Cancilla, P A; Barrette, P; Rosenblum, F
2002-12-01
The manual gravimetric drying moisture determination methods currently employed by most mineral processing plants fail to provide timely and accurate information required for automatic control. The costs associated with transporting and handling concentrates still represent a major portion of the overall treatment price. When considering the cash flow of a mining operation that is governed by both the smelter contract, with moisture penalties and the quantity and quality of the concentrates shipped, an efficient method of on-line moisture content would be a welcome tool. A novel on-line determination system for ore concentrate moisture content would replace the tedious manual procedure. Since the introduction of microelectronic-based control systems, operators have strived to reduce the treatment costs to the minimum. Therefore, a representative and timely determination of on-line moisture content becomes vital for control set points and timely feedback. Reliable sensors have long been on the 'wish list' of mineral processors since the problem has always been that you can only control what you can measure. Today, the task of moisture determination is still done by the classical technique of loss in weight utilizing uncontrolled procedures. These same methods were introduced in the earliest base metal concentrators. Generally, it is acceptable to have ore concentrate moisture content vary within a range of 7-9%, but controlling the moisture content below 8% is a difficult task with a manually controlled system. Many times, delays in manually achieving reliable feedback of the moisture content results in the moisture varying from 5-12% before corrective actions can be made. This paper first reviews the traditional and widely available methods for determining moisture content in granular materials by applying physical principles and properties to measure moisture content. All methods are in some form affected when employed on mineral ore concentrates. This paper introduces and describes a novel on-line moisture sensor employed for mineral processing de-watering applications, which not only automates the tedious tasks but also results in reliable moisture feedback that can be used in the optimization of the de-watering process equipment such as pressure or vacuum filters and fuel-fired driers. Finally, two measurement applications will be presented which indicate the usefulness and summarizes the measurement requirements for the proposed method of employing drag force and mechanical properties of the material itself to determine the moisture content. Copyright 2002 Elsevier Science Ltd.
Refinement of moisture calibration curves for nuclear gage.
DOT National Transportation Integrated Search
1973-01-01
Over the last three years the Virginia Highway Research Council has directed a research effort toward improving the method of determining the moisture content of soils with a nuclear gage. The first task in this research was the determination of the ...
NASA Astrophysics Data System (ADS)
Crow, W. T.; Chen, F.; Reichle, R. H.; Xia, Y.; Liu, Q.
2018-05-01
Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of land surface models tasked with characterizing the surface water and energy balance. Temporal variability in this partitioning is due, in part, to changes in prestorm soil moisture, which determine soil infiltration capacity and unsaturated storage. Utilizing the National Aeronautics and Space Administration Soil Moisture Active Passive Level-4 soil moisture product in combination with streamflow and precipitation observations, we demonstrate that land surface models (LSMs) generally underestimate the strength of the positive rank correlation between prestorm soil moisture and event runoff coefficients (i.e., the fraction of rainfall accumulation volume converted into stormflow runoff during a storm event). Underestimation is largest for LSMs employing an infiltration-excess approach for stormflow runoff generation. More accurate coupling strength is found in LSMs that explicitly represent subsurface stormflow or saturation-excess runoff generation processes.
Development of an improved coating for polybenzimidazole foam. [for space shuttle heat shields
NASA Technical Reports Server (NTRS)
Neuner, G. J.; Delano, C. B.
1976-01-01
An improved coating system was developed for Polybenzimidazole (PBI) foam to provide coating stability, ruggedness, moisture resistance, and to satisfy optical property requirements (alpha sub (s/epsilon) or = 0.4 and epsilon 0.8) for the space shuttle. The effort was performed in five tasks: Task 1 to establish material and process specifications for the PBI foam, and material specifications for the coatings; Task 2 to identify and evaluate promising coatings; Task 3 to establish mechanical and thermophysical properties of the tile components; Task 4 to determine by systems analysis the potential weight trade-offs associated with a coated PBI TPS; and Task 5 to establish a preliminary quality assurance program. The coated PBI tile was, through screening tests, determined to satisfy the design objectives with a reduced system weight over the baseline shuttle silica LRSI TPS. The developed tile provides a thermally stable, extremely rugged, low thermal conductivity insulator with a well characterized optical coating.
CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unknown
2002-07-01
Proposed activities for quarter 8 (3/15/2001--6/14/2002), Boiler Burner Simulation and Experiments: (1) Continue the parametric study of cofiring of pulverized coal and LB in the boiler burner, and determining the combustor performance and emissions of NO, CO, CO{sub 2}, PO{sub 2} and P{sub 4}O{sub 10}, etc. The air-fuel ratio, swirl number of the secondary air stream and moisture effects will also be investigated (Task 4). Gasification: (Task 3) (2) Measuring the temperature profile for chicken litter biomass under different operating conditions. (3) Product gas species for different operating conditions for different fuels. (4) Determining the bed ash composition for differentmore » fuels. (5) Determining the gasification efficiency for different operating conditions. Activities Achieved during quarter 8 (3/15/2001--6/14/2002), Boiler Burner Simulation and Experiments: (1) The evaporation and phosphorus combustion models have been incorporated into the PCGC-2 code. Mr. Wei has successfully defended his Ph.D. proposal on Coal: LB modeling studies (Task 4, Appendix C). (2) Reburn experiments with both low and high phosphorus feedlot biomass has been performed (Task 2, Appendix A). (3) Parametric studies on the effect of air-fuel ratio, swirl number of the secondary air stream and moisture effects have been investigated (Task 2, Appendix A). (4) Three abstracts have been submitted to the American Society of Agricultural Engineers Annual International meeting at Chicago in July 2002. Three part paper dealing with fuel properties, cofiring, large scale testing are still under review in the Journal of Fuel. Gasification: (Task 3, Appendix B) (5) Items No. 2, and 3 are 95% complete, with four more experiments yet to be performed with coal and chicken litter biomass blends. (6) Item No. 4, and 5 shall be performed after completion of all the experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franzen, K.; Kim, M.; Liang, H.
This report contains a detailed summary of all work performed to date. Task 10 involves a comprehensive review of drying theory. Proposed mass transfer mechanisms include liquid and vapor diffusion, capillary flow, surface diffusion, hydrodynamic flow, and evaporation/condensation processes. Pasta was chosen as a model system in this project since it is macroscopically homogenous and can be made under controlled conditions. Task 11 involves experimental drying studies. A high pressure drying apparatus is available for studies related to the revision of the fundamental drying model. The dryer will require two major modifications for the planned tests: installation of a pressuremore » control valve and recirculation of exhaust gas. A tray dryer was used to measure the shrinkage coefficient of nonfat milk, and will be used for further tests on nonfat milk, as well as whey and tomato puree. A method of economic analysis regarding use of mechanical vapor recompression is presented. Task 12 involves food quality studies. A model of nonenzymatic browning (NEB) was developed based on NEB in skim milk samples containing 3.5--50% moisture, exposed to temperatures of 35--130{degrees}C. The browning rate was zero order after a lag period, and the temperature dependence fit an Arrhenius relation. The critical moisture occurs between 4% and 11% moisture. Task 13 addresses recommendations and strategies for dryer design and control. Moisture sensors were reviewed with specific reference to their on-line applicability. The IR sensor was found to be the most promising. Task 14 examined moisture mobility and interaction in foods. The BET adsorption method using nitrogen gas was applied to pasta, skim milk and egg albumin systems. The data obtained do not show good reproducibility, possibly due to an inadequate sample size. The possibility of using water vapor adsorption will be studied in future experiments. 210 refs., 30 figs., 22 tabs. (MHB)« less
2008-11-01
consisted of eight fundamental tasks. Boeing (1) pro - vided software allowing the selection of OLS locations using satellite im- agery, (2) provided a...IOP1 to determine the stratigraphy of the soil horizons, collect samples to determine the soil texture, and collect pro - file measurements of the soil...However, using the wet density value from the gauge with an oven-dry moisture con - tent from a sample collected at the same location where the density
WMA pavements in Oklahoma : moisture damage and performance issues.
DOT National Transportation Integrated Search
2013-08-01
This study explored the potential effects of using different Warm Mix Asphalt (WMA) technologies on the rut, fatigue and moisture-induced damage potential of WMA pavements. This task was pursued in two levels: (i) performance evaluation of WMA and co...
Use of typical moisture : density curves.
DOT National Transportation Integrated Search
1965-05-01
One of the many problems associated with compaction control on any construction project is the time consuming task of obtaining maximum density and optimum moisture content of soils both in the laboratory and in the field. In addition to the time ele...
Evaluating Vertical Moisture Structure of the Madden-Julian Oscillation in Contemporary GCMs
NASA Astrophysics Data System (ADS)
Guan, B.; Jiang, X.; Waliser, D. E.
2013-12-01
The Madden-Julian Oscillation (MJO) remains a major challenge in our understanding and modeling of the tropical convection and circulation. Many models have troubles in realistically simulating key characteristics of the MJO, such as the strength, period, and eastward propagation. For models that do simulate aspects of the MJO, it remains to be understood what parameters and processes are the most critical in determining the quality of the simulations. This study focuses on the vertical structure of moisture in MJO simulations, with the aim to identify and understand the relationship between MJO simulation qualities and key parameters related to moisture. A series of 20-year simulations conducted by 26 GCMs are analyzed, including four that are coupled to ocean models and two that have a two-dimensional cloud resolving model embedded (i.e., superparameterized). TRMM precipitation and ERA-Interim reanalysis are used to evaluate the model simulations. MJO simulation qualities are evaluated based on pattern correlations of lead/lag regressions of precipitation - a measure of the model representation of the eastward propagating MJO convection. Models with strongest and weakest MJOs (top and bottom quartiles) are compared in terms of differences in moisture content, moisture convergence, moistening rate, and moist static energy. It is found that models with strongest MJOs have better representations of the observed vertical tilt of moisture. Relative importance of convection, advection, boundary layer, and large scale convection/precipitation are discussed in terms of their contribution to the moistening process. The results highlight the overall importance of vertical moisture structure in MJO simulations. The work contributes to the climatological component of the joint WCRP-WWRP/THORPEX YOTC MJO Task Force and the GEWEX Atmosphere System Study (GASS) global model evaluation project focused on the vertical structure and diabatic processes of the MJO.
7 CFR 51.2548 - Average moisture content determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Average moisture content determination. 51.2548... moisture content determination. (a) Determining average moisture content of the lot is not a requirement of... connection with grade analysis or as a separate determination. (b) Nuts shall be obtained from a randomly...
AgRISTARS: Yield model development/soil moisture. Interface control document
NASA Technical Reports Server (NTRS)
1980-01-01
The interactions and support functions required between the crop Yield Model Development (YMD) Project and Soil Moisture (SM) Project are defined. The requirements for YMD support of SM and vice-versa are outlined. Specific tasks in support of these interfaces are defined for development of support functions.
COMPARING MOISTURE METER READINGS WITH MEASURED EQUILIBRIUM MOISTURE CONTENT OF GYPSUM BOARD
Moisture meters routinely used in the field to determine the moisture content in gypsum wallboard are primarily designed and manufactured to measure the moisture content of wood. Often they are used to decide whether to replace wallboard by determining if moisture is qualitativel...
Ileleji, Klein E; Garcia, Arnoldo A; Kingsly, Ambrose R P; Clementson, Clairmont L
2010-01-01
This study quantified the variability among 14 standard moisture loss-on-drying (gravimetric) methods for determination of the moisture content of corn distillers dried grains with solubles (DDGS). The methods were compared with the Karl Fischer (KF) titration method to determine their percent variation from the KF method. Additionally, the thermo-balance method using a halogen moisture analyzer that is routinely used in fuel ethanol plants was included in the methods investigated. Moisture contents by the loss-on-drying methods were significantly different for DDGS samples from three fuel ethanol plants. The percent deviation of the moisture loss-on-drying methods decreased with decrease in drying temperature and, to a lesser extent, drying time. This was attributed to an overestimation of moisture content in DDGS due to the release of volatiles at high temperatures. Our findings indicate that the various methods that have been used for moisture determination by moisture loss-on-drying will not give identical results and therefore, caution should be exercised when selecting a moisture loss-on-drying method for DDGS.
Automation of peanut drying with a sensor network including an in-shell kernel moisture sensor
USDA-ARS?s Scientific Manuscript database
Peanut drying is an essential task in the processing and handling of peanuts. Peanuts leave the fields with kernel moisture contents > 20% wet basis and need to be dried to < 10.5% w.b. for grading and storage purposes. Current peanut drying processes utilize decision support software based on model...
30 CFR 27.41 - Test to determine resistance to moisture.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test to determine resistance to moisture. 27.41... determine resistance to moisture. Components, subassemblies, or assemblies, the normal functioning of which might be affected by moisture, shall be tested in atmospheres of high relative humidity (80 percent or...
30 CFR 27.41 - Test to determine resistance to moisture.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test to determine resistance to moisture. 27.41... determine resistance to moisture. Components, subassemblies, or assemblies, the normal functioning of which might be affected by moisture, shall be tested in atmospheres of high relative humidity (80 percent or...
30 CFR 27.41 - Test to determine resistance to moisture.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test to determine resistance to moisture. 27.41... determine resistance to moisture. Components, subassemblies, or assemblies, the normal functioning of which might be affected by moisture, shall be tested in atmospheres of high relative humidity (80 percent or...
30 CFR 27.41 - Test to determine resistance to moisture.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test to determine resistance to moisture. 27.41... determine resistance to moisture. Components, subassemblies, or assemblies, the normal functioning of which might be affected by moisture, shall be tested in atmospheres of high relative humidity (80 percent or...
An instrument for rapid, accurate, determination of fuel moisture content
Stephen S. Sackett
1980-01-01
Moisture contents of dead and living fuels are key variables in fire behavior. Accurate, real-time fuel moisture data are required for prescribed burning and wildfire behavior predictions. The convection oven method has become the standard for direct fuel moisture content determination. Efforts to quantify fuel moisture through indirect methods have not been...
NASA Technical Reports Server (NTRS)
Jones, Jeffrey A.; Hoffman, Ronald B.; Harvey, C. M.; Bowen, C. K.; Hudy, C. E.; Gernhardt, M. L.
2007-01-01
During Neutral Buoyancy Lab (NBL) training sessions, a large amount of moisture accumulates in the EVA gloves. The glove design restricts the extension of the EVA suit s ventilation/cooling system to the hand. Subungual redness and fingernail pain develops for many astronauts following their NBL training sessions with subsequent oncholysis occurring over succeeding weeks. Various attempts have been made to reduce or avoid this problem. The causal role of moisture has yet to be defined. Methods: To determine the contribution that moisture plays in the injury to the fingers and fingernails during EVA training operations in NBL, the current Extravehicular Mobility Unit (EMU), with a Portable Life Support System (PLSS) was configured with a ventilation tube that extended down a single arm of the crewmember during the test and compared with the unventilated contralateral arm; with the ventilated hand serving as the experimental condition (E) and the opposite arm as the control (C). A cross-over design was used with opposite handedness for the vent tube on a subsequent NBL training run. Moisture content measures were conducted at six points on each hand with three types of moisture meters. A questionnaire was administered to determine subjective thermal hand discomfort, skin moisture perception, and hand and nail discomfort. Photographs and video were recorded. Measures were applied to six astronauts pre- and post-run in the NBL. Results: The consistent trends in relative hydration ratios at the dorsum, from 3.34 for C to 2.11 for E, and first ring finger joint locations, from 2.46 for C to 1.96 for E, indicated the extended vent tube promoted skin drying. The experimental treatment appeared to be more effective on the left hand versus the right hand, implying an interaction with hand anthropometry and glove fit. Video analyses differentiated fine and gross motor training tasks during runs and will be discussed. Conclusions: This potential countermeasure was effective in reducing the risks of hand and nail discomfort symptoms from moderate to low in two of six subjects. Improved design in the ventilation pattern of such a countermeasure is expected to improve the countermeasure s efficiency.
The Combined Effect of Cold and Moisture on Manual Performance.
Ray, Matthew; Sanli, Elizabeth; Brown, Robert; Ennis, Kerri Ann; Carnahan, Heather
2018-02-01
Objective The aim of this study was to investigate the combined effect of cold and moisture on manual performance and tactile sensitivity. Background People working in the ocean environment often perform manual work in cold and wet conditions. Although the independent effects of cold and moisture on hand function are known, their combined effect has not been investigated. Method Participants completed sensory (Touch-Test, two-point discrimination) and motor (Purdue Pegboard, Grooved Pegboard, reef knot untying) tests in the following conditions: dry hand, wet hand, cold hand, and cold and wet hand. Results For the Purdue Pegboard and knot untying tasks, the greatest decrement in performance was observed in the cold-and-wet-hand condition, whereas the decrements seen in the cold-hand and wet-hand conditions were similar. In the Grooved Pegboard task, the performance decrements exhibited in the cold-and-wet-hand condition and the cold-hand condition were similar, whereas no decrement was observed in the wet-hand condition. Tactile sensitivity was reduced in the cold conditions for the Touch-Test but not the two-point discrimination test. The combined effect of cold and moisture led to the largest performance decrements except when intrinsic object properties helped with grasp maintenance. The independent effects of cold and moisture on manual performance were comparable. Application Tools and equipment for use in the cold ocean environment should be designed to minimize the effects of cold and moisture on manual performance by including object properties that enhance grasp maintenance and minimize the fine-dexterity requirements.
Soil moisture by extraction and gas chromatography
NASA Technical Reports Server (NTRS)
Merek, E. L.; Carle, G. C.
1973-01-01
To determine moisture content of soils rapidly and conveniently extract moisture with methanol and determine water content of methanol extract by gas chromatography. Moisture content of sample is calculated from weight of water and methanol in aliquot and weight of methanol added to sample.
Subgrade moisture & temperature variations under road pavements in Virginia.
DOT National Transportation Integrated Search
1974-01-01
In this investigation the changes in the subgrade moisture content under five road pavements ranging in age from new to about ten years old were determined and evaluated. The moisture content was determined by means of a nuclear moisture depth probe....
Use of Temperature and Humidity Sensors to Determine Moisture Content of Oolong Tea
Chen, Andrew; Chen, Hsuan-Yu; Chen, Chiachung
2014-01-01
The measurement of tea moisture content is important for processing and storing tea. The moisture content of tea affects the quality and durability of the product. Some electrical devices have been proposed to measure the moisture content of tea leaves but are not practical. Their performance is influenced by material density and packing. The official oven method is time-consuming. In this study, the moisture content of Oolong tea was measured by the equilibrium relative humidity technique. The equilibrium relative humidity, and temperature, of tea materials were measured by using temperature and relative humidity sensors. Sensors were calibrated, and calibration equations were established to improve accuracy. The moisture content was calculated by using an equilibrium moisture content model. The error of the moisture content determined with this method was within 0.5% w.b. at moisture <15% w.b. Uncertainty analysis revealed that the performance of the humidity sensor had a significant effect on the accuracy of moisture determination. PMID:25153142
NASA Astrophysics Data System (ADS)
Simeonov, Tzvetan; Vey, Sibylle; Alshawaf, Fadwa; Dick, Galina; Guerova, Guergana; Güntner, Andreas; Hohmann, Christian; Kunwar, Ajeet; Trost, Benjamin; Wickert, Jens
2017-04-01
Water storage variations in the atmosphere and in soils are among the most dynamic within the Earth's water cycle. The continuous measurement of water storage in these media with a high spatial and temporal resolution is a challenging task, not yet completely solved by various observation techniques. With the development of the Global Navigation Satellite Systems (GNSS) a new approach for atmospheric water vapor estimation in the atmosphere and in parallel of soil moisture in the vicinity of GNSS ground stations was established in the recent years with several key advantages compared to traditional techniques. Regional and global GNSS networks are nowadays operationally used to provide the Integrated Water Vapor (IWV) information with high temporal resolution above the individual stations. Corresponding data products are used to improve the day-by-day weather prediction of leading forecast centers. Selected stations from these networks can be used to additionally derive the soil moisture in the vicinity of the receivers. Such parallel measurement of IWV and soil moisture using a single measuring device provides a unique possibility to analyze water fluxes between the atmosphere and the land surface. We installed an advanced experimental GNSS setup for hydrology at the field research station of the Leibniz Institute for Agricultural Engineering and Bioeconomy in Marquardt, around 30km West of Berlin, Germany. The setup includes several GNSS receivers, various Time Domain Reflectometry (TDR) sensors at different depths for soil moisture measurement and an meteorological station. The setup was mainly installed to develop and improve GNSS based techniques for soil moisture determination and to analyze GNSS IWV and SM in parallel on a long-term perspective. We introduce initial results from more than two years of measurements. The comparison in station Marquardt shows good agreement (correlation 0.79) between the GNSS derived soil moisture and the TDR measurements. A detailed study for several periods with different GNSS settings, vegetation and soil conditions in the vicinity of the station is presented with emphasis on the behavior of GNSS derived soil moisture, compared to TDR. Case studies of intense rainfall events and lasting dry periods show the interaction between the IWV and soil moisture.
A Novel Method for Moisture Determination in Peanuts
USDA-ARS?s Scientific Manuscript database
Accurate determination of moisture content of the peanuts is an important factor for preserving the quality and prevention of spoilage in peanuts. Hence, it is very important to devise rapid methods for determining moisture during harvesting, storage, marketing, and processing of peanuts. This paper...
Measuring moisture content in living chaparral: a field user's manual
Clive M. Countryman; William A. Dean
1979-01-01
This manual standardizes procedures for determining the moisture content of living chaparral for use in a proposed statewide system of monitoring living fuel moisture. The manual includes a comprehensive examination of fuel moisture variations in California chaparral, and describes techniques for sampling these variations. Equipment needed to sample and determine...
Moisture determination in composite materials using positron lifetime techniques
NASA Technical Reports Server (NTRS)
Singh, J. J.; Holt, W. R.; Mock, W., Jr.
1980-01-01
A technique was developed which has the potential of providing information on the moisture content as well as its depth in the specimen. This technique was based on the dependence of positron lifetime on the moisture content of the composite specimen. The positron lifetime technique of moisture determination and the results of the initial studies are described.
Preparation and gasification of a Thailand coal-water fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, R.O. Jr.; Anderson, C.M.; Musich, M.A.
In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy and Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt% for the HWD coals. The energy density, determined at 500 cP, indicates an increasemore » from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700 C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals and will produce high levels of hydrogen and be fairly reactive.« less
Determination of the moisture content in the fluoride oxide fluxes of electroslag remelting
NASA Astrophysics Data System (ADS)
Vdovin, K. N.; Feoktistov, N. A.; Pivovarova, K. G.; Deryabin, D. A.
2016-12-01
ANF-32 flux has been studied with regard to the moisture content both after storage and upon operation. A simple and reliable procedure for the determination of the moisture content in ESR fluxes is proposed, and recommendations are given on monitoring the moisture content in calcined fluxes. The main sources of crystallization water of hydration are hydrogen sources.
USDA-ARS?s Scientific Manuscript database
Microwave Sensing provides a means for nondestructively determining the amount of moisture in materials by sensing the dielectric properties of the material. In this study, dielectric properties of Vidalia onions were analyzed for moisture dependence at 13.36 GHz and 23°C for moisture content betwee...
Photoacoustic spectroscopy and thermal relaxation method to evaluate corn moisture content
NASA Astrophysics Data System (ADS)
Pedrochi, F.; Medina, A. N.; Bento, A. C.; Baesso, M. L.; Luz, M. L. S.; Dalpasquale, V. A.
2005-06-01
In this study, samples of popcorn with different degrees of moisture were analyzed. The optical absorption bands at the mid infrared were measured using photoacoustic spectroscopy and were correlated to the sample moisture. The results were in agreement with moisture data determined by the well known reference method, the Karl Fischer. In addition, the thermal relaxation method was used to determine the sample specific heat as a function of the moisture content. The results were also in agreement with the two mentioned methods.
Evaluation of Crops Moisture Provision by Space Remote Sensing Data
NASA Astrophysics Data System (ADS)
Ilienko, Tetiana
2016-08-01
The article is focused on theoretical and experimental rationale for the use of space data to determine the moisture provision of agricultural landscapes and agricultural plants. The improvement of space remote sensing methods to evaluate plant moisture availability is the aim of this research.It was proved the possibility of replacement of satellite imagery of high spatial resolution on medium spatial resolution which are freely available to determine crop moisture content at the local level. The mathematical models to determine the moisture content of winter wheat plants by spectral indices were developed based on the results of experimental field research and satellite (Landsat, MODIS/Terra, RapidEye, SICH-2) data. The maps of the moisture content in winter wheat plants in test sites by obtained models were constructed using modern GIS technology.
NASA Astrophysics Data System (ADS)
Hu, Z.; Xu, L.; Yu, B.
2018-04-01
A empirical model is established to analyse the daily retrieval of soil moisture from passive microwave remote sensing using convolutional neural networks (CNN). Soil moisture plays an important role in the water cycle. However, with the rapidly increasing of the acquiring technology for remotely sensed data, it's a hard task for remote sensing practitioners to find a fast and convenient model to deal with the massive data. In this paper, the AMSR-E brightness temperatures are used to train CNN for the prediction of the European centre for medium-range weather forecasts (ECMWF) model. Compared with the classical inversion methods, the deep learning-based method is more suitable for global soil moisture retrieval. It is very well supported by graphics processing unit (GPU) acceleration, which can meet the demand of massive data inversion. Once the model trained, a global soil moisture map can be predicted in less than 10 seconds. What's more, the method of soil moisture retrieval based on deep learning can learn the complex texture features from the big remote sensing data. In this experiment, the results demonstrates that the CNN deployed to retrieve global soil moisture can achieve a better performance than the support vector regression (SVR) for soil moisture retrieval.
A comparison of soil moisture sensors for space flight applications
NASA Technical Reports Server (NTRS)
Norikane, J. H.; Prenger, J. J.; Rouzan-Wheeldon, D. T.; Levine, H. G.
2005-01-01
Plants will be an important part of future long-term space missions. Automated plant growth systems require accurate and reliable methods of monitoring soil moisture levels. There are a number of different methods to accomplish this task. This study evaluated sensors using the capacitance method (ECH2O), the heat-pulse method (TMAS), and tensiometers, compared to soil water loss measured gravimetrically in a side-by-side test. The experiment monitored evaporative losses from substrate compartments filled with 1- to 2-mm baked calcinated clay media. The ECH2O data correlated well with the gravimetric measurements, but over a limited range of soil moisture. The averaged TMAS sensor data overstated soil moisture content levels. The tensiometer data appeared to track evaporative losses in the 0.5- to 2.5-kPa range of matric potential that corresponds to the water content needed to grow plants. This small range is characteristic of large particle media, and thus high-resolution tensiometers are required to distinguish changing moisture contents in this range.
Dynamic Moisture Sorption and Desorption in Fumed Silica-filled Silicone Foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trautschold, Olivia Carol
Characterizing dynamic moisture sorption and desorption in fumed silica-filled silicone foam is necessary for determining material compatibilities and life predictions, particularly in sealed environments that may be exposed to a range of environmental conditions. Thermogravimetric analysis (TGA) and near infrared spectroscopy (NIR) were performed on S5470 fumed silica-filled silicone foam to determine the weight percent of moisture at saturation. Additionally, TGA was used to determine the time, temperature, and relative humidity levels required for sorption and desorption of physisorbed moisture in S5470.
Microwave moisture meter for in-shell almonds.
USDA-ARS?s Scientific Manuscript database
Determining almond kernel moisture content while still in the shell is important for both almond growers and processors. A dielectric method was developed for almond kernel moisture determination from dielectric measurements on in-shell almonds at a single microwave frequency. A sample holder was fi...
7 CFR 801.12 - Design requirements incorporated by reference.
Code of Federal Regulations, 2011 CFR
2011-01-01
... by reference. (a) Moisture meters. All moisture meters approved for use in official grain moisture determination and certification shall meet applicable requirements contained in the FGIS Moisture Handbook and the General Code and Grain Moisture Meters Code of the 1991 edition of the National Institute of...
7 CFR 801.12 - Design requirements incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
... by reference. (a) Moisture meters. All moisture meters approved for use in official grain moisture determination and certification shall meet applicable requirements contained in the FGIS Moisture Handbook and the General Code and Grain Moisture Meters Code of the 1991 edition of the National Institute of...
7 CFR 801.12 - Design requirements incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
... by reference. (a) Moisture meters. All moisture meters approved for use in official grain moisture determination and certification shall meet applicable requirements contained in the FGIS Moisture Handbook and the General Code and Grain Moisture Meters Code of the 1991 edition of the National Institute of...
7 CFR 801.12 - Design requirements incorporated by reference.
Code of Federal Regulations, 2012 CFR
2012-01-01
... by reference. (a) Moisture meters. All moisture meters approved for use in official grain moisture determination and certification shall meet applicable requirements contained in the FGIS Moisture Handbook and the General Code and Grain Moisture Meters Code of the 1991 edition of the National Institute of...
Automatic Control of the Concrete Mixture Homogeneity in Cycling Mixers
NASA Astrophysics Data System (ADS)
Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly
2018-03-01
The article describes the factors affecting the concrete mixture quality related to the moisture content of aggregates, since the effectiveness of the concrete mixture production is largely determined by the availability of quality management tools at all stages of the technological process. It is established that the unaccounted moisture of aggregates adversely affects the concrete mixture homogeneity and, accordingly, the strength of building structures. A new control method and the automatic control system of the concrete mixture homogeneity in the technological process of mixing components have been proposed, since the tasks of providing a concrete mixture are performed by the automatic control system of processing kneading-and-mixing machinery with operational automatic control of homogeneity. Theoretical underpinnings of the control of the mixture homogeneity are presented, which are related to a change in the frequency of vibrodynamic vibrations of the mixer body. The structure of the technical means of the automatic control system for regulating the supply of water is determined depending on the change in the concrete mixture homogeneity during the continuous mixing of components. The following technical means for establishing automatic control have been chosen: vibro-acoustic sensors, remote terminal units, electropneumatic control actuators, etc. To identify the quality indicator of automatic control, the system offers a structure flowchart with transfer functions that determine the ACS operation in transient dynamic mode.
Drying and control of moisture content and dimensional changes
Richard Bergman
2010-01-01
The discussion in this chapter is concerned with moisture content determination, recommended moisture content values, drying methods, methods of calculating dimensional changes, design factors affecting such changes in structures, and moisture content control during transit, storage, and construction. Data on green moisture content, fiber saturation point, shrinkage,...
Measuring Moisture Levels in Graphite Epoxy Composite Sandwich Structures
NASA Technical Reports Server (NTRS)
Nurge, Mark; Youngquist, Robert; Starr, Stanley
2011-01-01
Graphite epoxy composite (GEC) materials are used in the construction of rocket fairings, nose cones, interstage adapters, and heat shields due to their high strength and light weight. However, they absorb moisture depending on the environmental conditions they are exposed to prior to launch. Too much moisture absorption can become a problem when temperature and pressure changes experienced during launch cause the water to vaporize. The rapid state change of the water can result in structural failure of the material. In addition, heat and moisture combine to weaken GEC structures. Diffusion models that predict the total accumulated moisture content based on the environmental conditions are one accepted method of determining if the material strength has been reduced to an unacceptable level. However, there currently doesn t exist any field measurement technique to estimate the actual moisture content of a composite structure. A multi-layer diffusion model was constructed with Mathematica to predict moisture absorption and desorption from the GEC sandwich structure. This model is used in conjunction with relative humidity/temperature sensors both on the inside and outside of the material to determine the moisture levels in the structure. Because the core materials have much higher diffusivity than the face sheets, a single relative humidity measurement will accurately reflect the moisture levels in the core. When combined with an external relative humidity measurement, the model can be used to determine the moisture levels in the face sheets. Since diffusion is temperaturedependent, the temperature measurements are used to determine the diffusivity of the face sheets for the model computations.
Capacitance Sensors for Nondestructive Moisture Determination in Agricultural and Bio-fuel materials
USDA-ARS?s Scientific Manuscript database
Moisture content of wood chips, pellets, switch grass powders, and similar organic bio-fuel materials is an important property to be known to determine their utility and energy efficiency at various stages of their processing and storage. Several moisture measuring instruments are available in the m...
The Effect of Temperature on Moisture Transport in Concrete.
Wang, Yao; Xi, Yunping
2017-08-09
Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter D HT , which can be determined by the present test data. The test results indicated that D HT is not a constant but increases linearly with the temperature variation. A material model was developed for D HT based on the experimental results obtained in this study.
The Effect of Temperature on Moisture Transport in Concrete
Wang, Yao; Xi, Yunping
2017-01-01
Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter DHT, which can be determined by the present test data. The test results indicated that DHT is not a constant but increases linearly with the temperature variation. A material model was developed for DHT based on the experimental results obtained in this study. PMID:28792460
NASA Technical Reports Server (NTRS)
Burke, H. H. K.
1980-01-01
Three tasks related to soil moisture sensing at microwave wavelengths were undertaken: (1) analysis of data at L, X and K sub 21 band wavelengths over bare and vegetated fields from the 1975 NASA sponsored flight experiment over Phoenix, Arizona; (2) modeling of vegetation canopy at microwave wavelengths taking into consideration both absorption and volume scattering effects; and (3) investigation of overall atmospheric effects at microwave wavelengths that can affect soil moisture retrieval. Data for both bare and vegetated fields are found to agree well with theoretical estimates. It is observed that the retrieval of surface and near surface soil moisture information is feasible through multi-spectral and multi-temporal analysis. It is also established that at long wavelengths, which are optimal for surface sensing, atmospheric effects are generally minimal. At shorter wavelengths, which are optimal for atmosheric retrieval, the background surface properties are also established.
Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.
DOT National Transportation Integrated Search
2009-09-01
ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...
USDA-ARS?s Scientific Manuscript database
NIR spectroscopy was used to measure the moisture concentration of wood pellets. Pellets were conditioned to various moisture levels between 0.63and 14.16percent (wet basis) and the moisture concentration was verified using a standard oven method. Samples from the various moisture levels were separa...
NASA Technical Reports Server (NTRS)
Laymon, Charles A.; Crosson, William L.; Jackson, Thomas J.; Manu, Andrew; Tsegaye, Teferi D.; Soman, V.; Arnold, James E. (Technical Monitor)
2001-01-01
Accurate estimates of spatially heterogeneous algorithm variables and parameters are required in determining the spatial distribution of soil moisture using radiometer data from aircraft and satellites. A ground-based experiment in passive microwave remote sensing of soil moisture was conducted in Huntsville, Alabama from July 1-14, 1996 to study retrieval algorithms and their sensitivity to variable and parameter specification. With high temporal frequency observations at S and L band, we were able to observe large scale moisture changes following irrigation and rainfall events, as well as diurnal behavior of surface moisture among three plots, one bare, one covered with short grass and another covered with alfalfa. The L band emitting depth was determined to be on the order of 0-3 or 0-5 cm below 0.30 cubic centimeter/cubic centimeter with an indication of a shallower emitting depth at higher moisture values. Surface moisture behavior was less apparent on the vegetated plots than it was on the bare plot because there was less moisture gradient and because of difficulty in determining vegetation water content and estimating the vegetation b parameter. Discrepancies between remotely sensed and gravimetric, soil moisture estimates on the vegetated plots point to an incomplete understanding of the requirements needed to correct for the effects of vegetation attenuation. Quantifying the uncertainty in moisture estimates is vital if applications are to utilize remotely-sensed soil moisture data. Computations based only on the real part of the complex dielectric constant and/or an alternative dielectric mixing model contribute a relatively insignificant amount of uncertainty to estimates of soil moisture. Rather, the retrieval algorithm is much more sensitive to soil properties, surface roughness and biomass.
NASA Astrophysics Data System (ADS)
Jones, J. A.; Hoffman, R. B.; Buckland, D. A.; Harvey, C. M.; Bowen, C. K.; Hudy, C. E.; Strauss, S.; Novak, J.; Gernhardt, M. L.
Introduction: Onycholysis due to repetitive activity in the space suit glove during Neutral Buoyancy Laboratory (NBL) training and during spaceflight extravehicular activity (EVA) is a common observation. Moisture accumulates in gloves during EVA task performance and may contribute to the development of pain and damage to the fingernails experienced by many astronauts. The study evaluated the use of a long ventilation tube to determine if improved gas circulation into the hand area could reduce hand moisture and thereby decrease the associated symptoms. Methods: The current Extravehicular Mobility Unit (EMU) was configured with a ventilation tube that extended down a single arm of the crew member (E) and compared with the unventilated arm (C). Skin surface moisture was measured on both hands immediately after glove removal and a questionnaire administered to determine subjective measures. Astronauts ( n=6) were examined pre- and post-run. Results: There were consistent trends in the reduction of relative hydration ratios at dorsum ( C=3.34, E=2.11) and first ring finger joint ( C=2.46, E=1.96) when the ventilation tube was employed. Ventilation appeared more effective on the left versus the right hand, implying an interaction with hand anthropometry and glove fit. Symptom score was lower on the hand that had the long ventilation tube relative to the control hand in 2/6 EVA crew members. Conclusions: Increased ventilation to the hand was effective in reducing the risks of hand and nail discomfort symptoms from moderate to low in one-third of the subjects. Improved design in the ventilation capability of EVA spacesuits is expected to improve efficiency of air flow distribution.
The moisture response of soil heterotrophic respiration: Interaction with soil properties.
USDA-ARS?s Scientific Manuscript database
Soil moisture-respiration functions are used to simulate the various mechanisms determining the relations between soil moisture content and carbon mineralization. Soil models used in the simulation of global carbon fluxes often apply simplified functions assumed to represent an average moisture-resp...
A Redesigned DFA Moisture Meter
USDA-ARS?s Scientific Manuscript database
The DFA moisture meter has been internationally recognized as the standard for determining moisture content of dried fruit in general and is AOAC Official Method 972.2 for measuring moisture in prunes and raisins since 1972. The device has remained virtually unchanged since its inception, with its o...
Analysis and optimal design of moisture sensor for rice grain moisture measurement
NASA Astrophysics Data System (ADS)
Jain, Sweety; Mishra, Pankaj Kumar; Thakare, Vandana Vikas
2018-04-01
The analysis and design of a microstrip sensor for accurate determination of moisture content (MC) in rice grains based on oven drying technique, this technique is easy, fast and less time-consuming to other techniques. The sensor is designed with low insertion loss, reflection coefficient and maximum gain is -35dB and 5.88dB at 2.68GHz as well as discussed all the parameters such as axial ratio, maximum gain, smith chart etc, which is helpful for analysis the moisture measurement. The variation in percentage of moisture measurement with magnitude and phase of transmission coefficient is investigated at selected frequencies. The microstrip moisture sensor consists of one layer: substrate FR4, thickness 1.638 is simulated by computer simulated technology microwave studio (CST MWS). It is concluded that the proposed sensor is suitable for development as a complete sensor and to estimate the optimum moisture content of rice grains with accurately, sensitivity, compact, versatile and suitable for determining the moisture content of other crops and agriculture products.
NASA Astrophysics Data System (ADS)
Mizera, Cestmir; Herak, David; Hrabe, Petr; Kabutey, Abraham
2017-07-01
The mechanical behaviour of natural fibres as composite materials can be affected by changes in temperature and moisture content. The aim of this paper was to describe the effect of temperature and moisture content on tensile strength of false banana fibre (Ensete ventricosum) and to determine its water absorption. Samples of fibres were prepared and tested until rupture point with strain rate of 0.05 min-1 at temperature change between -20 and 220°C as well as moisture content between 10 and 90% wb. The water absorption and release of Ensete fibres at 60 and 90% relative humidity was also determined. Results showed that Ensete fibres exhibited stability of tensile strength in the temperature range from 0 to 100°C but the increase of temperature decreased statistically significantly the tensile strength. The effect of moisture content on tensile strength was not statistically significant. The equilibrium moisture content at 60% relative humidity and 25°C was determined.
Modelling of nectarine drying under near infrared - Vacuum conditions.
Alaei, Behnam; Chayjan, Reza Amiri
2015-01-01
Drying of nectarine slices was performed to determine the thermal and physical properties in order to reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because nectarine slices are sensitive to heat with long drying period, the selection of a suitable drying approach is a challenging task. Infrared-vacuum drying can be used as an appropriate method for susceptible materials with high moisture content such as nectarine slices. Modelling of nectarine slices drying was carried out in a thin layer near infraredvacuum conditions. Drying of the samples was implemented at the absolute pressures of 20, 40 and 60 kPa and drying temperatures of 50, 60 and 70°C. Drying behaviour of nectarine slices, as well as the effect of drying conditions on moisture loss trend, drying rate, effective diffusion coefficient, activation energy, shrinkage, colour and energy consumption of nectarine slices, dried in near infrared-vacuum dryer are discussed in this study. Six mathematical models were used to predict the moisture ratio of the samples in thin layer drying. The Midilli model had supremacy in prediction of nectarine slices drying behaviour. The maximum drying rates of the samples were between 0.014-0.047 gwater/gdry material·min. Effective moisture diffusivity of the samples was estimated in the ranges of 2.46·10-10 to 6.48·10-10 m2/s. Activation energy were computed between 31.28 and 35.23 kJ/mol. Minimum shrinkage (48.4%) and total colour difference (15.1) were achieved at temperature of 50°C and absolute pressure of 20 kPa. Energy consumption of the tests was estimated in the ranges of 0.129 to 0.247 kWh. Effective moisture diffusivity was increased with decrease of vacuum pressure and increase of drying temperature but effect of drying temperature on effective moisture diffusivity of nectarine slices was more than vacuum pressure. Activation energy was decreased with decrease in absolute pressure. Total colour difference and shrinkage of nectarine slices on near infrared-vacuum drying was decreased with decrease of vacuum pressure and decrease of drying temperature.
2017 NEPP Tasks Update for Ceramic and Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2017-01-01
This presentation gives an overview of current NEPP tasks on ceramic and tantalum capacitors and plans for the future. It includes tasks on leakage currents, gas generation and case deformation in wet tantalum capacitors; ESR degradation and acceleration factors in MnO2 and polymer cathode capacitors. Preliminary results on the effect of moisture on degradation of reverse currents in MnO2 tantalum capacitors are discussed. Latest results on mechanical characteristics of MLCCs and modeling of degradation of leakage currents in BME capacitors with defects are also presented.
Comparison of two reference methods for detemining cotton fiber moisture
USDA-ARS?s Scientific Manuscript database
Moisture is an important quality and processing property for the cotton industry. The standard reference method for determining the moisture content in cotton fiber is the ASTM oven method (gravimetric weight loss). Several concerns have expressed on its ability to measure the actual moisture cont...
Dielectric properties for prediction of moisture content in Vidalia onions
USDA-ARS?s Scientific Manuscript database
Microwave Sensing provides a means for nondestructively determining the amount of moisture in materials by sensing the dielectric properties of the material. In this study, dielectric properties of Vidalia onions were analyzed for moisture dependence at 13.36 GHz and 23°C for moisture content betwee...
USDA-ARS?s Scientific Manuscript database
Soil moisture is an intrinsic state variable that varies considerably in space and time. From a hydrologic viewpoint, soil moisture controls runoff, infiltration, storage and drainage. Soil moisture determines the partitioning of the incoming radiation between latent and sensible heat fluxes. Althou...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 7 2012-01-01 2012-01-01 false Moisture. 868.207 Section 868.207 Agriculture... Application of Standards § 868.207 Moisture. Water content in rough rice as determined by an approved device..., “approved device” shall include the Motomco Moisture Meter and any other equipment that is approved by the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 7 2014-01-01 2014-01-01 false Moisture. 868.207 Section 868.207 Agriculture... Application of Standards § 868.207 Moisture. Water content in rough rice as determined by an approved device..., “approved device” shall include the Motomco Moisture Meter and any other equipment that is approved by the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 7 2013-01-01 2013-01-01 false Moisture. 868.207 Section 868.207 Agriculture... Application of Standards § 868.207 Moisture. Water content in rough rice as determined by an approved device..., “approved device” shall include the Motomco Moisture Meter and any other equipment that is approved by the...
7 CFR 51.2561 - Average moisture content.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Average moisture content. 51.2561 Section 51.2561... STANDARDS) United States Standards for Grades of Shelled Pistachio Nuts § 51.2561 Average moisture content. (a) Determining average moisture content of the lot is not a requirement of the grades, except when...
Stoichiometric determination of moisture in edible oils by Mid-FTIR spectroscopy.
van de Voort, F R; Tavassoli-Kafrani, M H; Curtis, J M
2016-04-28
A simple and accurate method for the determination of moisture in edible oils by differential FTIR spectroscopy has been devised based on the stoichiometric reaction of the moisture in oil with toluenesulfonyl isocyanate (TSI) to produce CO2. Calibration standards were devised by gravimetrically spiking dry dioxane with water, followed by the addition of neat TSI and examination of the differential spectra relative to the dry dioxane. In the method, CO2 peak area changes are measured at 2335 cm(-1) and were shown to be related to the amount of moisture added, with any CO2 inherent to residual moisture in the dry dioxane subtracted ratioed out. CO2 volatility issues were determined to be minimal, with the overall SD of dioxane calibrations being ∼18 ppm over a range of 0-1000 ppm. Gravimetrically blended dry and water-saturated oils analysed in a similar manner produced linear CO2 responses with SD's of <15 ppm on average. One set of dry-wet blends was analysed in duplicate by FTIR and by two independent laboratories using coulometric Karl Fischer (KF) procedures. All 3 methods produced highly linear moisture relationships with SD's of 7, 16 and 28 ppm, respectively over a range of 200-1500 ppm. Although the absolute moisture values obtained by each method did not exactly coincide, each tracked the expected moisture changes proportionately. The FTIRTSI-H2O method provides a simple and accurate instrumental means of determining moisture in oils rivaling the accuracy and specificity of standard KF procedures and has the potential to be automated. It could also be applied to other hydrophobic matrices and possibly evolve into a more generalized method, if combined with polar aprotic solvent extraction. Copyright © 2016 Elsevier B.V. All rights reserved.
Electrical methods of determining soil moisture content
NASA Technical Reports Server (NTRS)
Silva, L. F.; Schultz, F. V.; Zalusky, J. T.
1975-01-01
The electrical permittivity of soils is a useful indicator of soil moisture content. Two methods of determining the permittivity profile in soils are examined. A method due to Becher is found to be inapplicable to this situation. A method of Slichter, however, appears to be feasible. The results of Slichter's method are extended to the proposal of an instrument design that could measure available soil moisture profile (percent available soil moisture as a function of depth) from a surface measurement to an expected resolution of 10 to 20 cm.
NASA Astrophysics Data System (ADS)
Hardie, Marcus; Lisson, Shaun; Doyle, Richard; Cotching, William
2013-01-01
Preferential flow in agricultural soils has been demonstrated to result in agrochemical mobilisation to shallow ground water. Land managers and environmental regulators need simple cost effective techniques for identifying soil - land use combinations in which preferential flow occurs. Existing techniques for identifying preferential flow have a range of limitations including; often being destructive, non in situ, small sampling volumes, or are subject to artificial boundary conditions. This study demonstrated that high frequency soil moisture monitoring using a multi-sensory capacitance probe mounted within a vertically rammed access tube, was able to determine the occurrence, depth, and wetting front velocity of preferential flow events following rainfall. Occurrence of preferential flow was not related to either rainfall intensity or rainfall amount, rather preferential flow occurred when antecedent soil moisture content was below 226 mm soil moisture storage (0-70 cm). Results indicate that high temporal frequency soil moisture monitoring may be used to identify soil type - land use combinations in which the presence of preferential flow increases the risk of shallow groundwater contamination by rapid transport of agrochemicals through the soil profile. However use of high frequency based soil moisture monitoring to determine agrochemical mobilisation risk may be limited by, inability to determine the volume of preferential flow, difficulty observing macropore flow at high antecedent soil moisture content, and creation of artificial voids during installation of access tubes in stony soils.
1986-05-01
the presence of NOL 130 6 Determination of moisture content of dextrinated lead azide 14 containing known amounts of water, by the Karl Fisher method...maLhiod, extraction mode 8 Determinatiov) of moisture content of special purpose and 16 dextrinated lead atide, containing known amounts of water by the...water in special purpose and dextrinated lead azides were determined by the method described in the experimen- tal section of this report, data shown
Code of Federal Regulations, 2010 CFR
2010-01-01
... Application of Standards § 868.207 Moisture. Water content in rough rice as determined by an approved device..., “approved device” shall include the Motomco Moisture Meter and any other equipment that is approved by the...
Nuclear measurement of subgrade moisture.
DOT National Transportation Integrated Search
1973-01-01
The basic consideration in evaluating subgrade moisture conditions under pavements is the selection of a method of determining moisture contents that is sufficiently accurate and can be used with minimal effort, interference with traffic, and recalib...
A new model for predicting moisture uptake by packaged solid pharmaceuticals.
Chen, Y; Li, Y
2003-04-14
A novel mathematical model has been developed for predicting moisture uptake by packaged solid pharmaceutical products during storage. High density polyethylene (HDPE) bottles containing the tablet products of two new chemical entities and desiccants are investigated. Permeability of the bottles is determined at different temperatures using steady-state data. Moisture sorption isotherms of the two model drug products and desiccants at the same temperatures are determined and expressed in polynomial equations. The isotherms are used for modeling the time-humidity profile in the container, which enables the prediction of the moisture content of individual component during storage. Predicted moisture contents agree well with real time stability data. The current model could serve as a guide during packaging selection for moisture protection, so as to reduce the cost and cycle time of screening study.
Study of moisture absorption by an organoplastic
NASA Astrophysics Data System (ADS)
Aniskevich, A. N.; Yanson, Yu. O.
1991-07-01
A complex experimental study of the state of sorbed moisture in a unidirectionally reinforced organoplastic was conducted. The methods of TG, DSC, DTA, and NMR showed that moisture absorption in OP is reversible up to 8%, the sorbed moisture does not crystallize in the temperature range from -70 to 0 °C, it is finely dispersely distributed and is in the strongly and weakly bound state, and there is almost no free moisture. The results of the sorption experiments conducted on OP and its structural components: microplastic and EDT-10 binder, in a wide range of temperature-humidity conditions and the data from physical studies showed that moisture absorption in the materials basically takes place by diffusion and is satisfactorily described by a phenomenological model based on the Fick equation. A method of accelerated determination of the sorption characteristics of anisotropic composite materials was developed, using the introduced concept of the fictitious diffusion coefficient and the extrapolation method of determining the limiting moisture content. The features of migration of moisture on the interface in a multiphase system were investigated, and the possibility of successive calculation estimation of the sorption characteristics of an organoplastic at different structural levels was demonstrated: components—unidirectionally reinforced composite—model laminated article. The tested phenomenological model of the sorption process and the experimentally obtained values of the characteristics of the material were the basis for a method of calculation determination of the resource of moisture-proofing properties of a model multilayer article of CM in nonstationary external conditions.
Specialized moisture retention eyewear for evaporative dry eye.
Waduthantri, Samanthila; Tan, Chien Hua; Fong, Yee Wei; Tong, Louis
2015-05-01
To evaluate the suitablity of commercially available moisture retention eyewear for treating evaporative dry eye. Eleven patients with evaporative dry eyes were prescibed moisture retention eyewear for 3 months in addition to regular lubricant eye drops. Frequency and severity of dry eye symptoms, corneal fluorescein staining and tear break up time (TBUT) were evaluated at baseline and 3-month post-treatment. Main outcome measure was global symptom score (based on severity and frequency of dry eye symptoms on a visual analog scale) and secondary outcomes were changes in sectoral corneal fluorescein staining and tear break up time (TBUT) from pre-treatment level. There was a significant improvement in dry eye symptoms after using moisture retention eyewear for 3 months (p < 0.05). Corneal fluorescein staining in all five zones of the cornea in both eyes improved significantly (p < 0.05). There was no significant improvement in TBUT. Patients used ocular lubricants less frequently (p < 0.05) compared to the commencement of the study. Patients found moisture retention eyewear to be useful in relieving dry eye symptoms in windy, air-conditioned environments or when doing vision-related daily tasks. This study shows that moisture retention eyewear might be a valuable adjunct in management of evaporative dry eye and this new design of commercially available eyewear could have a good acceptability rate.
Determining seed moisture in Quercus
F. T. Bonner
1974-01-01
The air-oven method with drying times 7 to 8 hours shorter than those now prescribed in the ISTA rules proved adequate for determining moisture contents in acorns of several North American oaks. Schedules of 8 hours at 105°C for Quercus muehlenbergii and 9 hours at 105°C for Q.shumardii and Q.nigra gave moisture contents within three percentage points of those obtained...
Joint microwave and infrared studies for soil moisture determination
NASA Technical Reports Server (NTRS)
Njoku, E. G.; Schieldge, J. P.; Kahle, A. B. (Principal Investigator)
1980-01-01
The feasibility of using a combined microwave-thermal infrared system to determine soil moisture content is addressed. Of particular concern are bare soils. The theoretical basis for microwave emission from soils and the transport of heat and moisture in soils is presented. Also, a description is given of the results of two field experiments held during vernal months in the San Joaquin Valley of California.
Peters, Johanna; Taute, Wolfgang; Bartscher, Kathrin; Döscher, Claas; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg
2017-04-08
Microwave sensor systems using resonance technology at a single resonance in the range of 2-3 GHz have been shown to be a rapid and reliable tool for moisture determination in solid materials including pharmaceutical granules. So far, their application is limited to lower moisture ranges or limitations above certain moisture contents had to be accepted. Aim of the present study was to develop a novel multi-resonance sensor system in order to expand the measurement range. Therefore, a novel sensor using additional resonances over a wide frequency band was designed and used to investigate inherent limitations of first generation sensor systems and material-related limits. Using granule samples with different moisture contents, an experimental protocol for calibration and validation of the method was established. Pursuant to this protocol, a multiple linear regression (MLR) prediction model built by correlating microwave moisture values to the moisture determined by Karl Fischer titration was chosen and rated using conventional criteria such as coefficient of determination (R 2 ) and root mean square error of calibration (RMSEC). Using different operators, different analysis dates and different ambient conditions the method was fully validated following the guidance of ICH Q2(R1). The study clearly showed explanations for measurement uncertainties of first generation sensor systems which confirmed the approach to overcome these by using additional resonances. The established prediction model could be validated in the range of 7.6-19.6%, demonstrating its fit for its future purpose, the moisture content determination during wet granulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Multifrequency remote sensing of soil moisture. [Guymon, Oklahoma and Dalhart, Texas
NASA Technical Reports Server (NTRS)
Theis, S. W.; Mcfarland, M. J.; Rosenthal, W. D.; Jones, C. L. (Principal Investigator)
1982-01-01
Multifrequency sensor data collected at Guymon, Oklahoma and Dalhart, Texas using NASA's C-130 aircraft were used to determine which of the all-weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. In comparison to other active and passive microwave sensors the L-band radiometer (1) was influenced least by ranges in surface roughness; (2) demonstrated the most sensitivity to soil moisture differences in terms of the range of return from the full range of soil moisture; and (3) was less sensitive to errors in measurement in relation to the range of sensor response. L-band emissivity related more strongly to soil moisture when moisture was expressed as percent of field capacity. The perpendicular vegetation index as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture.
Moisture content calculations for 1000-hour timelag fuels
Michael A. Fosberg; Richard C. Rothermel; Patricia L. Andrews
1981-01-01
Techniques to calculate 1000-hour timelag fuel moistures were developed from theory of water movement in wood. The 1000-hour timelag fuel moisture is computed from mean daily temperatures and humidities and precipitation duration. Comparison of calculated and observed fuel moistures showed good agreement. Techniques to determine the seasonal starting value of the 1000-...
Calibration and validation of the COSMOS rover for surface soil moisture
USDA-ARS?s Scientific Manuscript database
The mobile COsmic-ray Soil Moisture Observing System (COSMOS) rover may be useful for validating satellite-based estimates of near surface soil moisture, but the accuracy with which the rover can measure 0-5 cm soil moisture has not been previously determined. Our objectives were to calibrate and va...
Moisture sorption isotherms and thermodynamic properties of bovine leather
NASA Astrophysics Data System (ADS)
Fakhfakh, Rihab; Mihoubi, Daoued; Kechaou, Nabil
2018-04-01
This study was aimed at the determination of bovine leather moisture sorption characteristics using a static gravimetric method at 30, 40, 50, 60 and 70 °C. The curves exhibit type II behaviour according to the BET classification. The sorption isotherms fitting by seven equations shows that GAB model is able to reproduce the equilibrium moisture content evolution with water activity for moisture range varying from 0.02 to 0.83 kg/kg d.b (0.9898 < R2 < 0.999). The sorption isotherms exhibit hysteresis effect. Additionally, sorption isotherms data were used to determine the thermodynamic properties such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. Net isosteric heat of sorption and differential entropy were evaluated through direct use of moisture isotherms by applying the Clausius-Clapeyron equation and used to investigate the enthalpy-entropy compensation theory. Both sorption enthalpy and entropy for desorption increase to a maximum with increasing moisture content, and then decrease sharply with rising moisture content. Adsorption enthalpy decreases with increasing moisture content. Whereas, adsorption entropy increases smoothly with increasing moisture content to a maximum of 6.29 J/K.mol. Spreading pressure increases with rising water activity. The net integral enthalpy seemed to decrease and then increase to become asymptotic. The net integral entropy decreased with moisture content increase.
Sui, Zhongquan; Yao, Tianming; Zhao, Yue; Ye, Xiaoting; Kong, Xiangli; Ai, Lianzhong
2015-04-15
Changes in the properties of normal maize starch (NMS) and waxy maize starch (WMS) after heat-moisture treatment (HMT) under various reaction conditions were investigated. NMS and WMS were adjusted to moisture levels of 20%, 25% and 30% and heated at 100 °C for 2, 4, 8 and 16 h. The results showed that moisture content was the most important factor in determining pasting properties for NMS, whereas the heating length was more important for WMS. Swelling power decreased in NMS but increased in WMS, and while the solubility index decreased for both samples, the changes were largely determined by moisture content. The gelatinisation temperatures of both samples increased with increasing moisture content but remained unchanged with increasing heating length. The Fourier transform infrared (FT-IR) absorbance ratio was affected to different extents by the moisture levels but remained constant with increasing the heating length. The X-ray intensities increased but relative crystallinity decreased to a greater extent with increasing moisture content. This study showed that the levels of moisture content and length of heating had significant impacts on the structural and physicochemical properties of normal and waxy maize starches but to different extents. Copyright © 2014 Elsevier Ltd. All rights reserved.
Simha, H V Vikram; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Kumar, P Arun; Manimala, K
2016-06-01
Moisture sorption isotherms of spray-dried milk-foxtail millet powder were determined at 10, 25 and 40 °C. Sorption data was fitted using classical and soft-computing approaches. The isotherms were of type II, and equilibrium moisture content (EMC) was temperature dependent. The BET monolayer moisture content decreased from 3.30 to 2.67 % as temperature increased from 10 to 40 °C. Amongst the classical models, Ferro-Fontan gave the best fit of EMC-aw data. However, the Sugeno-type adaptive neuro-fuzzy inference system (ANFIS) with generalized bell-shaped membership function performed better than artificial neural network and classical models with RMSE as low as 0.0099. The isosteric heat of sorption decreased from 150.32 kJ mol(-1) at 1 % moisture content to 44.11 kJ mol(-1) at 15 % moisture. The enthalpy-entropy compensation theory was validated, and the isokinetic and harmonic mean temperatures were determined as 333.1 and 297.5 K, respectively.
A Compound Sensor for Simultaneous Measurement of Packing Density and Moisture Content of Silage.
Meng, Delun; Meng, Fanjia; Sun, Wei; Deng, Shuang
2017-12-28
Packing density and moisture content are important factors in investigating the ensiling quality. Low packing density is a major cause of loss of sugar content. The moisture content also plays a determinant role in biomass degradation. To comprehensively evaluate the ensiling quality, this study focused on developing a compound sensor. In it, moisture electrodes and strain gauges were embedded into an ASABE Standard small cone for the simultaneous measurements of the penetration resistance (PR) and moisture content (MC) of silage. In order to evaluate the performance of the designed sensor and the theoretical analysis being used, relevant calibration and validation tests were conducted. The determination coefficients are 0.996 and 0.992 for PR calibration and 0.934 for MC calibration. The validation indicated that this measurement technique could determine the packing density and moisture content of the silage simultaneously and eliminate the influence of the friction between the penetration shaft and silage. In this study, we not only design a compound sensor but also provide an alternative way to investigate the ensiling quality which would be useful for further silage research.
NASA Technical Reports Server (NTRS)
Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.
1975-01-01
A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.
Determining soil volumetric moisture content using time domain reflectometry
DOT National Transportation Integrated Search
1998-02-01
Time domain reflectometry (TDR) is a technique used to measure indirectly the in situ volumetric moisture content of soil. Current research provides a variety of prediction equations that estimate the volumetric moisture content using the dielectric ...
Microwave remote sensing of soil moisture, volume 1. [Guymon, Oklahoma and Dalhart, Texas
NASA Technical Reports Server (NTRS)
Mcfarland, M. J. (Principal Investigator); Theis, S. W.; Rosenthal, W. D.; Jones, C. L.
1982-01-01
Multifrequency sensor data from NASA's C-130 aircraft were used to determine which of the all weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. The perpendicular vegetation index (PVI) as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture. A linear equation was developed to estimate percent field capacity as a function of L-band emissivity and the vegetation index. The prediction algorithm improves the estimation of moisture significantly over predictions from L-band emissivity alone.
NASA Astrophysics Data System (ADS)
Cruz, Febus Reidj G.; Padilla, Dionis A.; Hortinela, Carlos C.; Bucog, Krissel C.; Sarto, Mildred C.; Sia, Nirlu Sebastian A.; Chung, Wen-Yaw
2017-02-01
This study is about the determination of moisture content of milled rice using image processing technique and perceptron neural network algorithm. The algorithm involves several inputs that produces an output which is the moisture content of the milled rice. Several types of milled rice are used in this study, namely: Jasmine, Kokuyu, 5-Star, Ifugao, Malagkit, and NFA rice. The captured images are processed using MATLAB R2013a software. There is a USB dongle connected to the router which provided internet connection for online web access. The GizDuino IOT-644 is used for handling the temperature and humidity sensor, and for sending and receiving of data from computer to the cloud storage. The result is compared to the actual moisture content range using a moisture tester for milled rice. Based on results, this study provided accurate data in determining the moisture content of the milled rice.
Jody D. Gray; Shawn T. Grushecky; James P. Armstrong
2008-01-01
Moisture content has a significant impact on mechanical properties of wood. In recent years, stress wave velocity has been used as an in situ and non-destructive method for determining the stiffness of wooden elements. The objective of this study was to determine what effect moisture content has on stress wave velocity and dynamic modulus of elasticity. Results...
Soil moisture patterns in a northern coniferous forest
Thomas F. McLintock
1959-01-01
The trend of soil moisture during the growing season, the alternate wetting from rainfall and drying during clear weather, determines the amount of moisture available for tree growth and also fixes, in part, the environment for root growth. In much of the northern coniferous region both moisture content and root environment are in turn affected by the hummock-and-...
46 CFR 164.009-19 - Measurement of moisture and volatile matter content.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 6 2012-10-01 2012-10-01 false Measurement of moisture and volatile matter content. 164... Vessels § 164.009-19 Measurement of moisture and volatile matter content. (a) The measurements described in this section are made to determine the moisture and volatile matter content of a sample. (b) A...
46 CFR 164.009-19 - Measurement of moisture and volatile matter content.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 6 2013-10-01 2013-10-01 false Measurement of moisture and volatile matter content. 164... Vessels § 164.009-19 Measurement of moisture and volatile matter content. (a) The measurements described in this section are made to determine the moisture and volatile matter content of a sample. (b) A...
46 CFR 164.009-19 - Measurement of moisture and volatile matter content.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Measurement of moisture and volatile matter content. 164... Vessels § 164.009-19 Measurement of moisture and volatile matter content. (a) The measurements described in this section are made to determine the moisture and volatile matter content of a sample. (b) A...
46 CFR 164.009-19 - Measurement of moisture and volatile matter content.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Measurement of moisture and volatile matter content. 164... Vessels § 164.009-19 Measurement of moisture and volatile matter content. (a) The measurements described in this section are made to determine the moisture and volatile matter content of a sample. (b) A...
46 CFR 164.009-19 - Measurement of moisture and volatile matter content.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Measurement of moisture and volatile matter content. 164... Vessels § 164.009-19 Measurement of moisture and volatile matter content. (a) The measurements described in this section are made to determine the moisture and volatile matter content of a sample. (b) A...
An inverse moisture diffusion algorithm for the determination of diffusion coefficient
Jen Y. Liu; William T. Simpson; Steve P. Verrill
2000-01-01
The finite difference approximation is applied to estimate the moisture-dependent diffusion coefficient by utilizing test data of isothermal moisture desorption in northern red oak (Quercus rubra). The test data contain moisture distributions at discrete locations across the thickness of specimens, which coincides with the radial direction of northern red oak, and at...
An inverse moisture diffusion algorithm for the determination of diffusion coefficient
Jen Y. Liu; William T. Simpson; Steve P. Verrill
2001-01-01
The finite difference approximation is applied to estimate the moisture-dependent diffusion coefficient by utilizing test data of isothermal moisture desorption in northern red oak (Quercus rubra). The test data contain moisture distributions at discrete locations across the thickness of specimens, which coincides with the radial direction of northern red oak, and at...
DOT National Transportation Integrated Search
1985-05-01
The purpose of this report is to compare the differences in asphalt contents determined after correction of mix and extracted aggregate weights for moisture when drying with the standard oven and microwave oven. It is also intended to determine if th...
NASA Astrophysics Data System (ADS)
Ahmad, So'bah; Shamsul Anuar, Mohd; Saleena Taip, Farah; Shamsudin, Rosnah; M, Siti Roha A.
2017-05-01
The effects of two drying methods, oven and microwave drying on the effective moisture diffusivity and activation energy of rambutan seed were studied. Effective moisture diffusivity and activation energy are the main indicators used for moisture movement within the material. Hence, it is beneficial to determine an appropriate drying method to attain a final moisture content of rambutan seed that potentially could be used as secondary sources in the industry. An appropriate final moisture content will provide better storage stability that can extend the lifespan of the rambutan seed. The rambutan seeds were dried with two drying methods (oven and microwave) at two level of the process variables (oven temperature; 40°C and 60°C and microwave power; 250W and 1000W) at constant initial moisture contents. The result showed that a higher value of effective moisture diffusivity and less activation energy were observed in microwave drying compared to oven drying. This finding portrays microwave drying expedites the moisture removal to achieve the required final moisture content and the most appropriate drying method for longer storage stability for rambutan seed. With respect to the process variables; higher oven temperatures and lower microwave powers also exhibit similar trends. Hopefully, this study would provide a baseline data to determine an appropriate drying method for longer storage period for turning waste to by-products.
NASA Astrophysics Data System (ADS)
Kowalska, Małgorzata; Janas, Sławomir; Woźniak, Magdalena
2018-04-01
The aim of this work was the presentation of an alternative method of determination of the total dry mass content in processed cheese. The authors claim that the presented method can be used in industry's quality control laboratories for routine testing and for quick in-process control. For the test purposes both reference method of determination of dry mass in processed cheese and moisture analyzer method were used. The tests were carried out for three different kinds of processed cheese. In accordance with the reference method, the sample was placed on a layer of silica sand and dried at the temperature of 102 °C for about 4 h. The moisture analyzer test required method validation, with regard to drying temperature range and mass of the analyzed sample. Optimum drying temperature of 110 °C was determined experimentally. For Hochland cream processed cheese sample, the total dry mass content, obtained using the reference method, was 38.92%, whereas using the moisture analyzer method, it was 38.74%. An average analysis time in case of the moisture analyzer method was 9 min. For the sample of processed cheese with tomatoes, the reference method result was 40.37%, and the alternative method result was 40.67%. For the sample of cream processed cheese with garlic the reference method gave value of 36.88%, and the alternative method, of 37.02%. An average time of those determinations was 16 min. Obtained results confirmed that use of moisture analyzer is effective. Compliant values of dry mass content were obtained for both of the used methods. According to the authors, the fact that the measurement took incomparably less time for moisture analyzer method, is a key criterion of in-process control and final quality control method selection.
Hygrothermal damage mechanisms in graphite-epoxy composites
NASA Technical Reports Server (NTRS)
Crossman, F. W.; Mauri, R. E.; Warren, W. J.
1979-01-01
T300/5209 and T300/5208 graphite epoxy laminates were studied experimentally and analytically in order to: (1) determine the coupling between applied stress, internal residual stress, and moisture sorption kinetics; (2) examine the microscopic damage mechanisms due to hygrothermal cycling; (3) evaluate the effect of absorbed moisture and hygrothermal cycling on inplane shear response; (4) determine the permanent loss of interfacial bond strength after moisture absorption and drying; and (5) evaluate the three dimensional stress state in laminates under a combination of hygroscopic, thermal, and mechanical loads. Specimens were conditioned to equilibrium moisture content under steady exposure to 55% or 95% RH at 70 C or 93 C. Some specimens were tested subsequent to moisture conditioning and 100 cycles between -54 C and either 70 C or 93 C.
Application of Microwave Moisture Sensor for Determination of Oil Palm Fruit Ripeness
NASA Astrophysics Data System (ADS)
Yeow, You Kok; Abbas, Zulkifly; Khalid, Kaida
2010-01-01
This paper describes the development of a low cost coaxial moisture sensor for the determination of moisture content (30 % to 80 % wet-weight basis) of the oil palm fruits of various degree of fruit ripeness. The sensor operating between 1 GHz and 5 GHz was fabricated from an inexpensive 4.1 mm outer diameter SMA coaxial stub contact panel which is suitable for single fruit measurement. The measurement system consists of the sensor and a PC-controlled vector network analyzer (VNA). The actual moisture content was determined by standard oven drying method and compared with predicted value of fruit moisture content obtained using the studied sensor. The sensor was used to monitor fruit ripeness based on the measurement of the phase or magnitude of reflection coefficient and the dielectric measurement software was developed to control and acquire data from the VNA using Agilent VEE. This software was used to calculate the complex relative permittivity from the measured reflection coefficient between 1GHz and 5 GHz.
Remote sensing of agricultural crops and soils
NASA Technical Reports Server (NTRS)
Bauer, M. E. (Principal Investigator)
1982-01-01
Research results and accomplishments of sixteen tasks in the following areas are described: (1) corn and soybean scene radiation research; (2) soil moisture research; (3) sampling and aggregation research; (4) pattern recognition and image registration research; and (5) computer and data base services.
The auto-tuned land data assimilation system (ATLAS)
USDA-ARS?s Scientific Manuscript database
Land data assimilation systems are tasked with the merging remotely-sensed soil moisture retrievals with information derived from a soil water balance model driven (principally) by observed rainfall. The performance of such systems is frequently degraded by the imprecise specification of parameters ...
Estimating the fuel moisture content of indicator sticks from selected weather variables
Theodore G. Storey
1965-01-01
Equations were developed to predict the fuel moisture content of indicator sticks from the controlling weather variables. Moisture content of ⅛-inch thick basswood slats used in the South and East could be determined with about equal precision by equation in the critical low moisture range or by weighing at fire danger stations. The most useful equation...
Simple and accurate temperature correction for moisture pin calibrations in oriented strand board
Charles Boardman; Samuel V. Glass; Patricia K. Lebow
2017-01-01
Oriented strand board (OSB) is commonly used in the residential construction market in North America and its moisture-related durability is a critical consideration for building envelope design. Measurement of OSB moisture content (MC), a key determinant of durability, is often done using moisture pins and relies on a correlation between MC and the electrical...
Robert M. Loomis; William A. Main
1980-01-01
Relations between certain slash and forest floor moisture contents and the applicable estimated time lag fuel moistures of the National Fire Danger Rating System were investigated for 1-year-old jack pine fuel types in northeastern Minnesota and central Lower Michigan. Only approximate estimates of actual fuel moisture are possible fore the relations determined, thus...
USDA-ARS?s Scientific Manuscript database
Multiple causes of the difference between equilibrium moisture and water content have been found. The errors or biases were traced to the oven drying procedure to determine moisture content. The present paper explains the nature of the biases in oven drying and how it is possible to suppress one ...
A comparison of two methods for estimating conifer live foliar moisture content
W. Matt Jolly; Ann M. Hadlow
2012-01-01
Foliar moisture content is an important factor regulating how wildland fires ignite in and spread through live fuels but moisture content determination methods are rarely standardised between studies. One such difference lies between the uses of rapid moisture analysers or drying ovens. Both of these methods are commonly used in live fuel research but they have never...
NASA Technical Reports Server (NTRS)
Hildreth, W. W.
1978-01-01
A determination of the state of the art in soil moisture transport modeling based on physical or physiological principles was made. It was found that soil moisture models based on physical principles have been under development for more than 10 years. However, these models were shown to represent infiltration and redistribution of soil moisture quite well. Evapotranspiration has not been as adequately incorporated into the models.
Alexander K. Anning; Darrin L. Rubino; Elaine K. Sutherland; Brian C. McCarthy
2013-01-01
Moisture availability is a key factor that influences white oak (Quercus alba L.) growth and wood production. In unglaciated eastern North America, available soil moisture varies greatly along topographic and edaphic gradients. This study was aimed at determining the effects of soil moisture variability and macroclimate on white oak growth in mixed-oak forests of...
Effectiveness of modified 1-hour air-oven moisture methods for determining popcorn moisture
USDA-ARS?s Scientific Manuscript database
Two of the most commonly used approved grain moisture air-oven reference methods are the air oven method ASAE S352.2, which requires long heating time (72-h) for unground samples, and the AACC 44-15.02 air-oven method, which dries a ground sample for 1 hr, but there is specific moisture measurement ...
Effects of neutron source type on soil moisture measurement
Irving Goldberg; Norman A. MacGillivray; Robert R. Ziemer
1967-01-01
A number of radioisotopes have recently become commercially available as alternatives to radium-225 in moisture gauging devices using alpha-neutron sources for determining soil moisture, for well logging, and for other industrial applications in which hydrogenous materials are measured.
Time domain reflectometry measured moisture content of sewage sludge compost across temperatures.
Cai, Lu; Chen, Tong-Bin; Gao, Ding; Liu, Hong-Tao; Chen, Jun; Zheng, Guo-Di
2013-01-01
Time domain reflectometry (TDR) is a prospective measurement technology for moisture content of sewage sludge composting material; however, a significant dependence upon temperature has been observed. The objective of this study was to assess the impacts of temperature upon moisture content measurement and determine if TDR could be used to monitor moisture content in sewage sludge compost across a range of temperatures. We also investigated the combined effects of temperature and conductivity on moisture content measurement. The results revealed that the moisture content of composting material could be determined by TDR using coated probes, even when the measured material had a moisture content of 0.581 cm(3)cm(-3), temperature of 70°C and conductivity of 4.32 mS cm(-1). TDR probes were calibrated as a function of dielectric properties that included temperature effects. When the bulk temperature varied from 20°C to 70°C, composting material with 0.10-0.70 cm(3)cm(-3) moisture content could be measured by TDR using coated probes, and calibrations based on different temperatures minimized the errors. Copyright © 2012. Published by Elsevier Ltd.
Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values
NASA Astrophysics Data System (ADS)
Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.
2018-04-01
Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.
Li, Jinchang; Zhao, Yanfang; Han, Liuyan; Zhang, Guoming; Liu, Rentao
2017-11-15
We inferred moisture variations from the early 1930s to the early 2010s in the southwestern Mu Us Desert of China using Rb/Sr ratio, chemical index of alteration (CIA), and organic matter (OM) content in a nebkha profile. Our results showed that the variations in moisture may have been the main factor that controlled vegetation recovery or degradation, and we believe that gradual vegetation recovery was notable throughout the study area during the past 80years, despite two notable degradation stages during the mid-1950s and the mid-1980s. The Rb/Sr ratio, CIA, and OM content revealed that moisture levels increased during the study period, though with large interannual variations. During the early stage of nebkha formation, the moisture variations were controlled by unusually low precipitation. Thereafter, the precipitation, pan evaporation and temperature determined together moisture variations, but the key factor determining moisture variations was different during different periods. The moisture variations trend revealed in this study may not be restricted to this region as it was similar with the adjacent Mongolian Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.
Survey of methods for soil moisture determination
NASA Technical Reports Server (NTRS)
Schmugge, T. J.; Jackson, T. J.; Mckim, H. L.
1979-01-01
Existing and proposed methods for soil moisture determination are discussed. These include: (1) in situ investigations including gravimetric, nuclear, and electromagnetic techniques; (2) remote sensing approaches that use the reflected solar, thermal infrared, and microwave portions of the electromagnetic spectrum; and (3) soil physics models that track the behavior of water in the soil in response to meteorological inputs (precipitation) and demands (evapotranspiration). The capacities of these approaches to satisfy various user needs for soil moisture information vary from application to application, but a conceptual scheme for merging these approaches into integrated systems to provide soil moisture information is proposed that has the potential for meeting various application requirements.
Applied Meteorology Unit (AMU) Quarterly Report
NASA Technical Reports Server (NTRS)
Bauman, William; Crawford, Winifred; Watson, Leela; Wheeler, Mark
2011-01-01
This Quarter's Highlights include reports on the following tasks: (1) Mr. Wheeler completed a study for the 30th Weather Squadron at Vandenberg Air Force Base in California in which he found precursors in weather observations that will help the forecasters determine when they will get strong wind gusts at their northern towers. The final report is now on the AMU website at http://science.ksc.nasa.gov/amu/final-reports/30ws-north-base-winds.pdf. (2) continued work on the second phase of verifying the performance of the MesoNAM weather model at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). (3) continued work to improve the AMU peak wind tool by analyzing wind tower data to determine peak wind behavior during times of onshore and offshore flow. (4) continued updating lightning c1imatologies for KSC/CCAFS and other airfields around central Florida and created new c1imatologies for moisture and stability thresholds.
Microwave moisture meter for in-shell peanut kernels
USDA-ARS?s Scientific Manuscript database
. A microwave moisture meter built with off-the-shelf components was developed, calibrated and tested in the laboratory and in the field for nondestructive and instantaneous in-shell peanut kernel moisture content determination from dielectric measurements on unshelled peanut pod samples. The meter ...
The Utility of the Real-Time NASA Land Information System Data for Drought Monitoring Applications
NASA Technical Reports Server (NTRS)
White, Kristopher D.; Case, Jonathan L.
2013-01-01
Measurements of soil moisture are a crucial component for the proper monitoring of drought conditions. The large spatial variability of soil moisture complicates the problem. Unfortunately, in situ soil moisture observing networks typically consist of sparse point observations, and conventional numerical model analyses of soil moisture used to diagnose drought are of coarse spatial resolution. Decision support systems such as the U.S. Drought Monitor contain drought impact resolution on sub-county scales, which may not be supported by the existing soil moisture networks or analyses. The NASA Land Information System, which is run with 3 km grid spacing over the eastern United States, has demonstrated utility for monitoring soil moisture. Some of the more useful output fields from the Land Information System are volumetric soil moisture in the 0-10 cm and 40-100 cm layers, column-integrated relative soil moisture, and the real-time green vegetation fraction derived from MODIS (Moderate Resolution Imaging Spectroradiometer) swath data that are run within the Land Information System in place of the monthly climatological vegetation fraction. While these and other variables have primarily been used in local weather models and other operational forecasting applications at National Weather Service offices, the use of the Land Information System for drought monitoring has demonstrated utility for feedback to the Drought Monitor. Output from the Land Information System is currently being used at NWS Huntsville to assess soil moisture, and to provide input to the Drought Monitor. Since feedback to the Drought Monitor takes place on a weekly basis, weekly difference plots of column-integrated relative soil moisture are being produced by the NASA Short-term Prediction Research and Transition Center and analyzed to facilitate the process. In addition to the Drought Monitor, these data are used to assess drought conditions for monthly feedback to the Alabama Drought Monitoring and Impact Group and the Tennessee Drought Task Force, which are comprised of federal, state, and local agencies and other water resources professionals.
Effect of Moisture Content of Chitin-Calcium Silicate on Rate of Degradation of Cefotaxime Sodium.
Al-Nimry, Suhair S; Alkhamis, Khouloud A
2018-04-01
Assessment of incompatibilities between active pharmaceutical ingredient and pharmaceutical excipients is an important part of preformulation studies. The objective of the work was to assess the effect of moisture content of chitin calcium silicate of two size ranges (two specific surface areas) on the rate of degradation of cefotaxime sodium. The surface area of the excipient was determined using adsorption method. The effect of moisture content of a given size range on the stability of the drug was determined at 40°C in the solid state. The moisture content was determined at the beginning and the end of the kinetic study using TGA. The degradation in solution was studied for comparison. Increasing the moisture content of the excipient of size range 63-180 μm (surface area 7.2 m 2 /g) from 3.88 to 8.06% increased the rate of degradation of the drug more than two times (from 0.0317 to 0.0718 h -1 ). While an opposite trend was observed for the excipient of size range < 63 μm (surface area 55.4 m 2 /g). The rate of degradation at moisture content < 3% was 0.4547 h -1 , almost two times higher than that (0.2594 h -1 ) at moisture content of 8.54%, and the degradation in solid state at both moisture contents was higher than that in solution (0.0871 h -1 ). In conclusion, the rate of degradation in solid should be studied taking into consideration the specific surface area and moisture content of the excipient at the storage condition and it may be higher than that in solution.
7 CFR 51.2548 - Average moisture content determination.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Average moisture content determination. 51.2548 Section 51.2548 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE...
7 CFR 51.2548 - Average moisture content determination.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Average moisture content determination. 51.2548 Section 51.2548 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE...
7 CFR 51.2548 - Average moisture content determination.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Average moisture content determination. 51.2548 Section 51.2548 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE...
7 CFR 51.2548 - Average moisture content determination.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Average moisture content determination. 51.2548 Section 51.2548 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE...
Typical moisture-density curves : part II : lime treated soils.
DOT National Transportation Integrated Search
1966-05-01
The objective of the study covered by this report was to determine whether the family of curves developed for untreated soils, could be used for determining the optimum moisture and maximum density of lime treated soils. This investigation was initia...
USDA-ARS?s Scientific Manuscript database
A custom made Near Infrared Reflectance (NIR) spectroscope was used to determine the moisture content of in-shell peanuts of Virginia type peanuts. Peanuts were conditioned to different moisture levels between 6 and 26 % (wet basis) and samples from different moisture levels were separated into two...
Steaming of Red Oak Prior to Kiln-Drying: Effects on Moisture Movement
Robert A. Harris; James G. Schroeder; Stan C. Addis
1989-01-01
Red oak boards were steamed prior to kiln-drying to determine the effect of steaming on initial moisture content (MC), moisture distribution, and drying rate. Four hours of steaming in a saturated steam atmosphere caused a drop of approximately 10 percent in initial MC, a reduced moisture gradient through the thickness of the boards, and an increase in drying rate...
NASA Technical Reports Server (NTRS)
Kim, Edward
2010-01-01
Examples of L-band interference will be presented and discussed, as well as the importance of L-band soil moisture observations, as part of this one-day GEOSS workshop XXXVII on "Data Quality and Radio Spectrum Allocation Impact on Earth Observations" will address the broad challenges of data quality and the impact of generating reliable information for decision makers who are Earth data users but not necessarily experts in the Earth observation field. GEO has initiated a data quality assessment task (DA-09-01a) and workshop users will review and debate the directions and challenges of this effort. Radio spectrum allocation is an element of data availability and data quality, and is also associated with a GEO task (AR-06-11). A recent U.S. National Research Council report on spectrum management will be addressed as part of the workshop. Key representatives from industry, academia, and government will provide invited talks on these and related issues that impact GEOSS implementation.
Microwave moisture sensing through use of a piecewise density-independent function
USDA-ARS?s Scientific Manuscript database
Microwave moisture sensing provides a means to determine nondestructively the amount of water in materials. This is accomplished through the correlation of dielectric properties with moisture in the material. In this study, linear relationships between a density-independent function of the dielectri...
Refinement of moisture calibration curves for nuclear gage : interim report no. 1.
DOT National Transportation Integrated Search
1972-01-01
This study was initiated to determine the correct moisture calibration curves for different nuclear gages. It was found that the Troxler Model 227 had a linear response between count ratio and moisture content. Also, the two calibration curves for th...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 7 2012-01-01 2012-01-01 false Moisture. 868.307 Section 868.307 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.307 Moisture. Water content in milled rice as determined by an FGIS approved...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 7 2013-01-01 2013-01-01 false Moisture. 868.307 Section 868.307 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.307 Moisture. Water content in milled rice as determined by an FGIS approved...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 7 2014-01-01 2014-01-01 false Moisture. 868.307 Section 868.307 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.307 Moisture. Water content in milled rice as determined by an FGIS approved...
Remote monitoring of soil moisture using airborne microwave radiometers
NASA Technical Reports Server (NTRS)
Kroll, C. L.
1973-01-01
The current status of microwave radiometry is provided. The fundamentals of the microwave radiometer are reviewed with particular reference to airborne operations, and the interpretative procedures normally used for the modeling of the apparent temperature are presented. Airborne microwave radiometer measurements were made over selected flight lines in Chickasha, Oklahoma and Weslaco, Texas. Extensive ground measurements of soil moisture were made in support of the aircraft mission over the two locations. In addition, laboratory determination of the complex permittivities of soil samples taken from the flight lines were made with varying moisture contents. The data were analyzed to determine the degree of correlation between measured apparent temperatures and soil moisture content.
Prediction of moisture and temperature changes in composites during atmospheric exposure
NASA Technical Reports Server (NTRS)
Tompkins, S. S.; Tenney, D. R.; Unnan, J.
1978-01-01
The effects of variations in diffusion coefficients, surface properties of the composite, panel tilt, ground reflection, and geographical location on the moisture concentration profiles and average moisture content of composite laminates were studied analytically. A heat balance which included heat input due to direct and sky diffuse solar radiation, ground reflection, and heat loss due to reradiation and convection was used to determine the temperature of composites during atmospheric exposure. The equilibrium moisture content was assumed proportional to the relative humidity of the air in the boundary layer of the composite. Condensation on the surface was neglected. Histograms of composite temperatures were determined and compared with those for the ambient environment.
NASA Technical Reports Server (NTRS)
Brown, Todd S.
2016-01-01
The NASA Soil Moisture Active Passive (SMAP) spacecraft was designed to use radar and radiometer measurements to produce global soil moisture measurements every 2-3 days. The SMAP spacecraft is a complicated dual-spinning design with a large 6 meter deployable mesh reflector mounted on a platform that spins at 14.6 rpm while the Guidance Navigation and Control algorithms maintain precise nadir pointing for the de-spun portion of the spacecraft. After launching in early 2015, the Guidance Navigation and Control software and hardware aboard the SMAP spacecraft underwent an intensive spacecraft checkout and commissioning period. This paper describes the activities performed by the Guidance Navigation and Control team to confirm the health and phasing of subsystem hardware and the functionality of the guidance and control modes and algorithms. The operations tasks performed, as well as anomalies that were encountered during the commissioning, are explained and results are summarized.
NASA Astrophysics Data System (ADS)
Zhu, Fanglong; Zhou, Yu; Liu, Suyan
2013-10-01
In this paper, we propose a new fractal model to determine the moisture effective diffusivity of porous membrane such as expanded polytetrafluorethylene membrane, by taking account of both parallel and perpendicular channels to diffusion flow direction. With the consideration of both the Knudsen and bulk diffusion effect, a relationship between micro-structural parameters and effective moisture diffusivity is deduced. The effective moisture diffusivities predicted by the present fractal model are compared with moisture diffusion experiment data and calculated values obtained from other theoretical models.
USDA-ARS?s Scientific Manuscript database
Moisture affects economical and rheological properties of cotton, making its accurate determination important. A significant difference in moisture contents between the current and most cited standard oven drying ASTM method (ASTM D 2495, SOD) and volumetric Karl Fischer Titration (KFT) has been est...
Modeling the use of microwave energy in sensing of moisture content in vidalia onions
USDA-ARS?s Scientific Manuscript database
Microwave moisture sensing provides a means to nondestructively determine the amount of water in materials. This is accomplished through the correlation of dielectric constant and loss factor with moisture content in the material. In this study, linear relationships between a density-independent fun...
Code of Federal Regulations, 2010 CFR
2010-04-01
..., to such extent that the percent of ash therein, calculated to a moisture-free basis, is not more than 1.5 percent. Its moisture content is not more than 15 percent. (b) For the purpose of this section, ash, moisture, and granulation are determined by the methods prescribed in § 137.105(c). ...
Code of Federal Regulations, 2014 CFR
2014-04-01
..., to such extent that the percent of ash therein, calculated to a moisture-free basis, is not more than 1.5 percent. Its moisture content is not more than 15 percent. (b) For the purpose of this section, ash, moisture, and granulation are determined by the methods prescribed in § 137.105(c). ...
Code of Federal Regulations, 2013 CFR
2013-04-01
..., to such extent that the percent of ash therein, calculated to a moisture-free basis, is not more than 1.5 percent. Its moisture content is not more than 15 percent. (b) For the purpose of this section, ash, moisture, and granulation are determined by the methods prescribed in § 137.105(c). ...
Code of Federal Regulations, 2011 CFR
2011-04-01
..., to such extent that the percent of ash therein, calculated to a moisture-free basis, is not more than 1.5 percent. Its moisture content is not more than 15 percent. (b) For the purpose of this section, ash, moisture, and granulation are determined by the methods prescribed in § 137.105(c). ...
Code of Federal Regulations, 2012 CFR
2012-04-01
..., to such extent that the percent of ash therein, calculated to a moisture-free basis, is not more than 1.5 percent. Its moisture content is not more than 15 percent. (b) For the purpose of this section, ash, moisture, and granulation are determined by the methods prescribed in § 137.105(c). ...
Comparative fiber evaluation of the mesdan aqualab microwave moisture measurement instrument
USDA-ARS?s Scientific Manuscript database
Moisture is a key cotton fiber parameter, as it can impact the fiber quality and the processing of cotton fiber. The Mesdan Aqualab is a microwave-based fiber moisture measurement instrument for samples with moderate sample size. A program was implemented to determine the capabilities of the Aqual...
Foliar Moisture Contents of North American Conifers
Christopher R. Keyes
2006-01-01
Foliar moisture content (FMC) is a primary factor in the canopy ignition process as surface fire transitions to crown fire. In combination with measured stand data and assumed environmental conditions, reasonable estimates of foliar moisture content are necessary to determine and justify silvicultural targets for canopy fuels management strategies. FMC values reported...
Moisture absorption and bakeout characteristics of rigid-flexible multilayer printed wiring boards
NASA Astrophysics Data System (ADS)
Lula, J. W.
1991-01-01
Moisture absorption and bakeout characteristics of rigid flexible printed wiring boards were determined. It was found that test specimens had absorbed 0.95 weight percent moisture when equilibrated to a 50 percent RH, 25 C environment. Heating those equilibrated specimens in a 120 C static air oven removed 92 percent of this absorbed moisture in 24 h. Heating the samples in a 80 C static air oven removed only 64 percent of the absorbed moisture at the end of 24 h. A 120 C vacuum bake removed moisture at essentially the same rate with parylene slowed the absorption rate by approximately 50 percent but did not appreciably affect the equilibrium moisture content or the drying rate.
Application of spatial time domain reflectometry measurements in heterogeneous, rocky substrates
NASA Astrophysics Data System (ADS)
Gonzales, C.; Scheuermann, A.; Arnold, S.; Baumgartl, T.
2016-10-01
Measurement of soil moisture across depths using sensors is currently limited to point measurements or remote sensing technologies. Point measurements have limitations on spatial resolution, while the latter, although covering large areas may not represent real-time hydrologic processes, especially near the surface. The objective of the study was to determine the efficacy of elongated soil moisture probes—spatial time domain reflectometry (STDR)—and to describe transient soil moisture dynamics of unconsolidated mine waste rock materials. The probes were calibrated under controlled conditions in the glasshouse. Transient soil moisture content was measured using the gravimetric method and STDR. Volumetric soil moisture content derived from weighing was compared with values generated from a numerical model simulating the drying process. A calibration function was generated and applied to STDR field data sets. The use of elongated probes effectively assists in the real-time determination of the spatial distribution of soil moisture. It also allows hydrologic processes to be uncovered in the unsaturated zone, especially for water balance calculations that are commonly based on point measurements. The elongated soil moisture probes can potentially describe transient substrate processes and delineate heterogeneity in terms of the pore size distribution in a seasonally wet but otherwise arid environment.
Microwave remote sensing of soil water content
NASA Technical Reports Server (NTRS)
Cihlar, J.; Ulaby, F. T.
1975-01-01
Microwave remote sensing of soils to determine water content was considered. A layered water balance model was developed for determining soil water content in the upper zone (top 30 cm), while soil moisture at greater depths and near the surface during the diurnal cycle was studied using experimental measurements. Soil temperature was investigated by means of a simulation model. Based on both models, moisture and temperature profiles of a hypothetical soil were generated and used to compute microwave soil parameters for a clear summer day. The results suggest that, (1) soil moisture in the upper zone can be predicted on a daily basis for 1 cm depth increments, (2) soil temperature presents no problem if surface temperature can be measured with infrared radiometers, and (3) the microwave response of a bare soil is determined primarily by the moisture at and near the surface. An algorithm is proposed for monitoring large areas which combines the water balance and microwave methods.
Using electrical resistance probes for moisture determination in switchgrass windrows
USDA-ARS?s Scientific Manuscript database
Determining moisture levels in windrowed biomass is important for both forage producers and researchers. Energy crops such as switchgrass have been troublesome when using the standard methods set for electrical resistance meters. The objectives of this study were to i) develop the methodologies need...
Drive by Soil Moisture Measurement: A Citizen Science Project
NASA Astrophysics Data System (ADS)
Senanayake, I. P.; Willgoose, G. R.; Yeo, I. Y.; Hancock, G. R.
2017-12-01
Two of the common attributes of soil moisture are that at any given time it varies quite markedly from point to point, and that there is a significant deterministic pattern that underlies this spatial variation and which is typically 50% of the spatial variability. The spatial variation makes it difficult to determine the time varying catchment average soil moisture using field measurements because any individual measurement is unlikely to be equal to the average for the catchment. The traditional solution to this is to make many measurements (e.g. with soil moisture probes) spread over the catchment, which is very costly and manpower intensive, particularly if we need a time series of soil moisture variation across a catchment. An alternative approach, explored in this poster is to use the deterministic spatial pattern of soil moisture to calibrate one site (e.g. a permanent soil moisture probe at a weather station) to the spatial pattern of soil moisture over the study area. The challenge is then to determine the spatial pattern of soil moisture. This poster will present results from a proof of concept project, where data was collected by a number of undergraduate engineering students, to estimate the spatial pattern. The approach was to drive along a series of roads in a catchment and collect soil moisture measurements at the roadside using field portable soil moisture probes. This drive was repeated a number of times over the semester, and the time variation and spatial persistence of the soil moisture pattern were examined. Provided that the students could return to exactly the same location on each collection day there was a strong persistent pattern in the soil moisture, even while the average soil moisture varied temporally as a result of preceding rainfall. The poster will present results and analysis of the student data, and compare these results with several field sites where we have spatially distributed permanently installed soil moisture probes. The poster will also outline an experimental design, based on our experience, that will underpin a proposed citizen science project involving community environment and farming groups, and high school students.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scogin, J. H.
2016-03-24
Thermogravimetric analysis with mass spectroscopy of the evolved gas (TGA-MS) is used to quantify the moisture content of materials in the 3013 destructive examination (3013 DE) surveillance program. Salts frequently present in the 3013 DE materials volatilize in the TGA and condense in the gas lines just outside the TGA furnace. The buildup of condensate can restrict the flow of purge gas and affect both the TGA operations and the mass spectrometer calibration. Removal of the condensed salts requires frequent maintenance and subsequent calibration runs to keep the moisture measurements by mass spectroscopy within acceptable limits, creating delays in processingmore » samples. In this report, the feasibility of determining the total moisture from TGA-MS measurements at a lower temperature is investigated. A temperature of the TGA-MS analysis which reduces the complications caused by the condensation of volatile materials is determined. Analysis shows that an excellent prediction of the presently measured total moisture value can be made using only the data generated up to 700 °C and there is a sound physical basis for this estimate. It is recommended that the maximum temperature of the TGA-MS determination of total moisture for the 3013 DE program be reduced from 1000 °C to 700 °C. It is also suggested that cumulative moisture measurements at 550 °C and 700°C be substituted for the measured value of total moisture in the 3013 DE database. Using these raw values, any of predictions of the total moisture discussed in this report can be made.« less
NASA Astrophysics Data System (ADS)
Shafian, S.; Maas, S. J.
2015-12-01
Variations in soil moisture strongly affect surface energy balances, regional runoff, land erosion and vegetation productivity (i.e., potential crop yield). Hence, the estimation of soil moisture is very valuable in the social, economic, humanitarian (food security) and environmental segments of society. Extensive efforts to exploit the potential of remotely sensed observations to help quantify this complex variable are ongoing. This study aims at developing a new index, the Thermal Ground cover Moisture Index (TGMI), for estimating soil moisture content. This index is based on empirical parameterization of the relationship between raw image digital count (DC) data in the thermal infrared spectral band and ground cover (determined from raw image digital count data in the red and near-infrared spectral bands).The index uses satellite-derived information only, and the potential for its operational application is therefore great. This study was conducted in 18 commercial agricultural fields near Lubbock, TX (USA). Soil moisture was measured in these fields over two years and statistically compared to corresponding values of TGMI determined from Landsat image data. Results indicate statistically significant correlations between TGMI and field measurements of soil moisture (R2 = 0.73, RMSE = 0.05, MBE = 0.17 and AAE = 0.049), suggesting that soil moisture can be estimated using this index. It was further demonstrated that maps of TGMI developed from Landsat imagery could be constructed to show the relative spatial distribution of soil moisture across a region.
NASA Technical Reports Server (NTRS)
Yanai, M.; Esbensen, S.; Chu, J.
1972-01-01
The bulk properties of tropical cloud clusters, as the vertical mass flux, the excess temperature, and moisture and the liquid water content of the clouds, are determined from a combination of the observed large-scale heat and moisture budgets over an area covering the cloud cluster, and a model of a cumulus ensemble which exchanges mass, heat, vapor and liquid water with the environment through entrainment and detrainment. The method also provides an understanding of how the environmental air is heated and moistened by the cumulus convection. An estimate of the average cloud cluster properties and the heat and moisture balance of the environment, obtained from 1956 Marshall Islands data, is presented.
30 CFR 27.41 - Test to determine resistance to moisture.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test to determine resistance to moisture. 27.41 Section 27.41 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.41 Test to...
Portable six-port reflectometer for determining moisture content of biomass material
USDA-ARS?s Scientific Manuscript database
A portable six-port reflectometer (SPR) for determining moisture content of biomass material is proposed for the first time in this paper. The proposed system consists of a 5.13 GHz reflectometer used with an open-ended half-mode substrateintegrated waveguide (HMSIW) sensor. The complex permittivity...
A query for effective mean particle size of dry and high moisture corns
USDA-ARS?s Scientific Manuscript database
Eighteen dry and high moisture corns submitted to the University of Wisconsin Soil and Forage Analysis Laboratory (Marshfield, WI) for routine analysis were retained for mean particle size (MPS) and chemistry determinations. Mean particle size of corns was determined by the methods of the American S...
Dielectric properties-based method for rapid and nondestructive moisture sensing in almonds
USDA-ARS?s Scientific Manuscript database
A dielectric-based method is presented for moisture determination in almonds independent of bulk density. The dielectric properties of almond were measured between 5 and 15 GHz, with a 1-GHz increments, for samples with moisture contents ranging from 4.8% to 16.5%, wet basis, bulk densities ranging ...
Determining moisture gradient profile using X-Ray technique
Zhiyong Cai
2007-01-01
Moisture gradients in wood are known to affect the internal stresses that could cause dimensional changes and defects. Severe deformation of finished products has the potential to damage a manufacturerâs reputation and significantly increase the cost of manufacturing. An innovative approach to nondestructively examine the moisture gradients of different wood species...
Effects of moisture on aspen-fiber/polypropylene composites
Roger M. Rowell; Sandra E. Lange; Rodney E. Jacobson
2004-01-01
Moisture sorption in fiber-thermoplastic composites leads to dimensional instability and biological attack. To determine the pick up of moisture this type of composite, aspen fiber/polypropylene composites were made using several different levels of aspen fiber (30 to 60% by weight) with and without the addition of a compatibilizer (maleic anhydride grafted...
Topographic, edaphic, and vegetative controls on plant-available water
Salli F. Dymond; John B. Bradford; Paul V. Bolstad; Randall K. Kolka; Stephen D. Sebestyen; Thomas M. DeSutter
2017-01-01
Soil moisture varies within landscapes in response to vegetative, physiographic, and climatic drivers, which makes quantifying soil moisture over time and space difficult. Nevertheless, understanding soil moisture dynamics for different ecosystems is critical, as the amount of water in a soil determines a myriad ecosystem services and processes such as net primary...
Code of Federal Regulations, 2011 CFR
2011-04-01
... coat, or bran coat and germ, to such extent that the percent of ash therein, calculated to a moisture-free basis, is not more than 0.92 percent. Its moisture content is not more than 15 percent. (b) For the purpose of this section, ash and moisture are determined by the methods therefor referred to in...
Code of Federal Regulations, 2014 CFR
2014-04-01
... coat, or bran coat and germ, to such extent that the percent of ash therein, calculated to a moisture-free basis, is not more than 0.92 percent. Its moisture content is not more than 15 percent. (b) For the purpose of this section, ash and moisture are determined by the methods therefor referred to in...
Code of Federal Regulations, 2012 CFR
2012-04-01
... coat, or bran coat and germ, to such extent that the percent of ash therein, calculated to a moisture-free basis, is not more than 0.92 percent. Its moisture content is not more than 15 percent. (b) For the purpose of this section, ash and moisture are determined by the methods therefor referred to in...
Code of Federal Regulations, 2010 CFR
2010-04-01
... coat, or bran coat and germ, to such extent that the percent of ash therein, calculated to a moisture-free basis, is not more than 0.92 percent. Its moisture content is not more than 15 percent. (b) For the purpose of this section, ash and moisture are determined by the methods therefor referred to in...
Code of Federal Regulations, 2013 CFR
2013-04-01
... coat, or bran coat and germ, to such extent that the percent of ash therein, calculated to a moisture-free basis, is not more than 0.92 percent. Its moisture content is not more than 15 percent. (b) For the purpose of this section, ash and moisture are determined by the methods therefor referred to in...
USDA-ARS?s Scientific Manuscript database
Spectroscopy has proven to be an efficient tool for measuring the properties of meat. In this article, the hyperspectral imaging (HSI) technique is investigated for the determination of moisture content in cooked chicken breast over the VIS/NIR (400–1000 nm) spectral ranges. Moisture measurements we...
Uncertainty in Ecohydrological Modeling in an Arid Region Determined with Bayesian Methods
Yang, Junjun; He, Zhibin; Du, Jun; Chen, Longfei; Zhu, Xi
2016-01-01
In arid regions, water resources are a key forcing factor in ecosystem circulation, and soil moisture is the critical link that constrains plant and animal life on the soil surface and underground. Simulation of soil moisture in arid ecosystems is inherently difficult due to high variability. We assessed the applicability of the process-oriented CoupModel for forecasting of soil water relations in arid regions. We used vertical soil moisture profiling for model calibration. We determined that model-structural uncertainty constituted the largest error; the model did not capture the extremes of low soil moisture in the desert-oasis ecotone (DOE), particularly below 40 cm soil depth. Our results showed that total uncertainty in soil moisture prediction was improved when input and output data, parameter value array, and structure errors were characterized explicitly. Bayesian analysis was applied with prior information to reduce uncertainty. The need to provide independent descriptions of uncertainty analysis (UA) in the input and output data was demonstrated. Application of soil moisture simulation in arid regions will be useful for dune-stabilization and revegetation efforts in the DOE. PMID:26963523
Measurements of the abilities of cultured fishes to moisturize their digesta
Hughes, S.G.; Barrows, R.
1990-01-01
1. Four salmonid and four cool-water fish species were tested to determine their ability to moisturize their digesta.2. After the fish were fed, they were sacrificed, the gut contents were removed and water content was determined.3. The digesta of the salmonids contained the least water (63–72%) and those of largemouth bass the most (78%).4. We conclude that there are distinct and significant differences between species and genera in the ability of fish to moisturize their digesta. The potential significance of this finding is discussed.
Method for evaluating moisture tensions of soils using spectral data
NASA Technical Reports Server (NTRS)
Peterson, John B. (Inventor)
1982-01-01
A method is disclosed which permits evaluation of soil moisture utilizing remote sensing. Spectral measurements at a plurality of different wavelengths are taken with respect to sample soils and the bidirectional reflectance factor (BRF) measurements produced are submitted to regression analysis for development therefrom of predictable equations calculated for orderly relationships. Soil of unknown reflective and unknown soil moisture tension is thereafter analyzed for bidirectional reflectance and the resulting data utilized to determine the soil moisture tension of the soil as well as providing a prediction as to the bidirectional reflectance of the soil at other moisture tensions.
Identification of the Properties of Gum Arabic Used as a Binder in 7.62-mm Ammunition Primers
2010-06-01
Solution - LCC Testing (ATK Task 700) 51 Cartridge - Ballistic Testing (ATK Task 800) 51 ATK Elemental Analysis 52 Moisture Loss and Friability...Hummel sample 7 3 SDT summary for Quadra sample 8 4 Particle size analysis summary for gum arabic samples 9 5 SEM images of Colony gum arabic at 230x...strengths 21 16 Color analysis : Colony after 5.0 hrs 23 17 Color analysis : Hummel after 5.0 hrs 23 18 Color analysis : Brenntag after 5.0 hrs 23 19 Gel
Spatial-temporal variability of soil moisture and its estimation across scales
NASA Astrophysics Data System (ADS)
Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R.
2010-02-01
The soil moisture is a quantity of paramount importance in the study of hydrologic phenomena and soil-atmosphere interaction. Because of its high spatial and temporal variability, the soil moisture monitoring scheme was investigated here both for soil moisture retrieval by remote sensing and in view of the use of soil moisture data in rainfall-runoff modeling. To this end, by using a portable Time Domain Reflectometer, a sequence of 35 measurement days were carried out within a single year in seven fields located inside the Vallaccia catchment, central Italy, with area of 60 km2. Every sampling day, soil moisture measurements were collected at each field over a regular grid with an extension of 2000 m2. The optimization of the monitoring scheme, with the aim of an accurate mean soil moisture estimation at the field and catchment scale, was addressed by the statistical and the temporal stability. At the field scale, the number of required samples (NRS) to estimate the field-mean soil moisture within an accuracy of 2%, necessary for the validation of remotely sensed soil moisture, ranged between 4 and 15 for almost dry conditions (the worst case); at the catchment scale, this number increased to nearly 40 and it refers to almost wet conditions. On the other hand, to estimate the mean soil moisture temporal pattern, useful for rainfall-runoff modeling, the NRS was found to be lower. In fact, at the catchment scale only 10 measurements collected in the most "representative" field, previously determined through the temporal stability analysis, can reproduce the catchment-mean soil moisture with a determination coefficient, R2, higher than 0.96 and a root-mean-square error, RMSE, equal to 2.38%. For the "nonrepresentative" fields the accuracy in terms of RMSE decreased, but similar R2 coefficients were found. This insight can be exploited for the sampling in a generic field when it is sufficient to know an index of soil moisture temporal pattern to be incorporated in conceptual rainfall-runoff models. The obtained results can address the soil moisture monitoring network design from which a reliable soil moisture temporal pattern at the catchment scale can be derived.
Development of a method to relate the moisture content of a building material to its water activity.
Macher, J M; Mendell, M J; Chen, W; Kumagai, K
2017-05-01
Subjective indicators of building dampness consistently have been linked to health, but they are, at best, semi-quantitative, and objective and quantitative assessments of dampness are also needed to study dampness-related health effects. Investigators can readily and non-destructively measure the "moisture content" (MC) of building materials with hand-held moisture meters. However, MC does not indicate the amount of the water in a material that is available to microorganisms for growth, that is, the "water activity" (A w ). Unfortunately, A w has not been readily measurable in the field and is not relatable to MC unless previously determined experimentally, because for the same moisture meter reading, A w can differ across materials as well as during moisture adsorption vs desorption. To determine the A w s that correspond to MC levels, stable air relative humidities were generated in a glove box above saturated, aqueous salt solutions, and the A w of gypsum board and the relative humidity of the chamber air were tracked until they reached equilibrium. Strong correlations were observed between meter readings and gravimetrically determined MC (r=.91-1.00), among readings with three moisture meters (r=.87-.98), and between meter readings and gypsum board A w (r=.77-.99). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Code of Federal Regulations, 2010 CFR
2010-01-01
... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Milled Rice Principles Governing Application of Standards § 868.307 Moisture. Water content in milled rice as determined by an FGIS approved...
Code of Federal Regulations, 2011 CFR
2011-01-01
... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Milled Rice Principles Governing Application of Standards § 868.307 Moisture. Water content in milled rice as determined by an FGIS approved...
Code of Federal Regulations, 2011 CFR
2011-01-01
... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Principles Governing Application of Standards § 868.207 Moisture. Water content in rough rice as determined by an approved device...
Polysaccharides as Alternative Moisture Retention Agents for Shrimp.
Torti, Michael J; Sims, Charles A; Adams, Charles M; Sarnoski, Paul J
2016-03-01
Phosphates are used as moisture retention agents (MRAs) by the shrimp industry. Although they are effective, phosphates are expensive, need to be listed on a food label, and overuse can often lead to a higher product cost for consumers. Polysaccharides were researched as alternative MRAs. Polysaccharides are usually inexpensive, are considered natural, and can have nutritional benefits. Research was conducted to determine whether polysaccharides yielded similar functional impacts as phosphates. Treatments included a 0.5% fibercolloid solution isolated from citrus peel, an 8% pectin solution, a 0.5% xanthan gum (XG) solution, a 1% carboxymethyl cellulose solution, and conventionally used 4% sodium tripolyphosphate (STP). Experimental treatments were compared to a distilled water control to gauge effectiveness. Freezing, boiling, and oven drying studies were performed to determine how moisture retention in shrimp differed using these different treatments. Water activity was measured to determine any potential differences in shelf life. Solution uptake was also determined to understand how well the treatments enhanced water binding. For moisture loss by freezing, 4% STP and the 0.5% fibercolloid solution functioned the best. The 4% STP treated shrimp lost the least amount of moisture during boiling. The 0.5% fibercolloid and 0.5% XG treatment outperformed phosphates in respect to moisture uptake ability. None of the treatments had a major effect on water activity. All treatments were rated similar in consumer sensory acceptability tests except for pectin, which was rated lower by the sensory panel. Overall, polysaccharides were found to be viable alternatives to phosphates. © 2016 Institute of Food Technologists®
An evaluation of fluid bed drying of aqueous granulations.
Hlinak, A J; Saleki-Gerhardt, A
2000-01-01
The purpose of the work described was twofold: (a) to apply heat and mass balance approaches to evaluate the fluid bed drying cycle of an aqueous granulation, and (b) to determine the effect of the temperature and relative humidity of the drying air on the ability to meet a predetermined moisture content specification. Water content determinations were performed using Karl Fischer titration, and Computrac and Mark 1 moisture analyzers. The water vapor sorption isotherms were measured using a gravimetric moisture sorption apparatus with vacuum-drying capability. Temperature, relative humidity, and air flow were measured during the drying cycle of a production-scale fluid bed dryer. Heat and mass balance equations were used to calculate the evaporation rates. Evaporation rates calculated from heat and mass balance equations agreed well with the experimental data, whereas equilibrium moisture content values provided useful information for determination of the upper limit for inlet air humidity. Increasing the air flow rate and inlet temperature reduced the drying time through the effect on the primary driving force. As expected, additional drying of granules during the equilibration period did not show a significant impact on reducing the final moisture content of granules. Reducing the drying temperature resulted in measurement of higher equilibrium moisture content for the granules, which was in good agreement with the water vapor sorption data. Heat and mass balance equations can be used to successfully model the fluid bed drying cycle of aqueous granulations. The water vapor sorption characteristics of granules dictate the final moisture content at a given temperature and relative humidity.
DOT National Transportation Integrated Search
1985-03-01
The purpose of this report is to identify the difference, if any, in AASHTO and OSHD test procedures and results. This report addresses the effect of the size of samples taken in the field and evaluates the methods of determining the moisture content...
USDA-ARS?s Scientific Manuscript database
Most of the commercial instruments presently available to determine the moisture content (MC) of peanuts need shelling and cleaning of the peanut samples, and in some cases some sort of sample preparation such as grinding. This is cumbersome, time consuming and destructive. It would be useful if t...
USDA-ARS?s Scientific Manuscript database
Most of the commercial instruments presently available to determine the moisture content (MC) of peanuts need shelling and cleaning of the peanut samples, and in some cases some sort of sample preparation such as grinding. This is cumbersome, time consuming and destructive. It would be useful if t...
A new method of determining moisture gradient in wood
Zhiyong Cai
2008-01-01
Moisture gradient in wood and wood composites is one of most important factors that affects both physical stability and mechanical performance. This paper describes a method for measuring moisture gradient in lumber and engineering wood composites as it varies across material thickness. This innovative method employs a collimated radiation beam (x rays or [gamma] rays...
Evaluation of standard methods for collecting and processing fuel moisture samples
Sally M. Haase; José Sánchez; David R. Weise
2016-01-01
A variety of techniques for collecting and processing samples to determine moisture content of wildland fuels in support of fire management activities were evaluated. The effects of using a chainsaw or handsaw to collect samples of largediameter wood, containers for storing and transporting collected samples, and quick-response ovens for estimating moisture content...
Summer Moisture Content of Some Northern Lower Michigan Understory Plants
Robert M. Loomis; Richard W. Blank
1981-01-01
Summer moisture contents and factors for converting fresh plant weights to ovendry weights were determined for selected herbs, ferns, and small shrubs commonly found on upland sites in northern Lower Michigan. Sampling was done weekly from mid-June through early September 1978, following the period of major plant growth. Average summer moisture contents range from...
2008-03-01
behavior of moisture content-dry density Proctor curves......................................... 16 Figure 8. Moisture- density data scatter for an... density . Built-in higher order regression equations allow the user to visua- lize complete curves for Proctor density , as-built California Bearing Ratio...requirements involving soil are optimum moisture content (OMC) and maximum dry density (MDD) as determined from a laboratory compaction or Proctor test
Fine fuel moisture measured and estimated in dead Andropogon virginicus in Hawaii
Francis M. Fujioka
1976-01-01
Fuel moisture estimates generated by the National Fire-Danger Rating System procedure were compared with actual fuel moisture measurements determined from laboratory analysis. Meteorological data required for the NFDRS procedure were collected at two heights to assess the effect of temperature and humidity lapse rates. Standard measurements gave the best results, but...
Predicting duff and woody fuel consumed by prescribed fire in the Northern Rocky Mountains
James K. Brown; Michael A. Marsden; Kevin C. Ryan; Elizabeth D. Reinhardt
1985-01-01
Relationships for predicting duff reduction, mineral soil exposure, and consumption of downed woody fuel were determined to assist in planning prescribed fires. Independent variables included lower and entire duff moisture contents, loadings of downed woody fuels, duff depth, National Fire-Danger Rating System 1,000-hour moisture content, and Canadian Duff Moisture...
Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest
Roger C. Bales; Jan W. Hopmans; Anthony T. O’Geen; Matthew Meadows; Peter C. Hartsough; Peter Kirchner; Carolyn T. Hunsaker; Dylan Beaudette
2011-01-01
Using data from a water-balance instrument cluster with spatially distributed sensors we determined the magnitude and within-catchment variability of components of the catchment-scale water balance, focusing on the relationship of seasonal evapotranspiration to changes in snowpack and soil moisture storage. Co-located, continuous snow depth and soil moisture...
Jesse K. Kreye; J.Morgan Varner; Eric E. Knapp
2012-01-01
Mechanical mastication is increasingly used as a wildland fuel treatment, reducing standing trees and shrubs to compacted fuelbeds of fractured woody fuels. One major shortcoming in our understanding of these fuelbeds is how particle fracturing influences moisture gain or loss, a primary determinant of fire behaviour. To better understand fuel moisture dynamics, we...
Ioannone, F; Di Mattia, C D; De Gregorio, M; Sergi, M; Serafini, M; Sacchetti, G
2015-05-01
The effect of roasting on the content of flavanols and proanthocyanidins and on the antioxidant activity of cocoa beans was investigated. Cocoa beans were roasted at three temperatures (125, 135 and 145 °C), for different times, to reach moisture contents of about 2 g 100 g(-1). Flavanols and proanthocyanidins were determined, and the antioxidant activity was tested by total phenolic index (TPI), ferric reducing antioxidant power (FRAP) and total radical trapping antioxidant parameter (TRAP) methods. The rates of flavanol and total proanthocyanidin loss increased with roasting temperatures. Moisture content of the roasted beans being equal, high temperature-short time processes minimised proanthocyanidins loss. Moisture content being equal, the average roasting temperature (135 °C) determined the highest TPI and FRAP values and the highest temperature (145 °C) determined the lowest TPI values. Moisture content being equal, low temperature-long time roasting processes maximised the chain-breaking activity, as determined by the TRAP method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mechanisms by which moisture generates cocrystals.
Jayasankar, Adivaraha; Good, David J; Rodríguez-Hornedo, Naír
2007-01-01
The purpose of this study is to determine the mechanisms by which moisture can generate cocrystals when solid particles of cocrystal reactants are exposed to deliquescent conditions (when moisture sorption forms an aqueous solution). It is based on the hypothesis that cocrystallization behavior during water uptake can be derived from solution chemistry using models that describe cocrystal solubility and reaction crystallization of molecular complexes. Cocrystal systems were selected with active pharmaceutical ingredients (APIs) that form hydrates and include carbamazepine, caffeine, and theophylline. Moisture uptake and crystallization behavior were studied by gravimetric vapor sorption, X-ray powder diffraction, and on-line Raman spectroscopy. Results indicate that moisture uptake generates cocrystals of carbamazepine-nicotinamide, carbamazepine-saccharin, and caffeine or theophylline with dicarboxylic acid ligands (oxalic acid, maleic acid, glutaric acid, and malonic acid) when solid mixtures with cocrystal reactants deliquesce. Microscopy studies revealed that the transformation mechanism to cocrystal involves (1) moisture uptake, (2) dissolution of reactants, and (3) cocrystal nucleation and growth. Studies of solid blends of reactants in a macro scale show that the rate and extent of cocrystal formation are a function of relative humidity, moisture uptake, deliquescent material, and dissolution rates of reactants. It is shown that the interplay between moisture uptake and dissolution determines the liquid phase composition, supersaturation, and cocrystal formation rates. Differences in the behavior of deliquescent additives (sucrose and fructose) are associated with moisture uptake and composition of the deliquesced solution. Our results show that deliquescence can transform API to cocrystal or reverse the reaction given the right conditions. Key indicators of cocrystal formation and stability are (1) moisture uptake, (2) cocrystal aqueous solubility, (3) solubility and dissolution of cocrystal reactants, and (4) transition concentration.
NASA Astrophysics Data System (ADS)
Yahaya, NZ; Ramli, MR; Razak, NNANA; Abbas, Z.
2018-04-01
The Finite Element Method, FEM has been successfully used to model a simple rectangular microstrip sensor to determine the moisture content of Hevea rubber latex. The FEM simulation of sensor and samples was implemented by using COMSOL Multiphysics software. The simulation includes the calculation of magnitude and phase of reflection coefficient and was compared to analytical method. The results show a good agreement in finding the magnitude and phase of reflection coefficient when compared with analytical results. Field distributions of both the unloaded sensor as well as the sensor loaded with different percentages of moisture content were visualized using FEM in conjunction with COMSOL software. The higher the amount of moisture content in the sample the more the electric loops were observed.
Evaluation of moisture barrier coatings on carbon-phenolic SRM nozzle materials
NASA Technical Reports Server (NTRS)
Mcnutt, Ronald C.
1986-01-01
The carbon-phenolic composite ablative material used on the Solid Rocket Motor (SRM) nozzle is known to absorb moisture from the atmosphere. This could cause problems such as pocketing during firing. Several moisture barrier coatings were tested on the SRM nozzle material. Data are presented for six of the 12 coatings to be tested. The data were obtained from immersion of coated samples in an environmental chamber at 100 F and 100% relative humidity and by using a modified TGA (thermal gravimetric analysis) technique. The TGA technique involved allowing wet nitrogen (25 C, 80% relative humidity) to flow across a small sample at about 65 cu cm per minute while continually monitoring the weight increase. These preliminary results show Kel-F-800, a material supplied by 3M Corporation to be the better moisture barrier. A second task was to collect data on the relative absorption of water and kerosene into the carbon-phenolic SRM nozzle material. These data indicate that water absorbs into the nozzle material to a much greater extent than kerosene. Thus kerosene is the more likely solvent in which to make specific gravity measurements on the SRM nozzle material.
NASA Astrophysics Data System (ADS)
Hazreek, Z. A. M.; Rosli, S.; Fauziah, A.; Wijeyesekera, D. C.; Ashraf, M. I. M.; Faizal, T. B. M.; Kamarudin, A. F.; Rais, Y.; Dan, M. F. Md; Azhar, A. T. S.; Hafiz, Z. M.
2018-04-01
The efficiency of civil engineering structure require comprehensive geotechnical data obtained from site investigation. In the past, conventional site investigation was heavily related to drilling techniques thus suffer from several limitations such as time consuming, expensive and limited data collection. Consequently, this study presents determination of soil moisture content using laboratory experimental and field electrical resistivity values (ERV). Field and laboratory electrical resistivity (ER) test were performed using ABEM SAS4000 and Nilsson400 soil resistance meter. Soil sample used for resistivity test was tested for characterization test specifically on particle size distribution and moisture content test according to BS1377 (1990). Field ER data was processed using RES2DINV software while laboratory ER data was analyzed using SPSS and Excel software. Correlation of ERV and moisture content shows some medium relationship due to its r = 0.506. Moreover, coefficient of determination, R2 analyzed has demonstrate that the statistical correlation obtain was very good due to its R2 value of 0.9382. In order to determine soil moisture content based on statistical correlation (w = 110.68ρ-0.347), correction factor, C was established through laboratory and field ERV given as 19.27. Finally, this study has shown that soil basic geotechnical properties with particular reference to water content was applicably determined using integration of laboratory and field ERV data analysis thus able to compliment conventional approach due to its economic, fast and wider data coverage.
Effect of Moisture Content on Thermal Properties of Porous Building Materials
NASA Astrophysics Data System (ADS)
Kočí, Václav; Vejmelková, Eva; Čáchová, Monika; Koňáková, Dana; Keppert, Martin; Maděra, Jiří; Černý, Robert
2017-02-01
The thermal conductivity and specific heat capacity of characteristic types of porous building materials are determined in the whole range of moisture content from dry to fully water-saturated state. A transient pulse technique is used in the experiments, in order to avoid the influence of moisture transport on measured data. The investigated specimens include cement composites, ceramics, plasters, and thermal insulation boards. The effect of moisture-induced changes in thermal conductivity and specific heat capacity on the energy performance of selected building envelopes containing the studied materials is then analyzed using computational modeling of coupled heat and moisture transport. The results show an increased moisture content as a substantial negative factor affecting both thermal properties of materials and energy balance of envelopes, which underlines the necessity to use moisture-dependent thermal parameters of building materials in energy-related calculations.
Transpiration-driven aridification of the American West in 21st-Century model projections
NASA Astrophysics Data System (ADS)
Mankin, J. S.; Smerdon, J. E.; Cook, B.; Williams, P.; Seager, R.
2016-12-01
Climate models project significant 21st-Century declines in soil moisture and runoff over the American West from anthropogenic climate change, but the associated physical mechanisms are poorly characterized. In particular, there are significant uncertainties regarding the modulation of evaporative losses by vegetation and how the physical determinants (i.e., changes in moisture supply and demand) of future surface moisture balance will vary in time, space, and depth in the soil. Using 35-members of the NCAR CESM large ensemble (LENS) and 1800 years of its pre-industrial control simulation, we examine the response of Western surface moisture balance (soil moisture and runoff) to anthropogenic forcing. Declines in runoff and soil moisture are forced primarily by robust increases in evapotranspiration (from increased plant transpiration and canopy evaporation from leaf area index increases), rather than more uncertain changes in total precipitation. This increased water loss occurs even with significant and widespread increases in plant water-use efficiency. Additionally, snowpack reductions in the Rockies and the Pacific Northwest contribute to reductions in summer-season deep soil moisture, while increased transpiration dries out near surface soil moisture even in regions where total precipitation increases. When coupled with a warming- and CO2-induced shift in phenology and increase in net primary production, these vegetation changes reduce peak summer soil moisture and runoff considerably. Our results thus point to a large role for simulated vegetation responses in determining future Western aridity, highlighting the importance of reducing the substantial extant uncertainties in vegetation processes simulated within climate models.
NASA Astrophysics Data System (ADS)
Kim, D.; Ahn, M. S.; DeMott, C. A.; Jiang, X.; Klingaman, N. P.; Kim, H. M.; Lee, J. H.; Lim, Y.; Xavier, P. K.
2017-12-01
The Madden-Julian Oscillation (MJO) influences the global weather-climate system, thereby providing the source of predictability on the intraseasonal timescales worldwide. An accurate representation of the MJO, however, is still one of the most challenging tasks for many contemporary global climate models (GCMs). Identifying aspects of the GCMs that are tightly linked to GCMs' MJO simulation capability is a step toward improving the GCM representation of the MJO. This study surveys recent modeling work that collectively evidence that the horizontal distribution of the basic state low-tropospheric humidity is crucial to a successful simulation and prediction of the MJO. Specifically, the simulated horizontal and meridional gradients of the mean low-tropospheric humidity determine the magnitude of the moistening (drying) to the east (west) of the enhance MJO, thereby enabling or disabling the eastward propagation of the MJO. Supporting this argument, many MJO-incompetent GCMs also exhibit biases in the mean humidity that weaken the horizontal moisture gradient. Also, MJO prediction skill of the S2S models is tightly related to the biases in the mean moisture gradient. Implications of the robust relationship between the MJO and the mean state on MJO modeling and prediction will be discussed.
Wiang Haeng coal-water fuel preparation and gasification, Thailand - task 39
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C.M.; Musich, M.A.; Young, B.C.
In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy & Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt%more » for the HWD coals. The energy density for a pumpable coal-water fuel indicates an increase from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700{degrees}C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals, will produce high levels of hydrogen, and be fairly reactive.« less
Estimation of water absorption coefficient using the TDR method
NASA Astrophysics Data System (ADS)
Suchorab, Zbigniew; Majerek, Dariusz; Brzyski, Przemysław; Sobczuk, Henryk; Raczkowski, Andrzej
2017-07-01
Moisture accumulation and transport in the building barriers is an important feature that influences building performance, causing serious exploitation problems as increased energy use, mold and bacteria growth, decrease of indoor air parameters that may lead to sick building syndrome (SBS). One of the parameters that is used to describe moisture characteristic of the material is water absorption coefficient being the measure of capillary behavior of the material as a function of time and the surface area of the specimen. As usual it is determined using gravimetric methods according to EN 1925:1999 standard. In this article we demonstrate the possibility of determination of water absorption coefficient of autoclaved aerated concrete (AAC) using the Time Domain Reflectometry (TDR) method. TDR is an electric technique that had been adopted from soil science and can be successfully used for real-time monitoring of moisture transport in building materials and envelopes. Data achieved using TDR readouts show high correlation with standard method of moisture absorptivity coefficient determination.
NASA Technical Reports Server (NTRS)
Clements, L. L.
1986-01-01
Optical microscopy and SEM have been used to examine the tensile failure surfaces of (0-deg)8 T300/5208 graphite-epoxy specimens, and fractography is employed to determine how moisture content and temperature, together with specimen preparation, affect failure modes. A low energy failure morphology is noted in defective specimens; specimens made from nondefective prepregs appeared to exhibit a decrease in flaw sensitivity and increasing strength with either temperature or moisture, although moisture also seemed to increase interfacial debonding between filament and matrix. The combination of temperature and moisture degraded performance by increasing interfacial debonding, and rendering the epoxy more prone to fracture.
Multispectral determination of soil moisture. [Guymon, Oklahoma
NASA Technical Reports Server (NTRS)
Estes, J. E.; Simonett, D. S. (Principal Investigator); Hajic, E. J.; Blanchard, B. J.
1980-01-01
The edited Guymon soil moisture data collected on August 2, 5, 14, 17, 1978 were grouped into four field cover types for statistical analysis. These are the bare, milo with rows parallel to field of view, milo with rows perpendicular to field of view and alfalfa cover groups. There are 37, 22, 24 and 14 observations respectively in each group for each sensor channel and each soil moisture layer. A subset of these data called the 'five cover set' (VEG5) limited the scatterometer data to the 15 deg look angle and was used to determine discriminant functions and combined group regressions.
Heat and moisture flow in concrete as a function of temperature
NASA Technical Reports Server (NTRS)
Hundt, J.
1978-01-01
Due to temperature, reactors in operation cause heat and moisture flows in the thick walled prestressed pressure vessels. These flows were studied in three beams of concrete made with crushed limestone aggregate, and in three beams made of crushed gravel/sand aggregate. The flow phenomena were related to the structural development of the concrete by determining the amount of non-evaporatable water, the total porosity, and the pore size distribution. Local temperature and moisture conditions also influenced the technical properties. Compressive strength, changes in length due to shrinkage and contraction, thermal expansion, and thermal conductivity were determined.
Spatial and temporal variability of soil moisture on the field with and without plants*
NASA Astrophysics Data System (ADS)
Usowicz, B.; Marczewski, W.; Usowicz, J. B.
2012-04-01
Spatial and temporal variability of the natural environment is its inherent and unavoidable feature. Every element of the environment is characterized by its own variability. One of the kinds of variability in the natural environment is the variability of the soil environment. To acquire better and deeper knowledge and understanding of the temporal and spatial variability of the physical, chemical and biological features of the soil environment, we should determine the causes that induce a given variability. Relatively stable features of soil include its texture and mineral composition; examples of those variables in time are the soil pH or organic matter content; an example of a feature with strong dynamics is the soil temperature and moisture content. The aim of this study was to identify the variability of soil moisture on the field with and without plants using geostatistical methods. The soil moisture measurements were taken on the object with plant canopy and without plants (as reference). The measurements of soil moisture and meteorological components were taken within the period of April-July. The TDR moisture sensors covered 5 cm soil layers and were installed in the plots in the soil layers of 0-0.05, 0.05-0.1, 0.1-0.15, 0.2-0.25, 0.3-0.35, 0.4-0.45, 0.5-0.55, 0.8-0.85 m. Measurements of soil moisture were taken once a day, in the afternoon hours. For the determination of reciprocal correlation, precipitation data and data from soil moisture measurements with the TDR meter were used. Calculations of reciprocal correlation of precipitation and soil moisture at various depths were made for three objects - spring barley, rye, and bare soil, at the level of significance of p<0.05. No significant reciprocal correlation was found between the precipitation and soil moisture in the soil profile for any of the objects studied. Although the correlation analysis indicates a lack of correlation between the variables under consideration, observation of the soil moisture runs in particular objects and of precipitation distribution shows clearly that rainfall has an effect on the soil moisture. The amount of precipitation water that increased the soil moisture depended on the strength of the rainfall, on the hydrological properties of the soil (primarily the soil density), the status of the plant cover, and surface runoff. Basing on the precipitation distribution and on the soil moisture runs, an attempt was made at finding a temporal and spatial relationship between those variables, employing for the purpose the geostatistical methods which permit time and space to be included in the analysis. The geostatistical parameters determined showed the temporal dependence of moisture distribution in the soil profile, with the autocorrelation radius increasing with increasing depth in the profile. The highest values of the radius were observed in the plots with plant cover below the arable horizon, and the lowest in the arable horizon on the barley and fallow plots. The fractal dimensions showed a clear decrease in values with increasing depth in the plots with plant cover, while in the bare plots they were relatively constant within the soil profile under study. Therefore, they indicated that the temporal distribution of soil moisture within the soil profile in the bare field was more random in character than in the plots with plants. The results obtained and the analyses indicate that the moisture in the soil profile, its variability and determination, are significantly affected by the type and condition of plant canopy. The differentiation in moisture content between the plots studied resulted from different precipitation interception and different intensity of water uptake by the roots. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO-3275.
NASA Astrophysics Data System (ADS)
Chen, M.; Willgoose, G. R.; Saco, P. M.
2009-12-01
This paper investigates the soil moisture dynamics over two subcatchments (Stanley and Krui) in the Goulburn River in NSW during a three year period (2005-2007) using the Hydrus 1-D unsaturated soil water flow model. The model was calibrated to the seven Stanley microcatchment sites (1 sqkm site) using continuous time surface 30cm and full profile soil moisture measurements. Soil type, leaf area index and soil depth were found to be the key parameters changing model fit to the soil moisture time series. They either shifted the time series up or down, changed the steepness of dry-down recessions or determined the lowest point of soil moisture dry-down respectively. Good correlations were obtained between observed and simulated soil water storage (R=0.8-0.9) when calibrated parameters for one site were applied to the other sites. Soil type was also found to be the main determinant (after rainfall) of the mean of modelled soil moisture time series. Simulations of top 30cm were better than those of the whole soil profile. Within the Stanley microcatchment excellent soil moisture matches could be generated simply by adjusting the mean of soil moisture up or down slightly. Only minor modification of soil properties from site to site enable good fits for all of the Stanley sites. We extended the predictions of soil moisture to a larger spatial scale of the Krui catchment (sites up to 30km distant from Stanley) using soil and vegetation parameters from Stanley but the locally recorded rainfall at the soil moisture measurement site. The results were encouraging (R=0.7~0.8). These results show that it is possible to use a calibrated soil moisture model to extrapolate the soil moisture to other sites for a catchment with an area of up to 1000km2. This paper demonstrates the potential usefulness of continuous time, point scale soil moisture (typical of that measured by permanently installed TDR probes) in predicting the soil wetness status over a catchment of significant size.
USDA-ARS?s Scientific Manuscript database
The effect of moisture content on solid-state anaerobic digestion of dairy manure from a Korean sawdust-bedded pack barn was determined using laboratory-scale digesters operated at three moisture levels (70, 76, and 83% on a wet basis) at 37 C for 85 days. Results showed that digesters containing m...
The influence of fuelbed properties on moisture drying rates and timelags of longleaf pine litter
Ralph M. Nelson; J. Kevin Hiers
2008-01-01
Fire managers often model pine needles as 1 h timelag fuels, but fuelbed properties may significantly change the rate at which needles exchange moisture with the atmosphere. The problem of determining whether moisture loss from fine fuels is being controlled by individual particles or by the fuelbed remains unresolved. Results from this laboratory experiment indicate...
7 CFR 61.103 - Determination of quality index.
Code of Federal Regulations, 2012 CFR
2012-01-01
... percent of foreign matter, not more than 12.0 percent of moisture, and not more than 1.8 percent of free..., contain foreign matter, moisture, or free fatty acids in the oil in the seed, in excess of the percentages... of 1.0 percent. (3) One-tenth of a unit for each 0.1 percent of moisture in excess of 12.0 percent...
7 CFR 61.103 - Determination of quality index.
Code of Federal Regulations, 2014 CFR
2014-01-01
... percent of foreign matter, not more than 12.0 percent of moisture, and not more than 1.8 percent of free..., contain foreign matter, moisture, or free fatty acids in the oil in the seed, in excess of the percentages... of 1.0 percent. (3) One-tenth of a unit for each 0.1 percent of moisture in excess of 12.0 percent...
7 CFR 61.103 - Determination of quality index.
Code of Federal Regulations, 2013 CFR
2013-01-01
... percent of foreign matter, not more than 12.0 percent of moisture, and not more than 1.8 percent of free..., contain foreign matter, moisture, or free fatty acids in the oil in the seed, in excess of the percentages... of 1.0 percent. (3) One-tenth of a unit for each 0.1 percent of moisture in excess of 12.0 percent...
Philip E. Dennison; Dar A. Roberts; Sommer R. Thorgusen; Jon C. Regelbrugge; David Weise; Christopher Lee
2003-01-01
Live fuel moisture, an important determinant of fire danger in Mediterranean ecosystems, exhibits seasonal changes in response to soil water availability. Both drought stress indices based on meteorological data and remote sensing indices based on vegetation water absorption can be used to monitor live fuel moisture. In this study, a cumulative water balance index (...
The technique of duff hygrometer calibration
T. Kachin; H. T. Gisborne
1937-01-01
The moisture content of the top layer of coniferous needles and twigs covering the forest floor is one of the factors of forest fire danger which must he determined accurately if fire danger in such timber types is to he measured. As this moisture content cannot he estimated accurately and as a difference of a few per cent of moisture, especially in the lower range,...
The Influence of Soil Moisture and Wind on Rainfall Distribution and Intensity in Florida
NASA Technical Reports Server (NTRS)
Baker, R. David; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo
1998-01-01
Land surface processes play a key role in water and energy budgets of the hydrological cycle. For example, the distribution of soil moisture will affect sensible and latent heat fluxes, which in turn may dramatically influence the location and intensity of precipitation. However, mean wind conditions also strongly influence the distribution of precipitation. The relative importance of soil moisture and wind on rainfall location and intensity remains uncertain. Here, we examine the influence of soil moisture distribution and wind distribution on precipitation in the Florida peninsula using the 3-D Goddard Cumulus Ensemble (GCE) cloud model Coupled with the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. This study utilizes data collected on 27 July 1991 in central Florida during the Convection and Precipitation Electrification Experiment (CaPE). The idealized numerical experiments consider a block of land (the Florida peninsula) bordered on the east and on the west by ocean. The initial soil moisture distribution is derived from an offline PLACE simulation, and the initial environmental wind profile is determined from the CaPE sounding network. Using the factor separation technique, the precise contribution of soil moisture and wind to rainfall distribution and intensity is determined.
Water content and the conversion of phytochrome regulation of lettuce dormancy
NASA Technical Reports Server (NTRS)
Vertucci, C. W.; Vertucci, F. A.; Leopold, A. C.
1987-01-01
In an effort to determine which biological reactions can occur in relation to the water content of seeds, the regulation of lettuce seed dormancy by red and far red light was determined at various hydration levels. Far red light had an inhibiting effect on germination for seeds at all moisture contents from 4 to 32% water. Germination was progressively stimulated by red light as seed hydration increased from 8 to 15%, and reached a maximum at moisture contents above 18%. Red light was ineffective at moisture contents below 8%. Seeds that had been stimulated by red light and subsequently dried lost the enhanced germinability if stored at moisture contents above 8%. The contrast between the presumed photoconversion of phytochrome far red-absorbing (Pfr) to (Pr) occurring at any moisture content and the reverse reaction occurring only if the seed moisture content is greater than 8% may be explained on the basis of the existence of unstable intermediates in the Pr to Pfr conversion. Our results suggest that the initial photoreaction involved in phytochrome conversion is relatively independent of water content, while the subsequent partial reactions become increasingly facilitated as water content increases from 8 to 18%.
9 CFR 113.29 - Determination of moisture content in desiccated biological products.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Determination of moisture content in desiccated biological products. 113.29 Section 113.29 Animals and Animal Products ANIMAL AND PLANT HEALTH... as “A.” (iii) Return weighing bottles to the desiccator. (2) Remove the sample container seal. (i...
9 CFR 113.29 - Determination of moisture content in desiccated biological products.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Determination of moisture content in desiccated biological products. 113.29 Section 113.29 Animals and Animal Products ANIMAL AND PLANT HEALTH... as “A.” (iii) Return weighing bottles to the desiccator. (2) Remove the sample container seal. (i...
Moisture as a determinant of habitat quality for a nonbreeding Neotropical migratory songbird
Joseph A.M. Smith; Leonard R. Reitsma; Peter P. Marra
2010-01-01
Identifying the determinants of habitat quality for a species is essential for understanding how populations are limited and regulated. Spatiotemporal variation in moisture and its influence on food availability may drive patterns of habitat occupancy and demographic outcomes. Nonbreeding migratory birds in the neotropics occupy a range of habitat types that vary with...
Efficacy of Metarhizium anisopliae isolate MAX-2 from Shangri-la, China under desiccation stress
2014-01-01
Background Metarhizium anisopliae, a soil-borne entomopathogen found worldwide, is an interesting fungus for biological control. However, its efficacy in the fields is significantly affected by environmental conditions, particularly moisture. To overcome the weakness of Metarhizium and determine its isolates with antistress capacity, the efficacies of four M. anisopliae isolates, which were collected from arid regions of Yunnan Province in China during the dry season, were determined at different moisture levels, and the efficacy of the isolate MAX-2 from Shangri-la under desiccation stress was evaluated at low moisture level. Results M. anisopliae isolates MAX-2, MAC-6, MAL-1, and MAQ-28 showed gradient descent efficacies against sterile Tenebrio molitor larvae, and gradient descent capacities against desiccation with the decrease in moisture levels. The efficacy of MAX-2 showed no significant differences at 35% moisture level than those of the other isolates. However, significant differences were found at 8% to 30% moisture levels. The efficacies of all isolates decreased with the decrease in moisture levels. MAX-2 was relatively less affected by desiccation stress. Its efficacy was almost unaffected by the decrease at moisture levels > 25%, but slowly decreased at moisture levels < 25%. By contrast, the efficacies of other isolates rapidly decreased with the decrease in moisture levels. MAX-2 caused different infection characteristics on T. molitor larvae under desiccation stress and in wet microhabitat. Local black patches were found on the cuticles of the insects, and the cadavers dried without fungal growth under desiccation stress. However, dark black internodes and fungal growth were found after death of the insects in the wet microhabitat. Conclusions MAX-2 showed significantly higher efficacy and superior antistress capacity than the other isolates under desiccation stress. The infection of sterile T. molitor larvae at low moisture level constituted a valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress. PMID:24383424
Efficacy of Metarhizium anisopliae isolate MAX-2 from Shangri-la, China under desiccation stress.
Chen, Zi-Hong; Xu, Ling; Yang, Feng-lian; Ji, Guang-Hai; Yang, Jing; Wang, Jian-Yun
2014-01-03
Metarhizium anisopliae, a soil-borne entomopathogen found worldwide, is an interesting fungus for biological control. However, its efficacy in the fields is significantly affected by environmental conditions, particularly moisture. To overcome the weakness of Metarhizium and determine its isolates with antistress capacity, the efficacies of four M. anisopliae isolates, which were collected from arid regions of Yunnan Province in China during the dry season, were determined at different moisture levels, and the efficacy of the isolate MAX-2 from Shangri-la under desiccation stress was evaluated at low moisture level. M. anisopliae isolates MAX-2, MAC-6, MAL-1, and MAQ-28 showed gradient descent efficacies against sterile Tenebrio molitor larvae, and gradient descent capacities against desiccation with the decrease in moisture levels. The efficacy of MAX-2 showed no significant differences at 35% moisture level than those of the other isolates. However, significant differences were found at 8% to 30% moisture levels. The efficacies of all isolates decreased with the decrease in moisture levels. MAX-2 was relatively less affected by desiccation stress. Its efficacy was almost unaffected by the decrease at moisture levels > 25%, but slowly decreased at moisture levels < 25%. By contrast, the efficacies of other isolates rapidly decreased with the decrease in moisture levels. MAX-2 caused different infection characteristics on T. molitor larvae under desiccation stress and in wet microhabitat. Local black patches were found on the cuticles of the insects, and the cadavers dried without fungal growth under desiccation stress. However, dark black internodes and fungal growth were found after death of the insects in the wet microhabitat. MAX-2 showed significantly higher efficacy and superior antistress capacity than the other isolates under desiccation stress. The infection of sterile T. molitor larvae at low moisture level constituted a valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress.
Spacecraft Environmental Testing SMAP (Soil, Moisture, Active, Passive)
NASA Technical Reports Server (NTRS)
Fields, Keith
2014-01-01
Testing a complete full up spacecraft to verify it will survive the environment, in which it will be exposed to during its mission, is a formidable task in itself. However, the ''test like you fly'' philosophy sometimes gets compromised because of cost, design and or time. This paper describes the thermal-vacuum and mass properties testing of the Soil Moisture Active Passive (SMAP) earth orbiting satellite. SMAP will provide global observations of soil moisture and freeze/thaw state (the hydrosphere state). SMAP hydrosphere state measurements will be used to enhance understanding of processes that link the water, energy, and carbon cycles, and to extend the capabilities of weather and climate prediction models. It will explain the problems encountered, and the solutions developed, which minimized the risk typically associated with such an arduous process. Also discussed, the future of testing on expensive long lead-time spacecraft. Will we ever reach the ''build and shoot" scenario with minimal or no verification testing?
NASA Giovanni: A Tool for Visualizing, Analyzing, and Inter-Comparing Soil Moisture Data
NASA Technical Reports Server (NTRS)
Teng, William; Rui, Hualan; Vollmer, Bruce; deJeu, Richard; Fang, Fan; Lei, Guang-Dih
2012-01-01
There are many existing satellite soil moisture algorithms and their derived data products, but there is no simple way for a user to inter-compare the products or analyze them together with other related data (e.g., precipitation). An environment that facilitates such inter-comparison and analysis would be useful for validation of satellite soil moisture retrievals against in situ data and for determining the relationships between different soil moisture products. The latter relationships are particularly important for applications users, for whom the continuity of soil moisture data, from whatever source, is critical. A recent example was provided by the sudden demise of EOS Aqua AMSR-E and the end of its soil moisture data production, as well as the end of other soil moisture products that had used the AMSR-E brightness temperature data. The purpose of the current effort is to create an environment, as part of the NASA Giovanni family of portals, that facilitates inter-comparisons of soil moisture algorithms and their derived data products.
Thirunathan, Praveena; Arnz, Patrik; Husny, Joeska; Gianfrancesco, Alessandro; Perdana, Jimmy
2018-03-01
Accurate description of moisture diffusivity is key to precisely understand and predict moisture transfer behaviour in a matrix. Unfortunately, measuring moisture diffusivity is not trivial, especially at low moisture values and/or elevated temperatures. This paper presents a novel experimental procedure to accurately measure moisture diffusivity based on thermogravimetric approach. The procedure is capable to measure diffusivity even at elevated temperatures (>70°C) and low moisture values (>1%). Diffusivity was extracted from experimental data based on "regular regime approach". The approach was tailored to determine diffusivity from thin film and from poly-dispersed powdered samples. Subsequently, measured diffusivity was validated by comparing to available literature data, showing good agreement. Ability of this approach to accurately measure diffusivity at a wider range of temperatures provides better insight on temperature dependency of diffusivity. Thus, this approach can be crucial to ensure good accuracy of moisture transfer description/prediction especially when involving elevated temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fonteyne, Margot; Gildemyn, Delphine; Peeters, Elisabeth; Mortier, Séverine Thérèse F C; Vercruysse, Jurgen; Gernaey, Krist V; Vervaet, Chris; Remon, Jean Paul; Nopens, Ingmar; De Beer, Thomas
2014-08-01
Classically, the end point detection during fluid bed drying has been performed using indirect parameters, such as the product temperature or the humidity of the outlet drying air. This paper aims at comparing those classic methods to both in-line moisture and solid-state determination by means of Process Analytical Technology (PAT) tools (Raman and NIR spectroscopy) and a mass balance approach. The six-segmented fluid bed drying system being part of a fully continuous from-powder-to-tablet production line (ConsiGma™-25) was used for this study. A theophylline:lactose:PVP (30:67.5:2.5) blend was chosen as model formulation. For the development of the NIR-based moisture determination model, 15 calibration experiments in the fluid bed dryer were performed. Six test experiments were conducted afterwards, and the product was monitored in-line with NIR and Raman spectroscopy during drying. The results (drying endpoint and residual moisture) obtained via the NIR-based moisture determination model, the classical approach by means of indirect parameters and the mass balance model were then compared. Our conclusion is that the PAT-based method is most suited for use in a production set-up. Secondly, the different size fractions of the dried granules obtained during different experiments (fines, yield and oversized granules) were compared separately, revealing differences in both solid state of theophylline and moisture content between the different granule size fractions. Copyright © 2014 Elsevier B.V. All rights reserved.
Determining moisture content in pasta by vibrational spectroscopy.
Czaja, Tomasz; Kuzawińska, Ewelina; Sobota, Aldona; Szostak, Roman
2018-02-01
Pasta aside from bread is the most consumed cereal-based product in the world. Its taste and cooking ease makes it the basis of many cuisines. The pasta dough formed by mixing flour and water is extruded through an extrusion die to mould the appropriate pasta form and is dried to obtain a stable product. The concentration of moisture in the pasta dough is a one of key parameters determining the final quality of the product. Monitoring the moisture content of pasta after extrusion is also critically important. It enables a selection of suitable drying conditions that ensure the appropriate parameters of pasta, such as texture, color and taste, are met. A method for the quantitative determination of moisture content in pasta dough and in pasta based on the partial least squares treatment of infrared spectra registered using a single-reflection attenuated total reflectance diamond accessory is described. Results of a similar quality were found using models derived from near infrared spectra obtained in a diffuse reflectance mode and slightly worse based on Raman spectra. Relative standard errors of prediction calculated for moisture quantification by ATR/NIR/Raman techniques amounted to 2.54/3.16/5.56% and 2.15/3.32/5.67%, for calibration and validation sets, respectively. The proposed procedures can be used for fast and efficient pasta moisture quantification and may replace the current, more laborious methods used. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Vandegriend, A. A.; Oneill, P. E.
1986-01-01
Using the De Vries models for thermal conductivity and heat capacity, thermal inertia was determined as a function of soil moisture for 12 classes of soil types ranging from sand to clay. A coupled heat and moisture balance model was used to describe the thermal behavior of the top soil, while microwave remote sensing was used to estimate the soil moisture content of the same top soil. Soil hydraulic parameters are found to be very highly correlated with the combination of soil moisture content and thermal inertia at the same moisture content. Therefore, a remotely sensed estimate of the thermal behavior of the soil from diurnal soil temperature observations and an independent remotely sensed estimate of soil moisture content gives the possibility of estimating soil hydraulic properties by remote sensing.
Tadapaneni, Ravi Kiran; Yang, Ren; Carter, Brady; Tang, Juming
2017-12-01
In recent years, research studies have shown that the thermal resistance of foodborne pathogens in the low moisture foods is greatly influenced by the water activity (a w ) at temperatures relevant to thermal treatments for pathogen control. Yet, there has been a lack of an effective method for accurate measurement of a w at those temperatures. Thus, the main aim of this study was to evaluate a new method for measuring a w of food samples at elevated temperatures. An improved thermal cell with a relative humidity and temperature sensor was used to measure the a w of the three different food samples, namely, organic wheat flour, almond flour, and non-fat milk powder, over the temperature range between 20 and 80°C. For a constant moisture content, the a w data was used to estimate the net isosteric heat of sorption (q st ). The q st values were then used in the Clausius Clapeyron equation (CCE) equation to estimate the moisture sorption isotherm for all test food samples at different temperatures. For all the tested samples of any fixed moisture content, a w value generally increased with the temperature. The energy for sorption decreased with increasing moisture content. With the experimentally determined q st value, CCE describes well about the changes in a w of the food samples between 20 and 80°C. This study presents a method to obtain a w of a food sample for a specific moisture content at different temperatures which could be extended to obtain q st values for different moisture contents and hence, the moisture sorption isotherm of a food sample at different temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rainfall Morphology in Semi-Tropical Convergence Zones
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Ferrier, Brad S.; Ray, Peter S.
2000-01-01
Central Florida is the ideal test laboratory for studying convergence zone-induced convection. The region regularly experiences sea breeze fronts and rainfall-induced outflow boundaries. The focus of this study is the common yet poorly-studied convergence zone established by the interaction of the sea breeze front and an outflow boundary. Previous studies have investigated mechanisms primarily affecting storm initiation by such convergence zones. Few have focused on rainfall morphology yet these storms contribute a significant amount precipitation to the annual rainfall budget. Low-level convergence and mid-tropospheric moisture have both been shown to correlate with rainfall amounts in Florida. Using 2D and 3D numerical simulations, the roles of low-level convergence and mid-tropospheric moisture in rainfall evolution are examined. The results indicate that time-averaged, vertical moisture flux (VMF) at the sea breeze front/outflow convergence zone is directly and linearly proportional to initial condensation rates. This proportionality establishes a similar relationship between VMF and initial rainfall. Vertical moisture flux, which encompasses depth and magnitude of convergence, is better correlated to initial rainfall production than surface moisture convergence. This extends early observational studies which linked rainfall in Florida to surface moisture convergence. The amount and distribution of mid-tropospheric moisture determines how rainfall associated with secondary cells develop. Rainfall amount and efficiency varied significantly over an observable range of relative humidities in the 850- 500 mb layer even though rainfall evolution was similar during the initial or "first-cell" period. Rainfall variability was attributed to drier mid-tropospheric environments inhibiting secondary cell development through entrainment effects. Observationally, 850-500 mb moisture structure exhibits wider variability than lower level moisture, which is virtually always present in Florida. A likely consequence of the variability in 850-500 moisture is a stronger statistical correlation to rainfall, which observational studies have noted. The study indicates that vertical moisture flux forcing at convergence zones is critical in determining rainfall in the initial stage of development but plays a decreasing role in rainfall evolution as the system matures. The mid-tropospheric moisture (e.g. environment) plays an increasing role in rainfall evolution as the system matures. This suggests the need to improve measurements of magnitude/depth of convergence and mid-tropospheric moisture distribution. It also highlights the need for better parameterization of entrainment and vertical moisture distribution in larger-scale models.
Nuclear gauge application in road industry
NASA Astrophysics Data System (ADS)
Azmi Ismail, Mohd
2017-11-01
Soil compaction is essential in road construction. The evaluation of the degree of compaction relies on the knowledge of density and moisture of the compacted layers is very important to the performance of the pavement structure. Among the various tests used for making these determinations, the sand replacement density test and the moisture content determination by oven drying are perhaps the most widely used. However, these methods are not only time consuming and need wearisome procedures to obtain the results but also destructive and the number of measurements that can be taken at any time is limited. The test can on be fed back to the construction site the next day. To solve these problems, a nuclear technique has been introduced as a quicker and easier way of measuring the density and moisture of construction materials. Nuclear moisture density gauges have been used for many years in pavement construction as a method of non-destructive density testing The technique which can determine both wet density and moisture content offers an in situ method for construction control at the work site. The simplicity, the speed, and non-destructive nature offer a great advantage for quality control. This paper provides an overview of nuclear gauge application in road construction and presents a case study of monitoring compaction status of in Sedenak - Skudai, Johor rehabilitation projects.
An analysis of the drying process in forest fuel material
G.M. Byram; R.M. Nelson
2015-01-01
It is assumed that the flow of moisture in forest fuels and other woody materials is determined by the gradient of a quantity g which is a function of some property, or properties, of the moisture content. There appears to be no preferred choice for this function, hence moisture transfer equations can be based on a number of equally valid definitions of g. The physical...
40 CFR 63.1947 - When do I have to comply with this subpart if I own or operate a bioreactor?
Code of Federal Regulations, 2013 CFR
2013-07-01
... initiating liquids addition or within 180 days after achieving a moisture content of 40 percent by weight... achieving a 40 percent moisture content instead of 180 days after liquids addition, use the procedures in § 63.1980(g) and (h) to determine when the bioreactor moisture content reaches 40 percent. (b) If your...
40 CFR 63.1947 - When do I have to comply with this subpart if I own or operate a bioreactor?
Code of Federal Regulations, 2014 CFR
2014-07-01
... initiating liquids addition or within 180 days after achieving a moisture content of 40 percent by weight... achieving a 40 percent moisture content instead of 180 days after liquids addition, use the procedures in § 63.1980(g) and (h) to determine when the bioreactor moisture content reaches 40 percent. (b) If your...
40 CFR 63.1947 - When do I have to comply with this subpart if I own or operate a bioreactor?
Code of Federal Regulations, 2012 CFR
2012-07-01
... initiating liquids addition or within 180 days after achieving a moisture content of 40 percent by weight... achieving a 40 percent moisture content instead of 180 days after liquids addition, use the procedures in § 63.1980(g) and (h) to determine when the bioreactor moisture content reaches 40 percent. (b) If your...
Soil moisture depletion in three lodgepole pine stands in northeastern Oregon.
Daniel M. Bishop
1961-01-01
A 1-year study in the Blue Mountains of northeastern Oregon indicates that substantial amounts of soil moisture are consumed during the growing season in lodgepole pine stands. Dual purposes of the study were to estimate the quantities of water that can be stored in basalt-pumice soils typical of the Blue Mountains, and to determine the rate and amount of moisture...
Wang, Shuai; Fu, Bojie; Gao, Guangyao; Zhou, Ji; Jiao, Lei; Liu, Jianbo
2015-12-01
Soil moisture pulses are a prerequisite for other land surface pulses at various spatiotemporal scales in arid and semi-arid areas. The temporal dynamics and profile variability of soil moisture in relation to land cover combinations were studied along five slopes transect on the Loess Plateau during the rainy season of 2011. Within the 3 months of the growing season coupled with the rainy season, all of the soil moisture was replenished in the area, proving that a type stability exists between different land cover soil moisture levels. Land cover combinations disturbed the trend determined by topography and increased soil moisture variability in space and time. The stability of soil moisture resulting from the dynamic processes could produce stable patterns on the slopes. The relationships between the mean soil moisture and vertical standard deviation (SD) and coefficient of variation (CV) were more complex, largely due to the fact that different land cover types had distinctive vertical patterns of soil moisture. The spatial SD of each layer had a positive correlation and the spatial CV exhibited a negative correlation with the increase in mean soil moisture. The soil moisture stability implies that sampling comparisons in this area can be conducted at different times to accurately compare different land use types.
Combining hygrothermal and corrosion models to predict corrosion of metal fasteners embedded in wood
Samuel L. Zelinka; Dominique Derome; Samuel V. Glass
2011-01-01
A combined heat, moisture, and corrosion model is presented and used to simulate the corrosion of metal fasteners embedded in solid wood exposed to the exterior environment. First, the moisture content and temperature at the wood/fastener interface is determined at each time step. Then, the amount of corrosion is determined spatially using an empirical corrosion rate...
Sensing of moisture content in in-shell peanuts by NIR (Near Infra Red) reflectance spectroscopy
USDA-ARS?s Scientific Manuscript database
It was found earlier that moisture content (MC) of intact kernels of grain and nuts could be determined by Near Infra Red (NIR) reflectance spectrometry. However, if the MC values can be determined while the nuts are in their shells, it would save lot of labor and money spent in shelling and cleanin...
Environmental effects on FOD resistance of composite fan blade
NASA Technical Reports Server (NTRS)
Murphy, G. C.; Selemme, C. T.
1981-01-01
The sensitivity of the impact characteristics of typical polymeric composite fan blade materials to potential limiting combinations of moisture, temperature level and temperature transients was established. The following four technical tasks are reported: (1) evaluation and characterization of constituent blade materials; (2) ballistic impact tests; (3) leading edge impact protection systems; and (4) simulated blade spin impact tests.
NASA Astrophysics Data System (ADS)
Hua, Lijuan; Zhong, Linhao; Ma, Zhuguo
2017-12-01
The northwestern corner of China (NWCC) experienced a decadal transition in summer precipitation during 1982-2010, with a significant upward trend in 1982-2000 (P1) but a downward one in 2001-2010 (P2). A spatially unbounded dynamic recycling model is developed to estimate the moisture sources and moisture transport variations based on ERA-Interim data. The results suggest that more than 88% of NWCC precipitation has external moisture origins in the southwest and northwest terrestrial areas. The increasing precipitation trend during P1 can be explained by the increasing moisture contribution from the southwest and decreasing contribution from the northwest. However, the opposite trends cause the decreasing precipitation trend during P2. In general, the decadal precipitation transition is mainly determined by the variation of short-distance moisture transport from central Asia, although opposite moisture transport variations exist in the Ural Mountains and Northeast Europe. The variation of the precipitation trend is closely associated with a well-organized wave train propagation from the North Atlantic to central Asia. During P1, the wave train structure consists of a titled positive phase North Atlantic Oscillation (NAO), an anticyclonic circulation over Europe, and a cyclonic anomaly over central Asia, which promotes the southwest moisture flux to NWCC. But the opposite circulation pattern dominates P2. The energy dispersion due to the breakdown of the NAO determines the phase and strength of the downstream wave anomalies over Eurasia. This suggests that the summer NAO might influence the decadal variation of NWCC precipitation through the decadal modulation of the Eurasia wave train.
Using Whole-House Field Tests to Empirically Derive Moisture Buffering Model Inputs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, J.; Winkler, J.; Christensen, D.
2014-08-01
Building energy simulations can be used to predict a building's interior conditions, along with the energy use associated with keeping these conditions comfortable. These models simulate the loads on the building (e.g., internal gains, envelope heat transfer), determine the operation of the space conditioning equipment, and then calculate the building's temperature and humidity throughout the year. The indoor temperature and humidity are affected not only by the loads and the space conditioning equipment, but also by the capacitance of the building materials, which buffer changes in temperature and humidity. This research developed an empirical method to extract whole-house model inputsmore » for use with a more accurate moisture capacitance model (the effective moisture penetration depth model). The experimental approach was to subject the materials in the house to a square-wave relative humidity profile, measure all of the moisture transfer terms (e.g., infiltration, air conditioner condensate) and calculate the only unmeasured term: the moisture absorption into the materials. After validating the method with laboratory measurements, we performed the tests in a field house. A least-squares fit of an analytical solution to the measured moisture absorption curves was used to determine the three independent model parameters representing the moisture buffering potential of this house and its furnishings. Follow on tests with realistic latent and sensible loads showed good agreement with the derived parameters, especially compared to the commonly-used effective capacitance approach. These results show that the EMPD model, once the inputs are known, is an accurate moisture buffering model.« less
Xie, Wei-Qi; Chai, Xin-Sheng
2016-04-22
This paper describes a new method for the rapid determination of the moisture content in paper materials. The method is based on multiple headspace extraction gas chromatography (MHE-GC) at a temperature above the boiling point of water, from which an integrated water loss from the tested sample due to evaporation can be measured and from which the moisture content in the sample can be determined. The results show that the new method has a good precision (with the relative standard deviation <0.96%), high sensitivity (the limit of quantitation=0.005%) and good accuracy (the relative differences <1.4%). Therefore, the method is quite suitable for many uses in research and industrial applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Critical parameters for sterilization of oil palm fruit by microwave irradiation
NASA Astrophysics Data System (ADS)
Sarah, Maya; Taib, M. R.
2017-08-01
Study to evaluate critical parameters for microwave irradiation to sterilize oil palm fruit was carried out at power density of 560 to 1120 W/kg. Critical parameters are important to ensure moisture loss during sterilization exceed the critical moisture (Mc) but less than maximum moisture (Mmax). Critical moisture in this study was determined according to dielectric loss factor of heated oil palm fruits at 2450 MHz. It was obtained from slope characterization of dielectric loss factor-vs-moisture loss curve. The Mc was used to indicate critical temperature (Tc) and critical time (tc) for microwave sterilization. To ensure moisture loss above critical value but not exceed maximum value, the combinations of time-temperature for sterilization of oil palm fruits by microwave irradiation were 6 min and 75°C to 17 min and 82°C respectively.
NASA Astrophysics Data System (ADS)
Tromp-van Meerveld, H. J.; McDonnell, J. J.
2009-04-01
SummaryHillslopes are fundamental landscape units, yet represent a difficult scale for measurements as they are well-beyond our traditional point-scale techniques. Here we present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the hillslope scale. We test the new multi-frequency GEM-300 for spatially distributed soil moisture measurements at the well-instrumented Panola hillslope. EM-based apparent conductivity measurements were linearly related to soil moisture measured with the Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7.290, 9.090, 11.250, and 14.010 kHz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the soil moisture measurements.
Matt Jolly; Sara McAllister; Mark Finney; Ann Hadlow
2010-01-01
Living plants are often the primary fuels burning in wildland fire but little is known about the factors that govern their ignition behavior. Moisture content has long been hypothesized to determine the characteristics of fires spreading in live fuels but moisture content alone fails to explain observed differences in the ignition of various species at different times...
NASA Astrophysics Data System (ADS)
Su, Yu-Min; Hou, Tsung-Chin; Lin, Li-Chiang; Chen, Gwan-Ying; Pan, Huang-Hsing
2016-04-01
Portland Cement Concrete plays a vital part of protecting structural rebars or steels when high-temperature fire incidents occur, that induces loss of evaporate water, dehydration of CH, and deconstruction of C-S-H. The objective of the study was to assess fire-damaged concrete in conjunction with nondestructive evaluation methods of acoustic emission, visual inspections, and X-ray computed tomography. The experimental program was to mix an Ordinary Portland Cement concrete firstly. Concrete cylinders with twenty-day moisture cure were treated in a furnace with 400 and 600°C for one hour. After temperature is cooled down, the concrete cylinders were brought to air or moisture re-curing for ten days. Due to the incident of the furnace, acoustic emission associated with splitting tensile strength test was not able to continue. Future efforts are planned to resume this unfinished task. However, two proposed tasks were executed and completed, namely visual inspections and voids analysis on segments obtained from X-ray CT facility. Results of visual inspections on cross-sectional and cylindrical length of specimens showed that both aggregates and cement pastes turned to pink or red at 600°C. More surface cracks were generated at 600°C than that at 400°C. On the other hand, voids analysis indicated that not many cracks were generated and voids were remedied at 400°C. However, a clear tendency was found that remedy by moisture curing may heal up to 2% voids of the concrete cylinder that was previously subject to 600°C of high temperature conditioning.
Kaveh, Mohammad; Chayjan, Reza Amiri
2014-01-01
Drying of terebinth fruit was conducted to provide microbiological stability, reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because terebinth fruit is susceptible to heat, the selection of a suitable drying technology is a challenging task. Artificial neural networks (ANNs) are used as a nonlinear mapping structures for modelling and prediction of some physical and drying properties of terebinth fruit. Drying characteristics of terebinth fruit with an initial moisture content of 1.16 (d.b.) was studied in an infrared fluidized bed dryer. Different levels of air temperatures (40, 55 and 70°C), air velocities (0.93, 1.76 and 2.6 m/s) and infrared (IR) radiation powers (500, 1000 and 1500 W) were applied. In the present study, the application of Artificial Neural Network (ANN) for predicting the drying moisture diffusivity, energy consumption, shrinkage, drying rate and moisture ratio (output parameter for ANN modelling) was investigated. Air temperature, air velocity, IR radiation and drying time were considered as input parameters. The results revealed that to predict drying rate and moisture ratio a network with the TANSIG-LOGSIG-TANSIG transfer function and Levenberg-Marquardt (LM) training algorithm made the most accurate predictions for the terebinth fruit drying. The best results for ANN at predications were R2 = 0.9678 for drying rate, R2 = 0.9945 for moisture ratio, R2 = 0.9857 for moisture diffusivity and R2 = 0.9893 for energy consumption. Results indicated that artificial neural network can be used as an alternative approach for modelling and predicting of terebinth fruit drying parameters with high correlation. Also ANN can be used in optimization of the process.
NASA Astrophysics Data System (ADS)
Rasul, H.; Wu, M.; Olofsson, B.
2017-12-01
Modelling moisture and heat changes in road layers is very important to understand road hydrology and for better construction and maintenance of roads in a sustainable manner. In cold regions due to the freezing/thawing process in the partially saturated material of roads, the modeling task will become more complicated than simple model of flow through porous media without freezing/thawing pores considerations. This study is presenting a 2-D model simulation for a section of highway with considering freezing/thawing and vapor changes. Partial deferential equations (PDEs) are used in formulation of the model. Parameters are optimized from modelling results based on the measured data from test station on E18 highway near Stockholm. Impacts of phase change considerations in the modelling are assessed by comparing the modeled soil moisture with TDR-measured data. The results show that the model can be used for prediction of water and ice content in different layers of the road and at different seasons. Parameter sensitivities are analyzed by implementing a calibration strategy. In addition, the phase change consideration is evaluated in the modeling process, by comparing the PDE model with another model without considerations of freezing/thawing in roads. The PDE model shows high potential in understanding the moisture dynamics in the road system.
Inferring Soil Moisture Memory from Streamflow Observations Using a Simple Water Balance Model
NASA Technical Reports Server (NTRS)
Orth, Rene; Koster, Randal Dean; Seneviratne, Sonia I.
2013-01-01
Soil moisture is known for its integrative behavior and resulting memory characteristics. Soil moisture anomalies can persist for weeks or even months into the future, making initial soil moisture a potentially important contributor to skill in weather forecasting. A major difficulty when investigating soil moisture and its memory using observations is the sparse availability of long-term measurements and their limited spatial representativeness. In contrast, there is an abundance of long-term streamflow measurements for catchments of various sizes across the world. We investigate in this study whether such streamflow measurements can be used to infer and characterize soil moisture memory in respective catchments. Our approach uses a simple water balance model in which evapotranspiration and runoff ratios are expressed as simple functions of soil moisture; optimized functions for the model are determined using streamflow observations, and the optimized model in turn provides information on soil moisture memory on the catchment scale. The validity of the approach is demonstrated with data from three heavily monitored catchments. The approach is then applied to streamflow data in several small catchments across Switzerland to obtain a spatially distributed description of soil moisture memory and to show how memory varies, for example, with altitude and topography.
NASA Technical Reports Server (NTRS)
Eagleman, J. R.; Pogge, E. C.; Moore, R. K. (Principal Investigator); Hardy, N.; Lin, W.; League, L.
1974-01-01
The author has identified the following significant results. Skylab 2 data for June 5, 1973 (Texas site) relates favorably with previously calculated aircraft data when correlating brightness temperature to soil moisture. However, more detailed work is needed to determine the corrected surface temperature. In addition, correlations between the S194 antenna temperature and soil moisture have been obtained for five sets of Skylab data. The best correlations were obtained for the surface to one inch depth in four cases and for surface to two inches depth for the fifth case. Correlation coefficients for the surface to one inch depth were -0.98, -0.95, -0.90, -0.82, and -0.80.
Extended monitoring and analysis of moisture-temperature data
DOT National Transportation Integrated Search
2001-10-01
The performance of asphalt concrete pavements is in part affected by the seasonal variations of the resilient modulus of the AC layer and of the subgrade soil. To determine the variation of these parameters throughout Ohio, nine moisture-temperature-...
Specific gravity, moisture content, and density relationship for wood
W. T. Simpson
1993-01-01
This report reviews the basis for determining values for the density of wood as it depends on moisture content and specific gravity. The data are presented in several ways to meet the needs of a variety of users.
The Potential Use of Polarized Reflected Light in the Remote Sensing of Soil Moisture
to 89% for saturated soil, indicating that the polarization method may be viable as a remote sensing system for determining soil moistures. Background on the methods and implications of the results are presented.
Sensitivity of Polygonum aviculare Seeds to Light as Affected by Soil Moisture Conditions
Batlla, Diego; Nicoletta, Marcelo; Benech-Arnold, Roberto
2007-01-01
Background and Aims It has been hypothesized that soil moisture conditions could affect the dormancy status of buried weed seeds, and, consequently, their sensitivity to light stimuli. In this study, an investigation is made of the effect of different soil moisture conditions during cold-induced dormancy loss on changes in the sensitivity of Polygonum aviculare seeds to light. Methods Seeds buried in pots were stored under different constant and fluctuating soil moisture environments at dormancy-releasing temperatures. Seeds were exhumed at regular intervals during storage and were exposed to different light treatments. Changes in the germination response of seeds to light treatments during storage under the different moisture environments were compared in order to determine the effect of soil moisture on the sensitivity to light of P. aviculare seeds. Key Results Seed acquisition of low-fluence responses during dormancy release was not affected by either soil moisture fluctuations or different constant soil moisture contents. On the contrary, different soil moisture environments affected seed acquisition of very low fluence responses and the capacity of seeds to germinate in the dark. Conclusions The results indicate that under field conditions, the sensitivity to light of buried weed seeds could be affected by the soil moisture environment experienced during the dormancy release season, and this could affect their emergence pattern. PMID:17430979
NASA Astrophysics Data System (ADS)
Mohamad, M.; Sabbri, A. R. M.; Mat Jafri, M. Z.; Omar, A. F.
2014-11-01
Near infrared (NIR) spectroscopy technique serves as an important tool for the measurement of moisture content of skin owing to the advantages it has over the other techniques. The purpose of the study is to develop a correlation between NIR spectrometer with electrical conventional techniques for skin moisture measurement. A non-invasive measurement of moisture content of skin was performed on different part of human face and hand under control environment (temperature 21 ± 1 °C, relative humidity 45 ± 5 %). Ten healthy volunteers age between 21-25 (male and female) participated in this study. The moisture content of skin was measured using DermaLab® USB Moisture Module, Scalar Moisture Checker and NIR spectroscopy (NIRQuest). Higher correlation was observed between NIRQuest and Dermalab moisture probe with a coefficient of determination (R2) above 70 % for all the subjects. However, the value of R2 between NIRQuest and Moisture Checker was observed to be lower with the R2 values ranges from 51.6 to 94.4 %. The correlation of NIR spectroscopy technique successfully developed for measuring moisture content of the skin. The analysis of this correlation can help to establish novel instruments based on an optical system in clinical used especially in the dermatology field.
Examination of Soil Moisture Retrieval Using SIR-C Radar Data and a Distributed Hydrological Model
NASA Technical Reports Server (NTRS)
Hsu, A. Y.; ONeill, P. E.; Wood, E. F.; Zion, M.
1997-01-01
A major objective of soil moisture-related hydrological-research during NASA's SIR-C/X-SAR mission was to determine and compare soil moisture patterns within humid watersheds using SAR data, ground-based measurements, and hydrologic modeling. Currently available soil moisture-inversion methods using active microwave data are only accurate when applied to bare and slightly vegetated surfaces. Moreover, as the surface dries down, the number of pixels that can provide estimated soil moisture by these radar inversion methods decreases, leading to less accuracy and, confidence in the retrieved soil moisture fields at the watershed scale. The impact of these errors in microwave- derived soil moisture on hydrological modeling of vegetated watersheds has yet to be addressed. In this study a coupled water and energy balance model operating within a topographic framework is used to predict surface soil moisture for both bare and vegetated areas. In the first model run, the hydrological model is initialized using a standard baseflow approach, while in the second model run, soil moisture values derived from SIR-C radar data are used for initialization. The results, which compare favorably with ground measurements, demonstrate the utility of combining radar-derived surface soil moisture information with basin-scale hydrological modeling.
NASA Astrophysics Data System (ADS)
Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi
2016-05-01
An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.
Use of visible, near-infrared, and thermal infrared remote sensing to study soil moisture
NASA Technical Reports Server (NTRS)
Blanchard, M. B.; Greeley, R.; Goettelman, R.
1974-01-01
Two methods are described which are used to estimate soil moisture remotely using the 0.4- to 14.0 micron wavelength region: (1) measurement of spectral reflectance, and (2) measurement of soil temperature. The reflectance method is based on observations which show that directional reflectance decreases as soil moisture increases for a given material. The soil temperature method is based on observations which show that differences between daytime and nighttime soil temperatures decrease as moisture content increases for a given material. In some circumstances, separate reflectance or temperature measurements yield ambiguous data, in which case these two methods may be combined to obtain a valid soil moisture determination. In this combined approach, reflectance is used to estimate low moisture levels; and thermal inertia (or thermal diffusivity) is used to estimate higher levels. The reflectance method appears promising for surface estimates of soil moisture, whereas the temperature method appears promising for estimates of near-subsurface (0 to 10 cm).
Use of visible, near-infrared, and thermal infrared remote sensing to study soil moisture
NASA Technical Reports Server (NTRS)
Blanchard, M. B.; Greeley, R.; Goettelman, R.
1974-01-01
Two methods are used to estimate soil moisture remotely using the 0.4- to 14.0-micron wavelength region: (1) measurement of spectral reflectance, and (2) measurement of soil temperature. The reflectance method is based on observations which show that directional reflectance decreases as soil moisture increases for a given material. The soil temperature method is based on observations which show that differences between daytime and nighttime soil temperatures decrease as moisture content increases for a given material. In some circumstances, separate reflectance or temperature measurements yield ambiguous data, in which case these two methods may be combined to obtain a valid soil moisture determination. In this combined approach, reflectance is used to estimate low moisture levels; and thermal inertia (or thermal diffusivity) is used to estimate higher levels. The reflectance method appears promising for surface estimates of soil moisture, whereas the temperature method appears promising for estimates of near-subsurface (0 to 10 cm).
NASA Astrophysics Data System (ADS)
Tromp-van Meerveld, I.; McDonnell, J.
2009-05-01
We present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the Panola (GA, USA) hillslope. We address the following questions regarding the applicability of EM measurements for hillslope hydrological investigations: (1) Can EM be used for soil moisture measurements in areas with shallow soils?; (2) Can EM represent the temporal and spatial patterns of soil moisture throughout the year?; and (3) can multiple frequencies be used to extract additional information content from the EM approach and explain the depth profile of soil moisture? We found that the apparent conductivity measured with the multi-frequency GEM-300 was linearly related to soil moisture measured with an Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7290, 9090, 11250, and 14010 Hz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition, the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the Aqua-pro soil moisture measurements.
[Simulation of cropland soil moisture based on an ensemble Kalman filter].
Liu, Zhao; Zhou, Yan-Lian; Ju, Wei-Min; Gao, Ping
2011-11-01
By using an ensemble Kalman filter (EnKF) to assimilate the observed soil moisture data, the modified boreal ecosystem productivity simulator (BEPS) model was adopted to simulate the dynamics of soil moisture in winter wheat root zones at Xuzhou Agro-meteorological Station, Jiangsu Province of China during the growth seasons in 2000-2004. After the assimilation of observed data, the determination coefficient, root mean square error, and average absolute error of simulated soil moisture were in the ranges of 0.626-0.943, 0.018-0.042, and 0.021-0.041, respectively, with the simulation precision improved significantly, as compared with that before assimilation, indicating the applicability of data assimilation in improving the simulation of soil moisture. The experimental results at single point showed that the errors in the forcing data and observations and the frequency and soil depth of the assimilation of observed data all had obvious effects on the simulated soil moisture.
NASA Technical Reports Server (NTRS)
1980-01-01
Soil moisture information is a potentially powerful tool for applications in agriculture, water resources, and climate. At present, it is difficult for users of this information to clearly define their needs in terms of accuracy, resolution and frequency because of the current sparsity of data. A plan is described for defining and conducting an integrated and coordinated research effort to develop and refine remote sensing techniques which will determine spatial and temporal variations of soil moisture and to utilize soil moisture information in support of agricultural, water resources, and climate applications. The soil moisture requirements of these three different application areas were reviewed in relation to each other so that one plan covering the three areas could be formulated. Four subgroups were established to write and compile the plan, namely models, ground-based studies, aircraft experiments, and spacecraft missions.
M. A. Dietenberger
2006-01-01
Understanding heat and moisture transfer in a wood specimen as used in the K-tester has led to an unconventional numerical solution arid intriguing protocol to deriving the transfer properties. Laplace transform solutions of Luikovâs differential equations are derived for one-dimensional heat and moisture transfer in porous hygroscopic orthotropic materials and for a...
Rico-Contreras, José Octavio; Aguilar-Lasserre, Alberto Alfonso; Méndez-Contreras, Juan Manuel; López-Andrés, Jhony Josué; Cid-Chama, Gabriela
2017-11-01
The objective of this study is to determine the economic return of poultry litter combustion in boilers to produce bioenergy (thermal and electrical), as this biomass has a high-energy potential due to its component elements, using fuzzy logic to predict moisture and identify the high-impact variables. This is carried out using a proposed 7-stage methodology, which includes a statistical analysis of agricultural systems and practices to identify activities contributing to moisture in poultry litter (for example, broiler chicken management, number of air extractors, and avian population density), and thereby reduce moisture to increase the yield of the combustion process. Estimates of poultry litter production and heating value are made based on 4 different moisture content percentages (scenarios of 25%, 30%, 35%, and 40%), and then a risk analysis is proposed using the Monte Carlo simulation to select the best investment alternative and to estimate the environmental impact for greenhouse gas mitigation. The results show that dry poultry litter (25%) is slightly better for combustion, generating 3.20% more energy. Reducing moisture from 40% to 25% involves considerable economic investment due to the purchase of equipment to reduce moisture; thus, when calculating financial indicators, the 40% scenario is the most attractive, as it is the current scenario. Thus, this methodology proposes a technology approach based on the use of advanced tools to predict moisture and representation of the system (Monte Carlo simulation), where the variability and uncertainty of the system are accurately represented. Therefore, this methodology is considered generic for any bioenergy generation system and not just for the poultry sector, whether it uses combustion or another type of technology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nuclear moisture-density evaluation : part II : final report.
DOT National Transportation Integrated Search
1966-06-01
The determination of in-place density by the use of nuclear moisture-density devices has proven to be an exceptionally useful tool to the modern Highway Engineer. In order to adequately adapt this new testing equipment to efficient field use, evaluat...
New calibration algorithms for dielectric-based microwave moisture sensors
USDA-ARS?s Scientific Manuscript database
New calibration algorithms for determining moisture content in granular and particulate materials from measurement of the dielectric properties at a single microwave frequency are proposed. The algorithms are based on identifying empirically correlations between the dielectric properties and the par...
Extended monitoring and analysis of moisture temperature data : [executive summary].
DOT National Transportation Integrated Search
2001-01-01
The performance of asphalt concrete pavements is in part affected by the seasonal variations of the resilient modulus of the AC layer and of the subgrade soil. To determine the variation of these parameters throughout Ohio, nine moisture-temperature-...
Commercial and Residential Water Damage: The Mold Connection.
ERIC Educational Resources Information Center
Williams, Del
2002-01-01
Describes the problem of toxic mold in residential and commercial property resulting from excess moisture. Includes common sources of unwanted moisture, design and construction flaws, determining the presence of mold, and advice for identifying and hiring reputable mold remediators. (PKP)
Calibration and evaluation of a nuclear density and moisture measuring apparatus.
DOT National Transportation Integrated Search
1963-11-01
The research objectives of this project were to investigate a new : method of in-place determination of soils densities and moisture levels : employing a nuclear physics principle of the gamma radiation function as : the measurement technique, with s...
NASA Astrophysics Data System (ADS)
Brigandı, G.; Aronica, G. T.; Basile, G.; Pasotti, L.; Panebianco, M.
2012-04-01
On November 2011 a thunderstorms became almost exceptional over the North-East part of the Sicily Region (Italy) producing local heavy rainfall, mud-debris flow and flash flooding. The storm was concentrated on the Tyrrhenian sea coast near the city of Barcellona within the Longano catchment. Main focus of the paper is to present an experimental operative system for alerting extreme hydrometeorological events by using a methodology based on the combined use of rainfall thresholds, soil moisture indexes and quantitative precipitation forecasting. As matter of fact, shallow landslide and flash flood warning is a key element to improve the Civil Protection achievements to mitigate damages and safeguard the security of people. It is a rather complicated task, particularly in those catchments with flashy response where even brief anticipations are important and welcomed. It is well known how the triggering of shallow landslides is strongly influenced by the initial soil moisture conditions of catchments. Therefore, the early warning system here applied is based on the combined use of rainfall thresholds, derived both for flash flood and for landslide, and soil moisture conditions; the system is composed of several basic component related to antecedent soil moisture conditions, real-time rainfall monitoring and antecedent rainfall. Soil moisture conditions were estimated using an Antecedent Precipitation Index (API), similar to this widely used for defining soil moisture conditions via Antecedent Moisture conditions index AMC. Rainfall threshold for landslides were derived using historical and statistical analysis. Finally, rainfall thresholds for flash flooding were derived using an Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall. After the implementation and calibration of the model, a testing phase was carried out by using real data collected for the November 2001 event in the Longano catchment. Moreover, in order to test the capability of the system to forecast thise event, Quantitative Precipitation Forecasting provided by the SILAM (Sicily Limited Area Model), a meteorological model run by SIAS (Sicilian Agrometeorological Service) with a forecast horizon up to 144 hours, have been used to run the system.
Moisture parameters and fungal communities associated with gypsum drywall in buildings.
Dedesko, Sandra; Siegel, Jeffrey A
2015-12-08
Uncontrolled excess moisture in buildings is a common problem that can lead to changes in fungal communities. In buildings, moisture parameters can be classified by location and include assessments of moisture in the air, at a surface, or within a material. These parameters are not equivalent in dynamic indoor environments, which makes moisture-induced fungal growth in buildings a complex occurrence. In order to determine the circumstances that lead to such growth, it is essential to have a thorough understanding of in situ moisture measurement, the influence of building factors on moisture parameters, and the levels of these moisture parameters that lead to indoor fungal growth. Currently, there are disagreements in the literature on this topic. A literature review was conducted specifically on moisture-induced fungal growth on gypsum drywall. This review revealed that there is no consistent measurement approach used to characterize moisture in laboratory and field studies, with relative humidity measurements being most common. Additionally, many studies identify a critical moisture value, below which fungal growth will not occur. The values defined by relative humidity encompassed the largest range, while those defined by moisture content exhibited the highest variation. Critical values defined by equilibrium relative humidity were most consistent, and this is likely due to equilibrium relative humidity being the most relevant moisture parameter to microbial growth, since it is a reasonable measure of moisture available at surfaces, where fungi often proliferate. Several sources concur that surface moisture, particularly liquid water, is the prominent factor influencing microbial changes and that moisture in the air and within a material are of lesser importance. However, even if surface moisture is assessed, a single critical moisture level to prevent fungal growth cannot be defined, due to a number of factors, including variations in fungal genera and/or species, temperature, and nutrient availability. Despite these complexities, meaningful measurements can still be made to inform fungal growth by making localised, long-term, and continuous measurements of surface moisture. Such an approach will capture variations in a material's surface moisture, which could provide insight on a number of conditions that could lead to fungal proliferation.
Practical identification of moisture sources in building assemblies using infrared thermography
NASA Astrophysics Data System (ADS)
McIntosh, Gregory B.; Colantonio, Antonio
2015-05-01
Water, in its various phases, in any environment other than desert (hot or cold) conditions, is the single most destructive element that causes deterioration of materials and failure of building assemblies. It is the key element present in the formation of mold and fungi that lead to indoor air quality problems. Water is the primary element that needs to be managed in buildings to ensure human comfort, health and safety. Under the right thermodynamic conditions the detection of moisture in its various states is possible through the use of infrared thermography for a large variety of building assemblies and materials. The difficulty is that moisture is transient and mobile from one environment to another via air movement, vapor pressure or phase change. Building materials and enclosures provide both repositories and barriers to this moisture movement. In real life steady state conditions do not exist for moisture within building materials and enclosures. Thus the detection of moisture is in a constant state of transition. Sometimes you will see it and sometimes you will not. Understanding the limitations at the time of inspection will go a long way to mitigating unsatisfied clients or difficult litigation. Moisture detection can be observed by IRT via three physical mechanisms; latent heat absorption or release during phase change; a change in conductive heat transfer; and a change in thermal capacitance. Complicating the three methodologies is the factor of variable temperature differentials and variable mass air flow on, through and around surfaces being inspected. Building enclosures come in variable assembly types and are designed to perform differently in different environmental regions. Sources for moisture accumulation will vary for different environmental conditions. Detection methodologies will change for each assembly type in different ambient environments. This paper will look at the issue of the methodologies for detection of the presence of moisture and determination of the various sources from which it accumulates in building assemblies. The end objective for IRT based moisture detection inspections is not to just identify that moisture is present but to determine its extent and source. Accurate assessment of the source(s) and root cause of the moisture is critical to the development of a permanent solution to the problem.
Manzur, Shahed Rezwan; Hossain, Md Sahadat; Kemler, Vance; Khan, Mohammad Sadik
2016-09-01
Bioreactor or enhanced leachate recirculation (ELR) landfills are designed and operated for accelerated waste stabilization, accelerated decomposition, and an increased rate of gas generation. The major aspects of a bioreactor landfill are the addition of liquid and the recirculation of collected leachate back into the waste mass through the subsurface leachate recirculation system (LRS). The performance of the ELR landfill largely depends on the existing moisture content within the waste mass; therefore, it is of utmost importance to determine the moisture variations within the landfill. Traditionally, the moisture variation of the ELR landfill is determined by collecting samples through a bucket auger boring from the landfill, followed by laboratory investigation. Collecting the samples through a bucket auger boring is time consuming, labor intensive, and cost prohibitive. Moreover, it provides the information for a single point within the waste mass, but not for the moisture distribution within the landfill. Fortunately, 2D resistivity imaging (RI) can be performed to assess the moisture variations within the landfill and provide a continuous image of the subsurface, which can be utilized to evaluate the performance of the ELR landfill. During this study, the 2D resistivity imaging technique was utilized to determine the moisture distribution and moisture movement during the recirculation process of an ELR landfill in Denton, Texas, USA. A horizontal recirculation pipe was selected and monitored periodically for 2.5years, using the RI technique, to investigate the performance of the leachate recirculation. The RI profile indicated that the resistivity of the solid waste decreased as much as 80% with the addition of water/leachate through the recirculation pipe. In addition, the recirculated leachate traveled laterally between 11m and 16m. Based on the resistivity results, it was also observed that the leachate flow throughout the pipe was non-uniform. The non-uniformity of the leachate flow confirms that the flow of leachate through waste is primarily through preferential flow paths due the heterogeneous nature of the waste. Copyright © 2016 Elsevier Ltd. All rights reserved.
The first step in infection control is hand hygiene.
Canham, Leslie
2011-01-01
A dental health care worker (DHCW) has an obligation to prevent the spread of health care associated infections. Adhering to proper hand hygiene procedures, selecting appropriate hand hygiene products and the use of gloves are all important elements of infection control. The CDC Guidelines for Hand Hygiene state that improved hand hygiene practices can reduce transmission of pathogenic microorganisms to patients and personnel in health care settings. DHCWs must also protect themselves by recognizing pitfalls such as irritants or allergies that may pose obstacles to proper hand hygiene. Occupational irritants and allergies can be caused by frequent hand washing, exposure to hand hygiene products, exposure to chemicals and shear forces associated with wearing or removing gloves. Since the primary defense against infection and transmission of pathogens is healthy, unbroken skin, DHCWs must take steps to ensure that their skin remains healthy and intact. These steps include evaluating different types of hand hygiene products, lotions and gloves for the best compatibility. If the DHCW sees a breakdown of his or her skin barrier, steps should be taken to determine the cause and remedy. Remedies can include the use of alcohol-based hand sanitizers containing emollients and moisturizers and regular use of a medical grade hand lotion. The bottom line: healthy skin protects you at work and at home. Selection and use of appropriate hand hygiene products, including moisturizers, are an essential part ofa dental office infection control program. My coworker lost the use of her thumb for several months due to complications of a staph infection. She was unable to work and found even simple tasks such as closing a button hard to do. Think of how difficult your work would be if something happened to your hands. Injury, irritation or allergies could alter your ability to work or even perform routine tasks. Our hands provide us with the ability to work in clinical dentistry. It makes good sense to protect your hands, your most valuable tools.
Evaluation of the lightweight deflectometer for in-situ determination of pavement layer moduli.
DOT National Transportation Integrated Search
2010-01-01
The quality of base and subgrade construction has conventionally been evaluated using specifications based on density and moisture content. Such specifications for highway base and subgrade require the use of a nuclear density and/or moisture gauge t...
Wernerehl, Robert W.; Givnish, Thomas J.
2015-01-01
Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis’ continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward “drier” sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500–1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward “wetter” sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This study is the first to quantify the effects of soil mechanical impedance on community ecology. PMID:26368936
Wernerehl, Robert W; Givnish, Thomas J
2015-01-01
Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis' continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward "drier" sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500-1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward "wetter" sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This study is the first to quantify the effects of soil mechanical impedance on community ecology.
Soil moisture in sessile oak forest gaps
NASA Astrophysics Data System (ADS)
Zagyvainé Kiss, Katalin Anita; Vastag, Viktor; Gribovszki, Zoltán; Kalicz, Péter
2015-04-01
By social demands are being promoted the aspects of the natural forest management. In forestry the concept of continuous forest has been an accepted principle also in Hungary since the last decades. The first step from even-aged stand to continuous forest can be the forest regeneration based on gap cutting, so small openings are formed in a forest due to forestry interventions. This new stand structure modifies the hydrological conditions for the regrowth. Without canopy and due to the decreasing amounts of forest litter the interception is less significant so higher amount of precipitation reaching the soil. This research focuses on soil moisture patterns caused by gaps. The spatio-temporal variability of soil water content is measured in gaps and in surrounding sessile oak (Quercus petraea) forest stand. Soil moisture was determined with manual soil moisture meter which use Time-Domain Reflectometry (TDR) technology. The three different sizes gaps (G1: 10m, G2: 20m, G3: 30m) was opened next to Sopron on the Dalos Hill in Hungary. First, it was determined that there is difference in soil moisture between forest stand and gaps. Second, it was defined that how the gap size influences the soil moisture content. To explore the short term variability of soil moisture, two 24-hour (in growing season) and a 48-hour (in dormant season) field campaign were also performed in case of the medium-sized G2 gap along two/four transects. Subdaily changes of soil moisture were performed. The measured soil moisture pattern was compared with the radiation pattern. It was found that the non-illuminated areas were wetter and in the dormant season the subdaily changes cease. According to our measurements, in the gap there is more available water than under the forest stand due to the less evaporation and interception loss. Acknowledgements: The research was supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0004 and AGRARKLIMA.2 VKSZ_12-1-2013-0034.
Microcoulometric measurement of water in minerals
Cremer, M.; Elsheimer, H.N.; Escher, E.E.
1972-01-01
A DuPont Moisture Analyzer is used in a microcoulometric method for determining water in minerals. Certain modifications, which include the heating of the sample outside the instrument, protect the system from acid gases and insure the conversion of all hydrogen to water vapor. Moisture analyzer data are compared to concurrent data obtained by a modified Penfield method. In general, there is a positive bias of from 0.1 to 0.2% in the moisture analyzer results and a similarity of bias in minerals of the same kind. Inhomogeneity, sample size, and moisture pick-up are invoked to explain deviations. The method is particularly applicable to small samples. ?? 1972.
A pavement Moisture Accelerated Distress (MAD) identification system, volume 2
NASA Astrophysics Data System (ADS)
Carpenter, S. H.; Darter, M. I.; Dempsey, B. J.
1981-09-01
A users manual is designed which provides the engineer with a rational method of examining a pavement and determining rehabilitation needs that are related to the causes of the existing distress, particularly moisture related distress. The key elements in this procedure are the MAD Index developed in Volume 1, the Pavement Condition Index (PCI) and the Moisture Distress Index (MDI). Step by step procedures are presented for calculating each parameter. Complete distress identification manuals are included for asphalt surfaced highways and jointed reinforced concrete highways with pictures and descriptions of all major distress types. Descriptions of the role moisture plays in the development of each distress type are included.
[Near-infrared reflectance spectroscopy predicts protein, moisture and ash in beans].
Gao, Huiyu; Wang, Guodong; Men, Jianhua; Wang, Zhu
2017-05-01
To explore the potential of near-infrared reflectance( NIR)spectroscopy to determine macronutrient contents in beans. NIR spectra and analytical measurements of protein, moisture and ash were collected from 70 kinds of beans. Reference methods were used to analyze all the ground beans samples. NIR spectra on intact and ground beans samples were registered. Partial least-squares( PLS)regression models were developed with principal components analysis( PCA) to assign 49 bean accessions to a calibration data set and 21 accessions to an external validation set. For intact beans, the relative predictive determinant( RPD) values for protein and ash( 3. 67 and 3. 97, respectively) were good for screening. RPD value for moisture was only 1. 39, which was not recommended. For ground beans, the RPD values for protein, moisture and ash( 6. 63, 5. 25 and 3. 57, respectively) were good enough for screening. The protein, moisture and ash levels for intact and ground beans were all significantly correlated( P < 0. 001) between the NIR and reference method and there was no statistically significant difference in the mean with these three traits. This research demonstrates that NIR is a promising technique for simultaneous sorting ofmultiple traits in beans with no or easy sample preparation.
Coherent optical determination of the leaf angle distribution of corn
NASA Technical Reports Server (NTRS)
Ulaby, F. T. (Principal Investigator); Pihlman, M.
1981-01-01
A coherent optical technique for the diffraction analysis of an image is presented. Developments in radar remote sensing shows a need to understand plant geometry and its relationship to plant moisture, soil moisture, and the radar backscattering coefficient. A corn plant changes its leaf angle distribution, as a function of time, from a uniform distribution to one that is strongly vertical. It is shown that plant and soil moisture may have an effect on plant geometry.
Effects of size and moisture of rhizome on initial invasiveness ability of giant reed.
Santín-Montanyá, M I; Jimenéz, J; Vilán, X M; Ocaña, L
2014-01-01
Studies were conducted under controlled conditions to determine growth and reproductive capabilities of Arundo donax L. (giant reed), a riparian invasive perennial plant that has spread widely. Greenhouse experiments were conducted to determine the influence of rhizome size and moisture content in the early invasiveness ability of giant reed. We tested different sizes of rhizomes: rhizome size of 1 cm, 3 cm, 5 cm and shredded rhizome. (fragments < 1 cm). These rhizomes were observed at 7, 14, 21, 28 and 35 days after planting (DAP). To test the effect of moisture content we used fresh rhizome fragments; rhizomes with moderate dehydration (50%); rhizomes with high dehydration (over 70%) with 48 hours of rehydration and rhizomes with high dehydration (70-90%). The rhizomes monitored for moisture content and biomass increase were between 3 and 5 cm, and were observed 60 DAP. The initial size of rhizomes affected the level of sprouting. Rhizomes with low moisture content (due to dehydration) showed high increase in biomass compared with the rhizomes that had not been treated or had been dehydrated and then rehydrated. Our results indicated that size of rhizomes is related to regrowth and low moisture (dehydration) content can be overcome by this species. This could be linked to high rates of colonization and early establishment ability of this species even after mechanical treatment of rhizomes, in riparian environments.
Measured moisture in buildings and adverse health effects: A review.
Mendell, M J; Macher, J M; Kumagai, K
2018-04-23
It has not yet been possible to quantify dose-related health risks attributable to indoor dampness or mold (D/M), to support setting specific health-related limits for D/M. An overlooked target for assessing D/M is moisture in building materials, the critical factor allowing microbial growth. A search for studies of quantified building moisture and occupant health effects identified 3 eligible studies. Two studies assessed associations between measured wall moisture content and respiratory health in the UK. Both reported dose-related increases in asthma exacerbation with higher measured moisture, with 1 study reporting an adjusted odds ratio of 7.0 for night-time asthma symptoms with higher bedroom moisture. The third study assessed relationships between infrared camera-determined wall moisture and atopic dermatitis in South Korea, reporting an adjusted odds ratio of 14.5 for water-damaged homes and moderate or severe atopic dermatitis. Measuring building moisture has, despite extremely limited available findings, potential promise for detecting unhealthy D/M in homes and merits more research attention. Further research to validate these findings should include measured "water activity," which directly assesses moisture availability for microbial growth. Ultimately, evidence-based, health-related thresholds for building moisture, across specific materials and measurement devices, could better guide assessment and remediation of D/M in buildings. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Retrieval of Soil Moisture and Roughness from the Polarimetric Radar Response
NASA Technical Reports Server (NTRS)
Sarabandi, Kamal; Ulaby, Fawwaz T.
1997-01-01
The main objective of this investigation was the characterization of soil moisture using imaging radars. In order to accomplish this task, a number of intermediate steps had to be undertaken. In this proposal, the theoretical, numerical, and experimental aspects of electromagnetic scattering from natural surfaces was considered with emphasis on remote sensing of soil moisture. In the general case, the microwave backscatter from natural surfaces is mainly influenced by three major factors: (1) the roughness statistics of the soil surface, (2) soil moisture content, and (3) soil surface cover. First the scattering problem from bare-soil surfaces was considered and a hybrid model that relates the radar backscattering coefficient to soil moisture and surface roughness was developed. This model is based on extensive experimental measurements of the radar polarimetric backscatter response of bare soil surfaces at microwave frequencies over a wide range of moisture conditions and roughness scales in conjunction with existing theoretical surface scattering models in limiting cases (small perturbation, physical optics, and geometrical optics models). Also a simple inversion algorithm capable of providing accurate estimates of soil moisture content and surface rms height from single-frequency multi-polarization radar observations was developed. The accuracy of the model and its inversion algorithm is demonstrated using independent data sets. Next the hybrid model for bare-soil surfaces is made fully polarimetric by incorporating the parameters of the co- and cross-polarized phase difference into the model. Experimental data in conjunction with numerical simulations are used to relate the soil moisture content and surface roughness to the phase difference statistics. For this purpose, a novel numerical scattering simulation for inhomogeneous dielectric random surfaces was developed. Finally the scattering problem of short vegetation cover above a rough soil surface was considered. A general scattering model for grass-blades of arbitrary cross section was developed and incorporated in a first order random media model. The vegetation model and the bare-soil model are combined and the accuracy of the combined model is evaluated against experimental observations from a wheat field over the entire growing season. A complete set of ground-truth data and polarimetric backscatter data were collected. Also an inversion algorithm for estimating soil moisture and surface roughness from multi-polarized multi-frequency observations of vegetation-covered ground is developed.
Soil moisture variation patterns observed in Hand County, South Dakota
NASA Technical Reports Server (NTRS)
Jones, E. B.; Owe, M.; Schmugge, T. J. (Principal Investigator)
1981-01-01
Soil moisture data were taken during 1976 (April, June, October), 1977 (April, May, June), and 1978 (May, June, July) Hand County, South Dakota as part of the ground truth used in NASA's aircraft experiments to study the use of microwave radiometers for the remote sensing of soil moisture. The spatial variability observed on the ground during each of the sampling events was studied. The data reported are the mean gravimetric soil moisture contained in three surface horizon depths: 0 to 2.5, 0 to 5 and 0 to 10 cm. The overall moisture levels ranged from extremely dry conditions in June 1976 to very wet in May 1978, with a relatively even distribution of values within that range. It is indicated that well drained sites have to be partitioned from imperfectly drained areas when attempting to characterize the general moisture profile throughout an area of varying soil and cover type conditions. It is also found that the variability in moisture content is greatest in the 0 to 2.5 cm measurements and decreases as the measurements are integrated over a greater depth. It is also determined that the sampling intensity of 10 measurements per km is adequate to estimate the mean moisture with an uncertainty of + or - 3 percent under average moisture conditions in areas of moderate to good drainage.
Critical moisture content for microbial growth in dried food-processing residues.
Rezaei, Farzaneh; Vandergheynst, Jean S
2010-09-01
Food-processing residues are good feedstocks for biofuel and biochemical production because they have high energy content and are abundant. Year-round biofuel and biochemical production requires proper storage to prevent microbial decomposition and thermal runaway. In this study, microbial activity of tomato pomace (TP), grape pomace (GP), fermented grape pomace (FGP) and sugar beet pulp (SBP) was monitored at nine different moisture contents. Maximum and cumulative respirations for each feedstock with respect to moisture content followed a sigmoidal relationship. The critical moisture content below which no microbial activity was detected for SBP, TP, FGP and GP was 24-31, 16-21, 23-33 and 43-46% (dry basis) respectively. A logarithmic relationship was observed (R(2) = 0.94) between critical moisture content and initial water-soluble carbohydrate (WSC) content of the processing residues. The critical moisture content below which no microbial activity was detected and the relationship between critical moisture content and initial WSC content were determined in this study for four food-processing residues. Both parameters permit evaluation of the potential for deterioration of food-processing residues during storage based on moisture content and WSC content. Copyright 2010 Society of Chemical Industry.
Remote sensing of soil moisture using airborne hyperspectral data
Finn, M.; Lewis, M.; Bosch, D.; Giraldo, Mario; Yamamoto, K.; Sullivan, D.; Kincaid, R.; Luna, R.; Allam, G.; Kvien, Craig; Williams, M.
2011-01-01
Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.
Remote sensing of soil moisture using airborne hyperspectral data
Finn, Michael P.; Lewis, Mark (David); Bosch, David D.; Giraldo, Mario; Yamamoto, Kristina H.; Sullivan, Dana G.; Kincaid, Russell; Luna, Ronaldo; Allam, Gopala Krishna; Kvien, Craig; Williams, Michael S.
2011-01-01
Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R 2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.
Estimating Surface Soil Moisture in Simulated AVIRIS Spectra
NASA Technical Reports Server (NTRS)
Whiting, Michael L.; Li, Lin; Ustin, Susan L.
2004-01-01
Soil albedo is influenced by many physical and chemical constituents, with moisture being the most influential on the spectra general shape and albedo (Stoner and Baumgardner, 1981). Without moisture, the intrinsic or matrix reflectance of dissimilar soils varies widely due to differences in surface roughness, particle and aggregate sizes, mineral types, including salts, and organic matter contents. The influence of moisture on soil reflectance can be isolated by comparing similar soils in a study of the effects that small differences in moisture content have on reflectance. However, without prior knowledge of the soil physical and chemical constituents within every pixel, it is nearly impossible to accurately attribute the reflectance variability in an image to moisture or to differences in the physical and chemical constituents in the soil. The effect of moisture on the spectra must be eliminated to use hyperspectral imagery for determining minerals and organic matter abundances of bare agricultural soils. Accurate soil mineral and organic matter abundance maps from air- and space-borne imagery can improve GIS models for precision farming prescription, and managing irrigation and salinity. Better models of soil moisture and reflectance will also improve the selection of soil endmembers for spectral mixture analysis.
Lai, K P K; Dolan, K D; Ng, P K W
2009-06-01
Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 degrees C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 degrees C. To determine the effect of moisture on anthocyanin degradation, the grape pomace-wheat flour mixture was heated isothermally at 80 degrees C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first-order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean +/- standard error) were k(80 degrees C, 43% (db) moisture) = 2.81 x 10(-4)+/- 1.1 x 10(-6) s(-1) and DeltaE = 75273 +/- 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)(-1). One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted.
Soil Moisture and the Persistence of North American Drought.
NASA Astrophysics Data System (ADS)
Oglesby, Robert J.; Erickson, David J., III
1989-11-01
We describe numerical sensitivity experiments exploring the effects of soil moisture on North American summertime climate using the NCAR CCMI, a 12-layer global atmospheric general circulation model. In particular. the hypothesis that reduced soil moisture may help induce and amplify warm, dry summers over midlatitude continental interiors is examined. Equilibrium climate statistics are computed for the perpetual July model response to imposed soil moisture anomalies over North America between 36° and 49°N. In addition, the persistence of imposed soil moisture anomalies is examined through use of the seasonal cycle mode of operation with use of various initial atmospheric states both equilibrated and nonequilibrated to the initial soil moisture anomaly.The climate statistics generated by thew model simulations resemble in a general way those of the summer of 1988, when extensive heat and drought occurred over much of North America. A reduction in soil moisture in the model leads to an increase in surface temperature, lower surface pressure, increased ridging aloft, and a northward shift of the jet stream. Low-level moisture advection from the Gulf of Mexico is important in determining where persistent soil moisture deficits can be maintained. In seasonal cycle simulations, it lock longer for an initially unequilibrated atmosphere to respond to the imposed soil moisture anomaly, via moisture transport from the Gulf of Mexico, than when initially the atmosphere was in equilibrium with the imposed anomaly., i.e., the initial state was obtained from the appropriate perpetual July simulation. The results demonstrate the important role of soil moisture in prolonging and/or amplifying North American summertime drought.
Brahma, Sandrayee; Weier, Steven A; Rose, Devin J
2017-07-01
Extrusion exposes flour components to high pressure and shear during processing, which may affect the dietary fiber fermentability by human fecal microbiota. The objective of this study was to determine the effect of flour moisture content during extrusion on in vitro fermentation properties of whole grain oats. Extrudates were processed at three moisture levels (15%, 18%, and 21%) at fixed screw speed (300rpm) and temperature (130°C). The extrudates were then subjected to in vitro digestion and fermentation. Extrusion moisture significantly affected water-extractable β-glucan (WE-BG) in the extrudates, with samples processed at 15% moisture (lowest) and 21% moisture (highest) having the highest concentration of WE-BG. After the first 8h of fermentation, more WE-BG remained in fermentation media in samples processed at 15% moisture compared with the other conditions. Also, extrusion moisture significantly affected the production of acetate, butyrate, and total SCFA by the microbiota during the first 8h of fermentation. Microbiota grown on extrudates processed at 18% moisture had the highest production of acetate and total SCFA, whereas bacteria grown on extrudates processed at 15% and 18% moisture had the highest butyrate production. After 24h of fermentation, samples processed at 15% moisture supported lower Bifidobacterium counts than those produced at other conditions, but had among the highest Lactobacillus counts. Thus, moisture content during extrusion significantly affects production of fermentation metabolites by the gut microbiota during the initial stages of fermentation, while also affecting probiotic bacteria counts during extended fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Within-field variability of plant and soil parameters
NASA Technical Reports Server (NTRS)
Ulaby, F. T. (Principal Investigator); Brisco, B.; Dobson, C.
1981-01-01
The variability of ground truth data collected for vegetation experiments was investigated. Two fields of wheat and one field of corn were sampled on two different dates. The variability of crop and soil parameters within a field, between two fields of the same type, and within a field over time were compared statistically. The number of samples from each test site required in order to be able to determine with confidence the mean and standard deviations for a given variable was determined. Eight samples were found to be adequate for plant height determinations, while twenty samples were required for plant moisture and soil moisture characterization. Eighteen samples were necessary for detecting within field variability over time and for between field variability for the same crop. The necessary sample sites vary according to the physiological growth stage of the crop and recent weather events that affect the moisture and/or height characteristics of the field in question.
DOT National Transportation Integrated Search
2001-09-01
The performance of asphalt concrete pavements is in part affected by the seasonal variations of the resilient modulus of the AC layer and of the subgrade soil. To determine the variation of these parameters throughout Ohio, seven moisture-temperature...
Size and moisture distribution characteristics of walnuts and their components
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine the size characteristics and moisture content (MC) distributions of individual walnuts and their components, including hulls, shells and kernels under different harvest conditions. Measurements were carried out for three walnut varieties, Tulare, Howard a...
DOT National Transportation Integrated Search
2001-09-01
The performance of asphalt concrete pavements is in part affected by the seasonal variations of the resilient modulus of the AC layer and of the subgrade soil. To determine the variation of these parameters throughout Ohio, seven moisture-temperature...
In-line monitoring of granule moisture in fluidized-bed dryers using microwave resonance technology.
Buschmüller, Caroline; Wiedey, Wolfgang; Döscher, Claas; Dressler, Jochen; Breitkreutz, Jörg
2008-05-01
This is the first report on in-line moisture measurement of pharmaceutical products by microwave resonance technology. In order to meet the FDA's PAT approach, a microwave resonance sensor appropriate for pharmaceutical use was developed and implemented into two different fluidized-bed dryers. The novel sensor enables a continuous moisture measurement independent from the product density. Hence, for the first time precise real time determination of the moisture in pharmaceutical granules becomes possible. The qualification of the newly developed sensor was performed by drying placebo granules under experimental conditions and the validation using drug loaded granules under real process conditions. The results of the investigations show good correlations between water content of the granules determined by the microwave resonance sensor and both reference methods, loss on drying by infrared light exposure and Karl Fischer titration. Furthermore, a considerable time saving in the drying process was achieved through monitoring the residual water content continuously by microwave resonance technology instead of the formerly used discontinuous methods.
Radar response to vegetation. [soil moisture mapping via microwave backscattering
NASA Technical Reports Server (NTRS)
Ulaby, F. T.
1975-01-01
Active microwave measurements of vegetation backscatter were conducted to determine the utility of radar in mapping soil moisture through vegetation and mapping crop types. Using a truck-mounted boom, spectral response data were obtained for four crop types (corn, milo, soybeans, and alfalfa) over the 4-8 GHz frequency band, at incidence angles of 0 to 70 degrees in 10-degree steps, and for all four linear polarization combinations. Based on a total of 125 data sets covering a wide range of soil moisture, content, system design criteria are proposed for each of the aforementioned objectives. Quantitative soil moisture determination was best achieved at the lower frequency end of the 4-8 GHz band using HH polarized waves in the 5- to 15-degree incidence angle range. A combination of low and high frequency measurements are suggested for classifying crop types. For crop discrimination, a dual-frequency dual-polarization (VV and cross) system operating at incidence angles above 40 degrees is suggested.
NASA Astrophysics Data System (ADS)
Burgin, M. S.; van Zyl, J. J.
2017-12-01
Traditionally, substantial ancillary data is needed to parametrize complex electromagnetic models to estimate soil moisture from polarimetric radar data. The Soil Moisture Active Passive (SMAP) baseline radar soil moisture retrieval algorithm uses a data cube approach, where a cube of radar backscatter values is calculated using sophisticated models. In this work, we utilize the empirical approach by Kim and van Zyl (2009) which is an optional SMAP radar soil moisture retrieval algorithm; it expresses radar backscatter of a vegetated scene as a linear function of soil moisture, hence eliminating the need for ancillary data. We use 2.5 years of L-band Aquarius radar and radiometer derived soil moisture data to determine two coefficients of a linear model function on a global scale. These coefficients are used to estimate soil moisture with 2.5 months of L-band SMAP and L-band PALSAR-2 data. The estimated soil moisture is compared with the SMAP Level 2 radiometer-only soil moisture product; the global unbiased RMSE of the SMAP derived soil moisture corresponds to 0.06-0.07 cm3/cm3. In this study, we leverage the three diverse L-band radar data sets to investigate the impact of pixel size and pixel heterogeneity on soil moisture estimation performance. Pixel sizes range from 100 km for Aquarius, over 3, 9, 36 km for SMAP, to 10m for PALSAR-2. Furthermore, we observe seasonal variation in the radar sensitivity to soil moisture which allows the identification and quantification of seasonally changing vegetation. Utilizing this information, we further improve the estimation performance. The research described in this paper is supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017. All rights reserved.
Method for predicting dry mechanical properties from wet wood and standing trees
Meglen, Robert R.; Kelley, Stephen S.
2003-08-12
A method for determining the dry mechanical strength for a green wood comprising: illuminating a surface of the wood to be determined with light between 350-2,500 nm, the wood having a green moisture content; analyzing the surface using a spectrometric method, the method generating a first spectral data, and using a multivariate analysis to predict the dry mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data obtained from a reference wood having a green moisture content, the second spectral data correlated with a known mechanical strength analytical result obtained from a reference wood when dried and having a dry moisture content.
Survey of hydrogen monitoring devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, W.
Presented are results of a survey of commercially available monitoring devices suitable for hydrogen detection in the secondary containment vessel of a nuclear power plant during the post postulated accident period. Available detectors were grouped into the following five classes: combustion, solid state, electrochemical, thermal conductivity, and absorption. The performance of most available sensors is likely to deteriorate when exposed to the postulated conditions which include moisture, which could be at high temperature, and radioactive noncondensibles. Of the commercial devices, those using metallic filament thermal conductivity detectors seem least susceptible to performance change. Absorption detectors are best suited for thismore » monitoring task but the only available device is designed for pipeline corrosion assessment. Initiation of experimental study to assess apparent deficiencies of commercial detectors is recommended. Also recommended is an analytical/experimental effort to determine the optimum detector array for monitoring in the secondary containment vessels.« less
NASA Giovanni: A Tool for Visualizing, Analyzing, and Inter-comparing Soil Moisture Data
NASA Technical Reports Server (NTRS)
Teng, William; Rui, Hualan; Vollmer, Bruce; deJeu, Richard; Fang, Fan; Lei, Guang-Dih; Parinussa, Robert
2014-01-01
There are many existing satellite soil moisture algorithms and their derived data products, but there is no simple way for a user to inter-compare the products or analyze them together with other related data. An environment that facilitates such inter-comparison and analysis would be useful for validation of satellite soil moisture retrievals against in situ data and for determining the relationships between different soil moisture products. As part of the NASA Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure) family of portals, which has provided users worldwide with a simple but powerful way to explore NASA data, a beta prototype Giovanni Inter-comparison of Soil Moisture Products portal has been developed. A number of soil moisture data products are currently included in the prototype portal. More will be added, based on user requirements and feedback and as resources become available. Two application examples for the portal are provided. The NASA Giovanni Soil Moisture portal is versatile and extensible, with many possible uses, for research and applications, as well as for the education community.
Gonzalez, Isabel; Jimenez, Pilar; Valdivia, Jorge; Esquinas, Antonio
2017-08-01
The two most commonly used types of humidifiers are heated humidifiers and heat and moisture exchange humidifiers. Heated humidifiers provide adequate temperature and humidity without affecting the respiratory pattern, but overdose can cause high temperatures and humidity resulting in condensation, which increases the risk of bacteria in the circuit. These devices are expensive. Heat and moisture exchanger filter is a new concept of humidification, increasing the moisture content in inspired gases. This study aims to determine the effectiveness of the heat and moisture exchanger (HME)-Booster system to humidify inspired air in patients under mechanical ventilation. We evaluated the humidification provided by 10 HME-Booster for tracheostomized patients under mechanical ventilation using Servo I respirators, belonging to the Maquet company and Evita 4. There was an increase in the inspired air humidity after 1 h with the humidifier. The HME-Booster combines the advantages of heat and moisture exchange minimizing the negatives. It increases the amount of moisture in inspired gas in mechanically ventilated tracheostomized patients. It is easy and safe to use. The type of ventilator used has no influence on the result.
NASA Astrophysics Data System (ADS)
Rousseau, N. J.; Jensen, D.; Zajic, B.; Rodell, M.; Reager, J. T., II
2015-12-01
Understanding the relationship between wildfire activity and soil moisture in the United States has been difficult to assess, with limited ability to determine areas that are at high risk. This limitation is largely due to complex environmental factors at play, especially as they relate to alternating periods of wet and dry conditions, and the lack of remotely-sensed products. Recent drought conditions and accompanying low Fuel Moisture Content (FMC) have led to disastrous wildfire outbreaks causing economic loss, property damage, and environmental degradation. Thus, developing a programmed toolset to assess the relationship between soil moisture, which contributes greatly to FMC and fire severity, can establish the framework for determining overall wildfire risk. To properly evaluate these parameters, we used data assimilated from the Gravity Recovery and Climate Experiment (GRACE) and data from the Fire Program Analysis fire-occurrence database (FPA FOD) to determine the extent soil moisture affects fire activity. Through these datasets, we produced correlation and regression maps at a coarse resolution of 0.25 degrees for the contiguous United States. These fire-risk products and toolsets proved the viability of this methodology, allowing for the future incorporation of more GRACE-derived water parameters, MODIS vegetation indices, and other environmental datasets to refine the model for fire risk. Additionally, they will allow assessment to national-scale early fire management and provide responders with a predictive tool to better employ early decision-support to areas of high risk during regions' respective fire season(s).
Fraters, Dico; Boom, Gerard J F L; Boumans, Leo J M; de Weerd, Henk; Wolters, Monique
2017-02-01
The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5-3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.
Sensitivity of Land Surface Parameters on Thunderstorm Simulation through HRLDAS-WRF Coupling Mode
NASA Astrophysics Data System (ADS)
Kumar, Dinesh; Kumar, Krishan; Mohanty, U. C.; Kisore Osuri, Krishna
2016-07-01
Land surface characteristics play an important role in large scale, regional and mesoscale atmospheric process. Representation of land surface characteristics can be improved through coupling of mesoscale atmospheric models with land surface models. Mesoscale atmospheric models depend on Land Surface Models (LSM) to provide land surface variables such as fluxes of heat, moisture, and momentum for lower boundary layer evolution. Studies have shown that land surface properties such as soil moisture, soil temperature, soil roughness, vegetation cover, have considerable effect on lower boundary layer. Although, the necessity to initialize soil moisture accurately in NWP models is widely acknowledged, monitoring soil moisture at regional and global scale is a very tough task due to high spatial and temporal variability. As a result, the available observation network is unable to provide the required spatial and temporal data for the most part of the globe. Therefore, model for land surface initializations rely on updated land surface properties from LSM. The solution for NWP land-state initialization can be found by combining data assimilation techniques, satellite-derived soil data, and land surface models. Further, it requires an intermediate step to use observed rainfall, satellite derived surface insolation, and meteorological analyses to run an uncoupled (offline) integration of LSM, so that the evolution of modeled soil moisture can be forced by observed forcing conditions. Therefore, for accurate land-state initialization, high resolution land data assimilation system (HRLDAS) is used to provide the essential land surface parameters. Offline-coupling of HRLDAS-WRF has shown much improved results over Delhi, India for four thunder storm events. The evolution of land surface variables particularly soil moisture, soil temperature and surface fluxes have provided more realistic condition. Results have shown that most of domain part became wetter and warmer after assimilation of soil moisture and soil temperature at the initial condition which helped to improve the exchange fluxes at lower atmospheric level. Mixing ratio were increased along with elevated theta-e at lower level giving a signature of improvement in LDAS experiment leading to a suitable condition for convection. In the analysis, moisture convergence, mixing ratio and vertical velocities have improved significantly in terms of intensity and time lag. Surface variables like soil moisture, soil temperature, sensible heat flux and latent heat flux have progressed in a possible realistic pattern. Above discussion suggests that assimilation of soil moisture and soil temperature improves the overall simulations significantly.
Moisture Resistant Finishes for Airplane Woods
NASA Technical Reports Server (NTRS)
Dunlap, M E
1921-01-01
This report describes briefly a series of experiments made at the Forest Products Laboratory, Madison, Wisconsin, to determine the comparative moisture resistance of linseed oil, impregnation treatments, condensation varnishes, oil varnishes, enamels, cellulose varnishes, rubber, electroplated and sprayed metal coatings, and metal-leaf coatings when applied to wood. All coatings except rubber and electroplated metal coatings, which were not developed sufficiently to make them practical, admitted moisture in varying degrees. The most effective and most practical coating was found to be that of aluminum leaf.
NASA Astrophysics Data System (ADS)
Kara, Cem; Doymaz, İbrahim
2015-07-01
Drying of apple pomace representing by-products from apple juice processing was studied. The results obtained show that moisture content of the pomace decreases with time and temperature. The Midilli et al. model was selected as the best mathematical model for describing the drying kinetics of the apple pomace. The effective moisture diffusivity varied from 1.73 × 10-10 to 4.40 × 10-10 m2/s and the activation energy was calculated to be 29.65 kJ/mol.
Moisturizing potentials of ascorbyl palmitate and calcium ascorbate in various topical formulations.
Gönüllü, U; Yener, G; Uner, M; Incegül, T
2004-02-01
The aim of this study was to use two of Vitamin C derivatives, lipophilic ascorbyl palmitate and hydrophilic calcium ascorbate to determine their skin-hydrating effects for the first time. For this purpose, anhydrous cream, gel and w/o emulsion were prepared and applied to the volunteers' inner forearms. A commercial topical preparation containing a known moisturizer, Vitamin E, was also chosen and used for comparison. Moisture contents of the skin were measured by using corneometer.
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Huang, Huo-Jin
1989-01-01
Data from the Special Sensor Microwave Imager/I on the DMSP satellite are used to study atmospheric moisture and cloud structure. Column-integrated water vapor and total liquid water retrievals are obtained using an algorithm based on a radiative model for brightness temperature (Wentz, 1983). The results from analyzing microwave and IR measurements are combined with independent global gridpoint analyses to study the distribution and structure of atmospheric moisture over oceanic regions.
EFFECT OF MOISTURE ON ADSORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBON
The paper discusses experiments using activated carbon to capture elemental mercury (Hgo), and a bench-scale dixed-bed reactor and a flow reactor to determine the role of surface moisture in Hgo adsorption. Three activated-carbon samples, with different pore structure and ash co...
Templeton, Allen C; Placek, Jiri; Xu, Hui; Mahajan, Rajiv; Hunke, William A; Reed, Robert A
2003-01-01
The purpose of the present study is to apply and contrast several analytical techniques to understand the change in moisture content of 20 mm diameter bromobutyl rubber stoppers as a function of typical stopper processing conditions. Three separate methods were examined and Karl-Fischer titration and techniques based on capacitance measurements at a thin-film sensor were found to provide comparable results. Stopper moisture levels were examined in stoppers: (i) as received from the manufacturer, (ii) following steam sterilization, (iii) as a function of various drying cycles, and (iv) during simulated hold conditions prior to use. Finally, the transfer of moisture from stopper to an actual product is examined on storage and general agreement observed between stopper drying conditions and cake moisture levels.
NASA Technical Reports Server (NTRS)
Lee, S. L.
1974-01-01
Controlled ground-based passive microwave radiometric measurements on soil moisture were conducted to determine the effects of terrain surface roughness and vegetation on microwave emission. Theoretical predictions were compared with the experimental results and with some recent airborne radiometric measurements. The relationship of soil moisture to the permittivity for the soil was obtained in the laboratory. A dual frequency radiometer, 1.41356 GHz and 10.69 GHz, took measurements at angles between 0 and 50 degrees from an altitude of about fifty feet. Distinct surface roughnesses were studied. With the roughness undisturbed, oats were later planted and vegetated and bare field measurements were compared. The 1.4 GHz radiometer was less affected than the 10.6 GHz radiometer, which under vegetated conditions was incapable of detecting soil moisture. The bare surface theoretical model was inadequate, although the vegetation model appeared to be valid. Moisture parameters to correlate apparent temperature with soil moisture were compared.
A rule-based expert system applied to moisture durability of building envelopes
Boudreaux, Philip R.; Pallin, Simon B.; Accawi, Gina K.; ...
2018-01-09
The moisture durability of an envelope component such as a wall or roof is difficult to predict. Moisture durability depends on all the construction materials used, as well as the climate, orientation, air tightness, and indoor conditions. Modern building codes require more insulation and tighter construction but provide little guidance about how to ensure these energy-efficient assemblies remain moisture durable. Furthermore, as new products and materials are introduced, builders are increasingly uncertain about the long-term durability of their building envelope designs. Oak Ridge National Laboratory and the US Department of Energy’s Building America Program are applying a rule-based expert systemmore » methodology in a web tool to help designers determine whether a given wall design is likely to be moisture durable and provide expert guidance on moisture risk management specific to a wall design and climate. Finally, the expert system is populated with knowledge from both expert judgment and probabilistic hygrothermal simulation results.« less
NASA Technical Reports Server (NTRS)
Carlson, T. N. (Principal Investigator)
1982-01-01
A method for obtaining patterns of moisture availability (and net evaporation) from satellite infrared measurements employs Carlson's boundary layer model and a variety of image processing routines executed by a minicomputer. To test the method with regard to regional scale moisture analyses, two case studies were chosen because of the availability of HCMM data and because of the presence of a large horizontal gradient in antecedent precipitation and crp moisture index. Results show some correlation in both cases between antecedent precipitation and derived moisture availability. Apparently, regional-scale moisture availability patterns can be determined with some degree of fidelity but the values themselves may be useful only in the relative sense and significant to within plus or minus one category of dryness over a range of 4 or 5 categories between absolutely dry and field saturation. Preliminary results suggest that the derived moisture values correlate best with longer-term precipitation totals, suggesting that the infrared temperatures respond more sensitively to a relatively deep substrate layer.
Teba, Carla da Silva; Silva, Erika Madeira Moreira da; Chávez, Davy William Hidalgo; Carvalho, Carlos Wanderlei Piler de; Ascheri, José Luis Ramírez
2017-08-01
The influence of whey protein concentrate (WPC), feed moisture and temperature on the physicochemical properties of rice-based extrudates has been investigated. WPC (0.64-7.36g/100g rice) was extruded under 5 moisture (16.64-23.36g/100g) and 5 temperature (106.36-173.64°C) established by a 3 2 central composite rotational design. Physicochemical properties [color, porosimetry, crystallinity, water solubility and absorption, pasting properties, reconstitution test, proximate composition, amino acids, minerals and electrophoresis] were determined. WPC and feed moisture increased redness, yellowness and decreased luminosity. Feed moisture and temperature increased density and total volume pore. WPC and moisture increased crystallinity, but only WPC increased solubility and decrease the retrogradation tendency. Increasing temperature increased the viscosity of the extrudates. The addition of WPC improved the nutritional composition of the extrudates, especially proteins. It is suggested that the extrusion process positively affected the retention of most of the polypeptides chains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Derde, Liesbeth J; Gomand, Sara V; Courtin, Christophe M; Delcour, Jan A
2014-07-09
Electrical resistance oven (ERO) baking processes bread dough with little temperature gradient in the baking dough. Heating of the dough by means of an ERO is based on the principles of Joule's first law and Ohm's law. This study compared the changes in moisture distribution and physical changes in starch of breads conventionally baked or using an ERO. The moisture contents in fresh ERO breads are generally lower than those in conventional breads. During storage of conventionally baked breads, water migrates from the crumb to the crust and moisture contents decrease throughout the bread crumb. Evidently, less moisture redistribution occurs in ERO breads. Also, the protons of ERO bread constituents were less mobile than their counterparts in conventional bread. Starch retrogradation occurs to similar extents in conventional and ERO bread. As a result, the changes in proton mobility cannot be attributed to differences in levels of retrograded starch and seem to be primarily determined by the overall lower moisture content.
Ecosystem-scale plant hydraulic strategies inferred from remotely-sensed soil moisture
NASA Astrophysics Data System (ADS)
Bassiouni, M.; Good, S. P.; Higgins, C. W.
2017-12-01
Characterizing plant hydraulic strategies at the ecosystem scale is important to improve estimates of evapotranspiration and to understand ecosystem productivity and resilience. However, quantifying plant hydraulic traits beyond the species level is a challenge. The probability density function of soil moisture observations provides key information about the soil moisture states at which evapotranspiration is reduced by water stress. Here, an inverse Bayesian approach is applied to a standard bucket model of soil column hydrology forced with stochastic precipitation inputs. Through this approach, we are able to determine the soil moisture thresholds at which stomata are open or closed that are most consistent with observed soil moisture probability density functions. This research utilizes remotely-sensed soil moisture data to explore global patterns of ecosystem-scale plant hydraulic strategies. Results are complementary to literature values of measured hydraulic traits of various species in different climates and previous estimates of ecosystem-scale plant isohydricity. The presented approach provides a novel relation between plant physiological behavior and soil-water dynamics.
Verhoest, Niko E.C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M. Susan; Mattia, Francesco
2008-01-01
Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale. PMID:27879932
A rule-based expert system applied to moisture durability of building envelopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudreaux, Philip R.; Pallin, Simon B.; Accawi, Gina K.
The moisture durability of an envelope component such as a wall or roof is difficult to predict. Moisture durability depends on all the construction materials used, as well as the climate, orientation, air tightness, and indoor conditions. Modern building codes require more insulation and tighter construction but provide little guidance about how to ensure these energy-efficient assemblies remain moisture durable. Furthermore, as new products and materials are introduced, builders are increasingly uncertain about the long-term durability of their building envelope designs. Oak Ridge National Laboratory and the US Department of Energy’s Building America Program are applying a rule-based expert systemmore » methodology in a web tool to help designers determine whether a given wall design is likely to be moisture durable and provide expert guidance on moisture risk management specific to a wall design and climate. Finally, the expert system is populated with knowledge from both expert judgment and probabilistic hygrothermal simulation results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stormont, John; Lampe, Brandon; Mills, Melissa
The goal of this project is to improve the understanding of key aspects of the coupled thermal-mechanical-hydrologic response of granular (or crushed) salt used as a seal material for shafts, drifts, and boreholes in mined repositories in salt. The project is organized into three tasks to accomplish this goal: laboratory measurements of granular salt consolidation (Task 1), microstructural observations on consolidated samples (Task 2), and constitutive model development and evaluation (Task 3). Task 1 involves laboratory measurements of salt consolidation along with thermal properties and permeability measurements conducted under a range of temperatures and stresses expected for potential mined repositoriesmore » in salt. Testing focused on the role of moisture, temperature and stress state on the hydrologic (permeability) and thermal properties of consolidating granular salt at high fractional densities. Task 2 consists of microstructural observations made on samples after they have been consolidated to interpret deformation mechanisms and evaluate the ability of the constitutive model to predict operative mechanisms under different conditions. Task 3 concerns the development of the coupled thermal-mechanical-hydrologic constitutive model for granular salt consolidation. The measurements and observations in Tasks 1 and 2 were used to develop a thermal-mechanical constitutive model. Accomplishments and status from each of these efforts is reported in subsequent sections of this report« less
Characterization of recycled rubber media for hydrogen sulphide (H2S) control.
Wang, Ning; Park, Jaeyoung; Evans, Eric A; Ellis, Timothy G
2014-01-01
Hydrogen sulphide (H2S) adsorption capacities on recycled rubber media, tyre-derived rubber particle (TDRP), and other rubber material (ORM) have been evaluated. As part of the research, densities, moisture contents, and surface properties of TDRP and ORM have been determined. The research team findings show that TDRP and ORM are more particulate in nature and not highly porous-like activated carbon. The characteristics of surface area, pore size, and moisture content support chemisorption on the macrosurface rather than physical adsorption in micropores. For example, moisture content is essential for H2S adsorption on ORM, and an increase in moisture content results in an increase in adsorption capacity.
Butterfield, Bradley J.; Bradford, John B.; Armas, Cristina; Prieto, Ivan; Pugnaire, Francisco I.
2016-01-01
Taken together, the results of this simulation study suggest that plant effects on soil moisture are predictable based on relatively general relationships between precipitation inputs and differential evaporation and transpiration rates between plant and interspace microsites that are largely driven by temperature. In particular, this study highlights the importance of differentiating between temporal and spatial variation in weather and climate, respectively, in determining plant effects on available soil moisture. Rather than focusing on the somewhat coarse-scale predictions of the SGH, it may be more beneficial to explicitly incorporate plant effects on soil moisture into predictive models of plant-plant interaction outcomes in drylands.
Intravenous insertion site protection: moisture accumulation in intravenous site protectors.
Lee, W E; Vallino, L M
1996-01-01
Stabilizing the intravenous catheter after insertion is a significant part of intravenous therapy. Dislodgments of the cannula from its optimal position in the vein can lead to complications such as phlebitis, thrombophlebitis, infiltration, and infection. Intravenous site protector shields are designed to protect the catheter from impact and tissue trauma at the insertion site. Nurses have requested ventilation in these shields to avoid moisture build up that may increase the risk of infections. To address this issue, experimental laboratory testing was performed to determine if moisture accumulation as evidenced by increased weight of the shield and visible evidence of condensation occurred. No moisture condensation problems with the ventilated intravenous site protectors were found.
Hou, Hu; Li, Bafang; Zhang, Zhaohui; Xue, Changhu; Yu, Guangli; Wang, Jingfeng; Bao, Yuming; Bu, Lin; Sun, Jiang; Peng, Zhe; Su, Shiwei
2012-12-01
Collagen polypeptides were prepared from cod skin. Moisture absorption and retention properties of collagen polypeptides were determined at different relative humidities. In addition, the protective effects of collagen polypeptide against UV-induced damage to mouse skin were evaluated. Collagen polypeptides had good moisture absorption and retention properties and could alleviate the damage induced by UV radiation. The action mechanisms of collagen polypeptide mainly involved enhancing immunity, reducing the loss of moisture and lipid, promoting anti-oxidative properties, inhibiting the increase of glycosaminoglycans, repairing the endogenous collagen and elastin protein fibres, and maintaining the ratio of type III to type I collagen. Copyright © 2012 Elsevier Ltd. All rights reserved.
Investigating local controls on soil moisture temporal stability using an inverse modeling approach
NASA Astrophysics Data System (ADS)
Bogena, Heye; Qu, Wei; Huisman, Sander; Vereecken, Harry
2013-04-01
A better understanding of the temporal stability of soil moisture and its relation to local and nonlocal controls is a major challenge in modern hydrology. Both local controls, such as soil and vegetation properties, and non-local controls, such as topography and climate variability, affect soil moisture dynamics. Wireless sensor networks are becoming more readily available, which opens up opportunities to investigate spatial and temporal variability of soil moisture with unprecedented resolution. In this study, we employed the wireless sensor network SoilNet developed by the Forschungszentrum Jülich to investigate soil moisture variability of a grassland headwater catchment in Western Germany within the framework of the TERENO initiative. In particular, we investigated the effect of soil hydraulic parameters on the temporal stability of soil moisture. For this, the HYDRUS-1D code coupled with a global optimizer (DREAM) was used to inversely estimate Mualem-van Genuchten parameters from soil moisture observations at three depths under natural (transient) boundary conditions for 83 locations in the headwater catchment. On the basis of the optimized parameter sets, we then evaluated to which extent the variability in soil hydraulic conductivity, pore size distribution, air entry suction and soil depth between these 83 locations controlled the temporal stability of soil moisture, which was independently determined from the observed soil moisture data. It was found that the saturated hydraulic conductivity (Ks) was the most significant attribute to explain temporal stability of soil moisture as expressed by the mean relative difference (MRD).
USDA-ARS?s Scientific Manuscript database
Precipitation limits primary production by affecting soil moisture, and soil type interacts with soil moisture to determine soil water availability to plants. We used ALMANAC, a process-based model, to simulate switchgrass (Panicum virgatum var. Alamo) biomass production in Central Texas under thre...
Microwave sensing of moisture content and bulk density in flowing grain
USDA-ARS?s Scientific Manuscript database
Moisture content and bulk density were determined from measurement of the dielectric properties of flowing wheat kernels at a single microwave frequency (5.8 GHz). The measuring system consisted of two high-gain microwave patch antennas mounted on opposite sides of rectangular chute and connected to...
USDA-ARS?s Scientific Manuscript database
A density-independent algorithm for moisture content determination in sawdust, based on a one-port reflection measurement technique is proposed for the first time. Performance of this algorithm is demonstrated through measurement of the dielectric properties of sawdust with an open-ended haft-mode s...
THE EFFECT OF ACTIVATED CARBON SURFACE MOISTURE ON LOW TEMPERATURE MERCURY ADSORPTION
Experiments with elemental mercury (Hg0) adsorption by activated carbons were performed using a bench-scale fixed-bed reactor at room temperature (27 degrees C) to determine the role of surface moisture in capturing Hg0. A bituminous-coal-based activated carbon (BPL) and an activ...
Wagner, Wolfgang; Pathe, Carsten; Doubkova, Marcela; Sabel, Daniel; Bartsch, Annett; Hasenauer, Stefan; Blöschl, Günter; Scipal, Klaus; Martínez-Fernández, José; Löw, Alexander
2008-01-01
The high spatio-temporal variability of soil moisture is the result of atmospheric forcing and redistribution processes related to terrain, soil, and vegetation characteristics. Despite this high variability, many field studies have shown that in the temporal domain soil moisture measured at specific locations is correlated to the mean soil moisture content over an area. Since the measurements taken by Synthetic Aperture Radar (SAR) instruments are very sensitive to soil moisture it is hypothesized that the temporally stable soil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT Advanced Synthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located in the Duero basin, Spain. It is found that a time-invariant linear relationship is well suited for relating local scale (pixel) and regional scale (50 km) backscatter. The observed linear model coefficients can be estimated by considering the scattering properties of the terrain and vegetation and the soil moisture scaling properties. For both linear model coefficients, the relative error between observed and modelled values is less than 5 % and the coefficient of determination (R2) is 86 %. The results are of relevance for interpreting and downscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT) and passive (SMOS, AMSR-E) instruments. PMID:27879759
Zhu, Zhuozhuo; Guo, Wenchuan
2017-08-24
To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε') and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε' decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25-35 °C), both ε' and ε″ increased with increasing moisture content. At low moisture contents (15.1-19.5% w.b.), they increased with increasing temperature. The change trends of ε' and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d p ) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.
Factors influencing moisture analysis in the 3013 destructive examination surveillance program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scogin, J. H.
Thermogravimetric analysis of a solid sample with mass spectrometry (TGA-MS) of the evolved gas is used in the destructive examination (DE) portion of the Integrated Surveillance Program to quantify the moisture content of the material stored in a 3013 container. As with any measurement determined from a small sample, the collection, storage, transportation, and handling of the sample can affect its ability to represent the properties of the bulk material. During the course of the DE program, questions have periodically arisen concerning the ability of the moisture sample to reflect reliably the actual moisture content of the entire material storedmore » in the 3013 container. Most concerns are related to the ability to collect a representative sample and to preserve the moisture content of the sample between collection and analysis. Recent delays in analysis caused by maintenance issues with the TGA-MS instrument presented a unique opportunity to document and quantify the effects various factors have on the TGA-MS moisture measurement. This report will use recent data to document the effects that current sample collection and handling practices have on the TGA-MS moisture measurement. Some suggestions will be made which could improve the current sample collection and handling practices for the TGA-MS moisture measurement so that the analytical results more accurately reflect the moisture content of the material stored in the 3013 container.« less
Soil water dynamics during precipitation in genetic horizons of Retisol
NASA Astrophysics Data System (ADS)
Zaleski, Tomasz; Klimek, Mariusz; Kajdas, Bartłomiej
2017-04-01
Retisols derived from silty deposits dominate in the soil cover of the Carpathian Foothills. The hydrophysical properties of these are determined by the grain-size distribution of the parent material and the soil's "primary" properties shaped in the deposition process. The other contributing factors are the soil-forming processes, such as lessivage (leaching of clay particles), and the morphogenetic processes that presently shape the relief. These factors are responsible for the "secondary" differentiation of hydrophysical properties across the soil profile. Both the primary and secondary hydrophysical properties of soils (the rates of water retention, filtration and infiltration, and the moisture distribution over the soil profile) determine their ability to take in rainfall, the amount of rainwater taken in, and the ways of its redistribution. The aims of the study, carried out during 2015, were to investigate the dynamics of soil moisture in genetic horizons of Retisol derived from silty deposits and to recognize how fast and how deep water from precipitation gets into soil horizons. Data of soil moisture were measured using 5TM moisture and temperature sensor and collected by logger Em50 (Decagon Devices USA). Data were captured every 10 minutes from 6 sensors at depths: - 10 cm, 20 cm, 40 cm, 60 cm and 80 cm. Precipitation data come from meteorological station situated 50 m away from the soil profile. Two zones differing in the type of water regime were distinguished in Retisol: an upper zone comprising humic and eluvial horizons, and a lower zone consisting of illuvial and parent material horizons. The upper zone shows smaller retention of water available for plants, and relatively wide fluctuations in moisture content, compared to the lower zone. The lower zone has stable moisture content during the vegetation season, with values around the water field capacity. Large changes in soil moisture were observed while rainfall. These changes depend on the volume of the precipitation and soil moisture before the precipitation. The following changes of moisture in the soil profile during precipitation were distinguished: if soil moisture in upper zone horizons oscillates around field capacity (higher than 0.30 m3ṡm-3) there is an evident increase in soil moisture also in the lower zone horizons. If soil moisture in the upper zone horizons is much lower than the field capacity (less than 0.20 m3ṡm-3), the soil moisture in the lower zone has very little fluctuations. The range of wetting front in the soil profile depends on the volume of the precipitation and soil moisture. The heavier precipitation, the wetting front in soil profile reaches deeper horizons. The wetter the soil is, the faster soil moisture in the deeper genetic horizons increase. This Research was financed by the Ministry of Science and Higher Education of the Republic of Poland, DS No. 3138/KGiOG/2016.
Value of Available Global Soil Moisture Products for Agricultural Monitoring
NASA Astrophysics Data System (ADS)
Mladenova, Iliana; Bolten, John; Crow, Wade; de Jeu, Richard
2016-04-01
The first operationally derived and publicly distributed global soil moil moisture product was initiated with the launch of the Advanced Scanning Microwave Mission on the NASA's Earth Observing System Aqua satellite (AMSR-E). AMSR-E failed in late 2011, but its legacy is continued by AMSR2, launched in 2012 on the JAXA Global Change Observation Mission-Water (GCOM-W) mission. AMSR is a multi-frequency dual-polarization instrument, where the lowest two frequencies (C- and X-band) were used for soil moisture retrieval. Theoretical research and small-/field-scale airborne campaigns, however, have demonstrated that soil moisture would be best monitored using L-band-based observations. This consequently led to the development and launch of the first L-band-based mission-the ESA's Soil Moisture Ocean Salinity (SMOS) mission (2009). In early 2015 NASA launched the second L-band-based mission, the Soil Moisture Active Passive (SMAP). These satellite-based soil moisture products have been demonstrated to be invaluable sources of information for mapping water stress areas, crop monitoring and yield forecasting. Thus, a number of agricultural agencies routinely utilize and rely on global soil moisture products for improving their decision making activities, determining global crop production and crop prices, identifying food restricted areas, etc. The basic premise of applying soil moisture observations for vegetation monitoring is that the change in soil moisture conditions will precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop condition change. Here this relationship was evaluated across multiple microwave frequencies by examining the lag rank cross-correlation coefficient between the soil moisture observations and the Normalized Difference Vegetation Index (NDVI). A main goal of our analysis is to evaluate and inter-compare the value of the different soil moisture products derived using L-band (SMOS) versus C-/X-band (AMSR2) observations. The soil moisture products analyzed here were derived using the Land Parameter Retrieval Model.
A new methodology for determination of macroscopic transport parameters in drying porous media
NASA Astrophysics Data System (ADS)
Attari Moghaddam, A.; Kharaghani, A.; Tsotsas, E.; Prat, M.
2015-12-01
Two main approaches have been used to model the drying process: The first approach considers the partially saturated porous medium as a continuum and partial differential equations are used to describe the mass, momentum and energy balances of the fluid phases. The continuum-scale models (CM) obtained by this approach involve constitutive laws which require effective material properties, such as the diffusivity, permeability, and thermal conductivity which are often determined by experiments. The second approach considers the material at the pore scale, where the void space is represented by a network of pores (PN). Micro- or nanofluidics models used in each pore give rise to a large system of ordinary differential equations with degrees of freedom at each node of the pore network. In this work, the moisture transport coefficient (D), the pseudo desorption isotherm inside the network and at the evaporative surface are estimated from the post-processing of the three-dimensional pore network drying simulations for fifteen realizations of the pore space geometry from a given probability distribution. A slice sampling method is used in order to extract these parameters from PN simulations. The moisture transport coefficient obtained in this way is shown in Fig. 1a. The minimum of average D values demonstrates the transition between liquid dominated moisture transport region and vapor dominated moisture transport region; a similar behavior has been observed in previous experimental findings. A function is fitted to the average D values and then is fed into the non-linear moisture diffusion equation. The saturation profiles obtained from PN and CM simulations are shown in Fig. 1b. Figure 1: (a) extracted moisture transport coefficient during drying for fifteen realizations of the pore network, (b) average moisture profiles during drying obtained from PN and CM simulations.
Status of Chronic Oxidation Studies of Graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contescu, Cristian I.; Mee, Robert W.
Graphite will undergo extremely slow, but continuous oxidation by traces of moisture that will be present, albeit at very low levels, in the helium coolant of HTGR. This chronic oxidation may cause degradation of mechanical strength and thermal properties of graphite components if a porous oxidation layer penetrates deep enough in the bulk of graphite components during the lifetime of the reactor. The current research on graphite chronic oxidation is motivated by the acute need to understand the behavior of each graphite grade during prolonged exposure to high temperature chemical attack by moisture. The goal is to provide the elementsmore » needed to develop predictive models for long-time oxidation behavior of graphite components in the cooling helium of HTGR. The tasks derived from this goal are: (1) Oxidation rate measurements in order to determine and validate a comprehensive kinetic model suitable for prediction of intrinsic oxidation rates as a function of temperature and oxidant gas composition; (2) Characterization of effective diffusivity of water vapor in the graphite pore system in order to account for the in-pore transport of moisture; and (3) Development and validation of a predictive model for the penetration depth of the oxidized layer, in order to assess the risk of oxidation caused damage of particular graphite grades after prolonged exposure to the environment of helium coolant in HTGR. The most important and most time consuming of these tasks is the measurement of oxidation rates in accelerated oxidation tests (but still under kinetic control) and the development of a reliable kinetic model. This report summarizes the status of chronic oxidation studies on graphite, and then focuses on model development activities, progress of kinetic measurements, validation of results, and improvement of the kinetic models. Analysis of current and past results obtained with three grades of showed that the classical Langmuir-Hinshelwood model cannot reproduce all data collected so far. Starting from here we propose a modification of the LH model to include temperature activation of graphite surface as a Boltzmann activation function. The enhanced Boltzmann-Langmuir-Hinshelwood model (BLH) was tested successfully on three grades of graphite. The model is a robust, comprehensive mathematical function that allows better fitting of experimental results spanning a wide range of temperature and partial pressures of water vapor and hydrogen. However, the model did not fit satisfactorily the data extracted from the old report on graphite H-451 oxidation by water.« less
Moisture-Mediated Interactions Between Amorphous Maltodextrins and Crystalline Fructose.
Thorat, Alpana; Marrs, Krystin N; Ghorab, Mohamed K; Meunier, Vincent; Forny, Laurent; Taylor, Lynne S; Mauer, Lisa J
2017-05-01
The effects of coformulating amorphous maltodextrins (MDs) and crystalline fructose, a deliquescent solid, on the moisture sorption, deliquescence point (RH 0 ), and glass transition temperature (T g ) behaviors were determined. Moisture sorption profiles of binary fructose:MD mixtures and individual ingredients were generated using controlled relative humidity (RH) desiccators and by dynamic vapor sorption techniques. Blends exhibited synergistic moisture uptake at RHs below the RH 0 of fructose, attributed to partial dissolution of fructose in plasticized MD matrices without a significant reduction in the RH 0 of the undissolved fructose. Increasing storage temperature decreased the onset RH for moisture sorption synergy. At all storage RHs, the measured T g (2nd scan) was significantly reduced in fructose:MD mixtures compared to individual MDs, and was related to both the synergistic moisture uptake in the blends and heat-induced ternary fructose-MD-water interactions in the differential scanning calorimeter. Differences were found between the behavior of fructose:MD blends and previous reports of sucrose:MD and NaCl:MD blends, caused in part by the lower RH 0 of fructose. The enhanced moisture sorption in blends of deliquescent and amorphous ingredients could lead to problematic moisture-induced changes if storage conditions are not controlled. © 2017 Institute of Food Technologists®.
Internal Water Balance of Barley Under Soil Moisture Stress 1
Millar, Agustin A.; Duysen, Murray E.; Wilkinson, Guy E.
1968-01-01
Leaf water potential, leaf relative water content, and relative transpiration of barley were determined daily under greenhouse conditions at 3 growth stages: tillering to boot, boot to heading, and heading to maturity. The leaf moisture characteristic curve (relative water content versus leaf water potential) was the same for leaves of the same age growing in the same environment for the first 2 stages of growth, but shifted at the heading to maturity stage to higher leaf relative water content for a given leaf water potential. Growth chamber experiments showed that the leaf moisture characteristic curve was not the same for plants growing in different environments. Relative transpiration data indicated that barley stomates closed at a water potential of about −22 bars at the 3 stages studied. The water potential was measured for all the leaves on barley to determine the variation of water potential with leaf position. Leaf water potential increased basipetally with plant leaf position. In soil with a moisture content near field capacity a difference of about 16.5 bars was observed between the top and bottom leaves on the same plant, while in soil with a moisture content near the permanent wilting point the difference was only 5.6 bars between the same leaf positions. PMID:16656869
NASA Astrophysics Data System (ADS)
Park, Seonyoung; Im, Jungho; Park, Sumin; Rhee, Jinyoung
2017-04-01
Soil moisture is one of the most important keys for understanding regional and global climate systems. Soil moisture is directly related to agricultural processes as well as hydrological processes because soil moisture highly influences vegetation growth and determines water supply in the agroecosystem. Accurate monitoring of the spatiotemporal pattern of soil moisture is important. Soil moisture has been generally provided through in situ measurements at stations. Although field survey from in situ measurements provides accurate soil moisture with high temporal resolution, it requires high cost and does not provide the spatial distribution of soil moisture over large areas. Microwave satellite (e.g., advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR2), the Advanced Scatterometer (ASCAT), and Soil Moisture Active Passive (SMAP)) -based approaches and numerical models such as Global Land Data Assimilation System (GLDAS) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) provide spatial-temporalspatiotemporally continuous soil moisture products at global scale. However, since those global soil moisture products have coarse spatial resolution ( 25-40 km), their applications for agriculture and water resources at local and regional scales are very limited. Thus, soil moisture downscaling is needed to overcome the limitation of the spatial resolution of soil moisture products. In this study, GLDAS soil moisture data were downscaled up to 1 km spatial resolution through the integration of AMSR2 and ASCAT soil moisture data, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and Moderate Resolution Imaging Spectroradiometer (MODIS) data—Land Surface Temperature, Normalized Difference Vegetation Index, and Land cover—using modified regression trees over East Asia from 2013 to 2015. Modified regression trees were implemented using Cubist, a commercial software tool based on machine learning. An optimization based on pruning of rules derived from the modified regression trees was conducted. Root Mean Square Error (RMSE) and Correlation coefficients (r) were used to optimize the rules, and finally 59 rules from modified regression trees were produced. The results show high validation r (0.79) and low validation RMSE (0.0556m3/m3). The 1 km downscaled soil moisture was evaluated using ground soil moisture data at 14 stations, and both soil moisture data showed similar temporal patterns (average r=0.51 and average RMSE=0.041). The spatial distribution of the 1 km downscaled soil moisture well corresponded with GLDAS soil moisture that caught both extremely dry and wet regions. Correlation between GLDAS and the 1 km downscaled soil moisture during growing season was positive (mean r=0.35) in most regions.
Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?
Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J
2015-01-01
The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use. PMID:26312102
Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?
Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J
2015-01-01
The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use.
Shape Memory Polymer Self-Deploying Membrane Reflectors
2007-01-30
stability relative to their [Candidate A] counterparts and very low moisture uptake. Initial attempts to incorporate [this particular constituent] were...specimen (Figure 19). The sample was then reheated and "deployed" (Figure 20) while being held with the bend axis oriented vertically such that gravity...addressed as a separate task for the purposes of describing Statement of Work content, material process development was conducted in parallel with and
Enzymatic Hydrolysis of Cellulosic Materials to Fermentable Sugars for the Production of Ethanol
1980-10-12
Pretreatment . • . . • . . . . . • . . . 19 5. Enzyme Production (Prepilot Scale) • . • ·. • • . . . . . • • • • 29 6. Saccharification (Prepilot...hour hydrolysis of 15% substrate. TASK II 1. Poplar shavings were compression mill pretreated most effectively at an initial moisture content of 12...concentration, pretreatment of.cellulose substrates, glucose syrup concentration, temperature, acidity, residence time, recovery of enzymes, fungi, glucose
Innovative Aircraft Design Study. Task II. Nuclear Aircraft Concepts
1977-04-01
simple cycle and system with no feedwater heating, reheating, or moisture removal from the turbine. The steam Rankine cycle is schematically shown in... cycle . With the SO Rankine cycle , the fluid is heated supercritically without a phase change, thereby reducing the complexity of the heater as...one and ten percent lighter in ramp weight than the other candidates at both payloads. Analyses of several Rankine and Brayton nuclear propulsion cycles
Bioactivity of Several Herbicides on the Nanogram Level Under Different Soil Moisture Conditions.
Jung, S C; Kuk, Y I; Senseman, S A; Ahn, H G; Seong, C N; Lee, D J
2015-01-01
In this study, a double-tube centrifuge method was employed to determine the effects of soil moisture on the bioactivity of cafenstrole, pretilachlor, benfuresate, oxyfluorfen and simetryn. In general, the available herbicide concentration in soil solution (ACSS) showed little change as soil moisture increased for herbicides. The total available herbicide in soil solution (TASS) typically increased as soil moisture increased for all herbicides. The relationship between TASS and % growth rate based on dry weight showed strong linear relationships for both cafenstrole and pretilachlor, with r2 values of 0.95 and 0.84, respectively. Increasing TASS values were consistent with increasing herbicide water solubility, with the exception of the ionizable herbicide simetryn. Plant absorption and % growth rate exhibited a strong linear relationship with TASS. According to the results suggested that TASS was a better predictor of herbicidal bioactivity than ACSS for all herbicides under unsaturated soil moisture conditions.
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Crow, Wade T.; Koster, Randal D.; Kimball, John
2012-01-01
The Soil Moisture Active and Passive (SMAP; [1]) mission is being implemented by NASA for launch in October 2014. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high-resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. The Soil Moisture and Ocean Salinity (SMOS; [2]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. In this paper we describe our use of SMOS brightness temperature observations to generate a prototype of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product [5].
Lavado Contador, J F; Maneta, M; Schnabel, S
2006-10-01
The capability of Artificial Neural Network models to forecast near-surface soil moisture at fine spatial scale resolution has been tested for a 99.5 ha watershed located in SW Spain using several easy to achieve digital models of topographic and land cover variables as inputs and a series of soil moisture measurements as training data set. The study methods were designed in order to determining the potentials of the neural network model as a tool to gain insight into soil moisture distribution factors and also in order to optimize the data sampling scheme finding the optimum size of the training data set. Results suggest the efficiency of the methods in forecasting soil moisture, as a tool to assess the optimum number of field samples, and the importance of the variables selected in explaining the final map obtained.
Analyses of moisture in polymers and composites
NASA Technical Reports Server (NTRS)
Ryan, L. E.; Vaughan, R. W.
1980-01-01
A suitable method for the direct measurement of moisture concentrations after humidity/thermal exposure on state of the art epoxy and polyimide resins and their graphite and glass fiber reinforcements was investigated. Methods for the determination of moisture concentration profiles, moisture diffusion modeling and moisture induced chemical changes were examined. Carefully fabricated, precharacterized epoxy and polyimide neat resins and their AS graphite and S glass reinforced composites were exposed to humid conditions using heavy water (D20), at ambient and elevated temperatures. These specimens were fixtured to theoretically limit the D20 permeation to a unidirectional penetration axis. The analytical techniques evaluated were: (1) laser pyrolysis gas chromatography mass spectrometry; (2) solids probe mass spectrometry; (3) laser pyrolysis conventional infrared spectroscopy; and (4) infrared imaging thermovision. The most reproducible and sensitive technique was solids probe mass spectrometry. The fabricated exposed specimens were analyzed for D20 profiling after humidity/thermal conditioning at three exposure time durations.
NASA Technical Reports Server (NTRS)
Mlynczak, Pamela E.; Houghton, David D.; Diak, George R.
1986-01-01
Using a numerical mesoscale model, four simulations were performed to determine the effects of suppressing the initial mesoscale information in the moisture and wind fields on the precipitation forecasts. The simulations included a control forecast 12-h simulation that began at 1200 GMT March 1982 and three experiment simulations with modifications to the moisture and vertical motion fields incorporated at 1800 GMT. The forecasts from 1800 GMT were compared to the second half of the control forecast. It was found that, compared to the control forecast, suppression of the moisture and/or wind initial field(s) produces a drier forecast. However, the characteristics of the precipitation forecasts of the experiments were not different enough to conclude that either mesoscale moisture or mesoscale vertical velocity at the initial time are more important for producing a forecast closer to that of the control.
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2012-12-01
Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture, influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Numerous studies have shown that in addition to natural factors (rainfall, soil, topography etc.) agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil moisture patterns in agroecosystems. Integrative validation of plant growth and surface soil moisture dynamics serves as a basis for a spatially distributed modeling analysis of surface soil moisture patterns in the northern part of the Rur catchment (1100 sq km), Western Germany. An extensive three year dataset (2007-2009) of surface soil moisture-, plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was collected. Plant measurements were carried out biweekly for winter wheat, maize, and sugar beet during the growing season. Soil moisture was measured with three FDR soil moisture stations. Meteorological data was measured with an eddy flux station. The results of the model validation showed a very good agreement between the modeled plant parameters (biomass, green LAI) and the measured parameters with values between 0.84 and 0.98 (Willmotts index of agreement). The modeled surface soil moisture (0 - 20 cm) showed also a very favorable agreement with the measurements for winter wheat and sugar beet with an RMSE between 1.68 and 3.45 Vol.-%. For maize, the RMSE was less favorable particularly in the 1.5 months prior to harvest. The modeled soil moisture remained in contrast to the measurements very responsive to precipitation with high soil moisture after precipitation events. This behavior indicates that the soil properties might have changed due to the formation of a surface crust or seal towards the end of the growing season. Spatial soil moisture patterns were investigated using a grid resolution of 150 meter. Spatial autocorrelation was computed on a daily basis using patterns of soil texture as well as transpiration and precipitation indices as co-variables. Spatial patterns of surface soil moisture are mostly determined by the structure of the soil properties (soil type) during winter, early growing season and after harvest of all crops. Later in the growing season, after establishment of a closed canopy the dependence of the soil moisture patterns on soil texture patterns becomes smaller and diminishes quickly after precipitation events, due to differences of the transpiration rate of the different crops. When changing the spatial scale of the analysis, the highest autocorrelation values can be found on a grid cell size between 450 and 1200 meters. Thus, small scale variability of transpiration induced by the land use pattern almost averages out, leaving the larger scale structure of soil properties to explain the soil moisture patterns.
Shi, H T; Cao, Z J; Wang, Y J; Li, S L; Yang, H J; Bi, Y L; Doane, P H
2016-08-01
The objective of this study was to determine the optimum conditions for calcium oxide (CaO) treatment of anaerobically stored corn stover by in situ and in vitro methods. Four ruminally cannulated, non-lactating, non-pregnant Holstein cows were used to determine the in situ effective degradabilities of dry matter (ISDMD), organic matter (ISOMD), neutral detergent fibre (ISNDFD), in vitro organic matter disappearance (IVOMD) and gas production in 72 h (GP72h ) of corn stover. A completely randomized design involving a 3 × 3 factorial arrangement was adopted. Ground corn stover was treated with different levels of CaO (3%, 5% and 7% of dry stover) at varying moisture contents (40%, 50% and 60%) and stored under anaerobic conditions for 15 days before analysis. Compared with untreated corn stover, the CaO-treated stover had increased ash and calcium (Ca) contents but decreased aNDF and OM contents. The moisture content, CaO level and their interaction affected (p < 0.01) the content of aNDF, ash and OM, and the ratio of aNDF/OM. The greatest ISDMD, ISOMD and ISNDFD were observed when stover was treated with 7% CaO and 60% moisture, while no differences (p > 0.01) in these in situ degradability parameters were observed between the stover treated with 5% CaO at 60% moisture content and those treated with 7% CaO at 60% moisture content. Corn stover treated with 5% CaO at 50% moisture had the maximum IVOMD and GP72 h among the treatments, and there was no difference (p > 0.01) between 50% and 60% moisture. Results from this study suggested that 5% CaO applied at 60% moisture could be an effective and economical treatment combination. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
A Citizen Science Soil Moisture Sensor to Support SMAP Calibration/Validation
NASA Astrophysics Data System (ADS)
Podest, E.; Das, N. N.
2016-12-01
The Soil Moisture Active Passive (SMAP) satellite mission was launched in Jan. 2015 and is currently acquiring global measurements of soil moisture in the top 5 cm of the soil every 3 days. SMAP has partnered with the GLOBE program to engage students from around the world to collect in situ soil moisture and help validate SMAP measurements. The current GLOBE SMAP soil moisture protocol consists in collecting a soil sample, weighing, drying and weighing it again in order to determine the amount of water in the soil. Preparation and soil sample collection can take up to 20 minutes and drying can take up to 3 days. We have hence developed a soil moisture measurement device based on Arduino-like microcontrollers along with off-the-shelf and homemade sensors that are accurate, robust, inexpensive and quick and easy to use so that they can be implemented by the GLOBE community and citizen scientists alike. This talk will discuss building, calibration and validation of the soil moisture measuring device and assessing the quality of the measurements collected. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Effect of storage conditions on the calorific value of municipal solid waste.
Nzioka, Antony Mutua; Hwang, Hyeon-Uk; Kim, Myung-Gyun; Yan, Cao Zheng; Lee, Chang-Soo; Kim, Young-Ju
2017-08-01
Storage conditions are considered to be an important factor as far as waste material characteristics are concerned. This experimental investigation was conducted using municipal solid waste (MSW) with a high moisture content and varying composition of organic waste. The objective of this study was to understand the effect of storage conditions and temperature on the moisture content and calorific value of the waste. Samples were subjected to two different storage conditions and investigated at specified temperatures. The composition of sample materials investigated was varied for each storage condition and temperature respectively. Gross calorific value was determined experimentally while net calorific value was calculated using empirical formulas proposed by other researchers. Results showed minimal changes in moisture content as well as in gross and net calorific values when the samples were subjected to sealed storage conditions. Moisture content reduced due to the ventilation process and the rate of moisture removal increased with a rise in storage temperature. As expected, rate of moisture removal had a positive effect on gross and net calorific values. Net calorific values also increased at varying rates with a simultaneous decrease in moisture content. Experimental investigation showed the effectiveness of ventilation in improving the combustion characteristics of the waste.
Optimum moisture levels for biodegradation of mortality composting envelope materials.
Ahn, H K; Richard, T L; Glanville, T D
2008-01-01
Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed.
Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon
2016-01-01
Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS’s optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust’s coarse particle size and bulking effect. PMID:26954138
Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon
2016-05-01
Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.
Effectiveness of Humidification with Heat and Moisture Exchanger-booster in Tracheostomized Patients
Gonzalez, Isabel; Jimenez, Pilar; Valdivia, Jorge; Esquinas, Antonio
2017-01-01
Background: The two most commonly used types of humidifiers are heated humidifiers and heat and moisture exchange humidifiers. Heated humidifiers provide adequate temperature and humidity without affecting the respiratory pattern, but overdose can cause high temperatures and humidity resulting in condensation, which increases the risk of bacteria in the circuit. These devices are expensive. Heat and moisture exchanger filter is a new concept of humidification, increasing the moisture content in inspired gases. Aims: This study aims to determine the effectiveness of the heat and moisture exchanger (HME)-Booster system to humidify inspired air in patients under mechanical ventilation. Materials and Methods: We evaluated the humidification provided by 10 HME-Booster for tracheostomized patients under mechanical ventilation using Servo I respirators, belonging to the Maquet company and Evita 4. Results: There was an increase in the inspired air humidity after 1 h with the humidifier. Conclusion: The HME-Booster combines the advantages of heat and moisture exchange minimizing the negatives. It increases the amount of moisture in inspired gas in mechanically ventilated tracheostomized patients. It is easy and safe to use. The type of ventilator used has no influence on the result. PMID:28904484
Specific Yield--Column drainage and centrifuge moisture content
Johnson, A.I.; Prill, R.C.; Morris, D.A.
1963-01-01
The specific yield of a rock or soil, with respect to water, is the ratio of (1) the volume of water which, after being saturated, it will yield by gravity to (2) its own volume. Specific retention represents the water retained against gravity drainage. The specific yield and retention when added together are equal to the total interconnected porosity of the rock or soil. Because specific retention is more easily determined than specific yield, most methods for obtaining yield first require the determination of specific retention. Recognizing the great need for developing improved methods of determining the specific yield of water-bearing materials, the U.S. Geological Survey and the California Department of Water Resources initiated a cooperative investigation of this subject. The major objectives of this research are (1) to review pertinent literature on specific yield and related subjects, (2) to increase basic knowledge of specific yield and rate of drainage and to determine the most practical methods of obtaining them, (3) to compare and to attempt to correlate the principal laboratory and field methods now commonly used to obtain specific yield, and (4) to obtain improved estimates of specific yield of water-bearing deposits in California. An open-file report, 'Specific yield of porous media, an annotated bibliography,' by A. I. Johnson, D. A. Morris, and R. C. Prill, was released in 1960 in partial fulfillment of the first objective. This report describes the second phase of the specific-yield study by the U.S. Geological Survey Hydrologic Laboratory at Denver, Colo. Laboratory research on column drainage and centrifuge moisture equivalent, two methods for estimating specific retention of porous media, is summarized. In the column-drainage study, a wide variety of materials was packed into plastic columns of 1- to 8-inch diameter, wetted with Denver tap water, and drained under controlled conditions of temperature and humidity. The effects of cleaning the porous media; of different column diameters; of dye and time on drainage; and of different methods of drainage, wetting, and packing were all determined. To insure repeatability of porosity in duplicate columns, a mechanical technique of packing was developed. In the centrifuge moisture-content study, the centrifuge moisture-equivalent (the moisture content retained by a soil that has been first saturated and then subjected to a force equal to 1,000 times the force of gravity for 1 hour) test was first reviewed and evaluated. It was determined that for reproducible moisture-retention results the temperature and humidity should be controlled by use of a controlled-temperature centrifuge. In addition to refining this standard test, the study determined the effect of length of period of centrifuging and of applied tension on the drainage results. The plans for future work require the continuation of the laboratory standardization study qith emphasis on investigation of soil-moisture tension and unsaturated-permeability techniques. A detailed study in the field then will be followed by correlation and evaluation of laboratory and field methods.
NASA Technical Reports Server (NTRS)
Doyle, F. L.
1974-01-01
Lineations were identified involving the application of ERTS imagery to geologic and hydrologic problems. Interpretation of the southwest Madison County area is discussed. The tracing of the Beech Grove lineament to the northern boundary of Madison County, Alabama raises the question of its relationship to the trend of lineations in southwestern Madison County. The use of thermography as an indication of soil moisture is reviewed. The effect of soil moisture on surface temperature and the relationship between soil moisture and ground water are examined.
Vacuum leak detector and method
Edwards, Jr., David
1983-01-01
Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.
Evaluation of skin moisturizer effects using terahertz time domain imaging
NASA Astrophysics Data System (ADS)
Martinez-Meza, L. H.; Rojas-Landeros, S. C.; Castro-Camus, E.; Alfaro-Gomez, M.
2018-02-01
We use terahertz time domain imaging for the evaluation of the effects of skin-moisturizers in vivo. We evaluate three principal substances used in commercial moisturizers: glycerin, hyaluronic acid and lanolin. We image the interaction of the forearm with each of the substances taking terahertz spectra at sequential times. With this, we are able to measure the effect of the substances on the hydration level of the skin in time, determining the feasibility of using THz imaging for the evaluation of the products and their effects on the hydration levels of the skin.
Antioxidant capacity of 3D human skin EpiDerm model: effects of skin moisturizers.
Grazul-Bilska, A T; Bilski, J J; Redmer, D A; Reynolds, L P; Abdullah, K M; Abdullah, A
2009-06-01
The objective of this study was to determine the effects of skin moisturizers on total antioxidant capacity (TAC) of human skin using EpiDerm model. Three different skin moisturizers containing antioxidant ingredients (samples 1-3) or aloe vera extract were topically applied to EpiDerm units and incubated for 2 and 24 h to determine acute and longer-term effects of applied samples on TAC and glutathione peroxidase activity in medium and/or homogenized skin tissues. Total antioxidant capacity in medium and skin homogenates was enhanced (P < 0.0001) by gel containing antioxidant ingredients (sample 2) after 2 and 24 h of incubation. Total antioxidant capacity in medium was also enhanced (P < 0.001) by cream containing antioxidant ingredients (sample 3) after 24 h of incubation. Overall, TAC in medium was greater (P < 0.02) after 24 h than 2 h of incubation. Skin moisturizer cream with high antioxidant levels determined by using oxygen radical absorbance capacity testing (sample 1) and aloe vera extract did not affect TAC. Glutathione peroxidase activity was enhanced (P < 0.0001) in medium and skin homogenates by sample 2 but not by any other sample. These data demonstrate high potential of gel and cream (samples 2 and 3) containing antioxidant ingredients in enhancing antioxidant capacity of EpiDerm which will likely contribute to overall skin health. Results of this experiment will help to better understand mechanisms of effects of skin moisturizers containing antioxidant ingredients on skin function at the tissue level and to establish effective strategies for skin protection and clinical treatments of skin disorders and possibly healing wounds.
Microstrip Ring Resonator for Soil Moisture Measurements
NASA Technical Reports Server (NTRS)
Sarabandi, Kamal; Li, Eric S.
1993-01-01
Accurate determination of spatial soil moisture distribution and monitoring its temporal variation have a significant impact on the outcomes of hydrologic, ecologic, and climatic models. Development of a successful remote sensing instrument for soil moisture relies on the accurate knowledge of the soil dielectric constant (epsilon(sub soil)) to its moisture content. Two existing methods for measurement of dielectric constant of soil at low and high frequencies are, respectively, the time domain reflectometry and the reflection coefficient measurement using an open-ended coaxial probe. The major shortcoming of these methods is the lack of accurate determination of the imaginary part of epsilon(sub soil). In this paper a microstrip ring resonator is proposed for the accurate measurement of soil dielectric constant. In this technique the microstrip ring resonator is placed in contact with soil medium and the real and imaginary parts of epsilon(sub soil) are determined from the changes in the resonant frequency and the quality factor of the resonator respectively. The solution of the electromagnetic problem is obtained using a hybrid approach based on the method of moments solution of the quasi-static formulation in conjunction with experimental data obtained from reference dielectric samples. Also a simple inversion algorithm for epsilon(sub soil) = epsilon'(sub r) + j(epsilon"(sub r)) based on regression analysis is obtained. It is shown that the wide dynamic range of the measured quantities provides excellent accuracy in the dielectric constant measurement. A prototype microstrip ring resonator at L-band is designed and measurements of soil with different moisture contents are presented and compared with other approaches.
Loblolly pine (Pinus taeda) was combusted at different charge sizes, fuel moisture, and chlorine content to determine the effect on emissions of polychlorinated dibenzo-p-dioxins and polychlorinated diberizofurans (PCDDslFs) as well as co-pollutants CO, PM, and total hydrocarbons...
USDA-ARS?s Scientific Manuscript database
In the southern United States, corn production encounters moisture deficit coupled with high temperature stress, particularly during the reproductive stage of the plant. In evaluating plants for environmental stress tolerance, it is important to monitor changes in their physical environment under na...
Optimization of hard red spring wheat milling for whole wheat flour production
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine the effect of seed moisture content (10 to 16%) and rotor speed (6,000 to 15,000 rpm) of a centrifugal mill on quality of whole wheat flour (WWF) and subsequent baking quality. Particle size distribution, flour temperature, flour moisture, and starch dam...
USDA-ARS?s Scientific Manuscript database
For large fields, remote sensing might permit plant low moisture status to be detected early, and this may improve drought detection and monitoring. The objective of this study was to determine whether canopy and soil surface reflectance data derived from a handheld spectroradiometer can detect mois...
Objective: The objective of this study was to determine the correlation between the Environmental Relative Moldiness Index (ERMI) values in the HUD American Healthy Home Survey (AHHS) homes and either inspector reports or occupant assessments of mold and moisture. Methods: In t...
A research project was initiated to address a recurring problem of elevated detection limits above required risk-based concentrations for the determination of semivolatile organic compounds in high moisture content solid samples. This project was initiated, in cooperation with t...
Equilibrium Moisture Content of Common Fine Fuels in Southeastern Forests
W.H. Blackmarr
1971-01-01
Nine different kinds of forest litter found in ground fuel complexes of southeastern forests were subjected to step-wise changes in relative humidity to determine their equilibrium moisture content (EMC) at different levels of relative humidity. The adsorption and desorption EMC curves for these fuels exhibited the typical hysteresis loop...
The report gives results of tests of four woodstove operating parameters (burn rate, wood moisture, wood load, and wood species) at two levels each using a half factorial experimental test design to determine statistically significant effects on the emission components CO, CO2, p...
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert.
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F; Li, Lin; Seely, Mary K
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months' continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert.
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Li, Lin; Seely, Mary K.
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months’ continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert. PMID:27764203
NASA Technical Reports Server (NTRS)
Clements, L. L.; Lee, P. R.
1980-01-01
Tension tests on graphite/epoxy composites were performed to determine the influence of various quality control variables on failure strength as a function of moisture and moderate temperatures. The extremely high and low moisture contents investigated were found to have less effect upon properties than did temperature or the quality control variables of specimen flaws and prepreg batch to batch variations. In particular, specimen flaws were found to drastically reduce the predicted strength of the composite, whereas specimens from different batches of prepreg displayed differences in strength as a function of temperature and extreme moisture exposure. The findings illustrate the need for careful specimen preparation, studies of flaw sensitivity, and careful quality control in any study of composite materials.
NASA Technical Reports Server (NTRS)
Menzel, W. Paul; Moeller, Christopher C.; Smith, William L.
1991-01-01
This program has applied Multispectral Atmospheric Mapping Sensor (MAMS) high resolution data to the problem of monitoring atmospheric quantities of moisture and radiative flux at small spatial scales. MAMS, with 100-m horizontal resolution in its four infrared channels, was developed to study small scale atmospheric moisture and surface thermal variability, especially as related to the development of clouds, precipitation, and severe storms. High-resolution Interferometer Sounder (HIS) data has been used to develop a high spectral resolution retrieval algorithm for producing vertical profiles of atmospheric temperature and moisture. The results of this program are summarized and a list of publications resulting from this contract is presented. Selected publications are attached as an appendix.
NASA Astrophysics Data System (ADS)
Nasta, Paolo; Penna, Daniele; Brocca, Luca; Zuecco, Giulia; Romano, Nunzio
2018-02-01
Indirect measurements of field-scale (hectometer grid-size) spatial-average near-surface soil moisture are becoming increasingly available by exploiting new-generation ground-based and satellite sensors. Nonetheless, modeling applications for water resources management require knowledge of plot-scale (1-5 m grid-size) soil moisture by using measurements through spatially-distributed sensor network systems. Since efforts to fulfill such requirements are not always possible due to time and budget constraints, alternative approaches are desirable. In this study, we explore the feasibility of determining spatial-average soil moisture and soil moisture patterns given the knowledge of long-term records of climate forcing data and topographic attributes. A downscaling approach is proposed that couples two different models: the Eco-Hydrological Bucket and Equilibrium Moisture from Topography. This approach helps identify the relative importance of two compound topographic indexes in explaining the spatial variation of soil moisture patterns, indicating valley- and hillslope-dependence controlled by lateral flow and radiative processes, respectively. The integrated model also detects temporal instability if the dominant type of topographic dependence changes with spatial-average soil moisture. Model application was carried out at three sites in different parts of Italy, each characterized by different environmental conditions. Prior calibration was performed by using sparse and sporadic soil moisture values measured by portable time domain reflectometry devices. Cross-site comparisons offer different interpretations in the explained spatial variation of soil moisture patterns, with time-invariant valley-dependence (site in northern Italy) and hillslope-dependence (site in southern Italy). The sources of soil moisture spatial variation at the site in central Italy are time-variant within the year and the seasonal change of topographic dependence can be conveniently correlated to a climate indicator such as the aridity index.
NASA Astrophysics Data System (ADS)
Khedun, C. P.; Mishra, A. K.; Bolten, J. D.; Giardino, J. R.; Singh, V. P.
2010-12-01
Soil moisture is an important component of the hydrological cycle. Climate variability patterns, such as the Pacific Decadal Oscillation (PDO), El Niño Southern Oscillation (ENSO), and Atlantic Multidecadal Oscillation (AMO) are determining factors on surface water availability and soil moisture. Understanding this complex relationship and the phase and lag times between climate events and soil moisture variability is important for agricultural management and water planning. In this study we look at the effect of these climate teleconnection patterns on the soil moisture across the Rio Grande/Río Bravo del Norte basin. The basin is transboundary between the US and Mexico and has a varied climatology - ranging from snow dominated in its headwaters in Colorado, to an arid and semi-arid region in its middle reach and a tropical climate in the southern section before it discharges into the Gulf of Mexico. Agricultural activities in the US and in northern Mexico are highly dependent on the Rio Grande and are extremely vulnerable to climate extremes. The treaty between the two countries does not address climate related events. The soil moisture is generated using the community NOAH land surface model (LSM). The LSM is a 1-D column model that runs in coupled or uncoupled mode, and it simulates soil moisture, soil temperature, skin temperature, snowpack depth, snow water equivalent, canopy water content, and energy flux and water flux of the surface energy and water balance. The North American Land Data Assimilation Scheme 2 (NLDAS2) is used to drive the model. The model is run for the period 1979 to 2009. The soil moisture output is validated against measured values from the different Soil Climate Analysis Network (SCAN) sites within the basin. The spatial and temporal variability of the modeled soil moisture is then analyzed using marginal entropy to investigate monthly, seasonal, and annual variability. Wavelet transform is used to determine the relation, phase difference, and lag times between climate teleconnection events and soil moisture. The results from this study will help agricultural scientists and water planners in both the US and Mexico in better managing the dwindling water resources of this transboundary basin.
Determination of the moisture content of instant noodles: interlaboratory study.
Hakoda, Akiko; Kasama, Hirotaka; Sakaida, Kenichi; Suzuki, Tadanao; Yasui, Akemi
2006-01-01
Determination of the moisture content of instant noodles, currently under discussion by the Codex Alimentarius Commission (CAC) requires 2 methods: one for fried noodles and the other for nonfried noodles. The method to determine the moisture content of fried noodles by drying at 105 degrees C for 2 h used in the Japanese Agricultural Standard (JAS) system of Japan can be applied to this purpose. In the present study, the JAS method for fried noodles was modified to be suitable for nonfried noodles by extending the drying time to 4 h. An interlaboratory study was conducted to evaluate interlaboratory performance statistics for these 2 methods. Ten participating laboratories each analyzed 5 test materials of fried and nonfried noodles as blind duplicates. After removal of outliers statistically, the repeatability (RSDr) and the reproducibility (RSD(R)) of these methods were 1.6-2.6 and 3.9-4.8% for fried noodles, and 0.3-1.5 and 1.3-2.9% for nonfried noodles, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossiord, Charlotte; Sevanto, Sanna Annika; Limousin, Jean -Marc
Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit ( VPD) and soil moisture variations, and the generality of these effects across forest types and environments usingmore » four manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water ( REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Altogether, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.« less
A semi-mechanistic model of dead fine fuel moisture for Temperate and Mediterranean ecosystems
NASA Astrophysics Data System (ADS)
Resco de Dios, Víctor; Fellows, Aaron; Boer, Matthias; Bradstock, Ross; Nolan, Rachel; Goulden, Michel
2014-05-01
Fire is a major disturbance in terrestrial ecosystems globally. It has an enormous economic and social cost, and leads to fatalities in the worst cases. The moisture content of the vegetation (fuel moisture) is one of the main determinants of fire risk. Predicting the moisture content of dead and fine fuel (< 2.5 cm in diameter) is particularly important, as this is often the most important component of the fuel complex for fire propagation. A variety of drought indices, empirical and mechanistic models have been proposed to model fuel moisture. A commonality across these different approaches is that they have been neither validated across large temporal datasets nor validated across broadly different vegetation types. Here, we present the results of a study performed at 6 locations in California, USA (5 sites) and New South Wales, Australia (1 site), where 10-hours fuel moisture content was continuously measured every 30 minutes during one full year at each site. We observed that drought indices did not accurately predict fuel moisture, and that empirical and mechanistic models both needed site-specific calibrations, which hinders their global application as indices of fuel moisture. We developed a novel, single equation and semi-mechanistic model, based on atmospheric vapor-pressure deficit. Across sites and years, mean absolute error (MAE) of predicted fuel moisture was 4.7%. MAE dropped <1% in the critical range of fuel moisture <10%. The high simplicity, accuracy and precision of our model makes it suitable for a wide range of applications: from operational purposes, to global vegetation models.
Grossiord, Charlotte; Sevanto, Sanna Annika; Limousin, Jean -Marc; ...
2017-12-14
Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit ( VPD) and soil moisture variations, and the generality of these effects across forest types and environments usingmore » four manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water ( REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Altogether, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossiord, Charlotte; Sevanto, Sanna; Limousin, Jean-Marc
Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit (VPD) and soil moisture variations, and the generality of these effects across forest types and environments using fourmore » manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water (REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Overall, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.« less
The Soil Moisture Active Passive (SMAP) Applications Activity
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Moran, Susan; Escobar, Vanessa; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni
2011-01-01
The Soil Moisture Active Passive (SMAP) mission is one of the first-tier satellite missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission 1 is under development by NASA and is scheduled for launch late in 2014. The SMAP measurements will allow global and high-resolution mapping of soil moisture and its freeze/thaw state at resolutions from 3-40 km. These measurements will have high value for a wide range of environmental applications that underpin many weather-related decisions including drought and flood guidance, agricultural productivity estimation, weather forecasting, climate predictions, and human health risk. In 2007, NASA was tasked by The National Academies to ensure that emerging scientific knowledge is actively applied to obtain societal benefits by broadening community participation and improving means for use of information. SMAP is one of the first missions to come out of this new charge, and its Applications Plan forms the basis for ensuring its commitment to its users. The purpose of this paper is to outline the methods and approaches of the SMAP applications activity, which is designed to increase and sustain the interaction between users and scientists involved in mission development.
NASA Astrophysics Data System (ADS)
Tuttle, S. E.; Salvucci, G.
2012-12-01
Soil moisture influences many hydrological processes in the water and energy cycles, such as runoff generation, groundwater recharge, and evapotranspiration, and thus is important for climate modeling, water resources management, agriculture, and civil engineering. Large-scale estimates of soil moisture are produced almost exclusively from remote sensing, while validation of remotely sensed soil moisture has relied heavily on ground truthing, which is at an inherently smaller scale. Here we present a complementary method to determine the information content in different soil moisture products using only large-scale precipitation data (i.e. without modeling). This study builds on the work of Salvucci [2001], Saleem and Salvucci [2002], and Sun et al. [2011], in which precipitation was conditionally averaged according to soil moisture level, resulting in moisture-outflow curves that estimate the dependence of drainage, runoff, and evapotranspiration on soil moisture (i.e. sigmoidal relations that reflect stressed evapotranspiration for dry soils, roughly constant flux equal to potential evaporation minus capillary rise for moderately dry soils, and rapid drainage for very wet soils). We postulate that high quality satellite estimates of soil moisture, using large-scale precipitation data, will yield similar sigmoidal moisture-outflow curves to those that have been observed at field sites, while poor quality estimates will yield flatter, less informative curves that explain less of the precipitation variability. Following this logic, gridded ¼ degree NLDAS precipitation data were compared to three AMSR-E derived soil moisture products (VUA-NASA, or LPRM [Owe et al., 2001], NSIDC [Njoku et al., 2003], and NSIDC-LSP [Jones & Kimball, 2011]) for a period of nine years (2001-2010) across the contiguous United States. Gaps in the daily soil moisture data were filled using a multiple regression model reliant on past and future soil moisture and precipitation, and soil moisture was then converted to a ranked wetness index, in order to reconcile the wide range and magnitude of the soil moisture products. Generalized linear models were employed to fit a polynomial model to precipitation, given wetness index. Various measures of fit (e.g. log likelihood) were used to judge the amount of information in each soil moisture product, as indicated by the amount of precipitation variability explained by the fitted model. Using these methods, regional patterns appear in soil moisture product performance.
Ceustermans, A; De Clercq, D; Aertsen, A; Michiels, C; Geeraerd, A; Van Impe, J; Coosemans, J; Ryckeboer, J
2007-07-01
Determination of the minimum requirements (time-temperature relationship and moisture content) that are needed for a sufficient eradication of an indicator organism. To determine the hygienic safety of composting processes, the indicator organism Salmonella enterica ssp. enterica serotype Senftenberg strain W 775 (further abbreviated as W 775) was artificially inoculated on a meat carrier and monitored subsequently. Different types of composting processes, e.g. composting in enclosed facilities, in open-air and in-vessel composting, were investigated. The waste feedstocks used in this work were either biowastes (i.e. vegetable, fruit and garden wastes; also called source-separated household wastes) or pure garden wastes. Beside these large-scale trials, we also conducted some lab experiments in order to determine the impact of temperature, moisture content and the presence of an indigenous microflora on the eradication of W 775. We found the temperature to be the most important parameter to eradicate W 775 from compost. When the temperature of the compost heap is 60 degrees C and the moisture content varies between 60-65%, W 775 (10(8) CFU g(-1)) will be inactivated within 10 h of composting. The moisture content is, beside temperature, a second parameter that influences the survival of W 775. When the water content of the composting materials or meat carriers is reduced, a higher survival rate of W 775 was observed (survival rate increases 0.5 log(10) unit when there is a reduction of 5% in moisture content). In addition, other parameters (such as microbial antagonism, toxic compounds, etc.) have an influence on the survival of W 775 as well. Our study demonstrates that all types of composting processes tested in this work were sufficient to eradicate W 775 providing that they are well managed in terms of temperature and moisture content. To give a better view on the parameters of importance for the eradication of W 775 during composting.
NASA Technical Reports Server (NTRS)
Stecura, Stephan
1994-01-01
The purpose of this study was to determine the experimental parameters under which commercially pure YBa2Cu3O7 (1237) powders would be converted into a single phase (1237) powder only. Carbon (present as carbonate) and impurity phase concentrations in the (1237) powder are very dependent upon the firing temperatures, heat-treating temperatures and times, and atmosphere, while the moisture concentration is not. YBa2Cu3O7 powder with about 0.03 wt/%, carbon, 0.03 wt% moisture, and low impurity phase concentrations was obtained. Moisture and carbon concentrations in heat-treated powders did not increase significantly after 48 and 72 h of exposure to air, respectively, and after 144 h of exposure they were less than 0.26 and 0.08 wt/%, respectively. The (1237) powder first reacts with moisture and then hydroxide reacts with CO2. Firing the as received powders in air led to the decomposition of the superconducting (1237) phase.
Effect of residential air-to-air heat and moisture exchangers on indoor humidity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barringer, C.G.; McGugan, C.A.
1989-01-01
A project was undertaken to develop guidelines for the selection of residential heat and moisture recovery ventilation systems (HRVs) in order to maintain an acceptable indoor humidity for various climatic conditions. These guidelines were developed from reviews on ventilation requirements, HRV performance specifications, and from computer modeling. Space conditions within three house/occupancy models for several types of HRV were simulated for three climatic conditions (Lake Charles, LA; Seattle, WA; and Winnipeg, MB) in order to determine the impact of the HRVs on indoor relative humidity and space-conditioning loads. Results show that when reduction of cooling cost is the main consideration,more » exchangers with moisture recovery are preferable to sensible HRVs. For reduction of heating costs, moisture recovery should be done for ventilation rates greater than about 15 L/s and average winter temperatures less than about (minus) 10{degrees}C if internal moisture generation rates are low. For houses with higher ventilation rates and colder average winter temperatures, exchangers with moisture recovery should be used.« less
Sumargo, Franklin; Gulati, Paridhi; Weier, Steven A; Clarke, Jennifer; Rose, Devin J
2016-11-15
The influence of pinto bean flour and processing moisture on the physical properties and in vitro digestibility of rice-bean extrudates has been investigated. Brown rice: pinto bean flour (0%, 15%, 30%, and 45% bean flour) were extruded under 5 moisture conditions (17.2%, 18.1%, 18.3%, 19.5%, and 20.1%). Physical properties [bulk density, unit density, radial expansion, axial expansion, overall expansion, specific volume, hardness, color, water solubility index, and water absorption index] and in vitro starch and protein digestibilities were determined. Increasing bean flour and processing moisture increased density and hardness while decreasing expansion. Rapidly digestible starch decreased and resistant starch increased as bean substitution and processing moisture increased. In vitro protein digestibility increased with increasing bean flour or with decreasing processing moisture. Incorporating bean flour into extruded snacks can negatively affect physical attributes (hardness, density, and expansion) while positively affecting in vitro starch (decrease) and protein (increase) digestibilities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analyses and forecasts with LAWS winds
NASA Technical Reports Server (NTRS)
Wang, Muyin; Paegle, Jan
1994-01-01
Horizontal fluxes of atmospheric water vapor are studied for summer months during 1989 and 1992 over North and South America based on analyses from European Center for Medium Range Weather Forecasts, US National Meteorological Center, and United Kingdom Meteorological Office. The calculations are performed over 20 deg by 20 deg box-shaped midlatitude domains located to the east of the Rocky Mountains in North America, and to the east of the Andes Mountains in South America. The fluxes are determined from operational center gridded analyses of wind and moisture. Differences in the monthly mean moisture flux divergence determined from these analyses are as large as 7 cm/month precipitable water equivalent over South America, and 3 cm/month over North America. Gridded analyses at higher spatial and temporal resolution exhibit better agreement in the moisture budget study. However, significant discrepancies of the moisture flux divergence computed from different gridded analyses still exist. The conclusion is more pessimistic than Rasmusson's estimate based on station data. Further analysis reveals that the most significant sources of error result from model surface elevation fields, gaps in the data archive, and uncertainties in the wind and specific humidity analyses. Uncertainties in the wind analyses are the most important problem. The low-level jets, in particular, are substantially different in the different data archives. Part of the reason for this may be due to the way the different analysis models parameterized physical processes affecting low-level jets. The results support the inference that the noise/signal ratio of the moisture budget may be improved more rapidly by providing better wind observations and analyses than by providing better moisture data.
NASA Astrophysics Data System (ADS)
Franz, T. E.; Avery, W. A.; Wahbi, A.; Dercon, G.; Heng, L.; Strauss, P.
2017-12-01
The use of the Cosmic Ray Neutron Sensor (CRNS) for the detection of field-scale soil moisture ( 20 ha) has been the subject of a multitude research applications over the past decade. One exciting area within agriculture aims to provide soil moisture and soil property information for irrigation scheduling. The CRNS technology exists in both a stationary and mobile form. The use of a mobile CRNS opens possibilities for application in many diverse environments. This work details the use of a mobile "backpack" CRNS device in high elevation heterogeneous terrain in the alpine mountains of western Austria. This research demonstrates the utilization of established calibration and validation techniques associated with the use of the CRNS within difficult to reach landscapes that are either inaccessible or impractical to both the stationary CRNS and other more traditional soil moisture sensing technology. Field work was conducted during the summer of 2016 in the Rauris valley of the Austrian Alps at three field sites located at different representative elevations within the same Rauris watershed. Calibrations of the "backpack" CRNS were performed at each site along with data validation via in-situ Time Domain Reflectometry (TDR) and gravimetric soil sampling. Validation data show that the relationship between in-situ soil moisture data determined via TDR and soil sampling and soil moisture data determined via the mobile CRNS is strong (RMSE <2.5 % volumetric). The efficacy of this technique in remote alpine landscapes shows great potential for use in early warning systems for landslides and flooding, watershed hydrology, and high elevation agricultural water management.
A flash flood early warning system based on rainfall thresholds and daily soil moisture indexes
NASA Astrophysics Data System (ADS)
Brigandì, Giuseppina; Tito Aronica, Giuseppe
2015-04-01
Main focus of the paper is to present a flash flood early warning system, developed for Civil Protection Agency for the Sicily Region, for alerting extreme hydrometeorological events by using a methodology based on the combined use of rainfall thresholds and soil moisture indexes. As matter of fact, flash flood warning is a key element to improve the Civil Protection achievements to mitigate damages and safeguard the security of people. It is a rather complicated task, particularly in those catchments with flashy response where even brief anticipations are important and welcomed. In this context, some kind of hydrological precursors can be considered to improve the effectiveness of the emergency actions (i.e. early flood warning). Now, it is well known how soil moisture is an important factor in flood formation, because the runoff generation is strongly influenced by the antecedent soil moisture conditions of the catchment. The basic idea of the work here presented is to use soil moisture indexes derived in a continuous form to define a first alert phase in a flash flood forecasting chain and then define a unique rainfall threshold for a given day for the subsequent alarm phases activation, derived as a function of the soil moisture conditions at the beginning of the day. Daily soil moisture indexes, representative of the moisture condition of the catchment, were derived by using a parsimonious and simply to use approach based on the IHACRES model application in a modified form developed by the authors. It is a simple, spatially-lumped rainfall-streamflow model, based on the SCS-CN method and on the unit hydrograph approach that requires only rainfall, streamflow and air temperature data. It consists of two modules. In the first a non linear loss model, based on the SCS-CN method, was used to transform total rainfall into effective rainfall. In the second, a linear convolution of effective rainfall was performed using a total unit hydrograph with a configuration of one parallel channel and reservoir, thereby corresponding to 'quick' and 'slow' components of runoff. In the non linear model a wetness/soil moisture index, varying from 0 to 1, was derived to define daily soil moisture catchment conditions and then conveniently linked to a corresponding CN value to use as input to derive the corresponding rainfall threshold for a given day. Finally, rainfall thresholds for flash flooding were derived using an Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall. Application of the proposed methodology was carried out with reference to a river basin in Sicily, Italy.
Wagland, S T; Dudley, R; Naftaly, M; Longhurst, P J
2013-11-01
Two novel techniques are presented in this study which together aim to provide a system able to determine the renewable energy potential of mixed waste materials. An image analysis tool was applied to two waste samples prepared using known quantities of source-segregated recyclable materials. The technique was used to determine the composition of the wastes, where through the use of waste component properties the biogenic content of the samples was calculated. The percentage renewable energy determined by image analysis for each sample was accurate to within 5% of the actual values calculated. Microwave-based multiple-point imaging (AutoHarvest) was used to demonstrate the ability of such a technique to determine the moisture content of mixed samples. This proof-of-concept experiment was shown to produce moisture measurement accurate to within 10%. Overall, the image analysis tool was able to determine the renewable energy potential of the mixed samples, and the AutoHarvest should enable the net calorific value calculations through the provision of moisture content measurements. The proposed system is suitable for combustion facilities, and enables the operator to understand the renewable energy potential of the waste prior to combustion. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ward, R L; Yeager, J G; Ashley, C S
1981-01-01
Two studies were carried out to determine the influence of moisture content of the survival of bacteria in raw wastewater sludge. The first study involved the effect of water loss by evaporation on the bacterial population. The second used these dewatered samples to measure the effects of moisture content on the inactivation of bacteria sludge by ionizing radiation. Both studies involved survival measurements of six representative fecally associated bacteria grown separately in sterilized sludge as well as survival data on bacteria indigenous to sludge. Growth of bacteria was stimulated in sludge during the initial phase of moisture removal by evaporation, but the reduction of moisture content below about 50% by weight caused a proportional decrease in bacterial numbers. In comparison with the original sludge, this decrease reached about one-half to one order of magnitude in all dried samples except those containing Proteus mirabilis, which decreased about four orders of magnitude. The rates of inactivation of bacteria by ionizing radiation in sludge were usually modified to some degrees by variations in moisture content. Most bacteria were found to be somewhat protected from ionizing radiation at reduced moisture levels. The largest effect was found with Salmonella typhimurium, whose radiation resistance approximately doubled in dried sludge. However, no excessively large D10 values were found for any bacterial species tested. PMID:6789765
Moisture damage and asthma: a birth cohort study.
Karvonen, Anne M; Hyvärinen, Anne; Korppi, Matti; Haverinen-Shaughnessy, Ulla; Renz, Harald; Pfefferle, Petra I; Remes, Sami; Genuneit, Jon; Pekkanen, Juha
2015-03-01
Excess moisture and visible mold are associated with increased risk of asthma. Only a few studies have performed detailed home visits to characterize the extent and location of moisture damage and mold growth. Structured home inspections were performed in a birth cohort study when the children were 5 months old (on average). Children (N = 398) were followed up to the age of 6 years. Specific immunoglobulin E concentrations were determined at 6 years. Moisture damage and mold at an early age in the child's main living areas (but not in bathrooms or other interior spaces) were associated with the risk of developing physician-diagnosed asthma ever, persistent asthma, and respiratory symptoms during the first 6 years. Associations with asthma ever were strongest for moisture damage with visible mold in the child's bedroom (adjusted odds ratio: 4.82 [95% confidence interval: 1.29-18.02]) and in the living room (adjusted odds ratio: 7.51 [95% confidence interval: 1.49-37.83]). Associations with asthma ever were stronger in the earlier part of the follow-up and among atopic children. No consistent associations were found between moisture damage with or without visible mold and atopic sensitization. Moisture damage and mold in early infancy in the child's main living areas were associated with asthma development. Atopic children may be more susceptible to the effects of moisture damage and mold. Copyright © 2015 by the American Academy of Pediatrics.
NASA Astrophysics Data System (ADS)
Legates, David R.; Junghenn, Katherine T.
2018-04-01
Many local weather station networks that measure a number of meteorological variables (i.e. , mesonetworks) have recently been established, with soil moisture occasionally being part of the suite of measured variables. These mesonetworks provide data from which detailed estimates of various hydrological parameters, such as precipitation and reference evapotranspiration, can be made which, when coupled with simple surface characteristics available from soil surveys, can be used to obtain estimates of soil moisture. The question is Can meteorological data be used with a simple hydrologic model to estimate accurately daily soil moisture at a mesonetwork site? Using a state-of-the-art mesonetwork that also includes soil moisture measurements across the US State of Delaware, the efficacy of a simple, modified Thornthwaite/Mather-based daily water balance model based on these mesonetwork observations to estimate site-specific soil moisture is determined. Results suggest that the model works reasonably well for most well-drained sites and provides good qualitative estimates of measured soil moisture, often near the accuracy of the soil moisture instrumentation. The model exhibits particular trouble in that it cannot properly simulate the slow drainage that occurs in poorly drained soils after heavy rains and interception loss, resulting from grass not being short cropped as expected also adversely affects the simulation. However, the model could be tuned to accommodate some non-standard siting characteristics.
A review on the role of moisturizers for atopic dermatitis
Hebert, Adelaide Ann; Dizon, Maria Victoria; Van Bever, Hugo; Tiongco-Recto, Marysia; Kim, Kyu-Han; Soebono, Hardyanto; Munasir, Zakiudin; Diana, Inne Arline; Luk, David Chi Kang
2016-01-01
Effective management of atopic dermatitis (AD) involves the treatment of a defective skin barrier. Patients with AD are therefore advised to use moisturizers regularly. To date, there are few comparative studies involving moisturizers in patients with AD, and no classification system exists to objectively determine which types of moisturizers are best suited to specific AD phenotypes. With this in mind, a group of experts from allergy and immunology, adult and pediatric dermatology, and pediatrics centers within Southeast Asia met to review current data and practice, and to develop recommendations regarding the use of moisturizers in patients with AD within the Asia-Pacific region. Chronicity and severity of AD, along with patient age, treatment compliance, and economic background should all be taken into account when selecting an appropriate moisturizer for AD patients. Other considerations include adjuvant properties of the product, cosmetic acceptability, and availability over the counter. Well-defined clinical phenotypes of AD could optimally benefit from specific moisturizers. It is hoped that future studies may identify such differences by means of filaggrin mutation subtypes, confocal microscopic evaluation, pH, transepidermal water loss or presence of allergy specific IgE. Recommendations to improve the regular use of moisturizers among AD patients include measures that focus on treatment compliance, patient and caregiver education, appropriate treatment goals, avoidance of sensitizing agents, and collaboration with other relevant specialists. PMID:27141486
JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas Hajicek; Jay Gunderson; Ann Henderson
2007-08-15
Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before itmore » could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash handling. A more efficient downstream sulfur scrubber capable of operation at a much lower Ca/S ratio would result in significantly higher boiler efficiency for this coal. At the operating temperature of a typical CFBC, bed agglomeration and convective pass fouling are not likely to be significant problems with this fuel. Compared to pulverized coal-firing, CFBC technology is clearly the better choice for this fuel. It provides more efficient sulfur capture, lower NO{sub x} emissions, better solids-handling capability, and can utilize a wetter feedstock, requiring less crushing and sizing. The lower operating temperature of CFBC boilers (820 C) reduces the risk of fouling and agglomeration. Care must be taken to minimize heat loss in the system to accommodate the low heating value of the coal.« less
USDA-ARS?s Scientific Manuscript database
Single kernel moisture content (MC) is important in the measurement of other quality traits in single kernels since many traits are expressed on a dry weight basis, and MC affects viability, storage quality, and price. Also, if near-infrared (NIR) spectroscopy is used to measure grain traits, the in...
Core vs. Bulk Samples in Soil-Moisture Tension Analyses
Walter M. Broadfoot
1954-01-01
The usual laboratory procedure in determining soil-moisture tension values is to use "undisturbed" soil cores for tensions up to 60 cm. of water and bulk soil samples for higher tensions. Low tensions are usually obtained with a tension table and the higher tensions by use of pressure plate apparatus. In tension analysis at the Vicksburg Infiltration Project...
USDA-ARS?s Scientific Manuscript database
A laboratory study was conducted to determine effects of pen location, moisture, and temperature on emissions of volatile organic compounds (VOC). Feedlot surface material (FSM) was obtained from pens where cattle were fed a diet containing 30% wet distillers grain plus soluble (WDGS). The FSM were ...
Measurement of moisture in smoldering smoke and implications for fog
Gary L. Achtemeier
2006-01-01
Smoke from wildland burning in association with fog has been implicated as a visibility hazard over roadways in the southern United States. A project began in 2002 to determine whether moisture released during the smoldering phases of southern prescribed burns could contribute to fog formation. Temperature and relative humidity measurements were taken from 27...
James P. Wacker; Christopher Adam Senalik; Xiping Wang; Frank Jalinoos
2016-01-01
Several nondestructive evaluation (NDE) technologies were studied to determine their efficacy as scanning devices to detect internal moisture and artificial decay pockets. Large bridge-sized test specimens, including sawn timber and glued-laminated timber members, were fabricated with various internal defects. NDE Technologies evaluated in this research were ground...
NASA Astrophysics Data System (ADS)
Kumar, Lokesh; Kumar, Shailesh; Khan, S. A.; Islam, Tariqul
2012-10-01
A moisture sensor was fabricated based on porous thin film of γ-Al2O3 formed between the parallel gold electrodes. The sensor works on capacitive technique. The sensing film was fabricated by dipcoating of aluminium hydroxide sol solution obtained from the sol-gel method. The porous structure of the film of γ-Al2O3 phase was obtained by sintering the film at 450 °C for 1 h. The electrical parameters of the sensor have been determined by Agilent 4294A impedance analyzer. The sensor so obtained is found to be sensitive in moisture range 100-600 ppmV. The response time of the sensor in ppmV range moisture is very low ~ 24 s and recovery time is ~ 37 s.
Orbiting passive microwave sensor simulation applied to soil moisture estimation
NASA Technical Reports Server (NTRS)
Newton, R. W. (Principal Investigator); Clark, B. V.; Pitchford, W. M.; Paris, J. F.
1979-01-01
A sensor/scene simulation program was developed and used to determine the effects of scene heterogeneity, resolution, frequency, look angle, and surface and temperature relations on the performance of a spaceborne passive microwave system designed to estimate soil water information. The ground scene is based on classified LANDSAT images which provide realistic ground classes, as well as geometries. It was determined that the average sensitivity of antenna temperature to soil moisture improves as the antenna footprint size increased. Also, the precision (or variability) of the sensitivity changes as a function of resolution.
Flow-induced vibration and fretting-wear damage in a moisture separator reheater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.
1996-12-01
Tube failures due to excessive flow-induced vibration were experienced in the tube bundles of moisture separator reheaters in a BWR nuclear station. This paper presents the results of a root cause analysis and covers recommendations for continued operation and for replacement tube bundles. The following tasks are discussed: tube failure analysis; flow velocity distribution calculations; flow-induced vibration analysis with particular emphasis on finned-tubes; fretting-wear testing of a tube and tube-support material combination under simulated operating conditions; field measurements of flow-induced vibration; and development of vibration specifications for replacement tube bundles. The effect of transient operating conditions and of other operationalmore » changes such as tube fouling were considered in the analysis. This paper outlines a typical field problem and illustrates the application of flow-induced vibration technology for the solution of a practical problem.« less
Measurement of heat and moisture exchanger efficiency.
Chandler, M
2013-09-01
Deciding between a passive heat and moisture exchanger or active humidification depends upon the level of humidification that either will deliver. Published international standards dictate that active humidifiers should deliver a minimum humidity of 33 mg.l(-1); however, no such requirement exists, for heat and moisture exchangers. Anaesthetists instead have to rely on information provided by manufacturers, which may not allow comparison of different devices and their clinical effectiveness. I suggest that measurement of humidification efficiency, being the percentage moisture returned and determined by measuring the temperature of the respired gases, should be mandated, and report a modification of the standard method that will allow this to be easily measured. In this study, different types of heat and moisture exchangers for adults, children and patients with a tracheostomy were tested. Adult and paediatric models lost between 6.5 mg.l(-1) and 8.5 mg.l(-1) moisture (corresponding to an efficiency of around 80%); however, the models designed for patients with a tracheostomy lost between 16 mg.l(-1) and 18 mg.l(-1) (60% efficiency). I propose that all heat and moisture exchangers should be tested in this manner and percentage efficiency reported to allow an informed choice between different types and models. © 2013 The Association of Anaesthetists of Great Britain and Ireland.
Dynamics of acoustic-convective drying of sunflower cake
NASA Astrophysics Data System (ADS)
Zhilin, A. A.
2017-10-01
The dynamics of drying sunflower cake by a new acoustic-convective method has been studied. Unlike the conventional (thermal-convective) method, the proposed method allows moisture to be extracted from porous materials without applying heat to the sample to be dried. Kinetic curves of drying by the thermal-convective and acoustic-convective methods were obtained and analyzed. The advantages of the acoustic-convective extraction of moisture over the thermal-convective method are discussed. The relaxation times of drying were determined for both drying methods. An intermittent drying mode which improves the efficiency of acoustic-convective extraction of moisture is considered.
Compression of rehydratable vegetables and cereals
NASA Technical Reports Server (NTRS)
Burns, E. E.
1978-01-01
Characteristics of freeze-dried compressed carrots, such as rehydration, volatile retention, and texture, were studied by relating histological changes to textural quality evaluation, and by determining the effects of storage temperature on freeze-dried compressed carrot bars. Results show that samples compressed with a high moisture content undergo only slight structural damage and rehydrate quickly. Cellular disruption as a result of compression at low moisture levels was the main reason for rehydration and texture differences. Products prepared from carrot cubes having 48% moisture compared favorably with a freshly cooked product in cohesiveness and elasticity, but were found slightly harder and more chewy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru
2014-03-01
A flat die pellet mill was used to understand the effect of high levels of feedstock moisture content in the range of 28–38% (w.b.), with die rotational speeds of 40–60 Hz, and preheating temperatures of 30–110 °C on the pelleting characteristics of 4.8 mm screen size ground corn stover using an 8 mm pellet die. The physical properties of the pelletised biomass studied are: (a) pellet moisture content, (b) unit, bulk and tapped density, and (c) durability. Pelletisation experiments were conducted based on central composite design. Analysis of variance (ANOVA) indicated that feedstock moisture content influenced all of the physicalmore » properties at P < 0.001. Pellet moisture content decreased with increase in preheating temperature to about 110 °C and decreasing the feedstock moisture content to about 28% (w.b.). Response surface models developed for quality attributes with respect to process variables has adequately described the process with coefficient of determination (R2) values of >0.88. The other pellet quality attributes such as unit, bulk, tapped density, were maximised at feedstock moisture content of 30–33% (w.b.), die speeds of >50 Hz and preheating temperature of >90 °C. In case of durability a medium moisture content of 33–34% (w.b.) and preheating temperatures of >70 °C and higher die speeds >50 Hz resulted in high durable pellets. It can be concluded from the present study that feedstock moisture content, followed by preheating, and die rotational speed are the interacting process variables influencing pellet moisture content, unit, bulk and tapped density and durability.« less
Synopsis of moisture monitoring by neutron probe in the unsaturated zone at Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vold, E.
1997-12-31
Moisture profiles from neutron probe data provide valuable information in site characterization and to supplement ground water monitoring efforts. The neutron probe precision error (reproducibility) is found to be about 0.2 vol% under in situ field conditions where the slope in moisture content with depth is varying slowly. This error is about 2 times larger near moisture spikes (e.g., at the vapor phase notch), due to the sensitivity of the probe response to vertical position errors on the order of 0.5 inches. Calibrations were performed to correct the downhole probe response to the volumetric moisture content determined on core samples.more » Calibration is sensitive to borehole diameter and casing type, requiring 3 separate calibration relations for the boreholes surveyed here. Power law fits were used for calibration in this study to assure moisture content results greater than zero. Findings in the boreholes reported here confirm the broad features seen previously in moisture profiles at Area G, a near-surface region with large moisture variability, a very dry region at greater depths, and a moisture spike at the vapor phase notch (VPN). This feature is located near the interface between the vitrified and vitrified stratigraphic units and near the base of the mesa. This report describes the in-field calibration methods used for the neutron moisture probe measurements and summarizes preliminary results of the monitoring program in the in-situ monitoring network at Area G. Reported results include three main areas: calibration studies, profiles from each of the vertical boreholes at Area G, and time-dependent variations in a select subset of boreholes. Results are reported here for the vertical borehole network. Results from the horizontal borehole network will be described when available.« less
NASA Astrophysics Data System (ADS)
Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Gao, Mao-Fang; Huo, Hong-Yuan
2017-09-01
Soil moisture has long been recognized as one of the essential variables in the water cycle and energy budget between Earth's surface and atmosphere. The present study develops a practical approach for deriving all-weather soil moisture using combined satellite images and gridded meteorological products. In this approach, soil moisture over the Moderate Resolution Imaging Spectroradiometer (MODIS) clear-sky pixels are estimated from the Vegetation Index/Temperature (VIT) trapezoid scheme in which theoretical dry and wet edges were determined pixel to pixel by China Meteorological Administration Land Data Assimilation System (CLDAS) meteorological products, including air temperature, solar radiation, wind speed and specific humidity. For cloudy pixels, soil moisture values are derived by the calculation of surface and aerodynamic resistances from wind speed. The approach is capable of filling the soil moisture gaps over remaining cloudy pixels by traditional optical/thermal infrared methods, allowing for a spatially complete soil moisture map over large areas. Evaluation over agricultural fields indicates that the proposed approach can produce an overall generally reasonable distribution of all-weather soil moisture. An acceptable accuracy between the estimated all-weather soil moisture and in-situ measurements at different depths could be found with an Root Mean Square Error (RMSE) varying from 0.067 m3/m3 to 0.079 m3/m3 and a slight bias ranging from 0.004 m3/m3 to -0.011 m3/m3. The proposed approach reveals significant potential to derive all-weather soil moisture using currently available satellite images and meteorological products at a regional or global scale in future developments.
NASA Astrophysics Data System (ADS)
Kamiri, Hellen; Kreye, Christine; Becker, Mathias
2013-04-01
Wetland soils play an important role as storage compartments for water, carbon and nutrients. These soils implies various conditions, depending on the water regimes that affect several important microbial and physical-chemical processes which in turn influence the transformation of organic and inorganic components of nitrogen, carbon, soil acidity and other nutrients. Particularly, soil carbon and nitrogen play an important role in determining the productivity of a soil whereas management practices could determine the rate and magnitude of nutrient turnover. A study was carried out in a floodplain wetland planted with rice in North-west Tanzania- East Africa to determine the effects of different management practices and soil water regimes on paddy soil organic carbon and nitrogen. Four management treatments were compared: (i) control (non weeded plots); (ii) weeded plots; (iii) N fertilized plots, and (iv) non-cropped (non weeded plots). Two soil moisture regimes included soil under field capacity (rainfed conditions) and continuous water logging compared side-by-side. Soil were sampled at the start and end of the rice cropping seasons from the two fields differentiated by moisture regimes during the wet season 2012. The soils differed in the total organic carbon and nitrogen between the treatments. Soil management including weeding and fertilization is seen to affect soil carbon and nitrogen regardless of the soil moisture conditions. Particularly, the padddy soils were higher in the total organic carbon under continuous water logged field. These findings are preliminary and a more complete understanding of the relationships between management and soil moisture on the temporal changes of soil properties is required before making informed decisions on future wetland soil carbon and nitrogen dynamics. Keywords: Management, nitrogen, paddy soil, total carbon, Tanzania,
[Study on seed quality test and quality standard of Pesudostellaria heterophylla].
Xiao, Cheng-Hong; Zhou, Tao; Jiang, Wei-Ke; Chen, Min; Xiong, Hou-Xi; Liao, Ming-Wu
2014-08-01
Referring to the rules for agricultural seed testing (GB /T 3543-1995) issued by China, the test of sampling, seed purity, weight per 1 000 seeds, seed moisture, seed viability and germination rate had been studied for screening seed quality test methods of Pesudostellaria heterophylla. The seed quality from different collection areas was measured. The results showed that at least 6.5 g seeds should be sampled and passed through 10-mesh sieve for purity analysis. The weight of 1 000 seeds was determined by using the 500-seed method. The phenotypic observation and size measurement were used for authenticity testing. The seed moisture was determined under the higher temperature (130 ± 2) degrees C for 5 hours. The seeds were dipped into 0.2% TTC sustaining 1 hour at 40 degrees C, then the viability could be determined. The break dormancy seeds were cultured on sand at 10 degrees C. K cluster analysis was applied for the data analysis, the seed quality from different collection areas grading of P. Heterophylla was described as three grades. The seed quality of each grade should reach following requirements: for first grade seeds, germination rate ≥ 86%, 1 000-grain weight ≥ 2.59 g, purity ≥ 87%, moisture ≤ 13.1%; for second grade seeds, germination rate ≥ 70%, 1 000-grain weight ≥ 2.40 g, purity ≥ 77%, moisture ≤ 14.3%; for third grade seeds, germination rate ≥ 41%, 1 000-grain weight ≥ 2.29 g, purity ≥ 76%, moisture ≤ 15.8%. The seed testing methods for quality items of P. heterophylla had been initially established, as well as the primary P. heterophylla seed quality classification standard.
Mäkelä, Mikko; Fraikin, Laurent; Léonard, Angélique; Benavente, Verónica; Fullana, Andrés
2016-03-15
The effects of hydrothermal treatment on the drying properties of sludge were determined. Sludge was hydrothermally treated at 180-260 °C for 0.5-5 h using NaOH and HCl as additives to influence reaction conditions. Untreated sludge and attained hydrochar samples were then dried under identical conditions with a laboratory microdryer and an X-ray microtomograph was used to follow changes in sample dimensions. The effective moisture diffusivities of sludge and hydrochar samples were determined and the effect of process conditions on respective mean diffusivities evaluated using multiple linear regression. Based on the results the drying time of untreated sludge decreased from approximately 80 min to 37-59 min for sludge hydrochar. Drying of untreated sludge was governed by the falling rate period where drying flux decreased continuously as a function of sludge moisture content due to heat and mass transfer limitations and sample shrinkage. Hydrothermal treatment increased the drying flux of sludge hydrochar and decreased the effect of internal heat and mass transfer limitations and sample shrinkage especially at higher treatment temperatures. The determined effective moisture diffusivities of sludge and hydrochar increased as a function of decreasing moisture content and the mean diffusivity of untreated sludge (8.56·10(-9) m(2) s(-1)) and sludge hydrochar (12.7-27.5·10(-9) m(2) s(-1)) were found statistically different. The attained regression model indicated that treatment temperature governed the mean diffusivity of hydrochar, as the effects of NaOH and HCl were statistically insignificant. The attained results enabled prediction of sludge drying properties through mean moisture diffusivity based on hydrothermal treatment conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Valasek, John; Henrickson, James V.; Bowden, Ezekiel; Shi, Yeyin; Morgan, Cristine L. S.; Neely, Haly L.
2016-05-01
As small unmanned aircraft systems become increasingly affordable, reliable, and formally recognized under federal regulation, they become increasingly attractive as novel platforms for civil applications. This paper details the development and demonstration of fixed-wing unmanned aircraft systems for precision agriculture tasks. Tasks such as soil moisture content and high throughput phenotyping are considered. Rationale for sensor, vehicle, and ground equipment selections are provided, in addition to developed flight operation procedures for minimal numbers of crew. Preliminary imagery results are presented and analyzed, and these results demonstrate that fixed-wing unmanned aircraft systems modified to carry non-traditional sensors at extended endurance durations can provide high quality data that is usable for serious scientific analysis.
NASA Astrophysics Data System (ADS)
Zhou, X.; Ackerman, A. S.; Fridlind, A. M.; Kollias, P.
2016-12-01
Large-eddy simulations are performed to study the mechanisms of stratocumulus organization. Precipitation tends to increase horizontal cloud scales, but is not required for cloud mesoscale organization. A study of the terms in the prognostic equation for total water mixing ratio variance shows the critical impact of vertical moisture gradient on cloud scale. For precipitating clouds, the organization originates from the negative moisture gradient in the boundary layer resulting from evaporation of precipitation. This hypothesis is supported by simulations in which thermodynamics profiles are nudged to their initial well-mixed state, which reduces cloud scales. Cold pools effect are surprisingly found to respond to rather than determine the cloud mesoscale variability. For non-precipitating clouds, organization results from turbulent transport of moisture variance originating primarily from cloud top, where dry air is entrained into the boundary layer through convection driven by cloud top longwave (LW) cooling. Both LW cooling and a moisture gradient above cloud top are essential for the growth of mesoscale fluctuations.
Laboratory experiments of heat and moisture fluxes through supraglacial debris
NASA Astrophysics Data System (ADS)
Nicholson, Lindsey; Mayer, Christoph; Wirbel, Anna
2014-05-01
Inspired by earlier work (Reznichenko et al., 2010), we have carried out experiments within a climate chamber to explore the best ways to measure the heat and moisture fluxes through supraglacial debris. Sample ice blocks were prepared with debris cover of varying lithology, grain size and thickness and were instrumented with a combination of Gemini TinyTag temperature/relative humidity sensors and Decagon soil moisture sensors in order to monitor the heat and moisture fluxes through the overlying debris material when the experiment is exposed to specified solar lamp radiation and laminar airflow within the temperature-controlled climate chamber. Experimental results can be used to determine the optimal set up for numerical models of heat and moisture flux through supraglacial debris and also indicate the performance limitations of such sensors that can be expected in field installations. Reznichenko, N., Davies, T., Shulmeister, J. and McSaveney, M. (2010) Effects of debris on ice-surface melting rates: an experimental study. Journal of Glaciology, Volume 56, Number 197, 384-394.
Moisture Risk in Unvented Attics Due to Air Leakage Paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prahl, D.; Shaffer, M.
2014-11-01
IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Wärme und Feuchte instationär Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated withmore » this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.« less
Moisture Risk in Unvented Attics Due to Air Leakage Paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prahl, D.; Shaffer, M.
2014-11-01
IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Warme und Feuchte instationar Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated withmore » this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.« less
Dynamic moisture sorption characteristics of enzyme-resistant recrystallized cassava starch.
Mutungi, Christopher; Schuldt, Stefan; Onyango, Calvin; Schneider, Yvonne; Jaros, Doris; Rohm, Harald
2011-03-14
The interaction of moisture with enzyme-resistant recrystallized starch, prepared by heat-moisture treatment of debranched acid-modified or debranched non-acid-modified cassava starch, was investigated in comparison with the native granules. Crystallinities of the powdered products were estimated by X-ray diffraction. Moisture sorption was determined using dynamic vapor sorption analyzer and data fitted to various models. Percent crystallinities of native starch (NS), non-acid-modified recrystallized starch (NAMRS), and acid-modified recrystallized starch (AMRS) were 39.7, 51.9, and 56.1%, respectively. In a(w) below 0.8, sorption decreased in the order NS > NAMRS > AMRS in line with increasing sample crystallinities but did not follow this crystallinity dependence at higher a(w) because of condensation and polymer dissolution effects. Adsorbed moisture became internally absorbed in NS but not in NAMRS and AMRS, which might explain the high resistance of the recrystallized starches to digestion because enzyme and starch cannot approach each other over fairly sufficient surface at the molecular level.
Active microwave measurement of soil water content
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Cihlar, J.; Moore, R. K.
1974-01-01
Measurements of radar backscatter from bare soil at 4.7, 5.9, and 7.1 GHz for incident angles of 0-70 deg have been analyzed to determine sensitivity to soil moisture. Because the effective depth of penetration of the radar signal is only about one skin depth, the observed signals were correlated with the moisture in a skin depth as characterized by the attenuation coefficient (reciprocal of skin depth). Since the attenuation coefficient is a monotonically increasing function of moisture density, it may also be used as a measure of moisture content over the distance involved, which varies with frequency and moisture content. The measurements show an approximately linear increase in scattering with attenuation coefficient of the soil at angles within 10 deg of vertical and all frequencies. At 4.7 GHz this increase continues relatively large out to 70 deg incidence, but by 7.1 GHz the sensitivity is much less even at 20 deg and practically gone at 50 deg.
NASA Astrophysics Data System (ADS)
Hamim, Salah Uddin Ahmed
2011-12-01
Epoxy polymers are an important class of material for use in various applications. Due to their hydrophilic nature, epoxy resins tend to absorb moisture. Absorption of moisture degrades the functional, structural and mechanical properties. For polymers, moisture absorption can lead to both reversible and irreversible changes. In this study, the combined effect of moisture and elevated temperature on the mechanical properties of Epon 862 and its nanocomposites were investigated. The extent of permanent damage on fracture toughness and flexural properties of epoxy, due to the aggressive degradation provided by hygrothermal ageing, was determined by drying the epoxy and their clay/epoxy nanocomposites after moisture absorption. From the investigation it was found out that, clay can help in reducing the negative effect of hygrothermal ageing. Significant permanent damage was observed for fracture toughness and modulus, while the extent of permanent damage was less significant for flexural strength. Failure mechanism of this nanocomposites were studied by using Scanning Electron Microscopy (SEM).
Okamoto, A; Miyachi, H; Tanaka, K; Chikazu, D; Miyaoka, H
2016-12-01
Patients with schizophrenia are most commonly treated with antipsychotic medications, often with the addition of anxiolytics. This study used an oral moisture meter to evaluate xerostomia in patients with schizophrenia taking typical and atypical antipsychotics, anxiolytics and non-psychotropic medications. Patients diagnosed with schizophrenia according to ICD-10 criteria in the Department of Psychiatry, Kitasato University East, and affiliated hospitals were studied. All patients were on psychotropic medications. Patients with diseases associated with xerostomia, such as Sjögren's syndrome I, were excluded. A total of 127 patients were enrolled. Mean oral moisture was 27·81 ± 2·27% (normal, ≥30·0%). A significant association was observed between objective oral moisture and the subjective sense of dry mouth. Multivariate analysis revealed a negative correlation between the number of antipsychotics and, especially, anxiolytics, and the degree of oral moisture. Drug dosages themselves were not significantly correlated with dry mouth. These findings suggest that objective oral moisture measurements show decreased moisture in patients on these medications and that the degree of moisture shows a greater negative correlation with the number, as opposed to the dosages, of psychotropic drugs administered. When patients with schizophrenia visit a dental clinic, it is important for the dentist to accurately assess the degree of oral moisture and to determine the medications being taken. Based on these findings of the association of polypharmacy with xerostomia, dentists are encouraged to inform the psychiatrist of the need to actively manage patients' xerostomia. © 2016 John Wiley & Sons Ltd.
Using SMAP to identify structural errors in hydrologic models
NASA Astrophysics Data System (ADS)
Crow, W. T.; Reichle, R. H.; Chen, F.; Xia, Y.; Liu, Q.
2017-12-01
Despite decades of effort, and the development of progressively more complex models, there continues to be underlying uncertainty regarding the representation of basic water and energy balance processes in land surface models. Soil moisture occupies a central conceptual position between atmosphere forcing of the land surface and resulting surface water fluxes. As such, direct observations of soil moisture are potentially of great value for identifying and correcting fundamental structural problems affecting these models. However, to date, this potential has not yet been realized using satellite-based retrieval products. Using soil moisture data sets produced by the NASA Soil Moisture Active/Passive mission, this presentation will explore the use of the remotely-sensed soil moisture data products as a constraint to reject certain types of surface runoff parameterizations within a land surface model. Results will demonstrate that the precision of the SMAP Level 4 Surface and Root-Zone soil moisture product allows for the robust sampling of correlation statistics describing the true strength of the relationship between pre-storm soil moisture and subsequent storm-scale runoff efficiency (i.e., total storm flow divided by total rainfall both in units of depth). For a set of 16 basins located in the South-Central United States, we will use these sampled correlations to demonstrate that so-called "infiltration-excess" runoff parameterizations under predict the importance of pre-storm soil moisture for determining storm-scale runoff efficiency. To conclude, we will discuss prospects for leveraging this insight to improve short-term hydrologic forecasting and additional avenues for SMAP soil moisture products to provide process-level insight for hydrologic modelers.
Hiew, Tze Ning; Huang, Rongying; Popov, Ivan; Feldman, Yuri; Heng, Paul Wan Sia
2017-12-01
This study explored the potential of combining the use of moisture sorption isotherms and dielectric relaxation profiles of starch and sodium starch glycolate (SSG) to probe the location of moisture in dried and hydrated samples. Starch and SSG samples, dried and hydrated, were prepared. For hydrated samples, their moisture contents were determined. The samples were probed by dielectric spectroscopy using a frequency band of 0.1 Hz to 1 MHz to investigate their moisture-related relaxation profiles. The moisture sorption and desorption isotherms of starch and SSG were generated using a vapor sorption analyzer, and modeled using the Guggenheim-Anderson-de Boer equation. A clear high frequency relaxation process was detected in both dried and hydrated starches, while for dried starch, an additional slower low frequency process was also detected. The high frequency relaxation processes in hydrated and dried starches were assigned to the coupled starch-hydrated water relaxation. The low frequency relaxation in dried starch was attributed to the local chain motions of the starch backbone. No relaxation process associated with water was detected in both hydrated and dried SSG within the frequency and temperature range used in this study. The moisture sorption isotherms of SSG suggest the presence of high energy free water, which could have masked the relaxation process of the bound water during dielectric measurements. The combined study of moisture sorption isotherms and dielectric spectroscopy was shown to be beneficial and complementary in probing the effects of moisture on the relaxation processes of starch and SSG.
Collell, Carles; Gou, Pere; Arnau, Jacint; Muñoz, Israel; Comaposada, Josep
2012-12-01
Three different NIR equipment were evaluated based on their ability to predict superficial water activity (a(w)) and moisture content in two types of fermented sausages (with and without moulds on surface), using partial least squares (PLS) regression models. The instruments differed mainly in wavelength range, resolution and measurement configuration. The most accurate equipment was used in a new experiment to achieve robust models in sausages with different salt contents and submitted to different drying conditions. The models developed showed determination coefficients (R(2)(P)) values of 0.990, 0.910 and 0.984, and RMSEP values of 1.560%, 0.220% and 0.007% for moisture, salt and a(w) respectively. It was demonstrated that NIR spectroscopy could be a suitable non-destructive method for on-line monitoring and control of the drying process in fermented sausages. Copyright © 2012 Elsevier Ltd. All rights reserved.
Determination of irrigation pumpage in parts of Kearny and Finney Counties, southwestern Kansas
Lindgren, R.J.
1982-01-01
Irrigation pumpage was determined for parts of Kearny and Finney Counties in Southwestern Kansas using crop-acreage data and consumptive, irrigation-water requirements. Irrigated acreages for 1974-80 were compiled for wheat, grain sorghum, corn, and alfalfa using records from the U.S. Agricultural Stabilization and Conservation Service. Consumptive-irrigation requirements were computed using a soil-moisture model. The model tabulated monthly soil-moisture and crop-water demand for various crops and computed the volume of irrigation water needed to maintain the available moisture at 50% for loamy soils or at 60% for sandy soils. Irrigated acres in the study area increased from 265,000 acres during 1974 to 321,000 acres during 1980. Irrigation pumpage increased from 584,000 acre-feet during 1974 to 738,000 acre-feet during 1980. Decreased consumptive-irrigation requirements during 1979 resulted in a comparatively small irrigation-pumpage estimate of 458,000 acre-feet. (USGS)
Effects of core sealing methods on the preservation of pore water
Striffler, Pete; Peters, Charles A.
1993-01-01
Five general core sealing methods (using Protecore, Lexan, wax, Protecore with wax, and Protecore with Lexan) were studied over a two year period to determine their moisture retention capabilities. Results indicate that the multibarrier methods (Protecore with wax and Protecore with Lexan) and the single barrier methods (Protecore and wax) provide successful means of retaining moisture in cores. Additional testing indicated that a tight wrap of Saran is effective in: 1) protecting the outer vapor barriers from puncture, 2) containing any condensate in close proximity to where it was condensed, and 3) retarding condensation. Tests conducted to determine the moisture adsorption potential of wax and the use of applying a positive or negative pressure to Protecore packets proved inconclusive, but warrant further investigation. The importance of proper and timely handling of core samples in the field, including refrigeration and weighing of samples, can not be overstated.
Survey of in-situ and remote sensing methods for soil moisture determination
NASA Technical Reports Server (NTRS)
Schmugge, T. J.; Jackson, T. J.; Mckim, H. L.
1981-01-01
General methods for determining the moisture content in the surface layers of the soil based on in situ or point measurements, soil water models and remote sensing observations are surveyed. In situ methods described include gravimetric techniques, nuclear techniques based on neutron scattering or gamma-ray attenuation, electromagnetic techniques, tensiometric techniques and hygrometric techniques. Soil water models based on column mass balance treat soil moisture contents as a result of meteorological inputs (precipitation, runoff, subsurface flow) and demands (evaporation, transpiration, percolation). The remote sensing approaches are based on measurements of the diurnal range of surface temperature and the crop canopy temperature in the thermal infrared, measurements of the radar backscattering coefficient in the microwave region, and measurements of microwave emission or brightness temperature. Advantages and disadvantages of the various methods are pointed out, and it is concluded that a successful monitoring system must incorporate all of the approaches considered.
See, R.B.; Reddy, M.M.; Martin, R.G.
1988-01-01
Three moisture sensors were tested as a means for determining the surface wetness on carbonate building stones exposed to conditions that produce deposition of moisture. A relative-humidity probe, a gypsum-coated circuit grid, and a limestone-block resistor were tested as sensors for determining surface wetness. Sensors were tested under laboratory conditions of constant relative humidity and temperature and also under on-site conditions of variable relative humidity and temperature for eight weeks at Newcomb, NY. Laboratory tests indicated that relative humidity alone did not cause sensors to become saturated with water. However, the rates of drying indicated by the sensors after an initial saturation were inversely related to the relative humidity. On-site testing of the relative-humidity probe and the gypsum-coated ciruit grid indicated that they respond to a diurnal wetting and drying cycle; the limestone-block resistor responded only to rainfall.
NASA Astrophysics Data System (ADS)
Dikmen, Erkan; Ayaz, Mahir; Gül, Doğan; Şahin, Arzu Şencan
2017-07-01
The determination of drying behavior of herbal plants is a complex process. In this study, gene expression programming (GEP) model was used to determine drying behavior of herbal plants as fresh sweet basil, parsley and dill leaves. Time and drying temperatures are input parameters for the estimation of moisture ratio of herbal plants. The results of the GEP model are compared with experimental drying data. The statistical values as mean absolute percentage error, root-mean-squared error and R-square are used to calculate the difference between values predicted by the GEP model and the values actually observed from the experimental study. It was found that the results of the GEP model and experimental study are in moderately well agreement. The results have shown that the GEP model can be considered as an efficient modelling technique for the prediction of moisture ratio of herbal plants.
NASA Astrophysics Data System (ADS)
Schrön, M.; Fersch, B.; Jagdhuber, T.
2017-12-01
The representative determination of soil moisture across different spatial ranges and scales is still an important challenge in hydrology. While in situ measurements are trusted methods at the profile- or point-scale, cosmic-ray neutron sensors (CRNS) are renowned for providing volume averages for several hectares and tens of decimeters depth. On the other hand, airborne remote-sensing enables the coverage of regional scales, however limited to the top few centimeters of the soil.Common to all of these methods is a challenging data processing part, often requiring calibration with independent data. We investigated the performance and potential of three complementary observational methods for the determination of soil moisture below grassland in an alpine front-range river catchment (Rott, 55 km2) of southern Germany.We employ the TERENO preAlpine soil moisture monitoring network, along with additional soil samples taken throughout the catchment. Spatial soil moisture products have been generated using surveys of a car-mounted mobile CRNS (rover), and an aerial acquisition of the polarimetric synthetic aperture radar (F-SAR) of DLR.The study assesses (1) the viability of the different methods to estimate soil moisture for their respective scales and extents, and (2) how either method could support an improvement of the others. We found that in situ data can provide valuable information to calibrate the CRNS rover and to train the vegetation removal part of the polarimetric SAR (PolSAR) retrieval algorithm. Vegetation correction is mandatory to obtain the sub-canopy soil moisture patterns. While CRNS rover surveys can be used to evaluate the F-SAR product across scales, vegetation-related PolSAR products in turn can support the spatial correction of CRNS products for biomass water. Despite the different physical principles, the synthesis of the methods can provide reasonable soil moisture information by integrating from the plot to the landscape scale. The combination of in situ, CRNS, and remote-sensing data leads to substantial improvement, especially for the latter two. The study shows how interdisciplinary research can greatly advance the methodology and processing algorithms for individual geoscientific instruments and their hydrologically relevant products.
NASA Astrophysics Data System (ADS)
Yoshida, N.; Oki, T.
2016-12-01
Appropriate initial condition of soil moisture and water table depth are important factors to reduce uncertainty in hydrological simulations. Approaches to determine the initial water table depth have been developed because of difficulty to get information on global water table depth and soil moisture distributions. However, how is equilibrium soil moisture determined by climate conditions? We try to discuss this issue by using land surface model with representation of water table dynamics (MAT-GW). First, the global pattern of water table depth at equilibrium soil moisture in MAT-GW was verified. The water table depth in MAT-GW was deeper than the previous one at fundamentally arid region because the negative recharge and continuous baseflow made water table depth deeper. It indicated that the hydraulic conductivity used for estimating recharge and baseflow need to be reassessed in MAT-GW. In soil physics field, it is revealed that proper hydraulic property models for water retention and unsaturated hydraulic conductivity should be selected for each soil type. So, the effect of selecting hydraulic property models on terrestrial soil moisture and water table depth were examined.Clapp and Hornburger equation(CH eq.) and Van Genuchten equation(VG eq.) were used as representative hydraulic property models. Those models were integrated on MAT-GW and equilibrium soil moisture and water table depth with using each model were compared. The water table depth and soil moisture at grids which reached equilibrium in both simulations were analyzed. The equilibrium water table depth were deeper in VG eq. than CH eq. in most grids due to shape of hydraulic property models. Then, total soil moisture were smaller in VG eq. than CH eq. at almost all grids which water table depth reached equilibrium. It is interesting that spatial patterns which water table depth reached equilibrium or not were basically similar in both simulations but reverse patterns were shown in east and west part of America. Selection of each hydraulic property model based on soil types may compensate characteristic of models in initialization.
Soil Moisture and Snow Cover: Active or Passive Elements of Climate?
NASA Technical Reports Server (NTRS)
Oglesby, Robert J.; Marshall, Susan; Erickson, David J., III; Robertson, Franklin R.; Roads, John O.; Arnold, James E. (Technical Monitor)
2002-01-01
A key question in the study of the hydrologic cycle is the extent to which surface effects such as soil moisture and snow cover are simply passive elements or whether they can affect the evolution of climate on seasonal and longer time scales. We have constructed ensembles of predictability studies using the NCAR CCM3 in which we compared the relative roles of initial surface and atmospheric conditions over the central and western U.S. in determining the subsequent evolution of soil moisture and of snow cover. We have also made sensitivity studies with exaggerated soil moisture and snow cover anomalies in order to determine the physical processes that may be important. Results from simulations with realistic soil moisture anomalies indicate that internal climate variability may be the strongest factor, with some indication that the initial atmospheric state is also important. The initial state of soil moisture does not appear important, a result that held whether simulations were started in late winter or late spring. Model runs with exaggerated soil moisture reductions (near-desert conditions) showed a much larger effect, with warmer surface temperatures, reduced precipitation, and lower surface pressures; the latter indicating a response of the atmospheric circulation. These results suggest the possibility of a threshold effect in soil moisture, whereby an anomaly must be of a sufficient size before it can have a significant impact on the atmospheric circulation and hence climate. Results from simulations with realistic snow cover anomalies indicate that the time of year can be crucial. When introduced in late winter, these anomalies strongly affected the subsequent evolution of snow cover. When introduced in early winter, however, little or no effect is seen on the subsequent snow cover. Runs with greatly exaggerated initial snow cover indicate that the high reflectively of snow is the most important process by which snow cover cart impact climate, through lower surface temperatures and increased surface pressures. In early winter, the amount of solar radiation is very small and so this albedo effect is inconsequential while in late winter, with the sun higher in the sky and period of daylight longer, the effect is much stronger.
Remote Sensing Soil Moisture Analysis by Unmanned Aerial Vehicles Digital Imaging
NASA Astrophysics Data System (ADS)
Yeh, C. Y.; Lin, H. R.; Chen, Y. L.; Huang, S. Y.; Wen, J. C.
2017-12-01
In recent years, remote sensing analysis has been able to apply to the research of climate change, environment monitoring, geology, hydro-meteorological, and so on. However, the traditional methods for analyzing wide ranges of surface soil moisture of spatial distribution surveys may require plenty resources besides the high cost. In the past, remote sensing analysis performed soil moisture estimates through shortwave, thermal infrared ray, or infrared satellite, which requires lots of resources, labor, and money. Therefore, the digital image color was used to establish the multiple linear regression model. Finally, we can find out the relationship between surface soil color and soil moisture. In this study, we use the Unmanned Aerial Vehicle (UAV) to take an aerial photo of the fallow farmland. Simultaneously, we take the surface soil sample from 0-5 cm of the surface. The soil will be baking by 110° C and 24 hr. And the software ImageJ 1.48 is applied for the analysis of the digital images and the hue analysis into Red, Green, and Blue (R, G, B) hue values. The correlation analysis is the result from the data obtained from the image hue and the surface soil moisture at each sampling point. After image and soil moisture analysis, we use the R, G, B and soil moisture to establish the multiple regression to estimate the spatial distributions of surface soil moisture. In the result, we compare the real soil moisture and the estimated soil moisture. The coefficient of determination (R2) can achieve 0.5-0.7. The uncertainties in the field test, such as the sun illumination, the sun exposure angle, even the shadow, will affect the result; therefore, R2 can achieve 0.5-0.7 reflects good effect for the in-suit test by using the digital image to estimate the soil moisture. Based on the outcomes of the research, using digital images from UAV to estimate the surface soil moisture is acceptable. However, further investigations need to be collected more than ten days (four times a day) data to verify the relation between the image hue and the soil moisture for reliable moisture estimated model. And it is better to use the digital single lens reflex camera to prevent the deformation of the image and to have a better auto exposure. Keywords: soil, moisture, remote sensing
Estimation of climate change impact on dead fuel moisture at local scale by using weather generators
NASA Astrophysics Data System (ADS)
Pellizzaro, Grazia; Bortolu, Sara; Dubrovsky, Martin; Arca, Bachisio; Ventura, Andrea; Duce, Pierpaolo
2015-04-01
The moisture content of dead fuel is an important variable in fire ignition and fire propagation. Moisture exchange in dead materials is controlled by physical processes, and is clearly dependent on atmospheric changes. According to projections of future climate in Southern Europe, changes in temperature, precipitation and extreme events are expected. More prolonged drought seasons could influence fuel moisture content and, consequently, the number of days characterized by high ignition danger in Mediterranean ecosystems. The low resolution of the climate data provided by the general circulation models (GCMs) represents a limitation for evaluating climate change impacts at local scale. For this reason, the climate research community has called to develop appropriate downscaling techniques. One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking a stochastic weather generator with the climate model outputs. Weather generators linked to climate change scenarios can therefore be used to create synthetic weather series (air temperature and relative humidity, wind speed and precipitation) representing present and future climates at local scale. The main aims of this work are to identify useful tools to determine potential impacts of expected climate change on dead fuel status in Mediterranean shrubland and, in particular, to estimate the effect of climate changes on the number of days characterized by critical values of dead fuel moisture. Measurements of dead fuel moisture content (FMC) in Mediterranean shrubland were performed by using humidity sensors in North Western Sardinia (Italy) for six years. Meteorological variables were also recorded. Data were used to determine the accuracy of the Canadian Fine Fuels Moisture Code (FFM code) in modelling moisture dynamics of dead fuel in Mediterranean vegetation. Critical threshold values of FFM code for Mediterranean climate were identified by percentile analysis, and new fuel moisture code classes were also defined. A stochastic weather generator (M&Rfi), linked to climate change scenarios derived from 17 available General Circulation Models (GCMs), was used to produce synthetic weather series, representing present and future climates, for four selected sites located in North Western Sardinia, Italy. The number of days with critical FFM code values for present and future climate were calculated and the potential impact of future climate change was analysed.
Vera Steckel; Craig Merrill Clemons; Heiko Thoemen
2007-01-01
Composites of wood in a thermoplastic matrix (woodâplastic composites) are considered a low maintenance solution to using wood in outdoor applications. Knowledge of moisture uptake and transport properties would be useful in estimating moisture-related effects such as fungal attack and loss of mechanical strength. Our objectives were to determine how material...
USDA-ARS?s Scientific Manuscript database
Impedance (Z), and phase angle (') of a cylindrical parallel-plate capacitor with dry fruits between the plates was measured using a CI meter (Chari’s Impedance meter), at 1 and 9 MHz . Capacitance, C was derived from Z and ', and using the C, ', and Z values of a set of cherries whose moisture con...
Influence of moisture on brown-rot fungal attack on wood
R.M. Rowell; R.E. Ibach; T. Nilsson
2007-01-01
Southern pine solid wood and wood fiber were reacted with acetic anhydride to various acetyl weight gains. The equilibrium moisture content (EMC) was determined on these specimens at 30%, 65% and 90% relative humidity (RH) and 27 °C. A standard soil block decay test using the brown-rot fungus Gloeophyllum trabeum was performed and weight loss calculated. Two...
Measurement of Moisture Content in Seeds of Some North American Hardwoods
F. T. Bonner
1972-01-01
Current International rules (International Seed Testing Association, 1966) for determination of moisture content specify the air-oven method at 105 °C for all tree seeds except those of Ables, Cedrus. Fagus, Picea, and Tsuga, for which the toluene distillation method must be used. Calibration of air-oven methods against a good reference method, such as toluene...
Peter R. Robichaud; D. S. Gasvoda; Roger D. Hungerford; J. Bilskie; Louise E. Ashmun; J. Reardon
2004-01-01
Duff water content is an important consideration for fire managers when determining favourable timing for prescribed fire ignition. The duff consumption during burning depends largely on the duff water content at the time of ignition. A portable duff moisture meter was developed for real-time water content measurements of nonhomogenous material such as forest duff....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Kazuei, E-mail: k-ishii@eng.hokudai.ac.jp; Furuichi, Toru
Highlights: • Optimized conditions were determined for the production of rice straw pellets. • The moisture content and forming temperature are key factors. • High quality rice pellets in the lower heating value and durability were produced. - Abstract: A large amount of rice straw is generated and left as much in paddy fields, which causes greenhouse gas emissions as methane. Rice straw can be used as bioenergy. Rice straw pellets are a promising technology because pelletization of rice straw is a form of mass and energy densification, which leads to a product that is easy to handle, transport, storemore » and utilize because of the increase in the bulk density. The operational conditions required to produce high quality rice straw pellets have not been determined. This study determined the optimal moisture content range required to produce rice straw pellets with high yield ratio and high heating value, and also determined the influence of particle size and the forming temperature on the yield ratio and durability of rice straw pellets. The optimal moisture content range was between 13% and 20% under a forming temperature of 60 or 80 °C. The optimal particle size was between 10 and 20 mm, considering the time and energy required for shredding, although the particle size did not significantly affect the yield ratio and durability of the pellets. The optimized conditions provided high quality rice straw pellets with nearly 90% yield ratio, ⩾12 MJ/kg for the lower heating value, and >95% durability.« less
NASA Astrophysics Data System (ADS)
M Ali, M. K.; Ruslan, M. H.; Muthuvalu, M. S.; Wong, J.; Sulaiman, J.; Yasir, S. Md.
2014-06-01
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m2 and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R2), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Ali, M. K., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com; Ruslan, M. H., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com; Muthuvalu, M. S., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my
2014-06-19
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m{sup 2} and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea ofmore » this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R{sup 2}), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.« less
NASA Astrophysics Data System (ADS)
Dong, J.; Steele-Dunne, S. C.; Ochsner, T. E.; Van De Giesen, N.
2015-12-01
Soil moisture, hydraulic and thermal properties are critical for understanding the soil surface energy balance and hydrological processes. Here, we will discuss the potential of using soil temperature observations from Distributed Temperature Sensing (DTS) to investigate the spatial variability of soil moisture and soil properties. With DTS soil temperature can be measured with high resolution (spatial <1m, and temporal < 1min) in cables up to kilometers in length. Soil temperature evolution is primarily controlled by the soil thermal properties, and the energy balance at the soil surface. Hence, soil moisture, which affects both soil thermal properties and the energy that participates the evaporation process, is strongly correlated to the soil temperatures. In addition, the dynamics of the soil moisture is determined by the soil hydraulic properties.Here we will demonstrate that soil moisture, hydraulic and thermal properties can be estimated by assimilating observed soil temperature at shallow depths using the Particle Batch Smoother (PBS). The PBS can be considered as an extension of the particle filter, which allows us to infer soil moisture and soil properties using the dynamics of soil temperature within a batch window. Both synthetic and real field data will be used to demonstrate the robustness of this approach. We will show that the proposed method is shown to be able to handle different sources of uncertainties, which may provide a new view of using DTS observations to estimate sub-meter resolution soil moisture and properties for remote sensing product validation.
Kauppinen, Ari; Toiviainen, Maunu; Korhonen, Ossi; Aaltonen, Jaakko; Järvinen, Kristiina; Paaso, Janne; Juuti, Mikko; Ketolainen, Jarkko
2013-02-19
During the past decade, near-infrared (NIR) spectroscopy has been applied for in-line moisture content quantification during a freeze-drying process. However, NIR has been used as a single-vial technique and thus is not representative of the entire batch. This has been considered as one of the main barriers for NIR spectroscopy becoming widely used in process analytical technology (PAT) for freeze-drying. Clearly it would be essential to monitor samples that reliably represent the whole batch. The present study evaluated multipoint NIR spectroscopy for in-line moisture content quantification during a freeze-drying process. Aqueous sucrose solutions were used as model formulations. NIR data was calibrated to predict the moisture content using partial least-squares (PLS) regression with Karl Fischer titration being used as a reference method. PLS calibrations resulted in root-mean-square error of prediction (RMSEP) values lower than 0.13%. Three noncontact, diffuse reflectance NIR probe heads were positioned on the freeze-dryer shelf to measure the moisture content in a noninvasive manner, through the side of the glass vials. The results showed that the detection of unequal sublimation rates within a freeze-dryer shelf was possible with the multipoint NIR system in use. Furthermore, in-line moisture content quantification was reliable especially toward the end of the process. These findings indicate that the use of multipoint NIR spectroscopy can achieve representative quantification of moisture content and hence a drying end point determination to a desired residual moisture level.
Measurement of Moisture in Wood for Application in the Restoration of Old Buildings.
Moron, Carlos; Garcia-Fuentevilla, Luisa; Garcia, Alfonso; Moron, Alberto
2016-05-14
There are many historic buildings whose construction is based on timber frame walls. Most buildings built during the nineteenth and early twentieth centuries were based on timber frame walls with vertical support elements. These timber frame elements are affected by their moisture content and by the passage of time. If the interaction of the timber frame walls with hygrothermal fluctuations were known, the maintenance of these buildings could be improved significantly. To determine the moisture content of wood there are two types of meters on the market: on the one hand, capacitance meters which consist of two side ends and where the moisture content is measured locally between two peaks. On the other hand, there are meters based on the variation of electromagnetic transmittance of timber, which depends on the moisture of timber. The second ones are very expensive and difficult to handle. This work presents a new non-intrusive capacitive sensor that measures the global moisture content in a section of the timber frame walls and therefore its accuracy is similar to the accuracy that can be obtained with electromagnetic transmittance meters. Additionally, as it is a capacitive sensor, it is low cost and easy to operate.
Development of a Moisture-in-Solid-Insulation Sensor for Power Transformers
García, Belén; García, Diego; Robles, Guillermo
2015-01-01
Moisture is an important variable that must be kept under control to guarantee a safe operation of power transformers. Because of the hydrophilic character of cellulose, water mainly remains in the solid insulation, while just a few parts per million are dissolved in oil. The distribution of moisture between paper and oil is not static, but varies depending on the insulation temperature, and thus, water migration processes take place continuously during transformers operation. In this work, a sensor is presented that allows the determination of the moisture content of the transformer solid insulation in the steady state and during the moisture migration processes. The main objective of the design is that the electrodes of the sensor should not obstruct the movement of water from the solid insulation to the oil, so the proposed prototype uses a metallic-mesh electrode to do the measurements. The measurement setup is based on the characterization of the insulation dielectric response by means of the frequency dielectric spectroscopy (FDS) method. The sensitivity of the proposed sensor has been tested on samples with a moisture content within 1% to 5%, demonstrating the good sensitivity and repeatability of the measurements. PMID:25658393
Development of a moisture-in-solid-insulation sensor for power transformers.
García, Belén; García, Diego; Robles, Guillermo
2015-02-04
Moisture is an important variable that must be kept under control to guarantee a safe operation of power transformers. Because of the hydrophilic character of cellulose, water mainly remains in the solid insulation, while just a few parts per million are dissolved in oil. The distribution of moisture between paper and oil is not static, but varies depending on the insulation temperature, and thus, water migration processes take place continuously during transformers operation. In this work, a sensor is presented that allows the determination of the moisture content of the transformer solid insulation in the steady state and during the moisture migration processes. The main objective of the design is that the electrodes of the sensor should not obstruct the movement of water from the solid insulation to the oil, so the proposed prototype uses a metallic-mesh electrode to do the measurements. The measurement setup is based on the characterization of the insulation dielectric response by means of the frequency dielectric spectroscopy (FDS) method. The sensitivity of the proposed sensor has been tested on samples with a moisture content within 1% to 5%, demonstrating the good sensitivity and repeatability of the measurements.
Measurement of Moisture in Wood for Application in the Restoration of Old Buildings
Moron, Carlos; Garcia-Fuentevilla, Luisa; Garcia, Alfonso; Moron, Alberto
2016-01-01
There are many historic buildings whose construction is based on timber frame walls. Most buildings built during the nineteenth and early twentieth centuries were based on timber frame walls with vertical support elements. These timber frame elements are affected by their moisture content and by the passage of time. If the interaction of the timber frame walls with hygrothermal fluctuations were known, the maintenance of these buildings could be improved significantly. To determine the moisture content of wood there are two types of meters on the market: on the one hand, capacitance meters which consist of two side ends and where the moisture content is measured locally between two peaks. On the other hand, there are meters based on the variation of electromagnetic transmittance of timber, which depends on the moisture of timber. The second ones are very expensive and difficult to handle. This work presents a new non-intrusive capacitive sensor that measures the global moisture content in a section of the timber frame walls and therefore its accuracy is similar to the accuracy that can be obtained with electromagnetic transmittance meters. Additionally, as it is a capacitive sensor, it is low cost and easy to operate. PMID:27187410
Zheng, S; Wang, C; Shen, Z; Quan, Y; Liu, X
2015-01-01
This study presents an efficient heavy metal (HM) control method in HM-contaminated wetlands with varied soil moisture levels through the introduction of extrinsic arbuscular mycorrhizal fungi (AMF) into natural wetland soil containing indigenous AMF species. A pot culture experiment was designed to determine the effect of two soil water contents (5-8% and 25-30%), five extrinsic AMF inoculants (Glomus mosseae, G. clarum, G. claroideum, G. etunicatum, and G. intraradices), and HM contamination on root colonization, plant growth, and element uptake of common reed (Phragmites australis (Cav.) Trin. ex Steudel) plantlets in wetland soils. This study showed the prevalence of mycorrhizae in the roots of all P. australis plantlets, regardless of extrinsic AMF inoculations, varied soil moisture or HM levels. It seems that different extrinsic AMF inoculations effectively lowered HM concentrations in the aboveground tissues of P. australis at two soil moisture levels. However, metal species, metal concentrations, and soil moisture should also be very important factors influencing the elemental uptake performance of plants in wetland ecosystems. Besides, the soil moisture level significantly influenced plant growth (including height, and shoot and root dry weight (DW)), and extrinsic AMF inoculations differently affected shoot DW.
Thermal Catalytic Syngas Cleanup for High-Efficiency Waste-to-Energy Converters
2015-12-01
characteristics for a full-scale WEC based on the collected experimental data. 20 RESULTS AND DISCUSSION Task 1 – Tar-Cracking Reactor...prepared to show the effect of reaching the target throughput rate of 50 lb/hr on conversion efficiency. In scaling up the experimental results , the...Midmoisture Full Moisture Fuel Feed Rate, kg/hr 22.3 22.3 22.3 Results Using the Experimental Recuperator Effectiveness Fuel Energy In, kWth 160 136 121
Ding, Jinfeng; Li, Chunyan
2018-01-01
Jiangsu is an important agricultural province in China. Winter wheat, as the second major grain crop in the province, is greatly affected by moisture variations. The objective of this study was to investigate whether there were significant trends in changes in the moisture conditions during wheat growing seasons over the past decades and how the wheat yields responded to different moisture levels by means of a popular drought index, the Standardized Precipitation Evapotranspiration Index (SPEI). The study started with a trend analysis and quantification of the moisture conditions with the Mann-Kendall test and Sen’s Slope method, respectively. Then, correlation analysis was carried out to determine the relationship between de-trended wheat yields and multi-scalar SPEI. Finally, a multivariate panel regression model was established to reveal the quantitative yield responses to moisture variations. The results showed that the moisture conditions in Jiangsu were generally at a normal level, but this century appeared slightly drier in because of the relatively high temperatures. There was a significant correlation between short time scale SPEI values and wheat yields. Among the three critical stages of wheat development, the SPEI values in the late growth stage (April-June) had a closer linkage to the yields than in the seedling stage (October-November) and the over-wintering stage (December-February). Moreover, the yield responses displayed an asymmetric characteristic, namely, moisture excess led to higher yield losses compared to moisture deficit in this region. The maximum yield increment could be obtained under the moisture level of slight drought according to the 3-month SPEI at the late growth stage, while extreme wetting resulted in the most severe yield losses. The moisture conditions in the first 15 years of the 21st century were more favorable than in the last 20 years of the 20th century for wheat production in Jiangsu. PMID:29329353
Xu, Xiangying; Gao, Ping; Zhu, Xinkai; Guo, Wenshan; Ding, Jinfeng; Li, Chunyan
2018-01-01
Jiangsu is an important agricultural province in China. Winter wheat, as the second major grain crop in the province, is greatly affected by moisture variations. The objective of this study was to investigate whether there were significant trends in changes in the moisture conditions during wheat growing seasons over the past decades and how the wheat yields responded to different moisture levels by means of a popular drought index, the Standardized Precipitation Evapotranspiration Index (SPEI). The study started with a trend analysis and quantification of the moisture conditions with the Mann-Kendall test and Sen's Slope method, respectively. Then, correlation analysis was carried out to determine the relationship between de-trended wheat yields and multi-scalar SPEI. Finally, a multivariate panel regression model was established to reveal the quantitative yield responses to moisture variations. The results showed that the moisture conditions in Jiangsu were generally at a normal level, but this century appeared slightly drier in because of the relatively high temperatures. There was a significant correlation between short time scale SPEI values and wheat yields. Among the three critical stages of wheat development, the SPEI values in the late growth stage (April-June) had a closer linkage to the yields than in the seedling stage (October-November) and the over-wintering stage (December-February). Moreover, the yield responses displayed an asymmetric characteristic, namely, moisture excess led to higher yield losses compared to moisture deficit in this region. The maximum yield increment could be obtained under the moisture level of slight drought according to the 3-month SPEI at the late growth stage, while extreme wetting resulted in the most severe yield losses. The moisture conditions in the first 15 years of the 21st century were more favorable than in the last 20 years of the 20th century for wheat production in Jiangsu.
NASA Astrophysics Data System (ADS)
Smit, Yvonne; Donker, Jasper; Ruessink, Gerben
2016-04-01
Coastal sand dunes provide essential protection against marine flooding. Consequently, dune erosion during severe storms has been studied intensively, resulting in well-developed erosion models for use in scientific and applied projects. Nowadays there is growing awareness that similarly advanced knowledge on dune recovery and growth is needed to predict future dune development. For this reason, aeolian sand transport from the beach into the dunes has to be investigated thoroughly. Surface moisture is a major factor limiting aeolian transport on sandy beaches. By increasing the velocity threshold for sediment entrainment, pick-up rates reduce and the fetch length increases. Conventional measurement techniques cannot adequately characterize the spatial and temporal distribution of surface moisture content required to study the effects on aeolian transport. Here we present a new method for detecting surface moisture at high temporal and spatial resolution using the RIEGL VZ-400 terrestrial laser scanner (TLS). Because this TLS operates at a wavelength near a water absorption band (1550 nm), TLS reflectance is an accurate parameter to measure surface soil moisture over its full range. Three days of intensive laser scanning were performed on a Dutch beach to illustrate the applicability of the TLS. Gravimetric soil moisture samples were used to calibrate the relation between reflectance and surface moisture. Results reveal a robust negative relation for the full range of possible surface moisture contents (0% - 25%). This relation holds to about 80 m from the TLS. Within this distance the TLS typically produces O(106-107) data points, which we averaged into soil moisture maps with a 0.25x0.25 m resolution. This grid size largely removes small moisture disturbances induced by, for example, footprints or tire tracks, while retaining larger scale trends. As the next step in our research, we will analyze the obtained maps to determine which processes affect the spatial and temporal surface-moisture variability.
NASA Technical Reports Server (NTRS)
Mon, G. R.
1985-01-01
A general research approach was outlined toward understanding water-module interactions and the influence of temperature involving the need to: quantify module performance loss versus level of accumulated degradation, establish the dependence of the degradation reaction rate on module moisture and temperature levels, and determine module moisture and temperature levels in field environments. These elements were illustrated with examples drawn from studies of the now relatively well understood module electrochemical degradation process. Research data presented include temperature and humidity-dependent equilibrium leakage current values for multiparameter module material and design configurations. The contributions of surface, volume, and interfacial conductivities was demonstrated. Research directions were suggested to more fully understand the contributions to overall module conductivity of surface, volume, and interfacial conductivities over ranges of temperature and relative humidity characteristic of field environments.
Hydrological Relevant Parameters from Remote Sensing - Spatial Modelling Input and Validation Basis
NASA Astrophysics Data System (ADS)
Hochschild, V.
2012-12-01
This keynote paper will demonstrate how multisensoral remote sensing data is used as spatial input for mesoscale hydrological modeling as well as for sophisticated validation purposes. The tasks of Water Resources Management are subject as well as the role of remote sensing in regional catchment modeling. Parameters derived from remote sensing discussed in this presentation will be land cover, topographical information from digital elevation models, biophysical vegetation parameters, surface soil moisture, evapotranspiration estimations, lake level measurements, determination of snow covered area, lake ice cycles, soil erosion type, mass wasting monitoring, sealed area, flash flood estimation. The actual possibilities of recent satellite and airborne systems are discussed, as well as the data integration into GIS and hydrological modeling, scaling issues and quality assessment will be mentioned. The presentation will provide an overview of own research examples from Germany, Tibet and Africa (Ethiopia, South Africa) as well as other international research activities. Finally the paper gives an outlook on upcoming sensors and concludes the possibilities of remote sensing in hydrology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, R. A.; Al-Sheikhly, M.; Grissom, C.
2014-02-18
The conservation of stone and brick architecture or sculpture often involves damage caused by moisture. The feasibility of a NDT method based on prompt gamma neutron activation (PGNA) for measuring the element hydrogen as an indication of water is being evaluated. This includes systematic characterization of the lithology and physical properties of seven building stones and one brick type used in the buildings of the Smithsonian Institution in Washington, D.C. To determine the required dynamic range of the NDT method, moisture-related properties were measured by standard methods. Cold neutron PGNA was also used to determine chemically bound water (CBW) content.more » The CBW does not damage porous masonry, but creates an H background that defines the minimum level of detection of damaging moisture. The CBW was on the order of 0.5% for all the stones. This rules out the measurement of hygric processes in all of the stones and hydric processed for the stones with fine scale pore-size distributions The upper bound of moisture content, set by porosity through water immersion, was on the order of 5%. The dynamic range is about 10–20. The H count rates were roughly 1–3 cps. Taking into account differences in neutron energies and fluxes and sample volume between cold PGNA and a portable PGNA instrument, it appears that it is feasible to apply PGNA in the field.« less
Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model
NASA Astrophysics Data System (ADS)
Shellito, Peter J.; Small, Eric E.; Livneh, Ben
2018-03-01
Drydown periods that follow precipitation events provide an opportunity to assess controls on soil evaporation on a continental scale. We use SMAP (Soil Moisture Active Passive) observations and Noah simulations from drydown periods to quantify the role of soil moisture, potential evaporation, vegetation cover, and soil texture on soil drying rates. Rates are determined using finite differences over intervals of 1 to 3 days. In the Noah model, the drying rates are a good approximation of direct soil evaporation rates, and our work suggests that SMAP-observed drying is also predominantly affected by direct soil evaporation. Data cover the domain of the North American Land Data Assimilation System Phase 2 and span the first 1.8 years of SMAP's operation. Drying of surface soil moisture observed by SMAP is faster than that simulated by Noah. SMAP drying is fastest when surface soil moisture levels are high, potential evaporation is high, and when vegetation cover is low. Soil texture plays a minor role in SMAP drying rates. Noah simulations show similar responses to soil moisture and potential evaporation, but vegetation has a minimal effect and soil texture has a much larger effect compared to SMAP. When drying rates are normalized by potential evaporation, SMAP observations and Noah simulations both show that increases in vegetation cover lead to decreases in evaporative efficiency from the surface soil. However, the magnitude of this effect simulated by Noah is much weaker than that determined from SMAP observations.
NASA Astrophysics Data System (ADS)
Wang, Tiejun; Franz, Trenton E.; Yue, Weifeng; Szilagyi, Jozsef; Zlotnik, Vitaly A.; You, Jinsheng; Chen, Xunhong; Shulski, Martha D.; Young, Aaron
2016-02-01
Despite the importance of groundwater recharge (GR), its accurate estimation still remains one of the most challenging tasks in the field of hydrology. In this study, with the help of inverse modeling, long-term (6 years) soil moisture data at 34 sites from the Automated Weather Data Network (AWDN) were used to estimate the spatial distribution of GR across Nebraska, USA, where significant spatial variability exists in soil properties and precipitation (P). To ensure the generality of this study and its potential broad applications, data from public domains and literature were used to parameterize the standard Hydrus-1D model. Although observed soil moisture differed significantly across the AWDN sites mainly due to the variations in P and soil properties, the simulations were able to capture the dynamics of observed soil moisture under different climatic and soil conditions. The inferred mean annual GR from the calibrated models varied over three orders of magnitude across the study area. To assess the uncertainties of the approach, estimates of GR and actual evapotranspiration (ETa) from the calibrated models were compared to the GR and ETa obtained from other techniques in the study area (e.g., remote sensing, tracers, and regional water balance). Comparison clearly demonstrated the feasibility of inverse modeling and large-scale (>104 km2) soil moisture monitoring networks for estimating GR. In addition, the model results were used to further examine the impacts of climate and soil on GR. The data showed that both P and soil properties had significant impacts on GR in the study area with coarser soils generating higher GR; however, different relationships between GR and P emerged at the AWDN sites, defined by local climatic and soil conditions. In general, positive correlations existed between annual GR and P for the sites with coarser-textured soils or under wetter climatic conditions. With the rapidly expanding soil moisture monitoring networks around the globe, this study may have important applications in aiding water resources management in different regions.
Moisture sorption isotherms and thermodynamic properties of mexican mennonite-style cheese.
Martinez-Monteagudo, Sergio I; Salais-Fierro, Fabiola
2014-10-01
Moisture adsorption isotherms of fresh and ripened Mexican Mennonite-style cheese were investigated using the static gravimetric method at 4, 8, and 12 °C in a water activity range (aw) of 0.08-0.96. These isotherms were modeled using GAB, BET, Oswin and Halsey equations through weighed non-linear regression. All isotherms were sigmoid in shape, showing a type II BET isotherm, and the data were best described by GAB model. GAB model coefficients revealed that water adsorption by cheese matrix is a multilayer process characterized by molecules that are strongly bound in the monolayer and molecules that are slightly structured in a multilayer. Using the GAB model, it was possible to estimate thermodynamic functions (net isosteric heat, differential entropy, integral enthalpy and entropy, and enthalpy-entropy compensation) as function of moisture content. For both samples, the isosteric heat and differential entropy decreased with moisture content in exponential fashion. The integral enthalpy gradually decreased with increasing moisture content after reached a maximum value, while the integral entropy decreased with increasing moisture content after reached a minimum value. A linear compensation was found between integral enthalpy and entropy suggesting enthalpy controlled adsorption. Determination of moisture content and aw relationship yields to important information of controlling the ripening, drying and storage operations as well as understanding of the water state within a cheese matrix.
NASA Astrophysics Data System (ADS)
Laiolo, Paola; Gabellani, Simone; Rudari, Roberto; Boni, Giorgio; Puca, Silvia
2013-04-01
Soil moisture plays a fundamental role in the partitioning of mass and energy fluxes between land surface and atmosphere, thereby influencing climate and weather, and it is important in determining the rainfall-runoff response of catchments; moreover, in hydrological modelling and flood forecasting, a correct definition of moisture conditions is a key factor for accurate predictions. Different sources of information for the estimation of the soil moisture state are currently available: satellite data, point measurements and model predictions. All are affected by intrinsic uncertainty. Among different satellite sensors that can be used for soil moisture estimation three major groups can be distinguished: passive microwave sensors (e.g., SSMI), active sensors (e.g. SAR, Scatterometers), and optical sensors (e.g. Spectroradiometers). The last two families, mainly because of their temporal and spatial resolution seem the most suitable for hydrological applications In this work soil moisture point measurements from 10 sensors in the Italian territory are compared of with the satellite products both from the HSAF project SM-OBS-2, derived from the ASCAT scatterometer, and from ACHAB, an operative energy balance model that assimilate LST data derived from MSG and furnishes daily an evaporative fraction index related to soil moisture content for all the Italian region. Distributed comparison of the ACHAB and SM-OBS-2 on the whole Italian territory are performed too.
Detection of moisture and moisture related phenomena from Skylab. [Texas
NASA Technical Reports Server (NTRS)
Eagleman, J. R.; Pogge, E. C.; Moore, R. K. (Principal Investigator); Hardy, N.; Lin, W.; League, L.
1973-01-01
The author has identified the following significant results. This is a preliminary report on the ability to detect soil moisture variation from the two different sensors on board Skylab. Initial investigations of S190A and Sl94 Skylab data and ground truth has indicated the following significant results. (1) There was a decrease in Sl94 antenna temperature from NW to SE across the Texas test site. (2) Soil moisture increases were measured from NW to SE across the test site. (3) There was a general increase in precipitation distribution and radar echoes from NW to SE across the site for the few days prior to measurements. This was consistent with the soil moisture measurements and gives more complete coverage of the site. (4) There are distinct variations in soil textures over the test site. This affects the moisture holding capacity of soils and must be considered. (5) Strong correlation coefficients were obtained between S194 antenna temperature and soil moisutre content. As the antenna temperature decreases soil moisture increases. (6) The Sl94 antenna temperature correlated best with soil mositure content in the upper two inches of the soil. A correlation coefficient of .988 was obtained. (7) Sl90A photographs in the red-infrared region were shown to be useful for identification of Abilene clay loam and for determining the distribution of this soil type.
Soil moisture retrieval by active/passive microwave remote sensing data
NASA Astrophysics Data System (ADS)
Wu, Shengli; Yang, Lijuan
2012-09-01
This study develops a new algorithm for estimating bare surface soil moisture using combined active / passive microwave remote sensing on the basis of TRMM (Tropical Rainfall Measuring Mission). Tropical Rainfall Measurement Mission was jointly launched by NASA and NASDA in 1997, whose main task was to observe the precipitation of the area in 40 ° N-40 ° S. It was equipped with active microwave radar sensors (PR) and passive sensor microwave imager (TMI). To accurately estimate bare surface soil moisture, precipitation radar (PR) and microwave imager (TMI) are simultaneously used for observation. According to the frequency and incident angle setting of PR and TMI, we first need to establish a database which includes a large range of surface conditions; and then we use Advanced Integral Equation Model (AIEM) to calculate the backscattering coefficient and emissivity. Meanwhile, under the accuracy of resolution, we use a simplified theoretical model (GO model) and the semi-empirical physical model (Qp Model) to redescribe the process of scattering and radiation. There are quite a lot of parameters effecting backscattering coefficient and emissivity, including soil moisture, surface root mean square height, correlation length, and the correlation function etc. Radar backscattering is strongly affected by the surface roughness, which includes the surface root mean square roughness height, surface correlation length and the correlation function we use. And emissivity is differently affected by the root mean square slope under different polarizations. In general, emissivity decreases with the root mean square slope increases in V polarization, and increases with the root mean square slope increases in H polarization. For the GO model, we found that the backscattering coefficient is only related to the root mean square slope and soil moisture when the incident angle is fixed. And for Qp Model, through the analysis, we found that there is a quite good relationship between Qpparameter and root mean square slope. So here, root mean square slope is a parameter that both models shared. Because of its big influence to backscattering and emissivity, we need to throw it out during the process of the combination of GO model and Qp model. The result we obtain from the combined model is the Fresnel reflection coefficient in the normal direction gama(0). It has a good relationship with the soil dielectric constant. In Dobson Model, there is a detailed description about Fresnel reflection coefficient and soil moisture. With the help of Dobson model and gama(0) that we have obtained, we can get the soil moisture that we want. The backscattering coefficient and emissivity data used in combined model is from TRMM/PR, TMI; with this data, we can obtain gama(0); further, we get the soil moisture by the relationship of the two parameters-- gama(0) and soil moisture. To validate the accuracy of the retrieval soil moisture, there is an experiment conducted in Tibet. The soil moisture data which is used to validate the retrieval algorithm is from GAME-Tibet IOP98 Soil Moisture and Temperature Measuring System (SMTMS). There are 9 observing sites in SMTMS to validate soil moisture. Meanwhile, we use the SMTMS soil moisture data obtained by Time Domain Reflectometer (TDR) to do the validation. And the result shows the comparison of retrieval and measured results is very good. Through the analysis, we can see that the retrieval and measured results in D66 is nearly close; and in MS3608, the measured result is a little higher than retrieval result; in MS3637, the retrieval result is a little higher than measured result. According to the analysis of the simulation results, we found that this combined active and passive approach to retrieve the soil moisture improves the retrieval accuracy.
Experimental study on water content detection of traditional masonry based on infrared thermal image
NASA Astrophysics Data System (ADS)
Zhang, Baoqing; Lei, Zukang
2017-10-01
Based on infrared thermal imaging technology for seepage test of two kinds of brick masonry, find out the relationship between the distribution of one-dimensional two brick surface temperature distribution and one-dimensional surface moisture content were determined after seepage brick masonry minimum temperature zone and water content determination method of the highest point of the regression equation, the relationship between temperature and moisture content of the brick masonry reflected the quantitative and establish the initial wet masonry building disease analysis method, then the infrared technology is applied to the protection of historic buildings in.
NASA Astrophysics Data System (ADS)
Steinberg, P. D.; Brener, G.; Duffy, D.; Nearing, G. S.; Pelissier, C.
2017-12-01
Hyperparameterization, of statistical models, i.e. automated model scoring and selection, such as evolutionary algorithms, grid searches, and randomized searches, can improve forecast model skill by reducing errors associated with model parameterization, model structure, and statistical properties of training data. Ensemble Learning Models (Elm), and the related Earthio package, provide a flexible interface for automating the selection of parameters and model structure for machine learning models common in climate science and land cover classification, offering convenient tools for loading NetCDF, HDF, Grib, or GeoTiff files, decomposition methods like PCA and manifold learning, and parallel training and prediction with unsupervised and supervised classification, clustering, and regression estimators. Continuum Analytics is using Elm to experiment with statistical soil moisture forecasting based on meteorological forcing data from NASA's North American Land Data Assimilation System (NLDAS). There Elm is using the NSGA-2 multiobjective optimization algorithm for optimizing statistical preprocessing of forcing data to improve goodness-of-fit for statistical models (i.e. feature engineering). This presentation will discuss Elm and its components, including dask (distributed task scheduling), xarray (data structures for n-dimensional arrays), and scikit-learn (statistical preprocessing, clustering, classification, regression), and it will show how NSGA-2 is being used for automate selection of soil moisture forecast statistical models for North America.
Towards soil property retrieval from space: Proof of concept using in situ observations
NASA Astrophysics Data System (ADS)
Bandara, Ranmalee; Walker, Jeffrey P.; Rüdiger, Christoph
2014-05-01
Soil moisture is a key variable that controls the exchange of water and energy fluxes between the land surface and the atmosphere. However, the temporal evolution of soil moisture is neither easy to measure nor monitor at large scales because of its high spatial variability. This is mainly a result of the local variation in soil properties and vegetation cover. Thus, land surface models are normally used to predict the evolution of soil moisture and yet, despite their importance, these models are based on low-resolution soil property information or typical values. Therefore, the availability of more accurate and detailed soil parameter data than are currently available is vital, if regional or global soil moisture predictions are to be made with the accuracy required for environmental applications. The proposed solution is to estimate the soil hydraulic properties via model calibration to remotely sensed soil moisture observation, with in situ observations used as a proxy in this proof of concept study. Consequently, the feasibility is assessed, and the level of accuracy that can be expected determined, for soil hydraulic property estimation of duplex soil profiles in a semi-arid environment using near-surface soil moisture observations under naturally occurring conditions. The retrieved soil hydraulic parameters were then assessed by their reliability to predict the root zone soil moisture using the Joint UK Land Environment Simulator model. When using parameters that were retrieved using soil moisture observations, the root zone soil moisture was predicted to within an accuracy of 0.04 m3/m3, which is an improvement of ∼0.025 m3/m3 on predictions that used published values or pedo-transfer functions.
NASA Astrophysics Data System (ADS)
Teomete, Egemen
2016-07-01
Earthquakes, material degradations and other environmental factors necessitate structural health monitoring (SHM). Metal foil strain gages used for SHM have low durability and low sensitivity. These factors motivated researchers to work on cement based strain sensors. In this study, the effects of temperature and moisture on electrical resistance, compressive and tensile strain gage factors (strain sensitivity) and crack sensitivity were determined for steel fiber reinforced cement based composite. A rapid increase of electrical resistance at 200 °C was observed due to damage occurring between cement paste, aggregates and steel fibers. The moisture—electrical resistance relationship was investigated. The specimens taken out of the cure were saturated with water and had a moisture content of 9.49%. The minimum electrical resistance was obtained at 9% moisture at which fiber-fiber and fiber-matrix contact was maximum and the water in micro voids was acting as an electrolyte, conducting electrons. The variation of compressive and tensile strain gage factors (strain sensitivities) and crack sensitivity were investigated by conducting compression, split tensile and notched bending tests with different moisture contents. The highest gage factor for the compression test was obtained at optimal moisture content, at which electrical resistance was minimum. The tensile strain gage factor for split tensile test and crack sensitivity increased by decreasing moisture content. The mechanisms between moisture content, electrical resistance, gage factors and crack sensitivity were elucidated. The relations of moisture content with electrical resistance, gage factors and crack sensitivities have been presented for the first time in this study for steel fiber reinforced cement based composites. The results are important for the development of self sensing cement based smart materials.
Frank, Steven D; Ranger, Christopher M
2016-08-01
Exotic ambrosia beetles are among the most damaging pests of trees grown in nurseries. The primary pests Xylosandrus crassiusculus Motschulsky and Xylosandrus germanus Blandford use ethanol to locate vulnerable trees. Research, primarily with X. germanus, has shown that flood-stressed trees emit ethanol and are preferentially attacked by ambrosia beetles. Our goal was to develop a media (also called potting soil) moisture threshold as an integrated pest management (IPM) tactic and assess grower practices that lead to ambrosia beetle attacks. Flooded Cornus florida L., Cornus kousa Burg., and Magnolia grandiflora L. trees incurred more attacks than unflooded trees that were not attacked. To determine optimal media moisture levels, we grew flood-tolerant Acer rubrum L. and flood-intolerant C. florida in containers with 10, 30, 50, 70, or 90% media moisture. No flooded or unflooded A. rubrum were attacked. However, C. florida grown in 70 or 90% moisture were attacked and died, whereas trees at 30 and 50% moisture were not attacked. Thus, we suggest an upper moisture threshold of 50% when growing C. florida and other flood-intolerant trees. However, during peak ambrosia beetle flight activity in spring 2013 and 2014, we found that media moisture levels in commercial nurseries were often between 50 and 90%. Implementing a media moisture threshold, as a new IPM tool, could reduce ambrosia beetle attacks and the need for insecticide applications, which is currently the only available management tactic. Future research should focus on how changes in substrates, irrigation, and other practices could help growers meet this threshold. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication.
Eperon, Giles E; Habisreutinger, Severin N; Leijtens, Tomas; Bruijnaers, Bardo J; van Franeker, Jacobus J; deQuilettes, Dane W; Pathak, Sandeep; Sutton, Rebecca J; Grancini, Giulia; Ginger, David S; Janssen, Rene A J; Petrozza, Annamaria; Snaith, Henry J
2015-09-22
Moisture, in the form of ambient humidity, has a significant impact on methylammonium lead halide perovskite films. In particular, due to the hygroscopic nature of the methylammonium component, moisture plays a significant role during film formation. This issue has so far not been well understood and neither has the impact of moisture on the physical properties of resultant films. Herein, we carry out a comprehensive and well-controlled study of the effect of moisture exposure on methylammonium lead halide perovskite film formation and properties. We find that films formed in higher humidity atmospheres have a less continuous morphology but significantly improved photoluminescence, and that film formation is faster. In photovoltaic devices, we find that exposure to moisture, either in the precursor solution or in the atmosphere during formation, results in significantly improved open-circuit voltages and hence overall device performance. We then find that by post-treating dry films with moisture exposure, we can enhance photovoltaic performance and photoluminescence in a similar way. The enhanced photoluminescence and open-circuit voltage imply that the material quality is improved in films that have been exposed to moisture. We determine that this improvement stems from a reduction in trap density in the films, which we postulate to be due to the partial solvation of the methylammonium component and "self-healing" of the perovskite lattice. This work highlights the importance of controlled moisture exposure when fabricating high-performance perovskite devices and provides guidelines for the optimum environment for fabrication. Moreover, we note that often an unintentional water exposure is likely responsible for the high performance of solar cells produced in some laboratories, whereas careful synthesis and fabrication in a dry environment will lead to lower-performing devices.
NASA Astrophysics Data System (ADS)
Chitu, Zenaida; Bogaard, Thom; Adler, Mary-Jeanne; Steele-Dunne, Susan; Hrachowitz, Markus; Busuioc, Aristita; Sandric, Ionut; Istrate, Alexandru
2014-05-01
Like in many parts of the world, landslides represent in Romania recurrent phenomena that produce numerous damages to the infrastructure every few years. The high frequency of landslide events over the world has resulted to the development of many early warning systems that are based on the definition of rainfall thresholds triggering landslides. In Romania in particular, recent studies exploring the temporal occurrence of landslides have revealed that rainfall represents the most important triggering factor for landslides. The presence of low permeability soils and gentle slope degrees in the Ialomita Subcarpathians of Romania makes that cumulated precipitation over variable time interval and the hydraulic response of the soil plays a key role in landslides triggering. In order to identify the slope responses to rainfall events in this particular area we investigate the variability of soil moisture and its relationship to landslide events in three Subcarpathians catchments (Cricovul Dulce, Bizididel and Vulcana) by combining in situ measurements, satellite-based radiometry and hydrological modelling. For the current study, hourly soil moisture measurements from six soil moisture monitoring stations that are fitted with volumetric soil moisture sensors, temperature soil sensors and rain gauges sensors are used. Pedotransfer functions will be applied in order to infer hydraulic soil properties from soil texture sampled from 50 soil profiles. The information about spatial and temporal variability of soil moisture content will be completed with the Level 2 soil moisture products from the Soil Moisture and Ocean Salinity (SMOS) mission. A time series analysis of soil moisture is planned to be integrated to landslide and rainfall time series in order to determine a preliminary rainfall threshold triggering landslides in Ialomita Subcarpathians.
Temperature and Soil Moisture Regimes In and Adjacent to the Fernow Experimental Forest
Jerry T. Crews; Linton Wright
2000-01-01
The effects of elevation, aspect, ambient air temperature, and soil moisture on soil temperature were examined in and adjacent to the Fernow Experimental Forest in West Virginia to determine the extent of frigid soils. The mean annual temperature of frigid soils ranges from 1? to 7?C at a depth of 50 cm; the difference between mean winter and mean summer temperatures...
Vegetation Response to Rainfall and Soil Moisture Variability in Botswana
1991-01-01
Effects of Varying Soil Type on the NDVI /Rainfall and NDVI /Soil Moisture...examine the effects of different soil types on the vegetation growth/rainfall relationship. The goals are to determine whether differences in the water-use...34first step" in removing the soil effect (Huete et al., 1985). Indeed, no large-scale soil corrections have been attempted as yet on NDVI data.
Spectroscopic analysis of seasonal changes in live fuel moisture content and leaf dry mass
Yi Qi; Philip E. Dennison; W. Matt Jolly; Rachael C. Kropp; Simon C. Brewer
2014-01-01
Live fuel moisture content (LFMC), the ratio of water mass to dry mass contained in live plant material, is an important fuel property for determining fire danger and for modeling fire behavior. Remote sensing estimation of LFMC often relies on an assumption of changing water and stable dry mass over time. Fundamental understanding of seasonal variation in plant water...
Effect of cladding systems on moisture performance of wood-framed walls in a mixed-humid climate
S. Craig Drumheller; Charles G. Carll
2010-01-01
A 22-month field investigation of nine different north-and south-oriented wood-framed wall assemblies was conducted to determine the moisture performance of various wall construction types, most of which incorporated absorptive cladding. The study was conducted on the campus of the National Association of Home Builders (NAHB) Research Center, in Upper Marlboro, MD, 20...
Equilibrium moisture content of wood in outdoor locations in the United States and worldwide
W. T. Simpson
1998-01-01
With relative humidity and temperature data from the National Oceanic and Atmospheric Administration, the average equilibrium moisture content for each month of the year was calculated for 262 locations in the United States and 122 locations outside the United States. As an aid for storage of kiln-dried lumber, a graph is presented for determining the reduction in...
Becky L. Estes; Eric E. Knapp; Carl N. Skinner; Fabian C. C. Uzoh
2012-01-01
Reducing stand density is often used as a tool for mitigating the risk of high-intensity crown fires. However, concern has been expressed that opening stands might lead to greater drying of surface fuels, contributing to increased fire risk. The objective of this study was to determine whether woody fuel moisture differed between unthinned and thinned mixed-conifer...
USDA-ARS?s Scientific Manuscript database
The thermal conductivity and thermal diffusivity of four types of rice flours and one type of rice protein were determine at temperatures ranging from 4.8 to 36.8 C, bulk densities 535 to 875.8 kg/m3, and moisture contents 2.6 to 16.7 percent (w.b.), using a KD2 Thermal Properties Analyzer. It was ...
From laboratory corrosion tests to a corrosion lifetime for wood fasteners : progress and challenges
Samuel L. Zelinka; Dominique Derome; Samuel V. Glass
2010-01-01
Determining a âcorrosion-lifetimeâ for fasteners embedded in wood treated with recently adopted preservative systems depends upon successfully relating results of laboratory tests to in-service conditions. In contrast to laboratory tests where metal is embedded in wood at constant temperature and moisture content, the in-service temperature and moisture content of wood...
Core Versus Nuclear Gauge Methods of Determining Soil Bulk Density and Moisture Content
Jacqueline G. Steele; Jerry L. Koger; Albert C. Trouse; Donald L. Sirois
1983-01-01
Soil bulk and moisture content measurements were obtained using two nuclear gauge systems and those compared to those obtained from soil cores. The soils, a Hiwassee sandy loam, a Lakeland loamy sand, and a Loyd clay, were free of organic matter and uniform in mechanical composition. The regression equations developed for the nuclear guages for the first phase of the...
NASA Astrophysics Data System (ADS)
Avery, William Alexander; Wahbi, Ammar; Dercon, Gerd; Heng, Lee; Franz, Trenton; Strauss, Peter
2017-04-01
Meeting the demands of a growing global population is one of the principal challenges of the 21st century. Meeting this challenge will require an increase in food production around the world. Currently, approximately two thirds of freshwater use by humans is devoted to agricultural production. As such, an expansion of agricultural activity will place additional pressure on freshwater resources. The incorporation of novel soil moisture sensing technologies into agricultural practices carries the potential to make agriculture more precise thus increasing water use efficiency. One such technology is known as the Cosmic Ray Neutron Sensor (CRNS). The CRNS technique is capable of quantifying soil moisture on a large spatial scale ( 30 ha) compared with traditional point based in-situ soil moisture sensing technology. Recent years have seen the CRNS to perform well when deployed in agricultural environments at low to mid elevations. However, the performance of the CRNS technique in higher elevations, particularly alpine environments, has yet to be demonstrated or understood. Mountainous environments are more vulnerable to changing climates and land use practices, yet are often responsible for the headwaters of major river systems sustaining cultivated lands or support important agricultural activity on their own. As such, the applicability of a mobile version of the CRNS technology in high alpine environments needs to be explored. This research details the preliminary efforts to determine if established calibration and validation techniques associated with the use of the CRNS can be applied at higher elevations. Field work was conducted during the summer of 2016 in the mountains of western Austria. Initial results indicate that the relationship between in-situ soil moisture data determined via traditional soil sampling and soil moisture data determined via the mobile CRNS is not clear. It is possible that the increasing intensity of incoming cosmic rays at higher altitudes may have an effect on the signal of the CRNS, however, more work is required to fully understand this phenomenon and is scheduled to resume in the summer of 2017.
NASA Astrophysics Data System (ADS)
Ding, Jingyi; Zhao, Wenwu; Daryanto, Stefani; Wang, Lixin; Fan, Hao; Feng, Qiang; Wang, Yaping
2017-05-01
Desert riparian forests are the main restored vegetation community in Heihe River basin. They provide critical habitats and a variety of ecosystem services in this arid environment. Since desert riparian forests are also sensitive to disturbance, examining the spatial distribution and temporal variation of these forests and their influencing factors is important to determine the limiting factors of vegetation recovery after long-term restoration. In this study, field experiment and remote sensing data were used to determine the spatial distribution and temporal variation of desert riparian forests and their relationship with the environmental factors. We classified five types of vegetation communities at different distances from the river channel. Community coverage and diversity formed a bimodal pattern, peaking at the distances of 1000 and 3000 m from the river channel. In general, the temporal normalized difference vegetation index (NDVI) trend from 2000 to 2014 was positive at different distances from the river channel, except for the region closest to the river bank (i.e. within 500 m from the river channel), which had been undergoing degradation since 2011. The spatial distribution of desert riparian forests was mainly influenced by the spatial heterogeneity of soil properties (e.g. soil moisture, bulk density and soil particle composition). Meanwhile, while the temporal variation of vegetation was affected by both the spatial heterogeneity of soil properties (e.g. soil moisture and soil particle composition) and to a lesser extent, the temporal variation of water availability (e.g. annual average and variability of groundwater, soil moisture and runoff). Since surface (0-30 cm) and deep (100-200 cm) soil moisture, bulk density and the annual average of soil moisture at 100 cm obtained from the remote sensing data were regarded as major determining factors of community distribution and temporal variation, conservation measures that protect the soil structure and prevent soil moisture depletion (e.g. artificial soil cover and water conveyance channels) were suggested to better protect desert riparian forests under climate change and intensive human disturbance.
Cheng, Jack Y K; Chiu, Sam L H; Lo, Irene M C
2017-09-01
In order to foster sustainable management of food waste, innovations in food waste valorization technologies are crucial. Black soldier fly (BSF) bioconversion is an emerging technology that can turn food waste into high-protein fish feed through the use of BSF larvae. The conventional method of BSF bioconversion is to feed BSF larvae with food waste directly without any moisture adjustment. However, it was reported that difficulty has been experienced in the separation of the residue (larval excreta and undigested material) from the insect biomass due to excessive moisture. In addition to the residue separation problem, the moisture content of the food waste may also affect the growth and survival aspects of BSF larvae. This study aims to determine the most suitable moisture content of food waste that can improve residue separation as well as evaluate the effects of the moisture content of food waste on larval growth and survival. In this study, pre-consumer and post-consumer food waste with different moisture content (70%, 75% and 80%) was fed to BSF larvae in a temperature-controlled rotary drum reactor. The results show that the residue can be effectively separated from the insect biomass by sieving using a 2.36mm sieve, for both types of food waste at 70% and 75% moisture content. However, sieving of the residue was not feasible for food waste at 80% moisture content. On the other hand, reduced moisture content of food waste was found to slow down larval growth. Hence, there is a trade-off between the sieving efficiency of the residue and the larval growth rate. Furthermore, the larval survival rate was not affected by the moisture content of food waste. A high larval survival rate of at least 95% was achieved using a temperature-controlled rotary drum reactor for all treatment groups. The study provides valuable insights for the waste management industry on understanding the effects of moisture content when employing BSF bioconversion for food waste recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.
The importance of timing of precipitation for irrigation scheduling
NASA Astrophysics Data System (ADS)
Franz, T.; Hunt, E. D.; Wardlow, B.
2016-12-01
Irrigated agriculture, like rainfed agriculture, continues to serve an important role in the production of cereal crops, with increasing importance in the developing world. Many areas however, including the U.S. High Plains region, are faced with the daunting task of increasing crop production with less water, as groundwater reserves become further depleted. Climate change could further exacerbate limited supplies of groundwater in these regions. Thus, monitoring soil moisture under cereal crops is critical for determining the best irrigation strategies. The results obtained during an eight-year period from an irrigated field in eastern Nebraska demonstrated the importance of the timing of precipitation and soil moisture response for irrigation scheduling. The years with the fewest irrigation applications for both maize and soybeans were not the wettest years during the study period. Paradoxically, the year with the fewest irrigation treatments when soybeans were the common crop at the irrigated field and a nearby rainfed field was in 2006, which had below average growing season precipitation. The year with the most irrigation treatments (2008) when soybeans were also the common crop occurred during one of the wettest growing seasons over the past 30 years at Mead. The primary difference between the below average 2006 growing season and the wet 2008 growing season was that precipitation fell at regular intervals during critical reproductive stages for soybeans in 2006 keeping the soil profile moist. Conversely, the only dry spell of the 2008 growing season occurred during that same critical period, thus necessitating irrigation applications that prevented depletion of soil profile.
Comparison of experimental data with results of some drying models for regularly shaped products
NASA Astrophysics Data System (ADS)
Kaya, Ahmet; Aydın, Orhan; Dincer, Ibrahim
2010-05-01
This paper presents an experimental and theoretical investigation of drying of moist slab, cylinder and spherical products to study dimensionless moisture content distributions and their comparisons. Experimental study includes the measurement of the moisture content distributions of slab and cylindrical carrot, slab and cylindrical pumpkin and spherical blueberry during drying at various temperatures (e.g., 30, 40, 50 and 60°C) at specific constant velocity ( U = 1 m/s) and the relative humidity φ = 30%. In theoretical analysis, two moisture transfer models are used to determine drying process parameters (e.g., drying coefficient and lag factor) and moisture transfer parameters (e.g., moisture diffusivity and moisture transfer coefficient), and to calculate the dimensionless moisture content distributions. The calculated results are then compared with the experimental moisture data. A considerably high agreement is obtained between the calculations and experimental measurements for the cases considered. The effective diffusivity values were evaluated between 0.741 × 10-5 and 5.981 × 10-5 m2/h for slab products, 0.818 × 10-5 and 6.287 × 10-5 m2/h for cylindrical products and 1.213 × 10-7 and 7.589 × 10-7 m2/h spherical products using the Model-I and 0.316 × 10-5-5.072 × 10-5 m2/h for slab products, 0.580 × 10-5-9.587 × 10-5 m2/h for cylindrical products and 1.408 × 10-7-13.913 × 10-7 m2/h spherical products using the Model-II.
NASA Astrophysics Data System (ADS)
Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick
2017-12-01
Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.
Coastal Remote Sensing Investigations. Volume 2. Beach Environment
1980-12-01
1 ’ "■"’.."■•■.» ■ a .1 "llpll CO Ifi o Q- O CO I y Final Report COASTAL REMOTE SENSING INVESTIGATIONS VOLUME 2: BEACH... Remote Sensing Grain Size Soil Moisture Soil Mineralogy Multispectral Scanner iO AUTNACT fCHtfÜBB on merit nJt ij ntinwin and idmlify In hloti...The work reported herein summarizes the final research activity in the Beach Environment Task of a program at ERIM entitled "Coastal Remote Sensing Investigations
A synthetic aperture microwave radiometer to measure soil moisture and ocean salinity from space
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Hilliard, L. M.; Swift, C. T.; Ruf, C. S.; Garrett, L. B.
1991-01-01
A concept is presented for a microwave radiometer in space to measure soil moisture and ocean salinity as part of an 'Earth Probe' mission. The measurements could be made using an array of stick antennas. The L-band channel (1.4 GHz) would be the primary channel for determining soil moisture, with the S-band (2.65-GHz) and C-band (5.0-GHz) channels providing ancillary information to help correct for the effects of the vegetation canopy and possibly to estimate a moisture profile. A preliminary study indicates that an orbit at 450 km would provide coverage of better than 95 percent of the earth every 3 days. A 10-km resolution cell (at nadir) requires stick antennas about 9.5-m long at L-band. The S-band and C-band sticks would be substantially shorter (5 m and 2.7 m, respectively).
Thermo-responsive gels that absorb moisture and ooze water.
Matsumoto, Kazuya; Sakikawa, Nobuki; Miyata, Takashi
2018-06-13
The water content of thermo-responsive hydrogels can be drastically altered by small changes in temperature because their polymer chains change from hydrophilic to hydrophobic above their low critical solution temperature (LCST). In general, such smart hydrogels have been utilized in aqueous solutions or in their wet state, and no attempt has been made to determine the phase-transition behavior of the gels in their dried states. Here we demonstrate an application of the thermo-responsive behavior of an interpenetrating polymer network (IPN) gel comprising thermo-responsive poly(N-isopropylacrylamide) and hydrophilic sodium alginate networks in their dried states. The dried IPN gel absorbs considerable moisture from air at temperatures below its LCST and oozes the absorbed moisture as liquid water above its LCST. These phenomena provide energy exchange systems in which moisture from air can be condensed to liquid water using the controllable hydrophilic/hydrophobic properties of thermo-responsive gels with a small temperature change.
NASA Technical Reports Server (NTRS)
Carlson, Toby N.
1988-01-01
Using model development, image analysis and micrometeorological measurements, the object is to push beyond the present limitations of using the infrared temperature method for remotely determining surface energy fluxes and soil moisture over vegetation. Model development consists of three aspects: (1) a more complex vegetation formulation which is more flexible and realistic; (2) a method for modeling the fluxes over patchy vegetation cover; and (3) a method for inferring a two-layer soil vertical moisture gradient from analyses of horizontal variations in surface temperatures. HAPEX and FIFE satellite data will be used along with aircraft thermal infrared and solar images as input for the models. To test the models, moisture availability and bulk canopy resistances will be calculated from data collected locally at the Rock Springs experimental field site and, eventually, from the FIFE project.
7 CFR 868.257 - Milling yield determination.
Code of Federal Regulations, 2011 CFR
2011-01-01
... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Brown Rice for Processing Principles... be determined when the moisture content of the brown rice for processing exceeds 18.0 percent. [42 FR...
7 CFR 868.257 - Milling yield determination.
Code of Federal Regulations, 2010 CFR
2010-01-01
... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Brown Rice for Processing Principles... be determined when the moisture content of the brown rice for processing exceeds 18.0 percent. [42 FR...
Sebio, L; Chang, Y K
2000-04-01
Raw yam (Dioscorea rotundata) flour was cooked and extruded in a Brabender single-screw laboratory scale extruder. Response surface methodology using an incomplete factorial design was applied with various combinations of barrel temperature [100, 125, 150 degrees C], feed moisture content [18, 22, 26%] and screw speed [100, 150, 200 rpm]. Initial viscosity at 30 degrees C, water solubility index, expansion and hardness were determined. The highest values of initial viscosity were at the highest barrel temperatures and the highest moisture contents. At high feed moisture content and high barrel temperatures the yam extrudate flour showed the greatest values of water solubility index. The physical properties of the extruded product showed that at high temperature the lower the moisture content the greater the expansion index. Hardness was influenced directly by moisture content and inversely by extrusion temperature. The extrusion of yam flour led to the production of snacks and pre-gelatinized flours of diverse properties. Also extruded yam flour can be successfully used in the preparation of 'futu' (pre-cooked compact dough), a yam-based food, popular in Western Africa.
Influence of moisture content on physical properties of minor millets.
Balasubramanian, S; Viswanathan, R
2010-06-01
Physical properties including 1000 kernel weight, bulk density, true density, porosity, angle of repose, coefficient of static friction, coefficient of internal friction and grain hardness were determined for foxtail millet, little millet, kodo millet, common millet, barnyard millet and finger millet in the moisture content range of 11.1 to 25% db. Thousand kernel weight increased from 2.3 to 6.1 g and angle of repose increased from 25.0 to 38.2°. Bulk density decreased from 868.1 to 477.1 kg/m(3) and true density from 1988.7 to 884.4 kg/m(3) for all minor millets when observed in the moisture range of 11.1 to 25%. Porosity decreased from 63.7 to 32.5%. Coefficient of static friction of minor millets against mild steel surface increased from 0.253 to 0.728 and coefficient of internal friction was in the range of 1.217 and 1.964 in the moisture range studied. Grain hardness decreased from 30.7 to 12.4 for all minor millets when moisture content was increased from 11.1 to 25% db.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Walker, Gregory K.; Mahanama, Sarith P.; Reichle, Rolf H.
2013-01-01
Offline simulations over the conterminous United States (CONUS) with a land surface model are used to address two issues relevant to the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which a realistic increase in the spatial resolution of forecasted precipitation would improve streamflow forecasts. The addition of error to a soil moisture initialization field is found to lead to a nearly proportional reduction in streamflow forecast skill. The linearity of the response allows the determination of a lower bound for the increase in streamflow forecast skill achievable through improved soil moisture estimation, e.g., through satellite-based soil moisture measurements. An increase in the resolution of precipitation is found to have an impact on large-scale streamflow forecasts only when evaporation variance is significant relative to the precipitation variance. This condition is met only in the western half of the CONUS domain. Taken together, the two studies demonstrate the utility of a continental-scale land surface modeling system as a tool for addressing the science of hydrological prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Jason; Winkler, Jon
Moisture buffering of building materials has a significant impact on the building's indoor humidity, and building energy simulations need to model this buffering to accurately predict the humidity. Researchers requiring a simple moisture-buffering approach typically rely on the effective-capacitance model, which has been shown to be a poor predictor of actual indoor humidity. This paper describes an alternative two-layer effective moisture penetration depth (EMPD) model and its inputs. While this model has been used previously, there is a need to understand the sensitivity of this model to uncertain inputs. In this paper, we use the moisture-adsorbent materials exposed to themore » interior air: drywall, wood, and carpet. We use a global sensitivity analysis to determine which inputs are most influential and how the model's prediction capability degrades due to uncertainty in these inputs. We then compare the model's humidity prediction with measured data from five houses, which shows that this model, and a set of simple inputs, can give reasonable prediction of the indoor humidity.« less
Woods, Jason; Winkler, Jon
2018-01-31
Moisture buffering of building materials has a significant impact on the building's indoor humidity, and building energy simulations need to model this buffering to accurately predict the humidity. Researchers requiring a simple moisture-buffering approach typically rely on the effective-capacitance model, which has been shown to be a poor predictor of actual indoor humidity. This paper describes an alternative two-layer effective moisture penetration depth (EMPD) model and its inputs. While this model has been used previously, there is a need to understand the sensitivity of this model to uncertain inputs. In this paper, we use the moisture-adsorbent materials exposed to themore » interior air: drywall, wood, and carpet. We use a global sensitivity analysis to determine which inputs are most influential and how the model's prediction capability degrades due to uncertainty in these inputs. We then compare the model's humidity prediction with measured data from five houses, which shows that this model, and a set of simple inputs, can give reasonable prediction of the indoor humidity.« less
Experimental study of nonlinear ultrasonic behavior of soil materials during the compaction.
Chen, Jun; Wang, Hao; Yao, Yangping
2016-07-01
In this paper, the nonlinear ultrasonic behavior of unconsolidated granular medium - soil during the compaction is experimentally studied. The second harmonic generation technique is adopted to investigate the change of microstructural void in materials during the compaction process of loose soils. The nonlinear parameter is measured with the change of two important environmental factors i.e. moisture content and impact energy of compaction. It is found the nonlinear parameter of soil material presents a similar variation pattern with the void ratio of soil samples, corresponding to the increased moisture content and impact energy. A same optimum moisture content is found by observing the variation of nonlinear parameter and void ratio with respect to moisture content. The results indicate that the unconsolidated soil is manipulated by a strong material nonlinearity during the compaction procedure. The developed experimental technique based on the second harmonic generation could be a fast and convenient testing method for the determination of optimum moisture content of soil materials, which is very useful for the better compaction effect of filled embankment for civil infrastructures in-situ. Copyright © 2016 Elsevier B.V. All rights reserved.
Thermodynamic analysis on heavy metals partitioning impacted by moisture during the MSW incineration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yanguo; Li Qinghai; Jia Jinyan
2012-12-15
Highlights: Black-Right-Pointing-Pointer Partitioning of HMs affected by moisture was investigated by thermodynamic analysis. Black-Right-Pointing-Pointer Increase in moisture and in temperature was opposite impact on HMs contribution. Black-Right-Pointing-Pointer The extent of temperature decreased by increase in moisture determines the impact. - Abstract: A thermodynamic calculation was carried out to predict the behavior and speciation of heavy metals (HMs), Pb, Zn, Cu, and Cd, during municipal solid waste (MSW) incineration with the different moisture levels. The calculation was based on the minimization of the total Gibbs free energy of the multi-components and multi-phases closed system reaching chemical equilibrium. The calculation also indicatedmore » the reaction directions and tendencies of HMs components. The impacts of chlorine additives (No PVC, 1%PVC, and 5%PVC) and moisture on the behavior of HMs were investigated at different temperature levels in the system (750 Degree-Sign C, 950 Degree-Sign C, and 1150 Degree-Sign C). Furthermore, because the incineration temperature falls down with the increase in moisture in waste, the co-influence of moisture and temperature in combusting MSW on the HMs was also studied with the given chlorine (as 1%PVC + 0.5%NaCl). The results showed that in the non-chlorine system, the impact of the moisture on Pb, Zn, and Cu was not significant, and the ratio of compound transformation was less than 10%, except the Cd compounds at 950 Degree-Sign C and 1150 Degree-Sign C. In the system with low chlorine (as 1%PVC) at constant temperature, the chlorides of HMs (Cd, Pb, Zn, and Cu) transferred to oxides, and when the content of chlorine rose up (as 5%PVC), the ratio of the chlorides of HMs (Cd, Pb, Zn, and Cu) transferring to oxides fell down noticeably. When the moisture varied together with the temperature, the Zn and Cu compounds transferred from chlorides to oxides with increase in moisture as well as decrease in temperature. At the temperature of 700-1000 Degree-Sign C, the impact of temperature on Pb and Cd was little and the moisture was the main factor; while at the temperature of 1000-1200 Degree-Sign C, the impact of increase in moisture and decrease in temperature on Pb and Cd was almost equal and reversed.« less