary wood planes, I tracked the cellulose elementary fibril spacing as a function of humidity in both intact and partially cut cell walls. These studies showed that even though swelling at the elementary fibril spacing is responsible for the majority of the transverse swelling observed at the S2 level, it is not primary plane dependent. Additionally, there were no differences in the elementary fibril spacing between partially-cut and intact cell walls, except at high humidity where the spacing in partially-cut cells was higher. SANS was also used to study the effects of two chemical modifications, namely, adhesive infiltration and acetylation, on the wood nanostructure as well as its moisture-induced swelling. Tangential-longitudinal latewood loblolly pine 0.5 mm thick sections were acetylated or treated with an adhesive (Phenol-formaldehyde (PF) or polymeric methylene diisocyanate (pMDI)) using deuterated or hydrogenated chemicals. Contrast variation experiments on wood modified with deuterated chemicals revealed that PF can infiltrate the regions between the elementary fibrils, while acetylation does not. The moisture-induced swelling of the chemically modified wood was studied, by studying the samples modified with hydrogenated chemicals using SANS and the previously built humidity chamber. These studies revealed that while both PF and pMDI can infiltrate the microfibrils, only PF reduced significantly the swelling at both the elementary fibril and bulk levels. In acetylated samples, the elementary fibril spacing was proportional to the moisture-content of the sample, which was reduced with increasing acetylation. This suggested that the acetylation treatment did not reduce the swelling at the elementary fibril but prevented water from entering the microfibril by modifying the regions surrounding the elementary fibrils. Using quasi-elastic neutron scattering (QENS) and a custom-built in situ relative humidity sample environment I measured experimentally the (5 - 400 ps) water dynamics inside wood cell walls for the first time and found that there are two types of bound water in the cell wall, namely, slow and fast water. The motion of both water types is well described by a jump-diffusion model, which corresponds to water molecules whose movement follows a stop and go process. Here, the slow water corresponds to water molecules that are highly associated to the wood polymers, whereas the fast water corresponds to water confined inside nanopores within the wood cell wall.
Coe, Jeffrey A.
2012-01-01
I correlated 12 years of annual movement of 18 points on a large, continuously moving, deep-seated landslide with a regional moisture balance index (moisture balance drought index, MBDI). I used MBDI values calculated from a combination of historical precipitation and air temperature data from A.D. 1895 to 2010, and downscaled climate projections using the Intergovernmental Panel on Climate Change A2 emissions scenario for 2011–2099. At the landslide, temperature is projected to increase ~0.5 °C/10 yr between 2011 and 2099, while precipitation decreases at a rate of ~2 mm/10 yr. Landslide movement correlated with the MBDI with integration periods of 12 and 48 months. The correlation between movement and MBDI suggests that the MBDI functions as a proxy for groundwater pore pressures and landslide mobility. I used the correlation to forecast decreasing landslide movement between 2011 and 2099, with the head of the landslide expected to stop moving in the mid-21st century. The MBDI, or a similar moisture balance index that accounts for evapotranspiration, has considerable potential as a tool for forecasting the magnitude of ongoing deep-seated landslide movement, and for assessing the onset or likelihood of regional, deep-seated landslide activity.
Agomoh, Ikechukwu; Hao, Xiying; Zvomuya, Francis
2018-01-02
Phytoextraction of excess nutrients by crops in soils with a long history of manure application may be a viable option for reducing the nutrient levels. This greenhouse study examined the effectiveness of six growth cycles (40 d each) of barley, canola, corn, oat, pea, soybean, and triticale at extracting nitrogen (N) and phosphorus (P) from a Dark Brown Chernozem that had received 180 Mg ha -1 (wet wt.) of beef cattle feedlot manure annually for 38 years. Moisture content during the study was maintained at either 100% or 50% soil field capacity (SFC). Repeated cropping resulted in an overall decrease in dry matter yield (DMY). The decrease in N and P uptake relative to Cycle 1 was fastest for the cereal grains and less pronounced for the two legumes. However, cumulative N uptake values were significantly greater for corn than the other crops under both moisture regimes. The reduction in soil N was greater under the 100% than the 50% SFC. These results indicate that repeated cropping can be a useful management practice for reducing N and P levels in a heavily manured soil. The extent of reduction will be greater for crops with high biomass production under adequate moisture supply.
Feng, Xin; Vo, Anh; Patil, Hemlata; Tiwari, Roshan V.; Alshetaili, Abdullah S.; Pimparade, Manjeet B.; Repka, Michael A.
2017-01-01
Objective The aim of this study was to evaluate the effect of polymer carrier, hot melt extrusion (HME) and downstream processing parameters on the water uptake properties of amorphous solid dispersions. Methods Three polymers and a model drug were used to prepare amorphous solid dispersions utilizing HME technology. The sorption-desorption isotherms of solid dispersions and their physical mixtures were measured by the Dynamic Vapor Sorption system, and the effect of polymer hydrophobicity, hygroscopicity, molecular weight and the HME process were investigated. FTIR imaging was performed to understand the phase separation driven by the moisture. Key findings Solid dispersions with polymeric carriers with lower hydrophilicity, hygroscopicity, and higher molecular weight could sorb less moisture under the high RH conditions. The water uptake ability of polymer-drug solid dispersion systems were decreased compared to the physical mixture after HME, which might be due to the decreased surface area and porosity. The FTIR imaging indicated the homogeneity of the drug molecularly dispersed within the polymer matrix was changed after exposure to high RH. Conclusion Understanding the effect of formulation and processing on the moisture sorption properties of solid dispersions is essential for the development of drug products with desired physical and chemical stability. PMID:26589107
Changes in Soil Carbon and Moisture over the Six Year after Thinning of a Natural Oak Forest
NASA Astrophysics Data System (ADS)
Kim, S.; Han, S. H.; Li, G.; Chang, H.; Kim, H. J.; Son, Y.
2017-12-01
The objective of this study was to assess the effects of thinning on soil carbon (C) in a natural oak forest in central Korea. The study forest received three different thinning treatments consisting of un-thinned control (UTC) and two thinning intensities (15% and 30% basal area reductions) in March in 2010. Precipitation near the study forest maintained the normal level from 2010 to 2013 (average 1,400 mm year-1), but abnormally decreased from 2014 to 2016 (average 800 mm year-1). To measure total soil C stock and soil moisture conditions, soils were collected from 0-10, 10-20, and 20-30 cm depths in June, 2010, 2013, and 2016, respectively. Soil microbial biomass C and C-cycling enzymes (β-glucosidase, cellobiohydrolase, β-xylosidase, phenol oxidase, and peroxidase) at 0-10 cm depth were determined in June, 2016. Total soil C stock at 0-30 cm depth increased throughout the study period, whereas soil moisture decreased at all depths from 2013 to 2016. Both thinning treatments had higher total soil C stock at 0-30 cm depth and moisture at 10-20 and 20-30 cm depths than the UTC in 2013 and 2016, whereas the treatments showed no effects in 2010. Microbial biomass C at 0-10 cm depth in 2016 also increased because of the thinning treatments, which was positively correlated to total soil C stock. However, any effects of thinning on C-cycling enzymes were not significant. Our results indicate that thinning could contribute to relieving the impacts of decreasing precipitation by enhancing the storage of soil moisture. Furthermore, the change in total soil C stock under thinning might result from the stimulation of microbial potential for retaining organic C as a form of biomass. This study was supported by the Ministry of Environment (2014001810002) and the National Institute of Forest Science of Korea (FM0101-2009-01).
Chevanan, N; Muthukumarappan, K
2007-05-01
Meltability, melt profile parameters, and hardness of cheddar cheese prepared with varying levels of calcium (Ca) and phosphorus (P) content, residual lactose content, and salt-to-moisture ratio were studied at 0, 1, 2, 4, 6, and 8 mo of ripening. Meltability, melt profile parameters, and hardness of cheddar cheeses measured at 0, 1, 2, 4, 6, and 8 mo of ripening showed significant interaction between the levels of Ca and P, residual lactose, salt-to-moisture ratio, and ripening time for most of the properties studied. cheddar cheese prepared with high Ca and P (0.67% Ca and 0.53% P) resulted in up to 6.2%, 4.5%, 9.6%, 5.0%, and 22.8% increase in softening time, softening temperature, melting time, melting temperature, and hardness, respectively, and 23.5%, 9.6%, and 3.2% decrease in meltability, flow rate, and extent of flow, respectively, compared to the cheddar cheese prepared with low Ca and P (0.53% Ca and 0.39% P). cheddar cheese prepared with high lactose (1.4%) content resulted in up to 7.7%, 7.0%, 4.9%, 4.2%, and 24.6% increase in softening time, softening temperature, melting time, melting temperature, and hardness, respectively, and 14.7%, 12.7%, and 2.8% decrease in meltability, flow rate, and extent of flow respectively compared to the cheddar cheese prepared with low lactose (0.78%) content. cheddar cheese prepared with high salt-to-moisture ratio (6.4%) resulted in up to 21.8%, 11.3%, 12.9%, 4.1%, and 29.4% increase in softening time, softening temperature, melting time, melting temperature, and hardness, respectively, and 13.2%, 28.6%, and 2.6% decrease in meltability, flow rate, and extent of flow, respectively, compared to the cheddar cheese prepared with low salt-to-moisture ratio (4.8%) during ripening.
NASA Astrophysics Data System (ADS)
Lauren, Ari; Kinnunen, Jyrki-Pekko; Sikanen, Lauri
2016-04-01
Bioenergy contributes 26 % of the total energy use in Finland, and 60 % of this is provided by solid forest fuel consisting of small stems and logging residues such as tops, branches, roots and stumps. Typically the logging residues are stored as piles on site before transporting to regional combined heat and power plants for combustion. Profitability of forest fuel use depends on smart control of the feedstock. Fuel moisture, dry matter loss, and the rate of interest during the storing are the key variables affecting the economic value of the fuel. The value increases with drying, but decreases with wetting, dry matter loss and positive rate of interest. We compiled a simple simulation model computing the moisture change, dry matter loss, transportation costs and present value of feedstock piles. The model was used to predict the time of the maximum value of the stock, and to compose feedstock allocation strategies under the question: how should we choose the piles and the combustion time so that total energy yield and the economic value of the energy production is maximized? The question was assessed concerning the demand of the energy plant. The model parameterization was based on field scale studies. The initial moisture, and the rates of daily moisture change and dry matter loss in the feedstock piles depended on the day of the year according to empirical field measurements. Time step of the computation was one day. Effects of pile use timing on the total energy yield and profitability was studied using combinatorial optimization. Results show that the storing increases the pile maximum value if the natural drying onsets soon after the harvesting; otherwise dry matter loss and the capital cost of the storing overcome the benefits gained by drying. Optimized timing of the pile use can improve slightly the profitability, based on the increased total energy yield and because the energy unit based transportation costs decrease when water content in the biomass is decreased.
Numerical analysis of whole-body cryotherapy chamber design improvement
NASA Astrophysics Data System (ADS)
Yerezhep, D.; Tukmakova, A. S.; Fomin, V. E.; Masalimov, A.; Asach, A. V.; Novotelnova, A. V.; Baranov, A. Yu
2018-05-01
Whole body cryotherapy is a state-of-the-art method that uses cold for treatment and prevention of diseases. The process implies the impact of cryogenic gas on a human body that implements in a special cryochamber. The temperature field in the chamber is of great importance since local integument over-cooling may occur. Numerical simulation of WBC has been carried out. Chamber design modification has been proposed in order to increase the uniformity of the internal temperature field. The results have been compared with the ones obtained for a standard chamber design. The value of temperature gradient formed in the chamber containing curved wall with certain height has been decreased almost twice in comparison with the results obtained for the standard design. The modification proposed may increase both safety and comfort of cryotherapy.
NASA Astrophysics Data System (ADS)
Plumb, Priscilla Bocskor; Day, Susan D.; Wynn-Thompson, Theresa M.; Seiler, John R.
2013-10-01
We studied stormwater detention basins where woody vegetation removal was suspended for 2 years in Virginia, USA to determine if woody vegetation can control Typha populations and how early woody plant succession interacts with Typha, other herbaceous vegetation, and site factors. Distribution and composition of woody vegetation, Typha and non- Typha herbaceous vegetation biomass, and site factors were assessed at 100 plots in four basins ranging in age from 7 to 17 years. A greenhouse study examined the interaction of shade and soil moisture on Typha biomass and persistence. Principal component analysis identified an environmental gradient associated with greater water table depths and decreased elevation that favored Typha but negatively influenced woody vegetation. Elevation was correlated with litter layer distribution, suggesting that initial topography influences subsequent environmental characteristics and thus plant communities. Soil organic matter at 0-10 cm ranged from 5.4 to 12.7 %. Woody plants present were native species with the exception of Ailanthus altissima and Pyrus calleryana. In the greenhouse, shade and reduced soil moisture decreased Typha biomass and rhizome length. The shade effect was strongest in flooded plants and the soil moisture effect was strongest for plants in full sun. Typha in dry soil and heavy shade had 95 % less total biomass and 83 % smaller rhizomes than Typha in flooded soil and full sun, but even moderate soil moisture reductions decreased above- and below-ground biomass by 63 and 56 %, respectively. Suspending maintenance allows restoration of woody vegetation dominated by native species and may suppress Typha invasion.
An accelerated exposure and testing apparatus for building joint sealants
NASA Astrophysics Data System (ADS)
White, C. C.; Hunston, D. L.; Tan, K. T.; Hettenhouser, J.; Garver, J. D.
2013-09-01
The design, fabrication, and implementation of a computer-controlled exposure and testing apparatus for building joint sealants are described in this paper. This apparatus is unique in its ability to independently control and monitor temperature, relative humidity, ultraviolet (UV) radiation, and mechanical deformation. Each of these environmental factors can be controlled precisely over a wide range of conditions during periods of a month or more. Moreover, as controlled mechanical deformations can be generated, in situ mechanical characterization tests can be performed without removing specimens from the chamber. Temperature and humidity were controlled during our experiments via a precision temperature regulator and proportional mixing of dry and moisture-saturated air; while highly uniform UV radiation was attained by attaching the chamber to an integrating sphere-based radiation source. A computer-controlled stepper motor and a transmission system were used to provide precise movement control. The reliability and effectiveness of the apparatus were demonstrated on a model sealant material. The results clearly show that this apparatus provides an excellent platform to study the long-term durability of building joint sealants.
A portable molecular-sieve-based CO{sub 2} sampling system for radiocarbon measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palonen, V., E-mail: vesa.palonen@helsinki.fi
We have developed a field-capable sampling system for the collection of CO{sub 2} samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO{sub 2} concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO{sub 2} selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO{sub 2} from chambers prior to the CO{submore » 2} build-up phase and sampling. In addition, both the CO{sub 2} and H{sub 2}O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO{sub 2} and the determination of CO{sub 2} flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.« less
An accelerated exposure and testing apparatus for building joint sealants.
White, C C; Hunston, D L; Tan, K T; Hettenhouser, J; Garver, J D
2013-09-01
The design, fabrication, and implementation of a computer-controlled exposure and testing apparatus for building joint sealants are described in this paper. This apparatus is unique in its ability to independently control and monitor temperature, relative humidity, ultraviolet (UV) radiation, and mechanical deformation. Each of these environmental factors can be controlled precisely over a wide range of conditions during periods of a month or more. Moreover, as controlled mechanical deformations can be generated, in situ mechanical characterization tests can be performed without removing specimens from the chamber. Temperature and humidity were controlled during our experiments via a precision temperature regulator and proportional mixing of dry and moisture-saturated air; while highly uniform UV radiation was attained by attaching the chamber to an integrating sphere-based radiation source. A computer-controlled stepper motor and a transmission system were used to provide precise movement control. The reliability and effectiveness of the apparatus were demonstrated on a model sealant material. The results clearly show that this apparatus provides an excellent platform to study the long-term durability of building joint sealants.
Laser-assisted homogeneous charge ignition in a constant volume combustion chamber
NASA Astrophysics Data System (ADS)
Srivastava, Dhananjay Kumar; Weinrotter, Martin; Kofler, Henrich; Agarwal, Avinash Kumar; Wintner, Ernst
2009-06-01
Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3 μm. These water molecules absorb the incident erbium laser radiations ( λ=2.79 μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to "auto-ignite" could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas.
A New Electrospray Aerosol Generator with High Particle Transmission Efficiency
Fu, Huijing; Patel, Anand C.; Holtzman, Michael J.; Chen, Da-Ren
2012-01-01
A new single-capillary electrospray (ES) aerosol generator has been developed for monodisperse particle production with maximal transmission efficiency. The new generator consists of both a spray chamber in a point-to-orifice-plate configuration and a charge reduction chamber that can hold up to 4 Nuclespot ionizers (Model P-2042, NRD Inc.). The 2 chambers are partitioned by an orifice plate. To optimize the particle transmission efficiency of the prototype, a systematic study was performed on the generator by varying the system setup and operation. Two key dimensions of the generator setup, the orifice diameter and the distance from the capillary tip to the orifice plate, were varied. Fluorescence analysis was applied to characterize the loss of ES-generated particles at different locations of the prototype. It was found that particle loss in the generator could be reduced by either increasing the orifice diameter or decreasing the distance between the capillary tip and the orifice plate. Increasing either the total radioactivity of the ionizers or the flowrate of the particle carrier gas also further decreased the particle loss in the system. The maximum particle transmission efficiency of 88.0% was obtained with the spray chamber fully opened to the charge reduction chamber, the capillary tip at the same level as the orifice plate, and 4 bipolar ionizers installed. PMID:22829715
NASA Astrophysics Data System (ADS)
Ru, Jie; Zhu, Zicai; Wang, Yanjie; Chen, Hualing; Bian, Changsheng; Luo, Bin; Li, Dichen
2018-02-01
Ionic polymer-metal composite (IPMC) actuator can generate large and rapid deformation based on ion migration under a relatively low driving voltage. Under full hydrated conditions, the deformation is always prone to relaxation. At room humidity conditions, the deformation increases substantially at the early stage of actuation, and then decreases gradually. Generally, most researchers considered that the change of water content or relative humidity mainly leads to the deformation instabilities, which severely limits the practical applications of IPMC. In this Letter, a novel actuation mode is proposed to control the deformation behavior of IPMC by employing moisture as an independent or collaborative incentive source together with the electric field. The deformation response is continuously measured under electric field, electric field-moisture coupling stimulus and moisture stimulus. The result shows that moisture can be a favorable driving factor for IPMC actuation. Such an electric field-moisture coupling stimulus can avoid the occurrence of deformation instabilities and guarantee a superior controllable deformation in IPMC actuation. This research provides a new method to obtain stable and large deformation of IPMC, which is of great significance for the guidance of material design and application for IPMC and IPMC-type iEAP materials.
Experimental evidence for drought induced alternative stable states of soil moisture
NASA Astrophysics Data System (ADS)
Robinson, David. A.; Jones, Scott B.; Lebron, Inma; Reinsch, Sabine; Domínguez, María T.; Smith, Andrew R.; Jones, Davey L.; Marshall, Miles R.; Emmett, Bridget A.
2016-01-01
Ecosystems may exhibit alternative stable states (ASS) in response to environmental change. Modelling and observational data broadly support the theory of ASS, however evidence from manipulation experiments supporting this theory is limited. Here, we provide long-term manipulation and observation data supporting the existence of drought induced alternative stable soil moisture states (irreversible soil wetting) in upland Atlantic heath, dominated by Calluna vulgaris (L.) Hull. Manipulated repeated moderate summer drought, and intense natural summer drought both lowered resilience resulting in shifts in soil moisture dynamics. The repeated moderate summer drought decreased winter soil moisture retention by ~10%. However, intense summer drought, superimposed on the experiment, that began in 2003 and peaked in 2005 caused an unexpected erosion of resilience and a shift to an ASS; both for the experimental drought manipulation and control plots, impairing the soil from rewetting in winter. Measurements outside plots, with vegetation removal, showed no evidence of moisture shifts. Further independent evidence supports our findings from historical soil moisture monitoring at a long-term upland hydrological observatory. The results herald the need for a new paradigm regarding our understanding of soil structure, hydraulics and climate interaction.
Effect of Drying Moisture Exposed Almonds on the Development of the Quality Defect Concealed Damage.
Rogel-Castillo, Cristian; Luo, Kathleen; Huang, Guangwei; Mitchell, Alyson E
2017-10-11
Concealed damage (CD), is a term used by the nut industry to describe a brown discoloration of kernel nutmeat that becomes visible after moderate heat treatments (e.g., roasting). CD can result in consumer rejection and product loss. Postharvest exposure of almonds to moisture (e.g., rain) is a key factor in the development of CD as it promotes hydrolysis of proteins, carbohydrates, and lipids. The effect of drying moisture-exposed almonds between 45 to 95 °C, prior to roasting was evaluated as a method for controlling CD in roasted almonds. Additionally, moisture-exposed almonds dried at 55 and 75 °C were stored under accelerated shelf life conditions (45 °C/80% RH) and evaluated for headspace volatiles. Results indicate that drying temperatures below 65 °C decreases brown discoloration of nutmeat up to 40% while drying temperatures above 75 °C produce significant increases in brown discoloration and volatiles related to lipid oxidation, and nonsignificant increases in Amadori compounds. Results also demonstrate that raw almonds exposed to moisture and dried at 55 °C prior to roasting, reduce the visual sign of CD and maintain headspace volatiles profiles similar to almonds without moisture damage during accelerated storage.
Experimental evidence for drought induced alternative stable states of soil moisture
Robinson, David. A.; Jones, Scott B.; Lebron, Inma; Reinsch, Sabine; Domínguez, María T.; Smith, Andrew R.; Jones, Davey L.; Marshall, Miles R.; Emmett, Bridget A.
2016-01-01
Ecosystems may exhibit alternative stable states (ASS) in response to environmental change. Modelling and observational data broadly support the theory of ASS, however evidence from manipulation experiments supporting this theory is limited. Here, we provide long-term manipulation and observation data supporting the existence of drought induced alternative stable soil moisture states (irreversible soil wetting) in upland Atlantic heath, dominated by Calluna vulgaris (L.) Hull. Manipulated repeated moderate summer drought, and intense natural summer drought both lowered resilience resulting in shifts in soil moisture dynamics. The repeated moderate summer drought decreased winter soil moisture retention by ~10%. However, intense summer drought, superimposed on the experiment, that began in 2003 and peaked in 2005 caused an unexpected erosion of resilience and a shift to an ASS; both for the experimental drought manipulation and control plots, impairing the soil from rewetting in winter. Measurements outside plots, with vegetation removal, showed no evidence of moisture shifts. Further independent evidence supports our findings from historical soil moisture monitoring at a long-term upland hydrological observatory. The results herald the need for a new paradigm regarding our understanding of soil structure, hydraulics and climate interaction. PMID:26804897
NASA Astrophysics Data System (ADS)
Savage, K. E.; Shoemaker, J.; Hollinger, D. Y.
2017-12-01
Boreal-transition forests contain a range of soil moisture conditions, from drier "uplands" to embedded wetlands, with transitional soils in between. This creates a complex topography of methane (CH4) producing and consuming patches. Seasonally, CH4 production in wet environments can be orders of magnitude greater than methane uptake rates in drier soils, as well as being much more episodic. The spatial and temporal variability in flux magnitudes from these drainage conditions creates a challenge for constraining the contribution of these forests to the global CH4 cycle. Ground based chambers capture small-scale fluxes, and are often distributed to capture specific soil conditions. Soil chambers have been the primary tool for assessing CH4 fluxes from natural soils, with observations being scaled up to represent broader regions. The study of CH4 biogeochemistry lacked meso-scale measurements to provide checks between the global atmospheric data and the soil chambers. Recent advances in the technology of fast response CH4 analyzers have led to increased use of the eddy-flux covariance (EC) method to capture CH4 fluxes over a larger landscape-scale. The EC method captures net exchange at the top of the vegetation canopy, across a footprint of varying size, dependent on wind-speed, direction, surface roughness, turbulence, sensor height and atmospheric stability. Simultaneous deployment of EC and soil chambers provide a critical means to reconcile bottom up with top down approaches to quantify CH4 fluxes. Two years of CH4 flux data from an EC tower in Howland forest, a boreal-transition forest in north-central Maine, USA, are compared with concurrent automated soil chamber data collected within the tower footprint and distributed among soil drainage classes. An EC footprint model was used to determine a daily and sub-daily tower footprint. Using a published soil analysis of the Howland tower area, and Lidar imagery of tree canopy, we explore various strategies for upscaling chamber fluxes: footprint estimates, aerial weighting by drainage class, and canopy density; and compare to measurements from the EC tower. Analyzing simultaneous flux data from both scales over multiple years, will enable us to evaluate these methodologies and enhance our understanding of CH4 biogeochemistry at all scales.
Evidence for metabolic activity of airborne bacteria
NASA Technical Reports Server (NTRS)
Dimmick, R. L.; Wolochow, H.; Chatigny, M. A.; Straat, P. A.; Schrot, J. R.; Levin, G. V.
1974-01-01
Aerosols of the bacterium Serratia marcescens, and of uniformly labelled C-14 glucose, were created simultaneously and mixed in tubing leading to an aerosol chamber. During a subsequent period of about 5 hrs, C-14O2 was produced unequivocally within the chamber, and insoluble, labelled material within the suspended particles first increased, then decreased.
Regional differences in sweat rate response of steers to short-term heat stress
NASA Astrophysics Data System (ADS)
Scharf, B.; Wax, L. E.; Aiken, G. E.; Spiers, D. E.
2008-11-01
Six Angus steers (319 ± 8.5 kg) were assigned to one of two groups (hot or cold exposure) of three steers each, and placed into two environmental chambers initially maintained at 16.5-18.8°C air temperature ( T a). Cold chamber T a was lowered to 8.4°C, while T a within the hot chamber was increased to 32.7°C over a 24-h time period. Measurements included respiration rate, and air and body (rectal and skin) temperatures. Skin temperature was measured at shoulder and rump locations, with determination of sweat rate using a calibrated moisture sensor. Rectal temperature did not change in cold or hot chambers. However, respiration rate nearly doubled in the heat ( P < 0.05), increasing when T a was above 24°C. Skin temperatures at the two locations were highly correlated ( P < 0.05) with each other and with T a. In contrast, sweat rate showed differences at rump and shoulder sites. Sweat rate of the rump exhibited only a small increase with T a. However, sweat rate at the shoulder increased more than four-fold with increasing T a. Increased sweat rate in this region is supported by an earlier report of a higher density of sweat glands in the shoulder compared to rump regions. Sweat rate was correlated with several thermal measurements to determine the best predictor. Fourth-order polynomial expressions of short-term rectal and skin temperature responses to hot and cold exposures produced r values of 0.60, 0.84, and 0.98, respectively. These results suggest that thermal inputs other than just rectal or skin temperature drive the sweat response in cattle.
NASA Astrophysics Data System (ADS)
Ammann, Christof; Voglmeier, Karl; Jocher, Markus
2017-04-01
Grazed pastures are considered as strong sources of the greenhouse gas nitrous oxide (N2O) with local hot-spots resulting from the uneven spatial distribution of the excretion of the grazing animals. Especially urine patches can result in a high local nitrogen (N) surplus, which can cause large deviations from average soil conditions. The strong spatial and temporal variability of the gaseous emissions represents an inherent problem for the quantification, interpretation and modelling. Micrometeorological methods integrating over a larger domain like the eddy covariance method are well suited to quantify the integrated ecosystem emissions of N2O. In contrast, chamber methods are more useful to investigate specific underlying processes and their dependences on driving parameters. We present results of a pasture experiment in western Switzerland where eddy covariance and chamber measurements of N2O fluxes have been performed using a very sensitive and fast response quantum cascade laser (QCL) instrument. Small scale emissions of N2O from dung and urine patches as well as from other "background" pasture surface areas were quantified using an optimized 'fast-box' chamber system. Variable and partly high N2O emissions of the pasture were observed during all seasons. Beside management factors (grazing phases, fertiliser application), temperature and soil moisture showed a large effect on the fluxes. Fresh urine patches from grazing cows were found to be main emission sources and their temporal dynamics was studied in detail. We present a first approach to up-scale the chamber measurements to the field-scale and compare the results with the eddy covariance measurements.
NASA Astrophysics Data System (ADS)
Chang, Chin-Chun; Chan, Che-Kai; Wu, Ling-Hui; Shueh, Chin; Shen, I.-Ching; Cheng, Chia-Mu; Yang, I.-Chen
2017-05-01
Three sets of a vacuum system were developed and fabricated for elliptically polarized undulators (EPU) of a 3-GeV synchrotron facility. These chambers were shaped with low roughness extrusion and oil-free machining; the design combines aluminium and stainless steel. The use of a bimetallic material to connect the EPU to the vacuum system achieves the vacuum sealing and to resolve the leakage issue due to bake process induced thermal expansion difference. The interior of the EPU chamber consists of a non-evaporable-getter strip pump in a narrow space to absorb photon-stimulated desorption and to provide a RF bridge design to decrease impedance effect in the two ends of EPU chamber. To fabricate these chambers and to evaluate the related performance, we performed a computer simulation to optimize the structure. During the machining and welding, the least deformation was achieved, less than 0.1 mm near 4 m. In the installation, the linear slider can provide a stable and precision moved along parallel the electron beam direction smoothly for the EPU chamber to decrease the twist issue during baking process. The pressure of the EPU chamber attained less than 2×10-8 Pa through baking. These vacuum systems of the EPU magnet have been installed in the electron storage ring of Taiwan Photon Source in 2015 May and have normally operated at 300 mA continuously since, and to keep beam life time achieved over than 12 h.
Figueroa, Yetzury; Guevara, Marvilan; Pérez, Adriana; Cova, Aura; Sandoval, Aleida J; Müller, Alejandro J
2016-08-01
This work studies how sucrose (S) addition modifies the thermal properties of cassava starch (CS). Neat CS and CS-S blends with 4, 6 and 8% sugar contents (CS-S-4%, CS-S-6% and CS-S-8%) were prepared and analyzed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA), in a wide range of moisture levels (2-20%). In equilibrated samples with moisture contents lower than 10%, twoendothermic steps were observed during first DSC heating scans and two corresponding relaxation maxima in tan δ were detected by DMTA. The first transition, detected at around 45-55°C by both DSC and DMTA, is frequently found in starchy foods, while the second observed at higher temperatures is associated to the glass transition temperature of the blends. At higher moisture contents, only one thermal transition was observed. Samples analyzed immediately after cooling from the melt (i.e., after erasing their thermal history), exhibited a single glass transition temperature, regardless of their moisture content. Addition of sugar promotes water plasticization of CS only at high moisture contents. In the low moisture content range, anti-plasticization was observed for both neat and sugar-added CS samples. Addition of sugar decreases the moisture content needed to achieve the maximum value of the glass transition temperature before plasticization starts. The results of this work may be valuable for the study of texture establishment in low moisture content extruded food products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Okamoto, A; Miyachi, H; Tanaka, K; Chikazu, D; Miyaoka, H
2016-12-01
Patients with schizophrenia are most commonly treated with antipsychotic medications, often with the addition of anxiolytics. This study used an oral moisture meter to evaluate xerostomia in patients with schizophrenia taking typical and atypical antipsychotics, anxiolytics and non-psychotropic medications. Patients diagnosed with schizophrenia according to ICD-10 criteria in the Department of Psychiatry, Kitasato University East, and affiliated hospitals were studied. All patients were on psychotropic medications. Patients with diseases associated with xerostomia, such as Sjögren's syndrome I, were excluded. A total of 127 patients were enrolled. Mean oral moisture was 27·81 ± 2·27% (normal, ≥30·0%). A significant association was observed between objective oral moisture and the subjective sense of dry mouth. Multivariate analysis revealed a negative correlation between the number of antipsychotics and, especially, anxiolytics, and the degree of oral moisture. Drug dosages themselves were not significantly correlated with dry mouth. These findings suggest that objective oral moisture measurements show decreased moisture in patients on these medications and that the degree of moisture shows a greater negative correlation with the number, as opposed to the dosages, of psychotropic drugs administered. When patients with schizophrenia visit a dental clinic, it is important for the dentist to accurately assess the degree of oral moisture and to determine the medications being taken. Based on these findings of the association of polypharmacy with xerostomia, dentists are encouraged to inform the psychiatrist of the need to actively manage patients' xerostomia. © 2016 John Wiley & Sons Ltd.
Response to Albuterol MDI Delivered Through an Anti-Static Chamber During Nocturnal Bronchospasm
Prabhakaran, Sreekala; Shuster, Jonathan; Chesrown, Sarah; Hendeles, Leslie
2013-01-01
BACKGROUND Decreasing electrostatic charge on valved holding chambers increases the amount of drug delivered. However, there are no data demonstrating that this increases bronchodilatation. OBJECTIVE To investigate the influence of reducing electrostatic charge on the bronchodilator response to albuterol inhaler during nocturnal bronchospasm. METHODS This randomized double-blind, double-dummy crossover study included subjects, 18—40 years old, with nocturnal bronchospasm (20% overnight decrease in peak flow on 3 of 7 nights during run-in), FEV1 60–80% predicted during the day, and ≥ 12% increase after albuterol. Subjects slept in the clinical research center up to 3 nights for each treatment. FEV1 and heart rate were measured upon awakening spontaneously or at 4:00 am, and 15 min after each dose of 1, 2, and 4 cumulative puffs of albuterol via metered-dose inhaler. The drug was administered through an anti-static valved holding chamber (AeroChamber Plus Z-Stat) or a conventional valved holding chamber containing a static charge (AeroChamber Plus). RESULTS Of 88 consented subjects, 11 were randomized and 7 completed the study. Most exclusions were due to lack of objective evidence of nocturnal bronchospasm. Upon awakening, FEV1 was 44 ± 9% of predicted before the anti-static chamber and 48 ± 7% of predicted before the static chamber. The mean ± SD percent increase in FEV1 after 1, 2, and 4 cumulative puffs using the anti-static versus the static chamber, respectively, were 52 ± 26% versus 30 ± 19%, 73 ± 28% versus 48 ± 26%, and 90 ± 34% versus 64 ± 35%. The point estimates for the differences (and 95% CIs) between the devices (anti-static vs static) were 21% (4–38%) (P = .03), 23% (6–41%) (P = .02), and 25% (7–42%) (P = .01) for 1, 2, and 4 cumulative puffs, respectively. There was no significant difference in heart rate between treatments. CONCLUSIONS Delivery of albuterol through an anti-static chamber provides a clinically relevant improvement in bronchodilator response during acute, reversible bronchospasm such as nocturnal bronchospasm. PMID:22348270
Spatial-temporal variability of soil moisture and its estimation across scales
NASA Astrophysics Data System (ADS)
Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R.
2010-02-01
The soil moisture is a quantity of paramount importance in the study of hydrologic phenomena and soil-atmosphere interaction. Because of its high spatial and temporal variability, the soil moisture monitoring scheme was investigated here both for soil moisture retrieval by remote sensing and in view of the use of soil moisture data in rainfall-runoff modeling. To this end, by using a portable Time Domain Reflectometer, a sequence of 35 measurement days were carried out within a single year in seven fields located inside the Vallaccia catchment, central Italy, with area of 60 km2. Every sampling day, soil moisture measurements were collected at each field over a regular grid with an extension of 2000 m2. The optimization of the monitoring scheme, with the aim of an accurate mean soil moisture estimation at the field and catchment scale, was addressed by the statistical and the temporal stability. At the field scale, the number of required samples (NRS) to estimate the field-mean soil moisture within an accuracy of 2%, necessary for the validation of remotely sensed soil moisture, ranged between 4 and 15 for almost dry conditions (the worst case); at the catchment scale, this number increased to nearly 40 and it refers to almost wet conditions. On the other hand, to estimate the mean soil moisture temporal pattern, useful for rainfall-runoff modeling, the NRS was found to be lower. In fact, at the catchment scale only 10 measurements collected in the most "representative" field, previously determined through the temporal stability analysis, can reproduce the catchment-mean soil moisture with a determination coefficient, R2, higher than 0.96 and a root-mean-square error, RMSE, equal to 2.38%. For the "nonrepresentative" fields the accuracy in terms of RMSE decreased, but similar R2 coefficients were found. This insight can be exploited for the sampling in a generic field when it is sufficient to know an index of soil moisture temporal pattern to be incorporated in conceptual rainfall-runoff models. The obtained results can address the soil moisture monitoring network design from which a reliable soil moisture temporal pattern at the catchment scale can be derived.
Volume-based characterization of postocclusion surge.
Zacharias, Jaime; Zacharias, Sergio
2005-10-01
To propose an alternative method to characterize postocclusion surge using a collapsible artificial anterior chamber to replace the currently used rigid anterior chamber model. Fundación Oftamológica Los Andes, Santiago, Chile. The distal end of a phacoemulsification handpiece was placed inside a compliant artificial anterior chamber. Digital recordings of chamber pressure, chamber volume, inflow, and outflow were performed during occlusion break of the phacoemulsification tip. The occlusion break profile of 2 different consoles was compared. Occlusion break while using a rigid anterior chamber model produced a simultaneous increase of chamber inflow and outflow. In the rigid chamber model, pressure decreased sharply, reaching negative pressure values. Alternatively, with the collapsible chamber model, a delay was observed in the inflow that occurs to compensate the outflow surge. Also, the chamber pressure drop was smaller in magnitude, never undershooting below atmospheric pressure into negative values. Using 500 mm Hg as vacuum limit, the Infiniti System (Alcon) performed better that the Legacy (Alcon), showing an 18% reduction in peak volume variation. The collapsible anterior chamber model provides a more realistic representation of the postocclusion surge events that occur in the real eye during cataract surgery. Peak volume fluctuation (mL), half volume recovery time(s), and volume fluctuation integral value (mL x s) are proposed as realistic indicators to characterize the postocclusion surge performance. These indicators show that the Infiniti System has a better postocclusion surge behavior than the Legacy System.
Seth, Dibyakanta; Badwaik, Laxmikant S; Ganapathy, Vijayalakshmi
2015-03-01
Blends of yam, rice and corn flour were processed in a twin-screw extruder. Effects of yam flour (10-40 %), feed moisture content (12-24 %) and extruder barrel temperature (100-140 °C) on the characteristics of the dried extrudates was investigated using a statistical technique response surface methodology (RSM). Radial expansion ratio differed significantly (p ≤ 0.05) with change in all the independent variables. Highest expansion (3.97) was found at lowest moisture content (12 %) and highest barrel temperature (140 °C). Increased yam flour level decreased the expansion ratio significantly. Water absorption index (WAI) increased significantly with increase of all variables. However, water solubility index (WSI) did not change with change in yam flour percent. Hardness of extrudates that varied from 3.86 to 6.94 N was positively correlated with yam flour level and feed moisture content, however it decreased significantly (p ≤ 0.001) with increase of barrel temperature. Yam percent of 15.75 with feed moisture and barrel temperature at 12.00 % and 140 °C respectively gave an optimized product of high desirability (> 0.90) with optimum responses of 3.29 expansion ratio, 5.64 g/g dry solid water absorption index, 30.39 % water solubility index and 3.86 N hardness. The predicted values registered non-significant (p < 0.10) differences from the experimental results. Further study would include the sensory properties enhancement of extruded snacks and little emphasis on the chemistry of interaction between different components.
Ventilator-associated pneumonia risk decreased by use of oral moisture gel in oral health care.
Takeyasu, Yoshihiro; Yamane, Gen-Yuki; Tonogi, Morio; Watanabe, Yutaka; Nishikubo, Shuichi; Serita, Ryohei; Imura, Kumiko
2014-01-01
Although oral health care has a preventive effect against ventilator-associated pneumonia (VAP), the most effective method of oral health care in this respect remains to be established. The objective of this single-center, randomized, controlled trial was to investigate the relationship between VAP and various methods of oral health care. All patients included in the study (n=142) were on mechanical ventilation with oral intubation at the intensive care unit of the Tokyo Dental College Ichikawa General Hospital. They were divided into two groups, one receiving standard oral health care (Standard group), and the other receiving oral health care using an oral moisture gel instead of water (Gel group). After removal of the intubation tube, biofilm on cuff of the tube was stained with a disclosing agent to determine the contamination level. Factors investigated included sex, age, number of remaining teeth, intubation time, fever ≥38.5°C, VAP, cuff contamination level, and time required for one oral health care session. No VAP occurred in either group during the study period. The level of cuff contamination was significantly lower in the Gel group than the Standard group, and the time required for one session of oral health care was shorter (p<0.001). Multivariate analysis revealed use of the oral moisture gel as a factor affecting cuff contamination level. Use of an oral moisture gel decreased invasion of the pharynx by bacteria and contaminants together with biofilm formation on the intubation tube cuff. These results suggest that oral health care using an oral moisture gel is effective in preventing cuff contamination.
NASA Astrophysics Data System (ADS)
David, Christian; Sarout, Joël.; Dautriat, Jérémie; Pimienta, Lucas; Michée, Marie; Desrues, Mathilde; Barnes, Christophe
2017-07-01
Fluid substitution processes have been investigated in the laboratory on 14 carbonate and siliciclastic reservoir rock analogues through spontaneous imbibition experiments on vertical cylindrical specimens with simultaneous ultrasonic monitoring and imaging. The motivation of our study was to identify the seismic attributes of fluid substitution in reservoir rocks and to link them to physical processes. It is shown that (i) the P wave velocity either decreases or increases when the capillary front reaches the Fresnel clearance zone, (ii) the P wave amplitude is systematically impacted earlier than the velocity is, (iii) this precursory amplitude decrease occurs when the imbibition front is located outside of the Fresnel zone, and (iv) the relative variation of the P wave amplitude is always much larger than that of the P wave velocity. These results suggest that moisture diffuses into the pore space ahead of the water front. This postulate is further supported by a quantitative analysis of the time evolution of the observed P wave amplitudes. In a sense, P wave amplitude acts as a precursor of the arrival of the capillary front. This phenomenon is used to estimate the effective diffusivity of moisture in the tested rocks. The effective moisture diffusivity estimated from the ultrasonic data is strongly correlated with permeability: a power law with exponent 0.96 predicts permeability from ultrasonic monitoring within a factor 3 without noticeable bias. When the effective diffusivity is high, moisture diffusion affects ultrasonic P wave attributes even before the imbibition starts and impacts the P wave reflectivity as evidenced by the variations recorded in the waveform coda.
NASA Astrophysics Data System (ADS)
Timkovsky, J.; Gankema, P.; Pierik, R.; Holzinger, R.
2012-12-01
Biogenic emissions account for almost 90% of total non-methane organic carbon emissions in the atmosphere. The goal of this project is to study the effect of pollution (ozone, NOx) and UV radiation on the emission of real plants. We have designed and built a setup where we combine plant chambers with a reaction chamber (75L volume) allowing the addition of pollutants at different locations. The main analytical tool is a PTR-TOF-MS instrument that can be optionally coupled with a GC system for improved compound identification. The setup is operational since March 2012 and first measurements indicate interesting results, three types of experiments will be presented: 1. Ozonolysis of b-pinene. In this experiment the reaction chamber was flushed with air containing b-pinene at approximate levels of 50 nmol/mol. After ~40 min b-pinene levels reached equilibrium in the reaction chamber and a constant supply of ozone was provided. Within 30 minutes this resulted in a 10 nmol/mol decrease of b-pinene levels in accordance with a reaction rate constant of 1.5*10-17 cm3molec-1s-1 and a residence time of 10 minutes in the reaction chamber. In addition we observed known oxidation products such as formaldehyde, acetone, and nopinone the molar yields of which were also in accordance with reported values. 2. Ozonolysis of biogenic emissions from tomato plants. The air containing the emissions from tomato plants was supplied to the reaction chamber. After adding ozone we observed the decrease of monoterpene concentrations inside the reaction chamber. The observed decrease is consistent for online PTR-MS and GC/PTR-MS measurements. Several ozonolysis products have been observed in the chamber. 3. The effect of UV-B radiation on biogenic emissions of tomato plants. Tomato plants were exposed to UV-B radiation and their emissions measured during and after the treatment. We observed significant changes in the emissions of volatile organic compounds, with specific compounds increasing at different times during the first 24h of the experiment. In situ BVOC emission changes as response to UV-B radiation provide interesting clues to the biological functions of the emitted compounds. These first results show the potential of this system to be a powerful tool to study the effect of pollution and UV radiation on real emissions from plants.
Lorenz, Ruth; Argueso, Daniel; Donat, Markus G.; Pitman, Andrew J.; van den Hurk, Bart; Berg, Alexis; Lawrence, David M.; Cheruy, Frederique; Ducharne, Agnes; Hagemann, Stefan; Meier, Arndt; Milly, Paul C.D.; Seneviratne, Sonia I
2016-01-01
We examine how soil moisture variability and trends affect the simulation of temperature and precipitation extremes in six global climate models using the experimental protocol of the Global Land-Atmosphere Coupling Experiment of the Coupled Model Intercomparison Project, Phase 5 (GLACE-CMIP5). This protocol enables separate examinations of the influences of soil moisture variability and trends on the intensity, frequency, and duration of climate extremes by the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) emission scenario. Removing soil moisture variability significantly reduces temperature extremes over most continental surfaces, while wet precipitation extremes are enhanced in the tropics. Projected drying trends in soil moisture lead to increases in intensity, frequency, and duration of temperature extremes by the end of the 21st century. Wet precipitation extremes are decreased in the tropics with soil moisture trends in the simulations, while dry extremes are enhanced in some regions, in particular the Mediterranean and Australia. However, the ensemble results mask considerable differences in the soil moisture trends simulated by the six climate models. We find that the large differences between the models in soil moisture trends, which are related to an unknown combination of differences in atmospheric forcing (precipitation, net radiation), flux partitioning at the land surface, and how soil moisture is parameterized, imply considerable uncertainty in future changes in climate extremes.
NASA Technical Reports Server (NTRS)
Obrien, T. K.; Raju, I. S.; Garber, D. P.
1985-01-01
A laminated plate theory analysis is developed to calculate the strain energy release rate associated with edge delamination growth in a composite laminate. The analysis includes the contribution of residual thermal and moisture stresses to the strain energy released. The strain energy release rate, G, increased when residual thermal effects were combined with applied mechanical strains, but then decreased when increasing moisture content was included. A quasi-three-dimensional finite element analysis indicated identical trends and demonstrated these same trends for the individual strain energy release rate components, G sub I and G sub II, associated with interlaminar tension and shear. An experimental study indicated that for T300/5208 graphite-epoxy composites, the inclusion of residual thermal and moisture stresses did not significantly alter the calculation of interlaminar fracture toughness from strain energy release rate analysis of edge delamination data taken at room temperature, ambient conditions.
Li, Weibin; Xu, Chunguang; Cho, Younho
2016-02-19
Laminate composites which are widely used in the aeronautical industry, are usually subjected to frequency variation of environmental temperature and excessive humidity in the in-service environment. The thermal fatigue and moisture absorption in composites may induce material degradation. There is a demand to investigate the coupling damages mechanism and characterize the degradation evolution of composite laminates for the particular application. In this paper, the degradation evolution in unidirectional carbon/epoxy composite laminates subjected to thermal fatigue and moisture absorption is characterized by Lamb waves. The decrease rate of Lamb wave velocity is used to track the degradation evolution in the specimens. The results show that there are two stages for the progressive degradation of composites under the coupling effect of thermal cyclic loading and moisture diffusion. The present work provides an alternative to monitoring the degradation evolution of in-service aircraft composite Laminates.
Moisture effect on mechanical properties of polymeric composite materials
NASA Astrophysics Data System (ADS)
Airale, A. G.; Carello, M.; Ferraris, A.; Sisca, L.
2016-05-01
The influence of moisture on the mechanical properties of fibre-reinforced polymer matrix composites (PMCs) was investigated. Four materials had been take into account considering: both 2×2-Twill woven carbon fibre or glass fibre, thermosetting matrix (Epoxy Resin) or thermoplastic matrix (Polyphenylene Sulfide). The specimens were submitted for 1800 hours to a hygrothermic test to evaluate moisture absorption on the basis of the Fick's law and finally tested to verify the mechanical properties (ultimate tensile strength). The results showed that the absorbed moisture decreases those properties of composites which were dominated by the matrix or the interface, while was not detectable the influence of water on the considered fibre. An important result is that the diffusion coefficient is highest for glass/PPS and lowest for carbon/epoxy composite material. The results give useful suggestions for the design of vehicle components that are exposed to environmental conditions (rain, snow and humidity).
Impact of moisture content in AAC on its heat insulation properties
NASA Astrophysics Data System (ADS)
Rubene, S.; Vilnitis, M.
2017-10-01
One of the most popular trends in construction industry is sustainable construction. Therefore, application of construction materials with high insulation characteristics has significantly increased during the past decade. Requirements for application of construction materials with high insulation parameters are required not only by means of energy saving and idea of sustainable construction but also by legislative requirements. Autoclaved aerated concrete (AAC) is a load bearing construction material, which has high heat insulation parameters. However, if the AAC masonry construction has high moisture content the heat insulation properties of the material decrease significantly. This fact lead to the necessity for the on-site control of moisture content in AAC in order to avoid inconsistency between the designed and actual thermal resistivity values of external delimiting constructions. Research of the impact of moisture content in AAC on its heat insulation properties has been presented in this paper.
Chang, Man-Jau; Huang, Huey-Chun; Chang, Hsien-Cheh; Chang, Tsong-Min
2008-07-01
Retention of water in the stratum corneum of skin epidermis plays an important role in regulation of skin function. Loss of water may decline skin appearance gradually and lead to irregular skin disorders. The root extract of Lithospermum erythrorhizon (LES) is known for its various pharmacological activities. However, the potential skin care effect of LES is not clear. The aim of this study was to evaluate the moisturizing efficacy and skin barrier repairing activity of LES. For this study, 30 healthy Asian females (age 20-30) with healthy skin had applied the test emulsions twice daily over a period of 28 days. The skin properties were measured by skin bioengineering techniques. Our preliminary results indicated that LES show moisturizing effect on skin hydration in a time- and dose-dependent pattern, and the maximum increase in skin humidity was 11.77 +/- 1.18% for emulsion LES5.00. Particularly, LES-containing emulsions significantly improve skin barrier function by decreasing the value of transepidermal water loss (TEWL) in a time- and dose-dependent pattern, and the maximum decrease in TEWL value was 7.68 +/- 0.79% for emulsion LES5.00. Taken together, our data demonstrate that LES is more effective in increasing skin humidity and decreasing the TEWL values, indicating the potential skin care effects of LES.
Huet, J; Druilhe, C; Trémier, A; Benoist, J C; Debenest, G
2012-06-01
This study aimed to experimentally acquire evolution profiles between depth, bulk density, Free Air Space (FAS), air permeability and thermal conductivity in initial composting materials. The impact of two different moisture content, two particle size and two types of bulking agent on these four parameters was also evaluated. Bulk density and thermal conductivity both increased with depth while FAS and air permeability both decreased with it. Moreover, depth and moisture content had a significant impact on almost all the four physical parameters contrary to particle size and the type of bulking agent. Copyright © 2012 Elsevier Ltd. All rights reserved.
New Processes for Freeze-Drying in Dual-Chamber Systems.
Werk, T; Ludwig, I S; Luemkemann, J; Huwyler, J; Mahler, H-C; Haeuser, C R; Hafner, M
2016-01-01
Dual-chamber systems can offer self-administration and home care use for lyophilized biologics. Only a few products have been launched in dual-chamber systems so far-presumably due to dual-chamber systems' complex and costly drug product manufacturing process. Within this paper, two improved processes (both based on tray filling technology) for freeze-drying pharmaceuticals in dual-chamber systems are described. Challenges with regards to heat transfer were tackled by (1) performing the freeze-drying step in a needle-down orientation in combination with an aluminum block, or (2) freeze-drying the drug product "externally" in a metal cartridge with subsequent filling of the lyophilized cake into the dual-chamber system. Metal-mediated heat transfer was shown to be efficient in both cases and batch (unit-to-unit) homogeneity with regards to sublimation rate was increased. It was difficult to influence ice crystal size using different methods when in use with an aluminum block due to its heat capacity. Using such a metal carrier implies a large heat capacity leading to relatively small ice crystals. Compared to the established process, drying times were reduced by half using the new processes. The drying time was, however, longer for syringes compared to vials due to the syringe design (long and slim). The differences in drying times were less pronounced for aggressive drying cycles. The proposed processes may help to considerably decrease investment costs into dual-chamber system fill-finish equipment. Dual-chamber syringes offer self-administration and home care use for freeze-dried pharmaceuticals. Only a few products have been launched in dual-chamber syringes so far-presumably due to their complex and costly drug product manufacturing process. In this paper two improved processes for freeze-drying pharmaceuticals in dual-chamber syringes are described. The major challenge of freeze-drying is to transfer heat through a vacuum. The proposed processes cope with this challenge by (1) freeze-drying the drug product in the syringe in an orientation in which the product is closest to the heat source, or (2) freeze-drying the drug product outside the syringe in a metal tube. The latter requires filling the freeze-dried product subsequently into the dual-chamber syringe. Both processes were very efficient and promised to achieve similar freeze-drying conditions for all dual-chamber syringes within one production run. The proposed processes may help to considerably decrease investment costs into dual-chamber syringe fill-finish equipment. © PDA, Inc. 2016.
Steinmeyer, J; Torzilli, P A; Burton-Wurster, N; Lust, G
1993-01-01
A prototype chamber was used to apply a precise cyclic or static load on articular cartilage explants under sterile conditions. A variable pressure, pneumatic controller was constructed to power the chamber's air cylinder, capable of applying, with a porous load platen, loads of up to 10 MPa at cycles ranging from 0 to 10 Hz. Pig articular cartilage explants were maintained successfully in this chamber for 2 days under cyclic mechanical loading of 0.5 Hz, 0.5 MPa. Explants remained sterile, viable and metabolically active. Cartilage responded to this load with a decreased synthesis of fibronectin and a small but statistically significant elevation in proteoglycan content. Similar but less extensive effects on fibronectin synthesis were observed with the small static load (0.016 MPa) inherent in the design of the chamber.
NASA Technical Reports Server (NTRS)
McCray, Daniel; Smith, Jeffrey; Rice, Brian; Blohowiak, Kay; Anderson, Robert; Shin, E. Eugene; McCorkle, Linda; Sutter, James
2003-01-01
NASA Glenn Research Center is currently evaluating the possibility of using high- temperature polymer matrix composites to reinforce the combustion chamber of a rocket engine. One potential design utilizes a honeycomb structure composed of a PMR-II- 50/M40J 4HS composite facesheet and titanium honeycomb core to reinforce a stainless steel shell. In order to properly fabricate this structure, adhesive bond PMR-II-50 composite. Proper prebond surface preparation is critical in order to obtain an acceptable adhesive bond. Improperly treated surfaces will exhibit decreased bond strength and durability, especially in metallic bonds where interface are susceptible to degradation due to heat and moisture. Most treatments for titanium and stainless steel alloys require the use of strong chemicals to etch and clean the surface. This processes are difficult to perform due to limited processing facilities as well as safety and environmental risks and they do not consistently yield optimum bond durability. Boeing Phantom Works previously developed sol-gel surface preparations for titanium alloys using a PETI-5 based polyimide adhesive. In support of part of NASA Glenn Research Center, UDRI and Boeing Phantom Works evaluated variations of this high temperature sol-gel surface preparation, primer type, and primer cure conditions on the adhesion performance of titanium and stainless steel using Cytec FM 680-1 polyimide adhesive. It was also found that a modified cure cycle of the FM 680-1 adhesive, i.e., 4 hrs at 370 F in vacuum + post cure, significantly increased the adhesion strength compared to the manufacturer's suggested cure cycle. In addition, the surface preparation of the PMR-II-50 composite was evaluated in terms of surface cleanness and roughness. This presentation will discuss the results of strength and durability testing conducted on titanium, stainless steel, and PMR-II-50 composite adherends to evaluate possible bonding processes.
Biowaste home composting: experimental process monitoring and quality control.
Tatàno, Fabio; Pagliaro, Giacomo; Di Giovanni, Paolo; Floriani, Enrico; Mangani, Filippo
2015-04-01
Because home composting is a prevention option in managing biowaste at local levels, the objective of the present study was to contribute to the knowledge of the process evolution and compost quality that can be expected and obtained, respectively, in this decentralized option. In this study, organized as the research portion of a provincial project on home composting in the territory of Pesaro-Urbino (Central Italy), four experimental composters were first initiated and temporally monitored. Second, two small sub-sets of selected provincial composters (directly operated by households involved in the project) underwent quality control on their compost products at two different temporal steps. The monitored experimental composters showed overall decreasing profiles versus composting time for moisture, organic carbon, and C/N, as well as overall increasing profiles for electrical conductivity and total nitrogen, which represented qualitative indications of progress in the process. Comparative evaluations of the monitored experimental composters also suggested some interactions in home composting, i.e., high C/N ratios limiting organic matter decomposition rates and final humification levels; high moisture contents restricting the internal temperature regime; nearly horizontal phosphorus and potassium evolutions contributing to limit the rates of increase in electrical conductivity; and prolonged biowaste additions contributing to limit the rate of decrease in moisture. The measures of parametric data variability in the two sub-sets of controlled provincial composters showed decreased variability in moisture, organic carbon, and C/N from the seventh to fifteenth month of home composting, as well as increased variability in electrical conductivity, total nitrogen, and humification rate, which could be considered compatible with the respective nature of decreasing and increasing parameters during composting. The modeled parametric kinetics in the monitored experimental composters, along with the evaluation of the parametric central tendencies in the sub-sets of controlled provincial composters, all indicate that 12-15 months is a suitable duration for the appropriate development of home composting in final and simultaneous compliance with typical reference limits. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
O'Donnell, F. C.; Springer, A. E.; Sankey, T.; Masek Lopez, S.
2014-12-01
Forest restoration projects are being planned for large areas of overgrown semi-arid ponderosa pine forests of the Southwestern US. Restoration involves the thinning of smaller trees and prescribed or managed fire to reduce tree density, restore a more natural fire regime, and decrease the risk of catastrophic wildfire. The stated goals of these projects generally reduced plant water stress and improvements in hydrologic function. However, little is known about how to design restoration treatments to best meet these goals. As part of a larger project on snow cover, soil moisture, and groundwater recharge, we measured soil moisture, an indicator of plant water status, in four pairs of control and restored sites near Flagstaff, Arizona. The restoration strategies used at the sites range in both amount of open space created and degree of clustering of the remaining trees. We measured soil moisture using 30 cm vertical time domain reflectometry probes installed on 100 m transects at 5 m intervals so it would be possible to analyze the spatial pattern of soil moisture. Soil moisture was higher and more spatially variable in the restored sites than the control sites with differences in spatial pattern among the restoration types. Soil moisture monitoring will continue until the first snow fall, at which point measurements of snow depth and snow water equivalent will be made at the same locations.
Smith, J.A.; Chiou, C.T.; Kammer, J.A.; Kile, D.E.
1990-01-01
This report presents data on the sorption of trichloroethene (TCE) vapor to vadose-zone soil above a contaminated water-table aquifer at Picatinny Arsenal in Morris County, NJ. To assess the impact of moisture on TCE sorption, batch experiments on the sorption of TCE vapor by the field soil were carried out as a function of relative humidity. The TCE sorption decreases as soil moisture content increases from zero to saturation soil moisture content (the soil moisture content in equilibrium with 100% relative humidity). The moisture content of soil samples collected from the vadose zone was found to be greater than the saturation soil-moisture content, suggesting that adsorption of TCE by the mineral fraction of the vadose-zone soil should be minimal relative to the partition uptake by soil organic matter. Analyses of soil and soil-gas samples collected from the field indicate that the ratio of the concentration of TCE on the vadose-zone soil to its concentration in the soil gas is 1-3 orders of magnitude greater than the ratio predicted by using an assumption of equilibrium conditions. This apparent disequilibrium presumably results from the slow desorption of TCE from the organic matter of the vadose-zone soil relative to the dissipation of TCE vapor from the soil gas.
A Lagrangian perspective of the hydrological cycle in the Congo River basin
NASA Astrophysics Data System (ADS)
Sorí, Rogert; Nieto, Raquel; Vicente-Serrano, Sergio M.; Drumond, Anita; Gimeno, Luis
2017-08-01
The Lagrangian model FLEXPART is used to identify the moisture sources of the Congo River basin (CRB) and investigate their role in the hydrological cycle. This model allows us to track atmospheric parcels while calculating changes in the specific humidity through the budget of evaporation minus precipitation. This method permits the annual-scale identification of five continental and four oceanic principal regions that provide moisture to the CRB from both hemispheres over the course of the year. The most important is the CRB, which provides more than 50 % of the total atmospheric moisture contribution to precipitation over itself. Additionally, both the land that extends to the east of the CRB and the eastern equatorial South Atlantic Ocean are very important sources, while the Red Sea source is merely important in the (E - P) budget over the CRB despite its high evaporation rate. The moisture-sink patterns over the CRB in air masses that were tracked forward in time from all the sources follow the latitudinal rainfall migration and are mostly highly correlated with the pattern of the precipitation rate, ensuring a link between them. In wet (dry) years, the contribution of moisture to precipitation from the CRB over itself increases (decreases). Despite the enhanced evaporative conditions over the basin during dry years, the vertically integrated moisture flux (VIMF) divergence inhibits precipitation and suggests the transport of moisture from the CRB to remote regions.
Bento, F de M M; Marques, R N; Costa, M L Z; Walder, J M M; Silva, A P; Parra, J R P
2010-08-01
This study aimed to evaluate adult emergence and duration of the pupal stage of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and emergence of the fruit fly parasitoid, Diachasmimorpha longicaudata (Ashmead), under different moisture conditions in four soil types, using soil water matric potential. Pupal stage duration in C. capitata was influenced differently for males and females. In females, only soil type affected pupal stage duration, which was longer in a clay soil. In males, pupal stage duration was individually influenced by moisture and soil type, with a reduction in pupal stage duration in a heavy clay soil and in a sandy clay, with longer duration in the clay soil. As matric potential decreased, duration of the pupal stage of C. capitata males increased, regardless of soil type. C. capitata emergence was affected by moisture, regardless of soil type, and was higher in drier soils. The emergence of D. longicaudata adults was individually influenced by soil type and moisture factors, and the number of emerged D. longicaudata adults was three times higher in sandy loam and lower in a heavy clay soil. Always, the number of emerged adults was higher at higher moisture conditions. C. capitata and D. longicaudata pupal development was affected by moisture and soil type, which may facilitate pest sampling and allow release areas for the parasitoid to be defined under field conditions.
[Two cases of Vogt-Koyanagi-Harada disease presenting shallow anterior chamber].
Takemoto, Daisuke; Ijiri, Shigeyuki; Shimizu, Michiharu; Higashide, Tomomi; Sugiyama, Kazuhisa
2015-05-01
We report two cases of Vogt-Koyanagi-Harada disease (VKH) in which shallow anterior chambers were improved after steroid pulse therapy. The patients were women aged 65 and 72. They had headaches, decreased visual acuity and shallow anterior chamber in both eyes. There was no inflammation in the anterior chamber. Ultrasound biomicroscopy (UBM) showed ciliary edema, ciliochoroidal detachment, and angle closure. One case showed high intraocular pressure (IOP), and a diagnosis of acute primary angle closure was made. Although cataract surgery was performed in the left eye, postoperative optical coherence tomography (OCT) revealed serous retinal detachment in both eyes. The shallow anterior chamber and UBM findings were improved and serous retinal detachment disappeared after steroid pulse therapy in both cases. VKH may cause shallow anterior chamber and angle closure. The inflammatory changes of VKH in the anterior segment, i. e. ciliary edema and ciliochoroidal detachment, may exacerbate the shallow anterior chambers and narrow angles and result in an acute increase in IOP in eyes with short axial length. VKH associated with shallow anterior chamber may be misdiagnosed as acute primary angle closure. For differential diagnosis, examinations of the ocular fundus including OCT are useful.
Wang, Qian; Yang, Mei; Pei, Jin; Wang, Li; Wu, Yi-Yun; Lv, Hui
2016-04-01
Effects of nine different moisture contents on vigor of Cyathula officinalis seeds and its anti-aging mechanism were studied by artificial accelerated aging through high temperature and wet. The research results showedthat seed vigor were generally decreased after artificial aging; in general, seed vigor and its anti-aging ability are relatively stronger within the scope of 6.55%-4.78% moisture content, the increase range of seed conductivity, peroxidase activity, malondialdehyde content,and reduce amplitude of activityof dehydrogenase , superoxide dismutaseare alllower as well. And when the moisture content reduced to 5.77%, all of the germination tests index of the non-aged seeds are the highest, and the activity of peroxidase the lowest,conductivity of leaching solution relatively low, activity of dehydrogenase and superoxide dismutase the highest,and catalase activityrelatively high.Therefore, in the low temperature germplasm preservation of C. officinalis seeds, the seed moisture content should be controlled close to the range of (5.70±1)% to keep higher vigor and anti-aging ability. Copyright© by the Chinese Pharmaceutical Association.
A comparison between active and passive sensing of soil moisture from vegetated terrains
NASA Technical Reports Server (NTRS)
Fung, A. K.; Eom, H. J.
1985-01-01
A comparison between active and passive sensing of soil moisture over vegetated areas is studied via scattering models. In active sensing three contributing terms to radar backscattering can be identified: (1) the ground surface scatter term; (2) the volume scatter term representing scattering from the vegetation layer; and (3) the surface volume scatter term accounting for scattering from both surface and volume. In emission three sources of contribution can also be identified: (1) surface emission; (2) upward volume emission from the vegetation layer; and (3) downward volume emission scattered upward by the ground surface. As ground moisture increases, terms (1) and (3) increase due to increase in permittivity in the active case. However, in passive sensing, term (1) decreases but term (3) increases for the same reason. This self compensating effect produces a loss in sensitivity to change in ground moisture. Furthermore, emission from vegetation may be larger than that from the ground. Hence, the presence of vegetation layer causes a much greater loss of sensitivity to passive than active sensing of soil moisture.
A comparison between active and passive sensing of soil moisture from vegetated terrains
NASA Technical Reports Server (NTRS)
Fung, A. K.; Eom, H. J.
1984-01-01
A comparison between active and passive sensing of soil moisture over vegetated areas is studied via scattering models. In active sensing three contributing terms to radar backscattering can be identified: (1) the ground surface scatter term; (2) the volume scatter term representing scattering from the vegetation layer; and (3) the surface volume scatter term accounting for scattering from both surface and volume. In emission three sources of contribution can also be identified: (1) surface emission; (2) upward volume emission from the vegetation layer; and (3) downward volume emission scattered upward by the ground surface. As ground moisture increases, terms (1) and (3) increase due to increase in permittivity in the active case. However, in passive sensing, term (1) decreases but term (3) increases for the same reason. This self conpensating effect produces a loss in sensitivity to change in ground moisture. Furthermore, emission from vegetation may be larger than that from the ground. Hence, the presence of vegetation layer causes a much greater loss of sensitivity to passive than active sensing of soil moisture.
Petisca, Catarina; Henriques, Ana Rita; Pérez-Palacios, Trinidad; Pinho, Olívia; Ferreira, Isabel M P L V O
2013-12-15
A procedure for extraction of hydroxymethylfurfural (HMF) and furfural from cakes was validated. Higher yield was achieved by multiple step extraction with water/methanol (70/30) and clarification with Carrez I and II reagents. Oven type and baking time strongly influenced HMF, moisture and volatile profile of model cakes, whereas furfural content was not significantly affected. No correlation was found between these parameters. Baking time influenced moisture and HMF formation in cakes from traditional and microwave ovens but not in steam oven cakes. Significant moisture decrease and HMF increase (3.63, 9.32, and 41.9 mg kg(-1)dw at 20, 40 and 60 min, respectively) were observed during traditional baking. Cakes baked by microwave also presented a significant increase of HMF (up to 16.84 mg kg(-1)dw at 2.5 min). Steam oven cakes possessed the highest moisture content and no significant differences in HMF and furfural. This oven is likely to form low HMF and furfural, maintaining cake moisture and aroma compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rotary internal combustion engine with integrated supercharged fuel-air induction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southard, A.A.
This patent describes an improved method of operating a rotary internal combustion engine of the type wherein a multicusped rotor rotatable upon a rotatable eccentric rotates within a cavity bounded by a wall of lobed trochoidal configuration. The rotor cusps have sealing engagement separating and defining operating chambers in the cavity about the rotor between adjacent pairs of cusps. Such chambers are angularly spaced about and orbit the center of the cavity as the rotor rotates while each chamber alternately expands and contracts in volume. The method comprises cylindrically operating each chamber through a sequence of six phases that aremore » synchronized with three successive increases and decreases in the volume of such chamber, with the first four phases being an internal combustion engine power cycle comprising an air intake phase, a compression phase, a combustion phase and an exhaust phase. The fifth phase comprises inducting air into the chamber, and the sixth phase comprises compressing the inducted air in such chamber and passing such inducted and compressed air through an elongated transfer zone.« less
Zhou, Weiping; Hui, Dafeng; Shen, Weijun
2014-01-01
The temperature sensitivity (Q10) of soil heterotrophic respiration (Rh) is an important ecological model parameter and may vary with temperature and moisture. While Q10 generally decreases with increasing temperature, the moisture effects on Q10 have been controversial. To address this, we conducted a 90-day laboratory incubation experiment using a subtropical forest soil with a full factorial combination of five moisture levels (20%, 40%, 60%, 80%, and 100% water holding capacity - WHC) and five temperature levels (10, 17, 24, 31, and 38°C). Under each moisture treatment, Rh was measured several times for each temperature treatment to derive Q10 based on the exponential relationships between Rh and temperature. Microbial biomass carbon (MBC), microbial community structure and soil nutrients were also measured several times to detect their potential contributions to the moisture-induced Q10 variation. We found that Q10 was significantly lower at lower moisture levels (60%, 40% and 20% WHC) than at higher moisture level (80% WHC) during the early stage of the incubation, but became significantly higher at 20%WHC than at 60% WHC and not significantly different from the other three moisture levels during the late stage of incubation. In contrast, soil Rh had the highest value at 60% WHC and the lowest at 20% WHC throughout the whole incubation period. Variations of Q10 were significantly associated with MBC during the early stages of incubation, but with the fungi-to-bacteria ratio during the later stages, suggesting that changes in microbial biomass and community structure are related to the moisture-induced Q10 changes. This study implies that global warming’s impacts on soil CO2 emission may depend upon soil moisture conditions. With the same temperature rise, wetter soils may emit more CO2 into the atmosphere via heterotrophic respiration. PMID:24647610
Assessing mechanical deconstruction of softwood cell wall for cellulosic biofuels production
NASA Astrophysics Data System (ADS)
Jiang, Jinxue
Mechanical deconstruction offers a promising strategy to overcome biomass recalcitrance for facilitating enzymatic hydrolysis of pretreated substrates with zero chemicals input and presence of inhibitors. The goal of this dissertation research is to gain a more fundamental understanding on the impact of mechanical pretreatment on generating digestible micronized-wood and how the physicochemical characteristics influence the subsequent enzymatic hydrolysis of micronized wood. The initial moisture content of feedstock was found to be the key factor affecting the development of physical features and enzymatic hydrolysis of micronized wood. Lower moisture content resulted in much rounder particles with lower crystallinity, while higher moisture content resulted in the milled particles with larger aspect ratio and crystallinity. The enzymatic hydrolysis of micronized wood was improved as collectively increasing surface area (i.e., reducing particle size and aspect ratio) and decreasing crystallinity during mechanical milling pretreatment. Energy efficiency analysis demonstrated that low-moisture content feedstock with multi-step milling process would contribute to cost-effectiveness of mechanical pretreatment for achieving more than 70% of total sugars conversion. In the early stage of mechanical pretreatment, the types of cell fractures were distinguished by the initial moisture contents of wood, leading to interwall fracture at the middle lamella region for low moisture content samples and intrawall fracture at the inner cell wall for high moisture content samples. The changes in cell wall fractures also resulted in difference in the distribution of surface chemical composition and energy required for milling process. In an effort to exploit the underlying mechanism associated with the reduced recalcitrance in micronized wood, we reported the increased enzymatic sugar yield and correspondingly structural and accessible properties of micronized feedstock. Electronic microscopy analysis detailed the structural alternation of cell wall during mechanical process, including cell fracture and delamination, ultrastructure disintegration, and cell wall fragments amorphization, as coincident with the particle size reduction. It was confirmed with Simons' staining that longer milling time resulted in increased substrate accessibility and porosity. The changes in cellulose molecular structure with respect to degree of polymerization (DP) and crystallinity index (CrI) also benefited to decreasing recalcitrance and facilitating enzymatic hydrolysis of micronized wood.
NASA Astrophysics Data System (ADS)
Vasconcelos, Steel S.; Zarin, Daniel J.; Capanu, Marinela; Littell, Ramon; Davidson, Eric A.; Ishida, Francoise Y.; Santos, Elisana B.; Araújo, Maristela M.; AragãO, DéBora V.; Rangel-Vasconcelos, LíVia G. T.; de Assis Oliveira, Francisco; McDowell, William H.; de Carvalho, Claudio José R.
2004-06-01
Changes in land-use and climate are likely to alter moisture and substrate availability in tropical forest soils, but quantitative assessment of the role of resource constraints as regulators of soil trace gas fluxes is rather limited. The primary objective of this study was to quantify the effects of moisture and substrate availability on soil trace gas fluxes in an Amazonian regrowth forest. We measured the efflux of carbon dioxide (CO2), nitric oxide (NO), nitrous oxide (N2O), and methane (CH4) from soil in response to two experimental manipulations. In the first, we increased soil moisture availability during the dry season by irrigation; in the second, we decreased substrate availability by continuous removal of aboveground litter. In the absence of irrigation, soil CO2 efflux decreased during the dry season while irrigation maintained soil CO2 efflux levels similar to the wet season. Large variations in soil CO2 efflux consistent with a significant moisture constraint on respiration were observed in response to soil wet-up and dry-down events. Annual soil C efflux for irrigated plots was 27 and 13% higher than for control plots in 2001 and 2002, respectively. Litter removal significantly reduced soil CO2 efflux; annual soil C efflux in 2002 was 28% lower for litter removal plots compared to control plots. The annual soil C efflux:litterfall C ratio for the control treatment (4.0-5.2) was consistent with previously reported values for regrowth forests that indicate a relatively large belowground C allocation. In general, fluxes of N2O and CH4 were higher during the wet season and both fluxes increased during dry-season irrigation. There was no seasonal effect on NO fluxes. Litter removal had no significant impact on N oxide or CH4 emissions. Net soil nitrification did not respond to dry-season irrigation, but was somewhat reduced by litter removal. Overall, these results demonstrate significant soil moisture and substrate constraints on soil trace gas emissions, particularly for CO2, and suggest that climate and land-use changes that alter moisture and substrate availability are therefore likely to have an impact on atmosphere chemistry.
Photosynthetically mediated Zn removal from the water column in High Ore Creek, Montana
Morris, Jeffrey M.; Meyer, Joseph S.
2006-01-01
We collected cobbles covered in biofilm from High Ore Creek, Montana, placed them in 12 transparent PVC plastic chambers, and exposed the chambers to four treatments: Sunlight, Sunlight-occluded, DCMU (photosynthesis inhibited), and Formalin. Total aqueous zinc (Zn) concentrations in the Sunlight treatment decreased during the 4-h experiment and were significantly lower (P ≤ 0.05) than in the other three treatments, in which the total aqueous Zn concentrations did not decrease significantly. Therefore, we believe photosynthesis in the biofilm played a role in causing total aqueous Zn concentrations in the Sunlight treatment to decrease, and we believe a similar process contributes to diel Zn cycling in High Ore Creek and some other metals-contaminated streams.
NASA Astrophysics Data System (ADS)
Wever, Nander; Comola, Francesco; Bavay, Mathias; Lehning, Michael
2017-08-01
The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the linkage between the snow cover, soil and discharge in the stream network. Here, we apply the comprehensive, distributed model Alpine3D to investigate the role of soil moisture in the predisposition of the Dischma catchment in Switzerland to high flows from rainfall and snowmelt. The recently updated soil module of the physics-based multilayer snow cover model SNOWPACK, which solves the surface energy and mass balance in Alpine3D, is verified against soil moisture measurements at seven sites and various depths inside and in close proximity to the Dischma catchment. Measurements and simulations in such terrain are difficult and consequently, soil moisture was simulated with varying degrees of success. Differences between simulated and measured soil moisture mainly arise from an overestimation of soil freezing and an absence of a groundwater description in the Alpine3D model. Both were found to have an influence in the soil moisture measurements. Using the Alpine3D simulation as the surface scheme for a spatially explicit hydrologic response model using a travel time distribution approach for interflow and baseflow, streamflow simulations were performed for the discharge from the catchment. The streamflow simulations provided a closer agreement with observed streamflow when driving the hydrologic response model with soil water fluxes at 30 cm depth in the Alpine3D model. Performance decreased when using the 2 cm soil water flux, thereby mostly ignoring soil processes. This illustrates that the role of soil moisture is important to take into account when understanding the relationship between both snowpack runoff and rainfall and catchment discharge in high alpine terrain. However, using the soil water flux at 60 cm depth to drive the hydrologic response model also decreased its performance, indicating that an optimal soil depth to include in surface simulations exists and that the runoff dynamics are controlled by only a shallow soil layer. Runoff coefficients (i.e. ratio of rainfall over discharge) based on measurements for high rainfall and snowmelt events were found to be dependent on the simulated initial soil moisture state at the onset of an event, further illustrating the important role of soil moisture for the hydrological processes in the catchment. The runoff coefficients using simulated discharge were found to reproduce this dependency, which shows that the Alpine3D model framework can be successfully applied to assess the predisposition of the catchment to flood risks from both snowmelt and rainfall events.
Putranto, Aditya; Chen, Xiao Dong
2017-05-01
During composting, self-heating may occur due to the exothermicities of the chemical and biological reactions. An accurate model for predicting maximum temperature is useful in predicting whether the phenomena would occur and to what extent it would have undergone. Elevated temperatures would lead to undesirable situations such as the release of large amount of toxic gases or sometimes would even lead to spontaneous combustion. In this paper, we report a new model for predicting the profiles of temperature, concentration of oxygen, moisture content and concentration of water vapor during composting. The model, which consists of a set of equations of conservation of heat and mass transfer as well as biological heating term, employs the reaction engineering approach (REA) framework to describe the local evaporation/condensation rate quantitatively. A good agreement between the predicted and experimental data of temperature during composting of sewage sludge is observed. The modeling indicates that the maximum temperature is achieved after some 46weeks of composting. Following this period, the temperature decreases in line with a significant decrease in moisture content and a tremendous increase in concentration of water vapor, indicating the massive cooling effect due to water evaporation. The spatial profiles indicate that the maximum temperature is approximately located at the middle-bottom of the compost piles. Towards the upper surface of the piles, the moisture content and concentration of water vapor decreases due to the moisture transfer to the surrounding. The newly proposed model can be used as reliable simulation tool to explore several geometry configurations and operating conditions for avoiding elevated temperature build-up and self-heating during industrial composting. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hong, Tao; Dong, Wenjie; Ji, Dong; Dai, Tanlong; Yang, Shili; Wei, Ting
2018-04-01
The effects of increasing CO2 concentrations on plant and carbon cycle have been extensively investigated; however, the effects of changes in plants on the hydrological cycle are still not fully understood. Increases in CO2 modify the stomatal conductance and water use of plants, which may have a considerable effect on the hydrological cycle. Using the carbon-climate feedback experiments from CMIP5, we estimated the responses of plants and hydrological cycle to rising CO2 concentrations to double of pre-industrial levels without climate change forcing. The mode results show that rising CO2 concentrations had a significant influence on the hydrological cycle by changing the evaporation and transpiration of plants and soils. The increases in the area covered by plant leaves result in the increases in vegetation evaporation. Besides, the physiological effects of stomatal closure were stronger than the opposite effects of changes in plant structure caused by the increases in LAI (leaf area index), which results in the decrease of transpiration. These two processes lead to overall decreases in evaporation, and then contribute to increases in soil moisture and total runoff. In the dry areas, the stronger increase in LAI caused the stronger increases in vegetation evaporation and then lead to the overall decreases in P - E (precipitation minus evaporation) and soil moisture. However, the soil moisture in sub-arid and wet areas would increase, and this may lead to the soil moisture deficit worse in the future in the dry areas. This study highlights the need to consider the different responses of plants and the hydrological cycle to rising CO2 in dry and wet areas in future water resources management, especially in water-limited areas.
NASA Astrophysics Data System (ADS)
Kropp, H.; Loranty, M. M.; Natali, S.; Kholodov, A. L.; Alexander, H. D.; Zimov, N.
2017-12-01
Boreal forests may experience increased water stress under global climate change as rising air temperatures increase evaporative demand and decrease soil moisture. Increases in plant water stress can decrease stomatal conductance, and ultimately, decrease primary productivity. A large portion of boreal forests are located in Siberia, and are dominated by deciduous needleleaf trees, Larix spp. We investigated the variability and drivers of canopy stomatal conductance in upland Larix stands with different stand density that arose from differing fire severity. Our measurements focus on an open canopy stand with low tree density and deep permafrost thaw depth, and a closed canopy stand with high tree density and shallow permafrost thaw depth. We measured canopy stomatal conductance, soil moisture, and micrometeorological variables. Our results demonstrate that canopy stomatal conductance was significantly lower in the closed canopy stand with a significantly higher sensitivity to increases in atmospheric evaporative demand. Canopy stomatal conductance in both stands was tightly coupled to precipitation that occurred over the previous week; however, the closed canopy stand showed a significantly greater sensitivity to increases in precipitation compared to the open canopy stand. Differences in access to deep versus shallow soil moisture and the physical characteristics of the soil profile likely contribute to differences in sensitivity to precipitation between the two stands. Our results indicate that Larix primary productivity may be highly sensitive to changes in evaporative demand and soil moisture that can result of global climate change. However, the effect of increasing air temperatures and changes in precipitation will differ significantly depending on stand density, thaw depth, and the hydraulic characteristics of the soil profile.
Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine
Jiang, Jingyu; Cheng, Yuanping; Mou, Junhui; Jin, Kan; Cui, Jie
2015-01-01
To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index). Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption) index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar occurrence conditions of coal seams. PMID:26161959
NASA Astrophysics Data System (ADS)
Halubok, M.; Yang, Z. L.
2016-12-01
This study investigates how gross primary production (GPP) estimates can be improved with the use of solar-induced chlorophyll fluorescence (SIF) and presents an effort to produce GPP predictions based on the interdependence between SIF, precipitation, soil moisture and GPP using Global Ozone Monitoring Experiment-2 (GOME-2), Tropical Rainfall Measuring Mission (TRMM), European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) datasets and FLUXNET observations. We found that considering the relationships between SIF, precipitation and soil moisture, isolating SIF-GPP relationships for different plant functional types (PFTs), and using precipitation and soil moisture conditions pertinent to the continental US provides the most accurate GPP estimates over the Great Plains and Texas. We found that there exists a lag between a precipitation event and corresponding fluorescence levels, ranging from about 2 weeks for grasses to a month for crops. Using these lead-lag relationships, we estimate GPP using SIF, precipitation and soil moisture data for two different PFTs (C3 non-arctic grass and crop) over the US applying the multiple linear regression technique. GPP values estimated from our lead-lag based SIF show the closest possible match with the observational data from the FLUXNET stations. During the drought 2011 year over Texas, our GPP values show a decrease by 100 gC/m2/month as compared to the reference year of 2007. In 2012 (drought year over the Great Plains), we observe significant decrease in GPP, especially in the area of high production (>500 gC/m2/month) that is reduced in July and August 2012. Hence, estimating GPP using specific SIF-GPP relationships, considering the differences in biomes and their interactions with precipitation and soil moisture pertinent to a certain region can detect the drought trends and produce reasonable GPP estimates. Thus, this simple and computationally efficient method based on derived linear equations can be used to obtain GPP predictions.
[Root system distribution and biomechanical characteristics of Bambusa oldhami].
Zhou, Ben-Zhi; Xu, Sheng-Hua; An, Yan-Fei; Xu, Sheng-Hua
2014-05-01
To determine the mechanism of soil stabilizing through Bambusa oldhami root system, the vertical distribution of B. oldhami root system in soil was investigated, and the tensile strength of individual root and soil shear strength were measured in B. oldhami forest. The dry mass, length, surface area and volume of the B. oldhami root system decreased with the increasing soil depth, with more than 90% of the root system occurring in the 0-40 cm soil layer. The root class with D 1 mm occupied the highest percentage of the total in terms of root length, accounting for 79.6%, but the lowest percentage of the total in terms of root volume, accounting for 8.2%. The root class with D >2 mm was the opposite, and the root class with D= 1-2 mm stayed in between. The maximum tensile resistance of B. oldhami root, either with 12% moisture content or a saturated moisture content, increased with the increasing root diameter, while the tensile strength decreased with the increasing root diameter in accordance with power function. Tensile strength of the root, with either of the two moisture contents, was significantly different among the diameter classes, with the highest tensile strength occurring in the root with D < or = 1 mm and the lowest in the root with D > or = 2 mm. The tensile strength of root with 12% moisture content was significantly higher than that with the saturated moisture content, and less effect of moisture content on root tensile strength would occur in thicker roots. The shear strengths of B. oldhami forest soil and of bare soil both increased with the increasing soil depth. The shear strength of B. oldhami forest soil had a linear positive correlation with the root content in soil, and was significantly higher than that of bare soil. The shear strength increment in B. oldhami forest was positively correlated with the root content in soil according to an exponential function, but not related significantly with soil depth.
NASA Astrophysics Data System (ADS)
Uhlemann, S.; Chambers, J.; Merritt, A.; Wilkinson, P.; Meldrum, P.; Gunn, D.; Maurer, H.; Dixon, N.
2014-12-01
To develop a better understanding of the failure mechanisms leading to first time failure or reactivation of landslides, the British Geological Survey is operating an observatory on an active, shallow landslide in North Yorkshire, UK, which is a typical example of slope failure in Lias Group mudrocks. This group and the Whitby Mudstone Formation in particular, show one of the highest landslide densities in the UK. The observatory comprises geophysical (i.e., ERT and self-potential monitoring, P- and S-wave tomography), geotechnical (i.e. acoustic emission and inclinometer), and hydrological and environmental monitoring (i.e. weather station, water level, soil moisture, soil temperature), in addition to movement monitoring using real-time kinematic GPS. In this study we focus on the reactivation of the landslide at the end of 2012, after an exceptionally wet summer. We present an integrated interpretation of the different data streams. Results show that the two lobes (east and west), which form the main focus of the observatory, behave differently. While water levels, and hence pore pressures, in the eastern lobe are characterised by a continuous increase towards activation resulting in significant movement (i.e. metres), water levels in the western lobe are showing frequent drainage events and thus lower pore pressures and a lower level of movement (i.e. tens of centimetres). This is in agreement with data from the geoelectrical monitoring array. During the summer season, resistivities generally increase due to decreasing moisture levels. However, during the summer of 2012 this seasonal pattern was interrupted, with the reactivated lobe displaying strongly decreasing resistivities (i.e. increasing moisture levels). The self-potential and soil moisture data show clear indications of moisture accumulation prior to the reactivation, followed by continuous discharge towards the base of the slope. Using the different data streams, we present 3D volumetric images of gravimetric moisture content (derived from the ERT data) that highlight the reasons for the differential behaviour and indicate precursors for landslide reactivation.
Majchrzycka, Katarzyna; Okrasa, Małgorzata; Skóra, Justyna; Gutarowska, Beata
2016-01-01
Bioaerosols are common biological factors in work environments, which require routine use of filtering respiratory protective devices (FRPDs). Currently, no studies link humidity changes in the filter materials of such devices, during use, with microorganism survivability. Our aim was to determine the microclimate inside FRPDs, by simulating breathing, and to evaluate microorganism survivability under varying humidity conditions. Breathing was simulated using commercial filtering facepiece respirators in a model system. Polypropylene melt-blown nonwoven fabrics with moisture contents of 40%, 80%, and 200%, were used for assessment of microorganisms survivability. A modified AATCC 100-2004 method was used to measure the survivability of ATCC and NCAIM microorganisms: Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albicans and Aspergillus niger. During simulation relative humidity under the facepiece increased after 7 min of usage to 84%–92% and temperature increased to 29–30 °C. S. aureus survived the best on filter materials with 40%–200% moisture content. A decrease in survivability was observed for E. coli and C. albicans when mass humidity decreased. We found that B. subtilis and A. niger proliferated for 48–72 h of incubation and then died regardless of the moisture content. In conclusion, our tests showed that the survivability of microorganisms on filter materials depends on the amount of accumulated moisture and microorganism type. PMID:26742049
Heat and Moisture Transport and Storage Parameters of Bricks Affected by the Environment
NASA Astrophysics Data System (ADS)
Kočí, Václav; Čáchová, Monika; Koňáková, Dana; Vejmelková, Eva; Jerman, Miloš; Keppert, Martin; Maděra, Jiří; Černý, Robert
2018-05-01
The effect of external environment on heat and moisture transport and storage properties of the traditional fired clay brick, sand-lime brick and highly perforated ceramic block commonly used in the Czech Republic and on their hygrothermal performance in building envelopes is analyzed by a combination of experimental and computational techniques. The experimental measurements of thermal, hygric and basic physical parameters are carried out in the reference state and after a 3-year exposure of the bricks to real climatic conditions of the city of Prague. The obtained results showed that after 3 years of weathering the porosity of the analyzed bricks increased up to five percentage points which led to an increase in liquid and gaseous moisture transport parameters and a decrease in thermal conductivity. Computational modeling of hygrothermal performance of building envelopes made of the studied bricks was done using both reference and weather-affected data. The simulated results indicated an improvement in the annual energy balances and a decrease in the time-of-wetness functions as a result of the use of data obtained after the 3-year exposure to the environment. The effects of weathering on both heat and moisture transport and storage parameters of the analyzed bricks and on their hygrothermal performance were found significant despite the occurrence of warm winters in the time period of 2012-2015 when the brick specimens were exposed to the environment.
Feng, Xin; Vo, Anh; Patil, Hemlata; Tiwari, Roshan V; Alshetaili, Abdullah S; Pimparade, Manjeet B; Repka, Michael A
2016-05-01
The aim of this study was to evaluate the effect of polymer carrier, hot melt extrusion and downstream processing parameters on the water uptake properties of amorphous solid dispersions. Three polymers and a model drug were used to prepare amorphous solid dispersions utilizing the hot melt extrusion technology. The sorption-desorption isotherms of solid dispersions and their physical mixtures were measured by the dynamic vapour sorption system, and the effects of polymer hydrophobicity, hygroscopicity, molecular weight and the hot melt extrusion process were investigated. Fourier transform infrared (FTIR) imaging was performed to understand the phase separation driven by the moisture. Solid dispersions with polymeric carriers with lower hydrophilicity, hygroscopicity and higher molecular weight could sorb less moisture under the high relative humidity (RH) conditions. The water uptake ability of polymer-drug solid dispersion systems were decreased compared with the physical mixture after hot melt extrusion, which might be due to the decreased surface area and porosity. The FTIR imaging indicated that the homogeneity of the drug molecularly dispersed within the polymer matrix was changed after exposure to high RH. Understanding the effect of formulation and processing on the moisture sorption properties of solid dispersions is essential for the development of drug products with desired physical and chemical stability. © 2015 Royal Pharmaceutical Society.
Aerosol delivery and humidification with the Boussignac continuous positive airway pressure device.
Thille, Arnaud W; Bertholon, Jean-François; Becquemin, Marie-Hélène; Roy, Monique; Lyazidi, Aissam; Lellouche, François; Pertusini, Esther; Boussignac, Georges; Maître, Bernard; Brochard, Laurent
2011-10-01
A simple method for effective bronchodilator aerosol delivery while administering continuing continuous positive airway pressure (CPAP) would be useful in patients with severe bronchial obstruction. To assess the effectiveness of bronchodilator aerosol delivery during CPAP generated by the Boussignac CPAP system and its optimal humidification system. First we assessed the relationship between flow and pressure generated in the mask with the Boussignac CPAP system. Next we measured the inspired-gas humidity during CPAP, with several humidification strategies, in 9 healthy volunteers. We then measured the bronchodilator aerosol particle size during CPAP, with and without heat-and-moisture exchanger, in a bench study. Finally, in 7 patients with acute respiratory failure and airway obstruction, we measured work of breathing and gas exchange after a β(2)-agonist bronchodilator aerosol (terbutaline) delivered during CPAP or via standard nebulization. Optimal humidity was obtained only with the heat-and-moisture exchanger or heated humidifier. The heat-and-moisture exchanger had no influence on bronchodilator aerosol particle size. Work of breathing decreased similarly after bronchodilator via either standard nebulization or CPAP, but P(aO(2)) increased significantly only after CPAP aerosol delivery. CPAP bronchodilator delivery decreases the work of breathing as effectively as does standard nebulization, but produces a greater oxygenation improvement in patients with airway obstruction. To optimize airway humidification, a heat-and-moisture exchanger could be used with the Boussignac CPAP system, without modifying aerosol delivery.