Sample records for moisture spatial distribution

  1. Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment

    EPA Science Inventory

    Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...

  2. A spatial scaling relationship for soil moisture in a semiarid landscape, using spatial scaling relationships for pedology

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.; Chen, M.; Cohen, S.; Saco, P. M.; Hancock, G. R.

    2013-12-01

    In humid areas it is generally considered that soil moisture scales spatially according to the wetness index of the landscape. This scaling arises from lateral flow downslope of ground water within the soil zone. However, in semi-arid and drier regions, this lateral flow is small and fluxes are dominated by vertical flows driven by infiltration and evapotranspiration. Thus, in the absence of runon processes, soil moisture at a location is more driven by local factors such as soil and vegetation properties at that location rather than upstream processes draining to that point. The 'apparent' spatial randomness of soil and vegetation properties generally suggests that soil moisture for semi-arid regions is spatially random. In this presentation a new analysis of neutron probe data during summer from the Tarrawarra site near Melbourne, Australia shows persistent spatial organisation of soil moisture over several years. This suggests a link between permanent features of the catchment (e.g. soil properties) and soil moisture distribution, even though the spatial pattern of soil moisture during the 4 summers monitored appears spatially random. This and other data establishes a prima facie case that soil variations drive spatial variation in soil moisture. Accordingly, we used a previously published spatial scaling relationship for soil properties derived using the mARM pedogenesis model to simulate the spatial variation of soil grading. This soil grading distribution was used in the Rosetta pedotransfer model to derive a spatial distribution of soil functional properties (e.g. saturated hydraulic conductivity, porosity). These functional properties were then input into the HYDRUS-1D soil moisture model and soil moisture simulated for 3 years at daily resolution. The HYDRUS model used had previously been calibrated to field observed soil moisture data at our SASMAS field site. The scaling behaviour of soil moisture derived from this modelling will be discussed and compared with observed data from our SASMAS field sites.

  3. Evaluation of fine soil moisture data from the IFloodS (NASA GPM) Ground Validation campaign using a fully-distributed ecohydrological model

    NASA Astrophysics Data System (ADS)

    Bastola, S.; Dialynas, Y. G.; Arnone, E.; Bras, R. L.

    2014-12-01

    The spatial variability of soil, vegetation, topography, and precipitation controls hydrological processes, consequently resulting in high spatio-temporal variability of most of the hydrological variables, such as soil moisture. Limitation in existing measuring system to characterize this spatial variability, and its importance in various application have resulted in a need of reconciling spatially distributed soil moisture evolution model and corresponding measurements. Fully distributed ecohydrological model simulates soil moisture at high resolution soil moisture. This is relevant for range of environmental studies e.g., flood forecasting. They can also be used to evaluate the value of space born soil moisture data, by assimilating them into hydrological models. In this study, fine resolution soil moisture data simulated by a physically-based distributed hydrological model, tRIBS-VEGGIE, is compared with soil moisture data collected during the field campaign in Turkey river basin, Iowa. The soil moisture series at the 2 and 4 inch depth exhibited a more rapid response to rainfall as compared to bottom 8 and 20 inch ones. The spatial variability in two distinct land surfaces of Turkey River, IA, reflects the control of vegetation, topography and soil texture in the characterization of spatial variability. The comparison of observed and simulated soil moisture at various depth showed that model was able to capture the dynamics of soil moisture at a number of gauging stations. Discrepancies are large in some of the gauging stations, which are characterized by rugged terrain and represented, in the model, through large computational units.

  4. Integration of GIS, Geostatistics, and 3-D Technology to Assess the Spatial Distribution of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Betts, M.; Tsegaye, T.; Tadesse, W.; Coleman, T. L.; Fahsi, A.

    1998-01-01

    The spatial and temporal distribution of near surface soil moisture is of fundamental importance to many physical, biological, biogeochemical, and hydrological processes. However, knowledge of these space-time dynamics and the processes which control them remains unclear. The integration of geographic information systems (GIS) and geostatistics together promise a simple mechanism to evaluate and display the spatial and temporal distribution of this vital hydrologic and physical variable. Therefore, this research demonstrates the use of geostatistics and GIS to predict and display soil moisture distribution under vegetated and non-vegetated plots. The research was conducted at the Winfred Thomas Agricultural Experiment Station (WTAES), Hazel Green, Alabama. Soil moisture measurement were done on a 10 by 10 m grid from tall fescue grass (GR), alfalfa (AA), bare rough (BR), and bare smooth (BS) plots. Results indicated that variance associated with soil moisture was higher for vegetated plots than non-vegetated plots. The presence of vegetation in general contributed to the spatial variability of soil moisture. Integration of geostatistics and GIS can improve the productivity of farm lands and the precision of farming.

  5. Spatial variability of soil moisture retrieved by SMOS satellite

    NASA Astrophysics Data System (ADS)

    Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Boguslaw; Rojek, Edyta; Slominski, Jan; Lipiec, Jerzy

    2015-04-01

    Standard statistical methods assume that the analysed variables are independent. Since the majority of the processes observed in the nature are continuous in space and time, this assumption introduces a significant limitation for understanding the examined phenomena. In classical approach, valuable information about the locations of examined observations is completely lost. However, there is a branch of statistics, called geostatistics, which is the study of random variables, but taking into account the space where they occur. A common example of so-called "regionalized variable" is soil moisture. Using in situ methods it is difficult to estimate soil moisture distribution because it is often significantly diversified. Thanks to the geostatistical methods, by employing semivariance analysis, it is possible to get the information about the nature of spatial dependences and their lengths. Since the Soil Moisture and Ocean Salinity mission launch in 2009, the estimation of soil moisture spatial distribution for regional up to continental scale started to be much easier. In this study, the SMOS L2 data for Central and Eastern Europe were examined. The statistical and geostatistical features of moisture distributions of this area were studied for selected natural soil phenomena for 2010-2014 including: freezing, thawing, rainfalls (wetting), drying and drought. Those soil water "states" were recognized employing ground data from the agro-meteorological network of ground-based stations SWEX and SMUDP2 data from SMOS. After pixel regularization, without any upscaling, the geostatistical methods were applied directly on Discrete Global Grid (15-km resolution) in ISEA 4H9 projection, on which SMOS observations are reported. Analysis of spatial distribution of SMOS soil moisture, carried out for each data set, in most cases did not show significant trends. It was therefore assumed that each of the examined distributions of soil moisture in the adopted scale satisfies ergodicity and quasi-stationarity assumptions, required for geostatistical analysis. The semivariograms examinations revealed that spatial dependences occurring in the surface soil moisture distributions for the selected area were more or less 200 km. The exception was the driest of the studied days, when the spatial correlations of soil moisture were not disturbed for a long time by any rainfall. Spatial correlation length on that day was about 400 km. Because of zonal character of frost, the spatial dependences in the examined surface soil moisture distributions during freezing/thawing found to be disturbed. Probably, the amount of water remains the same, but it is not detected by SMOS, hence analysing dielectric constant instead of soil moisture would be more appropriate. Some spatial relations of soil moisture and freezing distribution with existing maps of soil granulometric fractions and soil specific surface area for Poland have also been found. The work was partially funded under the ELBARA_PD (Penetration Depth) project No. 4000107897/13/NL/KML. ELBARA_PD project is funded by the Government of Poland through an ESA (European Space Agency) Contract under the PECS (Plan for European Cooperating States).

  6. Temporal and spatial variabilities in the surface moisture content of a fine-grained beach

    NASA Astrophysics Data System (ADS)

    Namikas, S. L.; Edwards, B. L.; Bitton, M. C. A.; Booth, J. L.; Zhu, Y.

    2010-01-01

    This study examined spatial and temporal variations in the surface moisture content of a fine-grained beach at Padre Island, Texas, USA. Surface moisture measurements were collected on a 27 × 24 m grid that extended from the dune toe to the upper foreshore. The grid was surveyed at 2 to 4 h intervals for two tidal cycles, generating 17 maps of the spatial distribution of surface moisture. Simultaneous measurements of air temperature and humidity, wind speed and direction, tidal elevation, and water table elevation were used to interpret observed changes in surface moisture. It was found that the spatial distribution of surface moisture was broadly characterized by a cross-shore gradient of high to low content moving landward from the swash zone. The distribution of surface moisture was conceptualized in terms of three zones: saturated (> 25%), intermediate or transitional (5-25%), and dry (< 5%). The position of the saturated zone corresponded to the uppermost swash zone and therefore shifted in accordance with tidal elevation. Moisture contents in the intermediate and dry zones were primarily related to variation in water table depth (which was in turn controlled by tidal elevation) and to a lesser extent by evaporation. Signals associated with atmospheric processes such as evaporation were muted by the minimal degree of variation in atmospheric parameters experienced during most of the study period, but were apparent for the last few hours. The observed spatial and temporal variations in moisture content correspond reasonably well with observations of key controlling processes, but more work is needed to fully characterize this process suite.

  7. Application of spatial time domain reflectometry measurements in heterogeneous, rocky substrates

    NASA Astrophysics Data System (ADS)

    Gonzales, C.; Scheuermann, A.; Arnold, S.; Baumgartl, T.

    2016-10-01

    Measurement of soil moisture across depths using sensors is currently limited to point measurements or remote sensing technologies. Point measurements have limitations on spatial resolution, while the latter, although covering large areas may not represent real-time hydrologic processes, especially near the surface. The objective of the study was to determine the efficacy of elongated soil moisture probes—spatial time domain reflectometry (STDR)—and to describe transient soil moisture dynamics of unconsolidated mine waste rock materials. The probes were calibrated under controlled conditions in the glasshouse. Transient soil moisture content was measured using the gravimetric method and STDR. Volumetric soil moisture content derived from weighing was compared with values generated from a numerical model simulating the drying process. A calibration function was generated and applied to STDR field data sets. The use of elongated probes effectively assists in the real-time determination of the spatial distribution of soil moisture. It also allows hydrologic processes to be uncovered in the unsaturated zone, especially for water balance calculations that are commonly based on point measurements. The elongated soil moisture probes can potentially describe transient substrate processes and delineate heterogeneity in terms of the pore size distribution in a seasonally wet but otherwise arid environment.

  8. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain.

  9. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status

    PubMed Central

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain. PMID:26098548

  10. Modelling of Space-Time Soil Moisture in Savannas and its Relation to Vegetation Patterns

    NASA Astrophysics Data System (ADS)

    Rodriguez-Iturbe, I.; Mohanty, B.; Chen, Z.

    2017-12-01

    A physically derived space-time representation of the soil moisture field is presented. It includes the incorporation of a "jitter" process acting over the space-time soil moisture field and accounting for the short distance heterogeneities in topography, soil, and vegetation characteristics. The modelling scheme allows for the representation of spatial random fluctuations of soil moisture at small spatial scales and reproduces quite well the space-time correlation structure of soil moisture from a field study in Oklahoma. It is shown that the islands of soil moisture above different thresholds have sizes which follow power distributions over an extended range of scales. A discussion is provided about the possible links of this feature with the observed power law distributions of the clusters of trees in savannas.

  11. Mapping high-resolution soil moisture and properties using distributed temperature sensing data and an adaptive particle batch smoother

    USDA-ARS?s Scientific Manuscript database

    This study demonstrated a new method for mapping high-resolution (spatial: 1 m, and temporal: 1 h) soil moisture by assimilating distributed temperature sensing (DTS) observed soil temperatures at intermediate scales. In order to provide robust soil moisture and property estimates, we first proposed...

  12. Using the Spatial Persistence of Soil Moisture Patterns to Estimate Catchment Soil Moisture in Semi-arid Areas

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.

    2006-12-01

    In humid catchments the spatial distribution of soil water is dominated by subsurface lateral fluxes, which leads to a persistent spatial pattern of soil moisture principally described by the topographic index. In contrast, semi-arid, and dryer, catchments are dominated by vertical fluxes (infiltration and evapotranspiration) and persistent spatial patterns, if they exist, are subtler. In the first part of this presentation the results of a reanalysis of a number of catchment-scale long-term spatially-distributed soil moisture data sets are presented. We concentrate on Tarrawarra and SASMAS, both catchments in Australia that are water-limited for at least part of the year and which have been monitored using a variety of technologies. Using the data from permanently installed instruments (neutron probe and reflectometry) both catchments show persistent patterns at the 1-3 year timescale. This persistent pattern is not evident in the field campaign data where field portable instruments (reflectometry) instruments were used. We argue, based on high-resolution soil moisture semivariograms, that high short-distance variability (100mm scale) means that field portable instrument cannot be replaced at the same location with sufficient accuracy to ensure deterministic repeatability of soil moisture measurements from campaign to campaign. The observed temporal persistence of the spatial pattern can be caused by; (1) permanent features of the landscape (e.g. vegetation, soils), or (2) long term memory in the soil moisture store. We argue that it is permanent in which case it is possible to monitor the soil moisture status of a catchment using a single location measurement (continuous in time) of soil moisture using a permanently installed reflectometry instrument. This instrument will need to be calibrated to the catchment averaged soil moisture but the temporal persistence of the spatial pattern of soil moisture will mean that this calibration will be deterministically stable with time. In the second part of this presentation we will explore aspects of the calibration using data from the SASMAS site using the multiscale spatial resolution data (100m to 10km) provided by permanently installed reflectometry instruments, and how this single site measurement technique may complement satellite data.

  13. Spatial pattern and heterogeneity of soil moisture along a transect in a small catchment on the Loess Plateau

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Dou, Yanxing; Liu, Dong; An, Shaoshan

    2017-07-01

    Spatial pattern and heterogeneity of soil moisture is important for the hydrological process on the Loess Plateau. This study combined the classical and geospatial statistical techniques to examine the spatial pattern and heterogeneity of soil moisture along a transect scale (e.g. land use types and topographical attributes) on the Loess Plateau. The average values of soil moisture were on the order of farmland > orchard > grassland > abandoned land > shrubland > forestland. Vertical distribution characteristics of soil moisture (0-500 cm) were similar among land use types. Highly significant (p < 0.01) negative correlations were found between soil moisture and elevation (h) except for shrubland (p > 0.05), whereas no significant correlations were found between soil moisture and plan curvature (Kh), stream power index (SPI), compound topographic index (CTI) (p > 0.05), indicating that topographical attributes (mainly h) have a negative effect on the soil moisture spatial heterogeneity. Besides, soil moisture spatial heterogeneity decreased from forestland to grassland and farmland, accompanied by a decline from 15° to 1° alongside upper to lower slope position. This study highlights the importance of land use types and topographical attributes on the soil moisture spatial heterogeneity from a combined analysis of the structural equation model (SEM) and generalized additive models (GAMs), and the relative contribution of land use types to the soil moisture spatial heterogeneity was higher than that of topographical attributes, which provides insights for researches focusing on soil moisture varitions on the Loess Plateau.

  14. Validation and Scaling of Soil Moisture in a Semi-Arid Environment: SMAP Validation Experiment 2015 (SMAPVEX15)

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Cosh, Michael H.; Misra, Sidharth; Jackson, Thomas J.; Crow, Wade T.; Chan, Steven; Bindlish, Rajat; Chae, Chun; Holifield Collins, Chandra; Yueh, Simon H.

    2017-01-01

    The NASA SMAP (Soil Moisture Active Passive) mission conducted the SMAP Validation Experiment 2015 (SMAPVEX15) in order to support the calibration and validation activities of SMAP soil moisture data products. The main goals of the experiment were to address issues regarding the spatial disaggregation methodologies for improvement of soil moisture products and validation of the in situ measurement upscaling techniques. To support these objectives high-resolution soil moisture maps were acquired with the airborne PALS (Passive Active L-band Sensor) instrument over an area in southeast Arizona that includes the Walnut Gulch Experimental Watershed (WGEW), and intensive ground sampling was carried out to augment the permanent in situ instrumentation. The objective of the paper was to establish the correspondence and relationship between the highly heterogeneous spatial distribution of soil moisture on the ground and the coarse resolution radiometer-based soil moisture retrievals of SMAP. The high-resolution mapping conducted with PALS provided the required connection between the in situ measurements and SMAP retrievals. The in situ measurements were used to validate the PALS soil moisture acquired at 1-km resolution. Based on the information from a dense network of rain gauges in the study area, the in situ soil moisture measurements did not capture all the precipitation events accurately. That is, the PALS and SMAP soil moisture estimates responded to precipitation events detected by rain gauges, which were in some cases not detected by the in situ soil moisture sensors. It was also concluded that the spatial distribution of the soil moisture resulted from the relatively small spatial extents of the typical convective storms in this region was not completely captured with the in situ stations. After removing those cases (approximately10 of the observations) the following metrics were obtained: RMSD (root mean square difference) of0.016m3m3 and correlation of 0.83. The PALS soil moisture was also compared to SMAP and in situ soil moisture at the 36-km scale, which is the SMAP grid size for the standard product. PALS and SMAP soil moistures were found to be very similar owing to the close match of the brightness temperature measurements and the use of a common soil moisture retrieval algorithm. Spatial heterogeneity, which was identified using the high-resolution PALS soil moisture and the intensive ground sampling, also contributed to differences between the soil moisture estimates. In general, discrepancies found between the L-band soil moisture estimates and the 5-cm depth in situ measurements require methodologies to mitigate the impact on their interpretations in soil moisture validation and algorithm development. Specifically, the metrics computed for the SMAP radiometer-based soil moisture product over WGEW will include errors resulting from rainfall, particularly during the monsoon season when the spatial distribution of soil moisture is especially heterogeneous.

  15. Vegetation function and non-uniqueness of the hydrological response

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Fatichi, S.; Kampf, S. K.; Caporali, E.

    2012-04-01

    Through local moisture uptake vegetation exerts seasonal and longer-term impacts on the watershed hydrological response. However, the role of vegetation may go beyond the conventionally implied and well-understood "sink" function in the basin soil moisture storage equation. We argue that vegetation function imposes a "homogenizing" effect on pre-event soil moisture spatial storage, decreasing the likelihood that a rainfall event will result in a topographically-driven redistribution of soil water and the consequent formation of variable source areas. In combination with vegetation temporal dynamics, this may lead to the non-uniqueness of the hydrological response with respect to the mean basin wetness. This study designs a set of relevant numerical experiments carried out with two physically-based models; one of the models, HYDRUS, resolves variably saturated subsurface flow using a fully three-dimensional formulation, while the other model, tRIBS+VEGGIE, uses a one-dimensional formulation applied in a quasi-three-dimensional framework in combination with the model of vegetation dynamics. We demonstrate that (1) vegetation function modifies spatial heterogeneity in moisture spatial storage by imposing different degrees of subsurface flow connectivity; explore mechanistically (2) how and why a basin with the same mean soil moisture can have distinctly different spatial soil moisture distributions; and demonstrate (2) how these distinct moisture distributions result in a hysteretic runoff response to precipitation. Furthermore, the study argues that near-surface soil moisture is an insufficient indicator of the initial moisture state of a catchment with the implication of its limited effect on hydrological predictability.

  16. Southern Great Plains 1997 hydrology experiment: The spatial and temporal distribution of soil moisture within a quarter section pasture field

    NASA Technical Reports Server (NTRS)

    Tsegaye, T.; Coleman, T.; Tadesse, W.; Rajbhandari, N.; Senwo, Z.; Crosson, W.; Surrency, J.

    1998-01-01

    Understanding the spatial and temporal distribution of soil moisture near the soil surface is important to relate ground truth data to remotely sensed data using an electronically scanned thinned array radiometer (ESTAR). The research was conducted at the A-ARM EF site in the Little Washita Watershed in Chickasha Oklahoma. Soil moisture was measured on a 100 x 100-m grid on a quarter section (0.8 km by 0.8 km) size field where the DOE A-ARM SWATS is located. This site has several drainage channels and small ponds. The site is under four different land use practices, namely active pastureland, non-grazed pastureland covered with thick grass, forest area covered with trees, and a single residential area. Soil moisture was measured with a Time Domain Reflectometry (TDR) Delta-T 6-cm theta-probe and gravimetric soil moisture (GSM) technique for the top 6 cm of the soil depth. A fourth order polynomial equation was fitted to each probe calibration curve. The correlation between TDR and GSM measurement technique ranges from 0.81 to 0.91. Comparison of the spatial and temporal distribution of soil moisture measured by the TDR and GSM techniques showed very strong similarities. Such TDR probes can be used successfully to replace the GSM techniques to measure soil moisture content rapidly and accurately with site specific calibration.

  17. Stochastic Analysis and Probabilistic Downscaling of Soil Moisture

    NASA Astrophysics Data System (ADS)

    Deshon, J. P.; Niemann, J. D.; Green, T. R.; Jones, A. S.

    2017-12-01

    Soil moisture is a key variable for rainfall-runoff response estimation, ecological and biogeochemical flux estimation, and biodiversity characterization, each of which is useful for watershed condition assessment. These applications require not only accurate, fine-resolution soil-moisture estimates but also confidence limits on those estimates and soil-moisture patterns that exhibit realistic statistical properties (e.g., variance and spatial correlation structure). The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution (9-40 km) soil moisture from satellite remote sensing or land-surface models to produce fine-resolution (10-30 m) estimates. The model was designed to produce accurate deterministic soil-moisture estimates at multiple points, but the resulting patterns do not reproduce the variance or spatial correlation of observed soil-moisture patterns. The primary objective of this research is to generalize the EMT+VS model to produce a probability density function (pdf) for soil moisture at each fine-resolution location and time. Each pdf has a mean that is equal to the deterministic soil-moisture estimate, and the pdf can be used to quantify the uncertainty in the soil-moisture estimates and to simulate soil-moisture patterns. Different versions of the generalized model are hypothesized based on how uncertainty enters the model, whether the uncertainty is additive or multiplicative, and which distributions describe the uncertainty. These versions are then tested by application to four catchments with detailed soil-moisture observations (Tarrawarra, Satellite Station, Cache la Poudre, and Nerrigundah). The performance of the generalized models is evaluated by comparing the statistical properties of the simulated soil-moisture patterns to those of the observations and the deterministic EMT+VS model. The versions of the generalized EMT+VS model with normally distributed stochastic components produce soil-moisture patterns with more realistic statistical properties than the deterministic model. Additionally, the results suggest that the variance and spatial correlation of the stochastic soil-moisture variations do not vary consistently with the spatial-average soil moisture.

  18. On the non-uniqueness of the hydro-geomorphic responses in a zero-order catchment with respect to soil moisture

    NASA Astrophysics Data System (ADS)

    Kim, Jongho; Dwelle, M. Chase; Kampf, Stephanie K.; Fatichi, Simone; Ivanov, Valeriy Y.

    2016-06-01

    This study advances mechanistic interpretation of predictability challenges in hydro-geomorphology related to the role of soil moisture spatial variability. Using model formulations describing the physics of overland flow, variably saturated subsurface flow, and erosion and sediment transport, this study explores (1) why a basin with the same mean soil moisture can exhibit distinctly different spatial moisture distributions, (2) whether these varying distributions lead to non-unique hydro-geomorphic responses, and (3) what controls non-uniqueness in relation to the response type. Two sets of numerical experiments are carried out with two physically-based models, HYDRUS and tRIBS+VEGGIE+FEaST, and their outputs are analyzed with respect to pre-storm moisture state. The results demonstrate that distinct spatial moisture distributions for the same mean wetness arise because near-surface soil moisture dynamics exhibit different degrees of coupling with deeper-soil moisture and the process of subsurface drainage. The consequences of such variations are different depending on the type of hydrological response. Specifically, if the predominant runoff response is of infiltration excess type, the degree of non-uniqueness is related to the spatial distribution of near-surface moisture. If runoff is governed by subsurface stormflow, the extent of deep moisture contributing area and its "readiness to drain" determine the response characteristics. Because the processes of erosion and sediment transport superimpose additional controls over factors governing runoff generation and overland flow, non-uniqueness of the geomorphic response can be highly dampened or enhanced. The explanation is sediment composed by multi-size particles can alternate states of mobilization or surface shielding and the transient behavior is inherently intertwined with the availability of mobile particles. We conclude that complex nonlinear dynamics of hydro-geomorphic processes are inherent expressions of physical interactions. As complete knowledge of watershed properties, states, or forcings will always present the ultimate, if ever resolvable, challenge, deterministic predictability will remain handicapped. Coupling of uncertainty quantification methods and space-time physics-based approaches will need to evolve to facilitate mechanistic interpretations and informed practical applications.

  19. The spatial distribution and temporal variation of desert riparian forests and their influencing factors in the downstream Heihe River basin, China

    NASA Astrophysics Data System (ADS)

    Ding, Jingyi; Zhao, Wenwu; Daryanto, Stefani; Wang, Lixin; Fan, Hao; Feng, Qiang; Wang, Yaping

    2017-05-01

    Desert riparian forests are the main restored vegetation community in Heihe River basin. They provide critical habitats and a variety of ecosystem services in this arid environment. Since desert riparian forests are also sensitive to disturbance, examining the spatial distribution and temporal variation of these forests and their influencing factors is important to determine the limiting factors of vegetation recovery after long-term restoration. In this study, field experiment and remote sensing data were used to determine the spatial distribution and temporal variation of desert riparian forests and their relationship with the environmental factors. We classified five types of vegetation communities at different distances from the river channel. Community coverage and diversity formed a bimodal pattern, peaking at the distances of 1000 and 3000 m from the river channel. In general, the temporal normalized difference vegetation index (NDVI) trend from 2000 to 2014 was positive at different distances from the river channel, except for the region closest to the river bank (i.e. within 500 m from the river channel), which had been undergoing degradation since 2011. The spatial distribution of desert riparian forests was mainly influenced by the spatial heterogeneity of soil properties (e.g. soil moisture, bulk density and soil particle composition). Meanwhile, while the temporal variation of vegetation was affected by both the spatial heterogeneity of soil properties (e.g. soil moisture and soil particle composition) and to a lesser extent, the temporal variation of water availability (e.g. annual average and variability of groundwater, soil moisture and runoff). Since surface (0-30 cm) and deep (100-200 cm) soil moisture, bulk density and the annual average of soil moisture at 100 cm obtained from the remote sensing data were regarded as major determining factors of community distribution and temporal variation, conservation measures that protect the soil structure and prevent soil moisture depletion (e.g. artificial soil cover and water conveyance channels) were suggested to better protect desert riparian forests under climate change and intensive human disturbance.

  20. Downscaling soil moisture over East Asia through multi-sensor data fusion and optimization of regression trees

    NASA Astrophysics Data System (ADS)

    Park, Seonyoung; Im, Jungho; Park, Sumin; Rhee, Jinyoung

    2017-04-01

    Soil moisture is one of the most important keys for understanding regional and global climate systems. Soil moisture is directly related to agricultural processes as well as hydrological processes because soil moisture highly influences vegetation growth and determines water supply in the agroecosystem. Accurate monitoring of the spatiotemporal pattern of soil moisture is important. Soil moisture has been generally provided through in situ measurements at stations. Although field survey from in situ measurements provides accurate soil moisture with high temporal resolution, it requires high cost and does not provide the spatial distribution of soil moisture over large areas. Microwave satellite (e.g., advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR2), the Advanced Scatterometer (ASCAT), and Soil Moisture Active Passive (SMAP)) -based approaches and numerical models such as Global Land Data Assimilation System (GLDAS) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) provide spatial-temporalspatiotemporally continuous soil moisture products at global scale. However, since those global soil moisture products have coarse spatial resolution ( 25-40 km), their applications for agriculture and water resources at local and regional scales are very limited. Thus, soil moisture downscaling is needed to overcome the limitation of the spatial resolution of soil moisture products. In this study, GLDAS soil moisture data were downscaled up to 1 km spatial resolution through the integration of AMSR2 and ASCAT soil moisture data, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and Moderate Resolution Imaging Spectroradiometer (MODIS) data—Land Surface Temperature, Normalized Difference Vegetation Index, and Land cover—using modified regression trees over East Asia from 2013 to 2015. Modified regression trees were implemented using Cubist, a commercial software tool based on machine learning. An optimization based on pruning of rules derived from the modified regression trees was conducted. Root Mean Square Error (RMSE) and Correlation coefficients (r) were used to optimize the rules, and finally 59 rules from modified regression trees were produced. The results show high validation r (0.79) and low validation RMSE (0.0556m3/m3). The 1 km downscaled soil moisture was evaluated using ground soil moisture data at 14 stations, and both soil moisture data showed similar temporal patterns (average r=0.51 and average RMSE=0.041). The spatial distribution of the 1 km downscaled soil moisture well corresponded with GLDAS soil moisture that caught both extremely dry and wet regions. Correlation between GLDAS and the 1 km downscaled soil moisture during growing season was positive (mean r=0.35) in most regions.

  1. Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types

    NASA Astrophysics Data System (ADS)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2018-04-01

    As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater growing season temporal variability, and reduced levels of soil moisture, whilst projected decreasing summer precipitation may alter the feedbacks between soil moisture and vegetation water use and increase growing season soil moisture deficits.

  2. Aspect-related Vegetation Differences Amplify Soil Moisture Variability in Semiarid Landscapes

    NASA Astrophysics Data System (ADS)

    Yetemen, O.; Srivastava, A.; Kumari, N.; Saco, P. M.

    2017-12-01

    Soil moisture variability (SMV) in semiarid landscapes is affected by vegetation, soil texture, climate, aspect, and topography. The heterogeneity in vegetation cover that results from the effects of microclimate, terrain attributes (slope gradient, aspect, drainage area etc.), soil properties, and spatial variability in precipitation have been reported to act as the dominant factors modulating SMV in semiarid ecosystems. However, the role of hillslope aspect in SMV, though reported in many field studies, has not received the same degree of attention probably due to the lack of extensive large datasets. Numerical simulations can then be used to elucidate the contribution of aspect-driven vegetation patterns to this variability. In this work, we perform a sensitivity analysis to study on variables driving SMV using the CHILD landscape evolution model equipped with a spatially-distributed solar-radiation component that couples vegetation dynamics and surface hydrology. To explore how aspect-driven vegetation heterogeneity contributes to the SMV, CHILD was run using a range of parameters selected to reflect different scenarios (from uniform to heterogeneous vegetation cover). Throughout the simulations, the spatial distribution of soil moisture and vegetation cover are computed to estimate the corresponding coefficients of variation. Under the uniform spatial precipitation forcing and uniform soil properties, the factors affecting the spatial distribution of solar insolation are found to play a key role in the SMV through the emergence of aspect-driven vegetation patterns. Hence, factors such as catchment gradient, aspect, and latitude, define water stress and vegetation growth, and in turn affect the available soil moisture content. Interestingly, changes in soil properties (porosity, root depth, and pore-size distribution) over the domain are not as effective as the other factors. These findings show that the factors associated to aspect-related vegetation differences amplify the soil moisture variability of semi-arid landscapes.

  3. Impact of microwave derived soil moisture on hydrologic simulations using a spatially distributed water balance model

    NASA Technical Reports Server (NTRS)

    Lin, D. S.; Wood, E. F.; Famiglietti, J. S.; Mancini, M.

    1994-01-01

    Spatial distributions of soil moisture over an agricultural watershed with a drainage area of 60 ha were derived from two NASA microwave remote sensors, and then used as a feedback to determine the initial condition for a distributed water balance model. Simulated hydrologic fluxes over a period of twelve days were compared with field observations and with model predictions based on a streamflow derived initial condition. The results indicated that even the low resolution remotely sensed data can improve the hydrologic model's performance in simulating the dynamics of unsaturated zone soil moisture. For the particular watershed under study, the simulated water budget was not sensitive to the resolutions of the microwave sensors.

  4. Spatial Estimation of Soil Moisture Using Synthetic Aperture Radar in Alaska

    NASA Astrophysics Data System (ADS)

    Meade, N. G.; Hinzman, L. D.; Kane, D. L.

    1999-01-01

    A spatially distributed Model of Arctic Thermal and Hydrologic processes (MATH) has been developed. One of the attributes of this model is the spatial and temporal prediction of soil moisture in the active layer. The spatially distributed output from this model required verification data obtained through remote sensing to assess performance at the watershed scale independently. Therefore, a neural network was trained to predict soil moisture contents near the ground surface. The input to train the neural network is synthetic aperture radar (SAR) pixel value, and field measurements of soil moisture, and vegetation, which were used as a surrogate for surface roughness. Once the network was trained, soil moisture predictions were made based on SAR pixel value and vegetation. These results were then used for comparison with results from the hydrologic model. The quality of neural network input was less than anticipated. Our digital elevation model (DEM) was not of high enough resolution to allow exact co-registration with soil moisture measurements; therefore, the statistical correlations were not as good as hoped. However, the spatial pattern of the SAR derived soil moisture contents compares favorably with the hydrologic MATH model results. Primary surface parameters that effect SAR include topography, surface roughness, vegetation cover and soil texture. Single parameters that are considered to influence SAR include incident angle of the radar, polarization of the radiation, signal strength and returning signal integration, to name a few. These factors influence the reflectance, but if one adequately quantifies the influences of terrain and roughness, it is considered possible to extract information on soil moisture from SAR imagery analysis and in turn use SAR imagery to validate hydrologic models

  5. Drive by Soil Moisture Measurement: A Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Senanayake, I. P.; Willgoose, G. R.; Yeo, I. Y.; Hancock, G. R.

    2017-12-01

    Two of the common attributes of soil moisture are that at any given time it varies quite markedly from point to point, and that there is a significant deterministic pattern that underlies this spatial variation and which is typically 50% of the spatial variability. The spatial variation makes it difficult to determine the time varying catchment average soil moisture using field measurements because any individual measurement is unlikely to be equal to the average for the catchment. The traditional solution to this is to make many measurements (e.g. with soil moisture probes) spread over the catchment, which is very costly and manpower intensive, particularly if we need a time series of soil moisture variation across a catchment. An alternative approach, explored in this poster is to use the deterministic spatial pattern of soil moisture to calibrate one site (e.g. a permanent soil moisture probe at a weather station) to the spatial pattern of soil moisture over the study area. The challenge is then to determine the spatial pattern of soil moisture. This poster will present results from a proof of concept project, where data was collected by a number of undergraduate engineering students, to estimate the spatial pattern. The approach was to drive along a series of roads in a catchment and collect soil moisture measurements at the roadside using field portable soil moisture probes. This drive was repeated a number of times over the semester, and the time variation and spatial persistence of the soil moisture pattern were examined. Provided that the students could return to exactly the same location on each collection day there was a strong persistent pattern in the soil moisture, even while the average soil moisture varied temporally as a result of preceding rainfall. The poster will present results and analysis of the student data, and compare these results with several field sites where we have spatially distributed permanently installed soil moisture probes. The poster will also outline an experimental design, based on our experience, that will underpin a proposed citizen science project involving community environment and farming groups, and high school students.

  6. Electronic resistance tomography imaging of spatial moisture distribution, moisture distribution and movement in pavements

    DOT National Transportation Integrated Search

    1997-07-01

    Electronic resistance tomography (ERT) was used to follow the infiltration of water into a pavement section at the UC Berkeley Richmond Field Station. A volume of pavement 1 m square and 1.29 m in depth was sampled by an ERT array consisting of elect...

  7. Spatial Variability of Soil-Water Storage in the Southern Sierra Critical Zone Observatory: Measurement and Prediction

    NASA Astrophysics Data System (ADS)

    Oroza, C.; Bales, R. C.; Zheng, Z.; Glaser, S. D.

    2017-12-01

    Predicting the spatial distribution of soil moisture in mountain environments is confounded by multiple factors, including complex topography, spatial variably of soil texture, sub-surface flow paths, and snow-soil interactions. While remote-sensing tools such as passive-microwave monitoring can measure spatial variability of soil moisture, they only capture near-surface soil layers. Large-scale sensor networks are increasingly providing soil-moisture measurements at high temporal resolution across a broader range of depths than are accessible from remote sensing. It may be possible to combine these in-situ measurements with high-resolution LIDAR topography and canopy cover to estimate the spatial distribution of soil moisture at high spatial resolution at multiple depths. We study the feasibility of this approach using six years (2009-2014) of daily volumetric water content measurements at 10-, 30-, and 60-cm depths from the Southern Sierra Critical Zone Observatory. A non-parametric, multivariate regression algorithm, Random Forest, was used to predict the spatial distribution of depth-integrated soil-water storage, based on the in-situ measurements and a combination of node attributes (topographic wetness, northness, elevation, soil texture, and location with respect to canopy cover). We observe predictable patterns of predictor accuracy and independent variable ranking during the six-year study period. Predictor accuracy is highest during the snow-cover and early recession periods but declines during the dry period. Soil texture has consistently high feature importance. Other landscape attributes exhibit seasonal trends: northness peaks during the wet-up period, and elevation and topographic-wetness index peak during the recession and dry period, respectively.

  8. Downscaling near-surface soil moisture from field to plot scale: A comparative analysis under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Nasta, Paolo; Penna, Daniele; Brocca, Luca; Zuecco, Giulia; Romano, Nunzio

    2018-02-01

    Indirect measurements of field-scale (hectometer grid-size) spatial-average near-surface soil moisture are becoming increasingly available by exploiting new-generation ground-based and satellite sensors. Nonetheless, modeling applications for water resources management require knowledge of plot-scale (1-5 m grid-size) soil moisture by using measurements through spatially-distributed sensor network systems. Since efforts to fulfill such requirements are not always possible due to time and budget constraints, alternative approaches are desirable. In this study, we explore the feasibility of determining spatial-average soil moisture and soil moisture patterns given the knowledge of long-term records of climate forcing data and topographic attributes. A downscaling approach is proposed that couples two different models: the Eco-Hydrological Bucket and Equilibrium Moisture from Topography. This approach helps identify the relative importance of two compound topographic indexes in explaining the spatial variation of soil moisture patterns, indicating valley- and hillslope-dependence controlled by lateral flow and radiative processes, respectively. The integrated model also detects temporal instability if the dominant type of topographic dependence changes with spatial-average soil moisture. Model application was carried out at three sites in different parts of Italy, each characterized by different environmental conditions. Prior calibration was performed by using sparse and sporadic soil moisture values measured by portable time domain reflectometry devices. Cross-site comparisons offer different interpretations in the explained spatial variation of soil moisture patterns, with time-invariant valley-dependence (site in northern Italy) and hillslope-dependence (site in southern Italy). The sources of soil moisture spatial variation at the site in central Italy are time-variant within the year and the seasonal change of topographic dependence can be conveniently correlated to a climate indicator such as the aridity index.

  9. Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing

    NASA Astrophysics Data System (ADS)

    Gao, Shengguo; Zhu, Zhongli; Liu, Shaomin; Jin, Rui; Yang, Guangchao; Tan, Lei

    2014-10-01

    Soil moisture (SM) plays a fundamental role in the land-atmosphere exchange process. Spatial estimation based on multi in situ (network) data is a critical way to understand the spatial structure and variation of land surface soil moisture. Theoretically, integrating densely sampled auxiliary data spatially correlated with soil moisture into the procedure of spatial estimation can improve its accuracy. In this study, we present a novel approach to estimate the spatial pattern of soil moisture by using the BME method based on wireless sensor network data and auxiliary information from ASTER (Terra) land surface temperature measurements. For comparison, three traditional geostatistic methods were also applied: ordinary kriging (OK), which used the wireless sensor network data only, regression kriging (RK) and ordinary co-kriging (Co-OK) which both integrated the ASTER land surface temperature as a covariate. In Co-OK, LST was linearly contained in the estimator, in RK, estimator is expressed as the sum of the regression estimate and the kriged estimate of the spatially correlated residual, but in BME, the ASTER land surface temperature was first retrieved as soil moisture based on the linear regression, then, the t-distributed prediction interval (PI) of soil moisture was estimated and used as soft data in probability form. The results indicate that all three methods provide reasonable estimations. Co-OK, RK and BME can provide a more accurate spatial estimation by integrating the auxiliary information Compared to OK. RK and BME shows more obvious improvement compared to Co-OK, and even BME can perform slightly better than RK. The inherent issue of spatial estimation (overestimation in the range of low values and underestimation in the range of high values) can also be further improved in both RK and BME. We can conclude that integrating auxiliary data into spatial estimation can indeed improve the accuracy, BME and RK take better advantage of the auxiliary information compared to Co-OK, and BME outperforms RK by integrating the auxiliary data in a probability form.

  10. Evaluating the spatial distribution of water balance in a small watershed, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Gburek, W. J.; Schwartz, F. W.

    2000-04-01

    A conceptual water-balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice.

  11. Implementation of surface soil moisture data assimilation with watershed scale distributed hydrological model

    USDA-ARS?s Scientific Manuscript database

    This paper aims to investigate how surface soil moisture data assimilation affects each hydrologic process and how spatially varying inputs affect the potential capability of surface soil moisture assimilation at the watershed scale. The Ensemble Kalman Filter (EnKF) is coupled with a watershed scal...

  12. Role of subsurface physics in the assimilation of surface soil moisture observations

    USDA-ARS?s Scientific Manuscript database

    Soil moisture controls the exchange of water and energy between the land surface and the atmosphere and exhibits memory that may be useful for climate prediction at monthly time scales. Though spatially distributed observations of soil moisture are increasingly becoming available from remotely sense...

  13. The Effects of Fine-scale Soil Moisture and Canopy Heterogeneities on Energy and Soil Water Fluxes in a Temperate Mixed Deciduous Forest

    NASA Astrophysics Data System (ADS)

    He, L.; Ivanov, V. Y.; Bohrer, G.; Maurer, K.; Vogel, C. S.; Moghaddam, M.

    2011-12-01

    Vegetation is heterogeneous at different scales, influencing spatially variable energy and water exchanges between land-surface and atmosphere. Current land surface parameterizations of large-scale models consider spatial variability at a scale of a few kilometers and treat vegetation cover as aggregated patches with uniform properties. However, the coupling mechanisms between fine-scale soil moisture, vegetation, and energy fluxes such as evapotranspiration are strongly nonlinear; the aggregation of surface variations may produce biased energy fluxes. This study aims to improve the understanding of the scale impact in atmosphere-biosphere-hydrosphere interactions, which affects predictive capabilities of land surface models. The study uses a high-resolution, physically-based ecohydrological model tRIBS + VEGGIE as a data integration tool to upscale the heterogeneity of canopy distribution resolved at a few meters to the watershed scale. The study was carried out for a spatially heterogeneous, temperate mixed forest environment of Northern Michigan located near the University of Michigan Biological Station (UMBS). Energy and soil water dynamics were simulated at the tree-canopy resolution in the horizontal plane for a small domain (~2 sq. km) located within a footprint of the AmeriFlux tower. A variety of observational data were used to constrain and confirm the model, including a 3-m profile continuous soil moisture dataset and energy flux data (measured at the AmeriFlux tower footprint). A scenario with a spatially uniform canopy, corresponding to the commonly used 'big-leaf' scheme in land surface parameterizations was used to infer the effects of coarse-scale averaging. To gain insights on how heterogeneous canopy and soil moisture interact and contribute to the domain-averaged transpiration, several scenarios of tree-scale leaf area and soil moisture spatial variability were designed. Specifically, for the same mean states, the scenarios of variability of canopy biomass account for the spatial distribution of photosynthesis (and thus the stomatal resistance), the aerodynamic and leaf boundary layer resistances as well as the differential radiation forcing due to tall tree exposure and lateral shading of short trees. The numerical experiments show that by transpiring spatially varying amounts of water, heterogeneous canopies adjust the spatial soil water state to the scaled inverse of the canopy biomass regardless of the initial moisture state. Such a spatial distribution can be further wiped out because of the differential water stress. The aggregation of canopy-scale atmosphere-biosphere-hydrosphere interactions demonstrates non-linear relationship between soil moisture and evapotranspiration, influencing domain-averaged energy fluxes.

  14. Closing the water balance with cosmic-ray soil moisture measurements and assessing their spatial variability within two semiarid watersheds

    NASA Astrophysics Data System (ADS)

    Schreiner-McGraw, A. P.; Vivoni, E. R.; Mascaro, G.; Franz, T. E.

    2015-06-01

    Soil moisture dynamics reflect the complex interactions of meteorological conditions with soil, vegetation and terrain properties. In this study, intermediate scale soil moisture estimates from the cosmic-ray sensing (CRS) method are evaluated for two semiarid ecosystems in the southwestern United States: a mesquite savanna at the Santa Rita Experimental Range (SRER) and a mixed shrubland at the Jornada Experimental Range (JER). Evaluations of the CRS method are performed for small watersheds instrumented with a distributed sensor network consisting of soil moisture sensor profiles, an eddy covariance tower and runoff flumes used to close the water balance. We found an excellent agreement between the CRS method and the distributed sensor network (RMSE of 0.009 and 0.013 m3 m-3 at SRER and JER) at the hourly time scale over the 19-month study period, primarily due to the inclusion of 5 cm observations of shallow soil moisture. Good agreement was obtained in soil moisture changes estimated from the CRS and watershed water balance methods (RMSE = 0.001 and 0.038 m3 m-3 at SRER and JER), with deviations due to bypassing of the CRS measurement depth during large rainfall events. This limitation, however, was used to show that drier-than-average conditions at SRER promoted plant water uptake from deeper layers, while the wetter-than-average period at JER resulted in leakage towards deeper soils. Using the distributed sensor network, we quantified the spatial variability of soil moisture in the CRS footprint and the relation between evapotranspiration and soil moisture, in both cases finding similar predictive relations at both sites that are applicable to other semiarid ecosystems in the southwestern US. Furthermore, soil moisture spatial variability was related to evapotranspiration in a manner consistent with analytical relations derived using the CRS method, opening up new possibilities for understanding land-atmosphere interactions.

  15. On the Fidelity of Semi-distributed Hydrologic Model Simulations for Large Scale Catchment Applications

    NASA Astrophysics Data System (ADS)

    Ajami, H.; Sharma, A.; Lakshmi, V.

    2017-12-01

    Application of semi-distributed hydrologic modeling frameworks is a viable alternative to fully distributed hyper-resolution hydrologic models due to computational efficiency and resolving fine-scale spatial structure of hydrologic fluxes and states. However, fidelity of semi-distributed model simulations is impacted by (1) formulation of hydrologic response units (HRUs), and (2) aggregation of catchment properties for formulating simulation elements. Here, we evaluate the performance of a recently developed Soil Moisture and Runoff simulation Toolkit (SMART) for large catchment scale simulations. In SMART, topologically connected HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are equivalent cross sections (ECS) representative of a hillslope in first order sub-basins. Earlier investigations have shown that formulation of ECSs at the scale of a first order sub-basin reduces computational time significantly without compromising simulation accuracy. However, the implementation of this approach has not been fully explored for catchment scale simulations. To assess SMART performance, we set-up the model over the Little Washita watershed in Oklahoma. Model evaluations using in-situ soil moisture observations show satisfactory model performance. In addition, we evaluated the performance of a number of soil moisture disaggregation schemes recently developed to provide spatially explicit soil moisture outputs at fine scale resolution. Our results illustrate that the statistical disaggregation scheme performs significantly better than the methods based on topographic data. Future work is focused on assessing the performance of SMART using remotely sensed soil moisture observations using spatially based model evaluation metrics.

  16. Using a spatially-distributed hydrologic biogeochemistry model with nitrogen transport to study the spatial variation of carbon stocks and fluxes in a Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Eissenstat, D. M.; He, Y.; Davis, K. J.

    2017-12-01

    Most current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve topographically driven land surface heterogeneity (e.g., lateral water flow, soil moisture, soil temperature, solar radiation) or the spatial pattern of nutrient availability. A spatially distributed forest biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model, and is augmented by adding a topographic solar radiation module. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation, while BBGC provides Flux-PIHM with spatially-distributed leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed. The importance of abiotic variables (including soil moisture, soil temperature, solar radiation, and soil mineral nitrogen) in predicting aboveground carbon distribution is calculated using a random forest. The result suggests that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation without the nitrogen transport module is also executed. The model without nitrogen transport fails in predicting the spatial patterns of vegetation carbon, which indicates the importance of having a nitrogen transport module in spatially distributed ecohydrologic modeling.

  17. Remotely sensed soil moisture input to a hydrologic model

    NASA Technical Reports Server (NTRS)

    Engman, E. T.; Kustas, W. P.; Wang, J. R.

    1989-01-01

    The possibility of using detailed spatial soil moisture maps as input to a runoff model was investigated. The water balance of a small drainage basin was simulated using a simple storage model. Aircraft microwave measurements of soil moisture were used to construct two-dimensional maps of the spatial distribution of the soil moisture. Data from overflights on different dates provided the temporal changes resulting from soil drainage and evapotranspiration. The study site and data collection are described, and the soil measurement data are given. The model selection is discussed, and the simulation results are summarized. It is concluded that a time series of soil moisture is a valuable new type of data for verifying model performance and for updating and correcting simulated streamflow.

  18. Improving the Non-Hydrostatic Numerical Dust Model by Integrating Soil Moisture and Greenness Vegetation Fraction Data with Different Spatiotemporal Resolutions.

    PubMed

    Yu, Manzhu; Yang, Chaowei

    2016-01-01

    Dust storms are devastating natural disasters that cost billions of dollars and many human lives every year. Using the Non-Hydrostatic Mesoscale Dust Model (NMM-dust), this research studies how different spatiotemporal resolutions of two input parameters (soil moisture and greenness vegetation fraction) impact the sensitivity and accuracy of a dust model. Experiments are conducted by simulating dust concentration during July 1-7, 2014, for the target area covering part of Arizona and California (31, 37, -118, -112), with a resolution of ~ 3 km. Using ground-based and satellite observations, this research validates the temporal evolution and spatial distribution of dust storm output from the NMM-dust, and quantifies model error using measurements of four evaluation metrics (mean bias error, root mean square error, correlation coefficient and fractional gross error). Results showed that the default configuration of NMM-dust (with a low spatiotemporal resolution of both input parameters) generates an overestimation of Aerosol Optical Depth (AOD). Although it is able to qualitatively reproduce the temporal trend of the dust event, the default configuration of NMM-dust cannot fully capture its actual spatial distribution. Adjusting the spatiotemporal resolution of soil moisture and vegetation cover datasets showed that the model is sensitive to both parameters. Increasing the spatiotemporal resolution of soil moisture effectively reduces model's overestimation of AOD, while increasing the spatiotemporal resolution of vegetation cover changes the spatial distribution of reproduced dust storm. The adjustment of both parameters enables NMM-dust to capture the spatial distribution of dust storms, as well as reproducing more accurate dust concentration.

  19. On the soil moisture estimate at basin scale in Mediterranean basins with the ASAR sensor: the Mulargia basin case study

    NASA Astrophysics Data System (ADS)

    Fois, Laura; Montaldo, Nicola

    2017-04-01

    Soil moisture plays a key role in water and energy exchanges between soil, vegetation and atmosphere. For water resources planning and managementthesoil moistureneeds to be accurately and spatially monitored, specially where the risk of desertification is high, such as Mediterranean basins. In this sense active remote sensors are very attractive for soil moisture monitoring. But Mediterranean basinsaretypicallycharacterized by strong topography and high spatial variability of physiographic properties, and only high spatial resolution sensorsare potentially able to monitor the strong soil moisture spatial variability.In this regard the Envisat ASAR (Advanced Synthetic Aperture Radar) sensor offers the attractive opportunity ofsoil moisture mapping at fine spatial and temporal resolutions(up to 30 m, every 30 days). We test the ASAR sensor for soil moisture estimate in an interesting Sardinian case study, the Mulargia basin withan area of about 70 sq.km. The position of the Sardinia island in the center of the western Mediterranean Sea basin, its low urbanization and human activity make Sardinia a perfect reference laboratory for Mediterranean hydrologic studies. The Mulargia basin is a typical Mediterranean basinin water-limited conditions, and is an experimental basin from 2003. For soil moisture mapping23 satellite ASAR imagery at single and dual polarization were acquired for the 2003-2004period.Satellite observationsmay bevalidated through spatially distributed soil moisture ground-truth data, collected over the whole basin using the TDR technique and the gravimetric method, in days with available radar images. The results show that ASAR sensor observations can be successfully used for soil moisture mapping at different seasons, both wet and dry, but an accurate calibration with field data is necessary. We detect a strong relationship between the soil moisture spatial variability and the physiographic properties of the basin, such as soil water storage capacity, deep and texture of soils, type and density of vegetation, and topographic parameters. Finally we demonstrate that the high resolution ASAR imagery are an attractive tool for estimating surface soil moisture at basin scale, offering a unique opportunity for monitoring the soil moisture spatial variability in typical Mediterranean basins.

  20. Systems, methods, and software for determining spatially variable distributions of the dielectric properties of a heterogeneous material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrington, Stephen P.

    Systems, methods, and software for measuring the spatially variable relative dielectric permittivity of materials along a linear or otherwise configured sensor element, and more specifically the spatial variability of soil moisture in one dimension as inferred from the dielectric profile of the soil matrix surrounding a linear sensor element. Various methods provided herein combine advances in the processing of time domain reflectometry data with innovations in physical sensing apparatuses. These advancements enable high temporal (and thus spatial) resolution of electrical reflectance continuously along an insulated waveguide that is permanently emplaced in contact with adjacent soils. The spatially resolved reflectance ismore » directly related to impedance changes along the waveguide that are dominated by electrical permittivity contrast due to variations in soil moisture. Various methods described herein are thus able to monitor soil moisture in profile with high spatial resolution.« less

  1. Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest

    Treesearch

    Roger C. Bales; Jan W. Hopmans; Anthony T. O’Geen; Matthew Meadows; Peter C. Hartsough; Peter Kirchner; Carolyn T. Hunsaker; Dylan Beaudette

    2011-01-01

    Using data from a water-balance instrument cluster with spatially distributed sensors we determined the magnitude and within-catchment variability of components of the catchment-scale water balance, focusing on the relationship of seasonal evapotranspiration to changes in snowpack and soil moisture storage. Co-located, continuous snow depth and soil moisture...

  2. Impacts of Spatial Distribution of Impervious Areas on Runoff Response of Hillslope Catchments: Simulation Study

    EPA Science Inventory

    This study analyzes variations in the model-projected changes in catchment runoff response after urbanization that stem from variations in the spatial distribution of impervious areas, interevent differences in temporal rainfall structure, and antecedent soil moisture (ASM). In t...

  3. Distributed Soil Moisture Estimation in a Mountainous Semiarid Basin: Constraining Soil Parameter Uncertainty through Field Studies

    NASA Astrophysics Data System (ADS)

    Yatheendradas, S.; Vivoni, E.

    2007-12-01

    A common practice in distributed hydrological modeling is to assign soil hydraulic properties based on coarse textural datasets. For semiarid regions with poor soil information, the performance of a model can be severely constrained due to the high model sensitivity to near-surface soil characteristics. Neglecting the uncertainty in soil hydraulic properties, their spatial variation and their naturally-occurring horizonation can potentially affect the modeled hydrological response. In this study, we investigate such effects using the TIN-based Real-time Integrated Basin Simulator (tRIBS) applied to the mid-sized (100 km2) Sierra Los Locos watershed in northern Sonora, Mexico. The Sierra Los Locos basin is characterized by complex mountainous terrain leading to topographic organization of soil characteristics and ecosystem distributions. We focus on simulations during the 2004 North American Monsoon Experiment (NAME) when intensive soil moisture measurements and aircraft- based soil moisture retrievals are available in the basin. Our experiments focus on soil moisture comparisons at the point, topographic transect and basin scales using a range of different soil characterizations. We compare the distributed soil moisture estimates obtained using (1) a deterministic simulation based on soil texture from coarse soil maps, (2) a set of ensemble simulations that capture soil parameter uncertainty and their spatial distribution, and (3) a set of simulations that conditions the ensemble on recent soil profile measurements. Uncertainties considered in near-surface soil characterization provide insights into their influence on the modeled uncertainty, into the value of soil profile observations, and into effective use of on-going field observations for constraining the soil moisture response uncertainty.

  4. Spatial distribution of soil moisture obtained from gravimetric and TDR methods for SMOS validation, at the Polesie test site SVRT 3275, in Poland

    NASA Astrophysics Data System (ADS)

    Usowicz, B.; Marczewski, W.; Lipiec, J.; Usowicz, J. B.; Sokolowska, Z.; Dabkowska-Naskret, H.; Hajnos, M.; Lukowski, M. I.

    2009-04-01

    The purpose is obtaining trustful ground based measurement data of SM (Soil Moisture) for validating SMOS, respectively to spatial and temporal distribution and variations. A use of Time Domain Reflectometric (TDR) method is fast, simple and less destructive, to the soil matter, than a usual standard gravimetric method. TDR tools operate efficiently, enable nearly instant measurements, and allow on collecting many measurements from numerous sites, even when operated manually in short time intervals. The method enables also very frequent sampling of SM at few selected fixed sites, when long terms of temporal variations are needed. In effect one obtains reasonably large data base for determining spatial and temporal distributions of SM. The study is devoted to determining a plan on collecting TDR data, in the scales of small and large field areas, and checking their relevance to those available from gravimetric methods. Finally, the ground based SM distributions are needed for validating other SM distributions, available remotely in larger scales, from the satellite data of ENVISAT-ASAR, and from SMOS (Soil Moisture and Ocean Salinity Mission) when it becomes operational. The ground based evaluations are served mainly by geo-statistical analysis. The space borne estimations are retrieved by image processing and physical models, proper to relevant Remote Sensing (RS) instruments on the orbit. Finally, validation must engage again the geo-statistical evaluations, to assess the agreement between direct and remote sensing means, and provide a measure of trust for extending the limited scales of the ground based data, on concluding the agreement in scales proper to the satellite data. The study is focused mainly on trustful evaluating data from the ground, provided independently on satellite data sources. SM ground based data are collected permanently at 2 selected tests sites, and temporary in areas around the tests sites, in one day sessions, repeated several times per vegetation season. Permanent measurements are provided in profiles, down to 50 cm below surface. Temporary SM measurements are collected by hand held TDR (FOM/mts type, Easy Test Ltd., Lublin, Poland) from the top surface layer (1-6 cm), in a grid covering small and large areas, containing few hundred sites. The same places are served by collecting soil samples for the gravimetric analysis of SM, bulk density, other physical and textural characteristics. Sessions on measurement in large areas on the scale of community are repeated for separate days. The two methods used were compared with correlation coefficient, regression equation and differences of values. The spatial variability of soil moisture from gravimetric and TDR measurements were analyzed using geostatistical methods. The semivariogram parameters were determined and mathematical functions were fitted to empirically derived semivariograms. These functions were used for estimation of spatial distribution of soil moisture in cultivated fields by the kriging method. The results showed that spatial distribution patterns of topsoil soil moisture in the investigated areas obtained from TDR and gravimetric methods were in general similar to each other. The TDR soil moisture contents were dependent on bulk density and texture of soil. In areas with fine-textured soils of lower soil bulk densities (approximately below 1.35 Mg m^-3) we observed that TDR soil moisture and spatial differentiation were greater compared to those with gravimetric method. However at higher bulk densities the inverse was true. The spatial patterns were further modified in areas with domination of coarse-textured soils. Decrease of measurement points results in smoothing soil moisture pattern and at the same time in a greater estimation error. The TDR method can be useful tool for ground moisture measurements and validation of satellite data. The use of specific calibration or correction for soil bulk density and texture with respect to the reflectometric method is recommended. The study is a contribution to the project SWEX (AO-3275) and funded by the Polish Ministry of Science and Higher Education (in part by Grant No. N305 046 31/1707 and in part by Grant No. N305 107 32/3865).

  5. [Detecting the moisture content of forest surface soil based on the microwave remote sensing technology.

    PubMed

    Li, Ming Ze; Gao, Yuan Ke; Di, Xue Ying; Fan, Wen Yi

    2016-03-01

    The moisture content of forest surface soil is an important parameter in forest ecosystems. It is practically significant for forest ecosystem related research to use microwave remote sensing technology for rapid and accurate estimation of the moisture content of forest surface soil. With the aid of TDR-300 soil moisture content measuring instrument, the moisture contents of forest surface soils of 120 sample plots at Tahe Forestry Bureau of Daxing'anling region in Heilongjiang Province were measured. Taking the moisture content of forest surface soil as the dependent variable and the polarization decomposition parameters of C band Quad-pol SAR data as independent variables, two types of quantitative estimation models (multilinear regression model and BP-neural network model) for predicting moisture content of forest surface soils were developed. The spatial distribution of moisture content of forest surface soil on the regional scale was then derived with model inversion. Results showed that the model precision was 86.0% and 89.4% with RMSE of 3.0% and 2.7% for the multilinear regression model and the BP-neural network model, respectively. It indicated that the BP-neural network model had a better performance than the multilinear regression model in quantitative estimation of the moisture content of forest surface soil. The spatial distribution of forest surface soil moisture content in the study area was then obtained by using the BP neural network model simulation with the Quad-pol SAR data.

  6. Observing and modeling links between soil moisture, microbes and CH4 fluxes from forest soils

    NASA Astrophysics Data System (ADS)

    Christiansen, Jesper; Levy-Booth, David; Barker, Jason; Prescott, Cindy; Grayston, Sue

    2017-04-01

    Soil moisture is a key driver of methane (CH4) fluxes in forest soils, both of the net uptake of atmospheric CH4 and emission from the soil. Climate and land use change will alter spatial patterns of soil moisture as well as temporal variability impacting the net CH4 exchange. The impact on the resultant net CH4 exchange however is linked to the underlying spatial and temporal distribution of the soil microbial communities involved in CH4 cycling as well as the response of the soil microbial community to environmental changes. Significant progress has been made to target specific CH4 consuming and producing soil organisms, which is invaluable in order to understand the microbial regulation of the CH4 cycle in forest soils. However, it is not clear as to which extent soil moisture shapes the structure, function and abundance of CH4 specific microorganisms and how this is linked to observed net CH4 exchange under contrasting soil moisture regimes. Here we report on the results from a research project aiming to understand how the CH4 net exchange is shaped by the interactive effects soil moisture and the spatial distribution CH4 consuming (methanotrophs) and producing (methanogens). We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs and methanogens, soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient in a temperate rainforest on the Canadian Pacific coast. Furthermore, we conducted laboratory experiments to determine whether the net CH4 exchange from hydrologically contrasting forest soils responded differently to changes in soil moisture. Lastly, we modelled the microbial mediation of net CH4 exchange along the soil moisture gradient using structural equation modeling. Our study shows that it is possible to link spatial patterns of in situ net exchange of CH4 to microbial abundance of CH4 consuming and producing organisms. We also show that the microbial community responds different to environmental change dependent on the soil moisture regime. These results are important to include in future modeling efforts to predict changes in soil-atmosphere exchange of CH4 under global change.

  7. Downscaling Soil Moisture in the Southern Great Plains Through a Calibrated Multifractal Model for Land Surface Modeling Applications

    NASA Technical Reports Server (NTRS)

    Mascaro, Giuseppe; Vivoni, Enrique R.; Deidda, Roberto

    2010-01-01

    Accounting for small-scale spatial heterogeneity of soil moisture (theta) is required to enhance the predictive skill of land surface models. In this paper, we present the results of the development, calibration, and performance evaluation of a downscaling model based on multifractal theory using aircraft!based (800 m) theta estimates collected during the southern Great Plains experiment in 1997 (SGP97).We first demonstrate the presence of scale invariance and multifractality in theta fields of nine square domains of size 25.6 x 25.6 sq km, approximately a satellite footprint. Then, we estimate the downscaling model parameters and evaluate the model performance using a set of different calibration approaches. Results reveal that small-scale theta distributions are adequately reproduced across the entire region when coarse predictors include a dynamic component (i.e., the spatial mean soil moisture ) and a stationary contribution accounting for static features (i.e., topography, soil texture, vegetation). For wet conditions, we found similar multifractal properties of soil moisture across all domains, which we ascribe to the signature of rainfall spatial variability. For drier states, the theta fields in the northern domains are more intermittent than in southern domains, likely because of differences in the distribution of vegetation coverage. Through our analyses, we propose a regional downscaling relation for coarse, satellite-based soil moisture estimates, based on ancillary information (static and dynamic landscape features), which can be used in the study area to characterize statistical properties of small-scale theta distribution required by land surface models and data assimilation systems.

  8. Anthropogenic Moisture production and its effect on boundary-layer circulations over New York City

    Treesearch

    Robert D. Bornstein; Yam-Tong Tam

    1977-01-01

    A heat and moisture excess over New York City is shown to exist by the analysis of helicopter soundings of temperature and wet-bulb depression. The magnitude of the temporal and spatial distribution of anthropogenic moisture emissions in New York City were estimated from fuel-usage data. The URBMET urban boundary-layer model was used to evaluate the effects on the...

  9. Patterns and scaling properties of surface soil moisture in an agricultural landscape: An ecohydrological modeling study

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Schneider, K.

    2013-08-01

    Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.

  10. Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales

    USGS Publications Warehouse

    Stephenson, N.L.

    1998-01-01

    Correlative approaches to understanding the climatic controls of vegetation distribution have exhibited at least two important weaknesses: they have been conceptually divorced across spatial scales, and their climatic parameters have not necessarily represented aspects of climate of broad physiological importance to plants. Using examples from the literature and from the Sierra Nevada of California, I argue that two water balance parameters-actual evapotranspiration (AET) and deficit (D)-are biologically meaningful, are well correlated with the distribution of vegetation types, and exhibit these qualities over several orders of magnitude of spatial scale (continental to local). I reach four additional conclusions. (1) Some pairs of climatic parameters presently in use are functionally similar to AET and D; however, AET and D may be easier to interpret biologically. (2) Several well-known climatic parameters are biologically less meaningful or less important than AET and D, and consequently are poorer correlates of the distribution of vegetation types. Of particular interest, AET is a much better correlate of the distributions of coniferous and deciduous forests than minimum temperature. (3) The effects of evaporative demand and water availability on a site's water balance are intrinsically different. For example, the 'dry' experienced by plants on sunward slopes (high evaporative demand) is not comparable to the 'dry' experienced by plants on soils with low water-holding capacities (low water availability), and these differences are reflected in vegetation patterns. (4) Many traditional topographic moisture scalars-those that additively combine measures related to evaporative demand and water availability are not necessarily meaningful for describing site conditions as sensed by plants; the same holds for measured soil moisture. However, using AET and D in place of moisture scalars and measured soil moisture can solve these problems.

  11. Patterns of Precipitation and Streamflow Responses to Moisture Fluxes during Atmospheric Rivers

    NASA Astrophysics Data System (ADS)

    Henn, B. M.; Wilson, A. M.; Asgari Lamjiri, M.; Ralph, M.

    2017-12-01

    Precipitation from landfalling atmospheric rivers (ARs) have been shown to dominate the hydroclimate of many parts of the world. ARs are associated with saturated, neutrally-stable profiles in the lower atmosphere, in which forced ascent by topography induces precipitation. Understanding the spatial and temporal variability of precipitation over complex terrain during AR-driven precipitation is critical for accurate forcing of distributed hydrologic models and streamflow forecasts. Past studies using radar wind profilers and radiosondes have demonstrated predictability of precipitation rates based on upslope water vapor flux over coastal terrain, with certain levels of moisture flux exhibiting the greatest influence on precipitation. Additionally, these relationships have been extended to show that streamflow in turn responds predictably to upslope vapor flux. However, past studies have focused on individual pairs of profilers and precipitation gauges; the question of how orographic precipitation in ARs is distributed spatially over complex terrain, at different topographic scales, is less well known. Here, we examine profiles of atmospheric moisture transport from radiosondes and wind profilers, against a relatively dense network of precipitation gauges, as well as stream gauges, to assess relationships between upslope moisture flux and the spatial response of precipitation and streamflow. We focus on California's Russian River watershed in the 2016-2017 cool season, when regular radiosonde launches were made at two locations during an active sequence of landfalling ARs. We examine how atmospheric water vapor flux results in precipitation patterns across gauges with different topographic relationships to the prevailing moisture-bearing winds, and conduct a similar comparison of runoff volume response from several unimpaired watersheds in the upper Russian watershed, taking into account antecedent soil moisture conditions that influence runoff generation. Finally, we compare observed spatial patterns of precipitation accumulations to those in a topographically-aided gridded precipitation dataset to understand how atmospheric moisture transport may inform methods to downscale precipitation to high resolution for use in hydrologic modeling.

  12. Potential for Remotely Sensed Soil Moisture Data in Hydrologic Modeling

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1997-01-01

    Many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture and portray the spatial heterogeneity of hydrologic processes and properties that one encounters in drainage basins. The hydrologic processes that may be detected include ground water recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential ET, and information about the hydrologic properties of soils and heterogeneity of hydrologic parameters. Microwave remote sensing has the potential to detect these signatures within a basin in the form of volumetric soil moisture measurements in the top few cm. These signatures should provide information on how and where to apply soil physical parameters in distributed and lumped parameter models and how to subdivide drainage basins into hydrologically similar sub-basins.

  13. Evapotranspiration Controls Imposed by Soil Moisture: A Spatial Analysis across the United States

    NASA Astrophysics Data System (ADS)

    Rigden, A. J.; Tuttle, S. E.; Salvucci, G.

    2014-12-01

    We spatially analyze the control over evapotranspiration (ET) imposed by soil moisture across the United States using daily estimates of satellite-derived soil moisture and data-driven ET over a nine-year period (June 2002-June 2011) at 305 locations. The soil moisture data are developed using 0.25-degree resolution satellite observations from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), where the 9-year time series for each 0.25-degree pixel was selected from three potential algorithms (VUA-NASA, U. Montana, & NASA) based on the maximum mutual information between soil moisture and precipitation (Tuttle & Salvucci (2014), Remote Sens Environ, 114: 207-222). The ET data are developed independent of soil moisture using an emergent relationship between the diurnal cycle of the relative humidity profile and ET. The emergent relation is that the vertical variance of the relative humidity profile is less than what would occur for increased or decreased ET rates, suggesting that land-atmosphere feedback processes minimize this variance (Salvucci and Gentine (2013), PNAS, 110(16): 6287-6291). The key advantage of using this approach to estimate ET is that no measurements of surface limiting factors (soil moisture, leaf area, canopy conductance) are required; instead, ET is estimated from meteorological data measured at 305 common weather stations that are approximately uniformly distributed across the United States. The combination of these two independent datasets allows for a unique spatial analysis of the control on ET imposed by the availability of soil moisture. We fit evaporation efficiency curves across the United States at each of the 305 sites during the summertime (May-June-July-August-September). Spatial patterns are visualized by mapping optimal curve fitting coefficients across the Unites States. An analysis of efficiency curves and their spatial patterns will be presented.

  14. Measuring spatial and temporal variation in surface moisture on a coastal beach with a near-infrared terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Smit, Yvonne; Ruessink, Gerben; Brakenhoff, Laura B.; Donker, Jasper J. A.

    2018-04-01

    Wind-alone predictions of aeolian sand deposition on the most seaward coastal dune ridge often exceed measured deposition substantially. Surface moisture is a major factor limiting aeolian transport on sandy beaches, but existing measurement techniques cannot adequately characterize the spatial and temporal distribution of surface moisture content. Here, we present a new method for detecting surface moisture at high temporal and spatial resolution using a near-infrared terrestrial laser scanner (TLS), the RIEGL VZ-400. Because this TLS operates at a wavelength (1550 nm) near a water absorption band, TLS reflectance is an accurate parameter to measure surface moisture over its full range. Five days of intensive laser scanning were performed on a Dutch beach to illustrate the applicability of the TLS. Gravimetric surface moisture samples were used to calibrate the relation between reflectance and surface moisture. Results reveal a robust negative relation for the full range of possible surface moisture contents (0%-25%), with a correlation-coefficient squared of 0.85 and a root-mean-square error of 2.7%. This relation holds between 20 and 60 m from the TLS. Within this distance the TLS typically produces O (106-107) data points, which we averaged into surface moisture maps with a 1 × 1 m resolution. This grid size largely removes small reflectance disturbances induced by, for example, footprints or tire tracks, while retaining larger scale moisture trends.

  15. Validation of Distributed Soil Moisture: Airborne Polarimetric SAR vs. Ground-based Sensor Networks

    NASA Astrophysics Data System (ADS)

    Jagdhuber, T.; Kohling, M.; Hajnsek, I.; Montzka, C.; Papathanassiou, K. P.

    2012-04-01

    The knowledge of spatially distributed soil moisture is highly desirable for an enhanced hydrological modeling in terms of flood prevention and for yield optimization in combination with precision farming. Especially in mid-latitudes, the growing agricultural vegetation results in an increasing soil coverage along the crop cycle. For a remote sensing approach, this vegetation influence has to be separated from the soil contribution within the resolution cell to extract the actual soil moisture. Therefore a hybrid decomposition was developed for estimation of soil moisture under vegetation cover using fully polarimetric SAR data. The novel polarimetric decomposition combines a model-based decomposition, separating the volume component from the ground components, with an eigen-based decomposition of the two ground components into a surface and a dihedral scattering contribution. Hence, this hybrid decomposition, which is based on [1,2], establishes an innovative way to retrieve soil moisture under vegetation. The developed inversion algorithm for soil moisture under vegetation cover is applied on fully polarimetric data of the TERENO campaign, conducted in May and June 2011 for the Rur catchment within the Eifel/Lower Rhine Valley Observatory. The fully polarimetric SAR data were acquired in high spatial resolution (range: 1.92m, azimuth: 0.6m) by DLR's novel F-SAR sensor at L-band. The inverted soil moisture product from the airborne SAR data is validated with corresponding distributed ground measurements for a quality assessment of the developed algorithm. The in situ measurements were obtained on the one hand by mobile FDR probes from agricultural fields near the towns of Merzenhausen and Selhausen incorporating different crop types and on the other hand by distributed wireless sensor networks (SoilNet clusters) from a grassland test site (near the town of Rollesbroich) and from a forest stand (within the Wüstebach sub-catchment). Each SoilNet cluster incorporates around 150 wireless measuring devices on a grid of approximately 30ha for distributed soil moisture sensing. Finally, the comparison of both distributed soil moisture products results in a discussion on potentials and limitations for obtaining soil moisture under vegetation cover with high resolution fully polarimetric SAR. [1] S.R. Cloude, Polarisation: applications in remote sensing. Oxford, Oxford University Press, 2010. [2] Jagdhuber, T., Hajnsek, I., Papathanassiou, K.P. and Bronstert, A.: A Hybrid Decomposition for Soil Moisture Estimation under Vegetation Cover Using Polarimetric SAR. Proc. of the 5th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, ESA-ESRIN, Frascati, Italy, January 24-28, 2011, p.1-6.

  16. Soil Moisture Processes in the Near Surface Unsaturated Zone: Experimental Investigations in Multi-scale Test Systems

    NASA Astrophysics Data System (ADS)

    Illangasekare, T. H.; Sakaki, T.; Smits, K. M.; Limsuwat, A.; Terrés-Nícoli, J. M.

    2008-12-01

    Understanding the dynamics of soil moisture distribution near the ground surface is of interest in various applications involving land-atmospheric interaction, evaporation from soils, CO2 leakage from carbon sequestration, vapor intrusion into buildings, and land mine detection. Natural soil heterogeneity in combination with water and energy fluxes at the soil surface creates complex spatial and temporal distributions of soil moisture. Even though considerable knowledge exists on how soil moisture conditions change in response to flux and energy boundary conditions, emerging problems involving land atmospheric interactions require the quantification of soil moisture variability both at high spatial and temporal resolutions. The issue of up-scaling becomes critical in all applications, as in general, field measurements are taken at sparsely distributed spatial locations that require assimilation with measurements taken using remote sensing technologies. It is our contention that the knowledge that will contribute to both improving our understanding of the fundamental processes and practical problem solution cannot be obtained easily in the field due to a number of constraints. One of these basic constraints is the inability to make measurements at very fine spatial scales at high temporal resolutions in naturally heterogeneous field systems. Also, as the natural boundary conditions at the land/atmospheric interface are not controllable in the field, even in pilot scale studies, the developed theories and tools cannot be validated for the diversity of conditions that could be expected in the field. Intermediate scale testing using soil tanks packed to represent different heterogeneous test configurations provides an attractive and cost effective alternative to investigate a class of problems involving the shallow unsaturated zone. In this presentation, we will discuss the advantages and limitations of studies conducted in both two and three dimensional intermediate scale test systems together with instrumentation and measuring techniques. The features and capabilities of a new coupled porous media/climate wind tunnel test system that allows for the study of near surface unsaturated soil moisture conditions under climate boundary conditions will also be presented with the goal of exploring opportunities to use such a facility to study some of the multi-scale problems in the near surface unsaturated zone.

  17. From Sub-basin to Grid Scale Soil Moisture Disaggregation in SMART, A Semi-distributed Hydrologic Modeling Framework

    NASA Astrophysics Data System (ADS)

    Ajami, H.; Sharma, A.

    2016-12-01

    A computationally efficient, semi-distributed hydrologic modeling framework is developed to simulate water balance at a catchment scale. The Soil Moisture and Runoff simulation Toolkit (SMART) is based upon the delineation of contiguous and topologically connected Hydrologic Response Units (HRUs). In SMART, HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are distributed cross sections or equivalent cross sections (ECS) delineated in first order sub-basins. ECSs are formulated by aggregating topographic and physiographic properties of the part or entire first order sub-basins to further reduce computational time in SMART. Previous investigations using SMART have shown that temporal dynamics of soil moisture are well captured at a HRU level using the ECS delineation approach. However, spatial variability of soil moisture within a given HRU is ignored. Here, we examined a number of disaggregation schemes for soil moisture distribution in each HRU. The disaggregation schemes are either based on topographic based indices or a covariance matrix obtained from distributed soil moisture simulations. To assess the performance of the disaggregation schemes, soil moisture simulations from an integrated land surface-groundwater model, ParFlow.CLM in Baldry sub-catchment, Australia are used. ParFlow is a variably saturated sub-surface flow model that is coupled to the Common Land Model (CLM). Our results illustrate that the statistical disaggregation scheme performs better than the methods based on topographic data in approximating soil moisture distribution at a 60m scale. Moreover, the statistical disaggregation scheme maintains temporal correlation of simulated daily soil moisture while preserves the mean sub-basin soil moisture. Future work is focused on assessing the performance of this scheme in catchments with various topographic and climate settings.

  18. Inferring Soil Moisture Memory from Streamflow Observations Using a Simple Water Balance Model

    NASA Technical Reports Server (NTRS)

    Orth, Rene; Koster, Randal Dean; Seneviratne, Sonia I.

    2013-01-01

    Soil moisture is known for its integrative behavior and resulting memory characteristics. Soil moisture anomalies can persist for weeks or even months into the future, making initial soil moisture a potentially important contributor to skill in weather forecasting. A major difficulty when investigating soil moisture and its memory using observations is the sparse availability of long-term measurements and their limited spatial representativeness. In contrast, there is an abundance of long-term streamflow measurements for catchments of various sizes across the world. We investigate in this study whether such streamflow measurements can be used to infer and characterize soil moisture memory in respective catchments. Our approach uses a simple water balance model in which evapotranspiration and runoff ratios are expressed as simple functions of soil moisture; optimized functions for the model are determined using streamflow observations, and the optimized model in turn provides information on soil moisture memory on the catchment scale. The validity of the approach is demonstrated with data from three heavily monitored catchments. The approach is then applied to streamflow data in several small catchments across Switzerland to obtain a spatially distributed description of soil moisture memory and to show how memory varies, for example, with altitude and topography.

  19. Linking the soil moisture distribution pattern to dynamic processes along slope transects in the Loess Plateau, China.

    PubMed

    Wang, Shuai; Fu, Bojie; Gao, Guangyao; Zhou, Ji; Jiao, Lei; Liu, Jianbo

    2015-12-01

    Soil moisture pulses are a prerequisite for other land surface pulses at various spatiotemporal scales in arid and semi-arid areas. The temporal dynamics and profile variability of soil moisture in relation to land cover combinations were studied along five slopes transect on the Loess Plateau during the rainy season of 2011. Within the 3 months of the growing season coupled with the rainy season, all of the soil moisture was replenished in the area, proving that a type stability exists between different land cover soil moisture levels. Land cover combinations disturbed the trend determined by topography and increased soil moisture variability in space and time. The stability of soil moisture resulting from the dynamic processes could produce stable patterns on the slopes. The relationships between the mean soil moisture and vertical standard deviation (SD) and coefficient of variation (CV) were more complex, largely due to the fact that different land cover types had distinctive vertical patterns of soil moisture. The spatial SD of each layer had a positive correlation and the spatial CV exhibited a negative correlation with the increase in mean soil moisture. The soil moisture stability implies that sampling comparisons in this area can be conducted at different times to accurately compare different land use types.

  20. Spatial and temporal variability of soil moisture on the field with and without plants*

    NASA Astrophysics Data System (ADS)

    Usowicz, B.; Marczewski, W.; Usowicz, J. B.

    2012-04-01

    Spatial and temporal variability of the natural environment is its inherent and unavoidable feature. Every element of the environment is characterized by its own variability. One of the kinds of variability in the natural environment is the variability of the soil environment. To acquire better and deeper knowledge and understanding of the temporal and spatial variability of the physical, chemical and biological features of the soil environment, we should determine the causes that induce a given variability. Relatively stable features of soil include its texture and mineral composition; examples of those variables in time are the soil pH or organic matter content; an example of a feature with strong dynamics is the soil temperature and moisture content. The aim of this study was to identify the variability of soil moisture on the field with and without plants using geostatistical methods. The soil moisture measurements were taken on the object with plant canopy and without plants (as reference). The measurements of soil moisture and meteorological components were taken within the period of April-July. The TDR moisture sensors covered 5 cm soil layers and were installed in the plots in the soil layers of 0-0.05, 0.05-0.1, 0.1-0.15, 0.2-0.25, 0.3-0.35, 0.4-0.45, 0.5-0.55, 0.8-0.85 m. Measurements of soil moisture were taken once a day, in the afternoon hours. For the determination of reciprocal correlation, precipitation data and data from soil moisture measurements with the TDR meter were used. Calculations of reciprocal correlation of precipitation and soil moisture at various depths were made for three objects - spring barley, rye, and bare soil, at the level of significance of p<0.05. No significant reciprocal correlation was found between the precipitation and soil moisture in the soil profile for any of the objects studied. Although the correlation analysis indicates a lack of correlation between the variables under consideration, observation of the soil moisture runs in particular objects and of precipitation distribution shows clearly that rainfall has an effect on the soil moisture. The amount of precipitation water that increased the soil moisture depended on the strength of the rainfall, on the hydrological properties of the soil (primarily the soil density), the status of the plant cover, and surface runoff. Basing on the precipitation distribution and on the soil moisture runs, an attempt was made at finding a temporal and spatial relationship between those variables, employing for the purpose the geostatistical methods which permit time and space to be included in the analysis. The geostatistical parameters determined showed the temporal dependence of moisture distribution in the soil profile, with the autocorrelation radius increasing with increasing depth in the profile. The highest values of the radius were observed in the plots with plant cover below the arable horizon, and the lowest in the arable horizon on the barley and fallow plots. The fractal dimensions showed a clear decrease in values with increasing depth in the plots with plant cover, while in the bare plots they were relatively constant within the soil profile under study. Therefore, they indicated that the temporal distribution of soil moisture within the soil profile in the bare field was more random in character than in the plots with plants. The results obtained and the analyses indicate that the moisture in the soil profile, its variability and determination, are significantly affected by the type and condition of plant canopy. The differentiation in moisture content between the plots studied resulted from different precipitation interception and different intensity of water uptake by the roots. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO-3275.

  1. Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements

    NASA Astrophysics Data System (ADS)

    Hübner, R.; Heller, K.; Günther, T.; Kleber, A.

    2015-01-01

    Besides floodplains, hillslopes are basic units that mainly control water movement and flow pathways within catchments of subdued mountain ranges. The structure of their shallow subsurface affects water balance, e.g. infiltration, retention, and runoff. Nevertheless, there is still a gap in the knowledge of the hydrological dynamics on hillslopes, notably due to the lack of generalization and transferability. This study presents a robust multi-method framework of electrical resistivity tomography (ERT) in addition to hydrometric point measurements, transferring hydrometric data into higher spatial scales to obtain additional patterns of distribution and dynamics of soil moisture on a hillslope. A geoelectrical monitoring in a small catchment in the eastern Ore Mountains was carried out at weekly intervals from May to December 2008 to image seasonal moisture dynamics on the hillslope scale. To link water content and electrical resistivity, the parameters of Archie's law were determined using different core samples. To optimize inversion parameters and methods, the derived spatial and temporal water content distribution was compared to tensiometer data. The results from ERT measurements show a strong correlation with the hydrometric data. The response is congruent to the soil tension data. Water content calculated from the ERT profile shows similar variations as that of water content from soil moisture sensors. Consequently, soil moisture dynamics on the hillslope scale may be determined not only by expensive invasive punctual hydrometric measurements, but also by minimally invasive time-lapse ERT, provided that pedo-/petrophysical relationships are known. Since ERT integrates larger spatial scales, a combination with hydrometric point measurements improves the understanding of the ongoing hydrological processes and better suits identification of heterogeneities.

  2. Using a spatially-distributed hydrologic biogeochemistry model to study the spatial variation of carbon processes in a Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Eissenstat, D. M.; Davis, K. J.; He, Y.

    2015-12-01

    Forest carbon processes are affected by soil moisture, soil temperature and solar radiation. Most of the current biogeochemical models are 1-D and represent one point in space. Therefore they can neither resolve topographically driven hill-slope soil moisture patterns, nor simulate the nonlinear effects of soil moisture on carbon processes. A spatially-distributed biogeochemistry model, Flux-PIHM-BGC, has been developed by coupling the Biome-BGC (BBGC) model with a coupled physically-based land surface hydrologic model, Flux-PIHM. Flux-PIHM incorporates a land-surface scheme (adapted from the Noah land surface model) into the Penn State Integrated Hydrologic Model (PIHM). Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. Flux-PIHM-BGC model was tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations at the SSHCZO, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, aboveground carbon stock, and soil carbon efflux, provided an ideal test bed for the coupled model. Model results show that when uniform solar radiation is used, vegetation carbon and soil carbon are positively correlated with soil moisture in space, which agrees with the observations within the watershed. When topographically-driven solar radiation is used, however, the wetter valley floor becomes radiation limited, and produces less vegetation and soil carbon than the drier hillslope due to the assumption that canopy height is uniform in the watershed. This contradicts with the observations, and suggests that a tree height model with dynamic allocation model are needed to reproduce the spatial variation of carbon processes within a watershed.

  3. Moment Analysis Characterizing Water Flow in Repellent Soils from On- and Sub-Surface Point Sources

    NASA Astrophysics Data System (ADS)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2010-05-01

    Water repellency has a significant impact on water flow patterns in the soil profile. Flow tends to become unstable in such soils, which affects the water availability to plants and subsurface hydrology. In this paper, water flow in repellent soils was experimentally studied using the light reflection method. The transient 2D moisture profiles were monitored by CCD camera for tested soils packed in a transparent flow chamber. Water infiltration experiments and subsequent redistribution from on-surface and subsurface point sources with different flow rates were conducted for two soils of different repellency degrees as well as for wettable soil. We used spatio-statistical analysis (moments) to characterize the flow patterns. The zeroth moment is related to the total volume of water inside the moisture plume, and the first and second moments are affinitive to the center of mass and spatial variances of the moisture plume, respectively. The experimental results demonstrate that both the general shape and size of the wetting plume and the moisture distribution within the plume for the repellent soils are significantly different from that for the wettable soil. The wetting plume of the repellent soils is smaller, narrower, and longer (finger-like) than that of the wettable soil compared with that for the wettable soil that tended to roundness. Compared to the wettable soil, where the soil water content decreases radially from the source, moisture content for the water-repellent soils is higher, relatively uniform horizontally and gradually increases with depth (saturation overshoot), indicating that flow tends to become unstable. Ellipses, defined around the mass center and whose semi-axes represented a particular number of spatial variances, were successfully used to simulate the spatial and temporal variation of the moisture distribution in the soil profiles. Cumulative probability functions were defined for the water enclosed in these ellipses. Practically identical cumulative probability functions (beta distribution) were obtained for all soils, all source types, and flow rates. Further, same distributions were obtained for the infiltration and redistribution processes. This attractive result demonstrates the competence and advantage of the moment analysis method.

  4. A review of the methods available for estimating soil moisture and its implications for water resource management

    NASA Astrophysics Data System (ADS)

    Dobriyal, Pariva; Qureshi, Ashi; Badola, Ruchi; Hussain, Syed Ainul

    2012-08-01

    SummaryThe maintenance of elevated soil moisture is an important ecosystem service of the natural ecosystems. Understanding the patterns of soil moisture distribution is useful to a wide range of agencies concerned with the weather and climate, soil conservation, agricultural production and landscape management. However, the great heterogeneity in the spatial and temporal distribution of soil moisture and the lack of standard methods to estimate this property limit its quantification and use in research. This literature based review aims to (i) compile the available knowledge on the methods used to estimate soil moisture at the landscape level, (ii) compare and evaluate the available methods on the basis of common parameters such as resource efficiency, accuracy of results and spatial coverage and (iii) identify the method that will be most useful for forested landscapes in developing countries. On the basis of the strengths and weaknesses of each of the methods reviewed we conclude that the direct method (gravimetric method) is accurate and inexpensive but is destructive, slow and time consuming and does not allow replications thereby having limited spatial coverage. The suitability of indirect methods depends on the cost, accuracy, response time, effort involved in installation, management and durability of the equipment. Our review concludes that measurements of soil moisture using the Time Domain Reflectometry (TDR) and Ground Penetrating Radar (GPR) methods are instantaneously obtained and accurate. GPR may be used over larger areas (up to 500 × 500 m a day) but is not cost-effective and difficult to use in forested landscapes in comparison to TDR. This review will be helpful to researchers, foresters, natural resource managers and agricultural scientists in selecting the appropriate method for estimation of soil moisture keeping in view the time and resources available to them and to generate information for efficient allocation of water resources and maintenance of soil moisture regime.

  5. Modelling field scale spatial variation in water run-off, soil moisture, N2O emissions and herbage biomass of a grazed pasture using the SPACSYS model.

    PubMed

    Liu, Yi; Li, Yuefen; Harris, Paul; Cardenas, Laura M; Dunn, Robert M; Sint, Hadewij; Murray, Phil J; Lee, Michael R F; Wu, Lianhai

    2018-04-01

    In this study, we evaluated the ability of the SPACSYS model to simulate water run-off, soil moisture, N 2 O fluxes and grass growth using data generated from a field of the North Wyke Farm Platform. The field-scale model is adapted via a linked and grid-based approach (grid-to-grid) to account for not only temporal dynamics but also the within-field spatial variation in these key ecosystem indicators. Spatial variability in nutrient and water presence at the field-scale is a key source of uncertainty when quantifying nutrient cycling and water movement in an agricultural system. Results demonstrated that the new spatially distributed version of SPACSYS provided a worthy improvement in accuracy over the standard (single-point) version for biomass productivity. No difference in model prediction performance was observed for water run-off, reflecting the closed-system nature of this variable. Similarly, no difference in model prediction performance was found for N 2 O fluxes, but here the N 2 O predictions were noticeably poor in both cases. Further developmental work, informed by this study's findings, is proposed to improve model predictions for N 2 O. Soil moisture results with the spatially distributed version appeared promising but this promise could not be objectively verified.

  6. Measuring the spatial variation in surface moisture on a coastal beach with an infra-red terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Smit, Yvonne; Donker, Jasper; Ruessink, Gerben

    2016-04-01

    Coastal sand dunes provide essential protection against marine flooding. Consequently, dune erosion during severe storms has been studied intensively, resulting in well-developed erosion models for use in scientific and applied projects. Nowadays there is growing awareness that similarly advanced knowledge on dune recovery and growth is needed to predict future dune development. For this reason, aeolian sand transport from the beach into the dunes has to be investigated thoroughly. Surface moisture is a major factor limiting aeolian transport on sandy beaches. By increasing the velocity threshold for sediment entrainment, pick-up rates reduce and the fetch length increases. Conventional measurement techniques cannot adequately characterize the spatial and temporal distribution of surface moisture content required to study the effects on aeolian transport. Here we present a new method for detecting surface moisture at high temporal and spatial resolution using the RIEGL VZ-400 terrestrial laser scanner (TLS). Because this TLS operates at a wavelength near a water absorption band (1550 nm), TLS reflectance is an accurate parameter to measure surface soil moisture over its full range. Three days of intensive laser scanning were performed on a Dutch beach to illustrate the applicability of the TLS. Gravimetric soil moisture samples were used to calibrate the relation between reflectance and surface moisture. Results reveal a robust negative relation for the full range of possible surface moisture contents (0% - 25%). This relation holds to about 80 m from the TLS. Within this distance the TLS typically produces O(106-107) data points, which we averaged into soil moisture maps with a 0.25x0.25 m resolution. This grid size largely removes small moisture disturbances induced by, for example, footprints or tire tracks, while retaining larger scale trends. As the next step in our research, we will analyze the obtained maps to determine which processes affect the spatial and temporal surface-moisture variability.

  7. Using a spatially-distributed hydrologic biogeochemistry model to study the spatial variation of carbon processes in a Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Eissenstat, D. M.; Davis, K. J.; He, Y.

    2016-12-01

    Forest carbon processes are affected by, among other factors, soil moisture, soil temperature, soil nutrients and solar radiation. Most of the current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve the topographically driven hill-slope land surface heterogeneity or the spatial pattern of nutrient availability. A spatially distributed forest ecosystem model, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while soil nitrogen is transported among model grids via subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation information, while BBGC provides Flux-PIHM with leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). Model results suggest that the vegetation and soil carbon distribution is primarily constrained by nitorgen availability (affected by nitorgen transport via topographically driven subsurface flow), and also constrained by solar radiation and root zone soil moisture. The predicted vegetation and soil carbon distribution generally agrees with the macro pattern observed within the watershed. The coupled ecosystem-hydrologic model provides an important tool to study the impact of topography on watershed carbon processes, as well as the impact of climate change on water resources.

  8. Soil Moisture: The Hydrologic Interface Between Surface and Ground Waters

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1997-01-01

    A hypothesis is presented that many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture. The specific hydrologic processes that may be detected include groundwater recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential evapotranspiration (ET), and information about the hydrologic properties of soils. In basin and hillslope hydrology, soil moisture is the interface between surface and ground waters.

  9. Application of future remote sensing systems to irrigation

    NASA Technical Reports Server (NTRS)

    Miller, L. D.

    1982-01-01

    Area estimates of irrigated crops and knowledge of crop type are required for modeling water consumption to assist farmers, rangers, and agricultural consultants in scheduling irrigation for distributed management of crop yields. Information on canopy physiology and soil moisture status on a spatial basis is potentially available from remote sensors, so the questions to be addressed relate to: (1) timing (data frequency, instantaneous and integrated measurement); and scheduling (widely distributed spatial demands); (2) spatial resolution; (3) radiometric and geometric accuracy and geoencoding; and (4) information/data distribution. This latter should be overnight, with no central storage, onsite capture, and low cost.

  10. Application of Multitemporal Remotely Sensed Soil Moisture for the Estimation of Soil Physical Properties

    NASA Technical Reports Server (NTRS)

    Mattikalli, N. M.; Engman, E. T.; Jackson, T. J.; Ahuja, L. R.

    1997-01-01

    This paper demonstrates the use of multitemporal soil moisture derived from microwave remote sensing to estimate soil physical properties. The passive microwave ESTAR instrument was employed during June 10-18, 1992, to obtain brightness temperature (TB) and surface soil moisture data in the Little Washita watershed, Oklahoma. Analyses of spatial and temporal variations of TB and soil moisture during the dry-down period revealed a direct relationship between changes in T and soil moisture and soil physical (viz. texture) and hydraulic (viz. saturated hydraulic conductivity, K(sat)) properties. Statistically significant regression relationships were developed for the ratio of percent sand to percent clay (RSC) and K(sat), in terms of change components of TB and surface soil moisture. Validation of results using field measured values and soil texture map indicated that both RSC and K(sat) can be estimated with reasonable accuracy. These findings have potential applications of microwave remote sensing to obtain quick estimates of the spatial distributions of K(sat), over large areas for input parameterization of hydrologic models.

  11. An evaluation of the spatial resolution of soil moisture information

    NASA Technical Reports Server (NTRS)

    Hardy, K. R.; Cohen, S. H.; Rogers, L. K.; Burke, H. H. K.; Leupold, R. C.; Smallwood, M. D.

    1981-01-01

    Rainfall-amount patterns in the central regions of the U.S. were assessed. The spatial scales of surface features and their corresponding microwave responses in the mid western U.S. were investigated. The usefulness for U.S. government agencies of soil moisture information at scales of 10 km and 1 km. was ascertained. From an investigation of 494 storms, it was found that the rainfall resulting from the passage of most types of storms produces patterns which can be resolved on a 10 km scale. The land features causing the greatest problem in the sensing of soil moisture over large agricultural areas with a radiometer are bodies of water. Over the mid-western portions of the U.S., water occupies less than 2% of the total area, the consequently, the water bodies will not have a significant impact on the mapping of soil moisture. Over most of the areas, measurements at a 10-km resolution would adequately define the distribution of soil moisture. Crop yield models and hydrological models would give improved results if soil moisture information at scales of 10 km was available.

  12. New DEMs may stimulate significant advancements in remote sensing of soil moisture

    NASA Astrophysics Data System (ADS)

    Nolan, Matt; Fatland, Dennis R.

    From Napoleon's defeat at Waterloo to increasing corn yields in Kansas to greenhouse gas flux in the Arctic, the importance of soil moisture is endemic to world affairs and merits the considerable attention it receives from the scientific community. This importance can hardly be overstated, though it often goes unstated.Soil moisture is one of the key variables in a variety of broad areas critical to the conduct of societies' economic and political affairs and their well-being; these include the health of agricultural crops, global climate dynamics, military trafficability planning, and hazards such as flooding and forest fires. Unfortunately the in situ measurement of the spatial distribution of soil moisture on a watershed-scale is practically impossible. And despite decades of international effort, a satellite remote sensing technique that can reliably measure soil moisture with a spatial resolution of meters has not yet been identified or implemented. Due to the lack of suitable measurement techniques and, until recently digital elevation models (DEMs), our ability to understand and predict soil moisture dynamics through modeling has largely remained crippled from birth [Grayson and Bloschl, 200l].

  13. In Situ Validation of the Soil Moisture Active Passive (SMAP) Satellite Mission

    NASA Technical Reports Server (NTRS)

    Jackson, T.; Cosh, M.; Crow, W.; Colliander, A.; Walker, J.

    2011-01-01

    SMAP is a new NASA mission proposed for 2014 that would provide a number of soil moisture and freeze/thaw products. The soil moisture products span spatial resolutions from 3 to 40 km. In situ soil moisture observations will be one of the key elements of the validation program for SMAP. Data from the currently available set of soil moisture observing sites and networks need improvement if they are to be useful. Problems include a lack of standardization of instrumentation and installation and the disparity in spatial scale between the point-scale in situ data (a few centimeters) and the coarser satellite products. SMAP has initiated activities to resolve these issues for some of the existing resources. The other challenge to soil moisture validation is the need to expand the number of sites and their geographic distribution. SMAP is attempting to increase the number of sites and their value in validation through collaboration. The issues and solutions involving in situ validation being investigated will be described along with recent results from SMAP validation projects.

  14. Microwave soil moisture estimation in humid and semiarid watersheds

    NASA Technical Reports Server (NTRS)

    O'Neill, P. E.; Jackson, T. J.; Chauhan, N. S.; Seyfried, M. S.

    1993-01-01

    Land surface hydrologic-atmospheric interactions in humid and semi-arid watersheds were investigated. Active and passive microwave sensors were used to estimate the spatial and temporal distribution of soil moisture at the catchment scale in four areas. Results are presented and discussed. The eventual use of this information in the analysis and prediction of associated hydrologic processes is examined.

  15. Probability density of spatially distributed soil moisture inferred from crosshole georadar traveltime measurements

    NASA Astrophysics Data System (ADS)

    Linde, N.; Vrugt, J. A.

    2009-04-01

    Geophysical models are increasingly used in hydrological simulations and inversions, where they are typically treated as an artificial data source with known uncorrelated "data errors". The model appraisal problem in classical deterministic linear and non-linear inversion approaches based on linearization is often addressed by calculating model resolution and model covariance matrices. These measures offer only a limited potential to assign a more appropriate "data covariance matrix" for future hydrological applications, simply because the regularization operators used to construct a stable inverse solution bear a strong imprint on such estimates and because the non-linearity of the geophysical inverse problem is not explored. We present a parallelized Markov Chain Monte Carlo (MCMC) scheme to efficiently derive the posterior spatially distributed radar slowness and water content between boreholes given first-arrival traveltimes. This method is called DiffeRential Evolution Adaptive Metropolis (DREAM_ZS) with snooker updater and sampling from past states. Our inverse scheme does not impose any smoothness on the final solution, and uses uniform prior ranges of the parameters. The posterior distribution of radar slowness is converted into spatially distributed soil moisture values using a petrophysical relationship. To benchmark the performance of DREAM_ZS, we first apply our inverse method to a synthetic two-dimensional infiltration experiment using 9421 traveltimes contaminated with Gaussian errors and 80 different model parameters, corresponding to a model discretization of 0.3 m × 0.3 m. After this, the method is applied to field data acquired in the vadose zone during snowmelt. This work demonstrates that fully non-linear stochastic inversion can be applied with few limiting assumptions to a range of common two-dimensional tomographic geophysical problems. The main advantage of DREAM_ZS is that it provides a full view of the posterior distribution of spatially distributed soil moisture, which is key to appropriately treat geophysical parameter uncertainty and infer hydrologic models.

  16. The relative roles of environment, history and local dispersal in controlling the distributions of common tree and shrub species in a tropical forest landscape, Panama

    USGS Publications Warehouse

    Svenning, J.-C.; Engelbrecht, B.M.J.; Kinner, D.A.; Kursar, T.A.; Stallard, R.F.; Wright, S.J.

    2006-01-01

    We used regression models and information-theoretic model selection to assess the relative importance of environment, local dispersal and historical contingency as controls of the distributions of 26 common plant species in tropical forest on Barro Colorado Island (BCI), Panama. We censused eighty-eight 0.09-ha plots scattered across the landscape. Environmental control, local dispersal and historical contingency were represented by environmental variables (soil moisture, slope, soil type, distance to shore, old-forest presence), a spatial autoregressive parameter (??), and four spatial trend variables, respectively. We built regression models, representing all combinations of the three hypotheses, for each species. The probability that the best model included the environmental variables, spatial trend variables and ?? averaged 33%, 64% and 50% across the study species, respectively. The environmental variables, spatial trend variables, ??, and a simple intercept model received the strongest support for 4, 15, 5 and 2 species, respectively. Comparing the model results to information on species traits showed that species with strong spatial trends produced few and heavy diaspores, while species with strong soil moisture relationships were particularly drought-sensitive. In conclusion, history and local dispersal appeared to be the dominant controls of the distributions of common plant species on BCI. Copyright ?? 2006 Cambridge University Press.

  17. Using Actively Heated Fibre Optics (AHFO) to determine soil thermal conductivity and soil moisture content at high spatial and temporal resolution

    NASA Astrophysics Data System (ADS)

    Ciocca, Francesco; Abesser, Corinna; Hannah, David; Blaen, Philip; Chalari, Athena; Mondanos, Michael; Krause, Stefan

    2017-04-01

    Optical fibre distributed temperature sensing (DTS) is increasingly used in environmental monitoring and for subsurface characterisation, e.g. to obtain precise measurements of soil temperature at high spatio-temporal resolution, over several kilometres of optical fibre cable. When combined with active heating of metal elements embedded in the optical fibre cable (active-DTS), the temperature response of the soil to heating provides valuable information from which other important soil parameters, such as thermal conductivity and soil moisture content, can be inferred. In this presentation, we report the development of an Actively Heated Fibre Optics (AHFO) method for the characterisation of soil thermal conductivity and soil moisture dynamics at high temporal and spatial resolutions at a vegetated hillslope site in central England. The study site is located within a juvenile forest adjacent to the Birmingham Institute of Forest Research (BIFoR) experimental site. It is instrumented with three loops of a 500m hybrid-optical cable installed at 10cm, 25cm and 40cm depths. Active DTS surveys were undertaken in June and October 2016, collecting soil temperature data at 0.25m intervals along the cable, prior to, during and after the 900s heating phase. Soil thermal conductivity and soil moisture were determined according to Ciocca et al. 2012, applied to both the cooling and the heating phase. Independent measurements of soil thermal conductivity and soil moisture content were collected using thermal needle probes, calibrated capacitance-based probes and laboratory methods. Results from both the active DTS survey and independent in-situ and laboratory measurements will be presented, including the observed relationship between thermal conductivity and moisture content at the study site and how it compares against theoretical curves used by the AHFO methods. The spatial variability of soil thermal conductivity and soil moisture content, as observed using the different methods, will be shown and an outlook will be provided of how the AHFO method can benefit soil sciences, ground source heat pump applications and groundwater recharge estimations. This research is part of the Distributed intelligent Heat Pulse System (DiHPS) project which is funded by the UK Natural Environmental Research Council (NERC). The project is supported by BIFoR, the European Space Agency (ESA), CarbonZero Ltd, the UK Forestry Commission and the UK Soil Moisture Observation Network (COSMOS-UK). This work is distributed under the Creative Commons Attribution 3.0 Unported Licence together with an author copyright. This licence does not conflict with the regulations of the Crown Copyright. Ciocca F., Lunati I., van de Giesen N., and Parlange M.B. 2012. Heated optical fiber for distributed soil-moisture measurements: A lysimeter experiment. Vadose Zone J. 11. doi:10.2136/vzj2011.0177

  18. Examining the Suitability of a Sparse In Situ Soil Moisture Monitoring Network for Assimilation into a Spatially Distributed Hydrologic Model

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, N.; Verhoest, N.; Pauwels, V. R. N.

    2015-12-01

    The continuous monitoring of soil moisture in a permanent network can yield an interesting data product for use in hydrological data assimilation. Major advantages of in situ observations compared to remote sensing products are the potential vertical extent of the measurements, the finer temporal resolution of the observation time series, the smaller impact of land cover variability on the observation bias, etc. However, two major disadvantages are the typical small integration volume of in situ measurements and the often large spacing between monitoring locations. This causes only a small part of the modelling domain to be directly observed. Furthermore, the spatial configuration of the monitoring network is typically temporally non-dynamic. Therefore two questions can be raised. Do spatially sparse in situ soil moisture observations contain a sufficient data representativeness to successfully assimilate them into the largely unobserved spatial extent of a distributed hydrological model? And if so, how is this assimilation best performed? Consequently two important factors that can influence the success of assimilating in situ monitored soil moisture are the spatial configuration of the monitoring network and the applied assimilation algorithm. In this research the influence of those factors is examined by means of synthetic data-assimilation experiments. The study area is the ± 100 km² catchment of the Bellebeek in Flanders, Belgium. The influence of the spatial configuration is examined by varying the amount of locations and their position in the landscape. The latter is performed using several techniques including temporal stability analysis and clustering. Furthermore the observation depth is considered by comparing assimilation of surface layer (5 cm) and deeper layer (50 cm) observations. The impact of the assimilation algorithm is assessed by comparing the performance obtained with two well-known algorithms: Newtonian nudging and the Ensemble Kalman Filter.

  19. Research on Applicability Analysis of Drought Index in Liaoning Area

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Ding, Hua; Shuang Sun, Li; Li, Ru Ren; Liu, Yu Mei

    2018-05-01

    Based on brightness temperature data of AMSR-E (advanced microwave scanning radiometer — earth observing system) in 2009 and 2011, the inversion on 8 brightness temperature ratios is performed as alternative drought indexes in this paper. The correlation analysis is made through the soil moisture extracted from inversion drought index and data itself, and 3 kinds of alternative drought that relatively coincide with soil moisture of AMSR-E data itself are selected. And then on this basis, the analysis on the change situation of 3 kinds of microwave moisture indexes in 10 pixel × 10 pixel rectangular region of Shenyang and Chaoyang is made, and the evaluation on the monitoring advantages and disadvantages of 3 kinds of indexes on soil moisture is performed, so as to obtain the optimal index PIv6.9 for drought monitoring. In the end, in order to further study PIv6.9 on soil moisture monitoring situation within the range of Liaoning province, four days with relatively large precipitation are selected according to meteorological station data in 2009, the precipitation data of 51 meteorological stations in Liaoning province are interpolated within the range of the whole province by utilizing Kriging method, and the contrastive analysis on the spatial distribution of precipitation and PIv6.9 index is made. The results show that PIv6.9 can best reflect the spatial distribution characteristics of drought status in Liaoning province.

  20. Application of Cosmic-ray Soil Moisture Sensing to Understand Land-atmosphere Interactions in Three North American Monsoon Ecosystems

    NASA Astrophysics Data System (ADS)

    Schreiner-McGraw, A.; Vivoni, E. R.; Franz, T. E.; Anderson, C.

    2013-12-01

    Human impacts on desert ecosystems have wide ranging effects on the hydrologic cycle which, in turn, influence interactions between the critical zone and the atmosphere. In this contribution, we utilize cosmic-ray soil moisture sensors at three human-modified semiarid ecosystems in the North American monsoon region: a buffelgrass pasture in Sonora, Mexico, a woody-plant encroached savanna ecosystem in Arizona, and a woody-plant encroached shrubland ecosystem in New Mexico. In each case, landscape heterogeneity in the form of bare soil and vegetation patches of different types leads to a complex mosaic of soil moisture and land-atmosphere interactions. Historically, the measurement of spatially-averaged soil moisture at the ecosystem scale (on the order of several hundred square meters) has been problematic. Thus, new advances in measuring cosmogenically-produced neutrons present an opportunity for observational and modeling studies in these ecosystems. We discuss the calibration of the cosmic-ray soil moisture sensors at each site, present comparisons to a distributed network of in-situ measurements, and verify the spatially-aggregated observations using the watershed water balance method at two sites. We focus our efforts on the summer season 2013 and its rainfall period during the North American monsoon. To compare neutron counts to the ground sensors, we utilized an aspect-elevation weighting algorithm to compute an appropriate spatial average for the in-situ measurements. Similarly, the water balance approach utilizes precipitation, runoff, and evapotranspiration measurements in the footprint of the cosmic-ray sensors to estimate a spatially-averaged soil moisture field. Based on these complementary approaches, we empirically determined a relationship between cosmogenically-produced neutrons and the spatially-aggregated soil moisture. This approach may improve upon existing methods used to calculate soil moisture from neutron counts that typically suffer from increasing errors for higher soil moisture content. We also examined the effects of sub-footprint variability in soil moisture on the neutron readings by comparing two of the sites with large variations in topographically-mediated surface flows. Our work also synthesizes seasonal soil moisture dynamics across the desert ecosystems and attempts to tease out differences due to land cover alterations, including the seasonal greening in each study site occurring during the North American monsoon.

  1. On the spatial distribution of the transpiration and soil moisture of a Mediterranean heterogeneous ecosystem in water-limited conditions.

    NASA Astrophysics Data System (ADS)

    Curreli, Matteo; Corona, Roberto; Montaldo, Nicola; Albertson, John D.; Oren, Ram

    2014-05-01

    Mediterranean ecosystems are characterized by a strong heterogeneity, and often by water-limited conditions. In these conditions contrasting plant functional types (PFT, e.g. grass and woody vegetation) compete for the water use. Both the vegetation cover spatial distribution and the soil properties impact the soil moisture (SM) spatial distribution. Indeed, vegetation cover density and type affects evapotranspiration (ET), which is the main lack of the soil water balance in these ecosystems. With the objective to carefully estimate SM and ET spatial distribution in a Mediterranean water-limited ecosystem and understanding SM and ET relationships, an extended field campaign is carried out. The study was performed in a heterogeneous ecosystem in Orroli, Sardinia (Italy). The experimental site is a typical Mediterranean ecosystem where the vegetation is distributed in patches of woody vegetation (wild olives mainly) and grass. Soil depth is low and spatially varies between 10 cm and 40 cm, without any correlation with the vegetation spatial distribution. ET, land-surface fluxes and CO2 fluxes are estimated by an eddy covariance technique based micrometeorological tower. But in heterogeneous ecosystems a key assumption of the eddy covariance theory, the homogeneity of the surface, is not preserved and the ET estimate may be not correct. Hence, we estimate ET of the woody vegetation using the thermal dissipation method (i.e. sap flow technique) for comparing the two methodologies. Due the high heterogeneity of the vegetation and soil properties of the field a total of 54 sap flux sensors were installed. 14 clumps of wild olives within the eddy covariance footprint were identified as the most representative source of flux and they were instrumented with the thermal dissipation probes. Measurements of diameter at the height of sensor installation (height of 0.4 m above ground) were recorded in all the clumps. Bark thickness and sapwood depth were measured on several trees to obtain a generalized estimates of sapwood depth. The known of allometric relationships between sapwood area, diameter and canopy cover area within the eddy covariance footprint helped for the application of a reliable scaling procedure of the local sap flow estimates which are in a good agreement with the estimates of ET eddy covariance based. Soil moisture were also extensively monitored through 25 probes installed in the eddy covariance footprint. Results show that comparing eddy covariance and sap flow ET estimates eddy covariance technique is still accurate in this heterogeneous field, whereas the key assumption, surface homogeneity, is not preserved. Furthermore, interestingly wild olives still transpire at higher rates for the driest soil moisture conditions, confirming the hydraulic redistribution from soil below the roots, and from roots penetrating deep cracks in the underlying basalt parent rock.

  2. Integrating effective drought index (EDI) and remote sensing derived parameters for agricultural drought assessment and prediction in Bundelkhand region of India

    NASA Astrophysics Data System (ADS)

    Padhee, S. K.; Nikam, B. R.; Aggarwal, S. P.; Garg, V.

    2014-11-01

    Drought is an extreme condition due to moisture deficiency and has adverse effect on society. Agricultural drought occurs when restraining soil moisture produces serious crop stress and affects the crop productivity. The soil moisture regime of rain-fed agriculture and irrigated agriculture behaves differently on both temporal and spatial scale, which means the impact of meteorologically and/or hydrological induced agriculture drought will be different in rain-fed and irrigated areas. However, there is a lack of agricultural drought assessment system in Indian conditions, which considers irrigated and rain-fed agriculture spheres as separate entities. On the other hand recent advancements in the field of earth observation through different satellite based remote sensing have provided researchers a continuous monitoring of soil moisture, land surface temperature and vegetation indices at global scale, which can aid in agricultural drought assessment/monitoring. Keeping this in mind, the present study has been envisaged with the objective to develop agricultural drought assessment and prediction technique by spatially and temporally assimilating effective drought index (EDI) with remote sensing derived parameters. The proposed technique takes in to account the difference in response of rain-fed and irrigated agricultural system towards agricultural drought in the Bundelkhand region (The study area). The key idea was to achieve the goal by utilizing the integrated scenarios from meteorological observations and soil moisture distribution. EDI condition maps were prepared from daily precipitation data recorded by Indian Meteorological Department (IMD), distributed within the study area. With the aid of frequent MODIS products viz. vegetation indices (VIs), and land surface temperature (LST), the coarse resolution soil moisture product from European Space Agency (ESA) were downscaled using linking model based on Triangle method to a finer resolution soil moisture product. EDI and spatially downscaled soil moisture products were later used with MODIS 16 days NDVI product as key elements to assess and predict agricultural drought in irrigated and rain-fed agricultural systems in Bundelkhand region of India. Meteorological drought, soil moisture deficiency and NDVI degradation were inhabited for each and every pixel of the image in GIS environment, for agricultural impact assessment at a 16 day temporal scale for Rabi seasons (October-April) between years 2000 to 2009. Based on the statistical analysis, good correlations were found among the parameters EDI and soil moisture anomaly; NDVI anomaly and soil moisture anomaly lagged to 16 days and these results were exploited for the development of a linear prediction model. The predictive capability of the developed model was validated on the basis of spatial distribution of predicted NDVI which was compared with MODIS NDVI product in the beginning of preceding Rabi season (Oct-Dec of 2010).The predictions of the model were based on future meteorological data (year 2010) and were found to be yielding good results. The developed model have good predictive capability based on future meteorological data (rainfall data) availability, which enhances its utility in analyzing future Agricultural conditions if meteorological data is available.

  3. Static sampling of dynamic processes - a paradox?

    NASA Astrophysics Data System (ADS)

    Mälicke, Mirko; Neuper, Malte; Jackisch, Conrad; Hassler, Sibylle; Zehe, Erwin

    2017-04-01

    Environmental systems monitoring aims at its core at the detection of spatio-temporal patterns of processes and system states, which is a pre-requisite for understanding and explaining their baffling heterogeneity. Most observation networks rely on distributed point sampling of states and fluxes of interest, which is combined with proxy-variables from either remote sensing or near surface geophysics. The cardinal question on the appropriate experimental design of such a monitoring network has up to now been answered in many different ways. Suggested approaches range from sampling in a dense regular grid using for the so-called green machine, transects along typical catenas, clustering of several observations sensors in presumed functional units or HRUs, arrangements of those cluster along presumed lateral flow paths to last not least a nested, randomized stratified arrangement of sensors or samples. Common to all these approaches is that they provide a rather static spatial sampling, while state variables and their spatial covariance structure dynamically change in time. It is hence of key interest how much of our still incomplete understanding stems from inappropriate sampling and how much needs to be attributed to an inappropriate analysis of spatial data sets. We suggest that it is much more promising to analyze the spatial variability of processes, for instance changes in soil moisture values, than to investigate the spatial variability of soil moisture states themselves. This is because wetting of the soil, reflected in a soil moisture increase, is causes by a totally different meteorological driver - rainfall - than drying of the soil. We hence propose that the rising and the falling limbs of soil moisture time series belong essentially to different ensembles, as they are influenced by different drivers. Positive and negative temporal changes in soil moisture need, hence, to be analyzed separately. We test this idea using the CAOS data set as a benchmark. Specifically, we expect the covariance structure of the positive temporal changes of soil moisture to be dominated by the spatial structure of rain- and through-fall and saturated hydraulic conductivity. The covariance in temporarily decreasing soil moisture during radiation driven conditions is expect to be dominated by the spatial structure of retention properties and plant transpiration. An analysis of soil moisture changes has furthermore the advantage that those are free from systematic measurement errors.

  4. Modeling uncertainty and correlation in soil properties using Restricted Pairing and implications for ensemble-based hillslope-scale soil moisture and temperature estimation

    NASA Astrophysics Data System (ADS)

    Flores, A. N.; Entekhabi, D.; Bras, R. L.

    2007-12-01

    Soil hydraulic and thermal properties (SHTPs) affect both the rate of moisture redistribution in the soil column and the volumetric soil water capacity. Adequately constraining these properties through field and lab analysis to parameterize spatially-distributed hydrology models is often prohibitively expensive. Because SHTPs vary significantly at small spatial scales individual soil samples are also only reliably indicative of local conditions, and these properties remain a significant source of uncertainty in soil moisture and temperature estimation. In ensemble-based soil moisture data assimilation, uncertainty in the model-produced prior estimate due to associated uncertainty in SHTPs must be taken into account to avoid under-dispersive ensembles. To treat SHTP uncertainty for purposes of supplying inputs to a distributed watershed model we use the restricted pairing (RP) algorithm, an extension of Latin Hypercube (LH) sampling. The RP algorithm generates an arbitrary number of SHTP combinations by sampling the appropriate marginal distributions of the individual soil properties using the LH approach, while imposing a target rank correlation among the properties. A previously-published meta- database of 1309 soils representing 12 textural classes is used to fit appropriate marginal distributions to the properties and compute the target rank correlation structure, conditioned on soil texture. Given categorical soil textures, our implementation of the RP algorithm generates an arbitrarily-sized ensemble of realizations of the SHTPs required as input to the TIN-based Realtime Integrated Basin Simulator with vegetation dynamics (tRIBS+VEGGIE) distributed parameter ecohydrology model. Soil moisture ensembles simulated with RP- generated SHTPs exhibit less variance than ensembles simulated with SHTPs generated by a scheme that neglects correlation among properties. Neglecting correlation among SHTPs can lead to physically unrealistic combinations of parameters that exhibit implausible hydrologic behavior when input to the tRIBS+VEGGIE model.

  5. Cosmic Ray Neutron Sensing in Complex Systems

    NASA Astrophysics Data System (ADS)

    Piussi, L. M.; Tomelleri, E.; Tonon, G.; Bertoldi, G.; Mejia Aguilar, A.; Monsorno, R.; Zebisch, M.

    2017-12-01

    Soil moisture is a key variable in environmental monitoring and modelling: being located at the soil-atmosphere boundary, it is a driving force for water, energy and carbon fluxes. Nevertheless its importance, soil moisture observations lack of long time-series at high acquisition frequency in spatial meso-scale resolutions: traditional measurements deliver either long time series with high measurement frequency at spatial point scale or large scale and low frequency acquisitions. The Cosmic Ray Neutron Sensing (CRNS) technique fills this gap because it supplies information from a footprint of 240m of diameter and 15 to 83 cm of depth at a temporal resolution varying between 15 minutes and 24 hours. In addition, being a passive sensing technique, it is non-invasive. For these reasons, CRNS is gaining more and more attention from the scientific community. Nevertheless, the application of this technique in complex systems is still an open issue: where different Hydrogen pools are present and where their distributions vary appreciably with space and time, the traditional calibration method shows some limits. In order to obtain a better understanding of the data and to compare them with remote sensing products and spatially distributed traditional measurements (i.e. Wireless Sensors Network), the complexity of the surrounding environment has to be taken into account. In the current work we assessed the effects of spatial-temporal variability of soil moisture within the footprint, in a steep, heterogeneous mountain grassland area. Measurement were performed with a Cosmic Ray Neutron Probe (CRNP) and a mobile Wireless Sensors Network. We performed an in-deep sensitivity analysis of the effects of varying distributions of soil moisture on the calibration of the CRNP and our preliminary results show how the footprint shape varies depending on these dynamics. The results are then compared with remote sensing data (Sentinel 1 and 2). The current work is an assessment of different calibration procedures and their effect on the measurement outcome. We found that the response of the CRNP follows quite well the punctual measurement performed by a TDR installed on the site, but discrepancies could be explained by using the Wireless Sensors Network to perform a spatially weighted calibration and to introduce temporal dynamics.

  6. Assessment of multi-frequency electromagnetic induction for determining soil moisture patterns at the hillslope scale

    NASA Astrophysics Data System (ADS)

    Tromp-van Meerveld, H. J.; McDonnell, J. J.

    2009-04-01

    SummaryHillslopes are fundamental landscape units, yet represent a difficult scale for measurements as they are well-beyond our traditional point-scale techniques. Here we present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the hillslope scale. We test the new multi-frequency GEM-300 for spatially distributed soil moisture measurements at the well-instrumented Panola hillslope. EM-based apparent conductivity measurements were linearly related to soil moisture measured with the Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7.290, 9.090, 11.250, and 14.010 kHz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the soil moisture measurements.

  7. Spatial distribution of tree species governs the spatio-temporal interaction of leaf area index and soil moisture across a forested landscape.

    PubMed

    Naithani, Kusum J; Baldwin, Doug C; Gaines, Katie P; Lin, Henry; Eissenstat, David M

    2013-01-01

    Quantifying coupled spatio-temporal dynamics of phenology and hydrology and understanding underlying processes is a fundamental challenge in ecohydrology. While variation in phenology and factors influencing it have attracted the attention of ecologists for a long time, the influence of biodiversity on coupled dynamics of phenology and hydrology across a landscape is largely untested. We measured leaf area index (L) and volumetric soil water content (θ) on a co-located spatial grid to characterize forest phenology and hydrology across a forested catchment in central Pennsylvania during 2010. We used hierarchical Bayesian modeling to quantify spatio-temporal patterns of L and θ. Our results suggest that the spatial distribution of tree species across the landscape created unique spatio-temporal patterns of L, which created patterns of water demand reflected in variable soil moisture across space and time. We found a lag of about 11 days between increase in L and decline in θ. Vegetation and soil moisture become increasingly homogenized and coupled from leaf-onset to maturity but heterogeneous and uncoupled from leaf maturity to senescence. Our results provide insight into spatio-temporal coupling between biodiversity and soil hydrology that is useful to enhance ecohydrological modeling in humid temperate forests.

  8. BOREAS HYD-8 1996 Gravimetric Moss Moisture Data

    NASA Technical Reports Server (NTRS)

    Fernandes, Richard; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-8 team made measurements of surface hydrological processes that were collected at the southern study area-Old Black Spruce (SSA-OBS) Tower Flux site in 1996 to support its research into point hydrological processes and the spatial variation of these processes. Data collected may be useful in characterizing canopy interception, drip, throughfall, moss interception, drainage, evaporation, and capacity during the growing season at daily temporal resolution. This particular data set contains the gravimetric moss moisture measurements from July to August 1996. To collect these data, a nested spatial sampling plan was implemented to support research into spatial variations of the measured hydrological processes and ultimately the impact of these variations on modeled carbon and water budgets. These data are stored in ASCII text files. The HYD-08 1996 gravimetric moss moisture data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  9. Statistical Quality Control of Moisture Data in GEOS DAS

    NASA Technical Reports Server (NTRS)

    Dee, D. P.; Rukhovets, L.; Todling, R.

    1999-01-01

    A new statistical quality control algorithm was recently implemented in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The final step in the algorithm consists of an adaptive buddy check that either accepts or rejects outlier observations based on a local statistical analysis of nearby data. A basic assumption in any such test is that the observed field is spatially coherent, in the sense that nearby data can be expected to confirm each other. However, the buddy check resulted in excessive rejection of moisture data, especially during the Northern Hemisphere summer. The analysis moisture variable in GEOS DAS is water vapor mixing ratio. Observational evidence shows that the distribution of mixing ratio errors is far from normal. Furthermore, spatial correlations among mixing ratio errors are highly anisotropic and difficult to identify. Both factors contribute to the poor performance of the statistical quality control algorithm. To alleviate the problem, we applied the buddy check to relative humidity data instead. This variable explicitly depends on temperature and therefore exhibits a much greater spatial coherence. As a result, reject rates of moisture data are much more reasonable and homogeneous in time and space.

  10. CO2 efflux from soils with seasonal water repellency

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Doerr, Stefan H.

    2017-10-01

    Soil carbon dioxide (CO2) emissions are strongly dependent on pore water distribution, which in turn can be modified by reduced wettability. Many soils around the world are affected by soil water repellency (SWR), which reduces infiltration and results in diverse moisture distribution. SWR is temporally variable and soils can change from wettable to water-repellent and vice versa throughout the year. Effects of SWR on soil carbon (C) dynamics, and specifically on CO2 efflux, have only been studied in a few laboratory experiments and hence remain poorly understood. Existing studies suggest soil respiration is reduced with increasing severity of SWR, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known.Here we report on the first field-based study that tests whether SWR indeed reduces soil CO2 efflux, based on in situ measurements carried out over three consecutive years at a grassland and pine forest sites under the humid temperate climate of the UK.Soil CO2 efflux was indeed very low on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. Low CO2 efflux was also observed when SWR was absent, in spring and late autumn when soil temperatures were low, but also in summer when SWR was reduced by frequent rainfall events. The highest CO2 efflux occurred not when soil was wettable, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. Patchiness of SWR is likely to have created zones with two different characteristics related to CO2 production and transport. Zones with wettable soil or low persistence of SWR with higher proportion of water-filled pores are expected to provide water with high nutrient concentration resulting in higher microbial activity and CO2 production. Soil zones with high SWR persistence, on the other hand, are dominated by air-filled pores with low microbial activity, but facilitating O2 supply and CO2 exchange between the soil and the atmosphere.The effects of soil moisture and SWR on soil CO2 efflux are strongly co-correlated, but the results of this study support the notion that SWR indirectly affects soil CO2 efflux by affecting soil moisture distribution. The appearance of SWR is influenced by moisture and temperature, but once present, SWR influences subsequent infiltration patterns and resulting soil water distribution, which in turn affects respiration. This study demonstrates that SWR can have contrasting effects on CO2 efflux. It can reduce it in dry soil zones by preventing their re-wetting, but, at the field soil scale and when spatially variable, it can also enhance overall CO2 efflux. Spatial variability in SWR and associated soil moisture distribution therefore need to be considered when evaluating the effects of SWR on soil C dynamics under current and predicted future climatic conditions.

  11. [Three-dimension temporal and spatial dynamics of soil water for the artificial vegetation in the center of Taklimakan desert under saline water drip-irrigation].

    PubMed

    Ding, Xin-yuan; Zhou, Zhi-bin; Xu, Xin-wen; Lei, Jia-qiang; Lu, Jing-jing; Ma, Xue-xi; Feng, Xiao

    2015-09-01

    Three-dimension temporal and spatial dynamics of the soil water characteristics during four irrigating cycles of months from April to July for the artificial vegetation in the center of Taklimakan Desert under saline water drip-irrigation had been analyzed by timely measuring the soil water content in horizontal and vertical distances 60 cm and 120 cm away from the irrigating drips, respectively. Periodic spatial and temporal variations of soil water content were observed. When the precipitation effect was not considered, there were no significant differences in the characteristics of soil water among the irrigation intervals in different months, while discrepancies were obvious in the temporal and spatial changes of soil moisture content under the conditions of rainfall and non-rainfall. When it referred to the temporal changes of soil water, it was a little higher in April but a bit lower in July, and the soil water content in June was the highest among four months because some remarkable events of precipitation happened in this month. However, as a whole, the content of soil moisture was reduced as months (from April to July) went on and it took a decreasing tendency along with days (1-15 d) following a power function. Meanwhile, the characteristics of soil water content displayed three changeable stages in an irrigation interval. When it referred to the spatial distributions of soil water, the average content of soil moisture was reduced along with the horizontal distance following a linear regression function, and varied with double peaks along with the vertical distance. In addition, the spatial distribution characteristics of the soil water were not influenced by the factors of precipitation and irrigating time but the physical properties of soil.

  12. Remote Sensing Soil Moisture Analysis by Unmanned Aerial Vehicles Digital Imaging

    NASA Astrophysics Data System (ADS)

    Yeh, C. Y.; Lin, H. R.; Chen, Y. L.; Huang, S. Y.; Wen, J. C.

    2017-12-01

    In recent years, remote sensing analysis has been able to apply to the research of climate change, environment monitoring, geology, hydro-meteorological, and so on. However, the traditional methods for analyzing wide ranges of surface soil moisture of spatial distribution surveys may require plenty resources besides the high cost. In the past, remote sensing analysis performed soil moisture estimates through shortwave, thermal infrared ray, or infrared satellite, which requires lots of resources, labor, and money. Therefore, the digital image color was used to establish the multiple linear regression model. Finally, we can find out the relationship between surface soil color and soil moisture. In this study, we use the Unmanned Aerial Vehicle (UAV) to take an aerial photo of the fallow farmland. Simultaneously, we take the surface soil sample from 0-5 cm of the surface. The soil will be baking by 110° C and 24 hr. And the software ImageJ 1.48 is applied for the analysis of the digital images and the hue analysis into Red, Green, and Blue (R, G, B) hue values. The correlation analysis is the result from the data obtained from the image hue and the surface soil moisture at each sampling point. After image and soil moisture analysis, we use the R, G, B and soil moisture to establish the multiple regression to estimate the spatial distributions of surface soil moisture. In the result, we compare the real soil moisture and the estimated soil moisture. The coefficient of determination (R2) can achieve 0.5-0.7. The uncertainties in the field test, such as the sun illumination, the sun exposure angle, even the shadow, will affect the result; therefore, R2 can achieve 0.5-0.7 reflects good effect for the in-suit test by using the digital image to estimate the soil moisture. Based on the outcomes of the research, using digital images from UAV to estimate the surface soil moisture is acceptable. However, further investigations need to be collected more than ten days (four times a day) data to verify the relation between the image hue and the soil moisture for reliable moisture estimated model. And it is better to use the digital single lens reflex camera to prevent the deformation of the image and to have a better auto exposure. Keywords: soil, moisture, remote sensing

  13. Instrumenting an upland research catchment in Canterbury, New Zealand to study controls on variability of soil moisture, shallow groundwater and streamflow

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Srinivasan, Ms

    2015-04-01

    Hydrologists recognise the importance of vertical drainage and deep flow paths in runoff generation, even in headwater catchments. Both soil and groundwater stores are highly variable over multiple scales, and the distribution of water has a strong control on flow rates and timing. In this study, we instrumented an upland headwater catchment in New Zealand to measure the temporal and spatial variation in unsaturated and saturated-zone responses. In NZ, upland catchments are the source of much of the water used in lowland agriculture, but the hydrology of such catchments and their role in water partitioning, storage and transport is poorly understood. The study area is the Langs Gully catchment in the North Branch of the Waipara River, Canterbury: this catchment was chosen to be representative of the foothills environment, with lightly managed dryland pasture and native Matagouri shrub vegetation cover. Over a period of 16 months we measured continuous soil moisture at 32 locations and near-surface water table (< 2 m) at 14 locations, as well as measuring flow at 3 stream gauges. The distributed measurement sites were located to allow comparisons between North and South facing locations, near-stream versus hillslope locations, and convergent versus divergent hillslopes. We found that temporal variability is strongly controlled by the climatic seasonal cycle, for both soil moisture and water table, and for both the mean and extremes of their distributions. Groundwater is a larger water storage component than soil moisture, and the difference increases with catchment wetness. The spatial standard deviation of both soil moisture and groundwater is larger in winter than in summer. It peaks during rainfall events due to partial saturation of the catchment, and also rises in spring as different locations dry out at different rates. The most important controls on spatial variability are aspect and distance from stream. South-facing and near-stream locations have higher water tables and more, larger soil moisture wetting events. Typical hydrological models do not explicitly account for aspect, but our results suggest that it is an important factor in hillslope runoff generation. Co-measurement of soil moisture and water table level allowed us to identify interrelationships between the two. Locations where water tables peaked closest to the surface had consistently wetter soils and higher water tables. These wetter sites were the same across seasons. However, temporary patterns of strong soil moisture response to summer storms did not correspond to the wetter sites. Total catchment spatial variability is composed of multiple variability sources, and the dominant type is sensitive to those stores that are close to a threshold such as field capacity or saturation. Therefore, we classified spatial variability as 'summer mode' or 'winter mode'. In summer mode, variability is controlled by shallow processes e.g. interactions of water with soils and vegetation. In winter mode, variability is controlled by deeper processes e.g. groundwater movement and bypass flow. Double flow peaks observed during some events show the direct impact of groundwater variability on runoff generation. Our results suggest that emergent catchment behaviour depends on the combination of these multiple, time varying components of variability.

  14. Topographical controls on soil moisture distribution and runoff response in a first order alpine catchment

    NASA Astrophysics Data System (ADS)

    Penna, Daniele; Gobbi, Alberto; Mantese, Nicola; Borga, Marco

    2010-05-01

    Hydrological processes driving runoff generation in mountain basins depend on a wide number of factors which are often strictly interconnected. Among them, topography is widely recognized as one of the dominant controls influencing soil moisture distribution in the root zone, depth to water table and location and extent of saturated areas possibly prone to runoff production. Morphological properties of catchments are responsible for the alternation between steep slopes and relatively flat areas which have the potentials to control the storage/release of water and hence the hydrological response of the whole watershed. This work aims to: i) identify the role of topography as the main factor controlling the spatial distribution of near-surface soil moisture; ii) evaluate the possible switch in soil moisture spatial organization between wet and relatively dry periods and the stability of patterns during triggering of surface/subsurface runoff; iii) assess the possible connection between the develop of an ephemeral river network and the groundwater variations, examining the influence of the catchment topographical properties on the hydrological response. Hydro-meteorological data were collected in a small subcatchment (Larch Creek Catchment, 0.033 km²) of Rio Vauz basin (1.9 km²), in the eastern Italian Alps. Precipitation, discharge, water table level over a net of 14 piezometric wells and volumetric soil moisture at 0-30 cm depth were monitored continuously during the late spring-early autumn months in 2007 and 2008. Soil water content at 0-6 and 0-20 cm depth was measured manually during 22 field surveys in summer 2007 over a 44-sampling point experimental plot (approximately 3000 m²). In summer 2008 the sampling grid was extended to 64 points (approximately 4500 m²) and 28 field surveys were carried out. The length of the ephemeral stream network developed during rainfall events was assessed by a net of 24 Overland Flow Detectors (OFDs), which are able to detect the presence/absence of surface runoff. Results show a significant correlation between plot-averaged soil moisture at 0-20 cm depth, local slope and local curvature, while poor correlations were found with aspect and solar radiation: this suggests a sharp control of the catchment topological architecture (likely coupled with soil properties) on soil moisture distribution. This was also confirmed by the visual inspection of interpolated maps which reveal the persistence of high values of soil moisture in hollow areas and, conversely, of low values over the hillslopes. Moreover, a strong correlation between plot-averaged soil moisture patterns over time, with no decline after rainfall events, indicates a good temporal stability of water content distribution and its independence from the triggering of surface flow and transient lateral subsurface flow during wet conditions. The analysis of the time lag between storm centroid and piezometric peak shows an increasing delay of water table reaction with increasing distance from the stream, revealing different groundwater dynamics between the near-stream and the hillslope zone. Furthermore, the significant correlation between groundwater time lag monitored for the net of piezometers and the local slope suggests a topographical influence on the temporal and spatial variability of subsurface runoff. Finally, the extent of the ephemeral stream network was clearly dependent on the amount of precipitation but a different percentage of active OFDs and piezometers for the same rainfall event suggests a decoupling between patterns of surface and subsurface flows in the study area. Key words: topographical controls, soil moisture patterns, groundwater level, overland flow.

  15. Synergy of the SimSphere land surface process model with ASTER imagery for the retrieval of spatially distributed estimates of surface turbulent heat fluxes and soil moisture content

    NASA Astrophysics Data System (ADS)

    Petropoulos, George; Wooster, Martin J.; Carlson, Toby N.; Drake, Nick

    2010-05-01

    Accurate information on spatially explicit distributed estimates of key land-atmosphere fluxes and related land surface parameters is of key importance in a range of disciplines including hydrology, meteorology, agriculture and ecology. Estimation of those parameters from remote sensing frequently employs the integration of such data with mathematical representations of the transfers of energy, mass and radiation between soil, vegetation and atmosphere continuum, known as Soil Vegetation Atmosphere Transfer (SVAT) models. The ability of one such inversion modelling scheme to resolve for key surface energy fluxes and of soil surface moisture content is examined here using data from a multispectral high spatial resolution imaging instrument, the Advanced Spaceborne Thermal Emission and Reflection Scanning Radiometer (ASTER) and SimSphere one-dimensional SVAT model. Accuracy of the investigated methodology, so-called as the "triangle" method, is verified using validated ground observations obtained from selected days collected from nine CARBOEUROPE IP sites representing a variety of climatic, topographic and environmental conditions. Subsequently, a new framework is suggested for the retrieval of two additional parameters by the investigated method, namely the Evaporative (EF) and the Non-Evaporative (NEF) Fractions. Results indicated a close agreement between the inverted surface fluxes and surface moisture availability maps as well as of the EF and NEF parameters with the observations both spatially and temporally with accuracies comparable to those obtained in similar experiments with high spatial resolution data. Inspection of the inverted surface fluxes maps regionally, showed an explainable distribution in the range of the inverted parameters in relation with the surface heterogeneity. Overall performance of the "triangle" inversion methodology was found to be affected predominantly by the SVAT model "correct" initialisation representative of the test site environment, most importantly the atmospheric conditions required in the SVAT model initial conditions. This study represents the first comprehensive evaluation of the performance of this particular methodological implementation at a European setting using the SimSphere SVAT with the ASTER data. The present work is also very timely in that, a variation of this specific inversion methodology has been proposed for the operational retrieval of the soil surface moisture content by National Polar-orbiting Operational Environmental Satellite System (NPOESS), in a series of satellite platforms that are due to be launched in the next 12 years starting from 2012. KEYWORDS: micrometeorology, surface heat fluxes, soil moisture content, ASTER, triangle method, SimSphere, CarboEurope IP

  16. Three-dimensional temporal and spatial distribution of adult Rhyzopertha dominica in stored wheat and corn under different temperatures, moisture contents, and adult densities.

    PubMed

    Jian, Fuji; Larson, Ron; Jayas, Digvir S; White, Noel D G

    2012-08-01

    Three-dimensional temporal and spatial distributions of adult Rhyzopertha dominica (F.) at adult densities of 1.0, 5.0, and 10.0 adults per kg grain and at 20 +/- 1, 25 +/- 1, and 30 +/- 1 degrees C were determined in 1.5 t bins filled with wheat (Triticum aestivum L.) with 11.0 +/- 0.8, 13.0 +/- 0.6, and 15.0 +/- 0.5% moisture content (wet basis) or corn (Zea mays L.) with 13.0 +/- 0.2% moisture content (wet basis). At each of five sampled locations, grain was separated into three 15-kg vertical layers, and adult numbers in each layer were counted. Inside both corn and wheat, adults did not prefer any location in the same layer except at high introduced insect density in wheat. The adults were recovered from any layer of the corn and >12, 65, and 45% of adults were recovered in the bottom layer of the corn at 20, 25, and 30 degrees C; respectively. However, <1% of adults were recovered in the bottom layer of wheat. Numbers of adults correlated with those in adjacent locations in both vertical and horizontal directions, and the temporal continuous property existed in both wheat and corn. Adults had highly clumped distribution at any grain temperature and moisture content. This aggregation behavior decreased with the increase of adult density and redistribution speed. Grain type influenced their redistribution speed, and this resulted in the different redistribution patterns inside wheat and corn bulks. These characterized distribution patterns could be used to develop sampling plans and integrated pest management programs in stored grain bins.

  17. Spatial distribution of bacterial communities and related biochemical properties in Luzhou-flavor liquor-fermented grains.

    PubMed

    Zheng, Jia; Wu, Chongde; Huang, Jun; Zhou, Rongqing; Liao, Xuepin

    2014-12-01

    Grain fermenting with separate layers in a fermentation pit is the typical and experiential brewing technology for Chinese Luzhou-flavor liquor. However, it is still unclear to what extent the bacterial communities in the different layers of fermented grains (FG) effects the liquor's quality. In this study, the spatial distributions of bacterial communities in Luzhou-flavor liquor FG (top, middle, and bottom layers) from 2 distinctive factories (Jiannanchun and Fenggu) were investigated using culture-independent approaches (phospholipid fatty acid [PLFA] and polymerase chain reaction-denaturing gel electrophoresis [DGGE]). The relationship between bacterial community and biochemical properties was also assessed by Canonical correspondence analysis (CCA). No significant variation in moisture was observed in spatial samples, and the highest content of acidity and total ester was detected in the bottom layer (P < 0.05). A high level of ethanol was observed in the top and middle layers of Fenggu and Jiannanchun, respectively. Significant spatial distribution of the total PLFA was only shown in the 50-y-old pits (P < 0.05), and Gram negative bacteria was the prominent community. Bacterial 16S rDNA DGGE analysis revealed that the most abundant bacterial community was in the top layers of the FG both from Fenggu and Jiannanchun, with Lactobacillaceae accounting for 30% of the total DGGE bands and Lactobacillus acetotolerans was the dominant species. FG samples from the same pit had a highly similar bacterial community structure according to the hierarchal cluster tree. CCA suggested that the moisture, acidity, ethanol, and reducing sugar were the main factors affecting the distribution of L. acetotolerans. Our results will facilitate the knowledge about the spatial distribution of bacterial communities and the relationship with their living environment. © 2014 Institute of Food Technologists®

  18. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    Soil moisture distribution usually presents extreme variation at multiple spatial scales. Image analysis could be a useful tool for investigating these spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to describe the local scaling of apparent soil moisture distribution and (ii) to define apparent soil moisture patterns from vertical planes of Vertisol pit images. Two soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. One was excavated in April/2011 and the other pit was established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. For more details see Cumbrera et al. (2012). Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, using the concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012). This method is based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. We have applied it to each soil image. The results show that, in spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used to study the dynamical change of soil moisture sampling in agreement with previous results (Millán et al., 2016). REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  19. Ground-Based Passive Microwave Remote Sensing Observations of Soil Moisture at S and L Band with Insight into Measurement Accuracy

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Crosson, William L.; Jackson, Thomas J.; Manu, Andrew; Tsegaye, Teferi D.; Soman, V.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Accurate estimates of spatially heterogeneous algorithm variables and parameters are required in determining the spatial distribution of soil moisture using radiometer data from aircraft and satellites. A ground-based experiment in passive microwave remote sensing of soil moisture was conducted in Huntsville, Alabama from July 1-14, 1996 to study retrieval algorithms and their sensitivity to variable and parameter specification. With high temporal frequency observations at S and L band, we were able to observe large scale moisture changes following irrigation and rainfall events, as well as diurnal behavior of surface moisture among three plots, one bare, one covered with short grass and another covered with alfalfa. The L band emitting depth was determined to be on the order of 0-3 or 0-5 cm below 0.30 cubic centimeter/cubic centimeter with an indication of a shallower emitting depth at higher moisture values. Surface moisture behavior was less apparent on the vegetated plots than it was on the bare plot because there was less moisture gradient and because of difficulty in determining vegetation water content and estimating the vegetation b parameter. Discrepancies between remotely sensed and gravimetric, soil moisture estimates on the vegetated plots point to an incomplete understanding of the requirements needed to correct for the effects of vegetation attenuation. Quantifying the uncertainty in moisture estimates is vital if applications are to utilize remotely-sensed soil moisture data. Computations based only on the real part of the complex dielectric constant and/or an alternative dielectric mixing model contribute a relatively insignificant amount of uncertainty to estimates of soil moisture. Rather, the retrieval algorithm is much more sensitive to soil properties, surface roughness and biomass.

  20. Quantifying Seasonal Dynamic Water Storage in a Fractured Bedrock Vadose Zone With Borehole Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Schmidt, L.; Minton, B.; Soto-Kerans, N.; Rempe, D.; Heidari, Z.

    2017-12-01

    In many uplands landscapes, water is transiently stored in the weathered and fractured bedrock that underlies soils. The timing and spatial pattern of this "rock moisture" has strong implications for ecological and biogeochemical processes that influence global cycling of water and solutes. However, available technologies for direct monitoring of rock moisture are limited. Here, we quantify temporal and spatial changes in rock moisture at the field scale across thick (up to 20 m) fractured vadose zone profiles using a novel narrow diameter borehole nuclear magnetic resonance system (BNMR). Successive BNMR surveys were performed using the Vista Clara Inc. Dart system in a network of boreholes within two steep, intensively hydrologically monitored hillslopes associated with the Eel River Critical Zone Observatory (ERCZO) in Northern California. BNMR data showed agreement with estimates of the temporal and spatial pattern of rock moisture depletion over the dry season via downhole neutron and gamma density surveys, as well as permanently installed continuous time domain reflectometry. Observable shifts in the BNMR-derived T2 distribution over time provide a direct measure of changes in the amount of water held within different pore sizes (large vs. small) in fractured rock. Analysis of both BNMR and laboratory-scale NMR (using a 2MHz benchtop NMR spectrometer) measurements of ERCZO core samples at variable saturation suggest that rock moisture changes associated with summer depletion occur within both large (fracture) and small (matrix) pore sizes. Collectively, our multi-method field- and laboratory- scale measurements highlight the potential for BNMR to improve quantification of rock moisture storage for better understanding of the biogeochemical and ecohydrological implications of rock moisture circulation in the Critical Zone.

  1. Spatial structure and scaling of macropores in hydrological process at small catchment scale

    NASA Astrophysics Data System (ADS)

    Silasari, Rasmiaditya; Broer, Martine; Blöschl, Günter

    2013-04-01

    During rainfall events, the formation of overland flow can occur under the circumstances of saturation excess and/or infiltration excess. These conditions are affected by the soil moisture state which represents the soil water content in micropores and macropores. Macropores act as pathway for the preferential flows and have been widely studied locally. However, very little is known about their spatial structure and conductivity of macropores and other flow characteristic at the catchment scale. This study will analyze these characteristics to better understand its importance in hydrological processes. The research will be conducted in Petzenkirchen Hydrological Open Air Laboratory (HOAL), a 64 ha catchment located 100 km west of Vienna. The land use is divided between arable land (87%), pasture (5%), forest (6%) and paved surfaces (2%). Video cameras will be installed on an agricultural field to monitor the overland flow pattern during rainfall events. A wireless soil moisture network is also installed within the monitored area. These field data will be combined to analyze the soil moisture state and the responding surface runoff occurrence. The variability of the macropores spatial structure of the observed area (field scale) then will be assessed based on the topography and soil data. Soil characteristics will be supported with laboratory experiments on soil matrix flow to obtain proper definitions of the spatial structure of macropores and its variability. A coupled physically based distributed model of surface and subsurface flow will be used to simulate the variability of macropores spatial structure and its effect on the flow behaviour. This model will be validated by simulating the observed rainfall events. Upscaling from field scale to catchment scale will be done to understand the effect of macropores variability on larger scales by applying spatial stochastic methods. The first phase in this study is the installation and monitoring configuration of video cameras and soil moisture monitoring equipment to obtain the initial data of overland flow occurrence and soil moisture state relationships.

  2. BOREAS HYD-8 1994 Gravimetric Moss Moisture Data

    NASA Technical Reports Server (NTRS)

    Wang, Xuewen; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-8 team made measurements of surface hydrological processes that were collected at the Northern Study Area-Old Black Spruce (NSA-OBS) Tower Flux site in 1994 and at Joey Lake, Manitoba, to support its research into point hydrological processes and the spatial variation of these processes. The data collected may be useful in characterizing canopy interception, drip, throughfall, moss interception, drainage, evaporation, and capacity during the growing season at daily temporal resolution. This particular data set contains the gravimetric moss moisture measurements from June to September 1994. A nested spatial sampling plan was implemented to support research into spatial variations of the measured hydrological processes and ultimately the impact of these variations on modeled carbon and water budgets. These data are stored in tabular ASCII files. The HYD-08 1994 gravimetric moss moisture data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  3. Soil moisture and properties estimation by assimilating soil temperatures using particle batch smoother: A new perspective for DTS

    NASA Astrophysics Data System (ADS)

    Dong, J.; Steele-Dunne, S. C.; Ochsner, T. E.; Van De Giesen, N.

    2015-12-01

    Soil moisture, hydraulic and thermal properties are critical for understanding the soil surface energy balance and hydrological processes. Here, we will discuss the potential of using soil temperature observations from Distributed Temperature Sensing (DTS) to investigate the spatial variability of soil moisture and soil properties. With DTS soil temperature can be measured with high resolution (spatial <1m, and temporal < 1min) in cables up to kilometers in length. Soil temperature evolution is primarily controlled by the soil thermal properties, and the energy balance at the soil surface. Hence, soil moisture, which affects both soil thermal properties and the energy that participates the evaporation process, is strongly correlated to the soil temperatures. In addition, the dynamics of the soil moisture is determined by the soil hydraulic properties.Here we will demonstrate that soil moisture, hydraulic and thermal properties can be estimated by assimilating observed soil temperature at shallow depths using the Particle Batch Smoother (PBS). The PBS can be considered as an extension of the particle filter, which allows us to infer soil moisture and soil properties using the dynamics of soil temperature within a batch window. Both synthetic and real field data will be used to demonstrate the robustness of this approach. We will show that the proposed method is shown to be able to handle different sources of uncertainties, which may provide a new view of using DTS observations to estimate sub-meter resolution soil moisture and properties for remote sensing product validation.

  4. Using Electromagnetic Induction Technique to Detect Hydropedological Dynamics: Principles and Applications

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Liao, Kaihua; Doolittle, James; Lin, Henry

    2014-05-01

    Hydropedological dynamics including soil moisture variation, subsurface flow, and spatial distributions of different soil properties are important parameters in ecological, environmental, hydrological, and agricultural modeling and applications. However, technical gap exists in mapping these dynamics at intermediate spatial scale (e.g., farm and catchment scales). At intermediate scales, in-situ monitoring provides detailed data, but is restricted in number and spatial coverage; while remote sensing provides more acceptable spatial coverage, but has comparatively low spatial resolution, limited observation depths, and is greatly influenced by the surface condition and climate. As a non-invasive, fast, and convenient geophysical tool, electromagnetic induction (EMI) measures soil apparent electrical conductivity (ECa) and has great potential to bridge this technical gap. In this presentation, principles of different EMI meters are briefly introduced. Then, case studies of using repeated EMI to detect spatial distributions of subsurface convergent flow, soil moisture dynamics, soil types and their transition zones, and different soil properties are presented. The suitability, effectiveness, and accuracy of EMI are evaluated for mapping different hydropedological dynamics. Lastly, contributions of different hydropedological and terrain properties on soil ECa are quantified under different wetness conditions, seasons, and land use types using Classification and Regression Tree model. Trend removal and residual analysis are then used for further mining of EMI survey data. Based on these analyses, proper EMI survey designs and data processing are proposed.

  5. Alternative spatial configurations to reflect landscape structure in a hydrological model: SUMMA applications to the Reynolds Creek Watershed and the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Nijssen, Bart; Clark, Martyn; Mizukami, Naoki; Chegwidden, Oriana

    2016-04-01

    Most existing hydrological models use a fixed representation of landscape structure. For example, high-resolution, spatially-distributed models may use grid cells that exchange moisture through the saturated subsurface or may divide the landscape into hydrologic response units that only exchange moisture through surface channels. Alternatively, many regional models represent the landscape through coarse elements that do not model any moisture exchange between these model elements. These spatial organizations are often represented at a low-level in the model code and its data structures, which makes it difficult to evaluate different landscape representations using the same hydrological model. Instead, such experimentation requires the use of multiple, different hydrological models, which in turn complicates the analysis, because differences in model outcomes are no longer constrained by differing spatial representations. This inflexibility in the representation of landscape structure also limits a model's capability for scaling local processes to regional outcomes. In this study, we used the Structure for Unifying Multiple Modeling Alternatives (SUMMA) to evaluate different model spatial configurations to represent landscape structure and to evaluate scaling behavior. SUMMA can represent the moisture exchange between arbitrarily shaped landscape elements in a number of different ways, while using the same model parameterizations for vertical fluxes. This allows us to isolate the effects of changes in landscape representations on modeled hydrological fluxes and states. We examine the effects of spatial configuration in Reynolds Creek, Idaho, USA, which is a research watershed with gaged areas from 1-20 km2. We then use the same modeling system to evaluate scaling behavior in simulated hydrological fluxes in the Columbia River Basin, Pacific Northwest, USA. This basin drains more than 500,000 km2 and includes the Reynolds Creek Watershed.

  6. Multiscale analysis of surface soil moisture dynamics in a mesoscale catchment utilizing an integrated ecohydrological model

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Schneider, K.

    2012-12-01

    Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture, influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Numerous studies have shown that in addition to natural factors (rainfall, soil, topography etc.) agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil moisture patterns in agroecosystems. Integrative validation of plant growth and surface soil moisture dynamics serves as a basis for a spatially distributed modeling analysis of surface soil moisture patterns in the northern part of the Rur catchment (1100 sq km), Western Germany. An extensive three year dataset (2007-2009) of surface soil moisture-, plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was collected. Plant measurements were carried out biweekly for winter wheat, maize, and sugar beet during the growing season. Soil moisture was measured with three FDR soil moisture stations. Meteorological data was measured with an eddy flux station. The results of the model validation showed a very good agreement between the modeled plant parameters (biomass, green LAI) and the measured parameters with values between 0.84 and 0.98 (Willmotts index of agreement). The modeled surface soil moisture (0 - 20 cm) showed also a very favorable agreement with the measurements for winter wheat and sugar beet with an RMSE between 1.68 and 3.45 Vol.-%. For maize, the RMSE was less favorable particularly in the 1.5 months prior to harvest. The modeled soil moisture remained in contrast to the measurements very responsive to precipitation with high soil moisture after precipitation events. This behavior indicates that the soil properties might have changed due to the formation of a surface crust or seal towards the end of the growing season. Spatial soil moisture patterns were investigated using a grid resolution of 150 meter. Spatial autocorrelation was computed on a daily basis using patterns of soil texture as well as transpiration and precipitation indices as co-variables. Spatial patterns of surface soil moisture are mostly determined by the structure of the soil properties (soil type) during winter, early growing season and after harvest of all crops. Later in the growing season, after establishment of a closed canopy the dependence of the soil moisture patterns on soil texture patterns becomes smaller and diminishes quickly after precipitation events, due to differences of the transpiration rate of the different crops. When changing the spatial scale of the analysis, the highest autocorrelation values can be found on a grid cell size between 450 and 1200 meters. Thus, small scale variability of transpiration induced by the land use pattern almost averages out, leaving the larger scale structure of soil properties to explain the soil moisture patterns.

  7. Using high-resolution soil moisture modelling to assess the uncertainty of microwave remotely sensed soil moisture products at the correct spatial and temporal support

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; Bierkens, M. F. P.; Van Dam, J. C.; De Jong, S. M.

    2012-04-01

    Soil moisture is a key variable in the hydrological cycle and important in hydrological modelling. When assimilating soil moisture into flood forecasting models, the improvement of forecasting skills depends on the ability to accurately estimate the spatial and temporal patterns of soil moisture content throughout the river basin. Space-borne remote sensing may provide this information with a high temporal and spatial resolution and with a global coverage. Currently three microwave soil moisture products are available: AMSR-E, ASCAT and SMOS. The quality of these satellite-based products is often assessed by comparing them with in-situ observations of soil moisture. This comparison is however hampered by the difference in spatial and temporal support (i.e., resolution, scale), because the spatial resolution of microwave satellites is rather low compared to in-situ field measurements. Thus, the aim of this study is to derive a method to assess the uncertainty of microwave satellite soil moisture products at the correct spatial support. To overcome the difference in support size between in-situ soil moisture observations and remote sensed soil moisture, we used a stochastic, distributed unsaturated zone model (SWAP, van Dam (2000)) that is upscaled to the support of different satellite products. A detailed assessment of the SWAP model uncertainty is included to ensure that the uncertainty in satellite soil moisture is not overestimated due to an underestimation of the model uncertainty. We simulated unsaturated water flow up to a depth of 1.5m with a vertical resolution of 1 to 10 cm and on a horizontal grid of 1 km2 for the period Jan 2010 - Jun 2011. The SWAP model was first calibrated and validated on in-situ data of the REMEDHUS soil moisture network (Spain). Next, to evaluate the satellite products, the model was run for areas in the proximity of 79 meteorological stations in Spain, where model results were aggregated to the correct support of the satellite product by averaging model results from the 1 km2 grid within the remote sensing footprint. Overall 440 (AMSR-E, SMOS) to 680 (ASCAT) timeseries were compared to the aggregated SWAP model results, providing valuable information on the uncertainty of satellite soil moisture at the proper support. Our results show that temporal dynamics are best captured by ASCAT resulting in an average correlation of 0.72 with the model, while ASMR-E (0.41) and SMOS (0.42) are less capable of representing these dynamics. Standard deviations found for ASCAT and SMOS are low, 0.049 and 0.051m3m-3 respectively, while AMSR-E has a higher value of 0.062m3m-3. All standard deviations are higher than the average model uncertainty of 0.017m3m-3. All satellite products show a negative bias compared to the model results, with the largest value for SMOS. Satellite uncertainty is not found to be significantly related to topography, but is found to increase in densely vegetated areas. In general AMSR-E has most difficulties capturing soil moisture dynamics in Spain, while SMOS and mainly ASCAT have a fair to good performance. However, all products contain valuable information about the near-surface soil moisture over Spain. Van Dam, J.C., 2000, Field scale water flow and solute transport. SWAP model concepts, parameter estimation and case studies. Ph.D. thesis, Wageningen University

  8. FINAL REPORT: Temporal and Spatial Distribution of Soil Moisture in Heterogeneous Vadose Zone with Moisture Barriers as Affected by Atmospheric Boundary Conditions

    DTIC Science & Technology

    2015-12-07

    Wallen, B., K.M. Smits and S.E. Howington. Thermal conductivity of binary sand mixtures evaluated through the full range of saturation. Hydrology Days...and T.H. Illangasekare. 2011. Thermal conductivity of soils as affected by temperature, Proceedings from Hydrology Days. Colorado State University...is mixed with very fine soil). Although it is well known that the apparent thermal conductivity (λ) of partially wet soil is a function of water (θ

  9. Impact factors identification of spatial heterogeneity of herbaceous plant diversity on five southern islands of Miaodao Archipelago in North China

    NASA Astrophysics Data System (ADS)

    Chi, Yuan; Shi, Honghua; Wang, Xiaoli; Qin, Xuebo; Zheng, Wei; Peng, Shitao

    2016-09-01

    Herbaceous plants are widely distributed on islands and where they exhibit spatial heterogeneity. Accurately identifying the impact factors that drive spatial heterogeneity can reveal typical island biodiversity patterns. Five southern islands in the Miaodao Archipelago, North China were studied herein. The spatial distribution of herbaceous plant diversity on these islands was analyzed, and the impact factors and their degree of impact on spatial heterogeneity were identified using CCA ordination and ANOVA. The results reveal 114 herbaceous plant species, belonging to 94 genera from 34 families in the 50 plots sampled. The total species numbers on different islands were significantly positively correlated with island area, and the average α diversity was correlated with human activities, while the β diversity among islands was more affected by island area than mutual distances. Spatial heterogeneity within islands indicated that the diversities were generally high in areas with higher altitude, slope, total nitrogen, total carbon, and canopy density, and lower moisture content, pH, total phosphorus, total potassium, and aspect. Among the environmental factors, pH, canopy density, total K, total P, moisture content, altitude, and slope had significant gross effects, but only canopy density exhibited a significant net effect. Terrain affected diversity by restricting plantation, plantation in turn influenced soil properties and the two together affected diversity. Therefore, plantation was ultimately the fundamental driving factor for spatial heterogeneity in herbaceous plant diversity on the five islands.

  10. Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: comparison between lumped and semi-distributed schemes

    NASA Astrophysics Data System (ADS)

    Alvarez-Garreton, C.; Ryu, D.; Western, A. W.; Su, C.-H.; Crow, W. T.; Robertson, D. E.; Leahy, C.

    2014-09-01

    Assimilation of remotely sensed soil moisture data (SM-DA) to correct soil water stores of rainfall-runoff models has shown skill in improving streamflow prediction. In the case of large and sparsely monitored catchments, SM-DA is a particularly attractive tool. Within this context, we assimilate active and passive satellite soil moisture (SSM) retrievals using an ensemble Kalman filter to improve operational flood prediction within a large semi-arid catchment in Australia (>40 000 km2). We assess the importance of accounting for channel routing and the spatial distribution of forcing data by applying SM-DA to a lumped and a semi-distributed scheme of the probability distributed model (PDM). Our scheme also accounts for model error representation and seasonal biases and errors in the satellite data. Before assimilation, the semi-distributed model provided more accurate streamflow prediction (Nash-Sutcliffe efficiency, NS = 0.77) than the lumped model (NS = 0.67) at the catchment outlet. However, this did not ensure good performance at the "ungauged" inner catchments. After SM-DA, the streamflow ensemble prediction at the outlet was improved in both the lumped and the semi-distributed schemes: the root mean square error of the ensemble was reduced by 27 and 31%, respectively; the NS of the ensemble mean increased by 7 and 38%, respectively; the false alarm ratio was reduced by 15 and 25%, respectively; and the ensemble prediction spread was reduced while its reliability was maintained. Our findings imply that even when rainfall is the main driver of flooding in semi-arid catchments, adequately processed SSM can be used to reduce errors in the model soil moisture, which in turn provides better streamflow ensemble prediction. We demonstrate that SM-DA efficacy is enhanced when the spatial distribution in forcing data and routing processes are accounted for. At ungauged locations, SM-DA is effective at improving streamflow ensemble prediction, however, the updated prediction is still poor since SM-DA does not address systematic errors in the model.

  11. Towards an integrated soil moisture drought monitor for East Africa

    USDA-ARS?s Scientific Manuscript database

    Drought in East Africa is a recurring phenomenon with significant humanitarian impacts. Given the steep climatic gradients, topographic contrasts, general data scarcity, and, in places, political instability that characterize the region, there is a need for spatially distributed, remotely derived mo...

  12. Quantification of water penetration into concrete through cracks by neutron radiography

    NASA Astrophysics Data System (ADS)

    Kanematsu, M.; Maruyama, I.; Noguchi, T.; Iikura, H.; Tsuchiya, N.

    2009-06-01

    Improving the durability of concrete structures is one of the ways to contribute to the sustainable development of society, and it has also become a crucial issue from an environmental viewpoint. It is well known that moisture behavior in reinforced concrete is linked to phenomena such as cement hydration, volume change and cracking caused by drying shrinkage, rebar corrosion and water leakage that affect the durability of concrete. In this research, neutron radiography was applied for visualization and quantification of water penetration into concrete through cracks. It is clearly confirmed that TNR can make visible the water behavior in/near horizontal/vertical cracks and can quantify the rate of diffusion and concentration distribution of moisture with high spatial and time resolution. On detailed analysis, it is observed that water penetrates through the crack immediately after pouring and its migration speed and distribution depend on the moisture condition in the concrete.

  13. Space-Time Dynamics of Soil Moisture and Temperature: Scale issues

    NASA Technical Reports Server (NTRS)

    Mohanty, Binayak P.; Miller, Douglas A.; Th.vanGenuchten, M.

    2003-01-01

    The goal of this project is to gain further understanding of soil moisture/temperature dynamics at different spatio-temporal scales and physical controls/parameters.We created a comprehensive GIS database, which has been accessed extensively by NASA Land Surface Hydrology investigators (and others), is located at the following URL: http://www.essc.psu.edu/nasalsh. For soil moisture field experiments such as SGP97, SGP99, SMEX02, and SMEX03, cartographic products were designed for multiple applications, both pre- and post-mission. Premission applications included flight line planning and field operations logistics, as well as general insight into the extent and distribution of soil, vegetation, and topographic properties for the study areas. The cartographic products were created from original spatial information resources that were imported into Adobe Illustrator, where the maps were created and PDF versions were made for distribution and download.

  14. Mapping the Drivers of Climate Change Vulnerability for Australia’s Threatened Species

    PubMed Central

    Lee, Jasmine R.; Maggini, Ramona; Taylor, Martin F. J.; Fuller, Richard A.

    2015-01-01

    Effective conservation management for climate adaptation rests on understanding the factors driving species’ vulnerability in a spatially explicit manner so as to direct on-ground action. However, there have been only few attempts to map the spatial distribution of the factors driving vulnerability to climate change. Here we conduct a species-level assessment of climate change vulnerability for a sample of Australia’s threatened species and map the distribution of species affected by each factor driving climate change vulnerability across the continent. Almost half of the threatened species assessed were considered vulnerable to the impacts of climate change: amphibians being the most vulnerable group, followed by plants, reptiles, mammals and birds. Species with more restricted distributions were more likely to show high climate change vulnerability than widespread species. The main factors driving climate change vulnerability were low genetic variation, dependence on a particular disturbance regime and reliance on a particular moisture regime or habitat. The geographic distribution of the species impacted by each driver varies markedly across the continent, for example species impacted by low genetic variation are prevalent across the human-dominated south-east of the country, while reliance on particular moisture regimes is prevalent across northern Australia. Our results show that actions to address climate adaptation will need to be spatially appropriate, and that in some regions a complex suite of factors driving climate change vulnerability will need to be addressed. Taxonomic and geographic variation in the factors driving climate change vulnerability highlights an urgent need for a spatial prioritisation of climate adaptation actions for threatened species. PMID:26017785

  15. Spatial glass transition temperature variations in polymer glass: application to a maltodextrin-water system.

    PubMed

    van Sleeuwen, Rutger M T; Zhang, Suying; Normand, Valéry

    2012-03-12

    A model was developed to predict spatial glass transition temperature (T(g)) distributions in glassy maltodextrin particles during transient moisture sorption. The simulation employed a numerical mass transfer model with a concentration dependent apparent diffusion coefficient (D(app)) measured using Dynamic Vapor Sorption. The mass average moisture content increase and the associated decrease in T(g) were successfully modeled over time. Large spatial T(g) variations were predicted in the particle, resulting in a temporary broadening of the T(g) region. Temperature modulated differential scanning calorimetry confirmed that the variation in T(g) in nonequilibrated samples was larger than in equilibrated samples. This experimental broadening was characterized by an almost doubling of the T(g) breadth compared to the start of the experiment. Upon reaching equilibrium, both the experimental and predicted T(g) breadth contracted back to their initial value.

  16. Prediction of near-surface soil moisture at large scale by digital terrain modeling and neural networks.

    PubMed

    Lavado Contador, J F; Maneta, M; Schnabel, S

    2006-10-01

    The capability of Artificial Neural Network models to forecast near-surface soil moisture at fine spatial scale resolution has been tested for a 99.5 ha watershed located in SW Spain using several easy to achieve digital models of topographic and land cover variables as inputs and a series of soil moisture measurements as training data set. The study methods were designed in order to determining the potentials of the neural network model as a tool to gain insight into soil moisture distribution factors and also in order to optimize the data sampling scheme finding the optimum size of the training data set. Results suggest the efficiency of the methods in forecasting soil moisture, as a tool to assess the optimum number of field samples, and the importance of the variables selected in explaining the final map obtained.

  17. Spatial Distribution of the Relationship Between Soil Moisture and Soil Particle Size in Typical Plots on Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhao, W.; Liu, Y.; Fang, X.

    2017-12-01

    Soil water overconsumption is threatening the sustainability of regional vegetation rehabilitation in the Loess Plateau of China. The use of fractal geometry theory in describing soil quality improves the accuracy of the relevant research. Typical grasslands, shrublands, forests, cropland and orchards under different precipitation regimes were selected, and in this study, the spatial distribution of the relationship between soil moisture and soil particle size in typical slopes on Loess Plateau were investigated to provide support for the predict of soil moisture by using soil physical characteristics in the Loess Plateau. During the sampling year, the mean annual precipitation gradients were divided at an interval of 70 mm from 370mm to 650mm. Grasslands with Medicago sativa L. or Stipa bungeana Trin., shrublands with Caragana Korshinskii Kom. or Hippophae rhamnoides L., forests with Robinia pseudoacacia Linn., orchards with apple trees and croplands with corn or potatoes were chosen to represent the natural grassland. A soil auger with a diameter of 5 cm was used to obtain soil samples at depths of 0-5 m at intervals of 20 cm.The Van Genuchten model, fractal theory and redundancy analysis (RDA) were used to estimate and analyze the soil water characteristic curve, soil particle size distribution, and fractal dimension and the correlations between the relevant parameters. The results showed that (1) the change of the singular fractal dimension is positively correlated with soil water content, while D0 (capacity dimension) is negatively correlated with soil water content as the depth increases; (2) the relationship between soil moisture and soil particle size shows differences under different plants and precipitation gradient.

  18. Root Water Uptake and Soil Moisture Pattern Dynamics - Capturing Connections, Controls and Causalities

    NASA Astrophysics Data System (ADS)

    Blume, T.; Heidbuechel, I.; Hassler, S. K.; Simard, S.; Guntner, A.; Stewart, R. D.; Weiler, M.

    2015-12-01

    We hypothesize that there is a shift in controls on landscape scale soil moisture patterns when plants become active during the growing season. Especially during the summer soil moisture patterns are not only controlled by soils, topography and related abiotic site characteristics but also by root water uptake. Root water uptake influences soil moisture patterns both in the lateral and vertical direction. Plant water uptake from different soil depths is estimated based on diurnal fluctuations in soil moisture content and was investigated with a unique setup of 46 field sites in Luxemburg and 15 field sites in Germany. These sites cover a range of geologies, soils, topographic positions and types of vegetation. Vegetation types include pasture, pine forest (young and old) and different deciduous forest stands. Available data at all sites includes information at high temporal resolution from 3-5 soil moisture and soil temperature profiles, matrix potential, piezometers and sapflow sensors as well as standard climate data. At sites with access to a stream, discharge or water level is also recorded. The analysis of soil moisture patterns over time indicates a shift in regime depending on season. Depth profiles of root water uptake show strong differences between different forest stands, with maximum depths ranging between 50 and 200 cm. Temporal dynamics of signal strength within the profile furthermore suggest a locally shifting spatial distribution of root water uptake depending on water availability. We will investigate temporal thresholds (under which conditions spatial patterns of root water uptake become most distinct) as well as landscape controls on soil moisture and root water uptake dynamics.

  19. Spatial and temporal variation of moisture content in the soil profiles of two different agricultural fields of semi-arid region.

    PubMed

    Baskan, Oguz; Kosker, Yakup; Erpul, Gunay

    2013-12-01

    Modeling spatio-temporal variation of soil moisture with depth in the soil profile plays an important role for semi-arid crop production from an agro-hydrological perspective. This study was performed in Guvenc Catchment. Two soil series that were called Tabyabayir (TaS) and Kervanpinari (KeS) and classified as Leptosol and Vertisol Soil Groups were used in this research. The TeS has a much shallower (0-34 cm) than the KeS (0-134 cm). At every sampling time, a total of geo-referenced 100 soil moisture samples were taken based on horizon depths. The results indicated that soil moisture content changed spatially and temporally with soil texture and profile depth significantly. In addition, land use was to be important factor when soil was shallow. When the soil conditions were towards to dry, higher values for the coefficient of variation (CV) were observed for TaS (58 and 43% for A and C horizons, respectively); however, the profile CV values were rather stable at the KeS. Spatial variability range of TaS was always higher at both dry and wet soil conditions when compared to that of KeS. Excessive drying of soil prevented to describe any spatial model for surface horizon, additionally resulting in a high nugget variance in the subsurface horizon for the TaS. On the contrary to TaS, distribution maps were formed all horizons for the KeS at any measurement times. These maps, depicting both dry and wet soil conditions through the profile depth, are highly expected to reduce the uncertainty associated with spatially and temporally determining the hydraulic responses of the catchment soils.

  20. Downscaling essential climate variable soil moisture using multisource data from 2003 to 2010 in China

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Lin; An, Ru; You, Jia-jun; Wang, Ying; Chen, Yuehong; Shen, Xiao-ji; Gao, Wei; Wang, Yi-nan; Zhang, Yu; Wang, Zhe; Quaye-Ballard, Jonathan Arthur

    2017-10-01

    Soil moisture plays an important role in the water cycle within the surface ecosystem, and it is the basic condition for the growth of plants. Currently, the spatial resolutions of most soil moisture data from remote sensing range from ten to several tens of km, while those observed in-situ and simulated for watershed hydrology, ecology, agriculture, weather, and drought research are generally <1 km. Therefore, the existing coarse-resolution remotely sensed soil moisture data need to be downscaled. This paper proposes a universal and multitemporal soil moisture downscaling method suitable for large areas. The datasets comprise land surface, brightness temperature, precipitation, and soil and topographic parameters from high-resolution data and active/passive microwave remotely sensed essential climate variable soil moisture (ECV_SM) data with a spatial resolution of 25 km. Using this method, a total of 288 soil moisture maps of 1-km resolution from the first 10-day period of January 2003 to the last 10-day period of December 2010 were derived. The in-situ observations were used to validate the downscaled ECV_SM. In general, the downscaled soil moisture values for different land cover and land use types are consistent with the in-situ observations. Mean square root error is reduced from 0.070 to 0.061 using 1970 in-situ time series observation data from 28 sites distributed over different land uses and land cover types. The performance was also assessed using the GDOWN metric, a measure of the overall performance of the downscaling methods based on the same dataset. It was positive in 71.429% of cases, indicating that the suggested method in the paper generally improves the representation of soil moisture at 1-km resolution.

  1. Electrical resistivity surveys to understand vegetation-water interlinkages in a northern latitude headwater catchment

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Dick, J.; Tetzlaff, D.; Bradford, J.

    2016-12-01

    The role of vegetation on the partitioning of precipitation, and the subsequent storage and release of water within the landscape is poorly understood. In particular, the relationship between vegetation and soil moisture is complex and reciprocal. The role of soil moisture as the primary source of water to plants may affect vegetation distribution. In turn, the structure of vegetation canopies may regulate water partitioning into interception, throughfall and steam flow. Such spatial differences in the inputs, together with complex patterns of water uptake from highly distributed root networks can create marked heterogeneity in soil moisture dynamics at small scales. Here, we present a study combining 3D and 2D ERT surveys with soil moisture measurements in a 3.2km upland catchment in the Scottish Highlands to understand influences of different vegetation types on spatio-temporal dynamics in soil moisture. The study focussed on one year of fortnightly ERT surveys to investigate plant-soil-water interactions within the root zone in podzolic soils. Locations were selected in both forest stands of 15m high Scots pine (Pinus sylvestris) and non-forest locations dominated by heather (Calluna vulgaris) shrubs (<0.5m high). These dominant species are typical of forest and non-forest vegetation communities in the Scottish Highlands. Results showed differences in the soil moisture dynamics under the different vegetation types, with heterogeneous patterns in the forested site mainly correlated with canopy cover and mirroring interception losses, with pronounced wetting cycles of the soil surrounding the bole of trees as a consequence of stem flow. Temporal variability in the forested site was greater, probably due to the interception, and increased evapotranspiration losses relative to the heather site, with drying typically being focussed on the areas around the trees, and reflecting the amount of water uptake. Moisture changes in the heather site were fairly heterogeneous are related to micro-topographic affects, lower interception ( 30% compared with 45%) and a smaller microclimatic effect of the canopy which serves to create greater fluctuations in soil moisture. Our results confirm the value in using geophysics to spatially elucidate subsurface plant-soil-water interactions.

  2. Calibration of a geophysically based model using soil moisture measurements in mountainous terrains

    NASA Astrophysics Data System (ADS)

    Pellet, Cécile; Hilbich, Christin; Marmy, Antoine; Hauck, Christian

    2016-04-01

    The use of geophysical methods in the field of permafrost research is well established and crucial since it is the only way to infer the composition of the subsurface material. Since geophysical measurements are indirect, ambiguities in the interpretation of the results can arise, hence the simultaneous use of several methods (e.g. electrical resistivity tomography and refraction seismics) is often necessary. The so-called four-phase model, 4PM (Hauck et al., 2011) constitutes a further step towards clarification of interpretation from geophysical measurements. It uses two well-known petrophysical relationships, namely Archie's law and an extension of Timur's time-averaged equation for seismic P-wave velocities, to quantitatively estimate the different phase contents (air, water and ice) in the ground from tomographic electric and seismic measurements. In this study, soil moisture measurements were used to calibrate the 4PM in order to assess the spatial distribution of water, ice and air content in the ground at three high elevation sites with different ground properties and thermal regimes. The datasets used here were collected as part of the SNF-project SOMOMOUNT. Within the framework of this project a network of six entirely automated soil moisture stations was installed in Switzerland along an altitudinal gradient ranging from 1'200 m. a.s.l. to 3'400 m. a.s.l. The standard instrumentation of each station comprises the installation of Frequency Domain Reflectometry (FDR) and Time Domain Reflectometry (TDR) sensors for long term monitoring coupled with repeated Electrical Resistivity Tomography (ERT) and Refraction Seismic Tomography (RST) as well as spatial FDR (S-FDR) measurements. The use of spatially distributed soil moisture data significantly improved the 4PM calibration process and a semi-automatic calibration scheme was developed. This procedure was then tested at three different locations, yielding satisfactory two dimensional distributions of water-, ice- and air content (Pellet et al., 2016). REFERENCES Hauck, C., Böttcher, M., & Maurer, H. 2011: A new model for estimating subsurface ice content based on combined electrical and seismic data sets, The Cryosphere, 5(2), 453-468. Pellet, C., Hilbich, C., Marmy, A., & Hauck, C. 2016: Soil moisture data for the validation of permafrost models using direct and indirect measurement approaches at three alpine sites, Front. Earth Sci., 3(91).

  3. Spatially Distributed Characterization of Catchment Dynamics Using Travel-Time Distributions

    NASA Astrophysics Data System (ADS)

    Heße, F.; Zink, M.; Attinger, S.

    2015-12-01

    The description of storage and transport of both water and solved contaminants in catchments is very difficult due to the high heterogeneity of the subsurface properties that govern their fate. This heterogeneity, combined with a generally limited knowledge about the subsurface, results in high degrees of uncertainty. As a result, stochastic methods are increasingly applied, where the relevant processes are modeled as being random. Within these methods, quantities like the catchment travel or residence time of a water parcel are described using probability density functions (PDF). The derivation of these PDF's is typically done by using the water fluxes and states of the catchment. A successful application of such frameworks is therefore contingent on a good quantification of these fluxes and states across the different spatial scales. The objective of this study is to use travel times for the characterization of an ca. 1000 square kilometer, humid catchment in Central Germany. To determine the states and fluxes, we apply the mesoscale Hydrological Model mHM, a spatially distributed hydrological model to the catchment. Using detailed data of precipitation, land cover, morphology and soil type as inputs, mHM is able to determine fluxes like recharge and evapotranspiration and states like soil moisture as outputs. Using these data, we apply the above theoretical framework to our catchment. By virtue of the aforementioned properties of mHM, we are able to describe the storage and release of water with a high spatial resolution. This allows for a comprehensive description of the flow and transport dynamics taking place in the catchment. The spatial distribution of such dynamics is then compared with land cover and soil moisture maps as well as driving forces like precipitation and temperature to determine the most predictive factors. In addition, we investigate how non-local data like the age distribution of discharge flows are impacted by, and therefore allow to infer, local properties of the catchment.

  4. Estimating Soil Moisture at High Spatial Resolution with Three Radiometric Satellite Products: A Study from a South-Eastern Australian Catchment

    NASA Astrophysics Data System (ADS)

    Senanayake, I. P.; Yeo, I. Y.; Tangdamrongsub, N.; Willgoose, G. R.; Hancock, G. R.; Wells, T.; Fang, B.; Lakshmi, V.

    2017-12-01

    Long-term soil moisture datasets at high spatial resolution are important in agricultural, hydrological, and climatic applications. The soil moisture estimates can be achieved using satellite remote sensing observations. However, the satellite soil moisture data are typically available at coarse spatial resolutions ( several tens of km), therefore require further downscaling. Different satellite soil moisture products have to be conjointly employed in developing a consistent time-series of high resolution soil moisture, while the discrepancies amongst different satellite retrievals need to be resolved. This study aims to downscale three different satellite soil moisture products, the Soil Moisture and Ocean Salinity (SMOS, 25 km), the Soil Moisture Active Passive (SMAP, 36 km) and the SMAP-Enhanced (9 km), and to conduct an inter-comparison of the downscaled results. The downscaling approach is developed based on the relationship between the diurnal temperature difference and the daily mean soil moisture content. The approach is applied to two sub-catchments (Krui and Merriwa River) of the Goulburn River catchment in the Upper Hunter region (NSW, Australia) to estimate soil moisture at 1 km resolution for 2015. The three coarse spatial resolution soil moisture products and their downscaled results will be validated with the in-situ observations obtained from the Scaling and Assimilation of Soil Moisture and Streamflow (SASMAS) network. The spatial and temporal patterns of the downscaled results will also be analysed. This study will provide the necessary insights for data selection and bias corrections to maintain the consistency of a long-term high resolution soil moisture dataset. The results will assist in developing a time-series of high resolution soil moisture data over the south-eastern Australia.

  5. The Australian National Airborne Field Experiment 2005: Soil Moisture Remote Sensing at 60 Meter Resolution and Up

    NASA Technical Reports Server (NTRS)

    Kim, E. J.; Walker, J. P.; Panciera, R.; Kalma, J. D.

    2006-01-01

    Spatially-distributed soil moisture observations have applications spanning a wide range of spatial resolutions from the very local needs of individual farmers to the progressively larger areas of interest to weather forecasters, water resource managers, and global climate modelers. To date, the most promising approach for space-based remote sensing of soil moisture makes use of passive microwave emission radiometers at L-band frequencies (1-2 GHz). Several soil moisture-sensing satellites have been proposed in recent years, with the European Space Agency's Soil Moisture Ocean Salinity (SMOS) mission scheduled to be launched first in a couple years. While such a microwave-based approach has the advantage of essentially allweather operation, satellite size limits spatial resolution to 10's of km. Whether used at this native resolution or in conjunction with some type of downscaling technique to generate soil moisture estimates on a finer-scale grid, the effects of subpixel spatial variability play a critical role. The soil moisture variability is typically affected by factors such as vegetation, topography, surface roughness, and soil texture. Understanding and these factors is the key to achieving accurate soil moisture retrievals at any scale. Indeed, the ability to compensate for these factors ultimately limits the achievable spatial resolution and/or accuracy of the retrieval. Over the last 20 years, a series of airborne campaigns in the USA have supported the development of algorithms for spaceborne soil moisture retrieval. The most important observations involved imagery from passive microwave radiometers. The early campaigns proved that the retrieval worked for larger and larger footprints, up to satellite-scale footprints. These provided the solid basis for proposing the satellite missions. More recent campaigns have explored other aspects such as retrieval performance through greater amounts of vegetation. All of these campaigns featured extensive ground truth collection over a range of grid spacings, to provide a basis for examining the effects of subpixel variability. However, the native footprint size of the airborne L-band radiometers was always a few hundred meters. During the recently completed (November, 2005) National Airborne Field Experiment (NAFE) campaign in Australia, a compact L-band radiometer was deployed on a small aircraft. This new combination permitted routine observations at native resolutions as high as 60 meters, substantially finer than in previous airborne soil moisture campaigns, as well as satellite footprint areal coverage. The radiometer, the Polarimetric L-band Microwave Radiometer (PLMR) performed extremely well and operations included extensive calibration-related observations. Thus, along with the extensive fine-scale ground truth, the NAFE dataset includes all the ingredients for the first scaling studies involving very-high-native resolution soil moisture observations and the effects of vegetation, roughness, etc. A brief overview of the NAFE will be presented, then examples of the airborne observations with resolutions from 60 m to 1 km will be shown, and early results from scaling studies will be discussed.

  6. Reconciling spatial and temporal soil moisture effects on afternoon rainfall

    PubMed Central

    Guillod, Benoit P.; Orlowsky, Boris; Miralles, Diego G.; Teuling, Adriaan J.; Seneviratne, Sonia I.

    2015-01-01

    Soil moisture impacts on precipitation have been strongly debated. Recent observational evidence of afternoon rain falling preferentially over land parcels that are drier than the surrounding areas (negative spatial effect), contrasts with previous reports of a predominant positive temporal effect. However, whether spatial effects relating to soil moisture heterogeneity translate into similar temporal effects remains unknown. Here we show that afternoon precipitation events tend to occur during wet and heterogeneous soil moisture conditions, while being located over comparatively drier patches. Using remote-sensing data and a common analysis framework, spatial and temporal correlations with opposite signs are shown to coexist within the same region and data set. Positive temporal coupling might enhance precipitation persistence, while negative spatial coupling tends to regionally homogenize land surface conditions. Although the apparent positive temporal coupling does not necessarily imply a causal relationship, these results reconcile the notions of moisture recycling with local, spatially negative feedbacks. PMID:25740589

  7. Soil moisture mapping at Bubnow Wetland using L-band radiometer (ELBARA III)

    NASA Astrophysics Data System (ADS)

    Łukowski, Mateusz; Schwank, Mike; Szlązak, Radosław; Wiesmann, Andreas; Marczewski, Wojciech; Usowicz, Bogusław; Usowicz, Jerzy; Rojek, Edyta; Werner, Charles

    2016-04-01

    The study of soil moisture is a scientific challenge. Not only because of large diversity of soils and differences in their water content, but also due to the difficulty of measuring, especially in large scale. On this field of interest several methods to determine the content of water in soil exists. The basic and referential is gravimetric method, which is accurate, but suitable only for small spatial scales and time-consuming. Indirect methods are faster, but need to be validated, for example those based on dielectric properties of materials (e.g. time domain reflectometry - TDR) or made from distance (remote), like brightness temperature measurements. Remote sensing of soil moisture can be performed locally (from towers, drones, planes etc.) or globally (satellites). These techniques can complement and help to verify different models and assumptions. In our studies, we applied spatial statistics to local soil moisture mapping using ELBARA III (ESA L-band radiometer, 1.4 GHz) mounted on tower (6.5 meter height). Our measurements were carried out in natural Bubnow Wetland, near Polesie National Park (Eastern Poland), during spring time. This test-site had been selected because it is representative for one of the biggest wetlands in Europe (1400 km2), called "Western Polesie", localized in Ukraine, Poland and Belarus. We have investigated Bubnow for almost decade, using meteorological and soil moisture stations, conducting campaigns of hand-held measurements and collecting soil samples. Now, due to the possibility of rotation at different incidence angles (as in previous ELBARA systems) and the new azimuth tracking capabilities, we obtained brightness temperature data not only at different distances from the tower, but also around it, in footprints containing different vegetation and soil types. During experiment we collected data at area about 450 m2 by rotating ELBARA's antenna 5-175° in horizontal and 30-70° in vertical plane. This type of approach allows combining multiple independent measurements (performed nearly simultaneously) to one consistent soil moisture map. Spatial statistics helps with correcting blind spots or distortions causes by assembly elements, especially on corners of ELBARA's tower. Moreover, using this technique we can observe distribution of soil moisture with time dependency. In order to validate our data, the results were compared with measurements obtained by means of the TDR method. The presented approach enables better understanding the soil moisture spatial distribution over a particular local area of interests, before extending soil water assessments on larger areas. The work was partially funded under two ESA projects: 1) "ELBARA_PD (Penetration Depth)" No. 4000107897/13/NL/KML, funded by the Government of Poland through an ESA-PECS contract (Plan for European Cooperating States) 2) "Technical Support for the fabrication and deployment of the radiometer ELBARA-III in Bubnow, Poland" No. 4000113360/15/NL/FF/gp

  8. Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century

    NASA Astrophysics Data System (ADS)

    Ruosteenoja, Kimmo; Markkanen, Tiina; Venäläinen, Ari; Räisänen, Petri; Peltola, Heli

    2018-02-01

    Projections for near-surface soil moisture content in Europe for the 21st century were derived from simulations performed with 26 CMIP5 global climate models (GCMs). Two Representative Concentration Pathways, RCP4.5 and RCP8.5, were considered. Unlike in previous research in general, projections were calculated separately for all four calendar seasons. To make the moisture contents simulated by the various GCMs commensurate, the moisture data were normalized by the corresponding local maxima found in the output of each individual GCM. A majority of the GCMs proved to perform satisfactorily in simulating the geographical distribution of recent soil moisture in the warm season, the spatial correlation with an satellite-derived estimate varying between 0.4 and 0.8. In southern Europe, long-term mean soil moisture is projected to decline substantially in all seasons. In summer and autumn, pronounced soil drying also afflicts western and central Europe. In northern Europe, drying mainly occurs in spring, in correspondence with an earlier melt of snow and soil frost. The spatial pattern of drying is qualitatively similar for both RCP scenarios, but weaker in magnitude under RCP4.5. In general, those GCMs that simulate the largest decreases in precipitation and increases in temperature and solar radiation tend to produce the most severe soil drying. Concurrently with the reduction of time-mean soil moisture, episodes with an anomalously low soil moisture, occurring once in 10 years in the recent past simulations, become far more common. In southern Europe by the late 21st century under RCP8.5, such events would be experienced about every second year.

  9. Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values

    NASA Astrophysics Data System (ADS)

    Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.

    2018-04-01

    Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.

  10. Seedling establishment and physiological responses to temporal and spatial soil moisture changes

    Treesearch

    Jeremy Pinto; John D. Marshall; Kas Dumroese; Anthony S. Davis; Douglas R. Cobos

    2016-01-01

    In many forests of the world, the summer season (temporal element) brings drought conditions causing low soil moisture in the upper soil profile (spatial element) - a potentially large barrier to seedling establishment. We evaluated the relationship between initial seedling root depth, temporal and spatial changes in soil moisture during drought after...

  11. Investigation on the dominant factors controlling the spatio-temporal distribution of soil moisture in experimental grasslands

    NASA Astrophysics Data System (ADS)

    Schwichtenberg, G.; Hildebrandt, A.; Samaniego-Eguiguren, L.; Kreutziger, Y.; Attinger, S.

    2009-04-01

    The spatio-temporal distribution of soil moisture in the unsaturated zone influences the vegetation growth, governs the runoff generation processes as well as the energy balance at the interface between biosphere and the atmosphere, by influencing evapotranspiration. A better understanding of the spatio-temporal variability and dependence of soil moisture on living versus abiotic environment would lead to an improved representation of the soil-vegetation-atmosphere processes in hydrological and climate models. The Jena Experiment site (Germany) was established October 2001 in order to analyse the interaction between plant diversity and ecosystem processes. The main experiment covers 92 plots of 20 x 20 m arranged into a grid, on which a mixture of up to 60 grassland species and of one to four plant functional groups have been seeded. Each of these plots is equipped with at least one measurement tube for soil moisture. Measurements have been conducted weekly for four growing seasons (SSF). Here, we use geostatistical methods, like variograms and multivariate regressions, to investigate in how far abiotic environment and ecosystem explain the spatial and temporal variation of soil moisture at the Jena Experiment site. We test the influence of the soil environment, biodiversity, leaf area index and groundwater table. The poster will present the results of this analysis.

  12. Comparison of spatial interpolation methods for soil moisture and its application for monitoring drought.

    PubMed

    Chen, Hui; Fan, Li; Wu, Wei; Liu, Hong-Bin

    2017-09-26

    Soil moisture data can reflect valuable information on soil properties, terrain features, and drought condition. The current study compared and assessed the performance of different interpolation methods for estimating soil moisture in an area with complex topography in southwest China. The approaches were inverse distance weighting, multifarious forms of kriging, regularized spline with tension, and thin plate spline. The 5-day soil moisture observed at 167 stations and daily temperature recorded at 33 stations during the period of 2010-2014 were used in the current work. Model performance was tested with accuracy indicators of determination coefficient (R 2 ), mean absolute percentage error (MAPE), root mean square error (RMSE), relative root mean square error (RRMSE), and modeling efficiency (ME). The results indicated that inverse distance weighting had the best performance with R 2 , MAPE, RMSE, RRMSE, and ME of 0.32, 14.37, 13.02%, 0.16, and 0.30, respectively. Based on the best method, a spatial database of soil moisture was developed and used to investigate drought condition over the study area. The results showed that the distribution of drought was characterized by evidently regional difference. Besides, drought mainly occurred in August and September in the 5 years and was prone to happening in the western and central parts rather than in the northeastern and southeastern areas.

  13. Complex terrain in the Critical Zone: How topography drives ecohydrological patterns of soil and plant carbon exchange in a semiarid mountainous system

    NASA Astrophysics Data System (ADS)

    Barron-Gafford, G.; Minor, R. L.; Heard, M. M.; Sutter, L. F.; Yang, J.; Potts, D. L.

    2015-12-01

    The southwestern U.S. is predicted to experience increasing temperatures and longer periods of inter-storm drought. High temperature and water deficit restrict plant productivity and ecosystem functioning, but the influence of future climate is predicted to be highly heterogeneous because of the complex terrain characteristic of much of the Critical Zone (CZ). Within our Critical Zone Observatory (CZO) in the Southwestern US, we monitor ecosystem-scale carbon and water fluxes using eddy covariance. This whole-ecosystem metric is a powerful integrating measure of ecosystem function over time, but details on spatial heterogeneity resulting from topographic features of the landscape are not captured, nor are interactions among below- and aboveground processes. We supplement eddy covariance monitoring with distributed measures of carbon flux from soil and vegetation across different aspects to quantify the causes and consequences of spatial heterogeneity through time. Given that (i) aspect influences how incoming energy drives evaporative water loss and (ii) seasonality drives temporal patterns of soil moisture recharge, we were able to examine the influence of these processes on CO2 efflux by investigating variation across aspect. We found that aspect was a significant source of spatial heterogeneity in soil CO2 efflux, but the influence varied across seasonal periods. Snow on South-facing aspects melted earlier and yielded higher efflux rates in the spring. However, during summer, North- and South-facing aspects had similar amounts of soil moisture, but soil temperatures were warmer on the North-facing aspect, yielding greater rates of CO2 efflux. Interestingly, aspect did not influence photosynthetic rates. Taken together, we found that physical features of the landscape yielded predictable patterns of levels and phenologies of soil moisture and temperature, but these drivers differentially influenced below- and aboveground sources of carbon exchange. Conducting these spatially distributed measurements are time consuming. Looking forward, we have begun using unmanned aerial vehicles outfitted with thermal and multi-spectral cameras to quantify patterns of water flux, NDVI, needle browning due to moisture stress, and overall phenology in the CZ.

  14. Soil moisture observations using L-, C-, and X-band microwave radiometers

    NASA Astrophysics Data System (ADS)

    Bolten, John Dennis

    The purpose of this thesis is to further the current understanding of soil moisture remote sensing under varying conditions using L-, C-, and X-band. Aircraft and satellite instruments are used to investigate the effects of frequency and spatial resolution on soil moisture sensitivity. The specific objectives of the research are to examine multi-scale observed and modeled microwave radiobrightness, evaluate new EOS Aqua Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperature and soil moisture retrievals, and examine future satellite-based technologies for soil moisture sensing. The cycling of Earth's water, energy and carbon is vital to understanding global climate. Over land, these processes are largely dependent on the amount of moisture within the top few centimeters of the soil. However, there are currently no methods available that can accurately characterize Earth's soil moisture layer at the spatial scales or temporal resolutions appropriate for climate modeling. The current work uses ground truth, satellite and aircraft remote sensing data from three large-scale field experiments having different land surface, topographic and climate conditions. A physically-based radiative transfer model is used to simulate the observed aircraft and satellite measurements using spatially and temporally co-located surface parameters. A robust analysis of surface heterogeneity and scaling is possible due to the combination of multiple datasets from a range of microwave frequencies and field conditions. Accurate characterization of spatial and temporal variability of soil moisture during the three field experiments is achieved through sensor calibration and algorithm validation. Comparisons of satellite observations and resampled aircraft observations are made using soil moisture from a Numerical Weather Prediction (NWP) model in order to further demonstrate a soil moisture correlation where point data was unavailable. The influence of vegetation, spatial scaling, and surface heterogeneity on multi-scale soil moisture prediction is presented. This work demonstrates that derived soil moisture using remote sensing provides a better coverage of soil moisture spatial variability than traditional in-situ sensors. Effects of spatial scale were shown to be less significant than frequency on soil moisture sensitivity. Retrievals of soil moisture using the current methods proved inadequate under some conditions; however, this study demonstrates the need for concurrent spaceborne frequencies including L-, C, and X-band.

  15. Soil moisture downscaling using a simple thermal based proxy

    NASA Astrophysics Data System (ADS)

    Peng, Jian; Loew, Alexander; Niesel, Jonathan

    2016-04-01

    Microwave remote sensing has been largely applied to retrieve soil moisture (SM) from active and passive sensors. The obvious advantage of microwave sensor is that SM can be obtained regardless of atmospheric conditions. However, existing global SM products only provide observations at coarse spatial resolutions, which often hamper their applications in regional hydrological studies. Therefore, various downscaling methods have been proposed to enhance the spatial resolution of satellite soil moisture products. The aim of this study is to investigate the validity and robustness of a simple Vegetation Temperature Condition Index (VTCI) downscaling scheme over different climates and regions. Both polar orbiting (MODIS) and geostationary (MSG SEVIRI) satellite data are used to improve the spatial resolution of the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA CCI) soil moisture, which is a merged product based on both active and passive microwave observations. The results from direct validation against soil moisture in-situ measurements, spatial pattern comparison, as well as seasonal and land use analyses show that the downscaling method can significantly improve the spatial details of CCI soil moisture while maintain the accuracy of CCI soil moisture. The application of the scheme with different satellite platforms and over different regions further demonstrate the robustness and effectiveness of the proposed method. Therefore, the VTCI downscaling method has the potential to facilitate relevant hydrological applications that require high spatial and temporal resolution soil moisture.

  16. Trends in Soil Moisture Reflect More Than Slope Position: Soils on San Cristóbal Island, Galápagos as a Case Study

    NASA Astrophysics Data System (ADS)

    Percy, M.; Singha, K.; Benninger, L. K.; Riveros-Iregui, D. A.; Mirus, B. B.

    2015-12-01

    The spatial and temporal distribution of soil moisture in tropical critical zones depends upon a number of variables including topographic position, soil texture, overlying vegetation, and local microclimates. We investigate the influences on soil moisture on a tropical basaltic island (San Cristóbal, Galápagos) across a variety of microclimates during the transition from the wetter to the drier season. We used multiple approaches to characterize spatial and temporal patterns in soil moisture at four sites across microclimates ranging from arid to very humid. The microclimates on San Cristóbal vary with elevation, so our monitoring includes two sites in the transitional zone at lower elevations, one in the humid zone at moderate elevations, and one in the very humid zone in higher elevations. We made over 250 near-surface point measurements per site using a Hydrosense II probe, and estimated the lateral variability in soil moisture across each site with an EM-31 electrical conductivity meter. We also monitored continuous time-series of in-situ soil moisture dynamics using three nested TDR probes collocated with meteorological stations at each of the sites. Preliminary analysis indicates that soils in the very humid zone have lower electrical conductivities across all the hillslopes as compared to the humid and transitional zones, which suggests that additional factors beyond climate and slope position are important. While soil texture across the very humid site is fairly uniform, variations in vegetation have a strong control on soil moisture patterns. At the remaining sites the vegetation patterns also have a very strong local influence on soil moisture, but correlation between the depth to clay layers and soil moisture patterns suggests that mineralogy is also important. Our findings suggest that the microclimatic setting is a crucial consideration for understanding relations between vegetation, soil texture, and soil-moisture dynamics in tropical critical zones.

  17. Evaluation of Ku-Band Sensitivity To Soil Moisture: Soil Moisture Change Detection Over the NAFE06 Study Area

    USDA-ARS?s Scientific Manuscript database

    A very promising technique for spatial disaggregation of soil moisture is on the combination of radiometer and radar observations. Despite their demonstrated potential for long term large scale monitoring of soil moisture, passive and active have their disadvantages in terms of temporal and spatial ...

  18. A spatially distributed energy balance snowmelt model for application in mountain basins

    USGS Publications Warehouse

    Marks, D.; Domingo, J.; Susong, D.; Link, T.; Garen, D.

    1999-01-01

    Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoff during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management.Snowmelt is the principal source for soil moisture, ground-water re-charge, and stream-flow in mountainous regions of the western US, Canada, and other similar regions of the world. Information on the timing, magnitude, and contributing area of melt under variable or changing climate conditions is required for successful water and resource management. A coupled energy and mass-balance model ISNOBAL is used to simulate the development and melting of the seasonal snowcover in several mountain basins in California, Idaho, and Utah. Simulations are done over basins varying from 1 to 2500 km2, with simulation periods varying from a few days for the smallest basin, Emerald Lake watershed in California, to multiple snow seasons for the Park City area in Utah. The model is driven by topographically corrected estimates of radiation, temperature, humidity, wind, and precipitation. Simulation results in all basins closely match independently measured snow water equivalent, snow depth, or runoff during both the development and depletion of the snowcover. Spatially distributed estimates of snow deposition and melt allow us to better understand the interaction between topographic structure, climate, and moisture availability in mountain basins of the western US. Application of topographically distributed models such as this will lead to improved water resource and watershed management.

  19. High-resolution Mapping of Permafrost and Soil Freeze/thaw Dynamics in the Tibetan Plateau Based on Multi-sensor Satellite Observations

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Yi, Y.; Yang, K.; Kimball, J. S.

    2016-12-01

    The Tibetan Plateau (TP) is underlain by the world's largest extent of alpine permafrost ( 2.5×106 km2), dominated by sporadic and discontinuous permafrost with strong sensitivity to climate warming. Detailed permafrost distributions and patterns in most of the TP region are still unknown due to extremely sparse in-situ observations in this region characterized by heterogeneous land cover and large temporal dynamics in surface soil moisture conditions. Therefore, satellite-based temperature and moisture observations are essential for high-resolution mapping of permafrost distribution and soil active layer changes in the TP region. In this study, we quantify the TP regional permafrost distribution at 1-km resolution using a detailed satellite data-driven soil thermal process model (GIPL2). The soil thermal model is calibrated and validated using in-situ soil temperature/moisture observations from the CAMP/Tibet field campaign (9 sites: 0-300 cm soil depth sampling from 1997-2007), a multi-scale soil moisture and temperature monitoring network in the central TP (CTP-SMTMN, 57 sites: 5-40 cm, 2010-2014) and across the whole plateau (China Meteorology Administration, 98 sites: 0-320 cm, 2000-2015). Our preliminary results using the CAMP/Tibet and CTP-SMTMN network observations indicate strong controls of surface thermal and soil moisture conditions on soil freeze/thaw dynamics, which vary greatly with underlying topography, soil texture and vegetation cover. For regional mapping of soil freeze/thaw and permafrost dynamics, we use the most recent soil moisture retrievals from the NASA SMAP (Soil Moisture Active Passive) sensor to account for the effects of temporal soil moisture dynamics on soil thermal heat transfer, with surface thermal conditions defined by MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature records. Our study provides the first 1-km map of spatial patterns and recent changes of permafrost conditions in the TP.

  20. Soil moisture variation patterns observed in Hand County, South Dakota

    NASA Technical Reports Server (NTRS)

    Jones, E. B.; Owe, M.; Schmugge, T. J. (Principal Investigator)

    1981-01-01

    Soil moisture data were taken during 1976 (April, June, October), 1977 (April, May, June), and 1978 (May, June, July) Hand County, South Dakota as part of the ground truth used in NASA's aircraft experiments to study the use of microwave radiometers for the remote sensing of soil moisture. The spatial variability observed on the ground during each of the sampling events was studied. The data reported are the mean gravimetric soil moisture contained in three surface horizon depths: 0 to 2.5, 0 to 5 and 0 to 10 cm. The overall moisture levels ranged from extremely dry conditions in June 1976 to very wet in May 1978, with a relatively even distribution of values within that range. It is indicated that well drained sites have to be partitioned from imperfectly drained areas when attempting to characterize the general moisture profile throughout an area of varying soil and cover type conditions. It is also found that the variability in moisture content is greatest in the 0 to 2.5 cm measurements and decreases as the measurements are integrated over a greater depth. It is also determined that the sampling intensity of 10 measurements per km is adequate to estimate the mean moisture with an uncertainty of + or - 3 percent under average moisture conditions in areas of moderate to good drainage.

  1. Hydrologic Modeling of Boreal Forest Ecosystems

    NASA Technical Reports Server (NTRS)

    Haddeland, I.; Lettenmaier, D. P.

    1995-01-01

    This study focused on the hydrologic response, including vegetation water use, of two test regions within the Boreal-Ecosystem-Atmosphere Study (BOREAS) region in the Canadian boreal forest, one north of Prince Albert, Saskatchewan, and the other near Thompson, Manitoba. Fluxes of moisture and heat were studied using a spatially distributed hydrology soil-vegetation-model (DHSVM).

  2. Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain

    NASA Astrophysics Data System (ADS)

    Gruber, A.; Crow, W. T.; Dorigo, W. A.

    2018-02-01

    Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model-based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two-dimensional (2-D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground-based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2-D system is compared to that obtained from the 1-D assimilation of remote sensing retrievals to assess the value of ground-based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite-based surface soil moisture retrievals.

  3. [Effect of irregular bedrock topography on the soil profile pattern of water content in a Karst hillslope.

    PubMed

    Jia, Jin Tian; Fu, Zhi Yong; Chen, Hong Song; Wang, Ke Lin; Zhou, Wei Jun

    2016-06-01

    Based on three manually excavated trenches (projection length of 21 m, width of 1 m) along a typical Karst hillslope, the changing trends for soil-bedrock structure, average water content of soil profile and soil-bedrock interface water content along each individual trench were studied. The effect of irregular bedrock topography on soil moisture distribution was discussed. The results showed that the surface topography was inconsistent with the bedrock topography in the Karst hill-slopes. The bedrock topography was highly irregular with a maximum variation coefficient of 82%. The distribution pattern of soil profile of moisture was significantly affected by the underlying undulant bedrock. The soil water content was related to slope position when the fluctuation was gentle, and displayed a linear increase from upslope to downslope. When the bedrock fluctuation increased, the downslope linear increasing trend for soil water content became unapparent, and the spatial continuity of soil moisture was weakened. The soil moisture was converged in rock dents and cracks. The average water content of soil profile was significantly positively correlated with the soil-bedrock interface water content, while the latter responded more sensitively to the bedrock fluctuation.

  4. Evaluation of the soil moisture prediction accuracy of a space radar using simulation techniques. [Kansas

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Dobson, M. C.; Stiles, J. A.; Moore, R. K.; Holtzman, J. C.

    1981-01-01

    Image simulation techniques were employed to generate synthetic aperture radar images of a 17.7 km x 19.3 km test site located east of Lawrence, Kansas. The simulations were performed for a space SAR at an orbital altitude of 600 km, with the following sensor parameters: frequency = 4.75 GHz, polarization = HH, and angle of incidence range = 7 deg to 22 deg from nadir. Three sets of images were produced corresponding to three different spatial resolutions; 20 m x 20 m with 12 looks, 100 m x 100 m with 23 looks, and 1 km x 1 km with 1000 looks. Each set consisted of images for four different soil moisture distributions across the test site. Results indicate that, for the agricultural portion of the test site, the soil moisture in about 90% of the pixels can be predicted with an accuracy of = + or - 20% of field capacity. Among the three spatial resolutions, the 1 km x 1 km resolution gave the best results for most cases, however, for very dry soil conditions, the 100 m x 100 m resolution was slightly superior.

  5. Satellite and Model Analysis of the Atmospheric Moisture Budget in High Latitudes: High Resolution Precipitation Over Greenland Studied from Dynamic Method

    NASA Technical Reports Server (NTRS)

    Bromwich, David H.; Chen, Qiu-shi

    2002-01-01

    Observations of precipitation over Greenland are limited. Direct precipitation measurements for the whole ice sheet are impractical, and those in the coastal region have substantial uncertainty but may be correctable with some effort. However, the analyzed wind, geopotential height and moisture fields are available for recent years, and the precipitation is retrievable from these fields by a dynamic method. Based on recent Greenland precipitation from dynamic studies, several deficiencies in the precipitation spatial distributions from these dynamic methods were evaluated by Bromwich et al.

  6. Topographic soil wetness index derived from combined Alaska-British Columbia datasets for the Gulf of Alaska region

    NASA Astrophysics Data System (ADS)

    D'Amore, D. V.; Biles, F. E.

    2016-12-01

    The flow of water is often highlighted as a priority in land management planning and assessments related to climate change. Improved measurement and modeling of soil moisture is required to develop predictive estimates for plant distributions, soil moisture, and snowpack, which all play important roles in ecosystem planning in the face of climate change. Drainage indexes are commonly derived from GIS tools with digital elevation models. Soil moisture classes derived from these tools are useful digital proxies for ecosystem functions associated with the concentration of water on the landscape. We developed a spatially explicit topographically derived soil wetness index (TWI) across the perhumid coastal temperate rainforest (PCTR) of Alaska and British Columbia. Developing applicable drainage indexes in complex terrain and across broad areas required careful application of the appropriate DEM, caution with artifacts in GIS covers and mapping realistic zones of wetlands with the indicator. The large spatial extent of the model has facilitated the mapping of forest habitat and the development of water table depth mapping in the region. A key element of the TWI is the merging of elevation datasets across the US-Canada border where major rivers transect the international boundary. The unified TWI allows for seemless mapping across the international border and unified ecological applications. A python program combined with the unified DEM allows end users to quickly apply the TWI to all areas of the PCTR. This common platform can facilitate model comparison and improvements to local soil moisture conditions, generation of streamflow, and ecological site conditions. In this presentation we highlight the application of the TWI for mapping risk factors related to forest decline and the development of a regional water table depth map. Improved soil moisture maps are critical for deriving spatial models of changes in soil moisture for both plant growth and streamflow across future climate conditions.

  7. Fine scale climatic and soil variability effects on plant species cover along the Front Range of Colorado, USA

    NASA Astrophysics Data System (ADS)

    Cumming, William Frank Preston

    Fine scale studies are rarely performed to address landscape level responses to microclimatic variability. Is it the timing, distribution, and magnitude of soil temperature and moisture that affects what species emerge each season and, in turn, their resilience to fluctuations in microclimate. For this dissertation research, I evaluated the response of vegetation change to microclimatic variability within two communities over a three year period (2009-2012) utilizing 25 meter transects at two locations along the Front Range of Colorado near Boulder, CO and Golden, CO respectively. To assess microclimatic variability, spatial and temporal autocorrelation analyses were performed with soil temperature and moisture. Species cover was assessed along several line transects and correlated with microclimatic variability. Spatial and temporal autocorrelograms are useful tools in identifying the degree of dependency of soil temperature and moisture on the distance and time between pairs of measurements. With this analysis I found that a meter spatial resolution and two-hour measurements are sufficient to capture the fine scale variability in soil properties throughout the year. By comparing this to in situ measurements of soil properties and species percent cover I found that there are several plant functional types and/or species origin in particular that are more sensitive to variations in temperature and moisture than others. When all seasons, locations, correlations, and regional climate are looked at, it is the month of March that stands out in terms of significance. Additionally, of all of the vegetation types represented at these two sites C4, C3, native, non-native, and forb species seem to be the most sensitive to fluctuations in soil temperature, moisture, and regional climate in the spring season. The steady decline in percent species cover the study period and subsequent decrease in percent species cover and size at both locations may indicate that certain are unable to respond to continually higher temperatures and lower moisture availability that is inevitable with future climatic variability.

  8. [Spatial heterogeneity of soil moisture of mountain apple orchards with rainwater collection and infiltration (RWCI) system in the Loess Plateau, China].

    PubMed

    Song, Xiao Lin; Zhao, Xi Ning; Gao, Xiao Dong; Wu, Pu Te; Ma, Wen; Yao, Jie; Jiang, Xiao Li; Zhang, Wei

    2017-11-01

    Water scarcity is a critical factor influencing rain-fed agricultural production on the Loess Plateau, and the exploitation of rainwater is an effective avenue to alleviate water scarcity in this area. This study was conducted to investigate the spatial and temporal distribution of soil moisture in the 0-300 cm under a 21-year-old apple orchard with the rainwater collection and infiltration (RWCI) system by using a time domain reflectometer (TDR) probe on the Loess Plateau. The results showed that there was a low soil moisture zone in the 40-80 cm under the CK, and the RWCI system significantly increased soil moisture in this depth interval. Over this depth, the annual average soil moisture under RWCI 40 , RWCI 60 and RWCI 80 was 39.2%, 47.2% and 29.1% higher than that of bare slope (BS) and 75.3%, 85.4% and 62.7% higher than that of CK, respectively. The maximum infiltration depth of water under RWCI 40 , RWCI 60 and RWCI 80 was 80 cm, 120 cm and 180 cm, respectively, and the soil moisture in the 0-60, 0-100 and 0-120 cm was more affected by RWCI 40 , RWCI 60 and RWCI 80 , respectively. Over the whole growth period of apple tree, the maximum value of soil moisture content in the 0-300 cm existed in the RWCI 80 treatment, followed by the RWCI 40 and RWCI 60 treatments. Overall, the RWCI system is an effective meaning of transforming rainwater to available water resources and realizing efficient use of agricultural water on the Loess Plateau.

  9. Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Tarquis, Ana M.; Gascó, Gabriel; Millán, Humberto

    2012-07-01

    SummaryImage analysis could be a useful tool for investigating the spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to define apparent soil moisture patterns from vertical planes of Vertisol pit images and (ii) to describe the scaling of apparent soil moisture distribution using fractal parameters. Twelve soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. Six of them were excavated in April/2011 and six pits were established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. Each soil image was analyzed using two fractal scaling exponents, box counting (capacity) dimension (DBC) and interface fractal dimension (Di), and three prefractal scaling coefficients, the total number of boxes intercepting the foreground pattern at a unit scale (A), fractal lacunarity at the unit scale (Λ1) and Shannon entropy at the unit scale (S1). All the scaling parameters identified significant differences between both sets of spatial patterns. Fractal lacunarity was the best discriminator between apparent soil moisture patterns. Soil image interpretation with fractal exponents and prefractal coefficients can be incorporated within a site-specific agriculture toolbox. While fractal exponents convey information on space filling characteristics of the pattern, prefractal coefficients represent the investigated soil property as seen through a higher resolution microscope. In spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used in connection with traditional soil moisture sampling, which always renders punctual estimates.

  10. Hydroclimatic Controls on the Means and Variability of Vegetation Phenology and Carbon Uptake

    NASA Technical Reports Server (NTRS)

    Koster, Randal Dean; Walker, Gregory K.; Collatz, George J.; Thornton, Peter E.

    2013-01-01

    Long-term, global offline (land-only) simulations with a dynamic vegetation phenology model are used to examine the control of hydroclimate over vegetation-related quantities. First, with a control simulation, the model is shown to capture successfully (though with some bias) key observed relationships between hydroclimate and the spatial and temporal variations of phenological expression. In subsequent simulations, the model shows that: (i) the global spatial variation of seasonal phenological maxima is controlled mostly by hydroclimate, irrespective of distributions in vegetation type, (ii) the occurrence of high interannual moisture-related phenological variability in grassland areas is determined by hydroclimate rather than by the specific properties of grassland, and (iii) hydroclimatic means and variability have a corresponding impact on the spatial and temporal distributions of gross primary productivity (GPP).

  11. Developing a Soil Moisture Index for California Grasslands from Airborne Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Flamme, H. E.; Roberts, D. A.; Miller, D. L.

    2016-12-01

    Soil moisture is a key environmental factor controlling vegetation diversity and productivity, evaporation, transpiration, and rainfall runoff. Despite the contribution of soil moisture to ecological productivity, the hydrologic cycle, and erosion, it is currently not being monitored as accurately or as frequently as other environmental factors. Traditional soil moisture monitoring techniques rely on in situ measurements, which become costly when evaluating areas of unevenly distributed soil characteristics and varying topography. Alternatively, satellite remote sensing, such as passive microwave from SMAP, can provide soil moisture but only at very coarse spatial resolutions. Imagery from the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) has the potential to allow better spatial and temporal monitoring of soil moisture. This study established a relationship between plant available water and hyperspectral reflectance via linear regressions of data from 2013-2015 for two grassland field sites: 1) near Santa Barbara, California, at Coal Oil Point Reserve (COPR) and 2) Airstrip station (AIRS) at UC Santa Barbara's Sedgwick Reserve near Santa Ynez, California. Volumetric soil moisture measurements at 10 cm and 20 cm depths were provided by meteorological stations situated in COPR and AIRS while reflectance data were extracted from AVIRIS. We found strong correlations between plant available water and bands centered at wavelengths 704 nm and 831 nm, which we used to create Hyperspectral Soil Moisture Index (HSMI): 0.38((ρ831-ρ704)/(ρ831+ρ704))-0.02. HSMI demonstrated a coefficient of determination (R2) of 0.71 for linear regressions of reflectance versus plant available water with a lag time of 28 days. We applied HSMI to the AIRS and COPR grasslands for 2011 AVIRIS scenes. Plant available water values predicted by HSMI were 0.039 higher at AIRS and 0.048 higher at COPR than the field measurements at the sites. Differences in grass species, soil composition, and climate between COPR and AIRS likely contributed to the errors in the soil moisture predicted by HSMI.

  12. Temporal changes of spatial soil moisture patterns: controlling factors explained with a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen

    2016-04-01

    Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under different hydrologic conditions and the factors controlling the temporal variability of the ECa-soil moisture relationship. The approach provided valuable insight into the time-varying contribution of local and nonlocal factors to the characteristic spatial patterns of soil moisture and the transition mechanisms. The spatial organization of soil moisture was controlled by different processes in different soil horizons, and the topsoil's moisture did not mirror processes that take place within the soil profile. Results show that, for the Schäfertal hillslope site which is presumed to be representative for non-intensively managed soils with moderate clay content, local soil properties (e.g., soil texture and porosity) are the major control on the spatial pattern of ECa. In contrast, the ECa-soil moisture relationship is small and varies over time indicating that ECa is not a good proxy for soil moisture estimation at the investigated site.Occasionally observed stronger correlations between ECa and soil moisture may be explained by background dependencies of ECa to other state variables such as pore water electrical conductivity. The results will help to improve conceptual understanding for hydrological model studies at similar or smaller scales, and to transfer observation concepts and process understanding to larger or less instrumented sites, as well as to constrain the use of EMI-based ECa data for hydrological applications.

  13. Mapping patterns of soil properties and soil moisture using electromagnetic induction to investigate the impact of land use changes on soil processes

    NASA Astrophysics Data System (ADS)

    Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan

    2016-04-01

    As highlighted by many authors, classical or geophysical techniques for measuring soil moisture such as destructive soil sampling, neutron probes or Time Domain Reflectometry (TDR) have some major drawbacks. Among other things, they provide point scale information, are often intrusive and time-consuming. ElectroMagnetic Induction (EMI) instruments are often cited as a promising alternative hydrogeophysical methods providing more efficiently soil moisture measurements ranging from hillslope to catchment scale. The overall objective of our research project is to investigate whether a combination of geophysical techniques at various scales can be used to study the impact of land use change on temporal and spatial variations of soil moisture and soil properties. In our work, apparent electrical conductivity (ECa) patterns are obtained with an EM multiconfiguration system. Depth profiles of ECa were subsequently inferred through a calibration-inversion procedure based on TDR data. The obtained spatial patterns of these profiles were linked to soil profile and soil water content distributions. Two catchments with contrasting land use (agriculture vs. natural forest) were selected in a subtropical region in the south of Brazil. On selected slopes within the catchments, combined EMI and TDR measurements were carried out simultaneously, under different atmospheric and soil moisture conditions. Ground-truth data for soil properties were obtained through soil sampling and auger profiles. The comparison of these data provided information about the potential of the EMI technique to deliver qualitative and quantitative information about the variability of soil moisture and soil properties.

  14. A high resolution method for soil moisture mapping at large spatial and temporal scales

    NASA Astrophysics Data System (ADS)

    moreno, D.; Sayde, C.; Ochsner, T. E.; Sorin, C.; Selker, J. S.

    2013-12-01

    Soil moisture is a critical component of the planet's water budget, yet precise measurement of its dynamics across the critical scales of 0.1-1,000 m continues to be an area of great uncertainty. Here we present the preliminary results for a large scale installation of soil moisture quantification based on the work of Sayde et al. (2010) using actively heated fiber optic with a DTS system capable of soil moisture measurements at high spatial (reporting every 0.125 m) and temporal resolution (read as frequently as each 15 min)). The fiber optic (FO) sensing cables were installed in 2 sections: 1) a highly resolved multi-scale spiral 75m x 65m in size, 530 m total path length, and 2) a 770 m transect in the foot print of the cosmos cosmic ray probe installed at the site. In each of those 2 sections, the FO cables were deployed at 3 depths: 5, 10, and 15 cm. In this system the FO sensing system provides measurements of soil moisture at >39,000 locations simultaneously for each heat pulse. In addition, six soil monitoring stations along the fiber optic path were installed to provide additional validation and calibration of the DTS data. Finally, gravimetric soil moisture and soil thermal samplings were performed periodically to provide additional distributed validation and calibration of the DTS data. The ability of this DTS FO system to provide soil moisture measurements over four orders of magnitude in spatial scale (0.1 - 1,000m) will allow better understanding of the spatio-temporal variability in soil moisture in the field, which is essential to develop protocols for calibration and validation of large scale soil moisture remote sensing data (such as NASA airMOSS soil moisture air flights). The material is based upon work supported by NASA under award NNX12AP58G, with equipment and assistance also provided by CTEMPs.org with support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NASA or the National Science Foundation.. Sayde, C., C. Gregory, M. Gil-Rodriguez, N. Tufillaro, S. Tyler, N. van de Giesen, M. English, R. Cuenca, and J.S. Selker (2010), Feasibility of soil moisture monitoring with heated fiber optics, Water Resour. Res., 46, W06201, doi:10.1029/2009WR007846.

  15. Soil Moisture fusion across scales using a multiscale nonstationary Spatial Hierarchical Model

    NASA Astrophysics Data System (ADS)

    Kathuria, D.; Mohanty, B.; Katzfuss, M.

    2017-12-01

    Soil moisture (SM) datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors, on the other hand, provide observations on a finer spatial scale (meter scale or less) but are sparsely available. SM is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables and these interactions change dynamically with footprint scales. Past literature has largely focused on the scale specific effect of these covariates on soil moisture. The present study proposes a robust Multiscale-Nonstationary Spatial Hierarchical Model (MN-SHM) which can assimilate SM from point to RS footprints. The spatial structure of SM across footprints is modeled by a class of scalable covariance functions whose nonstationary depends on atmospheric forcings (such as precipitation) and surface physical controls (such as topography, soil-texture and vegetation). The proposed model is applied to fuse point and airborne ( 1.5 km) SM data obtained during the SMAPVEX12 campaign in the Red River watershed in Southern Manitoba, Canada with SMOS ( 30km) data. It is observed that precipitation, soil-texture and vegetation are the dominant factors which affect the SM distribution across various footprint scales (750 m, 1.5 km, 3 km, 9 km,15 km and 30 km). We conclude that MN-SHM handles the change of support problems easily while retaining reasonable predictive accuracy across multiple spatial resolutions in the presence of surface heterogeneity. The MN-SHM can be considered as a complex non-stationary extension of traditional geostatistical prediction methods (such as Kriging) for fusing multi-platform multi-scale datasets.

  16. Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska

    NASA Astrophysics Data System (ADS)

    Yi, Yonghong; Kimball, John S.; Chen, Richard H.; Moghaddam, Mahta; Reichle, Rolf H.; Mishra, Umakant; Zona, Donatella; Oechel, Walter C.

    2018-01-01

    An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models and can lead to large uncertainties in predicting regional ecosystem responses and climate feedbacks. In this study, we developed a spatially integrated modeling and analysis framework combining field observations, local-scale ( ˜ 50 m resolution) active layer thickness (ALT) and soil moisture maps derived from low-frequency (L + P-band) airborne radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Modeled ALT results show good correspondence with in situ measurements in higher-permafrost-probability (PP ≥ 70 %) areas (n = 33; R = 0.60; mean bias = 1.58 cm; RMSE = 20.32 cm), but with larger uncertainty in sporadic and discontinuous permafrost areas. The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32±1.18 cm yr-1) and much larger increases (> 3 cm yr-1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). A spatially integrated analysis of the radar retrievals and model sensitivity simulations demonstrated that uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was the largest factor affecting modeled ALT accuracy, while soil moisture played a secondary role. Potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of active layer conditions and refinement of the modeling framework across a larger domain.

  17. Pore-scale water dynamics during drying and the impacts of structure and surface wettability

    NASA Astrophysics Data System (ADS)

    Cruz, Brian C.; Furrer, Jessica M.; Guo, Yi-Syuan; Dougherty, Daniel; Hinestroza, Hector F.; Hernandez, Jhoan S.; Gage, Daniel J.; Cho, Yong Ku; Shor, Leslie M.

    2017-07-01

    Plants and microbes secrete mucilage into soil during dry conditions, which can alter soil structure and increase contact angle. Structured soils exhibit a broad pore size distribution with many small and many large pores, and strong capillary forces in narrow pores can retain moisture in soil aggregates. Meanwhile, contact angle determines the water repellency of soils, which can result in suppressed evaporation rates. Although they are often studied independently, both structure and contact angle influence water movement, distribution, and retention in soils. Here drying experiments were conducted using soil micromodels patterned to emulate different aggregation states of a sandy loam soil. Micromodels were treated to exhibit contact angles representative of those in bulk soil (8.4° ± 1.9°) and the rhizosphere (65° ± 9.2°). Drying was simulated using a lattice Boltzmann single-component, multiphase model. In our experiments, micromodels with higher contact angle surfaces took 4 times longer to completely dry versus micromodels with lower contact angle surfaces. Microstructure influenced drying rate as a function of saturation and controlled the spatial distribution of moisture within micromodels. Lattice Boltzmann simulations accurately predicted pore-scale moisture retention patterns within micromodels with different structures and contact angles.

  18. Multiscale soil moisture measurement for mapping surface runoff generation on torrential headwater catchments (Draix-Bléone field observatory, South Alps, France)

    NASA Astrophysics Data System (ADS)

    Florian, Mallet; Vincent, Marc; Johnny, Douvinet; Philippe, Rossello; Bouteiller Caroline, Le; Jean-Philippe, Malet; Julien, Gance

    2015-04-01

    Runoff generation in the headwater catchments in various land use conditions still remain a core issue in catchment hydrology (Uhlenbrook S. et al., 2003). Vegetation has a strong impact on flows distribution (interception, infiltration, evapotranspiration, runoff) but the relative influence of these mechanisms according to geomorphological determinants is still not totally understood. The "ORE Draix" located in the Alpes-de-Haute-Provence (France) allows to study these parameters using experimental watersheds equipped with a long term monitoring instrumentation (rainfall, streamflow, water, soil and air temperature, soil erosion, soil moisture...). These marl torrential watersheds have a peculiar hydrological behavior during flood events with large outflow differences between the wooded and the bare areas. We try to identify the runoff production factors by studying water storage/drainage processes within the first 30 cm depth of soil (Wilson et al., 2003, Western et al., 2004). Soil moisture can explain runoff during floods, that's why we try to upscale this variable at the watershed level. Unlike studies on soil moisture monitoring in agricultural context (flat areas), conventional remote sensing methods are difficult to apply to the badlands (elevation between 1500 masl and 1800 masl, approximately 1km² areas, steep slopes, various land uses) (Bagdhadi, 2005). This difficulty can be overcome by measuring soil moisture at different spatial (point, plot, slope, catchment) and time scales (event, season, year) using innovative approaches. In this context, we propose a monitoring of soil moisture based on geostatistical treatments crossed with measurements at different scales. These measures are provided from ground and airborne sensors deployment. Point measurements are ensured at a very high time frequency using capacitance probes. At an intermediate level, a slope is equipped with a DTS sensor (distributed temperature sensing) to obtain a 2D estimate of soilwater flow of from the surface to - 30 cm. Another distributed approach will be carried out from a measurement of cosmic neutrons mitigation (Cosmic ray sensor) to estimate a soil moisture averaged value over 40 ha (Zreda et al., 2012). Finally, the smallest scale (slope and catchment) will be approached using remote sensing with a drone and/or satellite imagery (IR, passive and active microwave). This concatenation of scales with different combinations of time steps should enable us to better understand the hydrological dynamics in torrential environments. It aims at mapping the stormflow generation on a catchment at the flood scale and defining the main determinants of surface runoff. These results may contribute to the improvement of runoff simulation and flood prediction. References : Uhlenbrook S., J.J. McDonnell and C. Leibundgut, 2003. Preface: Runoff generation implications for river basin modelling. Hydrological Processes, Special Issue, 17: 197-198. Andrew W. Western, Sen-Lin Zhou, Rodger B. Grayson, Thomas A. MacMahon, Günter Blöshl, David J. Wilson, 2004. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology 286. Zreda, M., Shuttleworth WJ., Zeng X., Zweck C., Desilets D., Franz TE. et al., 2012. COSMOS: the COsmic-ray Soil Moisture Observing System. Hydrology and Earth System Sciences, 16(11): 4079-4099.

  19. Analysis of Large Scale Spatial Variability of Soil Moisture Using a Geostatistical Method

    DTIC Science & Technology

    2010-01-25

    2010 / Accepted: 19 January 2010 / Published: 25 January 2010 Abstract: Spatial and temporal soil moisture dynamics are critically needed to...scale observed and simulated estimates of soil moisture under pre- and post-precipitation event conditions. This large scale variability is a crucial... dynamics is essential in the hydrological and meteorological modeling, improves our understanding of land surface–atmosphere interactions. Spatial and

  20. Spatial and temporal variability of throughfall and soil moisture in a deciduous forest in the low mountain ranges (Hesse, Germany)

    NASA Astrophysics Data System (ADS)

    Chifflard, Peter; Weishaupt, Philipp; Reiss, Martin

    2017-04-01

    Spatial and temporal patterns of throughfall can affect the heterogeneity of ecological, biogeochemical and hydrological processes at a forest floor and further the underlying soil. Previous research suggests different factors controlling the spatial and temporal patterns of throughfall, but most studies focus on coniferous forest, where the vegetation coverage is more or less constant over time. In deciduous forests the leaf area index varies due to the leaf fall in autumn which implicates a specific spatial and temporal variability of throughfall and furthermore of the soil moisture. Therefore, in the present study, the measurements of throughfall and soil moisture in a deciduous forest in the low mountain ranges focused especially on the period of leaf fall. The aims of this study were: 1) to detect the spatial and temporal variability of both the throughfall and the soil moisture, 2) to examine the temporal stability of the spatial patterns of the throughfall and soil moisture and 3) relate the soil moisture patterns to the throughfall patterns and further to the canopy characteristics. The study was carried out in a small catchment on middle Hesse (Germany) which is covered by beech forest. Annual mean air temperature is 9.4°C (48.9˚F) and annual mean precipitation is 650 mm. Base materials for soil genesis is greywacke and clay shale from Devonian deposits. The soil type at the study plot is a shallow cambisol. The study plot covers an area of about 150 m2 where 77 throughfall samplers where installed. The throughfall and the soil moisture (FDR-method, 20 cm depth) was measured immediately after every rainfall event at the 77 measurement points. During the period of October to December 2015 altogether 7 events were investigated. The geostatistical method kriging was used to interpolate between the measurements points to visualize the spatial patterns of each investigated parameter. Time-stability-plots were applied to examine temporal scatters of each investigated parameter. The spearmen and pearson correlation coefficients were applied to detect the relationship between the different investigated parameters. First results show that the spatial variability of throughfall decreases if the total amount of the throughfall increases. The soil moisture shows a similar behavior. It`s spatial variability decreases if higher soil moisture values were measured. Concerning the temporal stability of throughfall it can be shown that it is very high during the leaf-free period, although the rainfall events have different total througfall amounts. The soil moisture patterns consists of a low temporal stability and additionally only during one event a significant correlations between throughfall and soil moisture patterns exists. This implies that other factors than the throughfall patterns control the spatial patterns of soil moisture.

  1. Downscaling SMAP Soil Moisture Using Geoinformation Data and Geostatistics

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Wang, L.

    2017-12-01

    Soil moisture is important for agricultural and hydrological studies. However, ground truth soil moisture data for wide area is difficult to achieve. Microwave remote sensing such as Soil Moisture Active Passive (SMAP) can offer a solution for wide coverage. However, existing global soil moisture products only provide observations at coarse spatial resolutions, which often limit their applications in regional agricultural and hydrological studies. This paper therefore aims to generate fine scale soil moisture information and extend soil moisture spatial availability. A statistical downscaling scheme is presented that incorporates multiple fine scale geoinformation data into the downscaling of coarse scale SMAP data in the absence of ground measurement data. Geoinformation data related to soil moisture patterns including digital elevation model (DEM), land surface temperature (LST), land use and normalized difference vegetation index (NDVI) at a fine scale are used as auxiliary environmental variables for downscaling SMAP data. Generalized additive model (GAM) and regression tree are first conducted to derive statistical relationships between SMAP data and auxiliary geoinformation data at an original coarse scale, and residuals are then downscaled to a finer scale via area-to-point kriging (ATPK) by accounting for the spatial correlation information of the input residuals. The results from standard validation scores as well as the triple collocation (TC) method against soil moisture in-situ measurements show that the downscaling method can significantly improve the spatial details of SMAP soil moisture while maintain the accuracy.

  2. Four-dimensional soil moisture response during an extreme rainfall event at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Troch, Peter A.; Niu, Guo-Yue; Gevaert, Anouk; Teuling, Adriaan; Uijlenhoet, Remko; Pasetto, Damiano; Paniconi, Claudio; Putti, Mario

    2014-05-01

    The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. We observed the spatial and temporal evolution of the soil moisture content at 496 5-TM Decagon sensors distributed over 5 different depths during a low-intensity long-duration rainfall experiment in February 2013. This presentation will focus on our modeling efforts to reveal subsurface hydraulic heterogeneity required to explain observed rainfall-runoff dynamics at the hillslope scale.

  3. Coherent tropical-subtropical Holocene see-saw moisture patterns in the Eastern Hemisphere monsoon systems

    NASA Astrophysics Data System (ADS)

    Wang, Yongbo; Bekeschus, Benjamin; Handorf, Dörthe; Liu, Xingqi; Dallmeyer, Anne; Herzschuh, Ulrike

    2017-08-01

    The concept of a Global Monsoon (GM) has been proposed based on modern precipitation observations, but its application over a wide range of temporal scales is still under debate. Here, we present a synthesis of 268 continental paleo-moisture records collected from monsoonal systems in the Eastern Hemisphere, including the East Asian Monsoon (EAsM), the Indian Monsoon (IM), the East African Monsoon (EAfM), and the Australian Monsoon (AuM) covering the last 18,000 years. The overall pattern of late Glacial to Holocene moisture change is consistent with those inferred from ice cores and marine records. With respect to the last 10,000 years (10 ka), i.e. a period that has high spatial coverage, a Fuzzy c-Means clustering analysis of the moisture index records together with ;Xie-Beni; index reveals four clusters of our data set. The paleoclimatic meaning of each cluster is interpreted considering the temporal evolution and spatial distribution patterns. The major trend in the tropical AuM, EAfM, and IM regions is a gradual decrease in moisture conditions since the early Holocene. Moisture changes in the EAsM regions show maximum index values between 8 and 6 ka. However, records located in nearby subtropical areas, i.e. in regions not influenced by the intertropical convergence zone, show an opposite trend compared to the tropical monsoon regions (AuM, EAfM and IM), i.e. a gradual increase. Analyses of modern meteorological data reveal the same spatial patterns as in the paleoclimate records such that, in times of overall monsoon strengthening, lower precipitation rates are observed in the nearby subtropical areas. We explain this pattern as the effect of a strong monsoon circulation suppressing air uplift in nearby subtropical areas, and hence hindering precipitation. By analogy to the modern system, this would mean that during the early Holocene strong monsoon period, the intensified ascending airflows within the monsoon domains led to relatively weaker ascending or even descending airflows in the adjacent subtropical regions, resulting in a precipitation deficit compared to the late Holocene. Our conceptual model therefore integrates regionally contrasting moisture changes into the Global Monsoon hypothesis.

  4. Spatially enhanced passive microwave derived soil moisture: capabilities and opportunities

    USDA-ARS?s Scientific Manuscript database

    Low frequency passive microwave remote sensing is a proven technique for soil moisture retrieval, but its coarse resolution restricts the range of applications. Downscaling, otherwise known as disaggregation, has been proposed as the solution to spatially enhance these coarse resolution soil moistur...

  5. Characterizing Drought Impacted Soils in the San Joaquin Valley of California Using Remote Sensing

    NASA Astrophysics Data System (ADS)

    Wahab, L. M.; Miller, D.; Roberts, D. A.

    2017-12-01

    California's San Joaquin Valley is an extremely agriculturally productive region of the country, and understanding the state of soils in this region is an important factor in maintaining this high productivity. In this study, we quantified changing soil cover during the drought and analyzed spatial changes in salinity, organic matter, and moisture using unique soil spectral characteristics. We used data from the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) from Hyperspectral Infrared Imager (HyspIRI) campaign flights in 2013 and 2014 over the San Joaquin Valley. A mixture model was applied to both images that identified non- photosynthetic vegetation, green vegetation, and soil cover fractions through image endmembers of each of these three classes. We optimized the spectral library used to identify these classes with Iterative Endmember Selection (IES), and the images were unmixed using Multiple Endmember Spectral Mixture Analysis (MESMA). Maps of soil electrical conductivity, organic matter, soil saturated moisture, and field moisture were generated for the San Joaquin Valley based on indices developed by Ben-Dor et al. [2002]. Representative polygons were chosen to quantify changes between years. Maps of spectrally distinct soils were also generated for 2013 and 2014, in order to determine the spatial distribution of these soil types as well as their temporal dynamics between years. We estimated that soil cover increased by 16% from 2013-2014. Six spectrally distinct soil types were identified for the region, and it was determined that the distribution of these soil types was not constant for most areas between 2013 and 2014. Changes in soil pH, electrical conductivity, and soil moisture were strongly tied in the region between 2013 and 2014.

  6. DownscaleConcept 2.3 User Manual. Downscaled, Spatially Distributed Soil Moisture Calculator

    DTIC Science & Technology

    2011-01-01

    be first presented with the dataset 28 results to your query. From this page, check the box next to the ASTER GDEM dataset and press the "List...information for verification. No charge will be associated with GDEM data archives. 14. Select "Submit Order Now!" to process your order. 15. Wait for

  7. Modelling soil properties in a crop field located in Croatia

    NASA Astrophysics Data System (ADS)

    Bogunovic, Igor; Pereira, Paulo; Millan, Mesic; Percin, Aleksandra; Zgorelec, Zeljka

    2016-04-01

    Development of tillage activities had negative effects on soil quality as destruction of soil horizons, compacting and aggregates destruction, increasing soil erosion and loss of organic matter. For a better management in order to mitigate the effects of intensive soil management in land degradation it is fundamental to map the spatial distribution of soil properties (Brevik et al., 2016). The understanding the distribution of the variables in space is very important for a sustainable management, in order to identify areas that need a potential intervention and decrease the economic losses (Galiati et al., 2016). The objective of this work is study the spatial distribution of some topsoil properties as clay, fine silt, coarse silt, fine sand, coarse sand, penetration resistance, moisture and organic matter in a crop field located in Croatia. A grid with 275x25 (625 m2) was designed and a total of 48 samples were collected. Previous to data modelling, data normality was checked using the Shapiro wilk-test. As in previous cases (Pereira et al., 2015), data did not followed the normal distribution, even after a logarithmic (Log), square-root, and box cox transformation. Thus, for modeling proposes, we used the log transformed data, since was the closest to the normality. In order to identify groups among the variables we applied a principal component analysis (PCA), based on the correlation matrix. On average clay content was 15.47% (±3.23), fine silt 24.24% (±4.08), coarse silt 35.34% (±3.12), fine sand 20.93% (±4.68), coarse sand 4.02% (±1.69), penetration resistance 0.66 MPa (±0.28), organic matter 1.51% (±0.25) and soil moisture 32.04% (±3.27). The results showed that the PCA identified three factors explained at least one of the variables. The first factor had high positive loadings in soil clay, fine silt and organic matter and a high negative loading in fine sand. The second factor had high positive loadings in coarse sand and moisture and a high negative loading in coarse silt. Finally, the factor 3 had a positive loading in penetration resistance. The loadings of these three factors were mapped using ordinary kriging method. The analysis of incremental spatial correlation identified that the highest spatial correlation in the factor 1 was identified at 41.87 m, in factor 2 at 75.61 m and factor 3 at 143.9 m. In the case of factor 2, the maximum peak of spatial autocorrelation was significant at a p<0.05. This showed that the variable has a random distribution, as confirmed with the Moran's I spatial correlation analysis. In relation to the other factors the maximum peaks were significantly clustered at a p<0.001. These results suggested that the each factor has a different spatial pattern and the studied soil properties explained by each factor had a different spatial distribution. References Breivik, E., Baumgarten, A., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Jordán, A. Soil mapping, classification, and modelling: history and future directions. Geoderma, 264, Part B, 256-274. Galiati, A., Gristina, L., Crescimanno, Barone, E., Novara, A. (2016) Towards more efficient incentives for agri-environment measures in degraded and eroded vineyards. Land Degradation and Development, DOI: 10.1002/ldr.2389 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2015) Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, 26, 180-192.

  8. Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture

    NASA Astrophysics Data System (ADS)

    Dyer, Ellen L. E.; Jones, Dylan B. A.; Nusbaumer, Jesse; Li, Harry; Collins, Owen; Vettoretti, Guido; Noone, David

    2017-07-01

    Precipitation in the Congo Basin was examined using a version of the National Center for Atmospheric Research Community Earth System Model (CESM) with water tagging capability. Using regionally defined water tracers, or tags, the moisture contribution from different source regions to Congo Basin precipitation was investigated. We found that the Indian Ocean and evaporation from the Congo Basin were the dominant moisture sources and that the Atlantic Ocean was a comparatively small source of moisture. In both rainy seasons the southwestern Indian Ocean contributed about 21% of the moisture, while the recycling ratio for moisture from the Congo Basin was about 25%. Near the surface, a great deal of moisture is transported from the Atlantic into the Congo Basin, but much of this moisture is recirculated back over the Atlantic in the lower troposphere. Although the southwestern Indian Ocean is a major source of Indian Ocean moisture, it is not associated with the bulk of the variability in precipitation over the Congo Basin. In wet years, more of the precipitation in the Congo Basin is derived from Indian Ocean moisture, but the spatial distribution of the dominant sources is shifted, reflecting changes in the midtropospheric circulation over the Indian Ocean. During wet years there is increased transport of moisture from the equatorial and eastern Indian Ocean. Our results suggest that reliably capturing the linkages between the large-scale circulation patterns over the Indian Ocean and the local circulation over the Congo Basin is critical for future projections of Congo Basin precipitation.

  9. Development and Validation of The SMAP Enhanced Passive Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Chan, S.; Bindlish, R.; O'Neill, P.; Jackson, T.; Chaubell, J.; Piepmeier, J.; Dunbar, S.; Colliander, A.; Chen, F.; Entekhabi, D.; hide

    2017-01-01

    Since the beginning of its routine science operation in March 2015, the NASA SMAP observatory has been returning interference-mitigated brightness temperature observations at L-band (1.41 GHz) frequency from space. The resulting data enable frequent global mapping of soil moisture with a retrieval uncertainty below 0.040 cu m/cu m at a 36 km spatial scale. This paper describes the development and validation of an enhanced version of the current standard soil moisture product. Compared with the standard product that is posted on a 36 km grid, the new enhanced product is posted on a 9 km grid. Derived from the same time-ordered brightness temperature observations that feed the current standard passive soil moisture product, the enhanced passive soil moisture product leverages on the Backus-Gilbert optimal interpolation technique that more fully utilizes the additional information from the original radiometer observations to achieve global mapping of soil moisture with enhanced clarity. The resulting enhanced soil moisture product was assessed using long-term in situ soil moisture observations from core validation sites located in diverse biomes and was found to exhibit an average retrieval uncertainty below 0.040 cu m/cu m. As of December 2016, the enhanced soil moisture product has been made available to the public from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center.

  10. Hydrologic responses to restored wildfire regimes revealed by soil moisture-vegetation relationships

    NASA Astrophysics Data System (ADS)

    Boisramé, Gabrielle; Thompson, Sally; Stephens, Scott

    2018-02-01

    Many forested mountain watersheds worldwide evolved with frequent fire, which Twentieth Century fire suppression activities eliminated, resulting in unnaturally dense forests with high water demand. Restoration of pre-suppression forest composition and structure through a variety of management activities could improve forest resilience and water yields. This study explores the potential for "managed wildfire", whereby naturally ignited fires are allowed to burn, to alter the water balance. Interest in this type of managed wildfire is increasing, yet its long-term effects on water balance are uncertain. We use soil moisture as a spatially-distributed hydrologic indicator to assess the influence of vegetation, fire history and landscape position on water availability in the Illilouette Creek Basin in Yosemite National Park. Over 6000 manual surface soil moisture measurements were made over a period of three years, and supplemented with continuous soil moisture measurements over the top 1m of soil in three sites. Random forest and linear mixed effects models showed a dominant effect of vegetation type and history of vegetation change on measured soil moisture. Contemporary and historical vegetation maps were used to upscale the soil moisture observations to the basin and infer soil moisture under fire-suppressed conditions. Little change in basin-averaged soil moisture was inferred due to managed wildfire, but the results indicated that large localized increases in soil moisture had occurred, which could have important impacts on local ecology or downstream flows.

  11. Soil Texture Often Exerts a Stronger Influence Than Precipitation on Mesoscale Soil Moisture Patterns

    NASA Astrophysics Data System (ADS)

    Dong, Jingnuo; Ochsner, Tyson E.

    2018-03-01

    Soil moisture patterns are commonly thought to be dominated by land surface characteristics, such as soil texture, at small scales and by atmospheric processes, such as precipitation, at larger scales. However, a growing body of evidence challenges this conceptual model. We investigated the structural similarity and spatial correlations between mesoscale (˜1-100 km) soil moisture patterns and land surface and atmospheric factors along a 150 km transect using 4 km multisensor precipitation data and a cosmic-ray neutron rover, with a 400 m diameter footprint. The rover was used to measure soil moisture along the transect 18 times over 13 months. Spatial structures of soil moisture, soil texture (sand content), and antecedent precipitation index (API) were characterized using autocorrelation functions and fitted with exponential models. Relative importance of land surface characteristics and atmospheric processes were compared using correlation coefficients (r) between soil moisture and sand content or API. The correlation lengths of soil moisture, sand content, and API ranged from 12-32 km, 13-20 km, and 14-45 km, respectively. Soil moisture was more strongly correlated with sand content (r = -0.536 to -0.704) than with API for all but one date. Thus, land surface characteristics exhibit coherent spatial patterns at scales up to 20 km, and those patterns often exert a stronger influence than do precipitation patterns on mesoscale spatial patterns of soil moisture.

  12. A study of tornadic thunderstorm interactions with thermal boundaries

    NASA Technical Reports Server (NTRS)

    Maddox, R. A.; Hoxit, L. R.; Chappell, C. F.

    1980-01-01

    A study of tornadic thunderstorm interactions with thermal boundaries using a model of subcloud wind profiles is presented. Within a hot, moist, and conditionally unstable air mass, warm thermal advection and surface friction cause the winds to veer and increase with height, while within a cool, moist air mass cool thermal advection and friction combine to produce a wind profile that has maximum speeds near the surface and veers little with height. The spatial distribution of different wind profiles and moisture contents within the boundary layer may act together to maximize mesoscale moisture contents, convergence, and cyclonic vorticity within a narrow mixing zone along the thermal boundary.

  13. Space-time modeling of soil moisture

    NASA Astrophysics Data System (ADS)

    Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio

    2017-11-01

    A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.

  14. A Modified Kriging Method to Interpolate the Soil Moisture Measured by Wireless Sensor Network with the Aid of Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Liu, Q.; Li, X.; Niu, H.; Cai, E.

    2015-12-01

    In recent years, wireless sensor network (WSN) emerges to collect Earth observation data at relatively low cost and light labor load, while its observations are still point-data. To learn the spatial distribution of a land surface parameter, interpolating the point data is necessary. Taking soil moisture (SM) for example, its spatial distribution is critical information for agriculture management, hydrological and ecological researches. This study developed a method to interpolate the WSN-measured SM to acquire the spatial distribution in a 5km*5km study area, located in the middle reaches of HEIHE River, western China. As SM is related to many factors such as topology, soil type, vegetation and etc., even the WSN observation grid is not dense enough to reflect the SM distribution pattern. Our idea is to revise the traditional Kriging algorithm, introducing spectral variables, i.e., vegetation index (VI) and abledo, from satellite imagery as supplementary information to aid the interpolation. Thus, the new Extended-Kriging algorithm operates on the spatial & spectral combined space. To run the algorithm, first we need to estimate the SM variance function, which is also extended to the combined space. As the number of WSN samples in the study area is not enough to gather robust statistics, we have to assume that the SM variance function is invariant over time. So, the variance function is estimated from a SM map, derived from the airborne CASI/TASI images acquired in July 10, 2012, and then applied to interpolate WSN data in that season. Data analysis indicates that the new algorithm can provide more details to the variation of land SM. Then, the Leave-one-out cross-validation is adopted to estimate the interpolation accuracy. Although a reasonable accuracy can be achieved, the result is not yet satisfactory. Besides improving the algorithm, the uncertainties in WSN measurements may also need to be controlled in our further work.

  15. Factors controlling spatial distribution patterns of biocrusts in a heterogeneous and topographically complex semiarid area

    NASA Astrophysics Data System (ADS)

    Chamizo, Sonia; Rodríguez-Caballero, Emilio; Roncero, Beatriz; Raúl Román, José; Cantón, Yolanda

    2016-04-01

    Biocrusts are widespread soil components in drylands all over the world. They are known to play key roles in the functioning of these regions by fixing carbon and nitrogen, regulating hydrological processes, and preventing from water and wind erosion, thus reducing the loss of soil resources and increasing soil fertility. The rate and magnitude of services provided by biocrusts greatly depend on their composition and developmental stage. Late-successional biocrusts such as lichens and mosses have higher carbon and nitrogen fixation rates, and confer greater protection against erosion and the loss of sediments and nutrients than early-successional algae and cyanobacteria biocrusts. Knowledge of spatial distribution patterns of different biocrust types and the factors that control their distribution is important to assess ecosystem services provided by biocrusts at large spatial scales and to improve modelling of biogeochemical processes and water and carbon balance in drylands. Some of the factors that condition biocrust cover and composition are incoming solar radiation, terrain attributes, vegetation distribution patterns, microclimatic variables and soil properties such as soil pH, texture, soil organic matter, soil nutrients and gypsum and CaCO3 content. However, the factors that govern biocrust distribution may vary from one site to another depending on site characteristics. In this study, we examined the influence of abiotic attributes on the spatial distribution of biocrust types in a complex heterogeneous badland system (Tabernas, SE Spain) where biocrust cover up to 50% of the soil surface. From the analysis of relationships between terrain attributes and proportional abundance of biocrust types, it was found that topography exerted a main control on the spatial distribution of biocrust types in this area. SW-facing slopes were dominated by physical soil crusts and were practically devoid of vegetation and biocrusts. Biocrusts mainly occupied the pediments and NE-facing slopes. Cyanobacteria biocrusts were predominant in the pediments, probably because of their higher capacity to produce UV-protective pigments such as carotenoids and survive in zones of higher incident solar radiation. Lichen biocrusts showed preference for NE-facing slopes that, despite being less stable than the pediments, were exposed to less insolation and probably maintained moisture availability longer. Moreover, some differences were observed between lichen species. While Diploschistes diacapsis and Squamarina lentigera were widely distributed from gentle to steep NE-facing slopes, Lepraria sp. distribution was restricted to steep N-facing slopes, where shade predominance extended the periods of soil moisture availability.

  16. High-resolution moisture profiles from full-waveform probabilistic inversion of TDR signals

    NASA Astrophysics Data System (ADS)

    Laloy, Eric; Huisman, Johan Alexander; Jacques, Diederik

    2014-11-01

    This study presents an novel Bayesian inversion scheme for high-dimensional undetermined TDR waveform inversion. The methodology quantifies uncertainty in the moisture content distribution, using a Gaussian Markov random field (GMRF) prior as regularization operator. A spatial resolution of 1 cm along a 70-cm long TDR probe is considered for the inferred moisture content. Numerical testing shows that the proposed inversion approach works very well in case of a perfect model and Gaussian measurement errors. Real-world application results are generally satisfying. For a series of TDR measurements made during imbibition and evaporation from a laboratory soil column, the average root-mean-square error (RMSE) between maximum a posteriori (MAP) moisture distribution and reference TDR measurements is 0.04 cm3 cm-3. This RMSE value reduces to less than 0.02 cm3 cm-3 for a field application in a podzol soil. The observed model-data discrepancies are primarily due to model inadequacy, such as our simplified modeling of the bulk soil electrical conductivity profile. Among the important issues that should be addressed in future work are the explicit inference of the soil electrical conductivity profile along with the other sampled variables, the modeling of the temperature-dependence of the coaxial cable properties and the definition of an appropriate statistical model of the residual errors.

  17. Modeling Stand-Scale Patterns in Evapotranspiration and Soil Moisture in a Heterogeneous Plant Canopy: A Coupled Subsurface-Land Surface Approach

    NASA Astrophysics Data System (ADS)

    Miller, G. R.; Gou, S.; Ferguson, I. M.; Maxwell, R. M.

    2011-12-01

    Savanna ecosystems present a well-known modeling challenge; understory grasses and overstory woody vegetation combine to form an open, heterogeneous canopy that creates strong spatial differences in soil moisture and evapotranspiration rates. In this analysis, we used ParFlow.CLM to create a stand-scale model of the Tonzi Ranch oak savanna, based on extensive topography, vegetation, soil, and hydrogeology data collected at the site. Measurements included canopy distribution and ground surface elevation from airborne Lidar, depth to groundwater from deep piezometers, soil and rock hydraulic conductivity, and leaf area index. We then compared the results to the site's long-term data records of radiative flux partitioning, obtained using the eddy-covariance method, and soil moisture, collected via a distributed network of capacitance probes. In order to obtain good agreement between the measured and modeled values, we identified several necessary modifications to the current CLM parameterization. These changes included the addition of a "winter grass" type and the alteration of the root structure and water stress functions to accommodate uptake of groundwater by deep roots. Finally, we compared variograms of site parameters and response variables and performed a scaling analysis relating ET and soil moisture variance to sampling size.

  18. Simulation of semi-arid hydrological processes at different spatial resolutions using the AgroEcoSystem-Watershed (AgES-W) model

    NASA Astrophysics Data System (ADS)

    Green, T. R.; Erksine, R. H.; David, O.; Ascough, J. C., II; Kipka, H.; Lloyd, W. J.; McMaster, G. S.

    2015-12-01

    Water movement and storage within a watershed may be simulated at different spatial resolutions of land areas or hydrological response units (HRUs). Here, effects of HRU size on simulated soil water and surface runoff are tested using the AgroEcoSystem-Watershed (AgES-W) model with three different resolutions of HRUs. We studied a 56-ha agricultural watershed in northern Colorado, USA farmed primarily under a wheat-fallow rotation. The delineation algorithm was based upon topography (surface flow paths), land use (crop management strips and native grass), and mapped soil units (three types), which produced HRUs that follow the land use and soil boundaries. AgES-W model parameters that control surface and subsurface hydrology were calibrated using simulated daily soil moisture at different landscape positions and depths where soil moisture was measured hourly and averaged up to daily values. Parameter sets were both uniform and spatially variable with depth and across the watershed (5 different calibration approaches). Although forward simulations were computationally efficient (less than 1 minute each), each calibration required thousands of model runs. Execution of such large jobs was facilitated by using the Object Modeling System with the Cloud Services Innovation Platform to manage four virtual machines on a commercial web service configured with a total of 64 computational cores and 120 GB of memory. Results show how spatially distributed and averaged soil moisture and runoff at the outlet vary with different HRU delineations. The results will help guide HRU delineation, spatial resolution and parameter estimation methods for improved hydrological simulations in this and other semi-arid agricultural watersheds.

  19. Investigating local controls on soil moisture temporal stability using an inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Bogena, Heye; Qu, Wei; Huisman, Sander; Vereecken, Harry

    2013-04-01

    A better understanding of the temporal stability of soil moisture and its relation to local and nonlocal controls is a major challenge in modern hydrology. Both local controls, such as soil and vegetation properties, and non-local controls, such as topography and climate variability, affect soil moisture dynamics. Wireless sensor networks are becoming more readily available, which opens up opportunities to investigate spatial and temporal variability of soil moisture with unprecedented resolution. In this study, we employed the wireless sensor network SoilNet developed by the Forschungszentrum Jülich to investigate soil moisture variability of a grassland headwater catchment in Western Germany within the framework of the TERENO initiative. In particular, we investigated the effect of soil hydraulic parameters on the temporal stability of soil moisture. For this, the HYDRUS-1D code coupled with a global optimizer (DREAM) was used to inversely estimate Mualem-van Genuchten parameters from soil moisture observations at three depths under natural (transient) boundary conditions for 83 locations in the headwater catchment. On the basis of the optimized parameter sets, we then evaluated to which extent the variability in soil hydraulic conductivity, pore size distribution, air entry suction and soil depth between these 83 locations controlled the temporal stability of soil moisture, which was independently determined from the observed soil moisture data. It was found that the saturated hydraulic conductivity (Ks) was the most significant attribute to explain temporal stability of soil moisture as expressed by the mean relative difference (MRD).

  20. Downscaling soil moisture over regions that include multiple coarse-resolution grid cells

    USDA-ARS?s Scientific Manuscript database

    Many applications require soil moisture estimates over large spatial extents (30-300 km) and at fine-resolutions (10-30 m). Remote-sensing methods can provide soil moisture estimates over very large spatial extents (continental to global) at coarse resolutions (10-40 km), but their output must be d...

  1. Spatial pattern of Baccharis platypoda shrub as determined by sex and life stages

    NASA Astrophysics Data System (ADS)

    Fonseca, Darliana da Costa; de Oliveira, Marcio Leles Romarco; Pereira, Israel Marinho; Gonzaga, Anne Priscila Dias; de Moura, Cristiane Coelho; Machado, Evandro Luiz Mendonça

    2017-11-01

    Spatial patterns of dioecious species can be determined by their nutritional requirements and intraspecific competition, apart from being a response to environmental heterogeneity. The aim of the study was to evaluate the spatial pattern of populations of a dioecious shrub reporting to sex and reproductive stage patterns of individuals. Sampling was carried out in three areas located in the meridional portion of Serra do Espinhaço, where in individuals of the studied species were mapped. The spatial pattern was determined through O-ring analysis and Ripley's K-function and the distribution of individuals' frequencies was verified through x2 test. Populations in two areas showed an aggregate spatial pattern tending towards random or uniform according to the observed scale. Male and female adults presented an aggregate pattern at smaller scales, while random and uniform patterns were verified above 20 m for individuals of both sexes of the areas A2 and A3. Young individuals presented an aggregate pattern in all areas and spatial independence in relation to adult individuals, especially female plants. The interactions between individuals of both genders presented spatial independence with respect to spatial distribution. Baccharis platypoda showed characteristics in accordance with the spatial distribution of savannic and dioecious species, whereas the population was aggregated tending towards random at greater spatial scales. Young individuals showed an aggregated pattern at different scales compared to adults, without positive association between them. Female and male adult individuals presented similar characteristics, confirming that adult individuals at greater scales are randomly distributed despite their distinct preferences for environments with moisture variation.

  2. Evaluation of Crop-Water Consumption Simulation to Support Agricultural Water Resource Management using Satellite-based Water Cycle Observations

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Bolten, J. D.; Lakshmi, V.

    2016-12-01

    Water scarcity is one of the main factors limiting agricultural development. Numerical models integrated with remote sensing datasets are increasingly being used operationally as inputs for crop water balance models and agricultural forecasting due to increasing availability of high temporal and spatial resolution datasets. However, the model accuracy in simulating soil water content is affected by the accuracy of the soil hydraulic parameters used in the model, which are used in the governing equations. However, soil databases are known to have a high uncertainty across scales. Also, for agricultural sites, the in-situ measurements of soil moisture are currently limited to discrete measurements at specific locations, and such point-based measurements do not represent the spatial distribution at a larger scale accurately, as soil moisture is highly variable both spatially and temporally. The present study utilizes effective soil hydraulic parameters obtained using a 1-km downscaled microwave remote sensing soil moisture product based on the NASA Advanced Microwave Scanning Radiometer (AMSR-E) using the genetic algorithm inverse method within the Catchment Land Surface Model (CLSM). Secondly, to provide realistic irrigation estimates for agricultural sites, an irrigation scheme within the land surface model is triggered when the root-zone soil moisture deficit reaches the threshold, 50% with respect to the maximum available water capacity obtained from the effective soil hydraulic parameters. An additional important criterion utilized is the estimation of crop water consumption based on dynamic root growth and uptake in root zone layer. Model performance is evaluated using MODIS land surface temperature (LST) product. The soil moisture estimates for the root zone are also validated with the in situ field data, for three sites (2- irrigated and 1- rainfed) located at the University of Nebraska Agricultural Research and Development Center near Mead, NE and monitored by three AmeriFlux installations (Verma et al., 2005).

  3. Influence of Soil Heterogeneity on Mesoscale Land Surface Fluxes During Washita '92

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Jin, Hao

    1998-01-01

    The influence of soil heterogeneity on the partitioning of mesoscale land surface energy fluxes at diurnal time scales is investigated over a 10(exp 6) sq km domain centered on the Little Washita Basin, Oklahoma, for the period June 10 - 18, 1992. The sensitivity study is carried out using MM5/PLACE, the Penn State/NCAR MM5 model enhanced with the Parameterization for Land-Atmosphere-Cloud Exchange or PLACE. PLACE is a one-dimensional land surface model possessing detailed plant and soil water physics algorithms, multiple soil layers, and the capacity to model subgrid heterogeneity. A series of 12-hour simulations were conducted with identical atmospheric initialization and land surface characterization but with different initial soil moisture and texture. A comparison then was made of the simulated land surface energy flux fields, the partitioning of net radiation into latent and sensible heat, and the soil moisture fields. Results indicate that heterogeneity in both soil moisture and texture affects the spatial distribution and partitioning of mesoscale energy balance. Spatial averaging results in an overprediction of latent heat flux, and an underestimation of sensible heat flux. In addition to the primary focus on the partitioning of the land surface energy, the modeling effort provided an opportunity to examine the issue of initializing the soil moisture fields for coupled three-dimensional models. For the present case, the initial soil moisture and temperature were determined from off-line modeling using PLACE at each grid box, driven with a combination of observed and assimilated data fields.

  4. Spatial and Temporal Soil Moisture Behavior in a Headwater Watershed of the Mantiqueira Range, Minas Gerais, Brazil

    USDA-ARS?s Scientific Manuscript database

    The characterization of temporal and spatial variability of soil moisture is highly relevant in watersheds for understanding the many hydrological and erosion processes, to better model the processes and apply them to conservation planning. The goal of this study was to map soil moisture of the surf...

  5. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Z; Terry, N; Hubbard, S S

    2013-02-12

    In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy memory function and pilot point concepts, as well as efficient sampling approaches. It is critical to accurately estimate soil moisture content and variations in vadose zone studies. Many studies have illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated changes, however, challenges still exist in the inversion of GPR tomographic data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniquenessmore » and nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, MRE is first used to derive prior probability distribution functions (pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion. The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential Gaussian simulation (SGSim) algorithm that constructs a highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model. The likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a Gaussian kernel. Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford Site in Richland, WA. We demonstrate that the MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics more accurately.« less

  6. Challenges in Ecohydrological Monitoring at Soil-Vegetation Interfaces: Exploiting the Potential for Fibre Optic Technologies

    NASA Astrophysics Data System (ADS)

    Chalari, A.; Ciocca, F.; Krause, S.; Hannah, D. M.; Blaen, P.; Coleman, T. I.; Mondanos, M.

    2015-12-01

    The Birmingham Institute of Forestry Research (BIFoR) is using Free-Air Carbon Enrichment (FACE) experiments to quantify the long-term impact and resilience of forests into rising atmospheric CO2 concentrations. The FACE campaign critically relies on a successful monitoring and understanding of the large variety of ecohydrological processes occurring across many interfaces, from deep soil to above the tree canopy. At the land-atmosphere interface, soil moisture and temperature are key variables to determine the heat and water exchanges, crucial to the vegetation dynamics as well as to groundwater recharge. Traditional solutions for monitoring soil moisture and temperature such as remote techniques and point sensors show limitations in fast acquisition rates and spatial coverage, respectively. Hence, spatial patterns and temporal dynamics of heat and water fluxes at this interface can only be monitored to a certain degree, limiting deeper knowledge in dynamically evolving systems (e.g. in impact of growing vegetation). Fibre optics Distributed Temperature Sensors (DTS) can measure soil temperatures at high spatiotemporal resolutions and accuracy, along kilometers of optical cable buried in the soil. Heat pulse methods applied to electrical elements embedded in the optical cable can be used to obtain the soil moisture. In July 2015 a monitoring system based on DTS has been installed in a recently forested hillslope at BIFoR in order to quantify high-resolution spatial patterns and high-frequency temporal dynamics of soil heat fluxes and soil moisture conditions. Therefore, 1500m of optical cables have been carefully deployed in three overlapped loops at 0.05m, 0.25m and 0.4m from the soil surface and an electrical system to send heat pulses along the optical cable has been developed. This paper discussed both, installation and design details along with first results of the soil moisture and temperature monitoring carried out since July 2015. Moreover, interpretations of the collected data to investigate the impact on soil moisture dynamics of i) forest evolution (long timescale), (ii) seasonality and, (iii) high-frequency forcing, are discussed.

  7. Improvment of the Trapezoid Method Using Raw Landsat Image Digital Count Data for Soil Moisture Estimation in the Texas (usa) High Plains

    NASA Astrophysics Data System (ADS)

    Shafian, S.; Maas, S. J.

    2015-12-01

    Variations in soil moisture strongly affect surface energy balances, regional runoff, land erosion and vegetation productivity (i.e., potential crop yield). Hence, the estimation of soil moisture is very valuable in the social, economic, humanitarian (food security) and environmental segments of society. Extensive efforts to exploit the potential of remotely sensed observations to help quantify this complex variable are ongoing. This study aims at developing a new index, the Thermal Ground cover Moisture Index (TGMI), for estimating soil moisture content. This index is based on empirical parameterization of the relationship between raw image digital count (DC) data in the thermal infrared spectral band and ground cover (determined from raw image digital count data in the red and near-infrared spectral bands).The index uses satellite-derived information only, and the potential for its operational application is therefore great. This study was conducted in 18 commercial agricultural fields near Lubbock, TX (USA). Soil moisture was measured in these fields over two years and statistically compared to corresponding values of TGMI determined from Landsat image data. Results indicate statistically significant correlations between TGMI and field measurements of soil moisture (R2 = 0.73, RMSE = 0.05, MBE = 0.17 and AAE = 0.049), suggesting that soil moisture can be estimated using this index. It was further demonstrated that maps of TGMI developed from Landsat imagery could be constructed to show the relative spatial distribution of soil moisture across a region.

  8. Topographic variations of water supply and plant hydraulics in a mountainous forest

    NASA Astrophysics Data System (ADS)

    Tai, X.; Mackay, D. S.; Ewers, B. E.; Parsekian, A.; Sperry, J.; Beverly, D.; Speckman, H. N.; Ohara, N.; Fantello, N.; Kelleners, T.; Fullhart, A. T.

    2017-12-01

    How plants respond to variable local water supply in complex soil-topography systems is not clear although critical. This has been attributed to a lack of integrated models that can resolve relevant hydrological and physiological mechanisms and intensive field monitoring to inform/evaluate such a model. This research addresses these knowledge gaps by leveraging a newly developed distributed plant hydraulics model, ParFlow-TREES, and detailed geophysical and physiological measurements. Observations of sap flow, leaf water potentials, micrometeorology, and electrical resistivity tomography (ERT) are combined with the model to examine the key mechanisms affecting the spatial distribution of soil water and tree water stress. Modeling results showed higher soil water condition at bottom of the hillslope on average, corroborating the ERT-derived soil moisture observations. Hydraulic traits are critical to capture the sap flux dynamics of species with contrasting leaf water potential regulation strategies and heterogeneous soil drying at different hillslope positions. These results suggested the integrated effect of topography and plants on the evolvement of soil moisture distribution. Furthermore, sensitivity analysis demonstrated the importance of using distributed observations to validate/calibrate distributed models. Focusing on lumped variables or only one particular variable might give misleading conclusions. Co-located observations improve the characterization of plant traits and local living environment, providing key information needed as a first step in resolving the form and function of the critical zone from bedrock to atmosphere. We will discuss the broader implications and potential applications of this intensive data-model comparison at other sites and greater spatial extent.

  9. Linking boundary-layer circulations and surface processes during FIFE89. Part 1: Observational analysis

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Wai, Mickey M.-K.; Cooper, Harry J.; Rubes, Michael T.; Hsu, Ann

    1994-01-01

    Surface, aircraft, and satellite observations are analyzed for the 21-day 1989 intensive field campaign of the First ISLSCP Field Experiment (FIFE) to determine the effect of precipitation, vegetation, and soil moisture distributions on the thermal properties of the surface including the heat and moisture fluxes, and the corresponding response in the boundary-layer circulation. Mean and variance properties of the surface variables are first documented at various time and space scales. These calculations are designed to set the stage for Part 2, a modeling study that will focus on how time-space dependent rainfall distribution influences the intensity of the feedback between a vegetated surface and the atmospheric boundary layer. Further analysis shows strongly demarked vegetation and soil moisture gradients extending across the FIFE experimental site that were developed and maintained by the antecedent and ongoing spatial distribution of rainfall over the region. These gradients are shown to have a pronounced influence on the thermodynamic properties of the surface. Furthermore, perturbation surface wind analysis suggests for both short-term steady-state conditions and long-term averaged conditions that the gradient pattern maintained a diurnally oscillating local direct circulation with perturbation vertical velocities of the same order as developing cumulus clouds. Dynamical and scaling considerations suggest that the embedded perturbation circulation is driven by surface heating/cooling gradients and terrain ef fects rather than the manifestation of an inertial oscillation. The implication is that at even relatively small scales (less than 30 km), the differential evolution in vegetation density and soil moisture distribution over a relatively homogenous ecotone can give rise to preferential boundary-layer circulations capable of modifying local-scale horizontal and vertical motions.

  10. A New Approach in Downscaling Microwave Soil Moisture Product using Machine Learning

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Peyman; Yan, Hongxiang; Moradkhani, Hamid

    2016-04-01

    Understating the soil moisture pattern has significant impact on flood modeling, drought monitoring, and irrigation management. Although satellite retrievals can provide an unprecedented spatial and temporal resolution of soil moisture at a global-scale, their soil moisture products (with a spatial resolution of 25-50 km) are inadequate for regional study, where a resolution of 1-10 km is needed. In this study, a downscaling approach using Genetic Programming (GP), a specialized version of Genetic Algorithm (GA), is proposed to improve the spatial resolution of satellite soil moisture products. The GP approach was applied over a test watershed in United States using the coarse resolution satellite data (25 km) from Advanced Microwave Scanning Radiometer - EOS (AMSR-E) soil moisture products, the fine resolution data (1 km) from Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index, and ground based data including land surface temperature, vegetation and other potential physical variables. The results indicated the great potential of this approach to derive the fine resolution soil moisture information applicable for data assimilation and other regional studies.

  11. Spatial and temporal variations of soil moisture under Rosmarinus officinalis and Quercus coccifera in a burned soil

    NASA Astrophysics Data System (ADS)

    Gimeno-García, E.; Pascual-Aguilar, J. A.; Llovet, J.

    2009-04-01

    When studying surface runoff processes, measurement of the soil moisture content (SMC) at the surface could be used to identify sinks and sources areas of runoff. Surface soil moisture patterns variability have been studied in a burned Mediterranean semi-arid area. Since surface SMC and soil water repellency (SWR) are influenced by fire and vegetation (see previous abstract), and soil water dynamics and vegetation dynamics are functionally related, it could be expected to find some changes during the following months after fire when vegetation starts to recover. The identification of these changes is the main goal of this research. The study area is located at the municipality of Les Useres, 40 km from Castellón city (E Spain), where a wildfire occured in August 2007. We selected a burned SSE facing hillslope, located at 570 m a.s.l., with 12° slope angle, in which it was possible to identify the presence of two unique shrub species: Quercus coccifera L. and Rosmarinus officinalis L., which were distributed in a patchy mosaic. Twenty microsites with burned R. officinalis and eight microsites with burned Q. coccifera were selected in an area of 7 m wide by 14 m long. At the burned microsites, it was possible to distinguish three concentric zones (I, II and III) around the stumps showing differences on their soil surface appearance, which indicate a gradient of fire severity. Those differences were considered for field soil moisture measurements. Five measurements of SMC separated approximately 10 cm per zone at each microsite (n= 420) were carried out after different rainfall events. Volumetric soil moisture was measured by means of the moisture meter HH2 with ThetaProbe sensor type ML2x, 6 cm long. SMC was monitored on three occasions, always one day after the following rainfall events: (1) the first rainfall event after fire, when 11 mm were registered (Oct-07); (2) four months later than fire (Dec-07), after six consecutive raining days with a total rain volume of 172 mm; and (3) ten months after fire (Jun-08), when 50 mm were registered in the previous ten days. The spatial pattern of SMC was determined trough geostatistical analysis using GS+ software, calculating the semivariograms, to analyse the spatial correlation scale, interpolating data to estimate values of SMC at unsampled locations by means of kriging and finally, the results of kriging were displayed as different contour maps. Results showed that spatial pattern of SMC was highly variable, with important differences recorded within short distances. In fact, the range of spatial correlation (a0), which is the distance at that spatial correlation exists, varied between 0.5 to 1.4 m. A0 also varied according to the time from fire, with values of 0.5 m in the first rainfall after fire, 0.9 m four months later and 1.4 m ten months after fire occurs. This result suggests that the extent of the wettest areas increase as the vegetation recover. After the first rainfall, the SMC spatial pattern seems to be related to the soil microsite characteristics, mainly organic matter content, presence of hydrophobicity and soil clay content. Generally, the highest SMC (26-31%) appears at the burned bare soil areas. Four months later, as the same time as Q. coccifera resprouts, and in the R. officinalis microsites an important regrowth of Brachypodium resutum is observed, the spatial pattern of SMC changed according this plant cover distribution. This pattern is more clearly observed ten months after fire, when the highest SMC values were located at Q. coccifera and B. resutum areas (28-33%). At this time, no evidence of germination of R. officinalis (obligate seeder specie) was found. The lowest SMC (19-22%) appeared at the half lower part of the plot, where there was a central strip dominated by bare soil, with scarce presence of resprouter species. These results showed that at detailed working scale, the soil moisture pattern in this burned area was highly heterogeneous and the microsite characteristics (mainly soil properties and vegetation regrowth) seem to control the SMC spatial pattern. The interaction of soil-plant-water is more complex that the few environmental factors analysed here, and future research is needed to consider other site factors, such as microtopography, surface stoniness and outcrops, root density, between others. However, the obtained results reflect the capacity of vegetated patches to act as moisture holding areas ten months after fire occurs.

  12. The SWEX at the area of Eastern Poland: Comparison of soil moisture obtained from ground measurements and SMOS satellite data*

    NASA Astrophysics Data System (ADS)

    Usowicz, J. B.; Marczewski, W.; Usowicz, B.; Lukowski, M. I.; Lipiec, J.; Slominski, J.

    2012-04-01

    Soil moisture, together with soil and vegetation characteristics, plays an important role in exchange of water and energy between the land surface and the atmospheric boundary layer. Accurate knowledge of current and future spatial and temporal variation in soil moisture is not well known, nor easy to measure or predict. Knowledge of soil moisture in surface and root zone soil moisture is critical for achieving sustainable land and water management. The importance of SM is so high that this ECV is recommended by GCOS (Global Climate Observing System) to any attempts of evaluating of effects the climate change, and therefore it is one of the goals for observing the Earth by the ESA SMOS Mission (Soil Moisture and Ocean Salinity), globally. SMOS provides its observations by means of the interferometric radiometry method (1.4 GHz) from the orbit. In parallel, ten ground based stations are kept by IA PAN, in area of the Eastern Wall in Poland, in order to validate SMOS data and for other ground based agrophysical purposes. Soil moisture measurements obtained from ground and satellite measurements from SMOS were compared using Bland-Altman method of agreement, concordance correlation coefficient (CCC) and total deviation index (TDI). Observed similar changes in soil moisture, but the values obtained from satellite measurements were lower. Minor differences between the compared data are at higher moisture contents of soil and they grow with decreasing soil moisture. Soil moisture trends are maintained in the individual stations. Such distributions of soil moisture were mainly related to soil type. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO3275.

  13. Evaluation of Remote Sensing and Hydrological Model Based Soil Moisture Datasets in Drought Perspective

    NASA Astrophysics Data System (ADS)

    Hüsami Afşar, M.; Bulut, B.; Yilmaz, M. T.

    2017-12-01

    Soil moisture is one of the fundamental parameters of the environment that plays a major role in carbon, energy, and water cycles. Spatial distribution and temporal changes of soil moisture is one of the important components in climatic, ecological and natural hazards at global, regional and local levels scales. Therefore retrieval of soil moisture datasets has a great importance in these studies. Given soil moisture can be retrieved through different platforms (i.e., in-situ measurements, numerical modeling, and remote sensing) for the same location and time period, it is often desirable to evaluate these different datasets to assign the most accurate estimates for different purposes. During last decades, efforts have been given to provide evaluations about different soil moisture products based on various statistical analysis of the soil moisture time series (i.e., comparison of correlation, bias, and their error standard deviation). On the other hand, there is still need for the comparisons of the soil moisture products in drought analysis context. In this study, LPRM and NOAH Land Surface Model soil moisture datasets are investigated in drought analysis context using station-based watershed average datasets obtained over four USDA ARS watersheds as ground truth. Here, the drought analysis are performed using the standardized soil moisture datasets (i.e., zero mean and one standard deviation) while the droughts are defined as consecutive negative anomalies less than -1 for longer than 3 months duration. Accordingly, the drought characteristics (duration and severity) and false alarm and hit/miss ratios of LPRM and NOAH datasets are validated using station-based datasets as ground truth. Results showed that although the NOAH soil moisture products have better correlations, LPRM based soil moisture retrievals show better consistency in drought analysis. This project is supported by TUBITAK Project number 114Y676.

  14. Spatiotemporal Variability of Hillslope Soil Moisture Across Steep, Highly Dissected Topography

    NASA Astrophysics Data System (ADS)

    Jarecke, K. M.; Wondzell, S. M.; Bladon, K. D.

    2016-12-01

    Hillslope ecohydrological processes, including subsurface water flow and plant water uptake, are strongly influenced by soil moisture. However, the factors controlling spatial and temporal variability of soil moisture in steep, mountainous terrain are poorly understood. We asked: How do topography and soils interact to control the spatial and temporal variability of soil moisture in steep, Douglas-fir dominated hillslopes in the western Cascades? We will present a preliminary analysis of bimonthly soil moisture variability from July-November 2016 at 0-30 and 0-60 cm depth across spatially extensive convergent and divergent topographic positions in Watershed 1 of the H.J. Andrews Experimental Forest in central Oregon. Soil moisture monitoring locations were selected following a 5 m LIDAR analysis of topographic position, aspect, and slope. Topographic position index (TPI) was calculated as the difference in elevation to the mean elevation within a 30 m radius. Convergent (negative TPI values) and divergent (positive TPI values) monitoring locations were established along northwest to northeast-facing aspects and within 25-55 degree slopes. We hypothesized that topographic position (convergent vs. divergent), as well as soil physical properties (e.g., texture, bulk density), control variation in hillslope soil moisture at the sub-watershed scale. In addition, we expected the relative importance of hillslope topography to the spatial variability in soil moisture to differ seasonally. By comparing the spatiotemporal variability of hillslope soil moisture across topographic positions, our research provides a foundation for additional understanding of subsurface flow processes and plant-available soil-water in forests with steep, highly dissected terrain.

  15. Results from SMAP Validation Experiments 2015 and 2016

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Cosh, M. H.; Misra, S.; Crow, W.; Powers, J.; Wood, E. F.; Mohanty, B.; Judge, J.; Drewry, D.; McNairn, H.; Bullock, P.; Berg, A. A.; Magagi, R.; O'Neill, P. E.; Yueh, S. H.

    2017-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission was launched in January 2015. The objective of the mission is global mapping of soil moisture and freeze/thaw state. Well-characterized sites with calibrated in situ soil moisture measurements are used to determine the quality of the soil moisture data products; these sites are designated as core validation sites (CVS). To support the CVS-based validation, airborne field experiments are used to provide high-fidelity validation data and to improve the SMAP retrieval algorithms. The SMAP project and NASA coordinated airborne field experiments at three CVS locations in 2015 and 2016. SMAP Validation Experiment 2015 (SMAPVEX15) was conducted around the Walnut Gulch CVS in Arizona in August, 2015. SMAPVEX16 was conducted at the South Fork CVS in Iowa and Carman CVS in Manitoba, Canada from May to August 2016. The airborne PALS (Passive Active L-band Sensor) instrument mapped all experiment areas several times resulting in 30 coincidental measurements with SMAP. The experiments included intensive ground sampling regime consisting of manual sampling and augmentation of the CVS soil moisture measurements with temporary networks of soil moisture sensors. Analyses using the data from these experiments have produced various results regarding the SMAP validation and related science questions. The SMAPVEX15 data set has been used for calibration of a hyper-resolution model for soil moisture product validation; development of a multi-scale parameterization approach for surface roughness, and validation of disaggregation of SMAP soil moisture with optical thermal signal. The SMAPVEX16 data set has been already used for studying the spatial upscaling within a pixel with highly heterogeneous soil texture distribution; for understanding the process of radiative transfer at plot scale in relation to field scale and SMAP footprint scale over highly heterogeneous vegetation distribution; for testing a data fusion based soil moisture downscaling approach; and for investigating soil moisture impact on estimation of vegetation fluorescence from airborne measurements. The presentation will describe the collected data and showcase some of the most important results achieved so far.

  16. Global response of the growing season to soil moisture and topography

    NASA Astrophysics Data System (ADS)

    Guevara, M.; Arroyo, C.; Warner, D. L.; Equihua, J.; Lule, A. V.; Schwartz, A.; Taufer, M.; Vargas, R.

    2017-12-01

    Soil moisture has a direct influence in plant productivity. Plant productivity and its greenness can be inferred by remote sensing with higher spatial detail than soil moisture. The objective was to improve the coarse scale of currently available satellite soil moisture estimates and identify areas of strong coupling between the interannual variability soil moisture and the maximum greenness vegetation fraction (MGVF) at the global scale. We modeled, cross-validated and downscaled remotely sensed soil moisture using machine learning and digital terrain analysis across 23 years (1991-2013) of available data. Improving the accuracy (0.69-0.87 % of cross-validated explained variance) and the spatial detail (from 27 to 15km) of satellite soil moisture, we filled temporal gaps of information across vegetated areas where satellite soil moisture does not work properly. We found that 7.57% of global vegetated area shows strong correlation with our downscaled product (R2>0.5, Fig. 1). We found a dominant positive response of vegetation greenness to topography-based soil moisture across water limited environments, however, the tropics and temperate environments of higher latitudes showed a sparse negative response. We conclude that topography can be used to effectively improve the spatial detail of globally available remotely sensed soil moisture, which is convenient to generate unbiased comparisons with global vegetation dynamics, and better inform land and crop modeling efforts.

  17. Towards robust quantification and reduction of uncertainty in hydrologic predictions: Integration of particle Markov chain Monte Carlo and factorial polynomial chaos expansion

    NASA Astrophysics Data System (ADS)

    Wang, S.; Huang, G. H.; Baetz, B. W.; Ancell, B. C.

    2017-05-01

    The particle filtering techniques have been receiving increasing attention from the hydrologic community due to its ability to properly estimate model parameters and states of nonlinear and non-Gaussian systems. To facilitate a robust quantification of uncertainty in hydrologic predictions, it is necessary to explicitly examine the forward propagation and evolution of parameter uncertainties and their interactions that affect the predictive performance. This paper presents a unified probabilistic framework that merges the strengths of particle Markov chain Monte Carlo (PMCMC) and factorial polynomial chaos expansion (FPCE) algorithms to robustly quantify and reduce uncertainties in hydrologic predictions. A Gaussian anamorphosis technique is used to establish a seamless bridge between the data assimilation using the PMCMC and the uncertainty propagation using the FPCE through a straightforward transformation of posterior distributions of model parameters. The unified probabilistic framework is applied to the Xiangxi River watershed of the Three Gorges Reservoir (TGR) region in China to demonstrate its validity and applicability. Results reveal that the degree of spatial variability of soil moisture capacity is the most identifiable model parameter with the fastest convergence through the streamflow assimilation process. The potential interaction between the spatial variability in soil moisture conditions and the maximum soil moisture capacity has the most significant effect on the performance of streamflow predictions. In addition, parameter sensitivities and interactions vary in magnitude and direction over time due to temporal and spatial dynamics of hydrologic processes.

  18. Experimental study of the moisture distribution on the wetting front during drainage and imbibition in a 2D sand chamber

    NASA Astrophysics Data System (ADS)

    Wei, Yunbo; Chen, Kouping; Wu, Jichun; Zhu, Xiaobin

    2018-06-01

    In the present study, the moisture distribution on the wetting front during drainage and imbibition in a 2D sand chamber is studied thoroughly. Based on the high-resolution data measured by light transmission method, the moisture distribution is observed and then analyzed quantitatively. During drainage and imbibition, different moisture distributions are observed: (a) during drainage, moisture contents fluctuate in a larger range and fingers can be seen on the wetting front; (b) while during imbibition, moisture contents fluctuate in a smaller range and the wetting front is more regular. The Hurst coefficients are successful in capturing different characteristics of the moisture distribution between drainage and imbibition. During imbibition, the Hurst coefficients are around 0.2 on the wetting front; while during drainage, the Hurst coefficients are around 0.5. As the porosity changes from 0.336 to 0.383, the moisture distribution in the sand chamber does not display obvious change. While as the imbibition rate increases from 5 ml/min to 400 ml/min, the moisture distribution on the wetting front becomes more uniform.

  19. Observations of soil moisture and infiltrability in contour-aligned, banded chenopod shrubland at Fowlers Gap, arid western NSW, Australia.

    NASA Astrophysics Data System (ADS)

    Dunkerley, D.

    2009-04-01

    Speculation abounds concerning the drivers of spatial patterning in dryland vegetation, and many numerical analyses have been built with little use of field evidence for parameterisation or validation. In fact, studies of soil moisture distribution, the most commonly hypothesised driver of pattern formation, are uncommon. Here, soil infiltrability and soil moisture data are presented from a banded vegetation community in arid western NSW Australia. The site had received 40 mm of rain in one day a week prior to field measurement. This is an exceptional rain event for this region, and provided the opportunity to observe resulting distributions of soil moisture within various mosaics, including contour-aligned groves and intergroves in chenopod shrubland. Results taken at 2 m intervals across many cycles of the repeating banded pattern show that near-surface (6 cm) soil moisture is relatively constant, except in lower intergroves, which were drier. Patterns of soil infiltrability by cylinder infiltrometer follow the same pattern, with lowest values at the same locations as the soil moisture minima. Locally high soil infiltrabilities occur in both grove and intergrove, but low values are restricted to intergroves. These results suggest that any runoff-runon system operating at the site is driven largely from the intergroves, where high bulk density, hydrophobic biological soil crusts, and mantles of small stones with associated vesicular horizons, limit water entry. If this is so, it suggests that attention must be paid to intergrove processes, which may be more significant that plant facilitation within groves. Model developments will thus need to address the evolution of low infiltrability in intergroves in parallel with any high infiltrability within groves.

  20. Conceptualizing the self organization of cloud cells, cold pools and soil moisture

    NASA Astrophysics Data System (ADS)

    Henneberg, O.; Härter, J. O. M.

    2017-12-01

    Convective-type cloud is the cause of extreme, short-duration precipitation, challenging weather forecasting and climate modeling. Such extremes are ultimately tied to the uneven redistribution of water in the course of convective self organization and possibly the interaction between clouds [1]. Over land, moisture is organized through: cloud cells, cold pools, and the land surface. Each of these generally capture and release moisture at different rates, e.g. cold pools form quickly but dissipate slowly. Such distinct timescales have implications for the emergent dynamics.Incorporating such distinct time scales, we here present a conceptual model for the spatio-temporal self organization within the diurnal cycle of convection and describe the possible role of soil moisture memory in serving as a predisposition for extremes.We bolster our findings by high resolution, large eddy simulations: Sensible and latent heat fluxes, which are determined by the soil moisture content, can influence the stability of the atmosphere. The onset of initial precipitation is affected by such heat release, which in turn is modified by previous precipitation. Starting from static heat sources, we quantify how their spatial distribution affects the self organization and thus onset, duration and strength of precipitation events in an idealized model setup. Furthermore, an extended model setup with inhomogeneous, self organized distributions of latent and sensible heat fluxes is used to contrast how emergent soil moisture patterns impact on the selforganization structure of convection. Our findings may have implications for the role of land use changes regarding the development of extreme convective precipitation.Reference[1] Moseley et al. (2016) "Intensification of convective extremes driven by cloud-cloud interaction", Nature Geosc. , 9, 748-752

  1. Comparisons of Satellite Soil Moisture, an Energy Balance Model Driven by LST Data and Point Measurements

    NASA Astrophysics Data System (ADS)

    Laiolo, Paola; Gabellani, Simone; Rudari, Roberto; Boni, Giorgio; Puca, Silvia

    2013-04-01

    Soil moisture plays a fundamental role in the partitioning of mass and energy fluxes between land surface and atmosphere, thereby influencing climate and weather, and it is important in determining the rainfall-runoff response of catchments; moreover, in hydrological modelling and flood forecasting, a correct definition of moisture conditions is a key factor for accurate predictions. Different sources of information for the estimation of the soil moisture state are currently available: satellite data, point measurements and model predictions. All are affected by intrinsic uncertainty. Among different satellite sensors that can be used for soil moisture estimation three major groups can be distinguished: passive microwave sensors (e.g., SSMI), active sensors (e.g. SAR, Scatterometers), and optical sensors (e.g. Spectroradiometers). The last two families, mainly because of their temporal and spatial resolution seem the most suitable for hydrological applications In this work soil moisture point measurements from 10 sensors in the Italian territory are compared of with the satellite products both from the HSAF project SM-OBS-2, derived from the ASCAT scatterometer, and from ACHAB, an operative energy balance model that assimilate LST data derived from MSG and furnishes daily an evaporative fraction index related to soil moisture content for all the Italian region. Distributed comparison of the ACHAB and SM-OBS-2 on the whole Italian territory are performed too.

  2. Determination of the spatial variability of temperature and moisture near a tropical Pacific island with MTI satellite images

    NASA Astrophysics Data System (ADS)

    Kurzeja, Robert J.; O'Steen, Byron L.; Pendergast, Malcolm M.

    2002-01-01

    The Tropical Pacific Island of Nauru is a US DOE ARM observation site that monitors tropical climate and atmospheric radiation. This observation site is ideal for validating MTI images because of the extensive deployment of continuously operating instruments. MTI images are also useful in assessing the effect of the island on the ocean climate and on the ARM data. An MTI image has been used to determine the spatial distribution of water vapor and sea-surface temperature near the island. The results are compared with a three-dimensional numerical model simulation.

  3. New Physical Algorithms for Downscaling SMAP Soil Moisture

    NASA Astrophysics Data System (ADS)

    Sadeghi, M.; Ghafari, E.; Babaeian, E.; Davary, K.; Farid, A.; Jones, S. B.; Tuller, M.

    2017-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission provides new means for estimation of surface soil moisture at the global scale. However, for many hydrological and agricultural applications the spatial SMAP resolution is too low. To address this scale issue we fused SMAP data with MODIS observations to generate soil moisture maps at 1-km spatial resolution. In course of this study we have improved several existing empirical algorithms and introduced a new physical approach for downscaling SMAP data. The universal triangle/trapezoid model was applied to relate soil moisture to optical/thermal observations such as NDVI, land surface temperature and surface reflectance. These algorithms were evaluated with in situ data measured at 5-cm depth. Our results demonstrate that downscaling SMAP soil moisture data based on physical indicators of soil moisture derived from the MODIS satellite leads to higher accuracy than that achievable with empirical downscaling algorithms. Keywords: Soil moisture, microwave data, downscaling, MODIS, triangle/trapezoid model.

  4. L-band Soil Moisture Mapping using Small UnManned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Dai, E.

    2015-12-01

    Soil moisture is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, and impacts water resource management, agriculture, and flood runoff prediction. The launch of NASA's Soil Moisture Active/Passive (SMAP) mission in 2015 promises to provide global measurements of soil moisture and surface freeze/thaw state at fixed crossing times and spatial resolutions as low as 5 km for some products. However, there exists a need for measurements of soil moisture on smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping soil moisture on spatial scales as small as several meters (i.e., the height of the platform) .Compared with various other proposed methods of validation based on either situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed (~km scale) coverage at very high spatial resolution (~15 m) suitable for scaling scale studies, and at comparatively low operator cost. The LDCR on Tempest unit can supply the soil moisture mapping with different resolution which is of order the Tempest altitude.

  5. Assimilation of remote sensing observations into a continuous distributed hydrological model: impacts on the hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Laiolo, Paola; Gabellani, Simone; Campo, Lorenzo; Cenci, Luca; Silvestro, Francesco; Delogu, Fabio; Boni, Giorgio; Rudari, Roberto

    2015-04-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce in-situ data. This work investigates the impact of the assimilation of different remote sensing products on the hydrological cycle by using a continuous physically based distributed hydrological model. Three soil moisture products derived by ASCAT (Advanced SCATterometer) are used to update the model state variables. The satellite-derived products are assimilated into the hydrological model using different assimilation techniques: a simple nudging and the Ensemble Kalman Filter. Moreover two assimilation strategies are evaluated to assess the impact of assimilating the satellite products at model spatial resolution or at the satellite scale. The experiments are carried out for three Italian catchments on multi year period. The benefits on the model predictions of discharge, LST, evapotranspiration and soil moisture dynamics are tested and discussed.

  6. Mapping tropical hydroclimate changes with speleothem δ18O records

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, G.; Yuan, S.; Chiang, H. W.

    2017-12-01

    Speleothem δ18O records have been extensively used to study tropical hydroclimate change. However, less attention has been paid to the spatial distribution of speleothem δ18O values. Despite some caveats, we advocate an approach to reconstruct spatial and temporal transects ("maps") of speleothem δ18O, thus time series of precipitation δ18O distribution in a region. We present here two examples in using speleothem δ18O records to establish a spatial and temporal pattern of tropical hydroclimate changes. In the first case, we compare the speleothem δ18O records from caves located separately in the eastern and western Amazon lowlands. The decrease in speleothem δ18O values from the east to the west indicates an overall continental rainout effect of water isotopes when surface moisture is transported across the lowlands. A much large δ18O gradient however exists during the last glacial maximum than in the Holocene, suggesting that the Amazon was probably widely dry during the glacial, with much less recycling of water and reduced plant transpiration. And in the second case, we compare speleothem δ18O records obtained from caves along a SW-NE transect from coastal Myanmar to southwestern China. These records similarly show a larger gradient in speleothem δ18O along the transport path of Indian monsoon moisture during the glacial period than in the Holocene. Caution therefore is needed when interpreting the speleothem δ18O records from the monsoon downwind region.

  7. An eleven-year validation of a physically-based distributed dynamic ecohydorological model tRIBS+VEGGIE: Walnut Gulch Experimental Watershed

    NASA Astrophysics Data System (ADS)

    Sivandran, G.; Bisht, G.; Ivanov, V. Y.; Bras, R. L.

    2008-12-01

    A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was applied to the semiarid Walnut Gulch Experimental Watershed in Arizona. The physically-based, distributed nature of the coupled model allows for parameterization and simulation of watershed vegetation-water-energy dynamics on timescales varying from hourly to interannual. The model also allows for explicit spatial representation of processes that vary due to complex topography, such as lateral redistribution of moisture and partitioning of radiation with respect to aspect and slope. Model parameterization and forcing was conducted using readily available databases for topography, soil types, and land use cover as well as the data from network of meteorological stations located within the Walnut Gulch watershed. In order to test the performance of the model, three sets of simulations were conducted over an 11 year period from 1997 to 2007. Two simulations focus on heavily instrumented nested watersheds within the Walnut Gulch basin; (i) Kendall watershed, which is dominated by annual grasses; and (ii) Lucky Hills watershed, which is dominated by a mixture of deciduous and evergreen shrubs. The third set of simulations cover the entire Walnut Gulch Watershed. Model validation and performance were evaluated in relation to three broad categories; (i) energy balance components: the network of meteorological stations were used to validate the key energy fluxes; (ii) water balance components: the network of flumes, rain gauges and soil moisture stations installed within the watershed were utilized to validate the manner in which the model partitions moisture; and (iii) vegetation dynamics: remote sensing products from MODIS were used to validate spatial and temporal vegetation dynamics. Model results demonstrate satisfactory spatial and temporal agreement with observed data, giving confidence that key ecohydrological processes can be adequately represented for future applications of tRIBS+VEGGIE in regional modeling of land-atmosphere interactions.

  8. Beyond precipitation: physiographic gradients dictate the relative importance of environmental drivers on Savanna vegetation.

    PubMed

    Campo-Bescós, Miguel A; Muñoz-Carpena, Rafael; Kaplan, David A; Southworth, Jane; Zhu, Likai; Waylen, Peter R

    2013-01-01

    Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation<750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation>950 mm). We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for further development and application of spatially explicit time series modeling to studies at the intersection of ecology and remote sensing.

  9. Beyond Precipitation: Physiographic Gradients Dictate the Relative Importance of Environmental Drivers on Savanna Vegetation

    PubMed Central

    Campo-Bescós, Miguel A.; Muñoz-Carpena, Rafael; Kaplan, David A.; Southworth, Jane; Zhu, Likai; Waylen, Peter R.

    2013-01-01

    Background Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. Methodology/Principal Findings We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation<750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation>950 mm). Conclusions/Significance We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for further development and application of spatially explicit time series modeling to studies at the intersection of ecology and remote sensing. PMID:24023616

  10. Improving soil moisture simulation to support Agricultural Water Resource Management using Satellite-based water cycle observations

    NASA Astrophysics Data System (ADS)

    Gupta, Manika; Bolten, John; Lakshmi, Venkat

    2016-04-01

    Efficient and sustainable irrigation systems require optimization of operational parameters such as irrigation amount which are dependent on the soil hydraulic parameters that affect the model's accuracy in simulating soil water content. However, it is a scientific challenge to provide reliable estimates of soil hydraulic parameters and irrigation estimates, given the absence of continuously operating soil moisture and rain gauge network. For agricultural water resource management, the in-situ measurements of soil moisture are currently limited to discrete measurements at specific locations, and such point-based measurements do not represent the spatial distribution at a larger scale accurately, as soil moisture is highly variable both spatially and temporally (Wang and Qu 2009). In the current study, flood irrigation scheme within the land surface model is triggered when the root-zone soil moisture deficit reaches below a threshold of 25%, 50% and 75% with respect to the maximum available water capacity (difference between field capacity and wilting point) and applied until the top layer is saturated. An additional important criterion needed to activate the irrigation scheme is to ensure that it is irrigation season by assuming that the greenness vegetation fraction (GVF) of the pixel exceed 0.40 of the climatological annual range of GVF (Ozdogan et al. 2010). The main hypothesis used in this study is that near-surface remote sensing soil moisture data contain useful information that can describe the effective hydrological conditions of the basin such that when appropriately inverted, it would provide field capacity and wilting point soil moisture, which may be representative of that basin. Thus, genetic algorithm inverse method is employed to derive the effective parameters and derive the soil moisture deficit for the root zone by coupling of AMSR-E soil moisture with the physically based hydrological model. Model performance is evaluated using MODIS-evapotranspiration (ET) and MODIS land surface temperature (LST) products. The soil moisture estimates for the root zone are also validated with the in-situ field data, for three sites (2- irrigated and 1- rainfed) located at the University of Nebraska Agricultural Research and Development Center near Mead, NE and monitored by three AmeriFlux installations (Verma et al., 2005) by evaluating the root mean square error (RMSE) and Mean Bias error (MBE).

  11. Hydrologic Remote Sensing and Land Surface Data Assimilation.

    PubMed

    Moradkhani, Hamid

    2008-05-06

    Accurate, reliable and skillful forecasting of key environmental variables such as soil moisture and snow are of paramount importance due to their strong influence on many water resources applications including flood control, agricultural production and effective water resources management which collectively control the behavior of the climate system. Soil moisture is a key state variable in land surface-atmosphere interactions affecting surface energy fluxes, runoff and the radiation balance. Snow processes also have a large influence on land-atmosphere energy exchanges due to snow high albedo, low thermal conductivity and considerable spatial and temporal variability resulting in the dramatic change on surface and ground temperature. Measurement of these two variables is possible through variety of methods using ground-based and remote sensing procedures. Remote sensing, however, holds great promise for soil moisture and snow measurements which have considerable spatial and temporal variability. Merging these measurements with hydrologic model outputs in a systematic and effective way results in an improvement of land surface model prediction. Data Assimilation provides a mechanism to combine these two sources of estimation. Much success has been attained in recent years in using data from passive microwave sensors and assimilating them into the models. This paper provides an overview of the remote sensing measurement techniques for soil moisture and snow data and describes the advances in data assimilation techniques through the ensemble filtering, mainly Ensemble Kalman filter (EnKF) and Particle filter (PF), for improving the model prediction and reducing the uncertainties involved in prediction process. It is believed that PF provides a complete representation of the probability distribution of state variables of interests (according to sequential Bayes law) and could be a strong alternative to EnKF which is subject to some limitations including the linear updating rule and assumption of jointly normal distribution of errors in state variables and observation.

  12. Calibration of Cosmic Ray Neutron Probes in complex systems: open research issues

    NASA Astrophysics Data System (ADS)

    Piussi, Laura; Tomelleri, Enrico; Bertoldi, Giacomo; Zebisch, Marc; Niedrist, Georg; Tonon, Giustino

    2017-04-01

    Soil moisture is a key variable for environmental monitoring, hydrological and climate change research as it controls mass and energy fluxes in the soil-plant-atmosphere continuum. Actual soil moisture monitoring methods are capable of providing observations either at a very big spatial scale and timely spotty satellite observations or at a very small scale and timely continuous point measurements. In this framework, meso-scale timely continuous measurements appear of key relevance, thus, recently, Cosmic Ray Neutron Sensing (CRNS) is gaining more and more importance, because of its capacity to deliver long time-series of observations within a footprint of 500m of diameter. Even if during the last years a remarkable number of papers have been published, the calibration of Cosmic Ray Neutron Probes (CRPs) in heterogeneous ecosystems is still an open issue. The CRP is sensitive to all the Hydrogen species and their distribution within the footprint, thus in environments that can be assumed as homogeneous a good accordance between the CRNS data and observed soil moisture can be reached, but, where Hydrogen distributions are complex, different calibration campaigns lead to different results. In order to improve the efficiency of the method, a better understanding of the effects of combined spatial and temporal variability has to be reached. The aim of the actual work is to better understand the effects of multiple Hydrogen sources that vary in time and space and evaluate different approaches in calibration over complex terrain in a mountain area. We present different calibration approaches used for an alpine pasture, which is a research site of the LTER network in South-Tyrol (Italy). In the study site long-term soil moisture observations are present and are used for remote-sensing data validation. For this specific and highly heterogeneous site, the effects of heterogeneous land-cover and topography on CRP calibration are evaluated and some hypotheses on the major sources of uncertainty are formulated.

  13. Evaporative moisture loss from heterogeneous stone: Material-environment interactions during drying

    NASA Astrophysics Data System (ADS)

    McAllister, Daniel; Warke, Patricia; McCabe, Stephen; Gomez-Heras, M.

    2016-11-01

    The complexities of evaporation from structurally and mineralogically heterogeneous sandstone (Locharbriggs Sandstone) are investigated through a laboratory-based experiment in which a variety of environmental conditions are simulated. Data reported demonstrate the significance of material-environment interactions on the spatial and temporal variability of evaporative dynamics. Evaporation from porous stone is determined by the interplay between environmental, material and solution properties, which govern the rate and mode by which water is transmitted to, and subsequently removed from, an evaporating surface. Initially, when the stone is saturated, evaporation is characterized by high rates of moisture loss primarily controlled by external atmospheric conditions. However, as drying progresses, eventually the hydraulic continuity between the stone surface and subsurface is disrupted with recession of the drying front and a decrease in evaporation rates which become reliant on the ability of the material to transport water vapour to the block surface. Pore size distribution and connectivity, as well as other material properties, control the timing of each stage of evaporation and the nature of the transition. These experimental data highlight the complexity of evaporation, demonstrating that different regions of the same stone can exhibit varying moisture dynamics during drying and that the rate and nature of evaporative loss differs under different environmental conditions. The results identify the importance of material-environment interactions during drying and that stone micro-environmental conditions cannot be inferred from ambient data alone. These data have significance for understanding the spatial distribution of stone surface weathering-related morphologies in both the natural and built environments where mineralogical and/or structural heterogeneity creates differences in moisture flux and hence variable drying rates. Such differences may provide a clearer explanation for the initiation and subsequent development of complex weathering responses where areas of significant deterioration can be found alongside areas that exhibit little or no evidence of surface breakdown.

  14. Spectro-spatial relationship between UAV derived high resolution DEM and SWIR hyperspectral data: application to an ombrotrophic peatland

    NASA Astrophysics Data System (ADS)

    Arroyo-Mora, J. Pablo; Kalacska, Margaret; Lucanus, Oliver; Soffer, Raymond; Leblanc, George

    2017-10-01

    Peatlands cover 3% of the globe and are key ecosystems for climate regulation. To better understand the potential effects of climate change in peatlands, a major challenge is to determine the complex relationship between hydrology, microtopography, vegetation patterns, and gas exchange. Here we study the spectral and spatial relationship of microtopographic features (e.g. hollows and hummocks) and near-surface water through narrow-band spectral indices derived from hyperspectral imagery. We used a very high resolution digital elevation model (2.5 cm horizontal, 2.2 cm vertical resolution) derived from an UAV based Structure from Motion photogrammetry to map hollows and hummocks in the peatland area. We also created a 2 cm spatial resolution orthophoto mosaic to enhance the visual identification of these hollows and hummocks. Furthermore, we collected SWIR airborne hyperspectral (880-2450 nm) imagery at 1 m pixel resolution over four time periods, from April to June 2016 (phenological gradient: vegetation greening). Our results revealed an increase in the water indices values (NDWI1640 and NDWI2130) and a decrease in the moisture stress index (MSI) between April and June. In addition, for the same period the NDWI2130 shows a bimodal distribution indicating potential to quantitatively assess moisture differences between mosses and vascular plants. Our results, using the digital surface model to extract NDWI2130 values, showed significant differences between hollows and hummocks for each time period, with higher moisture values for hollows (i.e. moss dominated). However, for June, the water index for hummocks approximated the values found in hollows. Our study shows the advantages of using fine spatial and spectral scales to detect temporal trends in near surface water in a peatland.

  15. Soil moisture optimal sampling strategy for Sentinel 1 validation super-sites in Poland

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Lukowski, Mateusz; Marczewski, Wojciech; Lipiec, Jerzy; Usowicz, Jerzy; Rojek, Edyta; Slominska, Ewa; Slominski, Jan

    2014-05-01

    Soil moisture (SM) exhibits a high temporal and spatial variability that is dependent not only on the rainfall distribution, but also on the topography of the area, physical properties of soil and vegetation characteristics. Large variability does not allow on certain estimation of SM in the surface layer based on ground point measurements, especially in large spatial scales. Remote sensing measurements allow estimating the spatial distribution of SM in the surface layer on the Earth, better than point measurements, however they require validation. This study attempts to characterize the SM distribution by determining its spatial variability in relation to the number and location of ground point measurements. The strategy takes into account the gravimetric and TDR measurements with different sampling steps, abundance and distribution of measuring points on scales of arable field, wetland and commune (areas: 0.01, 1 and 140 km2 respectively), taking into account the different status of SM. Mean values of SM were lowly sensitive on changes in the number and arrangement of sampling, however parameters describing the dispersion responded in a more significant manner. Spatial analysis showed autocorrelations of the SM, which lengths depended on the number and the distribution of points within the adopted grids. Directional analysis revealed a differentiated anisotropy of SM for different grids and numbers of measuring points. It can therefore be concluded that both the number of samples, as well as their layout on the experimental area, were reflected in the parameters characterizing the SM distribution. This suggests the need of using at least two variants of sampling, differing in the number and positioning of the measurement points, wherein the number of them must be at least 20. This is due to the value of the standard error and range of spatial variability, which show little change with the increase in the number of samples above this figure. Gravimetric method gives a more varied distribution of SM than those derived from TDR measurements. It should be noted that reducing the number of samples in the measuring grid leads to flattening the distribution of SM from both methods and increasing the estimation error at the same time. Grid of sensors for permanent measurement points should include points that have similar distributions of SM in the vicinity. Results of the analysis including number, the maximum correlation ranges and the acceptable estimation error should be taken into account when choosing of the measurement points. Adoption or possible adjustment of the distribution of the measurement points should be verified by performing additional measuring campaigns during the dry and wet periods. Presented approach seems to be appropriate for creation of regional-scale test (super) sites, to validate products of satellites equipped with SAR (Synthetic Aperture Radar), operating in C-band, with spatial resolution suited to single field scale, as for example: ERS-1, ERS-2, Radarsat and Sentinel-1, which is going to be launched in next few months. The work was partially funded by the Government of Poland through an ESA Contract under the PECS ELBARA_PD project No. 4000107897/13/NL/KML.

  16. Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo Forest, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Lepore, C.; Arnone, E.; Noto, L. V.; Sivandran, G.; Bras, R. L.

    2013-01-01

    This paper presents the development of a rainfall-triggered landslide module within a physically based spatially distributed ecohydrologic model. The model, Triangulated Irregular Networks Real-time Integrated Basin Simulator and VEGetation Generator for Interactive Evolution (tRIBS-VEGGIE), is capable of a sophisticated description of many hydrological processes; in particular, the soil moisture dynamics is resolved at a temporal and spatial resolution required to examine the triggering mechanisms of rainfall-induced landslides. The validity of the tRIBS-VEGGIE model to a tropical environment is shown with an evaluation of its performance against direct observations made within the Luquillo Forest (the study area). The newly developed landslide module builds upon the previous version of the tRIBS landslide component. This new module utilizes a numerical solution to the Richards equation to better represent the time evolution of soil moisture transport through the soil column. Moreover, the new landslide module utilizes an extended formulation of the Factor of Safety (FS) to correctly quantify the role of matric suction in slope stability and to account for unsaturated conditions in the evaluation of FS. The new modeling framework couples the capabilities of the detailed hydrologic model to describe soil moisture dynamics with the Infinite Slope model creating a powerful tool for the assessment of landslide risk.

  17. An application of remotely derived climatological fields for risk assessment of vector-borne diseases : a spatial study of filariasis prevalence in the Nile Delta, Egypt.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crombie, M. K.; Gillies, R. R.; Arvidson, R. E.

    1999-12-01

    This paper applies a relatively straightforward remote sensing method that is commonly used to derive climatological variables. Measurements of surface reflectance and surface radiant temperature derived from Landsat Thematic Mapper data were used to create maps of fractional vegetation and surface soil moisture availability for the southern Nile delta in Egypt. These climatological variables were subsequently used to investigate the spatial distribution of the vector borne disease Bancroftian filariasis in the Nile delta where it is focally endemic and a growing problem. Averaged surface soil moisture values, computed for a 5-km border area around affected villages, were compared to filariasismore » prevalence rates. Prevalence rates were found to be negligible below a critical soil moisture value of 0.2, presumably because of a lack of appropriate breeding sites for the Culex Pipiens mosquito species. With appropriate modifications to account for local conditions and vector species, this approach should be useful as a means to map, predict, and control insect vector-borne diseases that critically depend on wet areas for propagation. This type of analysis may help governments and health agencies that are involved in filariasis control to better focus limited resources to identifiable high-risk areas.« less

  18. Understanding tree growth in response to moisture variability: Linking 32 years of satellite based soil moisture observations with tree rings

    NASA Astrophysics Data System (ADS)

    Albrecht, Franziska; Dorigo, Wouter; Gruber, Alexander; Wagner, Wolfgang; Kainz, Wolfgang

    2014-05-01

    Climate change induced drought variability impacts global forest ecosystems and forest carbon cycle dynamics. Physiological drought stress might even become an issue in regions generally not considered water-limited. The water balance at the soil surface is essential for forest growth. Soil moisture is a key driver linking precipitation and tree development. Tree ring based analyses are a potential approach to study the driving role of hydrological parameters for tree growth. However, at present two major research gaps are apparent: i) soil moisture records are hardly considered and ii) only a few studies are linking tree ring chronologies and satellite observations. Here we used tree ring chronologies obtained from the International Tree ring Data Bank (ITRDB) and remotely sensed soil moisture observations (ECV_SM) to analyze the moisture-tree growth relationship. The ECV_SM dataset, which is being distributed through ESA's Climate Change Initiative for soil moisture covers the period 1979 to 2010 at a spatial resolution of 0.25°. First analyses were performed for Mongolia, a country characterized by a continental arid climate. We extracted 13 tree ring chronologies suitable for our analysis from the ITRDB. Using monthly satellite based soil moisture observations we confirmed previous studies on the seasonality of soil moisture in Mongolia. Further, we investigated the relationship between tree growth (as reflected by tree ring width index) and remotely sensed soil moisture records by applying correlation analysis. In terms of correlation coefficient a strong response of tree growth to soil moisture conditions of current April to August was observed, confirming a strong linkage between tree growth and soil water storage. The highest correlation was found for current April (R=0.44), indicating that sufficient water supply is vital for trees at the beginning of the growing season. To verify these results, we related the chronologies to reanalysis precipitation and temperature datasets. Precipitation was important during both the current and previous growth season. Temperature showed the strongest correlation for previous (R=0.12) and current October (R=0.21). Hence, our results demonstrated that water supply is most likely limiting tree growth during the growing season, while temperature is determining its length. We are confident that long-term satellite based soil moisture observations can bridge spatial and temporal limitations that are inherent to in situ measurements, which are traditionally used for tree ring research. Our preliminary results are a foundation for further studies linking remotely sensed datasets and tree ring chronologies, an approach that has not been widely investigated among the scientific community.

  19. Estimating Long Term Surface Soil Moisture in the GCIP Area From Satellite Microwave Observations

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Vrije; VandeGriend, Adriaan A.

    2000-01-01

    Soil moisture is an important component of the water and energy balances of the Earth's surface. Furthermore, it has been identified as a parameter of significant potential for improving the accuracy of large-scale land surface-atmosphere interaction models. However, accurate estimates of surface soil moisture are often difficult to make, especially at large spatial scales. Soil moisture is a highly variable land surface parameter, and while point measurements are usually accurate, they are representative only of the immediate site which was sampled. Simple averaging of point values to obtain spatial means often leads to substantial errors. Since remotely sensed observations are already a spatially averaged or areally integrated value, they are ideally suited for measuring land surface parameters, and as such, are a logical input to regional or larger scale land process models. A nine-year database of surface soil moisture is being developed for the Central United States from satellite microwave observations. This region forms much of the GCIP study area, and contains most of the Mississippi, Rio Grande, and Red River drainages. Daytime and nighttime microwave brightness temperatures were observed at a frequency of 6.6 GHz, by the Scanning Multichannel Microwave Radiometer (SMMR), onboard the Nimbus 7 satellite. The life of the SMMR instrument spanned from Nov. 1978 to Aug. 1987. At 6.6 GHz, the instrument provided a spatial resolution of approximately 150 km, and an orbital frequency over any pixel-sized area of about 2 daytime and 2 nighttime passes per week. Ground measurements of surface soil moisture from various locations throughout the study area are used to calibrate the microwave observations. Because ground measurements are usually only single point values, and since the time of satellite coverage does not always coincide with the ground measurements, the soil moisture data were used to calibrate a regional water balance for the top 1, 5, and 10 cm surface layers in order to interpolate daily surface moisture values. Such a climate-based approach is often more appropriate for estimating large-area spatially averaged soil moisture because meteorological data are generally more spatially representative than isolated point measurements of soil moisture. Vegetation radiative transfer characteristics, such as the canopy transmissivity, were estimated from vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and the 37 GHz Microwave Polarization Difference Index (MPDI). Passive microwave remote sensing presents the greatest potential for providing regular spatially representative estimates of surface soil moisture at global scales. Real time estimates should improve weather and climate modelling efforts, while the development of historical data sets will provide necessary information for simulation and validation of long-term climate and global change studies.

  20. Analysis of ASAR Wide Swath Mode time series for the retrieval of soil moisture in mountainous areas

    NASA Astrophysics Data System (ADS)

    Greifeneder, Felix; Notarnicola, Claudia; Cuozzo, Giovanni; Spindler, Nadine; Bertoldi, Giacomo; Della Chiesa, Stefano; Niedrist, Georg; Stamenkovic, Jelena; Wagner, Wolgang

    2014-05-01

    Soil moisture is a key element in the global cycles of water, energy, and carbon. Knowledge on the spatial and temporal distribution of the soil moisture content (SMC) is therefore essential for a number of hydrological applications as well as earth sciences like meteorology or climatology (Heathman et al., 2003). In the last few years there has been an increasing interest towards the estimation of SMC at local scales using active microwave sensors (Barret et al., 2009). Compared to passive microwave sensors, SAR offers the potential to provide data at high spatial resolution (modern sensors can acquire images with up to approximately 1 m), which is particularly important in mountainous areas. So far, these areas have been considered only marginally in research and only pioneer studies can be found in the literature (Brocca et al., 2012; Bertoldi et al. 2013). In this work we analyzed the temporal and spatial dynamics of the surface SMC (0 - 5 cm depth) on the basis of ground data collected by fixed meteorological stations located in the emerging Long-Term Ecological Research (LTER) site Mazia Valley (Province of Bolzano, South Tyrol, Italy), SAR data from ENVISATs ASAR sensor, wide swath (WS) mode (acquired between 2005 and 2012), and SMC estimates from the hydrological model GEOtop (Endrizzi et al., 2013). The SMC retrieval process was based on the support vector regression (SVR) method introduced by Pasolli et al. (2011). The training of the algorithm was based on data acquired in 2010. Furthermore, the SAR backscatter and derived SMC have been compared with time-series derived from the distributed hydrological model GEOtop. The differences in terms of temporal and spatial dynamic have been analyzed. The main goal of this work is to evaluate the spatial and temporal patterns of SAR derived SMC at field scale and to correlate them with ground information. This is a preparatory study to establish a methodology for the retrieval of SMC with high spatial and temporal sampling and to improve retrieval accuracies by integrating temporal information from different sources of ancillary data and from SAR time-series. It was found that the dynamics of both, temporal and spatial SMC patterns obtained from various data sources (ASAR, GEOtop and meteorological stations), show a similar general temporal behaviour that indicates the robustness of the retrieval algorithm with ASAR WS. However, depending on land cover, soil type and local topographic conditions different spatial patters can be found between SMC estimations coming from ASAR and from the GEOtop model. Introducing information on the temporal behaviour of the SAR signal proves to be a promising method for increasing the confidence and accuracy in estimating SMC, complementing hydrological model predictions. Following steps were identified as critical for the retrieval process: the topographic correction and geocoding of SAR data and the calibration of the meteorological stations. Both factors can have significant influence on the quality of SMC estimation. The accuracy of meteorological input and soil parameterization were identified as the most crucial challenges for SMC derived from hydrological modeling. References Barrett, B. W., E. Dwyer, and P. Whelan. "Soil moisture retrieval from active spaceborne microwave observations: An evaluation of current techniques." Remote Sensing 1, no. 3 (2009): 210-242. Bertoldi, G., S. Della Chiesa, C. Notarnicola, L. Pasolli, G. Niedrist, and U. Tappeiner. "Estimation of soil moisture patterns in mountain grasslands by means of SAR RADARSAT 2 images and hydrological modeling." Journal of Hydrology (2014). under revision. Brocca, L., A. Tarpanelli, T. Moramarco, F. Melone, S. M. Ratto, M. Cauduro, S. Ferraris et al. "Soil Moisture Estimation in Alpine Catchments through Modeling and Satellite Observations." Vadose Zone Journal (2013). Endrizzi, S., S. Gruber, M. Dall'Amico, and R. Rigon. "GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects." Geoscientific Model Development Discussions 6, no. 4 (2013): 6279-6341. Heathman, G. C., P. J. Starks, L. R. Ahuja, and T. J. Jackson. "Assimilation of surface soil moisture to estimate profile soil water content." Journal of Hydrology 279, no. 1 (2003): 1-17. Pasolli, L., C. Notarnicola, L. Bruzzone, G. Bertoldi, S. Della Chiesa, V. Hell, G. Niedrist. "Estimation of Soil Moisture in an Alpine catchment with RADARSAT2 Images." Applied and Environmental Soil Science 2011 (2011)

  1. Topographic effects on denitrification in drained agricultural fields

    USDA-ARS?s Scientific Manuscript database

    Denitrification is affected by soil moisture, while soil moisture can be affected by topography. Therefore, denitrification can be spatially correlated to topographic gradients. Three prior converted fields on the Delmarva Peninsula were sampled spatially for denitrification enzyme activity. The up...

  2. Food quality assessment by NIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Whitworth, Martin B.; Millar, Samuel J.; Chau, Astor

    2010-04-01

    Near infrared reflectance (NIR) spectroscopy is well established in the food industry for rapid compositional analysis of bulk samples. NIR hyperspectral imaging provides new opportunities to measure the spatial distribution of components such as moisture and fat, and to identify and measure specific regions of composite samples. An NIR hyperspectral imaging system has been constructed for food research applications, incorporating a SWIR camera with a cooled 14 bit HgCdTe detector and N25E spectrograph (Specim Ltd, Finland). Samples are scanned in a pushbroom mode using a motorised stage. The system has a spectral resolution of 256 pixels covering a range of 970-2500 nm and a spatial resolution of 320 pixels covering a swathe adjustable from 8 to 300 mm. Images are acquired at a rate of up to 100 lines s-1, enabling samples to be scanned within a few seconds. Data are captured using SpectralCube software (Specim) and analysed using ENVI and IDL (ITT Visual Information Solutions). Several food applications are presented. The strength of individual absorbance bands enables the distribution of particular components to be assessed. Examples are shown for detection of added gluten in wheat flour and to study the effect of processing conditions on fat distribution in chips/French fries. More detailed quantitative calibrations have been developed to study evolution of the moisture distribution in baguettes during storage at different humidities, to assess freshness of fish using measurements of whole cod and fillets, and for prediction of beef quality by identification and separate measurement of lean and fat regions.

  3. Evaluation of Crops Moisture Provision by Space Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Ilienko, Tetiana

    2016-08-01

    The article is focused on theoretical and experimental rationale for the use of space data to determine the moisture provision of agricultural landscapes and agricultural plants. The improvement of space remote sensing methods to evaluate plant moisture availability is the aim of this research.It was proved the possibility of replacement of satellite imagery of high spatial resolution on medium spatial resolution which are freely available to determine crop moisture content at the local level. The mathematical models to determine the moisture content of winter wheat plants by spectral indices were developed based on the results of experimental field research and satellite (Landsat, MODIS/Terra, RapidEye, SICH-2) data. The maps of the moisture content in winter wheat plants in test sites by obtained models were constructed using modern GIS technology.

  4. Validating modelled variable surface saturation in the riparian zone with thermal infrared images

    NASA Astrophysics Data System (ADS)

    Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa

    2015-04-01

    Variable contributing areas and hydrological connectivity have become prominent new concepts for hydrologic process understanding in recent years. The dynamic connectivity within the hillslope-riparian-stream (HRS) system is known to have a first order control on discharge generation and especially the riparian zone functions as runoff buffering or producing zone. However, despite their importance, the highly dynamic processes of contraction and extension of saturation within the riparian zone and its impact on runoff generation still remain not fully understood. In this study, we analysed the potential of a distributed, fully coupled and physically based model (HydroGeoSphere) to represent the spatial and temporal water flux dynamics of a forested headwater HRS system (6 ha) in western Luxembourg. The model was set up and parameterised under consideration of experimentally-derived knowledge of catchment structure and was run for a period of four years (October 2010 to August 2014). For model evaluation, we especially focused on the temporally varying spatial patterns of surface saturation. We used ground-based thermal infrared (TIR) imagery to map surface saturation with a high spatial and temporal resolution and collected 20 panoramic snapshots of the riparian zone (ca. 10 by 20 m) under different hydrologic conditions. These TIR panoramas were used in addition to several classical discharge and soil moisture time series for a spatially-distributed model validation. In a manual calibration process we optimised model parameters (e.g. porosity, saturated hydraulic conductivity, evaporation depth) to achieve a better agreement between observed and modelled discharges and soil moistures. The subsequent validation of surface saturation patterns by a visual comparison of processed TIR panoramas and corresponding model output panoramas revealed an overall good accordance for all but one region that was always too dry in the model. However, quantitative comparisons of modelled and observed saturated pixel percentages and of their modelled and measured relationships to concurrent discharges revealed remarkable similarities. During the calibration process we observed that surface saturation patterns were mostly affected by changing the soil properties of the topsoil in the riparian zone, but that the discharge behaviour did not change substantially at the same time. This effect of various spatial patterns occurring concomitant to a nearly unchanged integrated response demonstrates the importance of spatially distributed validation data. Our study clearly benefited from using different kinds of data - spatially integrated and distributed, temporally continuous and discrete - for the model evaluation procedure.

  5. Error Estimation in an Optimal Interpolation Scheme for High Spatial and Temporal Resolution SST Analyses

    NASA Technical Reports Server (NTRS)

    Rigney, Matt; Jedlovec, Gary; LaFontaine, Frank; Shafer, Jaclyn

    2010-01-01

    Heat and moisture exchange between ocean surface and atmosphere plays an integral role in short-term, regional NWP. Current SST products lack both spatial and temporal resolution to accurately capture small-scale features that affect heat and moisture flux. NASA satellite is used to produce high spatial and temporal resolution SST analysis using an OI technique.

  6. Spatial and temporal variability of guinea grass (Megathyrsus maximus) fuel loads and moisture on Oahu, Hawaii

    Treesearch

    Lisa M. Ellsworth; Creighton M. Litton; Andrew D. Taylor; J. Boone Kauffman

    2013-01-01

    Frequent wildfires in tropical landscapes dominated by non-native invasive grasses threaten surrounding ecosystems and developed areas. To better manage fire, accurate estimates of the spatial and temporal variability in fuels are urgently needed. We quantified the spatial variability in live and dead fine fuel loads and moistures at four guinea grass (...

  7. A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data

    NASA Astrophysics Data System (ADS)

    Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Gao, Mao-Fang; Huo, Hong-Yuan

    2017-09-01

    Soil moisture has long been recognized as one of the essential variables in the water cycle and energy budget between Earth's surface and atmosphere. The present study develops a practical approach for deriving all-weather soil moisture using combined satellite images and gridded meteorological products. In this approach, soil moisture over the Moderate Resolution Imaging Spectroradiometer (MODIS) clear-sky pixels are estimated from the Vegetation Index/Temperature (VIT) trapezoid scheme in which theoretical dry and wet edges were determined pixel to pixel by China Meteorological Administration Land Data Assimilation System (CLDAS) meteorological products, including air temperature, solar radiation, wind speed and specific humidity. For cloudy pixels, soil moisture values are derived by the calculation of surface and aerodynamic resistances from wind speed. The approach is capable of filling the soil moisture gaps over remaining cloudy pixels by traditional optical/thermal infrared methods, allowing for a spatially complete soil moisture map over large areas. Evaluation over agricultural fields indicates that the proposed approach can produce an overall generally reasonable distribution of all-weather soil moisture. An acceptable accuracy between the estimated all-weather soil moisture and in-situ measurements at different depths could be found with an Root Mean Square Error (RMSE) varying from 0.067 m3/m3 to 0.079 m3/m3 and a slight bias ranging from 0.004 m3/m3 to -0.011 m3/m3. The proposed approach reveals significant potential to derive all-weather soil moisture using currently available satellite images and meteorological products at a regional or global scale in future developments.

  8. A method for coupling a parameterization of the planetary boundary layer with a hydrologic model

    NASA Technical Reports Server (NTRS)

    Lin, J. D.; Sun, Shu Fen

    1986-01-01

    Deardorff's parameterization of the planetary boundary layer is adapted to drive a hydrologic model. The method converts the atmospheric conditions measured at the anemometer height at one site to the mean values in the planetary boundary layer; it then uses the planetary boundary layer parameterization and the hydrologic variables to calculate the fluxes of momentum, heat and moisture at the atmosphere-land interface for a different site. A simplified hydrologic model is used for a simulation study of soil moisture and ground temperature on three different land surface covers. The results indicate that this method can be used to drive a spatially distributed hydrologic model by using observed data available at a meteorological station located on or nearby the site.

  9. A reference data set of hillslope rainfall-runoff response, Panola Mountain Research Watershed, United States

    USGS Publications Warehouse

    Tromp-van, Meerveld; James, A.L.; McDonnell, Jeffery J.; Peters, N.E.

    2008-01-01

    Although many hillslope hydrologic investigations have been conducted in different climate, topographic, and geologic settings, subsurface stormflow remains a poorly characterized runoff process. Few, if any, of the existing data sets from these hillslope investigations are available for use by the scientific community for model development and validation or conceptualization of subsurface stormflow. We present a high-resolution spatial and temporal rainfall-runoff data set generated from the Panola Mountain Research Watershed trenched experimental hillslope. The data set includes surface and subsurface (bedrock surface) topographic information and time series of lateral subsurface flow at the trench, rainfall, and subsurface moisture content (distributed soil moisture content and groundwater levels) from January to June 2002. Copyright 2008 by the American Geophysical Union.

  10. Disaggregation Of Passive Microwave Soil Moisture For Use In Watershed Hydrology Applications

    NASA Astrophysics Data System (ADS)

    Fang, Bin

    In recent years the passive microwave remote sensing has been providing soil moisture products using instruments on board satellite/airborne platforms. Spatial resolution has been restricted by the diameter of antenna which is inversely proportional to resolution. As a result, typical products have a spatial resolution of tens of kilometers, which is not compatible for some hydrological research applications. For this reason, the dissertation explores three disaggregation algorithms that estimate L-band passive microwave soil moisture at the subpixel level by using high spatial resolution remote sensing products from other optical and radar instruments were proposed and implemented in this investigation. The first technique utilized a thermal inertia theory to establish a relationship between daily temperature change and average soil moisture modulated by the vegetation condition was developed by using NLDAS, AVHRR, SPOT and MODIS data were applied to disaggregate the 25 km AMSR-E soil moisture to 1 km in Oklahoma. The second algorithm was built on semi empirical physical models (NP89 and LP92) derived from numerical experiments between soil evaporation efficiency and soil moisture over the surface skin sensing depth (a few millimeters) by using simulated soil temperature derived from MODIS and NLDAS as well as AMSR-E soil moisture at 25 km to disaggregate the coarse resolution soil moisture to 1 km in Oklahoma. The third algorithm modeled the relationship between the change in co-polarized radar backscatter and the remotely sensed microwave change in soil moisture retrievals and assumed that change in soil moisture was a function of only the canopy opacity. The change detection algorithm was implemented using aircraft based the remote sensing data from PALS and UAVSAR that were collected in SMPAVEX12 in southern Manitoba, Canada. The PALS L-band h-polarization radiometer soil moisture retrievals were disaggregated by combining them with the PALS and UAVSAR L-band hh-polarization radar spatial resolutions of 1500 m and 5 m/800 m, respectively. All three algorithms were validated using ground measurements from network in situ stations or handheld hydra probes. The validation results demonstrate the practicability on coarse resolution passive microwave soil moisture products.

  11. Effects of evapotranspiration heterogeneity on catchment water balance in the Southern Sierra Nevada of California

    NASA Astrophysics Data System (ADS)

    Kerkez, B.; Kelly, A. E.; Lucas, R. G.; Son, K.; Glaser, S. D.; Bales, R. C.

    2011-12-01

    Heterogeneity of Evapotranspiration (ET) is the result of poorly understood interactions between climate, topography, vegetation and soil. Accurate predictions of ET, and thus improved water balance estimates, hinge directly upon an improved understanding of the processes that drive ET across a wide spatio-temporal range. Recent warming trends in the Western US are shifting precipitation toward more rain-dominated patterns, significantly increasing vegetation water stress in historically snow-dominated regimes due to reduced soil moisture and increased vapor deficit during warm summer months. We investigate dominant controls that govern ET variability in a highly instrumented 1km2 mountain catchment at the Southern Sierra Critical Zone Observatory, co-located in the Kings River Experimental Watershed. Various ET estimates are derived from a number of measurement approaches: an eddy flux covariance tower, ET chambers, stream flumes, groundwater monitoring wells, matric potential sensors, as well as data from a distributed wireless sensor network with over 300 sensors. Combined with precipitation data, and high-density distributed soil moisture and snowdepth readings, the ET estimates are utilized to reconstruct the overall catchment water balance. We also apply the Regional Hydro-Ecologic Simulation System (RHESSys), a physically based, spatially distributed hydrologic model, to estimate water balance components. The model predictions are compared with the water budget calculated from field data, and used to identify the key variables controlling spatial and temporal patterns of ET at multiple scales. Initial results show that ET estimates are scale-, and vegetation-dependent, with significant ET variability between vegetation types and physiographic parameters such as elevation, slope, and aspect. In mixed conifer forests terrain, ET is more dependent on soil moisture, while in the meadows, where the soil is generally saturated for the duration of the growing season, ET is driven by micro-meteorological parameters and meadow vegetation phenology.

  12. Downscaled soil moisture from SMAP evaluated using high density observations

    USDA-ARS?s Scientific Manuscript database

    Recently, a soil moisture downscaling algorithm based on a regression relationship between daily temperature changes and daily average soil moisture was developed to produce an enhanced spatial resolution on soil moisture product for the Advanced Microwave Scanning Radiometer–EOS (AMSR-E) satellite ...

  13. Schistosomiasis Breeding Environment Situation Analysis in Dongting Lake Area

    NASA Astrophysics Data System (ADS)

    Li, Chuanrong; Jia, Yuanyuan; Ma, Lingling; Liu, Zhaoyan; Qian, Yonggang

    2013-01-01

    Monitoring environmental characteristics, such as vegetation, soil moisture et al., of Oncomelania hupensis (O. hupensis)’ spatial/temporal distribution is of vital importance to the schistosomiasis prevention and control. In this study, the relationship between environmental factors derived from remotely sensed data and the density of O. hupensis was analyzed by a multiple linear regression model. Secondly, spatial analysis of the regression residual was investigated by the semi-variogram method. Thirdly, spatial analysis of the regression residual and the multiple linear regression model were both employed to estimate the spatial variation of O. hupensis density. Finally, the approach was used to monitor and predict the spatial and temporal variations of oncomelania of Dongting Lake region, China. And the areas of potential O. hupensis habitats were predicted and the influence of Three Gorges Dam (TGB)project on the density of O. hupensis was analyzed.

  14. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying

    PubMed Central

    Puértolas, Jaime; Conesa, María R.; Ballester, Carlos; Dodd, Ian C.

    2015-01-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0–10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm3 cm–3 for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  15. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    PubMed

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. A review of spatial downscaling of satellite remotely sensed soil moisture

    NASA Astrophysics Data System (ADS)

    Peng, Jian; Loew, Alexander; Merlin, Olivier; Verhoest, Niko E. C.

    2017-06-01

    Satellite remote sensing technology has been widely used to estimate surface soil moisture. Numerous efforts have been devoted to develop global soil moisture products. However, these global soil moisture products, normally retrieved from microwave remote sensing data, are typically not suitable for regional hydrological and agricultural applications such as irrigation management and flood predictions, due to their coarse spatial resolution. Therefore, various downscaling methods have been proposed to improve the coarse resolution soil moisture products. The purpose of this paper is to review existing methods for downscaling satellite remotely sensed soil moisture. These methods are assessed and compared in terms of their advantages and limitations. This review also provides the accuracy level of these methods based on published validation studies. In the final part, problems and future trends associated with these methods are analyzed.

  17. An integrated GIS application system for soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Wang, Di; Shen, Runping; Huang, Xiaolong; Shi, Chunxiang

    2014-11-01

    The gaps in knowledge and existing challenges in precisely describing the land surface process make it critical to represent the massive soil moisture data visually and mine the data for further research.This article introduces a comprehensive soil moisture assimilation data analysis system, which is instructed by tools of C#, IDL, ArcSDE, Visual Studio 2008 and SQL Server 2005. The system provides integrated service, management of efficient graphics visualization and analysis of land surface data assimilation. The system is not only able to improve the efficiency of data assimilation management, but also comprehensively integrate the data processing and analysis tools into GIS development environment. So analyzing the soil moisture assimilation data and accomplishing GIS spatial analysis can be realized in the same system. This system provides basic GIS map functions, massive data process and soil moisture products analysis etc. Besides,it takes full advantage of a spatial data engine called ArcSDE to effeciently manage, retrieve and store all kinds of data. In the system, characteristics of temporal and spatial pattern of soil moiture will be plotted. By analyzing the soil moisture impact factors, it is possible to acquire the correlation coefficients between soil moisture value and its every single impact factor. Daily and monthly comparative analysis of soil moisture products among observations, simulation results and assimilations can be made in this system to display the different trends of these products. Furthermore, soil moisture map production function is realized for business application.

  18. Influence of spatial variability of hydraulic characteristics of soils on surface parameters obtained from remote sensing data in infrared and microwaves

    NASA Technical Reports Server (NTRS)

    Brunet, Y.; Vauclin, M.

    1985-01-01

    The correct interpretation of thermal and hydraulic soil parameters infrared from remotely sensed data (thermal infrared, microwaves) implies a good understanding of the causes of their temporal and spatial variability. Given this necessity, the sensitivity of the surface variables (temperature, moisture) to the spatial variability of hydraulic soil properties is tested with a numerical model of heat and mass transfer between bare soil and atmosphere. The spatial variability of hydraulic soil properties is taken into account in terms of the scaling factor. For a given soil, the knowledge of its frequency distribution allows a stochastic use of the model. The results are treated statistically, and the part of the variability of soil surface parameters due to that of soil hydraulic properties is evaluated quantitatively.

  19. Landscape complexity and soil moisture variation in south Georgia, USA, for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Giraldo, Mario A.; Bosch, David; Madden, Marguerite; Usery, Lynn; Kvien, Craig

    2008-08-01

    SummaryThis research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network.

  20. Landscape complexity and soil moisture variation in south Georgia, USA, for remote sensing applications

    USGS Publications Warehouse

    Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Kvien, Craig

    2008-01-01

    This research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network. ?? 2008 Elsevier B.V.

  1. AN ACTIVE-PASSIVE COMBINED ALGORITHM FOR HIGH SPATIAL RESOLUTION RETRIEVAL OF SOIL MOISTURE FROM SATELLITE SENSORS (Invited)

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Mladenova, I. E.; Narayan, U.

    2009-12-01

    Soil moisture is known to be an essential factor in controlling the partitioning of rainfall into surface runoff and infiltration and solar energy into latent and sensible heat fluxes. Remote sensing has long proven its capability to obtain soil moisture in near real-time. However, at the present time we have the Advanced Scanning Microwave Radiometer (AMSR-E) on board NASA’s AQUA platform is the only satellite sensor that supplies a soil moisture product. AMSR-E coarse spatial resolution (~ 50 km at 6.9 GHz) strongly limits its applicability for small scale studies. A very promising technique for spatial disaggregation by combining radar and radiometer observations has been demonstrated by the authors using a methodology is based on the assumption that any change in measured brightness temperature and backscatter from one to the next time step is due primarily to change in soil wetness. The approach uses radiometric estimates of soil moisture at a lower resolution to compute the sensitivity of radar to soil moisture at the lower resolution. This estimate of sensitivity is then disaggregated using vegetation water content, vegetation type and soil texture information, which are the variables on which determine the radar sensitivity to soil moisture and are generally available at a scale of radar observation. This change detection algorithm is applied to several locations. We have used aircraft observed active and passive data over Walnut Creek watershed in Central Iowa in 2002; the Little Washita Watershed in Oklahoma in 2003 and the Murrumbidgee Catchment in southeastern Australia for 2006. All of these locations have different soils and land cover conditions which leads to a rigorous test of the disaggregation algorithm. Furthermore, we compare the derived high spatial resolution soil moisture to in-situ sampling and ground observation networks

  2. Results from Evaluations of Gridded CrIS/ATMS Visualization for Operational Forecasting

    NASA Astrophysics Data System (ADS)

    Stevens, E.; Zavodsky, B.; Dostalek, J.; Berndt, E.; Hoese, D.; White, K.; Bowlan, M.; Gambacorta, A.; Wheeler, A.; Haisley, C.; Smith, N.

    2017-12-01

    For forecast challenges which require diagnosis of the three-dimensional atmosphere, current observations, such as radiosondes, may not offer enough information. Satellite data can help fill the spatial and temporal gaps between soundings. In particular, temperature and moisture retrievals from the NOAA-Unique Combined Atmospheric Processing System (NUCAPS), which combines infrared soundings from the Cross-track Infrared Sounder (CrIS) with the Advanced Technology Microwave Sounder (ATMS) to retrieve profiles of temperature and moisture. NUCAPS retrievals are available in a wide swath with approximately 45-km spatial resolution at nadir and a local Equator crossing time of 1:30 A.M./P.M. enabling three-dimensional observations at asynoptic times. This abstract focuses on evaluation of a new visualization for NUCAPS within the operational National Weather Service Advanced Weather Interactive Processing System (AWIPS) decision support system that allows these data to be viewed in gridded horizontal maps or vertical cross sections. Two testbed evaluations have occurred in 2017: a Cold Air Aloft (CAA) evaluation at the Alaska Center Weather Service Unit and a Convective Potential evaluation at the NOAA Hazardous Weather Testbed. For CAA, at high latitudes during the winter months, the air at altitudes used by passenger and cargo aircraft can reach temperatures cold enough (-65°C) to begin to freeze jet fuel, and Gridded NUCAPS visualization was shown to help fill in the spatial and temporal gaps in data-sparse areas across the Alaskan airspace by identifying the 3D spatial extent of cold air features. For convective potential, understanding the vertical distribution of temperature and moisture is also very important for forecasting the potential for convection related to severe weather such as lightning, large hail, and tornadoes. The Gridded NUCAPS visualization was shown to aid forecasters in understanding temperature and moisture characteristics at critical levels for determining cap strength and instability. In both cases, when the products are used in conjunction with numerical output to reinforce confidence in model products or provide an alternative observation if forecasters are not sure the model is properly representing the atmosphere.

  3. Characterizing permafrost soil active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska

    DOE PAGES

    Yi, Yonghong; Kimball, John S.; Chen, Richard; ...

    2017-05-30

    An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models. In this study, we developed a spatially integrated modelling and analysis framework combining field observations, local scale (~ 50 m) active layer thickness (ALT) and soil moisture maps derived from airborne low frequency (L + P-band) radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Model simulated ALT results show good correspondence with in-situ measurements in higher permafrost probability (PP ≥ 70 %) areas (n =more » 33, R = 0.60, mean bias = 1.58 cm, RMSE = 20.32 cm). The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32 ± 1.18 cm yr -1) and much larger increases (> 3 cm yr -1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). Uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was found to be the most important factor affecting model ALT accuracy. Here, potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of permafrost active layer conditions.« less

  4. Characterizing permafrost soil active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Yonghong; Kimball, John S.; Chen, Richard

    An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models. In this study, we developed a spatially integrated modelling and analysis framework combining field observations, local scale (~ 50 m) active layer thickness (ALT) and soil moisture maps derived from airborne low frequency (L + P-band) radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Model simulated ALT results show good correspondence with in-situ measurements in higher permafrost probability (PP ≥ 70 %) areas (n =more » 33, R = 0.60, mean bias = 1.58 cm, RMSE = 20.32 cm). The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32 ± 1.18 cm yr -1) and much larger increases (> 3 cm yr -1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). Uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was found to be the most important factor affecting model ALT accuracy. Here, potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of permafrost active layer conditions.« less

  5. Bayesian Hierarchical Modeling for Big Data Fusion in Soil Hydrology

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Kathuria, D.; Katzfuss, M.

    2016-12-01

    Soil moisture datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors on the other hand provide observations on a finer spatial scale (meter scale or less) but are sparsely available. Soil moisture is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables. Hydrologic processes usually occur at a scale of 1 km or less and therefore spatially ubiquitous and temporally periodic soil moisture products at this scale are required to aid local decision makers in agriculture, weather prediction and reservoir operations. Past literature has largely focused on downscaling RS soil moisture for a small extent of a field or a watershed and hence the applicability of such products has been limited. The present study employs a spatial Bayesian Hierarchical Model (BHM) to derive soil moisture products at a spatial scale of 1 km for the state of Oklahoma by fusing point scale Mesonet data and coarse scale RS data for soil moisture and its auxiliary covariates such as precipitation, topography, soil texture and vegetation. It is seen that the BHM model handles change of support problems easily while performing accurate uncertainty quantification arising from measurement errors and imperfect retrieval algorithms. The computational challenge arising due to the large number of measurements is tackled by utilizing basis function approaches and likelihood approximations. The BHM model can be considered as a complex Bayesian extension of traditional geostatistical prediction methods (such as Kriging) for large datasets in the presence of uncertainties.

  6. Field-scale soil moisture space-time geostatistical modeling for complex Palouse landscapes in the inland Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Chahal, M. K.; Brown, D. J.; Brooks, E. S.; Campbell, C.; Cobos, D. R.; Vierling, L. A.

    2012-12-01

    Estimating soil moisture content continuously over space and time using geo-statistical techniques supports the refinement of process-based watershed hydrology models and the application of soil process models (e.g. biogeochemical models predicting greenhouse gas fluxes) to complex landscapes. In this study, we model soil profile volumetric moisture content for five agricultural fields with loess soils in the Palouse region of Eastern Washington and Northern Idaho. Using a combination of stratification and space-filling techniques, we selected 42 representative and distributed measurement locations in the Cook Agronomy Farm (Pullman, WA) and 12 locations each in four additional grower fields that span the precipitation gradient across the Palouse. At each measurement location, soil moisture was measured on an hourly basis at five different depths (30, 60, 90, 120, and 150 cm) using Decagon 5-TE/5-TM soil moisture sensors (Decagon Devices, Pullman, WA, USA). This data was collected over three years for the Cook Agronomy Farm and one year for each of the grower fields. In addition to ordinary kriging, we explored the correlation of volumetric water content with external, spatially exhaustive indices derived from terrain models, optical remote sensing imagery, and proximal soil sensing data (electromagnetic induction and VisNIR penetrometer)

  7. High resolution change estimation of soil moisture and its assimilation into a land surface model

    NASA Astrophysics Data System (ADS)

    Narayan, Ujjwal

    Near surface soil moisture plays an important role in hydrological processes including infiltration, evapotranspiration and runoff. These processes depend non-linearly on soil moisture and hence sub-pixel scale soil moisture variability characterization is important for accurate modeling of water and energy fluxes at the pixel scale. Microwave remote sensing has evolved as an attractive technique for global monitoring of near surface soil moisture. A radiative transfer model has been tested and validated for soil moisture retrieval from passive microwave remote sensing data under a full range of vegetation water content conditions. It was demonstrated that soil moisture retrieval errors of approximately 0.04 g/g gravimetric soil moisture are attainable with vegetation water content as high as 5 kg/m2. Recognizing the limitation of low spatial resolution associated with passive sensors, an algorithm that uses low resolution passive microwave (radiometer) and high resolution active microwave (radar) data to estimate soil moisture change at the spatial resolution of radar operation has been developed and applied to coincident Passive and Active L and S band (PALS) and Airborne Synthetic Aperture Radar (AIRSAR) datasets acquired during the Soil Moisture Experiments in 2002 (SMEX02) campaign with root mean square error of 10% and a 4 times enhancement in spatial resolution. The change estimation algorithm has also been used to estimate soil moisture change at 5 km resolution using AMSR-E soil moisture product (50 km) in conjunction with the TRMM-PR data (5 km) for a 3 month period demonstrating the possibility of high resolution soil moisture change estimation using satellite based data. Soil moisture change is closely related to precipitation and soil hydraulic properties. A simple assimilation framework has been implemented to investigate whether assimilation of surface layer soil moisture change observations into a hydrologic model will potentially improve it performance. Results indicate an improvement in model prediction of near surface and deep layer soil moisture content when the update is performed to the model state as compared to free model runs. It is also seen that soil moisture change assimilation is able to mitigate the effect of erroneous precipitation input data.

  8. A coarsening model for self-organization of tropical convection

    NASA Astrophysics Data System (ADS)

    Craig, G. C.; Mack, J. M.

    2013-08-01

    If the influence of humidity on cumulus convection causes moist regions of the tropical troposphere to become moister and dry regions to become drier, and if horizontal mixing of moisture is not rapid enough to overcome this tendency, then the atmosphere will tend to separate into increasingly large moist and dry regions through a process of coarsening. We present a simple model for the moisture budget of the free troposphere, including subsidence drying, convective moistening, and horizontal mixing, and a constraint on total precipitation representing radiative-convective equilibrium. When initialized with a spatially uncorrelated moisture distribution, the model shows self-organization of precipitation with two main stages: A coarsening stage where the correlation length grows proportional to time to the power 1/2 and a droplet stage where precipitation is confined to a decreasing number of circular moist regions. A potential function is introduced to characterize the tendency for self-organization, which could be a useful diagnostic for analyzing cloud-resolving model simulations.

  9. Potential of bias correction for downscaling passive microwave and soil moisture data

    USDA-ARS?s Scientific Manuscript database

    Passive microwave satellites such as SMOS (Soil Moisture and Ocean Salinity) or SMAP (Soil Moisture Active Passive) observe brightness temperature (TB) and retrieve soil moisture at a spatial resolution greater than most hydrological processes. Bias correction is proposed as a simple method to disag...

  10. Studies and Application of Remote Sensing Retrieval Method of Soil Moisture Content in Land Parcel Units in Irrigation Area

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Zhao, H. L.; Jiang, Y. Z.; Zang, W. B.

    2018-05-01

    Soil moisture is one of the important hydrological elements. Obtaining soil moisture accurately and effectively is of great significance for water resource management in irrigation area. During the process of soil moisture content retrieval with multiremote sensing data, multi- remote sensing data always brings multi-spatial scale problems which results in inconformity of soil moisture content retrieved by remote sensing in different spatial scale. In addition, agricultural water use management has suitable spatial scale of soil moisture information so as to satisfy the demands of dynamic management of water use and water demand in certain unit. We have proposed to use land parcel unit as the minimum unit to do soil moisture content research in agricultural water using area, according to soil characteristics, vegetation coverage characteristics in underlying layer, and hydrological characteristic into the basis of study unit division. We have proposed division method of land parcel units. Based on multi thermal infrared and near infrared remote sensing data, we calculate the ndvi and tvdi index and make a statistical model between the tvdi index and soil moisture of ground monitoring station. Then we move forward to study soil moisture remote sensing retrieval method on land parcel unit scale. And the method has been applied in Hetao irrigation area. Results show that compared with pixel scale the soil moisture content in land parcel unit scale has displayed stronger correlation with true value. Hence, remote sensing retrieval method of soil moisture content in land parcel unit scale has shown good applicability in Hetao irrigation area. We converted the research unit into the scale of land parcel unit. Using the land parcel units with unified crops and soil attributes as the research units more complies with the characteristics of agricultural water areas, avoids the problems such as decomposition of mixed pixels and excessive dependence on high-resolution data caused by the research units of pixels, and doesn't involve compromises in the spatial scale and simulating precision like the grid simulation. When the application needs are met, the production efficiency of products can also be improved at a certain degree.

  11. Application of a fully integrated surface-subsurface physically based flow model for evaluating groundwater recharge from a flash flood event

    NASA Astrophysics Data System (ADS)

    Pino, Cristian; Herrera, Paulo; Therrien, René

    2017-04-01

    In many arid regions around the world groundwater recharge occurs during flash floods. This transient spatially and temporally concentrated flood-recharge process takes place through the variably saturated zone between surface and usually the deep groundwater table. These flood events are characterized by rapid and extreme changes in surface flow depth and velocity and soil moisture conditions. Infiltration rates change over time controlled by the hydraulic gradients and the unsaturated hydraulic conductivity at the surface-subsurface interface. Today is a challenge to assess the spatial and temporal distribution of groundwater recharge from flash flood events under real field conditions at different scales in arid areas. We apply an integrated surface-subsurface variably saturated physically-based flow model at the watershed scale to assess the recharge process during and after a flash flood event registered in an arid fluvial valley in Northern Chile. We are able to reproduce reasonably well observed groundwater levels and surface flow discharges during and after the flood with a calibrated model. We also investigate the magnitude and spatio-temporal distribution of recharge and the response of the system to variations of different surface and subsurface parameters, initial soil moisture content and groundwater table depths and surface flow conditions. We demonstrate how an integrated physically based model allows the exploration of different spatial and temporal system states, and that the analysis of the results of the simulations help us to improve our understanding of the recharge processes in similar type of systems that are common to many arid areas around the world.

  12. A new indicator framework for quantifying the intensity of the terrestrial water cycle

    NASA Astrophysics Data System (ADS)

    Huntington, Thomas G.; Weiskel, Peter K.; Wolock, David M.; McCabe, Gregory J.

    2018-04-01

    A quantitative framework for characterizing the intensity of the water cycle over land is presented, and illustrated using a spatially distributed water-balance model of the conterminous United States (CONUS). We approach water cycle intensity (WCI) from a landscape perspective; WCI is defined as the sum of precipitation (P) and actual evapotranspiration (AET) over a spatially explicit landscape unit of interest, averaged over a specified time period (step) of interest. The time step may be of any length for which data or simulation results are available (e.g., sub-daily to multi-decadal). We define the storage-adjusted runoff (Q‧) as the sum of actual runoff (Q) and the rate of change in soil moisture storage (ΔS/Δt, positive or negative) during the time step of interest. The Q‧ indicator is demonstrated to be mathematically complementary to WCI, in a manner that allows graphical interpretation of their relationship. For the purposes of this study, the indicators were demonstrated using long-term, spatially distributed model simulations with an annual time step. WCI was found to increase over most of the CONUS between the 1945 to 1974 and 1985 to 2014 periods, driven primarily by increases in P. In portions of the western and southeastern CONUS, Q‧ decreased because of decreases in Q and soil moisture storage. Analysis of WCI and Q‧ at temporal scales ranging from sub-daily to multi-decadal could improve understanding of the wide spectrum of hydrologic responses that have been attributed to water cycle intensification, as well as trends in those responses.

  13. PBSM3D: A finite volume, scalar-transport blowing snow model for use with variable resolution meshes

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Wayand, N. E.; Pomeroy, J. W.; Wheater, H. S.; Spiteri, R. J.

    2017-12-01

    Blowing snow redistribution results in heterogeneous snowcovers that are ubiquitous in cold, windswept environments. Capturing this spatial and temporal variability is important for melt and runoff simulations. Point scale blowing snow transport models are difficult to apply in fully distributed hydrological models due to landscape heterogeneity and complex wind fields. Many existing distributed snow transport models have empirical wind flow and/or simplified wind direction algorithms that perform poorly in calculating snow redistribution where there are divergent wind flows, sharp topography, and over large spatial extents. Herein, a steady-state scalar transport model is discretized using the finite volume method (FVM), using parameterizations from the Prairie Blowing Snow Model (PBSM). PBSM has been applied in hydrological response units and grids to prairie, arctic, glacier, and alpine terrain and shows a good capability to represent snow redistribution over complex terrain. The FVM discretization takes advantage of the variable resolution mesh in the Canadian Hydrological Model (CHM) to ensure efficient calculations over small and large spatial extents. Variable resolution unstructured meshes preserve surface heterogeneity but result in fewer computational elements versus high-resolution structured (raster) grids. Snowpack, soil moisture, and streamflow observations were used to evaluate CHM-modelled outputs in a sub-arctic and an alpine basin. Newly developed remotely sensed snowcover indices allowed for validation over large basins. CHM simulations of snow hydrology were improved by inclusion of the blowing snow model. The results demonstrate the key role of snow transport processes in creating pre-melt snowcover heterogeneity and therefore governing post-melt soil moisture and runoff generation dynamics.

  14. Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires.

    PubMed

    Prat-Guitart, Nuria; Rein, Guillermo; Hadden, Rory M; Belcher, Claire M; Yearsley, Jon M

    2016-12-01

    The gravimetric moisture content of peat is the main factor limiting the ignition and spread propagation of smouldering fires. Our aim is to use controlled laboratory experiments to better understand how the spread of smouldering fires is influenced in natural landscape conditions where the moisture content of the top peat layer is not homogeneous. In this paper, we study for the first time the spread of peat fires across a spatial matrix of two moisture contents (dry/wet) in the laboratory. The experiments were undertaken using an open-top insulated box (22×18×6cm) filled with milled peat. The peat was ignited at one side of the box initiating smouldering and horizontal spread. Measurements of the peak temperature inside the peat, fire duration and longwave thermal radiation from the burning samples revealed important local changes of the smouldering behaviour in response to sharp gradients in moisture content. Both, peak temperatures and radiation in wetter peat (after the moisture gradient) were sensitive to the drier moisture condition (preceding the moisture gradient). Drier peat conditions before the moisture gradient led to higher temperatures and higher radiation flux from the fire during the first 6cm of horizontal spread into a wet peat patch. The total spread distance into a wet peat patch was affected by the moisture content gradient. We predicted that in most peat moisture gradients of relevance to natural ecosystems the fire self-extinguishes within the first 10cm of horizontal spread into a wet peat patch. Spread distances of more than 10cm are limited to wet peat patches below 160% moisture content (mass of water per mass of dry peat). We found that spatial gradients of moisture content have important local effects on the horizontal spread and should be considered in field and modelling studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Lepore, C.; Arnone, E.; Noto, L. V.; Sivandran, G.; Bras, R. L.

    2013-09-01

    This paper presents the development of a rainfall-triggered landslide module within an existing physically based spatially distributed ecohydrologic model. The model, tRIBS-VEGGIE (Triangulated Irregular Networks-based Real-time Integrated Basin Simulator and Vegetation Generator for Interactive Evolution), is capable of a sophisticated description of many hydrological processes; in particular, the soil moisture dynamics are resolved at a temporal and spatial resolution required to examine the triggering mechanisms of rainfall-induced landslides. The validity of the tRIBS-VEGGIE model to a tropical environment is shown with an evaluation of its performance against direct observations made within the study area of Luquillo Forest. The newly developed landslide module builds upon the previous version of the tRIBS landslide component. This new module utilizes a numerical solution to the Richards' equation (present in tRIBS-VEGGIE but not in tRIBS), which better represents the time evolution of soil moisture transport through the soil column. Moreover, the new landslide module utilizes an extended formulation of the factor of safety (FS) to correctly quantify the role of matric suction in slope stability and to account for unsaturated conditions in the evaluation of FS. The new modeling framework couples the capabilities of the detailed hydrologic model to describe soil moisture dynamics with the infinite slope model, creating a powerful tool for the assessment of rainfall-triggered landslide risk.

  16. Evaluation of the performance of hydrological variables derived from GLDAS-2 and MERRA-2 in Mexico

    NASA Astrophysics Data System (ADS)

    Real-Rangel, R. A.; Pedrozo-Acuña, A.; Breña-Naranjo, J. A.

    2017-12-01

    Hydrological studies have found in data assimilation systems and global reanalysis of land surface variables (e.g soil moisture, streamflow) a wide range of applications, from drought monitoring to water balance and hydro-climatology variability assessment. Indeed, these hydrological data sources have led to an improvement in developing and testing monitoring and prediction systems in poorly gauged regions of the world. This work tests the accuracy and error of land surface variables (precipitation, soil moisture, runoff and temperature) derived from the data assimilation reanalysis products GLDAS-2 and MERRA-2. Validate the performance of these data platforms must be thoroughly evaluated in order to consider the error of hydrological variables (i.e., precipitation, soil moisture, runoff and temperature) derived from the reanalysis products. For such purpose, a quantitative assessment was performed at 2,892 climatological stations, 42 stream gauges and 44 soil moisture probes located in Mexico and across different climate regimes (hyper-arid to tropical humid). Results show comparisons between these gridded products against ground-based observational stations for 1979-2014. The results of this analysis display a spatial distribution of errors and accuracy over Mexico discussing differences between climates, enabling the informed use of these products.

  17. Modeling vegetation rooting strategies on a hillslope

    NASA Astrophysics Data System (ADS)

    Sivandran, G.; Bras, R. L.

    2011-12-01

    The manner in which water and energy is partitioned and redistributed along a hillslope is the result of complex coupled ecohydrological interactions between the climatic, soils, topography and vegetation operating over a wide range of spatiotemporal scales. Distributed process based modeling creates a framework through which the interaction of vegetation with the subtle differences in the spatial and temporal dynamics of soil moisture that arise under localized abiotic conditions along a hillslope can be simulated and examined. One deficiency in the current dynamic vegetation models is the one sided manner in which vegetation responds to soil moisture dynamics. Above ground, vegetation is given the freedom to dynamically evolve through alterations in fractional vegetation cover and/or canopy height and density; however below ground rooting profiles are simplistically represented and often held constant in time and space. The need to better represent the belowground role of vegetation through dynamic rooting strategies is fundamental in capturing the magnitude and timing of water and energy fluxes between the atmosphere and land surface. In order to allow vegetation to adapt to gradients in soil moisture a dynamic rooting scheme was incorporated into tRIBS+VEGGIE (a physically based distributed ecohydrological model). The dynamic rooting scheme allows vegetation the freedom to adapt their rooting depth and distribution in response abiotic conditions in a way that more closely mimics observed plant behavior. The incorporation of this belowground plasticity results in vegetation employing a suite of rooting strategies based on soil texture, climatic conditions and location on the hillslope.

  18. Runoff and recharge processes under a strong semi-arid climatic gradient

    NASA Astrophysics Data System (ADS)

    Ries, F.; Lange, J.; Sauter, M.; Schmidt, S.

    2012-04-01

    Hydrological processes in semi-arid environments are highly dynamic. In the eastern slopes of the West Bank these dynamics are even intensified due to the predominant karst morphology, the strong climatic gradient (150-700 mm mean annual precipitation) and the small-scale variability of land use, topography and soil cover. The region is characterized by a scarcity in water resources and a high population growth. Therefore detailed information about the temporal and spatial distribution, amount and variability of available water resources is required. Providing this information by the use of hydrological models is challenging, because available data are extremely limited. From 2007 on, the research area of Wadi Auja, northeast of Jerusalem, has been instrumented with a dense monitoring network. Rainfall distribution and climatic parameters as well as the hydrological reaction of the system along the strong semi-arid climatic gradient are measured on the plot (soil moisture), hillslope (runoff generation) and catchment scale (spring discharge, groundwater level, flood runoff). First data from soil moisture plots situated along the climatic gradient are presented. They allow insights into physical properties of the soil layer and its impact on runoff and recharge processes under different climatic conditions. From continuous soil moisture profiles, soil water balances are calculated for singe events and entire seasons. These data will be used to parameterize the distributed hydrological model TRAIN-ZIN, which has been successfully applied in several studies in the Jordan River Basin.

  19. Surface soil moisture retrieval using the L-band synthetic aperture radar onboard the Soil Moisture Active Passive satellite and evaluation at core validation sites

    USDA-ARS?s Scientific Manuscript database

    This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface soil moisture ...

  20. The PRESSCA operational early warning system for landslide forecasting: the 11-12 November 2013 rainfall event in Central Italy.

    NASA Astrophysics Data System (ADS)

    Ciabatta, Luca; Brocca, Luca; Ponziani, Francesco; Berni, Nicola; Stelluti, Marco; Moramarco, Tommaso

    2014-05-01

    The Umbria Region, located in Central Italy, is one of the most landslide risk prone area in Italy, almost yearly affected by landslides events at different spatial scales. For early warning procedures aimed at the assessment of the hydrogeological risk, the rainfall thresholds represent the main tool for the Italian Civil Protection System. As shown in previous studies, soil moisture plays a key-role in landslides triggering. In fact, acting on the pore water pressure, soil moisture influences the rainfall amount needed for activating a landslide. In this work, an operational physically-based early warning system, named PRESSCA, that takes into account soil moisture for the definition of rainfall thresholds is presented. Specifically, the soil moisture conditions are evaluated in PRESSCA by using a distributed soil water balance model that is recently coupled with near real-time satellite soil moisture product obtained from ASCAT (Advanced SCATterometer) and from in-situ monitoring data. The integration of three different sources of soil moisture information allows to estimate the most accurate possible soil moisture condition. Then, both observed and forecasted rainfall data are compared with the soil moisture-based thresholds in order to obtain risk indicators over a grid of ~ 5 km. These indicators are then used for the daily hydrogeological risk evaluation and management by the Civil Protection regional service, through the sharing/delivering of near real-time landslide risk scenarios (also through an open source web platform: www.cfumbria.it). On the 11th-12th November, 2013, Umbria Region was hit by an exceptional rainfall event with up to 430mm/72hours that resulted in significant economic damages, but fortunately no casualties among the population. In this study, the results during the rainfall event of PRESSCA system are described, by underlining the model capability to reproduce, two days in advance, landslide risk scenarios in good spatial and temporal agreement with the occurred actual conditions. High-resolution risk scenarios (100mx100m), obtained by coupling PRESSCA forecasts with susceptibility and vulnerability layers, are also produced. The results show good relationship between the PRESSCA forecast and the reported landslides to the Civil Protection Service during the rainfall event, confirming the system robustness. The good forecasts of PRESSCA system have surely contributed to start well in advance the Civil Protection operations (alerting local authorities and population).

  1. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Zhangshuan; Terry, Neil C.; Hubbard, Susan S.

    2013-02-22

    In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy memory function and pilot point concepts, as well as efficient sampling approaches. It is critical to accurately estimate soil moisture content and variations in vadose zone studies. Many studies have illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated changes, however, challenges still exist in the inversion of GPR tomographic data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniquenessmore » and nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, MRE is first used to derive prior probability density functions (pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion. The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential Gaussian simulation (SGSIM) algorithm that constructs a highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model. The likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a Gaussian kernel. Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford Site in Richland, WA. We demonstrate that the MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics more accurately.« less

  2. Regional heatwaves in china: a cluster analysis

    NASA Astrophysics Data System (ADS)

    Wang, Pinya; Tang, Jianping; Wang, Shuyu; Dong, Xinning; Fang, Juan

    2018-03-01

    With the consideration of spatial extension of heatwave events, two kind of regional heatwaves using absolute and relative thresholds, namely RHWs-A and RHWs-R, are investigated during 1959-2013. The temperature data is derived from the daily maximum temperatures (DMTs) of 587 stations in China. Totally 298 RHWs-A and 374 RHWs-R are identified during the past 55 years, and both of them are growing more frequent since the mid-1980s. By utilizing the cluster analysis, several typical spatial distributions of RHWs-A/RHWs-R are obtained. For RHWs-A, there are three clusters covering the southeastern, northwestern China and the lower reaches of Yangtze River, of which the southeastern cluster groups the most heatwaves. For RHWs-R, there are seven clusters distributed throughout the whole regions of China. The clusters in the northwestern and northeastern China are more stable than others for both RHWs-A and RHWs-R, and the northern clusters are of larger intensity than that of the southern ones. All RHWs-A/RHWs-R are accompanied by the anomalous high systems along with the reduced soil moisture. The southern clusters are controlled by Northwestern Pacific subtropical high (WPSH), and the northern ones are influenced by the mid-latitude high systems. The influences of atmospheric circulations and soil moisture on regional heatwaves are further demonstrated by two case analyses of the severe RHW-A in 2003 and the RHW-R in 2013.

  3. An intercomparison of remotely sensed soil moisture products at various spatial scales over the Iberian penisula

    USDA-ARS?s Scientific Manuscript database

    Soil moisture (SM) can be retrieved from active microwave (AM)-, passive microwave (PM)- and thermal infrared (TIR)-observations, each having their unique spatial- and temporal-coverage. A limitation of TIR-based SM retrievals is its dependency on cloud-free conditions, while microwave retrievals ar...

  4. Multi-time scale analysis of the spatial representativeness of in situ soil moisture data within satellite footprints

    USDA-ARS?s Scientific Manuscript database

    We conduct a novel comprehensive investigation that seeks to prove the connection between spatial and time scales in surface soil moisture (SM) within the satellite footprint (~50 km). Modeled and measured point series at Yanco and Little Washita in situ networks are first decomposed into anomalies ...

  5. Growing season soil moisture following restoration treatments of varying intensity in semi-arid ponderosa pine forests

    NASA Astrophysics Data System (ADS)

    O'Donnell, F. C.; Springer, A. E.; Sankey, T.; Masek Lopez, S.

    2014-12-01

    Forest restoration projects are being planned for large areas of overgrown semi-arid ponderosa pine forests of the Southwestern US. Restoration involves the thinning of smaller trees and prescribed or managed fire to reduce tree density, restore a more natural fire regime, and decrease the risk of catastrophic wildfire. The stated goals of these projects generally reduced plant water stress and improvements in hydrologic function. However, little is known about how to design restoration treatments to best meet these goals. As part of a larger project on snow cover, soil moisture, and groundwater recharge, we measured soil moisture, an indicator of plant water status, in four pairs of control and restored sites near Flagstaff, Arizona. The restoration strategies used at the sites range in both amount of open space created and degree of clustering of the remaining trees. We measured soil moisture using 30 cm vertical time domain reflectometry probes installed on 100 m transects at 5 m intervals so it would be possible to analyze the spatial pattern of soil moisture. Soil moisture was higher and more spatially variable in the restored sites than the control sites with differences in spatial pattern among the restoration types. Soil moisture monitoring will continue until the first snow fall, at which point measurements of snow depth and snow water equivalent will be made at the same locations.

  6. L-band Soil Moisture Mapping using Small UnManned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Dai, E.; Gasiewski, A. J.; Stachura, M.; Elston, J.; Venkitasubramony, A.

    2016-12-01

    1. IntroductionSoil moisture is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, and impacts water resource management, agriculture, and flood runoff prediction. The launch of NASA's Soil Moisture Active/Passive (SMAP) mission in 2015 promises to provide global measurements of soil moisture and surface freeze/thaw state at fixed crossing times and spatial resolutions as low as 5 km for some products. However, there exists a need for measurements of soil moisture on smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping soil moisture on spatial scales as small as several meters (i.e., the height of the platform). Compared with various other proposed methods of validation based on either in-situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed ( km scale) coverage at very high spatial resolution ( 15 m) suitable for scaling scale studies, and at comparatively low operator cost. To demonstrate the LDCR several flights had been performed during field experiments at the Canton Oklahoma Soilscape site on September 8th and 9th, 2015 and Yuma Colorado Irrigation Research Foundation (IRF) site from June to August, 2016. These tests were flown at 25-50 m altitude to obtain differing spatial resolutions. The scientific intercomparisons of LDCR retrieved soil moisture and in-situ measurements will be presented. 2. References[1] McIntyre, E.M., A.J. Gasiewski, and D. Manda D, "Near Real-Time Passive C-Band Microwave Soil Moisture Retrieval During CLASIC 2007," Proc. IGARSS, 2008. [2] Robock, A., S. Steele-Dunne, J. Basara, W. Crow, and M. Moghaddam M, "In Situ Network and Scaling," SMAP Algorithm and Cal/Val Workshop, 2009. [3] Walker, A., "Airborne Microwave Radiometer Measurements During CanEx-SM10," Second SMAP Cal/Val Workshop, 2011.

  7. A Conceptual Approach to Assimilating Remote Sensing Data to Improve Soil Moisture Profile Estimates in a Surface Flux/Hydrology Model. Part 1; Overview

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Laymon, Charles A.; Inguva, Ramarao; Schamschula, Marius; Caulfield, John

    1998-01-01

    Knowledge of the amount of water in the soil is of great importance to many earth science disciplines. Soil moisture is a key variable in controlling the exchange of water and energy between the land surface and the atmosphere. Thus, soil moisture information is valuable in a wide range of applications including weather and climate, runoff potential and flood control, early warning of droughts, irrigation, crop yield forecasting, soil erosion, reservoir management, geotechnical engineering, and water quality. Despite the importance of soil moisture information, widespread and continuous measurements of soil moisture are not possible today. Although many earth surface conditions can be measured from satellites, we still cannot adequately measure soil moisture from space. Research in soil moisture remote sensing began in the mid 1970s shortly after the surge in satellite development. Recent advances in remote sensing have shown that soil moisture can be measured, at least qualitatively, by several methods. Quantitative measurements of moisture in the soil surface layer have been most successful using both passive and active microwave remote sensing, although complications arise from surface roughness and vegetation type and density. Early attempts to measure soil moisture from space-borne microwave instruments were hindered by what is now considered sub-optimal wavelengths (shorter than 5 cm) and the coarse spatial resolution of the measurements. L-band frequencies between 1 and 3 GHz (10-30 cm) have been deemed optimal for detection of soil moisture in the upper few centimeters of soil. The Electronically Steered Thinned Array Radiometer (ESTAR), an aircraft-based instrument operating a 1,4 GHz, has shown great promise for soil moisture determination. Initiatives are underway to develop a similar instrument for space. Existing space-borne synthetic aperture radars (SARS) operating at C- and L-band have also shown some potential to detect surface wetness. The advantage of radar is its much higher resolution than passive microwave systems, but it is currently hampered by surface roughness effects and the lack of a good algorithm based on a single frequency and single polarization. In addition, its repeat frequency is generally low (about 40 days). In the meantime, two new radiometers offer some hope for remote sensing of soil moisture from space. The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), launched in November 1997, possesses a 10.65 GHz channel and the Advanced Microwave Scanning Radiometer (AMSR) on both the ADEOS-11 and Earth Observing System AM-1 platforms to be launched in 1999 possesses a 6.9 GHz channel. Aside from issues about interference from vegetation, the coarse resolution of these data will provide considerable challenges pertaining to their application. The resolution of TMI is about 45 km and that of AMSR is about 70 km. These resolutions are grossly inconsistent with the scale of soil moisture processes and the spatial variability of factors that control soil moisture. Scale disparities such as these are forcing us to rethink how we assimilate data of various scales in hydrologic models. Of particular interest is how to assimilate soil moisture data by reconciling the scale disparity between what we can expect from present and future remote sensing measurements of soil moisture and modeling soil moisture processes. It is because of this disparity between the resolution of space-based sensors and the scale of data needed for capturing the spatial variability of soil moisture and related properties that remote sensing of soil moisture has not met with more widespread success. Within a single footprint of current sensors at the wavelengths optimal for this application, in most cases there is enormous heterogeneity in soil moisture created by differences in landcover, soils and topography, as well as variability in antecedent precipitation. It is difficult to interpret the meaning of 'mean' soil moisture under such conditions and even more difficult to apply such a value. Because of the non-linear relationships between near-surface soil moisture and other variables of interest, such as surface energy fluxes and runoff, mean soil moisture has little applicability at such large scales. It is for these reasons that the use of remote sensing in conjunction with a hydrologic model appears to be of benefit in capturing the complete spatial and temporal structure of soil moisture. This paper is Part I of a four-part series describing a method for intermittently assimilating remotely-sensed soil moisture information to improve performance of a distributed land surface hydrology model. The method, summarized in section II, involves the following components, each of which is detailed in the indicated section of the paper or subsequent papers in this series: Forward radiative transfer model methods (section II and Part IV); Use of a Kalman filter to assimilate remotely-sensed soil moisture estimates with the model profile (section II and Part IV); Application of a soil hydrology model to capture the continuous evolution of the soil moisture profile within and below the root zone (section III); Statistical aggregation techniques (section IV and Part II); Disaggregation techniques using a neural network approach (section IV and Part III); and Maximum likelihood and Bayesian algorithms for inversely solving for the soil moisture profile in the upper few cm (Part IV).

  8. Evaluation of gravimetric ground truth soil moisture data collected for the agricultural soil moisture experiment, 1978 Colby, Kansas, aircraft mission

    NASA Technical Reports Server (NTRS)

    Arya, L. M.; Phinney, D. E. (Principal Investigator)

    1980-01-01

    Soil moisture data acquired to support the development of algorithms for estimating surface soil moisture from remotely sensed backscattering of microwaves from ground surfaces are presented. Aspects of field uniformity and variability of gravimetric soil moisture measurements are discussed. Moisture distribution patterns are illustrated by frequency distributions and contour plots. Standard deviations and coefficients of variation relative to degree of wetness and agronomic features of the fields are examined. Influence of sampling depth on observed moisture content an variability are indicated. For the various sets of measurements, soil moisture values that appear as outliers are flagged. The distribution and legal descriptions of the test fields are included along with examinations of soil types, agronomic features, and sampling plan. Bulk density data for experimental fields are appended, should analyses involving volumetric moisture content be of interest to the users of data in this report.

  9. Does the stress-gradient hypothesis hold water? Disentangling spatial and temporal variation in plant effects on soil moisture in dryland systems

    USGS Publications Warehouse

    Butterfield, Bradley J.; Bradford, John B.; Armas, Cristina; Prieto, Ivan; Pugnaire, Francisco I.

    2016-01-01

    Taken together, the results of this simulation study suggest that plant effects on soil moisture are predictable based on relatively general relationships between precipitation inputs and differential evaporation and transpiration rates between plant and interspace microsites that are largely driven by temperature. In particular, this study highlights the importance of differentiating between temporal and spatial variation in weather and climate, respectively, in determining plant effects on available soil moisture. Rather than focusing on the somewhat coarse-scale predictions of the SGH, it may be more beneficial to explicitly incorporate plant effects on soil moisture into predictive models of plant-plant interaction outcomes in drylands.

  10. Soil moisture on Polish territory - comparison of satellite and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Rojek, Edyta; Łukowski, Mateusz; Marczewski, Wojciech; Usowicz, Bogusław

    2014-05-01

    Assessment of water resources due to changing climatic conditions in time and space is still very uncertain. The territory of Poland has a limited resource of waters, occasionally resulting in small agricultural droughts. From the other side intense rainfalls, floods or run-offs, causing soil erosion are observed. Therefore, it is important to predict and prevent of this adverse phenomena. Huge spatial variability of soil moisture does not allow for accurate estimation of its distribution using ground-based measurements. SMOS soil moisture data are quite much inherently consistent in time and space, but their validation is still a challenge for further use in the climate and hydrology studies. This is the motivation for the research: to examine soil moisture from SMOS and ground based stations of the SWEX network held over eastern Poland. The presented results are related to changes of the soil moisture on regional scales for Poland in the period 2010-2013. Some results with SMOS L2 data are extended on continental scales for Europe. Time series from ground and satellite SMOS data sources were compared by regression methods. The region of Poland indicates clearly some genetic spatial distributions in weekly averaged values. In continental scales, the country territory contrasts evidently to Lithuania and in Polesie, and indicates seasonal cycling observed in archives and well known traditional records. The central part of Poland is repeatedly susceptible on droughts with soil moisture values ranging from about 0.02 to 0.20 m3 m-3. SMOS data allows on creating systematic drought data for Poland and watching annual changes, and differences to other drought services kept on national scales for agricultural purposes. We bound that drought susceptibility to the content of sand clay components and the land use there. Lack of rainfall in the late 2011 summer, caused a significant deficit of water in soil moisture content (below 0.05 m3 m-3) throughout the entire country except the estuaries of great rivers Odra and Vistula. Like other authors, we have noted significant biases in SMOS soil moisture. However, general trends and their dynamics in SM values are in good agreements of SMOS to SWEX_Poland network stations. It was shown that the SMOS satellite measurements are consistent and reliable, so can be used to detect areas of dry and moist soil. In Poland, the trends indicating the agricultural droughts and floods are depicted by SMOS L2 very well. In near future, SMOS L2 (and further products) are going to be used on regional studies related to the ELBARA Penetration Depth experiment and planed a Sentinel 1 supersite in Poland, with special focus on Polesie, which is unique wetland in Poland and Ukraine. The work was partially funded under the ELBARA_PD (Penetration Depth) project No. 4000107897/13/NL/KML. ELBARA_PD project is funded by the Government of Poland through an ESA (European Space Agency) Contract under the PECS (Plan for European Cooperating States).

  11. Variation in soil carbon dioxide efflux at two spatial scales in a topographically complex boreal forest

    USGS Publications Warehouse

    Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.

    2012-01-01

    Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.

  12. Evapotranspiration and runoff from large land areas: Land surface hydrology for atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    A land surface hydrology parameterization for use in atmospheric GCM's is presented. The parameterization incorporates subgrid scale variability in topography, soils, soil moisture and precipitation. The framework of the model is the statistical distribution of a topography-soils index, which controls the local water balance fluxes, and is therefore taken to represent the large land area. Spatially variable water balance fluxes are integrated with respect to the topography-soils index to yield our large topography-soils distribution, and interval responses are weighted by the probability of occurrence of the interval. Grid square averaged land surface fluxes result. The model functions independently as a macroscale water balance model. Runoff ratio and evapotranspiration efficiency parameterizations are derived and are shown to depend on the spatial variability of the above mentioned properties and processes, as well as the dynamics of land surface-atmosphere interactions.

  13. Assimilation of the ESA CCI Soil Moisture ACTIVE and PASSIVE Product into the SURFEX Land Surface Model using the Ensemble Transform Kalman Filter

    NASA Astrophysics Data System (ADS)

    Blyverket, J.; Hamer, P.; Bertino, L.; Lahoz, W. A.

    2017-12-01

    The European Space Agency Climate Change Initiative for soil moisture (ESA CCI SM) was initiated in 2012 for a period of six years, the objective for this period was to produce the most complete and consistent global soil moisture data record based on both active and passive sensors. The ESA CCI SM products consist of three surface soil moisture datasets: The ACTIVE product and the PASSIVE product were created by fusing scatterometer and radiometer soil moisture data, respectively. The COMBINED product is a blended product based on the former two datasets. In this study we assimilate globally both the ACTIVE and PASSIVE product at a 25 km spatial resolution. The different satellite platforms have different overpass times, an observation is mapped to the hours 00.00, 06.00, 12.00 or 18.00 if it falls within a 3 hour window centred at these times. We use the SURFEX land surface model with the ISBA diffusion scheme for the soil hydrology. For the assimilation routine we apply the Ensemble Transform Kalman Filter (ETKF). The land surface model is driven by perturbed MERRA-2 atmospheric forcing data, which has a temporal resolution of one hour and is mapped to the SURFEX model grid. Bias between the land surface model and the ESA CCI product is removed by cumulative distribution function (CDF) matching. This work is a step towards creating a global root zone soil moisture product from the most comprehensive satellite surface soil moisture product available. As a first step we consider the period from 2010 - 2016. This allows for comparison against other global root zone soil moisture products (SMAP Level 4, which is independent of the ESA CCI SM product).

  14. Forecasting the forest and the trees: consequences of drought in competitive forests

    NASA Astrophysics Data System (ADS)

    Clark, J. S.

    2015-12-01

    Models that translate individual tree responses to distribution and abundance of competing populations are needed to understand forest vulnerability to drought. Currently, biodiversity predictions rely on one scale or the other, but do not combine them. Synthesis is accomplished here by modeling data together, each with their respective scale-dependent connections to the scale needed for prediction—landscape to regional biodiversity. The approach we summarize integrates three scales, i) individual growth, reproduction, and survival, ii) size-species structure of stands, and iii) regional forest biomass. Data include 24,347 USDA Forest Inventory and Analysis (FIA) plots and 135 Long-term Forest Demography plots. Climate, soil moisture, and competitive interactions are predictors. We infer and predict the four-dimensional size/species/space/time (SSST) structure of forests, where all demographic rates respond to winter temperature, growing season length, moisture deficits, local moisture status, and competition. Responses to soil moisture are highly non-linear and not strongly related to responses to climatic moisture deficits over time. In the Southeast the species that are most sensitive to drought on dry sites are not the same as those that are most sensitive on moist sites. Those that respond most to spatial moisture gradients are not the same as those that respond most to regional moisture deficits. There is little evidence of simple tradeoffs in responses. Direct responses to climate constrain the ranges of few tree species, north or south; there is little evidence that range limits are defined by fecundity or survival responses to climate. By contrast, recruitment and the interactions between competition and drought that affect growth and survival are predicted to limit ranges of many species. Taken together, results suggest a rich interaction involving demographic responses at all size classes to neighbors, landscape variation in moisture, and regional climate change.

  15. Why the predictions for monsoon rainfall fail?

    NASA Astrophysics Data System (ADS)

    Lee, J.

    2016-12-01

    To be in line with the Global Land/Atmosphere System Study (GLASS) of the Global Energy and Water Cycle Experiment (GEWEX) international research scheme, this study discusses classical arguments about the feedback mechanisms between land surface and precipitation to improve the predictions of African monsoon rainfall. In order to clarify the impact of antecedent soil moisture on subsequent rainfall evolution, several data sets will be presented. First, in-situ soil moisture field measurements acquired by the AMMA field campaign will be shown together with rain gauge data. This data set will validate various model and satellite data sets such as NOAH land surface model, TRMM rainfall, CMORPH rainfall and HadGEM climate models, SMOS soil moisture. To relate soil moisture with precipitation, two approaches are employed: one approach makes a direct comparison between the spatial distributions of soil moisture as an absolute value and rainfall, while the other measures a temporal evolution of the consecutive dry days (i.e. a relative change within the same soil moisture data set over time) and rainfall occurrences. Consecutive dry days shows consistent results of a negative feedback between soil moisture and rainfall across various data sets, contrary to the direct comparison of soil moisture state. This negative mechanism needs attention, as most climate models usually focus on a positive feedback only. The approach of consecutive dry days takes into account the systematic errors in satellite observations, reminding us that it may cause the misinterpretation to directly compare model with satellite data, due to their difference in data retrievals. This finding is significant, as the climate indices employed by the Intergovernmental Panel on Climate Change (IPCC) modelling archive are based on the atmospheric variable rathr than land.

  16. Definition of SMOS Level 3 Land Products for the Villafranca del Castillo Data Processing Centre (CP34)

    NASA Astrophysics Data System (ADS)

    Lopez-Baeza, E.; Monsoriu Torres, A.; Font, J.; Alonso, O.

    2009-04-01

    The ESA SMOS (Soil Moisture and Ocean Salinity) Mission is planned to be launched in July 2009. The satellite will measure soil moisture over the continents and surface salinity of the oceans at resolutions that are sufficient for climatological-type studies. This paper describes the procedure to be used at the Spanish SMOS Level 3 and 4 Data Processing Centre (CP34) to generate Soil Moisture and other Land Surface Product maps from SMOS Level 2 data. This procedure can be used to map Soil Moisture, Vegetation Water Content and Soil Dielectric Constant data into different pre-defined spatial grids with fixed temporal frequency. The L3 standard Land Surface Products to be generated at CP34 are: Soil Moisture products: maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation Seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Vegetation Water Content products: maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. a': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month) using simple averaging method over the L2 products in ISEA grid, generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Dielectric Constant products: (the dielectric constant products are delivered together with soil moisture products, with the same averaging periods and generation frequency): maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation.

  17. On the temporal and spatial variability of near-surface soil moisture for the identification of representative in situ soil moisture monitoring stations

    USDA-ARS?s Scientific Manuscript database

    The high spatio-temporal variability of soil moisture complicates the validation of remotely sensed soil moisture products using in-situ monitoring stations. Therefore, a standard methodology for selecting the most repre- sentative stations for the purpose of validating satellites and land surface ...

  18. Effect of Downscaled Forcings and Soil Texture Properties on Hyperresolution Hydrologic Simulations in a Regional Basin in Northwest Mexico

    NASA Astrophysics Data System (ADS)

    Ko, A.; Mascaro, G.; Vivoni, E. R.

    2017-12-01

    Hyper-resolution (< 1 km) hydrological modeling is expected to support a range of studies related to the terrestrial water cycle. A critical need for increasing the utility of hyper-resolution modeling is the availability of meteorological forcings and land surface characteristics at high spatial resolution. Unfortunately, in many areas these datasets are only available at coarse (> 10 km) scales. In this study, we address some of the challenges by applying a parallel version of the Triangulated Irregular Network (TIN)-based Real Time Integrated Basin Simulator (tRIBS) to the Rio Sonora Basin (RSB) in northwest Mexico. The RSB is a large, semiarid watershed ( 21,000 km2) characterized by complex topography and a strong seasonality in vegetation conditions, due to the North American monsoon. We conducted simulations at an average spatial resolution of 88 m over a decadal (2004-2013) period using spatially-distributed forcings from remotely-sensed and reanalysis products. Meteorological forcings were derived from the North American Land Data Assimilation System (NLDAS) at the original resolution of 12 km and were downscaled at 1 km with techniques accounting for terrain effects. Two grids of soil properties were created from different sources, including: (i) CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) at 6 km resolution; and (ii) ISRIC (International Soil Reference Information Centre) at 250 m. Time-varying vegetation parameters were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) composite products. The model was first calibrated and validated through distributed soil moisture data from a network of 20 soil moisture stations during the monsoon season. Next, hydrologic simulations were conducted with five different combinations of coarse and downscaled forcings and soil properties. Outputs in the different configurations were then compared with independent observations of soil moisture, and with estimates of land surface temperature (1 km, daily) and evapotranspiration (1 km, monthly) from MODIS. This study is expected to support the community involved in hyper-resolution hydrologic modeling by identifying the crucial factors that, if available at higher resolution, lead to the largest improvement of the simulation prognostic capability.

  19. A simple stochastic rainstorm generator for simulating spatially and temporally varying rainfall

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Michaelides, K.; Nichols, M.; Nearing, M. A.

    2016-12-01

    In semi-arid to arid drainage basins, rainstorms often control both water supply and flood risk to marginal communities of people. They also govern the availability of water to vegetation and other ecological communities, as well as spatial patterns of sediment, nutrient, and contaminant transport and deposition on local to basin scales. All of these landscape responses are sensitive to changes in climate that are projected to occur throughout western North America. Thus, it is important to improve characterization of rainstorms in a manner that enables statistical assessment of rainfall at spatial scales below that of existing gauging networks and the prediction of plausible manifestations of climate change. Here we present a simple, stochastic rainstorm generator that was created using data from a rich and dense network of rain gauges at the Walnut Gulch Experimental Watershed (WGEW) in SE Arizona, but which is applicable anywhere. We describe our methods for assembling pdfs of relevant rainstorm characteristics including total annual rainfall, storm area, storm center location, and storm duration. We also generate five fitted intensity-duration curves and apply a spatial rainfall gradient to generate precipitation at spatial scales below gauge spacing. The model then runs by Monte Carlo simulation in which a total annual rainfall is selected before we generate rainstorms until the annual precipitation total is reached. The procedure continues for decadal simulations. Thus, we keep track of the hydrologic impact of individual storms and the integral of precipitation over multiple decades. We first test the model using ensemble predictions until we reach statistical similarity to the input data from WGEW. We then employ the model to assess decadal precipitation under simulations of climate change in which we separately vary the distribution of total annual rainfall (trend in moisture) and the intensity-duration curves used for simulation (trends in storminess). We demonstrate the model output through spatial maps of rainfall and through statistical comparisons of relevant parameters and distributions. Finally, discuss how the model can be used to understand basin-scale hydrology in terms of soil moisture, runoff, and erosion.

  20. Spatial and Temporal Variation in Primary Productivity (NDVI) of Coastal Alaskan Tundra: Decreased Vegetation Growth Following Earlier Snowmelt

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Huemmrich, K. Fred; Stone, Robert S.; Tweedie, Craig E.

    2015-01-01

    In the Arctic, earlier snowmelt and longer growing seasons due to warming have been hypothesized to increase vegetation productivity. Using the Normalized Difference Vegetation Index (NDVI) from both field and satellite measurements as an indicator of vegetation phenology and productivity, we monitored spatial and temporal patterns of vegetation growth for a coastal wet sedge tundra site near Barrow, Alaska over three growing seasons (2000-2002). Contrary to expectation, earlier snowmelt did not lead to increased productivity. Instead, productivity was associated primarily with precipitation and soil moisture, and secondarily with growing degree days, which, during this period, led to reduced growth in years with earlier snowmelt. Additional moisture effects on productivity and species distribution, operating over a longer time scale, were evident in spatial NDVI patterns associated with microtopography. Lower, wetter regions dominated by graminoids were more productive than higher, drier locations having a higher percentage of lichens and mosses, despite the earlier snowmelt at the more elevated sites. These results call into question the oft-stated hypothesis that earlier arctic growing seasons will lead to greater vegetation productivity. Rather, they agree with an emerging body of evidence from recent field studies indicating that early-season, local environmental conditions, notably moisture and temperature, are primary factors determining arctic vegetation productivity. For this coastal arctic site, early growing season conditions are strongly influenced by microtopography, hydrology, and regional sea ice dynamics, and may not be easily predicted from snowmelt date or seasonal average air temperatures alone. Our comparison of field to satellite NDVI also highlights the value of in-situ monitoring of actual vegetation responses using field optical sampling to obtain detailed information on surface conditions not possible from satellite observations alone.

  1. The divining root: moisture-driven responses of roots at the micro- and macro-scale.

    PubMed

    Robbins, Neil E; Dinneny, José R

    2015-04-01

    Water is fundamental to plant life, but the mechanisms by which plant roots sense and respond to variations in water availability in the soil are poorly understood. Many studies of responses to water deficit have focused on large-scale effects of this stress, but have overlooked responses at the sub-organ or cellular level that give rise to emergent whole-plant phenotypes. We have recently discovered hydropatterning, an adaptive environmental response in which roots position new lateral branches according to the spatial distribution of available water across the circumferential axis. This discovery illustrates that roots are capable of sensing and responding to water availability at spatial scales far lower than those normally studied for such processes. This review will explore how roots respond to water availability with an emphasis on what is currently known at different spatial scales. Beginning at the micro-scale, there is a discussion of water physiology at the cellular level and proposed sensory mechanisms cells use to detect osmotic status. The implications of these principles are then explored in the context of cell and organ growth under non-stress and water-deficit conditions. Following this, several adaptive responses employed by roots to tailor their functionality to the local moisture environment are discussed, including patterning of lateral root development and generation of hydraulic barriers to limit water loss. We speculate that these micro-scale responses are necessary for optimal functionality of the root system in a heterogeneous moisture environment, allowing for efficient water uptake with minimal water loss during periods of drought. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a Critical Zone Observatory

    DOE PAGES

    Shi, Yuning; Eissenstat, David M.; He, Yuting; ...

    2018-05-12

    Terrestrial carbon processes are affected by soil moisture, soil temperature, nitrogen availability and solar radiation, among other factors. Most of the current ecosystem biogeochemistry models represent one point in space, and have limited characterization of hydrologic processes. Therefore these models can neither resolve the topographically driven spatial variability of water, energy, and nutrient, nor their effects on carbon processes. A spatially-distributed land surface hydrologic biogeochemistry model, Flux-PIHM-BGC, is developed by coupling the Biome-BGC model with a physically-based land surface hydrologic model, Flux-PIHM. In the coupled system, each Flux-PIHM model grid couples a 1-D Biome-BGC model. In addition, a topographic solarmore » radiation module and an advection-driven nitrogen transport module are added to represent the impact of topography on nutrient transport and solar energy distribution. Because Flux-PIHM is able to simulate lateral groundwater flow and represent the land surface heterogeneities caused by topography, Flux-PIHM-BGC is capable of simulating the complex interaction among water, energy, nutrient, and carbon in time and space. The Flux-PIHM-BGC model is tested at the Susquehanna/Shale Hills Critical Zone Observatory. Model results show that distributions of carbon and nitrogen stocks and fluxes are strongly affected by topography and landscape position, and tree growth is nitrogen limited. The predicted aboveground and soil carbon distributions generally agree with the macro patterns observed. Although the model underestimates the spatial variation, the predicted watershed average values are close to the observations. Lastly, the coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.« less

  3. Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a Critical Zone Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yuning; Eissenstat, David M.; He, Yuting

    Terrestrial carbon processes are affected by soil moisture, soil temperature, nitrogen availability and solar radiation, among other factors. Most of the current ecosystem biogeochemistry models represent one point in space, and have limited characterization of hydrologic processes. Therefore these models can neither resolve the topographically driven spatial variability of water, energy, and nutrient, nor their effects on carbon processes. A spatially-distributed land surface hydrologic biogeochemistry model, Flux-PIHM-BGC, is developed by coupling the Biome-BGC model with a physically-based land surface hydrologic model, Flux-PIHM. In the coupled system, each Flux-PIHM model grid couples a 1-D Biome-BGC model. In addition, a topographic solarmore » radiation module and an advection-driven nitrogen transport module are added to represent the impact of topography on nutrient transport and solar energy distribution. Because Flux-PIHM is able to simulate lateral groundwater flow and represent the land surface heterogeneities caused by topography, Flux-PIHM-BGC is capable of simulating the complex interaction among water, energy, nutrient, and carbon in time and space. The Flux-PIHM-BGC model is tested at the Susquehanna/Shale Hills Critical Zone Observatory. Model results show that distributions of carbon and nitrogen stocks and fluxes are strongly affected by topography and landscape position, and tree growth is nitrogen limited. The predicted aboveground and soil carbon distributions generally agree with the macro patterns observed. Although the model underestimates the spatial variation, the predicted watershed average values are close to the observations. Lastly, the coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.« less

  4. Agricultural Decision Support Through Robust Assimilation of Satellite Derived Soil Moisture Estimates

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cruise, J.; Mecikalski, J. R.

    2012-12-01

    Soil Moisture is a key component in the hydrological process, affects surface and boundary layer energy fluxes and is the driving factor in agricultural production. Multiple in situ soil moisture measuring instruments such as Time-domain Reflectrometry (TDR), Nuclear Probes etc. are in use along with remote sensing methods like Active and Passive Microwave (PM) sensors. In situ measurements, despite being more accurate, can only be obtained at discrete points over small spatial scales. Remote sensing estimates, on the other hand, can be obtained over larger spatial domains with varying spatial and temporal resolutions. Soil moisture profiles derived from satellite based thermal infrared (TIR) imagery can overcome many of the problems associated with laborious in-situ observations over large spatial domains. An area where soil moisture observation and assimilation is receiving increasing attention is agricultural crop modeling. This study revolves around the use of the Decision Support System for Agrotechnology Transfer (DSSAT) crop model to simulate corn yields under various forcing scenarios. First, the model was run and calibrated using observed precipitation and model generated soil moisture dynamics. Next, the modeled soil moisture was updated using estimates derived from satellite based TIR imagery and the Atmospheric Land Exchange Inverse (ALEXI) model. We selected three climatically different locations to test the concept. Test Locations were selected to represent varied climatology. Bell Mina, Alabama - South Eastern United States, representing humid subtropical climate. Nabb, Indiana - Mid Western United States, representing humid continental climate. Lubbok, Texas - Southern United States, representing semiarid steppe climate. A temporal (2000-2009) correlation analysis of the soil moisture values from both DSSAT and ALEXI were performed and validated against the Land Information System (LIS) soil moisture dataset. The results clearly show strong correlation (R = 73%) between ALEXI and DSSAT at Bell Mina. At Nabb and Lubbock the correlation was 50-60%. Further, multiple experiments were conducted for each location: a) a DSSAT rain-fed 10 year sequential run forced with daymet precipitation; b) a DSSAT sequential run with no precipitation data; and c) a DSSAT run forced with ALEXI soil moisture estimates alone. The preliminary results of all the experiments are quantified through soil moisture correlations and yield comparisons. In general, the preliminary results strongly suggest that DSSAT forced with ALEXI can provide significant information especially at locations where no significant precipitation data exists.

  5. Significance of the air moisture source on the stable isotope composition of the precipitation in Hungary

    NASA Astrophysics Data System (ADS)

    Czuppon, György; Bottyán, Emese; Krisztina, Krisztina; Weidinger, Tamás; Haszpra, László

    2017-04-01

    In the last few years, the analysis of backward trajectories has become a common use for identifying moisture uptake regions for the precipitation of various regions. Hungary is influenced by meteorological (climatological) conditions of Atlantic, Mediterranean and North/East regions therefore this area is sensitive to detect changes in the atmospheric circulation. In this study we present the result of the investigation about the determination of air moisture source regions for six localities in Hungary for more than four years. To reconstruct the path of the air moisture from the source region, we ran the NOAA HYSPLIT trajectory model using the GDAS database with 1° spatial and 6 hours temporal resolution for every precipitation event, for heights of 500, 1500 and 3000 m. We determined the location where water vapour entered into the atmosphere by calculating specific humidity along the trajectories. Five possible moisture source regions for precipitation were defined: Atlantic, North European, East European, Mediterranean and continental (local/convective). Additionally, this study evaluates the regional differences in stable isotope compositions of precipitation based on hydrogen and oxygen isotope analyses of daily rainwater samples. Stable isotope variations show systematic and significant differences between the regions. The variability of moisture source shows also systematic seasonal and spatial distribution. Interestingly, the most dominant among the identified source regions in all stations is the Mediterranean area; while the second is the Atlantic region. The ratio of the precipitations originated in Eastern and Northern Europe seem to correlate with the geographic position of the meteorological station. Furthermore, the ratios of the different moisture sources show intra annual variability. In each location, the amount weighted d-excess values were calculated for the identified moisture sources. The precipitation originated in the Mediterranean regions has systematically higher d-excess values than that originated in the Atlantic sector, independently from the absolute value which apparently changes from station to station. The precipitation fraction attributed to the Northern European sector has also relatively elevated d-excess values that might be related to the cold-season domination of moisture transport from this region. Thanks for the financial support of the National Research, Development and Innovation Office (project No. OTKA NK 101664, SNN118205/ARRS:N1-0054, PD 121387). György Czuppon also thanks for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

  6. A new Downscaling Approach for SMAP, SMOS and ASCAT by predicting sub-grid Soil Moisture Variability based on Soil Texture

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Rötzer, K.; Bogena, H. R.; Vereecken, H.

    2017-12-01

    Improving the coarse spatial resolution of global soil moisture products from SMOS, SMAP and ASCAT is currently an up-to-date topic. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. A method has been developed that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. Here, we predict for each SMOS, SMAP and ASCAT grid cell the sub-grid soil moisture variability based on the SoilGrids1km data set. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean. The resulting data set provides important information for downscaling coarse soil moisture observations of the SMOS, SMAP and ASCAT missions. Downscaling SMAP data by a field capacity proxy indicates adequate accuracy of the sub-grid soil moisture patterns.

  7. The suitability of remotely sensed soil moisture for improving operational flood forecasting

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; de Roo, A.; de Jong, S. M.; Bierkens, M. F. P.

    2014-06-01

    We evaluate the added value of assimilated remotely sensed soil moisture for the European Flood Awareness System (EFAS) and its potential to improve the prediction of the timing and height of the flood peak and low flows. EFAS is an operational flood forecasting system for Europe and uses a distributed hydrological model (LISFLOOD) for flood predictions with lead times of up to 10 days. For this study, satellite-derived soil moisture from ASCAT (Advanced SCATterometer), AMSR-E (Advanced Microwave Scanning Radiometer - Earth Observing System) and SMOS (Soil Moisture and Ocean Salinity) is assimilated into the LISFLOOD model for the Upper Danube Basin and results are compared to assimilation of discharge observations only. To assimilate soil moisture and discharge data into the hydrological model, an ensemble Kalman filter (EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite products, is included to ensure increased performance of the EnKF. For the validation, additional discharge observations not used in the EnKF are used as an independent validation data set. Our results show that the accuracy of flood forecasts is increased when more discharge observations are assimilated; the mean absolute error (MAE) of the ensemble mean is reduced by 35%. The additional inclusion of satellite data results in a further increase of the performance: forecasts of baseflows are better and the uncertainty in the overall discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are predicted with a higher accuracy and the continuous ranked probability score (CRPS) shows a performance increase of 5-10% on average, compared to assimilation of discharge only. When soil moisture data is used, the timing errors in the flood predictions are decreased especially for shorter lead times and imminent floods can be forecasted with more skill. The number of false flood alerts is reduced when more observational data is assimilated into the system. The added values of the satellite data is largest when these observations are assimilated in combination with distributed discharge observations. These results show the potential of remotely sensed soil moisture observations to improve near-real time flood forecasting in large catchments.

  8. The role of the antecedent soil moisture condition on the distributed hydrologic modelling of the Toce alpine basin floods.

    NASA Astrophysics Data System (ADS)

    Ravazzani, G.; Montaldo, N.; Mancini, M.; Rosso, R.

    2003-04-01

    Event-based hydrologic models need the antecedent soil moisture condition, as critical boundary initial condition for flood simulation. Land-surface models (LSMs) have been developed to simulate mass and energy transfers, and to update the soil moisture condition through time from the solution of water and energy balance equations. They are recently used in distributed hydrologic modeling for flood prediction systems. Recent developments have made LSMs more complex by inclusion of more processes and controlling variables, increasing parameter number and uncertainty of their estimates. This also led to increasing of computational burden and parameterization of the distributed hydrologic models. In this study we investigate: 1) the role of soil moisture initial conditions in the modeling of Alpine basin floods; 2) the adequate complexity level of LSMs for the distributed hydrologic modeling of Alpine basin floods. The Toce basin is the case study; it is located in the North Piedmont (Italian Alps), and it has a total drainage area of 1534 km2 at Candoglia section. Three distributed hydrologic models of different level of complexity are developed and compared: two (TDLSM and SDLSM) are continuous models, one (FEST02) is an event model based on the simplified SCS-CN method for rainfall abstractions. In the TDLSM model a two-layer LSM computes both saturation and infiltration excess runoff, and simulates the evolution of the water table spatial distribution using the topographic index; in the SDLSM model a simplified one-layer distributed LSM only computes hortonian runoff, and doesn’t simulate the water table dynamic. All the three hydrologic models simulate the surface runoff propagation through the Muskingum-Cunge method. TDLSM and SDLSM models have been applied for the two-year (1996 and 1997) simulation period, during which two major floods occurred in the November 1996 and in the June 1997. The models have been calibrated and tested comparing simulated and observed hydrographs at Candoglia. Sensitivity analysis of the models to significant LSM parameters were also performed. The performances of the three models in the simulation of the two major floods are compared. Interestingly, the results indicate that the SDLSM model is able to sufficiently well predict the major floods of this Alpine basin; indeed, this model is a good compromise between the over-parameterized and too complex TDLSM model and the over-simplified FEST02 model.

  9. Direction of unsaturated flow in a homogeneous and isotropic hillslope

    USGS Publications Warehouse

    Lu, Ning; Kaya, Basak Sener; Godt, Jonathan W.

    2011-01-01

    The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs.

  10. Direction of unsaturated flow in a homogeneous and isotropic hillslope

    USGS Publications Warehouse

    Lu, N.; Kaya, B.S.; Godt, J.W.

    2011-01-01

    The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs. Copyright 2011 by the American Geophysical Union.

  11. Measuring and Modeling the Effect of Surface Moisture on the Spectral Reflectance of Coastal Beach Sand

    PubMed Central

    Nolet, Corjan; Poortinga, Ate; Roosjen, Peter; Bartholomeus, Harm; Ruessink, Gerben

    2014-01-01

    Surface moisture is an important supply limiting factor for aeolian sand transport, which is the primary driver of coastal dune development. As such, it is critical to account for the control of surface moisture on available sand for dune building. Optical remote sensing has the potential to measure surface moisture at a high spatio-temporal resolution. It is based on the principle that wet sand appears darker than dry sand: it is less reflective. The goals of this study are (1) to measure and model reflectance under controlled laboratory conditions as function of wavelength () and surface moisture () over the optical domain of 350–2500 nm, and (2) to explore the implications of our laboratory findings for accurately mapping the distribution of surface moisture under natural conditions. A laboratory spectroscopy experiment was conducted to measure spectral reflectance (1 nm interval) under different surface moisture conditions using beach sand. A non-linear increase of reflectance upon drying was observed over the full range of wavelengths. Two models were developed and tested. The first model is grounded in optics and describes the proportional contribution of scattering and absorption of light by pore water in an unsaturated sand matrix. The second model is grounded in soil physics and links the hydraulic behaviour of pore water in an unsaturated sand matrix to its optical properties. The optical model performed well for volumetric moisture content 24% ( 0.97), but underestimated reflectance for between 24–30% ( 0.92), most notable around the 1940 nm water absorption peak. The soil-physical model performed very well ( 0.99) but is limited to 4% 24%. Results from a field experiment show that a short-wave infrared terrestrial laser scanner ( = 1550 nm) can accurately relate surface moisture to reflectance (standard error 2.6%), demonstrating its potential to derive spatially extensive surface moisture maps of a natural coastal beach. PMID:25383709

  12. Summer spatial patterning of chukars in relation to free water in Western Utah

    USGS Publications Warehouse

    Larsen, R.T.; Bissonette, J.A.; Flinders, J.T.; Hooten, M.B.; Wilson, T.L.

    2010-01-01

    Free water is considered important to wildlife in arid regions. In the western United States, thousands of water developments have been built to benefit wildlife in arid landscapes. Agencies and researchers have yet to clearly demonstrate their effectiveness. We combined a spatial analysis of summer chukar (Alectoris chukar) covey locations with dietary composition analysis in western Utah. Our specific objectives were to determine if chukars showed a spatial pattern that suggested association with free water in four study areas and to document summer dietary moisture content in relation to average distance from water. The observed data for the Cedar Mountains study area fell within the middle of the random mean distance to water distribution suggesting no association with free water. The observed mean distance to water for the other three areas was much closer than expected compared to a random spatial process, suggesting the importance of free water to these populations. Dietary moisture content of chukar food items from the Cedar Mountains (59%) was significantly greater (P < 0.05) than that of birds from Box Elder (44%) and Keg-Dugway (44%). Water developments on the Cedar Mountains are likely ineffective for chukars. Spatial patterns on the other areas, however, suggest association with free water and our results demonstrate the need for site-specific considerations. Researchers should be aware of the potential to satisfy water demand with pre-formed and metabolic water for a variety of species in studies that address the effects of wildlife water developments. We encourage incorporation of spatial structure in model error components in future ecological research. ?? Springer Science+Business Media B.V. 2009.

  13. Advances in Assimilation of Satellite-Based Passive Microwave Observations for Soil-Moisture Estimation

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J. M.; Pauwels, Valentijn; Reichle, Rolf H.; Draper, Clara; Koster, Randy; Liu, Qing

    2012-01-01

    Satellite-based microwave measurements have long shown potential to provide global information about soil moisture. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS, [1]) mission as well as the future National Aeronautics and Space Administration (NASA) Soil Moisture Active and Passive (SMAP, [2]) mission measure passive microwave emission at L-band frequencies, at a relatively coarse (40 km) spatial resolution. In addition, SMAP will measure active microwave signals at a higher spatial resolution (3 km). These new L-band missions have a greater sensing depth (of -5cm) compared with past and present C- and X-band microwave sensors. ESA currently also disseminates retrievals of SMOS surface soil moisture that are derived from SMOS brightness temperature observations and ancillary data. In this research, we address two major challenges with the assimilation of recent/future satellite-based microwave measurements: (i) assimilation of soil moisture retrievals versus brightness temperatures for surface and root-zone soil moisture estimation and (ii) scale-mismatches between satellite observations, models and in situ validation data.

  14. The Effects of Implementing TopModel Concepts in the Noah Model

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, C. D.; Houser, Paul R. (Technical Monitor)

    2002-01-01

    Topographic effects on runoff generation have been documented observationally (e.g., Dunne and Black, 1970) and are the subject of the physically based rainfall-runoff model TOPMODEL (Beven and Kirkby, 1979; Beven, 1986a;b) and its extensions, which incorporate variable soil transmissivity effects (Sivapalan et al, 1987, Wood et al., 1988; 1990). These effects have been shown to exert significant control over the spatial distribution of runoff, soil moisture and evapotranspiration, and by extension, the latent and sensible heat fluxes

  15. Micro-pulse, differential absorption lidar (dial) network for measuring the spatial and temporal distribution of water vapor in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Spuler, Scott; Repasky, Kevin; Hayman, Matt; Nehrir, Amin

    2018-04-01

    The National Center for Atmospheric Research (NCAR) and Montana State Univeristy (MSU) are developing a test network of five micro-pulse differential absorption lidars to continuously measure high-vertical-resolution water vapor in the lower atmosphere. The instruments are accurate, yet low-cost; operate unattended, and eye-safe - all key features to enable the larger network needed to characterize atmospheric moisture variability which influences important processes related to weather and climate.

  16. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    PubMed

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat heterogeneity. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Scintillometer networks for calibration and validation of energy balance and soil moisture remote sensing algorithms

    NASA Astrophysics Data System (ADS)

    Hendrickx, Jan M. H.; Kleissl, Jan; Gómez Vélez, Jesús D.; Hong, Sung-ho; Fábrega Duque, José R.; Vega, David; Moreno Ramírez, Hernán A.; Ogden, Fred L.

    2007-04-01

    Accurate estimation of sensible and latent heat fluxes as well as soil moisture from remotely sensed satellite images poses a great challenge. Yet, it is critical to face this challenge since the estimation of spatial and temporal distributions of these parameters over large areas is impossible using only ground measurements. A major difficulty for the calibration and validation of operational remote sensing methods such as SEBAL, METRIC, and ALEXI is the ground measurement of sensible heat fluxes at a scale similar to the spatial resolution of the remote sensing image. While the spatial length scale of remote sensing images covers a range from 30 m (LandSat) to 1000 m (MODIS) direct methods to measure sensible heat fluxes such as eddy covariance (EC) only provide point measurements at a scale that may be considerably smaller than the estimate obtained from a remote sensing method. The Large Aperture scintillometer (LAS) flux footprint area is larger (up to 5000 m long) and its spatial extent better constraint than that of EC systems. Therefore, scintillometers offer the unique possibility of measuring the vertical flux of sensible heat averaged over areas comparable with several pixels of a satellite image (up to about 40 Landsat thermal pixels or about 5 MODIS thermal pixels). The objective of this paper is to present our experiences with an existing network of seven scintillometers in New Mexico and a planned network of three scintillometers in the humid tropics of Panama and Colombia.

  18. Spatial and temporal structure within moisture measurements of a stormwater control system

    EPA Science Inventory

    Moisture sensing is a mature soil research technology commonly applied to agriculture. Such sensors may be appropriated for use in novel stormwater research applications. Knowledge of moisture (with respect to space and time) in infiltration based stormwater control measures (SCM...

  19. Improving Soil Moisture Estimation through the Joint Assimilation of SMOS and GRACE Satellite Observations

    NASA Technical Reports Server (NTRS)

    Girotto, Manuela

    2018-01-01

    Observations from recent soil moisture dedicated missions (e.g. SMOS or SMAP) have been used in innovative data assimilation studies to provide global high spatial (i.e., approximately10-40 km) and temporal resolution (i.e., daily) soil moisture profile estimates from microwave brightness temperature observations. These missions are only sensitive to near-surface soil moisture 0-5 cm). In contrast, the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage (TWS) column but, it is characterized by low spatial (i.e., 150,000 km2) and temporal (i.e., monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). In this presentation I will review benefits and drawbacks associated to the assimilation of both types of observations. In particular, I will illustrate the benefits and drawbacks of their joint assimilation for the purpose of improving the entire profile of soil moisture (i.e., surface and deeper water storages).

  20. Estimation of improved resolution soil moisture in vegetated areas using passive AMSR-E data

    NASA Astrophysics Data System (ADS)

    Moradizadeh, Mina; Saradjian, Mohammad R.

    2018-03-01

    Microwave remote sensing provides a unique capability for soil parameter retrievals. Therefore, various soil parameters estimation models have been developed using brightness temperature (BT) measured by passive microwave sensors. Due to the low resolution of satellite microwave radiometer data, the main goal of this study is to develop a downscaling approach to improve the spatial resolution of soil moisture estimates with the use of higher resolution visible/infrared sensor data. Accordingly, after the soil parameters have been obtained using Simultaneous Land Parameters Retrieval Model algorithm, the downscaling method has been applied to the soil moisture estimations that have been validated against in situ soil moisture data. Advance Microwave Scanning Radiometer-EOS BT data in Soil Moisture Experiment 2003 region in the south and north of Oklahoma have been used to this end. Results illustrated that the soil moisture variability is effectively captured at 5 km spatial scales without a significant degradation of the accuracy.

  1. Feasibility analysis of using inverse modeling for estimating natural groundwater recharge from a large-scale soil moisture monitoring network

    NASA Astrophysics Data System (ADS)

    Wang, Tiejun; Franz, Trenton E.; Yue, Weifeng; Szilagyi, Jozsef; Zlotnik, Vitaly A.; You, Jinsheng; Chen, Xunhong; Shulski, Martha D.; Young, Aaron

    2016-02-01

    Despite the importance of groundwater recharge (GR), its accurate estimation still remains one of the most challenging tasks in the field of hydrology. In this study, with the help of inverse modeling, long-term (6 years) soil moisture data at 34 sites from the Automated Weather Data Network (AWDN) were used to estimate the spatial distribution of GR across Nebraska, USA, where significant spatial variability exists in soil properties and precipitation (P). To ensure the generality of this study and its potential broad applications, data from public domains and literature were used to parameterize the standard Hydrus-1D model. Although observed soil moisture differed significantly across the AWDN sites mainly due to the variations in P and soil properties, the simulations were able to capture the dynamics of observed soil moisture under different climatic and soil conditions. The inferred mean annual GR from the calibrated models varied over three orders of magnitude across the study area. To assess the uncertainties of the approach, estimates of GR and actual evapotranspiration (ETa) from the calibrated models were compared to the GR and ETa obtained from other techniques in the study area (e.g., remote sensing, tracers, and regional water balance). Comparison clearly demonstrated the feasibility of inverse modeling and large-scale (>104 km2) soil moisture monitoring networks for estimating GR. In addition, the model results were used to further examine the impacts of climate and soil on GR. The data showed that both P and soil properties had significant impacts on GR in the study area with coarser soils generating higher GR; however, different relationships between GR and P emerged at the AWDN sites, defined by local climatic and soil conditions. In general, positive correlations existed between annual GR and P for the sites with coarser-textured soils or under wetter climatic conditions. With the rapidly expanding soil moisture monitoring networks around the globe, this study may have important applications in aiding water resources management in different regions.

  2. Spatiotemporal Variability of Soil Hydraulic Properties from Field Data and Remote Sensing in the Walnut Gulch Experimental Watershed

    NASA Astrophysics Data System (ADS)

    Becker, R.; Gebremichael, M.; Marker, M.

    2015-12-01

    Soil moisture is one of the main input variables for hydrological models. However due to the high spatial and temporal variability of soil properties it is often difficult to obtain accurate soil information at the required resolution. The new satellite SMAP promises to deliver soil moisture information at higher resolutions and could therefore improve the results of hydrological models. Nevertheless it still has to be investigated how precisely the SMAP soil moisture data can be used to delineate rainfall-runoff generation processes and if SMAP imagery can significantly improve the results of surface runoff models. Important parameters to understand the spatiotemporal distribution of soil humidity are infiltration and hydraulic conductivities apart from soil texture and macrostructure. During the SMAPVEX15-field campaign data on hydraulic conductivity and infiltration rates is collected in the Walnut Gulch Experimental Watershed (WGEW) in Southeastern Arizona in order to analyze the spatiotemporal variability of soil hydraulic properties. A Compact Constant Head Permeameter is used for in situ measurements of saturated hydraulic conductivity within the soil layers and a Hood Infiltrometer is used to determine infiltration rates at the undisturbed soil surface. Sampling sites were adjacent to the USDA-ARS meteorological and soil moisture measuring sites in the WGEW to take advantage of the long-term database of soil and climate data. Furthermore a sample plot of 3x3km was selected, where the spatial variability of soil hydraulic properties within a SMAP footprint was investigated. The results of the ground measurement based analysis are then compared with the remote sensing data derived from SMAP and aircraft-based microwave data to determine how well these spatiotemporal variations are captured by the remotely sensed data with the final goal of evaluating the use of future satellite soil moisture products for the improvement of rainfall runoff models. The results reveal several interesting features on the spatiotemporal variability of soil moisture at multiple scales, and the capabilities and limitations of remote sensing derived products in reproducing them.

  3. Joint Assimilation of SMOS Brightness Temperature and GRACE Terrestrial Water Storage Observations for Improved Soil Moisture Estimation

    NASA Technical Reports Server (NTRS)

    Girotto, Manuela; Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Rodell, Matthew

    2017-01-01

    Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0 - 5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.

  4. Joint assimilation of SMOS brightness temperature and GRACE terrestrial water storage observations for improved soil moisture estimation

    NASA Astrophysics Data System (ADS)

    Girotto, M.; Reichle, R. H.; De Lannoy, G.; Rodell, M.

    2017-12-01

    Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0-5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.

  5. Remote sensing of soil moisture using airborne hyperspectral data

    USGS Publications Warehouse

    Finn, M.; Lewis, M.; Bosch, D.; Giraldo, Mario; Yamamoto, K.; Sullivan, D.; Kincaid, R.; Luna, R.; Allam, G.; Kvien, Craig; Williams, M.

    2011-01-01

    Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.

  6. Remote sensing of soil moisture using airborne hyperspectral data

    USGS Publications Warehouse

    Finn, Michael P.; Lewis, Mark (David); Bosch, David D.; Giraldo, Mario; Yamamoto, Kristina H.; Sullivan, Dana G.; Kincaid, Russell; Luna, Ronaldo; Allam, Gopala Krishna; Kvien, Craig; Williams, Michael S.

    2011-01-01

    Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R 2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.

  7. Modelling of the L-band brightness temperatures measured with ELBARA III radiometer on Bubnow wetland

    NASA Astrophysics Data System (ADS)

    Gluba, Lukasz; Sagan, Joanna; Lukowski, Mateusz; Szlazak, Radoslaw; Usowicz, Boguslaw

    2017-04-01

    Microwave radiometry has become the main tool for investigating soil moisture (SM) with remote sensing methods. ESA - SMOS (Soil Moisture and Ocean Salinity) satellite operating at L-band provides global distribution of soil moisture. An integral part of SMOS mission are calibration and validation activities involving measurements with ELBARA III which is an L-band microwave passive radiometer. It is done in order to improve soil moisture retrievals - make them more time-effective and accurate. The instrument is located at Bubnow test-site, on the border of cultivated field, fallow, meadow and natural wetland being a part of Polesie National Park (Poland). We obtain both temporal and spatial dependences of brightness temperatures for varied types of land covers with the ELBARA III directed at different azimuths. Soil moisture is retrieved from brightness temperature using L-band Microwave Emission of the Biosphere (L-MEB) model, the same as currently used radiative transfer model for SMOS. Parametrization of L-MEB, as well as input values are still under debate. We discuss the results of SM retrievals basing on data obtained during first year of the radiometer's operation. We analyze temporal dependences of retrieved SM for one-parameter (SM), two-parameter (SM, τ - optical depth) and three-parameter (SM, τ, Hr - roughness parameter) retrievals, as well as spatial dependences for specific dates. Special case of Simplified Roughness Parametrization, combining the roughness parameter and optical depth, is considered. L-MEB processing is supported by the continuous measurements of soil moisture and temperature obtained from nearby agrometeorological station, as well as studies on the soil granulometric composition of the Bubnow test-site area. Furthermore, for better estimation of optical depth, the satellite-derived Normalized Difference Vegetation Index (NDVI) was employed, supported by measured in situ vegetation parameters (such as Leaf Area Index and Vegetation Water Content) obtained during the field campaigns. The values of NDVI around ELBARA III radiometer are provided by Sentinel-2 satellite with approximately 10 m spatial resolution and average 10 days of time interval within studied period of time. The work was partially funded under two ESA projects: 1) "ELBARA_PD (Penetration Depth)" No. 4000107897/13/NL/KML, funded by the Government of Poland through an ESA-PECS contract (Plan for European Cooperating States). 2) "Technical Support for the fabrication and deployment of the radiometer ELBARA-III in Bubnow, Poland" No. 4000113360/15/NL/FF/gp.

  8. Spatial variability and its main controlling factors of the permafrost soil-moisture on the northern-slope of Bayan Har Mountains in Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Cao, W.; Sheng, Y.

    2017-12-01

    The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions. It is very critical to protect the alpine ecology and hydrologic cycle in Qinghai-Tibet Plateau. Especially, it becomes one of the key problems to reveal the spatial-temporal variability of soil moisture movement and its main influence factors in earth system science. Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study. The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree (CART) is adopted to identify the main controlling factors influencing the soil moisture movement. And the relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis (CCA). The results show that: 1) the change of the soil moisture on the permafrost slope is divided into 4 stages, including the freezing stability phase, the rapid thawing phase, the thawing stability phase and the fast freezing phase; 2) this greatly enhances the horizontal flow in the freezing period due to the terrain slope and the freezing-thawing process. Vertical migration is the mainly form of the soil moisture movement. It leads to that the soil-moisture content in the up-slope is higher than that in the down-slope. On the contrary, the soil-moisture content in the up-slope is lower than that in the down-slope during the melting period; 3) the main environmental factors which affect the slope-permafrost soil-moisture are elevation, soil texture, soil temperature and vegetation coverage. But there are differences in the impact factors of the soil moisture in different freezing-thawing stages; 4) the main factors that affect the slope-permafrost soil-moisture at the shallow depth of 0-20cm are slope, elevation and vegetation coverage. And the main factors influencing the soil moisture at the middle and lower depth are complex.

  9. Soil moisture mapping in torrential headwater catchments using a local interpolation method (Draix-Bléone field observatory, South Alps, France)

    NASA Astrophysics Data System (ADS)

    Mallet, Florian; Marc, Vincent; Douvinet, Johnny; Rossello, Philippe; Le Bouteiller, Caroline; Malet, Jean-Philippe

    2016-04-01

    Soil moisture is a key parameter that controls runoff processes at the watershed scale. It is characterized by a high area and time variability, controlled by site properties such as soil texture, topography, vegetation cover and climate. Several recent studies showed that changes in water storage was a key variable to understand the distribution of water residence time and the shape of flood's hydrograph (McDonnell and Beven, 2014; Davies and Beven, 2015). Knowledge of high frequency soil moisture variation across scales is a prerequisite for better understanding the areal distribution of runoff generation. The present study has been carried out in the torrential Draix-Bléone's experimental catchments, where water storage processes are expected to occur mainly on the first meter of soil. The 0,86 km2 Laval marly torrential watershed has a peculiar hydrological behavior during flood events with specific discharge among the highest in the world. To better understand the Laval internal behavior and to identify explanatory parameters of runoff generation, additional field equipment has been setup in sub-basins with various land use and morphological characteristics. From fall 2015 onwards this new instrumentation helped to supplement the routine measurements (rainfall rate, streamflow) and to develop a network of high frequency soil water content sensors (moisture probes, mini lysimeter). Data collected since early May and complementary measurement campaigns (itinerant soil moisture measurements, geophysical measurements) make it now possible to propose a soil water content mapping procedure. We use the LISDQS spatial extrapolation model based on a local interpolation method (Joly et. al, 2008). The interpolation is carried out from different geographical variables which are derived from a high resolution DEM (1m LIDAR) and a land cover image. Unlike conventional interpolation procedure, this method takes into account local forcing parameters such as slope, aspect, soil type or land use. Eventually, the model gives insight into a catchment scale distributed high frequency soil moisture dynamics. This analysis is also used to identify the relative impacts of the morphological determinants on soil moisture content. References : McDonnell, J.J. and K. Beven, 2014. The future of hydrological science: A (common) path forward ? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph. Water Resources Research, 50, 5342-5350. Davies A. C. Davies and K. Beven, 2015. Hysteresis and scale in catchment storage, flow and transport. Hydrological Processes, Volume 29, Issue 16 : 3604-3615. Joly D., Brossard T., Cardot H., Cavailhes J., Hilal M., Wavresky P., 2008. Interpolation par recherche d'information locale. Climatologie, Volume 5 : 27-47.

  10. Benchmarking a soil moisture data assimilation system for agricultural drought monitoring

    USDA-ARS?s Scientific Manuscript database

    Agricultural drought is defined as a shortage of moisture in the root zone of plants. Recently available satellite-based remote sensing data have accelerated development of drought early warning system by providing spatially continuous soil moisture information repeatedly at short-term interval. Non...

  11. Temporal Dynamics and Persistence of Spatial Patterns: from Groundwater to Soil Moisture to Transpiration

    NASA Astrophysics Data System (ADS)

    Blume, T.; Hassler, S. K.; Weiler, M.

    2017-12-01

    Hydrological science still struggles with the fact that while we wish for spatially continuous images or movies of state variables and fluxes at the landscape scale, most of our direct measurements are point measurements. To date regional measurements resolving landscape scale patterns can only be obtained by remote sensing methods, with the common drawback that they remain near the earth surface and that temporal resolution is generally low. However, distributed monitoring networks at the landscape scale provide the opportunity for detailed and time-continuous pattern exploration. Even though measurements are spatially discontinuous, the large number of sampling points and experimental setups specifically designed for the purpose of landscape pattern investigation open up new avenues of regional hydrological analyses. The CAOS hydrological observatory in Luxembourg offers a unique setup to investigate questions of temporal stability, pattern evolution and persistence of certain states. The experimental setup consists of 45 sensor clusters. These sensor clusters cover three different geologies, two land use classes, five different landscape positions, and contrasting aspects. At each of these sensor clusters three soil moisture/soil temperature profiles, basic climate variables, sapflow, shallow groundwater, and stream water levels were measured continuously for the past 4 years. We will focus on characteristic landscape patterns of various hydrological state variables and fluxes, studying their temporal stability on the one hand and the dependence of patterns on hydrological states on the other hand (e.g. wet vs dry). This is extended to time-continuous pattern analysis based on time series of spatial rank correlation coefficients. Analyses focus on the absolute values of soil moisture, soil temperature, groundwater levels and sapflow, but also investigate the spatial pattern of the daily changes of these variables. The analysis aims at identifying hydrologic signatures of the processes or landscape characteristics acting as major controls. While groundwater, soil water and transpiration are closely linked by the water cycle, they are controlled by different processes and we expect this to be reflected in interlinked but not necessarily congruent patterns and responses.

  12. The Influence of Soil Moisture and Wind on Rainfall Distribution and Intensity in Florida

    NASA Technical Reports Server (NTRS)

    Baker, R. David; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo

    1998-01-01

    Land surface processes play a key role in water and energy budgets of the hydrological cycle. For example, the distribution of soil moisture will affect sensible and latent heat fluxes, which in turn may dramatically influence the location and intensity of precipitation. However, mean wind conditions also strongly influence the distribution of precipitation. The relative importance of soil moisture and wind on rainfall location and intensity remains uncertain. Here, we examine the influence of soil moisture distribution and wind distribution on precipitation in the Florida peninsula using the 3-D Goddard Cumulus Ensemble (GCE) cloud model Coupled with the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. This study utilizes data collected on 27 July 1991 in central Florida during the Convection and Precipitation Electrification Experiment (CaPE). The idealized numerical experiments consider a block of land (the Florida peninsula) bordered on the east and on the west by ocean. The initial soil moisture distribution is derived from an offline PLACE simulation, and the initial environmental wind profile is determined from the CaPE sounding network. Using the factor separation technique, the precise contribution of soil moisture and wind to rainfall distribution and intensity is determined.

  13. The impact of fog on soil moisture dynamics in the Namib Desert

    NASA Astrophysics Data System (ADS)

    Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Vogt, Roland; Li, Lin; Seely, Mary K.

    2018-03-01

    Soil moisture is a crucial component supporting vegetation dynamics in drylands. Despite increasing attention on fog in dryland ecosystems, the statistical characterization of fog distribution and how fog affects soil moisture dynamics have not been seen in literature. To this end, daily fog records over two years (Dec 1, 2014-Nov 1, 2016) from three sites within the Namib Desert were used to characterize fog distribution. Two sites were located within the Gobabeb Research and Training Center vicinity, the gravel plains and the sand dunes. The third site was located at the gravel plains, Kleinberg. A subset of the fog data during rainless period was used to investigate the effect of fog on soil moisture. A stochastic modeling framework was used to simulate the effect of fog on soil moisture dynamics. Our results showed that fog distribution can be characterized by a Poisson process with two parameters (arrival rate λ and average depth α (mm)). Fog and soil moisture observations from eighty (Aug 19, 2015-Nov 6, 2015) rainless days indicated a moderate positive relationship between soil moisture and fog in the Gobabeb gravel plains, a weaker relationship in the Gobabeb sand dunes while no relationship was observed at the Kleinberg site. The modeling results suggested that mean and major peaks of soil moisture dynamics can be captured by the fog modeling. Our field observations demonstrated the effects of fog on soil moisture dynamics during rainless periods at some locations, which has important implications on soil biogeochemical processes. The statistical characterization and modeling of fog distribution are of great value to predict fog distribution and investigate the effects of potential changes in fog distribution on soil moisture dynamics.

  14. Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning

    PubMed Central

    Wessén, Ella; Söderström, Mats; Stenberg, Maria; Bru, David; Hellman, Maria; Welsh, Allana; Thomsen, Frida; Klemedtson, Leif; Philippot, Laurent; Hallin, Sara

    2011-01-01

    Characterization of spatial patterns of functional microbial communities could facilitate the understanding of the relationships between the ecology of microbial communities, the biogeochemical processes they perform and the corresponding ecosystem functions. Because of the important role the ammonia-oxidizing bacteria (AOB) and archaea (AOA) have in nitrogen cycling and nitrate leaching, we explored the spatial distribution of their activity, abundance and community composition across a 44-ha large farm divided into an organic and an integrated farming system. The spatial patterns were mapped by geostatistical modeling and correlations to soil properties and ecosystem functioning in terms of nitrate leaching were determined. All measured community components for both AOB and AOA exhibited spatial patterns at the hectare scale. The patchy patterns of community structures did not reflect the farming systems, but the AOB community was weakly related to differences in soil pH and moisture, whereas the AOA community to differences in soil pH and clay content. Soil properties related differently to the size of the communities, with soil organic carbon and total nitrogen correlating positively to AOB abundance, while clay content and pH showed a negative correlation to AOA abundance. Contrasting spatial patterns were observed for the abundance distributions of the two groups indicating that the AOB and AOA may occupy different niches in agro-ecosystems. In addition, the two communities correlated differently to community and ecosystem functions. Our results suggest that the AOA, not the AOB, were contributing to nitrate leaching at the site by providing substrate for the nitrite oxidizers. PMID:21228891

  15. Global-Local Interactions Modulate Tropical Moisture Exports to the Ohio River Basin

    NASA Astrophysics Data System (ADS)

    Doss-Gollin, J.; Farnham, D. J.; Lall, U.

    2016-12-01

    Regional-scale extreme rainfall and flooding are temporally and spatially associated with the occurrence of tropical moisture exports (TMEs) in the Ohio River Basin (ORB). TMEs are related to but not synonymous with atmospheric rivers, which refer to specific filiamentary organizational processes. TMEs to the ORB may be driven by strong, persistent ridging over the Eastern United States and troughing over the Central United States, creating favorable conditions for southerly flow and moisture transport from the Gulf of Mexico and Caribbean Sea. However, the strong inter-annual variation in TME activity over the ORB suggests dependence on global-scale features of the atmospheric circulation. We suggest that this synoptic dipole pattern may be viewed as the passage of one or more high-wavenumber, transient Rossby waves. We build a multi-level hierarchical Bayesian model in which the probability distribution of TME entering the ORB is a function of the phase and amplitude of the traveling waves. In turn, the joint distribution of the phase and amplitude of this wave is modulated by hemispheric-scale features of the atmospheric and oceanic circulation, and the amplitude and synchronization of quasi-stationary Rossby waves with wavenumber 1-4. Our approach bridges information about different features of the atmospheric circulation which inform the predictability of TME at multiple time scales and develops existing understanding of the atmospheric drivers of TMEs beyond existing composite and EOF studies.

  16. Characterizing Satellite Rainfall Errors based on Land Use and Land Cover and Tracing Error Source in Hydrologic Model Simulation

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, A. S.; Peters-Lidard, C. D.; Tian, Y.; Hossain, F.

    2011-12-01

    Hydrologic modeling has benefited from operational production of high resolution satellite rainfall products. The global coverage, near-real time availability, spatial and temporal sampling resolutions have advanced the application of physically based semi-distributed and distributed hydrologic models for wide range of environmental decision making processes. Despite these successes, the existence of uncertainties due to indirect way of satellite rainfall estimates and hydrologic models themselves remain a challenge in making meaningful and more evocative predictions. This study comprises breaking down of total satellite rainfall error into three independent components (hit bias, missed precipitation and false alarm), characterizing them as function of land use and land cover (LULC), and tracing back the source of simulated soil moisture and runoff error in physically based distributed hydrologic model. Here, we asked "on what way the three independent total bias components, hit bias, missed, and false precipitation, affect the estimation of soil moisture and runoff in physically based hydrologic models?" To understand the clear picture of the outlined question above, we implemented a systematic approach by characterizing and decomposing the total satellite rainfall error as a function of land use and land cover in Mississippi basin. This will help us to understand the major source of soil moisture and runoff errors in hydrologic model simulation and trace back the information to algorithm development and sensor type which ultimately helps to improve algorithms better and will improve application and data assimilation in future for GPM. For forest and woodland and human land use system, the soil moisture was mainly dictated by the total bias for 3B42-RT, CMORPH, and PERSIANN products. On the other side, runoff error was largely dominated by hit bias than the total bias. This difference occurred due to the presence of missed precipitation which is a major contributor to the total bias both during the summer and winter seasons. Missed precipitation, most likely light rain and rain over snow cover, has significant effect on soil moisture and are less capable of producing runoff that results runoff dependency on the hit bias only.

  17. Detecting seasonal variations of soil parameters via field measurements and stochastic simulations in the hillslope

    NASA Astrophysics Data System (ADS)

    Noh, Seong Jin; An, Hyunuk; Kim, Sanghyun

    2015-04-01

    Soil moisture, a critical factor in hydrologic systems, plays a key role in synthesizing interactions among soil, climate, hydrological response, solute transport and ecosystem dynamics. The spatial and temporal distribution of soil moisture at a hillslope scale is essential for understanding hillslope runoff generation processes. In this study, we implement Monte Carlo simulations in the hillslope scale using a three-dimensional surface-subsurface integrated model (3D model). Numerical simulations are compared with multiple soil moistures which had been measured using TDR(Mini_TRASE) for 22 locations in 2 or 3 depths during a whole year at a hillslope (area: 2100 square meters) located in Bongsunsa Watershed, South Korea. In stochastic simulations via Monte Carlo, uncertainty of the soil parameters and input forcing are considered and model ensembles showing good performance are selected separately for several seasonal periods. The presentation will be focused on the characterization of seasonal variations of model parameters based on simulations with field measurements. In addition, structural limitations of the contemporary modeling method will be discussed.

  18. Land surface dynamics monitoring using microwave passive satellite sensors

    NASA Astrophysics Data System (ADS)

    Guijarro, Lizbeth Noemi

    Soil moisture, surface temperature and vegetation are variables that play an important role in our environment. There is growing demand for accurate estimation of these geophysical parameters for the research of global climate models (GCMs), weather, hydrological and flooding models, and for the application to agricultural assessment, land cover change, and a wide variety of other uses that meet the needs for the study of our environment. The different studies covered in this dissertation evaluate the capabilities and limitations of microwave passive sensors to monitor land surface dynamics. The first study evaluates the 19 GHz channel of the SSM/I instrument with a radiative transfer model and in situ datasets from the Illinois stations and the Oklahoma Mesonet to retrieve land surface temperature and surface soil moisture. The surface temperatures were retrieved with an average error of 5 K and the soil moisture with an average error of 6%. The results show that the 19 GHz channel can be used to qualitatively predict the spatial and temporal variability of surface soil moisture and surface temperature at regional scales. In the second study, in situ observations were compared with sensor observations to evaluate aspects of low and high spatial resolution at multiple frequencies with data collected from the Southern Great Plains Experiment (SGP99). The results showed that the sensitivity to soil moisture at each frequency is a function of wavelength and amount of vegetation. The results confirmed that L-band is more optimal for soil moisture, but each sensor can provide soil moisture information if the vegetation water content is low. The spatial variability of the emissivities reveals that resolution suffers considerably at higher frequencies. The third study evaluates C- and X-bands of the AMSR-E instrument. In situ datasets from the Soil Moisture Experiments (SMEX03) in South Central Georgia were utilized to validate the AMSR-E soil moisture product and to derive surface soil moisture with a radiative transfer model. The soil moisture was retrieved with an average error of 2.7% at X-band and 6.7% at C-band. The AMSR-E demonstrated its ability to successfully infer soil moisture during the SMEX03 experiment.

  19. The potential of remotely sensed soil moisture for operational flood forecasting

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; de Roo, A.; de Jong, S.; Bierkens, M. F.

    2013-12-01

    Nowadays, remotely sensed soil moisture is readily available from multiple space born sensors. The high temporal resolution and global coverage make these products very suitable for large-scale land-surface applications. The potential to use these products in operational flood forecasting has thus far not been extensively studied. In this study, we evaluate the added value of assimilated remotely sensed soil moisture for the European Flood Awareness System (EFAS) and its potential to improve the timing and height of the flood peak and low flows. EFAS is used for operational flood forecasting in Europe and uses a distributed hydrological model for flood predictions for lead times up to 10 days. Satellite-derived soil moisture from ASCAT, AMSR-E and SMOS is assimilated into the EFAS system for the Upper Danube basin and results are compared to assimilation of only discharge observations. Discharge observations are available at the outlet and at six additional locations throughout the catchment. To assimilate soil moisture data into EFAS, an Ensemble Kalman Filter (EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite products, derived from a detailed model-satellite soil moisture comparison study, is included to ensure optimal performance of the EnKF. For the validation, additional discharge observations not used in the EnKF are used as an independent validation dataset. Our results show that the accuracy of flood forecasts is increased when more discharge observations are used in that the Mean Absolute Error (MAE) of the ensemble mean is reduced by 65%. The additional inclusion of satellite data results in a further increase of the performance: forecasts of base flows are better and the uncertainty in the overall discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are predicted with a higher accuracy and the Continuous Ranked Probability Score (CRPS) shows a performance increase of 10-15% on average, compared to assimilation of discharge only. The rank histograms show that the forecast is not biased. The timing errors in the flood predictions are decreased when soil moisture data is used and imminent floods can be forecasted with skill one day earlier. In conclusion, our study shows that assimilation of satellite soil moisture increases the performance of flood forecasting systems for large catchments, like the Upper Danube. The additional gain is highest when discharge observations from both upstream and downstream areas are used in combination with the soil moisture data. These results show the potential of future soil moisture missions with a higher spatial resolution like SMAP to improve near-real time flood forecasting in large catchments.

  20. Passive microwave soil moisture downscaling using vegetation index and skin surface temperature

    USDA-ARS?s Scientific Manuscript database

    Soil moisture satellite estimates are available from a variety of passive microwave satellite sensors, but their spatial resolution is frequently too coarse for use by land managers and other decision makers. In this paper, a soil moisture downscaling algorithm based on a regression relationship bet...

  1. Landslide susceptibility mapping using downscaled AMSR-E soil moisture: A case study from Cleveland Corral, California, US

    USDA-ARS?s Scientific Manuscript database

    As soil moisture increases, slope stability decreases. Remotely sensed soil moisture data can provide routine updates of slope conditions necessary for landslide predictions. For regional scale landslide investigations, only remote sensing methods have the spatial and temporal resolution required to...

  2. Merging thermal and microwave satellite observations for a high-resolution soil moisture data product

    USDA-ARS?s Scientific Manuscript database

    Many societal applications of soil moisture data products require high spatial resolution and numerical accuracy. Current thermal geostationary satellite sensors (GOES Imager and GOES-R ABI) could produce 2-16km resolution soil moisture proxy data. Passive microwave satellite radiometers (e.g. AMSR...

  3. An underestimated role of precipitation frequency in regulating summer soil moisture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chaoyang; Chen, Jing M.; Pumpanen, Jukka

    2012-04-26

    Soil moisture induced droughts are expected to become more frequent under future global climate change. Precipitation has been previously assumed to be mainly responsible for variability in summer soil moisture. However, little is known about the impacts of precipitation frequency on summer soil moisture, either interannually or spatially. To better understand the temporal and spatial drivers of summer drought, 415 site yr measurements observed at 75 flux sites world wide were used to analyze the temporal and spatial relationships between summer soil water content (SWC) and the precipitation frequencies at various temporal scales, i.e., from half-hourly, 3, 6, 12 andmore » 24 h measurements. Summer precipitation was found to be an indicator of interannual SWC variability with r of 0.49 (p < 0.001) for the overall dataset. However, interannual variability in summer SWC was also significantly correlated with the five precipitation frequencies and the sub-daily precipitation frequencies seemed to explain the interannual SWC variability better than the total of precipitation. Spatially, all these precipitation frequencies were better indicators of summer SWC than precipitation totals, but these better performances were only observed in non-forest ecosystems. Our results demonstrate that precipitation frequency may play an important role in regulating both interannual and spatial variations of summer SWC, which has probably been overlooked or underestimated. However, the spatial interpretation should carefully consider other factors, such as the plant functional types and soil characteristics of diverse ecoregions.« less

  4. Version 3 of the SMAP Level 4 Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Liu, Qing; Ardizzone, Joe; Crow, Wade; De Lannoy, Gabrielle; Kolassa, Jana; Kimball, John; Koster, Randy

    2017-01-01

    The NASA Soil Moisture Active Passive (SMAP) Level 4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root zone (0-100 cm) soil moisture as well as related land surface states and fluxes from 31 March 2015 to present with a latency of 2.5 days. The ensemble-based L4_SM algorithm is a variant of the Goddard Earth Observing System version 5 (GEOS-5) land data assimilation system and ingests SMAP L-band (1.4 GHz) Level 1 brightness temperature observations into the Catchment land surface model. The soil moisture analysis is non-local (spatially distributed), performs downscaling from the 36-km resolution of the observations to that of the model, and respects the relative uncertainties of the modeled and observed brightness temperatures. Prior to assimilation, a climatological rescaling is applied to the assimilated brightness temperatures using a 6 year record of SMOS observations. A new feature in Version 3 of the L4_SM data product is the use of 2 years of SMAP observations for rescaling where SMOS observations are not available because of radio frequency interference, which expands the impact of SMAP observations on the L4_SM estimates into large regions of northern Africa and Asia. This presentation investigates the performance and data assimilation diagnostics of the Version 3 L4_SM data product. The L4_SM soil moisture estimates meet the 0.04 m3m3 (unbiased) RMSE requirement. We further demonstrate that there is little bias in the soil moisture analysis. Finally, we illustrate where the assimilation system overestimates or underestimates the actual errors in the system.

  5. Estimating surface soil moisture from SMAP observations using a Neural Network technique.

    PubMed

    Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P

    2018-01-01

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.

  6. L-band HIgh Spatial Resolution Soil Moisture Mapping using SMALL UnManned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Dai, E.; Venkitasubramony, A.; Gasiewski, A. J.; Stachura, M.; Elston, J. S.; Walter, B.; Lankford, D.; Corey, C.

    2017-12-01

    Soil moisture is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, water resource management, agriculture, and flood runoff prediction. The launch of NASA's Soil Moisture Active/Passive (SMAP) mission in 2015 provided new passive global measurements of soil moisture and surface freeze/thaw state at fixed crossing times and spatial resolutions of 36 km. However, there exists a need for measurements of soil moisture on much smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping soil moisture on spatial scales as small as several meters. Compared with other methods of validation based on either in-situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed ( km scale) coverage at very high spatial resolution ( 15 m) suitable for scaling studies, and at comparatively low operator cost. To demonstrate the LDCR several flights had been performed during field experiments at the Canton Oklahoma Soilscape site and Yuma Colorado Irrigation Research Foundation (IRF) site in 2015 and 2016, respectively, using LDCR Revision A and Tempest sUAS. The scientific intercomparisons of LDCR retrieved soil moisture and in-situ measurements will be presented. LDCR Revision B has been built and integrated into SuperSwift sUAS and additional field experiments will be performed at IRF in 2017. In Revision B the IF signal is sampled at 80 MS/s to enable digital correlation and RFI mitigation capabilities, in addition to analog correlation. [1] McIntyre, E.M., A.J. Gasiewski, and D. Manda D, "Near Real-Time Passive C-Band Microwave Soil Moisture Retrieval During CLASIC 2007," Proc. IGARSS, 2008. [2] Robock, A., S. Steele-Dunne, J. Basara, W. Crow, and M. Moghaddam M, "In Situ Network and Scaling," SMAP Algorithm and Cal/Val Workshop, 2009. [3] Walker, A., "Airborne Microwave Radiometer Measurements During CanEx-SM10," Second SMAP Cal/Val Workshop, 2011.

  7. Surface soil moisture retrieval over a Mediterranean semi-arid region using X-band TerraSAR-X SAR data

    NASA Astrophysics Data System (ADS)

    Azza, Gorrab; Zribi, Mehrez; Baghdadi, Nicolas; Mougenot, Bernard; Boulet, Gilles; Lili-Chabaane, Zohra

    2015-04-01

    Mapping surface soil moisture with meter-scale spatial resolution is appropriate for multi- domains particularly hydrology and agronomy. It allows water resources and irrigation management decisions, drought monitoring and validation of multi-hydrological water balance models. In the last years, various studies have demonstrated the large potential of radar remote sensing data, mainly from C frequency band, to retrieve soil moisture. However, the accuracy of the soil moisture estimation, by inversing backscattering radar coefficients (σ°), is affected by the influence of surface roughness and vegetation biomass contributions. In recent years, different empirical, semi empirical and physical approaches are developed for bare soil conditions, to estimate accurately spatial soil moisture variability. In this study, we propose an approach based on the change detection method for the retrieval of surface soil moisture at a higher spatial resolution. The proposal algorithm combines multi-temporal X-band SAR images (TerraSAR-X) with different continuous thetaprobe measurements. Seven thetaprobe stations are installed at different depths over the central semi arid region of Tunisia (9°23' - 10°17' E, 35° 1'-35°55' N). They cover approximately the entire of our study site and provide regional scale information. Ground data were collected over agricultural bare soil fields simultaneously to various TerraSAR-X data acquired during 2013-2014 and 2014-2015. More than fourteen test fields were selected for each spatial acquisition campaign, with variations in soil texture and in surface soil roughness. For each date, we considered the volumetric water content with thetaprobe instrument and gravimetric sampling; we measured also the roughness parameters with pin profilor. To retrieve soil moisture from X-band SAR data, we analyzed statistically the sensitivity between radar measurements and ground soil moisture derived from permanent thetaprobe stations. Our analyses are applied over bare soil class identified from an optical image SPOT / HRV acquired in the same period of the measurements. Results have shown linear relationship for the radar signals as a function of volumetric soil moisture with high sensitivity about 0.21 dB/vol%. For estimation of change in soil moisture, we considered two options: On the first one, we applied the change detection approach between successive radar images (∆σ°) assuming unchanged soil roughness effects. Our soil moisture retrieval algorithm was validated on the basis of comparisons between estimated and in situ soil moisture measurements over test fields. Using this option, results have shown an accuracy (RMSE) of about 4.8 %. Secondly, we corrected the sensitivity of the radar backscatter images to the surface roughness variability. Results have shown a reduction of the difference between the retrieved soil moisture and ground measurements with an RMSE about 3.7%.

  8. Assessment of Multi-frequency Electromagnetic Induction for Determining Soil Moisture Patterns at the Hillslope Scale

    NASA Astrophysics Data System (ADS)

    Tromp-van Meerveld, I.; McDonnell, J.

    2009-05-01

    We present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the Panola (GA, USA) hillslope. We address the following questions regarding the applicability of EM measurements for hillslope hydrological investigations: (1) Can EM be used for soil moisture measurements in areas with shallow soils?; (2) Can EM represent the temporal and spatial patterns of soil moisture throughout the year?; and (3) can multiple frequencies be used to extract additional information content from the EM approach and explain the depth profile of soil moisture? We found that the apparent conductivity measured with the multi-frequency GEM-300 was linearly related to soil moisture measured with an Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7290, 9090, 11250, and 14010 Hz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition, the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the Aqua-pro soil moisture measurements.

  9. Eco-hydrological Wireless Sensor Network and upscaling method research in the Heihe River Basin, China

    NASA Astrophysics Data System (ADS)

    Jin, Rui; kang, Jian

    2017-04-01

    Wireless Sensor Networks are recognized as one of most important near-surface components of GEOSS (Global Earth Observation System of Systems), with flourish development of low-cost, robust and integrated data loggers and sensors. A nested eco-hydrological wireless sensor network (EHWSN) was installed in the up- and middle-reaches of the Heihe River Basin, operated to obtain multi-scale observation of soil moisture, soil temperature and land surface temperature from 2012 till now. The spatial distribution of EHWSN was optimally designed based on the geo-statistical theory, with the aim to capture the spatial variations and temporal dynamics of soil moisture and soil temperature, and to produce ground truth at grid scale for validating the related remote sensing products and model simulation in the heterogeneous land surface. In terms of upscaling research, we have developed a set of method to aggregate multi-point WSN observations to grid scale ( 1km), including regression kriging estimation to utilize multi-resource remote sensing auxiliary information, block kriging with homogeneous measurement errors, and bayesian-based upscaling algorithm that utilizes MODIS-derived apparent thermal inertia. All the EHWSN observation are organized as datasets to be freely published at http://westdc.westgis.ac.cn/hiwater. EHWSN integrates distributed observation nodes to achieve an automated, intelligent and remote-controllable network that provides superior integrated, standardized and automated observation capabilities for hydrological and ecological processes research at the basin scale.

  10. Spatial variability of soil hydraulics and remotely sensed soil parameters

    NASA Technical Reports Server (NTRS)

    Lascano, R. J.; Van Bavel, C. H. M.

    1982-01-01

    The development of methods to correctly interpret remotely sensed information about soil moisture and soil temperature requires an understanding of water and energy flow in soil, because the signals originate from the surface, or from a shallow surface layer, but reflect processes in the entire profile. One formidable difficulty in this application of soil physics is the spatial heterogeneity of natural soils. Earlier work has suggested that the heterogeneity of soil hydraulic properties may be described by the frequency distribution of a single scale factor. The sensitivity of hydraulic and energetic processes to the variation of this scale factor is explored with a suitable numerical model. It is believed that such an analysis can help in deciding how accurately and extensively basic physical properties of field soils need to be known in order to interpret thermal or radar waveband signals. It appears that the saturated hydraulic conductivity needs to be known only to its order of magnitude, and that the required accuracy of the soil water retention function is about 0.02 volume fraction. Furthermore, the results may be helpful in deciding how the total scene or view field, as perceived through a sensor, is composed from the actual mosaic of transient soil properties, such as surface temperature or surface soil moisture. However, the latter proposition presupposes a random distribution of permanent properties, a condition that may not be met in many instances, and no solution of the problem is apparent.

  11. Soil moisture controlled runoff mechanisms in a small agricultural catchment in Austria.

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; Szeles, Borbala; Silasari, Rasmiaditya; Hogan, Patrick; Oismueller, Markus; Strauss, Peter; Wagner, Wolfgang; Bloeschl, Guenter

    2017-04-01

    Understanding runoff generation mechanisms is pivotal for improved estimation of floods in small catchments. However, this requires in situ measurements with a high spatial and temporal resolution of different land surface parameters, which are rarely available distributed over the catchment scale and for a long period. The Hydrological Open Air Laboratory (HOAL) is a hydrological observatory which comprises a complex agricultural catchment, covering 66 ha. Due to the agricultural land use and low permeability of the soil part of the catchment was tile drained in the 1940s. The HOAL is equipped with an extensive soil moisture network measuring at 31 locations, 4 rain gauges and 12 stream gauges. By measuring with so many sensors in a complex catchment, the collected data enables the investigation of multiple runoff mechanisms which can be observed simultaneously in different parts of the catchment. The aim of this study is to identify and characterize different runoff mechanisms and the control soil moisture dynamics exert on them. As a first step 72 rainfall events were identified within the period 2014-2015. By analyzing event discharge response, measured at the different stream gauges, and root zone soil moisture, four different runoff mechanisms are identified. The four mechanisms exhibit contrasting soil moisture-discharge relationships. In the presented study we characterize the runoff response types by curve-fitting the discharge response to the soil moisture state. The analysis provides insights in the main runoff processes occurring in agricultural catchments. The results of this study a can be of assistance in other catchments to identify catchment hydrologic response.

  12. Regional co-variability of spatial and temporal soil moisture-precipitation coupling in North Africa: an observational perspective

    NASA Astrophysics Data System (ADS)

    Petrova, Irina Y.; van Heerwaarden, Chiel C.; Hohenegger, Cathy; Guichard, Françoise

    2018-06-01

    The magnitude and sign of soil moisture-precipitation coupling (SMPC) is investigated using a probability-based approach and 10 years of daily microwave satellite data across North Africa at a 1° horizontal scale. Specifically, the co-existence and co-variability of spatial (i.e. using soil moisture gradients) and temporal (i.e. using soil moisture anomaly) soil moisture effects on afternoon rainfall is explored. The analysis shows that in the semi-arid environment of the Sahel, the negative spatial and the negative temporal coupling relationships do not only co-exist, but are also dependent on one another. Hence, if afternoon rain falls over temporally drier soils, it is likely to be surrounded by a wetter environment. Two regions are identified as SMPC hot spots. These are the south-western part of the domain (7-15° N, 10° W-7° E), with the most robust negative SMPC signal, and the South Sudanese region (5-13° N, 24-34° E). The sign and significance of the coupling in the latter region is found to be largely modulated by the presence of wetlands and is susceptible to the number of long-lived propagating convective systems. The presence of wetlands and an irrigated land area is found to account for about 30 % of strong and significant spatial SMPC in the North African domain. This study provides the first insight into regional variability of SMPC in North Africa, and supports the potential relevance of mechanisms associated with enhanced sensible heat flux and mesoscale variability in surface soil moisture for deep convection development.

  13. Effect of the state of internal boundaries on granite fracture nature under quasi-static compression

    NASA Astrophysics Data System (ADS)

    Damaskinskaya, E. E.; Panteleev, I. A.; Kadomtsev, A. G.; Naimark, O. B.

    2017-05-01

    Based on an analysis of the spatial distribution of hypocenters of acoustic emission signal sources and an analysis of the energy distributions of acoustic emission signals, the effect of the liquid phase and a weak electric field on the spatiotemporal nature of granite sample fracture is studied. Experiments on uniaxial compression of granite samples of natural moisture showed that the damage accumulation process is twostage: disperse accumulation of damages is followed by localized accumulation of damages in the formed macrofracture nucleus region. In energy distributions of acoustic emission signals, this transition is accompanied by a change in the distribution shape from exponential to power-law. Granite water saturation qualitatively changes the damage accumulation nature: the process is delocalized until macrofracture with the exponential energy distribution of acoustic emission signals. An exposure to a weak electric field results in a selective change in the damage accumulation nature in the sample volume.

  14. Prediction of Root Zone Soil Moisture using Remote Sensing Products and In-Situ Observation under Climate Change Scenario

    NASA Astrophysics Data System (ADS)

    Singh, G.; Panda, R. K.; Mohanty, B.

    2015-12-01

    Prediction of root zone soil moisture status at field level is vital for developing efficient agricultural water management schemes. In this study, root zone soil moisture was estimated across the Rana watershed in Eastern India, by assimilation of near-surface soil moisture estimate from SMOS satellite into a physically-based Soil-Water-Atmosphere-Plant (SWAP) model. An ensemble Kalman filter (EnKF) technique coupled with SWAP model was used for assimilating the satellite soil moisture observation at different spatial scales. The universal triangle concept and artificial intelligence techniques were applied to disaggregate the SMOS satellite monitored near-surface soil moisture at a 40 km resolution to finer scale (1 km resolution), using higher spatial resolution of MODIS derived vegetation indices (NDVI) and land surface temperature (Ts). The disaggregated surface soil moisture were compared to ground-based measurements in diverse landscape using portable impedance probe and gravimetric samples. Simulated root zone soil moisture were compared with continuous soil moisture profile measurements at three monitoring stations. In addition, the impact of projected climate change on root zone soil moisture were also evaluated. The climate change projections of rainfall were analyzed for the Rana watershed from statistically downscaled Global Circulation Models (GCMs). The long-term root zone soil moisture dynamics were estimated by including a rainfall generator of likely scenarios. The predicted long term root zone soil moisture status at finer scale can help in developing efficient agricultural water management schemes to increase crop production, which lead to enhance the water use efficiency.

  15. Soil carbon content and CO2 flux along a hydrologic gradient in a High-Arctic tundra lake basin, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    McKnight, J.; Klein, E. S.; Welker, J. M.; Schaeffer, S. M.; Franklin, M.

    2015-12-01

    High Arctic landscapes are composed of watershed basins that vary in size and ecohydrology, but typically have a plant community complex that ranges from dry tundra to moist tundra to wet sedge systems along water body shorelines. The spatial extent of these plant communities reflects mean annual soil moisture and temperature, and is vulnerable to changes in climate conditions. Soil moisture and temperature significantly influence organic matter microbial activity and decomposition, and can affect the fate of soil carbon in tundra soils. Consequently, due to the unique soil carbon differences between tundra plant communities, shifts in their spatial extent may drive future High Arctic biosphere-atmosphere interactions. Understanding this terrestrial-atmosphere trace gas feedback, however, requires quantification of the rates and patterns of CO2 exchange along soil moisture gradients and the associated soil properties. In summer of 2015, soil CO2 flux rate, soil moisture and temperature were measured along a soil moisture gradient spanning three vegetation zones (dry tundra, wet tundra, and wet grassland) in a snow melt-fed lake basin near Thule Greenland. Mean soil temperature during the 2015 growing season was greater in dry tundra than in wet tundra and wet grassland (13.0 ± 1.2, 7.8 ± 0.8, and 5.5 ± 0.9°C, respectively). Mean volumetric soil moisture differed among all three vegetation zones where the soil moisture gradient ranged from 9 % (dry tundra) to 34 % (wet tundra) to 51 % (wet grassland). Mean soil CO2 flux was significantly greater in the wet grassland (1.7 ± 0.1 μmol m-2 s-1) compared to wet tundra (0.9 ± 0.2 μmol m-2 s-1) and dry tundra (1.2 ± 0.2 μmol m-2 s-1). Soil CO2 flux increased and decreased with seasonal warming and cooling of soil temperature. Although soil temperature was an important seasonal driver of soil CO2 flux rates, differences in mean seasonal soil CO2 flux rates among vegetation zones appeared to be a function of the combined effects of soil temperature and soil moisture conditions. These results suggest that the response of vegetation distribution to shifts in precipitation and warmer climate conditions may have significant implications for release of soil carbon as CO2 in High Arctic tundra ecosystems in Northwest Greenland.

  16. Moment analysis description of wetting and redistribution plumes in wettable and water-repellent soils

    NASA Astrophysics Data System (ADS)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2012-02-01

    SummaryWater repellency has a significant impact on water flow patterns in the soil profile. Transient 2D flow in wettable and natural water-repellent soils was monitored in a transparent flow chamber. The substantial differences in plume shape and spatial water content distribution during the wetting and subsequent redistribution stages were related to the variation of contact angle while in contact with water. The observed plumes shape, internal water content distribution in general and the saturation overshoot behind the wetting front in particular in the repellent soils were associated with unstable flow. Moment analysis was applied to characterize the measured plumes during the wetting and subsequent redistribution. The center of mass and spatial variances determined for the measured evolving plumes were fitted by a model that accounts for capillary and gravitational driving forces in a medium of temporally varying wettability. Ellipses defined around the stable and unstable plumes' centers of mass and whose semi-axes represented a particular number of spatial variances were used to characterize plume shape and internal moisture distribution. A single probability curve was able to characterize the corresponding fractions of the total added water in the different ellipses for all measured plumes, which testify the competence and advantage of the moment analysis method.

  17. Evaluation of the cosmic-ray neutron method for measuring integral soil moisture dynamics of a forested head water catchment

    NASA Astrophysics Data System (ADS)

    Bogena, H. R.; Metzen, D.; Baatz, R.; Hendricks Franssen, H.; Huisman, J. A.; Montzka, C.; Vereecken, H.

    2011-12-01

    Measurements of low-energy secondary neutron intensity above the soil surface by cosmic-ray soil moisture probes (CRP) can be used to estimate soil moisture content. CRPs utilise the fact that high-energy neutrons initiated by cosmic rays are moderated (slowed to lower energies) most effectively by collisions with hydrogen atoms contained in water molecules in the soil. The conversion of neutron intensity to soil moisture content can potentially be complicated because neutrons are also moderated by aboveground water storage (e.g. vegetation water content, canopy storage of interception). Recently, it was demonstrated experimentally that soil moisture content derived from CRP measurements agrees well with average moisture content from gravimetric soil samples taken within the footprint of the cosmic ray probe, which is proposed to be up to several hundred meters in size [1]. However, the exact extension and shape of the CRP integration footprint is still an open question and it is also unclear how CRP measurements are affected by the soil moisture distribution within the footprint both in horizontal and vertical directions. In this paper, we will take advantage of an extensive wireless soil moisture sensor network covering most of the estimated footprint of the CRP. The network consists of 150 nodes and 900 soil moisture sensors which were installed in the small forested Wüstebach catchment (~27 ha) in the framework of the Transregio32 and the Helmholtz initiative TERENO (Terrestrial Environmental Observatories) [2]. This unique soil moisture data set provides a consistent picture of the hydrological status of the catchment in a high spatial and temporal resolution and thus the opportunity to evaluate the CRP measurements in a rigorous way. We will present first results of the comparison with a specific focus on the sensitivity of the CRP measurements to soil moisture variation in both the horizontal and vertical direction. Furthermore, the influence of forest biomass and shallow groundwater table fluctuations on the attenuation of cosmic-ray neutrons will be considered.

  18. Soil moisture remote sensing: State of the science

    USDA-ARS?s Scientific Manuscript database

    Satellites (e.g., SMAP, SMOS) using passive microwave techniques, in particular at L band frequency, have shown good promise for global mapping of near-surface (0-5 cm) soil moisture at a spatial resolution of 25-40 km and temporal resolution of 2-3 days. C- and X-band soil moisture records date bac...

  19. Validating the BERMS in situ soil moisture network with a large scale temporary network

    USDA-ARS?s Scientific Manuscript database

    Calibration and validation of soil moisture satellite products requires data records of large spatial and temporal extent, but obtaining this data can be challenging. These challenges can include remote locations, and expense of equipment. One location with a long record of soil moisture data is th...

  20. Validation and scaling of soil moisture in a semi-arid environment: SMAP Validation Experiment 2015 (SMAPVEX15)

    USDA-ARS?s Scientific Manuscript database

    The NASA SMAP (Soil Moisture Active Passive) mission conducted the SMAP Validation Experiment 2015 (SMAPVEX15) in order to support the calibration and validation activities of SMAP soil moisture data product.The main goals of the experiment were to address issues regarding the spatial disaggregation...

  1. Spatial downscaling of SMAP soil moisture using MODIS land surface temperature and NDVI during SMAPVEX15

    USDA-ARS?s Scientific Manuscript database

    The SMAP (Soil Moisture Active Passive) mission provides global surface soil moisture product at 36 km resolution from its L-band radiometer. While the coarse resolution is satisfactory to many applications there are also a lot of applications which would benefit from a higher resolution soil moistu...

  2. Validation of SMAP Root Zone Soil Moisture Estimates with Improved Cosmic-Ray Neutron Probe Observations

    NASA Astrophysics Data System (ADS)

    Babaeian, E.; Tuller, M.; Sadeghi, M.; Franz, T.; Jones, S. B.

    2017-12-01

    Soil Moisture Active Passive (SMAP) soil moisture products are commonly validated based on point-scale reference measurements, despite the exorbitant spatial scale disparity. The difference between the measurement depth of point-scale sensors and the penetration depth of SMAP further complicates evaluation efforts. Cosmic-ray neutron probes (CRNP) with an approximately 500-m radius footprint provide an appealing alternative for SMAP validation. This study is focused on the validation of SMAP level-4 root zone soil moisture products with 9-km spatial resolution based on CRNP observations at twenty U.S. reference sites with climatic conditions ranging from semiarid to humid. The CRNP measurements are often biased by additional hydrogen sources such as surface water, atmospheric vapor, or mineral lattice water, which sometimes yield unrealistic moisture values in excess of the soil water storage capacity. These effects were removed during CRNP data analysis. Comparison of SMAP data with corrected CRNP observations revealed a very high correlation for most of the investigated sites, which opens new avenues for validation of current and future satellite soil moisture products.

  3. SoilSCAPE in-Situ Observations of Soil Moisture for SMAP Validation: Pushing the Envelopes of Spatial Coverage and Energy Efficiency in Sparse Wireless Sensor Networks (Invited)

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A.; Clewley, D.; Akbar, R.; Entekhabi, D.

    2013-12-01

    Soil Moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) is a wireless in-situ sensor network technology, developed under the support of NASA ESTO/AIST program, for multi-scale validation of soil moisture retrievals from the Soil Moisture Active and Passive (SMAP) mission. The SMAP sensor suite is expected to produce soil moisture retrievals at 3 km scale from the radar instrument, at 36 km from the radiometer, and at 10 km from the combination of the two sensors. To validate the retrieved soil moisture maps at any of these scales, it is necessary to perform in-situ observations at multiple scales (ten, hundreds, and thousands of meters), representative of the true spatial variability of soil moisture fields. The most recent SoilSCAPE network, deployed in the California central valley, has been designed, built, and deployed to accomplish this goal, and is expected to become a core validation site for SMAP. The network consists of up to 150 sensor nodes, each comprised of 3-4 soil moisture sensors at various depths, deployed over a spatial extent of 36 km by 36 km. The network contains multiple sub-networks, each having up to 30 nodes, whose location is selected in part based on maximizing the land cover diversity within the 36 km cell. The network has achieved unprecedented energy efficiency, longevity, and spatial coverage using custom-designed hardware and software protocols. The network architecture utilizes a nested strategy, where a number of end devices (EDs) communicate to a local coordinator (LC) using our recently developed hardware with ultra-efficient circuitry and best-effort-timeslot allocation communication protocol. The LCs in turn communicates with the base station (BS) via text messages and a new compression scheme. The hardware and software technologies required to implement this latest deployment of the SoilSCAPE network will be presented in this paper, and several data sets resulting from the measurements will be shown. The data are available publicly in near-real-time from the project web site, and are also available and searchable via an extensive set of metadata fields through the ORNL-DAAC.

  4. Comparing soil moisture anomalies from multiple independent sources over different regions across the globe

    NASA Astrophysics Data System (ADS)

    Cammalleri, Carmelo; Vogt, Jürgen V.; Bisselink, Bernard; de Roo, Ad

    2017-12-01

    Agricultural drought events can affect large regions across the world, implying the need for a suitable global tool for an accurate monitoring of this phenomenon. Soil moisture anomalies are considered a good metric to capture the occurrence of agricultural drought events, and they have become an important component of several operational drought monitoring systems. In the framework of the JRC Global Drought Observatory (GDO, http://edo.jrc.ec.europa.eu/gdo/), the suitability of three datasets as possible representations of root zone soil moisture anomalies has been evaluated: (1) the soil moisture from the Lisflood distributed hydrological model (namely LIS), (2) the remotely sensed Land Surface Temperature data from the MODIS satellite (namely LST), and (3) the ESA Climate Change Initiative combined passive/active microwave skin soil moisture dataset (namely CCI). Due to the independency of these three datasets, the triple collocation (TC) technique has been applied, aiming at quantifying the likely error associated with each dataset in comparison to the unknown true status of the system. TC analysis was performed on five macro-regions (namely North America, Europe, India, southern Africa and Australia) detected as suitable for the experiment, providing insight into the mutual relationship between these datasets as well as an assessment of the accuracy of each method. Even if no definitive statement on the spatial distribution of errors can be provided, a clear outcome of the TC analysis is the good performance of the remote sensing datasets, especially CCI, over dry regions such as Australia and southern Africa, whereas the outputs of LIS seem to be more reliable over areas that are well monitored through meteorological ground station networks, such as North America and Europe. In a global drought monitoring system, the results of the error analysis are used to design a weighted-average ensemble system that exploits the advantages of each dataset.

  5. Application of time-lapse ERT to Characterize Soil-Water-Disease Interactions of Citrus Orchard - Case Study

    NASA Astrophysics Data System (ADS)

    Peddinti, S. R.; Kbvn, D. P.; Ranjan, S.; Suradhaniwar, S.; J, P. A.; R M, G.

    2015-12-01

    Vidarbha region in Maharashtra, India (home for mandarin Orange) experience severe climatic uncertainties resulting in crop failure. Phytopthora are the soil-borne fungal species that accumulate in the presence of moisture, and attack the root / trunk system of Orange trees at any stage. A scientific understanding of soil-moisture-disease relations within the active root zone under different climatic, irrigation, and crop cycle conditions can help in practicing management activities for improved crop yield. In this study, we developed a protocol for performing 3-D time-lapse electrical resistivity tomography (ERT) at micro scale resolution to monitor the changes in resistivity distribution within the root zone of Orange trees. A total of 40 electrodes, forming a grid of 3.5 m x 2 m around each Orange tree were used in ERT survey with gradient and Wenner configurations. A laboratory test on un-disturbed soil samples of the region was performed to plot the variation of electrical conductivity with saturation. Curve fitting techniques were applied to get the modified Archie's model parameters. The calibrated model was further applied to generate the 3-D soil moisture profiles of the study area. The point estimates of soil moisture were validated using TDR probe measurements at 3 different depths (10, 20, and 40 cm) near to the root zone. In order to understand the effect of soil-water relations on plant-disease relations, we performed ERT analysis at two locations, one at healthy and other at Phytopthora affected Orange tree during the crop cycle, under dry and irrigated conditions. The degree to which an Orange tree is affected by Phytopthora under each condition is evaluated using 'grading scale' approach following visual inspection of the canopy features. Spatial-temporal distribution of moisture profiles is co-related with grading scales to comment on the effect of climatic and irrigation scenarios on the degree and intensity of crop disease caused by Phytopthora.

  6. Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment

    NASA Astrophysics Data System (ADS)

    Wever, Nander; Comola, Francesco; Bavay, Mathias; Lehning, Michael

    2017-08-01

    The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the linkage between the snow cover, soil and discharge in the stream network. Here, we apply the comprehensive, distributed model Alpine3D to investigate the role of soil moisture in the predisposition of the Dischma catchment in Switzerland to high flows from rainfall and snowmelt. The recently updated soil module of the physics-based multilayer snow cover model SNOWPACK, which solves the surface energy and mass balance in Alpine3D, is verified against soil moisture measurements at seven sites and various depths inside and in close proximity to the Dischma catchment. Measurements and simulations in such terrain are difficult and consequently, soil moisture was simulated with varying degrees of success. Differences between simulated and measured soil moisture mainly arise from an overestimation of soil freezing and an absence of a groundwater description in the Alpine3D model. Both were found to have an influence in the soil moisture measurements. Using the Alpine3D simulation as the surface scheme for a spatially explicit hydrologic response model using a travel time distribution approach for interflow and baseflow, streamflow simulations were performed for the discharge from the catchment. The streamflow simulations provided a closer agreement with observed streamflow when driving the hydrologic response model with soil water fluxes at 30 cm depth in the Alpine3D model. Performance decreased when using the 2 cm soil water flux, thereby mostly ignoring soil processes. This illustrates that the role of soil moisture is important to take into account when understanding the relationship between both snowpack runoff and rainfall and catchment discharge in high alpine terrain. However, using the soil water flux at 60 cm depth to drive the hydrologic response model also decreased its performance, indicating that an optimal soil depth to include in surface simulations exists and that the runoff dynamics are controlled by only a shallow soil layer. Runoff coefficients (i.e. ratio of rainfall over discharge) based on measurements for high rainfall and snowmelt events were found to be dependent on the simulated initial soil moisture state at the onset of an event, further illustrating the important role of soil moisture for the hydrological processes in the catchment. The runoff coefficients using simulated discharge were found to reproduce this dependency, which shows that the Alpine3D model framework can be successfully applied to assess the predisposition of the catchment to flood risks from both snowmelt and rainfall events.

  7. Prototype Engineered Barrier System Field Test (PEBSFT); Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, A.L.; Buscheck, T.; Carlson, R.

    1991-08-01

    This final report represents a summary of data and interpretations obtained from the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The PEBSFT was conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for future field tests that will be conducted in the Exploratory Studies Facilities (ESF) at Yucca Mountain. The primary objective of the test was to provide a basis for determining whether tests planned for the ESF have the potential to be successful. Chapter 1 on high frequency electromagnetic tomography discusses the rock mass electromagnetic permittivity andmore » attenuation rate changes that were measured to characterize the water distribution in the near field of a simulated waste container. The data are used to obtain quantitative estimates of how the moisture content in the rock mass changes during heating and to infer properties of the spatial variability of water distribution, leading to conclusions about the role of fractures in the system. Chapter 2 discusses the changes in rock moisture content detected by the neutron logging probe. Chapter 3 permeability tests discusses the characterization of the in-situ permeability of the fractured tuff around the borehole. The air permeability testing apparatus, the testing procedures, and the data analysis are presented. Chapter 4 describes the moisture collection system installed in the heater borehole to trap and measure the moisture volumes. Chapter 5 describes relative humidity measurements made with the thermocouple psychrometer and capacitance sensors. Chapter 6 discusses gas pressure measurements in the G-Tunnel, addressing the calibration and installation of piezoresistive-gaged transducers. Chapter 7 describes the calibration and installation of thermocouples for temperature measurements. Chapter 8 discusses the results of the PEBSFT.« less

  8. Assessing the uncertainty of soil moisture impacts on convective precipitation using a new ensemble approach

    NASA Astrophysics Data System (ADS)

    Henneberg, Olga; Ament, Felix; Grützun, Verena

    2018-05-01

    Soil moisture amount and distribution control evapotranspiration and thus impact the occurrence of convective precipitation. Many recent model studies demonstrate that changes in initial soil moisture content result in modified convective precipitation. However, to quantify the resulting precipitation changes, the chaotic behavior of the atmospheric system needs to be considered. Slight changes in the simulation setup, such as the chosen model domain, also result in modifications to the simulated precipitation field. This causes an uncertainty due to stochastic variability, which can be large compared to effects caused by soil moisture variations. By shifting the model domain, we estimate the uncertainty of the model results. Our novel uncertainty estimate includes 10 simulations with shifted model boundaries and is compared to the effects on precipitation caused by variations in soil moisture amount and local distribution. With this approach, the influence of soil moisture amount and distribution on convective precipitation is quantified. Deviations in simulated precipitation can only be attributed to soil moisture impacts if the systematic effects of soil moisture modifications are larger than the inherent simulation uncertainty at the convection-resolving scale. We performed seven experiments with modified soil moisture amount or distribution to address the effect of soil moisture on precipitation. Each of the experiments consists of 10 ensemble members using the deep convection-resolving COSMO model with a grid spacing of 2.8 km. Only in experiments with very strong modification in soil moisture do precipitation changes exceed the model spread in amplitude, location or structure. These changes are caused by a 50 % soil moisture increase in either the whole or part of the model domain or by drying the whole model domain. Increasing or decreasing soil moisture both predominantly results in reduced precipitation rates. Replacing the soil moisture with realistic fields from different days has an insignificant influence on precipitation. The findings of this study underline the need for uncertainty estimates in soil moisture studies based on convection-resolving models.

  9. Fire activity and severity in the western US vary along proxy gradients representing fuel amount and fuel moisture.

    PubMed

    Parks, Sean A; Parisien, Marc-André; Miller, Carol; Dobrowski, Solomon Z

    2014-01-01

    Numerous theoretical and empirical studies have shown that wildfire activity (e.g., area burned) at regional to global scales may be limited at the extremes of environmental gradients such as productivity or moisture. Fire activity, however, represents only one component of the fire regime, and no studies to date have characterized fire severity along such gradients. Given the importance of fire severity in dictating ecological response to fire, this is a considerable knowledge gap. For the western US, we quantify relationships between climate and the fire regime by empirically describing both fire activity and severity along two climatic water balance gradients, actual evapotranspiration (AET) and water deficit (WD), that can be considered proxies for fuel amount and fuel moisture, respectively. We also concurrently summarize fire activity and severity among ecoregions, providing an empirically based description of the geographic distribution of fire regimes. Our results show that fire activity in the western US increases with fuel amount (represented by AET) but has a unimodal (i.e., humped) relationship with fuel moisture (represented by WD); fire severity increases with fuel amount and fuel moisture. The explicit links between fire regime components and physical environmental gradients suggest that multivariable statistical models can be generated to produce an empirically based fire regime map for the western US. Such models will potentially enable researchers to anticipate climate-mediated changes in fire recurrence and its impacts based on gridded spatial data representing future climate scenarios.

  10. Fire Activity and Severity in the Western US Vary along Proxy Gradients Representing Fuel Amount and Fuel Moisture

    PubMed Central

    Parks, Sean A.; Parisien, Marc-André; Miller, Carol; Dobrowski, Solomon Z.

    2014-01-01

    Numerous theoretical and empirical studies have shown that wildfire activity (e.g., area burned) at regional to global scales may be limited at the extremes of environmental gradients such as productivity or moisture. Fire activity, however, represents only one component of the fire regime, and no studies to date have characterized fire severity along such gradients. Given the importance of fire severity in dictating ecological response to fire, this is a considerable knowledge gap. For the western US, we quantify relationships between climate and the fire regime by empirically describing both fire activity and severity along two climatic water balance gradients, actual evapotranspiration (AET) and water deficit (WD), that can be considered proxies for fuel amount and fuel moisture, respectively. We also concurrently summarize fire activity and severity among ecoregions, providing an empirically based description of the geographic distribution of fire regimes. Our results show that fire activity in the western US increases with fuel amount (represented by AET) but has a unimodal (i.e., humped) relationship with fuel moisture (represented by WD); fire severity increases with fuel amount and fuel moisture. The explicit links between fire regime components and physical environmental gradients suggest that multivariable statistical models can be generated to produce an empirically based fire regime map for the western US. Such models will potentially enable researchers to anticipate climate-mediated changes in fire recurrence and its impacts based on gridded spatial data representing future climate scenarios. PMID:24941290

  11. Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations

    NASA Astrophysics Data System (ADS)

    Fan, Ying; Miguez-Macho, Gonzalo; Weaver, Christopher P.; Walko, Robert; Robock, Alan

    2007-05-01

    Soil moisture is a key participant in land-atmosphere interactions and an important determinant of terrestrial climate. In regions where the water table is shallow, soil moisture is coupled to the water table. This paper is the first of a two-part study to quantify this coupling and explore its implications in the context of climate modeling. We examine the observed water table depth in the lower 48 states of the United States in search of salient spatial and temporal features that are relevant to climate dynamics. As a means to interpolate and synthesize the scattered observations, we use a simple two-dimensional groundwater flow model to construct an equilibrium water table as a result of long-term climatic and geologic forcing. Model simulations suggest that the water table depth exhibits spatial organization at watershed, regional, and continental scales, which may have implications for the spatial organization of soil moisture at similar scales. The observations suggest that water table depth varies at diurnal, event, seasonal, and interannual scales, which may have implications for soil moisture memory at these scales.

  12. Untangling the contribution of aspect, drainage position and elevation to the spatial variability of fine surface fuels in south east Australian forests

    NASA Astrophysics Data System (ADS)

    Sheridan, Gary; nyman, petter; Duff, Tom; Baillie, Craig; Bovill, William; Lane, Patrick; Tolhurst, Kevin

    2015-04-01

    The prediction of fuel moisture content is important for estimating the rate of spread of wildfires, the ignition probability of firebrands, and for the efficient scheduling of prescribed fire. The moisture content of fine surface fuels varies spatially at large scales (10's to 100's km) due to variation in meteorological variables (eg. temperature, relative humidity, precipitation). At smaller scales (100's of metres) in steep topography spatial variability is attributed to topographic influences that include differences in radiation due to aspect and slope, differences in precipitation, temperature and relative humidity due to elevation, and differences in soil moisture due to hillslope drainage position. Variable forest structure and canopy shading adds further to the spatial variability in surface fuel moisture. In this study we aim to combine daily 5km resolution gridded weather data with 20m resolution DEM and vegetation structure data to predict the spatial variability of fine surface fuels in steep topography. Microclimate stations were established in south east Australia to monitor surface fine fuel moisture continuously (every 15 minutes) using newly developed instrumented litter packs, in addition to temperature and relative humidity measurements inside the litter pack, and measurement of precipitation and energy inputs above and below the forest canopy. Microclimate stations were established across a gradient of aspect (5 stations), drainage position (7 stations), elevation (15 stations), and canopy cover conditions (6 stations). The data from this extensive network of microclimate stations across a broad spectrum of topographic conditions is being analysed to enable the downscaling of gridded weather data to spatial scales that are relevant to the connectivity of wildfire fuels and to the scheduling and outcome of prescribed fires. The initial results from the first year of this study are presented here.

  13. Bias Reduction in Short Records of Satellite Soil Moisture

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Koster, Randal D.

    2004-01-01

    Although surface soil moisture data from different sources (satellite retrievals, ground measurements, and land model integrations of observed meteorological forcing data) have been shown to contain consistent and useful information in their seasonal cycle and anomaly signals, they typically exhibit very different mean values and variability. These biases pose a severe obstacle to exploiting the useful information contained in satellite retrievals through data assimilation. A simple method of bias removal is to match the cumulative distribution functions (cdf) of the satellite and model data. However, accurate cdf estimation typically requires a long record of satellite data. We demonstrate here that by wing spatial sampling with a 2 degree moving window we can obtain local statistics based on a one-year satellite record that are a good approximation to those that would be derived from a much longer time series. This result should increase the usefulness of relatively short satellite data records.

  14. Satellite-derived potential evapotranspiration for distributed hydrologic runoff modeling

    NASA Astrophysics Data System (ADS)

    Spies, R. R.; Franz, K. J.; Bowman, A.; Hogue, T. S.; Kim, J.

    2012-12-01

    Distributed models have the ability of incorporating spatially variable data, especially high resolution forcing inputs such as precipitation, temperature and evapotranspiration in hydrologic modeling. Use of distributed hydrologic models for operational streamflow prediction has been partially hindered by a lack of readily available, spatially explicit input observations. Potential evapotranspiration (PET), for example, is currently accounted for through PET input grids that are based on monthly climatological values. The goal of this study is to assess the use of satellite-based PET estimates that represent the temporal and spatial variability, as input to the National Weather Service (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM). Daily PET grids are generated for six watersheds in the upper Mississippi River basin using a method that applies only MODIS satellite-based observations and the Priestly Taylor formula (MODIS-PET). The use of MODIS-PET grids will be tested against the use of the current climatological PET grids for simulating basin discharge. Gridded surface temperature forcing data are derived by applying the inverse distance weighting spatial prediction method to point-based station observations from the Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS). Precipitation data are obtained from the Climate Prediction Center's (CPC) Climatology-Calibrated Precipitation Analysis (CCPA). A-priori gridded parameters for the Sacramento Soil Moisture Accounting Model (SAC-SMA), Snow-17 model, and routing model are initially obtained from the Office of Hydrologic Development and further calibrated using an automated approach. The potential of the MODIS-PET to be used in an operational distributed modeling system will be assessed with the long-term goal of promoting research to operations transfers and advancing the science of hydrologic forecasting.

  15. Projected Irrigation Requirement Under Climate Change in Korean Peninsula by Apply Global Hydrologic Model to Local Scale.

    NASA Astrophysics Data System (ADS)

    Yang, B.; Lee, D. K.

    2016-12-01

    Understanding spatial distribution of irrigation requirement is critically important for agricultural water management. However, many studies considering future agricultural water management in Korea assessed irrigation requirement on watershed or administrative district scale, but have not accounted the spatial distribution. Lumped hydrologic model has typically used in Korea for simulating watershed scale irrigation requirement, while distribution hydrologic model can simulate the spatial distribution grid by grid. To overcome this shortcoming, here we applied a grid base global hydrologic model (H08) into local scale to estimate spatial distribution under future irrigation requirement of Korean Peninsula. Korea is one of the world's most densely populated countries, with also high produce and demand of rice which requires higher soil moisture than other crops. Although, most of the precipitation concentrate in particular season and disagree with crop growth season. This precipitation character makes management of agricultural water which is approximately 60% of total water usage critical issue in Korea. Furthermore, under future climate change, the precipitation predicted to be more concentrated and necessary need change of future water management plan. In order to apply global hydrological model into local scale, we selected appropriate major crops under social and local climate condition in Korea to estimate cropping area and yield, and revised the cropping area map more accurately. As a result, future irrigation requirement estimation varies under each projection, however, slightly decreased in most case. The simulation reveals, evapotranspiration increase slightly while effective precipitation also increase to balance the irrigation requirement. This finding suggest practical guideline to decision makers for further agricultural water management plan including future development of water supply plan to resolve water scarcity.

  16. Effects of climate change on soil moisture over China from 1960-2006

    USGS Publications Warehouse

    Zhu, Q.; Jiang, H.; Liu, J.

    2009-01-01

    Soil moisture is an important variable in the climate system and it has sensitive impact on the global climate. Obviously it is one of essential components in the climate change study. The Integrated Biosphere Simulator (IBIS) is used to evaluate the spatial and temporal patterns of soil moisture across China under the climate change conditions for the period 1960-2006. Results show that the model performed better in warm season than in cold season. Mean errors (ME) are within 10% for all the months and root mean squared errors (RMSE) are within 10% except winter season. The model captured the spatial variability higher than 50% in warm seasons. Trend analysis based on the Mann-Kendall method indicated that soil moisture in most area of China is decreased especially in the northern China. The areas with significant increasing trends in soil moisture mainly locate at northwestern China and small areas in southeastern China and eastern Tibet plateau. ?? 2009 IEEE.

  17. Screening variability and change of soil moisture under wide-ranging climate conditions: Snow dynamics effects.

    PubMed

    Verrot, Lucile; Destouni, Georgia

    2015-01-01

    Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.

  18. Soil Moisture Project Evaluation Workshop

    NASA Technical Reports Server (NTRS)

    Gilbert, R. H. (Editor)

    1980-01-01

    Approaches planned or being developed for measuring and modeling soil moisture parameters are discussed. Topics cover analysis of spatial variability of soil moisture as a function of terrain; the value of soil moisture information in developing stream flow data; energy/scene interactions; applications of satellite data; verifying soil water budget models; soil water profile/soil temperature profile models; soil moisture sensitivity analysis; combinations of the thermal model and microwave; determing planetary roughness and field roughness; how crust or a soil layer effects microwave return; truck radar; and truck/aircraft radar comparison.

  19. Spatio-temporal Root Zone Soil Moisture Estimation for Indo - Gangetic Basin from Satellite Derived (AMSR-2 and SMOS) Surface Soil Moisture

    NASA Astrophysics Data System (ADS)

    Sure, A.; Dikshit, O.

    2017-12-01

    Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.

  20. The SMAP mission combined active-passive soil moisture product at 9 km and 3km spatial resolutions

    USDA-ARS?s Scientific Manuscript database

    The NASA Soil Moisture Active Passive (SMAP) mission with onboard L-band radiometer and radar was launched on January 31st, 2015. The spacecraft provided high-resolution (3 km and 9 km) global soil moisture estimates at regular intervals by combining radiometer and radar observations for ~2.5 months...

  1. An initial assessment of SMAP soil moisture disaggregation scheme using TIR surface evaporation data over the continental United States

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active Passive (SMAP) mission is dedicated toward global soil moisture mapping. Typically, an L-band microwave radiometer has a spatial resolution on the order of 36-40 km, which is too coarse for many specific hydro-meteorological and agricultural applications. With the failure of...

  2. New spatial upscaling methods for multi-point measurements: From normal to p-normal

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Xin

    2017-12-01

    Careful attention must be given to determining whether the geophysical variables of interest are normally distributed, since the assumption of a normal distribution may not accurately reflect the probability distribution of some variables. As a generalization of the normal distribution, the p-normal distribution and its corresponding maximum likelihood estimation (the least power estimation, LPE) were introduced in upscaling methods for multi-point measurements. Six methods, including three normal-based methods, i.e., arithmetic average, least square estimation, block kriging, and three p-normal-based methods, i.e., LPE, geostatistics LPE and inverse distance weighted LPE are compared in two types of experiments: a synthetic experiment to evaluate the performance of the upscaling methods in terms of accuracy, stability and robustness, and a real-world experiment to produce real-world upscaling estimates using soil moisture data obtained from multi-scale observations. The results show that the p-normal-based methods produced lower mean absolute errors and outperformed the other techniques due to their universality and robustness. We conclude that introducing appropriate statistical parameters into an upscaling strategy can substantially improve the estimation, especially if the raw measurements are disorganized; however, further investigation is required to determine which parameter is the most effective among variance, spatial correlation information and parameter p.

  3. Using Data Assimilation Diagnostics to Assess the SMAP Level-4 Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Liu, Qing; De Lannoy, Gabrielle; Crow, Wade; Kimball, John; Koster, Randy; Ardizzone, Joe

    2018-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with approx.2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of approx. 0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under approx. 3 K), the soil moisture increments (under approx. 0.01 cu m/cu m), and the surface soil temperature increments (under approx. 1 K). Typical instantaneous values are approx. 6 K for O-F residuals, approx. 0.01 (approx. 0.003) cu m/cu m for surface (root-zone) soil moisture increments, and approx. 0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.

  4. Validation of SMAP Surface Soil Moisture Products with Core Validation Sites

    NASA Technical Reports Server (NTRS)

    Colliander, A.; Jackson, T. J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S. B.; Cosh, M. H.; Dunbar, R. S.; Dang, L.; Pashaian, L.; hide

    2017-01-01

    The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well calibrated in situ soil moisture measurements within SMAP product grid pixels for diverse conditions and locations.The estimation of the average soil moisture within the SMAP product grid pixels based on in situ measurements is more reliable when location specific calibration of the sensors has been performed and there is adequate replication over the spatial domain, with an up-scaling function based on analysis using independent estimates of the soil moisture distribution. SMAP fulfilled these requirements through a collaborative CalVal Partner program.This paper presents the results from 34 candidate core validation sites for the first eleven months of the SMAP mission. As a result of the screening of the sites prior to the availability of SMAP data, out of the 34 candidate sites 18 sites fulfilled all the requirements at one of the resolution scales (at least). The rest of the sites are used as secondary information in algorithm evaluation. The results indicate that the SMAP radiometer-based soil moisture data product meets its expected performance of 0.04 cu m/cu m volumetric soil moisture (unbiased root mean square error); the combined radar-radiometer product is close to its expected performance of 0.04 cu m/cu m, and the radar-based product meets its target accuracy of 0.06 cu m/cu m (the lengths of the combined and radar-based products are truncated to about 10 weeks because of the SMAP radar failure). Upon completing the intensive CalVal phase of the mission the SMAP project will continue to enhance the products in the primary and extended geographic domains, in co-operation with the CalVal Partners, by continuing the comparisons over the existing core validation sites and inclusion of candidate sites that can address shortcomings.

  5. Assimilation of SMOS Brightness Temperatures or Soil Moisture Retrievals into a Land Surface Model

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J. M.; Reichle, Rolf H.

    2016-01-01

    Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40 degree incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval assimilation.

  6. Global Assessment of the SMAP Level-4 Soil Moisture Product Using Assimilation Diagnostics

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Liu, Qing; De Lannoy, Gabrielle; Crow, Wade; Kimball, John; Koster, Randy; Ardizzone, Joe

    2018-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with approx. 2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of approx. 0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under approx. 3 K), the soil moisture increments (under approx. 0.01 cu m/cu m), and the surface soil temperature increments (under approx. 1 K). Typical instantaneous values are approx. 6 K for O-F residuals, approx. 0.01 (approx. 0.003) cu m/cu m for surface (root-zone) soil moisture increments, and approx. 0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.

  7. Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction

    NASA Astrophysics Data System (ADS)

    Baatz, Roland; Hendricks Franssen, Harrie-Jan; Han, Xujun; Hoar, Tim; Reemt Bogena, Heye; Vereecken, Harry

    2017-05-01

    In situ soil moisture sensors provide highly accurate but very local soil moisture measurements, while remotely sensed soil moisture is strongly affected by vegetation and surface roughness. In contrast, cosmic-ray neutron sensors (CRNSs) allow highly accurate soil moisture estimation on the field scale which could be valuable to improve land surface model predictions. In this study, the potential of a network of CRNSs installed in the 2354 km2 Rur catchment (Germany) for estimating soil hydraulic parameters and improving soil moisture states was tested. Data measured by the CRNSs were assimilated with the local ensemble transform Kalman filter in the Community Land Model version 4.5. Data of four, eight and nine CRNSs were assimilated for the years 2011 and 2012 (with and without soil hydraulic parameter estimation), followed by a verification year 2013 without data assimilation. This was done using (i) a regional high-resolution soil map, (ii) the FAO soil map and (iii) an erroneous, biased soil map as input information for the simulations. For the regional soil map, soil moisture characterization was only improved in the assimilation period but not in the verification period. For the FAO soil map and the biased soil map, soil moisture predictions improved strongly to a root mean square error of 0.03 cm3 cm-3 for the assimilation period and 0.05 cm3 cm-3 for the evaluation period. Improvements were limited by the measurement error of CRNSs (0.03 cm3 cm-3). The positive results obtained with data assimilation of nine CRNSs were confirmed by the jackknife experiments with four and eight CRNSs used for assimilation. The results demonstrate that assimilated data of a CRNS network can improve the characterization of soil moisture content on the catchment scale by updating spatially distributed soil hydraulic parameters of a land surface model.

  8. Identifying the optimal spatially and temporally invariant root distribution for a semiarid environment

    NASA Astrophysics Data System (ADS)

    Sivandran, Gajan; Bras, Rafael L.

    2012-12-01

    In semiarid regions, the rooting strategies employed by vegetation can be critical to its survival. Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. Vegetation roots have strong control over this partitioning, and assuming a static root profile, predetermine the manner in which this partitioning is undertaken.A coupled, dynamic vegetation and hydrologic model, tRIBS + VEGGIE, was used to explore the role of vertical root distribution on hydrologic fluxes. Point-scale simulations were carried out using two spatially and temporally invariant rooting schemes: uniform: a one-parameter model and logistic: a two-parameter model. The simulations were forced with a stochastic climate generator calibrated to weather stations and rain gauges in the semiarid Walnut Gulch Experimental Watershed (WGEW) in Arizona. A series of simulations were undertaken exploring the parameter space of both rooting schemes and the optimal root distribution for the simulation, which was defined as the root distribution with the maximum mean transpiration over a 100-yr period, and this was identified. This optimal root profile was determined for five generic soil textures and two plant-functional types (PFTs) to illustrate the role of soil texture on the partitioning of moisture at the land surface. The simulation results illustrate the strong control soil texture has on the partitioning of rainfall and consequently the depth of the optimal rooting profile. High-conductivity soils resulted in the deepest optimal rooting profile with land surface moisture fluxes dominated by transpiration. As we move toward the lower conductivity end of the soil spectrum, a shallowing of the optimal rooting profile is observed and evaporation gradually becomes the dominate flux from the land surface. This study offers a methodology through which local plant, soil, and climate can be accounted for in the parameterization of rooting profiles in semiarid regions.

  9. Integrated measurements and modeling of CO2, CH4, and N2O fluxes using soil microsite frequency distributions

    NASA Astrophysics Data System (ADS)

    Davidson, Eric; Sihi, Debjani; Savage, Kathleen

    2017-04-01

    Soil fluxes of greenhouse gases (GHGs) play a significant role as biotic feedbacks to climate change. Production and consumption of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. Models of belowground processes of these GHGs should be internally consistent with respect to the biophysical processes of gaseous production, consumption, and transport within the soil, including the contrasting effects of oxygen (O2) as either substrate or inhibitor. We installed automated chambers to simultaneously measure soil fluxes of CO2 (using LiCor-IRGA), CH4, and N2O (using Aerodyne quantum cascade laser) along soil moisture gradients at the Howland Forest in Maine, USA. Measured fluxes of these GHGs were used to develop and validate a merged model. While originally intended for aerobic respiration, the core structure of the Dual Arrhenius and Michaelis-Menten (DAMM) model was modified by adding M-M and Arrhenius functions for each GHG production and consumption process, and then using the same diffusion functions for each GHG and for O2. The area under a soil chamber was partitioned according to a log-normal probability distribution function, where only a small fraction of microsites had high available-C. The probability distribution of soil C leads to a simulated distribution of heterotrophic respiration, which translates to a distribution of O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates microsite concentrations of O2, which then determine the distribution of microsite production and consumption of CH4 and N2O, and subsequently their microsite concentrations using the same diffusion function. At many moisture values, there are some microsites of production and some of consumption for each gas, and the resulting simulated microsite concentrations of CH4 and N2O range from below ambient to above ambient atmospheric values. As soil moisture or temperature increase, the skewness of the microsite distributions of heterotrophic respiration and CH4 concentrations shifts toward a larger fraction of high values, while the skewness of microsite distributions of O2 and N2O concentrations shifts toward a larger fraction of low values. This approach of probability distribution functions for each gas simulates the importance of microsite hotspots of methanogenesis and N2O reduction at high moisture (and temperature). In addition, the model demonstrates that net consumption of atmospheric CH4 and N2O can occur simultaneously within a chamber due to the distribution of soil microsite conditions, which is consistent with some episodes of measured fluxes. Because soil CO2, N2O and CH4 fluxes are linked through substrate supply and O2 effects, the multiple constraints of simultaneous measurements of all three GHGs proved to be effective when applied to our combined model. Simulating all three GHGs simultaneously in a parsimonious modeling framework provides confidence that the most important mechanisms are skillfully simulated using appropriate parameterization and good process representation.

  10. Visualization and understanding of the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging.

    PubMed

    Vercruysse, Jurgen; Toiviainen, Maunu; Fonteyne, Margot; Helkimo, Niko; Ketolainen, Jarkko; Juuti, Mikko; Delaet, Urbain; Van Assche, Ivo; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas

    2014-04-01

    Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Confronting weather and climate models with observational data from soil moisture networks over the United States

    PubMed Central

    Dirmeyer, Paul A.; Wu, Jiexia; Norton, Holly E.; Dorigo, Wouter A.; Quiring, Steven M.; Ford, Trenton W.; Santanello, Joseph A.; Bosilovich, Michael G.; Ek, Michael B.; Koster, Randal D.; Balsamo, Gianpaolo; Lawrence, David M.

    2018-01-01

    Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison. PMID:29645013

  12. Confronting Weather and Climate Models with Observational Data from Soil Moisture Networks over the United States

    NASA Technical Reports Server (NTRS)

    Dirmeyer, Paul A.; Wu, Jiexia; Norton, Holly E.; Dorigo, Wouter A.; Quiring, Steven M.; Ford, Trenton W.; Santanello, Joseph A., Jr.; Bosilovich, Michael G.; Ek, Michael B.; Koster, Randal Dean; hide

    2016-01-01

    Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses out perform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.

  13. Confronting weather and climate models with observational data from soil moisture networks over the United States.

    PubMed

    Dirmeyer, Paul A; Wu, Jiexia; Norton, Holly E; Dorigo, Wouter A; Quiring, Steven M; Ford, Trenton W; Santanello, Joseph A; Bosilovich, Michael G; Ek, Michael B; Koster, Randal D; Balsamo, Gianpaolo; Lawrence, David M

    2016-04-01

    Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.

  14. Evaluation of Long-term Soil Moisture Proxies in the U.S. Great Plains

    NASA Astrophysics Data System (ADS)

    Yuan, S.; Quiring, S. M.

    2016-12-01

    Soil moisture plays an important role in land-atmosphere interactions through both surface energy and water balances. However, despite its importance, there are few long-term records of observed soil moisture for investigating long-term spatial and temporal variations of soil moisture. Hence, it is necessary to find suitable approximations of soil moisture observations. 5 drought indices will be compared with simulated and observed soil moisture over the U.S. Great Plains during two time periods (1980 - 2012 and 2003 - 2012). Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer Z Index (zindex) and Crop Moisture Index (CMI) will be calculated by PRISM data. The soil moisture simulations will be derived from NLDAS. In situ soil moisture will be obtained from North American Soil Moisture Database. The evaluation will focus on three main aspects: trends, variations and persistence. The results will support further research investigating long-term variations in soil moisture-climate interactions.

  15. Spatial variation and driving factors of soil moisture at multi-scales: a case study in Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Zhang, X.; Liu, Y.; Fang, X.

    2017-12-01

    Currently, the ecological restoration of the Loess Plateau has led to significant achievements such as increases in vegetation coverage, decreases in soil erosion, and enhancement of ecosystem services. Soil moisture shortages, however, commonly occur as a result of limited rainfall and strong evaporation in this semiarid region of China. Since soil moisture is critical in regulating plant growth in these semiarid regions, it is crucial to identify the spatial variation and factors affecting soil moisture at multi-scales in the Loess Plateau of China. In the last several years, extensive studies on soil moisture have been carried out by our research group at the plot, small watershed, watershed, and regional scale in the Loess Plateau, providing some information for vegetation restoration in the region. The main research results are as follows: (1) the highest soil moisture content was in the 0-0.1 m layer with a large coefficient of variation; (2) in the 0-0.1m layer, soil moisture content was negatively correlated with relative elevation, slope and vegetation cover, the correlations among slope, aspect and soil moisture increased with depth increased; (3) as for the deep soil moisture content, the higher spatial variation of deep SMC occurred at 1.2-1.4 m and 4.8-5.0m; (4) the deep soil moisture content in native grassland and farmland were significant higher than that of introduced vegetation; (5) at regional scale, the soil water content under different precipitation zones increased following the increase of precipitation, while, the influencing factors of deep SMC at watershed scale varied with land management types; (6) in the areas with multi-year precipitation of 370 - 440mm, natural grass is more suitable for restoration, and this should be treated as the key areas in vegetation restoration; (7) appropriate planting density and species selection should be taken into account for introduced vegetation management; (8) it is imperative to take the local reality into account and to balance the economic and ecological benefits so that the ratio of artificial vegetation and natural restoration can be optimized to realize sustainability of vegetation restoration

  16. Soil Moisture (SMAP) and Vapor Pressure Deficit Controls on Evaporative Fraction over the Continental U.S.

    NASA Astrophysics Data System (ADS)

    Salvucci, G.; Rigden, A. J.; Gianotti, D.; Entekhabi, D.

    2017-12-01

    We analyze the control over evapotranspiration (ET) imposed by soil moisture limitations and stomatal closure due to vapor pressure deficit (VPD) across the United States using estimates of satellite-derived soil moisture from SMAP and a meteorological, data-driven ET estimate over a two year period at over 1000 locations. The ET data are developed independent of soil moisture using the emergent relationship between the diurnal cycle of the relative humidity profile and ET based on ETRHEQ (Salvucci and Gentine (2013), PNAS, 110(16): 6287-6291, Rigden and Salvucci, 2015, WRR, 51(4): 2951-2973; Rigden and Salvucci, 2017, GCB, 23(3) 1140-1151). The key advantage of using this approach to estimate ET is that no measurements of surface limiting factors (soil moisture, leaf area, canopy conductance) are required; instead, ET is estimated from only meteorological data. The combination of these two independent datasets allows for a unique spatial analysis of the control on ET imposed by the availability of soil moisture vs. VPD. Spatial patterns of limitations are inferred by fitting the ETRHEQ-inferred surface conductance to a weighted sum of a Jarvis type stomatal conductance model and bare soil evaporation conductance model, with separate moisture-dependent evaporation efficiency relations for bare soil and vegetation. Spatial patterns are visualized by mapping the optimal curve fitting coefficients and by conducting sensitivity analyses of the resulting fitted model across the Unites States. Results indicate regional variations in rate-limiting factors, and suggest that in some areas the VPD effect on stomatal closure is strong enough to induce a decrease in ET under projected climate change, despite an increase in atmospheric drying (and thus evaporative demand).

  17. Probabilistic Assessment of Soil Moisture using C-band Quad-polarized Remote Sensing Data from RISAT1

    NASA Astrophysics Data System (ADS)

    Pal, Manali; Suman, Mayank; Das, Sarit Kumar; Maity, Rajib

    2017-04-01

    Information on spatio-temporal distribution of surface Soil Moisture Content (SMC) is essential in several hydrological, meteorological and agricultural applications. There has been increasing importance of microwave active remote sensing data for large-scale estimation of surface SMC because of its ability to monitor spatial and temporal variation of surface SMC at regional, continental and global scale at a reasonably fine spatial and temporal resolution. The use of Synthetic Aperture Radar (SAR) is highly potential for catchment-scale applications due to high spatial resolution (˜10-20 m) both for vegetated and bare soil surface as well as because of its all-weather and day and night characteristics. However, one prime disadvantage of SAR is that their signal is subjective to SMC along with Land Use Land Cover (LULC) and surface roughness conditions, making the retrieval of SMC from SAR data an "ill-posed" problem. Moreover, the quantification of uncertainty due to inappropriate surface roughness characterization, soil texture, inversion techniques etc. even in the latest established retrieval methods, is little explored. This paper reports a recently developed method to estimate the surface SMC with probabilistic assessment of uncertainty associated with the estimation (Pal et al., 2016). Quad-polarized SAR data from Radar Imaging Satellite1 (RISAT1), launched in 2012 by Indian Space Research Organization (ISRO) and information on LULC regarding bareland and vegetated land (<30 cm height) are used in estimation using the potential of multivariate probabilistic assessment through copulas. The salient features of the study are: 1) development of a combined index to understand the role of all the quad-polarized backscattering coefficients and soil texture information in SMC estimation; 2) applicability of the model for different incidence angles using normalized incidence angle theory proposed by Zibri et al. (2005); and 3) assessment of uncertainty range of the estimated SMC. Supervised Principal Component Analysis (SPCA) is used for development of combined index and Frank copula is found to be the best-fit copula. The developed model is validated with the field soil moisture values over 334 monitoring points within the study area and used for development of a soil moisture map. While the performance is promising, the model is applicable only for bare and vegetated land. References: Pal, M., Maity, R., Suman, M., Das, S.K., Patel, P., and Srivastava, H.S., (2016). "Satellite-Based Probabilistic Assessment of Soil Moisture Using C-Band Quad-Polarized RISAT1 Data." IEEE Transactions on Geoscience and Remote Sensing, In Press, doi:10.1109/TGRS.2016.2623378. Zribi, M., Baghdadi, N., Holah, N., and Fafin, O., (2005)."New methodology for soil surface moisture estimation and its application to ENVISAT-ASAR multi-incidence data inversion." Remote Sensing of Environment, vol. 96, nos. 3-4, pp. 485-496.

  18. The Microphysical Properties of Convective Precipitation Over the Tibetan Plateau by a Subkilometer Resolution Cloud-Resolving Simulation

    NASA Astrophysics Data System (ADS)

    Gao, Wenhua; Liu, Liping; Li, Jian; Lu, Chunsong

    2018-03-01

    The microphysical properties of convective precipitation over the Tibetan Plateau are unique because of the extremely high topography and special atmospheric conditions. In this study, the ground-based cloud radar and disdrometer observations as well as high-resolution Weather Research and Forecasting simulations with the Chinese Academy of Meteorological Sciences microphysics and four other microphysical schemes are used to investigate the microphysics and precipitation mechanisms of a convection event on 24 July 2014. The Weather Research and Forecasting-Chinese Academy of Meteorological Sciences simulation reasonably reproduces the spatial distribution of 24-hr accumulated rainfall, yet the temporal evolution of rain rate has a delay of 1-3 hr. The model reflectivity shares the common features with the cloud radar observations. The simulated raindrop size distributions demonstrate more of small- and large-size raindrops produced with the increase of rain rate, suggesting that changeable shape parameter should be used in size distribution. Results show that abundant supercooled water exists through condensation of water vapor above the freezing layer. The prevailing ice crystal microphysical processes are depositional growth and autoconversion of ice crystal to snow. The dominant source term of snow/graupel is riming of supercooled water. Sedimentation of graupel can play a vital role in the formation of precipitation, but melting of snow is rather small and quite different from that in other regions. Furthermore, water vapor budgets suggest that surface moisture flux be the principal source of water vapor and self-circulation of moisture happen at the beginning of convection, while total moisture flux convergence determine condensation and precipitation during the convective process over the Tibetan Plateau.

  19. Soil moisture monitoring in Candelaro basin, Southern Italy

    NASA Astrophysics Data System (ADS)

    Campana, C.; Gigante, V.; Iacobellis, V.

    2012-04-01

    The signature of the hydrologic regime can be investigated, in principle, by recognizing the main mechanisms of runoff generation that take place in the basin and affect the seasonal behavior or the rainfall-driven events. In this framework, besides the implementation of hydrological models, a crucial role should be played by direct observation of key state variables such as soil moisture at different depths and different distances from the river network. In fact, understanding hydrological systems is often limited by the frequency and spatial distribution of observations. Experimental catchments, which are field laboratories with long-term measurements of hydrological variables, are not only sources of data but also sources of knowledge. Wireless distributed sensing platforms are a key technology to address the need for overcoming field limitations such as conflicts between soil use and cable connections. A stand-alone wireless network system has been installed for continuous monitoring of soil water contents at multiple depths along a transect located in Celone basin (sub-basin of Candelaro basin in Puglia, Southern Italy). The transect consists of five verticals, each one having three soil water content sensors at multiple depths: 0,05 m, 0,6 m and 1,2 m below the ground level. The total length of the transect is 307 m and the average distance between the verticals is 77 m. The main elements of the instrumental system installed are: fifteen Decagon 10HS Soil Moisture Sensors, five Decagon Em50R Wireless Radio Data Loggers, one Rain gauge, one Decagon Data Station and one Campbell CR1000 Data Logger. Main advantages of the system as described and presented in this work are that installation of the wireless network system is fast and easy to use, data retrieval and monitoring information over large spatial scales can be obtained in (near) real-time mode and finally other type of sensors can be connected to the system, also offering wide potentials for future applications. First records of the wireless underground network system indicate the presence of interesting patterns in space-time variability of volumetric soil moisture content, that provide evidence of the combined process of vertical infiltration and lateral flow. ACKNOWLEDGEMENT The research in this work is supported by the MIRAGE FP7 project (Grant agreement n. 211732).

  20. Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming

    DOE PAGES

    Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.; ...

    2017-02-08

    Species distribution shifts in response to climate change require that recruitment increase beyond current range boundaries. For trees with long life spans, the importance of climate-sensitive seedling establishment to the pace of range shifts has not been demonstrated quantitatively. Using spatially explicit, stochastic population models combined with data from long-term forest surveys, we explored whether the climate-sensitivity of recruitment observed in climate manipulation experiments was sufficient to alter populations and elevation ranges of two widely distributed, high-elevation North American conifers. Empirically observed, warming-driven declines in recruitment led to rapid modelled population declines at the low-elevation, ‘warm edge’ of subalpine forestmore » and slow emergence of populations beyond the high-elevation, ‘cool edge’. Because population declines in the forest occurred much faster than population emergence in the alpine, we observed range contraction for both species. For Engelmann spruce, this contraction was permanent over the modelled time horizon, even in the presence of increased moisture. For limber pine, lower sensitivity to warming may facilitate persistence at low elevations – especially in the presence of increased moisture – and rapid establishment above tree line, and, ultimately, expansion into the alpine. Synthesis. Assuming 21st century warming and no additional moisture, population dynamics in high-elevation forests led to transient range contractions for limber pine and potentially permanent range contractions for Engelmann spruce. Thus, limitations to seedling recruitment with warming can constrain the pace of subalpine tree range shifts.« less

  1. Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.

    Species distribution shifts in response to climate change require that recruitment increase beyond current range boundaries. For trees with long life spans, the importance of climate-sensitive seedling establishment to the pace of range shifts has not been demonstrated quantitatively. Using spatially explicit, stochastic population models combined with data from long-term forest surveys, we explored whether the climate-sensitivity of recruitment observed in climate manipulation experiments was sufficient to alter populations and elevation ranges of two widely distributed, high-elevation North American conifers. Empirically observed, warming-driven declines in recruitment led to rapid modelled population declines at the low-elevation, ‘warm edge’ of subalpine forestmore » and slow emergence of populations beyond the high-elevation, ‘cool edge’. Because population declines in the forest occurred much faster than population emergence in the alpine, we observed range contraction for both species. For Engelmann spruce, this contraction was permanent over the modelled time horizon, even in the presence of increased moisture. For limber pine, lower sensitivity to warming may facilitate persistence at low elevations – especially in the presence of increased moisture – and rapid establishment above tree line, and, ultimately, expansion into the alpine. Synthesis. Assuming 21st century warming and no additional moisture, population dynamics in high-elevation forests led to transient range contractions for limber pine and potentially permanent range contractions for Engelmann spruce. Thus, limitations to seedling recruitment with warming can constrain the pace of subalpine tree range shifts.« less

  2. Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming

    USGS Publications Warehouse

    Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.; Veblen, Thomas T; Smith, Jeremy M.; Kueppers, Lara M.

    2017-01-01

    Species distribution shifts in response to climate change require that recruitment increase beyond current range boundaries. For trees with long life spans, the importance of climate-sensitive seedling establishment to the pace of range shifts has not been demonstrated quantitatively.Using spatially explicit, stochastic population models combined with data from long-term forest surveys, we explored whether the climate-sensitivity of recruitment observed in climate manipulation experiments was sufficient to alter populations and elevation ranges of two widely distributed, high-elevation North American conifers.Empirically observed, warming-driven declines in recruitment led to rapid modelled population declines at the low-elevation, ‘warm edge’ of subalpine forest and slow emergence of populations beyond the high-elevation, ‘cool edge’. Because population declines in the forest occurred much faster than population emergence in the alpine, we observed range contraction for both species. For Engelmann spruce, this contraction was permanent over the modelled time horizon, even in the presence of increased moisture. For limber pine, lower sensitivity to warming may facilitate persistence at low elevations – especially in the presence of increased moisture – and rapid establishment above tree line, and, ultimately, expansion into the alpine.Synthesis. Assuming 21st century warming and no additional moisture, population dynamics in high-elevation forests led to transient range contractions for limber pine and potentially permanent range contractions for Engelmann spruce. Thus, limitations to seedling recruitment with warming can constrain the pace of subalpine tree range shifts.

  3. Infiltration Processes and Flow Velocities Across the Landscape: When and Where is Macropore Flow Relevant?

    NASA Astrophysics Data System (ADS)

    Demand, D.; Blume, T.; Weiler, M.

    2017-12-01

    Preferential flow in macropores significantly affects the distributions of water and solutes in soil and many studies showed its relevance worldwide. Although some models include this process as a second pore domain, little is known about the spatial patterns and temporal dynamics. For example, while flow in the matrix is usually modeled and parameterized based on soil texture, an influence of texture on non-capillary flow for a given land-use class is poorly understood. To investigate the temporal and spatial dynamics on preferential flow we used a four-year soil moisture dataset from the mesoscale Attert catchment (288 km²) in Luxembourg. This dataset contains time series from 126 soil profiles in different textures and two land-use classes (forest, grassland). The soil moisture probes were installed in 10, 30 and 50 cm depth and measured in a 5-minute temporal resolution. Events were defined by a soil moisture increase higher than the instrument noise after a precipitation sum of more than 1 mm. Precipitation was measured next to the profiles so that each location could be associated to its unique precipitation characteristics. For every event and profile the soil moisture reaction was classified in sequential (ordered by depth) and non-sequential response. A non-sequential soil moisture reaction was used as an indicator of preferential flow. For sequential flow, the velocity was determined by the first reaction between two vertically adjacent sensors. The sensor reaction and wetting front velocity was analyzed in the context of precipitation characteristics and initial soil water content. Grassland sites showed a lower proportion of non-sequential flow than forest sites. For forest, non-sequential response is dependent on texture, rainfall intensity and initial water content. This is less distinct for the grassland sites. Furthermore, sequential reactions show higher flow velocities at sites, which also have high percentage of non-sequential response. In contrast, grassland sites show a more homogenous wetting front independent of soil texture. Compared against common modelling approaches of soil water flow, measured velocities show clear evidence of preferential flow, especially for forest soils. The analysis also shows that vegetation can alter the soil properties above the textural properties alone.

  4. Exploring the Influence of Topography on Belowground C Processes Using a Coupled Hydrologic-Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.

    2014-12-01

    Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.

  5. The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events

    NASA Astrophysics Data System (ADS)

    Li, Laifang; Schmitt, Raymond W.; Ummenhofer, Caroline C.

    2018-02-01

    The role of the oceanic water cycle in the record-breaking 2015 warm-season precipitation in the US is analyzed. The extreme precipitation started in the Southern US in the spring and propagated northward to the Midwest and the Great Lakes in the summer of 2015. This seasonal evolution of precipitation anomalies represents a typical mode of variability of US warm-season precipitation. Analysis of the atmospheric moisture flux suggests that such a rainfall mode is associated with moisture export from the subtropical North Atlantic. In the spring, excessive precipitation in the Southern US is attributable to increased moisture flux from the northwestern portion of the subtropical North Atlantic. The North Atlantic moisture flux interacts with local soil moisture which enables the US Midwest to draw more moisture from the Gulf of Mexico in the summer. Further analysis shows that the relationship between the rainfall mode and the North Atlantic water cycle has become more significant in recent decades, indicating an increased likelihood of extremes like the 2015 case. Indeed, two record-high warm-season precipitation events, the 1993 and 2008 cases, both occurred in the more recent decades of the 66 year analysis period. The export of water from the North Atlantic leaves a marked surface salinity signature. The salinity signature appeared in the spring preceding all three extreme precipitation events analyzed in this study, i.e. a saltier-than-normal subtropical North Atlantic in spring followed by extreme Midwest precipitation in summer. Compared to the various sea surface temperature anomaly patterns among the 1993, 2008, and 2015 cases, the spatial distribution of salinity anomalies was much more consistent during these extreme flood years. Thus, our study suggests that preseason salinity patterns can be used for improved seasonal prediction of extreme precipitation in the Midwest.

  6. Validation of SMAP data using Cosmic-ray Neutron Probes during the SMAPVEX16-IA Campaign

    NASA Astrophysics Data System (ADS)

    Russell, M. V.

    2016-12-01

    Global trends in consumptive water-use indicate a growing and unsustainable reliance on water resources. Each year it is estimated that 60 percent of water used for agriculture is wasted through inadequate water conservation, losses in distribution, and inappropriate times and rates of irrigation. Satellite remote sensing offers a variety of water balance datasets (precipitation, evapotranspiration, soil moisture, groundwater storage) to increase the water use efficiency in agricultural systems. In this work, we aim to validate the Soil Moisture Active Passive (SMAP) soil moisture product using the ground based cosmic-ray neutron probe (CRNP) for estimating field scale soil moisture at intermediate spatial scales as part of SMAPVEX16-IA experiment. Typical SMAP calibration and validation has been done using a combination of direct gravimetric sampling and in-situ soil moisture point observations. Although these measurements provide accurate data, it is time consuming and labor intensive to collect data over a 36 by 36 km SMAP pixel. Through a joint effort with rovers provided by the US Army Corps of Engineers and University of Nebraska-Lincoln, we are able to cover the domain in 7 hours. Data from both rovers was combined in order to produce a 1, 3, 9 and 36 km resolution product on the day of 12 SMAP overpasses in May and August 2016. Here we will describe basic QAQC procedures for estimating soil moisture from the dual rover experiment. This will include discussion about calibration, validation, and accounting for conditions such as variable road type and growing vegetation. Lastly, we will compare the calibrated rover and SMAP products. If the products are highly correlated the ground based rovers offer a strategy for collecting finer resolution products that may be used in future downscaling efforts in support of high resolution Land Surface Modeling.

  7. Measuring Soil Moisture in Skeletal Soils Using a COSMOS Rover

    NASA Astrophysics Data System (ADS)

    Medina, C.; Neely, H.; Desilets, D.; Mohanty, B.; Moore, G. W.

    2017-12-01

    The presence of coarse fragments directly influences the volumetric water content of the soil. Current surface soil moisture sensors often do not account for the presence of coarse fragments, and little research has been done to calibrate these sensors under such conditions. The cosmic-ray soil moisture observation system (COSMOS) rover is a passive, non-invasive surface soil moisture sensor with a footprint greater than 100 m. Despite its potential, the COSMOS rover has yet to be validated in skeletal soils. The goal of this study was to validate measurements of surface soil moisture as taken by a COSMOS rover on a Texas skeletal soil. Data was collected for two soils, a Marfla clay loam and Chinati-Boracho-Berrend association, in West Texas. Three levels of data were collected: 1) COSMOS surveys at three different soil moistures, 2) electrical conductivity surveys within those COSMOS surveys, and 3) ground-truth measurements. Surveys with the COSMOS rover covered an 8000-h area and were taken both after large rain events (>2") and a long dry period. Within the COSMOS surveys, the EM38-MK2 was used to estimate the spatial distribution of coarse fragments in the soil around two COSMOS points. Ground truth measurements included coarse fragment mass and volume, bulk density, and water content at 3 locations within each EM38 survey. Ground-truth measurements were weighted using EM38 data, and COSMOS measurements were validated by their distance from the samples. There was a decrease in water content as the percent volume of coarse fragment increased. COSMOS estimations responded to both changes in coarse fragment percent volume and the ground-truth volumetric water content. Further research will focus on creating digital soil maps using landform data and water content estimations from the COSMOS rover.

  8. Effects of spatial variations of soil moisture and vegetation on the evolution of a prestorm environment - A numerical case study

    NASA Technical Reports Server (NTRS)

    Chang, Jy-Tai; Wetzel, Peter J.

    1991-01-01

    To examine the effects of spatial variations of soil moisture and vegetation coverage on the evolution of a prestorm environment, the Goddard mesoscale model is modified to incorporate a simple evapotranspiration model that requires these two parameters. The case study of 3-4 June 1980 is of special interest due to the development of a tornado producing convective complex near Grand Island, Nebraska during a period of comparatively weak synoptic-scale forcing. It is shown that the observed stationary front was strongly enhanced by differential heating created by observed gradients of soil moisture, as acted upon by the vegetation cover.

  9. Modeling habitat and environmental factors affecting mosquito abundance in Chesapeake, Virginia

    NASA Astrophysics Data System (ADS)

    Bellows, Alan Scott

    The models I present in this dissertation were designed to enable mosquito control agencies in the mid-Atlantic region that oversee large jurisdictions to rapidly track the spatial and temporal distributions of mosquito species, especially those species known to be vectors of eastern equine encephalitis and West Nile virus. I was able to keep these models streamlined, user-friendly, and not cost-prohibitive using empirically based digital data to analyze mosquito-abundance patterns in real landscapes. This research is presented in three major chapters: (II) a series of semi-static habitat suitability indices (HSI) grounded on well-documented associations between mosquito abundance and environmental variables, (III) a dynamic model for predicting both spatial and temporal mosquito abundance based on a topographic soil moisture index and recent weather patterns, and (IV) a set of protocols laid out to aid mosquito control agencies for the use of these models. The HSIs (Chapter II) were based on relationships of mosquitoes to digital surrogates of soil moisture and vegetation characteristics. These models grouped mosquitoes species derived from similarities in habitat requirements, life-cycle type, and vector competence. Quantification of relationships was determined using multiple linear regression models. As in Chapter II, relationships between mosquito abundance and environmental factors in Chapter III were quantified using regression models. However, because this model was, in part, a function of changes in weather patterns, it enables the prediction of both 'where' and 'when' mosquito outbreaks are likely to occur. This model is distinctive among similar studies in the literature because of my use of NOAA's NEXRAD Doppler radar (3-hr precipitation accumulation data) to quantify the spatial and temporal distributions in precipitation accumulation. \\ Chapter IV is unique among the chapters in this dissertation because in lieu of presenting new research, it summarizes the preprocessing steps and analyses used in the HSIs and the dynamic, weather-based, model generated in Chapters II and III. The purpose of this chapter is to provide the reader and potential users with the necessary protocols for modeling the spatial and temporal abundances and distributions of mosquitoes, with emphasis on Culiseta melanura, in a real-world landscape of the mid-Atlantic region. This chapter also provides enhancements that could easily be incorporated into an environmentally sensitive integrated pest management program.

  10. Hydrologic data assimilation with a hillslope-scale-resolving model and L band radar observations: Synthetic experiments with the ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Flores, Alejandro N.; Bras, Rafael L.; Entekhabi, Dara

    2012-08-01

    Soil moisture information is critical for applications like landslide susceptibility analysis and military trafficability assessment. Existing technologies cannot observe soil moisture at spatial scales of hillslopes (e.g., 100 to 102 m) and over large areas (e.g., 102 to 105 km2) with sufficiently high temporal coverage (e.g., days). Physics-based hydrologic models can simulate soil moisture at the necessary spatial and temporal scales, albeit with error. We develop and test a data assimilation framework based on the ensemble Kalman filter for constraining uncertain simulated high-resolution soil moisture fields to anticipated remote sensing products, specifically NASA's Soil Moisture Active-Passive (SMAP) mission, which will provide global L band microwave observation approximately every 2-3 days. The framework directly assimilates SMAP synthetic 3 km radar backscatter observations to update hillslope-scale bare soil moisture estimates from a physics-based model. Downscaling from 3 km observations to hillslope scales is achieved through the data assimilation algorithm. Assimilation reduces bias in near-surface soil moisture (e.g., top 10 cm) by approximately 0.05 m3/m3and expected root-mean-square errors by at least 60% in much of the watershed, relative to an open loop simulation. However, near-surface moisture estimates in channel and valley bottoms do not improve, and estimates of profile-integrated moisture throughout the watershed do not substantially improve. We discuss the implications of this work, focusing on ongoing efforts to improve soil moisture estimation in the entire soil profile through joint assimilation of other satellite (e.g., vegetation) and in situ soil moisture measurements.

  11. High-Resolution Soil Moisture Retrieval using SMAP-L Band Radiometer and RISAT-C band Radar Data for the Indian Subcontinent

    NASA Astrophysics Data System (ADS)

    Singh, G.; Das, N. N.; Panda, R. K.; Mohanty, B.; Entekhabi, D.; Bhattacharya, B. K.

    2016-12-01

    Soil moisture status at high resolution (1-10 km) is vital for hydrological, agricultural and hydro-metrological applications. The NASA Soil Moisture Active Passive (SMAP) mission had potential to provide reliable soil moisture estimate at finer spatial resolutions (3 km and 9 km) at the global extent, but suffered a malfunction of its radar, consequently making the SMAP mission observations only from radiometer that are of coarse spatial resolution. At present, the availability of high-resolution soil moisture product is limited, especially in developing countries like India, which greatly depends on agriculture for sustaining a huge population. Therefore, an attempt has been made in the reported study to combine the C-band synthetic aperture radar (SAR) data from Radar Imaging Satellite (RISAT) of the Indian Space Research Organization (ISRO) with the SMAP mission L-band radiometer data to obtain high-resolution (1 km and 3 km) soil moisture estimates. In this study, a downscaling approach (Active-Passive Algorithm) implemented for the SMAP mission was used to disaggregate the SMAP radiometer brightness temperature (Tb) using the fine resolution SAR backscatter (σ0) from RISAT. The downscaled high-resolution Tb was then subjected to tau-omega model in conjunction with high-resolution ancillary data to retrieve soil moisture at 1 and 3 km scale. The retrieved high-resolution soil moisture estimates were then validated with ground based soil moisture measurement under different hydro-climatic regions of India. Initial results show tremendous potential and reasonable accuracy for the retrieved soil moisture at 1 km and 3 km. It is expected that ISRO will implement this approach to produce high-resolution soil moisture estimates for the Indian subcontinent.

  12. Moisture sources and pathways associated with the spatial variability of seasonal extreme precipitation over Canada

    NASA Astrophysics Data System (ADS)

    Tan, Xuezhi; Gan, Thian Yew; Chen, Yongqin David

    2018-01-01

    Nine regions with spatially coherent seasonal 3-day total precipitation extremes across Canada were identified using a clustering method that is compliant to the extreme value theory. Using storm back-trajectory analyses, we then identified possible moisture sources and pathways that are conducive to occurrences of seasonal extreme precipitation events in four seasons for the nine regions identified. Moisture pathways for all extreme precipitation events were clustered to nine dominant moisture pathway patterns using the self-organizing map method. Results show that horizontal moisture pathway patterns and their occurrences were not evidently different between seasons. However, warm (summer and fall) and cold (winter and spring) seasons show considerable differences in the spreading of moisture sources in all nine regions, even though many sources do not frequently contribute to extreme precipitation events. In all four seasons, terrestrial evapotranspiration had provided major moisture sources to many extreme precipitation events occurred in inland regions. Central Canada had received more widespread moisture sources over surrounding oceans of North America than western and eastern Canada, because of more diverse moisture pathway patterns for central Canada that transport moisture from all surrounding oceans to central Canada. Extreme precipitation in southwestern Canada mainly resulted from atmospheric rivers over the North Pacific Ocean. For northwestern Canada, moisture pathway patterns were from the northern Pacific, Arctic and northern Atlantic oceans, even though more than 78% of trajectories for northwestern Canada were from the North Pacific. Westerlies from the North Pacific Ocean and northern polar jet streams controlled dominant pathways to central and eastern Canada. More extreme precipitation events over Canada were fed by the Arctic Ocean in warm than in cold seasons.

  13. Testing FASST a One-Dimensional Hydrological Model for Soil Moisture Studies at the Little River Watershed, Tifton, Georgia

    USDA-ARS?s Scientific Manuscript database

    The FASST (Fast All Season Strength model, US Army Corps of Engineers), one-dimensional hydrologic model was used to evaluate soil moisture across the USDA-ARS-SEWRL Little River Watershed in south Georgia US. The ultimate goal of this research is to assess the spatial variation of soil moisture acr...

  14. Near Surface Soil Moisture Estimation Using SAR Images: A Case Study in the Mediterranean Area of Catalonia

    NASA Astrophysics Data System (ADS)

    Reppucci, Antonio; Moreno, Laura

    2010-12-01

    Information on Soil moisture spatial and temporal evolution is of great importance for managing the utilization of soils and vegetation, in particular in environments where the water resources are scarce. In-situ measurement of soil moisture are costly and not able to sample the spatial behaviour of a whole region. Thanks to their all weather capability and wide coverage, Synthetic Aperture Radar (SAR) images offer the opportunity to monitor large area with high resolution. This study presents the results of a project, partially founded by the Catalan government, to improve the monitoring of soil moisture using Earth Observation data. In particular the project is focused on the calibration of existing semi-empirical algorithm in the area of study. This will be done using co-located SAR and in-situ measurements acquired during several field campaigns. Observed deviations between SAR measurements and in-situ measurement are discussed.

  15. Using SMOS brightness temperature and derived surface-soil moisture to characterize surface conditions and validate land surface models.

    NASA Astrophysics Data System (ADS)

    Polcher, Jan; Barella-Ortiz, Anaïs; Piles, Maria; Gelati, Emiliano; de Rosnay, Patricia

    2017-04-01

    The SMOS satellite, operated by ESA, observes the surface in the L-band. On continental surface these observations are sensitive to moisture and in particular surface-soil moisture (SSM). In this presentation we will explore how the observations of this satellite can be exploited over the Iberian Peninsula by comparing its results with two land surface models : ORCHIDEE and HTESSEL. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies. When comparing the surface-soil moisture of the models with the product derived operationally by ESA from SMOS observations similar results are found. The spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates is poor (ρ 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products. Other reasons have to be sought to explain the poor agreement in spatial patterns between satellite derived and modelled SSM. This presentation will hopefully contribute to the discussion of how SMOS and other observations can be used to prepare, carry-out and exploit a field campaign over the Iberian Peninsula which aims at improving our understanding of semi-arid land surface processes.

  16. Uncertainty evaluation of a regional real-time system for rain-induced landslides

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Dalia; Stanley, Thomas; Yatheendradas, Soni

    2015-04-01

    A new prototype regional model and evaluation framework has been developed over Central America and the Caribbean region using satellite-based information including precipitation estimates, modeled soil moisture, topography, soils, as well as regionally available datasets such as road networks and distance to fault zones. The algorithm framework incorporates three static variables: a susceptibility map; a 24-hr rainfall triggering threshold; and an antecedent soil moisture variable threshold, which have been calibrated using historic landslide events. The thresholds are regionally heterogeneous and are based on the percentile distribution of the rainfall or antecedent moisture time series. A simple decision tree algorithm framework integrates all three variables with the rainfall and soil moisture time series and generates a landslide nowcast in real-time based on the previous 24 hours over this region. This system has been evaluated using several available landslide inventories over the Central America and Caribbean region. Spatiotemporal uncertainty and evaluation metrics of the model are presented here based on available landslides reports. This work also presents a probabilistic representation of potential landslide activity over the region which can be used to further refine and improve the real-time landslide hazard assessment system as well as better identify and characterize the uncertainties inherent in this type of regional approach. The landslide algorithm provides a flexible framework to improve hazard estimation and reduce uncertainty at any spatial and temporal scale.

  17. On the relationship between land surface infrared emissivity and soil moisture

    NASA Astrophysics Data System (ADS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2018-01-01

    The relationship between surface infrared (IR) emissivity and soil moisture content has been investigated based on satellite measurements. Surface soil moisture content can be estimated by IR remote sensing, namely using the surface parameters of IR emissivity, temperature, vegetation coverage, and soil texture. It is possible to separate IR emissivity from other parameters affecting surface soil moisture estimation. The main objective of this paper is to examine the correlation between land surface IR emissivity and soil moisture. To this end, we have developed a simple yet effective scheme to estimate volumetric soil moisture (VSM) using IR land surface emissivity retrieved from satellite IR spectral radiance measurements, assuming those other parameters impacting the radiative transfer (e.g., temperature, vegetation coverage, and surface roughness) are known for an acceptable time and space reference location. This scheme is applied to a decade of global IR emissivity data retrieved from MetOp-A infrared atmospheric sounding interferometer measurements. The VSM estimated from these IR emissivity data (denoted as IR-VSM) is used to demonstrate its measurement-to-measurement variations. Representative 0.25-deg spatially-gridded monthly-mean IR-VSM global datasets are then assembled to compare with those routinely provided from satellite microwave (MW) multisensor measurements (denoted as MW-VSM), demonstrating VSM spatial variations as well as seasonal-cycles and interannual variability. Initial positive agreement is shown to exist between IR- and MW-VSM (i.e., R2 = 0.85). IR land surface emissivity contains surface water content information. So, when IR measurements are used to estimate soil moisture, this correlation produces results that correspond with those customarily achievable from MW measurements. A decade-long monthly-gridded emissivity atlas is used to estimate IR-VSM, to demonstrate its seasonal-cycle and interannual variation, which is spatially coherent and consistent with that from MW measurements, and, moreover, to achieve our objective of investigating the relationship between land surface IR emissivity and soil moisture.

  18. Effects of Spatial Variability of Soil Properties on the Triggering of Rainfall-Induced Shallow Landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2015-04-01

    Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture were investigated in detail at the catchment scale by incorporating correlations of both variables with topography. Results indicate that the internal structure of the spatial distribution of each soil property together with their interplays determine the overall performance of the coupled spatial variability. This study emphasizes the importance of both the randomness and spatial structure of soil properties on landslide triggering and characteristics.

  19. Ecology and geography of human monkeypox case occurrences across Africa.

    PubMed

    Ellis, Christine K; Carroll, Darin S; Lash, Ryan R; Peterson, A Townsend; Damon, Inger K; Malekani, Jean; Formenty, Pierre

    2012-04-01

    As ecologic niche modeling (ENM) evolves as a tool in spatial epidemiology and public health, selection of the most appropriate and informative environmental data sets becomes increasingly important. Here, we build on a previous ENM analysis of the potential distribution of human monkeypox in Africa by refining georeferencing criteria and using more-diverse environmental data to identify environmental parameters contributing to monkeypox distributional ecology. Significant environmental variables include annual precipitation, several temperature-related variables, primary productivity, evapotranspiration, soil moisture, and pH. The potential distribution identified with this set of variables was broader than that identified in previous analyses but does not include areas recently found to hold monkeypox in southern Sudan. Our results emphasize the importance of selecting the most appropriate and informative environmental data sets for ENM analyses in pathogen transmission mapping.

  20. An ensemble-based algorithm for optimizing the configuration of an in situ soil moisture monitoring network

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, Niels; Verhoest, Niko E. C.; Gobeyn, Sacha; De Baets, Bernard; Verwaeren, Jan; Pauwels, Valentijn R. N.

    2015-04-01

    The continuous monitoring of soil moisture in a permanent network can yield an interesting data product for use in hydrological modeling. Major advantages of in situ observations compared to remote sensing products are the potential vertical extent of the measurements, the smaller temporal resolution of the observation time series, the smaller impact of land cover variability on the observation bias, etc. However, two major disadvantages are the typically small integration volume of in situ measurements, and the often large spacing between monitoring locations. This causes only a small part of the modeling domain to be directly observed. Furthermore, the spatial configuration of the monitoring network is typically non-dynamic in time. Generally, e.g. when applying data assimilation, maximizing the observed information under given circumstances will lead to a better qualitative and quantitative insight of the hydrological system. It is therefore advisable to perform a prior analysis in order to select those monitoring locations which are most predictive for the unobserved modeling domain. This research focuses on optimizing the configuration of a soil moisture monitoring network in the catchment of the Bellebeek, situated in Belgium. A recursive algorithm, strongly linked to the equations of the Ensemble Kalman Filter, has been developed to select the most predictive locations in the catchment. The basic idea behind the algorithm is twofold. On the one hand a minimization of the modeled soil moisture ensemble error covariance between the different monitoring locations is intended. This causes the monitoring locations to be as independent as possible regarding the modeled soil moisture dynamics. On the other hand, the modeled soil moisture ensemble error covariance between the monitoring locations and the unobserved modeling domain is maximized. The latter causes a selection of monitoring locations which are more predictive towards unobserved locations. The main factors that will influence the outcome of the algorithm are the following: the choice of the hydrological model, the uncertainty model applied for ensemble generation, the general wetness of the catchment during which the error covariance is computed, etc. In this research the influence of the latter two is examined more in-depth. Furthermore, the optimal network configuration resulting from the newly developed algorithm is compared to network configurations obtained by two other algorithms. The first algorithm is based on a temporal stability analysis of the modeled soil moisture in order to identify catchment representative monitoring locations with regard to average conditions. The second algorithm involves the clustering of available spatially distributed data (e.g. land cover and soil maps) that is not obtained by hydrological modeling.

  1. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    PubMed

    Pulla, Sandeep; Riotte, Jean; Suresh, H S; Dattaraja, H S; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(-)-N nor NH4(+)-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.

  2. Controls of Soil Spatial Variability in a Dry Tropical Forest

    PubMed Central

    Pulla, Sandeep; Riotte, Jean; Suresh, H. S.; Dattaraja, H. S.; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3−-N nor NH4+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief. PMID:27100088

  3. Searching for the right scale in catchment hydrology: the effect of soil spatial variability in simulated states and fluxes

    NASA Astrophysics Data System (ADS)

    Baroni, Gabriele; Zink, Matthias; Kumar, Rohini; Samaniego, Luis; Attinger, Sabine

    2017-04-01

    The advances in computer science and the availability of new detailed data-sets have led to a growing number of distributed hydrological models applied to finer and finer grid resolutions for larger and larger catchment areas. It was argued, however, that this trend does not necessarily guarantee better understanding of the hydrological processes or it is even not necessary for specific modelling applications. In the present study, this topic is further discussed in relation to the soil spatial heterogeneity and its effect on simulated hydrological state and fluxes. To this end, three methods are developed and used for the characterization of the soil heterogeneity at different spatial scales. The methods are applied at the soil map of the upper Neckar catchment (Germany), as example. The different soil realizations are assessed regarding their impact on simulated state and fluxes using the distributed hydrological model mHM. The results are analysed by aggregating the model outputs at different spatial scales based on the Representative Elementary Scale concept (RES) proposed by Refsgaard et al. (2016). The analysis is further extended in the present study by aggregating the model output also at different temporal scales. The results show that small scale soil variabilities are not relevant when the integrated hydrological responses are considered e.g., simulated streamflow or average soil moisture over sub-catchments. On the contrary, these small scale soil variabilities strongly affect locally simulated states and fluxes i.e., soil moisture and evapotranspiration simulated at the grid resolution. A clear trade-off is also detected by aggregating the model output by spatial and temporal scales. Despite the scale at which the soil variabilities are (or are not) relevant is not universal, the RES concept provides a simple and effective framework to quantify the predictive capability of distributed models and to identify the need for further model improvements e.g., finer resolution input. For this reason, the integration in this analysis of all the relevant input factors (e.g., precipitation, vegetation, geology) could provide a strong support for the definition of the right scale for each specific model application. In this context, however, the main challenge for a proper model assessment will be the correct characterization of the spatio- temporal variability of each input factor. Refsgaard, J.C., Højberg, A.L., He, X., Hansen, A.L., Rasmussen, S.H., Stisen, S., 2016. Where are the limits of model predictive capabilities?: Representative Elementary Scale - RES. Hydrol. Process. doi:10.1002/hyp.11029

  4. Computational methods for analyzing the transmission characteristics of a beta particle magnetic analysis system

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1979-01-01

    Computational methods were developed to study the trajectories of beta particles (positrons) through a magnetic analysis system as a function of the spatial distribution of the radionuclides in the beta source, size and shape of the source collimator, and the strength of the analyzer magnetic field. On the basis of these methods, the particle flux, their energy spectrum, and source-to-target transit times have been calculated for Na-22 positrons as a function of the analyzer magnetic field and the size and location of the target. These data are in studies requiring parallel beams of positrons of uniform energy such as measurement of the moisture distribution in composite materials. Computer programs for obtaining various trajectories are included.

  5. Geomorphic Controls on Floodplain Soil Organic Carbon in the Yukon Flats, Interior Alaska, From Reach to River Basin Scales

    NASA Astrophysics Data System (ADS)

    Lininger, K. B.; Wohl, E.; Rose, J. R.

    2018-03-01

    Floodplains accumulate and store organic carbon (OC) and release OC to rivers, but studies of floodplain soil OC come from small rivers or small spatial extents on larger rivers in temperate latitudes. Warming climate is causing substantial change in geomorphic process and OC fluxes in high latitude rivers. We investigate geomorphic controls on floodplain soil OC concentrations in active-layer mineral sediment in the Yukon Flats, interior Alaska. We characterize OC along the Yukon River and four tributaries in relation to geomorphic controls at the river basin, segment, and reach scales. Average OC concentration within floodplain soil is 2.8% (median = 2.2%). Statistical analyses indicate that OC varies among river basins, among planform types along a river depending on the geomorphic unit, and among geomorphic units. OC decreases with sample depth, suggesting that most OC accumulates via autochthonous inputs from floodplain vegetation. Floodplain and river characteristics, such as grain size, soil moisture, planform, migration rate, and riverine DOC concentrations, likely influence differences among rivers. Grain size, soil moisture, and age of surface likely influence differences among geomorphic units. Mean OC concentrations vary more among geomorphic units (wetlands = 5.1% versus bars = 2.0%) than among study rivers (Dall River = 3.8% versus Teedrinjik River = 2.3%), suggesting that reach-scale geomorphic processes more strongly control the spatial distribution of OC than basin-scale processes. Investigating differences at the basin and reach scale is necessary to accurately assess the amount and distribution of floodplain soil OC, as well as the geomorphic controls on OC.

  6. Two-dimensional analysis of coupled heat and moisture transport in masonry structures

    NASA Astrophysics Data System (ADS)

    Krejčí, Tomáš

    2016-06-01

    Reconstruction and maintenance of historical buildings and bridges require good knowledge of temperature and moisture distribution. Sharp changes in the temperature and moisture can lead to damage. This paper describes analysis of coupled heat and moisture transfer in masonry based on two-level approach. Macro-scale level describes the whole structure while meso-scale level takes into account detailed composition of the masonry. The two-level approach is very computationally demanding and it was implemented in parallel. The two-level approach was used in analysis of temperature and moisture distribution in Charles bridge in Prague, Czech Republic.

  7. Spatial Distribution of the Metabolically Active Microbiota within Italian PDO Ewes' Milk Cheeses

    PubMed Central

    De Pasquale, Ilaria; Di Cagno, Raffaella; Buchin, Solange; De Angelis, Maria; Gobbetti, Marco

    2016-01-01

    Italian PDO (Protected Designation of Origin) Fiore Sardo (FS), Pecorino Siciliano (PS) and Pecorino Toscano (PT) ewes’ milk cheeses were chosen as hard cheese model systems to investigate the spatial distribution of the metabolically active microbiota and the related effects on proteolysis and synthesis of volatile components (VOC). Cheese slices were divided in nine sub-blocks, each one separately subjected to analysis and compared to whole cheese slice (control). Gradients for moisture, and concentrations of salt, fat and protein distinguished sub-blocks, while the cell density of the main microbial groups did not differ. Secondary proteolysis differed between sub-blocks of each cheese, especially when the number and area of hydrophilic and hydrophobic peptide peaks were assessed. The concentration of free amino acids (FAA) agreed with these data. As determined through Purge and Trap (PT) coupled with Gas Chromatography-Mass Spectrometry (PT-GC/MS), and regardless of the cheese variety, the profile with the lowest level of VOC was restricted to the region identified by the letter E defined as core. As shown through pyrosequencing of the 16S rRNA targeting RNA, the spatial distribution of the metabolically active microbiota agreed with the VOC distribution. Differences were highlighted between core and the rest of the cheese. Top and bottom under rind sub-blocks of all three cheeses harbored the widest biodiversity. The cheese sub-block analysis revealed the presence of a microbiota statistically correlated with secondary proteolysis events and/or synthesis of VOC. PMID:27073835

  8. Influence of throughfall spatial and temporal patterns on soil moisture variability under Downy oak and Scots pine stands in Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Llorens, Pilar; Garcia-Estringana, Pablo; Cayuela, Carles; Latron, Jérôme; Molina, Antonio; Gallart, Francesc

    2015-04-01

    Temporal and spatial variability of throughfall and stemflow patterns, due to differences in forest structure and seasonality of Mediterranean climate, may lead to significant changes in the volume of water that locally reaches the soil, with a potential effect on groundwater recharge and on hydrological response of forested hillslopes. Two forest stands in Mediterranean climatic conditions were studied to explore the role of vegetation on the temporal and spatial redistribution of rainfall. One is a Downy oak forest (Quercus pubescens) and the other is a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). These plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consists of 20 automatic rain recorders to measuring throughfall, 7 stemflow rings connected to tipping-buckets and 40 automatic soil moisture probes. All data were recorded each 5 min. Bulk rainfall and meteorological conditions above both forest covers were also recorded, and canopy cover and biometric characteristics of the plots were measured. Results indicate a marked temporal stability of throughfall in both stands, and a lower persistence of spatial patterns in the leafless period than in the leafed one in the oaks stand. Moreover, in the oaks plot the ranks of gauges in the leafed and leafless periods were not significantly correlated, indicating different wet and dry hotspots in each season. The spatial distribution of throughfall varied significantly depending on rainfall volume, with small events having larger variability, whereas large events tended to homogenize the relative differences in point throughfall. Soil water content spatial variability increased with increasing soil water content, but direct dependence of soil water content variability on throughfall patterns is difficult to establish.

  9. Application of IEM model on soil moisture and surface roughness estimation

    NASA Technical Reports Server (NTRS)

    Shi, Jiancheng; Wang, J. R.; Oneill, P. E.; Hsu, A. Y.; Engman, E. T.

    1995-01-01

    Monitoring spatial and temporal changes of soil moisture are of importance to hydrology, meteorology, and agriculture. This paper reports a result on study of using L-band SAR imagery to estimate soil moisture and surface roughness for bare fields. Due to limitations of the Small Perturbation Model, it is difficult to apply this model on estimation of soil moisture and surface roughness directly. In this study, we show a simplified model derived from the Integral Equation Model for estimation of soil moisture and surface roughness. We show a test of this model using JPL L-band AIRSAR data.

  10. Coherent optical determination of the leaf angle distribution of corn

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Pihlman, M.

    1981-01-01

    A coherent optical technique for the diffraction analysis of an image is presented. Developments in radar remote sensing shows a need to understand plant geometry and its relationship to plant moisture, soil moisture, and the radar backscattering coefficient. A corn plant changes its leaf angle distribution, as a function of time, from a uniform distribution to one that is strongly vertical. It is shown that plant and soil moisture may have an effect on plant geometry.

  11. Integration of soil moisture and geophysical datasets for improved water resource management in irrigated systems

    NASA Astrophysics Data System (ADS)

    Finkenbiner, Catherine; Franz, Trenton E.; Avery, William Alexander; Heeren, Derek M.

    2016-04-01

    Global trends in consumptive water use indicate a growing and unsustainable reliance on water resources. Approximately 40% of total food production originates from irrigated agriculture. With increasing crop yield demands, water use efficiency must increase to maintain a stable food and water trade. This work aims to increase our understanding of soil hydrologic fluxes at intermediate spatial scales. Fixed and roving cosmic-ray neutron probes were combined in order to characterize the spatial and temporal patterns of soil moisture at three study sites across an East-West precipitation gradient in the state of Nebraska, USA. A coarse scale map was generated for the entire domain (122 km2) at each study site. We used a simplistic data merging technique to produce a statistical daily soil moisture product at a range of key spatial scales in support of current irrigation technologies: the individual sprinkler (˜102m2) for variable rate irrigation, the individual wedge (˜103m2) for variable speed irrigation, and the quarter section (0.82 km2) for uniform rate irrigation. Additionally, we were able to generate a daily soil moisture product over the entire study area at various key modeling and remote sensing scales 12, 32, and 122 km2. Our soil moisture products and derived soil properties were then compared against spatial datasets (i.e. field capacity and wilting point) from the US Department of Agriculture Web Soil Survey. The results show that our "observed" field capacity was higher compared to the Web Soil Survey products. We hypothesize that our results, when provided to irrigators, will decrease water losses due to runoff and deep percolation as sprinkler managers can better estimate irrigation application depth and times in relation to soil moisture depletion below field capacity and above maximum allowable depletion. The incorporation of this non-contact and pragmatic geophysical method into current irrigation practices across the state and globe has the potential to greatly increase agricultural water use efficiency at scale.

  12. Representing soil moisture - precipitation feedbacks in the Sahel: spatial scale and parameterisation

    NASA Astrophysics Data System (ADS)

    Taylor, C.; Birch, C.; Parker, D.; Guichard, F.; Nikulin, G.; Dixon, N.

    2013-12-01

    Land surface properties influence the life cycle of convective systems across West Africa via space-time variability in sensible and latent heat fluxes. Previous observational and modelling studies have shown that areas with strong mesoscale variability in vegetation cover or soil moisture induce coherent structures in the daytime planetary boundary layer. In particular, horizontal gradients in sensible heat flux can induce convergence zones which favour the initiation of deep convection. A recent study based on satellite data (Taylor et al. 2011), illustrated the climatological importance of soil moisture gradients in the initiation of long-lived Mesoscale Convective Systems (MCS) in the Sahel. Here we provide a unique assessment of how models of different spatial resolutions represent soil moisture - precipitation feedbacks in the region, and compare their behaviour to observations. Specifically we examine whether the inability of large-scale models to capture the observed preference for afternoon rain over drier soil in semi-arid regions [Taylor et al., 2012] is due to inadequate spatial resolution and/or systematic bias in convective parameterisations. Firstly, we use a convection-permitting simulation at 4km resolution to explore the underlying mechanisms responsible for soil moisture controls on daytime convective initiation in the Sahel. The model reproduces very similar spatial structure as the observations in terms of antecedent soil moisture in the vicinity of a large sample of convective initiations. We then examine how this same model, run at coarser resolution, simulates the feedback of soil moisture on daily rainfall. In particular we examine the impact of switching on the convective parameterisation on rainfall persistence, and compare the findings with 10 regional climate models (RCMs). Finally, we quantify the impact of the feedback on dry-spell return times using a simple statistical model. The results highlight important weaknesses in convective parameterisations which are likely to impact land surface sensitivity studies and hydroclimatic variability on certain time and space scales. Taylor, C.M., Gounou, A., Guichard, F., Harris, P.P., Ellis, R.J.,Couvreux, F., and M. De Kauwe. 2011, Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns, Nature Geoscience, 4, 430-433, doi:10.1038/ngeo1173 Taylor, C.M., de Jeu, R.A.M., Guichard, F., Harris, P.P, and W.A. Dorigo. 2012, Afternoon rain more likely over drier soils, Nature, 489, 423-426, doi:10.1038/nature11377

  13. Vertical and horizontal root distribution of mature aspen clones: mechanisms for resource acquisition

    NASA Astrophysics Data System (ADS)

    Landhäusser, S. M.; Snedden, J.; Silins, U.; Devito, K. J.

    2012-04-01

    Spatial root distribution, root morphology, and intra- and inter-clonal connections of mature boreal trembling aspen clones (Populus tremuloides Michx.) were explored to shed light on the functional relationships between vertical and horizontal distribution of roots and the variation in soil water availability along hill slopes. Root systems of mature aspen were hydraulically excavated in large plots (6 m wide and 12 m long) and to a depth of 30 cm. Most aspen roots were located in the upper 20 cm of the soil and fine and coarse root occupancy was highest in the lower slope positions and lowest towards the upper hill slope position likely because of soil moisture availability. Observation of the root system distribution along the hill slope correlated well with the observation of greater leaf area carried by trees growing at the lower portion of the hill slope. Interestingly, trees growing at the bottom of the slope required also less sapwood area to support the same amount of leaf area of trees growing at the top of a slope. These observations appear to be closely related to soil moisture availability and with that greater productivity at the bottom of the slope. However, trees growing on the upper slope tended to have long lateral roots extending downslope, which suggests long distance water transport through these lateral feeder roots. Genetic analysis indicated that both intra- and inter-clonal root connections occur in aspen, which can play a role in the sharing of resources along moisture gradients. Root systems of boreal aspen growing on upper slope positions exhibited a combination of three attributes (1) asymmetric lateral root systems, that are skewed downslope, (2) deeper taproots, and (3) intra and inter-clonal root connections, which can all be considered adaptive strategies to avoid drought stress in upper slope positions.

  14. Landscape patterns of CH4 fluxes in an alpine tundra ecosystem

    USGS Publications Warehouse

    West, A.E.; Brooks, P.D.; Fisk, M.C.; Smith, Lesley K.; Holland, E.A.; Jaeger, C. H.; Babcock, S.; Lai, R.S.; Schmidt, S.K.

    1999-01-01

    We measured CH4 fluxes from three major plant communities characteristic of alpine tundra in the Colorado Front Range. Plant communities in this ecosystem are determined by soil moisture regimes induced by winter snowpack distribution. Spatial patterns of CH4 flux during the snow-free season corresponded roughly with these plant communities. In Carex-dominated meadows, which receive the most moisture from snowmelt, net CH4 production occurred. However, CH4 production in one Carex site (seasonal mean = +8.45 mg CH4 m-2 d-1) was significantly larger than in the other Carex sites (seasonal means = -0.06 and +0.05 mg CH4 m-2 d-1). This high CH4 flux may have resulted from shallower snowpack during the winter. In Acomastylis meadows, which have an intermediate moisture regime, CH4 oxidation dominated (seasonal mean = -0.43 mg CH4 m-2 d-1). In the windswept Kobresia meadow plant community, which receive the least amount of moisture from snowmelt, only CH4 oxidation was observed (seasonal mean = -0.77 mg CH4 m-2 d-1). Methane fluxes correlated with a different set of environmental factors within each plant community. In the Carex plant community, CH4 emission was limited by soil temperature. In the Acomastylis meadows, CH4 oxidation rates correlated positively with soil temperature and negatively with soil moisture. In the Kobresia community, CH4 oxidation was stimulated by precipitation. Thus, both snow-free season CH4 fluxes and the controls on those CH4 fluxes were related to the plant communities determined by winter snowpack.

  15. Microstrip Ring Resonator for Soil Moisture Measurements

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Li, Eric S.

    1993-01-01

    Accurate determination of spatial soil moisture distribution and monitoring its temporal variation have a significant impact on the outcomes of hydrologic, ecologic, and climatic models. Development of a successful remote sensing instrument for soil moisture relies on the accurate knowledge of the soil dielectric constant (epsilon(sub soil)) to its moisture content. Two existing methods for measurement of dielectric constant of soil at low and high frequencies are, respectively, the time domain reflectometry and the reflection coefficient measurement using an open-ended coaxial probe. The major shortcoming of these methods is the lack of accurate determination of the imaginary part of epsilon(sub soil). In this paper a microstrip ring resonator is proposed for the accurate measurement of soil dielectric constant. In this technique the microstrip ring resonator is placed in contact with soil medium and the real and imaginary parts of epsilon(sub soil) are determined from the changes in the resonant frequency and the quality factor of the resonator respectively. The solution of the electromagnetic problem is obtained using a hybrid approach based on the method of moments solution of the quasi-static formulation in conjunction with experimental data obtained from reference dielectric samples. Also a simple inversion algorithm for epsilon(sub soil) = epsilon'(sub r) + j(epsilon"(sub r)) based on regression analysis is obtained. It is shown that the wide dynamic range of the measured quantities provides excellent accuracy in the dielectric constant measurement. A prototype microstrip ring resonator at L-band is designed and measurements of soil with different moisture contents are presented and compared with other approaches.

  16. Different rates of soil drying after rainfall are observed by the SMOS satellite and the South Fork In Situ Soil Moisture Network

    USDA-ARS?s Scientific Manuscript database

    Soil moisture affects the spatial variation of land–atmosphere interactions through its in'uence on the balance of latent and sensible heat 'ux. Wetter soils are more prone to 'ooding because a smaller fraction of rainfall can in'ltrate into the soil. The Soil Moisture and Oceanic Salinity (SMOS) sa...

  17. Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia

    PubMed Central

    Doubková, Marcela; Van Dijk, Albert I.J.M.; Sabel, Daniel; Wagner, Wolfgang; Blöschl, Günter

    2012-01-01

    The Sentinel-1 will carry onboard a C-band radar instrument that will map the European continent once every four days and the global land surface at least once every twelve days with finest 5 × 20 m spatial resolution. The high temporal sampling rate and operational configuration make Sentinel-1 of interest for operational soil moisture monitoring. Currently, updated soil moisture data are made available at 1 km spatial resolution as a demonstration service using Global Mode (GM) measurements from the Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT. The service demonstrates the potential of the C-band observations to monitor variations in soil moisture. Importantly, a retrieval error estimate is also available; these are needed to assimilate observations into models. The retrieval error is estimated by propagating sensor errors through the retrieval model. In this work, the existing ASAR GM retrieval error product is evaluated using independent top soil moisture estimates produced by the grid-based landscape hydrological model (AWRA-L) developed within the Australian Water Resources Assessment system (AWRA). The ASAR GM retrieval error estimate, an assumed prior AWRA-L error estimate and the variance in the respective datasets were used to spatially predict the root mean square error (RMSE) and the Pearson's correlation coefficient R between the two datasets. These were compared with the RMSE calculated directly from the two datasets. The predicted and computed RMSE showed a very high level of agreement in spatial patterns as well as good quantitative agreement; the RMSE was predicted within accuracy of 4% of saturated soil moisture over 89% of the Australian land mass. Predicted and calculated R maps corresponded within accuracy of 10% over 61% of the continent. The strong correspondence between the predicted and calculated RMSE and R builds confidence in the retrieval error model and derived ASAR GM error estimates. The ASAR GM and Sentinel-1 have the same basic physical measurement characteristics, and therefore very similar retrieval error estimation method can be applied. Because of the expected improvements in radiometric resolution of the Sentinel-1 backscatter measurements, soil moisture estimation errors can be expected to be an order of magnitude less than those for ASAR GM. This opens the possibility for operationally available medium resolution soil moisture estimates with very well-specified errors that can be assimilated into hydrological or crop yield models, with potentially large benefits for land-atmosphere fluxes, crop growth, and water balance monitoring and modelling. PMID:23483015

  18. Gravity changes, soil moisture and data assimilation

    NASA Astrophysics Data System (ADS)

    Walker, J.; Grayson, R.; Rodell, M.; Ellet, K.

    2003-04-01

    Remote sensing holds promise for near-surface soil moisture and snow mapping, but current techniques do not directly resolve the deeper soil moisture or groundwater. The benefits that would arise from improved monitoring of variations in terrestrial water storage are numerous. The year 2002 saw the launch of NASA's Gravity Recovery And Climate Experiment (GRACE) satellites, which are mapping the Earth's gravity field at such a high level of precision that we expect to be able to infer changes in terrestrial water storage (soil moisture, groundwater, snow, ice, lake, river and vegetation). The project described here has three distinct yet inter-linked components that all leverage off the same ground-based monitoring and land surface modelling framework. These components are: (i) field validation of a relationship between soil moisture and changes in the Earth's gravity field, from ground- and satellite-based measurements of changes in gravity; (ii) development of a modelling framework for the assimilation of gravity data to constrain land surface model predictions of soil moisture content (such a framework enables the downscaling and disaggregation of low spatial (500 km) and temporal (monthly) resolution measurements of gravity change to finer spatial and temporal resolutions); and (iii) further refining the downscaling and disaggregation of space-borne gravity measurements by making use of other remotely sensed information, such as the higher spatial (25 km) and temporal (daily) resolution remotely sensed near-surface soil moisture measurements from the Advanced Microwave Scanning Radiometer (AMSR) instruments on Aqua and ADEOS II. The important field work required by this project will be in the Murrumbidgee Catchment, Australia, where an extensive soil moisture monitoring program by the University of Melbourne is already in place. We will further enhance the current monitoring network by the addition of groundwater wells and additional soil moisture sites. Ground-based gravity measurements will also be made on a monthly basis at each monitoring site. There will be two levels of modelling and monitoring; regional across the entire Murrumbidgee Catchment (100,000 km2), and local across a small sub-catchment (150 km2).

  19. Large Scale Relationship between Aquatic Insect Traits and Climate.

    PubMed

    Bhowmik, Avit Kumar; Schäfer, Ralf B

    2015-01-01

    Climate is the predominant environmental driver of freshwater assemblage pattern on large spatial scales, and traits of freshwater organisms have shown considerable potential to identify impacts of climate change. Although several studies suggest traits that may indicate vulnerability to climate change, the empirical relationship between freshwater assemblage trait composition and climate has been rarely examined on large scales. We compared the responses of the assumed climate-associated traits from six grouping features to 35 bioclimatic indices (~18 km resolution) for five insect orders (Diptera, Ephemeroptera, Odonata, Plecoptera and Trichoptera), evaluated their potential for changing distribution pattern under future climate change and identified the most influential bioclimatic indices. The data comprised 782 species and 395 genera sampled in 4,752 stream sites during 2006 and 2007 in Germany (~357,000 km² spatial extent). We quantified the variability and spatial autocorrelation in the traits and orders that are associated with the combined and individual bioclimatic indices. Traits of temperature preference grouping feature that are the products of several other underlying climate-associated traits, and the insect order Ephemeroptera exhibited the strongest response to the bioclimatic indices as well as the highest potential for changing distribution pattern. Regarding individual traits, insects in general and ephemeropterans preferring very cold temperature showed the highest response, and the insects preferring cold and trichopterans preferring moderate temperature showed the highest potential for changing distribution. We showed that the seasonal radiation and moisture are the most influential bioclimatic aspects, and thus changes in these aspects may affect the most responsive traits and orders and drive a change in their spatial distribution pattern. Our findings support the development of trait-based metrics to predict and detect climate-related changes of freshwater assemblages.

  20. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    PubMed

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  1. Impacts of precipitation and potential evapotranspiration patterns on downscaling soil moisture in regions with large topographic relief

    NASA Astrophysics Data System (ADS)

    Cowley, Garret S.; Niemann, Jeffrey D.; Green, Timothy R.; Seyfried, Mark S.; Jones, Andrew S.; Grazaitis, Peter J.

    2017-02-01

    Soil moisture can be estimated at coarse resolutions (>1 km) using satellite remote sensing, but that resolution is poorly suited for many applications. The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution soil moisture using fine-resolution topographic, vegetation, and soil data to produce fine-resolution (10-30 m) estimates of soil moisture. The EMT+VS model performs well at catchments with low topographic relief (≤124 m), but it has not been applied to regions with larger ranges of elevation. Large relief can produce substantial variations in precipitation and potential evapotranspiration (PET), which might affect the fine-resolution patterns of soil moisture. In this research, simple methods to downscale temporal average precipitation and PET are developed and included in the EMT+VS model, and the effects of spatial variations in these variables on the surface soil moisture estimates are investigated. The methods are tested against ground truth data at the 239 km2 Reynolds Creek watershed in southern Idaho, which has 1145 m of relief. The precipitation and PET downscaling methods are able to capture the main features in the spatial patterns of both variables. The space-time Nash-Sutcliffe coefficients of efficiency of the fine-resolution soil moisture estimates improve from 0.33 to 0.36 and 0.41 when the precipitation and PET downscaling methods are included, respectively. PET downscaling provides a larger improvement in the soil moisture estimates than precipitation downscaling likely because the PET pattern is more persistent through time, and thus more predictable, than the precipitation pattern.

  2. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1996-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive Microwave soil moisture sensors currently considered for space operation are in the range 10-20 km. The most useful frequency range for soil moisture sensing is 1-5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations.

  3. Disaggregation of remotely sensed soil moisture under all sky condition using machine learning approach in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, S.; Kim, H.; Choi, M.; Kim, K.

    2016-12-01

    Estimating spatiotemporal variation of soil moisture is crucial to hydrological applications such as flood, drought, and near real-time climate forecasting. Recent advances in space-based passive microwave measurements allow the frequent monitoring of the surface soil moisture at a global scale and downscaling approaches have been applied to improve the spatial resolution of passive microwave products available at local scale applications. However, most downscaling methods using optical and thermal dataset, are valid only in cloud-free conditions; thus renewed downscaling method under all sky condition is necessary for the establishment of spatiotemporal continuity of datasets at fine resolution. In present study Support Vector Machine (SVM) technique was utilized to downscale a satellite-based soil moisture retrievals. The 0.1 and 0.25-degree resolution of daily Land Parameter Retrieval Model (LPRM) L3 soil moisture datasets from Advanced Microwave Scanning Radiometer 2 (AMSR2) were disaggregated over Northeast Asia in 2015. Optically derived estimates of surface temperature (LST), normalized difference vegetation index (NDVI), and its cloud products were obtained from MODerate Resolution Imaging Spectroradiometer (MODIS) for the purpose of downscaling soil moisture in finer resolution under all sky condition. Furthermore, a comparison analysis between in situ and downscaled soil moisture products was also conducted for quantitatively assessing its accuracy. Results showed that downscaled soil moisture under all sky condition not only preserves the quality of AMSR2 LPRM soil moisture at 1km resolution, but also attains higher spatial data coverage. From this research we expect that time continuous monitoring of soil moisture at fine scale regardless of weather conditions would be available.

  4. Moisture sources and pathways associated with the spatial variability of seasonal extreme precipitation over Canada

    NASA Astrophysics Data System (ADS)

    Gan, T. Y. Y.; Tan, X.; Chen, Y. D.

    2017-12-01

    Nine regions with spatially coherent seasonal 3-day total precipitation extremes across Canada were identified using a clustering method that is compliant to the extreme value theory. Using storm back-trajectory analyses, we then identified possible moisture sources and pathways that are conducive to occurrences of seasonal extreme precipitation events in four seasons for the nine regions identified.Moisture pathways for all extreme precipitation events were clustered to nine dominant moisture pathway patterns using the self-organizing map method. Results show that horizontal moisture pathway patterns and their occurrences were not evidently different between seasons. However, warm (summer and fall) and cold (winter and spring) seasons show considerable differences in the spreading ofmoisture sources in all nine regions, even though many sources do not frequently contribute to extreme precipitation events. In all four seasons, terrestrial evapotranspiration had provided major moisture sources to many extreme precipitation events occurred in inland regions. Central Canada had received more widespread moisture sources over surrounding oceans of North America than western and eastern Canada, because of more diverse moisture pathway patterns for central Canada that transport moisture from all surrounding oceans to central Canada. Extreme precipitation in southwestern Canada mainly resulted from atmospheric rivers over the North Pacific Ocean. For northwestern Canada, moisture pathway patterns were from the northern Pacific, Arctic and northern Atlantic oceans, even though more than 78% of trajectories for northwestern Canada were from the North Pacific. Westerlies from the North Pacific Ocean and northern polar jet streams controlled dominant pathways to central and eastern Canada. More extreme precipitation events over Canada were fed by the Arctic Ocean in warm than in cold seasons.

  5. Evaluation of SMAP Level 2 Soil Moisture Algorithms Using SMOS Data

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann; Shi, J. C.

    2011-01-01

    The objectives of the SMAP (Soil Moisture Active Passive) mission are global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolution, respectively. SMAP will provide soil moisture with a spatial resolution of 10 km with a 3-day revisit time at an accuracy of 0.04 m3/m3 [1]. In this paper we contribute to the development of the Level 2 soil moisture algorithm that is based on passive microwave observations by exploiting Soil Moisture Ocean Salinity (SMOS) satellite observations and products. SMOS brightness temperatures provide a global real-world, rather than simulated, test input for the SMAP radiometer-only soil moisture algorithm. Output of the potential SMAP algorithms will be compared to both in situ measurements and SMOS soil moisture products. The investigation will result in enhanced SMAP pre-launch algorithms for soil moisture.

  6. A simple nudging scheme to assimilate ASCAT soil moisture data in the WRF model

    NASA Astrophysics Data System (ADS)

    Capecchi, V.; Gozzini, B.

    2012-04-01

    The present work shows results obtained in a numerical experiment using the WRF (Weather and Research Forecasting, www.wrf-model.org) model. A control run where soil moisture is constrained by GFS global analysis is compared with a test run where soil moisture analysis is obtained via a simple nudging scheme using ASCAT data. The basic idea of the assimilation scheme is to "nudge" the first level (0-10 cm below ground in NOAH model) of volumetric soil moisture of the first-guess (say θ(b,1) derived from global model) towards the ASCAT derived value (say ^θ A). The soil moisture analysis θ(a,1) is given by: { θ + K (^θA - θ ) l = 1 θ(a,1) = θ(b,l) (b,l) l > 1 (b,l) (1) where l is the model soil level. K is a constant scalar value that is user specified and in this study it is equal to 0.2 (same value as in similar studies). Soil moisture is critical for estimating latent and sensible heat fluxes as well as boundary layer structure. This parameter is, however, poorly assimilated in current global and regional numerical models since no extensive soil moisture observation network exists. Remote sensing technologies offer a synoptic view of the dynamics and spatial distribution of soil moisture with a frequent temporal coverage and with a horizontal resolution similar to mesoscale NWP model. Several studies have shown that measurements of normalized backscatter (surface soil wetness) from the Advanced Scatterometer (ASCAT) operating at microwave frequencies and boarded on the meteorological operational (Metop) satellite, offer quality information about surface soil moisture. Recently several studies deal with the implementation of simple assimilation procedures (nudging, Extended Kalman Filter, etc...) to integrate ASCAT data in NWP models. They found improvements in screen temperature predictions, particularly in areas such as North-America and in the Tropics, where it is strong the land-atmosphere coupling. The ECMWF (Newsletter No. 127) is currently implementing and testing an EKF for combining conventional observations and remote sensed soil moisture data in order to produce a more accurate analysis. In the present work verification skills (RMSE, BIAS, correlation) of both control and test run are presented using observed data collected by International Soil Moisture Network. Moreover improvements in temperature predictions are evaluated.

  7. Future malaria spatial pattern based on the potential global warming impact in South and Southeast Asia.

    PubMed

    Khormi, Hassan M; Kumar, Lalit

    2016-11-21

    We used the Model for Interdisciplinary Research on Climate-H climate model with the A2 Special Report on Emissions Scenarios for the years 2050 and 2100 and CLIMEX software for projections to illustrate the potential impact of climate change on the spatial distributions of malaria in China, India, Indochina, Indonesia, and The Philippines based on climate variables such as temperature, moisture, heat, cold and dryness. The model was calibrated using data from several knowledge domains, including geographical distribution records. The areas in which malaria has currently been detected are consistent with those showing high values of the ecoclimatic index in the CLIMEX model. The match between prediction and reality was found to be high. More than 90% of the observed malaria distribution points were associated with the currently known suitable climate conditions. Climate suitability for malaria is projected to decrease in India, southern Myanmar, southern Thailand, eastern Borneo, and the region bordering Cambodia, Malaysia and the Indonesian islands, while it is expected to increase in southern and south-eastern China and Taiwan. The climatic models for Anopheles mosquitoes presented here should be useful for malaria control, monitoring, and management, particularly considering these future climate scenarios.

  8. Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability

    NASA Technical Reports Server (NTRS)

    Entekhabi, D.; Eagleson, P. S.

    1989-01-01

    Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.

  9. Eddy Fluxes and Sensitivity of the Water Cycle to Spatial Resolution in Idealized Regional Aquaplanet Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagos, Samson M.; Leung, Lai-Yung R.; Gustafson, William I.

    2014-02-28

    A multi-scale moisture budget analysis is used to identify the mechanisms responsible for the sensitivity of the water cycle to spatial resolution using idealized regional aquaplanet simulations. In the higher resolution simulations, moisture transport by eddies fluxes dry the boundary layer enhancing evaporation and precipitation. This effect of eddies, which is underestimated by the physics parameterizations in the low-resolution simulations, is found to be responsible for the sensitivity of the water cycle both directly, and through its upscale effect, on the mean circulation. Correlations among moisture transport by eddies at adjacent ranges of scales provides the potential for reducing thismore » sensitivity by representing the unresolved eddies by their marginally resolved counterparts.« less

  10. Estimating Soil Moisture Using Polsar Data: a Machine Learning Approach

    NASA Astrophysics Data System (ADS)

    Khedri, E.; Hasanlou, M.; Tabatabaeenejad, A.

    2017-09-01

    Soil moisture is an important parameter that affects several environmental processes. This parameter has many important functions in numerous sciences including agriculture, hydrology, aerology, flood prediction, and drought occurrence. However, field procedures for moisture calculations are not feasible in a vast agricultural region territory. This is due to the difficulty in calculating soil moisture in vast territories and high-cost nature as well as spatial and local variability of soil moisture. Polarimetric synthetic aperture radar (PolSAR) imaging is a powerful tool for estimating soil moisture. These images provide a wide field of view and high spatial resolution. For estimating soil moisture, in this study, a model of support vector regression (SVR) is proposed based on obtained data from AIRSAR in 2003 in C, L, and P channels. In this endeavor, sequential forward selection (SFS) and sequential backward selection (SBS) are evaluated to select suitable features of polarized image dataset for high efficient modeling. We compare the obtained data with in-situ data. Output results show that the SBS-SVR method results in higher modeling accuracy compared to SFS-SVR model. Statistical parameters obtained from this method show an R2 of 97% and an RMSE of lower than 0.00041 (m3/m3) for P, L, and C channels, which has provided better accuracy compared to other feature selection algorithms.

  11. Downscaling SMAP Radiometer Soil Moisture over the CONUS using Soil-Climate Information and Ensemble Learning

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, P.; Moradkhani, H.

    2017-12-01

    Soil moisture contributes significantly towards the improvement of weather and climate forecast and understanding terrestrial ecosystem processes. It is known as a key hydrologic variable in the agricultural drought monitoring, flood modeling and irrigation management. While satellite retrievals can provide an unprecedented information on soil moisture at global-scale, the products are generally at coarse spatial resolutions (25-50 km2). This often hampers their use in regional or local studies, which normally require a finer resolution of the data set. This work presents a new framework based on an ensemble learning method while using soil-climate information derived from remote-sensing and ground-based observations to downscale the level 3 daily composite version (L3_SM_P) of SMAP radiometer soil moisture over the Continental U.S. (CONUS) at 1 km spatial resolution. In the proposed method, a suite of remotely sensed and in situ data sets in addition to soil texture information and topography data among others were used. The downscaled product was validated against in situ soil moisture measurements collected from a limited number of core validation sites and several hundred sparse soil moisture networks throughout the CONUS. The obtained results indicated a great potential of the proposed methodology to derive the fine resolution soil moisture information applicable for fine resolution hydrologic modeling, data assimilation and other regional studies.

  12. Can the normalized soil moisture index improve the prediction of soil organic carbon based on hyperspectral remote sensing data?

    NASA Astrophysics Data System (ADS)

    van Wesemael, Bas; Nocita, Marco

    2016-04-01

    One of the problems for mapping of soil organic carbon (SOC) at large-scale based on visible - near and short wave infrared (VIS-NIR-SWIR) remote sensing techniques is the spatial variation of topsoil moisture when the images are collected. Soil moisture is certainly an aspect causing biased SOC estimations, due to the problems in discriminating reflectance differences due to either variations in organic matter or soil moisture, or their combination. In addition, the difficult validation procedures make the accurate estimation of soil moisture from optical airborne a major challenge. After all, the first millimeters of the soil surface reflect the signal to the airborne sensor and show a large spatial, vertical and temporal variation in soil moisture. Hence, the difficulty of assessing the soil moisture of this thin layer at the same moment of the flight. The creation of a soil moisture proxy, directly retrievable from the hyperspectral data is a priority to improve the large-scale prediction of SOC. This paper aims to verify if the application of the normalized soil moisture index (NSMI) to Airborne Prima Experiment (APEX) hyperspectral images could improve the prediction of SOC. The study area was located in the loam region of Wallonia, Belgium. About 40 samples were collected from bare fields covered by the flight lines, and analyzed in the laboratory. Soil spectra, corresponding to the sample locations, were extracted from the images. Once the NSMI was calculated for the bare fields' pixels, spatial patterns, presumably related to within field soil moisture variations, were revealed. SOC prediction models, built using raw and pre-treated spectra, were generated from either the full dataset (general model), or pixels belonging to one of the two classes of NSMI values (NSMI models). The best result, with a RMSE after validation of 1.24 g C kg-1, was achieved with a NSMI model, compared to the best general model, characterized by a RMSE of 2.11 g C kg-1. These results confirmed the advantage to controlling the effect of soil moisture on the detection of SOC. The NSMI proved to be a flexible concept, due to the possible use of different SWIR wavelengths, and ease of use, because measurements of soil moisture by other techniques are not needed. However, in the future, it will be important to assess the effectiveness of the NSMI for different soil types, and other hyperspectral sensors.

  13. Assimilating soil moisture into an Earth System Model

    NASA Astrophysics Data System (ADS)

    Stacke, Tobias; Hagemann, Stefan

    2017-04-01

    Several modelling studies reported potential impacts of soil moisture anomalies on regional climate. In particular for short prediction periods, perturbations of the soil moisture state may result in significant alteration of surface temperature in the following season. However, it is not clear yet whether or not soil moisture anomalies affect climate also on larger temporal and spatial scales. In an earlier study, we showed that soil moisture anomalies can persist for several seasons in the deeper soil layers of a land surface model. Additionally, those anomalies can influence root zone moisture, in particular during explicitly dry or wet periods. Thus, one prerequisite for predictability, namely the existence of long term memory, is evident for simulated soil moisture and might be exploited to improve climate predictions. The second prerequisite is the sensitivity of the climate system to soil moisture. In order to investigate this sensitivity for decadal simulations, we implemented a soil moisture assimilation scheme into the Max-Planck Institute for Meteorology's Earth System Model (MPI-ESM). The assimilation scheme is based on a simple nudging algorithm and updates the surface soil moisture state once per day. In our experiments, the MPI-ESM is used which includes model components for the interactive simulation of atmosphere, land and ocean. Artificial assimilation data is created from a control simulation to nudge the MPI-ESM towards predominantly dry and wet states. First analyses are focused on the impact of the assimilation on land surface variables and reveal distinct differences in the long-term mean values between wet and dry state simulations. Precipitation, evapotranspiration and runoff are larger in the wet state compared to the dry state, resulting in an increased moisture transport from the land to atmosphere and ocean. Consequently, surface temperatures are lower in the wet state simulations by more than one Kelvin. In terms of spatial pattern, the largest differences between both simulations are seen for continental areas, while regions with a maritime climate are least sensitive to soil moisture assimilation.

  14. SURFEX modeling of soil moisture fields over the Valencia Anchor Station and their comparison to different SMOS products and in situ measurements

    NASA Astrophysics Data System (ADS)

    Coll Pajaron, M. Amparo; Lopez-Baeza, Ernesto; Fernandez-Moran, Roberto; Samiro Khodayar-Pardo, D.

    2016-07-01

    Soil moisture is a difficult variable to obtain proper representation because of its high temporal and spatial variability. It is a significant parameter in agriculture, hydrology, meteorology and related disciplines. {it SVAT (Soil-Vegetation-Atmosphere-Transfer)} models can be used to simulate the temporal behaviour and spatial distribution of soil moisture in a given area. In this work, we use the {bf SURFEX (Surface Externalisée)} model developed at the {it Centre National de Recherches Météorologiques (CNRM)} at Météo-France (http://www.cnrm.meteo.fr/surfex/) to simulate soil moisture at the {bf Valencia Anchor Station}. SURFEX integrates the {bf ISBA (Interaction Sol-Biosphère-Atmosphère}; surfaces with vegetation) module to describe the land surfaces (http://www.cnrm.meteo.fr/isbadoc/model.html) that have been adapted to describe the land covers of our study area. The Valencia Anchor Station was chosen as a core validation site for the {it SMOS (Soil Moisture and Ocean Salinity)} mission and as one of the hydrometeorological sites for the {it HyMeX (HYdrological cycle in Mediterranean EXperiment)} programme. This site represents a reasonably homogeneous and mostly flat area of about 50x50 km2. The main cover type is vineyards (65%), followed by fruit trees, shrubs, and pine forests, and a few small scattered industrial and urban areas. Except for the vineyard growing season, the area remains mostly under bare soil conditions. In spite of its relatively flat topography, the small altitude variations of the region clearly influence climate. This oscillates between semiarid and dry sub-humid. Annual mean temperatures are between 12 ºC and 14.5 ºC, and annual precipitation is about 400-450 mm. The duration of frost free periods is from May to November, with maximum precipitation in spring and autumn. The first part of this investigation consists in simulating soil moisture fields over the Valencia Anchor Station to be compared with SMOS level-2 (resolution 15 km) and level-3 (resolution 25 km) soil moisture maps and high resolution SMOS pixel-disaggregated soil moisture products, obtained by combining SMOS level-2 with MODIS NDVI and LST data (resolution 1 km) (Piles et al., 2011). In situ measurements from the Valencia Anchor Station network of soil moisture stations are also available as reference covering a reduced number of different vegetation cover and soil types, as well as estimations from the ESA ELBARA-II L-band radiometer installed over a vineyard crop to monitor SMOS validation conditions. Different interpolation methods have been applied to all significant atmospheric forcing parameters from the two met stations available in the area (pressure, temperature, relative humidity and precipitation) in order to obtain a good representation of soil conditions. The period of investigation covers the complete year 2012 of which we will particularly focus on selected periods.

  15. Soil water content evaluation considering time-invariant spatial pattern and space-variant temporal change

    NASA Astrophysics Data System (ADS)

    Hu, W.; Si, B. C.

    2013-10-01

    Soil water content (SWC) varies in space and time. The objective of this study was to evaluate soil water content distribution using a statistical model. The model divides spatial SWC series into time-invariant spatial patterns, space-invariant temporal changes, and space- and time-dependent redistribution terms. The redistribution term is responsible for the temporal changes in spatial patterns of SWC. An empirical orthogonal function was used to separate the total variations of redistribution terms into the sum of the product of spatial structures (EOFs) and temporally-varying coefficients (ECs). Model performance was evaluated using SWC data of near-surface (0-0.2 m) and root-zone (0-1.0 m) from a Canadian Prairie landscape. Three significant EOFs were identified for redistribution term for both soil layers. EOF1 dominated the variations of redistribution terms and it resulted in more changes (recharge or discharge) in SWC at wetter locations. Depth to CaCO3 layer and organic carbon were the two most important controlling factors of EOF1, and together, they explained over 80% of the variations in EOF1. Weak correlation existed between either EOF2 or EOF3 and the observed factors. A reasonable prediction of SWC distribution was obtained with this model using cross validation. The model performed better in the root zone than in the near surface, and it outperformed conventional EOF method in case soil moisture deviated from the average conditions.

  16. Spatial distribution of soil moisture and hydrophobicity in the immediate period after a grassland fire in Lithuania

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Pundyte, N.; Vaitkute, D.; Cepanko, V.; Pranskevicius, M.; Ubeda, X.; Mataix-Solera, J.; Cerda, A.

    2012-04-01

    Fire can affect significantly soil moisture (SM) and water repellency (WR) in the immediate period after the fire due the effect of the temperatures into soil profile and ash. This impact can be very heterogeneous, even in small distances, due to different conditions of combustion (e.g. fuel and soil moisture, fuel amount and type, distribution and connection, and geomorphological variables as aspect and slope) that influences fire temperature and severity. The aim of this work it is study the spatial distribution of SM and WR in a small plot (400 m2 with a sampling distance of 5 m) immediately after the a low severity grassland fire.. This was made in a burned but also in a control (unburned) plot as reference to can compare. In each plot we analyzed a total of 25 samples. SM was measured gravimetrically and WR with the water drop penetration time test (WDPT). Several interpolation methods were tested in order to identify the best predictor of SM and WR, as the Inverse Distance to a Weight (IDW) (with the power of 1,2,3,4 and 5), Local Polynomial with the first and second polynomial order, Polynomial Regression (PR), Radial Basis Functions (RBF) as Multilog (MTG), Natural Cubic Spline (NCS), Multiquadratic (MTQ), Inverse Multiquadratic (IMTQ) and Thin Plate Spline (TPS) and Ordinary Kriging. Interpolation accuracy was observed with the cross-validation method that is achieved by taking each observation in turn out of the sample and estimating from the remaining ones. The errors produced in each interpolation allowed us to calculate the Root Mean Square Error (RMSE). The best method is the one that showed the lower RMSE. The results showed that on average the SM in the control plot was 13.59 % (±2.83) and WR 2.9 (±1.3) seconds (s). The majority of the soils (88%) were hydrophilic (WDPT <5s). SM in the control plot showed a weak negative relationship with WR (r=-0.33, p<0.10). The coefficient of variation (CV%) of SM was 20.77% and SW of 44.62%. In the burned plot, SM was 14.17% (±2.83) and WR of 151 (±99) seconds (s). All the samples analysed were considered hydrophobic (WDPT >5s). We did not identify significant relationships among the variables (r=0.06, p>0.05) and the CV% was higher in WR (65.85%) than SM (19.96%). Overall we identified no significant changes in SM between plots, which means that fire did not had important implications on soil water content, contrary to observed in WR. The same dynamic was observed in the CV%. Among all tested methods the most accurate to interpolate SM, in the control plot IDW 1 and in the burned plot IDW 2, and this means that fire did not induce important inferences on the spatial distribution of SM. In WR, in the control plot, the best predictor was NCS and in the burned plot was IDW 1 and this means that spatial distribution WR was substantially affected by fire. In this case we observed an increase of the small scale variability in the burned area. Currently we are monitoring this burned area and observing the evaluation of the spatial variability of these two soil properties. It is important to observe their dynamic in the space and time and observe if fire will have medium and long term implications on SM and WR. Discussions about the results will be carried out during the poster session.

  17. Sub-seasonal behaviour of Asian summer monsoon under a changing climate: assessments using CMIP5 models

    NASA Astrophysics Data System (ADS)

    Sooraj, K. P.; Terray, Pascal; Xavier, Prince

    2016-06-01

    Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north-south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a strong spatial and rainfall category dependency, sometimes offsetting the effect of the water vapour increase. Additionally, we found that the moisture convergence is mainly dominated by the climatological vertical motion acting on the humidity changes and the interplay between all these processes proves to play a pivotal role for regulating the intensities of various rainfall events in the two domains.

  18. Topographic Controls on Spatial Patterns of Soil Texture and Moisture in a Semi-arid Montane Catchment with Aspect-Dependent Vegetation

    NASA Astrophysics Data System (ADS)

    Lehman, B. M.; Niemann, J. D.

    2008-12-01

    Soil moisture exerts significant control over the partitioning of latent and sensible energy fluxes, the magnitude of both vertical and lateral water fluxes, the physiological and water-use characteristics of vegetation, and nutrient cycling. Considerable progress has been made in determining how soil characteristics, topography, and vegetation influence spatial patterns of soil moisture in humid environments at the catchment, hillslope, and plant scales. However, understanding of the controls on soil moisture patterns beyond the plant scale in semi-arid environments remains more limited. This study examines the relationships between the spatial patterns of near surface soil moisture (upper 5 cm), terrain indices, and soil properties in a small, semi-arid, montane catchment. The 8 ha catchment, located in the Cache La Poudre River Canyon in north-central Colorado, has a total relief of 115 m and an average elevation of 2193 m. It is characterized by steep slopes and shallow, gravelly/sandy soils with scattered granite outcroppings. Depth to bedrock ranges from 0 m to greater than 1 m. Vegetation in the catchment is highly correlated with topographic aspect. In particular, north-facing hillslopes are predominately vegetated by ponderosa pines, while south-facing slopes are mostly vegetated by several shrub species. Soil samples were collected at a 30 m resolution to characterize soil texture and bulk density, and several datasets consisting of more than 300 point measurements of soil moisture were collected using time domain reflectometry (TDR) between Fall 2007 and Summer 2008 at a 15 m resolution. Results from soil textural analysis performed with sieving and the ASTM standard hydrometer method show that soil texture is finer on the north-facing hillslope than on the south-facing hillslope. Cos(aspect) is the best univariate predictor of silts, while slope is the best predictor of coarser fractions up to fine gravel. Bulk density increases with depth but shows no significant relationship with topographic indices. When the catchment average soil moisture is low, the variance of soil moisture increases with the average. When the average is high, the variance remains relatively constant. Little of the variation in soil moisture is explained by topographic indices when the catchment is either very wet or dry; however, when the average soil moisture takes on intermediate values, cos(aspect) is consistently the best predictor among the terrain indices considered.

  19. Measurement of seasonal changes and spatial variations in pavement unbound base and subgrade properties.

    DOT National Transportation Integrated Search

    2009-01-01

    Soils often undergo cyclic wetting/drying, but there is very limited research on unsaturated : soils subjected to variations in moisture content. More specifically, field moisture variation : over time in highway unbound bases and subgrade soils is a...

  20. Agriculture, forestry, range, and soils, chapter 2, part C

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The feasibility of using microwave systems in agriculture, forestry, range, and soil moisture measurements was studied. Theory and preliminary results show the feasibility of measuring moisture status in the soil. For vegetational resources, crop identification for inventory and for yield and production estimates is most feasible. Apart from moisture- and water-related phenomena, microwave systems are also used to record structural and spatial data related to crops and forests.

  1. A simulation study of scene confusion factors in sensing soil moisture from orbital radar

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Dobson, M. C.; Moezzi, S.; Roth, F. T.

    1983-01-01

    Simulated C-band radar imagery for a 124-km by 108-km test site in eastern Kansas is used to classify soil moisture. Simulated radar resolutions are 100 m by 100 m, 1 km by 1km, and 3 km by 3 km. Distributions of actual near-surface soil moisture are established daily for a 23-day accounting period using a water budget model. Within the 23-day period, three orbital radar overpasses are simulated roughly corresponding to generally moist, wet, and dry soil moisture conditions. The radar simulations are performed by a target/sensor interaction model dependent upon a terrain model, land-use classification, and near-surface soil moisture distribution. The accuracy of soil-moisture classification is evaluated for each single-date radar observation and also for multi-date detection of relative soil moisture change. In general, the results for single-date moisture detection show that 70% to 90% of cropland can be correctly classified to within +/- 20% of the true percent of field capacity. For a given radar resolution, the expected classification accuracy is shown to be dependent upon both the general soil moisture condition and also the geographical distribution of land-use and topographic relief. An analysis of cropland, urban, pasture/rangeland, and woodland subregions within the test site indicates that multi-temporal detection of relative soil moisture change is least sensitive to classification error resulting from scene complexity and topographic effects.

  2. Runoff simulation sensitivity to remotely sensed initial soil water content

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Schmugge, T. J.; Jackson, T. J.; Unkrich, C. L.; Keefer, T. O.; Parry, R.; Bach, L. B.; Amer, S. A.

    1994-05-01

    A variety of aircraft remotely sensed and conventional ground-based measurements of volumetric soil water content (SW) were made over two subwatersheds (4.4 and 631 ha) of the U.S. Department of Agriculture's Agricultural Research Service Walnut Gulch experimental watershed during the 1990 monsoon season. Spatially distributed soil water contents estimated remotely from the NASA push broom microwave radiometer (PBMR), an Institute of Radioengineering and Electronics (IRE) multifrequency radiometer, and three ground-based point methods were used to define prestorm initial SW for a distributed rainfall-runoff model (KINEROS; Woolhiser et al., 1990) at a small catchment scale (4.4 ha). At a medium catchment scale (631 ha or 6.31 km2) spatially distributed PBMR SW data were aggregated via stream order reduction. The impacts of the various spatial averages of SW on runoff simulations are discussed and are compared to runoff simulations using SW estimates derived from a simple daily water balance model. It was found that at the small catchment scale the SW data obtained from any of the measurement methods could be used to obtain reasonable runoff predictions. At the medium catchment scale, a basin-wide remotely sensed average of initial water content was sufficient for runoff simulations. This has important implications for the possible use of satellite-based microwave soil moisture data to define prestorm SW because the low spatial resolutions of such sensors may not seriously impact runoff simulations under the conditions examined. However, at both the small and medium basin scale, adequate resources must be devoted to proper definition of the input rainfall to achieve reasonable runoff simulations.

  3. Getting beyond hand-waving about microsites with numerical representations of trace gas production and consumption

    NASA Astrophysics Data System (ADS)

    Sihi, D.; Davidson, E. A.; Savage, K. E.; Liang, D.

    2017-12-01

    Production and consumption of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) are affected by complex interactions of temperature, moisture, and substrate supply, that is further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked conceptually to explain unusual observations like consumption of atmospheric N2O (reduction) in upland soils that co-occur with CH4 uptake (oxidation). To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis-Menten (DAMM) model, to apply it consistently for all three greenhouse gases (GHGs) with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O2) as substrate or inhibitor for each process. Chamber-based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model. The area under a soil chamber is partitioned according to a bivariate lognormal probability distribution function of soil carbon (C) and moisture across a range of microsites, that leads to a distribution of heterotrophic respiration and O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates a broad range of microsite concentrations of O2 that determines the distribution of microsites that produce or consume CH4 and N2O, such that a range of microsite concentrations occur both above and below ambient values for both GHGs. At lower mean soil moisture, some microsites of methanogenesis still occur, but most become sites of methanotrophy. Likewise, concentrations of below ambient N2O (hotspots of N2O reduction) occur in microsites with high C and high moisture (further accentuated at high temperature). Net consumption and production of CH4 and N2O is simulated within a chamber based on the sum of the distribution of soil microsites. Results demonstrate that it is numerically feasible for microsites of N2O reduction and CH4 oxidation to co-occur under a single chamber. Simultaneous simulation of all three GHGs in a parsimonious modeling framework is challenging but affords confidence that agreement between simulations and measurements is based on skillful numerical representation of processes across a heterogeneous environment.

  4. Complementary effects of surface water and groundwater on soil moisture dynamics in a degraded coastal floodplain forest

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Muñoz-Carpena, R.

    2011-02-01

    SummaryRestoration of degraded floodplain forests requires a robust understanding of surface water, groundwater, and vadose zone hydrology. Soil moisture is of particular importance for seed germination and seedling survival, but is difficult to monitor and often overlooked in wetland restoration studies. This research hypothesizes that the complex effects of surface water and shallow groundwater on the soil moisture dynamics of floodplain wetlands are spatially complementary. To test this hypothesis, 31 long-term (4-year) hydrological time series were collected in the floodplain of the Loxahatchee River (Florida, USA), where watershed modifications have led to reduced freshwater flow, altered hydroperiod and salinity, and a degraded ecosystem. Dynamic factor analysis (DFA), a time series dimension reduction technique, was applied to model temporal and spatial variation in 12 soil moisture time series as linear combinations of common trends (representing shared, but unexplained, variability) and explanatory variables (selected from 19 additional candidate hydrological time series). The resulting dynamic factor models yielded good predictions of observed soil moisture series (overall coefficient of efficiency = 0.90) by identifying surface water elevation, groundwater elevation, and net recharge (cumulative rainfall-cumulative evapotranspiration) as important explanatory variables. Strong and complementary linear relationships were found between floodplain elevation and surface water effects (slope = 0.72, R2 = 0.86, p < 0.001), and between elevation and groundwater effects (slope = -0.71, R2 = 0.71, p = 0.001), while the effect of net recharge was homogenous across the experimental transect (slope = 0.03, R2 = 0.05, p = 0.242). This study provides a quantitative insight into the spatial structure of groundwater and surface water effects on soil moisture that will be useful for refining monitoring plans and developing ecosystem restoration and management scenarios in degraded coastal floodplains.

  5. Characterizing Seasonal Drought, Water Supply Pattern and Their Impact on Vegetation Growth Using Satellite Soil Moisture Data, GRACE Water Storage and Precipitation Observations

    NASA Astrophysics Data System (ADS)

    A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Njoku, E. G.; Colliander, A.

    2016-12-01

    We combine soil moisture (SM) data from AMSR-E, AMSR-2 and SMAP, terrestrial water storage (TWS) changes from GRACE and precipitation measurements from GPCP to delineate and characterize drought and water supply pattern and its impact on vegetation growth. GRACE TWS provides spatially continuous observations of total terrestrial water storage changes and regional drought extent, persistence and severity, while satellite derived soil moisture estimates provide enhanced delineation of plant-available soil moisture. Together these data provide complementary metrics quantifying available plant water supply and have important implications for water resource management. We use these data to investigate the supply changes from different water components in relation to satellite based vegetation productivity metrics from MODIS, before, during and following the major drought events observed in the continental US during the past 13 years. We observe consistent trends and significant correlations between monthly time series of TWS, SM, and vegetation productivity. In Texas and surrounding semi-arid areas, we find that the spatial pattern of the vegetation-moisture relation follows the gradient in mean annual precipitation. In Texas, GRACE TWS and surface SM show strong coupling and similar characteristic time scale in relatively normal years, while during the 2011 onward hydrological drought, GRACE TWS manifests a longer time scale than that of surface SM, implying stronger drought persistence in deeper water storage. In the Missouri watershed, we find a spatially varying vegetation-moisture relationship where in the drier northwestern portion of the basin, the inter-annual variability in summer vegetation productivity is closely associated with changes in carry-on GRACE TWS from spring, whereas in the moist southeastern portion of the basin, summer precipitation is the dominant controlling factor on vegetation growth.

  6. Spatial variation of peat soil properties in the oil-producing region of northeastern Sakhalin

    NASA Astrophysics Data System (ADS)

    Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Zavgorodnyaya, Yu. A.; Rozanova, M. S.; Brekhov, P. T.

    2017-07-01

    Morphology and properties of medium-deep oligotrophic peat, oligotrophic peat gley, pyrogenic oligotrophic peat gley, and peat gley soils on subshrub-cotton grass-sphagnum bogs and in swampy larch forests of northeastern Sakhalin have been studied. Variation in the thickness and reserves of litters in the studied bog and forest biogeocenoses has been analyzed. The profile distribution and spatial variability of moisture, density, ash, and pHKCl in separate groups of peat soils have been described. The content and spatial variability of petroleum hydrocarbons have been considered in relation to the accumulation of natural bitumoids by peat soils and the technogenic pressing in the oil-producing region. Variation of each parameter at different distances (10, 50, and 1000 m) has been estimated using a hierarchical sampling scheme. The spatial conjugation of soil parameters has been studied by factor analysis using the principal components method and Spearman correlation coefficients. Regression equations have been proposed to describe relationships of ash content with soil density and content of petroleum hydrocarbons in peat horizons.

  7. Spatial variability of soils in a seasonally dry tropical forest

    NASA Astrophysics Data System (ADS)

    Pulla, Sandeep; Riotte, Jean; Suresh, Hebbalalu; Dattaraja, Handanakere; Sukumar, Raman

    2016-04-01

    Soil structures communities of plants and soil organisms in tropical forests. Understanding the controls of soil spatial variability can therefore potentially inform efforts towards forest restoration. We studied the relationship between soils and lithology, topography, vegetation and fire in a seasonally dry tropical forest in southern India. We extensively sampled soil (available nutrients, Al, pH, and moisture), rocks, relief, woody vegetation, and spatial variation in fire burn frequency in a permanent 50-ha plot. Lower elevation soils tended to be less moist and were depleted in several nutrients and clay. The availability of several nutrients was, in turn, linked to whole-rock chemical composition differences since some lithologies were associated with higher elevations, while the others tended to dominate lower elevations. We suggest that local-scale topography in this region has been shaped by the spatial distribution of lithologies, which differ in their susceptibility to weathering. Nitrogen availability was uncorrelated with the presence of trees belonging to Fabaceae, a family associated with N-fixing species. No effect of burning on soil parameters could be discerned at this scale.

  8. Beyond the SCS-CN method: A theoretical framework for spatially lumped rainfall-runoff response

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S.; Parolari, A. J.; McDonnell, J. J.; Porporato, A.

    2016-06-01

    Since its introduction in 1954, the Soil Conservation Service curve number (SCS-CN) method has become the standard tool, in practice, for estimating an event-based rainfall-runoff response. However, because of its empirical origins, the SCS-CN method is restricted to certain geographic regions and land use types. Moreover, it does not describe the spatial variability of runoff. To move beyond these limitations, we present a new theoretical framework for spatially lumped, event-based rainfall-runoff modeling. In this framework, we describe the spatially lumped runoff model as a point description of runoff that is upscaled to a watershed area based on probability distributions that are representative of watershed heterogeneities. The framework accommodates different runoff concepts and distributions of heterogeneities, and in doing so, it provides an implicit spatial description of runoff variability. Heterogeneity in storage capacity and soil moisture are the basis for upscaling a point runoff response and linking ecohydrological processes to runoff modeling. For the framework, we consider two different runoff responses for fractions of the watershed area: "prethreshold" and "threshold-excess" runoff. These occur before and after infiltration exceeds a storage capacity threshold. Our application of the framework results in a new model (called SCS-CNx) that extends the SCS-CN method with the prethreshold and threshold-excess runoff mechanisms and an implicit spatial description of runoff. We show proof of concept in four forested watersheds and further that the resulting model may better represent geographic regions and site types that previously have been beyond the scope of the traditional SCS-CN method.

  9. Moisture origin and transport processes in Colombia, northern South America

    NASA Astrophysics Data System (ADS)

    Hoyos, I.; Dominguez, F.; Cañón-Barriga, J.; Martínez, J. A.; Nieto, R.; Gimeno, L.; Dirmeyer, P. A.

    2018-02-01

    We assess the spatial structure of moisture flux divergence, regional moisture sources and transport processes over Colombia, in northern South America. Using three independent methods the dynamic recycling model (DRM), FLEXPART and the Quasi-isentropic back-trajectory (QIBT) models we quantify the moisture sources that contribute to precipitation over the region. We find that moisture from the Atlantic Ocean and terrestrial recycling are the most important sources of moisture for Colombia, highlighting the importance of the Orinoco and Amazon basins as regional providers of atmospheric moisture. The results show the influence of long-range cross-equatorial flow from the Atlantic Ocean into the target region and the role of the study area as a passage of moisture into South America. We also describe the seasonal moisture transport mechanisms of the well-known low-level westerly and Caribbean jets that originate in the Pacific Ocean and Caribbean Sea, respectively. We find that these dynamical systems play an important role in the convergence of moisture over western Colombia.

  10. Spatial-temporal variability of soil moisture and its estimation across scales

    NASA Astrophysics Data System (ADS)

    Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R.

    2010-02-01

    The soil moisture is a quantity of paramount importance in the study of hydrologic phenomena and soil-atmosphere interaction. Because of its high spatial and temporal variability, the soil moisture monitoring scheme was investigated here both for soil moisture retrieval by remote sensing and in view of the use of soil moisture data in rainfall-runoff modeling. To this end, by using a portable Time Domain Reflectometer, a sequence of 35 measurement days were carried out within a single year in seven fields located inside the Vallaccia catchment, central Italy, with area of 60 km2. Every sampling day, soil moisture measurements were collected at each field over a regular grid with an extension of 2000 m2. The optimization of the monitoring scheme, with the aim of an accurate mean soil moisture estimation at the field and catchment scale, was addressed by the statistical and the temporal stability. At the field scale, the number of required samples (NRS) to estimate the field-mean soil moisture within an accuracy of 2%, necessary for the validation of remotely sensed soil moisture, ranged between 4 and 15 for almost dry conditions (the worst case); at the catchment scale, this number increased to nearly 40 and it refers to almost wet conditions. On the other hand, to estimate the mean soil moisture temporal pattern, useful for rainfall-runoff modeling, the NRS was found to be lower. In fact, at the catchment scale only 10 measurements collected in the most "representative" field, previously determined through the temporal stability analysis, can reproduce the catchment-mean soil moisture with a determination coefficient, R2, higher than 0.96 and a root-mean-square error, RMSE, equal to 2.38%. For the "nonrepresentative" fields the accuracy in terms of RMSE decreased, but similar R2 coefficients were found. This insight can be exploited for the sampling in a generic field when it is sufficient to know an index of soil moisture temporal pattern to be incorporated in conceptual rainfall-runoff models. The obtained results can address the soil moisture monitoring network design from which a reliable soil moisture temporal pattern at the catchment scale can be derived.

  11. Electrical resistance tomography to monitor unsaturated moisture flow in cementitious materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallaji, Milad; Seppänen, Aku; Pour-Ghaz, Mohammad, E-mail: mpourghaz@ncsu.edu

    2015-03-15

    Traditionally the electrically-based assessment of the moisture flow in cement-based materials relies on two- or four-point measurements. In this paper, imaging of moisture distribution with electrical resistance tomography (ERT) is considered. Especially, the aim is to study whether ERT could give information on unsaturated moisture flows in cases where the flow is non-uniform. In the experiment, the specimens are monitored with ERT during the water ingress. The ERT reconstructions are compared with neutron radiographs, which provide high resolution information on the 2D distribution of the moisture. The results indicate that ERT is able to detect the moisture movement and tomore » show approximately the shape and position of the water front even if the flow is nonuniform.« less

  12. Spatial and temporal variability of soil temperature, moisture and surface soil properties

    NASA Technical Reports Server (NTRS)

    Hajek, B. F.; Dane, J. H.

    1993-01-01

    The overall objectives of this research were to: (l) Relate in-situ measured soil-water content and temperature profiles to remotely sensed surface soil-water and temperature conditions; to model simultaneous heat and water movement for spatially and temporally changing soil conditions; (2) Determine the spatial and temporal variability of surface soil properties affecting emissivity, reflectance, and material and energy flux across the soil surface. This will include physical, chemical, and mineralogical characteristics of primary soil components and aggregate systems; and (3) Develop surface soil classes of naturally occurring and distributed soil property assemblages and group classes to be tested with respect to water content, emissivity and reflectivity. This document is a report of studies conducted during the period funded by NASA grants. The project was designed to be conducted over a five year period. Since funding was discontinued after three years, some of the research started was not completed. Additional publications are planned whenever funding can be obtained to finalize data analysis for both the arid and humid locations.

  13. Soil Moisture Monitoring using Surface Electrical Resistivity measurements

    NASA Astrophysics Data System (ADS)

    Calamita, Giuseppe; Perrone, Angela; Brocca, Luca; Straface, Salvatore

    2017-04-01

    The relevant role played by the soil moisture (SM) for global and local natural processes results in an explicit interest for its spatial and temporal estimation in the vadose zone coming from different scientific areas - i.e. eco-hydrology, hydrogeology, atmospheric research, soil and plant sciences, etc... A deeper understanding of natural processes requires the collection of data on a higher number of points at increasingly higher spatial scales in order to validate hydrological numerical simulations. In order to take the best advantage of the Electrical Resistivity (ER) data with their non-invasive and cost-effective properties, sequential Gaussian geostatistical simulations (sGs) can be applied to monitor the SM distribution into the soil by means of a few SM measurements and a densely regular ER grid of monitoring. With this aim, co-located SM measurements using mobile TDR probes (MiniTrase), and ER measurements, obtained by using a four-electrode device coupled with a geo-resistivimeter (Syscal Junior), were collected during two surveys carried out on a 200 × 60 m2 area. Two time surveys were carried out during which Data were collected at a depth of around 20 cm for more than 800 points adopting a regular grid sampling scheme with steps (5 m) varying according to logistic and soil compaction constrains. The results of this study are robust due to the high number of measurements available for either variables which strengthen the confidence in the covariance function estimated. Moreover, the findings obtained using sGs show that it is possible to estimate soil moisture variations in the pedological zone by means of time-lapse electrical resistivity and a few SM measurements.

  14. [Simulation for balanced effect of soil and water resources on cultivated land in Naoli River Basin, Northeast China under the RCPs climate scene].

    PubMed

    Zhou, Hao; Lei, Guo Ping; Yang, Xue Xin; Zhao, Yu Hui; Zhang, Ji Xin

    2018-04-01

    Under the scenarios of climate change, balancing the land and water resources is one of the key problems needed to be solved in land development. To reveal the water dynamics of the cultivated land in Naoli River Basin, we simulated the future scenarios by using the future land use simulation model based on Landsat Satellite images, the DEM data and the meteorological data. Results showed that the growth rate of cultivated land gradually decreased. It showed different changing characteristics in different time periods, which led to different balancing effect between land and water resources. In 1990, the water dynamics of the cultivated land resources was in good state, At the same time, the adjustment of crops structure caused the paddy fields increased dramatically. During 2002 to 2014, the cultivated land that in moderate and serious moisture shortage state increased slightly, the water deficit was deteriorating to a certain degree, and maintained sound development of water profit and loss situation gradually. By comparing the simulation accuracy with different spatial resolutions and time scales, we selected 200 m as the spatial resolution of the simulation, and simulated the land use status in 2038. The simulation results showed that the cultivated land's water profit and loss degree in the river basin showed significant polarization characteristic, in that the water profit and loss degree of the cultivated land would be further intensified, the area with the higher grades of moisture profit and loss degree would distribute more centralized, and partially high evaluated grades for the moisture shortage would expand. It is needed to develop the cultivated land irrigation schemes and adjust the cultivated land in Naoli River Basin to balance soil and water resources.

  15. Use of soil moisture dynamics and patterns for the investigation of runoff generation processes with emphasis on preferential flow

    NASA Astrophysics Data System (ADS)

    Blume, T.; Zehe, E.; Bronstert, A.

    2007-08-01

    Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.

  16. Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes

    NASA Astrophysics Data System (ADS)

    Blume, T.; Zehe, E.; Bronstert, A.

    2009-07-01

    Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.

  17. Biogenic nitric oxide emission from a spruce forest soil in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Falge, Eva; Bargsten, Anika; Behrendt, Thomas; Meixner, Franz X.

    2010-05-01

    The process-based spatial simulation model SVAT-CN was used to estimate biogenic nitric oxide (NO) emission by soils of a Norway spruce forest (Weidenbrunnen) in the Fichtelgebirge, Germany. SVAT-CN core is a combination of a multiple-layer soil water balance model and a multi-layered canopy gas exchange model. The soil modules comprise a flexible hybrid between a layered bucket model and classical basic liquid flow theory. Further soil processes include: heat transport, distribution of transpiration demand proportionally to soil resistance, reduction of leaf physiological parameters with limiting soil moisture. Spruce forest soils usually are characterized by a thick organic layer (raw humus), with the topmost centimetres being the location where most of the biogenic NO is produced. Within individual spruce forest stands the understory might be composed of patches characterized by different species (e.g. Vaccinium myrtillus, Picea abies, Deschampsia caespitosa), and NO production potentials. The effect of soil physical and chemical parameters and understory types on NO emission from the organic layer was investigated in laboratory incubation and fumigation experiments on soils sampled below the various understory covers found at the Weidenbrunnen site. Results from the laboratory experiments were used to parameterize multi-factorial regression models of soil NO emission with respect to its response to soil temperature and moisture. Parameterization of the spatial model SVAT-CN includes horizontal heterogeneity of over- and understory PAI, understory species distribution, soil texture, bulk density, thickness of organic layer. Simulations are run for intensive observations periods of 2007 and 2008 of the EGER (ExchanGE processes in mountainous Regions) project, a late summer/fall and an early summer period, providing estimates for different understory types (young spruce, blueberry, grass, and moss/litter patches). Validation of the model is being carried out at point scale, by comparison with measured soil moisture and temperature data at 12 locations at the Weidenbrunnen site. In addition model output is compared to soil NO emission data from dynamic chambers. Understory type was found to have a strong influence on the magnitude of soil NO emissions, with emissions from blueberry and young spruce one order of magnitude larger than those from grass or moss/litter patches.

  18. [Deuterium isotope characteristics of precipitation infiltrated in the West Ordos Desert of Inner Mongolia, China].

    PubMed

    Chen, Jie; Xu, Qing; Gao, De Qiang; Ma, Ying Bin; Zhang, Bei Bei; Hao, Yu Guang

    2017-07-18

    Understanding the soil-profile temporal and spatial distribution of rainwater in arid and semiarid regions provides a scientific basis for the restoration and maintenance of degraded desert ecosystems in the West Ordos Desert of Inner Mongolia, China. In this study, the deuterium isotope (δD) value of rainwater, soil water, and groundwater were examined in the West Ordos Desert. The contribution of precipitation to soil water in each layer of the soil profile was calculated with two-end linear mixed model. In addition, the temporal and spatial distribution of δD of soil water in the soil profile was analyzed under different-intensity precipitation. The results showed that small rainfall events (0-10 mm) affected the soil moisture and the δD value of soil water in surface soil (0-10 cm). About 30.3% to 87.9% of rainwater was kept in surface soil for nine days following the rainfall event. Medium rainfall events (10-20 mm) influenced the soil moisture and the δD value of soil water at soil depth of 0-40 cm. About 28.2% to 80.8% of rainwater was kept in soil layer of 0-40 cm for nine days following the medium rainfall event. Large (20-30 mm) and extremely large (>30 mm) rainfall events considerably influenced the soil moisture and δD value of soil water in each of the soil layers, except for the 100-150 cm layer. The δD value of soil water was between those δD values of rainwater and groundwater, which suggested that precipitation and groundwater were the sources of soil water in the West Ordos Desert. Under the same intensity rainfall, the δD value of surface soil water (0-10 cm) was directly affected by δD of rainwater. With increasing soil depth, the variation of soil water δD decreased, and the soil water of 100-150 cm kept stable. With increasing intensity of precipitation, the influence of precipitation on soil water δD lasted for a longer duration and occurred at a deeper soil depth.

  19. Vis-NIR hyperspectral imaging in visualizing moisture distribution of mango slices during microwave-vacuum drying.

    PubMed

    Pu, Yuan-Yuan; Sun, Da-Wen

    2015-12-01

    Mango slices were dried by microwave-vacuum drying using a domestic microwave oven equipped with a vacuum desiccator inside. Two lab-scale hyperspectral imaging (HSI) systems were employed for moisture prediction. The Page and the Two-term thin-layer drying models were suitable to describe the current drying process with a fitting goodness of R(2)=0.978. Partial least square (PLS) was applied to correlate the mean spectrum of each slice and reference moisture content. With three waveband selection strategies, optimal wavebands corresponding to moisture prediction were identified. The best model RC-PLS-2 (Rp(2)=0.972 and RMSEP=4.611%) was implemented into the moisture visualization procedure. Moisture distribution map clearly showed that the moisture content in the central part of the mango slices was lower than that of other parts. The present study demonstrated that hyperspectral imaging was a useful tool for non-destructively and rapidly measuring and visualizing the moisture content during drying process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Hydrologic influences on soil properties along ephemeral rivers in the Namib Desert

    USGS Publications Warehouse

    Jacobson, P.J.; Jacobson, K.M.; Angermeier, P.L.; Cherry, D.S.

    2000-01-01

    Soils were examined along three ephemeral rivers in the Namib Desert to assess the influence of their hydrologic characteristics on soil properties. Soils consisted of layers of fluvially deposited, organic-rich silts, interstratified with fluvial and aeolian sands. The most significant influence of the ephemeral hydrologic regime upon soils was related to the downstream alluviation associated with hydrologic decay. This alluviation increased the silt proportion of soils in the lower reaches of the rivers. Organic carbon, nitrogen and phosphorous were correlated with silt content, and silt deposition patterns influenced patterns of moisture availability and plant rooting, creating and maintaining micro-habitats for various organisms. Localized salinization occurred in association with wetland sites and soluble salt content tended to increase downstream. Because of the covariance between silt and macronutrients, and the influence of silt upon moisture availability and habitat suitability, alluviation patterns associated with the hydrologic regime strongly influence the structure, productivity, and spatial distribution of biotic communities in ephemeral river ecosystems. (C) 2000 Academic Press.

  1. Triple collocation-based estimation of spatially correlated observation error covariance in remote sensing soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Shu, Hong; Nie, Lei; Jiao, Zhenhang

    2018-01-01

    Spatially correlated errors are typically ignored in data assimilation, thus degenerating the observation error covariance R to a diagonal matrix. We argue that a nondiagonal R carries more observation information making assimilation results more accurate. A method, denoted TC_Cov, was proposed for soil moisture data assimilation to estimate spatially correlated observation error covariance based on triple collocation (TC). Assimilation experiments were carried out to test the performance of TC_Cov. AMSR-E soil moisture was assimilated with a diagonal R matrix computed using the TC and assimilated using a nondiagonal R matrix, as estimated by proposed TC_Cov. The ensemble Kalman filter was considered as the assimilation method. Our assimilation results were validated against climate change initiative data and ground-based soil moisture measurements using the Pearson correlation coefficient and unbiased root mean square difference metrics. These experiments confirmed that deterioration of diagonal R assimilation results occurred when model simulation is more accurate than observation data. Furthermore, nondiagonal R achieved higher correlation coefficient and lower ubRMSD values over diagonal R in experiments and demonstrated the effectiveness of TC_Cov to estimate richly structuralized R in data assimilation. In sum, compared with diagonal R, nondiagonal R may relieve the detrimental effects of assimilation when simulated model results outperform observation data.

  2. Plant hydraulics improves and topography mediates prediction of aspen mortality in southwestern USA.

    PubMed

    Tai, Xiaonan; Mackay, D Scott; Anderegg, William R L; Sperry, John S; Brooks, Paul D

    2017-01-01

    Elevated forest mortality has been attributed to climate change-induced droughts, but prediction of spatial mortality patterns remains challenging. We evaluated whether introducing plant hydraulics and topographic convergence-induced soil moisture variation to land surface models (LSM) can help explain spatial patterns of mortality. A scheme predicting plant hydraulic safety loss from soil moisture was developed using field measurements and a plant physiology-hydraulics model, TREES. The scheme was upscaled to Populus tremuloides forests across Colorado, USA, using LSM-modeled and topography-mediated soil moisture, respectively. The spatial patterns of hydraulic safety loss were compared against aerial surveyed mortality. Incorporating hydraulic safety loss raised the explanatory power of mortality by 40% compared to LSM-modeled soil moisture. Topographic convergence was mostly influential in suppressing mortality in low and concave areas, explaining an additional 10% of the variations in mortality for those regions. Plant hydraulics integrated water stress along the soil-plant continuum and was more closely tied to plant physiological response to drought. In addition to the well-recognized topo-climate influence due to elevation and aspect, we found evidence that topographic convergence mediates tree mortality in certain parts of the landscape that are low and convergent, likely through influences on plant-available water. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. Spatiotemporal characterization of soil moisture fields in agricultural areas using cosmic-ray neutron probes and data fusion

    NASA Astrophysics Data System (ADS)

    Franz, Trenton; Wang, Tiejun

    2015-04-01

    Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at the field-scale (~500 m) using the newly developed cosmic-ray neutron rover near Waco, NE USA. Here we mapped soil moisture of 144 quarter section fields (a mix of maize, soybean, and natural areas) each week during the 2014 growing season (May to September). The 12 by 12 km study domain also contained three stationary cosmic-ray neutron probes for independent validation of the rover surveys. Basic statistical analysis of the domain indicated a strong relationship between the mean and variance of soil moisture at several averaging scales. The relationships between the mean and higher order moments were not significant. Scaling analysis indicated strong power law behavior between the variance of soil moisture and averaging area with minimal dependence of mean soil moisture on the slope of the power law function. In addition, we combined the data from the three stationary cosmic-ray neutron probes and mobile surveys using linear regression to derive a daily soil moisture product at 1, 3, and 12 km spatial resolutions for the entire growing season. The statistical relationships derived from the rover dataset offer a novel set of observations that will be useful in: 1) calibrating and validating land surface models, 2) calibrating and validating crop models, 3) soil moisture covariance estimates for statistical downscaling of remote sensing products such as SMOS and SMAP, and 4) provide daily center-pivot scale mean soil moisture data for optimal irrigation timing and volume amounts.

  4. Soil moisture retrieval from Sentinel-1 satellite data

    NASA Astrophysics Data System (ADS)

    Benninga, Harm-Jan; van der Velde, Rogier; Su, Zhongbo

    2016-04-01

    Reliable up-to-date information on the current water availability and models to evaluate management scenarios are indispensable for skilful water management. The Sentinel-1 radar satellite programme provides an opportunity to monitor water availability (as surface soil moisture) from space on an operational basis at unprecedented fine spatial and temporal resolutions. However, the influences of soil roughness and vegetation cover complicate the retrieval of soil moisture states from radar data. In this contribution, we investigate the sensitivity of Sentinel-1 radar backscatter to soil moisture states and vegetation conditions. The analyses are based on 105 Sentinel-1 images in the period from October 2014 to January 2016 covering the Twente region in the Netherlands. This area is almost flat and has a heterogeneous landscape, including agricultural (mainly grass, cereal and corn), forested and urban land covers. In-situ measurements at 5 cm depth collected from the Twente soil moisture monitoring network are used as reference. This network consists of twenty measurement stations (most of them at agricultural fields) distributed across an area of 50 km × 40 km. The Normalized Difference Vegetation Index (NDVI) derived from optical images is adopted as proxy to represent seasonal variability in vegetation conditions. The results from this sensitivity study provide insight into the potential capability of Sentinel-1 data for the estimation of soil moisture states and they will facilitate the further development of operational retrieval methods. An operationally applicable soil moisture retrieval method requires an algorithm that is usable without the need for area specific model calibration with detailed field information (regarding roughness and vegetation). Because it is not yet clear which method provides the most reliable soil moisture retrievals from Sentinel-1 data, multiple soil moisture retrieval methods will be studied in which the fine spatiotemporal resolution and the dual-polarized information of Sentinel-1 are utilized. Three candidate algorithms are presented at the conference, which are a data-driven algorithm, inversion of a radar scattering model and downscaling of coarser resolution soil moisture products. The research is part of the OWAS1S project (Optimizing Water Availability with Sentinel-1 Satellites), which stands for integration of the freely available global Sentinel-1 data and local knowledge on soil physical processes, to optimize water management of regional water systems and to develop value-added products for agriculture.

  5. Modeling Coupled Movement of Water, Vapor, and Energy in Soils and at the Soil-Atmosphere Interface Using HYDRUS

    NASA Astrophysics Data System (ADS)

    Simunek, Jiri; Brunetti, Giuseppe; Saito, Hirotaka; Bristow, Keith

    2017-04-01

    Mass and energy fluxes in the subsurface are closely coupled and cannot be evaluated without considering their mutual interactions. However, only a few numerical models consider coupled water, vapor and energy transport in both the subsurface and at the soil-atmosphere interface. While hydrological and thermal processes in the subsurface are commonly implemented in existing models, which often consider both isothermally and thermally induced water and vapor flow, the interactions at the soil-atmosphere interface are often simplified, and the effects of slope inclination, slope azimuth, variable surface albedo and plant shading on incoming radiation and spatially variable surface mass and energy balance, and consequently on soil moisture and temperature distributions, are rarely considered. In this presentation we discuss these missing elements and our attempts to implement them into the HYDRUS model. We demonstrate implications of some of these interactions and their impact on the spatial distributions of soil temperature and water content, and their effect on soil evaporation. Additionally, we will demonstrate the use of the HYDRUS model to simulate processes relevant to the ground source heat pump systems.

  6. Reanalysis of the Indian summer monsoon: four dimensional data assimilation of AIRS retrievals in a regional data assimilation and modeling framework

    NASA Astrophysics Data System (ADS)

    Attada, Raju; Parekh, Anant; Chowdary, J. S.; Gnanaseelan, C.

    2018-04-01

    This work is the first attempt to produce a multi-year downscaled regional reanalysis of the Indian summer monsoon (ISM) using the National Centers for Environmental Prediction (NCEP) operational analyses and Atmospheric Infrared Sounder (AIRS) version 5 temperature and moisture retrievals in a regional model. Reanalysis of nine monsoon seasons (2003-2011) are produced in two parallel setups. The first set of experiments simply downscale the original NCEP operational analyses, whilst the second one assimilates the AIRS temperature and moisture profiles. The results show better representation of the key monsoon features such as low level jet, tropical easterly jet, subtropical westerly jet, monsoon trough and the spatial pattern of precipitation when AIRS profiles are assimilated (compared to those without AIRS data assimilation). The distribution of temperature, moisture and meridional gradients of dynamical and thermodynamical fields over the monsoon region are better represented in the reanalysis that assimilates AIRS profiles. The change induced by AIRS data on the moist and thermodynamic conditions results in more realistic rendering of the vertical shear associated with the monsoon, which in turn leads to a proper moisture transport and the moist convective feedback. This feedback benefits the representation of the regional monsoon characteristics, the monsoon dynamics and the moist convective processes on the seasonal time scale. This study emphasizes the use of AIRS soundings for downscaling of ISM representation in a regional reanalysis.

  7. Smap Soil Moisture Data Assimilation for the Continental United States and Eastern Africa

    NASA Astrophysics Data System (ADS)

    Blankenship, C. B.; Case, J.; Zavodsky, B.; Crosson, W. L.

    2016-12-01

    The NASA Short-Term Prediction Research and Transition (SPoRT) Center at Marshall Space Flight Center manages near-real-time runs of the Noah Land Surface Model within the NASA Land Information System (LIS) over Continental U.S. (CONUS) and Eastern Africa domains. Soil moisture products from the CONUS model run are used by several NOAA/National Weather Service Weather Forecast Offices for flood and drought situational awareness. The baseline LIS configuration is the Noah model driven by atmospheric and combined radar/gauge precipitation analyses, and input satellite-derived real-time green vegetation fraction on a 3-km grid for the CONUS. This configuration is being enhanced by adding the assimilation of Level 2 Soil Moisture Active/Passive (SMAP) soil moisture retrievals in a parallel run beginning on 1 April 2015. Our implementation of SMAP assimilation includes a cumulative distribution function (CDF) matching approach that aggregates points with similar soil types. This method allows creation of robust CDFs with a short data record, and also permits the correction of local anomalies that may arise from poor forcing data (e.g., quality-control problems with rain gauges). Validation results using in situ soil monitoring networks in the CONUS are shown, with comparisons to the baseline SPoRT-LIS run. Initial results are also presented from a modeling run in eastern Africa, forced by Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation data. Strategies for spatial downscaling and for dealing with effective depth of the retrieval product are also discussed.

  8. Study on hydraulic property models for water retention and unsaturated hydraulic conductivity in MATSIRO with representation of water table dynamics

    NASA Astrophysics Data System (ADS)

    Yoshida, N.; Oki, T.

    2016-12-01

    Appropriate initial condition of soil moisture and water table depth are important factors to reduce uncertainty in hydrological simulations. Approaches to determine the initial water table depth have been developed because of difficulty to get information on global water table depth and soil moisture distributions. However, how is equilibrium soil moisture determined by climate conditions? We try to discuss this issue by using land surface model with representation of water table dynamics (MAT-GW). First, the global pattern of water table depth at equilibrium soil moisture in MAT-GW was verified. The water table depth in MAT-GW was deeper than the previous one at fundamentally arid region because the negative recharge and continuous baseflow made water table depth deeper. It indicated that the hydraulic conductivity used for estimating recharge and baseflow need to be reassessed in MAT-GW. In soil physics field, it is revealed that proper hydraulic property models for water retention and unsaturated hydraulic conductivity should be selected for each soil type. So, the effect of selecting hydraulic property models on terrestrial soil moisture and water table depth were examined.Clapp and Hornburger equation(CH eq.) and Van Genuchten equation(VG eq.) were used as representative hydraulic property models. Those models were integrated on MAT-GW and equilibrium soil moisture and water table depth with using each model were compared. The water table depth and soil moisture at grids which reached equilibrium in both simulations were analyzed. The equilibrium water table depth were deeper in VG eq. than CH eq. in most grids due to shape of hydraulic property models. Then, total soil moisture were smaller in VG eq. than CH eq. at almost all grids which water table depth reached equilibrium. It is interesting that spatial patterns which water table depth reached equilibrium or not were basically similar in both simulations but reverse patterns were shown in east and west part of America. Selection of each hydraulic property model based on soil types may compensate characteristic of models in initialization.

  9. Synergistic soil moisture observation - an interdisciplinary multi-sensor approach to yield improved estimates across scales

    NASA Astrophysics Data System (ADS)

    Schrön, M.; Fersch, B.; Jagdhuber, T.

    2017-12-01

    The representative determination of soil moisture across different spatial ranges and scales is still an important challenge in hydrology. While in situ measurements are trusted methods at the profile- or point-scale, cosmic-ray neutron sensors (CRNS) are renowned for providing volume averages for several hectares and tens of decimeters depth. On the other hand, airborne remote-sensing enables the coverage of regional scales, however limited to the top few centimeters of the soil.Common to all of these methods is a challenging data processing part, often requiring calibration with independent data. We investigated the performance and potential of three complementary observational methods for the determination of soil moisture below grassland in an alpine front-range river catchment (Rott, 55 km2) of southern Germany.We employ the TERENO preAlpine soil moisture monitoring network, along with additional soil samples taken throughout the catchment. Spatial soil moisture products have been generated using surveys of a car-mounted mobile CRNS (rover), and an aerial acquisition of the polarimetric synthetic aperture radar (F-SAR) of DLR.The study assesses (1) the viability of the different methods to estimate soil moisture for their respective scales and extents, and (2) how either method could support an improvement of the others. We found that in situ data can provide valuable information to calibrate the CRNS rover and to train the vegetation removal part of the polarimetric SAR (PolSAR) retrieval algorithm. Vegetation correction is mandatory to obtain the sub-canopy soil moisture patterns. While CRNS rover surveys can be used to evaluate the F-SAR product across scales, vegetation-related PolSAR products in turn can support the spatial correction of CRNS products for biomass water. Despite the different physical principles, the synthesis of the methods can provide reasonable soil moisture information by integrating from the plot to the landscape scale. The combination of in situ, CRNS, and remote-sensing data leads to substantial improvement, especially for the latter two. The study shows how interdisciplinary research can greatly advance the methodology and processing algorithms for individual geoscientific instruments and their hydrologically relevant products.

  10. The calculating study of the moisture transfer influence at the temperature field in a porous wet medium with internal heat sources

    NASA Astrophysics Data System (ADS)

    Kuzevanov, V. S.; Garyaev, A. B.; Zakozhurnikova, G. S.; Zakozhurnikov, S. S.

    2017-11-01

    A porous wet medium with solid and gaseous components, with distributed or localized heat sources was considered. The regimes of temperature changes at the heating at various initial material moisture were studied. Mathematical model was developed applied to the investigated wet porous multicomponent medium with internal heat sources, taking into account the transfer of the heat by heat conductivity with variable thermal parameters and porosity, heat transfer by radiation, chemical reactions, drying and moistening of solids, heat and mass transfer of volatile products of chemical reactions by flows filtration, transfer of moisture. The algorithm of numerical calculation and the computer program that implements the proposed mathematical model, allowing to study the dynamics of warming up at a local or distributed heat release, in particular the impact of the transfer of moisture in the medium on the temperature field were created. Graphs of temperature change were obtained at different points of the graphics with different initial moisture. Conclusions about the possible control of the regimes of heating a solid porous body by the initial moisture distribution were made.

  11. Application of two hydrologic models with different runoff mechanisms to a hillslope dominated watershed in the northeastern US: A comparison of HSPF and SMR

    USGS Publications Warehouse

    Johnson, M.S.; Coon, W.F.; Mehta, V.K.; Steenhuis, T.S.; Brooks, E.S.; Boll, J.

    2003-01-01

    Differences in the simulation of hydrologic processes by watershed models directly affect the accuracy of results. Surface runoff generation can be simulated as either: (1) infiltration-excess (or Hortonian) overland flow, or (2) saturation-excess overland flow. This study compared the Hydrological Simulation Program - FORTRAN (HSPF) and the Soil Moisture Routing (SMR) models, each representing one of these mechanisms. These two models were applied to a 102 km2 watershed in the upper part of the Irondequoit Creek basin in central New York State over a seven-year simulation period. The models differed in both the complexity of simulating snowmelt and baseflow processes as well as the detail in which the geographic information was preserved by each model. Despite their differences in structure and representation of hydrologic processes, the two models simulated streamflow with almost equal accuracy. Since streamflow is an integral response and depends mainly on the watershed water balance, this was not unexpected. Model efficiency values for the seven-year simulation period were 0.67 and 0.65 for SMR and HSPF, respectively. HSPF simulated winter streamflow slightly better than SMR as a result of its complex snowmelt routine, whereas SMR simulated summer flows better than HSPF as a result of its runoff and baseflow processes. An important difference between model results was the ability to predict the spatial distribution of soil moisture content. HSPF aggregates soil moisture content, which is generally related to a specific pervious land unit across the entire watershed, whereas SMR predictions of moisture content distribution are geographically specific and matched field observations reasonably well. Important is that the saturated area was predicted well by SMR and confirmed the validity of using saturation-excess mechanisms for this hillslope dominated watershed. ?? 2003 Elsevier B.V. All rights reserved.

  12. Verification of land-atmosphere coupling in forecast models, reanalyses and land surface models using flux site observations.

    PubMed

    Dirmeyer, Paul A; Chen, Liang; Wu, Jiexia; Shin, Chul-Su; Huang, Bohua; Cash, Benjamin A; Bosilovich, Michael G; Mahanama, Sarith; Koster, Randal D; Santanello, Joseph A; Ek, Michael B; Balsamo, Gianpaolo; Dutra, Emanuel; Lawrence, D M

    2018-02-01

    We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring.

  13. Combining SMOS with visible and near/shortwave/thermal infrared satellite data for high resolution soil moisture estimates

    NASA Astrophysics Data System (ADS)

    Sánchez-Ruiz, Sergio; Piles, María; Sánchez, Nilda; Martínez-Fernández, José; Vall-llossera, Mercè; Camps, Adriano

    2014-08-01

    Sensors in the range of visible and near-shortwave-thermal infrared regions can be used in combination with passive microwave observations to provide soil moisture maps at much higher spatial resolution than the original resolution of current radiometers. To do so, a new downscaling algorithm ultimately based on the land surface temperature (LST) - Normalized Difference Vegetation Index (NDVI) - Brightness Temperature (TB) relationship is used, in which shortwave infrared indices are used as vegetation descriptors, instead of the more common near infrared ones. The theoretical basis of those indices, calculated as the normalized ratio of the 1240, 1640 and 2130 nm shortwave infrared (SWIR) bands and the 858 nm near infrared (NIR) band indicate that they are able to provide estimates of the vegetation water content. These so-called water indices extracted from MODIS products, have been used together with MODIS LST, and SMOS TB to improve the spatial resolution of ∼40 km SMOS soil moisture estimates. The aim was to retrieve soil moisture maps with the same accuracy as SMOS, but at the same resolution of the MODIS dataset, i.e., 500 m, which were then compared against in situ measurements from the REMEDHUS network in Spain. Results using two years of SMOS and MODIS data showed a similar performance for the four indices, with slightly better results when using the index derived from the first SWIR band. For the areal-average, a coefficient of correlation (R) of ∼0.61 and ∼0.72 for the morning and afternoon orbits, respectively, and a centered root mean square difference (cRMSD) of ∼0.04 m3 m-3 for both orbits was obtained. A twofold improvement of the current versions of this downscaling approach has been achieved by using more frequent and higher spatial resolution water indexes as vegetation descriptors: (1) the spatial resolution of the resulting soil moisture maps can be enhanced from ∼40 km up to 500 m, and (2) more accurate soil moisture maps (in terms of R and cRMSD) can be obtained, especially in periods of high vegetation activity. The results of this study support the use of high resolution LST and SWIR-based vegetation indices to disaggregate SMOS observations down to 500 m soil moisture maps, meeting the needs of fine-scale hydrological applications.

  14. Climate refugia: The physical, hydrologic and disturbance basis

    NASA Astrophysics Data System (ADS)

    Holden, Z. A.; Maneta, M. P.; Forthofer, J.

    2015-12-01

    Projected changes in global climate and associated shifts in vegetation have increased interest in understanding species persistence at local scales. We examine the climatic and physical factors that could mediate changes in the distribution of vegetation in regions of complex topography. Using massive networks of low-cost temperature and humidity sensors, we developed topographically-resolved daily historical gridded temperature data for the US Northern Rockies. We used the WindNinja model to create daily historical wind speed maps across the same domain. Using a spatially distributed ecohydrology model (ECH2O) we examine separately the sensitivity of modeled evapotranspiration and soil moisture to wind, radiation, soil properties, minimum temperature and humidity. A suite of physical factors including lower wind speeds, cold air drainage, solar shading and increased soil depth reduce evapotranspiration and increase late season moisture availability in valley bottoms. Evapotranspiration shows strong sensitivity to spatial variability in surface wind speed, suggesting that sheltering effects from winds may be an important factor contributing to mountain refugia. Fundamental to our understanding of patterns of vegetation change is the role of stand-replacing wildfires, which modify the physical environment and subsequent patterns of species persistence and recruitment. Using satellite-derived maps of burn severity for recent fires in the US Northern Rockies we examined relationships between wind speed, cold air drainage potential and soil depth and the occurrence of unburned and low severity fire. Severe fire is less likely to occur in areas with high cold air drainage potential and low wind speeds, suggesting that sheltered valley bottoms have mediated the severity of recent wildfires. Our finding highlight the complex physical mechanisms by which mountain weather and climate mediate fire-induced vegetation changes in the US Northern Rocky Mountains.

  15. The influence of current and future climate on the spatial distribution of coccidioidomycosis in the southwestern United States

    NASA Astrophysics Data System (ADS)

    Gorris, M. E.; Hoffman, F. M.; Zender, C. S.; Treseder, K. K.; Randerson, J. T.

    2017-12-01

    Coccidioidomycosis, otherwise known as valley fever, is an infectious fungal disease currently endemic to the southwestern U.S. The magnitude, spatial distribution, and seasonality of valley fever incidence is shaped by variations in regional climate. As such, climate change may cause new communities to become at risk for contracting this disease. Humans contract valley fever by inhaling fungal spores of the genus Coccidioides. Coccidioides grow in the soil as a mycelium, and when stressed, autolyze into spores 2-5 µm in length. Spores can become airborne from any natural or anthropogenic soil disturbance, which can be exacerbated by dry soil conditions. Understanding the relationship between climate and valley fever incidence is critical for future disease risk management. We explored several multivariate techniques to create a predictive model of county-level valley fever incidence throughout the southwestern U.S., including Arizona, California, New Mexico, Nevada, and Utah. We incorporated surface air temperature, precipitation, soil moisture, surface dust concentrations, leaf area index, and the amount of agricultural land, all of which influence valley fever incidence. A log-linear regression model that incorporated surface air temperature, soil moisture, surface dust concentration, and the amount of agricultural land explained 34% of the county-level variance in annual average valley fever incidence. We used this model to predict valley fever incidence for the Representative Concentration Pathway 8.5 using simulation output from the Community Earth System Model. In our analysis, we describe how regional hotspots of valley fever incidence may shift with sustained warming and drying in the southwestern U.S. Our predictive model of valley fever incidence may help mitigate future health impacts of valley fever by informing health officials and policy makers of the climate conditions suitable for disease outbreak.

  16. Forest gradient response in Sierran landscapes: the physical template

    USGS Publications Warehouse

    Urban, Dean L.; Miller, Carol; Halpin, Patrick N.; Stephenson, Nathan L.

    2000-01-01

    Vegetation pattern on landscapes is the manifestation of physical gradients, biotic response to these gradients, and disturbances. Here we focus on the physical template as it governs the distribution of mixed-conifer forests in California's Sierra Nevada. We extended a forest simulation model to examine montane environmental gradients, emphasizing factors affecting the water balance in these summer-dry landscapes. The model simulates the soil moisture regime in terms of the interaction of water supply and demand: supply depends on precipitation and water storage, while evapotranspirational demand varies with solar radiation and temperature. The forest cover itself can affect the water balance via canopy interception and evapotranspiration. We simulated Sierran forests as slope facets, defined as gridded stands of homogeneous topographic exposure, and verified simulated gradient response against sample quadrats distributed across Sequoia National Park. We then performed a modified sensitivity analysis of abiotic factors governing the physical gradient. Importantly, the model's sensitivity to temperature, precipitation, and soil depth varies considerably over the physical template, particularly relative to elevation. The physical drivers of the water balance have characteristic spatial scales that differ by orders of magnitude. Across large spatial extents, temperature and precipitation as defined by elevation primarily govern the location of the mixed conifer zone. If the analysis is constrained to elevations within the mixed-conifer zone, local topography comes into play as it influences drainage. Soil depth varies considerably at all measured scales, and is especially dominant at fine (within-stand) scales. Physical site variables can influence soil moisture deficit either by affecting water supply or water demand; these effects have qualitatively different implications for forest response. These results have clear implications about purely inferential approaches to gradient analysis, and bear strongly on our ability to use correlative approaches in assessing the potential responses of montane forests to anthropogenic climatic change.

  17. The Temporal Dynamics of Spatial Patterns of Observed Soil Moisture Interpreted Using the Hydrus 1-D Model

    NASA Astrophysics Data System (ADS)

    Chen, M.; Willgoose, G. R.; Saco, P. M.

    2009-12-01

    This paper investigates the soil moisture dynamics over two subcatchments (Stanley and Krui) in the Goulburn River in NSW during a three year period (2005-2007) using the Hydrus 1-D unsaturated soil water flow model. The model was calibrated to the seven Stanley microcatchment sites (1 sqkm site) using continuous time surface 30cm and full profile soil moisture measurements. Soil type, leaf area index and soil depth were found to be the key parameters changing model fit to the soil moisture time series. They either shifted the time series up or down, changed the steepness of dry-down recessions or determined the lowest point of soil moisture dry-down respectively. Good correlations were obtained between observed and simulated soil water storage (R=0.8-0.9) when calibrated parameters for one site were applied to the other sites. Soil type was also found to be the main determinant (after rainfall) of the mean of modelled soil moisture time series. Simulations of top 30cm were better than those of the whole soil profile. Within the Stanley microcatchment excellent soil moisture matches could be generated simply by adjusting the mean of soil moisture up or down slightly. Only minor modification of soil properties from site to site enable good fits for all of the Stanley sites. We extended the predictions of soil moisture to a larger spatial scale of the Krui catchment (sites up to 30km distant from Stanley) using soil and vegetation parameters from Stanley but the locally recorded rainfall at the soil moisture measurement site. The results were encouraging (R=0.7~0.8). These results show that it is possible to use a calibrated soil moisture model to extrapolate the soil moisture to other sites for a catchment with an area of up to 1000km2. This paper demonstrates the potential usefulness of continuous time, point scale soil moisture (typical of that measured by permanently installed TDR probes) in predicting the soil wetness status over a catchment of significant size.

  18. SMAP Soil Moisture Disaggregation using Land Surface Temperature and Vegetation Data

    NASA Astrophysics Data System (ADS)

    Fang, B.; Lakshmi, V.

    2016-12-01

    Soil moisture (SM) is a key parameter in agriculture, hydrology and ecology studies. The global SM retrievals have been providing by microwave remote sensing technology since late 1970s and many SM retrieval algorithms have been developed, calibrated and applied on satellite sensors such as AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System), AMSR-2 (Advanced Microwave Scanning Radiometer 2) and SMOS (Soil Moisture and Ocean Salinity). Particularly, SMAP (Soil Moisture Active/Passive) satellite, which was developed by NASA, was launched in January 2015. SMAP provides soil moisture products of 9 km and 36 km spatial resolutions which are not capable for research and applications of finer scale. Toward this issue, this study applied a SM disaggregation algorithm to disaggregate SMAP passive microwave soil moisture 36 km product. This algorithm was developed based on the thermal inertial relationship between daily surface temperature variation and daily average soil moisture which is modulated by vegetation condition, by using remote sensing retrievals from AVHRR (Advanced Very High Resolution Radiometer, MODIS (Moderate Resolution Imaging Spectroradiometer), SPOT (Satellite Pour l'Observation de la Terre), as well as Land Surface Model (LSM) output from NLDAS (North American Land Data Assimilation System). The disaggregation model was built at 1/8o spatial resolution on monthly basis and was implemented to calculate and disaggregate SMAP 36 km SM retrievals to 1 km resolution in Oklahoma. The SM disaggregation results were also validated using MESONET (Mesoscale Network) and MICRONET (Microscale Network) ground SM measurements.

  19. Temporal evolution of soil moisture statistical fractal and controls by soil texture and regional groundwater flow

    NASA Astrophysics Data System (ADS)

    Ji, Xinye; Shen, Chaopeng; Riley, William J.

    2015-12-01

    Soil moisture statistical fractal is an important tool for downscaling remotely-sensed observations and has the potential to play a key role in multi-scale hydrologic modeling. The fractal was first introduced two decades ago, but relatively little is known regarding how its scaling exponents evolve in time in response to climatic forcings. Previous studies have neglected the process of moisture re-distribution due to regional groundwater flow. In this study we used a physically-based surface-subsurface processes model and numerical experiments to elucidate the patterns and controls of fractal temporal evolution in two U.S. Midwest basins. Groundwater flow was found to introduce large-scale spatial structure, thereby reducing the scaling exponents (τ), which has implications for the transferability of calibrated parameters to predict τ. However, the groundwater effects depend on complex interactions with other physical controls such as soil texture and land use. The fractal scaling exponents, while in general showing a seasonal mode that correlates with mean moisture content, display hysteresis after storm events that can be divided into three phases, consistent with literature findings: (a) wetting, (b) re-organizing, and (c) dry-down. Modeling experiments clearly show that the hysteresis is attributed to soil texture, whose "patchiness" is the primary contributing factor. We generalized phenomenological rules for the impacts of rainfall, soil texture, groundwater flow, and land use on τ evolution. Grid resolution has a mild influence on the results and there is a strong correlation between predictions of τ from different resolutions. Overall, our results suggest that groundwater flow should be given more consideration in studies of the soil moisture statistical fractal, especially in regions with a shallow water table.

  20. The Aggregate Description of Semi-Arid Vegetation with Precipitation-Generated Soil Moisture Heterogeneity

    NASA Technical Reports Server (NTRS)

    White, Cary B.; Houser, Paul R.; Arain, Altaf M.; Yang, Zong-Liang; Syed, Kamran; Shuttleworth, W. James

    1997-01-01

    Meteorological measurements in the Walnut Gulch catchment in Arizona were used to synthesize a distributed, hourly-average time series of data across a 26.9 by 12.5 km area with a grid resolution of 480 m for a continuous 18-month period which included two seasons of monsoonal rainfall. Coupled surface-atmosphere model runs established the acceptability (for modelling purposes) of assuming uniformity in all meteorological variables other than rainfall. Rainfall was interpolated onto the grid from an array of 82 recording rain gauges. These meteorological data were used as forcing variables for an equivalent array of stand-alone Biosphere-Atmosphere Transfer Scheme (BATS) models to describe the evolution of soil moisture and surface energy fluxes in response to the prevalent, heterogeneous pattern of convective precipitation. The calculated area-average behaviour was compared with that given by a single aggregate BATS simulation forced with area-average meteorological data. Heterogeneous rainfall gives rise to significant but partly compensating differences in the transpiration and the intercepted rainfall components of total evaporation during rain storms. However, the calculated area-average surface energy fluxes given by the two simulations in rain-free conditions with strong heterogeneity in soil moisture were always close to identical, a result which is independent of whether default or site-specific vegetation and soil parameters were used. Because the spatial variability in soil moisture throughout the catchment has the same order of magnitude as the amount of rain failing in a typical convective storm (commonly 10% of the vegetation's root zone saturation) in a semi-arid environment, non-linearitv in the relationship between transpiration and the soil moisture available to the vegetation has limited influence on area-average surface fluxes.

  1. The influence of subsurface hydrodynamics on convective precipitation

    NASA Astrophysics Data System (ADS)

    Rahman, A. S. M. M.; Sulis, M.; Kollet, S. J.

    2014-12-01

    The terrestrial hydrological cycle comprises complex processes in the subsurface, land surface, and atmosphere, which are connected via complex non-linear feedback mechanisms. The influence of subsurface hydrodynamics on land surface mass and energy fluxes has been the subject of previous studies. Several studies have also investigated the soil moisture-precipitation feedback, neglecting however the connection with groundwater dynamics. The objective of this study is to examine the impact of subsurface hydrodynamics on convective precipitation events via shallow soil moisture and land surface processes. A scale-consistent Terrestrial System Modeling Platform (TerrSysMP) that consists of an atmospheric model (COSMO), a land surface model (CLM), and a three-dimensional variably saturated groundwater-surface water flow model (ParFlow), is used to simulate hourly mass and energy fluxes over days with convective rainfall events over the Rur catchment, Germany. In order to isolate the effect of groundwater dynamics on convective precipitation, two different model configurations with identical initial conditions are considered. The first configuration allows the groundwater table to evolve through time, while a spatially distributed, temporally constant groundwater table is prescribed as a lower boundary condition in the second configuration. The simulation results suggest that groundwater dynamics influence land surface soil moisture, which in turn affects the atmospheric boundary layer (ABL) height by modifying atmospheric thermals. It is demonstrated that because of this sensitivity of ABL height to soil moisture-temperature feedback, the onset and magnitude of convective precipitation is influenced by subsurface hydrodynamics. Thus, the results provide insight into the soil moisture-precipitation feedback including groundwater dynamics in a physically consistent manner by closing the water cycle from aquifers to the atmosphere.

  2. Soil-Water Balance (SWB) model estimates of soil-moisture variability and groundwater recharge in the South Platte watershed, Colorado

    NASA Astrophysics Data System (ADS)

    Anderson, A. M.; Walker, E. L.; Hogue, T. S.; Ruybal, C. J.

    2015-12-01

    Unconventional energy production in semi-arid regions places additional stress on already over-allocated water systems. Production of shale gas and oil resources in northern Colorado has rapidly increased since 2010, and is expected to continue growing due to advances in horizontal drilling and hydraulic fracturing. This unconventional energy production has implications for the availability of water in the South Platte watershed, where water demand for hydraulic fracturing of unconventional shale resources reached ~16,000 acre-feet in 2014. Groundwater resources are often exploited to meet water demands for unconventional energy production in regions like the South Platte basin, where surface water supply is limited and allocated across multiple uses. Since groundwater is often a supplement to surface water in times of drought and peak demand, variability in modeled recharge estimates can significantly impact projected availability. In the current work we used the Soil-Water Balance Model (SWB) to assess the variability in model estimates of actual evapotranspiration (ET) and soil-moisture conditions utilized to derive estimates of groundwater recharge. Using both point source and spatially distributed data, we compared modeled actual ET and soil-moisture derived from several potential ET methods, such as Thornthwaite-Mather, Jense-Haise, Turc, and Hargreaves-Samani, to historic soil moisture conditions obtained through sources including the Gravity Recovery and Climate Experiment (GRACE). In addition to a basin-scale analysis, we divided the South Platte watershed into sub-basins according to land cover to evaluate model capabilities of estimating soil-moisture parameters with variations in land cover and topography. Results ultimately allow improved prediction of groundwater recharge under future scenarios of climate and land cover change. This work also contributes to complementary subsurface groundwater modeling and decision support modeling in the South Platte.

  3. The impact of soil moisture extremes and their spatiotemporal variability on Zambian maize yields

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Estes, L. D.; Vergopolan, N.

    2017-12-01

    Food security in sub-Saharan Africa is highly sensitive to climate variability. While it is well understood that extreme heat has substantial negative impacts on crop yield, the impacts of precipitation extremes, particularly over large spatial extents, are harder to quantify. There are three primary reasons for this difficulty, which are (1) lack of high quality, high resolution precipitation data, (2) rainfall data provide incomplete information on plant water availability, the variable that most directly affects crop performance, and (3) the type of rainfall extreme that most affects crop yields varies throughout the crop development stage. With respect to the first reason, the spatial and temporal variation of precipitation is much greater than that of temperature, yet the spatial resolution of rainfall data is typically even coarser than it is for temperature, particularly within Africa. Even if there were high-resolution rainfall data, the amount of water available to crops also depends on other physical factors that affect evapotranspiration, which are strongly influenced by heterogeneity in the land surface related to topography, soil properties, and land cover. In this context, soil moisture provides a better measure of crop water availability than rainfall. Furthermore, soil moisture has significantly different influences on crop yield depending on the crop's growth stage. The goal of this study is to understand how the spatiotemporal scales of soil moisture extremes interact with crops, more specifically, the timing and the spatial scales of extreme events like droughts and flooding. In this study, we simulate daily-1km soil moisture using HydroBlocks - a physically based land surface model - and compare it with precipitation and remote sensing derived maize yields between 2000 and 2016 in Zambia. We use a novel combination of the SCYM (scalable satellite-based yield mapper) method with DSSAT crop model, which is a mechanistic model responsive to water stress. Understanding the relationships between soil moisture spatiotemporal variability and yields can help to improve agricultural drought risk assessment and seasonal crop yield forecasting as well as early season warning of potential famines.

  4. Developing Soil Moisture Profiles Utilizing Remotely Sensed MW and TIR Based SM Estimates Through Principle of Maximum Entropy

    NASA Astrophysics Data System (ADS)

    Mishra, V.; Cruise, J. F.; Mecikalski, J. R.

    2015-12-01

    Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Earlier studies show that the principle of maximum entropy (POME) can be utilized to develop vertical soil moisture profiles with accuracy (MAE of about 1% for a monotonically dry profile; nearly 2% for monotonically wet profiles and 3.8% for mixed profiles) with minimum constraints (surface, mean and bottom soil moisture contents). In this study, the constraints for the vertical soil moisture profiles were obtained from remotely sensed data. Low resolution (25 km) MW soil moisture estimates (AMSR-E) were downscaled to 4 km using a soil evaporation efficiency index based disaggregation approach. The downscaled MW soil moisture estimates served as a surface boundary condition, while 4 km resolution TIR based Atmospheric Land Exchange Inverse (ALEXI) estimates provided the required mean root-zone soil moisture content. Bottom soil moisture content is assumed to be a soil dependent constant. Mulit-year (2002-2011) gridded profiles were developed for the southeastern United States using the POME method. The soil moisture profiles were compared to those generated in land surface models (Land Information System (LIS) and an agricultural model DSSAT) along with available NRCS SCAN sites in the study region. The end product, spatial soil moisture profiles, can be assimilated into agricultural and hydrologic models in lieu of precipitation for data scarce regions.Developing accurate vertical soil moisture profiles with minimum input requirements is important to agricultural as well as land surface modeling. Previous studies have shown that the principle of maximum entropy (POME) can be utilized with minimal constraints to develop vertical soil moisture profiles with accuracy (MAE = 1% for monotonically dry profiles; MAE = 2% for monotonically wet profiles and MAE = 3.8% for mixed profiles) when compared to laboratory and field data. In this study, vertical soil moisture profiles were developed using the POME model to evaluate an irrigation schedule over a maze field in north central Alabama (USA). The model was validated using both field data and a physically based mathematical model. The results demonstrate that a simple two-constraint entropy model under the assumption of a uniform initial soil moisture distribution can simulate most soil moisture profiles within the field area for 6 different soil types. The results of the irrigation simulation demonstrated that the POME model produced a very efficient irrigation strategy with loss of about 1.9% of the total applied irrigation water. However, areas of fine-textured soil (i.e. silty clay) resulted in plant stress of nearly 30% of the available moisture content due to insufficient water supply on the last day of the drying phase of the irrigation cycle. Overall, the POME approach showed promise as a general strategy to guide irrigation in humid environments, with minimum input requirements.

  5. Soil Moisture Retrieval with Airborne PALS Instrument over Agricultural Areas in SMAPVEX16

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Jackson, Thomas J.; Cosh, Mike; Misra, Sidharth; Bindlish, Rajat; Powers, Jarrett; McNairn, Heather; Bullock, P.; Berg, A.; Magagi, A.; hide

    2017-01-01

    NASA's SMAP (Soil Moisture Active Passive) calibration and validation program revealed that the soil moisture products are experiencing difficulties in meeting the mission requirements in certain agricultural areas. Therefore, the mission organized airborne field experiments at two core validation sites to investigate these anomalies. The SMAP Validation Experiment 2016 included airborne observations with the PALS (Passive Active L-band Sensor) instrument and intensive ground sampling. The goal of the PALS measurements are to investigate the soil moisture retrieval algorithm formulation and parameterization under the varying (spatially and temporally) conditions of the agricultural domains and to obtain high resolution soil moisture maps within the SMAP pixels. In this paper the soil moisture retrieval using the PALS brightness temperature observations in SMAPVEX16 is presented.

  6. Long-term SMOS soil moisture products: A comprehensive evaluation across scales and methods in the Duero Basin (Spain)

    NASA Astrophysics Data System (ADS)

    González-Zamora, Ángel; Sánchez, Nilda; Martínez-Fernández, José; Gumuzzio, Ángela; Piles, María; Olmedo, Estrella

    The European Space Agency's Soil Moisture and Ocean Salinity (SMOS) Level 2 soil moisture and the new L3 product from the Barcelona Expert Center (BEC) were validated from January 2010 to June 2014 using two in situ networks in Spain. The first network is the Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS), which has been extensively used for validating remotely sensed observations of soil moisture. REMEDHUS can be considered a small-scale network that covers a 1300 km2 region. The second network is a large-scale network that covers the main part of the Duero Basin (65,000 km2). At an existing meteorological network in the Castilla y Leon region (Inforiego), soil moisture probes were installed in 2012 to provide data until 2014. Comparisons of the temporal series using different strategies (total average, land use, and soil type) as well as using the collocated data at each location were performed. Additionally, spatial correlations on each date were computed for specific days. Finally, an improved version of the Triple Collocation (TC) method, i.e., the Extended Triple Collocation (ETC), was used to compare satellite and in situ soil moisture estimates with outputs of the Soil Water Balance Model Green-Ampt (SWBM-GA). The results of this work showed that SMOS estimates were consistent with in situ measurements in the time series comparisons, with Pearson correlation coefficients (R) and an Agreement Index (AI) higher than 0.8 for the total average and the land-use averages and higher than 0.85 for the soil-texture averages. The results obtained at the Inforiego network showed slightly better results than REMEDHUS, which may be related to the larger scale of the former network. Moreover, the best results were obtained when all networks were jointly considered. In contrast, the spatial matching produced worse results for all the cases studied. These results showed that the recent reprocessing of the L2 products (v5.51) improved the accuracy of soil moisture retrievals such that they are now suitable for developing new L3 products, such as the presented in this work. Additionally, the validation based on comparisons between dense/sparse networks and satellite retrievals at a coarse resolution showed that temporal patterns in the soil moisture are better reproduced than spatial patterns.

  7. A practical algorithm to estimate soil thawing onset with the soil moisture active passive (SMAP) data

    NASA Astrophysics Data System (ADS)

    Chen, X.; Liu, L.

    2016-12-01

    The Soil Moisture Active Passive (SMAP) satellite simultaneously collected active and passive microwave data at L-band from April to July, 2015. The L-band radiometer brightness temperature (TB) data are strongly sensitive to the change of soil moisture, therefore, can be used to estimate freeze/thaw state of soil. We applied an edge detection method to detect the onset of thawing based on the SMAP level-1C TB data. This method convolves the first derivative of the Gaussian function as a kernel with the TB time series. When thawing occurs, soil moisture increases abruptly and leads to a decrease in TB. Therefore, a primary thaw event can be identified when the convolved signal reaches a local minimum. Considering the noise of the radiometer data, not all local minimums correspond to a thaw event. Therefore, we further applied a filter based on a priori or in situ soil temperature observation to eliminate false events. We compared the TB-based estimates with in situ measurements of soil temperature, moisture, and snow depth from April to June from 5 SNOTEL sites in Alaska. Our results show that at 4 out of the 5 sites the estimated thawing onsets and in-situ data agree within 5 to 10 days. However, we found a distinct inconsistency of 41 days at the fifth site. One possible reason is the mismatch in spatial coverage: one pixel of SMAP radiometer data has a size of 36 km, within which different areas may have different freeze/thaw states. The SMAP radar backscatter coefficient (σ0) data are also very sensitive to soil moisture, and has finer spatial resolution of 1 km, making it more directly comparable with the in situ measurements. We applied a seasonal threshold method to estimate thawing onset based on this data. Firstly, we set a thaw onset based on the in situ soil temperature and moisture measurements at 5 cm depth. Then we averaged σ0 observations from April 14th to 7 days before the thaw onset to represent the frozen soil, and used the mean value from 7 days after the thawing onset to June 1st as thawed reference. Next, the σ0-based freeze/thaw distribution within radiometer pixel can be obtained. Assuming TB and have a linear relationship in 36 km scale during a short time, SMAP provide a down scaling method to obtain 9 km resolution TB data. For further work, we plan to apply the edge detection method on this TB data to estimate the soil state in 9 km.

  8. Simulated sensitivity of tropical cyclone track to the moisture in an idealized monsoon gyre

    NASA Astrophysics Data System (ADS)

    Yan, Ziyu; Ge, Xuyang; Guo, Bingyao

    2017-12-01

    In this study, the sensitivity of tropical cyclone (TC) track to the moisture condition in a nearby monsoon gyre (MG) is investigated. Numerical simulations reveal that TC track is highly sensitive to the spatial distribution of relative humidity (RH). In an experiment conducted with higher (lower) RH in the eastern (western) semicircle of an MG, the TC experiences a sharp northward turning. In contrast, when the RH pattern is reversed, the simulated TC does not show a sharp northward turning. The RH distribution modulates the intensity and structure of both the TC and MG, so that when the TC is initially embedded in a moister environment, convection is enhanced in the outer core, which favors an expansion of the outer core size. A TC with a larger outer size has greater beta-effect propagation, favoring a faster westward translational speed. Meanwhile, higher RH enhances the vorticity gradient within the MG and promotes a quicker attraction between the TC and MG centers through vorticity segregation process. These cumulative effects cause the TC to collocate with the MG center. Once the coalescence process takes place, the energy dispersion associated with the TC and MG is enhanced, which rapidly strengthens southwesterly flows on the eastern flanks. The resulting steering flow leads the TC to take a sharp northward track.

  9. Multi-profile analysis of soil moisture within the U.S. Climate Reference Network

    USDA-ARS?s Scientific Manuscript database

    Soil moisture estimates are crucial for hydrologic modeling and agricultural decision-support efforts. These measurements are also pivotal for long-term inquiries regarding the impacts of climate change and the resulting droughts over large spatial and temporal scales. However, it has only been t...

  10. Microwave Soil Moisture Retrieval Under Trees Using a Modified Tau-Omega Model

    USDA-ARS?s Scientific Manuscript database

    IPAD is to provide timely and accurate estimates of global crop conditions for use in up-to-date commodity intelligence reports. A crucial requirement of these global crop yield forecasts is the regional characterization of surface and sub-surface soil moisture. However, due to the spatial heterogen...

  11. Factors affecting temporal and spatial soil moisture variation in and adjacent to group selection openings

    Treesearch

    W.H. McNab

    1991-01-01

    Soil moisture content was intensively sampled in three, 1-acre blocks containing an opening and surrounding mature upland hardwoods. Openings covering 0.19-0.26 ac were created by group-selection cutting, and they were occupied by 1-year-old trees and shrubs.

  12. Scaling Properties and Spatial Interpolation of Soil Moisture

    DTIC Science & Technology

    2004-08-24

    the sensitivities is useful not only for characterizing soil moisture but also for forecasting the vulnerability of a region’s water cycle to climate...regional water balance was presented that can be used to assess the impact of climatic fluctuations and changes on the water cycle of a region. In

  13. Surface Soil Moisture Estimates Across China Based on Multi-satellite Observations and A Soil Moisture Model

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Yang, Tao; Ye, Jinyin; Li, Zhijia; Yu, Zhongbo

    2017-04-01

    Soil moisture is a key variable that regulates exchanges of water and energy between land surface and atmosphere. Soil moisture retrievals based on microwave satellite remote sensing have made it possible to estimate global surface (up to about 10 cm in depth) soil moisture routinely. Although there are many satellites operating, including NASA's Soil Moisture Acitive Passive mission (SMAP), ESA's Soil Moisture and Ocean Salinity mission (SMOS), JAXA's Advanced Microwave Scanning Radiometer 2 mission (AMSR2), and China's Fengyun (FY) missions, key differences exist between different satellite-based soil moisture products. In this study, we applied a single-channel soil moisture retrieval model forced by multiple sources of satellite brightness temperature observations to estimate consistent daily surface soil moisture across China at a spatial resolution of 25 km. By utilizing observations from multiple satellites, we are able to estimate daily soil moisture across the whole domain of China. We further developed a daily soil moisture accounting model and applied it to downscale the 25-km satellite-based soil moisture to 5 km. By comparing our estimated soil moisture with observations from a dense observation network implemented in Anhui Province, China, our estimated soil moisture results show a reasonably good agreement with the observations (RMSE < 0.1 and r > 0.8).

  14. Implementation of a global-scale operational data assimilation system for satellite-based soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Bolten, J.; Crow, W.; Zhan, X.; Reynolds, C.

    2008-08-01

    Timely and accurate monitoring of global weather anomalies and drought conditions is essential for assessing global crop conditions. Soil moisture observations are particularly important for crop yield fluctuations provided by the US Department of Agriculture (USDA) Production Estimation and Crop Assessment Division (PECAD). The current system utilized by PECAD estimates soil moisture from a 2-layer water balance model based on precipitation and temperature data from World Meteorological Organization (WMO) and US Air Force Weather Agency (AFWA). The accuracy of this system is highly dependent on the data sources used; particularly the accuracy, consistency, and spatial and temporal coverage of the land and climatic data input into the models. However, many regions of the globe lack observations at the temporal and spatial resolutions required by PECAD. This study incorporates NASA's soil moisture remote sensing product provided by the EOS Advanced Microwave Scanning Radiometer (AMSR-E) into the U.S. Department of Agriculture Crop Assessment and Data Retrieval (CADRE) decision support system. A quasi-global-scale operational data assimilation system has been designed and implemented to provide CADRE a daily product of integrated AMSR-E soil moisture observations with the PECAD two-layer soil moisture model forecasts. A methodology of the system design and a brief evaluation of the system performance over the Conterminous United States (CONUS) is presented.

  15. Validation of SURFEX Simulated Soil Moisture over the Valencia Anchor Station using SMOS products and in situ measurements.

    NASA Astrophysics Data System (ADS)

    Coll, M. Amparo; Khodayar, Samiro; Lopez-Baeza, Ernesto

    2014-05-01

    Soil moisture is an important variable in agriculture, hydrology, meteorology and related disciplines. Despite its importance, it is complicated to obtain an appropriate representation of this variable, mainly because of its high temporal and spatial variability. SVAT (Soil-Vegetation-Atmosphere-Transfer) models can be used to simulate the temporal behaviour and spatial distribution of soil moisture in a given area. In this work, we use the SURFEX (Surface Externalisée) model developed at the Centre National de Recherches Météorologiques (CNRM) at Météo-France (http://www.cnrm.meteo.fr/surfex/) to simulate soil moisture at the Valencia Anchor Station. SURFEX integrates the ISBA (Interaction Sol-Biosphère-Atmosphère; surfaces with vegetation) module to describe the land surfaces (http://www.cnrm.meteo.fr/isbadoc/model.html) and we introduced the ECOCLIMAP for the description of land covers. The Valencia Anchor Station was chosen as a validation site for the SMOS (Soil Moisture and Ocean Salinity) mission and as one of the hydrometeorological sites for the HyMeX (HYdrological cycle in Mediterranean EXperiment) programme. This site represents a reasonably homogeneous and mostly flat area of about 50x50 km2. The main cover type is vineyards (65%), followed by fruit trees, shrubs, and pine forests, and a few number of small industrial and urban areas. Except for the vineyard growing season, the area remains mostly under bare soil conditions. In spite of its relatively flat topography, the small altitude variations of the region clearly influence climate. This oscillates between semiarid and dry-sub-humid. Annual mean temperatures are between 12 ºC and 14.5 ºC, and annual precipitation is about 400-450 mm. The duration of frost free periods is from May to November, with maximum precipitation in spring and autumn. The first part of this investigation consists in simulating soil moisture fields to be compared with level-2 and level-3 soil moisture maps generated from SMOS over the Valencia Anchor Station, as a continuation to the previous work carried out around SMOS launch and commissioning phase (Juglea et al., 2010). In situ measurements are also available as reference from a network of stations covering the reduced number of different vegetation cover and soil types. An L-band radiometer from ESA (European Space Agency), ELBARA-II, is installed in the area to monitor SMOS validation conditions over a vineyard crop. Different interpolation methods will be applied to all significant atmospheric forcing parameters from the two met stations available in the area (pressure, temperature, relative humidity and precipitation) in order to obtain a good representation of soil conditions to be compared to level-2 and -3 SMOS soil moisture products. The period of investigation covers the complete 2012 period and we will particularly focus on selected periods from September to November 2012 where there were extreme rain events in our study area.

  16. Landsat classification of surface-water presence during multiple years to assess response of playa wetlands to climatic variability across the Great Plains Landscape Conservation Cooperative region

    USGS Publications Warehouse

    Manier, Daniel J.; Rover, Jennifer R.

    2018-02-15

    To improve understanding of the distribution of ecologically important, ephemeral wetland habitats across the Great Plains, the occurrence and distribution of surface water in playa wetland complexes were documented for four different years across the Great Plains Landscape Conservation Cooperative (GPLCC) region. This information is important because it informs land and wildlife managers about the timing and location of habitat availability. Data with an accurate timestamp that indicate the presence of water, the percent of the area inundated with water, and the spatial distribution of playa wetlands with water are needed for a host of resource inventory, monitoring, and research applications. For example, the distribution of inundated wetlands forms the spatial pattern of available habitat for resident shorebirds and water birds, stop-over habitats for migratory birds, connectivity and clustering of wetland habitats, and surface waters that recharge the Ogallala aquifer; there is considerable variability in the distribution of playa wetlands holding water through time. Documentation of these spatially and temporally intricate processes, here, provides data required to assess connections between inundation and multiple environmental drivers, such as climate, land use, soil, and topography. Climate drivers are understood to interact with land cover, land use and soil attributes in determining the amount of water that flows overland into playa wetlands. Results indicated significant spatial variability represented by differences in the percent of playas inundated among States within the GPLCC. Further, analysis-of-variance comparison of differences in inundation between years showed significant differences in all cases. Although some connections with seasonal moisture patterns may be observed, the complex spatial-temporal gradients of precipitation, temperature, soils, and land use need to be combined as covariates in multivariate models to effectively account for these patterns. We demonstrate the feasibility of using classification of Landsat satellite imagery to describe playa-wetland inundation across years and seasons. Evaluating classifications representing only 4 years of imagery, we found significant year-to-year and state-to-state differences in inundation rates.

  17. An Evaluation of Soil Moisture Retrievals Using Aircraft and Satellite Passive Microwave Observations during SMEX02

    NASA Technical Reports Server (NTRS)

    Bolten, John D.; Lakshmi, Venkat

    2009-01-01

    The Soil Moisture Experiments conducted in Iowa in the summer of 2002 (SMEX02) had many remote sensing instruments that were used to study the spatial and temporal variability of soil moisture. The sensors used in this paper (a subset of the suite of sensors) are the AQUA satellite-based AMSR-E (Advanced Microwave Scanning Radiometer- Earth Observing System) and the aircraft-based PSR (Polarimetric Scanning Radiometer). The SMEX02 design focused on the collection of near simultaneous brightness temperature observations from each of these instruments and in situ soil moisture measurements at field- and domain- scale. This methodology provided a basis for a quantitative analysis of the soil moisture remote sensing potential of each instrument using in situ comparisons and retrieved soil moisture estimates through the application of a radiative transfer model. To this end, the two sensors are compared with respect to their estimation of soil moisture.

  18. Four decades of microwave satellite soil moisture observations: Part 2. Product validation and inter-satellite comparisons

    NASA Astrophysics Data System (ADS)

    Karthikeyan, L.; Pan, Ming; Wanders, Niko; Kumar, D. Nagesh; Wood, Eric F.

    2017-11-01

    Soil moisture is widely recognized as an important land surface variable that provides a deeper knowledge of land-atmosphere interactions and climate change. Space-borne passive and active microwave sensors have become valuable and essential sources of soil moisture observations at global scales. Over the past four decades, several active and passive microwave sensors have been deployed, along with the recent launch of two fully dedicated missions (SMOS and SMAP). Signifying the four decades of microwave remote sensing of soil moisture, this Part 2 of the two-part review series aims to present an overview of how our knowledge in this field has improved in terms of the design of sensors and their accuracy for retrieving soil moisture. The first part discusses the developments made in active and passive microwave soil moisture retrieval algorithms. We assess the evolution of the products of various sensors over the last four decades, in terms of daily coverage, temporal performance, and spatial performance, by comparing the products of eight passive sensors (SMMR, SSM/I, TMI, AMSR-E, WindSAT, AMSR2, SMOS and SMAP), two active sensors (ERS-Scatterometer, MetOp-ASCAT), and one active/passive merged soil moisture product (ESA-CCI combined product) with the International Soil Moisture Network (ISMN) in-situ stations and the Variable Infiltration Capacity (VIC) land surface model simulations over the Contiguous United States (CONUS). In the process, the regional impacts of vegetation conditions on the spatial and temporal performance of soil moisture products are investigated. We also carried out inter-satellite comparisons to study the roles of sensor design and algorithms on the retrieval accuracy. We find that substantial improvements have been made over recent years in this field in terms of daily coverage, retrieval accuracy, and temporal dynamics. We conclude that the microwave soil moisture products have significantly evolved in the last four decades and will continue to make key contributions to the progress of hydro-meteorological and climate sciences.

  19. The Utility of the Real-Time NASA Land Information System Data for Drought Monitoring Applications

    NASA Technical Reports Server (NTRS)

    White, Kristopher D.; Case, Jonathan L.

    2013-01-01

    Measurements of soil moisture are a crucial component for the proper monitoring of drought conditions. The large spatial variability of soil moisture complicates the problem. Unfortunately, in situ soil moisture observing networks typically consist of sparse point observations, and conventional numerical model analyses of soil moisture used to diagnose drought are of coarse spatial resolution. Decision support systems such as the U.S. Drought Monitor contain drought impact resolution on sub-county scales, which may not be supported by the existing soil moisture networks or analyses. The NASA Land Information System, which is run with 3 km grid spacing over the eastern United States, has demonstrated utility for monitoring soil moisture. Some of the more useful output fields from the Land Information System are volumetric soil moisture in the 0-10 cm and 40-100 cm layers, column-integrated relative soil moisture, and the real-time green vegetation fraction derived from MODIS (Moderate Resolution Imaging Spectroradiometer) swath data that are run within the Land Information System in place of the monthly climatological vegetation fraction. While these and other variables have primarily been used in local weather models and other operational forecasting applications at National Weather Service offices, the use of the Land Information System for drought monitoring has demonstrated utility for feedback to the Drought Monitor. Output from the Land Information System is currently being used at NWS Huntsville to assess soil moisture, and to provide input to the Drought Monitor. Since feedback to the Drought Monitor takes place on a weekly basis, weekly difference plots of column-integrated relative soil moisture are being produced by the NASA Short-term Prediction Research and Transition Center and analyzed to facilitate the process. In addition to the Drought Monitor, these data are used to assess drought conditions for monthly feedback to the Alabama Drought Monitoring and Impact Group and the Tennessee Drought Task Force, which are comprised of federal, state, and local agencies and other water resources professionals.

  20. Repeated electromagnetic induction measurements for mapping soil moisture at the field scale: validation with data from a wireless soil moisture monitoring network

    NASA Astrophysics Data System (ADS)

    Martini, Edoardo; Werban, Ulrike; Zacharias, Steffen; Pohle, Marco; Dietrich, Peter; Wollschläger, Ute

    2017-01-01

    Electromagnetic induction (EMI) measurements are widely used for soil mapping, as they allow fast and relatively low-cost surveys of soil apparent electrical conductivity (ECa). Although the use of non-invasive EMI for imaging spatial soil properties is very attractive, the dependence of ECa on several factors challenges any interpretation with respect to individual soil properties or states such as soil moisture (θ). The major aim of this study was to further investigate the potential of repeated EMI measurements to map θ, with particular focus on the temporal variability of the spatial patterns of ECa and θ. To this end, we compared repeated EMI measurements with high-resolution θ data from a wireless soil moisture and soil temperature monitoring network for an extensively managed hillslope area for which soil properties and θ dynamics are known. For the investigated site, (i) ECa showed small temporal variations whereas θ varied from very dry to almost saturation, (ii) temporal changes of the spatial pattern of ECa differed from those of the spatial pattern of θ, and (iii) the ECa-θ relationship varied with time. Results suggest that (i) depending upon site characteristics, stable soil properties can be the major control of ECa measured with EMI, and (ii) for soils with low clay content, the influence of θ on ECa may be confounded by changes of the electrical conductivity of the soil solution. Further, this study discusses the complex interplay between factors controlling ECa and θ, and the use of EMI-based ECa data with respect to hydrological applications.

Top