Sample records for mol wt range

  1. Kinetics and thermodynamic analysis in one-pot pyrolysis of rice hull using renewable calcium oxide based catalysts.

    PubMed

    Gan, Darren Kin Wai; Loy, Adrian Chun Minh; Chin, Bridgid Lai Fui; Yusup, Suzana; Unrean, Pornkamol; Rianawati, Elisabeth; Acda, Menandro N

    2018-06-06

    Thermodynamic and kinetic parameters of catalytic pyrolysis of rice hull (RH) pyrolysis using two different types of renewable catalysts namely natural limestone (LS) and eggshells (ES) using thermogravimetric analysis (TG) approach at different heating rates of 10-100 K min -1 in temperature range of 323-1173 K are investigated. Catalytic pyrolysis mechanism of both catalysts had shown significant effect on the degradation of RH. Model free kinetic of iso-conversional method (Flynn-Wall-Ozawa) and multi-step reaction model (Distributed Activation Energy Model) were employed into present study. The average activation energy was found in the range of 175.4-177.7 kJ mol -1 (RH), 123.3-132.5 kJ mol -1 (RH-LS), and 96.1-100.4 kJ mol -1 (RH-ES) respectively. The syngas composition had increased from 60.05 wt% to 63.1 wt% (RH-LS) and 63.4 wt% (RH-ES). However, the CO 2 content had decreased from 24.1 wt% (RH) to 20.8 wt% (RH-LS) and 19.9 wt% (RH-ES). Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Human thyrotropin receptor subunits characterized by thyrotropin affinity purification and western blotting.

    PubMed

    Leedman, P J; Newman, J D; Harrison, L C

    1989-07-01

    We studied the subunit structure of the human TSH receptor in thyroid tissue from patients with Graves' disease and multinodular goiter by TSH affinity chromatography, immunoprecipitation with Graves' immunoglobulins (Igs), and a modified technique of Western blotting. Human TSH receptor-binding activity was purified about 1,270-fold by sequential affinity chromatography on wheat germ lectin-agarose and TSH-agarose. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of nonreduced affinity-purified receptors eluted in sodium dodecyl sulfate sample buffer revealed three noncovalently linked subunits of 70,000, 50,000, and 35,000 mol wt. When reduced, a major subunit of 25,000 mol wt was identified. When 3 mol/L NaCl was used to elute affinity-purified receptors only the 50,000 mol wt nonreduced subunit was detected. This subunit bound [125I]bovine TSH and was precipitated by Graves' Igs. Modifications to the conventional Western blotting technique enabled thyroglobulin components (approximately 220,000 mol wt), thyroid microsomal antigen (a doublet of approximately 110,000 mol wt), and putative TSH receptor subunits of 70,000 and 50,000 mol wt to be identified in thyroid particulate membranes by Graves' Igs. Blotting of affinity-purified receptors eluted in sodium dodecyl sulfate sample buffer revealed subunits of either 70,000 or 50,000 mol wt, with a minority of Graves' serum samples. We conclude that the nonreduced human TSH receptor is an oligomeric complex comprising three different subunits of 70,000, 50,000, and 35,000 mol wt. The reduced receptor exists as a single subunit of 25,000 mol wt, which may be disulfide linked to form the higher mol wt forms. The 70,000 and 50,000 mol wt subunits contain epitopes that bind Graves' Igs in modified Western blots, thus directly confirming that the human TSH receptor is a target for Graves' Igs.

  3. Subunit composition and structure of subcomponent C1q of the first component of human complement.

    PubMed

    Reid, K B; Porter, R R

    1976-04-01

    1. Unreduced human subcomponent C1q was shown by electrophoresis on polyacrylamide gels run in the presence of sodium dodecyl sulphate to be composed of two types of non-covalently linked subunits of apparent mol.wts. 69 000 and 54 000. The ratio of the two subunits was markedly affected by the ionic strength of the applied sample. At a low ionic strength of applied sample, which gave the optimum value for the 54 000-apparent mol.wt. subunit, a ratio of 1.99:1.00 was obtained for the ratio of the 69 000-apparent mol.wt. subunit to the 5400-apparent-mol.wt. subunit. The amount of the 54 000-apparent-mol.wt. subunit detected in the expected position on the gel was found to be inversely proportional to increases in the ionic strength of the applled sample. 2. Human subcomponent C1q on reduction and alkylation, or oxidation, yields equimolar amounts of three chains designated A, B and C [Reid et al. (1972) Biochem. J. 130, 749-763]. The results obtained by Yonemasu & Stroud [(1972) Immunochemistry 9, 545-554], which showed that the 69 000-apparent-mol.wt. subunit was a disulphide-linked dimer of the A and B chains and that the 54 000-apparent-mol.wt. subunit was a disulphide-linked dimer of the C chain, were confirmed. 3. Gel filtration on Sephadex G-200 in 6.0M-guanidinium chloride showed that both types of unreduced subunit were eluted together as a single symmetrical peak of apparent mol.wt. 49 000-50 000 when globular proteins were used as markers. The molecular weights of the oxidized or reduced A, B and C chains have been shown previously to be very similar all being in the range 23 000-24 000 [Reid et al. (1972) Biochem. J. 130, 749-763; Reid (1974) Biochem. J. 141, 189-203]. 4. It is proposed that subcomponent C1q (mol.wt. 410000) is composed of nine non-covalently linked subunits, i.e. six A-B dimers and three C-C dimers. 5. A structure for subcomponent C1q is proposed and is based on the assumption that the collagen-like regions of 78 residues in each of the A, B and C chains are combined to form a triple-helical structure of the same type as is found in collagens.

  4. Growth hormone aggregates in the rat adenohypophysis

    NASA Technical Reports Server (NTRS)

    Farrington, M.; Hymer, W. C.

    1990-01-01

    Although it has been known for some time that GH aggregates are contained within the rat anterior pituitary gland, the role that they might play in pituitary function is unknown. The present study examines this issue using the technique of Western blotting, which permitted visualization of 11 GH variants with apparent mol wt ranging from 14-88K. Electroelution of the higher mol wt variants from gels followed by their chemical reduction with beta-mercaptoethanol increased GH immunoassayability by about 5-fold. With the blot procedure we found 1) that GH aggregates greater than 44K were associated with a 40,000 x g sedimentable fraction; 2) that GH aggregates were not present in glands from thyroidectomized rats, but were in glands from the thyroidectomized rats injected with T4; 3) that GH aggregates were uniquely associated with a heavily granulated somatotroph subpopulation isolated by density gradient centrifugation; and 4) that high mol wt GH forms were released from the dense somatotrophs in culture, since treatment of the culture medium with beta-mercaptoethanol increased GH immunoassayability by about 5-fold. Taken together, the results show that high mol wt GH aggregates are contained in secretory granules of certain somatotrophs and are also released in aggregate form from these cells in vitro.

  5. Synthesis of structured triacylglycerols containing caproic acid by lipase-catalyzed acidolysis: optimization by response surface methodology.

    PubMed

    Zhou, D; Xu, X; Mu, H; Høy, C E; Adler-Nissen, J

    2001-12-01

    Production in a batch reactor with a solvent-free system of structured triacylglycerols containing short-chain fatty acids by Lipozyme RM IM-catalyzed acidolysis between rapeseed oil and caproic acid was optimized using response surface methodology (RSM). Reaction time (t(r)), substrate ratio (S(r)), enzyme load (E(l), based on substrate), water content (W(c), based on enzyme), and reaction temperature (T(e)), the five most important parameters for the reaction, were chosen for the optimization. The range of each parameter was selected as follows: t(r) = 5-17 h; E(l) = 6-14 wt %; T(e) = 45-65 degrees C; S(r) = 2-6 mol/mol; and W(c) = 2-12 wt %. The biocatalyst was Lipozyme RM IM, in which Rhizomucor miehei lipase is immobilized on a resin. The incorporation of caproic acid into rapeseed oil was the main monitoring response. In addition, the contents of mono-incorporated structured triacylglycerols and di-incorporated structured triacylglycerols were also evaluated. The optimal reaction conditions for the incorporation of caproic acid and the content of di-incorporated structured triacylglycerols were as follows: t(r) = 17 h; S(r) = 5; E(l) = 14 wt %; W(c) = 10 wt %; T(e) = 65 degrees C. At these conditions, products with 55 mol % incorporation of caproic acid and 55 mol % di-incorporated structured triacylglycerols were obtained.

  6. A 300,000-mol-wt intermediate filament-associated protein in baby hamster kidney (BHK-21) cells.

    PubMed

    Yang, H Y; Lieska, N; Goldman, A E; Goldman, R D

    1985-02-01

    Native intermediate filament (IF) preparations from the baby hamster kidney fibroblastic cell line (BHK-21) contain a number of minor polypeptides in addition to the IF structural subunit proteins desmin, a 54,000-mol-wt protein, and vimentin, a 55,000-mol-wt protein. A monoclonal antibody was produced that reached exclusively with a high molecular weight (300,000) protein representative of these minor proteins. Immunological methods and comparative peptide mapping techniques demonstrated that the 300,000-mol-wt species was biochemically distinct from the 54,000- and 55,000-mol-wt proteins. Double-label immunofluorescence observations on spread BHK cells using this monoclonal antibody and a rabbit polyclonal antibody directed against the 54,000- and 55,000-mol-wt proteins showed that the 300,000-mol-wt species co-distributed with IF in a fibrous pattern. In cells treated with colchicine or those in the early stages of spreading, double-labeling with these antibodies revealed the co-existence of the respective antigens in the juxtanuclear cap of IF that is characteristic of cells in these physiological states. After colchicine removal, or in the late stages of cell spreading, the 300,00-mol-wt species and the IF subunits redistributed to their normal, highly coincident cytoplasmic patterns. Ultrastructural localization by the immunogold technique using the monoclonal antibody supported the light microscopic findings in that the 300,000-mol-wt species was associated with IF in the several physiological and morphological cell states investigated. The gold particle pattern was less intimately associated with IF than that defined by anti-54/55 and was one of non-uniform distribution along IF, being clustered primarily at points of proximity between IF, where an amorphous, proteinaceous material was often the labeled element. Occasionally, "bridges" of label were seen extending outward from such clusters on IF. Gold particles were infrequently bound to microtubules, microfilaments, or other cellular organelles, and when so, IF were usually contiguous. During multiple cycles of in vitro disassembly/assembly of the IF from native preparations, the 300,000-mol-wt protein remained in the fraction containing the 54,000- and 55,000-mol-wt structural subunits, whether the latter were in the soluble state or pelleted as formed filaments. In keeping with the nomenclature developed for the microtubule-associated proteins (MAPs), the acronym IFAP-300K (intermediate filament associated protein) is proposed for this molecule.

  7. Contamination Effects on Improving the Hydrogenation/Dehydrogenation Kinetics of Binary Magnesium Hydride/Titanium Carbide Systems Prepared by Reactive Ball Milling

    PubMed Central

    El-Eskandarany, M. Sherif; Shaban, Ehab

    2015-01-01

    Ultrafine MgH2 nanocrystalline powders were prepared by reactive ball milling of elemental Mg powders after 200 h of high-energy ball milling under a hydrogen gas pressure of 50 bar. The as-prepared metal hydride powders were contaminated with 2.2 wt. % of FeCr-stainless steel that was introduced to the powders upon using stainless steel milling tools made of the same alloy. The as-synthesized MgH2 was doped with previously prepared TiC nanopowders, which were contaminated with 2.4 wt. % FeCr (materials of the milling media), and then ball milled under hydrogen gas atmosphere for 50 h. The results related to the morphological examinations of the fabricated nanocomposite powders beyond the micro-and nano-levels showed excellent distributions of 5.2 wt. % TiC/4.6 wt. % FeCr dispersoids embedded into the fine host matrix of MgH2 powders. The as-fabricated nanocomposite MgH2/5.2 wt. % TiC/4.6 wt. % FeCr powders possessed superior hydrogenation/dehydrogenation characteristics, suggested by the low value of the activation energy (97.74 kJ/mol), and the short time required for achieving a complete absorption (6.6 min) and desorption (8.4 min) of 5.51 wt. % H2 at a moderate temperature of 275 °C under a hydrogen gas pressure ranging from 100 mbar to 8 bar. van’t Hoff approach was used to calculate the enthalpy (∆H) and entropy (∆S) of hydrogenation for MgH2, which was found to be −72.74 kJ/mol and 112.79 J/mol H2/K, respectively. Moreover, van’t Hoff method was employed to calculate the ΔH and ΔS of dehydrogenation, which was found to be 76.76 kJ/mol and 119.15 J/mol H2/K, respectively. This new nanocomposite system possessed excellent absorption/desorption cyclability of 696 complete cycles, achieved in a cyclic-life-time of 682 h. PMID:28793606

  8. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  9. Actin filaments in the acrosomal reaction of Limulus sperm. Motion generated by alterations in the packing of the filaments.

    PubMed

    Tilney, L G

    1975-02-01

    When Limulus sperm are induced to undergo the acrosomal reaction, a process, 50 mum in length, is generated in a few seconds. This process rotates as it elongates; thus the acrosomal process literally screws through the jelly of the egg. Within the process is a bundle of filaments which before induction are coiled up inside the sperm. The filament bundle exists in three stable states in the sperm. One of the states can be isolated in pure form. It is composed of only three proteins whose molecular weights (mol wt) are 43,000, 55,000, and 95,000. The 43,000 mol wt protein is actin, based on its molecular weight, net charge, morphology, G-F transformation, and heavy meromyosin (HMM) binding. The 55,000 mol wt protein is in equimolar ratio to actin and is not tubulin, binds tenaciously to actin, and inhibits HMM binding. Evidence is presented that both the 55,000 mol wt protein and the 95,000 mol wt protein (possibly alpha-actinin) are also present in Limulus muscle. Presumably these proteins function in the sperm in holding the actin filaments together. Before the acrosomal reaction, the actin filaments are twisted over one another in a supercoil; when the reaction is completed, the filaments lie parallel to each other and form an actin paracrystal. This change in their packing appears to give rise to the motion of the acrosomal process and is under the control of the 55,000 mol wt protein and the 95,000 mol wt protein.

  10. Siderophile trace element diffusion in Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Watson, Heather C.; Watson, E. Bruce

    2003-09-01

    Experiments were performed in a piston cylinder apparatus to characterize the diffusion behavior of the siderophile elements, Mo, Cu, Pd, Au, and Re in solid Fe-Ni alloy (90 wt.% Fe, 10 wt.% Ni). All experiments were conducted at 1 GPa and temperatures ranging from 1175 to 1400 °C. Activation energies of all elements fall between 270 kJ/mol (Cu) and 360 kJ/mol (Mo). Mo, Cu, Pd, and Au all show similar diffusivities at the same conditions, but the diffusivity of Re was consistently close to an order of magnitude lower. Initial experiments on other refractory elements (Os, Pt, and Ir) indicate that their diffusivities are close to or slightly lower than that of Re.

  11. High-pressure carbon dioxide/water pre-treatment of sugarcane bagasse and elephant grass: Assessment of the effect of biomass composition on process efficiency.

    PubMed

    Toscan, Andréia; Morais, Ana Rita C; Paixão, Susana M; Alves, Luís; Andreaus, Jürgen; Camassola, Marli; Dillon, Aldo José Pinheiro; Lukasik, Rafal M

    2017-01-01

    The performance of two lignocellulosic biomasses was studied in high-pressure carbon dioxide/water pre-treatment. Sugarcane bagasse and elephant grass were used to produce C 5 -sugars from hemicellulose and, simultaneously, to promote cellulose digestibility for enzymatic saccharification. Different pre-treatment conditions, with combined severity factor ranging from -1.17 to -0.04, were evaluated and maximal total xylan to xylose yields of 59.2wt.% (34.4wt.% xylooligomers) and 46.4wt.% (34.9wt.% xylooligomers) were attained for sugarcane bagasse and elephant grass, respectively. Furthermore, pre-treated biomasses were highly digestible, with glucan to glucose yields of 77.2mol% and 72.4mol% for sugarcane bagasse and elephant grass, respectively. High-pressure carbon dioxide/water pre-treatment provides high total C 5 -sugars and glucose recovery from both lignocellulosic biomasses; however it is highly influenced by composition and intrinsic features of each biomass. The obtained results confirm this approach as an effective and greener alternative to conventional pre-treatment processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Preparation of a Ni-MgO-Al2O3 catalyst with high activity and resistance to potassium poisoning during direct internal reforming of methane in molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Jang, Won-Jun; Jung, You-Shick; Shim, Jae-Oh; Roh, Hyun-Seog; Yoon, Wang Lai

    2018-02-01

    Steam reforming of methane (SRM) is conducted using a series of Ni-MgO-Al2O3 catalysts for direct internal reforming (DIR) in molten carbonate fuel cells (MCFCs). Ni-MgO-Al2O3 catalysts are prepared by the homogeneous precipitation method with a variety of MgO loading amounts ranging from 3 to 15 wt%. In addition, each precursor concentrations are systemically changed (Ni: 1.2-4.8 mol L-1; Mg: 0.3-1.2 mol L-1; Al: 0.4-1.6 mol L-1) at the optimized composition (10 wt% MgO). The effects of MgO loading and precursor concentration on the catalytic performance and resistance against poisoning of the catalyst by potassium (K) are investigated. The Ni-MgO-Al2O3 catalyst with 10 wt% MgO and the original precursor concentration (Ni: 1.2 mol L-1; Mg: 0.3 mol L-1; Al: 0.4 mol L-1) exhibits the highest CH4 conversion and resistance against K poisoning even at the extremely high gas space velocity (GHSV) of 1,512,000 h-1. Excellent SRM performance of the Ni-MgO-Al2O3 catalyst is attributed to strong metal (Ni) to alumina support interaction (SMSI) when magnesium oxide (MgO) is co-precipitated with the Ni-Al2O3. The enhanced interaction of the Ni with MgO-Al2O3 support is found to protect the active Ni species against K poisoning.

  13. Stress-State Effects on Strength and Fracture of Partially-Stabilized Zirconia

    DTIC Science & Technology

    1994-03-01

    Ceramics and Test Procedures (1) Ce-TZP/AI 2 0 3 Ceramics A Ce-TZP/A120 3 powder of the nominal composition, 88 wt % of Ce-TZP (12 mol % CeO2 and 88...mol % ZrO2) and 10 wt % A120 3 and 2 wt % of proprietary dopants was obtained from a commercial source#. Billets of the Ce-TZP/A120 3 were prepared by...34Metastability of the Martensitic Transformation in a 12 mol % Ceria-Zirconia Alloy : 1, Deformation and Fracture Observations," J. Am. Ceram. Soc

  14. Organic matter compositions and loadings in soils and sediments along the Fly River, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Moore, Eric; Kurtz, Andrew; Portier, Evan; Alleau, Yvan; Merrell, David

    2014-09-01

    The compositions and loadings of organic matter in soils and sediments from a diverse range of environments along the Fly River system were determined to investigate carbon transport and sequestration in this region. Soil horizons from highland sites representative of upland sources have organic carbon contents (%OC) that range from 0.3 to 25 wt%, carbon:nitrogen ratios (OC/N) that range from 7 to 25 mol/mol, highly negative stable carbon isotopic compositions (δ13Corg < -26‰) and variable concentrations of lignin phenols (1 < LP < 5 mg/100 mg OC). These compositions reflect inputs from local vegetation, with contributions from bedrock carbon in the deeper mineral horizons. Soils developed on the levees of active floodplains receive inputs of allochthonous materials by overbank deposition as well as autochthonous inputs from local vegetation. In the forested upper floodplain reaches, %OC contents are lower than upland soils (0.8-1.5 wt%) as are OC/N ratios (9-15 mol/mol) while δ13Corg (-25 to -28‰) and LP (2-6 mg/100 mg OC) values are comparable to upland soils. These results indicate that organic matter present in these active floodplain soils reflect local (primarily C3) vegetation inputs mixed with allochthonous organic matter derived from eroded bedrock. In the lower reaches of the floodplain, which are dominated by swamp grass vegetation, isotopic compositions were less negative (δ13Corg > -25‰) and non-woody vegetation biomarkers (cinnamyl phenols and cutin acids) more abundant relative to upper floodplain sites. Soils developed on relict Pleistocene floodplain terraces, which are typically not flooded and receive little sediment from the river, were characterized by low %OC contents (<0.6 wt%), low OC/N ratios (<9 mol/mol), more positive δ13Corg signatures (>-21‰) and low LP concentrations (∼3 mg/100 mg OC). These relict floodplain soils contain modern carbon that reflects primarily local (C3 or C4) vegetation sources. Total suspended solids collected along the river varied widely in overall concentrations (1 < TSS < 9000 mg/L), %OC contents (0.1-60 wt%), OC/N ratios (7-17 mol/mol) and δ13Corg signatures (-26 to -32‰). These compositions reflect a mixture of C3 vascular plants and freshwater algae. However, little of this algal production appears to be preserved in floodplain soils. A comparison of organic carbon loadings of active floodplain soils (0.2 and 0.5 mg C/m2) with previous studies of actively depositing sediments in the adjacent delta-clinoform system (0.4-0.7 mg C/m2) indicates that Fly River floodplain sediments are less effective at sequestering organic carbon than deltaic sediments. Furthermore, relict Pleistocene floodplain sites with low or negligible modern sediment accumulation rates display significantly lower loadings (0.1-0.2 mg C/m2). This deficit in organic carbon likely reflects mineralization of sedimentary organic carbon during long term oxidative weathering, further reducing floodplain carbon storage.

  15. Synthesis and Characterization of Solution and Melt Processible Poly(Acrylonitrile-Co-Methyl Acrylate) Statistical Copolymers

    NASA Astrophysics Data System (ADS)

    Pisipati, Padmapriya

    Polyacrylonitrile (PAN) and its copolymers are used in a wide variety of applications ranging from textiles to purification membranes, packaging material and carbon fiber precursors. High performance polyacrylonitrile copolymer fiber is the most dominant precursor for carbon fibers. Synthesis of very high molecular weight poly(acrylonitrile-co-methyl acrylate) copolymers with weight average molecular weights of at least 1.7 million g/mole were synthesized on a laboratory scale using low temperature, emulsion copolymerization in a closed pressure reactor. Single filaments were spun via hybrid dry-jet gel solution spinning. These very high molecular weight copolymers produced precursor fibers with tensile strengths averaging 954 MPa with an elastic modulus of 15.9 GPa (N = 296). The small filament diameters were approximately 5 im. Results indicated that the low filament diameter that was achieved with a high draw ratio, combined with the hybrid dry-jet gel spinning process lead to an exponential enhancement of the tensile properties of these fibers. Carbon fibers for polymer matrix composites are currently derived from polyacrylonitrile copolymer fiber precursors where solution spinning accounts for ˜40 % of the total fiber production cost. To expand carbon fiber applications into the automotive industry, the cost of the carbon fiber needs to be reduced from 8 to ˜3-5. In order to develop an alternative melt processing route several benign plasticizers have been investigated. A low temperature, persulfate-metabisulfite initiated emulsion copolymerization was developed to synthesize poly(acrylonitrile-co-methyl acrylate) copolymers with acrylonitrile contents between 91-96 wt% with a molecular weight range of 100-200 kg/mol. This method was designed for a potential industrial scale up. Furthermore, water was investigated as a potential melting point depressant for these copolymers. Twenty-five wt% water lead to a decrease in the Tm of a 93/7 wt/wt % poly(acrylonitrile-co-methyl acrylate) of Mw = 200 kg/mol to 160 0C as measured via DSC. Glycerin, ethylene glycol and glycerin/water combinations were investigated as potential plasticizers for high molecular weight (˜200,000 g/mol), high acrylonitrile (93-96 mole:mole %) content poly(acrylonitrile-co-methyl acrylate) statistical copolymers. Pure glycerin (25 wt %) induced crystallization followed by a reduced "Tm" of about 213 0C via DSC. However this composition did not melt process well. A lower M W (˜35 kg/mol) copolymer did extrude with no apparent degradation. Our hypothesis is that the hydroxyl groups in glycerin (or water) disrupt the strong dipole-dipole interactions between the chains enabling the copolymer endothermic transition (Tm) to be reduced and enable melting before the onset of degradation. Additionally high molecular weight (Mw = 200-230 kg/mol) poly(acrylonitrile-co-methyl acrylate) copolymers with lower acrylonitrile content (82-85 wt %) were synthesized via emulsion copolymerization and successfully melt pressed. These materials will be further investigated for their utility in packaging applications.

  16. Abnormal factor VIII coagulant antigen in patients with renal dysfunction and in those with disseminated intravascular coagulation.

    PubMed Central

    Weinstein, M J; Chute, L E; Schmitt, G W; Hamburger, R H; Bauer, K A; Troll, J H; Janson, P; Deykin, D

    1985-01-01

    Factor VIII antigen (VIII:CAg) exhibits molecular weight heterogeneity in normal plasma. We have compared the relative quantities of VIII:CAg forms present in normal individuals (n = 22) with VIII:CAg forms in renal dysfunction patients (n = 19) and in patients with disseminated intravascular coagulation (DIC; n = 7). In normal plasma, the predominant VIII: CAg form, detectable by sodium dodecyl sulfate polyacrylamide gel electrophoresis, was of molecular weight 2.4 X 10(5), with minor forms ranging from 8 X 10(4) to 2.6 X 10(5) D. A high proportion of VIII:CAg in renal dysfunction patients, in contrast, was of 1 X 10(5) mol wt. The patients' high 1 X 10(5) mol wt VIII: CAg level correlated with increased concentrations of serum creatinine, F1+2 (a polypeptide released upon prothrombin activation), and with von Willebrand factor. Despite the high proportion of the 1 X 10(5) mol wt VIII:CAg form, which suggests VIII:CAg proteolysis, the ratio of Factor VIII coagulant activity to total VIII:CAg concentration was normal in renal dysfunction patients. These results could be simulated in vitro by thrombin treatment of normal plasma, which yielded similar VIII:CAg gel patterns and Factor VIII coagulant activity to antigen ratios. DIC patients with high F1+2 levels but no evidence of renal dysfunction had an VIII:CAg gel pattern distinct from renal dysfunction patients. DIC patients had elevated concentrations of both the 1 X 10(5) and 8 X 10(4) mol wt VIII:CAg forms. We conclude that an increase in a particular VIII:CAg form correlates with the severity of renal dysfunction. The antigen abnormality may be the result of VIII:CAg proteolysis by a thrombinlike enzyme and/or prolonged retention of proteolyzed VIII:CAg fragments. Images PMID:3932466

  17. Molecular weights and metabolism of rat brain proteins

    PubMed Central

    Vrba, R.; Cannon, Wendy

    1970-01-01

    1. Rats were injected with [U-14C]glucose and after various intervals extracts of whole brain proteins (and in some cases proteins from liver, blood and heart) were prepared by high-speed centrifugation of homogenates in 0.9% sodium chloride or 0.5% sodium deoxycholate. 2. The extracts were subjected to gel filtration on columns of Sephadex G-200 equilibrated with 0.9% sodium chloride or 0.5% sodium deoxycholate. 3. Extracts prepared with both solvents displayed on gel filtration a continuous range of proteins of approximate molecular weights ranging from less than 2×104 to more than 8×105. 4. The relative amount of the large proteins (mol.wt.>8×105) was conspicuously higher in brain and liver than in blood. 5. At 15min after the injection of [U-14C]glucose the smaller protein molecules (mol.wt.<2×104) were significantly radioactive, whereas no 14C could be detected in the larger (mol.wt.>2×104) protein molecules. The labelling of all protein samples was similar within 4h after injection of [U-14C]glucose. Fractionation of brain proteins into distinctly different groups by the methods used in the present work yielded protein samples with a specific radioactivity comparable with that of total brain protein. 6. No evidence could be obtained by the methods used in the present and previous work to indicate the presence of a significant amount of `metabolically inert protein' in the brain. 7. It is concluded that: (a) most or all of the brain proteins are in a dynamic state of equilibrium between continuous catabolism and anabolism; (b) the continuous conversion of glucose into protein is an important part of the maintenance of this equilibrium and of the homoeostasis of brain proteins in vivo. PMID:5435499

  18. Determination of the molecular weight of human gamma-3 chains by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate

    PubMed Central

    Virella, G.; Parkhouse, R. M. E.

    1972-01-01

    The molecular weights (mol. wt) for heavy chains of human IgG were estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. Polyclonal IgG and monoclonal IgG proteins of different subclasses were extensively reduced with 50 mM dithioerythritol, in the presence of 2 per cent sodium dodecyl sulphate, at 100°. Four control proteins of known mol. wt (cytochrome C, chymotrypsinogen A, egg albumin, and serum albumin) were used to construct a linear plot of electrophoretic mobility versus log mol. wt. From this plot, the following mol. wts were calculated: 53,650±700 for polyclonal IgG; 54,200±1065 for γ1, γ2, and γ4 chains, and 60,950±585 for γ3 chains. Those results confirm the larger size of γ3 chains reported by Saluk and Clem (1971). PMID:4346255

  19. Thermodynamic properties of Na2O-SiO2-CaO melts at 1000 to 1100 °C

    NASA Astrophysics Data System (ADS)

    Neudorf, D. A.; Elliott, J. F.

    1980-12-01

    The thermodynamic properties of Na2O-SiO2 and Na2O-SiO2-CaO melts have been measured using the galvanic cellbegin{array}{*{20}c} {O_2 (g), (Na_2 O), Pt} \\ {Na_2 O - WO_3 liq} \\ left| begin{gathered} Na^ + \\ β - alumina \\ right| begin{array}{*{20}c} {Pt,(Na_2 O), O_2 (g)} \\ {Na_2 O - SiO_2 - CaO liq} \\ Activities of Na2O were calculated from the reversible emf of the cell. This is possible because the activity of Na2O in the Na2O-WO3 liquid is known from previous work. Data for the binary Na2O-SiO2 system were obtained between 1000 and 1100 °C and for compositions ranging from 25 wt pct to 40 wt pct Na2O. At 1050 °C, Loga_{Na_2 O} varied from approximately 10.2 at 25 wt pct Na2O to approximately -8.3 at 40 wt pct Na2O, the dependence with respect to composition being nearly linear. The Gibbs-Duhem equation was used to calculate the activities of SiO2(s), and the integral mixing properties, G M, HM, and S M, were derived. At the di-silicate composition, G M = -83 kJ/mol, H M = -41 kJ mol and S M = 33 J/mol K at 1000 °C. (Standard states are pure, liquid Na2O and pure, solid tridymite.) The activity data are interpreted in terms of the polymeric nature of silicate melts. Activities of Na2O in the Na2O-CaO-SiO2 system were measured for the 25, 30 and 35 wt pct Na2O binary compositions with up to 10 wt pct CaO added. The addition of CaO caused an increase in the activity of Na2O at constantN_{Na_2 O} /N_{SiO_2 } . The experimental data agree well with the behavior predicted by Richardson’s ternary mixing model.

  20. Preliminary Determination of the Temperature Dependence of Siderophile Element Diffusion in Iron Meteorites at 1GPa

    NASA Astrophysics Data System (ADS)

    Watson, H. C.; Watson, B.

    2002-05-01

    Preliminary results for diffusion of siderophile elements (Cu, Pd, Re, Os, and Mo) in an iron meteorite analog were obtained at temperatures ranging from 1175° C to 1400° C and 1GPa from diffusion couple experiments in a piston-cylinder apparatus. Alloys were prepared by synthesizing mixtures of pure metal powders. The alloys were made from a 90 wt% Fe and 10 wt% Ni base mixture, and approximately 1wt% of the various siderophile elements was added (individually) to the same base mixture to make the doped alloys. The powders were packed in pre-drilled holes ( ~1 mm diameter by 8 mm deep) in MgO cylinders, and run in a piston cylinder apparatus at 1400° C and 1GPa for 48 hours. The resulting homogeneous alloys were then sectioned into wafers approximately 1mm thick, and the faces were polished to prepare for the diffusion experiments. A diffusion couple experiment was conducted by mating a pure alloy wafer and a doped wafer, and placing the couple into an MgO capsule for pressurization and heating in the piston cylinder. The duration of the diffusion experiments ranged from 12 hours to 100 hours. Upon run completion, the diffusion couples were extracted, sectioned lengthwise, and polished for analysis. Diffusion profiles were measured using standard electron microprobe techniques. Preliminary Arrhenius relations have been found as follows: DMo=2.12E-1+/-0.20 m2/s exp(390.86+/-40.46 kJ/mol/RT) DCu=1.37E-3+/-1.25E-3 m2/s exp(315.24+/-31.64 kJ/mol/RT) DPd=2.40E-5+/-2.40E-5 m2/s exp(269.64+/-87.49 kJ/mol/RT) Diffusion coefficients have also been found for Re and Os at 1325° C. They are: DRe=7.89E-15+/-6.70 m2/s and DOs=9.69E-15+/-8.24 m2/s

  1. Shearing stability of lubricants

    NASA Technical Reports Server (NTRS)

    Shiba, Y.; Gijyutsu, G.

    1984-01-01

    Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.

  2. The high temperature creep deformation of Si3N4-6Y2O3-2Al2O3

    NASA Technical Reports Server (NTRS)

    Todd, J. A.; Xu, Zhi-Yue

    1988-01-01

    The creep properties of silicon nitride containing 6 wt percent yttria and 2 wt percent alumina have been determined in the temperature range 1573 to 1673 K. The stress exponent, n, in the equation epsilon dot varies as sigma sup n, was determined to be 2.00 + or - 0.15 and the true activation energy was found to be 692 + or - 25 kJ/mol. Transmission electron microscopy studies showed that deformation occurred in the grain boundary glassy phase accompanied by microcrack formation and cavitation. The steady state creep results are consistent with a diffusion controlled creep mechanism involving nitrogen diffusion through the grain boundary glassy phase.

  3. Properties of the iron--sulphur proteins of the benzene dioxygenase system from Pseudomonas putida.

    PubMed Central

    Crutcher, S E; Geary, P J

    1979-01-01

    A purification procedure was developed to stabilize the iron-sulphur proteins of the benzene dioxygenase system from Pseudomonas putida. The intermediate electron-carrying protein has a mol. wt. of 12300 and possesses one (2Fe--2S) cluster, whereas the terminal dioxygenase has a mol.wt. of 215300 and possesses two (2Fe--2S) clusters. The order and stoicheiometry of electron transfer and of the whole system are described. Images Fig. 2. PMID:435241

  4. An Umeclidinium membrane sensor; Two-step optimization strategy for improved responses.

    PubMed

    Yehia, Ali M; Monir, Hany H

    2017-09-01

    In the scientific context of membrane sensors and improved experimentation, we devised an experimentally designed protocol for sensor optimization. Two-step strategy was implemented for Umeclidinium bromide (UMEC) analysis which is a novel quinuclidine-based muscarinic antagonist used for maintenance treatment of symptoms accompanied with chronic obstructive pulmonary disease. In the first place, membrane components were screened for ideal ion exchanger, ionophore and plasticizer using three categorical factors at three levels in Taguchi design. Secondly, experimentally designed optimization was followed in order to tune the sensor up for finest responses. Twelve experiments were randomly carried out in a continuous factor design. Nernstian response, detection limit and selectivity were assigned as responses in these designs. The optimized membrane sensor contained tetrakis-[3,5-bis(trifluoro- methyl)phenyl] borate (0.44wt%) and calix[6]arene (0.43wt%) in 50.00% PVC plasticized with 49.13wt% 2-ni-tro-phenyl octylether. This sensor, along with an optimum concentration of inner filling solution (2×10 -4 molL -1 UMEC) and 2h of soaking time, attained the design objectives. Nernstian response approached 59.7mV/decade and detection limit decreased by about two order of magnitude (8×10 -8 mol L -1 ) through this optimization protocol. The proposed sensor was validated for UMEC determination in its linear range (3.16×10 -7 -1×10 -3 mol L -1 ) and challenged for selective discrimination of other congeners and inorganic cations. Results of INCRUSE ELLIPTA ® inhalation powder analyses obtained from the proposed sensor and manufacturer's UPLC were statistically compared. Moreover the proposed sensor was successfully used for the determination of UMEC in plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Characterization of mouse natural killer cell activating factor (NKAF) induced by OK-432: evidence for interferon- and interleukin 2-independent NK cell activation.

    PubMed Central

    Ichimura, O.; Suzuki, S.; Sugawara, Y.; Osawa, T.

    1984-01-01

    The bacterial immunopotentiator OK-432 induced natural killer cell activating factor (NKAF) from mouse spleen cells. OK-432-induced NKAF showed a single peak with an apparent mol. wt of 70 Kd by Sephadex G-100 chromatography and OK-432-induced interleukin 2 (IL-2) had the same mol. wt as NKAF. However, OK-432-induced interferon (IFN) showed molecular heterogeneity with two peaks at 90 Kd and 45 Kd. Further purification was achieved by Blue Sepharose affinity chromatography which copurified NKAF and IFN. The affinity-purified NKAF, however, was stable to heat (56 degrees C) and acid (pH 2) treatments. Moreover, anti-IFN failed to abolish NKAF activity and this activity was not absorbed by IL-2 dependent T cells. From isoelectric focusing analysis, a dissociation of NKAF and IFN was observed over the range of pI 6.5 to 8.0. Based on these results, KNAF appears to be a new kind of cytokine distinguishable from IFN and IL-2. PMID:6204667

  6. [Cross-reactions between the antigens of healthy pulmonary tissue and Moraxella catarrhalis].

    PubMed

    Markina, O A; Iastrebova, N E; Vaneeva, N P; Liashova, V N; Ovechko, N N

    2004-01-01

    The study of cross-reactions between healthy pulmonary tissue antigens and Moraxella catarrhalis with the use of SDS-electrophoresis and immunoblotting revealed that in the component of healthy pulmonary tissue with a mol. wt. of 40 kD epitopes existed to which antibodies were produced, capable of cross reaction with the components of M. catarrhalis with a mol. wt. of 35 kD and 70 kD. In addition, the presence of cross-reactions between cytokeratin-8, protein contained in healthy pulmonary tissue, and M. catarrhalis antigens was established.

  7. Si-F complexing in aqueous fluids: experimental study and implications for transport of immobile elements

    NASA Astrophysics Data System (ADS)

    Dolejš, David

    2014-05-01

    Intepretation of fluid-mineral interaction mechanisms and hydrothermal fluxes requires knowledge of predominant solubility and speciation reactions and their thermodynamic properties. Fluorine represents a hard electron donor, capable of complexing and transporting high-field strength elements, which are traditionally considered to be immobile. Reactions responsible for element mobility have general form MOx + y HF (aq) + x - y H2O = M(OH)2x-yFy (aq), and their extent and transport efficiency relies on hydrogen fluoride activity. In natural fluids, a[HF] is controlled by various fluorination equilibria including neutralization of silicates with consequent formation of silicohydroxyfluoride complexes. Quartz solubility in HF-H2O fluids was experimentally determined at 400-800 oC and 100-200 MPa using rapid-quench cold-seal pressure vessels and the mineral weight-loss method. Quartz solubility significantly increases in the presence of hydrogen fluoride: at 400 oC and 100 MPa, dissolved SiO2 ranges from 0.18 wt. % in pure H2O to 12.2 wt. % at 8.3 wt. % F in the fluid, whereas at 800 oC and 200 MPa it rises from 1.51 wt. % in pure H2O to 15.3 wt. % at 8.0 wt. % F in the fluid. The isobaric solubilities of quartz appear to be temperature-independent, i.e., effects of temperature vs. fluid density on the solubility are counteracting. The experimental data are described by the density model: log m[SiO2] = a + blog ρ + clog m[F] + dT , where a = -1.049 mol kg-1, b = 0.816 mol cm-3, c = 0.802 and d = 1.256 · 10-3 mol kg-1 K-1. Solubility isotherms have similar d(log m[SiO2])/d(log m[F]) slopes over the entire range of conditions indicating that Si(OH)2F2 is the major aqueous species. Several factors promote breakdown of silicohydroxyfluoride complexes and precipitation of silica solute: (i) decreasing temperature and pressure, i.e., fluid ascent and cooling and/or (ii) neutralization and increase in the alkali/H ratio of fluids during alteration reactions or removal of hydrogen halides by fluid boiling. Thermodynamic analysis of mineral equilibria in the system SiO2-Al2O3-FeO-MgO-CaO-Na2O-K2O-H2O-F2O-1 indicates that cryolite, topaz, fluorite and sellaite represent fluoride buffers with decreasing chemical potential of F2O-1 or a[HF], in a sequence from peralkaline to peraluminous silicic, intermediate to progressively Ca-rich mafic and, finally, ultramafic environments. Corresponding a[HF] decrease from 100.2 to 10-1 and from 10-1.6 to 10-3.0 mol kg-1 at 800 and 400 oC, respectively, and 100 MPa. These results imply that: (i) silicohydroxyfluoride and aluminumhydroxyfluoride complexes transport Si and Al in quantities appreciably greater than SiO2 (aq) and aluminate species in peraluminous granite and greisen environments only, and (ii) significant transport (10-100 ppm) of high-field strength (e.g., Ti, Zr) and rare earth elements in aqueous fluids is predicted when formation constants of metal-fluoride complexes exceed 101-2 under hydrothermal conditions. This study concludes that in fluorine-bearing environments the transport of Si and Al remains little affected, but HFSE and REE are largely mobile.

  8. Two distinct forms of Factor VIII coagulant protein in human plasma. Cleavage by thrombin, and differences in coagulant activity and association with von Willebrand factor.

    PubMed Central

    Weinstein, M J; Chute, L E

    1984-01-01

    We have characterized Factor VIII coagulant protein, present in normal human plasma, that reacts with a specific human 125I-labeled anti-human VIII:C antigen Fab antibody fragment. Two major Factor VIII coagulant antigen populations were present. The first, approximately 85% of the total antigen, was bound to von Willebrand factor and when tested in a standard one-stage assay had Factor VIII coagulant activity. The second antigenic population, eluting near fibrinogen when plasma was gel filtered, was not bound to von Willebrand protein, did not have Factor VIII coagulant activity unless activated, but did block anti-VIII:C Fab neutralization of clotting activity. The two antigenic populations were separable by cryoprecipitation and agarose gel electrophoresis. Although the two antigenic populations differed in their Factor VIII coagulant activity and in their binding to von Willebrand factor, the principal member of both populations is of mol wt 2.4 X 10(5). Both antigens, when proteolyzed by thrombin, were quickly converted to a 1 X 10(5)-mol wt form in association with the appearance of VIII:C activity. The 1 X 10(5)-mol wt antigen was further slowly degraded to an 8 X 10(4)-mol wt form while Factor VIII coagulant activity declined. These results demonstrate the presence of an inactive Factor VIII coagulant protein in plasma, not associated with von Willebrand factor, that can react with thrombin to yield Factor VIII coagulant activity. Images PMID:6421875

  9. Three human chromosomal autoantigens are recognized by sera from patients with anti-centromere antibodies.

    PubMed Central

    Earnshaw, W; Bordwell, B; Marino, C; Rothfield, N

    1986-01-01

    We have identified 39 individuals with anti-centromere antibodies (ACA) in our patient population, all of whom have Raynaud's syndrome or disease. We have used sera from the ACA-positive patients and from 123 controls (22 normal individuals and 101 additional patients with either Raynaud's disease or Raynaud's syndrome plus an associated connective tissue disease) to screen the proteins of highly purified human (HeLa) mitotic chromosomes by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting. Three antigens were recognized by the sera from the ACA-positive patients. These were centromere protein (CENP)-B (80,000 mol wt--recognized by all ACA-positive sera), CENP-A (17,000 mol wt--recognized by 38 of 39 ACA-positive sera), and CENP-C (140,000 mol wt--recognized by 37 of 39 ACA-positive sera). None of these antigens were recognized by any of the 123 control sera, although binding was occasionally seen to other chromosomal antigens. Therefore the ACA response is highly uniform in our patient population. Antibody to CENP-B shows a 100% correlation with anti-centromere staining by indirect immunofluorescence. Images PMID:3511098

  10. Three human chromosomal autoantigens are recognized by sera from patients with anti-centromere antibodies.

    PubMed

    Earnshaw, W; Bordwell, B; Marino, C; Rothfield, N

    1986-02-01

    We have identified 39 individuals with anti-centromere antibodies (ACA) in our patient population, all of whom have Raynaud's syndrome or disease. We have used sera from the ACA-positive patients and from 123 controls (22 normal individuals and 101 additional patients with either Raynaud's disease or Raynaud's syndrome plus an associated connective tissue disease) to screen the proteins of highly purified human (HeLa) mitotic chromosomes by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting. Three antigens were recognized by the sera from the ACA-positive patients. These were centromere protein (CENP)-B (80,000 mol wt--recognized by all ACA-positive sera), CENP-A (17,000 mol wt--recognized by 38 of 39 ACA-positive sera), and CENP-C (140,000 mol wt--recognized by 37 of 39 ACA-positive sera). None of these antigens were recognized by any of the 123 control sera, although binding was occasionally seen to other chromosomal antigens. Therefore the ACA response is highly uniform in our patient population. Antibody to CENP-B shows a 100% correlation with anti-centromere staining by indirect immunofluorescence.

  11. Crystal phase analysis of SnO{sub 2}-based varistor ceramic using the Rietveld method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, M.L.; Pianaro, S.A.; Andrade, A.V.C.

    2006-09-15

    A second addition of l mol% of CoO to a pre calcined SnO{sub 2}-based ceramic doped with 1.0 mol% of CoO, 0.05 mol% of Nb{sub 2}O{sub 5} and 0.05 mol% of Cr{sub 2}O{sub 3} promotes the appearance of a secondary phase, Co{sub 2}SnO{sub 4}, besides the SnO{sub 2} cassiterite phase, when the ceramic was sintered at 1350 deg. C/2 h. This was observed using X-ray powder diffraction, scanning electron microscopy and energy dispersive X-ray techniques. Rietveld refinement was carried out to quantify the phases present in the ceramic system. The results of the quantitative analysis were 97 wt.% SnO{sub 2}more » and 3 wt.% Co{sub 2}SnO{sub 4}. The microstructural analysis showed that a certain amount of cobalt ion remains into cassiterite grains.« less

  12. The resistance of polyvinylpyrrolidone-iodine-poly(-caprolactone) blends to adherence of Escherichia coli.

    PubMed

    Jones, David S; Djokic, Jasmina; Gorman, Sean P

    2005-05-01

    In this study, the resistance of biodegradable biomaterials, composed of blends of poly(-caprolactone) (PCL) and the polymeric antimicrobial complex, polyvinylpyrrolidone-iodine (PVP-I) to the adherence of a clinical isolate of Escherichia coli is described. Blends of PCL composed of a range of high (50,000 g mol(-1)) to low (5000 g mol(-1)) molecular weight ratios of polymer and either devoid of or containing PVP-I (1% w/w) were prepared by solvent evaporation. Following incubation (4 h), there was no relationship between m. wt. ratio of PCL in films devoid of PVP-I and adherence of E. coli. Conversely, microbial adherence to PCL containing PVP-I decreased as the ratio of high:low m. wt. polymer was decreased and was approximately 1000 fold lower than that to comparator films devoid of PVP-I. Following periods of immersion of PVP-I containing PCL films under sink conditions in phosphate buffered saline, subsequent adherence of E. coli was substantially reduced for 2 days (40:60 m. wt. ratio) and 6 days (100:0 m. wt. ratio). Concurrent exposure of PCL and E. coli to sub-minimum inhibitory concentrations (sub-MIC) of PVP-I significantly reduced microbial adherence to the biomaterial; however, the molecular weight ratio of PCL did not affect this outcome. Pretreatment of PCL with similar sub-MIC of PVP-I prior to inclusion within the microbial adherence assay significantly decreased the subsequent adherence of E. coli. Greatest reduction in adherence was observed following treatment of PCL (40:60 m. wt. ratio) with 0.0156% w/w PVP-I. In conclusion, this study has illustrated the utility of PVP-I as a suitable therapeutic agent for incorporation within PCL as a novel biomaterial. Due to the combined antimicrobial and biodegradable properties, these biomaterials offer a promising strategy for the reduction in medical device related infection.

  13. Uranium oxidation kinetics monitored by in-situ X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zalkind, S.; Rafailov, G.; Halevy, I.; Livneh, T.; Rubin, A.; Maimon, H.; Schweke, D.

    2017-03-01

    The oxidation kinetics of U-0.1 wt%Cr at oxygen pressures of 150 Torr and the temperature range of 90-150 °C was studied by means of in-situ X-ray diffraction (XRD). A "breakaway" in the oxidation kinetics is found at ∼0.25 μm, turning from a parabolic to a linear rate law. At the initial stage of oxidation the growth plane of UO2(111) is the prominent one. As the oxide thickens, the growth rate of UO2(220) plane increases and both planes grow concurrently. The activation energies obtained for the oxide growth are Qparabolic = 17.5 kcal/mol and Qlinear = 19 kcal/mol. Enhanced oxidation around uranium carbide (UC) inclusions is clearly observed by scanning electron microscopy (SEM).

  14. Short communication on Kinetics of grain growth and particle pinning in U-10 wt.% Mo

    NASA Astrophysics Data System (ADS)

    Frazier, William E.; Hu, Shenyang; Overman, Nicole; Lavender, Curt; Joshi, Vineet V.

    2018-01-01

    The alloy U-10 wt% Mo was annealed at temperatures ranging from 700 °C to 900 °C for periods lasting up to 24 h. Annealed microstructures were examined using Electron Backscattered Diffraction (EBSD) to obtain average grain sizes and grain size distributions. From the temporal evolution of the average grain size, the activation energy of grain growth was determined to be 172.4 ± 0.961 kJ/mol. Grain growth over the annealing period stagnated after a period of 1-4 h. This stagnation is apparently caused by the pinning effect of second-phase particles in the materials. Back-scattered electron imaging (BSE) was used to confirm that these particles do not appreciably coarsen or dissolve during annealing at the aforementioned temperatures.

  15. Photocatalytic hydrogen production of the CdS/TiO2-WO3 ternary hybrid under visible light irradiation.

    PubMed

    Chen, Yi-Lin; Lo, Shang-Lien; Chang, Hsiang-Ling; Yeh, Hsiao-Mei; Sun, Liping; Oiu, Chunsheng

    2016-01-01

    An attractive and effective method for converting solar energy into clean and renewable hydrogen energy is photocatalytic water splitting over semiconductors. The study aimed at utilizing organic sacrificial agents in water, modeled by formic acid, in combination with visible light driven photocatalysts to produce hydrogen with high efficiencies. The photocatalytic hydrogen production of cadmium sulfide (CdS)/titanate nanotubes (TNTs) binary hybrid with specific CdS content was investigated. After visible light irradiation for 3 h, the hydrogen production rate of 25 wt% CdS/TNT achieved 179.35 μmol·h(-1). Thanks to the two-step process, CdS/TNTs-WO3 ternary hybrid can better promote the efficiency of water splitting compared with CdS/TNTs binary hybrid. The hydrogen production of 25 wt% CdS/TNTs-WO3 achieved 212.68 μmol·h(-1), under the same condition. Coating of platinum metal onto the WO3 could further promote the reaction. Results showed that 0.2 g 0.1 wt% Pt/WO3 + 0.2 g 25 wt% CdS/TNTs had the best hydrogen production rate of 428.43 μmol·h(-1). The resultant materials were well characterized by high-resolution transmission electron microscope, X-ray diffraction, scanning electron microscopy, and UV-Vis spectra.

  16. Isolation and partial characterization of melanoma-associated antigens identified by autologous antibody.

    PubMed

    Vlock, D R; Scalise, D; Meglin, N; Kirkwood, J M; Ballou, B

    1988-06-01

    The study of the autologous immune response to cancer avoids the difficulties encountered in the use of xenoantisera and may identify antigens of physiological relevance. However, the low titer and incidence of autologous antibody to melanoma have hampered further evaluation. By utilizing acid dissociation and ultrafiltration of serum, we have been able to augment the detectable autologous immune response to melanoma in the majority of patients studied. In autologous system Y-Mel 84:420, serum S150 demonstrated a rise in titer from 1:32 in native sera to 1:262,044 after dissociation. The antigen detected by S150 was found to be broadly represented on melanoma, glioma, renal cell carcinoma, neuroblastoma, and head and neck carcinoma cell lines. It did not react with bladder or colon carcinoma, fetal fibroblasts, pooled platelets, lymphocytes and red blood cells, or autologous cultured lymphocytes. Using polyacrylamide gel electrophoresis, S150 detects a 66,000-mol wt antigen in spent tissue culture media and serum ultrafiltrate. In cell lysate two bands between 20,000 and 30,000 mol wt are detected by S150. The 66,000-mol wt antigen is sensitive to trypsin digestion and but is resistant to pepsin and heat inactivation. Exposure of spent media to trypsin results in the development of a 24,000-mol wt band that appears to correspond to the antigen detected in the cell lysate. The difference between the antigens detected in the cell lysate as compared with spent media and serum ultrafiltrate may be due to degradation during cell lysis. We conclude that melanoma-associated antigens are present in the serum of patients with melanoma and are shed or secreted by their tumor cells.

  17. ²H enrichment distribution of hepatic glycogen from ²H₂O reveals the contribution of dietary fructose to glycogen synthesis.

    PubMed

    Delgado, Teresa C; Martins, Fátima O; Carvalho, Filipa; Gonçalves, Ana; Scott, Donald K; O'Doherty, Robert; Macedo, M Paula; Jones, John G

    2013-02-15

    Dietary fructose can benefit or hinder glycemic control, depending on the quantity consumed, and these contrasting effects are reflected by alterations in postprandial hepatic glycogen synthesis. Recently, we showed that ²H enrichment of glycogen positions 5 and 2 from deuterated water (²H₂O) informs direct and indirect pathway contributions to glycogenesis in naturally feeding rats. Inclusion of position 6(S) ²H enrichment data allows indirect pathway sources to be further resolved into triose phosphate and Krebs cycle precursors. This analysis was applied to six rats that had fed on standard chow (SC) and six rats that had fed on SC plus 35% sucrose in their drinking water (HS). After 2 wk, hepatic glycogenesis sources during overnight feeding were determined by ²H₂O administration and postmortem analysis of glycogen ²H enrichment at the conclusion of the dark period. Net overnight hepatic glycogenesis was similar between SC and HS rodents. Whereas direct pathway contributions were similar (403 ± 71 μmol/g dry wt HS vs. 578 ± 76 μmol/g dry wt SC), triose phosphate contributions were significantly higher for HS compared with SC (382 ± 61 vs. 87 ± 24 μmol/g dry wt, P < 0.01) and Krebs cycle inputs lower for HS compared with SC (110 ± 9 vs. 197 ± 32 μmol/g dry wt, P < 0.05). Analysis of plasma glucose ²H enrichments at the end of the feeding period also revealed a significantly higher fractional contribution of triose phosphate to plasma glucose levels in HS vs. SC. Hence, the ²H enrichment distributions of hepatic glycogen and glucose from ²H₂O inform the contribution of dietary fructose to hepatic glycogen and glucose synthesis.

  18. Reaction layer characterization of the braze joint of silicon nitride to stainless steel

    NASA Astrophysics Data System (ADS)

    Xu, R.; Indacochea, J. E.

    1994-10-01

    This investigation studies the role of titanium in the development of the reaction layer in braze joining silicon nitride to stainless steel using titanium-active copper-silver filler metals. This reaction layer formed as a result of titanium diffusing to the filler metal/silicon nitride interface and reacting with the silicon nitride to form the intermetallics, titanium nitride (TiN) and titanium suicide (Ti 5Si3). This reaction layer, as recognized in the literature, allows wetting of the ceramic substrate by the molten filler metal. The reaction layer thickness increases with temperature and time. Its growth rate obeys the parabolic relationship. Activation energies of 220.1 and 210.9 kj/mol were calculated for growth of the reaction layer for the two filler metals used. These values are close to the activation energy of nitrogen in TiN (217.6 kj/mol). Two filler metals were used in this study, Ticusil (68.8 wt% Ag, 26.7 wt% Cu, 4.5 wt% Ti) and CB4 (70.5 wt% Ag, 26.5 wt% Cu, 3.0 wt% Ti). The joints were processed in vacuum at temperatures of 840 to 900 °C at various times. Bonding strength is affected by reaction layer thickness in the absence of Ti-Cu intermetallics in the filler metal matrix.

  19. Modeling for CO poisoning of a fuel cell anode

    NASA Technical Reports Server (NTRS)

    Dhar, H. P.; Kush, A. K.; Patel, D. N.; Christner, L. G.

    1986-01-01

    Poisoning losses in a half-cell in the 110-190 C temperature range have been measured in 100 wt pct H3PO4 for various mixtures of H2, CO, and CO2 gases in order to investigate the polarization loss due to poisoning by CO of a porous fuel cell Pt anode. At a fixed current density, the poisoning loss was found to vary linearly with ln of the CO/H2 concentration ratio, although deviations from linearity were noted at lower temperatures and higher current densities for high CO/H2 concentration ratios. The surface coverages of CO were also found to vary linearly with ln of the CO/H2 concentration ratio. A general adsorption relationship is derived. Standard free energies for CO adsorption were found to vary from -14.5 to -12.1 kcal/mol in the 130-190 C temperature range. The standard entropy for CO adsorption was found to be -39 cal/mol per deg K.

  20. Photooxidative desulfurization for diesel using Fe / N - TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Saqib; Kait, Chong Fai; Mutalib, Mohd Ibrahim Abdul

    2014-10-01

    A series of N - TiO2 with different mol% N was synthesized via sol-gel method and characterized using thermal gravimetric analyzer and raman spectroscopy. 0.2 wt% Fe was incorporated onto the calcined (200°C) N - TiO2 followed by calcination at 200°C, 250°C and 300°C. Photooxidative desulfurization was conducted in the presence of 0.2wt% Fe / N - TiO2 with different mol% N with and without oxidant (H2O2). Oxidative desulfurization was only achieved when H2O2 was used while without H2O2 no major effect on the sulfur removal. 0.2Fe -30N - H2O2 photocatalysts showed best performance at all calcination temperatures as compared to other mol% N - H2O2 photocatalysts. 16.45% sulfur removal was achieved using photocatalysts calcined at 300 °C.

  1. Characterization of inhibin forms and their measurement by an inhibin alpha-subunit ELISA in serum from postmenopausal women with ovarian cancer.

    PubMed

    Robertson, D M; Stephenson, T; Pruysers, E; McCloud, P; Tsigos, A; Groome, N; Mamers, P; Burger, H G

    2002-02-01

    The aim of this study was to characterize the molecular wt forms of inhibins A and B and its free alpha-subunit present in serum from women with ovarian cancer as a basis for developing improved monoclonal antibody-based inhibin assays for monitoring ovarian cancer. Three new inhibin alpha-subunit (alphaC) ELISAs were developed using monoclonal antibodies directed to three nonoverlapping peptide regions of the alphaC region of the inhibin alpha-subunit. To characterize serum inhibin molecular wt forms present in women with ovarian cancer, existing inhibin immunoassays (inhibin A, inhibin B, and pro-alphaC) and the new alphaC ELISAs were applied to sera from women with granulosa cell tumors and mucinous carcinomas previously fractionated using a combined immunoaffinity chromatography, preparative SDS-PAGE, and electroelution procedure. The distribution and molecular size of dimeric inhibins and alpha-subunit detected were consistent with known mol wt forms of inhibins A and B and inhibin alpha-subunit and their precursor forms present in serum and follicular fluid from healthy women. The alphaC ELISAs recognized all known forms of inhibin and the free inhibin alpha-subunit, although differences between alphaC ELISAs were observed in their ability to detect high mol wt forms. To assess which of the alphaC ELISAs was preferred in application to ovarian cancer, the alphaC ELISAs were applied to serum from a range of normal postmenopausal women (n = 61) and postmenopausal women (n = 152) with ovarian (serous, mucinous, endometrioid, clear cell carcinomas, and granulosa cell tumors) and nonovarian (breast and colon) cancers. Despite differences in their ability to detect high mol wt forms of inhibin, the alphaC ELISAs showed similar sensitivity (i.e. proportion of cancer patients correctly detected) and specificity (proportion of controls correctly detected) indexes in the detection of mucinous carcinomas (84% and 95%) and granulosa cell tumors (100% and 95%) compared with earlier inhibin RIA or polyclonal antibody-based immunofluorometric assays. A combination of the alphaC ELISAs with the CA125 assay, an ovarian tumor marker that has a high sensitivity and specificity for other ovarian cancers (serous, clear cell, and endometrioid), resulted in an increase in sensitivity/specificity indexes (95% and 95%) for the all ovarian cancer group. These new monoclonal antibody-based inhibin alphaC ELISAs now provide practical and sensitive assays suitable for evaluation as diagnostic tests for monitoring ovarian cancers.

  2. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge.

    PubMed

    Peng, Xiaowei; Ma, Xiaoqian; Xu, Zhibin

    2015-03-01

    The synergistic interaction and kinetics of microalgae, textile dyeing sludge and their blends were investigated under combustion condition by thermogravimetric analysis. The textile dyeing sludge was blended with microalgae in the range of 10-90wt.% to investigate their co-combustion behavior. Results showed that the synergistic interaction between microalgae and textile dyeing sludge improved the char catalytic effect and alkali metals melt-induced effect on the decomposition of textile dyeing sludge residue at high temperature of 530-800°C. As the heating rate increasing, the entire combustion process was delayed but the combustion intensity was enhanced. The lowest average activation energy was obtained when the percentage of microalgae was 60%, which was 227.1kJ/mol by OFW and 227.4kJ/mol by KAS, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Hydrogen kinetics studies of MgH2-FeTi composites

    NASA Astrophysics Data System (ADS)

    Meena, Priyanka; Jangir, Mukesh; Singh, Ramvir; Sharma, V. K.; Jain, I. P.

    2018-05-01

    MgH2 + x wt% FeTi (x=10, 25, 50) nano composites were ball milled to get nano structured material and characterized for structural, morphological and thermal properties. XRD of the milled samples revealed the formation of MgH2, FeTi, Fe2Ti and H0.06FeTi phases. Morphological studies by SEM were undertaken to investigate the effect of hydrogenation of nanostructure alloy. EDX confirmed elemental composition of the as-prepared alloy. TGA studies showed higher desorption temperature for milled MgH2 compared to x wt% FeTi added MgH2. Activation energy for hydrogen desorption was found to be -177.90, -215.69, -162.46 and -87.93 kJ/mol for milled MgH2 and Mg2+x wt% FeTi (10, 25, 50), showing 89.97 kJ/ mol reduction in activation energy for 50 wt% alloy additives resulting in improved hydrogen storage capacity. DSC investigations were carried out to investigate the effect of alloy on hydrogen absorption behavior of MgH2.

  4. Enhanced hydrogen storage properties of MgH2 co-catalyzed with K2NiF6 and CNTs.

    PubMed

    Sulaiman, N N; Ismail, M

    2016-12-06

    The composite of MgH 2 /K 2 NiF 6 /carbon nanotubes (CNTs) is prepared by ball milling, and its hydrogenation properties are studied for the first time. MgH 2 co-catalyzed with K 2 NiF 6 and CNTs exhibited an improvement in the onset dehydrogenation temperature and isothermal de/rehydrogenation kinetics compared with the MgH 2 -K 2 NiF 6 composite. The onset dehydrogenation temperature of MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs is 245 °C, which demonstrated a reduction of 25 °C compared with the MgH 2 + 10 wt% K 2 NiF 6 composite. In terms of rehydrogenation kinetics, MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs samples absorbed 3.4 wt% of hydrogen in 1 min at 320 °C, whereas the MgH 2 + 10 wt% K 2 NiF 6 sample absorbed 2.6 wt% of hydrogen under the same conditions. For dehydrogenation kinetics at 320 °C, the MgH 2 + 10 wt% K 2 NiF 6 + 5 wt% CNTs sample released 3.3 wt% hydrogen after 5 min of dehydrogenation. By contrast, MgH 2 doped with 10 wt% K 2 NiF 6 released 3.0 wt% hydrogen in the same time period. The apparent activation energy, E a , for the dehydrogenation of MgH 2 doped with 10 wt% K 2 NiF 6 reduced from 100.0 kJ mol -1 to 70.0 kJ mol -1 after MgH 2 was co-doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs. Based on the experimental results, the hydrogen storage properties of the MgH 2 /K 2 NiF 6 /CNTs composite is enhanced because of the catalytic effects of the active species of KF, KH and Mg 2 Ni that are formed in situ during dehydrogenation, as well as the unique structure of CNTs.

  5. Dynamic Strain Aging Phenomena and Tensile Response of Medium-Mn TRIP Steel

    NASA Astrophysics Data System (ADS)

    Field, Daniel M.; Van Aken, David C.

    2018-04-01

    Dynamic strain aging (DSA) and rapid work hardening are typical behaviors observed in medium-Mn transformation-induced plasticity (TRIP) steel. Three alloys with manganese ranging from 10.2 to 13.8 wt pct with calculated room temperature stacking fault energies varying from - 2.1 to 0.7 mJ/m2 were investigated. Significant serrations were observed in the stress-strain behavior for two of the steels and the addition of 4.6 wt pct chromium was effective in significantly reducing the occurrence of DSA. Addition of chromium to the alloy reduced DSA by precipitation of M23(C,N)6 during batch annealing at 873 K (600 °C) for 20 hours. Three distinct DSA mechanisms were identified: one related to manganese ordering in stacking faults associated with ɛ-martensite and austenite interface, with activation energies for the onset and termination of DSA being 145 and 277 kJ/mol. A second mechanism was associated with carbon diffusion in γ-austenite where Mn-C bonding added to the total binding energy, and activation energies of 88 and 155 kJ/mol were measured for the onset and termination of DSA. A third mechanism was attributed to dislocation pinning and unpinning by nitrogen in α-ferrite with activation energies of 64 and 123 kJ/mol being identified. Tensile behaviors of the three medium manganese steels were studied in both the hot band and batch annealed after cold working conditions. Ultimate tensile strengths ranged from 1310 to 1404 MPa with total elongation of 24.1 to 34.1 pct. X-ray diffraction (XRD) was used to determine the transformation response of the steels using interrupted tensile tests at room temperature. All three of the processed steels showed evidence of two-stage TRIP where γ-austenite first transformed to ɛ-martensite, and subsequently transformed to α-martensite.

  6. Effect of a solid solution on the steady-state creep behavior of an aluminum matrix composite

    NASA Astrophysics Data System (ADS)

    Pandey, A. B.; Mishra, R. S.; Mahajan, Y. R.

    1996-02-01

    The effect of an alloying element, 4 wt pct Mg, on the steady-state creep behavior of an Al-10 vol pct SiCp composite has been studied. The Al-4 wt pct Mg-10 vol pct SiCp composite has been tested under compression creep in the temperature range 573 to 673 K. The steady-state creep data of the composite show a transition in the creep behavior (regions I and II) depending on the applied stress at 623 and 673 K. The low stress range data (region I) exhibit a stress exponent of about 7 and an activation energy of 76.5 kJ mol-1. These values conform to the dislocation-climb-controlled creep model with pipe diffusion as a rate-controlling mechanism. The intermediate stress range data (region II) exhibit high and variable apparent stress exponents, 18 to 48, and activation energy, 266 kJ mol-1, at a constant stress, σ = 50 MPa, for creep of this composite. This behavior can be rationalized using a substructure-invariant model with a stress exponent of 8 and an activation energy close to the lattice self-diffusion of aluminum together with a threshold stress. The creep data of the Al-Mg-A12O3f composite reported by Dragone and Nix also conform to the substructure-invariant model. The threshold stress and the creep strength of the Al-Mg-SiCp, composite are compared with those of the Al-Mg-Al2O3f and 6061 Al-SiCp.w, composites and discussed in terms of the load-transfer mechanism. Magnesium has been found to be very effective in improving the creep resistance of the Al-SiCp composite.

  7. Incomplete APOBEC3G/F Neutralization by HIV-1 Vif Mutants Facilitates the Genetic Evolution from CCR5 to CXCR4 Usage

    PubMed Central

    Alteri, Claudia; Surdo, Matteo; Bellocchi, Maria Concetta; Saccomandi, Patrizia; Continenza, Fabio; Armenia, Daniele; Parrotta, Lucia; Carioti, Luca; Costa, Giosuè; Fourati, Slim; Di Santo, Fabiola; Scutari, Rossana; Barbaliscia, Silvia; Fedele, Valentina; Carta, Stefania; Balestra, Emanuela; Alcaro, Stefano; Marcelin, Anne Genevieve; Calvez, Vincent; Ceccherini-Silberstein, Francesca; Artese, Anna

    2015-01-01

    Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-VifWT virus (i.e., with wild-type [WT] Vif protein), 81.A-VifE45G, or 81.A-VifK22E (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-VifWT- and 81.A-VifE45G-infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-VifK22E-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e−7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, −40.1 kcal/mol; G24E, −510 kcal/mol; E25K, −522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression. PMID:26055363

  8. Desorption Kinetics of H2O from Cab-O-Sil-M-7D and Hi-Sil-233 Silica Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinh, L.; Balooch, M.; LeMay, J.D.

    2000-01-26

    Temperature programmed desorption (TPD) was performed at temperatures up to 850K on Cab-O-Sil-M-7D and Hi-Sil-233 silica particles. Physisorbed water molecules on both types of silica had activation energies in the range of 9-14.5 kcal/mol. However, the activation energies of desorption for chemisorbed water varied from {approx} 19 kcal/mol to > 59 kcal/mol for Cab-O-Sil-M-7D, and {approx} 23-37 kcal/mol for Hi-Sil-233. Our results suggest that physisorbed water can be effectively pumped away at room temperature (or preferably at 320 K) in a matter of hours. Chemisorbed water with high activation energies of desorption (>30 kcal/mol) will not escape the silica surfacesmore » in 100 years even at 320 K, while a significant amount of the chemisorbed water with medium activation energies (19-26 kcal/mol) will leave the silica surfaces in that time span. Most of the chemisorbed water with activation energies < 30 kcal/mol can be pumped away in a matter of days in a good vacuum environment at 500 K. We had previously measured about 0.1-0.4 wt. % of water in M9787 polysiloxane formulations containing {approx} 21% Cab-O-Sil-M-7D and {approx} 4% Hi-Sil-233. Comparing present results with these formulations, we conclude that absorbed H{sub 2}O and Si-OH bonds on the silica surfaces are the major contributors to water outgassing from M97 series silicones.« less

  9. Early and advanced glycosylation end products. Kinetics of formation and clearance in peritoneal dialysis.

    PubMed Central

    Friedlander, M A; Wu, Y C; Elgawish, A; Monnier, V M

    1996-01-01

    The chronic contact of glucose-containing dialysate and proteins results in the deposition of advanced glycation end products (AGEs) on peritoneal tissues in patients treated by peritoneal dialysis (PD), yet plasma levels of the AGE pentosidine are significantly lower in PD than in hemodialysis (HD). We measured glycation of peritoneal proteins in patients on PD over the time course of intraperitoneal equilibration of fresh peritoneal dialysate. The glycated content of peritoneal proteins (furosine method) was initially identical to plasma but increased 200% within 4 h due to in situ glycation as also demonstrated in vitro. In contrast, peritoneal proteins contained a 2-4 x greater content of the AGE pentosidine at all equilibrium time points. Plasma protein furosine content was identical in patients on PD and on HD. Fractionation by gel filtration of serum from patients on PD and HD revealed that > 95% of the pentosidine was linked to proteins > 10,000 mol wt; < 1% to proteins < 10,000 mol wt; and < 1%, free. Neither HD nor PD affected protein-bound pentosidine. The HD treatment decreased free and < 10,000 mol wt bound pentosidine. However clearance of protein-associated pentosidine by the peritoneal membrane may explain lower steady state levels in patients treated by PD. PMID:8609229

  10. Archaeal Production of Polyhydroxyalkanoate (PHA) Co- and Terpolyesters from Biodiesel Industry-Derived By-Products

    PubMed Central

    Hermann-Krauss, Carmen; Koller, Martin; Stelzer, Franz; Braunegg, Gerhart

    2013-01-01

    The archaeon Haloferax mediterranei was selected for production of PHA co- and terpolyesters using inexpensive crude glycerol phase (CGP) from biodiesel production as carbon source. CGP was assessed by comparison with the application of pure glycerol. Applying pure glycerol, a copolyester with a molar fraction of 3-hydroxybutyrate (3HB) of 0.90 mol/mol and 3-hydroxyvalerate (3HV) of 0.10 mol/mol, was produced at a volumetric productivity of 0.12 g/Lh and an intracellular PHA content of 75.4 wt.-% in the sum of biomass protein plus PHA. Application of CGP resulted in the same polyester composition and volumetric productivity, indicating the feasibility of applying CGP as feedstock. Analysis of molar mass distribution revealed a weight average molar mass M w of 150 kDa and polydispersity P i of 2.1 for pure glycerol and 253 kDa and 2.7 for CGP, respectively; melting temperatures ranged between 130 and 140°C in both setups. Supplying γ-butyrolactone as 4-hydroxybutyrate (4HB) precursor resulted in a poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate-co-4-hydroxybutyrate] (PHBHV4HB) terpolyester containing 3HV (0.12 mol/mol) and 4HB (0.05 mol/mol) in the poly[(R)-3-hydroxybutyrate] (PHB) matrix; in addition, this process runs without sterilization of the bioreactor. The terpolyester displayed reduced melting (melting endotherms at 122 and 137°C) and glass transition temperature (2.5°C), increased molar mass (391 kDa), and a polydispersity similar to the copolyesters. PMID:24453697

  11. Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis

    NASA Astrophysics Data System (ADS)

    Kadakia, Karan Sandeep; Jampani, Prashanth H.; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Park, Sung Kyoo; Hong, Dae Ho; Chung, Sung Jae; Kumta, Prashant N.

    2014-12-01

    Fluorine doped iridium oxide (IrO2:F) powders with varying F content ranging from 0 to 20 wt.% has been synthesized by using a modification of the Adams fusion method. The precursors (IrCl4 and NH4F) are mixed with NaNO3 and heated to elevated temperatures to form high surface area nanomaterials as electro-catalysts for PEM based water electrolysis. The catalysts were then coated on a porous Ti substrate and have been studied for the oxygen evolution reaction in PEM based water electrolysis. The IrO2:F with an optimum composition of IrO2:10 wt.% F shows remarkably superior electrochemical activity and chemical stability compared to pure IrO2. The results have also been supported via kinetic studies by conducting rotating disk electrode (RDE) experiments. The RDE studies confirm that the electro-catalysts follow the two electron transfer reaction for electrolysis with calculated activation energy of ∼25 kJ mol-1. Single full cell tests conducted also validate the superior electrochemical activity of the 10 wt.% F doped IrO2.

  12. Myosin phosphorylation potentiates steady-state work output without altering contractile economy of mouse fast skeletal muscles.

    PubMed

    Gittings, William; Bunda, Jordan; Vandenboom, Rene

    2018-01-30

    Skeletal myosin light chain kinase (skMLCK)-catalyzed phosphorylation of the myosin regulatory light chain (RLC) increases (i.e. potentiates) mechanical work output of fast skeletal muscle. The influence of this event on contractile economy (i.e. energy cost/work performed) remains controversial, however. Our purpose was to quantify contractile economy of potentiated extensor digitorum longus (EDL) muscles from mouse skeletal muscles with (wild-type, WT) and without (skMLCK ablated, skMLCK -/- ) the ability to phosphorylate the RLC. Contractile economy was calculated as the ratio of total work performed to high-energy phosphate consumption (HEPC) during a period of repeated isovelocity contractions that followed a potentiating stimulus (PS). Consistent with genotype, the PS increased RLC phosphorylation measured during, before and after isovelocity contractions in WT but not in skMLCK -/- muscles (i.e. 0.65 and 0.05 mol phosphate mol -1 RLC, respectively). In addition, although the PS enhanced work during repeated isovelocity contractions in both genotypes, the increase was significantly greater in WT than in skMLCK -/- muscles (1.51±0.03 versus 1.10±0.05, respectively; all data P <0.05, n =8). Interestingly, the HEPC determined during repeated isovelocity contractions was statistically similar between genotypes at 19.03±3.37 and 16.02±3.41 μmol P; respectively ( P <0.27). As a result, despite performing significantly more work, the contractile economy calculated for WT muscles was similar to that calculated for skMLCK -/- muscles (i.e. 5.74±0.67 and 4.61±0.71 J kg -1  μmol -1 P, respectively ( P <0.27). In conclusion, our results support the notion that myosin RLC phosphorylation enhances dynamic contractile function of mouse fast skeletal muscle but does so without decreasing contractile economy. © 2018. Published by The Company of Biologists Ltd.

  13. Electrical conductivity enhancement in heterogeneously doped scandia-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Varanasi, Chakrapani; Juneja, Chetan; Chen, Christina; Kumar, Binod

    Composites of 6 mol% scandia-stabilized zirconia materials (6ScSZ) and nanosize Al 2O 3 powder (0-30 wt.%) were prepared and characterized for electrical conductivity by the ac impedance method at various temperatures ranging from 300 to 950 °C. All the composites characterized showed improved conductivity at higher temperatures compared to the undoped ScSZ. An average conductivity of 0.12 S cm -1 was measured at 850 °C for 6ScSZ + 30 wt.% Al 2O 3 composite samples, an increase in conductivity up to 20% compared to the undoped 6ScSZ specimen at this temperature. Microstructural evaluation using scanning electron microscopy revealed that the ScSZ grain size was relatively unchanged up to 10 wt.% of Al 2O 3 additions. However, the grain size was reduced in samples with higher (20 and 30 wt.%) additions of Al 2O 3. Small grain size, reduced quantity of the 6ScSZ material (only 70%), and improved conductivity makes these ScSZ + 30 wt.% Al 2O 3 composites very attractive as electrolyte materials in view of their collective mechanical and electrical properties and cost requirements. The observed increase in conductivity values with the additions of an insulating Al 2O 3 phase is explained in light of the space charge regions at the 6ScSZ-Al 2O 3 grain boundaries.

  14. Biliary secretion of fluid-phase markers by the isolated perfused rat liver. Role of transcellular vesicular transport.

    PubMed Central

    Lake, J R; Licko, V; Van Dyke, R W; Scharschmidt, B F

    1985-01-01

    In these studies, we have used several approaches to systematically explore the contribution of transcellular vesicular transport (transcytosis) to the blood-to-bile movement of inert fluid-phase markers of widely varying molecular weight. First, under steady-state conditions, the perfused rat liver secreted even large markers in appreciable amounts. The bile-to-plasma (B/P) ratio of these different markers, including microperoxidase (B/P ratio = 0.06; mol wt = 1,879), insulin (B/P ratio = 0.09, mol wt = 5,000), horseradish peroxidase (B/P ratio = 0.04, mol wt = 40,000), and dextran (B/P ratio = 0.09, mol wt = 70,000), exhibited no clear ordering based on size alone, and when dextrans of two different sizes (40,000 and 70,000 mol wt) were studied simultaneously, the relative amounts of the two dextran species in bile were the same as in perfusate. Taurocholate administration produced a 71% increase in bile flow but little or no (0-20%) increase in the output of horseradish peroxidase, microperoxidase, inulin, and dextran. Second, under nonsteady-state conditions in which the appearance in or disappearance from bile of selected markers was studied after their abrupt addition to or removal from perfusate, erythritol reached a B/P ratio of 1 within 2 min. Microperoxidase and dextran appeared in bile only after a lag period of approximately 12 min and then slowly approached maximal values, whereas sucrose exhibited kinetically intermediate behavior. A similar pattern was observed after removal of greater than 95% of the marker from the perfusate. Erythritol rapidly reapproached a B/P ratio of 1, whereas the B/P ratio for sucrose, dextran, and microperoxidase fell much more slowly and exceeded 1 for a full 30 min after perfusate washout. Finally, electron microscopy and fluorescence microscopy of cultured hepatocytes demonstrated the presence of horseradish peroxidase and fluorescein-dextran, respectively, in intracellular vesicles, and fractionation of perfused liver homogenates revealed that at least 35-50% of sucrose, inulin, and dextran was associated with subcellular organelles. Collectively, these observations are most compatible with a transcytosis pathway that contributes minimally to the secretion of erythritol, but accounts for a substantial fraction of sucrose secretion and virtually all (greater than 95%) of the blood-to-bile transport of microperoxidase and larger markers. These findings have important implications with respect to current concepts of canalicular bile formation as well as with respect to the conventional use of solutes such as sucrose as markers of canalicular or paracellular pathway permeability. Images PMID:2411761

  15. Reduction of Chromite in Liquid Fe-Cr-C-Si Alloys

    NASA Astrophysics Data System (ADS)

    Demir, Orhan; Eric, R. Hurman

    1994-08-01

    The kinetics and the mechanism of the reduction of chromite in Fe-Cr-C-Si alloys were studied in the temperature range of 1534 °C to 1702 °C under an inert argon atmosphere. The rotating cylinder technique was used. The melt consisted of 10 and 20 wt Pct chromium, the carbon content varied from 2.8 wt Pct to saturation, and the silicon content varied from 0 to 2 wt Pct. The rotational speed of the chromite cylinder ranged from 100 to 1000 rpm. The initial chromium to iron ratios of the melts varied between 0.11 and 0.26. In Fe-C melts, the effect of rotational speed on the reduction of chromite was very limited. Carbon saturation (5.4 wt Pct) of the alloy caused the reduction to increase 1.5 times over the reduction observed in the unsaturated (4.87 wt Pct) alloy at a given rotational speed. The addition of chromium to the carbon-saturated Fe-C alloy increased the reduction rate. The addition of silicon to the liquid phase increased the reduction rate drastically. The reduction of chromite in Fe-Cr-C melts is hindered because of the formation of, approximately, a 1.5-mm-thick M7C3-type carbide layer around the chromite cylinders. This carbide layer did not form when silicon was present in the melt. It was found that the reduction rate is controlled by the liquid-state mass transfer of oxygen. The calculated apparent activation energies for diffusion were 102.9 and 92.9 kJ/mol of oxygen in the Si-O and C-O systems, respectively.

  16. Versatile nickel–tungsten bimetallics/carbon nanofiber catalysts for direct conversion of cellulose to ethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Zhang, Wen; Yang, Feng

    2016-01-01

    We herein propose a novel synthetic methodology for a series of nickel–tungsten bimetallics/carbon nanofiber catalysts (Ni, 0.37–2.08 wt%; W, 0.01–0.06 wt%) in situ fabricated by pyrolysis (950 °C) of Ni, W and Zn-containing metal organic framework (Ni0.6-x–Wx–ZnBTC, x = 0–0.6) fibers. The resulting catalysts (Ni0.6-x–Wx/CNF) have uniform particles (ca. 68 nm), evenly dispersed onto the hierarchically porous carbon nanofibers formed simultaneously. All of the Ni0.6-x–Wx/CNF catalysts prove to be highly active towards direct conversion of cellulose to ethylene glycol (EG). A large productivity ranging from 15.3 to 70.8 molEG h-1 gW-1 is shown, two orders of magnitude higher than thosemore » by using other W-based catalysts reported.« less

  17. Hydrometallurgical route to recover nickel, cobalt and cadmium from spent Ni-Cd batteries

    NASA Astrophysics Data System (ADS)

    Fernandes, Aline; Afonso, Julio Carlos; Bourdot Dutra, Achilles Junqueira

    2012-12-01

    In this work a hydrometallurgical route to recover nickel, cobalt and cadmium after leaching spent Ni-Cd batteries with hydrochloric acid was investigated. Co(II) and Cd(II) were both recovered by solvent extraction. Cd(II) was first extracted (99.7 wt.%) with pure tri-n-butylphosphate (TBP), in the original leachate acidity (5.1 mol L-1), in two stages at 25 °C with an aqueous/organic (A/O) phase ratio = 1 v/v. The Co(II) present in the raffinate (free acidity 4.1 mol L-1) was extracted with Alamine 336 or Alamine 304 (10 vol.% in kerosene) at 25 °C with an A/O ratio = 1 in two stages. 97.5 wt.% of Co(II) was extracted using Alamine 336 while only 90.4 wt.% was extracted in the case of Alamine 304. Ni(II) was isolated from the raffinate as oxalate after addition of ammonium oxalate at pH 2.

  18. Reductive de-polymerization of kraft lignin for chemicals and fuels using formic acid as an in-situ hydrogen source.

    PubMed

    Huang, Shanhua; Mahmood, Nubla; Tymchyshyn, Matthew; Yuan, Zhongshun; Xu, Chunbao Charles

    2014-11-01

    In this study, formic acid (FA) was employed as an in-situ hydrogen donor for the reductive de-polymerization of kraft lignin (KL). Under the optimum operating conditions, i.e., 300 °C, 1 h, 18.6 wt.% substrate concentration, 50/50 (v/v) water-ethanol medium with FA at a FA-to-lignin mass ratio of 0.7, KL (Mw∼10,000 g/mol) was effectively de-polymerized, producing de-polymerized lignin (DL, Mw 1270 g/mol) at a yield of ∼90 wt.% and <1 wt.% yield of solid residue (SR). The MW of the DL products decreased with increasing reaction temperature, time and FA-to-lignin mass ratio. The sulfur contents of all DL products were remarkably lower than that in the original KL. It was also demonstrated that FA is a more reactive hydrogen source than external hydrogen for reductive de-polymerization of KL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Galvanic reduction of uranium(III) chloride from LiCl-KCl eutectic salt using gadolinium metal

    NASA Astrophysics Data System (ADS)

    Bagri, Prashant; Zhang, Chao; Simpson, Michael F.

    2017-09-01

    The drawdown of actinides is an important unit operation to enable the recycling of electrorefiner salt and minimization of waste. A new method for the drawdown of actinide chlorides from LiCl-KCl molten salt has been demonstrated here. Using the galvanic interaction between the Gd/Gd(III) and U/U(III) redox reactions, it is shown that UCl3 concentration in eutectic LiCl-KCl can be reduced from 8.06 wt.% (1.39 mol %) to 0.72 wt.% (0.12 mol %) in about an hour via plating U metal onto a steel basket. This is a simple process for returning actinides to the electrorefiner and minimizing their loss to the salt waste stream.

  20. Oxy-Component in low-Pressure Kaersutite: How Much can be a Primary Magmatic Feature?

    NASA Astrophysics Data System (ADS)

    McCubbin, F.; Nekvasil, H.; Lindsley, D. H.

    2006-05-01

    Introduction: The presence of an oxy-component in kaersutite has been well established [1]. Many workers have attributed this oxy-component to dehydration or dehydrogenation [1, 2]. However, it has also been suggested that the oxy-component can be a primary magmatic feature because of a Ti-oxy substitution mechanism [2, 3], although the exact mechanism has yet to be determined experimentally [3]. This work focuses on experimentally determining how much oxy-component can be incorporated into kaersutite (specifically F-kaersutite) as a primary magmatic feature at 0 kbar. Additionally, substitution mechanisms involving Ti-oxy substitutions are con-sidered. Experimental Procedure: Powdered mixes of oxides and CaF2 were used as starting materials. F2/O ratios were different for each starting material in hopes of creating kaersutites with specific oxy- components for each starting composition. The powders were loaded into Fe-capsules and dried at 800°C under vacuum in silica-glass tubes. Next the silica-glass tubes were sealed and placed in a Deltech furnace. The temperature within the furnace was raised above the melting temperature of the starting material and main-tained for 3 hours to allow for liquid equilibration. The tempera-ture was then lowered to a crystallization temperature and left for several days. Pressures of both melting and crystallization were nominally 0 kbar (tensile strength of silica glass tubes used is ~3 atm). The resulting phases were considered to be nomi-nally water-free. [Quenched glass experiments at these conditions yielded 0.0 wt% H2O as determined by micro-FTIR]. Ex-perimental run products were analyzed by electron-microprobe. Results: To date, experiments on a starting mate-rial with 3.55 wt% fluorine yielded kaersutite that had ~75 mol% F-component and ~25 mol% oxy-component (as-suming O(3) site stoichiometry). Experiments on a starting mate-rial with 0.89 wt% F yielded kaersutites ranging from ~55 mol% F- component and ~45 mol% Oxy-component to ~70 mol% F-component and ~30 mol% Oxy- component. Conclusions: Significant primary magmatic oxy-component is apparently required in F-kaersutite crystallized at 0 kbar, which is consistent with suggested substitution mechanisms [2, 3], although the exact mechanism seems to be more complex than previously proposed. The availability of magmatic volatiles within the magma plays a role in the amount of oxy-component in kaersutite and could account for the complexity in the substitu-tion mechanism. Work is ongoing to establish upper and lower limits of oxy-component in kaersutite by primary magmatic proc-esses. References: [1] Hawthorne F.C., and Grundy, H.D. (1973) Mineralogical Magazine, Vol. 39, pp. 390-400. [2] Popp, R.K., and Bryndzia, L.T. (1992) American Mineralogist, Vol. 77, pp. 1250-1257. [3] Popp, R.K., Virgo, D., Phillips, M.W. (1995b) American Mineralogist, Vol. 80, pp. 1347-1350.

  1. Effect of Li Adsorption on the Electronic and Hydrogen Storage Properties of Acenes: A Dispersion-Corrected TAO-DFT Study

    PubMed Central

    Seenithurai, Sonai; Chai, Jeng-Da

    2016-01-01

    Due to the presence of strong static correlation effects and noncovalent interactions, accurate prediction of the electronic and hydrogen storage properties of Li-adsorbed acenes with n linearly fused benzene rings (n = 3–8) has been very challenging for conventional electronic structure methods. To meet the challenge, we study these properties using our recently developed thermally-assisted-occupation density functional theory (TAO-DFT) with dispersion corrections. In contrast to pure acenes, the binding energies of H2 molecules on Li-adsorbed acenes are in the ideal binding energy range (about 20 to 40 kJ/mol per H2). Besides, the H2 gravimetric storage capacities of Li-adsorbed acenes are in the range of 9.9 to 10.7 wt%, satisfying the United States Department of Energy (USDOE) ultimate target of 7.5 wt%. On the basis of our results, Li-adsorbed acenes can be high-capacity hydrogen storage materials for reversible hydrogen uptake and release at ambient conditions. PMID:27609626

  2. Microbial-based synthesis of highly elastomeric biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) thermoplastic.

    PubMed

    Huong, Kai-Hee; Teh, Chin-Hoe; Amirul, A A

    2017-08-01

    This study reports the production of P(3HB-co-4HB) [Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)] in possession of high molecular weight and elastomeric properties by Cupriavidus sp. USMAA1020 in single-stage mixed-substrate cultivation system. 1,4-butanediol and 1,6-hexanediol are found to be efficient substrate mixture that has resulted in high copolymer yield, occupying a maximum of 70wt% of the total biomass and producing higher 4HB monomer composition ranging from 31mol% to 41mol%. In substrate mixtures involving 1,6-hexanediol, cleavage of the 6-hydroxyhexanoyl-CoA produces Acetyl-CoA and 4-hydroxybutyryl-CoA. Acetyl-CoA is instrumental in initiating the cell growth in the single-stage fermentation system, preventing 4-hydroxybutyryl-CoA from being utilized via β-oxidation and retained the 4HB monomer at higher ratios. Macroscopic kinetic models of the bioprocesses have revealed that the P(3HB-co-4HB) formation appears to be in the nature of mixed-growth associated with higher formation rate during exponential growth phase; evidenced by higher growth associated constants, α, from 0.0690g/g to 0.4615g/g compared to non-growth associated constants, β, from 0.0092g/g/h to 0.0459g/g/h. The P(3HB-co-31mol% 4HB) produced from the substrate mixture exhibited high weight-average molecular weight, M w of 927kDa approaching a million Dalton, and possessed elongation at break of 1637% upon cultivation at 0.56wt% C. This is the first report on such properties for the P(3HB-co-4HB) copolymer. The copolymer is highly resistant to polymer deformation after being stretched. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. An ultra-stable single-chain insulin analog resists thermal inactivation and exhibits biological signaling duration equivalent to the native protein.

    PubMed

    Glidden, Michael D; Aldabbagh, Khadijah; Phillips, Nelson B; Carr, Kelley; Chen, Yen-Shan; Whittaker, Jonathan; Phillips, Manijeh; Wickramasinghe, Nalinda P; Rege, Nischay; Swain, Mamuni; Peng, Yi; Yang, Yanwu; Lawrence, Michael C; Yee, Vivien C; Ismail-Beigi, Faramarz; Weiss, Michael A

    2018-01-05

    Thermal degradation of insulin complicates its delivery and use. Previous efforts to engineer ultra-stable analogs were confounded by prolonged cellular signaling in vivo , of unclear safety and complicating mealtime therapy. We therefore sought an ultra-stable analog whose potency and duration of action on intravenous bolus injection in diabetic rats are indistinguishable from wild-type (WT) insulin. Here, we describe the structure, function, and stability of such an analog, a 57-residue single-chain insulin (SCI) with multiple acidic substitutions. Cell-based studies revealed native-like signaling properties with negligible mitogenic activity. Its crystal structure, determined as a novel zinc-free hexamer at 2.8 Å, revealed a native insulin fold with incomplete or absent electron density in the C domain; complementary NMR studies are described in the accompanying article. The stability of the analog (Δ G U 5.0(±0.1) kcal/mol at 25 °C) was greater than that of WT insulin (3.3(±0.1) kcal/mol). On gentle agitation, the SCI retained full activity for >140 days at 45 °C and >48 h at 75 °C. These findings indicate that marked resistance to thermal inactivation in vitro is compatible with native duration of activity in vivo Further, whereas WT insulin forms large and heterogeneous aggregates above the standard 0.6 mm pharmaceutical strength, perturbing the pharmacokinetic properties of concentrated formulations, dynamic light scattering, and size-exclusion chromatography revealed only limited SCI self-assembly and aggregation in the concentration range 1-7 mm Such a combination of favorable biophysical and biological properties suggests that SCIs could provide a global therapeutic platform without a cold chain. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Corrosion-electrochemical behavior of nickel in an alkali metal carbonate melt under a chlorine-containing atmosphere

    NASA Astrophysics Data System (ADS)

    Nikitina, E. V.; Kudyakov, V. Ya.; Malkov, V. B.; Plaksin, S. V.

    2013-08-01

    The corrosion-electrochemical behavior of a nickel electrode is studied in the melt of lithium, sodium, and potassium (40: 30: 30 mol %) carbonates in the temperature range 500-600°C under an oxidizing atmosphere CO2 + 0.5O2 (2: 1), which is partly replaced by gaseous chlorine (30, 50, 70%) in some experiments. In other experiments, up to 5 wt % chloride of sodium peroxide is introduced in a salt melt. A change in the gas-phase composition is shown to affect the mechanism of nickel corrosion.

  5. Quantification of water in hydrous ringwoodite

    DOE PAGES

    Thomas, Sylvia -Monique; Jacobsen, Steven D.; Bina, Craig R.; ...

    2015-01-28

    Here, ringwoodite, γ-(Mg,Fe) 2SiO 4, in the lower 150 km of Earth’s mantle transition zone (410-660 km depth) can incorporate up to 1.5-2 wt% H 2O as hydroxyl defects. We present a mineral-specific IR calibration for the absolute water content in hydrous ringwoodite by combining results from Raman spectroscopy, secondary ion mass spectrometery (SIMS) and proton-proton (pp)-scattering on a suite of synthetic Mg- and Fe-bearing hydrous ringwoodites. H 2O concentrations in the crystals studied here range from 0.46 to 1.7 wt% H 2O (absolute methods), with the maximum H 2O in the same sample giving 2.5 wt% by SIMS calibration.more » Anchoring our spectroscopic results to absolute H-atom concentrations from pp-scattering measurements, we report frequency-dependent integrated IR-absorption coefficients for water in ringwoodite ranging from 78180 to 158880 L mol -1cm -2, depending upon frequency of the OH absorption. We further report a linear wavenumber IR calibration for H 2O quantification in hydrous ringwoodite across the Mg 2SiO 4-Fe 2SiO 4 solid solution, which will lead to more accurate estimations of the water content in both laboratory-grown and naturally occurring ringwoodites. Re-evaluation of the IR spectrum for a natural hydrous ringwoodite inclusion in diamond from the study of the crystal contains 1.43 ± 0.27 wt% H 2O, thus confirming near-maximum amounts of H 2O for this sample from the transition zone.« less

  6. Roles of calcitonin gene-related peptide in maintenance of gastric mucosal integrity and in enhancement of ulcer healing and angiogenesis.

    PubMed

    Ohno, Takashi; Hattori, Youichiro; Komine, Rie; Ae, Takako; Mizuguchi, Sumito; Arai, Katsuharu; Saeki, Takeo; Suzuki, Tatsunori; Hosono, Kanako; Hayashi, Izumi; Oh-Hashi, Yoshio; Kurihara, Yukiko; Kurihara, Hiroki; Amagase, Kikuko; Okabe, Susumu; Saigenji, Katsunori; Majima, Masataka

    2008-01-01

    The gastrointestinal tract is known to be rich in neural systems, among which afferent neurons are reported to exhibit protective actions. We tested whether an endogenous neuropeptide, calcitonin gene-related peptide (CGRP), can prevent gastric mucosal injury elicited by ethanol and enhance healing of acetic acid-induced ulcer using CGRP knockout mice (CGRP(-/-)). The stomach was perfused with 1.6 mmol/L capsaicin or 1 mol/L NaCl, and gastric mucosal injury elicited by 50% ethanol was estimated. Levels of CGRP in the perfusate were determined by enzyme immunoassay. Gastric ulcers were induced by serosal application of absolute acetic acid. Capsaicin inhibited injured area dose-dependently. Fifty percent ethanol containing capsaicin immediately increased intragastric levels of CGRP in wild-type (WT) mice, although 50% ethanol alone did not. The protective action of capsaicin against ethanol was completely abolished in CGRP(-/-). Preperfusion with 1 mol/L NaCl increased CGRP release and reduced mucosal damage during ethanol perfusion. However, 1 mol/L NaCl was not effective in CGRP(-/-). Healing of ulcer elicited by acetic acid in CGRP(-/-) mice was markedly delayed, compared with that in WT. In WT, granulation tissues were formed at the base of ulcers, and substantial neovascularization was induced, whereas those were poor in CGRP(-/-). Expression of vascular endothelial growth factor was more markedly reduced in CGRP(-/-) than in WT. CGRP has a preventive action on gastric mucosal injury and a proangiogenic activity to enhance ulcer healing. These results indicate that the CGRP-dependent pathway is a good target for regulating gastric mucosal protection and maintaining gastric mucosal integrity.

  7. Venom from the snake Bothrops asper Garman. Purification and characterization of three phospholipases A2

    PubMed Central

    Anagón, Alejandro C.; Molinar, Ricardo R.; Possani, Lourival D.; Fletcher, Paul L.; Cronan, John E.; Julia, Jordi Z.

    1980-01-01

    The water-soluble venom of Bothrops asper Garman (San Juan Evangelista, Veracruz, México) showed 15 polypeptide bands on polyacrylamide-gel electrophoresis. This material exhibited phospholipase, hyaluronidase, N-benzoyl-l-arginine ethyl hydrolase, N-benzoyl-l-tyrosine ethyl hydrolase and phosphodiesterase activity, but no alkaline phosphatase or acid phosphatase activity. Fractionation on Sephadex G-75 afforded seven protein fractions, which were apparently less toxic than the whole venom (LD50=4.3μg/g mouse wt.). Subsequent separation of the phospholipase-positive fraction (II) on DEAE-cellulose with potassium phosphate buffers (pH7.55) gave several fractions, two being phospholipase-positive (II.6 and II.8). These fractions were further purified on DEAE-cellulose columns with potassium phosphate buffers (pH8.6). Fraction II.8.4 was rechromatographed in the same DEAE-cellulose column, giving a pure protein designated phospholipase 1. The fraction II.6.3 was further separated by gel disc electrophoresis yielding two more pure proteins designated phospholipase 2 and phospholipase 3. Analysis of phospholipids hydrolysed by these enzymes have shown that all three phospholipases belong to type A2. Amino acid analysis has shown that phospholipase A2 (type 1) has 97 residues with a calculated mol.wt. of 10978±11. Phospholipase A2 (type 2) has 96 residues with a mol.wt. of 10959±11. Phospholipase A2 (type 3) has 266 residues with 16 half-cystine residues and a calculated mol.wt of 29042±31. Automated Edman degradation showed the N-terminal sequence to be: Asx-Leu-Trp-Glx-Phe-Gly-Glx-Met-Met-Ser-Asx-Val- Met-Arg-Lys-Asx-Val-Val-Phe-Lys-Tyr-Leu- for phospholipase A2 (type 2). ImagesFig. 1. PMID:7387631

  8. Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban.

    PubMed Central

    Fujii, J; Ueno, A; Kitano, K; Tanaka, S; Kadoma, M; Tada, M

    1987-01-01

    Complementary DNA (cDNA) clones specific for phospholamban of sarcoplasmic reticulum membranes have been isolated from a canine cardiac cDNA library. The amino acid sequence deduced from the cDNA sequence indicates that phospholamban consists of 52 amino acid residues and lacks an amino-terminal signal sequence. The protein has an inferred mol wt 6,080 that is in agreement with its apparent monomeric mol wt 6,000, estimated previously by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phospholamban contains two distinct domains, a hydrophilic region at the amino terminus (domain I) and a hydrophobic region at the carboxy terminus (domain II). We propose that domain I is localized at the cytoplasmic surface and offers phosphorylatable sites whereas domain II is anchored into the sarcoplasmic reticulum membrane. PMID:3793929

  9. Isolation and characterization of the CNBr peptides from the proteolytically derived N-terminal fragment of ovine opsin.

    PubMed Central

    Brett, M; Findlay, J B

    1983-01-01

    Ovine rhodopsin may be cleaved in situ by Staphylococcus aureus V8 proteinase into two membrane-bound fragments designated V8-L (27 000 mol.wt.) and V8-S (12 000 mol.wt.). After purification of the proteolysed complex by affinity chromatography in detergent using concanavalin A immobilized on Sepharose 4B, the two polypeptide fragments may be separated by gel-permeation chromatography on Sephadex LH-60. Digestion of the N-terminal-derived V8-L fragment with CNBr in 70% (v/v) trifluoroacetic acid resulted in a peptide mixture that could be fractionated by procedures involving gel-permeation chromatography in organic and aqueous solvents and the use of differential solubility. The complete or partial sequences of all ten peptides are reported. PMID:6224479

  10. Arsenic in marine tissues — The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Karadjova, Irina B.; Petrov, Panayot K.; Serafimovski, Ivan; Stafilov, Trajče; Tsalev, Dimiter L.

    2007-03-01

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant ( Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel ( Mytilus galloprovincialis) and Brown algae ( Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 °C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 °C and atomization temperature 2100 °C) with 1.5 μg Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely overcome by standard additions technique. Calibration by means of CRMs has given only semi-quantitative results. The limits of detection (3 σ) were in the range 0.5-1.2 mg kg - 1 As dry weight (wt.) for direct ETAAS analysis of extracts in both TMAH and MeOH. Within-run precision (RSD%) was 5-15% and 7-20% for TMAH and MeOH extracts at As levels 4-50 mg kg - 1 dry wt., respectively. The hydride active fraction of As species in extracts, i.e. the sum of toxicologically-relevant arsenic species (inorganic As(III), inorganic As(V), monomethylarsonate (MMA) and dimethylarsinate (DMA)) was determined by FI-HG-ETAAS in diluted tissue extracts. Arsine, monomethylarsine and dimethylarsine were generated from diluted TMAH and MeOH extracts in the presence of 0.06-0.09 mol l - 1 hydrochloric acid and 0.075 mol l - 1 L-cysteine. Collection, pyrolysis and atomization temperatures were 450, 500, 2100 and 2150 °C, respectively. The LODs for the determination of hydride forming fraction (arsenite + arsenate + MMA + DMA) in TMAH and MeOH extracts were in the range 0.003-0.02 mg kg - 1 As dry wt. Within-run precision (RSD%) was 3-12% and 3-7% for TMAH and methanol extracts at As levels 0.15-2.4 mg kg - 1 dry wt., respectively. Results for the hydride forming fraction of As in TMAH and MeOH extract as % from the certified value for total As (for CRMs) or vs. the total As in TMAH extract (for real marine samples) are generally in agreement.

  11. Incomplete APOBEC3G/F Neutralization by HIV-1 Vif Mutants Facilitates the Genetic Evolution from CCR5 to CXCR4 Usage.

    PubMed

    Alteri, Claudia; Surdo, Matteo; Bellocchi, Maria Concetta; Saccomandi, Patrizia; Continenza, Fabio; Armenia, Daniele; Parrotta, Lucia; Carioti, Luca; Costa, Giosuè; Fourati, Slim; Di Santo, Fabiola; Scutari, Rossana; Barbaliscia, Silvia; Fedele, Valentina; Carta, Stefania; Balestra, Emanuela; Alcaro, Stefano; Marcelin, Anne Genevieve; Calvez, Vincent; Ceccherini-Silberstein, Francesca; Artese, Anna; Perno, Carlo Federico; Svicher, Valentina

    2015-08-01

    Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-VifWT virus (i.e., with wild-type [WT] Vif protein), 81.A-VifE45G, or 81.A-VifK22E (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-VifWT- and 81.A-VifE45G-infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-VifK22E-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e-7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, -40.1 kcal/mol; G24E, -510 kcal/mol; E25K, -522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. H 2OCH 4NaClCO 2 inclusions from the footwall contact of the Tanco granitic pegmatite: Estimates of internal pressure and composition from microthermometry, laser Raman spectroscopy, and gas chromatography

    NASA Astrophysics Data System (ADS)

    Thomas, A. V.; Pasteris, J. D.; Bray, C. J.; Spooner, E. T. C.

    1990-03-01

    Fluid inclusions in tourmaline and quartz from the footwall contact of the Tanco granitic pegmatite, S.E. Manitoba were studied using microthermometry (MT), laser Raman spectroscopy (LRS) and gas chromatography (GC). CH 4-bearing, aqueous inclusions occur in metasomatic tourmaline of the footwall amphibolite contact. The internal pressures estimated from MT are lower than those obtained from LRS (mean difference = 54 ± 19 bars). The difference is probably due to errors in the measurement of Th CH 4 (V) and to the presence of clathrate at Th CH 4 (V) into which CO 2 had been preferentially partitioned. LRS estimates of pressure (125-184 bars) are believed to be more accurate. Aqueous phase salinities based on LRS estimates of pressure are higher than those derived using the data from MT: 10-20 eq. wt% NaCl. The composition of the inclusions determined by GC bulk analysis is 97.3 mol% H 2O, 2.2 mol% CH 4, 0.4 mol% CO 2, 250 ppm C 2H 6, 130 ppm N 2, 33 ppm C 3H 8, 11 ppm C 2H 4, and 3 ppm C 3H 6, plus trace amounts of C 4 hydrocarbons. The composition is broadly similar to that calculated from MT (92% H 2O and 8% CH 4, with 7 eq. wt% NaCl dissolved in the aqueous phase and 2 mol% CO 2 dissolved in the CH 4 phase), as expected due to the dominance of a single generation of inclusions in the tourmaline. However, two important differences in composition are: (i) the CH 4 to CO 2 ratio of this fluid determined by GC is 5.33, which is significantly lower than that indicated by MT (49.0); and (ii) the H 2O content estimated from MT is 92 mol% compared to 98 mol% from GC. GC analyses may have been contaminated by the presence of secondary inclusions in the tourmaline. However, the rarity of the latter suggests that they cannot be completely responsible for the discrepancy. The differences may be accounted for by the presence of clathrate during measurement of Th CH 4 (critical), which would reduce CO 2 relative to CH 4 in the residual fluid, and by errors in visually estimating vol% H 2O. The compositions of the primary inclusions in tourmaline are unlike any of those found within the pegmatite and indicate that the fluid was externally derived, probably of metamorphic origin. Inclusions in quartz of the border unit of the pegmatite are secondary and are either aqueous (18 to 30 eq. wt% CaCl 2; Th total = 184 ± 14° C) or carbonic. Tm CO 2 for the carbonic inclusions ranges from -57.5 to -65.4°C and is positively correlated with Th CO 2. Analyses of X CH 4 based on LRS agree within 5 mol% of those derived from MT and together indicate a range of compositions from 5 to 50 mol% CH 4 in the CO 2 phase. Bulk analysis by GC gives 99.0 mol% H 2O, 0.6 mol% CO 2, 0.4 mol% CH 4, 160 ppm N 2, 7 ppm C 2H 6, 4 ppm C 3H 8, and 2 ppm C 2H 4, with trace amounts of COS (carbonyl sulphide) and C 3H 6. The level of H 2O in the analysis is consistent with the dominance of the aqueous inclusions in these samples, and the CH4: CO2 ratios are consistent with estimates from MT and LRS. The preservation of variable ratios of CH 4:CO 2 in inclusions < 50 μm apart indicates that neither H 2 diffusion out of the inclusions nor reduction of fluids leaving the pegmatite were responsible for the more oxidized chemistries of the border unit inclusions relative to those in the tourmaline of the metasomatised amphibolite. The compositions of the inclusions in the quartz lie between those of the fluid trapped by the tourmaline (externally derived) and the measured composition of a CO 2-bearing pegmatitic fluid, which indicates that the secondary fluids trapped in the border unit quartz were produced by late mixing.

  13. 18β-Glycyrrhetinic acid preferentially blocks late Na current generated by ΔKPQ Nav1.5 channels

    PubMed Central

    Du, Yi-mei; Xia, Cheng-kun; Zhao, Ning; Dong, Qian; Lei, Ming; Xia, Jia-hong

    2012-01-01

    Aim: To compare the effects of two stereoisomeric forms of glycyrrhetinic acid on different components of Na+ current, HERG and Kv1.5 channel currents. Methods: Wild-type (WT) and long QT syndrome type 3 (LQT-3) mutant ΔKPQ Nav1.5 channels, as well as HERG and Kv1.5 channels were expressed in Xenopus oocytes. In addition, isolated human atrial myocytes were used. Two-microelectrode voltage-clamp technique was used to record the voltage-activated currents. Results: Superfusion of 18β-glycyrrhetinic acid (18β-GA, 1–100 μmol/L) blocked both the peak current (INa,P) and late current (INa,L) generated by WT and ΔKPQ Nav1.5 channels in a concentration-dependent manner, while 18α-glycyrrhetinic acid (18α-GA) at the same concentrations had no effects. 18β-GA preferentially blocked INa,L (IC50=37.2±14.4 μmol/L) to INa,P (IC50=100.4±11.2 μmol/L) generated by ΔKPQ Nav1.5 channels. In human atrial myocytes, 18β-GA (30 μmol/L) inhibited 47% of INa,P and 87% of INa,L induced by Anemonia sulcata toxin (ATX-II, 30 nmol/L). Superfusion of 18β-GA (100 μmol/L) had no effects on HERG and Kv1.5 channel currents. Conclusion: 18β-GA preferentially blocked the late Na current without affecting HERG and Kv1.5 channels. PMID:22609834

  14. Tensile and compressive creep behavior of extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240; Wang, Q.D., E-mail: wangqudong@sjtu.edu.cn

    2015-01-15

    The tensile and compressive creep behavior of an extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy was investigated at temperatures ranging from 200 °C to 300 °C and under stresses ranging from 30 MPa to 120 MPa. There existed an asymmetry in the tensile and compressive creep properties. The minimum creep rate of the alloy was slightly greater in tension than in compression. The measured values of the transient strain and initial creep rate in compression were greater than those in tension. The creep stress exponent was approximately 2.5 at low temperatures (T < 250 °C) and 3.4 at higher temperatures both in tensionmore » and in compression. The compression creep activation energy at low temperatures and high temperatures was 83.4 and 184.3 kJ/mol respectively, while one activation energy (184 kJ/mol) represented the tensile–creep behavior over the temperature range examined. Dislocation creep was suggested to be the main mechanism in tensile creep and in the high-temperature regime in compressive creep, while grain boundary sliding was suggested to dominate in the low-temperature regime in compressive creep. Precipitate free zones were observed near grain boundaries perpendicular to the loading direction in tension and parallel to the loading direction in compression. Electron backscattered diffraction analysis revealed that the texture changed slightly during creep. Non-basal slip was suggested to contribute to the deformation after basal slip was introduced. In the tensile–creep ruptured specimens, intergranular cracks were mainly observed at general high-angle boundaries. - Highlights: • Creep behavior of an extruded Mg–RE alloy was characterized by EBSD. • T5 aging treatment enhanced the tension–compression creep asymmetry. • The grains grew slightly during tensile creep, but not for compressive creep. • Precipitate free zones (PFZs) were observed at specific grain boundaries. • Intergranular fracture was dominant and cracks mainly originated at GHABs.« less

  15. High performance lignin-acrylonitrile polymer blend materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naskar, Amit K.; Tran, Chau D.

    A polymer blend material comprising: (i) a lignin component having a weight-average molecular weight of up to 1,000,000 g/mol; and (ii) an acrylonitrile-containing copolymer rubber component comprising acrylonitrile units in combination with diene monomer units, and having an acrylonitrile content of at least 20 mol %; wherein said lignin component is present in an amount of at least 5 wt % and up to about 95 wt % by total weight of components (i) and (ii); and said polymer blend material possesses a tensile yield stress of at least 5 MPa, or a tensile stress of at least 5 MPamore » at 10% elongation, or a tensile stress of at least 5 MPa at 100% elongation. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.« less

  16. Posttransfusion purpura associated with an autoantibody directed against a previously undefined platelet antigen.

    PubMed

    Stricker, R B; Lewis, B H; Corash, L; Shuman, M A

    1987-05-01

    Although alloantibody against the PLA1 platelet antigen is usually found in patients with posttransfusion purpura (PTP), the mechanism of destruction of the patient's own PLA1-negative platelets is unexplained. We used a sensitive immunoblot technique to detect antiplatelet antibodies in a patient with classic PTP. The patient's acute-phase serum contained antibodies against three proteins present in control (PLA1-positive) platelets: an antibody that bound to a previously unrecognized platelet protein of mol wt 120,000 [glycoprotein (GP) 120], antibodies that bound to PLA1 (mol wt 90,000), and an epitope of GP IIb (mol wt 140,000). The antibodies against PLA1 and GP IIb did not react with the patient's own PLA1-negative platelets, control PLA1-negative platelets, or thrombasthenic platelets. In contrast, the antibody against GP 120 recognized this protein in all three platelet preparations, but not in Bernard-Soulier or Leka (Baka)-negative platelets. Antibody against GP 120 was not detected in the patient's recovery serum, although the antibodies against PLA1 and GP IIb persisted. F(ab)2 prepared from the patient's acute-phase serum also bound to GP 120. These results suggest that in PTP, transient autoantibody production may be responsible for autologous (PLA1-negative) platelet destruction. In addition, alloantibodies against more than one platelet alloantigen may be found in this disease. The nature of the GP 120 autoantigen and the GP IIb-related alloantigen defined by our patient's serum remains to be determined.

  17. The thermal behaviour of the co-combustion between paper sludge and rice straw.

    PubMed

    Xie, Zeqiong; Ma, Xiaoqian

    2013-10-01

    The thermal characteristics and kinetics of paper sludge, rice straw and their blends were evaluated under combustion condition. The paper sludge was blended with rice straw in the range of 10-95 wt.% to investigate their co-combustion behaviour. There was significant interaction between rice straw and paper sludge in high temperature. The combustion of paper sludge and rice straw could be divided into two stages. The value of the activation energy obtained by the Friedman and the Ozawa-Flynn-Wall (OFW) first decreased and then increased with the conversion degree rising. The average activation energy did not monotonically decrease with increasing the percentage of rice straw in the blends. When the percentage of rice straw in the blends was 80%, the value of the average activation energy was the smallest, which was 139 kJ/mol obtained by OFW and 132 kJ/mol obtained by Friedman, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Significance of hydrous silicate lamellae in pyrope-rich garnets from the Garnet Ridge in the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Ogasawara, Y.; Sakamaki, K.; Sato, Y.

    2014-12-01

    Pyrope-rich garnets originated from the upper mantle underneath the Colorado Plateau occur at the Garnet Ridge. These garnets contain the following lamellae of hydrous and anhydrous minerals; Rt, Ilm, crichtonites, Cr-Spl, Amp, Cpx, Chl, rarely Apt, srilankite and carmichealite. The origin of these lamellae in the garnets is controversial; exsolved origin or epitaxial growth. We emphasize here the close relations between the presence of hydrous lamellae and the OH concentrations in the host garnets. Lamella phases were identified with a standard-less quantitative EDS system and a laser Raman spectrometer with Ar+ laser (514.5 nm). OH concentrations in garnets were quantitated on the basis of IR absorption spectra of garnet by micro FT-IR method using IR absorption coefficient (8770 L/mol/cm2, Katayama et al., 2006). Pyrope-rich reddish brown garnet (group B by Sato et al., AGU2014F) has large variations of major chemical compositions (Prp: 49-76, Alm: 6-43, Grs: 6-26 mol%), and OH contents (2-177 ppm wt. H2O). Among this group garnets, Ca-rich ones (Prp: 49-66; Alm: 18-28; Grs: 16-26 mol%) have lamellae of both hydrous (Amp and Chl) and anhydrous (Rt, Ilm, and Cpx) minerals. Amp and Chl lamellae are pargasitic amphibole and clinochlore, respectively, and their host garnets contain significantly low amounts of OH (2-42 ppm). Cr and pyrope-rich garnet (group A by Sato et al., AGU2014F) has chemical compositions of Prp: 67-74, Alm: 13-18, Grs: 7-11 mol% with Cr2O3 up to 5.9 wt.%, and contains lamellae of anhydrous minerals (Rt, Ilm, crichtonites, and Cr-Spl). The host garnet with these anhydrous lamellae contains a little higher OH ranging 24 to 115 ppm. Summarizing the present results, the OH contents of the host garnets depend on the presence of hydrous silicate lamella phase; OH in the garnet with hydrous silicate lamellae is lower than that in the garnet with anhydrous lamellae. The precursor OH incorporated in the host garnet structure was exsolved as hydrous silicate lamellae.

  19. Thermodynamics and performance of the Mg-H-F system for thermochemical energy storage applications.

    PubMed

    Tortoza, Mariana S; Humphries, Terry D; Sheppard, Drew A; Paskevicius, Mark; Rowles, Matthew R; Sofianos, M Veronica; Aguey-Zinsou, Kondo-Francois; Buckley, Craig E

    2018-01-24

    Magnesium hydride (MgH 2 ) is a hydrogen storage material that operates at temperatures above 300 °C. Unfortunately, magnesium sintering occurs above 420 °C, inhibiting its application as a thermal energy storage material. In this study, the substitution of fluorine for hydrogen in MgH 2 to form a range of Mg(H x F 1-x ) 2 (x = 1, 0.95, 0.85, 0.70, 0.50, 0) composites has been utilised to thermodynamically stabilise the material, so it can be used as a thermochemical energy storage material that can replace molten salts in concentrating solar thermal plants. These materials have been studied by in situ synchrotron X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, temperature-programmed-desorption mass spectrometry and Pressure-Composition-Isothermal (PCI) analysis. Thermal analysis has determined that the thermal stability of Mg-H-F solid solutions increases proportionally with fluorine content, with Mg(H 0.85 F 0.15 ) 2 having a maximum rate of H 2 desorption at 434 °C, with a practical hydrogen capacity of 4.6 ± 0.2 wt% H 2 (theoretical 5.4 wt% H 2 ). An extremely stable Mg(H 0.43 F 0.57 ) 2 phase is formed upon the decomposition of each Mg-H-F composition of which the remaining H 2 is not released until above 505 °C. PCI measurements of Mg(H 0.85 F 0.15 ) 2 have determined the enthalpy (ΔH des ) to be 73.6 ± 0.2 kJ mol -1 H 2 and entropy (ΔS des ) to be 131.2 ± 0.2 J K -1 mol -1 H 2 , which is slightly lower than MgH 2 with ΔH des of 74.06 kJ mol -1 H 2 and ΔS des = 133.4 J K -1 mol -1 H 2 . Cycling studies of Mg(H 0.85 F 0.15 ) 2 over six absorption/desorption cycles between 425 and 480 °C show an increased usable cycling temperature of ∼80 °C compared to bulk MgH 2 , increasing the thermal operating temperatures for technological applications.

  20. Solubilization and other studies on adenylate cyclase of baker's yeast.

    PubMed Central

    Varimo, K; Londesborough, J

    1976-01-01

    1. Adenylate cyclase of Saccharomyces cerevisiae was sedimented from mechanically disintegrated preparations of yeast over an unusually wide range of centrifugal forces. 2. The enzyme was readily solubilized by Ficoll and by Lubrol PX. Lubrol caused a 2-fold activation. 3. Both particle-bound and Lubrol-solubilized enzyme had an apparent Km for ATP of 1.6 mM in the presence of 0.4 mM-cyclic AMP and 5 mM-MnCl2 at pH 6.2 and 30 degrees C. 4. The Lubrol-solubilized enzyme behaved on gel filtration as a monodisperse protein with an apparent mol.wt. of about 450000. PMID:793584

  1. Physiological role of AOX1a in photosynthesis and maintenance of cellular redox homeostasis under high light in Arabidopsis thaliana.

    PubMed

    Vishwakarma, Abhaypratap; Bashyam, Leena; Senthilkumaran, Balasubramanian; Scheibe, Renate; Padmasree, Kollipara

    2014-08-01

    As plants are sessile, they often face high light (HL) stress that causes damage of the photosynthetic machinery leading to decreased photosynthesis. The importance of alternative oxidase (AOX) in optimizing photosynthesis is well documented. In the present study, the role of AOX in sustaining photosynthesis under HL was studied using AOX1a knockout mutants (aox1a) of Arabidopsis thaliana. Under growth light (GL; 50 μmol photons m(-2) s(-1)) conditions, aox1a plants did not show any changes in photosynthetic parameters, NAD(P)/H redox ratios, or respiratory O2 uptake when compared to wild-type (WT). Upon exposure to HL (700 μmol photons m(-2) s(-1)), respiratory rates did not vary between WT and aox1a. But, photosynthetic parameters related to photosystem II (PSII) and NaHCO3 dependent O2 evolution decreased, while the P700 reduction state increased in aox1a compared to WT. Further, under HL, the redox state of cellular NAD(P)/H pools increased with concomitant rise in reactive oxygen species (ROS) and malondialdehyde (MDA) content in aox1a compared to WT. In presence of HL, the transcript levels of several genes related to antioxidant, malate-oxaloacetate (malate-OAA) shuttle, photorespiratory and respiratory enzymes was higher in aox1a compared to WT. Taken together, these results demonstrate that under HL, in spite of significant increase in transcript levels of several genes mentioned above to maintain cellular redox homeostasis and minimize ROS production, Arabidopsis plants deficient in AOX1a were unable to sustain photosynthesis as is the case in WT plants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Experimental and Theoretical Studies on the Viscosity-Structure Correlation for High Alumina-Silicate Melts

    NASA Astrophysics Data System (ADS)

    Talapaneni, Trinath; Yedla, Natraj; Pal, Snehanshu; Sarkar, Smarajit

    2017-06-01

    Blast furnaces are encountering high Alumina (Al2O3 > 25 pct) in the final slag due to the charging of low-grade ores. To study the viscosity behavior of such high alumina slags, synthetic slags are prepared in the laboratory scale by maintaining a chemical composition of Al2O3 (25 to 30 wt pct) CaO/SiO2 ratio (0.8 to 1.6) and MgO (8 to 16 wt pct). A chemical thermodynamic software FactSage 7.0 is used to predict liquidus temperature and viscosity of the above slags. Experimental viscosity measurements are performed above the liquidus temperature in the range of 1748 K to 1848 K (1475 °C to 1575 °C). The viscosity values obtained from FactSage closely fit with the experimental values. The viscosity and the slag structure properties are intent by Fourier Transform Infrared (FTIR) and Raman spectroscopy. It is observed that increase in CaO/SiO2 ratio and MgO content in the slag depolymerizes the silicate structure. This leads to decrease in viscosity and activation energy (167 to 149 kJ/mol) of the slag. Also, an addition of Al2O3 content increases the viscosity of slag by polymerization of alumino-silicate structure and activation energy from 154 to 161 kJ/mol. It is witnessed that the activation energy values obtained from experiment closely fit with the Shankar model based on Arrhenius equation.

  3. Measuring CO 2 and N 2 O Mass Transfer into GAP-1 CO 2 –Capture Solvents at Varied Water Loadings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whyatt, Greg A.; Zwoster, Andy; Zheng, Feng

    This paper investigates the CO 2 and N 2 O absorption behavior in the water-lean gamma amino propyl (GAP)-1/TEG solvent system using a wetted-wall contactor. Testing was performed on a blend of GAP-1 aminosilicone in triethylene glycol at varied water loadings in the solvent. Measurements were made with CO 2 and N 2 O at representative lean (0.04 mol CO 2/mol alkalinity), middle (0.13 mol CO 2 /mol alkalinity) and rich (0.46 mol CO 2 /mol alkalinity) solvent loadings at 0, 5, 10 and 15 wt% water loadings at 40, 60 and 80C° and N 2 O at (0.08-0.09 molmore » CO 2 /mol alkalinity) at 5 wt% water at 40, 60 and 80C°. CO 2 flux was found to be non-linear with respect to log mean pressure driving force (LMPD). Liquid-film mass transfer coefficients (k'g) were calculated by subtracting the gas film resistance (determined from a correlation from literature) from the overall mass transfer measurement. The resulting k'g values for CO 2 and N 2 O in GAP-1/TEG mixtures were found to be higher than that of 5M aqueous monoethanolamine under comparable driving force albeit at higher solvent viscosities. The k'g values for CO 2 were also found to decrease with increasing solvent water content and increase with a decrease in temperature. These observations indicate that mass transfer of CO 2 in GAP-1/TEG is linked to the physical solubility of CO 2 , which is higher in organic solvents compared to water. This paper expands on the understanding of the unique mass transfer behavior and kinetics of CO 2 capture in water-lean solvents.« less

  4. Minimization and Optimization of Designed β-Hairpin Folds

    PubMed Central

    Andersen, Niels H.; Olsen, Katherine A.; Fesinmeyer, R. Matthew; Tan, Xu; Hudson, F. Michael; Eidenschink, Lisa A.; Farazi, Shabnam R.

    2011-01-01

    Mimimized β hairpins have provided additional data on the geometric preferences of Trp interactions in TW-loop-WT motifs. This motif imparts significant fold stability to peptides as short as 8 residues. High-resolution NMR structures of a 16- (KKWTWNPATGKWTWQE, ΔGU298 ≥ +7 kJ/mol) and 12-residue (KTWNPATGKWTE, ΔGU298 = +5.05 kJ/mol) hairpin reveal a common turn geometry and edge-to-face (EtF) packing motif and a cation-π interaction between Lys1 and the Trp residue nearest the C-terminus. The magnitude of a CD exciton couplet (due to the two Trp residues) and the chemical shifts of a Trp Hε3 site (shifted upfield by 2.4 ppm due to the EtF stacking geometry) provided near-identical measures of folding. CD melts of representative peptides with the –TW-loop-WT- motif provided the thermodynamic parameters for folding, which reflect enthalpically driven folding at laboratory temperatures with a small ΔCp for unfolding (+420 JK−1/mol). In the case of Asx-Pro-Xaa-Thr-Gly-Xaa loops, mutations established that the two most important residues in this class of direction-reversing loops are Asx and Gly: mutation to alanine is destabilizing by about 6 and 2 kJ/mol, respectively. All indicators of structuring are retained in a minimized 8-residue construct (Ac-WNPATGKW-NH2) with the fold stability reduced to ΔGU278 = −0.7 kJ/mol. NMR and CD comparisons indicate that -TWXNGKWT- (X = S, I) sequences also forms the same hairpin-stabilizing W/W interaction. PMID:16669679

  5. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    PubMed

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-09-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes.

  6. Effective and Durable Co Single Atomic Cocatalysts for Photocatalytic Hydrogen Production.

    PubMed

    Zhao, Qi; Yao, Weifeng; Huang, Cunping; Wu, Qiang; Xu, Qunjie

    2017-12-13

    This research reports for the first time that single cobalt atoms anchored in nitrogen-doped graphene (Co-NG) can serve as a highly effective and durable cocatalyst for visible light photocatalytic hydrogen production from water. Results show that, under identical conditions, the hydrogen production rate (1382 μmol/h) for 0.25 wt % Co-NG-loaded CdS photocatalyst (0.25 wt % Co-NG/CdS) is 3.42 times greater than that of nitrogen-doped graphene (NG) loaded CdS photocatalyst (NG/CdS) and about 1.3 times greater than the greatest hydrogen production rate (1077 μmol/h) for 1.5 wt % Pt nanoparticle loaded CdS photocatalyst (1.5 wt % Pt-NPs/CdS). At 420 nm irradiation, the quantum efficiency of the 0.25 wt % Co-NG/CdS photocatalyst is 50.5%, the highest efficiency among those literature-reported non-noble metal cocatalysts. The Co-NG/CdS nanocomposite-based photocatalyst also has an extended durability. No activity decline was detected during three cyclic photocatalytic life span tests. The very low cocatalyst loading, along with the facile preparation technology for this non-noble metal cocatalyst, will significantly reduce the hydrogen production costs and finally lead to the commercialization of the solar catalytic hydrogen production process. Based on experimental results, we conclude that Co-NG can successfully replace noble metal cocatalysts as a highly effective and durable cocatalyst for renewable solar hydrogen production. This finding will point to a new way for the development of highly effective, long life span, non-noble metal-based cocatalysts for renewable and cost-effective hydrogen production.

  7. THE RESEARCH ON THERMAL PROPERTIES AND HYDROPHOBILITY OF THE NATIVE STARCH/HYDROLYSIS STARCH BLENDS WITH TREATED CaCO{sub 3} POWDER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C.-I; Huang, C.-Y.

    In this research, hydrolysis starch was added into the starch blends to study the thermal properties. The enthalpy of blends had a significant decrease to 109J/g as content of treated CaCO{sub 3} increased to 5wt%. The modified starch was degraded slightly to produce glucose in the hydrolysis treatment. The amount of glucose in native starch and hydrolysis starch was 0.09 {mu}mol and 0.14 {mu}mol by the DNS measurement. Moreover, CaCO{sub 3} treated with titanium coupling agent was also added to improve miscibility and hydrophobility in the starch blends. The contact angle of the blends increased from 60 deg. to 95more » deg. when 15wt% treated CaCO{sub 3} was added. Treated CaCO{sub 3} was confirmed to improve the hydrophobility of starch blends effectively.« less

  8. INTERRELATION BETWEEN ACTIVATION AND POLYMERIZATION IN GRAMICIDIN S BIOSYNTHESIS*

    PubMed Central

    Kleinkauf, Horst; Gevers, Wieland; Lipmann, Fritz

    1969-01-01

    The nucleic acid-independent biosynthesis of the peptide antibiotic gramicidin S results from the interaction of an enzyme bearing phenylalanine in activated form with a polyenzyme system charged with the other four component amino acids. After reaction with ATP, magnesium, and any or all of its amino acid substrates, the polyenzyme system (mol wt 280,000) yields complexes containing AMP and the respective amino acids in the proportion of 1 to 2. Similar complexes are formed by another enzyme (mol wt 100,000) on incubation with ATP, magnesium, and L- or D-phenylalanine. The amino acids are probably bound as aminoacyl adenylates and then transferred to another function on the enzyme. Initiation of polymerization is achieved by combination of the two complexes. No ATP is needed for completion of synthesis, and free intermediates are not released. Enzyme organization and specificity are responsible for the ordering of the amino acid sequence. PMID:5253659

  9. Isolation and characterization of a new clotting factor from Bothrops jararacussu (jararacuçu) venom.

    PubMed

    Andrião-Escarso, S H; Sampaio, S V; Cunha, O A; Marangoni, S; Oliveira, B; Giglio, J R

    1997-07-01

    A detailed procedure for the isolation of a new clotting enzyme from the venom of Bothrops jararacussu (common name jararacuçu) is described. The estimated mol. wt of the native protein was 30,100 but 37,500 after reduction by dithiothreitol. Two major close bands corresponding to pI 5.18 and 5.20 were detected by electrofocusing but, after methanolysis, a single band focused at pI 8.20. The mol. wt of the protein moiety of this glycoprotein was 28,500, showing V-V-G-A-D-N-C-N-F-N... as N-terminal sequence. The content of neutral sugar was 4.8% and that of total sugars 5.3%. This clotting factor degraded only the A alpha-chain of the fibrinogen molecule. The stability of the clot, when produced in the presence of aprotinin opens new uses for snake clotting enzymes in the production of fibrin glue.

  10. Enhancing hydrogen storage performances of MgH2 by Ni nano-particles over mesoporous carbon CMK-3.

    PubMed

    Chen, Gang; Zhang, Yao; Chen, Jian; Guo, Xinli; Zhu, Yunfeng; Li, Liquan

    2018-06-29

    Nano-dispersed Ni particles over mesoporous carbon material CMK-3 (Ni/CMK-3) was fabricated by means of impregnation-reduction strategy using precursor NiCl 2  · 6H 2 O, which is beneficial to improving the de/rehydrogenation performances of MgH 2 . The dehydrogenation onset temperature of MgH 2 -Ni/CMK-3 is significantly lowered by 170 K from that of pristine MgH 2 (around 603 K). Totally 5.9 wt% of hydrogen absorption capacity is liberated within 1 h at a temperature of 423 K under a pressure of 3 MPa. This composite can absorb 3.9 wt% hydrogen even at a temperature of 328 K under 3 MPa H 2 . Activation energy values of both dehydrogenation (43.4 kJ mol -1 ) and rehydrogenation (37.4 kJ mol -1 ) for MgH 2 -Ni/CMK-3 are greatly enhanced from those of as-milled MgH 2 . Ni/CMK-3 also slightly destabilizes the dehydrogenation of MgH 2 by 1.5 kJ mol [Formula: see text] The enhanced performances can be attributed to the synergistic effects of both destabilization and activation from nano-dispersed Ni particles.

  11. Eco-friendly synthesis of gelatin-capped bimetallic Au-Ag nanoparticles for chemiluminescence detection of anticancer raloxifene hydrochloride.

    PubMed

    Alarfaj, Nawal A; El-Tohamy, Maha F

    2016-09-01

    This study described the utility of green analytical chemistry in the synthesis of gelatin-capped silver, gold and bimetallic gold-silver nanoparticles (NPs). The preparation of nanoparticles was based on the reaction of silver nitrate or chlorauric acid with a 1.0 wt% aqueous gelatin solution at 50°C. The gelatin-capped silver, gold and bimetallic NPs were characterized using transmission electron microscopy, UV-vis, X-ray diffraction and Fourier transform infrared spectroscopy, and were used to enhance a sensitive sequential injection chemiluminescence luminol-potassium ferricyanide system for determination of the anticancer drug raloxifene hydrochloride. The developed method is eco-friendly and sensitive for chemiluminescence detection of the selected drug in its bulk powder, pharmaceutical injections and biosamples. After optimizing the conditions, a linear relationship in the range of 1.0 × 10(-9) to 1.0 × 10(-1)  mol/L was obtained with a limit of detection of 5.0 × 10(-10)  mol/L and a limit of quantification of 1.0 × 10(-9)  mol/L. Statistical treatment and method validation were performed based on ICH guidelines. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Spectral properties and anti-Stokes luminescence of TeO2-BaF2:Ho3+, Ho3+/Yb3+ ceramics and glass excited by 1.9-μm radiation of a Tm:LiYF4 laser

    NASA Astrophysics Data System (ADS)

    Savikin, A. P.; Egorov, A. S.; Budruev, A. V.; Perunin, I. Yu.; Krasheninnikova, O. V.; Grishin, I. A.

    2017-07-01

    We demonstrate the up-conversion of Tm:LiYF4 infrared (IR) laser radiation with 1908-nm wavelength into visible light with a spectral maximum at 650 nm by ceramics with a composition of (100 - x)TeO2- xBaF2 - 1 wt % HoF3- yYbF3, where x = 20, 30, or 40 mol % and y = 0 or 0.5 wt %. The samples of 60TeO2-40BaF2 - 1 wt % HoF3 - 0.5 wt % YbF3 exhibited anti-Stokes luminescence at a threshold radiation power density of 1.0-1.5 W cm-2.

  13. Contrasting the effects of proton irradiation on dendritic complexity of subiculum neurons in wild type and MCAT mice.

    PubMed

    Chmielewski, Nicole N; Caressi, Chongshan; Giedzinski, Erich; Parihar, Vipan K; Limoli, Charles L

    2016-06-01

    Growing evidence suggests that radiation-induced oxidative stress directly affects a wide range of biological changes with an overall negative impact on CNS function. In the past we have demonstrated that transgenic mice over-expressing human catalase targeted to the mitochondria (MCAT) exhibit a range of neuroprotective phenotypes following irradiation that include improved neurogenesis, dendritic complexity, and cognition. To determine the extent of the neuroprotective phenotype afforded by MCAT expression in different hippocampal regions, we analyzed subiculum neurons for changes in neuronal structure and synaptic integrity after exposure to low dose (0.5 Gy) 150 MeV proton irradiation. One month following irradiation of WT and MCAT mice, a range of morphometric parameters were quantified along Golgi-Cox impregnated neurons. Compared with WT mice, subiculum neurons from MCAT mice exhibited increased trends (albeit not statistically significant) toward increased dendritic complexity in both control and irradiated cohorts. However, Sholl analysis of MCAT mice revealed significantly increased arborization of the distal dendritic tree, indicating a protective effect on secondary and tertiary branching. Interestingly, radiation-induced increases in postsynaptic density protein (PSD-95) puncta were not as pronounced in MCAT compared with WT mice, and were significantly lower after the 0.5 Gy dose. As past data has linked radiation exposure to reduced dendritic complexity, elevated PSD-95 and impaired cognition, reductions in mitochondrial oxidative stress have proven useful in ameliorating many of these radiation-induced sequelae. Data presented here shows similar trends, and again points to the potential benefits of reducing oxidative stress in the brain to attenuate radiation injury. Environ. Mol. Mutagen. 57:364-371, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Major immunoglobulin classes of the echidna (Tachyglossus aculeatus)

    PubMed Central

    Atwell, J. L.; Marchalonis, J. J.; Ealey, E. H. M.

    1973-01-01

    The Australian echidna responds to the antigen Salmonella adelaide flagella by producing antibodies characterized by mol. wt of 900,000 and 150,000. After cleavage of interchain disulphide bonds, both the high and low mol. wt immunoglobulins can be resolved into light and heavy polypeptide chains. In both cases, the light chains resemble those of other vertebrate immunoglobulins in size (22,500 Daltons) and electrophoretic mobility. The 900,000 Dalton immunoglobulin contains heavy chains similar to human μ chains in size (70,000 Daltons) and electrophoretic mobility. The 150,000 Dalton immunoglobulin contains a different class of heavy chain, similar in size (50,000 Daltons) and electrophoretic mobility to human γ chains. Proportional mass contributions of the light and heavy chains to the intact molecule suggest the structure of the intact molecules could be represented by (L2, μ2)5 and (L2, γ2) for the high and low mol. wt immunoglobulins respectively. These configurations are similar to those described for human γM and γG immunoglobulins. The results are relevant to theories of the evolution of the different classes of immunoglobulins. While the echidna is distinctly more primitive than eutherian mammals and still retains structural features characteristic of reptiles, its major immunoglobulin classes are very similar to human IgM and IgG. The striking similarities between the γ-like heavy chain of the echnidna and human IgG heavy chains suggest that the echidna may be the first species in which a γ chain gene directly homologous to mammalian γ chain genes is expressed. ImagesFIG. 4 PMID:4761634

  15. Occurrence of tetrodotoxin-binding high molecular weight substances in the body fluid of shore crab (Hemigrapsus sanguineus).

    PubMed

    Shiomi, K; Yamaguchi, S; Kikuchi, T; Yamamori, K; Matsui, T

    1992-12-01

    The shore crab (Hemigrapsus sanguineus) is highly resistant to tetrodotoxin (TTX) although it contains no detectable amount of TTX (less than 5 MU/g, where 1 MU is defined as the amount of TTX killing a 20 g mouse in 30 min). Its body fluid was examined for neutralizing effects against the lethal activity of TTX. When the mixture of the body fluid and TTX was injected i.p. into mice, the lethal activity of TTX was significantly reduced; 1 ml of the body fluid was evaluated to neutralize 3.6-4.0 MU of TTX. Higher neutralizing activity (7.2-12.5 MU/ml of the body fluid) was exhibited by i.v. administration of the body fluid into mice before or after i.p. challenge of TTX. The lethal effect of paralytic shellfish poisons was not counteracted by the body fluid. Analysis by gel filtration on Sepharose 6B revealed that the body fluid contained TTX-binding high mol. wt substances (> 2,000,000) responsible for the neutralizing activity of the body fluid against TTX, which accounts for the high resistibility of the crab to TTX. When the crude toxin extracted from the liver of puffer (Takifugu niphobles) was mixed with the body fluid and chromatographed on Sepharose 6B, almost pure TTX was obtained from the fractions containing the TTX-binding high mol. wt substances, suggesting that the TTX-binding high mol. wt substances could be useful in purification of TTX from biological samples.

  16. Purification and properties of arylsulphatase A from rabbit testis.

    PubMed Central

    Yang, C H; Srivastava, P N

    1976-01-01

    Rabbit testis arylsulphatase A was purified 140-fold with a recovery of 20% from detergent extracts of an acetone-dried powder by using DE-52 cellulose column chromatography, gel filtration on Sephadex G-200 and preparative isoelectric focusing. The purified enzyme showed one major band with one minor contaminant on electrophoresis in a 7.5% (w/v) polyacrylamide gel at pH8.3. On sodiumdodecyl sulphate/polyacrylamidegel electrophoresis, a single major band was observed with minor contaminants. The final preparation of enzyme was free from general proteolytic, esterase, hyaluronidase, beta-glucuronidase and beta-galactosidase activities. Rabbit testicular arylsulphatase A exists as a dimer of mol.wt. 110000 at pH7.1. At pH5.0 the enzyme is a tetramer of mol.wt. 220000. Arylsulphatase A appears to consist of two identical subunits of mol.wt. 55000 each. The highly purified enzyme has pI4.6. The enzyme hydrolyses p-nitrocatechol sulphate with Km and Vmax, of 4.1 mM and 80nmol/min respectively, but has no activity toward p-nitrophenyl sulphate. The pH optimum of the enzyme varies with the incubation time. By applying Sephacex G-200 chromatography and preparative isoelectric focusing, one form of enzyme was obtained. The enzyme has properites common to arylsulphatase A of other sources with respect to the anomalous time-activity relationship, pI, inhibition by PO42-, SO32- and Ag+ ions and substrate affinity to p-nitrocatechol sulphate. However, the enzyme shows the temperature optimum of arylsulphatase B of other species. PMID:11773

  17. Probing the oxidation kinetics of small permalloy particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiaolei; Song, Xiao; Yin, Shiliu

    2017-02-15

    The oxidation of permalloys is important to apply in a wide range. The oxidation and diffusion mechanisms of small permalloy particles with different Fe content are studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. Fe{sub 2}O{sub 3}/(Ni, Fe){sub 3}O{sub 4} plays a key role in the morphology evolution and diffusion mechanisms of small NiFe particles upon oxidation. The activation energies of grain boundary diffusion for the NiFe alloys increase from 141 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to ~50 wt%. We have developed a diffusion process resolved temperature programed oxidation (PR-TPO) analysis method.more » Three diffusion mechanisms have been recognized by using this method: In addition to the grain boundary diffusion and lattice diffusion, our TGA analysis suggests that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} induces diffusion change and affects the diffusion process at the intermediate temperature. Relevant oxidation kinetics and diffusion mechanisms are discussed. - Graphical abstract: The oxidation mechanisms of small Permalloy particles with different Fe content is studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. The activation energies of grain boundary diffusion for the NiFe alloys increases from 140 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to 50 wt% as determined by TGA. We have developed a diffusion process resolved temperature programed oxidation (DPR-TPO) analysis method, and three diffusion mechanisms have been recognized by using this method: In addition to the well-known grain boundary diffusion and lattice diffusion, we found that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} will induce diffusion changes and affect the diffusion process at the intermediate temperature. The diffusion processes can be characterized by the corresponding characteristic peak temperatures in temperature programmed oxidation (TPO) analysis. This work not only give insight knowledge about the oxidation and diffusion processes of small permalloy particles, but also, provides a useful tool for analyzing solid-gas reactions of other materials. - Highlights: • The oxidation kinetics of small NiFe particles were studied by using thermoanalysis. • Grain boundary, lattice, and phase conversion induced diffusions were recognized. • The activation energy of oxidation increases with the Fe content in the alloy. • Each diffusion process corresponds to a characteristic temperature in TPO analysis. • NiFe alloys with ~5–10 wt% Fe content have the lowest oxidation rates.« less

  18. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components.

    PubMed

    Ansah, Emmanuel; Wang, Lijun; Shahbazi, Abolghasem

    2016-10-01

    The thermogravimetric and calorimetric characteristics during pyrolysis of wood, paper, textile and polyethylene terephthalate (PET) plastic in municipal solid wastes (MSW), and co-pyrolysis of biomass-derived and plastic components with and without torrefaction were investigated. The active pyrolysis of the PET plastic occurred at a much higher temperature range between 360°C and 480°C than 220-380°C for the biomass derived components. The plastic pyrolyzed at a heating rate of 10°C/min had the highest maximum weight loss rate of 18.5wt%/min occurred at 420°C, followed by 10.8wt%/min at 340°C for both paper and textile, and 9.9wt%/min at 360°C for wood. At the end of the active pyrolysis stage, the final mass of paper, wood, textile and PET was 28.77%, 26.78%, 21.62% and 18.31%, respectively. During pyrolysis of individual MSW components at 500°C, the wood required the least amount of heat at 665.2J/g, compared to 2483.2J/g for textile, 2059.4J/g for paper and 2256.1J/g for PET plastic. The PET plastic had much higher activation energy of 181.86kJ/mol, compared to 41.47kJ/mol for wood, 50.01kJ/mol for paper and 36.65kJ/mol for textile during pyrolysis at a heating rate of 10°C/min. H2O and H2 peaks were observed on the MS curves for the pyrolysis of three biomass-derived materials but there was no obvious H2O and H2 peaks on the MS curves of PET plastic. There was a significant interaction between biomass and PET plastic during co-pyrolysis if the biomass fraction was dominant. The amount of heat required for the co-pyrolysis of the biomass and plastic mixture increased with the increase of plastic mass fraction in the mixture. Torrefaction at a proper temperature and time could improve the grindability of PET plastic. The increase of torrefaction temperature and time did not affect the temperature where the maximum pyrolytic rates occurred for both biomass and plastic but decreased the maximum pyrolysis rate of biomass and increased the maximum pyrolysis rate of PET plastic. The amount of heat for the pyrolysis of biomass and PET mixture co-torrefied at 280°C for 30min was 4365J/g at 500°C, compared to 1138J/g for the pyrolysis of raw 50% wood and 50% PET mixture at the same condition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Electrochemical properties of composite cathodes using Sm doped layered perovskite for intermediate temperature-operating solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Wook; Azad, Abul K.; Irvine, John T. S.; Choi, Won Seok; Kang, Hyunil; Kim, Jung Hyun

    2018-02-01

    SmBaCo2O5+d (SBCO) showed the lowest observed Area Specific Resistance (ASR) value in the LnBaCo2O5+d (Ln: Pr, Nd, Sm, and Gd) oxide system for the overall temperature ranges tested. The ASR of a composite cathode (mixture of SBCO and Ce0.9Gd0.1O2-d) on a Ce0.9Gd0.1O2-d (CGO91) electrolyte decreased with respect to the CGO91 content; the percolation limit was also achieved for a 50 wt% SBCO and 50 wt% CGO91 (SBCO50) composite cathode. The ASRs of SBCO50 on the dense CGO91 electrolyte in the overall temperature range of 500-750 °C were relatively lower than those of SBCO50 on the CGO91 coated dense 8 mol% yttria-stabilized zirconia (8YSZ) electrolyte for the same temperature range. From 750 °C and for all higher temperatures tested, however, the ASRs of SBCO50 on the CGO91 coated dense 8YSZ electrolyte were lower than those of the CGO91 electrolyte. The maximum power densities of SBCO50 on the Ni-8YSZ/8YSZ/CGO91 buffer layer were 1.034 W cm-2 and 0.611 W cm-2 at 800 °C and 700 °C.

  20. Characterisation and solution properties of a galactomannan from Bauhinia monandra seeds.

    PubMed

    Nwokocha, Louis M; Senan, Chandra; Williams, Peter A; Yadav, Madhav P

    2017-08-01

    This study reports on the chemical and physicochemical properties of the polysaccharide isolated from Bauhinia monandra seeds. The seeds were found to contain 17.8% polysaccharide which consisted predominantly of galactose and mannose. The Man/Gal ratio was found to be approximately 4:1and the average molar mass was 2.54×10 5 g/mol. The extracted material was also found to contain a small amount of protein (5.35%). The galactomannan produced highly viscous solution; the viscosity-shear rate profile was best described by the Williamson model. The mechanical spectrum of a 0.5wt% solution showed that G″ was greater than G' over the frequency range employed while at higher concentrations G' became greater than G″ above a critical frequency. The solutions obeyed the Cox-Merz rule at low concentrations, but there was some deviation at higher concentrations. Viscosity measurements were undertaken over a range of temperatures and the activation energy of viscous flow was found to be 20.75kJ/mol. The rheological properties of solutions of B. monandra galactomannan indicate that it has comparable characteristics to other commercially important galactomannans such as guar gum and locust bean gum and hence has potential as a thickener in the formulation of food and other related products. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Polyhydroxyalkanoate (PHA) accumulation potential and PHA-accumulating microbial communities in various activated sludge processes of municipal wastewater treatment plants.

    PubMed

    Sakai, K; Miyake, S; Iwama, K; Inoue, D; Soda, S; Ike, M

    2015-01-01

    To clarify the polyhydroxyalkanoate (PHA) accumulation potential and the PHA-accumulating microbial community structure in activated sludge in municipal wastewater treatment plants (WWTPs) and to identify their influential factors. Nine activated sludge samples were collected from municipal WWTPs employing various biological treatment processes. In acetate-fed 24-h batch experiments under aerobic and nitrogen- and phosphorus-limited conditions, polyhydroxybutyrate (PHB) content of activated sludge increased from 0-1·3 wt% to 7·9-24 wt%, with PHB yields of 0·22-0·50 C-mol 3-hydroxybutyrate (C-mol acetate)(-1). Microbial community analyses found that activated sludge samples that accumulated >20 wt% of PHB after 24-h PHA accumulation experiments had >5·0 × 10(8) copies g(-1)-mixed liquor-suspended solid of phaC genes. Results indicated that (i) activated sludge in municipal WWTPs can accumulate up to approx. 20 wt% of PHA without enrichment processes, (ii) PHA accumulation potential of activated sludge varied depending on the operational conditions (treatment processes) of WWTPs, and (iii) phaC gene number can provide a simple indication of PHA accumulation potential. This is the first study to compare the PHA accumulation potential and PHA-accumulating microbial communities in activated sludge of various treatment processes. Our findings may be useful for enhancing the resource recovery potential of wastewater treatment systems. © 2014 The Society for Applied Microbiology.

  2. Nitric oxide-generating silicone as a blood-contacting biomaterial

    PubMed Central

    Amoako, Kagya A.; Cook, Keith E.

    2011-01-01

    Coagulation upon blood-contacting biomaterials remains a problem for short and long-term clinical applications. This study examined the ability of copper(II)-doped silicone surfaces to generate nitric oxide (NO) and locally inhibit coagulation. Silicone was doped with 3-micron copper (Cu(0)) particles yielding 3 to 10 weight percent (wt%) Cu in 70-μm thick Cu/Silicone polymeric matrix composites (Cu/Si PMCs). At 3, 5, 8 and 10 wt% Cu doping, the surface expression of Cu was 12.1 ± 2.8%, 19.7 ± 5.4%, 29.0 ± 3.8%, and 33.8 ± 6.5% respectively. After oxidizing Cu(0) to Cu(II) by spontaneous corrosion, NO flux, JNO (mol*cm−2*min−1), as measured by chemiluminescence, increased with surface Cu expression according to the relationship JNO =(1.63 %SACu −0.81) ×10−11, R2 = 0.98 where %SACu is the percentage of surface occupied by Cu. NO flux at 10 wt% Cu was 5.35± 0.74 ×10−10 mol*cm−2*min−1. The clotting time of sheep blood exposed to these surfaces was 80 ± 13s with pure silicone and 339 ± 44s when 10 wt% Cu(II) was added. SEMs of coatings showed clots occurred away from exposed Cu-dendrites. In conclusion, Cu/Si PMCs inhibit coagulation in a dose-dependent fashion related to the extent of copper exposure on the coated surface. PMID:22036723

  3. A serum factor promotes collagenase synthesis by an osteoblastic cell line

    NASA Technical Reports Server (NTRS)

    Puccinelli, J. M.; Omura, T. H.; Strege, D. W.; Jeffrey, J. J.; Partridge, N. C.

    1991-01-01

    Regulation of the synthesis of collagenase was investigated in the osteoblastic cell line, UMR 106-01. The cells were stained by the avidin-biotin-complex technique for the presence of the enzyme. By this method, it was possible to identify cells producing collagenase. Synthesis, but not secretion, was found to be constitutive in these cells with the enzyme located intracellularly in cytoplasmic vesicles and the Golgi apparatus. The amount of collagenase contained within UMR cells and the number of cells synthesizing the enzyme were proportional to the concentration of fetal bovine serum in the incubating medium. When serum was withdrawn from the osteosarcoma cells, the content of collagenase decreased with time and the enzyme became undetectable by 48 h of serum depletion. The decrease in collagenase content could be completely reversed by resupplying serum to the cells. The collagenase promoting activity of serum could not be eliminated by adsorption on activated charcoal but was retained by a dialysis membrane with a 12,000 mol wt cutoff. A range of bone-seeking hormones or agents known to affect collagenase secretion was added to the medium in an attempt to mimic the effect of serum on collagenase accumulation. None of these agonists, including parathyroid hormone, could reproduce the effect of serum on these cells, although parathyroid hormone could act as a collagenase secretagogue in the presence or absence of serum. It is concluded that fetal bovine serum contains a yet unidentified factor or factors greater than 12,000 mol wt responsible for the continued synthesis of collagenase by UMR 106-01 cells.

  4. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir.

    PubMed

    Greene, A C; Patel, B K; Sheehy, A J

    1997-04-01

    A thermophilic anaerobic bacterium, designated strain BMAT (T = type strain), was isolated from the production water of Beatrice oil field in the North Sea (United Kingdom). The cells were straight to bent rods (1 to 5 by 0.3 to 0.5 microns) which stained gram negative. Strain BMAT obtained energy from the reduction of manganese (IV), iron(III), and nitrate in the presence of yeast extract, peptone, Casamino Acids, tryptone, hydrogen, malate, acetate, citrate, pyruvate, lactate, succinate, and valerate. The isolate grew optimally at 60 degrees C (temperature range for growth, 50 to 65 degrees C) and in the presence of 2% (wt/vol) NaCl (NaCl range for growth, 0 to 5% [wt/vol]). The DNA base composition was 34 mol% G + C. Phylogenetic analyses of the 16S rRNA gene indicated that strain BMAT is a member of the domain Bacteria. The closest known bacterium is the moderate thermophile Flexistipes sinusarabici (similarity value, 88%). Strain BMAT possesses phenotypic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, we propose that this isolate should be described as a member of a novel species of a new genus, Deferribacter thermophilus gen. nov., sp. nov.

  5. Impact of phosphate limitation on PHA production in a feast-famine process.

    PubMed

    Korkakaki, Emmanouela; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2017-12-01

    Double-limitation systems have shown to induce polyhydroxyalkanoates (PHA) production in chemostat studies limited in e.g. carbon and phosphate. In this work the impact of double substrate limitation on the enrichment of a PHA producing community was studied in a sequencing batch process. Enrichments at different C/P concentration ratios in the influent were established and the effect on the PHA production capacity and the enrichment community structure was investigated. Experimental results demonstrated that when a double substrate limitation is imposed at a C/P ratio in the influent in a range of 150 (C-mol/mol), the P-content of the biomass and the specific substrate uptake rates decreased. Nonetheless, the PHA storage capacity remained high (with a maximum of 84 wt%). At a C/P ratio of 300, competition in the microbial community is based on phosphate uptake, and the PHA production capacity is lost. Biomass specific substrate uptake rates are a linear function of the cellular P-content, offering advantages for scaling-up the PHA production process due to lower oxygen requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Purification and characterization of NADPH--cytochrome c reductase from the midgut of the southern armyworm (Spodoptera eridania).

    PubMed Central

    Crankshaw, D L; Hetnarski, K; Wilkinson, C F

    1979-01-01

    1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes. Images Fig. 3. PMID:117798

  7. Clustering Effects on Dynamics in Ionomer Solutions: A Neutron Spin Echo Insight

    NASA Astrophysics Data System (ADS)

    Perahia, Dvora; Wijesinghe, Sidath; Senanayake, Manjula; Wickramasinghe, Anuradhi; Mohottalalage, Supun S.; Ohl, Michael

    Ionizable blocks in ionomers associate into aggregates serving as physical cross-links and concurrently form transport pathways. The dynamics of ionomers underline their functionality. Incorporating small numbers of ionic groups into polymers significantly constraint their dynamics. Recent computational studies demonstrated a direct correlation between ionic cluster morphology and polymer dynamics. Here using neutron spin echo, we probe the segmental dynamics of polystyrene sulfonate (PSS) as the degree of sulfonation of the PSS and the solution dielectrics are varied. Specifically, 20Wt% PSS of 11,000 g/mol with polydispersity of 1.02 with 3% and 9% sulfonation were studies in toluene (dielectric constant ɛ = 2.8), a good solvent for polystyrene, and with 5Wt% of ethanol (ɛ = 24.3l) added. The dynamic structure factor S(q,t) was analyzed with a single exponential except for a limited q range where two time constants associated with constraint and mobile segments were detected. S(q,t) exhibits several distinctive time and length scales for the dynamics with a crossover appearing at the length scale of the ionic clusters. NSF DMR 1611136.

  8. Dilatometric investigation of α(orthorhombic)→β(tetragonal) transformation in U-15 wt.% Cr alloy

    NASA Astrophysics Data System (ADS)

    Rameshkumar, Santhosh; Raju, Subramanian; Saibaba, Saroja

    2018-04-01

    The α→β transformation characteristics in U-15wt.% Cr alloy have been investigated by dilatometry at slow heating rates (3-10 K min-1). The starting microstructure of U-15Cr alloy consists of a mixture of metastable βm-U(body centred tetroganal), α-U(orthorhombic) and elemental Cr(bcc) phases. Upon heating, the metastable βmU phase has progressively transformed to equilibrium α-U structure; before, finally undergoing equilibrium α→β transformation with further increase in temperature. The measured α→β transformation temperature, when extrapolated to 0 K min-1 heating rate has been found to be higher than the currently accepted equilibrium phase diagram estimate. This is due to the kinetic difficulty associated with Cr-diffusion in U-15Cr alloy. The kinetics of α→β transformation upon continuous heating has been modeled in terms of a suitable framework for diffusional transformations, and the effective activation energy for overall transformation has been estimated to be in the range 160-180 kJ mol-1.

  9. DMSO modifies the permeability of the zebrafish (Danio rerio) chorion-implications for the fish embryo test (FET).

    PubMed

    Kais, B; Schneider, K E; Keiter, S; Henn, K; Ackermann, C; Braunbeck, T

    2013-09-15

    Since 2007, when REACH came into force, the fish embryo test has received increasing attention as a potential alternative for the acute fish test. Due to its low toxicity and the ability to permeate biological membranes without significant damage to their structural integrity, dimethyl sulfoxide (DMSO) is a commonly used solvent in the fish embryo test. Little is known, however, about the membrane penetration properties of DMSO, the impact of different concentrations of DMSO on the potential barrier function of the zebrafish chorion and on changes in the uptake of chemicals into the embryo. Therefore, in the present study, the fluorescent dyes fluorescein (mol wt 332; Pow 3.4) and 2,7-dichlorofluorescein (mol wt 401; Pow 4.7), both substances with limited water solubility, were used to visualize the uptake into the egg as well as the accumulation in the embryo of the zebrafish depending on different concentrations of DMSO. The distribution of fluorescein within the egg compartments varied with DMSO concentration: When dissolved in 0.01% DMSO, fluorescein did not pass the chorion. In contrast, concentrations ≥ 0.1% DMSO increasingly facilitated the uptake into the perivitelline space. In contrast, the uptake of 2,7-dichlorofluorescein was not substantially increased with rising DMSO concentrations, indicating the importance of factors other than the solvent (e.g. mol wt). With respect to the fish embryo test, results indicate that DMSO may be used without complications as a solvent, however, only at a maximum concentration of 0.01% (0.1 mL/L) as already indicated in the OECD difficult substances paper (OECD, 2000). Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Influence of molecular structure on the tolerogenicity of bacterial dextrans. I. The alpha1--6-linked epitope of dextran B512.

    PubMed Central

    Howard, J G; Vicari, G; Courtenay, B M

    1975-01-01

    Native dextran B512 is a near-linear glucose polymer with 96 per cent alpha1--6 and 4 per cent alpha1--3 linkages and a molecular weight (mol. wt) of 8 X 10(7). Sheep RBC sensitized with its O-stearoyl derivative (prepared by a modified method) have been used satisfactorily in direct PFC assays. B512 immunizes BALB/c mice optimally with doses of 1--10 mug and produces B-cell tolerance with 1 mg upwards. The specificity of the response determined by PFC inhibition analysis, is directed towards an alpha1--6-linked epitope. High dose tolerance is not preceded by immunity and is stable on cell transfer to irradiated recipients in which responsiveness becomes perceptible after 4--6 weeks. Progressive depolymerization of this polysaccharide reduces immunogenicity and tolerogenicity, both of which are extinguished when the mol. wt falls to 2 X 10(4). Optimal immunization with B512 is succeeded by partial tolerance (previously characterized by analogous levan experiments as a B-cell exhaustion process). The tolerance threshold dose of B512 is reduced 1000-fold during immunosuppression with cyclophosphamide. PFC inhibition studies supported the contention that tolerogenicity of polysaccharides is influenced by their overall binding capacities. A direct relationship between inhibitory and tolerogenic activities was found both with B512 fractions of varying mol. wt and with heterologous dextrans. The similarities between B512 and levan argue against the association of a highly branched structure with greater tolerogenicity. The effect of reducing the percentage of alpha1--6 linkages in dextrans suggests, however, that epitope density probably plays a contributory role in determining the outcome of interaction between polysaccharides and B cells. PMID:52612

  11. Conversion of cheese whey into a fucose- and glucuronic acid-rich extracellular polysaccharide by Enterobacter A47.

    PubMed

    Antunes, Sílvia; Freitas, Filomena; Alves, Vítor D; Grandfils, Christian; Reis, Maria A M

    2015-09-20

    Cheese whey was used as the sole substrate for the production of extracellular polysaccharides (EPS) by Enterobacter A47. An EPS concentration of 6.40 g L(-1) was reached within 3.2 days of cultivation, corresponding to a volumetric productivity of 2.00 g L(-1) d(-1). The produced EPS was mainly composed of glucuronic acid (29 mol%) and fucose (29 mol%), with lower contents of glucose and galactose (21 mol% each) and a total acyl groups content of 32 wt.%. The polymer had an average molecular weight of 1.8×10(6) Da, with a polydispersity index of 1.2, and an intrinsic viscosity of 8.0 dL g(-1). EPS aqueous solutions (1.0 wt.% in 0.01 M NaCl, at pH 8.0) presented a shear thinning behavior with a viscosity of the first Newtonian plateau approaching 0.1 Pas. This novel glucuronic acid-rich polymer possesses interesting rheological properties, which, together with its high content of glucuronic acid and fucose, two bioactive sugar monomers, confers it a great potential for use in high-value applications, such as cosmetics and pharmaceuticals. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Tailored Cyclic and Linear Polycarbosilazanes by Barium-Catalyzed N-H/H-Si Dehydrocoupling Reactions.

    PubMed

    Bellini, Clément; Orione, Clément; Carpentier, Jean-François; Sarazin, Yann

    2016-03-07

    Ba[CH(SiMe3 )2 ]2 (THF)3 catalyzes the fast and controlled dehydrogenative polymerization of Ph2 SiH2 and p-xylylenediamine to afford polycarbosilazanes. The structure (cyclic versus linear; end-groups) and molecular weight of the macromolecules can be tuned by adjusting the Ph2 SiH2 /diamine feed ratio. A detailed analysis of the resulting materials (mol. wt up to ca. 10 000 g mol(-1) ) is provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The effect of silica particle sizes and promoters to equilibrium moisture content for CO2 hydrate formation in HPVA

    NASA Astrophysics Data System (ADS)

    Hassan, Mohd Hafiz Abu; Snape, Colin Edwards; Steven, Lee

    2018-06-01

    The formation of CO2 hydrate (CO2:6H2O) in this work was experimentally investigated in batch mode inside a high pressure volumetric analyser (HPVA). The investigations in pure CO2 gas systems highlighted the effect of type of silicas used and the concentration of promoters used on the amount of equilibrium moisture content available for formation of hydrate. Standard silica gel was the only silica found to show hydrate formation due to the best distribution of pore size with the amount of equilibrium moisture content of 14.8 wt%. The high amount of bulk water inside zeolites 13X and spherical MCF-17 (21.3 and 50.8 wt% respectively) was the main reason of no hydrate formation observed due to the interstitial spaces between both silica particles were fully occupied by water. In other words, diffusion of gas molecules into the water is required for hydrate nucleation as well as hydrate growth. Additionally, the combined-promoters designated type T1-5 (0.01 mol% sodium dodecyl sulphate (SDS)+5.6 mol% tetrahydrofuran (THF)) was the best obtaining a CO2 uptake of 5.95 mmol of CO2 per g of H2O with the amount of equilibrium moisture content of 13.28 wt%.

  14. The influence of water on the physicochemical characteristics of 1-butyl-3-methylimidazolium bromide ionic liquid

    NASA Astrophysics Data System (ADS)

    Ramenskaya, L. M.; Grishina, E. P.; Pimenova, A. M.; Gruzdev, M. S.

    2008-07-01

    A modified synthesis of 1-butyl-3-methylimidazolium bromide (BMImBr) was suggested and performed, and some physicochemical properties of the product containing 0.64 13.6 wt % water were determined. Water increased the electrical conductivity and decreased the viscosity and melting point of the substance but weakly influenced its density. Water in amounts of 5 8 wt % (45 50 mol %) caused structural changes. The BMImBr · 0.5H2O crystal hydrate was found to be stable thermodynamically.

  15. Production of biodiesel from Jatropha curcas L. oil catalyzed by SO₄²⁻/ZrO₂ catalyst: effect of interaction between process variables.

    PubMed

    Yee, Kian Fei; Lee, Keat Teong; Ceccato, Riccardo; Abdullah, Ahmad Zuhairi

    2011-03-01

    This study reports the conversion of Jatrophacurcas L. oil to biodiesel catalyzed by sulfated zirconia loaded on alumina catalyst using response surface methodology (RSM), specifically to study the effect of interaction between process variables on the yield of biodiesel. The transesterification process variables studied were reaction temperature, reaction duration, molar ratio of methanol to oil and catalyst loading. Results from this study revealed that individual as well as interaction between variables significantly affect the yield of biodiesel. With this information, it was found that 4h of reaction at 150°C, methanol to oil molar ratio of 9.88 mol/mol and 7.61 wt.% for catalyst loading gave an optimum biodiesel yield of 90.32 wt.%. The fuel properties of Jatropha biodiesel were characterized and it indeed met the specification for biodiesel according to ASTM D6751. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Desulfonatronum paiuteum sp. nov.: A New Alkaliphilic, Sulfate-Reducing Bacterium, Isolated from Soda Mono Lake, California

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena; Hoover, Richard B.; Marsic, Damien; Whitman, William; Cleland, David; Krader, Paul; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel alkaliphilic, sulfate reducing bacterium strain MLF1(sup T) was isolated from sediments of soda Mono Lake, California. Gram-negative vibrion cells, motile by singular polar flagellum, with sizes 0.5 - 0.6x 1.2 - 2.0 micron occurred singly, in pairs or short spirilla. Growth was observed over the temperature range of +15 C to +48 C (optimum +37 C), NaCl concentration range is greater than 1 - 7 %, wt/vol (optimum 3 %, wt/vol) and pH range 7.8 - 10.5 (optimum pH 9.0 - 9.4). The novel isolate is strictly alkaliphilic, requires high carbonate concentration in medium, obligately anaerobic and catalase negative. As electron donors strain MLF1(sup T) uses hydrogen, formate, ethanol. Sulfate, sulfite, and thiosulfate (but not sulfur or nitrate) can be used as electron acceptors. The sole end product of growth on formate was H2S. Strain MLF1(sup T) is resistant to kanamycin and gentamycin, but sensitive to chloramphenicol and tetracycline. Na2MoO4 inhibits growth of strain MLF1(sup T). The sum of G+C in DNA is 63.1 mol% (by HPLC method). On the basis of physiological and molecular properties, the isolate was considered as novel species of genus Desulfonatronum; and the name Desulfonatronum paiuteum sp. nov., is proposed (type strain MLF1(sup T) = ATCC BAA-395(sup T) = DSMZ 14708(sup T).

  17. The geochemical and petrological characteristics of prenatal caldera volcano: a case of the newly formed small dacitic caldera, Hijiori, Northeast Japan

    NASA Astrophysics Data System (ADS)

    Miyagi, Isoji; Kita, Noriko; Morishita, Yuichi

    2017-09-01

    Evaluating the magma depth and its physical properties is critical to conduct a better geophysical assessment of magma chambers of caldera volcanoes that may potentially cause future volcanic hazards. To understand pre-eruptive conditions of a magma chamber before its first appearance at the surface, this paper describes the case of Hijiori caldera volcano in northeastern Japan, which emerged approximately 12,000 years ago at a place where no volcano ever existed. We estimated the depth, density, bulk modulus, vesicularity, crystal content, and bulk H_2O content of the magma chamber using petrographic interpretations, bulk and microchemical compositions, and thermodynamic calculations. The chemical mass balance calculations and thermodynamic modeling of the erupted magmas indicate that the upper portion of the Hijiori magmatic plumbing system was located at depths between 2 and 4 km, and had the following characteristics: (1) pre-eruptive temperature: about 780 °C; (2) bulk magma composition: 66 ± 1.5 wt% SiO2; (3) bulk magmatic H_2O: approximately 2.5 wt%, and variable characteristics that depend on depth; (4) crystal content: ≤57 vol%; (5) bulk modulus of magma: 0.1-0.8 GPa; (6) magma density: 1.8-2.3 g/cm3; and (7) amount of excess magmatic H_2O: 11-32 vol% or 48-81 mol%. The range of melt water contents found in quartz-hosted melt inclusions (2-9 wt%) suggests the range of depth phenocrysts growth to be wide (2˜13 km). Our data suggest the presence of a vertically elongated magma chamber whose top is nearly solidified but highly vesiculated; this chamber has probably grown and re-mobilized by repeated injections of a small amount of hot dacitic magma originated from the depth.

  18. Resistance training enhances insulin suppression of endogenous glucose production in elderly women.

    PubMed

    Honka, Miikka-Juhani; Bucci, Marco; Andersson, Jonathan; Huovinen, Ville; Guzzardi, Maria Angela; Sandboge, Samuel; Savisto, Nina; Salonen, Minna K; Badeau, Robert M; Parkkola, Riitta; Kullberg, Joel; Iozzo, Patricia; Eriksson, Johan G; Nuutila, Pirjo

    2016-03-15

    An altered prenatal environment during maternal obesity predisposes offspring to insulin resistance, obesity, and their consequent comorbidities, type 2 diabetes and cardiovascular disease. Telomere shortening and frailty are additional risk factors for these conditions. The aim of this study was to evaluate the effects of resistance training on hepatic metabolism and ectopic fat accumulation. Thirty-five frail elderly women, whose mothers' body mass index (BMI) was known, participated in a 4-mo resistance training program. Endogenous glucose production (EGP) and hepatic and visceral fat glucose uptake were measured during euglycemic hyperinsulinemia with [(18)F]fluorodeoxyglucose and positron emission tomography. Ectopic fat was measured using magnetic resonance spectroscopy and imaging. We found that the training intervention reduced EGP during insulin stimulation [from 5.4 (interquartile range 3.0, 7.0) to 3.9 (-0.4, 6.1) μmol·kg body wt(-1)·min(-1), P = 0.042] in the whole study group. Importantly, the reduction was higher among those whose EGP was more insulin resistant at baseline (higher than the median) [-5.6 (7.1) vs. 0.1 (5.4) μmol·kg body wt(-1)·min(-1), P = 0.015]. Furthermore, the decrease in EGP was associated with telomere elongation (r = -0.620, P = 0.001). The resistance training intervention did not change either hepatic or visceral fat glucose uptake or the amounts of ectopic fat. Maternal obesity did not influence the studied measures. In conclusion, resistance training improves suppression of EGP in elderly women. The finding of improved insulin sensitivity of EGP with associated telomere lengthening implies that elderly women can reduce their risk for type 2 diabetes and cardiovascular disease with resistance training. Copyright © 2016 the American Physiological Society.

  19. Hydration Resistance of Y2O3 Doped CaO and Its Application to Melting Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Fanlong, Meng; Zhiwei, Cheng; Guangyao, Chen; Xionggang, Lu; Chonghe, Li

    Various amount Y2O3(1-8 mol%) doped CaO powder was synthesized by the solid state reaction method, the pellete and crucible were fabricated by the cold isostatic pressing and were sintered at 1750°C for 4h. The microstructural characterization was revealed by X-ray diffraction(XRD) and scanning electron microscopy(SEM).The XRD results showed that when Y2O3 doped 2 mol%, metastable CaY2O4 phase existed in CaO grain boundary, when Y2O3 doped 3 mol%-8 mol%, in addition to the above structure, Y2O3 phase also be found in CaO grain boundary. Hydration experiment results showed when Y2O3 doped 0 mol%-4 mol%, CaO had excellent hydration resistance performance, Y2O3 doped 2 mol% had the best hydration resistance, its weight addition stored after 7 weeks (49 days) was only about 0.2 wt%. Melting experiment results showed that it was no reaction between crucible and alloy layer. Oxygen, calcium, titanium, nickle and yttrium element not diffusion between the CaO crucible and TiNi alloy, it was no oxygen content increase after melting.

  20. Heat Capacity of Hydrous Silicate Melts

    NASA Astrophysics Data System (ADS)

    Robert, G.; Whittington, A. G.; Stechern, A.; Behrens, H.

    2015-12-01

    We determined the heat capacities of four series of glasses and liquids of basaltic and basaltic andesite compositions including two natural remelts from Fuego volcano, Guatemala, and two Fe-free analogs. The samples are low-alkali, Ca- and Mg-rich aluminosilicates with non-bridging oxygen to tetrahedrally-coordinated cation ratios (NBO/T) ranging between 0.33 and 0.67. Differential scanning calorimetry measurements were performed at atmospheric pressure between room temperature and ≈100 K above the glass transition for hydrous samples and up to ≈1800 K for dry samples. The water contents investigated range up to 5.34 wt.% (16.4 mol%). Water does not measurably affect the heat capacity of glasses (T

  1. Detection of xanthine oxidase and immunologically related proteins in fractions from bovine mammary tissue and milk after electrophoresis in polyacrylamide gels containing sodium dodecyl sulphate.

    PubMed Central

    Mather, I H; Sullivan, C H; Madara, P J

    1982-01-01

    A solid-phase immunoassay was used to detect xanthine oxidase in fractions from bovine mammary glands after electrophoresis in polyacrylamide gels containing sodium dodecyl sulphate. Under these conditions the major proportion of xanthine oxidase in either mammary tissue or mild could be recovered as a protein of mol.wt. 150 000. In mammary tissue approx. 80% of the enzyme was in a soluble form and the remainder was accounted for in either 'mitochondrial' or microsomal fractions after tissue homogenization and fractionation. Affinity chromatography of either detergent-solubilized microsomal membranes or postmicrosomal supernatants on immobilized antibody to xanthine oxidase yielded a single protein that cross-reacted with antibody to the enzyme. In milk presumptive degradation products of the enzyme were detected in minor quantities with mol.wts. of 43 000 in the whey fraction and 90 000 in fat-globule membrane. Only the undegraded enzyme was present in the skim-milk membrane fraction. Xanthine oxidase is therefore synthesized and secreted as a protein with a monomeric mol.wt. of 150 000 and is not subjected to extensive proteolytic degradation during the storage of milk in mammary alveoli. The significance of the results is discussed in relation to the overall protein composition of the membranes of milk-fat globules and skim milk. Images Fig. 1. Fig. 2. Fig. 3. PMID:7046730

  2. The redox state of the apoplast influences the acclimation of photosynthesis and leaf metabolism to changing irradiance

    PubMed Central

    Karpinska, Barbara; Zhang, Kaiming; Rasool, Brwa; Pastok, Daria; Morris, Jenny; Verrall, Susan R.; Hedley, Pete E.

    2017-01-01

    Abstract The redox state of the apoplast is largely determined by ascorbate oxidase (AO) activity. The influence of AO activity on leaf acclimation to changing irradiance was explored in wild‐type (WT) and transgenic tobacco (Nicotiana tobaccum) lines containing either high [pumpkin AO (PAO)] or low [tobacco AO (TAO)] AO activity at low [low light (LL); 250 μmol m−2 s−1] and high [high light (HL); 1600 μmol m−2 s−1] irradiance and following the transition from HL to LL. AO activities changed over the photoperiod, particularly in the PAO plants. AO activity had little effect on leaf ascorbate, which was significantly higher under HL than under LL. Apoplastic ascorbate/dehydroascorbate (DHA) ratios and threonate levels were modified by AO activity. Despite decreased levels of transcripts encoding ascorbate synthesis enzymes, leaf ascorbate increased over the first photoperiod following the transition from HL to LL, to much higher levels than LL‐grown plants. Photosynthesis rates were significantly higher in the TAO leaves than in WT or PAO plants grown under HL but not under LL. Sub‐sets of amino acids and fatty acids were lower in TAO and WT leaves than in the PAO plants under HL, and following the transition to LL. Light acclimation processes are therefore influenced by the apoplastic as well as chloroplastic redox state. PMID:28369975

  3. The structure and mechanism of stem bromelain. Evaluation of the homogeneity of purified stem bromelain, determination of the molecular weight and kinetic analysis of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester

    PubMed Central

    Wharton, Christopher W.

    1974-01-01

    1. Purified stem bromelain (EC 3.4.22.4) was eluted from Sephadex G-100 as a single peak. The specific activity across the elution peak was approximately constant towards p-nitrophenyl hippurate but increased with elution volume with N2-benzoyl-l-arginine ethyl ester as substrate. 2. The apparent molecular weight, determined by elution analysis on Sephadex G-100, is 22500±1500, an anomalously low value. 3. Purified stem bromelain was eluted from CM-cellulose CM-32 as a single peak and behaved as a single species during column electrophoresis on Sephadex G-100. 4. Purified stem bromelain migrates as a single band during polyacrylamide-gel electrophoresis under a wide variety of conditions. 5. The molecular weight determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate is 28500±1000. 6. Sedimentation-velocity and equilibrium-ultracentrifugation experiments, under a variety of conditions, indicate that bromelain is an apparently homogeneous single peptide chain of mol.wt. 28400±1400. 7. The N-terminal amino acid composition is 0.64±0.04mol of valine and 0.36±0.04mol of alanine per mol of enzyme of mol.wt. 28500. (The amino acid recovery of the cyanate N-terminal amino acid analysis was standardized by inclusion of carbamoyl-norleucine at the cyclization stage.) 8. The pH-dependence of the Michaelis parameters of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester was determined. 9. The magnitude and pH-dependence of the Michaelis parameters have been interpreted in terms of the mechanism of the enzyme. 10. The enzyme is able to bind N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester relatively strongly but seems unable to make use of the binding energy to promote catalysis. PMID:4462742

  4. [Expression and significance of c-fos in resistant cell line TU177/VCR of larynx squamous cell carcinoma].

    PubMed

    Li, G D; Hu, X L; Xing, J F; Shi, R Y; Li, X; Li, J F; Li, T L

    2018-04-07

    Objective: To explore the effect of c-fos on multidrug resistance of laryngeal cancer TU177 cells. Method: Increasing drug concentration gradient is adopted to establish the stability of the laryngeal cancer drug resistance in cell line; RT-PCR and Western blot were used to detect difference of the c-fos between TU177 and TU177/VCR cells; plasmids with human c-fos knockdown or over expression were transfected into TU177/VCR and TU177 cells respectively, and the effects of different treatment on cell proliferation were investigated with MTT. Results: The drug resistance of TU177/VCR cells was 26.25-fold in vincristine (VCR), 7.33-fold in Paclitaxel (TAX), 2.41 in cisplatin (DDP), and 5.50 in 5-fluorouracil (5-FU), comparing with TU177( P <0.05). The TU177/VCR cells had significantly higher c-fos expression compared to TU177 cells( P <0.05). The results showed that the IC(50) values of 5-FU for the NC group and c-fos shRNA group were (306.2±6.3)μmol/L and (81.3±3.9)μmol/L, respectively, which was decreased by 73% in the c-fos shRNA group compared to that in the NC group ( P <0.05). Similarly, the results showed that the IC(50) values for 5-FU were (55.3±9.4) μmol/L in NC group and (288.1±7.3)μmol/L in c-fos WT group, which was increased 5.21-fold in c-fos WT cells. Conclusion: C-fos plays important role in multidrug resistance of larynx cancer cell TU177/VCR, and might become a new molecular target for laryngeal cancer treatment.

  5. In vitro wear, surface roughness and hardness of propanal-containing and diacetyl-containing novel composites and copolymers based on bis-GMA analogs.

    PubMed

    Prakki, Anuradha; Cilli, Renato; Mondelli, Rafael Francisco Lia; Kalachandra, Sid

    2008-03-01

    To evaluate the effect of two additives, aldehyde or diketone, on the wear, roughness and hardness of bis-GMA-based composites/copolymers containing TEGDMA, propoxylated bis-GMA (CH(3)bis-GMA) or propoxylated fluorinated bis-GMA (CF(3)bis-GMA). Fifteen experimental composites and 15 corresponding copolymers were prepared combining bis-GMA and TEGDMA, CH(3)bis-GMA or CF(3)bis-GMA, with aldehyde (24 mol% and 32 mol%) or diketone (24 mol% and 32 mol%) totaling 30 groups. For composites, hybrid treated filler (barium aluminosilicate glass/pyrogenic silica; 60 wt%) was added to monomer mixtures. Photopolymerization was affected by 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Wear (W) test was conducted in a toothbrushing abrasion machine (n=6) and quantified using a profilometer. Surface roughness (R) changes, before and after abrasion test, were determined using a rugosimeter. Microhardness (H) measurements were performed for dry and wet samples using a Knoop microindenter (n=6). Data were analyzed by one-way ANOVA and Tukey's test (alpha=0.05). Incorporation of additives led to improved W and H values for bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA systems. Additives had no significant effect on the W and H changes of bis-GMA/CF(3)bis-GMA. With regard to R changes, additives produced decreased values for bis-GMA/CH(3)bis-GMA and bis-GMA/CF(3)bis-GMA composites. Bis-GMA/TEGDMA and bis-GMA/CH(3)bis-GMA copolymers with additives became smoother after abrasion test. The findings correlate with additives ability to improve degree of conversion of some composites/copolymers thereby enhancing mechanical properties.

  6. Antivenom activity of opossum (Didelphis marsupialis) serum fraction.

    PubMed

    Rodriguez-Acosta, A; Aguilar, I; Giron, M E

    1995-01-01

    We have found an opossum serum fraction of approximately 97,000 mol. wt to be highly proficient in inactivating the haemorrhagic and proteolytic fractions of Bothrops lanceolatus venom. This antivenom substance, isolated from opossum serum or a synthetic peptide based on the aforementioned protein, would probably be useful in the medical management of Bothrops accidents.

  7. Hot deformation behaviors and processing maps of B{sub 4}C/Al6061 neutron absorber composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yu-Li

    In this study, the hot deformation behaviors of 30 wt.% B{sub 4}C/Al6061 neutron absorber composites (NACs) have been investigated by conducting isothermal compression tests at temperatures ranging from 653 K to 803 K and strain rates from 0.01 to 10 s{sup −1}. It was found that, during hot compression, the B{sub 4}C/Al6061 NACs exhibited a steady flow characteristic which can be expressed by the Zener-Hollomon parameter as a hyperbolic-sine function of flow stress. High average activation energy (185.62 kJ/mol) of B{sub 4}C/Al6061 NACs is noted in current study owing to the high content of B{sub 4}C particle. The optimum hotmore » working conditions for B{sub 4}C/Al6061 NACs are found to be 760–803 K/0.01–0.05 s{sup −1} based on processing map and microstructure evolution. Typical material instabilities are thought to be attributed to void formation, adiabatic shear bands (ASB), particle debonding, and matrix cracking. Finally, the effect of the plastic deformation zones (PDZs) on the microstructure evolution in this 30 wt.% B{sub 4}C/Al6061 composite is found to be very important. - Highlights: •The hot deformation behavior of the 30 wt.% B{sub 4}C/Al6061 NACs was first analyzed. •The 3D efficiency map and the instability map are developed. •The optimum hot working conditions were identified and validated by SEM and TEM. •The hot deformation schematic diagram of 30 wt.% B{sub 4}C/Al6061 NACs is developed.« less

  8. Body centered cubic magnesium niobium hydride with facile room temperature absorption and four weight percent reversible capacity.

    PubMed

    Tan, XueHai; Wang, Liya; Holt, Chris M B; Zahiri, Beniamin; Eikerling, Michael H; Mitlin, David

    2012-08-21

    We have synthesized a new metastable metal hydride with promising hydrogen storage properties. Body centered cubic (bcc) magnesium niobium hydride (Mg(0.75)Nb(0.25))H(2) possesses 4.5 wt% hydrogen gravimetric density, with 4 wt% being reversible. Volumetric hydrogen absorption measurements yield an enthalpy of hydride formation of -53 kJ mol(-1) H(2), which indicates a significant thermodynamic destabilization relative to the baseline -77 kJ mol(-1) H(2) for rutile MgH(2). The hydrogenation cycling kinetics are remarkable. At room temperature and 1 bar hydrogen it takes 30 minutes to absorb a 1.5 μm thick film at sorption cycle 1, and 1 minute at cycle 5. Reversible desorption is achieved in about 60 minutes at 175 °C. Using ab initio calculations we have examined the thermodynamic stability of metallic alloys with hexagonal close packed (hcp) versus bcc crystal structure. Moreover we have analyzed the formation energies of the alloy hydrides that are bcc, rutile or fluorite.

  9. Hydrogenation properties of KSi and NaSi Zintl phases.

    PubMed

    Tang, Wan Si; Chotard, Jean-Noël; Raybaud, Pascal; Janot, Raphaël

    2012-10-14

    The recently reported KSi-KSiH(3) system can store 4.3 wt% of hydrogen reversibly with slow kinetics of several hours for complete absorption at 373 K and complete desorption at 473 K. From the kinetics measured at different temperatures, the Arrhenius plots give activation energies (E(a)) of 56.0 ± 5.7 kJ mol(-1) and 121 ± 17 kJ mol(-1) for the absorption and desorption processes, respectively. Ball-milling with 10 wt% of carbon strongly improves the kinetics of the system, i.e. specifically the initial rate of absorption becomes about one order of magnitude faster than that of pristine KSi. However, this fast absorption causes a disproportionation into KH and K(8)Si(46), instead of forming the KSiH(3) hydride from a slow absorption. This disproportionation, due to the formation of stable KH, leads to a total loss of reversibility. In a similar situation, when the pristine Zintl NaSi phase absorbs hydrogen, it likewise disproportionates into NaH and Na(8)Si(46), indicating a very poorly reversible reaction.

  10. A simple procedure for the isolation of L-fucose-binding lectins from Ulex europaeus and Lotus tetragonolobus.

    PubMed

    Allen, H J; Johnson, E A

    1977-10-01

    L-Fucose-binding lectins from Ulex europeaus and Lotus tetragonolobus were isolated by affinity chromatography on columns of L-fucose-Sepharose 6B. L-Fucose was coupled to Sepharose 6B after divinyl sulfone-activation of the gel to give an affinity adsorbent capable of binding more than 1.2 mg of Ulex lextin/ml of gel, which could then be eluted with 0.1M or 0.05M L-fucose. Analysis of the isolated lectins by hemagglutination assay, by gel filtration, and polyacrylamide disc-electrophoresis revealed the presence of isolectins, or aggregated species, or both. The apparent mol. wt. of the major lectin fraction from Lotus was 35000 when determined on Sephadex G-200 or Ultrogel AcA 34. In contrast, the apparent mol. wt. of the major lectin fraction from Ulex was 68 000 when chromatographed on Sephadex G-200 and 45 000 when chromatographed on Ultrogel AcA 34. The yields of lectins were 4.5 mg/100 g of Ulex seeds and 394 mg/100 g of Lotus seeds.

  11. The allergens of Schistosoma mansoni

    PubMed Central

    Harris, W. G.

    1973-01-01

    Ten antigen fractions were prepared from adult Schistosoma mansoni by extraction into borate-buffered saline, precipitation at pH 4.6 and separation on Sephadex G-100. The allergic activity of these antigens was assayed by a modified Prausnitz—Kustner type reaction in rats; this test system was found to be sensitive and consistent, allowing differences in allergenicity between antigens to be accurately assessed. Skin-reactivity was detected in both acid-soluble and acid-insoluble fractions. Specific allergenicity was located in peak 3 of a G-100 separation of the acid-soluble fraction and in peaks 1 and 2 of a G-100 separation of the acid-insoluble fraction suggesting that the allergens of S. mansoni were of at least two types: (1) a protein of mol. wt above 150,000 precipitated at pH 4.6, and (2) a protein of mol. wt 20–30,000 remaining in solution at this pH. It is suggested that both these allergens are glycoproteins. Non-specific histamine-releasing agents were found in peak 1 of the G-100 separation of the acid-soluble material. ImagesFIG. 1 PMID:4122335

  12. Thermal desorption of hydrogen from Mg2Ni hydrogen storage materials.

    PubMed

    Hur, Tae Hong; Han, Jeong Seb; Kim, Jin Ho; Kim, Byung Kwan

    2011-07-01

    In order to investigate the influence of HCS on the hydrogen occupation site of Mg2Ni alloy, the thermal desorption technique has been applied to Mg2Ni hydride made by hydriding combustion synthesis (HCS). Mg2Ni was made under low temperature in a short time by the HCS compared to conventional melting process. At various initial hydride wt% from 0.91 to 3.52, the sample was heated to 623 K at a rate of 1.0 K/min. The starting temperature of the evolution of hydrogen goes higher as the initial hydride wt% increases. Only one peak is shown in the case of the small initial hydride wt%. But two peaks appeared with increasing initial hydride wt%. The activation energies obtained by the first and second peaks are 113.0 and 99.5 kJ/mol respectively. The two site occupation model by Darriet et al. was proved. The influence of HCS on the hydrogen occupation site of Mg2Ni alloy is nonexistent.

  13. Ureaplasma parvum causes hyperammonemia in a pharmacologically immunocompromised murine model.

    PubMed

    Wang, X; Greenwood-Quaintance, K E; Karau, M J; Block, D R; Mandrekar, J N; Cunningham, S A; Mallea, J M; Patel, R

    2017-03-01

    A relationship between hyperammonemia and Ureaplasma infection has been shown in lung transplant recipients. We have demonstrated that Ureaplasma urealyticum causes hyperammonemia in a novel immunocompromised murine model. Herein, we determined whether Ureaplasma parvum can do the same. Male C3H mice were given mycophenolate mofetil, tacrolimus, and prednisone for 7 days, and then challenged with U. parvum intratracheally (IT) and/or intraperitoneally (IP), while continuing immunosuppression over 6 days. Plasma ammonia concentrations were determined and compared using Wilcoxon rank-sum tests. Plasma ammonia concentrations of immunosuppressed mice challenged IT/IP with spent broth (median, 188 μmol/L; range, 102-340 μmol/L) were similar to those of normal (median, 226 μmol/L; range, 154-284 μmol/L, p > 0.05), uninfected immunosuppressed (median, 231 μmol/L; range, 122-340 μmol/L, p > 0.05), and U. parvum IT/IP challenged immunocompetent (median, 226 μmol/L; range, 130-330 μmol/L, p > 0.05) mice. Immunosuppressed mice challenged with U. parvum IT/IP (median 343 μmol/L; range 136-1,000 μmol/L) or IP (median 307 μmol/L; range 132-692 μmol/L) had higher plasma ammonia concentrations than those challenged IT/IP with spent broth (p < 0.001). U. parvum can cause hyperammonemia in pharmacologically immunocompromised mice.

  14. Histones have high affinity for the glomerular basement membrane. Relevance for immune complex formation in lupus nephritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmiedeke, T.M.; Stoeckl, F.W.W.; Weber, R.

    1989-06-01

    An effort has been made to integrate insights on charge-based interactions in immune complex glomerulonephritis with nuclear antigen involvement in lupus nephritis. Attention was focussed on the histones, a group of highly cationic nuclear constituents, which could be expected to bind to fixed anionic sites present in the glomerular basement membrane (GBM). We demonstrated that all histone subfractions, prepared according to Johns, have a high affinity for GBM and the basement membrane of peritubular capillaries. Tissue uptake of /sup 125/I-labeled histones was measured by injecting 200 micrograms of each fraction into the left kidney via the aorta and measuring organmore » uptake after 15 min. In glomeruli isolated from the left kidneys, the following quantities of histones were found: f1, 13 micrograms; f2a (f2al + f2a2), 17 micrograms; f2b, 17 micrograms; and f3, 32 micrograms. Kinetic studies of glomerular binding showed that f1 disappeared much more rapidly than f2a. The high affinity of histones (pI between 10.5 and 11.0; mol wt 10,000-22,000) for the GBM correlates well with their ability to form aggregates (mol wt greater than 100,000) for comparison lysozyme (pI 11, mol wt 14,000), which does not aggregate spontaneously bound poorly (0.4 micrograms in isolated glomeruli). The quantity of histones and lysozyme found in the isolated glomeruli paralleled their in vitro affinity for a Heparin-Sepharose column (gradient elution studies). This gel matrix contains the sulfated, highly anionic polysaccharide heparin, which is similar to the negatively charged heparan sulfate present in the GBM. Lysozyme eluted with 0.15 M NaCl, f1 with 1 M NaCl, and f2a, f2b, and f3 could not be fully desorbed even with 2 M NaCl; 6 M guanidine-HCl was necessary.« less

  15. Thermophysical properties of undercooled liquid Co-Mo alloys

    NASA Astrophysics Data System (ADS)

    Han, X. J.; Wei, B.

    2003-05-01

    Using electromagnetic levitation in combination with the oscillating drop technique and drop calorimeter method, the surface tensions and specific heats of undercooled liquid Co-10 wt% Mo, Co-26.3 wt% Mo, and Co-37.6 wt% Mo alloys were measured. The containerless state during levitation produces substantial undercoolings up to 223 K (0.13TL), 213 K (0.13TL) and 110 K (0.07TL) respectively for these three alloys. In their respective undercooling ranges, the surface tensions were determined to be 1895 m 0.31(T m 1744), 1932 m 0.33(T m 1682), and 1989 m 0.34(T m 1607) mN mу. According to the Butler equation, the surface tensions of these three Co-Mo alloys were also calculated, and the results agree well with the experimental data. The specific heats of these three alloys are determined to be 41.85, 43.75 and 44.92 J molу Kу. Based on the determined surface tensions and specific heats, the changes in thermodynamics functions such as enthalpy, entropy and Gibbs free energy are predicted. Furthermore, the crystal nucleation, dendrite growth and Marangoni convection of undercooled Co-Mo alloys are investigated in the light of these measured thermophysical properties.

  16. Tindallia Californiensis sp. nov.: A New Halo-Alkaliphilic Primary Anaerobe, Isolated from Meromictic soda Mono Lake in California and the Correction of Diagnosis for Genus Tindallia

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena; Marsic, Damien; Hoover, Richard B.; Kevbrin, Vadim; Whitman, William B.; Krader, Paul; Cleland, Dave; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel extremely halo-alkaliphilic, bacterium strain APO (sup T) was isolated from sediments of the athalassic, meromictic, soda Mono Lake in California. Gram positive, spore-forming, slightly curved rods with sizes 0.6-0.7x 2.5-4.0 micrometers which occur singly, in pairs or short curved chains. Cells, are motile by singular subcentral flagellum. Strain APO (sup T) is mesophilic: growth was observed over the temperature range of +10 C to +48 C (optimum +37 C), NaCl concentration range 1-20 %, wt/vol (optimum 3-5%, wt/vol) and pH range 8.0-11.0 (optimum pH 9.5). The novel isolate is strictly halo-alkaliphilic, requires sodium chloride in medium, obligately anaerobic and catalase-negative. Strain APO (sup T) is organo-heterotroph with fermentative type of metabolism, and uses as substrates: peptone, badotryptone, casamino acids, yeast extract, L-serine, L-lysine, L-histidine, L-arginine, and pyruvate. The main end products of growth on peptone medium were: lactate, acetate, propionate, and ethanol. Strain APO (sup T) is resistant to kanamycin, but sensitive to chloramphenicol, tetracycline, and gentamycin. The sum of G+C in DNA is 44.4 mol% (by HPLC method). On the bait of physiological and molecular properties, the isolate was considered as novel species of genus Tindallia; and the name Tindallia californiensis sp. nov., is proposed for new isolate (type strain APO (sup T) - ATCC BAA_393(sup T) = DSMZ 14871 (sup T)).

  17. Promotion effect of nickel loaded on CdS for photocatalytic H2 production in lactic acid solution

    NASA Astrophysics Data System (ADS)

    Chen, Shu; Chen, Xiaoping; Jiang, Qizhong; Yuan, Jian; Lin, Caifang; Shangguan, Wenfeng

    2014-10-01

    Low-cost Ni modified CdS was prepared via a hydrothermal reduction method. The hydrogen production activity of CdS loaded with 5 wt% Ni under visible light was even higher than that of the one loaded with 0.5 wt% Pt. The highest H2 evolution rate (3004.8 μmol h-1) occurred when the concentration of sacrificial agent (lactic acid) was 50 vol%. The nickel can quickly transfer excited electrons and enhance the photocatalytic H2 production activity. It was also found that the hydrogen evolution in this system was generated steadily from both water and lactic acid.

  18. Description of Paenisporosarcina quisquiliarum gen. nov., sp. nov., and reclassification of Sporosarcina macmurdoensis Reddy et al. 2003 as Paenisporosarcina macmurdoensis comb. nov.

    PubMed

    Krishnamurthi, S; Bhattacharya, A; Mayilraj, S; Saha, P; Schumann, P; Chakrabarti, T

    2009-06-01

    In the course of a study of the prokaryotic diversity of a landfill site in Chandigarh, India, a strain designated SK 55(T) was isolated and characterized using a polyphasic approach. Its 16S rRNA gene sequence showed closest similarity (98.3 %) to that of Sporosarcina macmurdoensis CMS 21w(T). The sequence similarity to strains of other hitherto described species of Sporosarcina was less than 95.5 %. Strain SK 55(T) contains peptidoglycan of the A4alpha type (l-Lys-d-Asp), MK-8 and MK-7 as the major menaquinones and iso-C(15 : 0) as the major fatty acid. Strain SK 55(T), Sporosarcina macmurdoensis and Sporosarcina ureae, the type species of the genus, had some polar lipids in common (diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, a phospholipid and an unknown lipid). However, an aminolipid, an aminophospholipid and an unknown lipid found in the former two organisms are similar, though not identical, but quite different from the profile of S. ureae. The genomic DNA G+C contents of strain SK 55(T) (46.0 mol%) and S. macmurdoensis CMS 21w(T) (44.0 mol%) are higher than those reported for the majority of species of Sporosarcina (36-42 mol%). As revealed by 16S rRNA gene sequence analysis, strain SK 55(T) and S. macmurdoensis CMS 21w(T) form a clade which is distinct from the clade occupied by other species of Sporosarcina. On the basis of phenotypic characteristics including chemotaxonomic data and analysis of the 16S rRNA gene sequence, we conclude that strain SK 55(T) should be considered as a member of a novel genus and species, for which the name Paenisporosarcina quisquiliarum gen. nov., sp. nov. is proposed. The type strain of Paenisporosarcina quisquiliarum is SK 55(T) (=MTCC7604(T) =JCM 14041(T)). S. macmurdoensis CMS 21w(T) shows more similarity in its 16S rRNA gene sequence (98.3 %), DNA G+C content and polar lipid profile to strain SK 55(T) than to S. ureae DSM 2281(T). Phylogenetically, it forms a coherent cluster with strain SK 55(T) which is separate from the Sporosarcina cluster. Moreover, iso-C(15 : 0), anteiso-C(15 : 0) and C(16 : 1)omega7c alcohol are the three major fatty acids in both S. macmurdoensis CMS 21w(T) and SK 55(T). All these data suggest that S. macmurdoensis should be a member of the genus Paenisporosarcina. However, S. macmurdoensis can be differentiated from SK 55(T) in several physiological and biochemical characteristics, especially in the patterns of oxidation and acid production from carbohydrates. The genomic relatedness of S. macmurdoensis CMS 21w(T) and strain SK 55(T) was also very low (18.0 %). It is therefore logical to transfer Sporosarcina macmurdoensis to the newly created genus as Paenisporosarcina macmurdoensis comb. nov. The type strain is CMS 21w(T) (=MTCC4670(T) =DSM 15428(T)).

  19. Magmatic processes revealed by anorthoclase textures and trace element modeling: The case of the Lajes Ignimbrite eruption (Terceira Island, Azores)

    NASA Astrophysics Data System (ADS)

    D'Oriano, Claudia; Landi, Patrizia; Pimentel, Adriano; Zanon, Vittorio

    2017-11-01

    The Lajes Ignimbrite on Terceira Island (Azores) records the last major pyroclastic density current-forming eruption of Pico Alto Volcano that occurred ca. 21 kyrs ago. This comenditic trachyte ignimbrite contains up to 30 vol% of crystals, mostly anorthoclase. Geochemical investigation of the products collected throughout two key outcrops reveals that major element compositions are poorly variable, whereas trace elements show significant variability, pointing to the presence of a zoned magma reservoir. Thermometry and oxygen fugacity estimations yielded pre-eruptive temperatures of 850-900 °C and ΔNNO from - 2.4 to - 1.8. Melt-alkali-feldspar hygrometer indicates magmatic H2O contents ranging from 5.8 wt% in the upper part of the reservoir to 3.6 wt% at the bottom, indicating that the magma reservoir (confined at 4 km depth) was mainly water-undersaturated before the eruption, except for the topmost portion. Two types of anorthoclase crystals were identified. Type 1 crystals show reverse to oscillatory zoning with An contents of 0.4-2.1 mol% and Ba of 200-2000 ppm. They formed in the middle/upper portion of the reservoir, where fractional crystallization processes dominated. Type 2 crystals, mainly present in the less evolved products, are characterized by patchy-zoned cores with large dissolution pockets surrounded by thick oscillatory-zoned rims and show a wide compositional range (An of 0.5-4.7 mol% and Ba of 142-4824 ppm). Their zoning patterns, together with whole-rock and glass compositions of the juvenile clasts, are consistent with the involvement of an anorthoclase-bearing cumulate from the bottom of the reservoir that underwent partial melting. Crystal dissolution was likely induced by the presence of a heat source at depth, without any mass transfer to the eruptible magma, as suggested by the lack of petrographic and chemical evidences of mixing between the resident comenditic trachyte and a mafic/intermediate magma. Thermal instability generated convective plumes that were responsible for the admittance of crystals from the cumulate level into the intermediate portions of the magma reservoir and possibly acted as trigger of the explosive eruption.

  20. Textural and compositional characteristics of mantle xenoliths from southeastern Libya: Evidence of mantle refertilization processes

    NASA Astrophysics Data System (ADS)

    Radivojević, Maša; Erić, Suzana; Turki, Salah M.; Toljić, Marinko; Cvetković, Vladica

    2014-05-01

    The study presents the very first data on mantle xenoliths of the Wādi Eghei area, southeastern Libya. These dm- to cm-sized xenoliths are found in a small volcanic cone of Pliocene basalts, which is situated on the northeastern slopes of the Tibesti Mountains. The host basalts originated from near primary magmas derived by melting of an enriched and garnet-bearing mantle source in within-plate geotectonic settings. Generally, the Wādi Eghei xenoliths can be divided into two texturally different groups: i) well-equilibrated, undeformed protogranular xenoliths, and ii) moderately/strongly sheared, porphyroclastic/equigranular types. Despite their textural diversity, all xenoliths are anhydrous clinopyroxene (cpx)-rich lherzolites, except one protogranular sample (V-5) that can be classified as cpx-poor lherzolite or harzburgite (≡5% of modal cpx). In terms of mineral chemistry, the protogranular xenoliths display only slightly more depleted compositions compared to sheared xenoliths, with sample V-5 as always the most depleted of the whole suite. Fo contents in olivine from protogranular and sheared xenoliths range 90.5-91.0 (V-5~91.5). Orthopyroxene (opx) from protogranular samples has higher Mg#(Mg#=100*Mg/[Mg+Fetot]mol%) from 90.5 to 91.2 (91.8 for V-5 opx), than those from deformed xenoliths (Mg#=89.5-90.5). The composition of spinel also correlates with the texture of the xenoliths. Spinel from the undeformed samples has Cr#s(Cr#=100*Cr/[Cr+Al]mol%) mostly ranging 12-14 (V-5~16), whereas Cr# in spinel occurring in sheared xenoliths is always <10. The variations in cpx composition do not show discernible textural dependences. They display a wide compositional range: En=45.5-50.2; Fs=3.7-5.7; Wo=42.0-50.1. The contents of Al2O3, Na2O and TiO2 range from 2.32-7.75 wt.%, 0.96-1.79 wt.%, and 0.2-0.84 wt.%, respectively. Calculated temperatures indicate that the undeformed types of xenoliths equilibrated at slightly higher temperatures (with minimal and maximal temperatures ranging from 850-950°C, and from 1000 to 1130 °C, respectively), than deformed types (757-923°C and 900-980°C). In addition, among the protogranular xenoliths, a clear dependence of degree of fertility and calculated temperatures is established, with the most fertile samples having the highest equilibrium temperatures. The first data on modal and mineral chemistry compositions of mantle xenoliths from the Wādi Eghei area indicate that this mantle segment underneath southeastern Libya is too fertile to represent a 'normal' subcontinental mantle. The enrichment is most probably related to mafic metasomatisic processes, i.e. to percolations of mafic alkaline magma, similar in composition to the host basalts. The effects of similar mafic metasomatism are also recorded in mantle xenoliths from other localities in Libya. Further analyses, including whole rock, trace element and isotope compositions are in progress and will provide more details about these refertilization processes.

  1. Fe-C and Fe-H systems at pressures of the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Bazhanova, Zulfiya G.; Oganov, Artem R.; Gianola, Omar

    2012-05-01

    The solid inner core of Earth is predominantly composed of iron alloyed with several percent Ni and some lighter elements, Si, S, O, H, and C being the prime candidates. To establish the chemical composition of the inner core, it is necessary to find the range of compositions that can explain its observed characteristics. Recently, there have been a growing number of papers investigating C and H as possible light elements in the core, but the results were contradictory. Here, using ab initio simulations, we study the Fe-C and Fe-H systems at inner core pressures (330-364 GPa). Based on the evolutionary structure prediction algorithm USPEX, we have determined the lowest-enthalpy structures of all possible carbides (FeC, Fe2C, Fe3C, Fe4C, FeC2, FeC3, FeC4, Fe7C3) and hydrides (Fe4H, Fe3H, Fe2H, FeH, FeH2, FeH3, FeH4) and have found that Fe2C (space group Pnma) is the most stable iron carbide at pressures of the inner core, while FeH, FeH3, and FeH4 are the most stable iron hydrides at these conditions. For Fe3C, the cementite structure (space group Pnma) and the Cmcm structure recently found by random sampling are less stable than the I-4 and C2/m structures predicted here. We have found that FeH3 and FeH4 adopt chemically interesting thermodynamically stable crystal structures, containing trivalent iron in both compounds. We find that the density of the inner core can be matched with a reasonable concentration of carbon, 11-15 mol.% (2.6-3.7 wt.%) at relevant pressures and temperatures, yielding the upper bound to the C content in the inner core. This concentration matches that in CI carbonaceous chondrites and corresponds to the average atomic mass in the range 49.3-51.0, in close agreement with inferences from Birch's law for the inner core. Similarly made estimates for the maximum hydrogen content are unrealistically high: 17-22 mol.% (0.4-0.5 wt.%), which corresponds to the average atomic mass of the core in the range 43.8-46.5. We conclude that carbon is a better candidate light alloying element than hydrogen.

  2. Flammability, Odor, and Offgassing Requirements and Test Procedures for Materials in Environments That Support Combustion

    DTIC Science & Technology

    1988-05-01

    alcohol (1- octanol ) phenol n-propyl alcohol (1-propanol) isopropy1 alcohol (2-propanol) **2. Aldehydes acetaldehyde (ethanal) acrolein (propenal...59.0) D-7 MACs 7-Day ppm fmq/M^) 20 (105) 20 (82.0) 20 (70.4) 20 (70.4) Mol. Wt. methyl hexyl ketone (2- octanone ) 128.2 methyl

  3. CO2 solubility and speciation in rhyolitic sediment partial melts at 1.5-3.0 GPa - Implications for carbon flux in subduction zones

    NASA Astrophysics Data System (ADS)

    Duncan, Megan S.; Dasgupta, Rajdeep

    2014-01-01

    Partial melts of subducting sediments are thought to be critical agents in carrying trace elements and water to arc basalt source regions. Sediment partial melts may also act as a carrier of CO2. However, the CO2 carrying capacity of natural rhyolitic melts that derive from partial fusion of downgoing sediment at sub-arc depths remains unconstrained. We conducted CO2-solubility experiments on a rhyolitic composition similar to average, low-degree experimental partial melt of pelitic sediments between 1.5 and 3.0 GPa at 1300 °C and containing variable water content. Concentrations of water and carbon dioxide were measured using FTIR. Molecular CO2(CO2mol.) and carbonate anions (CO32-) both appear as equilibrium species in our experimental melts. Estimated total CO2 concentrations (CO2mol.+CO32-) increased with increasing pressure and water content. At 3.0 GPa, the bulk CO2 solubility are in the range of ∼1-2.5 wt.%, for melts with H2O contents between 0.5 and 3.5 wt.%. For melts with low H2O content (∼0.5 wt.%), CO2mol. is the dominant carbon species, while in more H2O-rich melts CO32- becomes dominant. The experimentally determined, speciation-specific CO2 solubilities yielded thermodynamic parameters that control dissolution of CO2 vapor both as CO2mol. and as CO32- in silicate melt for each of our compositions with different water content; CO2vapor ↔CO2melt :lnK0=-15 to -18, ΔV0 = 29 to 14 cm3 mol-1 and CO2vapor +Omelt →CO32-melt :lnK0=-20 to -14, ΔV0 = 9 to 27 cm3 mol-1, with ΔV0 of reaction being larger for formation of CO2mol. in water-poor melts and for formation of CO32- in water-rich melts. Our bulk CO2 solubility data, [CO2] (in wt.%) can be fitted as a function of pressure, P (in GPa) and melt water content, [H2O] (in wt.%) with the following function: [CO2](wt.%)=(-0.01108[H2O]+0.03969)P2+(0.10328[H2O]+0.41165)P. This parameterization suggests that over the range of sub-arc depths of 72-173 km, water-rich sediment partial melt may carry as much as 2.6-5.5 wt.% CO2 to the sub-arc mantle source regions. At saturation, 1.6-3.3 wt.% sediment partial melt relative to the mantle wedge is therefore sufficient to bring up the carbon budget of the mantle wedge to produce primary arc basalts with 0.3 wt.% CO2. Sediment plumes in mantle wedge: Sediment plumes or diapirs may form from the downgoing slab because the sediment layer atop the slab is buoyant relative to the overlying, hanging wall mantle (Currie et al., 2007; Behn et al., 2011). Via this process, sediment layers with carbonates would carry CO2 to the arc source region. Owing to the higher temperature in the mantle wedge, carbonate can breakdown. Behn et al. (2011) suggested that sediment layers as thin as 100 m, appropriate for modern arcs, could form sediment diapirs. They predicted that diapirs would form from the slab in the sub-arc region for most subduction zones today without requiring hydrous melting. H2O-rich fluid driven carbonate breakdown: Hydrous fluid flushing of the slab owing to the breakdown of hydrous minerals could drive carbonate breakdown (Kerrick and Connolly, 2001b; Grove et al., 2002; Gorman et al., 2006). The addition of water would cause decarbonation creating an H2O-CO2-rich fluid that would then flux through the overlying sediment layer, lower the solidus temperature, and trigger melting. Recent geochemical (Cooper et al., 2012) and geodynamic (van Keken, 2003; Syracuse et al., 2010) constraints suggest that the sub-arc slab top temperatures are above the hydrous fluid-present sediment solidus, thus in the presence of excess fluid, both infiltration induced decarbonation and sediment melting may occur. Hot subduction: This is relevant for subduction zones such as Cascadia and Mexico, where slab-surface temperatures are estimated to be higher (Syracuse et al., 2010). A higher temperature could cause carbonate breakdown and sediment partial melting without requiring a hydrous fluid flux. In this case a relatively dry silicate sediment melt will have the opportunity to dissolve and carry CO2. For hot subduction zones, even if sedimentary layer itself does not carry carbonate, CO2 released from basalt-hosted carbonates may be dissolved in sediment partial melt. Experiments conducted on subducted sediment compositions show that the partial melt compositions are generally rhyolitic (Johnson and Plank, 1999; Hermann and Green, 2001; Schmidt et al., 2004; Auzanneau et al., 2006; Hermann and Spandler, 2008; Spandler et al., 2010; Tsuno and Dasgupta, 2011). Therefore, solubility of CO2 in rhyolitic sediment partial melts needs to be known. Previous studies on rhyolitic melts experimentally determined CO2 solubility from 0.05 to 0.66 GPa (Fig. 1; Fogel and Rutherford, 1990; Blank et al., 1993; Tamic et al., 2001). This pressure range is not appropriate for global sub-arc depth range of 72-173 km (Syracuse and Abers, 2006) settings (P = 2-5 GPa). Carbon dioxide solubility experiments at pressures from 1.5 to 3.5 GPa are available but only on simple compositions - i.e., albite, which does not have the chemical complexity of natural sediment partial melts (Fig. 1; Brey, 1976; Mysen, 1976; Mysen et al., 1976; Mysen and Virgo, 1980; Stolper et al., 1987; Brooker et al., 1999). For example, natural rhyolitic melt derived from partial fusion of pelitic sediments contain non-negligible concentrations of Ca2+, Mg2+, Fe2+. Many of these studies were also conducted under mixed-volatile conditions (CO2 + H2O) with H2O contents from 0.06 to 3.3 wt.%. These studies were used in calculating various solubility models: Volatile-Calc (Newman and Lowenstern, 2002), that of Liu et al. (2005), and that of Papale et al. (2006). Volatile-Calc can be used to calculate CO2 solubility only on a generic rhyolite composition up to 0.5 GPa. The model of Liu et al. (2005) is also on a generic rhyolite up to 0.5 GPa, but can calculate mixed volatile concentrations provided the vapor composition is known. The model of Papale et al. (2006) can be used to calculate mixed volatile concentrations for a melt composition of interest, but only up to 1.0 GPa.The literature data show that CO2 solubility increases with increasing pressure and decreases with increasing melt silica content (decreasing NBO/T; e.g., Brooker et al., 2001). The effect of temperature remains somewhat ambiguous, but is thought to be relatively smaller than the pressure or compositional effects, with Mysen (1976) measuring increasing CO2 solubility with temperature for albite melt, Brooker et al. (2001) and Fogel and Rutherford (1990) noticing decreasing CO2 solubility with increasing temperature, and Stolper et al. (1987) concluding that temperature has essentially no effect on total melt CO2 concentration at saturation. The presence of water in the melt also is known to affect CO2 solution (e.g., Mysen, 1976; Eggler and Rosenhauer, 1978), yet quantitative effect of water on CO2 solution in natural rhyolitic melt has only been investigated up to 0.5 GPa (Tamic et al., 2001). In order to determine the CO2 carrying capacity of sediment partial melts, experiments must be conducted at conditions (pressure, temperature, major element compositions, and XH2O) relevant to sub-arc settings.In this study we measured the solubility and speciation of CO2 in rhyolitic sediment partial melts. Experiments were conducted from 1.5 to 3.0 GPa at 1300 °C with variable water contents and synthesized glasses were analyzed for water and carbon speciation using Fourier-transformed infrared spectroscopy. Our measured solubility data allowed us to constrain volume change and equilibrium constant of the CO2 dissolution reactions. Moreover, we parameterize CO2 solubility in sediment partial melt as a function of pressure and melt water content. Our data and empirical model suggest that the CO2 carrying capacity of sediment partial melts is sufficiently high at sub-arc depths and hydrous sediment melt can potentially carry the necessary dose of CO2 to arc mantle source regions.

  4. Structural transformations of sVI tert-butylamine hydrates to sII binary hydrates with methane.

    PubMed

    Prasad, Pinnelli S R; Sugahara, Takeshi; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2009-10-22

    Binary clathrate hydrates with methane (CH(4), 4.36 A) and tert-butylamine (t-BuNH(2), 6.72 A) as guest molecules were synthesized at different molar concentrations of t-BuNH(2) (1.00-9.31 mol %) with methane at 7.0 MPa and 250 K, and were characterized by powder X-ray diffraction (PXRD) and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed on pressurizing with methane. The PXRD showed sII signatures and the remnant sVI signatures were insignificant, implying the metastable nature of sVI binary hydrates. Raman spectroscopic data on these binary hydrates suggest that the methane molecules occupy the small cages and vacant large cages. The methane storage capacity in this system was nearly doubled to approximately 6.86 wt % for 5.56 mol % > t-BuNH(2) > 1.0 mol %.

  5. Sintering activation energy MoSi2-WSi2-Si3N4 ceramic

    NASA Astrophysics Data System (ADS)

    Titov, D. D.; Lysenkov, A. S.; Kargin, Yu F.; Frolova, M. G.; Gorshkov, V. A.; Perevislov, S. N.

    2018-04-01

    The activation energy of sintering process was calculated based on dilatometric studies of shrinkage processes (Mo,W)Si2 + Si3N4 composite ceramic. (Mo,W)Si2 powders was obtained by solid-phase solutions of 70 wt% MoSi2 and 30 wt% WSi2 by SHS in the ISMAN RAS. The concentration rate Si3N4 was from 1 to 15 wt.%. The sintering was carried out to 1850°C in Ar atmosphere the heating rate of 5, 10, 12 and 15°C/min by the way of dilatometer tests. Based on the differential kinetic analysis method (Friedman’s method), the sintering process activation energy of (Mo,W)Si2 + Si3N4 were calculated. The two-stage sintering process and the dependence of the activation energy on the Si3N4 content was shown. Average value of 370 kJ/mol for Q was obtained.

  6. Study of changes induced in thermal properties of starch by incorporating Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Meena, Sharma, Annu

    2018-05-01

    This report presents the study of thermal properties of starch and Ag-starch nanocomposite films fabricated via chemical reduction method followed by solution casting. Thermo gravimetric analysis was utilized to investigate the effect of varying concentration of Ag nanoparticles on thermal stability and activation energy of starch. Activation energy that is the energy required for initialization of degradation process of starch comes out to be 238.9 kJ/mol which decreases to a value of 174.6 kJ/mol for Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Moreover the thermal stability of starch increases with the increasing concentration of Ag nanoparticles.

  7. Catalytically Enhanced Hydrogen Sorption in Mg-MgH2 by Coupling Vanadium-Based Catalyst and Carbon Nanotubes

    PubMed Central

    Kadri, Atikah; Jia, Yi; Chen, Zhigang; Yao, Xiangdong

    2015-01-01

    Mg (MgH2)-based composites, using carbon nanotubes (CNTs) and pre-synthesized vanadium-based complex (VCat) as the catalysts, were prepared by high-energy ball milling technique. The synergistic effect of coupling CNTs and VCat in MgH2 was observed for an ultra-fast absorption rate of 6.50 wt. % of hydrogen per minute and 6.50 wt. % of hydrogen release in 10 min at 200 °C and 300 °C, respectively. The temperature programmed desorption (TPD) results reveal that coupling VCat and CNTs reduces both peak and onset temperatures by more than 60 °C and 114 °C, respectively. In addition, the presence of both VCat and CNTs reduces the enthalpy and entropy of desorption of about 7 kJ/mol H2 and 11 J/mol H2·K, respectively, as compared to those of the commercial MgH2, which ascribe to the decrease of desorption temperature. From the study of the effect of CNTs milling time, it is shown that partially destroyed CNTs (shorter milling time) are better to enhance the hydrogen sorption performance.

  8. Optimization of multicomponent aqueous suspensions of lithium iron phosphate (LiFePO4) nanoparticles and carbon black for lithium-ion battery cathodes.

    PubMed

    Li, Jianlin; Armstrong, Beth L; Daniel, Claus; Kiggans, Jim; Wood, David L

    2013-09-01

    Addition of polyethyleneimine (PEI) to aqueous LiFePO4 nanoparticle suspensions improves stability and reduces agglomerate size, which is beneficial to lithium-ion battery cathode manufacturing. This research examines the effect of both PEI concentration and molecular weight (MW) on dispersing LiFePO4 and Super P C45 in multicomponent aqueous suspensions. It is demonstrated that the optimal conditions for obtaining stable suspensions with minimal agglomerate size are 1.5 wt% PEI with MW=2000 g mol(-1) and 5.0 wt% PEI with MW=10,000 g mol(-1) for LiFePO4 and Super P C45, respectively. The mixing sequence also affects rheological properties of these suspensions. It is found that dispersing the LiFePO4 and Super P C45 separately yielded suspensions with superior properties (Newtonian rheological behavior, smaller agglomerate size, improved settling, etc.). In particular, dispersing the LiFePO4 prior to the Super P C45 when making the final multicomponent suspension is found to be beneficial, which was evidenced by higher half-cell discharge capacity. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Improved hydrogen storage properties of MgH2 catalyzed with TiO2

    NASA Astrophysics Data System (ADS)

    Jangir, Mukesh; Meena, Priyanka; Jain, I. P.

    2018-05-01

    In order to improve the hydrogenation properties of the MgH2, various concentration of rutile Titanium Oxide (TiO2) (X wt%= 5, 10, 15 wt %) is added to MgH2 by ball milling and the catalytic effect of TiO2 on hydriding/dehydriding properties of MgH2 has been investigated. Result shows that the TiO2 significantly reduced onset temperature of desorption. Onset temperature as low as 190 °C were observed for the MgH2-15 wt% TiO2 sample which is 60 °C and 160 °C lower than the as-milled and as-received MgH2. Fromm the Kissinger plot the activation energy of 15 wt% TiO2 added sample is calculated to be -75.48 KJ/mol. These results indicate that the hydrogenation properties of MgH2-TiO2 have been improved compared to the as-milled and as-received MgH2. Furthermore, XRD and XPS were performed to characterize the structural evolution upon milling and dehydrogenation.

  10. Thermal properties of spinel based solid solutions

    NASA Astrophysics Data System (ADS)

    O'Hara, Kelley Rae

    Solid solution formation in spinel based systems proved to be a viable approach to decreasing thermal conductivity. Samples with systematically varied additions of MgGa2O4 to MgAl2O 4 were prepared and thermal diffusivity was measured using the laser flash technique. Additionally, heat capacity was measured using differential scanning calorimetry and modeled for the MgAl2O4-MgGa 2O4 system. At 200°C thermal conductivity decreased 24% with a 5 mol% addition of MgGa2O4 to the system. The solid solution continued to decrease the thermal conductivity by 13% up to 1000°C with 5 mol% addition. The decrease in thermal conductivity ultimately resulted in a decrease in heat flux when applied to a theoretical furnace lining, which could lead to energy savings in industrial settings. The MgAl2O4-Al2O3 phase equilibria was investigated to fully understand the system and the thermal properties at elevated temperatures. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al 2O3 at 1500°C, 83.0 wt% Al2O4 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been identified at temperatures up to 1700°C which could have significant implications for material processing and properties. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevated temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present. Thermal properties in the MgAl2O4-Al2O 3 system were investigated in both the single phase solid solution region and the two phase region. The thermal diffusivity decreased through the MgAl 2O4 solid solution region and was at a minimum through the entire metastable (nucleation and growth) region. As Al2O 3 became present as a second phase the thermal diffusivity increased with Al2O3 content. There was an 11.7% increase in thermal diffusivity with a change in overall chemistry of 85.20 wt% Al2O 3 to 87.71 wt% Al2O3, due to the drastic change in final chemistry (38.3 wt% Al20 3) caused by the nucleation and growth region in the system.

  11. Chemical etching of stainless steel 301 for improving performance of electrochemical capacitors in aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Jeżowski, P.; Nowicki, M.; Grzeszkowiak, M.; Czajka, R.; Béguin, F.

    2015-04-01

    The main purpose of the study was to increase the surface roughness of stainless steel 301 current collectors by etching, in order to improve the electrochemical performance of electrical double-layer capacitors (EDLC) in 1 mol L-1 lithium sulphate electrolyte. Etching was realized in 1:3:30 (HNO3:HCl:H2O) solution with times varying up to 10 min. For the considered 15 μm thick foil and a mass loss around 0.4 wt.%, pitting was uniform, with diameter of pits ranging from 100 to 300 nm. Atomic force microscopy (AFM) showed an increase of average surface roughness (Ra) from 5 nm for the as-received stainless steel foil to 24 nm for the pitted material. Electrochemical impedance spectroscopy realized on EDLCs with coated electrodes either on as-received or pitted foil in 1 mol L-1 Li2SO4 gave equivalent distributed resistance (EDR) of 8 Ω and 2 Ω, respectively, demonstrating a substantial improvement of collector/electrode interface after pitting. Correlatively, the EDLCs with pitted collector displayed a better charge propagation and low ohmic losses even at relatively high current of 20 A g-1. Hence, chemical pitting of stainless steel current collectors is an appropriate method for optimising the performance of EDLCs in neutral aqueous electrolyte.

  12. Nanoclay addition to a conventional glass ionomer cements: Influence on physical properties

    PubMed Central

    Fareed, Muhammad A.; Stamboulis, Artemis

    2014-01-01

    Objective: The objective of the present study is to investigate the reinforcement effect of polymer-grade montmorillonite (PGN nanoclay) on physical properties of glass ionomer cement (GIC). Materials and Methods: The PGN nanoclay was dispersed in the liquid portion of GIC (HiFi, Advanced Healthcare, Kent, UK) at 1%, 2% and 4% (w/w). Fourier-transform infrared (FTIR) spectroscopy was used to quantify the polymer liquid of GICs after dispersion of nanoclay. The molecular weight (Mw) of HiFi liquid was determined by gel permeation chromatography. The compressive strength (CS), diametral-tensile strength, flexural strength (FS) and flexural modulus (Ef) of cements (n = 20) were measured after storage for 1 day, 1 week and 1 month. Fractured surface was analyzed by scanning electron microscopy. The working and setting time (WT and ST) of cements was measured by a modified Wilson's rheometer. Results: The FTIR results showed a new peak at 1041 cm−1 which increased in intensity with an increase in the nanoclay content and was related to the Si-O stretching mode in PGN nanoclay. The Mw of poly (acrylic acid) used to form cement was in the range of 53,000 g/mol. The nanoclay reinforced GICs containing <2% nanoclays exhibited higher CS and FS. The Ef cement with 1% nanoclays was significantly higher. The WT and ST of 1% nanoclay reinforced cement were similar to the control cement but were reduced with 2% and 4% nanoclay addition. Conclusion: The dispersion of nanoclays in GICs was achieved, and GIC containing 2 wt% nanoclay is a promising restorative materials with improved physical properties. PMID:25512724

  13. Oxygen isotope and trace element compositions of platiniferous dunite pipes of the Bushveld Complex, South Africa - Signals from a recycled mantle component?

    NASA Astrophysics Data System (ADS)

    Günther, T.; Haase, K. M.; Junge, M.; Oberthür, T.; Woelki, D.; Krumm, S.

    2018-06-01

    Platiniferous dunite pipes occur in the lower mafic/ultramafic portion of the Rustenburg Layered Suite of the Bushveld large igneous province (LIP). Olivine compositions in these pipes range from forsterite (Fo) 80 to 35 mol% and suggest crystallization from variably evolved magmas at high temperatures ( 1200 °C). The most primitive olivines are from a stock unit and have the highest contents of Ni (>0.15 wt%) and lowest contents of Mn (<0.3 wt%). Fractional crystallization and partial melting of pyroxenite host rock play a significant role in the formation of the fayalitic olivines with its high Mn contents (>0.3 wt%). High δ18O values of olivine (5.7-7.0‰) and pyroxene (6.7-7.4‰) are akin to those of the Lower and Critical Zone of the Bushveld intrusion suggesting a common origin. The constant high O isotope ratios with variable Fo contents in the olivines are unlike trends observed in olivine phenocrysts in magmas forming by assimilation-fractional crystallization. We suggest that the high δ18O in the most primitive dunites reflect that of the primary melt of the Bushveld pipes, indicating either a bulk assimilation of crust prior to pipe formation or a contribution from recycled oceanic crust in the sub-continental lithospheric mantle (SCLM). The latter scenario is supported by the high Ni/Mn ratios in primitive pipe olivine that might be inherited from melting of a pyroxene-rich mantle source.

  14. High hydrogen desorption properties of Mg-based nanocomposite at moderate temperatures: The effects of multiple catalysts in situ formed by adding nickel sulfides/graphene

    NASA Astrophysics Data System (ADS)

    Xie, Xiubo; Chen, Ming; Liu, Peng; Shang, Jiaxiang; Liu, Tong

    2017-12-01

    Nickel sulfides decorated reduced graphene oxide (rGO) has been produced by co-reducing Ni2+ and graphene oxide (GO), and is subsequently ball milled with Mg nanoparticles (NPs) produced by hydrogen plasma metal reaction (HPMR). The nickel sulfides of about 800 nm completely in situ change to MgS, Mg2Ni and Ni multiple catalysts after first hydrogenation/dehydrogenation process at 673 K. The Mg-5wt%NiS/rGO nanocomposite shows the highest hydrogen desorption kinetics and capacity properties, and the catalytic effect order of the additives is NiS/rGO, NiS and rGO. At 573 K, the Mg-NiS/rGO nanocomposite can quickly desorb 3.7 wt% H2 in 10 min and 4.5 wt% H2 in 60 min. The apparent hydrogen absorption and desorption activation energies of the Mg-5wt%NiS/rGO nanocomposite are decreased to 44.47 and 63.02 kJ mol-1, smaller than those of the Mg-5wt%rGO and Mg-5wt%NiS samples. The best hydrogen desorption properties of the Mg-5wt%NiS/rGO nanocomposite can be explained by the synergistic catalytic effects of the highly dispersed MgS, Mg2Ni and Ni catalysts on the rGO sheets, and the more nucleation sites between the catalysts, rGO sheets and Mg matrix.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anggita, R. K. Wardani, E-mail: anggita14@mhs.chem.its.ac.id; Yuniar, V. T. P., E-mail: yuniar11@mhs.chem.its.ac.id; Aini, W. T., E-mail: aini11@mhs.chem.its.ac.id

    In this study, the influence of hydrothermal temperature and time at zeolite X supported on glasswool were investigated. The results of characterization using XRD showed that a single phase zeolite X with highest crystallinity was obtained when hydrothermal temperature and time at 100°C during 24 hours (ZXF100-24H). The CO{sub 2} adsorption capacity of ZXF100-24H has reached up to 10.15 wt. %. Kinetics of CO{sub 2} adsorption onto zeolite X supported on glasswool was investigated using pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetic models. After evaluating three kinetic models for CO{sub 2} adsorption at adsorption temperatures of 30°C, 40°C and 50°C, itmore » was found that intra-particle diffusion kinetic model provided the best fitting for the adsorption data. Furthermore, the thermodynamic parameters of CO{sub 2} adsorption were obtained as follows, Gibbs free energy change (ΔG°) are −0.409 kJ/mol at 30°C, −0.274 kJ/mol at 40°C and −0.138 kJ/mol at 50 °C, whereas the enthalpy change (ΔH°) is −4.53 kJ/mol and the entropy change (ΔS°) is −0.0135 kJ/(mol K).« less

  16. Investigation of recovery and recycling of rare earth elements from waste fluorescent lamp phosphors

    NASA Astrophysics Data System (ADS)

    Eduafo, Patrick Max

    Characterization techniques and experimental measurements were used to evaluate a process for recycling rare earth elements (REEs) from spent fluorescent lamp phosphors. QEMSCAN analysis revealed that over 60% of the rare earth bearing minerals was less than 10 microm. A representative sample of the as-received feed contained 14.59 wt% total rare earth elements (TREE) and upon sieving to below 75 microm, the grade increased to 19.60 wt% REE with 98.75% recovery. Based on experimental work, a new process for extracting the chief REEs from end of life fluorescent lamps has been developed. The proposed flowsheet employs a three-stage leaching and precipitation process for selective extraction and recovery of the REEs. Hydrochloric acid was used as lixiviant in batch leach experiments on the phosphor powder. The maximum extraction obtained was 100% for both yttrium and europium under the following leaching conditions: 2.5 M HCl, 70°C, 1 hour, 180 g/L and 600 rpm. However, the solubility of cerium, lanthanum and terbium remained low at these conditions. Kinetic data of the leaching of yttrium and europium showed best fit to the logarithmic rate expression of the empirical model of leaching. Activation energy was calculated to be 77.49 kJ/mol for Y and 72.75 kJ/mol for Eu in the temperature range of 298 to 343 K. Precipitation tests demonstrate that at least 50% excess the stoichiometric amount of oxalic acid is needed to recover yttrium and europium efficiently to produce a pure (Y, Eu) mixed oxide. Total recovery of the REEs was achieved even at very low pH or without any base added. Over 99% pure mixed rare earth oxide at 99% recovery has been attained. An economic assessment of the developed process using operating and capital cost have be undertaken and based on the analysis of the three economic scenarios, two are economic and one is non-economic.

  17. Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.

    2009-01-01

    Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.

  18. Hydrogen Sulfide Attenuates Neurodegeneration and Neurovascular Dysfunction Induced by Intracerebral Administered Homocysteine in Mice

    PubMed Central

    Kamat, Pradip K.; Kalani, Anuradha; Givvimani, Srikanth; Sathnur, PB; Tyagi, Suresh C.; Tyagi, Neetu

    2014-01-01

    High levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy) are associated with neurovascular diseases. H2S, a metabolite of Hcy, has a potent anti-oxidant and anti-inflammatory activity; however, the effect of H2S has not been explored in Hcy (IC) induced neurodegeneration and neurovascular dysfunction in mice. Therefore, the present study was designed to explore the neuroprotective role of H2S on Hcy induced neurodegeneration and neurovascular dysfunction. To test this hypothesis we employed wild type (WT) males ages 8–10 weeks, WT+ artificial cerebrospinal fluid (aCSF), WT+ Hcy (0.5μmol/μl) intracerebral injection (I.C., one time only prior to NaHS treatment), WT+Hcy +NaHS (sodium hydrogen sulfide, precursor of H2S, 30 μmol/kg, body weight). NaHS was injected intra-peritoneally (I.P.) once daily for the period of 7 days after the Hcy (IC) injection. Hcy treatment significantly increased MDA, nitrite level, acetylcholinestrase activity, TNFα, IL1β, GFAP, iNOS, eNOS and decreased glutathione level indicating oxidative-nitrosative stress and neuroinflammation as compared to control and aCSF treated groups. Further, increased expression of NSE, S100B and decreased expression of (PSD95, SAP97) synaptic protein indicated neurodegeneration. Brain sections of Hcy treated mice showed damage in the cortical area and periventricular cells. TUNEL positive cells and Fluro Jade-C staining indicated apoptosis and neurodegeneration. The increased expression of MMP9, MMP2 and decreased expression of TIMP-1, TIMP-2, tight junction proteins (ZO1, Occuldin) in Hcy treated group indicate neurovascular remodeling. Interestingly, NaHS treatment significantly attenuated Hcy induced oxidative stress, memory deficit, neurodegeneration, neuroinflammation and cerebrovascular remodeling. The results indicate that H2S is effective in providing protection against neurodegeneration and neurovascular dysfunction. PMID:23912038

  19. In vitro analysis of allogeneic lymphocyte interaction. V. Identification and characterization of two components of allogeneic effect factor, one of which displays H-2-restricted helper activity and the other, T cell-growth factor activity.

    PubMed

    Delovitch, T L; Watson, J; Battistella, R; Harris, J F; Shaw, J; Paetkau, V

    1981-01-01

    An allogeneic effect factor (AEF) derived from mixed lymphocyte reaction (MLR) cultures of alloactivated A.SW (H-2s) responder T cells and irradiated A/WySn (H-2a) stimulator spleen cells helps an in vitro primary anti-erythrocyte plaque-forming cell PFC response of BALB/c nude spleen cels and also A/WySn but not A.SW T cell-depleted spleen cells. AEF activity is adsorbed by anti-Ik and anti-I-Ak but not by anti-I-Jk, anti-I-ECk, and anti-Is. Gel filtration of ACA 54 resolves AEF into two main components that which appear in the 50,000- to 70,000-mol wt (component I) and 30,000- to 35,000-mol wt (component II) regions, respectively. Component I has a mol wt of 68,000, elutes from DEAE-Sephacel at 0.05-0.1 M NaCl, and has an isoelectric point (pI) of 5.8. It helps A/WySn but not A.SW B cells and, therefore, is H-2 restricted. Component II is not H-2 restricted, because it helps both A.SW and A/WySn B cells. It also stimulates (a) the growth of a long-term cytotoxic cell line in vitro, (b) Con A-induced thymocyte mitogenesis, and (c) the generation of cytotoxic T cells. The latter three properties of component II are not shared by component I. In addition, component II elutes from DEAE-Sephacel at 0.15-0.2 M NaCl and has a pI of 4.3 and 4.9. Ia determinants and Ig VH, CH, L-chain, and idiotypic determinants are not present on either component I or component II. The properties of component II are identical to that of a T cell growth factor produced by Con A-stimulated spleen cells. It is suggested that the H-2-restricted component I of AEF might be an MLR-activated responder T cell-derived Ia alloantigen receptor.

  20. [PKA-regulated phosphorylation status of S149 and S321 sites of CDC25B inhibits mitosis of fertilized mouse eggs].

    PubMed

    Xiao, Jian-Ying; Liu, Chao; Sun, Xiao-Han; Yu, Bing-Zhi

    2012-02-25

    To further test whether protein kinase A (PKA) can affect the mitotic cell cycle, one-cell stage mouse embryos at S phase (22 h after hCG injection) were incubated in M16 medium containing various concentrations of H-89, a PKA inhibitor. With increasing concentrations of H-89 (0-50 μmol/L), the G(2) phase of eggs was decreased and the cleavage rate was accelerated. A concentration of 40 μmol/L H-89 led to all of the mouse eggs entering the M phase of mitosis. Furthermore, to study the role of PKA in regulating the phosphorylation status of S149 and S321 sites of cell division cycle 25B (CDC25B) on one-cell stage fertilized mouse eggs, pBSK-CDC25B-WT, pBSK-CDC25B-S149A, pBSK-CDC25B-S321A and pBSK-CDC25B-S149A/S321A were transcribed into mRNAs in vitro, then mRNAs were microinjected into S phase of mouse fertilized eggs and cultured in M16 medium pretreated with H-89. Then, the cleavage of fertilized eggs, maturation promoting factor (MPF) activity and phosphorylation status of CDC2-Tyr15 were observed. In the presence of 40 μmol/L H-89, the cleavage rate of fertilized eggs in CDC25B-S/A-mRNAs and CDC25B-WT-mRNA injected groups was significantly higher than that in the control groups, and the peak of MPF activity appeared in the CDC25B-S/A-mRNAs and CDC25B-WT-mRNA injected groups earlier than that in the control groups. CDC2-Tyr15 phosphorylation state was consistent with MPF activity. In conclusion, the present study suggests that PKA regulates the early development of mouse embryos by phosphorylation of S149 and S321 of CDC25B, which plays an important role in the regulation of G(2)/M transition in the mitotic cell cycle of fertilized mouse eggs.

  1. Candida antartica lipase B catalyzed polycaprolactone synthesis: effects of organic media and temperature.

    PubMed

    Kumar, A; Gross, R A

    2000-01-01

    Engineering of the reaction medium and study of an expanded range of reaction temperatures were carried out in an effort to positively influence the outcome of Novozyme-435 (immobilized Lipase B from Candida antarctica) catalyzed epsilon-CL polymerizations. A series of solvents including acetonitrile, dioxane, tetrahydrofuran, chloroform, butyl ether, isopropyl ether, isooctane, and toluene (log P from -1.1 to 4.5) were evaluated at 70 degrees C. Statistically (ANOVA), two significant regions were observed. Solvents having log P values from -1.1 to 0.49 showed low propagation rates (< or = 30% epsilon-CL conversion in 4 h) and gave products of short chain length (Mn < or = 5200 g/mol). In contrast, solvents with log P values from 1.9 to 4.5 showed enhanced propagation rates and afforded polymers of higher molecular weight (Mn = 11,500-17,000 g/mol). Toluene, a preferred solvent for this work, was studied at epsilon-CL to toluene (wt/vol) ratios from 1:1 to 10:1. The ratio 1:2 was selected since, for polymerizations at 70 degrees C, 0.3 mL of epsilon-CL and 4 h, gave high monomer conversions and Mn values (approximately 85% and approximately 17,000 g/mol, respectively). Increasing the scale of the reaction from 0.3 to 10 mL of CL resulted in a similar isolated product yield, but the Mn increased from 17,200 to 44,800 g/mol. Toluene appeared to help stabilize Novozyme-435 so that lipase-catalyzed polymerizations could be conducted effectively at 90 degrees C. For example, within only 2 h at 90 degrees C (toluene-d8 to epsilon-CL, 5:1, approximately 1% protein), the % monomer conversion reached approximately 90%. Also, the controlled character of these polymerizations as a function of reaction temperature was evaluated.

  2. Oxidation resistant nanocrystalline MCrAl(Y) coatings and methods of forming such coatings

    DOEpatents

    Cheruvu, Narayana S.; Wei, Ronghua

    2014-07-29

    The present disclosure relates to an oxidation resistant nanocrystalline coating and a method of forming an oxidation resistant nanocrystalline coating. An oxidation resistant coating comprising an MCrAl(Y) alloy may be deposited on a substrate, wherein M, includes iron, nickel, cobalt, or combinations thereof present greater than 50 wt % of the MCrAl(Y) alloy, chromium is present in the range of 15 wt % to 30 wt % of the MCrAl(Y) alloy, aluminum is present in the range of 6 wt % to 12 wt % of the MCrAl(Y) alloy and yttrium, is optionally present in the range of 0.1 wt % to 0.5 wt % of the MCrAl(Y) alloy. In addition, the coating may exhibit a grain size of 200 nm or less as deposited.

  3. Remarkably high apparent quantum yield of the overall photocatalytic H2O splitting achieved by utilizing Zn ion added Ga2O3 prepared using dilute CaCl2 solution.

    PubMed

    Sakata, Yoshihisa; Hayashi, Takuya; Yasunaga, Ryō; Yanaga, Nobuyuki; Imamura, Hayao

    2015-08-21

    Remarkably high photocatalytic activity for the overall H2O splitting, where the activity was 32 mmol h(-1) for H2 production and 16 mmol h(-1) for O2 production under irradiation from a 450 W high-pressure Hg lamp and the apparent quantum yield (AQY) was 71% under irradiation at 254 nm, was achieved by utilizing a Rh(0.5)Cr(1.5)O3(Rh; 0.5 wt%)/Zn(3 mol%)-Ga2O3 photocatalyst when Ga2O3 was prepared using dilute CaCl2 aqueous solution having a concentration of 0.001 mol l(-1).

  4. Characterization of brush borders purified in iso-osmotic medium and microvillar membranes subfractionated from mouse small intestine.

    PubMed Central

    Fujita, M; Ohta, H; Uezato, T

    1981-01-01

    Brush borders free of nuclei were isolated by repeated homogenization and centrifugation in iso-osmotic medium. They showed typical morphology under electron microscopy. The mean recovery and enrichment of alkaline phosphatase activity in the brush-border fraction were 50% and 17.5-fold respectively. gamma-Glutamyl transpeptidase showed a close parallelism with alkaline phosphatase and sucrase in subcellular distribution. Microvillar membranes were purified from isolated brush borders; they showed a further enrichment for alkaline phosphatase and were composed of homogeneous vesicles. Both brush-border and microvillar-membrane preparations were analysed for contamination by basolateral and endoplasmic-reticular membranes. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the microvillar-membrane preparation in six different systems revealed approx. 40 components in the mol.wt. range 15 000-232 000. They were grouped into seven major classes on the basis of molecular weight and electrophoretic patterns. Images PLATE 1 PLATE 2 PMID:7317008

  5. The role of a conserved tyrosine residue in high-potential iron sulfur proteins.

    PubMed Central

    Iwagami, S. G.; Creagh, A. L.; Haynes, C. A.; Borsari, M.; Felli, I. C.; Piccioli, M.; Eltis, L. D.

    1995-01-01

    Conserved tyrosine-12 of Ectothiorhodospira halophila high-potential iron sulphur protein (HiPIP) iso-I was substituted with phenylalanine (Y12F), histidine (Y12H), tryptophan (Y12W), isoleucine (Y12I), and alanine (Y12A). Variants Y12A and Y12I were expressed to reasonable levels in cells grown at lower temperatures, but decomposed during purification. Variants Y12F, Y12H, and Y12W were substantially destabilized with respect to the recombinant wild-type HiPIP (rcWT) as determined by differential scanning calorimetry over a pH range of 7.0-11.0. Characterization of the Y12F variant by NMR indicates that the principal structural differences between this variant and the rcWT HiPIP result from the loss of the two hydrogen bonds of the Tyr-12 hydroxyl group with Asn-14 O delta 1 and Lys-59 NH, respectively. The effect of the loss of the latter interaction is propagated through the Lys-59/Val-58 peptide bond, thereby perturbing Gly-46. The delta delta GDapp of Y12F of 2.3 kcal/mol with respect to rcWT HiPIP (25 degrees C, pH 7.0) is entirely consistent with the contribution of these two hydrogen bonds to the stability of the latter. CD measurements show that Tyr-12 influences several electronic transitions within the cluster. The midpoint reduction potentials of variants Y12F, Y12H, and Y12W were 17, 19, and 22 mV (20 mM MOPS, 0.2 M sodium chloride, pH 6.98, 25 degrees C), respectively, higher than that of rcWT HiPIP. The current results indicate that, although conserved Tyr-12 modulates the properties of the cluster, its principle function is to stabilize the HiPIP through hydrogen bonds involving its hydroxyl group and electrostatic interactions involving its aromatic ring. PMID:8580847

  6. A Study of Interdiffusion in the Fe-C/Ti System Under Equilibrium and Nonequilibrium Conditions

    NASA Astrophysics Data System (ADS)

    Prasanthi, T. N.; Sudha, C.; Saroja, S.

    2017-04-01

    In the present study, diffusion behavior under equilibrium and nonequilibrium conditions in a Fe-C/Ti system is studied in the temperature range of 773 K to 1073 K (500 °C to 800 °C). A defect-free weld joint between mild steel (MS) (Fe-0.14 pct C) and Ti Grade 2 obtained by friction welding is diffusion annealed for various durations to study the interdiffusion behavior under equilibrium conditions, while an explosive clad joint is used to study interdiffusion under nonequilibrium conditions. From the elemental concentration profiles obtained across the MS-Ti interface using electron-probe microanalysis and imaging of the interface, the formation of distinct diffusion zones as a function of temperature and time is established. Concentration and temperature dependence of the interdiffusion coefficients ( D( c)) and activation energies are determined. Under equilibrium conditions, the change in molar volume with concentration shows a close match with the ideal Vegard's law, whereas a negative deviation is observed for nonequilibrium conditions. This deviation can be attributed to the formation of secondary phases, which, in turn, alters the D( c) values of diffusing species. Calculations showed that the D 0 and activation energy for interdiffusion under equilibrium is on the order of 10-11 m2/s and 147 kJ/mol, whereas it is far lower in the nonequilibrium case (10-10 m2/s and 117 kJ/mol) in the compositional range of 40 to 50 wt pct Fe, which also manifests as accelerated growth kinetics of the different diffusion zones.

  7. Syntheses, Characterization and Kinetics of Nickel-Tungsten Nitride Catalysts for Hydrotreating of Gas Oil

    NASA Astrophysics Data System (ADS)

    Botchwey, Christian

    This thesis summarizes the methods and major findings of Ni-W(P)/gamma-Al 2O3 nitride catalyst synthesis, characterization, hydrotreating activity, kinetic analysis and correlation of the catalysts' activities to their synthesis parameters and properties. The range of parameters for catalyst synthesis were W (15-40 wt%), Ni (0-8 wt%), P (0-5 wt%) and nitriding temperature (TN) (500-900 °C). Characterization techniques used included: N2 sorption studies, chemisorption, elemental analysis, temperature programmed studies, x-ray diffraction, scanning electron microscopy, energy dispersive x-ray, infrared spectroscopy, transmission electron microscopy and x-ray absorption near edge structure. Hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) were performed at: temperature (340-380 °C), pressure (6.2-9.0 MPa), liquid hourly space velocity (1-3 h-1) and hydrogen to oil ratio (600 ml/ml, STP). The predominant species on the catalyst surface were Ni3N, W2N and bimetallic Ni2W3N. The bimetallic Ni-W nitride species was more active than the individual activities of the Ni3N and W2N. P increased weak acid sites while nitriding temperature decreased amount of strong acid sites. Low nitriding temperature enhanced dispersion of metal particles. P interacted with Al 2O3 which increased the dispersion of metal nitrides on the catalyst surface. HDN activity increased with Ni and P loading but decreased with increase in nitriding temperature (optimum conversion; 60 wt%). HDS and HDA activities went through a maximum with increase in the synthesis parameters (optimum conversions; 88. wt% for HDS and 47 wt% for HDA). Increase in W loading led to increase in catalyst activity. The catalysts were stable to deactivation and had the nitride structure conserved during hydrotreating in the presence of hydrogen sulfide. The results showed good correlation between hydrotreating activities (HDS and HDN) and the catalyst nitrogen content, number of exposed active sites, catalyst particle size and BET surface area. HDS and HDN kinetic analyses, using Langmuir-Hinshelwood models, gave activation energies of 66 and 32 kJ/mol, respectively. There were no diffusion limitations in the reaction process. Two active sites were involved in HDS reaction while one site was used for HDN. HDS and HDN activities of the Ni-W(P)/gamma-Al 2O3 nitride catalysts were comparable to the corresponding sulfides.

  8. Production of FucoPol by Enterobacter A47 using waste tomato paste by-product as sole carbon source.

    PubMed

    Antunes, Sílvia; Freitas, Filomena; Sevrin, Chantal; Grandfils, Christian; Reis, Maria A M

    2017-03-01

    Out-of-specification tomato paste, a by-product from the tomato processing industry, was used as the sole substrate for cultivation of the bacterium Enterobacter A47 and production of FucoPol, a value-added fucose-rich extracellular polysaccharide. Among the different tested fed-batch strategies, pH-stat, DO-stat and continuous substrate feeding, the highest production (8.77gL -1 ) and overall volumetric productivity (2.92gL -1 d -1 ) were obtained with continuous substrate feeding at a constant flow rate of 11gh -1 . The polymer produced had the typical FucoPol composition (37mol% fucose, 27mol% galactose, 23mol% glucose and 12mol% glucuronic acid, with an acyl groups content of 13wt%). The average molecular weight was 4.4×10 6 Da and the polydispersity index was 1.2. This study demonstrated that out-of-specification tomato paste is a suitable low-cost substrate for the production of FucoPol, thus providing a route for the valorization of this by-product into a high-value microbial product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Experimental investigation of cephapirin adsorption to quartz filter sands and dune sands

    NASA Astrophysics Data System (ADS)

    Peterson, Jonathan W.; O'Meara, Theresa A.; Seymour, Michael D.

    2008-08-01

    Batch experiments were performed to investigate cephapirin (a widely used veterinary antibiotic) adsorption on various size sands of low total organic carbon content (0.08-0.36 wt%). In the aqueous concentration range investigated (11-112 μmol/L cephapirin), adsorption to nearly pure quartz filter sands (0.50-3.35 mm diameter) is low. Isotherms are S-shaped and most display a region of minimum adsorption, where decreased adsorption occurs with increasing solution concentration, followed by increased adsorption at higher concentrations. Cephapirin adsorption to quartz-rich, feldspar-bearing dune sands (0.06-0.35 mm diameter), and the smallest quartz filter sand investigated (0.43-0.50 mm), can be described by linear sorption isotherms over the range of concentrations investigated. Distribution coefficients ( K d) range from 0.94 to 3.45 L/kg. No systematic relationship exists between grain size and amount of adsorption for any of the sands investigated. Cephapirin adsorption is positively correlated to the feldspar ratio (K-feldspar/(albite + Ca-plagioclase). Feldspar-ratio normalization of distribution coefficients was more effective than organic carbon normalization at reducing variability of K d values in the dune sands investigated.

  10. TiO2 effect on crystallization mechanism and physical properties of nano glass-ceramics of MgO-Al2O3-SiO2 glass system.

    PubMed

    Jo, Sinae; Kang, Seunggu

    2013-05-01

    The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.

  11. Quantitative analysis of H2O and CO2 in cordierite using polarized FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Della Ventura, Giancarlo; Radica, Francesco; Bellatreccia, Fabio; Cavallo, Andrea; Capitelli, Francesco; Harley, Simon

    2012-11-01

    We report a FTIR (Fourier transform infrared) study of a set of cordierite samples from different occurrence and with different H2O/CO2 content. The specimens were fully characterized by a combination of techniques including optical microscopy, single-crystal X-ray diffraction, EMPA (electron microprobe analysis), SIMS (secondary ion mass spectrometry), and FTIR spectroscopy. All cordierites are orthorhombic Ccmm. According to the EMPA data, the Si/Al ratio is always close to 5:4; X Mg ranges from 76.31 to 96.63, and additional octahedral constituents occur in very small amounts. Extraframework K and Ca are negligible, while Na reaches the values up to 0.84 apfu. SIMS shows H2O up to 1.52 and CO2 up to 1.11 wt%. Optically transparent single crystals were oriented using the spindle stage and examined by FTIR micro-spectroscopy under polarized light. On the basis of the polarizing behaviour, the observed bands were assigned to water molecules in two different orientations and to CO2 molecules in the structural channels. The IR spectra also show the presence of small amounts of CO in the samples. Refined integrated molar absorption coefficients were calibrated for the quantitative microanalysis of both H2O and CO2 in cordierite based on single-crystal polarized-light FTIR spectroscopy. For H2O the integrated molar coefficients for type I and type II water molecules (ν3 modes) were calculated separately and are [I]ɛ = 5,200 ± 700 l mol-1 cm-2 and [II]ɛ = 13,000 ± 3,000 l mol-1 cm-2, respectively. For CO2 the integrated coefficient is \\varepsilon_{{{{CO}}_{ 2} }} = 19,000 ± 2,000 l mol-1 cm-2.

  12. AC Conductivity and Dielectric Properties of Borotellurite Glass

    NASA Astrophysics Data System (ADS)

    Taha, T. A.; Azab, A. A.

    2016-10-01

    Borotellurite glasses with formula 60B2O3-10ZnO-(30 - x)NaF- xTeO2 ( x = 0 mol.%, 5 mol.%, 10 mol.%, and 15 mol.%) have been synthesized by thermal melting. X-ray diffraction (XRD) analysis confirmed that the glasses were amorphous. The glass density ( ρ) was determined by the Archimedes method at room temperature. The density ( ρ) and molar volume ( V m) were found to increase with increasing TeO2 content. The direct-current (DC) conductivity was measured in the temperature range from 473 K to 623 K, in which the electrical activation energy of ionic conduction increased from 0.27 eV to 0.48 eV with increasing TeO2 content from 0 mol.% to 15 mol.%. The dielectric parameters and alternating-current (AC) conductivity ( σ ac) were investigated in the frequency range from 1 kHz to 1 MHz and temperature range from 300 K to 633 K. The AC conductivity and dielectric constant decreased with increasing TeO2 content from 0 mol.% to 15 mol.%.

  13. Bio-based thermosetting copolymers of eugenol and tung oil

    NASA Astrophysics Data System (ADS)

    Handoko, Harris

    There has been an increasing demand for novel synthetic polymers made of components derived from renewable sources to cope with the depletion of petroleum sources. In fact, monomers derived vegetable oils and plant sources have shown promising results in forming polymers with good properties. The following is a study of two highly viable renewable sources, eugenol and tung oil (TO) to be copolymerized into fully bio-based thermosets. Polymerization of eugenol required initial methacrylate-functionalization through Steglich esterification and the synthesized methacrylated eugenol (ME) was confirmed by 1H-NMR. Rheological studies showed ideal Newtonian behavior in ME and five other blended ME resins containing 10 -- 50 wt% TO. Free-radical copolymerization using 5 mol% of tert-butyl peroxybenzoate (crosslinking catalyst) and curing at elevated temperatures (90 -- 160 °C) formed a series of soft to rigid highly-crosslinked thermosets. Crosslinked material (89 -- 98 %) in the thermosets were determined by Soxhlet extraction to decrease with increase of TO content (0 -- 30%). Thermosets containing 0 -- 30 wt% TO possessed ultimate flexural (3-point bending) strength of 32.2 -- 97.2 MPa and flexural moduli of 0.6 -- 3.5 GPa, with 3.2 -- 8.8 % strain-to-failure ratio. Those containing 10 -- 40 wt% TO exhibited ultimate tensile strength of 3.3 -- 45.0 MPa and tensile moduli of 0.02 GPa to 1.12 GPa, with 8.5 -- 76.7 % strain-to-failure ratio. Glass transition temperatures ranged from 52 -- 152 °C as determined by DMA in 3-point bending. SEM analysis on fractured tensile test specimens detected a small degree of heterogeneity. All the thermosets are thermally stable up to approximately 300 °C based on 5% weight loss.

  14. THE MECHANISM OF ACTION OF COLCHICINE

    PubMed Central

    Wilson, Leslie; Meza, Isaura

    1973-01-01

    The thermal depolymerization procedure of Stephens (1970. J. Mol. Biol. 47:353) has been employed for solubilization of Strongylocentrotus purpuratus sperm tail outer doublet microtubules with the use of a buffer during solubilization which is of optimal pH and ionic strength for the preservation of colchicine binding activity of chick embryo brain tubulin. Colchicine binding values were corrected for first-order decay during heat solubilization at 50°C (t½ = 5.4 min) and incubation with colchicine at 37°C in the presence of vinblastine sulfate (t½ = 485 min). The colchicine binding properties of heat-solubilized outer doublet tubulin were qualitatively identical with those of other soluble forms of tubulin. The solubilized tubulin (mol wt, 115,000) bound 0.9 ± 0.2 mol of colchicine per mol of tubulin, with a binding constant of 6.3 x 105 liters/mol at 37°C. The colchicine binding reaction was both time and temperature dependent, and the binding of colchicine was prevented in a competitive manner by podophyllotoxin (Ki = 1.3 x 10-6 M). The first-order decay of colchicine binding activity was substantially decreased by the addition of the vinca alkaloids, vinblastine sulfate or vincristine sulfate, thus demonstrating the presence of a vinca alkaloid binding site(s) on the outer doublet tubulin. Tubulin contained within the assembled microtubules did not decay. Intact outer doublet microtubules bound less than 0.001 mol of colchicine per mol of tubulin contained in the microtubules, under conditions where soluble tubulin would have bound 1 mol of colchicine per mol of tubulin (saturating concentration of colchicine, no decay of colchicine binding activity). The presence of colchicine had no effect on the rate of solubilization of outer doublet microtubules during incubation at 37°C. Therefore, the colchicine binding site on tubulin is blocked (not available to bind colchicine) when the tubulin is in the assembled outer doublet microtubules. PMID:4747924

  15. In situ gas analysis for high pressure applications using property measurements

    NASA Astrophysics Data System (ADS)

    Moeller, J.; Span, R.; Fieback, T.

    2013-10-01

    As the production, distribution, and storage of renewable energy based fuels usually are performed under high pressures and as there is a lack of in situ high pressure gas analysis instruments on the market, the aim of this work was to develop a method for in situ high pressure gas analysis of biogas and hydrogen containing gas mixtures. The analysis is based on in situ measurements of optical, thermo physical, and electromagnetic properties in gas mixtures with newly developed high pressure sensors. This article depicts the calculation of compositions from the measured properties, which is carried out iteratively by using highly accurate equations of state for gas mixtures. The validation of the method consisted of the generation and measurement of several mixtures, of which three are presented herein: a first mixture of 64.9 mol. % methane, 17.1 mol. % carbon dioxide, 9 mol. % helium, and 9 mol. % ethane at 323 K and 423 K in a pressure range from 2.5 MPa to 17 MPa; a second mixture of 93.0 mol. % methane, 4.0 mol. % propane, 2.0 mol. % carbon dioxide, and 1.0 mol. % nitrogen at 303 K, 313 K, and 323 K in a pressure range from 1.2 MPa to 3 MPa; and a third mixture of 64.9 mol. % methane, 30.1 mol. % carbon dioxide, and 5.0 mol. % nitrogen at 303 K, 313 K, and 323 K in a pressure range from 2.5 MPa to 4 MPa. The analysis of the tested gas mixtures showed that with measured density, velocity of sound, and relative permittivity the composition can be determined with deviations below 1.9 mol. %, in most cases even below 1 mol. %. Comparing the calculated compositions with the generated gas mixture, the deviations were in the range of the combined uncertainty of measurement and property models.

  16. Biocrude oils from the fast pyrolysis of poultry litter and hardwood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agblevor, F.A., E-mail: Fagblevo@vt.ed; Beis, S.; Kim, S.S.

    2010-02-15

    The safe and economical disposal of poultry litter is becoming a major problem for the USA poultry industry. Current disposal methods such as land application and feeding to cattle are now under pressure because of pollution of water resources due to leaching, runoffs and concern for mad cow disease contamination of the food chain. Incineration or combustion is potentially applicable to large scale operations, but for small scale growers and EPA non-attainment areas, this is not a suitable option because of the high cost of operation. Thus, there is a need for developing appropriate technologies to dispose poultry litter. Poultrymore » litters from broiler chicken and turkey houses, as well as bedding material were converted into biocrude oil in a fast pyrolysis fluidized bed reactor. The biocrude oil yields were relatively low ranging from 36 wt% to 50 wt% depending on the age and bedding material content of the litter. The bedding material (which was mostly hardwood shavings) biocrude oil yield was 63 wt%. The higher heating value (HHV) of the poultry litter biocrude oils ranged from 26 MJ/kg to 29 MJ/kg while that of the bedding material was 24 MJ/kg. The oils had relatively high nitrogen content ranging from 4 wt% to 8 wt%, very low sulfur (<1 wt%) content and high viscosity. The viscosities of the oils appeared to be a function of both the source of litter and the pyrolysis temperature. The biochar yield ranged from 27 wt% to 40 wt% depending on the source, age and composition of the poultry litter. The biochar ash content ranged from 24 wt% to 54 wt% and was very rich in inorganic components such as potassium and phosphorous.« less

  17. Biocrude oils from the fast pyrolysis of poultry litter and hardwood.

    PubMed

    Agblevor, F A; Beis, S; Kim, S S; Tarrant, R; Mante, N O

    2010-02-01

    The safe and economical disposal of poultry litter is becoming a major problem for the USA poultry industry. Current disposal methods such as land application and feeding to cattle are now under pressure because of pollution of water resources due to leaching, runoffs and concern for mad cow disease contamination of the food chain. Incineration or combustion is potentially applicable to large scale operations, but for small scale growers and EPA non-attainment areas, this is not a suitable option because of the high cost of operation. Thus, there is a need for developing appropriate technologies to dispose poultry litter. Poultry litters from broiler chicken and turkey houses, as well as bedding material were converted into biocrude oil in a fast pyrolysis fluidized bed reactor. The biocrude oil yields were relatively low ranging from 36 wt% to 50 wt% depending on the age and bedding material content of the litter. The bedding material (which was mostly hardwood shavings) biocrude oil yield was 63 wt%. The higher heating value (HHV) of the poultry litter biocrude oils ranged from 26 MJ/kg to 29 MJ/kg while that of the bedding material was 24 MJ/kg. The oils had relatively high nitrogen content ranging from 4 wt% to 8 wt%, very low sulfur (<1 wt%) content and high viscosity. The viscosities of the oils appeared to be a function of both the source of litter and the pyrolysis temperature. The biochar yield ranged from 27 wt% to 40 wt% depending on the source, age and composition of the poultry litter. The biochar ash content ranged from 24 wt% to 54 wt% and was very rich in inorganic components such as potassium and phosphorous.

  18. Environmental Fate of Hydrazines

    DTIC Science & Technology

    1989-12-01

    adsorbent 0 - density (g/mL) of the liquid hydrazine FW - formula weight (g/mol) of the hydrazine wt = weight of adsorbent (grams) Vi M volume of i-th...8217 hydrazine, monomethyihydrazine (f4MH), and unsymmetrical dimethyihydrazine ( UDMH ) have been studied to assess the impact of these propellants on the...and permeation through the walls. Half-lives of 40, 19, and 60 hours were found for hydrazine, MMH, and UDMH , respectively. Metal surfaces were found to

  19. IR Absorption Coefficients for the Quantification of Water in Hydrous Ringwoodite

    NASA Astrophysics Data System (ADS)

    Thomas, Sylvia-Monique; Jacobsen, Steven D.; Bina, Craig R.; Smyth, Joseph R.; Frost, Daniel J.

    2010-05-01

    Raman spectroscopy, combined with the 'Comparator technique' has been developed to determine water contents ranging from a few wt ppm to wt% in glasses and nominally anhydrous minerals including garnets, olivine, and SiO2 polymorphs (Thomas et al. 2009). The routine is one promising example of quantification tools to determine mineral specific molar absorption coefficients (ɛ) for IR spectroscopy. Mineral specific absorption coefficients are required because general IR calibrations do not necessarily apply to minerals with water incorporated as hydroxyl point defects. Here we utilize the 'Comparator technique' to provide ɛ-values for a set of synthetic Fe-free (Fo100) and Fe-bearing (Fo90, Fo87, Fo83, Fo60) ringwoodites, as well as for γ-Mg2GeO4. Ringwoodite is considered one of the major phases of the Earth's lower transition zone (520-660 km depth) and the knowledge of its absolute water storage capacity is essential for modeling the Earth's deep water cycle. Samples were synthesized at variable P-T conditions in a multi-anvil press and cover a range of OH contents. Single-crystals were characterized using X-ray diffraction and IR spectroscopy. Mineral specific IR absorption coefficients were calculated from independently determined water contents from Raman spectroscopy. Unpolarized IR spectra of Mg-ringwoodite show broad absorption features in the OH region with band maxima at ~2350, 2538, 3130, 3172, 3598 and 3688 cm-1. In the spectra of Fe-bearing ringwoodite and γ-Mg2GeO4 the maxima of the main OH band are shifted to 3244 cm-1 (Fo60) and 3207 cm-1, respectively. For Mg-ringwoodite with the mean wavenumber (area-weighted average of the peak position) of 3170 cm-1 an ɛ-value of 191500 ± 38300 L cm-2/ molH2O was determined. For the ringwoodites with Fo90, Fo87 and Fo83 composition and the mean wavenumbers of 3229 cm-1, 3252 cm-1 and 3163 cm-1 values of 123600 ± 24700 L cm-2/ molH2O, 176300 ± 52900 L cm-2/ molH2O and 155000 ± 46500 L cm-2/ molH2O were computed. Our value for pure Mg-ringwoodite is in very good agreement with the value according to Libowitzky & Rossman (1997) and the absorption coefficient proposed by Balan et al. (2008), but is higher than the extrapolated value from Koch-Müller & Rhede (2010). However, in case of the sample with Fo60 composition water content and ɛ-value determined here are in excellent agreement with those calculated by Koch-Müller & Rhede (2010). Here, we will further discuss general IR calibrations and the dependence of ɛ on structure, composition and frequency for the (Mg,Fe)2SiO4 polymorphs in the mantle. We agree with the findings of Koch-Müller & Rhede (2010), which report that using the calibrations according to Paterson (1982) and Libowitzky & Rossman (1997) leads to a water content underestimation in case of Fe-rich (Fay-Fo60) samples. At this point this cannot be generalized for Mg-rich ringwoodite. References Thomas et al. (2009), Phys. Chem. Mineral., 36, 489-509. Libowitzky & Rossman (1997), Am. Mineral., 82, 1111-1115. Koch-Müller & Rhede (2010), Am. Mineral., in press. Paterson (1982), Bull. Mineral. (Paris), 105, 20-29.

  20. Revealing thermal behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and its polyethylene glycol blends thin films: Effect of 3-Hydroxyhexanoate comonomer content

    NASA Astrophysics Data System (ADS)

    Chen, Yujing; Noda, Isao; Jung, Young Mee

    2018-06-01

    The 3-hydroxyhexanoate (HHx) molar fraction has a great effect on the property of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHx). In the present study, we investigated the influence of HHx comonomer molar fraction on the thermal property of PHBHx with 3.9 mol% (PHBHx3.9) and 13 mol% HHx (PHBHx13) comonomer content and their polyethylene glycol (PEG) blends in thin films by temperature-dependent infrared-reflection absorbance spectroscopy (IRRAS) and two-dimensional correlation (2D-COS) analysis. 2D-COS analysis demonstrated that there are two distinct amorphous bands of Cdbnd O stretching of PHBHx13 during the heating process, respectively at 1752 and 1760 cm-1, while PHBHx3.9 only shows one amorphous band at 1756 cm-1. This is due to the increase of HHx content from 3.9 mol % to 13 mol % increases the amorphous state of PHBHx. Furthermore, with incorporation of 30 wt% PEG, an additional amorphous band at 1746 cm-1 was observed in the case of 70/30 PHBHx3.9/PEG during the heating process, while this band was absent in the case of 70/30 PHBHx13/PEG, suggesting that the influence of PEG on PHBH3.9 is different from PHBHx13.

  1. Fabrication and electrical properties of textured strontium(0.53)barium(0.47)niobium(2)oxygen(6) ceramics prepared by templated grain growth

    NASA Astrophysics Data System (ADS)

    Duran, Cihangir

    Sr0.53Ba0.47Nb2O6 (SBN53) ceramics were textured by the templated grain growth (TGG), in a matrix of SrNb2O6 and BaNb2O6 powders. Acicular KSr2Nb5O15 (KSN) template particles, synthesized by a molten salt process, were used to texture the samples in the c direction (i.e., [001]). Template growth was assisted by adding V2O5 as a liquid phase former for some compositions. The texture fraction also increased with higher sintering temperatures or times and with initial template concentration due to the preferential growth of the template particles. When V2O5 was present, SBN53 phase formation initiated on the KSN templates and texture development started at temperatures as low as 950°C. Phase formation in the V2O5-free samples, however, initiated in the matrix (i.e., independent of the KSN templates). The liquid phase adversely affected the template growth by favoring anisotropic grain growth in the matrix, which caused lower texture fraction and broader texture distribution in [001] at low template concentrations. Increased template-template interaction (e.g., tangling) during tape casting also resulted in broader texture distribution. Therefore, an optimum template content was found to be ˜10--15 wt%. However, a texture fraction of 0.93 to 0.98 was obtained using only 5 wt% templates when anisotropic matrix grain growth was prevented. Phase evolution was studied in the randomly oriented samples as a function of quenching temperature, heating rate, and liquid phase, using KSN powder (rather than acicular particles) as a seed material. The formation temperature for SBN53 was lowered substantially by adding more seeds, decreasing the heating rate, and introducing a liquid. The temperature decreased from 1260°C for the samples with no seeds to 1130°C for the samples with 15.4 wt% seeds + 0.8 mol% V2O5 at a heating rate of 4°C/min. For the V2O5-free samples, the activation energy was considerably lowered from 554 +/- 15 kJ/mol for the samples with no seeds to 241 +/- 17 kJ/mol for the samples with 15.4 wt% seeds. The dielectric and piezoelectric properties were enhanced in samples with better orientation (i.e., high texture fraction (f) and narrow degree of orientation parameter (r) in the texture direction). The presence of nonferroelectric phases (V2O5 or Nb2O5-based) at the grain boundaries suppressed the observed dielectric properties, especially at the transition temperature. (Abstract shortened by UMI.)

  2. Partial purification and characterization of protection-inducing antigens from the muscle larva of Trichinella spiralis by molecular sizing chromatography and preparative flatbed isoelectric focusing.

    PubMed

    Despommier, D D

    1981-01-01

    The soluble portion of a large particle fraction which was derived from the muscle larva of T. spiralis was subjected to molecular sizing column chromatography using Sephacryl S-200. Five major peaks of 280 nm absorbing material were obtained. Analysis by immunoelectrophoresis revealed that each peak contained antigens, with the majority of them occurring in peaks 3, 4 and 5. Preliminary studies indicated that peak 4(mol. wt range 20 000--10 000) contained protection-inducing antigens. Crossed-immunoelectrophoretic and single-dimension electrophoretic analysis of peak 4 revealed a minimum of 10 antigens, while analytical isoelectric focusing demonstrated the presence of proteins with widely different pl, ranging from 4.0 to 9.0. Peak 4 was fractionated by preparative flatbed isoelectric focusing (PIEF) using two gradients: one from 3.5 to 9.5 and the other from 3.5 to 5.5. Fused rocket immunoelectrophoretic (FRIEP) analysis of both runs indicated that several antigens were separated from the others: one at pl 4.0 and the other at pl 9.0. The remaining antigens focused between pl 4.3 and 4.9. One hundred micrograms of whole peak 4, pl 9.0 antigen and the group of antigens at pl 4.3--4.9 were each separately injected, along with Freund's complete adjuvant, into mice. In addition, a portion of the pl 4.0 antigen was also assayed for protection. All antigenic preparations induced significant levels of protection. The pl 4.0 was further analysed on high-performance liquid chromatography (HPLC). Two sharp peaks of antigen, as detected by FRIEP, were eluted isocratically with 65% acetonitrile from a C-18 (aliphatic) column. Both peaks of antigen showed complete cross-reactivity on FRIEP and absorbed at 220 nm. Amino acid analysis of each HPLC peak revealed no detectable differences in composition. Each peak contained predominance of aspartic (13 mol%) and glutamic (18 mol%) acid. This antigen did not contain significant quantities of aromatic amino acids, and absorbed strongly at 206 nm. Neither the pl 4.0 or pl 9.0 antigen stained positively with the PAS reaction.

  3. Coenzyme Q(1) as a probe for mitochondrial complex I activity in the intact perfused hyperoxia-exposed wild-type and Nqo1-null mouse lung.

    PubMed

    Bongard, Robert D; Myers, Charles R; Lindemer, Brian J; Baumgardt, Shelley; Gonzalez, Frank J; Merker, Marilyn P

    2012-05-01

    Previous studies showed that coenzyme Q(1) (CoQ(1)) reduction on passage through the rat pulmonary circulation was catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex I, but that NQO1 genotype was not a factor in CoQ(1) reduction on passage through the mouse lung. The aim of the present study was to evaluate the complex I contribution to CoQ(1) reduction in the isolated perfused wild-type (NQO1(+/+)) and Nqo1-null (NQO1(-)/(-)) mouse lung. CoQ(1) reduction was measured as the steady-state pulmonary venous CoQ(1) hydroquinone (CoQ(1)H(2)) efflux rate during infusion of CoQ(1) into the pulmonary arterial inflow. CoQ(1)H(2) efflux rates during infusion of 50 μM CoQ(1) were not significantly different for NQO1(+/+) and NQO1(-/-) lungs (0.80 ± 0.03 and 0.68 ± 0.07 μmol·min(-1)·g lung dry wt(-1), respectively, P > 0.05). The mitochondrial complex I inhibitor rotenone depressed CoQ(1)H(2) efflux rates for both genotypes (0.19 ± 0.08 and 0.08 ± 0.04 μmol·min(-1)·g lung dry wt(-1) for NQO1(+/+) and NQO1(-/-), respectively, P < 0.05). Exposure of mice to 100% O(2) for 48 h also depressed CoQ(1)H(2) efflux rates in NQO1(+/+) and NQO1(-/-) lungs (0.43 ± 0.03 and 0.11 ± 0.04 μmol·min(-1)·g lung dry wt(-1), respectively, P < 0.05 by ANOVA). The impact of rotenone or hyperoxia on CoQ(1) redox metabolism could not be attributed to effects on lung wet-to-dry weight ratios, perfusion pressures, perfused surface areas, or total venous effluent CoQ(1) recoveries, the latter measured by spectrophotometry or mass spectrometry. Complex I activity in mitochondria-enriched lung fractions was depressed in hyperoxia-exposed lungs for both genotypes. This study provides new evidence for the potential utility of CoQ(1) as a nondestructive indicator of the impact of pharmacological or pathological exposures on complex I activity in the intact perfused mouse lung.

  4. Effect of Mesoporous Diatomite Particles on the Kinetics of SR&NI ATRP of Styrene and Butyl Acrylate

    NASA Astrophysics Data System (ADS)

    Khezri, Khezrollah; Ghasemi, Moosa; Fazli, Yousef

    2018-05-01

    Mesoporous diatomite particles were employed to prepare different poly(styrene-co-butyl acrylate)/diatomite nanocomposites. Diatomite nanoplatelets were used for in situ copolymerization of styrene and butyl acrylate by SR&NI ATRP to synthesize well-defined poly(styrene-co-butyl acrylate) nanocomposites. Nitrogen adsorption/desorption isotherm is applied to examine surface area and structural characteristics of the diatomite nanoplatelets. Evaluation of pore size distribution and morphological studies were also performed by SEM and TEM. Conversion and molecular weight determinations were carried out using gas and size exclusion chromatography respectively. Addition of 3 wt% pristine mesoporous diatomite nanoplatelets leads to increase of conversion from 73 to 89%. Molecular weight of poly(styrene-co-butyl acrylate) chains increases from 17,115 to 20,343 g·mol-1 by addition of 3 wt% pristine mesoporous diatomite; however, polydispersity index values increases from 1.14 to 1.37. Increasing thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 35.26 to 39.61°C by adding 3 wt% of mesoporous diatomite nanoplatelets.

  5. Ionic liquids in lithium battery electrolytes: Composition versus safety and physical properties

    NASA Astrophysics Data System (ADS)

    Wilken, Susanne; Xiong, Shizhao; Scheers, Johan; Jacobsson, Per; Johansson, Patrik

    2015-02-01

    Ionic liquids have been highlighted as non-flammable, environmentally friendly, and suggested as possible solvents in lithium ion battery electrolytes. Here, the application of two ionic liquids from the EMIm-family in a state-of-the-art carbonate solvent based electrolyte is studied with a focus on safety improvement. The impact of the composition on physical and safety related properties is investigated for IL concentrations of additive (∼5 wt%) up to co-solvent concentrations (∼60 wt%). Furthermore, the role of the lithium salt concentration is separately addressed by studying a set of electrolytes at 0.5 M, 1 M, and 2 M LiPF6 concentrations. A large impact on the electrolyte properties is found for the electrolytes containing EMImTFSI and high salt concentrations. The composition 2 M LiPF6 EC:DEC:IL (1:1:3 wt%) is found non-flammable for both choices of ILs added. The macroscopic observations are complemented by a Raman spectroscopy analysis whereby a change in the Li+ solvation is detected for IL concentrations >4.5 mol%.

  6. Mechanisms Down-Regulating Sprouty1, a Growth Inhibitor in Prostate Cancer

    DTIC Science & Technology

    2006-10-01

    4139-4147. 6. de Maximy AA, Nakatake Y, Moncada S, Itoh N, Thiery JP, Bellusci S: Cloning and expression pattern of a mouse homologue of Drosophila...22992-22995. 18 10. Gross I, Bassit B, Benezra M, Licht JD: Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras...Pelletier J, Housman DE : Sequence and structural requirements for high-affinity DNA binding by the WT1 gene product. Mol Cell Biol 1995, 15: 1489-1498

  7. Comparison of Single-Phase and Two-Phase Composite Thermal Barrier Coatings with Equal Total Rare-Earth Content

    NASA Astrophysics Data System (ADS)

    Rai, Amarendra K.; Schmitt, Michael P.; Dorfman, Mitchell R.; Zhu, Dongming; Wolfe, Douglas E.

    2018-04-01

    Rare-earth zirconates have been the focus of advanced thermal barrier coating research for nearly two decades; however, their lack of toughness prevents a wide-scale adoption due to lack of erosion and thermal cyclic durability. There are generally two methods of improving toughness: intrinsic modification of the coating chemistry and extrinsic modification of the coating structure. This study compares the efficacy of these two methods for a similar overall rare-earth content via the air plasma spray process. The extrinsically toughened coatings were comprised of a two-phase composite containing 30 wt.% Gd2Zr2O7 (GZO) combined with 70 wt.% of a tougher t' low-k material (ZrO2-2Y2O3-1Gd2O3-1Yb2O3; mol.%), while a single-phase fluorite with the overall rare-earth content equivalent to the two-phase composite (13 mol.% rare-earth) was utilized to explore intrinsically toughened concept. The coatings were then characterized via x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy, and their performance was evaluated via erosion, thermal conductivity, thermal annealing (500 h), and thermal cycling. It was shown that the extrinsic method provided an improved erosion and thermal conductivity response over the single phase, but at the expense of high-temperature stability and cyclic life.

  8. DEMONSTRATION AND CHARACTERIZATION OF TWO DISTINCT HUMAN LEUKOCYTIC PYROGENS

    PubMed Central

    Dinarello, Charles A.; Goldin, Nathan P.; Wolff, Sheldon M.

    1974-01-01

    Human monocytes and neutrophils were separated from buffy coats of blood obtained from normal donors. Following incubation with heat-killed staphylococci, monocyte preparations contained 20 times more pyrogenic activity in the supernatant media than did supernates from an equal number of neutrophils. During purification of these pyrogens it was discovered that these cell preparations each produced a distinct and different pyrogen. The pyrogen obtained from neutrophils had a mol wt of 15,000 following Sephadex G-75 gel filtration, an isoelectric point of 6.9, and could be precipitated and recovered from 50% ethanol at –10°C. In contrast, the pyrogen derived from monocyte preparations had a mol wt of 38,000, an isoelectric point of 5.1, and was destroyed in cold ethanol. Both molecules were unaffected by viral neuraminidase but biologically destroyed at 80°C for 20 min and with trypsin at pH 8.0. The febrile peak produced by partially purified neutrophil pyrogen occurred at 40 min while that from monocytes was at 60 min. In addition, monocyte pyrogen produced more sustained fevers for the same peak elevation as neutrophil pyrogen. These studies demonstrate for the first time two chemically and biologically distinctive pyrogens derived from circulating human white blood cells and have important implications for our understanding of the pathogenesis of fever in man. PMID:4829934

  9. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica

    PubMed Central

    Guan, Rui; Lager, Ida; Li, Xueyuan; Stymne, Sten; Zhu, Li-Hua

    2014-01-01

    Erucic acid is a valuable industrial fatty acid with many applications. The main producers of this acid are today high erucic rapeseed (Brassica napus) and mustard (Brassica juncea), which have 45%–50% of erucic acid in their seed oils. Crambe abyssinica is an alternative promising producer of this acid as it has 55%–60% of erucic acid in its oil. Through genetic modification (GM) of three genes, we have previously increased the level of erucic acid to 71% (68 mol%) in Crambe seed oil. In this study, we further investigated different aspects of oil biosynthesis in the developing GM Crambe seeds in comparison with wild-type (Wt) Crambe, rapeseed and safflower (Carthamus tinctorius). We show that Crambe seeds have very low phosphatidylcholine-diacylglycerol interconversion, suggesting it to be the main reason why erucic acid is limited in the membrane lipids during oil biosynthesis. We further show that GM Crambe seeds have slower seed development than Wt, accompanied by slower oil accumulation during the first 20 days after flowering (DAF). Despite low accumulation of erucic acid during early stages of GM seed development, nearly 86 mol% of all fatty acids accumulated between 27 and 50 DAF was erucic acid, when 40% of the total oil is laid down. Likely bottlenecks in the accumulation of erucic acid during early stages of GM Crambe seed development are discussed. PMID:24119222

  10. Calorimetry investigations of milled α-tricalcium phosphate (α-TCP) powders to determine the formation enthalpies of α-TCP and X-ray amorphous tricalcium phosphate.

    PubMed

    Hurle, Katrin; Neubauer, Juergen; Bohner, Marc; Doebelin, Nicola; Goetz-Neunhoeffer, Friedlinde

    2015-09-01

    One α-tricalcium phosphate (α-TCP) powder was either calcined at 500°C to obtain fully crystalline α-TCP or milled for different durations to obtain α-TCP powders containing various amounts of X-ray amorphous tricalcium phosphate (ATCP). These powders containing between 0 and 71wt.% ATCP and up to 2.0±0.1wt.% β-TCP as minor phase were then hydrated in 0.1M Na2HPO4 aqueous solution and the resulting heat flows were measured by isothermal calorimetry. Additionally, the evolution of the phase composition during hydration was determined by in situ XRD combined with the G-factor method, an external standard method which facilitates the indirect quantification of amorphous phases. Maximum ATCP hydration was reached after about 1h, while that of crystalline α-TCP hydration occurred between 4 and 11h, depending on the ATCP content. An enthalpy of formation of -4065±6kJ/mol (T=23°C) was calculated for ATCP (Ca3(PO4)2), while for crystalline α-TCP (α-Ca3(PO4)2) a value of -4113±6kJ/mol (T=23°C) was determined. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Pro-opiomelanocortin messenger ribonucleic acid and posttranslational processing of beta endorphin in spleen macrophages.

    PubMed Central

    Lolait, S J; Clements, J A; Markwick, A J; Cheng, C; McNally, M; Smith, A I; Funder, J W

    1986-01-01

    We have previously demonstrated low levels of immunoreactive (ir)-beta-endorphin (beta-EP) and ir-ACTH in a subpopulation of mouse spleen macrophages, which is consistent with an involvement of opioid peptides in modulation of immune responses. Gel chromatography studies suggested the presence of an approximately 3.5,000-molecular weight (mol wt) species, putatively beta-EP, an approximately 11.5,000-mol-wt species, putatively beta-lipotropin, and a higher molecular weight species (putative beta-EP precursor, pro-opiomelanocortin (POMC). In this study we have extended our original findings by demonstrating the presence of messenger RNA for POMC by the use of a complementary DNA probe and Northern blot analysis of extracts of mouse and rat spleen. In addition, using high performance liquid chromatography (HPLC), we have shown that the major endorphin species in mouse spleen macrophages is beta-EP1-31, and that there are smaller amounts of each of the acetylated forms, N-acetyl-beta-EP1-16 (alpha-endorphin), N-acetyl-beta-EP1-17 (gamma-endorphin), N-acetyl-beta-EP1-27, and N-acetyl-beta-EP1-31. We interpret these studies as showing that (a) the spleen is an organ of POMC synthesis and that (b) the predominant COOH-terminal product of macrophage POMC is the opiate-receptor active species beta-EP1-31. Images PMID:2423557

  12. Ferromagnetic resonance and magnetic studies of cores 60009/60010 and 60003 - Compositional and surface-exposure stratigraphy. [of Apollo deep drill lunar samples

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Gose, W. A.

    1976-01-01

    Ferromagnetic resonance and static magnetic measurements were made on 131 samples from core 60009/60010 and on 40 samples from section 60003 of the Apollo 16 deep drill core. These studies provided depth profiles for composition, in terms of the concentration of FeO, and relative surface exposure age (or maturity), in terms of the values of the specific FMR intensity normalized to the FeO content. For core 60009/60010, the concentration of FeO ranged from about 1.6 wt.% to 5.8 wt.% with a mean value of 4.6 wt.% and the maturity ranged from immature to mature with most of the soils being submature. A systematic decrease in maturity from the lunar surface to a depth of about 12.5 cm was observed in core section 60010. For core section 60003, the concentration of FeO ranged from about 5.2 wt.% to 7.5 wt.% with a mean value of 6.4 wt.% and the maturity ranged from submature to mature with most of the soils being mature.

  13. Spirochaeta americana sp. nov.: A New Haloalkaliphilic, Obligately Anaerobic Spirochete Isolated from Soda Mono Lake, California

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Whitman, William B.; Tang, Jane; Krader, Paul; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel obligately anaerobic, mesophilic, haloalkaliphilic spirochete, strain ASpG1, was isolated from sediments of the alkaline, hypersaline Mono Lake in California, U.S.A. The gram-negative cells are motile and spirochete-shaped with sizes of 0.22 x 10-15 micron. Growth was observed over the temperature range of 10 C to 44 C (optimum 37 C), NaCl concentration range of greater than 1 - 12 % (wt/vol) (optimum 3%), and pH range 7.5 - 10.5 (optimum pH 9.5). The novel isolate is strictly alkaliphilic, requires high concentrations of carbonate in the medium, and is capable of utilizing D-glucose, fructose, maltose, sucrose, starch, and D-mannitol. Main end products of glucose fermentation are: H2, acetate, ethanol, and formate. Strain AspG1 is resistant to kanamycin, but sensitive to chloramphenicol, gentamycin and tetracycline. The G+C content of its DNA is 58.5 mol%. On the basis of its physiological and molecular properties, the isolate appears to be a novel species among the genus Spirochaeta; and the name Spirochaeta americana sp. nov., is proposed for the taxon (type strain ASpG1(sup T) = ATCC BAA_392(sup T) = DSMZ 14872(sup T)).

  14. Property investigation and sputter deposition of dispersion-hardened copper for fatigue specimen fabrication

    NASA Technical Reports Server (NTRS)

    Mcclanahan, E. D.; Busch, R.; Moss, R. W.

    1973-01-01

    Sputter-deposited alloys of dispersion-hardenable Cu-0.25 vol% SiC and Cu-0.50 vol% SiC and precipitation-hardenable Cu-0.15 wt% Zr and Cu-0.05 wt% Mg-0.15 wt% Zr-0.40 wt% Cr were investigated for selection to evaluate fatigue specimen performance with potential application in fabricating regeneratively cooled rocket thrust chambers. Yield strengths in the 700 to 1000-MN/sq m range were observed with uniform elongation ranging from 0.5 to 1.5% and necking indicative of greater ductility. Electrical conductivity measured as an analog to thermal conductivity gave values 90% IACS for Cu-0.15 wt% Zr and Cu-0.05 wt% Mg-0.15 wt% Zr-0.40 wt% Cr. A 5500-g sputtered deposit of Cu-0.15 wt% Zr alloy, 12.29 mm (0.484 in.) average thickness in the fatigue specimen gage length, was provided to NASA on one of their substrates.

  15. Recovery of slaughterhouse Animal Fatty Wastewater Sludge by conversion into Fatty Acid Butyl Esters by acid-catalyzed esterification.

    PubMed

    Wallis, Christopher; Cerny, Muriel; Lacroux, Eric; Mouloungui, Zéphirin

    2017-02-01

    Two types of Animal Fatty Wastewater Sludges (AFWS 1 and 2) were analyzed and fully characterized to determine their suitability for conversion into biofuel. AFWS 1 was determined to be unsuitable as it contains 68.8wt.% water and only 32.3wt.% dry material, of which only around 80% is lipids to be converted. AFWS 2 has only 15.7wt.% water and 84.3wt.% dry material of which is assumed to 100% lipids as the protein and ash contents were determined to be negligible. The 4-dodecylbenzenesulfonic acid (DBSA) catalyzed esterification of AFWS with 1-butanol was performed in a novel batch reactor fitted with a drying chimney for the "in situ" removal of water and optimized using a non-conventional Doehlert surface response methodology. The optimized condition was found to be 1.66mol equivalent of 1-butanol (with respect to total fatty acid chains), 10wt.% of DBSA catalyst (with respect to AFWS) at 105°C for 3h. Fatty Acid Butyl Esters (FABEs) were isolated in good yields (95%+) as well as a blend of FABEs with 1-butanol (16%). The two potential biofuels were analyzed in comparison with current and analogous biofuels (FAME based biodiesel, and FABE products made from vegetable oils) and were found to exhibit high cetane numbers and flash point values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Selenium, copper, zinc, iron and manganese content of seven meat cuts from Hereford and Braford steers fed pasture in Uruguay.

    PubMed

    Cabrera, M C; Ramos, A; Saadoun, A; Brito, G

    2010-03-01

    Tenderloin (T), eye of rump (E), striploin (S), eye round (ER), tri-tip (TT), rib-eye roll (RR) and three rib plate-flank on (RP) meat cuts were evaluated. Selenium contents ranged between 0.42 and 1.20 mg/kg wet tissue (wt) in Hereford (H) breed and between 0.49 and 1.3 mg/kg wt in Braford (B) breed. In H and B breeds, T, TT and RP, and TT and RP were the richest cuts in selenium, respectively. Copper contents ranged between 0.25 and 1.04 mg/kg wt in H, and between 0.19 and 1.09 mg/kg wt in B. In H breed, RP had significantly more Cu than ER, TT, and RR. In B breed, ER and RR show a significant lower Cu level in comparison to the other meat cuts. Zinc contents ranged between 23 and 72.7 mg/kg wt in H, and between 23 and 63.9 mg/kg wt in B. RP is the richest cut in Zn compared to the other cuts in the two breeds. Iron contents ranged between 16.4 and 48.2 mg/kg wt in H, and between 14.2 and 47.9 mg/kg wt in B. In H breed, RR shows a lower content compared to the other cuts, except RP and S. In B breed, RR had the lowest level of Fe compared to the other cuts, except RP and T. Manganese contents ranged between 0.05 and 0.17 mg/kg wt in H, and between 0.04 and 0.48 mg/kg wt in B. In H no differences were detected between cuts. In B breed, ER cut shows the highest level of Mn. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Geochemical, mineralogical and Re-Os isotopic constraints on the origin of Tethyan oceanic mantle and crustal rocks from the Central Pontides, northern Turkey

    NASA Astrophysics Data System (ADS)

    Çelik, Ömer Faruk; Marzoli, Andrea; Marschik, Robert; Chiaradia, Massimo; Mathur, Ryan

    2018-02-01

    Chromite, ultramafic and mafic rocks from Eldivan, Yapraklı, Ayli Dağ, Küre, Elekdağ and Kızılırmak in northern Turkey have been studied to determine their mineral and whole-rock geochemical, and Re-Os isotope geochemical characteristics. Most of the studied peridotites display depleted but commonly V-shaped chondrite-normalized rare-earth element (REE) patterns while some peridotites as well as pyroxenites from all areas exhibit light REE depleted patterns. Olivine (forsterite 82 to 92 mol%) and spinel (chromium number 13 to 63) in the studied peridotites exhibit a wide range of compositions. Compositions of spinels suggest that peridotites from Eldivan, Ayli Dağ and Küre experienced relatively large degrees of partial melting ( 15 and 19 wt%), whereas those of the Kızılırmak area most likely reflect lower melting degrees ( 4-6 wt%). Whole-rock and mineral chemical data indicate that the ultramafic rocks are similar to abyssal and supra-subduction zone peridotites. The ultramafic rocks of the investigated areas exhibit a wide range of 187Re/188Os (0.12 to 6.6) and measured 187Os/188Os (0.122-1.14), while the basaltic rocks from Küre, Eldivan and Kızılırmak areas have high 187Re/188Os (128-562) and measured 187Os/188Os (0.724-1.943). On the other hand, chromite from Eldivan, Elekdağ and Kızılırmak show high Os contents (21.81-44.04 ppb) and low 187Re/188Os (0.015-0.818) and 187Os/188Os (0.122-0.133). Re-Os model ages (TChur) for all analyzed samples yielded scattered ages ranging from Jurassic to Proterozoic. Overall, geochemical data are interpreted to reflect different degrees of partial melting, melt - rock interactions and metasomatic effects that produced a heterogeneous mantle in a supra-subduction setting.

  18. Effect of Mo on dynamic recrystallization and microstructure development of microalloyed steels

    NASA Astrophysics Data System (ADS)

    Schambron, Thomas; Dehghan-Manshadi, Ali; Chen, Liang; Gooch, Taliah; Killmore, Chris; Pereloma, Elena

    2017-07-01

    The dynamic recrystallization (DRX) behaviour, mechanical properties and microstructure development of four low carbon, Nb-Ti-containing micro-alloyed steels with Mo contents from 0 to 0.27 wt% were studied. Plane strain compression tests were performed in a Gleeble 3500 thermomechanical simulator. The effects of composition, deformation temperature and strain rate on the DRX parameters and resultant microstructures were examined. The volume fraction of recrystallised grains was estimated from micrographs and a DRX model. The stress-strain curves showed the typical signs of DRX over a wide range of deformation conditions. Dynamic recovery was only observed for higher strain rates (5 s-1) and/or lower deformation temperatures (below 1000 °C). It was shown that Mo increases the hot strength by around 100 MPa per weight percent. In addition, it has an effect on retarding recrystallization in microalloyed steels by increasing the activation energy for DRX by 320 kJ/molK per weight percent. This was attributed to solute drag and the interaction with other microalloying elements.

  19. Poly(lactide)-block-poly([epsilon]-caprolactone-co-[epsilon]-decalactone)-block-poly(lactide) copolymer elastomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneiderman, Deborah K.; Hill, Erin M.; Martello, Mark T.

    Batch ring opening transesterification copolymerization of ε-caprolactone and ε-decalactone was used to generate statistical copolymers over a wide range of compositions and molar masses. Reactivity ratios determined for this monomer pair, r CL = 5.9 and r DL = 0.03, reveal ε-caprolactone is added preferentially regardless of the propagating chain end. Relative to poly(ε-caprolactone) the crystallinity and melting point of these statistical copolymers were depressed by the addition of ε-decalactone; copolymers containing greater than 31 mol% (46 wt%) ε-decalactone were amorphous. Poly(lactide)-block-poly(ε-caprolactone-co-ε-decalactone)-block-poly(lactide) triblock polymers were also prepared and used to explore the influence of midblock composition on the temperature dependentmore » Flory-Huggins interaction parameter (χ). In addition, uniaxial extension tests were used to determine the effects of midblock composition, poly(lactide) content, and molar mass on the mechanical properties of these new elastomeric triblocks.« less

  20. The effects of nickel and sulphur on the core-mantle partitioning of oxygen in Earth and Mars

    NASA Astrophysics Data System (ADS)

    Tsuno, Kyusei; Frost, Daniel J.; Rubie, David C.

    2011-03-01

    Constraints on the partitioning of oxygen between silicates, oxides, and metallic liquids are important for determining the amount of oxygen that may have entered the cores of terrestrial planets and to identify likely reactions at the core-mantle boundary. Several previous studies have examined oxygen partitioning between liquid Fe metal and ferropericlase, however, the cores of terrestrial planets also contain nickel and most likely sulphur. We have performed experiments to examine the effects of both nickel and sulphur on the partitioning of oxygen between ferropericlase and liquid Fe alloy up to pressures of 24.5 GPa in the temperature range 2430-2750 K using a multianvil press. The results show that at a fixed oxygen fugacity the proportion of oxygen that partitions into liquid metal will decrease by approximately 1-2 mol% on the addition of 10-20 mol% nickel to the liquid. The addition of around 30 mol% sulphur will, on the other hand, increase the metal oxygen content by approximately 10 mol%. Experiments to examine the combined effects of both nickel and sulphur, show a decrease in the effect of nickel on oxygen partitioning as the sulphur content of the metal increases. We expand an existing thermodynamic model for the partitioning of oxygen at high pressures and temperatures to include the effects of nickel and sulphur by fitting these experimental data, with further constraints provided by existing phase equilibria studies at similar conditions in the Fe-S and Fe-O-S systems. Plausible terrestrial core sulphur contents have little effect on oxygen partitioning. When our model is extrapolated to conditions of the present day terrestrial core-mantle boundary, the presence of nickel is found to lower the oxygen content of the outer core that is in equilibrium with the expected mantle ferropericlase FeO content, by approximately 1 weight %, in comparison to nickel free calculations. In agreement with nickel-free experiments, this implies that the Earth's outer core is undersaturated in oxygen with respect to plausible mantle FeO contents, which will result in either the depletion of FeO from the base of the mantle or cause the development of an outer core layer that is enriched in oxygen. The oxygen content of the more sulphur-rich Martian core would be in the range 2-4 wt.% if it is in equilibrium with the FeO-rich Martian mantle.

  1. Synthesis of Polyimides Curable by Intramolecular Cycloaddition

    DTIC Science & Technology

    1977-03-01

    5.17; N, 6.90; mol. wt., 384 (by mass spectrometry). c. 2’-Iodo-4! nitroacetanilide 2’-Iodo-4-acetanilide has been previously prepared in two steps...material) and was used without further purification or drying for the next step in the reaction sequence. (2) 2’-Iodo-4’- nitroacetanilide The crude 2...194 g (95% based upon p-nitroaniline) of 2’-iodo-4’- nitroacetanilide . Elemental analysis, I.R. and m.p. (120 0 C) were in agreement with the literature

  2. Insulin-Stimulated Cardiac Glucose Oxidation Is Increased in High-Fat Diet–Induced Obese Mice Lacking Malonyl CoA Decarboxylase

    PubMed Central

    Ussher, John R.; Koves, Timothy R.; Jaswal, Jagdip S.; Zhang, Liyan; Ilkayeva, Olga; Dyck, Jason R.B.; Muoio, Deborah M.; Lopaschuk, Gary D.

    2009-01-01

    OBJECTIVE Whereas an impaired ability to oxidize fatty acids is thought to contribute to intracellular lipid accumulation, insulin resistance, and cardiac dysfunction, high rates of fatty acid oxidation could also impair glucose metabolism and function. We therefore determined the effects of diet-induced obesity (DIO) in wild-type (WT) mice and mice deficient for malonyl CoA decarboxylase (MCD−/−; an enzyme promoting mitochondrial fatty acid oxidation) on insulin-sensitive cardiac glucose oxidation. RESEARCH DESIGN AND METHODS WT and MCD−/− mice were fed a low- or high-fat diet for 12 weeks, and intramyocardial lipid metabolite accumulation was assessed. A parallel feeding study was performed to assess myocardial function and energy metabolism (nanomoles per gram of dry weight per minute) in isolated working hearts (+/– insulin). RESULTS DIO markedly reduced insulin-stimulated glucose oxidation compared with low fat–fed WT mice (167 ± 31 vs. 734 ± 125; P < 0.05). MCD−/− mice subjected to DIO displayed a more robust insulin-stimulated glucose oxidation (554 ± 82 vs. 167 ± 31; P < 0.05) and less incomplete fatty acid oxidation, evidenced by a decrease in long-chain acylcarnitines compared with WT counterparts. MCD−/− mice had long-chain acyl CoAs similar to those of WT mice subjected to DIO but had increased triacylglycerol levels (10.92 ± 3.72 vs. 3.29 ± 0.62 μmol/g wet wt; P < 0.05). CONCLUSIONS DIO does not impair cardiac fatty acid oxidation or function, and there exists disassociation between myocardial lipid accumulation and insulin sensitivity. Our results suggest that MCD deficiency is not detrimental to the heart in obesity. PMID:19478144

  3. Dielectric characterization of TiO2, Al2O3 - Nanoparticle loaded epoxy resin

    NASA Astrophysics Data System (ADS)

    Thakor, S. G.; Rana, V. A.; Vankar, H. P.

    2018-05-01

    In present work, the dielectric properties of two different nanoparticle loaded Bisphenol A-epoxy resin were carried out at room temperature. Sample of the neat epoxy resin and nanoparticle loaded epoxy resin in the form of disc were prepared of different weight fraction (i.e 0.5 wt%,0.7 wt%,1 wt%,1.5 wt%,1.7 wt%,2 wt%). TiO2 and Al2O3 nanoparticles were taken as filler in the epoxy resin. Complex permittivity of the prepared samples was measured using Agilent E4980A precision LCR meter in frequency range of 103 Hz to 106 Hz. The dependency of dielectric behavior on type and concentration of nanoparticle in considered frequency range are discussed in detail.

  4. Superamphiphobic and Electroactive Nanocomposite toward Self-Cleaning, Antiwear, and Anticorrosion Coatings.

    PubMed

    Yuan, Ruixia; Wu, Shiqi; Yu, Peng; Wang, Baohui; Mu, Liwen; Zhang, Xiguang; Zhu, Yixing; Wang, Bing; Wang, Huaiyuan; Zhu, Jiahua

    2016-05-18

    Multifunctional coatings are in urgent demand in emerging fields. In this work, nanocomposite coatings with extraordinary self-cleaning, antiwear, and anticorrosion properties were prepared on aluminum substrate by a facile spraying technique. Core-shell structured polyaniline/functionalized carbon nanotubes (PANI/fCNTs) composite and nanosized silica were synergistically integrated into ethylene tetrafluoroethylene (ETFE) matrix to construct lotus-leaf-like structures, and 1H,1H,2H,2H- perfluorooctyltriethoxysilane (POTS) was used to decrease the surface energy. The composite coating with 6 wt % PANI/fCNTs possesses superamphiphobic property, with contact angles of 167°, 163°, and 159° toward water, glycerol, and ethylene glycol, respectively. This coating demonstrates stable nonwetting performance over a wide temperature range (<400 °C), as well as outstanding self-cleaning ability to prevent contamination by sludge, concentrated H2SO4, and ethylene glycol. Superamphiphobic surface property could be maintained even after 45 000 times abrasion or bending test for 30 times. The coating displayed strong adhesive ability (grade 1 according to the GB/T9286) on the etched aluminum plate. The superamphiphobic surface could be retained after immersion in 1 mol/L HCl and 3.5 wt % NaCl solutions for 60 and 90 d, respectively. It should be noted that this coating reveals significantly improved anticorrosion performance as compared to the bare ETFE coating and ETFE composite coating without PANI/fCNTs. Such coatings with integrated functionalities offer promising self-cleaning and anticorrosion applications under erosive/abrasive environment.

  5. Metallic glassy Zr70Ni20Pd10 powders for improving the hydrogenation/dehydrogenation behavior of MgH2

    PubMed Central

    El-Eskandarany, M. Sherif

    2016-01-01

    Because of its low density, storage of hydrogen in the gaseous and liquids states possess technical and economic challenges. One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides. Magnesium hydride (MgH2) remains the best hydrogen storage material due to its high hydrogen capacity and low cost of production. Due to its high activation energy and poor hydrogen sorption/desorption kinetics at moderate temperatures, the pure form of MgH2 is usually mechanically treated by high-energy ball mills and catalyzed with different types of catalysts. These steps are necessary for destabilizing MgH2 to enhance its kinetics behaviors. In the present work, we used a small mole fractions (5 wt.%) of metallic glassy of Zr70Ni20Pd10 powders as a new enhancement agent to improve its hydrogenation/dehydrogenation behaviors of MgH2. This short-range ordered material led to lower the decomposition temperature of MgH2 and its activation energy by about 121 °C and 51 kJ/mol, respectively. Complete hydrogenation/dehydrogenation processes were successfully achieved to charge/discharge about 6 wt.%H2 at 100 °C/200 °C within 1.18 min/3.8 min, respectively. In addition, this new nanocomposite system shows high performance of achieving continuous 100 hydrogen charging/discharging cycles without degradation. PMID:27220994

  6. Implications of Smectite Subduction at the Costa Rican Convergent Margin

    NASA Astrophysics Data System (ADS)

    Cardace, D.; Morris, J. D.; Underwood, M. B.; Spinelli, G.

    2003-12-01

    Legs 205/170 of the Ocean Drilling Program (ODP) drilled a reference section on the incoming plate and sites at the toe of the sedimentary prism at the Costa Rican convergent margin. Complete sediment subduction has been documented, with the prism described by Leg 205/170 shipboard scientists as a paleoslump prism. Despite sediment subduction, Costa Rican arc lava geochemistry shows little sediment signal. Though subduction erosion has been posited as a mechanism for damping the geochemical sediment signal, this abstract addresses whether the clay content and distribution in the subducting pile can (a) play a role in localizing the decollement and (b) impact subduction of sediment to depth. X-ray diffraction (XRD) analyses of bulk sediment, with biogenic silica determinations, have been carried out for samples from the prism, through the decollement, to the underthrust sediments. Clay fractions have been isolated and silica studied for a subset of these samples. XRD peak areas of bulk samples were transformed into relative abundances via matrix singular value decomposition (Fisher and Underwood, 1995, Proc. ODP, Init. Repts., 156: 29-37), and adjusted following silica determination; volcanic ash has been neglected as a sedimentary component. Average relative weight percents of dominant minerals and biogenic silica (bSiO2) for prism toe units (Site 1040) are: P1A (silty clay, 74.8 m thick) 82 wt% clay, 5 wt% quartz, 13 wt% plagioclase, 0 wt% calcite; P1B (silty clay, 296.4 m thick) 82.1 wt% clay, 6.0 wt% quartz, 10.4 wt% plagioclase, 0 wt% calcite, 1.4 wt% bSiO2. Below the decollement, underthrust abundances are: U1A (clayey diatomite, 13.2 m thick) 82.7 wt% clay, 5.2 wt% quartz, 8.9 wt% plagioclase, 0 wt% calcite, 3.2 wt% bSiO2; U1B (clayey diatomite, 38.2 m thick) 80.7 wt% clay, 4.4 wt% quartz, 6.6 wt% plagioclase, 0 wt% calcite, 8.2 wt% bSiO2; U2 (silty claystone, 57.1 m thick) 84.8 wt% clay, 4.5 wt% quartz, 6.8 wt% plagioclase, 0 wt% calcite, 3.9 wt% bSiO2; U3A (siliceous nannofossil chalk, 18.1 m thick) 44.1 wt% clay, 2.0 wt% quartz, 5.6 wt% plagioclase, 31.8 wt% calcite, 16.5 wt% bSiO2; U3B (siliceous nannofossil chalk, 75.55 m thick) 1.9 wt% clay, 0 wt% quartz, 1.1 wt% plagioclase, 92.4 wt% calcite, 4.7 wt% bSiO2; and U3C (siliceous nannofossil chalk, 80.18 m thick) 6.6 wt% clay, 6.1 wt% quartz, 4.6 wt% plagioclase, 74.1 wt% calcite, 8.7 wt% bSiO2. XRD peak areas for clay fractions of prism samples above and in the decollement (Site 1254 ˜Site 1040, 300-370 mbsf) were transformed into relative weight percent data with Biscaye weighting factors. Smectites ranged from 77-93 wt%, illites ranged from 0-4 wt%, and kaolinites/chlorites ranged from 5-20 wt%. The maximum smectite value was obtained in the lower decollement. Bulk mineralogy data for sediments subducting at Costa Rica show that the prism and uppermost underthrust sediments are 80-93 wt% clay sized minerals. Clay mineralogy suggests that the smectite maximum occurs in the lower decollement and decreases dramatically below. Low biogenic silica abundances persist down core, emphasizing the importance of clays to the subducting section at Costa Rica.

  7. Quantum chemical investigation on the role of Li adsorbed on anatase (101) surface nano-materials on the storage of molecular hydrogen.

    PubMed

    Srinivasadesikan, V; Raghunath, P; Lin, M C

    2015-06-01

    Lithiation of TiO2 has been shown to enhance the storage of hydrogen up to 5.6 wt% (Hu et al. J Am Chem Soc 128:11740-11741, 2006). The mechanism for the process is still unknown. In this work we have carried out a study on the adsorption and diffusion of Li atoms on the surface and migration into subsurface layers of anatase (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT+U). The model consists of 24 [TiO2] units with 11.097 × 7.655 Å(2) surface area. Adsorption energies have been calculated for different Li atoms (1-14) on the surface. A maximum of 13 Li atoms can be accommodated on the surface at two bridged O, Ti-O, and Ti atom adsorption sites, with 83 kcal mol(-1) adsorption energy for a single Li atom adsorbed between two bridged O atoms from where it can migrate into the subsurface layer with 27 kcal mol(-1) energy barrier. The predicted adsorption energies for H2 on the lithiated TiO2 (101) surface with 1-10 Li atoms revealed that the highest adsorption energies occurred on 1-Li, 5-Li, and 9-Li surfaces with 3.5, 4.4, and 7.6 kcal mol(-1), respectively. The values decrease rapidly with additional H2 co-adsorbed on the lithiated surfaces; the maximum H2 adsorption on the 9Li-TiO2(a) surface was estimated to be only 0.32 wt% under 100 atm H2 pressure at 77 K. The result of Bader charge analysis indicated that the reduction of Ti occurred depending on the Li atoms covered on the TiO2 surface.

  8. Role of alloy additions on strengthening in 17-4 PH stainless steel

    NASA Astrophysics Data System (ADS)

    Murthy, Arpana Sudershan

    Alloy modifications by addition of niobium (Nb), vanadium (V), nitrogen (N) and cobalt (Co) to cast 17-4 PH steel were investigated to determine the effect on mechanical properties. Additions of Nb, V, and N increased the yield strength from 1120 MPa to 1310 MPa while decreased the room temperature charpy V notch (CVN) toughness from 20 J to four Joules. The addition of Co to cast 17-4 PH steel enhanced the yield strength and CVN toughness from 1140 MPa to 1290 MPa and from 3.7 J to 5.5 J, respectively. In the base 17-4 PH steel, an increase in block width from 2.27 ± 0.10 μm in the solution treated condition to 3.06 ± 0.17 μm upon aging at 755 K was measured using orientation image microscopy. Cobalt inhibited recrystallization and block boundary migration during aging resulting in a finer martensitic block structure. The influence of Co on copper (Cu) precipitation in steels was studied using atom probe tomography. A narrower precipitate size distribution was observed in the steels with Co addition. The concentration profile across the matrix / precipitate interface indicated rejection of Co atoms from the copper precipitates. This behavior was observed to be energetically favorable using first principle calculations. The activation energies for Cu precipitation increased from 205 kJ/ mol in the non-cobalt containing alloy, to 243 kJ/ mol, and 272 kJ/ mol in alloys with 3 wt. %Co, and 7 wt. % Co, respectively. The role of Co on Cu precipitation in cast 17-4 PH steel is proposed as follows: (i) Co is rejected out of the Cu precipitate and sets up a barrier to the growth of the Cu precipitate; (ii) results in Cu precipitates of smaller size and narrower distribution; (iii) the coarsening of Cu precipitates is inhibited; and (iv) the activation energy for Cu precipitation increases.

  9. Fabrication of bismuth superhydrophobic surface on zinc substrate

    NASA Astrophysics Data System (ADS)

    Yu, Tianlong; Lu, Shixiang; Xu, Wenguo; He, Ge

    2018-06-01

    The dendritic Bi/Bi2O3/ZnO superhydrophobic surface (SHPS) was facilely obtained on zinc substrate via etching in 0.5 mol L-1 HCl solution for 2 min, immersing in 2 mmol L-1 Bi(NO3)3/0.1 mol L-1 HNO3 solution for 2.5 min and annealing treatment at 180 °C for 2 h. The wetting property results demonstrated that the superhydrophobic sample had excellent water-repellency with a static water contact angle of 160° and sliding angle of 0° under the optimum condition, which can be visually confirmed by the impacting droplet could rebound back immediately and roll off the horizontally placed sample. Moreover, it exhibited remarkable self-cleaning ability, buoyancy, desired stability in long-term storage in air, corrosion resistance in 3.5 wt% NaCl solution, ice-over delay at - 16 °C and durability in lab-simulated abrasion test.

  10. Tissue response to intraperitoneal implants of polyethylene oxide-modified polyethylene terephthalate.

    PubMed

    Desai, N P; Hubbell, J A

    1992-01-01

    Polyethylene terephthalate films surface modified with polyethylene oxide of mol wt 18,500 g/mol (18.5 k) by a previously described technique, were implanted in the peritoneal cavity of mice, along with their respective untreated controls, for periods of 1-28 d. The implants were retrieved and examined for tissue reactivity and cellular adherence. The control polyethylene terephthalate surfaces showed an initial inflammatory reaction followed by an extensive fibrotic response with a mean thickness of 60 microns at 28 d. By contrast, polyethylene oxide-modified polyethylene terephthalate showed only a mild inflammatory response and no fibrotic encapsulation throughout the implantation period: at 28 d a cellular monolayer was observed. Apparently either the polyethylene oxide-modified surface was stimulating less inflammation, which was in turn stimulating less fibroblastic overgrowth, or the cellular adhesion to the polyethylene oxide-modified surface was too weak to support cellular multilayers.

  11. Crystallization kinetics of Fe based amorphous alloy

    NASA Astrophysics Data System (ADS)

    Shanker Rao, T.; Lilly Shanker Rao, T.

    2015-02-01

    Differential Scanning Calorimetry(DSC) experimental data under non-isothermal conditions for Fe based Metglas 2605SA1 (wt% Fe=85-95, Si=5-10, B=1-5) metallic glass ribbons are reported and discussed. The DSC Scans performed at different heating rates showed two step crystallization processes and are interpreted in terms of different models like Kissinger, Ozawa, Boswell, Augis & Bennett and Gao & Wang. From the heating rate dependence of the onset temperature (To) and the crystallization peak temperature (Tp), the kinetic triplet, activation energy of crystallization (E), Avrami exponent (n) and the frequency factor (A) are determined. The determined E for peak I is 354.5 ± 2.5 kJ/mol and for the peak II is 348.2 ± 2.2 kJ/mol, respectively. The frequency factor for peak I is 1.1 × 1023sec-1 and for peak II is 6.1 × 1020sec-1.

  12. Conversion of broadband thermal radiation in lithium niobate crystals of various compositions

    NASA Astrophysics Data System (ADS)

    Syuy, A. V.; Litvinova, M. N.; Goncharova, P. S.; Sidorov, N. V.; Palatnikov, M. N.; Krishtop, V. V.; Likhtin, V. V.

    2013-05-01

    The conversion of the broadband thermal radiation in stoichiometric ( R = 1) lithium niobate single crystals that are grown from melt with 58.6 mol % of LiO2, congruent ( R = Li/Nb = 0.946) melt with the K2O flux admixture (4.5 and 6.0 wt %), and congruent melt and in congruent single crystals doped with the Zn2+, Gd3+, and Er3+ cations is studied. It is demonstrated that the conversion efficiency of the stoichiometric crystal that is grown from the melt with 58.6 mol % of LiO2 is less than the conversion efficiency of congruent crystal. In addition, the stoichiometric and almost stoichiometric crystals and the doped congruent crystals exhibit the blue shift of the peak conversion intensity in comparison with a nominally pure congruent crystal. For the congruent crystals, the conversion intensities peak at 520 and 495 nm, respectively.

  13. Crystal chemistry of pyrochlore from the Mesozoic Panda Hill carbonatite deposit, western Tanzania

    NASA Astrophysics Data System (ADS)

    Boniface, Nelson

    2017-02-01

    The Mesozoic Panda Hill carbonatite deposit in western Tanzania hosts pyrochlore, an ore and source of niobium. This study was conducted to establish the contents of radioactive elements (uranium and thorium) in pyrochlore along with the concentration of niobium in the ore. The pyrochlore is mainly hosted in sövite and is structurally controlled by NW-SE (SW dipping) or NE-SW (NW dipping) magmatic flow bands with dip angles of between 60° and 90°. Higher concentrations of pyrochlore are associated with magnetite, apatite and/or phlogopite rich flow bands. Electron microprobe analyses on single crystals of pyrochlore yield very low UO2 concentrations that range between 0 and 0.09 wt% (equivalent to 0 atoms per formula unit: a.p.f.u.) and ThO2 between 0.55 and 1.05 wt% (equivalent to 0.1 a.p.f.u.). The analyses reveal high concentrations of Nb2O5 (ranging between 57.13 and 65.50 wt%, equivalent to a.p.f.u. ranging between 1.33 and 1.43) and therefore the Panda Hill Nb-oxide is classified as pyrochlore sensu stricto. These data point to a non radioactive pyrochlore and a deposit rich in Nb at Panda Hill. The Panda Hill pyrochlore has low concentrations of REEs as displayed by La2O3 that range between 0.10 and 0.49 wt% (equivalent to a.p.f.u. ranging between 0 and 0.01) and Ce2O3 ranging between 0.86 and 1.80 wt% (equivalent to a.p.f.u. ranging between 0.02 and 0.03), Pr2O3 concentrations range between 0 and 0.23 wt% (equivalent to 0 a.p.f.u.), and Y2O3 is 0 wt% (equivalent to 0 a.p.f.u.). The abundance of the REEs in pyroclore at the Panda Hill Carbonatite deposit is of no economic significance.

  14. Effect of the CTAB concentration on the upconversion emission of ZrO 2:Er 3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    López-Luke, T.; De la Rosa, E.; Sólis, D.; Salas, P.; Angeles-Chavez, C.; Montoya, A.; Díaz-Torres, L. A.; Bribiesca, S.

    2006-10-01

    Upconversion emission of ZrO 2:Er 3+ (0.2 mol%) nanophosphor were studied as function of surfactant concentration after excitation at 968 nm. The strong green emission was produced by the transition 2H 11/2 + 4S 3/2 → 4I 15/2 and was explained in terms of cooperative energy transfer between neighboring ions. The upconverted signal was enhanced but the fluorescence decay time was reduced as either the surfactant concentration increases or the annealing time reduces. Experimental results show that surfactant concentration controls the particle size and morphology while annealing time control the phase composition and crystallite size. The highest intensity was obtained for a sample composed of a mixture of tetragonal (33 wt.%) and monoclinic (67 wt.%) phase with crystallite size of 31 and 59 nm, respectively. This result suggests that tetragonal crystalline structure and small crystallite size are more favorable for the upconversion emission.

  15. Techno-economic Analysis of Acid Gas Removal and Liquefaction for Pressurized LNG

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Seo, Y. K.; Chang, D. J.

    2018-05-01

    This study estimated the life cycle cost (LCC) of an acid gas removal and a liquefaction processes for Pressurized LNG (PLNG) production and compared the results with the cost of normal LNG production. PLNG is pressurized LNG that is liquefied at a higher pressure and temperature than normal LNG. Due to the high temperature, the energy for liquefaction is reduced. The allowable CO2 concentration in PLNG is increased up to 3 mol% when the product pressure 25 bar. An amine process with 35 wt% of diethanolamine (DEA) aqueous solution and a nitrogen expansion cycle were selected for the acid gas removal and the liquefaction processes, respectively. Two types of CO2 concentration in the feed gas were investigated to analyze their impacts on the acid gas removal unit. When the CO2 concentration was 5 mol%, the acid gas removal unit was required for both LNG and PLNG production. However, the acid gas removal unit was not necessary in PLNG when the concentration was 0.5 mol% and the pressure was higher than 15 bar. The results showed that the LCC of PLNG was reduced by almost 35% relative to that of LNG when the PLNG pressure was higher than 15 bar.

  16. Selective photocatalytic reduction of CO2 to methanol in CuO-loaded NaTaO3 nanocubes in isopropanol

    PubMed Central

    Xiang, Tianyu; Chen, Jingshuai; Wang, Yuwen; Yin, Xiaohong; Shao, Xiao

    2016-01-01

    Summary A series of NaTaO3 photocatalysts were prepared with Ta2O5 and NaOH via a hydrothermal method. CuO was loaded onto the surface of NaTaO3 as a cocatalyst by successive impregnation and calcination. The obtained photocatalysts were characterized by XRD, SEM, UV–vis, EDS and XPS and used to photocatalytically reduce CO2 in isopropanol. This worked to both absorb CO2 and as a sacrificial reagent to harvest CO2 and donate electrons. Methanol and acetone were generated as the reduction product of CO2 and the oxidation product of isopropanol, respectively. NaTaO3 nanocubes loaded with 2 wt % CuO and synthesized in 2 mol/L NaOH solution showed the best activity. The methanol and acetone yields were 137.48 μmol/(g·h) and 335.93 μmol/(g·h), respectively, after 6 h of irradiation. Such high activity could be attributed to the good crystallinity, morphology and proper amount of CuO loading, which functioned as reductive sites for selective formation of methanol. The reaction mechanism was also proposed and explained by band theory. PMID:27335766

  17. Physicochemical properties of peanut oil-based diacylglycerol and their derived oil-in-water emulsions stabilized by sodium caseinate.

    PubMed

    Long, Zhao; Zhao, Mouming; Liu, Ning; Liu, Daolin; Sun-Waterhouse, Dongxiao; Zhao, Qiangzhong

    2015-10-01

    High purity peanut oil-based diacylglycerol (PO-DAG) (94.95 wt%) was prepared via enzymatic glycerolysis from peanut oil (PO). The resulting dominance of DAGs was proven to greatly influence the properties of corresponding fresh or frozen-thawed emulsions. Stable fresh oil-in-water emulsions were produced using either PO-DAG or PO, with stability enhanced by increased concentrations of Na-CN. The lower equilibrium interfacial tension along with greater negative ζ-potential of PO revealed that Na-CN was preferentially adsorbed to the PO interface. Adding 0.05 mol/L NaCl to the PO emulsions minimized depletion flocculation caused by the unadsorbed Na-CN, but further NaCl addition increased oil droplet size and concomitant coalescence. For the PO-DAG emulsions, adding 0.2 mol/L NaCl did not significantly (p>0.05) affect their ζ-potential but adding 0.05 or 0.1 mol/L NaCl lowered ζ-potential, although NaCl at these concentrations increased oil droplet size and coalescence. Freezing-thawing process considerably weakened the stability of PO-DAG emulsions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Room temperature synthesis and binding studies of solution-processable histamine-imprinted microspheres.

    PubMed

    Romano, Edwin F; Holdsworth, Clovia I; Quirino, Joselito P; So, Regina C

    2018-01-01

    Accurate quantification of histamine levels in food and in biological samples is important for monitoring the quality of food products and for the detection of pathophysiological conditions. In this study, solution processable histamine-imprinted microspheres were synthesized at 30°C via dilute free radical phototochemical polymerization technique using ethylene glycol dimethacrylate (EGDMA) as the crosslinker and methacrylic acid (MAA) as the monomer. The processability of the resulting polymer is dictated by the monomer feed concentration (eg, 4 wt% 80:20 EGDMA:MAA formulation) and solvent (acetonitrile). Whereas, the particle size is influenced by the monomer feed concentration, the presence of template molecule, and independent of the crosslinker content. Evaluation of the binding performance of the photochemically imprinted polymers (PCP) with different crosslinker content (80 and 90 wt%) indicated that the selective binding capacity was notably higher in PCP-80 (N= 16.0 μmol/g) compared to PCP-90 (N= 10.1 μmol/g) when analyzed via frontal analysis capillary electrophoresis (FACE) using Freundlich isotherm. In addition, PCP-80 microspheres are more selective toward histamine than conventional thermal polymers (CTP-80) prepared at 60°C in the presence of structural analogs such as histidine, imidazole, and tryptamine under cross-rebinding and competitive conditions. These results demonstrated that histamine-selective imprinted polymers can be obtained readily using room temperature photochemical polymerization where these materials can be subsequently used as recognition element for optical-based histamine sensing. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Experimental investigation of heat transfer and fluid flow behaviour in multiple square perforated twisted tape with square wing inserts heat exchanger tube

    NASA Astrophysics Data System (ADS)

    Suri, Amar Raj Singh; Kumar, Anil; Maithani, Rajesh

    2018-01-01

    The present work deals with experimental investigation of heat transfer and fluid flow characteristics of multiple square perforated twisted tape with wing inserts in a heat exchanger tube. The range of selected geometrical parameters are, perforation width ratio (a/WT) of 0.083-0.333, twist ratio (TL/WT) of 2.0-3.5, wing depth ratio (Wd/WT) of 0.042-0.167 and number of twisted tapes (TP) of 4. The Reynolds number (Ren) selected for experimentation ranges from 5000 to 27,000. The maximum heat transfer and friction factor enhancement was found to be 6.96 and 8.34 times that of plane tube, respectively. The maximum heat transfer enhancement is observed at a a/WT of 0.250, TL/WT of 2.5, and Wd/WT of 0.167.

  20. Experimental investigation of heat transfer and fluid flow behaviour in multiple square perforated twisted tape with square wing inserts heat exchanger tube

    NASA Astrophysics Data System (ADS)

    Suri, Amar Raj Singh; Kumar, Anil; Maithani, Rajesh

    2018-06-01

    The present work deals with experimental investigation of heat transfer and fluid flow characteristics of multiple square perforated twisted tape with wing inserts in a heat exchanger tube. The range of selected geometrical parameters are, perforation width ratio (a/WT) of 0.083-0.333, twist ratio (TL/WT) of 2.0-3.5, wing depth ratio (Wd/WT) of 0.042-0.167 and number of twisted tapes (TP) of 4. The Reynolds number (Ren) selected for experimentation ranges from 5000 to 27,000. The maximum heat transfer and friction factor enhancement was found to be 6.96 and 8.34 times that of plane tube, respectively. The maximum heat transfer enhancement is observed at a a/WT of 0.250, TL/WT of 2.5, and Wd/WT of 0.167.

  1. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.

    In this work, we investigated the ambient temperature structural properties (~300 K) and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties of melt-spun Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The thickness, width, lattice parameter, saturation magnetization (MS), and intrinsic coercivity (HCI) of the melt spun ribbons are presented and compared with data in the literature. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbonsmore » produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbons ranged between ~15-60 μm and 500-800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel-surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). Wheel surface speed was not shown to have a significant effect on the magnetization, but primarily impacted the ribbon structure. A decreasing trend in the saturation magnetization was observed as a function of increased silicon content. The intrinsic coercivity of the melt-spun alloys ranged between ~50 to 200 A/m. Elevated temperature evaluation of the magnetization in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The MS for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 – 900 K). The percentage decrease in MS from 300 K to 900 K for the Fe-3 wt.% Si and Fe-5 wt.% Si alloys was ~19-22 %, while the percentage decrease in the same temperature range for Fe-8 wt.% Si alloy was ~26-30 %. It appears that Fe-3 wt.% Si and Fe-5 wt.% Si alloys ribbons are primarily comprised of the α phase (disordered phase) with any minor constituents being beyond the detection limits of the studies performed, while the Fe-8 wt.% Si alloy ribbons are comprised of disordered and regions of short-range ordering.« less

  2. Composition of Sediment Inputs to the Hikurangi Subduction Margin: A Prelude to IODP Expedition 375

    NASA Astrophysics Data System (ADS)

    Underwood, M.

    2017-12-01

    Expedition 375 of the International Ocean Discovery Program is scheduled to begin drilling offshore New Zealand in March 2018. Two sites will be cored seaward of the Hikurangi subduction front (subduction inputs), plus one site at the toe of the accretionary prism, and one site in the forearc above a zone of well-documented slow-slip events. One of the challenges during planning for Expedition 375 has been the total absence of pre-existing compositional data from the region; that lack of basic information impacts such tasks as mixing and analysis of appropriate standards for X-ray diffraction, error analysis, computation of accurate normalization factors, and QA/QC. To help overcome those deficiencies, I analyzed a total of 152 samples from ODP Sites 1123 (Quaternary to Eocene), 1124 (Quaternary to Cretaceous), and 1125 (Quaternary to Miocene), plus piston/gravity-core samples from the repositories at Lamont-Doherty, Oregon State, and NIWA. The results reveal an unusually large range of compositions for the bulk sediments. The relative abundance of total clay minerals ranges from 3 to 64 wt%. Quartz ranges from 0 to 39 wt%. Feldspar ranges from 0 to 40 wt%, and calcite ranges from 0 to 93 wt%. Samples from the Hikurangi Plateau and Chatham Rise are carbonate-rich, with many bordering on almost-pure nannofossil chalk. Hemipelagic muds from the floor of Hikurangi Trough, Ruatoria slide, and the landward slope of the trench are fairly uniform, with averages of 36 wt% total clay minerals, 27 wt% quartz, 24 wt% feldspar, and 13 wt% calcite. Unlike many other subduction zones, this diversity of lithologies will save shipboard scientists from repetitive, mind-numbing descriptions and analyses, and shorebased experiments for frictional properties, permeability, and consolidation will need to pay close attention to the compositional attributes of the specimens. In addition, results from the four IODP boreholes can be interpreted within a broader, regional-scale framework of sediment provenance and dispersal.

  3. The effect of Hurricane Lili on the distribution of organic matter along the inner Louisiana shelf (Gulf of Mexico, USA)

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Gordon, Elizabeth S.; Monacci, Natalie M.; Clinton, Rebecca; Gisewhite, Rachel; Allison, Mead A.; Kineke, Gail

    2006-11-01

    On October 3, 2002 Hurricane Lili made landfall on a previously studied region of the inner Louisiana shelf as a Category 2 storm with winds over 160 km/h. A week after the hurricane, major impacts of the storm were not evident in the water column except for the lower than expected inshore salinities (˜12 psu) for this time of year, which was characterized by low river discharge. Turbidity profiles were typical of those measured during previous investigations with suspended sediment concentrations >75 mg/L at inshore stations and <50 mg/L in surface waters and offshore. The implication is that the sediments resuspended during the hurricane settled soon after the storm passage. Water column particulate organic carbon (POC) concentrations ranged from 0.1 to over 2.0 mg/L, with the highest concentrations measured near the seabed and in the inshore portions of the study area. Suspended particles were characterized by low organic matter content (%POC of 0.5-2 wt%), low chlorophyll:POC ratios (Chl:POC<4 mg/g) and moderately elevated POC:particulate nitrogen ratios (POC:PN of 10-14 mol/mol), all suggesting their source was locally resuspended seabed sediment rather than from algal biomass or land-derived vascular plant detritus. Post hurricane sediment deposition throughout the study area resulted in a storm layer that ranged from <0.5 to 20 cm in thickness. In most locations sediment accumulation ranged from 3 to 10 cm. The storm deposits were generally composed of silty clays with a coarser, somewhat sandy 1-2 cm basal layer. Surface sediments from the storm layer were characterized by relatively high mineral surface areas (SA of 30-50 m 2/g) and elevated OC contents (%OC of 1.0-2.0%). The dispersal of fine sediments following the hurricane resulted in marked changes in the SA and %OC values of surface sediments from offshore locations, which prior to the storm contained coarser, organic-poor particles (SA of 5-15 m 2/g and %OC of 0.2-0.6%). The OC:SA and OC:N ratios of storm layer sediments ranged from 0.4 to 0.6 mg OC/m 2 and from 10 to 12 mol/mol, respectively, and were comparable to those measured in surface sediments prior to the hurricane. Such similarities in the composition of the organic matter reinforce the idea that the source of the storm deposits was the finer fraction of resuspended seabed sediments, with little evidence for inputs from local land-derived sources or autochthonous algal production. Overall, the magnitude of sediment and organic matter deposition on the seabed after the storm greatly exceeded the annual inputs from the Atchafalaya River and coastal primary production. The combined effects of hurricane-driven erosion and post-storm deposition represent a major perturbation to the benthic community of the region, which is already subject to these types of disturbances due to the combined effects of peaks in river discharge and the passage of storm fronts.

  4. As-cast uranium-molybdenum based metallic fuel candidates and the effects of carbon addition

    NASA Astrophysics Data System (ADS)

    Blackwood, Van Stephen

    The objective of this research was to develop and recommend a metallic nuclear fuel candidate that lowered the onset temperature of gamma phase formation comparable or better than the uranium-10 wt. pct. molybdenum alloy, offered a solidus temperature as high or higher than uranium-10 wt. pct. zirconium (1250°C), and stabilized the fuel phase against interaction with iron and steel at least as much as uranium-10 wt. pct. zirconium stabilized the fuel phase. Two new as-cast alloy compositions were characterized to assess thermal equilibrium boundaries of the gamma phase field and the effect of carbon addition up to 0.22 wt. pct. The first system investigated was uranium- x wt. pct. M where x ranged between 5-20 wt. pct. M was held at a constant ratio of 50 wt. pct. molybdenum, 43 wt. pct. titanium, and 7 wt. pct. zirconium. The second system investigated was the uranium-molybdenum-tungsten system in the range 90 wt. pct. uranium - 10 wt. pct. molybdenum - 0 wt. pct. tungsten to 80 wt. pct. uranium - 10 wt. pct. molybdenum - 10 wt. pct. tungsten. The results showed that the solidus temperature increased with increased addition of M up to 12.5 wt. pct. for the uranium-M system. Alloy additions of titanium and zirconium were removed from uranium-molybdenum solid solution by carbide formation and segregation. The uranium-molybdenum-tungsten system solidus temperature increased to 1218°C at 2.5 wt. pct. with no significant change in temperature up to 5 wt. pct. tungsten suggesting the solubility limit of tungsten had been reached. Carbides were observed with surrounding areas enriched in both molybdenum and tungsten. The peak solidus temperatures for the alloy systems were roughly the same at 1226°C for the uranium-M system and 1218°C for the uranium-molybdenum-tungsten system. The uranium-molybdenum-tungsten system required less alloy addition to achieve similar solidus temperatures as the uranium-M system.

  5. Production, purification and molecular weight determination of the haemolysin of Treponema hyodysenteriae.

    PubMed

    Kent, K A; Lemcke, R M; Lysons, R J

    1988-11-01

    The production of haemolysin from Treponema hyodysenteriae was increased by an improved culture method and by repeated incubation of spirochaetes suspended in a buffer containing RNA-core. Ion exchange chromatography on DEAE cellulose followed by gel filtration on Sephadex G100 yielded purified haemolysin free from extraneous protein, as judged by silver-stained polyacrylamide gels. The mol. wt of the purified haemolysin, determined by gel filtration was 19,000, a value similar to that of streptolysin S, but much lower than that previously reported.

  6. Affinity chromatographic purification of tetrodotoxin by use of tetrodotoxin-binding high molecular weight substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands.

    PubMed

    Shiomi, K; Yamaguchi, S; Shimakura, K; Nagashima, Y; Yamamori, K; Matsui, T

    1993-12-01

    A purification method for tetrodotoxin (TTX), based on affinity chromatography using the TTX-binding high mol. wt substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands, was developed. This method was particularly useful for analysis of TTX in biological samples with low concentrations of TTX. The affinity gel prepared was highly specific for TTX, having no ability to bind 4-epi-TTX and anhydro-TTX as well as saxitoxin.

  7. Origin of Ti-rich garnets in the groundmass of Wajrakarur field kimberlites, southern India: insights from EPMA and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dongre, Ashish N.; Viljoen, K. S.; Rao, N. V. Chalapathi; Gucsik, A.

    2016-04-01

    Although Ti-rich garnets are commonly encountered in the groundmass of many alkaline igneous rocks, they are comparatively rare in kimberlites. Here we report on the occurrence of Ti-rich garnets in the groundmass of the P-15 and KL-3 kimberlites from the diamondiferous Wajrakarur field in the Eastern Dharwar craton of southern India. These garnets contain considerable Ti (11.7-23.9 wt.% TiO2), Ca (31.3-35.8 wt.% CaO), Fe (6.8-15.5 wt.% FeOT) and Cr (0.04-9.7 wt.% Cr2O3), but have low Al (0.2-5.7 wt.% Al2O3). In the case of the P-15 kimberlite they display a range in compositions from andradite to schorlomite, with a low proportion of grossular (andradite(17.7-49.9)schorlomite(34.6-49.5)-grossular(3.7-22.8)-pyrope(1.9-10.4)). A few grains also contain significant chromium and represent a solid solution between schorlomite and uvarovite. The Ti-rich garnets in the KL-3 kimberlite, in contrast, are mostly schorlomitic (54.9-90.9 mol %) in composition. The Ti-rich garnets in the groundmass of these two kimberlites are intimately associated with chromian spinels, perhaps suggesting that the garnet formed through the replacement of spinel. From the textural evidence, it appears unlikely that the garnets could have originated through secondary alteration, but rather seem to have formed through a process in which early magmatic spinels have reacted with late circulating, residual fluids in the final stages of crystallization of the kimberlite magma. Raman spectroscopy provides evidence for low crystallinity in the spinels which is likely to be a result of their partial transformation into andradite during their reaction with a late-stage magmatic (kimberlitic) fluid. The close chemical association of these Ti-rich garnets in TiO2-FeO-CaO space with those reported from ultramafic lamprophyres (UML) is also consistent with results predicted by experimental studies, and possibly implies a genetic link between kimberlite and UML magmas. The occurrence of Ti-rich garnets of similar composition in the Swartruggens orangeite on the Kaapvaal craton in South Africa, as well as in other kimberlites with an orangeitic affinity (e.g. the P-15 kimberlite on the Eastern Dharwar craton in southern India), is inferred to be a reflection of the high Ca- and high Ti-, and the low Al-nature, of the parent magma (i.e. Group II kimberlites).

  8. Biodegradable shape-memory block co-polymers for fast self-expandable stents.

    PubMed

    Xue, Liang; Dai, Shiyao; Li, Zhi

    2010-11-01

    Block co-polymers PCTBVs (M(n) of 36,300-65,300 g/mol, T(m) of 39-40 and 142 degrees C) containing hyperbranched three-arm poly(epsilon-caprolactone) (PCL) as switching segment and microbial polyester PHBV as crystallizable hard segment were designed as biodegradable shape-memory polymer (SMP) for fast self-expandable stent and synthesized in 96% yield by the reaction of three-arm PCL-triol (M(n) of 4200 g/mol, T(m) of 47 degrees C) with methylene diphenyl 4,4'-diisocyanate isocynate (MDI) to form the hyperbrached MDI-linked PCL (PTCM; M(n) of 25,400 g/mol and a T(m) of 38 degrees C), followed by further polymerization with PHBV-diol (M(n) of 2200 g/mol, T(m) of 137 and 148 degrees C). The polymers were characterized by (1)H NMR, GPC, DSC, tensile test, and cyclic thermomechanical tensile test. PCTBVs showed desired thermal properties, mechanical properties, and ductile nature. PCTBV containing 25 wt% PHBV (PCTBV-25) demonstrated excellent shape-memory property at 40 degrees C, with R(f) of 94%, R(r) of 98%, and shape recovery within 25s. PCTBV-25 was also shown as a safe material with good biocompatibility by cytotoxicity tests and cell growth experiments. The stent made from PCTBV-25 film showed nearly complete self-expansion at 37 degrees C within only 25 s, which is much better and faster than the best known self-expandable stents. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Hydride affinities of cumulated, isolated, and conjugated dienes in acetonitrile.

    PubMed

    Zhu, Xiao-Qing; Liang, Hao; Zhu, Yan; Cheng, Jin-Pei

    2008-11-07

    The hydride affinities (defined as the enthalpy changes in this work) of 15 polarized dienes [five phenyl sulfone substituted allenes (1a), the corresponding five isolated dienes (1b), and the corresponding five conjugated dienes (1c)] in acetonitrile solution were determined by titration calorimetry for the first time. The results display that the hydride affinity scales of the 15 dienes in acetonitrile range from -71.6 to -73.9 kcal/mol for 1a, from -46.2 to -49.7 kcal/mol for 1b, and from -45.0 to -46.5 kcal/mol for 1c, which indicates that the hydride-obtaining abilities of the cumulated dienes (1a) are not only much larger than those of the corresponding conjugated dienes (1c) but also much larger than those of the corresponding isolated dienes (1b). The hydrogen affinities of the 15 dienes as well as the hydrogen affinities and the proton affinities of the radical anions of the dienes (1(-*)) in acetonitrile were also evaluated by using relative thermodynamic cycles according to Hess's law. The results show that (i) the hydrogen affinities of the neutral dienes 1 cover a range from -44.5 to -45.6 kcal/mol for 1a, from -20.4 to -21.4 kcal/mol for 1b, and from -17.3 to -18.5 kcal/mol for 1c; (ii) the hydrogen affinities of the radical anions of the dienes (1(-*)) in acetonitrile cover a range from -40.6 to -47.2 kcal/mol for 1a(-*), from -21.6 to -29.6 kcal/mol for 1b(-*), and from -10.0 to -15.4 kcal/mol for 1c(-*); (iii) the proton affinities of the 15 1a(-*) in acetonitrile cover a range from -97.0 to -100.6 kcal/mol for 1a(-*), from -77.8 to -83.4 kcal/mol for 1b(-*), and from -66.2 to -68.9 kcal/mol for 1c(-*). The main reasons for the great difference between the cumulated dienes and the corresponding isolated and conjugated dienes in the hydride affinity, hydrogen affinity, and proton affinity have been examined. It is evident that these experimental results should be quite valuable to facilitate the elucidation of the origins of the especially high chemical potencies of the allenes, the choice of suitable hydride reducing agents to reduce the dienes, and the analyses on the reduction mechanisms.

  10. Paleoenvironmental implications of early diagenetic siderites of the Paraíba do Sul Deltaic Complex, eastern Brazil

    NASA Astrophysics Data System (ADS)

    Rodrigues, Amanda Goulart; De Ros, Luiz Fernando; Neumann, Reiner; Borghi, Leonardo

    2015-06-01

    Abundant early diagenetic siderites occur as spherulites and rhombohedral microcrystalline and macrocrystalline crystals in the cores of the 2-MU-1-RJ well, drilled in the Paraíba do Sul Deltaic Complex, Rio de Janeiro (Brazil). The host sediments of the siderites are siliciclastic, hybrid, and carbonate deposits. Intense pedogenetic processes affected the siliciclastic sediments immediately after deposition, comprising clay illuviation, plants bioturbation, feldspar dissolution, and iron oxide/hydroxide precipitation. Siderite and pyrite are the main diagenetic constituents. The other diagenetic products are kaolinite, smectite, argillaceous and carbonate pseudomatrix, quartz overgrowths, diagenetic titanium minerals, jarosite, and iron oxides/hydroxides. Early diagenetic siderites were separated into four groups based on their elemental and stable isotopic composition, as well as on their paragenetic relationships with the other constituents and with the host sediments. Spherulitic to macrocrystalline siderites from group 1 are almost pure (average: 94.7 mol% FeCO3; 1.2 mol% MgCO3; 2.3 mol% CaCO3; 1.8 mol% MnCO3) and precipitated from meteoric porewaters in continental siliciclastic rocks under suboxic conditions (δ18Ovpdb values range in - 10.28 to - 5.57‰ and the δ13Cvpdb values in - 12.68 to - 4.33‰). Microcrystalline rhombohedral siderites from group 2 have zonation due to substantial Ca and Mg substitution (core average: 78.5 mol% FeCO3; 4.2 mol% MgCO3; 15.7 mol% CaCO3; 1.6 mol% MnCO3; edge average: 74.0 mol% FeCO3; 9.2 mol% MgCO3; 15.6 mol% CaCO3; 1.1 mol% MnCO3), and δ13Cvpdb and δ18Ovpdb values of + 0.17‰ and - 1.96‰, precipitated from marine porewaters in packstones/wackestones under methanogenic conditions. The group 3 is represented by irregular spherulitic siderites with moderate Ca and Mg substitutions (average: 80.2 mol% FeCO3; 7.9 mol% MgCO3; 11.3 mol% CaCO3; 0.6 mol% MnCO3), with δ18Ovpdb values ranging from - 5.96 to - 7.61‰ and δ13Cvpdb values ranging from - 5.15 to - 10.41‰. The group 4 microcrystalline siderites are magnesium-rich (average: 57.3 mol% FeCO3; 31.4 mol% MgCO3; 9.6 mol% CaCO3; 1.7 mol% MnCO3; δ13Cvpdb + 1.43‰ and δ18Ovpdb - 14.09‰). The group 3 and 4 siderites were formed from brackish porewater under suboxic conditions in hybrid and siliciclastic rocks. These variations in siderites are probably related to the Paraíba do Sul River dynamics, to sea level changes and to climatic variations that took place during the Quaternary.

  11. Drop-on-demand drop formation of polyethylene oxide solutions

    NASA Astrophysics Data System (ADS)

    Yan, Xuejia; Carr, Wallace W.; Dong, Hongming

    2011-10-01

    The dynamics of drop-on-demand (DOD) drop formation for solutions containing polyethylene oxide (PEO) have been studied experimentally. Using a piezoelectrical actuated inkjet printhead with the nozzle orifice diameter of 53 μm, experiments were conducted for a series of PEO aqueous solutions with molecular weights ranging from 14 to 1000 kg/mol, polydispersity from 1.02 to 2.5, and concentrations from 0.005 to 10 wt. %. The addition of a small amount of PEO can have a significant effect on the DOD drop formation process, increasing breakup time, decreasing primary drop speed, and decreasing the number of satellite drops in some cases. The effects depend on both molecular weight and concentration. At lower molecular weights (14 and 35 kg/mol), the effect of PEO over the dilute solution regime is insignificant even at concentrations large enough that the solution does not fall in the dilute regime. As PEO molecular weight increased, the effects became significant. For monodispersed PEO solutions, breakup time and primary drop speed closely correlated with effective relaxation time but not for polydispersed PEO. Effective relaxation time depended greatly on molecular weight distribution. Viscosity-average molecular weight, used in calculating effective relaxation time for polydispersed PEO solutions, did not adequately account for high molecular fractions in the molecular weight distribution of the polydispersed PEOs. A mixture rule was developed to calculate the effective relaxation times for aqueous solutions containing mixtures of monodispersed PEO, and breakup times and primary drop speeds correlated well with effective relaxation times. For our experiments, DOD drop formation was limited to Deborah number ≲ 23.

  12. Expression and localization in the developing cerebellum of the carbohydrate epitopes revealed by Elec-39, an IgM monoclonal antibody related to HNK-1.

    PubMed

    Kuchler, S; Zanetta, J P; Bon, S; Zaepfel, M; Massoulie, J; Vincendon, G

    1991-01-01

    The immunochemical and immunocytochemical reactivity of an anti-carbohydrate monoclonal antibody (Elec-39), obtained against acetylcholinesterase from Electrophorus electricus electric organ, was followed during the postnatal development of the rat cerebellum. The specificity of this antibody resembles that of a family of anti-carbohydrate antibodies that includes HNK-1, L2, NC-1 and NSP-4, as well as IgMs that occur in some human neuropathies. As revealed by immunoblotting techniques, the reactivity of Elec-39 is maximum around postnatal days 10-12. At this age, the antibody reveals eight major proteins of mol. wt ranging between 14 and 150 kDa. Some of them (with mol. wts of 14, 18, 28 and 31 kDa) are transiently expressed. They correspond to previously identified glycoproteins binding to the plant lectin concanavalin A and binding also to the endogenous mannose-binding lectin CSL and endogenous membrane-bound mannose-binding lectin. In young animals, an important staining with the Elec-39 antibody can be observed on postmitotic precursors of granule cells, on astrocyte processes in the external granular layer, on newly formed parallel fibres and on unmyelinated axons of the white matter. In adult animals, the labelling is localized essentially in myelin and also in the cytoplasm of astrocytes. These results are discussed in relation to ontogenetic phenomena occurring during cerebellar development and the potential role of the carbohydrate epitope revealed with Elec-39 as a determinant in cell adhesion processes.

  13. Water-filled training tubes increase core muscle activation and somatosensory control of balance during squat.

    PubMed

    Ditroilo, Massimiliano; O'Sullivan, Rory; Harnan, Brian; Crossey, Aislinn; Gillmor, Beth; Dardis, William; Grainger, Adam

    2018-09-01

    This study examined trunk muscle activation, balance and proprioception while squatting with a water-filled training tube (WT) and a traditional barbell (BB), with either closed (CE) or open eyes (OE). Eighteen male elite Gaelic footballers performed an isometric squat under the following conditions: BB-OE, BB-CE, WT-OE and WT-CE. The activity of rectus abdominis (RA), external oblique (EO) and multifidus (MF) was measured using electromyography, along with sway of the centre of pressure (CoP) using a force platform. Only the EO and the MF muscles exhibited an increased activity with WT (p < 0.01). In the medio-lateral direction both the velocity and range of the CoP increased significantly with WT (p < 0.01). Interestingly, the range of the CoP for the WT-CE condition was significantly lower than WT-OE (p < 0.05, d = 0.44), whilst the velocity of the CoP was marginally reduced (d = 0.29). WT elicited a greater level core muscle activation and created a greater challenge to postural stability when compared to a BB. It appears that WT does not benefit from vision but emphasises the somatosensory control of balance. The use of WT may be beneficial in those sports requiring development of somatosensory/proprioceptive contribution to balance control.

  14. Stabilized aqueous hydrogen peroxide solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malin, M.J.; Sciafani, L.D.

    1988-05-17

    This patent describes a stabilized aqueous hydrogen peroxide solution having a pH below 7 and an amount of Ferric ion up to about 2 ppm comprising hydrogen peroxide, acetanilide having a concentration which ranges between 0.74 M Mol/L and 2.22 mMol/L, and o-benzene disulfonic acid or salt thereof at a concentration between about 0.86 mMol/L to about 1.62 mMol/L.

  15. Preparation of a low-cost and eco-friendly superabsorbent composite based on wheat bran and laterite for potential application in Chinese herbal medicine growth.

    PubMed

    Gao, Jiande; Liu, Jin; Peng, Hui; Wang, Yaya; Cheng, Sha; Lei, Ziqiang

    2018-05-01

    A low-cost and eco-friendly superabsorbent composite is prepared through the free-radical graft co-polymerization of wheat bran (WB), acrylic acid (AA) and laterite (LA) in an aqueous solution. Elemental map, scanning electron microscopy and Fourier transform infrared spectra revealed that the LA evenly distributed in the superabsorbent composite and wheat bran-g-poly(acrylic acid)/laterite (WB-g-PAA/LA) formed successfully. Thermogravimetric analysis confirmed that the WB-g-PAA/LA had high thermal stability. Furthermore, the properties of the WB-g-PAA/LA, such as swelling in saline solutions and degradation, are also assessed. The final WB-g-PAA/LA (5 wt%) superabsorbent composite attained an optimum water absorbency of 1425 g g -1 in distilled water and 72 g g -1 in 0.9 wt% NaCl solution. The water absorbency of WB-g-PAA/LA (10 wt%) is even greater than that of the WB-g-PAA. Moreover, the water-retention capacity of WB-g-PAA/LA (5 wt%) is high, and the water-retention process followed a zero-order reaction. The reaction rate constant is 8.2428 × 10 5 exp(- E a /RT ) and the apparent activation energy ( E a ) is 35.11 kJ mol -1 . Furthermore, WB-g-PAA/LA (5 wt%) may regulate the release of urea, indicating that the superabsorbent composite could provide a promising application as a urea fertilizer carrier. Additionally, it increased the germination and growth rates of Glycyrrhiza uralensis Fisch, suggesting it could influence the growth of Chinese herbal medicine.

  16. Interactions of carbon nanotubes with the nitromethane-water mixture governing selective adsorption of energetic molecules from aqueous solution.

    PubMed

    Liu, Yingzhe; Lai, Weipeng; Yu, Tao; Kang, Ying; Ge, Zhongxue

    2015-03-14

    The structure and dynamics of the nitromethane-water (NM-WT) binary mixture surrounding single walled carbon nanotubes (SWNTs) have been investigated by molecular dynamics simulations. The simulation trajectories show that the NM molecules can be selectively adsorbed both outside the surface and inside the cavity of SWNTs mainly dominated by van der Waals attractions because SWNTs have a higher binding affinity for NM than WT. The binding energies of SWNTs with NM and WT obtained from electronic structure calculations at the M06-2X/6-31+G* level are 15.31 and 5.51 kcal mol(-1), respectively. Compared with the SWNT exterior, the selective adsorption of NM is preferentially occurred in the SWNT interior due to the hydrophobic interactions and the dipole-dipole interactions, which induces the decrease of the hydrogen-bond number of NM with WT and ordered structures of NM with preferred intermolecular orientation in the SWNT cavity. Furthermore, the selective adsorption dynamics of NM from the aqueous solution is regardless of the chirality and radius of SWNTs. The SWNT radius plays a negligible role in the mass density distributions of NM outside the SWNTs, while the mass density of NM in the SWNT interior decreases gradually as the SWNT radius increases. The structural arrangements and intermolecular orientations of NM in the SWNT cavity are greatly dependent on the SWNT radius due to the size effect.

  17. Characterization of the functional role of Asp141, Asp194, and Asp464 residues in the Mn2+-L-malate binding of pigeon liver malic enzyme.

    PubMed

    Chou, W Y; Chang, H P; Huang, C H; Kuo, C C; Tong, L; Chang, G G

    2000-02-01

    Pigeon liver malic enzyme was inactivated and cleaved at Asp141, Asp194, and Asp464 by the Cu2+-ascorbate system in acidic environment. Site-specific mutagenesis was performed at these putative metal-binding sites. Three point mutants, D141N, D194N, and D464N; three double mutants, D(141,194)N, D(194,464)N, and D(141,464)N; and a triple mutant, D(141,194,464)N; as well as the wild-type malic enzyme (WT) were successfully cloned and expressed in Escherichia coli cells. All recombinant enzymes, except the triple mutant, were purified to apparent homogeneity by successive Q-Sepharose and adenosine-2',5'-bisphosphate-agarose columns. The mutants showed similar apparent Km,NADP values to that of the WT. The Km,Mal value was increased in the D141N and D194N mutants. The Km,Mn value, on the other hand, was increased only in the D141N mutant by 14-fold, corresponding to approximately 1.6 kcal/mol for the Asp141-Mn2+ binding energy. Substrate inhibition by L-malate was only observed in WT, D464N, and D(141,464)N. Initial velocity experiments were performed to derive the various kinetic parameters. The possible interactions between Asp141, Asp194, and Asp464 were analyzed by the double-mutation cycles and triple-mutation box. There are synergistic weakening interactions between Asp141 and Asp194 in the metal binding that impel the D(141,194)N double mutant to an overall specificity constant [k(cat)/(Kd,Mn Km,Mal Km,NADP)] at least four orders of magnitude smaller than the WT value. This difference corresponds to an increase of 6.38 kcal/mol energy barrier for the catalytic efficiency. Mutation at Asp464, on the other hand, has partial additivity on the mutations at Asp141 and Asp194. The overall specificity constants for the double mutants D(194,464)N and D(141,464)N or the triple mutant D(141,194,464)N were decreased by only 10- to 100-fold compared to the WT. These results strongly suggest the involvement of Asp141 in the Mn2+-L-malate binding for the pigeon liver malic enzyme. The Asp194 and Asp464, which may be oxidized by nonspecific binding of Cu2+, are involved in the Mn2+-L-malate binding or catalysis indirectly by modulating the binding affinity of Asp141 with the Mn2+.

  18. Electrochemical studies and analysis of 1-10 wt% UCl3 concentrations in molten LiCl-KCl eutectic

    NASA Astrophysics Data System (ADS)

    Hoover, Robert O.; Shaltry, Michael R.; Martin, Sean; Sridharan, Kumar; Phongikaroon, Supathorn

    2014-09-01

    Three electrochemical methods - cyclic voltammetry (CV), chronopotentiometry (CP), and anodic stripping voltammetry (ASV) - were applied to solutions of up to 10 wt% UCl3 in the molten LiCl-KCl eutectic salt at 500 °C to determine electrochemical properties and behaviors and to help provide a scientific basis for the development of an in situ electrochemical probe for determining the concentration of uranium in a used nuclear fuel electrorefiner. Diffusion coefficients of UCl4 and UCl3 were calculated to be (6.72 ± 0.360) × 10-6 cm2/s and (1.04 ± 0.17) × 10-5 cm2/s, respectively. Apparent standard reduction potentials were determined to be (-0.381 ± 0.013) V and (-1.502 ± 0.076) V vs. 5 mol% Ag/AgCl or (-1.448 ± 0.013) V and (-2.568 ± 0.076) V vs. Cl2/Cl- for the U(IV)/U(III) and U(III)/U redox couples, respectively. In comparing this data with supercooled thermodynamic data to determine activity coefficients, the thermodynamic database used was important with resulting activity coefficients ranging from 2.34 × 10-3 to 1.08 × 10-2 for UCl4 and 4.94 × 10-5 to 4.50 × 10-4 for UCl3. Of anodic stripping voltammetry and cyclic voltammetry anodic or cathodic peaks, the CV cathodic peak height divided by square root of scan rate was shown to be the most reliable method of determining UCl3 concentration in the molten salt.

  19. Leaf gas exchange of understory spruce-fir saplings in relict cloud forests, southern Appalachian Mountains, USA.

    PubMed

    Reinhardt, Keith; Smith, William K

    2008-01-01

    The southern Appalachian spruce-fir (Picea rubens Sarg. and Abies fraseri (Pursh) Poir.) forest is found only on high altitude mountain tops that receive copious precipitation ( > 2000 mm year(-1)) and experience frequent cloud immersion. These high-elevation, temperate rain forests are immersed in clouds on approximately 65% of the total growth season days and for 30-40% of a typical summer day, and cloud deposition accounts for up to 50% of their annual water budget. We investigated environmental influences on understory leaf gas exchange and water relations at two sites: Mt. Mitchell, NC (MM; 35 degrees 45'53'' N, 82 degrees 15'53'' W, 2028 m elevation) and Whitetop Mtn., VA (WT; 36 degrees 38'19'' N, 81 degrees 36'19'' W, 1685 m elevation). We hypothesized that the cool, moist and cloudy conditions at these sites exert a strong influence on leaf gas exchange. Maximum photosynthesis (A(max)) varied between 1.6 and 4.0 micromol CO(2) m(-2) s(-1) for both spruce and fir and saturated at irradiances between approximately 200 and 400 micromol m(-2) s(-1) at both sites. Leaf conductance (g) ranged between 0.05 and 0.25 mol m(-2) s(-1) at MM and between 0.15 and 0.40 mol m(-2) s(-1) at WT and was strongly associated with leaf-to-air vapor pressure difference (LAVD). At both sites, g decreased exponentially as LAVD increased, with an 80-90% reduction in g between 0 and 0.5 kPa. Predawn leaf water potentials remained between -0.25 and -0.5 MPa for the entire summer, whereas late afternoon values declined to between -1.25 and -1.75 MPa by late summer. Thus, leaf gas exchange appeared tightly coupled to the response of g to LAVD, which maintained high water status, even at the relatively low LAVD of these cloud forests. Moreover, the cloudy, humid environment of these refugial forests appears to exert a strong influence on tree leaf gas exchange and water relations. Because global climate change is predicted to increase regional cloud ceiling levels, more research on cloud impacts on carbon gain and water relations is needed to predict future impacts on these relict forests.

  20. Activation mechanism and dehydrogenation behavior in bulk hypo/hyper-eutectic Mg-Ni alloy

    NASA Astrophysics Data System (ADS)

    Ding, Xin; Chen, Ruirun; Jin, Yinling; Chen, Xiaoyu; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2018-01-01

    To investigate the effect of microstructure on the better de-/hydrogenation property of Mg-based alloy, hypo-eutectic Mg-8Ni (at. %) alloy and hyper-eutectic Mg-15Ni alloy are prepared by metallurgy method. The phase constitutions and microstructures are characterized by XRD and SEM/EDS. Mg-8/15Ni alloy is composed of primary Mg/Mg2Ni and eutectic Mg-Mg2Ni. In isothermal sorption test, Mg-15Ni alloy shows preferable activation performance and faster de-/hydrogenation rates than Mg-8Ni alloy. The respective hydrogen uptake capacity in 165min is 5.62 wt% and 5.76 wt% H2 at 300 °C 3 MPa. Intersections of Mg-Mg2Ni eutectic phase boundaries with particle surface provide excellent sites and paths for the dissociation and permeation of hydrogen. The de-/hydrogenation enthalpy and entropy values are determined by PCI measurement. Based on the DSC curves at different heating rates, the desorption behavior of Mg-8/15Ni hydride is revealed and the respective activation energy is calculated to be 134.67 kJ mol-1 and 88.34 kJ mol-1 H2 by Kissinger method. Synergic dehydrogenation occurs in eutectic MgH2-Mg2NiH4, which facilitates the primary MgH2 in Mg-8Ni hydride to decompose at a lower temperature. The rapid H diffusion and synergic effect in eutectic MgH2-Mg2NiH4 collectively contribute to the lower dehydrogenation energy barrier of Mg-15Ni hydride.

  1. THE FORM AND STRUCTURE OF KINETOPLAST DNA OF CRITHIDIA

    PubMed Central

    Renger, Hartmut C.; Wolstenholme, David R.

    1972-01-01

    Cesium chloride centrifugation of each of the DNAs extracted from eight strains of Crithidia revealed a main band at ρ = 1.717 g/cm3 and a satellite band varying from ρ = 1.701 to 1.705 g/cm3 for the different strains By electron microscopy each DNA was shown to include circular molecules, 0.69–0.80 µ in mean contour length, and large, topologically two-dimensional masses of DNA in which the molecules appeared in the form of rosettes. DNA isolated from kinetoplast fractions of Crithidia acanthocephali was shown to consist of light satellite DNA and to be mainly in the form of large masses, 0.8 µ (mol wt = 1.54 x 106 daltons) circular molecules, and a few long, linear molecules. The results of experiments involving ultracentrifugation, heating, and quenching, sonication, and endodeoxyribonuclease digestion, combined with electron microscopy, are consistent with the following hypothesis. The large DNA masses are associations of 0.8 µ circles which are mainly covalently closed. The circles are held together in groups (the rosettes) of up to 46 by the topological interlocking of each circle with many other circles in the group. A group of circles is attached to an adjacent group by one or more circles, each interlocking with many circles of both groups. Each of the associations comprises, on the average, about 27,000 circles (total mol wt ≃ 41 x 109 daltons). A model is proposed for the in situ arrangement of the associations which takes into consideration their form and structure, and appearance in thin sections PMID:5040863

  2. [Aliskiren inhibits proliferation of cardiac fibroblasts in AGT-REN double transgenic hypertensive mice in vitro].

    PubMed

    Wang, Li-Ping; Fan, Su-Jing; Li, Shu-Min; Wang, Xiao-Jun; Sun, Na

    2016-10-25

    The purpose of the present study is to explore the effect of aliskiren on the proliferation of cardiac fibroblasts (CFs) in AGT-REN double transgenic hypertensive (dTH) mice. The cultured CFs from AGT-REN dTH mice were divided into AGT-REN group (dTH) and aliskiren group (ALIS). Cultured CFs from C57B6 mice were served as control (WT). The effect of different concentration of aliskiren (1 × 10 -6 , 1 × 10 -7 , 1 × 10 -8 , 1 × 10 -9 mol/L) on CFs proliferation was determined by MTT assay. After treatment with 1 × 10 -7 mol/L aliskiren for 24 h, α-SMA, collagen I, III and NADPH oxidase (NOX) protein expression in CFs of AGT-REN dTH mice were detected by Western blot. The collagen synthesis in CFs was assessed by hydroxyproline kit. The expression of ROS was determined by DHE. Results showed that the blood pressure and plasma Ang II levels were significantly increased and CFs proliferation was significantly increased as well in AGT-REN dTH mice compared with WT group. However, aliskiren intervention decreased CFs proliferation, myofibroblast transformation, as well as the collagen I and III synthesis in CFs of AGT-REN dTH mice. Meanwhile, aliskiren inhibited ROS content and NOX2/NOX4 protein expression in CFs of AGT-REN dTH mice. These results suggest that aliskiren decreases the cell proliferation, myofibroblast transformation and collagen production in CFs of AGT-REN dTH mice, which might be through inhibition of oxidative stress response.

  3. Cu2+, Co2+ and Cr3+ doping of a calcium phosphate cement influences materials properties and response of human mesenchymal stromal cells.

    PubMed

    Schamel, Martha; Bernhardt, Anne; Quade, Mandy; Würkner, Claudia; Gbureck, Uwe; Moseke, Claus; Gelinsky, Michael; Lode, Anja

    2017-04-01

    The application of biologically active metal ions to stimulate cellular reactions is a promising strategy to accelerate bone defect healing. Brushite-forming calcium phosphate cements were modified with low doses of Cu 2+ , Co 2+ and Cr 3+ . The modified cements released the metal ions in vitro in concentrations which were shown to be non-toxic for cells. The release kinetics correlated with the solubility of the respective metal phosphates: 17-45 wt.-% of Co 2+ and Cu 2+ , but <1 wt.-% of Cr 3+ were released within 28days. Moreover, metal ion doping led to alterations in the exchange of calcium and phosphate ions with cell culture medium. In case of cements modified with 50mmol Cr 3+ /mol β-tricalcium phosphate (β-TCP), XRD and SEM analyses revealed a significant amount of monetite and a changed morphology of the cement matrix. Cell culture experiments with human mesenchymal stromal cells indicated that the observed cell response is not only influenced by the released metal ions but also by changed cement properties. A positive effect of modifications with 50mmol Cr 3+ or 10mmol Cu 2+ per mol β-TCP on cell behaviour was observed in indirect and direct culture. Modification with Co 2+ resulted in a clear suppression of cell proliferation and osteogenic differentiation. In conclusion, metal ion doping of the cement influences cellular activities in addition to the effect of released metal ions by changing properties of the ceramic matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Temperature effect on bacterial azo bond reduction kinetics: an Arrhenius plot analysis.

    PubMed

    Angelova, Blaga; Avramova, Tatyana; Stefanova, Lilyana; Mutafov, Sava

    2008-06-01

    Studied was the effect of temperature in the range 12-46 degrees C on the rate of bacterial decolorization of the mono-azo dye Acid Orange 7 by Alcaligenes faecalis 6132 and Rhodococcus erythropolis 24. With both strains the raise of temperature led to a corresponding raise of decolorization rate better manifested by R. erythropolis. The analysis of the Arrhenius plot revealed a break near the middle of the temperature range. The regression analysis showed practically complete identity of the observed break point temperatures (T (BP)): 20.7 degrees C for Alc. faecalis and 20.8 degrees C for R. erythropolis. The values of the activation energy of the decolorization reaction (E (a)) were found to depend on both the organism and the temperature range. In the range below T (BP) the estimated values of E (a) were 138 +/- 7 kJ mol(-1) for Alc. faecalis and 160 +/- 8 kJ mol(-1) for R. erythropolis. In the range above T (BP) they were 54.2 +/- 1.8 kJ mol(-1) for Alc. faecalis and 37.6 +/- 4.1 kJ mol(-1) for R. erythropolis. Discussed are the possible reasons for the observed abrupt change of the activation energy.

  5. Elimination of reactive blue 4 from aqueous solutions using 3-aminopropyl triethoxysilane modified chitosan beads.

    PubMed

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Salamatinia, Babak; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi

    2015-11-05

    The adsorption behavior of chitosan (CS) beads modified with 3-aminopropyl triethoxysilane (APTES) for the removal of reactive blue 4 (RB4) in batch studies has been investigated. The effects of modification conditions, such as the APTES concentration, temperature and reaction time on RB4 removal, were studied. The adsorbent prepared at a concentration of 2 wt% APTES for 8h at 50 °C was the most effective one for RB4 adsorption. The adsorption capacity of modified CS beads (433.77 mg/g) was 1.37 times higher than that of unmodified CS beads (317.23 mg/g). The isotherm data are adequately described by a Freundlich model, and the kinetic study revealed that the pseudo-second-order rate model was in better agreement with the experimental data. The negative values of the thermodynamic parameters, including ΔG° (-2.28 and -4.70 kJ/mol at 30 ± 2 °C), ΔH° (-172.18 and -43.82 kJ/mol) and ΔS° (-560.71 and -129.08 J/mol K) for CS beads and APTES modified beads, respectively, suggest that RB4 adsorption is a spontaneous and exothermic process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Materials technology for coal-conversion processes. Seventeenth quarterly report, January-March 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellingson, W. A.

    1979-01-01

    Studies of slag attack on refractories were continued, utilizing conditions relevant to MHD applications. Addition of 10 wt % K/sub 2/O seed to the slag did not increase its corrosive effect on the refractories tested. A hot gas-stream cleanup erosion-monitoring system using an ANL-developed nondestructive ultrasonic system was installed at the Morgantown Energy Technology Center (METC) during this period and was 75% completed. Characteristic-slope values obtained from broadband and resonant-band acoustic-emission transducers during rapid heating of a 95% Al/sub 2/O/sub 3/ refractory panel are consistent with theory. Corrosion information on type and thickness of corrosion-product layers was obtained on Incoloymore » 800, 310 stainless steel, Inconel 671 and 871 and 982/sup 0/C. Fluid-bed corrosion studies involving sulfation accelerators have shown that addition of 0.3 mol % CaCl/sub 2/ has no significant effect on corrosion behavior of the alloys studied. However, 0.5 mol % NaCl or 1.9 mol % Na/sub 2/CO/sub 3/ increases the corrosion rates of most materials. Failure analyses were performed on components from the slagging gasifier and liquefaction unit at the Grand Forks Energy Technology Center, and a ball valve from the METC Valve Dynamic Test Unit.« less

  7. Dehydriding properties of Ti or/and Zr-doped sodium aluminum hydride prepared by ball-milling

    NASA Astrophysics Data System (ADS)

    Xiao, Xue-Zhang; Chen, Li-Xin; Wang, Xin-Hua; Li, Shou-Quan; Hang, Zhou-Ming; Chen, Chang-Pin; Wang, Qi-Dong

    2007-12-01

    The NaAlH4 complex is attracting great attention for its potential applications in hydrogen-powered fuel-cell vehicles due to its high hydrogen storage capacity and suitable thermodynamic properties. However, its practicable hydrogen storage capacity presently obtained is less than the theoretical capacity (5.6 wt.%). To improve the hydrogen capacity, we chose metallic Ti or/and Zr powder as catalyst dopants, and prepared the sodium aluminum hydride by hydrogenation of ball-milled NaH/Al mixture containing 10 mol% dopants with different proportions of Ti and Zr, and then investigated the effects on their hydrogen storage (dehydriding) properties. The results showed that different catalyst dopants affected the dehydriding properties greatly. The catalysis of metal Ti as a catalyst dopant alone on dehydriding kinetics for the entire dehydrogenation process of ball-milled (NaH/Al) composite was higher than that of adopting Zr alone. The synergistic catalytic effect of Ti and Zr together as co-dopants on the dehydrogenation process of (NaH/Al) composite was higher than that using only Ti or Zr as dopant individually. The composite doped with proper proportion of Ti and Zr together (8 mol% Ti+ 2 mol% Zr) as co-dopants exhibited the highest dehydriding kinetic property and desorption capacity.

  8. Regional thermal and electric energy output of salt-gradient solar ponds in the U.S.

    NASA Technical Reports Server (NTRS)

    Singer, M. J.; Lin, E. I. H.

    1982-01-01

    Salt-gradient solar pond thermal and electrical energy output was calculated for each of twelve regions within the United States as part of an effort to assess solar pond applicability and extent of requisite physical resources on a regional basis. The energy output level is one of the key factors affecting the economic feasibility of solar ponds. Calculated thermal energy output ranges from 6.9 Wt/sq m in Fairbanks, Alaska, to 73.1 Wt/sq m in Daggett, California, at an energy extraction temperature of 45 C. The output ranges from 0.0 Wt/sq m in Fairbanks to 63.2 Wt/sq m in Daggett at 60 C. Electrical energy output ranges from 0.0 We/sq m in Fairbanks to 3.11 We/sq m in Daggett. Although these estimates constitute a reasonable basis for regional comparison, site-specific analysis must be performed for an actual application design.

  9. Kinetics of levulinic acid and furfural production from Miscanthus × giganteus.

    PubMed

    Dussan, K; Girisuta, B; Haverty, D; Leahy, J J; Hayes, M H B

    2013-12-01

    This study investigated the kinetics of acid hydrolysis of the cellulose and hemicellulose in Miscanthus to produce levulinic acid and furfural under mild temperature and high acid concentration. Experiments were carried out in an 8L-batch reactor with 9%-wt. biomass loading, acid concentrations between 0.10 and 0.53 M H2SO4, and at temperatures between 150 and 200°C. The concentrations of xylose, glucose, furfural, 5-hydroxymethylfurfural and levulinic acid were used in two mechanistic kinetic models for the prediction of the performance of ideal continuous reactors for the optimisation of levulinic acid and the concurrent production of furfural. A two-stage arrangement was found to maximise furfural in the first reactor (PFR - 185°C, 0.5M H2SO4, 27.3%-mol). A second stage leads to levulinic acid yields between 58% and 72%-mol at temperatures between 160 and 200°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. CO2 Solubility in Rhyolitic Melts as a Function of P, T, and fO2 - Implications for Carbon Flux in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Duncan, M. S.; Dasgupta, R.

    2013-12-01

    Understanding the balance between subduction inputs vs. arc output of carbon is critical for constraining the global carbon cycle. However, the agent of carbon transfer from slab to sub-arc mantle is not constrained [1]. Partial melt of ocean-floor sediments is thought to be a key agent of mass transfer in subduction zones, accounting for the trace element characteristics of arc magmas [2]. Yet the carbon carrying capacity of rhyolitic partial melts of sediments remains unknown at sub-arc depths. In our previous work [3], we constrained CO2 solubility of natural rhyolite from 1.5-3.0 GPa, 1300 °C and logfO2 at FMQ×1.0. However, the effects of T and fO2 on CO2 solubility remain unconstrained. In particular, for sediments with organic carbon, graphite stability is expected and the fO2 of C-dissolution can be lower, which may affect the solubility. Thus it is critical to constrain the CO2 solubility of sediment partial melts under graphite-saturated conditions. We determined CO2 solubility of a model rhyolite composition, similar to partial melt composition of natural metapelite [4], at graphite saturation, using Pt/Gr capsules and a piston cylinder device. Experiments were conducted at 1.5-3.0 GPa and 1100-1400 °C. FTIR was employed to measure the concentrations of CO2 and H2O in doubly polished experimental glasses. Raman and SIMS were used to determine the presence of reduced carbon species and total carbon, respectively. FTIR spectra reveal that CO2 is dissolved as both molecular CO2 (CO2mol.) and carbonates (CO32-). For graphite-saturated, hydrous melts with measured H2O ~2.0 wt.%, CO2tot. (CO2mol.+CO32-) values increase with increasing P from ~0.6 to 1.2 wt.% from 1.5 to 3.0 GPa at 1300 °C. These values are lower than more oxidized melts with the same water content, which were 0.85 to 1.99 wt.% CO2 as P increased. At 3 GPa, graphite-saturated experiments from 1100 to 1300 °C yield CO2tot. value of 1.18-1.20 wt.%, suggesting minor effect of temperature in bulk CO2 solubility. To meet the minimum requirement of 3000 ppm CO2 in primary arc magma [5,6], the required sediment melt contribution is 0.18-0.28 wt.% CO2, which is distinctly lower than the solubility limit of graphite-saturated melt. However, 1.7 wt.% CO2 in primary arc basalts [5] exceeds the solubility limit of reduced, hydrous melts, which is in contrast to more oxidized, hydrous melts which can contribute up to 2 wt.% CO2. We determine that ~1.7-15% of sediment melt would be required to meet 3000 ppm CO2 in the primary arc basalt depending on the depth of melting (1.5-3.0 GPa) and the degree of mantle wedge melting (15-30%). This contribution is higher than that previously calculated for the more oxidized melts, but still may not be an unreasonable slab flux. [1] Dasgupta (2013) RiMG, 75, 183-229; [2] Plank and Langmuir (1993) Nature, 362, 739-743. [3] Duncan and Dasgupta. (in review) GCA; [4] Tsuno and Dasgupta (2011) CMP, 161, 743-763; [5] Blundy et al. (2010) EPSL, 290, 289-301; [6] Wallace (2005) JVGR, 140, 217-240.

  11. Studies on the thermal behavior of CS:LiTFSI:[Amim] Cl polymer electrolytes exerted by different [Amim] Cl content

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Shanti, R.; Morris, Ezra

    2012-01-01

    The principle motivation of this research work is to develop environmental-friendly polymer electrolytes utilizing corn starch (CS), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 1-allyl-3-methylimidazolium chloride ([Amim] Cl) by solution casting technique. The highest ionic conductivity value was achieved for the composition CS:LiTFSI:[Amim] Cl (14 wt. %:6 wt. %:80 wt. %) which exhibits the ionic conductivity value of 5.68 × 10 -2 S cm -1 at 40 °C with the activation energy of 4.86 kJ mol -1. This sample possess high concentration of amorphous phase coupled with greater presence of conducting cations (lithium, Li + and imidazolium, [Amim] +) as depicted by the dielectric loss tangent plot. The conductivity-temperature plots were found to obey Arrhenius rule in which the conductivity mechanism is thermally assisted. The melting temperature of polymer electrolyte decreases with increase in [Amim] Cl content. This is attributed to the good miscibility of [Amim] Cl in CS:LiTFSI matrix inducing structural disorderliness. Reference to the TGA results it is found that the addition of [Amim] Cl diminishes the heat-resistivity whereas enhancement in the thermal stability occurred at the initial addition and declines with further doping of [Amim] Cl.

  12. Pore structure modified diatomite-supported PEG composites for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Qian, Tingting; Li, Jinhong; Deng, Yong

    2016-09-01

    A series of novel composite phase change materials (PCMs) were tailored by blending PEG and five kinds of diatomite via a vacuum impregnation method. To enlarge its pore size and specific surface area, different modification approaches including calcination, acid treatment, alkali leaching and nano-silica decoration on the microstructure of diatomite were outlined. Among them, 8 min of 5 wt% NaOH dissolution at 70 °C has been proven to be the most effective and facile. While PEG melted during phase transformation, the maximum load of PEG could reach 70 wt.%, which was 46% higher than that of the raw diatomite. The apparent activation energy of PEG in the composite was 1031.85 kJ·mol-1, which was twice higher than that of the pristine PEG. Moreover, using the nano-silica decorated diatomite as carrier, the maximum PEG load was 66 wt%. The composite PCM was stable in terms of thermal and chemical manners even after 200 cycles of melting and freezing. All results indicated that the obtained composite PCMs were promising candidate materials for building applications due to its large latent heat, suitable phase change temperature, excellent chemical compatibility, improved supercooling extent, high thermal stability and long-term reliability.

  13. Pore structure modified diatomite-supported PEG composites for thermal energy storage.

    PubMed

    Qian, Tingting; Li, Jinhong; Deng, Yong

    2016-09-01

    A series of novel composite phase change materials (PCMs) were tailored by blending PEG and five kinds of diatomite via a vacuum impregnation method. To enlarge its pore size and specific surface area, different modification approaches including calcination, acid treatment, alkali leaching and nano-silica decoration on the microstructure of diatomite were outlined. Among them, 8 min of 5 wt% NaOH dissolution at 70 °C has been proven to be the most effective and facile. While PEG melted during phase transformation, the maximum load of PEG could reach 70 wt.%, which was 46% higher than that of the raw diatomite. The apparent activation energy of PEG in the composite was 1031.85 kJ·mol(-1), which was twice higher than that of the pristine PEG. Moreover, using the nano-silica decorated diatomite as carrier, the maximum PEG load was 66 wt%. The composite PCM was stable in terms of thermal and chemical manners even after 200 cycles of melting and freezing. All results indicated that the obtained composite PCMs were promising candidate materials for building applications due to its large latent heat, suitable phase change temperature, excellent chemical compatibility, improved supercooling extent, high thermal stability and long-term reliability.

  14. H2O and CO2 fluxes at the floor of a boreal pine forest

    NASA Astrophysics Data System (ADS)

    Kulmala, Liisa; Launiainen, Samuli; Pumpanen, Jukka; Lankreijer, Harry; Lindroth, Anders; Hari, Pertti; Vesala, Timo

    2008-04-01

    We measured H2O and CO2 fluxes at a boreal forest floor using eddy covariance (EC) and chamber methods. Maximum evapotranspiration measured with EC ranged from 1.5 to 2.0mmol m-2 s-1 while chamber estimates depended substantially on the location and the vegetation inside the chamber. The daytime net CO2 exchange measured with EC (0-2μmol m-2 s-1) was of the same order as measured with the chambers. The nocturnal net CO2 exchange measured with the chambers ranged from 4 to 7μmol m-2 s-1 and with EC from ~4 to ~5μmol m-2 s-1 when turbulent mixing below the canopy was sufficient and the measurements were reliable. We studied gross photosynthesis by measuring the light response curves of the most common forest floor species and found the saturated rates of photosynthesis (Pmax) to range from 0.008 (mosses) to 0.184μmol g-1 s-1 (blueberry). The estimated gross photosynthesis at the study site based on average leaf masses and the light response curves of individual plant species was 2-3μmol m-2 s-1. At the same time, we measured a whole community with another chamber and found maximum gross photosynthesis rates from 4 to 7μmol m-2 s-1.

  15. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass.

    PubMed

    Wang, Nan; Tahmasebi, Arash; Yu, Jianglong; Xu, Jing; Huang, Feng; Mamaeva, Alisa

    2015-08-01

    Microwave (MW) pyrolysis of algal and lignocellulosic biomass samples were studied using a modified domestic oven. The pyrolysis temperature was recorded continuously by inserting a thermocouple into the samples. Temperatures as high as 1170 and 1015°C were achieved for peanut shell and Chlorella vulgaris. The activation energy for MW pyrolysis was calculated by Coats-Redfern method and the values were 221.96 and 214.27kJ/mol for peanut shell and C. vulgaris, respectively. Bio-oil yields reached to 27.7wt.% and 11.0wt.% during pyrolysis of C. vulgaris and peanut shell, respectively. The bio-oil samples from pyrolysis were analyzed by a gas chromatography-mass spectrometry (GC-MS). Bio-oil from lignocellulosic biomass pyrolysis contained more phenolic compounds while that from microalgae pyrolysis contained more nitrogen-containing species. Fourier transform infrared spectroscopy (FTIR) analysis results showed that concentration of OH, CH, CO, OCH3, and CO functional groups in char samples decreased significantly after pyrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Synthesis and Characterization of Poly (styrene-co-butyl acrylate)/Silica Aerogel Nanocomposites by in situ AGET ATRP: Investigating Thermal Properties

    NASA Astrophysics Data System (ADS)

    Khezri, Khezrollah; Fazli, Yousef

    2017-10-01

    Hydrophilic silica aerogel nanoparticles surface was modified with hexamethyldisilazane. Then, the resultant modified nanoparticles were used in random copolymerization of styrene and butyl acrylate via activators generated by electron transfer for atom transfer radical polymerization. Conversion and molecular weight determinations were performed using gas and size exclusion chromatography respectively. Addition of modified nanoparticles by 3 wt% results in a decrease of conversion from 68 to 46 %. Molecular weight of copolymer chains decreases from 12,500 to 7,500 g.mol-1 by addition of 3 wt% modified nanoparticles; however, PDI values increase from 1.1 to 1.4. Proton nuclear magnetic resonance spectroscopy results indicate that the molar ratio of each monomer in the copolymer chains is approximately similar to the initial selected mole ratio of them. Increasing thermal stability of the nanocomposites is demonstrated by thermal gravimetric analysis. Differential scanning calorimetry also shows a decrease in glass transition temperature by increasing modified silica aerogel nanoparticles.

  17. Sunflower shells utilization for energetic purposes in an integrated approach of energy crops: laboratory study pyrolysis and kinetics.

    PubMed

    Zabaniotou, A A; Kantarelis, E K; Theodoropoulos, D C

    2008-05-01

    Sunflower is a traditional crop which can be used for the production of bioenergy and liquid biofuels. A study of the pyrolytic behaviour of sunflower residues at temperatures from 300 to 600 degrees C has been carried out. The experiments were performed in a captive sample reactor under atmospheric pressure and helium as sweeping gas. The yields of the derived pyrolysis products were determined in relation to temperature, with constant sweeping gas flow of 50 cm3 min(-1) and heating rate of 40 degrees Cs(-1). The maximum gas yield of around 53 wt.% was obtained at 500 degrees C, whereas maximum oil yield of about 21 wt.% was obtained at 400 degrees C. A simple first order kinetic model has been applied for the devolatilization of biomass. Kinetic constants have been estimated: E=78.15 kJ mol(-1); k(0)=1.03 x 10(3)s(-1).

  18. Zoned Cr, Fe-spinel from the La Perouse layered gabbro, Fairweather Range, Alaska

    USGS Publications Warehouse

    Czamanske, G.K.; Himmelberg, G.R.; Goff, F.E.

    1976-01-01

    Zoned spinel of unusual composition and morphology has been found in massive pyrrhotite-chalcopyrite-pent-landite ore from the La Perouse layered gabbro intrusion in the Fairweather Range, southeastern Alaska. The spinel grains show continuous zoning from cores with up to 53 wt.% Cr2O3 to rims with less than 11 wt.% Cr2O3. Their composition is exceptional because they contain less than 0.32 wt.% MgO and less than 0.10 wt.% Al2O3 and TiO2. Also notable are the concentrations of MnO and V2O3, which reach 4.73 and 4.50 wt.%, respectively, in the cores. The spinel is thought to have crystallized at low oxygen fugacity and at temperatures above 900??C, directly from a sulfide melt that separated by immiscibility from the gabbroic parental magma. ?? 1976.

  19. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.

    PubMed

    Wang, Dong-Hong; Wang, Lei; Xu, An-Wu

    2012-03-21

    Visible light photocatalytic H(2) production from water splitting is of great significance for its potential applications in converting solar energy into chemical energy. In this study, a series of Zn(1-x)Cd(x)S solid solutions with a nanoporous structure were successfully synthesized via a facile template-free method at room temperature. The obtained solid solutions were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS) and N(2) adsorption-desorption analysis. The solid solutions show efficient photocatalytic activity for H(2) evolution from aqueous solutions containing sacrificial reagents S(2-) and SO(3)(2-) under visible-light irradiation without a Pt cocatalyst, and loading of the Pt cocatalyst further improves the visible-light photocatalytic activity. The optimal photocatalyst with x = 0.20 prepared at pH = 7.3 displays the highest activity for H(2) evolution. The bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S nanoparticles exhibit a high H(2) evolution rate of 193 μmol h(-1) and 458 μmol h(-1) under visible-light irradiation (λ ≥ 420 nm), respectively. In addition, the bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S catalysts show a high H(2) evolution rate of 252 and 640 μmol h(-1) under simulated solar light irradiation, respectively. Moreover, the Zn(0.80)Cd(0.20)S catalyst displays a high photocatalytic stability for H(2) evolution under long-term light irradiation. The incorporation of Cd in the solid solution leads to the visible light absorption, and the high content of Zn in the solid solution results in a relatively negative conduction band, a modulated band gap and a rather wide valence bandwidth, which are responsible for the excellent photocatalytic performance of H(2) production and for the high photostability. This journal is © The Royal Society of Chemistry 2012

  20. Chemical properties of Garnets from Garnet Ridge, Navajo volcanic field in the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Koga, I.; Ogasawara, Y.

    2012-12-01

    Significant amounts of garnet crystals have derived from kimberlitic diatremes at Garnet Ridge in northern Arizona. These garnets are chemically diverse and their origins have been still controversial. The diatremes at Garnet Ridge were dated at 30Ma (Smith et al., 2004). Coesite-bearing lawsonite eclogite reported by Usui et al., (2003) is important evidence for subduction of the Fallaron Plate below the Colorado plateau. This study characterized various kinds of garnets with several origins by petrographical observations and electron microprobe analyses (JXA-8900 WDS mode and JXA-733 EDS mode). On the basis of the chemical compositions and other features, the garnets were classified into the following 8 groups (A to H). Inclusions and exsolved phases were identified by laser Raman spectroscopy. (A) Garnet crystals (5-8 mm) with purple color are called ''Navajo Ruby''. A significant amount of Cr2O3 is a typical feature (up to ~5.9 wt. %). These garnet were rich in pyrope (66-78 mol. %). Olivine, Cpx, and exsolved lamellae of rutile were contained. (B) Reddish brown garnets were Pyp-rich (60-75 mol. %), and contained a minor amount of Cr2O3 (less than ~1 wt. %). The inclusions were rod-shaped rutile , Cpx, Opx, zircon, olivine and exsolved lamellae of apatite. (C) Garnet megacrysts (8-12 cm) were plotted near the center of Prp-Alm-Grs triangle (Pyp30-35 Alm28-33 Grs29-35). Exsolved apatite lamellae were confirmed. (D) Some of reddish brown garnets were plotted on same area as the Type-C. (E) Garnets in eclogite have Alm-rich composition (Pyp6-22 Alm52-65 Grs16-42). They clearly showed prograde chemical zonation; MgO: 1.4 to 5.4 wt. %, CaO: 14.0 to 5.6 wt. % both from core to rim. (F) Garnets in altered or metasomatized eclogite had a wide range of chemical composition (Pyp7-38 Alm52-69 Grs4-31) with similar prograde zonation. The cores were plotted near the rim of Type-E garnet. (G) Garnets in unidentified rock (strongly altered) had Alm-rich composition near Alm-Prp join. Euhedral quartz and zircon were included in the garnet. (H) Garnets in skarn-like rock of metasomatism origin at crustal level were plotted on Alm-Grs join and have no Prp component. Titanite, zoisite and fluid inclusion were identified in this garnet. Among the garnets described above, one of the typical garnets from Garnet Ridge is Cr-bearing Pyp-rich garnet, "Navajo Ruby", of peridotite origin at great depths, and another typical one is garnet in eclogite probably of subducted Farallon Plate origin. These two rocks having strong contrast each other were mixed underneath the Colorado Plateau. The chemical characteristics and petrographical features of the garnets from Garnet Ridge will give us very important information on complex petrochemical processes and related environments underneath the Colorado Plateau. Acknowledgements: The authors are grateful to Mrs. Pauline Deswudt who sold us various kinds of garnet grains and their host rocks for the present study. References: D. Smith, James N. Connelly, Kathryn Manser, Desmond E. Moser, Todd B. Housh, Fred W. McDowell, and Lawrence E. Mack., Vol. 5, Number 4. (2004) Geochemistry Geophysics Geosystems Usui, T., Nakamura, E., Kobayashi, K., Maruyama, S. and Helmstaedt, H. (2003) Geology, 31.

  1. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions.

    PubMed

    Miyoshi, Daisuke; Nakamura, Kaori; Tateishi-Karimata, Hisae; Ohmichi, Tatsuo; Sugimoto, Naoki

    2009-03-18

    It has been revealed recently that molecular crowding, which is one of the largest differences between in vivo and in vitro conditions, is a critical factor determining the structure, stability, and function of nucleic acids. However, the effects of molecular crowding on Watson-Crick and Hoogsteen base pairs remain unclear. In order to investigate directly and quantitatively the molecular crowding effects on base pair types in nucleic acids, we designed intramolecular parallel- and antiparallel-stranded DNA duplexes consisting of Hoogsteen and Watson-Crick base pairs, respectively, as well as an intramolecular parallel-stranded triplex containing both types of base pairs. Thermodynamic analyses demonstrated that the values of free energy change at 25 degrees C for Hoogsteen base-pair formations decreased from +1.45 +/- 0.15 to +1.09 +/- 0.13 kcal mol(-1), and from -1.89 +/- 0.13 to -2.71 +/- 0.11 kcal mol(-1) in the intramolecular duplex and triplex, respectively, when the concentration of PEG 200 (polyethylene glycol with average molecular weight 200) increased from 0 to 20 wt %. However, corresponding values for Watson-Crick formation in the duplex and triplex increased from -10.2 +/- 0.2 to -8.7 +/- 0.1 kcal mol(-1), and from -10.8 +/- 0.2 to -9.2 +/- 0.2 kcal mol(-1), respectively. Furthermore, it was revealed that the opposing effects of molecular crowding on the Hoogsteen and Watson-Crick base pairs were due to different behaviors of water molecules binding to the DNA strands.

  2. Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Qin, Jiayi; Huo, Jingpei; Zhang, Piyong; Zeng, Jian; Wang, Tingting; Zeng, Heping

    2016-01-01

    Ag nanoparticles were deposited on the surface of g-C3N4 by a chemical reduction method to increase visible-light absorption via the localized surface plasmon resonance effect, resulting in the reduced recombination of photo-generated electron-holes and enhanced photocatalytic activity. The Ag/g-C3N4 composite with a Ag loading of 3 wt% has the optimum photoactivity that is almost 3.6 and 3.4 times higher than pure g-C3N4 and the same photocatalysis system which has been reported, respectively. Fluorescein was introduced as a photosensitizer and H2 evolution soared to 2014.20 μmol g-1 h-1 and the rate is even about 4.8 times higher than that of the 3 wt% Ag/g-C3N4 composite. The chemical structure, composites, morphologies and optical properties of the obtained products are well-characterized by XRD, FTIR, TEM, EDS, XPS and UV-Vis DRS. Meanwhile, the photocatalyst exhibits high stability and reusability.Ag nanoparticles were deposited on the surface of g-C3N4 by a chemical reduction method to increase visible-light absorption via the localized surface plasmon resonance effect, resulting in the reduced recombination of photo-generated electron-holes and enhanced photocatalytic activity. The Ag/g-C3N4 composite with a Ag loading of 3 wt% has the optimum photoactivity that is almost 3.6 and 3.4 times higher than pure g-C3N4 and the same photocatalysis system which has been reported, respectively. Fluorescein was introduced as a photosensitizer and H2 evolution soared to 2014.20 μmol g-1 h-1 and the rate is even about 4.8 times higher than that of the 3 wt% Ag/g-C3N4 composite. The chemical structure, composites, morphologies and optical properties of the obtained products are well-characterized by XRD, FTIR, TEM, EDS, XPS and UV-Vis DRS. Meanwhile, the photocatalyst exhibits high stability and reusability. Electronic supplementary information (ESI) available: TEM images, TGA curves, PXRD and FTIR spectra, the recycling experiment of 3% Ag/g-C3N4, the specific process for H2 production, the diagram for the rate of hydrogen generation vs. the amount of fluorescein, the figure for the photocatalytic hydrogen production testing system, tables of contrast experiments for photocatalytic hydrogen generation and elemental composition of the CN in all the samples. See DOI: 10.1039/c5nr06346a

  3. The role of volatiles in the genesis of cenozoic magmatism in Northern Victoria Land (NVL), Antarctica

    NASA Astrophysics Data System (ADS)

    Giacomoni, Pier Paolo; Coltorti, Massimo; Bonadiman, Costanza; Ferlito, Carmelo; Zanetti, Alberto; Ottolini, Luisa

    2017-04-01

    This study offers an innovative view of the petrogenetic processes responsible for the magmas erupted in the Western Antarctic Rift System (WARS) by studying the chemical composition and the volatiles content of basic lavas and olivine-hosted melt inclusions (MI). Lavas come from three localities: Shield Nunatak (Mt. Melbourne), Eldridge Bluff and Handler Ridge. They are olivine-phyric basanites (42.41-44.80 SiO2 wt%; 3.11-6.19 Na2O+K2O wt%) and basalts (44.91-48.73 SiO2 wt%; 2.81-4.55 Na2O+K2O wt%) with minor clinopyroxene and plagioclase. Samples from Handler Ridge clearly differ by having the highest TiO2 (3.55-3.65 wt%), Rb, Ba, Nb, La, Zr despite their more primitive features (60.83-44.87 Mg#, MgO/(MgO+FeO) %mol). Olivine-hosted melt inclusions (MI) were analyzed for major element and volatiles (H2O. CO2, S, F, and Cl) after HT (1300°C) and HP (6 kbar) homogenization. Despite a larger variability, MI are compositionally comparable with the host lavas and are characterized by two distinct trends (high-Fe-Ti-K and low-Fe-Ti-K). The H2O content in MI ranges from 0.70 wt% to 2.64 wt% and CO2 from 25 ppm to 341 ppm (H2O/CO2 1). At comparable H2O contents, few samples show a higher CO2 values (1322 ppm to 3905 ppm) with a H2O/CO2 molar ratio down to 0.8. F and Cl content varies from 1386 ppm to 10 ppm and from 1336 ppm to 38 ppm respectively. Concentration of volatiles show a good correlation with alkalies, especially with K2O; Handler Ridge presents the highest total value of F and Cl (2675 ppm). Chondrite-normalized trace elements concentration in MI show an intraplate pattern with negative anomalies in Rb, K, Ti. Accordingly, to the lava contents, MI from Handler Ridge have a significantly higher concentration in Rb (12-45 ppm), Sr (700-834 ppm), Ba (433-554) and Nb (48.8-83.4 ppm) with respect to the other localities at comparable Mg#. Mantle melting mass balance calculations simulate the observed H2O, CO2 and Cl concentration by melting a spinel lhezolite from 3 to 7 % of melting (F) with a 5% of modal amphibole with the same composition and modal proportion of mantle xenoliths from Baker Rocks, a locality near to Shield Nunatak. The model was not able to predict the F content which is less abundant in natural sample. From the resulted partial melting percentage, we calculated a total amount of CO2 in mantle source of 273 ppm by assuming the highest 3900 ppm measured in MI as starting value. The estimated maximum content of H2O and CO2 in the primary melt is 2.6 wt% and 8800 ppm respectively. Obtained data were compared with those from mantle xenoliths from NVL with the aim to reconstruct the composition of the mantle source of the Cenozoic magmatism and to model the whole volatile budget from mantle to magmas starting from the measured volatile content in hydrous (amph) and NAM phases in mantle xenoliths. Preliminary results evidence that high-Fe-Ti-K basanites found in MI are very similar to the calculated metasomatic agent involved in the formation of the very peculiar Fe-rich lherzolites.

  4. Kinetics of Alkaline Decomposition and Cyaniding of Argentian Rubidium Jarosite in NaOH Medium

    NASA Astrophysics Data System (ADS)

    Rodríguez, Eleazar Salinas; Sáenz, Eduardo Cerecedo; Ramírez, Marius; Cardona, Francisco Patiño; Labra, Miguel Pérez

    2012-10-01

    The alkaline decomposition of Argentian rubidium jarosite in NaOH media is characterized by an induction period and a progressive conversion period in which the sulfate and rubidium ions pass to the solution, leaving an amorphous iron hydroxide residue. The process is chemically controlled and the order of reaction with respect to hydroxide concentration in the range of 1.75 and 20.4 mol OH- m-3 is 0.94, while activation energy in the range of temperatures of 298 K to 328 K (25 °C to 55 °C) is 91.3 kJ mol-1. Cyaniding of Argentian rubidium jarosite in NaOH media presents a reaction order of 0 with respect to NaCN concentration (in the range of 5 to 41 mol m-3) and an order of reaction of 0.62 with respect to hydroxide concentration, in the range of 1.1 and 30 mol [OH-] m-3. In this case, the cyaniding process can be described, as in other jarosites, as the following two-step process: (1) a step (slow) of alkaline decomposition that controls the overall process followed by (2) a fast step of silver complexation. The activation energy during cyaniding in the range of temperatures of 298 K to 333 K (25 °C to 60 °C) is 43.5 kJ mol-1, which is characteristic of a process controlled by chemical reaction. These results are quite similar to that observed for several synthetic jarosites and that precipitated in a zinc hydrometallurgical plant (Industrial Minera México, San Luis Potosi).

  5. Studies on comonomer compositional distribution of bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)s and thermal characteristics of their factions.

    PubMed

    Feng, Lidan; Watanabe, Takumi; Wang, Yi; Kichise, Tomoyasu; Fukuchi, Takeshi; Chen, Guo-Qiang; Doi, Yoshiharu; Inoue, Yoshio

    2002-01-01

    The comonomer-unit compositional distributions have been investigated for bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HH)] samples with 3HH unit content of 13.8, 18.0, 22.0, and 54.0 mol %. They were comonomer compositionally fractionated using chloroform/n-heptane mixed solvent at ambient temperature. The fractionation of P(3HB-co-18.0 mol %3HH) and P(3HB-co-22.0 mol % 3HH), which could not be carried out effectively at room temperature, were refractionated at 70 degrees C in the mixed solvent. Fractions with different 3HH unit content in a wide range (from 4.4 to 80.7 mol %) were obtained. By use of these fractions with narrow compositional distribution, the comonomer composition dependence of thermal properties was investigated by differential scanning calorimetry. The melting point (T(m)) and heat of fusion (DeltaH) decreased as the 3HH unit content increased in the range of low 3HH content (<40 mol %), while they increased as the 3HH unit content increased in the high 3HH content range (>70 mol %). The minimum T(m) and DeltaH values were found to exist at 3HH unit content of about 60 mol %. The glass transition temperature (T(g)) decreased linearly with the increase of 3HH unit content. The values of T(m), DeltaH, and T(g) of P(3HB-co-3HH)s were compared with those of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxybutyrate-co-3-hydroxypropionate), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate), and the effects of comonomer types on the thermal properties were revealed.

  6. Sulfur diffusion in dacitic melt at various oxidation states: Implications for volcanic degassing

    NASA Astrophysics Data System (ADS)

    Lierenfeld, Matthias Bernhard; Zajacz, Zoltán; Bachmann, Olivier; Ulmer, Peter

    2018-04-01

    The diffusivity of S in a hydrous dacitic melt (4.5-6.0 wt.% H2O) has been investigated in the temperature (T) and pressure (P) range of 950 °C to 1100 °C and 200 to 250 MPa, respectively. Three series of experiments were conducted at relatively low oxygen fugacity (fO2) conditions [0.8 log units below fayalite-magnetite-quartz equilibrium (FMQ -0.8); referred to as "low fO2"] and high fO2 conditions (FMQ +2.5; referred to as "high fO2") to determine if the diffusivity of S is affected by its oxidation state and speciation. Sulfur concentration profiles were measured by electron microprobe and the diffusion coefficient (D) was calculated by fitting these profiles. Sulfur diffusion is approximately one order of magnitude faster when S is dominantly present as sulfide species (low fO2) in comparison to the sulfate dominated experiments (high fO2). The following Arrhenian equations were obtained for high and low fO2 conditions at 200 MPa: high fO2: D = 10-5.92±0.86 * exp ({-137.3±21.5 kJ/mol}/{RT}) low fO2: D = 10-5.18±1.39 * exp ({-125.7±34.4 kJ/mol}/{RT}) where D is the average diffusion coefficient in m2 s-1, R is the gas constant in 8.3144 J mol-1 K-1 and T is the temperature in K. Our results demonstrate for the first time in natural melts that S diffusion is strongly sensitive to fO2. Our S diffusivities under low fO2 conditions are only slightly slower of those found for H2O, suggesting that S can be rather efficiently purged from reduced dacitic melts during volcanic eruptions. However, for more oxidized systems (e.g. subduction zones), S diffusion will be much slower and will hinder equilibrium syn-eruptive degassing during rapid decompression. Therefore, we conclude that the "excess" measured during many explosive volcanic eruptions in arcs is dominantly derived from S-rich bubble accumulation in the eruptible portion of the magma reservoir.

  7. Nanostructured thermoplastic polyimide films

    DOEpatents

    Aglan, Heshmat

    2015-05-19

    Structured films containing multi-walled carbon nanotubes ("MWCNTs") have enhanced mechanical performance in terms of strength, fracture resistance, and creep recovery of polyimide ("PI") films. Preferably, the loadings of MWCNTs can be in the range of 0.1 wt % to 0.5 wt %. The strength of the new PI films dried at 60.degree. C. increased by 55% and 72% for 0.1 wt % MWCNT and 0.5 wt % MWCNT loadings, respectively, while the fracture resistance increased by 23% for the 0.1 wt % MWCNTs and then decreases at a loading of 0.5 wt % MWCNTs. The films can be advantageously be created by managing a corresponding shift in the annealing temperature at which the maximum strength occurs as the MWCNT loadings increase.

  8. High light harvesting efficiency CuInS2 quantum dots/TiO2/MoS2 photocatalysts for enhanced visible light photocatalytic H2 production.

    PubMed

    Yuan, Yong-Jun; Fang, Gaoliang; Chen, Daqin; Huang, Yanwei; Yang, Ling-Xia; Cao, Da-Peng; Wang, Jingjing; Yu, Zhen-Tao; Zou, Zhi-Gang

    2018-04-24

    Expanding the photoresponse range of TiO2-based photocatalysts is of great interest for photocatalytic H2 production. Herein, noble-metal-free CuInS2 quantum dots were employed as a novel inorganic dye to expand the visible light absorption of TiO2/MoS2 for solar H2 generation. The as-prepared CuInS2/TiO2/MoS2 photocatalysts exhibit broad absorption from the ultraviolet to near-infrared region. Under visible light irradiation (λ > 420 nm), the CuInS2/TiO2/MoS2 photocatalyst with 0.6 mmol g-1 CuInS2 and 0.5 wt% MoS2 showed the highest H2 evolution rate with a value of 1034 μmol h-1 g-1. Moreover, a considerable H2 evolution rate of 141 μmol h-1 g-1 was obtained under the irradiation of the optimized CuInS2/TiO2/MoS2 photocatalyst with >500 nm light. The reaction mechanism of the CuInS2/TiO2/MoS2 photocatalyst for photocatalytic H2 evolution was investigated in detail by photoluminescence decay study, and the results showed that the photoexcited electrons of CuInS2 can be transferred efficiently through TiO2 to MoS2 and then react with the absorbed protons to generate H2. The reported sensitization strategy tremendously improves the visible light absorption capacity and the photocatalytic performance of TiO2-based photocatalysts.

  9. Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells.

    PubMed

    Tang, Haolin; Pan, Mu; Jiang, San Ping

    2011-05-21

    A highly ordered inorganic electrolyte based on 12-tungstophosphoric acid (H(3)PW(12)O(40), abbreviated as HPW or PWA)-silica mesoporous nanocomposite was synthesized through a facile one-step self-assembly between the positively charged silica precursor and negatively charged PW(12)O(40)(3-) species. The self-assembled HPW-silica nanocomposites were characterized by small-angle XRD, TEM, nitrogen adsorption-desorption isotherms, ion exchange capacity, proton conductivity and solid-state (31)P NMR. The results show that highly ordered and uniform nanoarrays with long-range order are formed when the HPW content in the nanocomposites is equal to or lower than 25 wt%. The mesoporous structures/textures were clearly presented, with nanochannels of 3.2-3.5 nm in diameter. The (31)P NMR results indicates that there are (≡SiOH(2)(+))(H(2)PW(12)O(40)(-)) species in the HPW-silica nanocomposites. A HPW-silica (25/75 w/o) nanocomposite gave an activation energy of 13.0 kJ mol(-1) and proton conductivity of 0.076 S cm(-1) at 100 °C and 100 RH%, and an activation energy of 26.1 kJ mol(-1) and proton conductivity of 0.05 S cm(-1) at 200 °C with no external humidification. A fuel cell based on a 165 μm thick HPW-silica nanocomposite membrane achieved a maximum power output of 128.5 and 112.0 mW cm(-2) for methanol and ethanol fuels, respectively, at 200 °C. The high proton conductivity and good performance demonstrate the excellent water retention capability and great potential of the highly ordered HPW-silica mesoporous nanocomposites as high-temperature proton exchange membranes for direct alcohol fuel cells (DAFCs).

  10. Method for epoxy foam production using a liquid anhydride

    DOEpatents

    Celina, Mathias [Albuquerque, NM

    2012-06-05

    An epoxy resin mixture with at least one epoxy resin of between approximately 50 wt % and 100 wt %, an anhydride cure agent of between approximately 0 wt % and approximately 50 wt %, a tert-butoxycarbonyl anhydride foaming agent of between proximately 0.1-20 wt %, a surfactant and an imidazole or similar catalyst of less than approximately 2 wt %, where the resin mixture is formed from at least one epoxy resin with a 1-10 wt % tert-butoxycarbonyl anhydride compound and an imidazole catalyst at a temperature sufficient to keep the resin in a suitable viscosity range, the resin mixture reacting to form a foaming resin which in the presence of an epoxy curative can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.

  11. Changes in growth, carbon and nitrogen enzyme activity and mRNA accumulation in the halophilic microalga Dunaliella viridis in response to NaCl stress

    NASA Astrophysics Data System (ADS)

    Wang, Dongmei; Wang, Weiwei; Xu, Nianjun; Sun, Xue

    2016-12-01

    Many species of microalga Dunaliella exhibit a remarkable tolerance to salinity and are therefore ideal for probing the effects of salinity. In this work, we assessed the effects of NaCl stress on the growth, activity and mRNA level of carbon and nitrogen metabolism enzymes of D. viridis. The alga could grow over a salinity range of 0.44 mol L-1 to 3.00 mol L-1 NaCl, but the most rapid growth was observed at 1.00 mol L-1 NaCl, followed by 2.00 mol L-1 NaCl. Paralleling these growth patterns, the highest initial and total Rubisco activities were detected in the presence of 1.00 mol L-1 NaCl, decreasing to 37.33% and 26.39% of those values, respectively, in the presence of 3.00 mol L-1 NaCl, respectively. However, the highest extracellular carbonic anhydrase (CA) activity was measured in the presence of 2.00 mol L-1 NaCl, followed by 1.00 mol L-1 NaCl. Different from the two carbon enzymes, nitrate reductase (NR) activity showed a slight change under different NaCl concentrations. At the transcriptional level, the mRNAs of Rubisco large subunit ( rbcL), and small subunit ( rbcS), attained their highest abundances in the presence of 1.00 and 2.00 mol L-1 NaCl, respectively. The CA mRNA accumulation was induced from 0.44 mol L-1 to 3.00 mol L-1 NaCl, but the NR mRNA showed the decreasing tendency with the increasing salinity. In conclusion, the growth and carbon fixation enzyme of Rubisco displayed similar tendency in response to NaCl stress, CA was proved be salt-inducible within a certain salinity range and NR showed the least effect by NaCl in D. viridis.

  12. Evaluation and Quantitation of Intact Wax Esters of Human Meibum by Gas-Liquid Chromatography-Ion Trap Mass Spectrometry

    PubMed Central

    Butovich, Igor A.; Arciniega, Juan C.; Lu, Hua; Molai, Mike

    2012-01-01

    Purpose. Wax esters (WE) of human meibum are one of the largest group of meibomian lipids. Their complete characterization on the level of individual intact lipid species has not been completed yet. We obtained detailed structural information on previously uncharacterized meibomian WE. Methods. Intact WE were separated and analyzed by means of high-temperature capillary gas-liquid chromatography (GLC) in combination with low voltage (30 eV) electron ionization ion trap mass spectrometry (ITMS). 3D (mass-to-charge ratio [m/z] versus lipid sample weight versus signal intensity) calibration plots were used for quantitation of WE. Results. We demonstrated that GLC-ITMS was suitable for analyzing unpooled/underivatized WE collected from 14 individual donors. More than 100 of saturated and unsaturated WE (SWE and UWE, respectively) were detected. On average, UWE represented about 82% of the total WE pool. About 90% of UWE were based on oleic acid, while less than 10% were based on palmitoleic acid. The amounts of poly-UWE were <3% of their mono-UWA counterparts. SWE were based primarily on C16–C18 fatty acids (FA) in overall molar ratios of 22:65:13. A pool of C16:0-FA was comprised of a 20:80 (mol/mol) mixture of straight chain and iso-branched isomers, while the corresponding ratio for C18:0-FA was 43:57. Interestingly, C17:0-FA was almost exclusively branched, with anteiso- and iso-isomers found in a ratio of 93:7. Conclusions. GLC-ITMS can be used successfully to analyze more than 100 individual species of meibomian WE, which were shown to comprise 41 ± 8% (wt/wt) of meibum, which made them the largest group of lipids in meibum. PMID:22531701

  13. Biosynthesis of edeine: II. Localization of edeine synthetase within Bacillus brevis Vm4.

    PubMed

    Kurylo-Borowska, Z

    1975-07-14

    Edeine-synthesizing polyenzymes, associated with a complex of sytoplasmic membrane and DNA, were obtained from gently lysed cells of Bacillus brevis Vm4. The polyenzymes-membrane-DNA complex, isolated from dells intensively synthesizing edeines (18--20 h culture) contained edeine B. Edeine B was found to be bound covalently t o the edeine synthetase. The amount of edeine bound to polyenzymes was 0.1--0.3 mumol/mg protein, depending on the age of cells. Detachment of deeine synthetase with a covalently bound edeine B from the membrane-DNA complex was accomplished by a treatment with (NH4)2-SO4 at 45--55% saturation or by DEAE-cellulose column fractionation. In contrast to other components of the complex, the edeine-polyenzymes fragment was not adsorbed to the DEAE-cellulose. Sephadex G-200 column chromatography separated the edeine-polyenzymes complex into 3 fractions. Edeine-polyenzymes complex, obtained from lysozyme-Brij-58-DNAase treated cells, contained edeine B bound to two protein fractions of mol. wt 210 000 and 160 000. Edeine-polyenzymes complex detached from the complex with the membrane and DNA contained edeine B, bound only to protein fraction of mol. wt 210 000. Edeine A was not found in the edeine-polyenzymes complex. No accumulation of free antibiotics within 16--22 h old cells of B. brevis Vm4 was detected. The edeine-polyenzymes complex associated with the DNA-membrane complex has shown no antimicrobial activity. By treating of above with alkali, edeine B of specific activity: 80 units/mjmol was released. The complex of DNA-membrane associated with edeine-polyenzymes complex was able to synthesize DNA, under the conditions described for synthesis, directed by a DNA-membrane complex. Edeine when associated with this complex did not effect the DNA-synthesizing activity.

  14. Evaluation and quantitation of intact wax esters of human meibum by gas-liquid chromatography-ion trap mass spectrometry.

    PubMed

    Butovich, Igor A; Arciniega, Juan C; Lu, Hua; Molai, Mike

    2012-06-20

    Wax esters (WE) of human meibum are one of the largest group of meibomian lipids. Their complete characterization on the level of individual intact lipid species has not been completed yet. We obtained detailed structural information on previously uncharacterized meibomian WE. Intact WE were separated and analyzed by means of high-temperature capillary gas-liquid chromatography (GLC) in combination with low voltage (30 eV) electron ionization ion trap mass spectrometry (ITMS). 3D (mass-to-charge ratio [m/z] versus lipid sample weight versus signal intensity) calibration plots were used for quantitation of WE. We demonstrated that GLC-ITMS was suitable for analyzing unpooled/underivatized WE collected from 14 individual donors. More than 100 of saturated and unsaturated WE (SWE and UWE, respectively) were detected. On average, UWE represented about 82% of the total WE pool. About 90% of UWE were based on oleic acid, while less than 10% were based on palmitoleic acid. The amounts of poly-UWE were <3% of their mono-UWA counterparts. SWE were based primarily on C(16)-C(18) fatty acids (FA) in overall molar ratios of 22:65:13. A pool of C(16:0)-FA was comprised of a 20:80 (mol/mol) mixture of straight chain and iso-branched isomers, while the corresponding ratio for C(18:0)-FA was 43:57. Interestingly, C(17:0)-FA was almost exclusively branched, with anteiso- and iso-isomers found in a ratio of 93:7. GLC-ITMS can be used successfully to analyze more than 100 individual species of meibomian WE, which were shown to comprise 41 ± 8% (wt/wt) of meibum, which made them the largest group of lipids in meibum.

  15. Biosynthesis and secretion of functional protein S by a human megakaryoblastic cell line (MEG-01)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, M.; Tanabe, N.; Nishioka, J.

    A human megakaryoblastic cell line (MEG-01) was investigated for the presence of protein S in culture medium and cell lysates using a specific enzyme-linked immunoassay (ELISA) and a functional assay. When 5 X 10(5) MEG-01 cells/mL was subcultured in RPMI 1640 medium with 10% fetal calf serum (FCS), the concentration of protein S antigen in the culture medium increased progressively with time from less than 8 ng/mL on day 0 to 105.6 +/- 6.0 ng/mL on day 13. Vitamin K2(1 microgram/mL) increased the production of functional protein S, whereas warfarin (1 microgram/mL) profoundly decreased the quantity and the specific activitymore » of secreted protein S. By an indirect immunofluorescent technique, protein S antigen was detected in both MEG-01 cells and human bone marrow megakaryocytes. Immunoblot analysis of culture medium revealed two distinct bands (mol wt 84,000 and 78,000) that are identical to the doublets of purified plasma protein S. De novo synthesis of protein S was demonstrated by the presence of specific immunoprecipitable radioactivity in the medium after 5 hours of labeling of the cells with (/sup 35/S)-methionine as a 84,000 mol wt protein. Plasma protein S levels of nine patients with severe aplastic anemia were not significantly different from those of normal controls. These results suggest that megakaryocytes produce functional protein S and contain the enzymes required for the carboxylation of selected glutamic acid residues, and that protein S synthesized by megakaryocytes does not represent a main source of plasma protein S.« less

  16. mRNA secondary structure engineering of Thermobifida fusca endoglucanase (Cel6A) for enhanced expression in Escherichia coli.

    PubMed

    Ali, Imran; Asghar, Rehana; Ahmed, Sajjad; Sajjad, Muhammad; Tariq, Muhammad; Waheed Akhtar, M

    2015-03-01

    The sequence and structure of mRNA plays an important role in solubility and expression of the translated protein. To divulge the role of mRNA secondary structure and its thermodynamics in the expression level of the recombinant endoglucanase in Escherichia coli, 5'-end of the mRNA was thermodynamically optimized. Molecular engineering was done by introducing two silent synonymous mutations at positions +5 (UCU with UCC) and +7 (UUC with UUU) of the 5'-end of mRNA to relieve hybridization with ribosomal binding site. Two variants of glycoside hydrolase family six endoglucanase, wild type (cel6A.wt) and mutant (cel6A.mut) from Thermobifida fusca were expressed and characterized in E. coli using T7 promoter-based expression vector; pET22b(+). Enhanced expression level of engineered construct (Cel6A.mut) with ∆G = -2.7 kcal mol(-1)was observed. It showed up to ~45 % higher expression as compared to the wild type construct (Cel6A.wt) having ∆G = -7.8 kcal mol(-1) and ~25 % expression to the total cell proteins. Heterologous protein was purified by heating the recombinant E. coli BL21 (DE3) CodonPlus at 60 °C. The optimum pH for enzyme activity was six and optimum temperature was 60 °C. Maximum activity was observed 4.5 Umg(-1) on CMC. Hydrolytic activity was also observed on insoluble substrates, i.e. RAC (2.8 Umg(-1)), alkali treated bagass (1.7 Umg(-1)), filter paper (1.2 Umg(-1)) and BMCC (0.3 Umg(-1)). Metal ions affect endoglucanase activity in different ways. Only Fe(2+) exhibited 20.8 % stimulatory effects on enzyme activity. Enzyme activity was profoundly inhibited by Hg2(+) (91.8 %).

  17. Arsenic entrapment by nanocrystals of Al-magnetite: The role of Al in crystal growth and As retention.

    PubMed

    Freitas, Erico T F; Stroppa, Daniel G; Montoro, Luciano A; de Mello, Jaime W V; Gasparon, Massimo; Ciminelli, Virginia S T

    2016-09-01

    The nature of As-Al-Fe co-precipitates aged for 120 days are investigated in detail by High Resolution Transmission Electron Microscopy (HRTEM), Scanning TEM (STEM), electron diffraction, Energy Dispersive X-Ray Spectroscopy (EDS), Electron Energy-Loss Spectroscopy (EELS), and Energy Filtered Transmission Electron Microscopy (EFTEM). The Al present in magnetite is shown to favour As incorporation (up to 1.10 wt%) relative to Al-free magnetite and Al-goethite, but As uptake by Al-magnetite decreases with increasing Al substitution (3.53-11.37 mol% Al). Arsenic-bearing magnetite and goethite mesocrystals (MCs) are formed by oriented aggregation (OA) of primary nanoparticles (NPs). Well-crystalline magnetite likely formed by Otswald ripening was predominant in the Al-free system. The As content in Al-goethite MCs (having approximately 13% substituted Al) was close to the EDS detection limit (0.1 wt% As), but was below detection in Al-goethites with 23.00-32.19 mol% Al. Our results show for the first time the capacity of Al-magnetite to incorporate more As than Al-free magnetite, and the role of Al in favouring OA-based crystal growth under the experimental conditions, and therefore As retention in the formed MCs. The proposed mechanism of As incorporation involves adsorption of As onto the newly formed NPs. Arsenic is then trapped in the MCs as they grow by self-assembly OA upon attachment of the NPs. We conclude that Al may diffuse to the crystal faces with high surface energy to reduce the total energy of the system during the attachment events, thus favouring the oriented aggregation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Glass Polyalkenoate Cements Designed for Cranioplasty Applications: An Evaluation of Their Physical and Mechanical Properties

    PubMed Central

    Khader, Basel A.; Curran, Declan J.; Peel, Sean; Towler, Mark R.

    2016-01-01

    Glass polyalkenoate cements (GPCs) have potential for skeletal cementation. Unfortunately, commercial GPCs all contain, and subsequently release, aluminum ions, which have been implicated in degenerative brain disease. The purpose of this research was to create a series of aluminum-free GPCs constructed from silicate (SiO2), calcium (CaO), zinc (ZnO) and sodium (Na2O)-containing glasses mixed with poly-acrylic acid (PAA) and to evaluate the potential of these cements for cranioplasty applications. Three glasses were formulated based on the SiO2-CaO-ZnO-Na2O parent glass (KBT01) with 0.03 mol % (KBT02) and 0.06 mol % (KBT03) germanium (GeO2) substituted for ZnO. Each glass was then mixed with 50 wt % of a patented SiO2-CaO-ZnO-strontium (SrO) glass composition and the resultant mixtures were subsequently reacted with aqueous PAA (50 wt % addition) to produce three GPCs. The incorporation of Ge in the glass phase was found to result in decreased working (142 s to 112 s) and setting (807 s to 448 s) times for the cements manufactured from them, likely due to the increase in crosslink formation between the Ge-containing glasses and the PAA. Compressive (σc) and biaxial flexural (σf) strengths of the cements were examined at 1, 7 and 30 days post mixing and were found to increase with both maturation and Ge content. The bonding strength of a titanium cylinder (Ti) attached to bone by the cements increased from 0.2 MPa, when placed, to 0.6 MPa, after 14 days maturation. The results of this research indicate that Germano-Silicate based GPCs have suitable handling and mechanical properties for cranioplasty fixation. PMID:27023623

  19. Experimental dehydration of natural obsidian and estimation of DH2O at low water contents

    NASA Technical Reports Server (NTRS)

    Jambon, A.; Zhang, Y.; Stolper, E. M.

    1992-01-01

    Water diffusion experiments were carried out by dehydrating rhyolitic obsidian from Valles Caldera (New Mexico, USA) at 510-980 degrees C. The starting glass wafers contained approximately 0.114 wt% total water, lower than any glasses previously investigated for water diffusion. Weight loss due to dehydration was measured as a function of experiment duration, which permits determination of mean bulk water diffusivity, mean Dw. These diffusivities are in the range of 2.6 to 18 X 10(-14) m2/s and can be fit with the following Arrhenius equation: ln mean Dw (m2/s) = -(25.10 +/- 1.29) - (46,480 +/- 11,400) (J/mol) / RT, except for two replicate runs at 510 degrees C which give mean Dw values much lower than that defined by the above equation. When interpreted according to a model of water speciation in which molecular H2O is the diffusing species with concentration-independent diffusivity while OH units do not contribute to the transport but react to provide H2O, the data (except for the 510 degrees C data) are in agreement with extrapolation from previous results and hence extend the previous data base and provide a test of the applicability of the model to very low water contents. Mean bulk water diffusivities are about two orders of magnitude less than molecular H2O diffusivities because the fraction of molecular H2O out of total water is very small at 0.114 wt% total water and less. The 510 degrees C experimental results can be interpreted as due to slow kinetics of OH to H2O interconversion at low temperatures.

  20. Experimental dehydration of natural obsidian and estimation of DH2O at low water contents.

    PubMed

    Jambon, A; Zhang, Y; Stolper, E M

    1992-01-01

    Water diffusion experiments were carried out by dehydrating rhyolitic obsidian from Valles Caldera (New Mexico, USA) at 510-980 degrees C. The starting glass wafers contained approximately 0.114 wt% total water, lower than any glasses previously investigated for water diffusion. Weight loss due to dehydration was measured as a function of experiment duration, which permits determination of mean bulk water diffusivity, mean Dw. These diffusivities are in the range of 2.6 to 18 X 10(-14) m2/s and can be fit with the following Arrhenius equation: ln mean Dw (m2/s) = -(25.10 +/- 1.29) - (46,480 +/- 11,400) (J/mol) / RT, except for two replicate runs at 510 degrees C which give mean Dw values much lower than that defined by the above equation. When interpreted according to a model of water speciation in which molecular H2O is the diffusing species with concentration-independent diffusivity while OH units do not contribute to the transport but react to provide H2O, the data (except for the 510 degrees C data) are in agreement with extrapolation from previous results and hence extend the previous data base and provide a test of the applicability of the model to very low water contents. Mean bulk water diffusivities are about two orders of magnitude less than molecular H2O diffusivities because the fraction of molecular H2O out of total water is very small at 0.114 wt% total water and less. The 510 degrees C experimental results can be interpreted as due to slow kinetics of OH to H2O interconversion at low temperatures.

  1. Novel Nanocomposites of Poly(lauryl methacrylate)-Grafted Al2O3 Nanoparticles in LDPE.

    PubMed

    Cobo Sánchez, Carmen; Wåhlander, Martin; Taylor, Nathaniel; Fogelström, Linda; Malmström, Eva

    2015-11-25

    Aluminum oxide nanoparticles (NPs) were surface-modified by poly(lauryl methacrylate) (PLMA) using surface-initiated atom-transfer radical polymerization (SI-ATRP) of lauryl methacrylate. Nanocomposites were obtained by mixing the grafted NPs in a low-density polyethylene (LDPE) matrix in different ratios. First, the NPs were silanized with different aminosilanes, (3-aminopropyl)triethoxysilane, and 3-aminopropyl(diethoxy)methylsilane (APDMS). Subsequently, α-BiB, an initiator for SI-ATRP, was attached to the amino groups, showing higher immobilization ratios for APDMS and confirming that fewer self-condensation reactions between silanes took place. In a third step SI-ATRP of LMA at different times was performed to render PLMA-grafted NPs (NP-PLMAs), showing good control of the polymerization. Reactions were conducted for 20 to 60 min, obtaining a range of molecular weights between 23 000 and 83 000 g/mol, as confirmed by size-exclusion chromoatography of the cleaved grafts. Nanocomposites of NP-PLMAs at low loadings in LDPE were prepared by extrusion. At low loadings, 0.5 wt % of inorganic content, the second yield point, storage, and loss moduli increased significantly, suggesting an improved interphase as an effect of the PLMA grafts. These observations were also confirmed by an increase in transparency of the nanocomposite films. At higher loadings, 1 wt % of inorganics, the increasing amount of PLMA gave rise to the formation of small aggregates, which may explain the loss of mechanical properties. Finally, dielectric measurements were performed, showing a decrease in tan δ values for LDPE-NP-PLMAs, as compared to the nanocomposites containing unmodified NP, thus indicating an improved interphase between the NPs and LDPE.

  2. Hydrolysis of Laboratory Made Tholins in Aqueous Solutions: Implications for Prebiotic Chemistry on Titan

    NASA Astrophysics Data System (ADS)

    Neish, Catherine; Somogyi, Á.; Lunine, J.; Smith, M.

    2008-09-01

    Laboratory experiments that simulate the reactions occurring in Titan's thick nitrogen-methane atmosphere produce complex organic precipitates known as tholins. Tholins have the general formula CxHyNz, and are spectrally similar to Titan's haze. When placed in liquid water, specific water soluble compounds in the tholins have been shown to produce oxygenated organic species with activation energies in the range of 60 ± 10 kJ mol-1 and half-lives between 0.3 and 17 days at 273 K (Neish et al. 2008). Oxygen incorporation into such materials - a necessary step towards the formation of biological molecules - is therefore fast compared to the freezing of impact melts and cryolavas on Titan. The rates quoted above are for reactions occurring in pure liquid water. The composition of impact melts and lavas on Titan are not likely to be pure water, but rather contain a few percent ammonia. Tobie et al. (2005) predict that Titan has a subsurface water layer with an ammonia concentration of 14 wt. % in the present era. The presence of ammonia would likely change the reaction rates and yields of the hydrolysis reactions of tholins. We have therefore extended our work to include the measurement of tholin hydrolysis rate coefficients in ammonia-water solutions. In this work, tholins were synthesized from a 0.98 N2/0.02 CH4 atmosphere in a high voltage AC flow discharge reactor, and dissolved in a 13 wt. % ammonia-water solution. Rates were determined by monitoring intensity changes of select species over time using high resolution FT-ICR MS. Comparisons between rates of similar species observed at different pH will be presented. This work was supported by the NASA Exobiology Program. C. Neish was supported by an NSERC Postgraduate Scholarship.

  3. Probing phenylalanine/adenine pi-stacking interactions in protein complexes with explicitly correlated and CCSD(T) computations.

    PubMed

    Copeland, Kari L; Anderson, Julie A; Farley, Adam R; Cox, James R; Tschumper, Gregory S

    2008-11-13

    To examine the effects of pi-stacking interactions between aromatic amino acid side chains and adenine bearing ligands in crystalline protein structures, 26 toluene/(N9-methyl)adenine model configurations have been constructed from protein/ligand crystal structures. Full geometry optimizations with the MP2 method cause the 26 crystal structures to collapse to six unique structures. The complete basis set (CBS) limit of the CCSD(T) interaction energies has been determined for all 32 structures by combining explicitly correlated MP2-R12 computations with a correction for higher-order correlation effects from CCSD(T) calculations. The CCSD(T) CBS limit interaction energies of the 26 crystal structures range from -3.19 to -6.77 kcal mol (-1) and average -5.01 kcal mol (-1). The CCSD(T) CBS limit interaction energies of the optimized complexes increase by roughly 1.5 kcal mol (-1) on average to -6.54 kcal mol (-1) (ranging from -5.93 to -7.05 kcal mol (-1)). Corrections for higher-order correlation effects are extremely important for both sets of structures and are responsible for the modest increase in the interaction energy after optimization. The MP2 method overbinds the crystal structures by 2.31 kcal mol (-1) on average compared to 4.50 kcal mol (-1) for the optimized structures.

  4. Modeling Biogeochemical-Physical Interactions and Carbon Flux in the Sargasso Sea (Bermuda Atlantic Time-series Study site)

    NASA Technical Reports Server (NTRS)

    Signorini, Sergio R.; McClain, Charles R.; Christian, James R.

    2001-01-01

    An ecosystem-carbon cycle model is used to analyze the biogeochemical-physical interactions and carbon fluxes in the Bermuda Atlantic Time-series Study (BATS) site for the period of 1992-1998. The model results compare well with observations (most variables are within 8% of observed values). The sea-air flux ranges from -0.32 to -0.50 mol C/sq m/yr, depending upon the gas transfer algorithm used. This estimate is within the range (-0.22 to -0.83 mol C/sq m/yr) of previously reported values which indicates that the BATS region is a weak sink of atmospheric CO2. The overall carbon balance consists of atmospheric CO2 uptake of 0.3 Mol C/sq m/yr, upward dissolved inorganic carbon (DIC) bottom flux of 1.1 Mol C/sq m/yr, and carbon export of 1.4 mol C/sq m/yr via sedimentation. Upper ocean DIC levels increased between 1992 and 1996 at a rate of approximately 1.2 (micro)mol/kg/yr, consistent with observations. However, this trend was reversed during 1997-1998 to -2.7 (micro)mol/kg/yr in response to hydrographic changes imposed by the El Nino-La Nina transition, which were manifested in the Sargasso Sea by the warmest SST and lowest surface salinity of the period (1992-1998).

  5. New insights into the petrogenesis of the Jameson Range layered intrusion and associated Fe-Ti-P-V-PGE-Au mineralisation, West Musgrave Province, Western Australia

    NASA Astrophysics Data System (ADS)

    Karykowski, Bartosz T.; Polito, Paul A.; Maier, Wolfgang D.; Gutzmer, Jens; Krause, Joachim

    2017-02-01

    The Mesoproterozoic Jameson Range intrusion forms part of the Giles Complex, Musgrave Province, Western Australia. It is predominantly mafic in composition comprising olivine-bearing gabbroic lithologies with variable amounts of magnetite and ilmenite. Lithologies containing more than 50 vol% magnetite and ilmenite are classified as magnetitites. The Jameson Range hosts several of these magnetitites forming laterally extensive layers, which can be traced for at least 19 km as continuous magnetic anomalies. Similar occurrences of magnetitites are known from the upper parts of other layered intrusions, such as the Bushveld Complex. In addition, the intrusion hosts several P-rich zones, one of which is at least 59 m in thickness containing 1.0 wt% P2O5. The P-rich zones are not directly associated with the magnetitites, but they mostly occur slightly above them. The mineral chemistry of the Jameson Range cumulates is relatively evolved with olivine compositions ranging from Fo44 to Fo60 and plagioclase compositions varying between An56 and An59. The Mg# (100 × Mg / (Mg + Fe)) of ortho- and clinopyroxene ranges from 60 to 61 and from 70 to 75, respectively. Magnetite compositions are characterised by low TiO2 concentrations varying from 0.39 to 3.04 wt% representing near end-member magnetite with up to 1.2 wt% Cr and 1.3 wt% V, respectively. The basal magnetite layer reaches up to 68.8 wt% Fe2O3(t) and 24.2 wt% TiO2, and it is also markedly enriched in Cu (up to 0.3 wt% Cu), V (up to 1.05 wt% V2O5) and platinum-group elements (PGE) (up to 2 ppm Pt + Pd). Sulphide minerals comprising bornite, chalcopyrite and minor pentlandite occur finely disseminated in the magnetitite and account for the elevated base metal and PGE concentrations. Modelling indicates that the PGE mineralisation was formed at very high R factors of up to 100,000, which is typical for PGE reefs in layered intrusions. Whole rock geochemical and mineralogical data of the magnetite layers and their host rocks further allow for a refinement of current formation models of layered igneous sequences. Several lines of evidence suggest that the magnetite layers formed in response to primarily density-controlled mineral sorting within crystal slurries, although the grain size also affects the sorting process.

  6. Low-melting point inorganic nitrate salt heat transfer fluid

    DOEpatents

    Bradshaw, Robert W [Livermore, CA; Brosseau, Douglas A [Albuquerque, NM

    2009-09-15

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  7. Metallized Gelled Propellants: Oxygen/RP-1/aluminum Rocket Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Zakany, James S.

    1995-01-01

    A series of combustion experiments were conducted to measure the specific impulse, Cstar-, and specific-impulse efficiencies of a rocket engine using metallized gelled liquid propellants. These experiments used a small 20- to 40-1bf (89- to 178-N) thrust, modular engine consisting of an injector, igniter, chamber and nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-wt% loadings of aluminum and gaseous oxygen was the oxidizer. Ten different injectors were used during the testing: 6 for the baseline 02/RP-1 tests and 4 for the gelled fuel tests which covered a wide range of mixture ratios. At the peak of the Isp versus oxidizer-to-fuel ratio (O/F) data, a range of 93 to 99% Cstar efficiency was reached with ungelled 02/RP-1. A Cstar efficiency range of 75 to 99% was obtained with gelled RP-l (0-wt% RP-1/Al) while the metallized 5-wt% RP-1/Al delivered a Cstar efficiency of 94 to 99% at the peak Isp in the O/F range tested. An 88 to 99% Cstar efficiency was obtained at the peak Isp of the gelled RP1/Al with 55-wt% Al. Specific impulse efficiencies for the 55-wt% RP-1/Al of 67%-83% were obtained at a 2.4:1 expansion ratio. Injector erosion was evident with the 55-wt% testing, while there was little or no erosion seen with the gelled RP-1 with 0- and 5-wt% Al. A protective layer of gelled fuel formed in the firings that minimized the damage to the rocket injector face. This effect may provide a useful technique for engine cooling. These experiments represent a first step in characterizing the performance of and operational issues with gelled RP-1 fuels.

  8. Improving the controlled release of water-insoluble emodin from amino-functionalized mesoporous silica

    NASA Astrophysics Data System (ADS)

    Xu, Yunqiang; Wang, Chunfeng; Zhou, Guowei; Wu, Yue; Chen, Jing

    2012-06-01

    Several types of amino-functionalized mesoporous silica, including F5-SBA-15, F10-SBA-15, and F15-SBA-15 were prepared through co-condensation of tetraethoxysilane (TEOS) and (3-aminopropyl)triethoxysilane (APTES) in varying molar ratios (5 mol%, 10 mol%, and 15 mol%) via a hydrothermal process. The materials obtained were characterized by means of small-angle X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, Fourier transformed infrared spectra, and X-ray photoelectron spectroscopy. Increasing APTES molar ratios decreased the degree of orderliness of the functionalized mesoporous silica. Pure and amino-functionalized SBA-15 samples were employed as supports for the controlled release of water-insoluble drug emodin. Loading experiments showed that drug loading capacities mainly depended on the surface areas and pore diameters of the carriers. Controlled release profiles of emodin-loaded samples were studied in phosphate buffered saline (PBS, pH 7.4), and results indicated that the emodin release rate could be controlled by surface amino-functionalized carriers. Emodin loaded on functionalized mesoporous supports exhibited a lower release rate than that of loaded on pure SBA-15, emodin loaded on F10-SBA-15 showed the smallest release amount (71.74 wt%) after stirring in PBS for 60 h. Findings suggest that functionalized mesoporous SBA-15 is a promising carrier for achieving prolonged release time periods.

  9. Characterization and timing of the different types of fluids present in the barren and ore-veins of the W-Sn deposit of Panasqueira, Central Portugal

    NASA Astrophysics Data System (ADS)

    Noronha, F.; Doria, A.; Dubessy, J.; Charoy, B.

    1992-01-01

    The Panasqueira W-Sn deposit is the largest quartz-vein type deposit of the Iberian Peninsula and the most important wolframite deposit in Western Europe. The ore-veins are almost exclusively sub-horizontal. Besides ore-bearing sub-horizontal veins, the Panasqueira mine also contains barren quartz veins. There are essentially two generations of barren quartz: quartz, contemporaneous with the earliest regional metamorphism (QI), and recrystallized quartz, contemporaneous with the thermal metamorphism related to the granite intrusion (QII). Fluid inclusion studies (microthermometry and Raman) were undertaken in order to distinguish fluids contemporaneous with the barren quartz from those contemporaneous with the ore-bearing quartz (QIII). Fluid inclusion data indicate that the barren and ore-bearing quartz fluids are dominantly aqueous (93 to 98 mol% H2O), with a nearly constant bulk salinity (8 to 12 wt% eq. NaCl), with the quantity of volatile component (determined by Raman spectrometry) higher in QIII, but never greater than 5 mol%. However, the CO2/CH4 + N2 ratio is different for each type of quartz. Volatiles are dominated by CH4 (10 to 96 mol% ZCH4 and/or N2 (3 to 87 mol% ZN2) in the barren quartz and by CO2 (60 to 73 mol% ZCO2) in ore-bearing quartz. The bulk chemical composition of the fluids in QIII is comparable to that found commonly in hydrothermal fluids associated with wolframite mineralization, where Na>K>Ca and HCO3>Cl>SO4. A dispersion in TH (226 to 350 °C) found in QIII, together with a variation in the degree of filling (0.5 to 0.7) and with the consequent variation of fluid densities (0.70 to 0.79), may result from changes in the fluid pressure regime below lithostatic pressure, suggesting vein filling related to tectonic events.

  10. Evidence for large compositional ranges in coeval melts erupted from Kīlauea's summit reservoir: Chapter 7

    USGS Publications Warehouse

    Helz, Rosalind T.; Clague, David A.; Mastin, Larry G.; Rose, Timothy R.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Petrologic observations on Kīlauea's lavas include abundant microprobe analyses of glasses, which show the range of melts available in Kīlauea's summit reservoir over time. During the past two centuries, compositions of melts erupted within the caldera have been limited to MgO = 6.3–7.5 wt%. Extracaldera lavas of the 1959, 1971, and 1974 eruptions contain melts with up to 10.2, 8.9, and 9.2 wt% MgO, respectively, and the 1924 tephra contains juvenile Pele's tears with up to 9.1 wt% MgO. Melt compositions from explosive deposits at Kīlauea, including the Keanakāko‘i (A.D. 1500–1800), Kulanaokuaiki (A.D. 400–1000), and Pāhala (10–25 ka) tephra units, show large ranges of MgO contents. The range of melt MgO is 6.5–11.0 wt% for the Keanakāko‘i; the Kulanaokuaiki extends to 12.5% MgO and the Pāhala Ash includes rare shards with 13–14.5% MgO. The frequency distributions for MgO in the Keanakāko‘i and Kulanaokuaiki glasses are bimodal, suggesting preferential magma storage at two different depths. Kīlauea's summit reservoir contains melts ranging from 6.5 to at least 11.0 wt% MgO, and such melts were available for sampling near instantaneously and repeatedly over centuries. More magnesian melts are inferred to have risen directly from greater depth.

  11. Theoretical Investigation of the Thermodynamic Properties of η'-(Cu, Co)6Sn5 Alloys

    NASA Astrophysics Data System (ADS)

    Wu, Heng; Zhang, Xuechao; Zheng, Bing; Zhao, Xiuchen; Liu, Ying; Li, Hong; Cheng, Jingwei

    2018-02-01

    We perform theoretical investigations on the structures of η'-Cu6Sn5-based intermetallic compounds (IMCs) with different Co doping concentration (0-12.2 wt.%) based on density functional theory (DFT). The variations of the structural, elastic and thermodynamic properties of (Cu, Co)6Sn5 IMCs with pressure (0-18 GPa) and temperature (0-500 K) are obtained with the application of quasi-harmonic Debye model for the non-equilibrium Gibbs free energy. It is found that the volume of (Cu, Co)6Sn5 shrinks with Co concentration increasing in the range of imposed pressure and temperature. At the same time, the bulk modulus of Cu4Co2Sn5 is the largest among those of Cu6Sn5, Cu5Co1Sn5 and Cu4Co2Sn5. By calculating the Debye temperature of Cu6Sn5, we find that it is higher than that of Cu5Co1Sn5 and Cu4Co2Sn5 when the pressure is higher than 2 GPa. Meanwhile, heat capacities of all three Cu6Sn5, Cu5Co1Sn5, and Cu4Co2Sn5 converge to a near-constant value at about 1090 J/mol K in the range of the imposed pressures.

  12. Partial melting of metagreywackes, Part II. Compositions of minerals and melts

    NASA Astrophysics Data System (ADS)

    Montel, Jean-Marc; Vielzeuf, Daniel

    A series of experiments on the fluid-absent melting of a quartz-rich aluminous metagreywacke has been carried out. In this paper, we report the chemical composition of the phases present in the experimental charges as determined by electron microprobe. This analytical work includes biotite, plagioclase, orthopyroxene, garnet, cordierite, hercynite, staurolite, gedrite, oxide, and glass, over the range 100-1000MPa, 780-1025°C. Biotites are Na- and Mg-rich, with Ti contents increasing with temperature. The compositions of plagioclase range from An17 to An35, with a significant orthoclase component, and are always different from the starting minerals. At high temperature, plagioclase crystals correspond to ternary feldspars with Or contents in the range 11-20 mol%. Garnets are almandine pyrope grossular spessartine solid solutions, with a regular and significant increase of the grossular content with pressure. All glasses are silicic (SiO2=67.6-74.4 wt%), peraluminous, and leucocratic (FeO+MgO=0.9-2.9 wt%), with a bulk composition close to that of peraluminous leucogranites, even for degrees of melting as high as 60 vol.%. With increasing pressure, SiO2 contents decrease while K2O increases. At any pressure, the melt compositions are more potassic than the water-saturated granitic minima. The H2O contents estimated by mass balance are in the range 2.5-5.6 wt%. These values are higher than those predicted by thermodynamic models. Modal compositions were estimated by mass balance calculations and by image processing of the SEM photographs. The positions of the 20 to 70% isotects (curves of equal proportion of melt) have been located in the pressure-temperature space between 100MPa and 1000MPa. With increasing pressure, the isotects shift toward lower temperature between 100 and 200MPa, then bend back toward higher temperature. The melting interval increases with pressure; the difference in temperature between the 20% and the 70% isotects is 40°C at 100MPa, and 150°C at 800MPa. The position of the isotects is interpreted in terms of both the solubility of water in the melt and the nature of the reactions involved in the melting process. A comparison with other partial melting experiments suggests that pelites are the most fertile source rocks above 800MPa. The difference in fertility between pelites and greywackes decreases with decreasing pressure. A review of the glass compositions obtained in experimental studies demonstrates that partial melting of fertile rock types in the crust (greywackes, pelites, or orthogneisses) produces only peraluminous leucogranites. More mafic granitic compositions such as the various types of calk-alkaline rocks, or mafic S-type rocks, have never been obtained during partial melting experiments. Thus, only peraluminous leucogranites may correspond to liquids directly formed by partial melting of metasediments. Other types of granites involve other components or processes, such as restite unmixing from the source region, and/or interaction with mafic mantle-derived materials.

  13. Determination of Inorganic Ion Profiles of Illicit Drugs by Capillary Electrophoresis.

    PubMed

    Evans, Elizabeth; Costrino, Carolina; do Lago, Claudimir L; Garcia, Carlos D; Roux, Claude; Blanes, Lucas

    2016-11-01

    A portable capillary electrophoresis instrument with dual capacitively coupled contactless conductivity detection (C 4 D) was used to determine the inorganic ionic profiles of three pharmaceutical samples and precursors of two illicit drugs (contemporary samples of methylone and para-methoxymethamphetamine). The LODs ranged from 0.10 μmol/L to 1.25 μmol/L for the 10 selected cations, and from 0.13 μmol/L to 1.03 μmol/L for the eight selected anions. All separations were performed in less than 6 min with migration times and peak area RSD values ranging from 2 to 7%. The results demonstrate the potential of the analysis of inorganic ionic species to aid in the identification and/or differentiation of unknown tablets, and real samples found in illicit drug manufacture scenarios. From the resulting ionic fingerprint, the unknown tablets and samples can be further classified. © 2016 American Academy of Forensic Sciences.

  14. Kinetics of carotenoids degradation and furosine formation in dried apricots (Prunus armeniaca L.).

    PubMed

    Fratianni, A; Niro, S; Messia, M C; Cinquanta, L; Panfili, G; Albanese, D; Di Matteo, M

    2017-09-01

    The kinetics of carotenoid and color degradation, as well as furosine formation, were investigated in apricot fruits during convective heating at 50, 60 and 70°C. Degradation of carotenoids and color, expressed as total color difference (TCD), followed a first and zero order kinetic, respectively. The activation energy (Ea) for carotenoids degradation ranged from 73.7kJ/mol for 13-cis-β-carotene to 120.7kJ/mol for lutein, being about 91kJ/mol for all-trans-β-carotene. Violaxanthin and anteraxanthin were the most susceptible to thermal treatment. The furosine evolution was fitted at zero order kinetic model. The Ea for furosine formation was found to be 83.3kJ/mol and the Q 10 (temperature coefficient) varied from 1.59 to 4.14 at the temperature ranges 50-60°C and 60-70°C, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A metallogenic survey of alkalic rocks of Mt. Somma-Vesuvius volcano

    USGS Publications Warehouse

    Paone, A.; Ayuso, R.A.; de Vivo, B.

    2001-01-01

    Somma-Vesuvius is an alkaline volcano whose products (pumice, scoria and lava) have alkaline (Na2O+K2O) contents between 6 and 16 wt%, Mg number <50, SiO2 59-47 wt% and MgO 0-7.8 wt% (more than 50% of the samples have a content <2 wt%). Immobile-element ratios (Th/Yb, Ta/Yb, Ce/Yb) indicate a shoshonitic character, while the K2O content (4-10 wt%) is characteristic of ultrapotassic rocks. The behavior of selected metals is discussed by grouping them on the basis of the stratigraphic sequence and differentiating the volcanic activity between plinian and interplinian (Rolandi et al., 1998; Ayuso et al., 1998). This allows observation of the variation within each formation from 25.000y. BP to the last historic eruptive cycle (1631-1944 AD). The main processes to explain the wide distribution of the data presented are fractional crystallization of a mantle-derived magma, magma mixing, and contamination with heterogeneous lower and/or upper crust. Variation diagrams distinguish different behavior for groups of metals: Ag (0.01-0.2 ppm), Mo (1-8.8 ppm), W (1.3-13 ppm), Pb (16-250 ppm), Sb (0.2-2.6 ppm), Sc (0.2-61 ppm), Li (15-140 ppm) and Be (1-31 ppm) increase with increasing differentiation and tend to correlate with the incompatible trace elements (Th, Hf, etc). Cu (10-380 ppm), Au (2-143 ppb), Co (0.7-35.1 ppm) and Fe (1.3-6.2 wt%) decrease towards advanced stage of differentiation. Iron also identifies three magmatic groups. The ratio Fe3+/Fe2+ ranges between 0.2 and 1.8, and Fe2O3/ (Fe2O3+FeO) ranges between 0.2 and 0.8, giving rise to an oxidized environment; exceptions are in the samples belonging to the interplinian formations: I, II, medieval and 1631-1994 AD. Fluorine ranges between 0.1 and 0.4 wt% for the complete Mt. Somma-Vesuvius activity, except for the Ottaviano and Avellino plinian (0.8 wt%) events. Chlorine has a wider range, from 0.1 wt% to 1.6 wt%. Mt Somma-Vesuvius has some features similar to those of mineralized alkaline magmatic systems which coincide with the transition between subduction-related compression and extension-related to continental rifting. We infer that a prospective time for the formation of mineralization at Mt Somma-Vesuvius was during the 1631-1944 eruptive period.

  16. Petrography and chemistry of tungsten-rich oxycalciobetafite in hydrothermal veins of the Adamello contact aureole, northern Italy

    NASA Astrophysics Data System (ADS)

    Lumpkin, Gregory R.; Gieré, Reto; Williams, C. Terry; McGlinn, Peter J.; Payne, Timothy E.

    2017-09-01

    Tungsten-rich oxycalciobetafite occurs in complex Ti-rich hydrothermal veins emplaced within dolomite marble in the contact aureole of the Adamello batholith, northern Italy, where it occurs as overgrowths on zirconolite. The betafite is weakly zoned and contains 29-34 wt% UO2. In terms of end-members, the betafite contains approximately 50 mol% CaUTi2O7 and is one of the closest known natural compositions to the pyrochlore phase proposed for use in titanate nuclear waste forms. Amorphization and volume expansion of the betafite caused cracks to form in the enclosing silicate mineral grains. Backscattered electron images reveal that betafite was subsequently altered along crystal rims, particularly near the cracks. Electron probe microanalyses reveal little difference in composition between altered and unaltered areas, except for lower totals, suggesting that alteration is primarily due to hydration. Zirconolite contains up to 18 wt% ThO2 and 24 wt% UO2, and exhibits strong compositional zoning, but no internal cracking due to differential (and anisotropic) volume expansion and no visible alteration. The available evidence demonstrates that both oxycalciobetafite and zirconolite retained actinides for approximately 40 million years after the final stage of vein formation. During this time, oxycalciobetafite and zirconolite accumulated a total alpha-decay dose of 3.0-3.6 × 1016 and 0.2-2.0 × 1016 α/mg, respectively.

  17. Genotoxicity of three food processing contaminants in transgenic mice expressing human sulfotransferases 1A1 and 1A2 as assessed by the in vivo alkaline single cell gel electrophoresis assay

    PubMed Central

    Høie, Anja Hortemo; Svendsen, Camilla; Brunborg, Gunnar; Glatt, Hansruedi; Alexander, Jan; Meinl, Walter

    2015-01-01

    The food processing contaminants 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine (PhIP), 5‐hydroxymethylfurfural (HMF) and 2,5 dimethylfuran (DMF) are potentially both mutagenic and carcinogenic in vitro and/or in vivo, although data on DMF is lacking. The PHIP metabolite N‐hydroxy‐PhIP and HMF are bioactivated by sulfotransferases (SULTs). The substrate specificity and tissue distribution of SULTs differs between species. A single oral dose of PhIP, HMF or DMF was administered to wild‐type (wt) mice and mice expressing human SULT1A1/1A2 (hSULT mice). DNA damage was studied using the in vivo alkaline single cell gel electrophoresis (SCGE) assay. No effects were detected in wt mice. In the hSULT mice, PhIP and HMF exposure increased the levels of DNA damage in the liver and kidney, respectively. DMF was not found to be genotoxic. The observation of increased DNA damage in hSULT mice compared with wt mice supports the role of human SULTs in the bioactivation of N‐hydroxy‐PhIP and HMF in vivo. Environ. Mol. Mutagen. 56:709–714, 2015. © 2015 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc. PMID:26270892

  18. Molecular Dynamics and Free Energy Simulations of Phenylacetate and CO2 Release from AMDase and Its G74C/C188S Mutant: A Possible Rationale for the Reduced Activity of the Latter.

    PubMed

    Karmakar, Tarak; Balasubramanian, Sundaram

    2016-11-17

    Arylmalonate decarboxylase (AMDase) catalyzes the decarboxylation of α-aryl-α-methyl malonates to produce optically pure α-arylpropionates of industrial and medicinal importance. Herein, atomistic molecular dynamics simulations have been carried out to delineate the mechanism of the release of product molecules phenylacetate (PAC) and carbon dioxide (CO 2 ), from the wild-type (WT) and its G74C/C188S mutant enzymes. Both of the product molecules follow a crystallographically characterized solvent-accessible channel to come out of the protein interior. A higher free energy barrier for the release of PAC from G74C/C188S compared to that in the WT is consistent with the experimentally observed compromised efficiency of the mutant. The release of CO 2 precedes that of PAC; free energy barriers for CO 2 and PAC release in the WT enzyme are calculated to be ∼1-2 and ∼23 kcal/mol, respectively. Postdecarboxylation, CO 2 moves toward a hydrophobic pocket formed by Pro 14, Leu 38, Leu 40, Leu 77, and the side chain of Tyr 48 which serves as its temporary "reservoir". CO 2 releases following a channel mainly decorated by apolar residues, unlike in the case of oxalate decarboxylase where polar residues mediate its transport.

  19. Petrogenetic implications from ultramafic rocks and pyroxenites in ophiolitic occurrences of East Othris, Greece

    NASA Astrophysics Data System (ADS)

    Koutsovitis, P.; Magganas, A.

    2012-04-01

    Ultramafic rocks and pyroxenites in east Othris are included within ophiolitic units near the villages of Vrinena, Karavomilos, Pelasgia, Eretria, Agios Georgios, Aerino and Velestino. The first five ophiolitic occurrences are estimated to have been emplaced between the Oxfordian and Tithonian-Berriasian[1,2,3], while the latter two have been emplaced during the Eocene[4]. Ultramafic rocks include variably serpentinized harzburgites and lherzolites. Pyroxenites are usually found in the form of crosscutting veins within the harzburgites. Ultramafic rocks include depleted lherzolites, with Al2O3 ranging from 1.12 to 1.80 wt% and Cr from 3250 to 3290 ppm, as well as moderate to highly depleted serpentinized harzburgites, with Al2O3 ranging from 0.69 to 1.98 wt% and Cr from 2663 to 5582 ppm. Pyroxenites have generally higher Al2O3 ranging from 1.91 to 3.08 wt% and variable Cr ranging from 1798 to 3611 ppm. Lherzolites mostly include olivines (Fo=87.07-89.23) and clinopyroxenes (Mg#=85.71-90.12). Spinels from Eretria lherzolite (TiO2=0.02-0.08 wt%, Al2O3=36.06-42.45 wt%, Cr#=31.67-36.33) are compositionally similar with those of MORB peridotites[5], while those from Vrinena lherzolite (TiO2=0.16-0.43 wt%, Al2O3=6.90-22.12 wt%, Cr#=57.69-76.88) are similar to SSZ peridotites[5]. Serpentinized harzburgites include few olivines (Fo=90.51-91.15), enstatite porphyroclasts (Mg#=87.42-88.91), as well as fine grained enstatites of similar composition. Harzburgites from Pelasgia, Eretria and Agios Georgios include spinels (TiO2=0.03-0.08 wt%, Al2O3=23.21-31.58 wt%, Cr#=45.21-56.85) which do not clearly show if they are related with MORB or SSZ peridotites[5]. Spinels from Karavomilos harzburgite (TiO2=0.02-0.05 wt%, Al2O3=45.71-50.85 wt%, Cr#=16.84-22.32) are compositionally similar with MORB peridotites[5], whereas spinels from Vrinena harzburgite (TiO2=0.15-0.19 wt%, Al2O3=1.42-1.86 wt% Cr#=91.64-93.47) with SSZ peridotites[5]. Pyroxenites include clinopyroxenes (Mg#=84.25-91.78) but also enstatites (Mg#=88.37-91.47). Spinels have been analysed in pyroxenites from Aerino and Velestino (TiO2=0.79-1.07 wt%, Al2O3=10.88-18.46 wt% Cr#=60.74-70.78), indicating SSZ settings. Application of the olivine-spinel[6], olivine-augite[7], Cpx-Opx[8,9] geothermometers, yield equilibration temperatures of 961-1075 oC for lherzolites, 895-1084 oC for harzburgites and 990-1011 oC for pyroxenites. Our data indicate that the ophiolitic occurrences of Vrinena, Aerino and Velestino include ultramafic rocks and pyroxenites related to SSZ processes, while the other ophiolitic occurrences embrace ultramafic rocks which originated from a MORB-like setting, similar to west Othris ophiolites. It should be noted that even lherzolites have Cr and Y values similar to those of a highly depleted mantle source. A supra-subduction zone origin of the east Othris ophiolites, possibly with a slab rollback in the Pindos oceanic basin, may explain the different geotectonic environment affinities of the studied rocks.

  20. Investigating interfacial phenomena in polypropylene/glass fiber composites

    NASA Astrophysics Data System (ADS)

    Toke, Jeffrey Michael

    The adhesion in polypropylene (PP)/glass composites is low due to the non-polar, non-reactive characteristics of PP. When maleated PP (mPP) is added to the matrix, adhesion is improved. Understanding the mechanisms of this phenomenon is critical in maximizing the adhesion in PP/glass composites. The strength of adhesion in PP/glass composites was investigated using glass bead composites. A Near-IR spectroscopic technique was used to evaluate the chemical reactions in the interphase. Twelve different commercial grades of maleated PP (mPP) were tested. The range of maleic anydride (MAH) content was from 0.3 weight percent (wt%) to 2.4 wt%, with one sample at 10 wt%. These mPPs were blended with a commercial PP from Huntsman, P4C5Z-027 (PP), a 20 MFI (melt flow index) polymer with minimal additives, in concentrations ranging from 0 to 20 wt%. Bead composites of non-coated (NON) and gamma-APS-coated beads (APS) were made to compare the strength of the interphase in the composite systems. The bead volume fraction used was 25 volume percent (vol%). Three polymers with different MAH content and different viscosities were tested at 1, 5, 10 and 20 wt%. All of the mPPs were tested at 5 wt%. In general, the mPP composites all exhibited higher strength compared to the PP. Pukanszky's model for tensile strength was applied that included the strength of the unfilled matrix and the volume percent of the beads in a single factor, B. Comparison of all of the polymers at 5 wt% showed that there were four groupings of the mPPs. The polymers with MAH content greater than 1.5 wt% showed the strongest adhesion with B values of ˜2.5. All of these polymers had viscosities less than 100 Pa-s (180°C, 1 Hz angular frequency). The next group of polymers, with B ˜ 2, had MAH contents ranging from 0.8 to 1.2 wt%, with viscosities ranging from the 21 Pa-s to greater than 2300 Pa-s (180°C, 1 Hz angular frequency). The following group, with B ˜ 0.9, had anhydride concentrations of 0.6 and 0.7 wt%, and viscosities of 127 and 3800 Pa-s, respectively. Finally, there were several polymers with B ˜ 0.6 that were not significantly different than the unmodified PP. Viscosity and anhydride concentration showed competing effects in the mPP samples. Overall, increasing the concentration of anhydride increased adhesion, but viscosity is reduced in high MAH content mPPs. When the anhydride content was below 1.5 wt%, increased viscosity showed greater adhesion. (Abstract shortened by UMI.)

  1. Minor elements in lunar olivine as a petrologic indicator

    NASA Technical Reports Server (NTRS)

    Steele, I. M.; Smith, J. V.

    1975-01-01

    Accurate electron microprobe analyses (approximately 50 ppm) were made for Al, Ca, Ti, Cr, Mn, and Ni in Mg-rich olivines which may derive from early lunar crust or deeper environments. Low-Ca contents consistently occur only in olivines from dunitic and troctolitic breccia: spinel troctolite and other rock types have high-Ca olivines suggesting derivation by near-surface processes. Rock 15445 has olivine with distinctly low CaO (approximately 0.01 wt.%). Chromium ranges to higher values (max.0.2 oxide wt.%) than for terrestrial harzburgites and lherzolites but is similar to the range in terrestrial komatiites. Divalent chromium may be indicated over trivalent Cr because olivines lack sufficient other elements for charge balance of the latter. NiO values in lunar specimens range from 0.00 to 0.07 wt.% and a weak anticorrelation with Cr2O3 suggests an oxidation state effect. Al2O3 values are mostly below 0.04-wt.% and show no obvious correlation with fragment type. TiO2 values lie below 0.13-wt.% and seem to correlate best with crystallization rate and plagioclase content of the host rock. High values of Al2O3 and TiO2 reported by other workers have not been confirmed, and are probably wrong.

  2. Structural features and activity of Brazzein and its mutants upon substitution of a surfaced exposed alanine.

    PubMed

    Ghanavatian, Parisa; Khalifeh, Khosrow; Jafarian, Vahab

    2016-12-01

    Brazzein (Brz) is a member of sweet-tasting protein containing four disulfide bonds. It was reported as a compact and heat-resistant protein. Here, we have used site-directed mutagenesis and replaced a surface-exposed alanine with aspartic acid (A19D mutant), lysine (A19K mutant) and glycine (A19G mutant). Activity comparisons of wild-type (WT) and mutants using taste panel test procedure showed that A19G variant has the same activity as WT protein. However, introduction of a positive charge in A19K mutant led to significant increase in Brz's sweetness, while A19D has reduced sweetness compared to WT protein. Docking studies showed that mutation at position 19 results in slight chain mobility of protein at the binding surface and changing the patterns of interactions toward more effective binding of E9K variant in the concave surface of sweet taste receptor. Far-UV CD data spectra have a characteristic shape of beta structure for all variants, however different magnitudes of spectra suggest that beta-sheet structure in WT and A19G is more stable than that of A19D and A19K. Equilibrium unfolding studies with fluorescence spectroscopy and using urea and dithiothritol (DTT) as chemical denaturants indicates that A19G mutant gains more stability against urea denaturation; while conformational stability of A19D and A19K decreases when compared with WT and A19G variants. We concluded that the positive charge at the surface of protein is important factor responsible for the interaction of protein with the human sweet receptor and Ala 19 can be considered as a key region for investigating the mechanism of the interaction of Brz with corresponding receptor. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  3. Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects.

    PubMed

    Scheibener, S A; Richardi, V S; Buchwalter, D B

    2016-02-01

    The importance of insects in freshwater ecosystems has led to their extensive use in ecological monitoring programs. As freshwater systems are increasingly challenged by salinization and metal contamination, it is important to understand fundamental aspects of aquatic insect physiology (e.g., osmoregulatory processes) that contribute to insect responses to these stressors. Here we compared the uptake dynamics of Na as NaCl, NaHCO3 and Na2SO4 in the caddisfly Hydropsyche betteni across a range of Na concentrations (0.06-15.22 mM) encompassing the vast majority of North American freshwater ecosystems. Sulfate as the major anion resulted in decreased Na uptake rates relative to the chloride and bicarbonate salts. A comparison of Na (as NaHCO3) turnover rates in the caddisfly Hydropsyche sparna and the mayfly Maccaffertium sp. revealed different patterns in the 2 species. Both species appeared to tightly regulate their whole body sodium concentrations (at ∼47±1.8 μmol/g wet wt) across a range of Na concentrations (0.06-15.22 mM) over 7 days. However, at the highest Na concentration (15.22 mM), Na uptake rates in H. sparna (419.1 μM Na g(-1) hr(-1) wet wt) appeared close to saturation while Na uptake rates in Maccaffertium sp. were considerably faster (715 g μM Na g(-1) hr(-1) wet wt) and appeared to not be close to saturation. Na efflux studies in H. sparna revealed that loss rates are commensurate with uptake rates and are responsive to changes in water Na concentrations. A comparison of Na uptake rates (at 0.57 mM Na) across 9 species representing 4 major orders (Ephemeroptera, Plecoptera, Trichoptera and Diptera) demonstrated profound physiological differences across species after accounting for the influence of body weight. Faster Na uptake rates were associated with species described as being sensitive to salinization in field studies. The metals silver (Ag) and copper (Cu), known to be antagonistic to Na uptake in other aquatic taxa did not generally exhibit this effect in aquatic insects. Ag only reduced Na uptake at extremely high concentrations, while Cu generally stimulated Na uptake in aquatic insects, rather than suppress it. These results help explain the lack of insect responses to dissolved metal exposures in traditional toxicity testing and highlight the need to better understand fundamental physiological processes in this ecologically important faunal group. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. GEMAS: CNS concentrations and C/N ratios in European agricultural soil.

    PubMed

    Matschullat, Jörg; Reimann, Clemens; Birke, Manfred; Dos Santos Carvalho, Debora

    2018-06-15

    A reliable overview of measured concentrations of TC, TN and TS, TOC/TN ratios, and their regional distribution patterns in agricultural soil at the continental scale and based on measured data has been missing - despite much previous work on local and the European scales. Detection and mapping of natural (ambient) background element concentrations and variability in Europe was the focus of this work. While total C and S data had been presented in the GEMAS atlas already, this work delivers more precise (lower limit of determination) and fully quantitative data, and for the first time high-quality TN data. Samples were collected from the uppermost 20cm of ploughed soil (A p horizon) at 2108 sites with an even sampling density of one site per 2500km 2 for one individual land-use class (agricultural) across Europe (33 countries). Laboratory-independent quality control from sampling to analysis guaranteed very good data reliability and accuracy. Total carbon concentrations ranged from 0.37 to 46.3wt% (median: 2.20wt%) and TOC from 0.40 to 46.0wt% (median: 1.80wt%). Total nitrogen ranged from 0.018 to 2.64wt% (median: 0.169wt%) and TS from 0.008 to 9.74wt% (median: 0.034wt%), all with large variations in most countries. The TOC/TN ratios ranged from 1.8 to 252 (median: 10.1), with the largest variation in Spain and the smallest in some eastern European countries. Distinct and repetitive patterns emerge at the European scale, reflecting mostly geogenic and longer-term climatic influence responsible for the spatial distribution of TC, TN and TS. Different processes become visible at the continental scale when examining TC, TN and TS concentrations in agricultural soil Europe-wide. This facilitates large-scale land-use management and allows specific areas (subregional to local) to be identified that may require more detailed research. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering.

    PubMed

    Robson, T C; Braungardt, C B; Rieuwerts, J; Worsfold, P

    2014-01-01

    The biogeochemistry and bioavailability of cadmium, released during sphalerite weathering in soils, were investigated under contrasting agricultural scenarios to assess health risks associated with sphalerite dust transport to productive soils from mining. Laboratory experiments (365 d) on temperate and sub-tropical soils amended with sphalerite (<63 μm, 0.92 wt.% Cd) showed continuous, slow dissolution (0.6-1.2% y(-1)). Wheat grown in spiked temperate soil accumulated ≈38% (29 μmol kg(-1)) of the liberated Cd, exceeding food safety limits. In contrast, rice grown in flooded sub-tropical soil accumulated far less Cd (0.60 μmol kg(-1)) due to neutral soil pH and Cd bioavailability was possibly also controlled by secondary sulfide formation. The results demonstrate long-term release of Cd to soil porewaters during sphalerite weathering. Under oxic conditions, Cd may be sufficiently bioavailable to contaminate crops destined for human consumption; however flooded rice production limits the impact of sphalerite contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Color tuning of photonic gel films by UV irradiation

    NASA Astrophysics Data System (ADS)

    Shin, Sung Eui; Kim, Su Young; Shin, Dong Myung

    2010-02-01

    Block copolymers have drawn increasing attention for fabricating functional nanomaterials due to their properties of self-assembly. In particular, photonic crystals hold promise for multiple optical applications. We prepared 1D photonic crystals with polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) lamellar films which is hydrophobic block-hydrophilic polyelectrolyte block polymer of 57 kg /mol-b-57 kg/mol. The lamellar stacks, which are alternating layers of hydrophilic and hydrophobic moiety of PS-b-P2VP, are obtained by exposing the spin coated film under chloroform vapor. The band gaps of the lamellar films interestingly varied after immersion into the quaternizing solvents containing 5wt% of iodomethane solubilized in n-hexane. We demonstrate about the influence of UV light on those photonic gel films. To study of different properties of films, UV-visible absorption spectra were measured as a different UV irradiation time at swollen films with distilled water. The UV-visible maximum absorption spectra shifted by UV irradiation time. Dependent on the time of UV irradiations, we can change the photonic band gap.

  7. Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, P.; Nath, M.; Ghosh, A.

    2015-03-15

    Mullite–zirconia composites containing 20 wt.% zirconia were prepared by reaction sintering of zircon flour, sillimanite beach sand and calcined alumina. 0 to 8 mol% of La{sub 2}O{sub 3} with respect to zirconia was used as sintering aid. The effect of additive on the various physical, microstructures, mechanical and thermo-mechanical properties was studied. Quantitative phase analysis shows the change in tetragonal zirconia content with incorporation of lanthanum oxide. La{sub 2}O{sub 3} addition has significantly improved the thermal shock resistance of the samples. Samples without additive retained only 20% of initial flexural strength after 5 cycles, whereas samples containing 5 mol% La{submore » 2}O{sub 3} retained almost 78% of its initial flexural strength even after 15 thermal shock cycles. - Highlights: • Mullite–zirconia composites were prepared by reaction sintering route utilizing zircon and sillimanite beach sand. • Lanthanum oxide was used as sintering aid. • The presence of lanthanum oxide decreased the densification temperature. • Lanthanum oxide significantly improved the thermal shock resistance of the composites.« less

  8. Effect of reactive monomer on PS-b-P2VP film.

    PubMed

    Kim, H J; Shin, D M

    2014-08-01

    Poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) lamellar film which is hydrophobic block-hydrophilic polyelectrolyte block polymer of 52 kg/mol-b-57 kg/mol and PS-b-P2VP film with reactive monomer (RM257) were prepared for photonic gel films. The lamellar stacks, which is alternating layer of hydrophilic and hydrophobic moiety of PS-b-P2VP, were obtained by exposing the spin coated film under chloroform vapor. The lamellar films were quaternized with 5 wt% of iodomethane diluted by n-hexane. We reported about the influence of reactive monomer on those photonic gel films. Added reactive monomer photonic gel film had higher absorbance than pure photonic gel films. As a result the photonic gel film with RM had more clear color. The lamellar films were swollen by DI water, ethanol (aq) and calcium carbonate solution. The band gaps of the lamellar films were drastically shifted to longer wavelength swollen by calcium carbonate solution. And the lamellar films were shifted to shorter wave length swollen by ethanol. So each lamellar film showed different color.

  9. Molecular weight distribution characterization of hydrophobe-modified hydroxyethyl cellulose by size-exclusion chromatography.

    PubMed

    Li, Yongfu; Meunier, David M; Partain, Emmett M

    2014-09-12

    Size-exclusion chromatography (SEC) of hydrophobe-modified hydroxyethyl cellulose (HmHEC) is challenging because polymer chains are not isolated in solution due to association of hydrophobic groups and hydrophobic interaction with column packing materials. An approach to neutralize these hydrophobic interactions was developed by adding β-cyclodextrin (β-CD) to the aqueous eluent. SEC mass recovery, especially for the higher molecular weight chains, increased with increasing concentration of β-CD in the eluent. A β-CD concentration of 0.75wt% in the eluent was determined to be optimal for the HmHEC polymers studied. These conditions enabled precise determinations of apparent molecular weight distributions exhibiting less than 2% relative standard deviation in the measured weight-average molecular weight (MW) for five injections on three studied samples and showed no significant differences in MW determined on two different days. The developed technology was shown to be very robust for characterizing HmHEC having MW from 500kg/mol to 2000kg/mol, and it can be potentially applied to other hydrophobe-modified polymers. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Identification, purification and partial characterization of low molecular weight protein inhibitor of Na⁺/K⁺-ATPase from pulmonary artery smooth muscle cells.

    PubMed

    Rahaman, Sayed Modinur; Dey, Kuntal; Das, Partha; Roy, Soumitra; Chakraborti, Tapati; Chakraborti, Sajal

    2014-08-01

    We have identified a novel endogenous low mol wt. (15.6 kDa) protein inhibitor of Na(+)/K(+)-ATPase in cytosolic fraction of bovine pulmonary artery smooth muscle cells. The inhibitor showed different affinities toward the α₂β₁ and α₁β₁ isozymes of Na(+)/K(+)-ATPase, where α₂ is more sensitive than α₁. The inhibitor interacted reversibly to the E1 site of the enzyme and blocked the phosphorylated intermediate formation. Circular dichroism study suggests that the inhibitor causes an alteration in the confirmation of the enzyme.

  11. Temperature dependent selective detection of hydrogen and acetone using Pd doped WO3/reduced graphene oxide nanocomposite

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Anand, Kanica; Kohli, Nipin; Kaur, Amanpreet; Singh, Ravi Chand

    2018-06-01

    Reduced graphene oxide (RGO) and Pd doped WO3 nanocomposites were fabricated by employing electrostatic interactions between poly (diallyldimethylammonium chloride) (PDDA) modified Pd doped WO3 nanostructures and graphite oxide (GO) and studied for their gas sensing application. XRD, Raman, FTIR, FESEM-EDX, TEM, TGA, XPS and Photoluminescence techniques were used for characterization of as-synthesized samples. Gas sensing studies revealed that the sensor with optimized doping of 1.5 mol% Pd and 1 wt% GO shows temperature dependent selectivity towards hydrogen and acetone. The role of WO3, Pd and RGO has been discussed in detail for enhanced sensing performance.

  12. Sphero-echinocytosis of human red blood cells caused by snake, red-back spider, bee and blue-ringed octopus venoms and its inhibition by snake sera.

    PubMed

    Flachsenberger, W; Leigh, C M; Mirtschin, P J

    1995-06-01

    It was found that bee (Apis mellifera) venom, red-back spider (Latrodectus mactans) venom, blue-ringed octopus (Hapalochlaena maculosa) venom, ten different snake venoms, phospholipase A2 and four snake toxins caused sphero-echinocytosis of human red blood cells at 200 ng/ml. Most venoms and toxins lost the ability to deform human red blood cells when their components of less than mol. wt 10,000 were applied. In a number of cases the sphero-echinocytotic effect was also inhibited by blood sera of Notechis scutatus and Pseudonaja textilis.

  13. Purification of the major endoglucanase from Aspergillus fumigatus Fresenius.

    PubMed

    Parry, J B; Stewart, J C; Heptinstall, J

    1983-08-01

    Aspergillus fumigatus (Fresenius), IMI 246651, A.T.C.C. 46324, produces two beta-glucosidase enzymes, cotton-solubilizing activity, xylanase and endoglucanase enzymes which can be separated by gel-filtration chromatography. The major endoglucanase does not bind to concanavalin A-Sepharose and does not stain with periodic acid/Schiff reagent. It is homogeneous on polyacrylamide isoelectric focusing (pI = 7.1) and has a mol.wt. of 12500 by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The endoglucanase produces glucose and a mixture of oligosaccharides from cellulose; the purified enzyme has a small dextranase activity. It is stable at 50 degrees C and pH 6.

  14. CO2 Solubility in Natural Rhyolitic Melts at High Pressures - Implications for Carbon Flux in Subduction Zones by Sediment Partial Melts

    NASA Astrophysics Data System (ADS)

    Duncan, M. S.; Dasgupta, R.

    2011-12-01

    Partial melts of subducting sediments is thought to be a critical agent in carrying trace elements and water to arc basalt source regions. For subduction zones that contain significant amount of carbonates in ocean-floor sediments, sediment melts likely also act as a carrier of CO2. However, the CO2 carrying capacity of natural rhyolitic melts at sub-arc depths remains unconstrained. We conducted experiments on a synthetic composition, similar to average, low-degree experimental partial melt of pelitic sediments. The composition was constructed with reagent grade oxides and carbonates, the source of excess CO2. Experiments were conducted between 1 and 3 GPa at 1200 °C in Au80Pd20 capsules using a piston cylinder apparatus with a half-inch BaCO3 assembly at Rice University. Quench products showed glasses with bubbles, the latter suggesting saturation of the melt with a CO2-rich vapor phase. Oxygen fugacity during the experiments was not strictly controlled but the presence of CO2 bubbles and absence of graphite indicates fO2 above the CCO buffer. Major element concentrations of glasses were measured using EPMA. The CO2 and H2O contents of experimental doubly polished (50-110 μm), bubble-free portions of the glass chips were determined using a Thermo Nicolet Fourier Transform Infrared Spectrometer. Spectra were recorded with a resolution of 4 cm-1, 512 scans, from 650 to 4000 cm-1, under a nitrogen purge to eliminate atmospheric gases. Dissolved volatile concentrations were quantified using the Beer-Lambert law and linear molar absorption coefficients from previous studies [1, 2]. Total dissolved carbon dioxide of experimental glasses was determined from the intensity of the ν3 antisymmetric stretch bands of CO32- at 1430 cm-1 and CO2mol at 2348 cm-1. Dissolved water content of experimental glasses was determined from the intensity of O-H stretching at 3520 cm-1. Estimated total CO2 concentrations at 3 GPa are in the range of 1-2 wt%, for melts with H2O contents between 1.5 and 2.5 wt%. Compared to previous work on CO2 solubility in complex rhyolitic melts at lower pressures [3-5], there is a general trend of increasing CO2 solubility with pressure. Dissolved CO2 is present both as molecular CO2 and as CO32-, consistent with previous, simple system studies at high pressures [e.g. 2, 6]. The CO2mol/CO2Tot values are within the range of previous high pressure studies [e.g. 7] and range from 0.35 to 0.55. Experiments at variable P, T, and melt water content are underway. [1] Fine and Stolper (1985), CMP, 91, 105-121; [2] Stolper et al. (1987), AM, 72, 1071-1085; [3] Blank et al. (1993), EPSL, 119, 27-36; [4] Fogel and Rutherford (1990), AM, 75, 1331-1326; [5] Tamic et al. (2001), CG, 174, 333-347; [6] Mysen and Virgo (1980), AM, 65, 855-899; [7] Mysen (1976), AJS, 276, 969-996.

  15. Plasma spraying of zirconia-reinforced hydroxyapatite composite coatings on titanium: part I: phase, microstructure and bonding strength.

    PubMed

    Chang, E; Chang, W J; Wang, B C; Yang, C Y

    1997-04-01

    Plasma-sprayed hydroxyapatite (HA) coatings applied to metal substrates can induce a direct chemical bond with bone and hence achieve biological fixation of the implant. However, the poor bonding strength between HA and substrate has been of concern to orthopaedists. In this study, two submicrometre ZrO2 powders stabilized with both 3 and 8 mol% Y2O3 (TZ3Y and TZ8Y, respectively) were incorporated in a plasma-sprayed HA coating on Ti-6Al-4V substrate to investigate the change in phase, microstructure and bonding strength. The results show that ZrO2 composite coatings contain more unmelted particles and greater porosity. During plasma spraying, ZrO2 reacts with the CaO in HA to form CaZrO3 and accelerates HA decomposition to alpha-TCP and Ca4P2O9. Nevertheless, bonding strength increases with increase of ZrO2 content in the range 0 to 10 wt% studied. The higher Y2O3-containing TZ8Y apparently exerts a greater strengthening effect than the lower Y2O3-containing TZ3Y.

  16. First evidence of ethylene production by Fusarium mangiferae associated with mango malformation

    PubMed Central

    Ansari, Mohammad Wahid; Shukla, Alok; Pant, Ramesh Chandra; Tuteja, Narendra

    2013-01-01

    Malformation is arguably the most crucial disease of mango (Mangifera indica L.) at present. It is receiving great attention not only because of its widespread and destructive nature but also because of its etiology and control is not absolutely understood. Recently, Fusarium mangiferae is found to be associated with mango malformation disease. There are indications that stress ethylene production could be involved in the disease. Here we have shown the first direct evidence of production of ethylene in pure culture of F. mangiferae obtained from mango. The study also revealed that all the isolates dissected from mango acquire morphological features of F. mangiferae showing most similarity to the features of species with accepted standard features. The isolates of F. mangiferae from mango were observed to produce ethylene in significant amounts, ranging from 9.28–13.66 n mol/g dry wt/day. The findings presented here suggest that F. mangiferae could contribute to the malformation of mango by producing ethylene and probably stimulating stress ethylene production in malformed tissue of mango. Ethylene might be produced through 2-oxoglutarate-dependent oxygenase-type ethylene-forming-enzyme (EFE) pathway in Fusarium sp, which needs to be investigated. PMID:23221756

  17. First evidence of ethylene production by Fusarium mangiferae associated with mango malformation.

    PubMed

    Ansari, Mohammad Wahid; Shukla, Alok; Pant, Ramesh Chandra; Tuteja, Narendra

    2013-01-01

    Malformation is arguably the most crucial disease of mango (Mangifera indica L.) at present. It is receiving great attention not only because of its widespread and destructive nature but also because of its etiology and control is not absolutely understood. Recently, Fusarium mangiferae is found to be associated with mango malformation disease. There are indications that stress ethylene production could be involved in the disease. Here we have shown the first direct evidence of production of ethylene in pure culture of F. mangiferae obtained from mango. The study also revealed that all the isolates dissected from mango acquire morphological features of F. mangiferae showing most similarity to the features of species with accepted standard features. The isolates of F. mangiferae from mango were observed to produce ethylene in significant amounts, ranging from 9.28-13.66 n mol/g dry wt/day. The findings presented here suggest that F. mangiferae could contribute to the malformation of mango by producing ethylene and probably stimulating stress ethylene production in malformed tissue of mango. Ethylene might be produced through 2-oxoglutarate-dependent oxygenase-type ethylene-forming-enzyme (EFE) pathway in Fusarium sp, which needs to be investigated.

  18. Solid biopolymer electrolytes came from renewable biopolymer

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhang, Xingxiang; Qiao, Zhijun; Liu, Haihui

    2009-07-01

    Solid polymer electrolytes (SPEs) have attracted many attentions as solid state ionic conductors, because of their advantages such as high energy density, electrochemical stability, and easy processing. SPEs obtained from starch have attracted many attentions in recent years because of its abundant, renewable, low price, biodegradable and biocompatible. In addition, the efficient utilization of biodegradable polymers came from renewable sources is becoming increasingly important due to diminishing resources of fossil fuels as well as white pollution caused by undegradable plastics based on petroleum. So N, N-dimethylacetamide (DMAc) with certain concentration ranges of lithium chloride (LiCl) is used as plasticizers of cornstarch. Li+ can complexes with the carbonyl atoms of DMAc molecules to produce a macro-cation and leave the Cl- free to hydrogen bond with the hydroxyl or carbonyl of starch. This competitive hydrogen bond formation serves to disrupt the intra- and intermolecular hydrogen bonding existed in starch. Therefore, melt extrusion process conditions are used to prepare conductive thermoplastic starch (TPS). The improvements of LiCl concentration increase the water absorption and conductance of TPS. The conductance of TPS containing 0.14 mol LiCl achieve to 10-0.5 S cm-1 with 18 wt% water content.

  19. Epileptogenesis following Kainic Acid-Induced Status Epilepticus in Cyclin D2 Knock-Out Mice with Diminished Adult Neurogenesis

    PubMed Central

    Kondratiuk, Ilona; Plucinska, Gabriela; Miszczuk, Diana; Wozniak, Grazyna; Szydlowska, Kinga; Kaczmarek, Leszek; Filipkowski, Robert K.; Lukasiuk, Katarzyna

    2015-01-01

    The goal of this study was to determine whether a substantial decrease in adult neurogenesis influences epileptogenesis evoked by the intra-amygdala injection of kainic acid (KA). Cyclin D2 knockout (cD2 KO) mice, which lack adult neurogenesis almost entirely, were used as a model. First, we examined whether status epilepticus (SE) evoked by an intra-amygdala injection of KA induces cell proliferation in cD2 KO mice. On the day after SE, we injected BrdU into mice for 5 days and evaluated the number of DCX- and DCX/BrdU-immunopositive cells 3 days later. In cD2 KO control animals, only a small number of DCX+ cells was observed. The number of DCX+ and DCX/BrdU+ cells/mm of subgranular layer in cD2 KO mice increased significantly following SE (p<0.05). However, the number of newly born cells was very low and was significantly lower than in KA-treated wild type (wt) mice. To evaluate the impact of diminished neurogenesis on epileptogenesis and early epilepsy, we performed video-EEG monitoring of wt and cD2 KO mice for 16 days following SE. The number of animals with seizures did not differ between wt (11 out of 15) and cD2 KO (9 out of 12) mice. The median latency to the first spontaneous seizure was 4 days (range 2 – 10 days) in wt mice and 8 days (range 2 – 16 days) in cD2 KO mice and did not differ significantly between groups. Similarly, no differences were observed in median seizure frequency (wt: 1.23, range 0.1 – 3.4; cD2 KO: 0.57, range 0.1 – 2.0 seizures/day) or median seizure duration (wt: 51 s, range 23 – 103; cD2 KO: 51 s, range 23 – 103). Our results indicate that SE-induced epileptogenesis is not disrupted in mice with markedly reduced adult neurogenesis. However, we cannot exclude the contribution of reduced neurogenesis to the chronic epileptic state. PMID:26020770

  20. The corrosion behavior of CVI SiC matrix in SiCf/SiC composites under molten fluoride salt environment

    NASA Astrophysics Data System (ADS)

    Wang, Hongda; Feng, Qian; Wang, Zhen; Zhou, Haijun; Kan, Yanmei; Hu, Jianbao; Dong, Shaoming

    2017-04-01

    High temperature corrosion behavior and microstructural evolution of designed chemical-vapor-infiltrated SiC matrix in SiC fiber reinforced SiC ceramic matrix composites in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt at 800 °C for various corrosion time was studied. Worse damage was observed as extending the exposure time, with the mass loss ratio increasing from 0.716 wt. % for 50 h to 5.914 wt. % for 500 h. The mass loss rate showed a trend of first decrease and then increase with the extended corrosion exposure. Compared with the near-stoichiometric SiC matrix layers, the O-contained boundaries between deposited matrix layers and the designed Si-rich SiC matrix layers were much less corrosion resistant and preferentially corroded. Liner relationship between the mass loss ratio and the corrosion time obtained from 50 h to 300 h indicated that the corrosion action was reaction-control process. Further corrosion would lead to matrix layer exfoliation and higher mass loss ratio.

  1. Simultaneous production of fatty acid methyl esters and diglycerides by four recombinant Candida rugosa lipase's isozymes.

    PubMed

    Chang, Shu-Wei; Huang, Myron; Hsieh, Yu-Hsun; Luo, Ying-Ting; Wu, Tsung-Ta; Tsai, Chia-Wen; Chen, Chin-Shuh; Shaw, Jei-Fu

    2014-07-15

    In this study, the catalytic efficiency of four recombinant CRL (Candida rugosa lipase) isozymes (LIP1-LIP4) towards the production of fatty acid methyl ester (FAME) was compared and evaluated as an alternative green method for industrial applications. The results indicated that the recombinant C. rugosa LIP1 enzyme exhibited the highest catalytic efficiency for FAME production compared to the recombinant C. rugosa LIP2-LIP4 enzymes. The optimal conditions were as follows: pH 7.0, methanol/soybean oil molar ratio: 3/1, enzyme amount: 2U (1.6 μL), reaction temperature: 20°C, 22 h of reaction time, and 3 times of methanol addition (1 mol/6h), and resulted in 61.5 ± 1.5 wt.% of FAME conversion. The reaction product contained also 10 wt.% of DAG with a ratio of 1,3-DAG to 1,2-DAG of approximately 4:6, and can be potentially used in industrial applications as a food emulsifier. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. In situ photodeposition of cobalt on CdS nanorod for promoting photocatalytic hydrogen production under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Yanhong; Liu, Mei; Gao, Li; Mao, Liqun; Fan, Zeyun; Shangguan, Wenfeng

    2018-06-01

    Non-noble metal Co were loaded on CdS for enhancing photocatalytic activity of water splitting by a simple and efficient in situ photodeposition method. The Co particles with diameter ca. 5 nm were photoreduced and then loaded on the surface of CdS. The loading of Co can not only effectively promote the separation of electrons and holes photoexcited by CdS, but reduce the overpotential of hydrogen evolution as well, thus enhancing photocatalytic activity of water splitting. The highest photocatalytic H2 evolution rate of Co/CdS reaches up to 1299 μmol h-1 under visible light irradiation(λ > 420 nm) when the amount of loading is 1.0 wt%, which is 17 times of that of pure CdS and achieves 80% of that of 0.5 wt%Pt/CdS. This work not only exhibits a pathway to obtain photocatalysts with high photocatalytic activity for hydrogen production, but provides a possibility for the utilization of low cost Co as a substitute for noble metals in photocatalytic hydrogen production.

  3. Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media.

    PubMed

    Kristianto, Ivan; Limarta, Susan Olivia; Lee, Hyunjoo; Ha, Jeong-Myeong; Suh, Dong Jin; Jae, Jungho

    2017-06-01

    Lignin isolated by two-step concentrated acid hydrolysis of empty fruit bunch (EFB) was effectively depolymerized into a high-quality bio-oil using formic acid (FA) as an in-situ hydrogen source and Ru/C as a catalyst in supercritical ethanol. A bio-oil yield of 66.3wt% with an average molecular weight of 822g/mol and an aromatic monomer content of 6.1wt% was achieved at 350°C and a FA-to-lignin mass ratio of 3 after a reaction time of 60min. The combination of Ru/C and FA also resulted in a significant reduction in the oxygen content of the bio-oil by ∼60% and a corresponding increase in the higher heating value (HHV) to 32.7MJ/kg due to the enhanced hydrodeoxygenation activity. An examination of the FA decomposition characteristics revealed that Ru/C provides a greater increase in the rate of hydrogen production from FA, explaining the efficient depolymerization of lignin in a combined system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media.

    PubMed

    Oliveira, Nilson T C; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2005-09-01

    Different electrochemical studies were carried out for Zr and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in solutions simulating physiologic media, Ringer and PBS (phosphate buffered saline) solutions. The results from rest-potential measurements showed that the three materials are spontaneously passivated in both solutions and that the Ti-50Zr alloy has the greatest tendency for spontaneous oxide formation. Some corrosion parameters (such as the pitting and repassivation potentials) were obtained via cyclic voltammetry in both solutions, revealing that the Ti-50Zr has the best corrosion protection while Zr has the worst. On the other hand, the pre-anodization (up to 8 V vs. SCE) of the alloys in a 0.15 mol/L Na2SO4 solution led to a significant improvement in their protection against pitting corrosion when exposed to the Ringer solution. Elemental analyses by EDX showed that during pitting corrosion, there is no preferential corrosion of any of the alloying elements (Zr, Ti, Nb). Copyright (c) 2005 Wiley Periodicals, Inc.

  5. Effect of polymer concentration on the structure and performance of PEI hollow fiber membrane contactor for CO2 stripping.

    PubMed

    Naim, R; Ismail, A F

    2013-04-15

    A series of polyetherimide (PEI) hollow fiber membranes with various polymer concentrations (13-16 wt.%) for CO2 stripping process in membrane contactor application was fabricated via wet phase inversion method. The PEI membranes were characterized in terms of liquid entry pressure, contact angle, gas permeation and morphology analysis. CO2 stripping performance was investigated via membrane contactor system in a stainless steel module with aqueous diethanolamine as liquid absorbent. The hollow fiber membranes showed decreasing patterns in gas permeation, contact angle, mean pore size and effective surface porosity with increasing polymer concentration. On the contrary, wetting pressure of PEI membranes has enhanced significantly with polymer concentration. Various polymer concentrations have different effects on the CO2 stripping flux in which membrane with 14 wt.% polymer concentration showed the highest stripping flux of 2.7 × 10(-2)mol/m(2)s. From the performance comparison with other commercial membrane, it is anticipated that the PEI membrane has a good prospect in CO2 stripping via membrane contactor. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: Comparison between RGO, Au and Pt reduction sites

    NASA Astrophysics Data System (ADS)

    El-Bery, Haitham M.; Matsushita, Yoshihisa; Abdel-moneim, Ahmed

    2017-11-01

    A facile one-step synthesis approach of M/TiO2/RGO (M = Au or Pt) ternary composite by hydrothermal treatment for hydrogen generation via water-splitting was investigated. Photocurrent response measurements revealed that TiO2 (P25) nanoparticles anchored on the reduced graphene oxide (RGO) surface exhibited a p-n heterojunction interface by changing the photocurrent direction with the applied bias from reverse to forward potential. H2 evolution rate of TiO2/RGO (5 wt.%) composite was substantially enhanced by 12-fold in comparison to bare TiO2 under simulated solar light irradiation. Cyclic volatmmetry measurements manifested, that the optimized 0.3 wt.% of platinum metal loaded on TiO2/RGO composite was the most active catalytic reduction sites for hydrogen generation reaction with an initial hydrogen rate of 670 μmol h-1. This study sheds the light on the tunable semiconductor type of TiO2/RGO composite fabricated by solution mixing pathway and its merits to improve the photocatalytic activity.

  7. Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds.

    PubMed

    Kim, Seon-Jin; Jung, Su-Hwa; Kim, Joo-Sik

    2010-12-01

    Palm kernel shells were pyrolyzed in a pyrolysis plant equipped with a fluidized-bed reactor and a char-separation system. The influence of reaction temperature, feed size and feed rate on the product spectrum was also investigated. In addition, the effect of reaction temperature on the yields of phenol and phenolic compounds in the bio-oil was examined. The maximum bio-oil yield was 48.7 wt.% of the product at 490 degrees C. The maximum yield of phenol plus phenolic compounds amounted to about 70 area percentage at 475 degrees C. The yield of pyrolytic lignin after its isolation from the bio-oil was approximately 46 wt.% based on the water and ash free oil. The pyrolytic lignin was mainly composed of phenol, phenolic compounds and oligomers of coniferyl, sinapyl and p-coumaryl alcohols. From the result of a GPC analysis, the number average molecular weight and the weight average molecular weight were 325 and 463 g/mol, respectively. 2010 Elsevier Ltd. All rights reserved.

  8. Synthesis of poly(alkenoic acid) with L-leucine residue and methacrylate photopolymerizable groups useful in formulating dental restorative materials.

    PubMed

    Buruiana, Tinca; Nechifor, Marioara; Melinte, Violeta; Podasca, Viorica; Buruiana, Emil C

    2014-01-01

    To develop resin-modified glass ionomer materials, we synthesized methacrylate-functionalized acrylic copolymer (PAlk-LeuM) derived from acrylic acid, itaconic acid and N-acryloyl-L-leucine using (N-methacryloyloxyethylcarbamoyl-N'-4-hydroxybutyl) urea as the modifying agent. The spectroscopic (proton/carbon nuclear magnetic resonance, Fourier transform infrared spectroscopy) characteristics, and the gel permeation chromatography/Brookfield viscosity measurements were analysed and compared with those of the non-modified copolymer (PAlk-Leu). The photocurable copolymer (PAlk-LeuM, ~14 mol% methacrylate groups) and its precursor (PAlk-Leu) were incorporated in dental ionomer compositions besides diglycidyl methacrylate of bisphenol A (Bis-GMA) or an analogue of Bis-GMA (Bis-GMA-1), triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The kinetic data obtained by photo-differential scanning calorimetry showed that both the degree of conversion (60.50-75.62%) and the polymerization rate (0.07-0.14 s(-1)) depend mainly on the amount of copolymer (40-50 wt.%), and conversions over 70% were attained in the formulations with 40 wt.% PAlk-LeuM. To formulate light-curable cements, each organic composition was mixed with filler (90 wt.% fluoroaluminosilicate/10 wt.% hydroxyapatite) into a 2.7:1 ratio (powder/liquid ratio). The light-cured specimens exhibited flexural strength (FS), compressive strength (CS) and diametral tensile strength (DTS) varying between 28.08 and 64.79 MPa (FS), 103.68-147.13 MPa (CS) and 16.89-31.87 MPa (DTS). The best values for FS, CS and DTS were found for the materials with the lowest amount of PAlk-LeuM. Other properties such as the surface hardness, water sorption/water solubility, surface morphology and fluorescence caused by adding the fluorescein monomer were also evaluated.

  9. Cloud-point extraction of green-polymers from Cupriavidus necator lysate using thermoseparating-based aqueous two-phase extraction.

    PubMed

    Leong, Yoong Kit; Lan, John Chi-Wei; Loh, Hwei-San; Ling, Tau Chuan; Ooi, Chien Wei; Show, Pau Loke

    2017-03-01

    Polyhydroxyalkanoates (PHAs), a class of renewable and biodegradable green polymers, have gained attraction as a potential substitute for the conventional plastics due to the increasing concern towards environmental pollution as well as the rapidly depleting petroleum reserve. Nevertheless, the high cost of downstream processing of PHA has been a bottleneck for the wide adoption of PHAs. Among the options of PHAs recovery techniques, aqueous two-phase extraction (ATPE) outshines the others by having the advantages of providing a mild environment for bioseparation, being green and non-toxic, the capability to handle a large operating volume and easily scaled-up. Utilizing unique properties of thermo-responsive polymer which has decreasing solubility in its aqueous solution as the temperature rises, cloud point extraction (CPE) is an ATPE technique that allows its phase-forming component to be recycled and reused. A thorough literature review has shown that this is the first time isolation and recovery of PHAs from Cupriavidus necator H16 via CPE was reported. The optimum condition for PHAs extraction (recovery yield of 94.8% and purification factor of 1.42 fold) was achieved under the conditions of 20 wt/wt % ethylene oxide-propylene oxide (EOPO) with molecular weight of 3900 g/mol and 10 mM of sodium chloride addition at thermoseparating temperature of 60°C with crude feedstock limit of 37.5 wt/wt %. Recycling and reutilization of EOPO 3900 can be done at least twice with satisfying yield and PF. CPE has been demonstrated as an effective technique for the extraction of PHAs from microbial crude culture. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Comparison of impedimetric detection of DNA hybridization on the various biosensors based on modified glassy carbon electrodes with PANHS and nanomaterials of RGO and MWCNTs.

    PubMed

    Benvidi, Ali; Tezerjani, Marzieh Dehghan; Jahanbani, Shahriar; Mazloum Ardakani, Mohammad; Moshtaghioun, Seyed Mohammad

    2016-01-15

    In this research, we have developed lable free DNA biosensors based on modified glassy carbon electrodes (GCE) with reduced graphene oxide (RGO) and carbon nanotubes (MWCNTs) for detection of DNA sequences. This paper compares the detection of BRCA1 5382insC mutation using independent glassy carbon electrodes (GCE) modified with RGO and MWCNTs. A probe (BRCA1 5382insC mutation detection (ssDNA)) was then immobilized on the modified electrodes for a specific time. The immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were performed under optimum conditions using different electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed biosensors were used for determination of complementary DNA sequences. The non-modified DNA biosensor (1-pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS)/GCE), revealed a linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-16)molL(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.992, for DNA biosensors modified with multi-wall carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) wider linear range and lower detection limit were obtained. For ssDNA/PANHS/MWCNTs/GCE a linear range 1.0×10(-17)mol L(-1)-1.0×10(-10)mol L(-1) with a correlation coefficient of 0.993 and for ssDNA/PANHS/RGO/GCE a linear range from 1.0×10(-18)mol L(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.985 were obtained. In addition, the mentioned biosensors were satisfactorily applied for discriminating of complementary sequences from noncomplementary sequences, so the mentioned biosensors can be used for the detection of BRCA1-associated breast cancer. Copyright © 2015. Published by Elsevier B.V.

  11. Flash pyrolysis of forestry residues from the Portuguese Central Inland Region within the framework of the BioREFINA-Ter project.

    PubMed

    Amutio, Maider; Lopez, Gartzen; Alvarez, Jon; Moreira, Rui; Duarte, Gustavo; Nunes, Joao; Olazar, Martin; Bilbao, Javier

    2013-02-01

    The feasibility of the valorization by flash pyrolysis of forest shrub wastes, namely bushes (Cytisus multiflorus, Spartium junceum, Acacia dealbata and Pterospartum tridentatum) has been studied in a conical spouted bed reactor operating at 500 °C, with a continuous biomass feed and char removal. High bio-oil yields in the 75-80 wt.% range have been obtained for all of the materials, with char yields between 16 and 23 wt.% and low gas yields (4-5 wt.%). Bio-oils are composed mainly of water (accounting for a concentration in the 34-40 wt.% range in the bio-oil), phenols, ketones, acids and furans, with lower contents of saccharides, aldehydes and alcohols. Although their composition depends on the raw material, the compounds are similar to those obtained with more conventional feedstocks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Optical, structural and thermal properties of bismuth nitrate doped polycarbonate composite

    NASA Astrophysics Data System (ADS)

    Mirji, Rajeshwari; Lobo, Blaise

    2018-04-01

    Bismuth nitrate (Bi(NO3)3) doped polycarbonate (PC) films were prepared by solution casting method, in the doping range varying from 0.1 wt% to 5 wt %. The prepared samples were characterized using UV-Visible spectroscopy, X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). Optical band gap was calculated by analyzing the UV-Visible spectra of pure as well as doped PC. Optical band gap is found to decrease from 4.38 eV to 4.33 eV as the Bi(NO3)3 content within PC increases. XRD patterns showed an increase in the degree of crystallinity of Bi(NO3)3 doped PC, especially at 3.5 wt% and 5 wt%. DSC study showed an increase in the degradation temperature, as the doping level is increased from 0 wt% up to 0.3 wt%. A decrease in Tg is observed as the doping level of these samples increases from 0 wt% up to 5 wt%.

  13. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources.

    PubMed

    Wood, A P; Kelly, D P; McDonald, I R; Jordan, S L; Morgan, T D; Khan, S; Murrell, J C; Borodina, E

    1998-02-01

    The isolation and properties of a novel species of pink-pigmented methylotroph, Methylobacterium thiocyanatum, are described. This organism satisfied all the morphological, biochemical, and growth-substrate criteria to be placed in the genus Methylobacterium. Sequencing of the gene encoding its 16S rRNA confirmed its position in this genus, with its closest phylogenetic relatives being M. rhodesianum, M. zatmanii and M. extorquens, from which it differed in its ability to grow on several diagnostic substrates. Methanol-grown organisms contained high activities of hydroxypyruvate reductase -3 micromol NADH oxidized min-1 (mg crude extract protein)-1], showing that the serine pathway was used for methylotrophic growth. M. thiocyanatum was able to use thiocyanate or cyanate as the sole source of nitrogen for growth, and thiocyanate as the sole source of sulfur in the absence of other sulfur compounds. It tolerated high concentrations (at least 50 mM) of thiocyanate or cyanate when these were supplied as nitrogen sources. Growing cultures degraded thiocyanate to produce thiosulfate as a major sulfur end product, apparently with the intermediate formation of volatile sulfur compounds (probably hydrogen sulfide and carbonyl sulfide). Enzymatic hydrolysis of thiocyanate by cell-free extracts was not demonstrated. Cyanate was metabolized by means of a cyanase enzyme that was expressed at approximately sevenfold greater activity during growth on thiocyanate [Vmax 634 +/- 24 nmol NH3 formed min-1 (mg protein)-1] than on cyanate [89 +/- 9 nmol NH3 min-1 (mg protein)-1]. Kinetic study of the cyanase in cell-free extracts showed the enzyme (1) to exhibit high affinity for cyanate (Km 0.07 mM), (2) to require bicarbonate for activity, (3) to be subject to substrate inhibition by cyanate and competitive inhibition by thiocyanate (Ki 0.65 mM), (4) to be unaffected by 1 mM ammonium chloride, (5) to be strongly inhibited by selenocyanate, and (6) to be slightly inhibited by 5 mM thiosulfate, but unaffected by 0.25 mM sulfide or 1 mM thiosulfate. Polypeptides that might be a cyanase subunit (mol.wt. 17.9 kDa), a cyanate (and/or thiocyanate) permease (mol.wt. 25.1 and 27.2 kDa), and a putative thiocyanate hydrolase (mol.wt. 39.3 kDa) were identified by SDS-PAGE. Correlation of the growth rate of cultures with thiocyanate concentration (both stimulatory and inhibitory) and the kinetics of cyanase activity might indicate that growth on thiocyanate involved the intermediate formation of cyanate, hence requiring cyanase activity. The very high activity of cyanase observed during growth on thiocyanate could be in compensation for the inhibitory effect of thiocyanate on cyanase. Alternatively, thiocyanate may be a nonsubstrate inducer of cyanase, while thiocyanate degradation itself proceeds by a carbonyl sulfide pathway not involving cyanate. A formal description of the new species (DSM 11490) is given.

  14. Recommendations for newborn screening for galactokinase deficiency: A systematic review and evaluation of Dutch newborn screening data.

    PubMed

    Stroek, Kevin; Bouva, Marelle J; Schielen, Peter C J I; Vaz, Frédéric M; Heijboer, Annemieke C; de Jonge, Robert; Boelen, Anita; Bosch, Annet M

    2018-03-21

    Galactokinase (GALK) deficiency causes cataract leading to severe developmental consequences unless treated early. Because of the easy prevention and rapid reversibility of cataract with treatment, the Dutch Health Council advised to include GALK deficiency in the Dutch newborn screening program. The aim of this study is to establish the optimal screening method and cut-off value (COV) for GALK deficiency screening by performing a systematic review of the literature of screening strategies and total galactose (TGAL) values and by evaluating TGAL values in the first week of life in a cohort of screened newborns in the Netherlands. Systematic literature search strategies in OVID MEDLINE and OVID EMBASE were developed and study selection, data collection and analyses were performed by two independent investigators. A range of TGAL values measured by the Quantase Neonatal Total Galactose screening assay in a cohort of Dutch newborns in 2007 was evaluated. Eight publications were included in the systematic review. All four studies describing screening strategies used TGAL as the primary screening marker combined with galactose-1-phosphate uridyltransferase (GALT) measurement that is used for classical galactosemia screening. TGAL COVs of 2200 μmol/L, 1665 μmol/L and 1110 μmol/L blood resulted in positive predictive values (PPV) of 100%, 82% and 10% respectively. TGAL values measured in the newborn period were reported for 39 GALK deficiency patients with individual values ranging from 3963 to 8159 μmol/L blood and 2 group values with mean 8892 μmol/L blood (SD ± 5243) and 4856 μmol/L blood (SD ± 461). Dutch newborn screening data of 72,786 newborns from 2007 provided a median TGAL value of 110 μmol/L blood with a range of 30-2431 μmol/L blood. Based on TGAL values measured in GALK deficiency patients reported in the literature and TGAL measurements in the Dutch cohort by newborn screening we suggest to perform the GALK screening with TGAL as a primary marker with a COV of 2500 μmol/L blood, combined with GALT enzyme activity measurement as used in the classical galactosemia screening, to ensure detection of GALK deficiency patients and minimize false positive referrals. Copyright © 2018. Published by Elsevier Inc.

  15. Degradable biocomposite of nano calcium-deficient hydroxyapatite-multi(amino acid) copolymer

    PubMed Central

    Li, Hong; Gong, Min; Yang, Aiping; Ma, Jian; Li, Xiangde; Yan, Yonggang

    2012-01-01

    Background and methods A nano calcium-deficient hydroxyapatite (n-CDHA)-multi(amino acid) copolymer (MAC) composite bone substitute biomaterial was prepared using an in situ polymerization method. The composition, structure, and compressive strength of the composite was characterized, and the in vitro degradability in phosphate-buffered solution and preliminary cell responses to the composite were investigated. Results The composite comprised n-CDHA and an amide linkage copolymer. The compressive strength of the composite was in the range of 88–129 MPa, varying with the amount of n-CDHA in the MAC (ranging from 10 wt% to 50 wt%). Weight loss from the composite increased (from 32.2 wt% to 44.3 wt%) with increasing n-CDHA content (from 10 wt% to 40 wt%) in the MAC after the composite was soaked in phosphate-buffered solution for 12 weeks. The pH of the soaking medium varied from 6.9 to 7.5. MG-63 cells with an osteogenic phenotype were well adhered and spread on the composite surface. Viability and differentiation increased with time, indicating that the composite had no negative effects on MG-63 cells. Conclusion The n-CDHA-MAC composite had good cytocompatibility and has potential to be used as a bone substitute. PMID:22457591

  16. Trends in the short-term release of fission products and actinides to aqueous solution from used CANDU fuels at elevated temperature

    NASA Astrophysics Data System (ADS)

    Stroes-Gascoyne, S.

    1992-08-01

    A large number of short-term leaching experiments has been performed to determine fission product and actinide release from used CANDU (CANada Deuterium Uranium) fuels and to establish which factors affect release. Results are reported after30 ± 10 d leaching at 100-150°C under oxidizing (air) or reducing (Ar-3% H 2 or Ar) conditions, in various synthetic groundwaters. Cesium-137 release (0.007-6%) was positively correlated with increases in fuel power, leachant temperature and ionic strength. Strontium-90 release (0.0003-0.3%) generally increased with ionic strength, higher temperature and redox conditions. Actinide and Tc concentrations were compared to ranges calculated with a thermodynamic equilibrium model, that accounts for the uncertain geochemical parameters of a nuclear waste vault by calculating concentration ranges based on 40000 hypothetical cases. Experimental U concentrations (10 -8.5 to 10 -3 mol/kg) were higher than the model range, probably because of higher redox potentials in the experiments. Measured Pu concentrations (10 -12.5 to 10 -7 mol/kg) were at the low end of the calculated range. Americium and Cm concentrations (10 -12.5 to 10 -7 and 10 -15 to 10 -9 mol/kg, respectively) were highest under oxidizing conditions and higher temperatures. Technetium-99 concentrations (10 -5.5 to 10 -10.5 mol/kg) covered a much narrower range than calculated by the model.

  17. Hot Ductility and Compression Deformation Behavior of TRIP980 at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Zhang, Mei; Li, Haiyang; Gan, Bin; Zhao, Xue; Yao, Yi; Wang, Li

    2018-02-01

    The hot ductility tests of a kind of 980 MPa class Fe-0.31C (wt pct) TRIP steel (TRIP980) with the addition of Ti/V/Nb were conducted on a Gleeble-3500 thermomechanical simulator in the temperatures ranging from 873 K to 1573 K (600 °C to 1300 °C) at a constant strain rate of 0.001 s-1. It is found that the hot ductility trough ranges from 873 K to 1123 K (600 °C to 850 °C). The recommended straightening temperatures are from 1173 K to 1523 K (900 °C to 1250 °C). The isothermal hot compression deformation behavior was also studied by means of Gleeble-3500 in the temperatures ranging from 1173 K to 1373 K (900 °C to 1100 °C) at strain rates ranging from 0.01 s-1 to 10 s-1. The results show that the peak stress decreases with the increasing temperature and the decreasing strain rate. The deformation activation energy of the test steel is 436.7 kJ/mol. The hot deformation equation of the steel has been established, and the processing maps have been developed on the basis of experimental data and the principle of dynamic materials model (DMM). By analyzing the processing maps of strains of 0.5, 0.7, and 0.9, it is found that dynamic recrystallization occurs in the peak power dissipation efficiency domain, which is the optimal area of hot working. Finally, the factors influencing hot ductility and thermal activation energy of the test steel were investigated by means of microscopic analysis. It indicates that the additional microalloying elements play important roles both in the loss of hot ductility and in the enormous increase of deformation activation energy for the TRIP980 steel.

  18. Wild-type male offspring of fmr-1+/- mothers exhibit characteristics of the fragile X phenotype.

    PubMed

    Zupan, Bojana; Toth, Miklos

    2008-10-01

    Fragile X syndrome is an X-linked disorder caused by the inactivation of the FMR-1 gene with symptoms ranging from impaired cognitive functions to seizures, anxiety, sensory abnormalities, and hyperactivity. Males are more severely affected than heterozygote (H) females, who, as carriers, have a 50% chance of transmitting the mutated allele in each pregnancy. fmr-1 knockout (KO) mice reproduce fragile X symptoms, including hyperactivity, seizures, and abnormal sensory processing. In contrast to the expectation that wild-type (WT) males born to H (fmr-1(+/-)) mothers (H>WT) are behaviorally normal and indistinguishable from WT males born to WT mothers (WT>WT); here, we show that H>WT offspring are more active than WT>WT offspring and that their hyperactivity is similar to male KO mice born to H or KO (fmr-1(-/-)) mothers (H>KO/KO>KO). H>WT mice, however, do not exhibit seizures or abnormal sensory processing. Consistent with their hyperactivity, the effect of the D2 agonist quinpirole is reduced in H>WT as well as in H>KO and KO>KO mice compared to WT>WT offspring, suggesting a diminished feedback inhibition of dopamine release. Our data indicate that some aspects of hyperactivity and associated dopaminergic changes in 'fragile X' mice are a maternal fmr-1 genotype rather than an offspring fmr-1 genotype effect.

  19. Wild-Type Male Offspring of fmr-1+/− Mothers Exhibit Characteristics of the Fragile X Phenotype

    PubMed Central

    Zupan, Bojana; Toth, Miklos

    2009-01-01

    Fragile X syndrome is an X-linked disorder caused by the inactivation of the FMR-1 gene with symptoms ranging from impaired cognitive functions to seizures, anxiety, sensory abnormalities, and hyperactivity. Males are more severely affected than heterozygote (H) females, who, as carriers, have a 50% chance of transmitting the mutated allele in each pregnancy. fmr-1 knockout (KO) mice reproduce fragile X symptoms, including hyperactivity, seizures, and abnormal sensory processing. In contrast to the expectation that wild-type (WT) males born to H (fmr-1+/−) mothers (H> WT) are behaviorally normal and indistinguishable from WT males born to WT mothers (WT> WT); here, we show that H> WT offspring are more active than WT> WT offspring and that their hyperactivity is similar to male KO mice born to H or KO (fmr-1−/−) mothers (H> KO/KO> KO). H> WT mice, however, do not exhibit seizures or abnormal sensory processing. Consistent with their hyperactivity, the effect of the D2 agonist quinpirole is reduced in H> WT as well as in H> KO and KO> KO mice compared to WT> WT offspring, suggesting a diminished feedback inhibition of dopamine release. Our data indicate that some aspects of hyperactivity and associated dopaminergic changes in ‘fragile X’ mice are a maternal fmr-1 genotype rather than an offspring fmr-1 genotype effect. PMID:18172434

  20. A sorghum (Sorghum bicolor) mutant with altered carbon isotope ratio.

    PubMed

    Rizal, Govinda; Karki, Shanta; Thakur, Vivek; Wanchana, Samart; Alonso-Cantabrana, Hugo; Dionora, Jacque; Sheehy, John E; Furbank, Robert; von Caemmerer, Susanne; Quick, William Paul

    2017-01-01

    Recent efforts to engineer C4 photosynthetic traits into C3 plants such as rice demand an understanding of the genetic elements that enable C4 plants to outperform C3 plants. As a part of the C4 Rice Consortium's efforts to identify genes needed to support C4 photosynthesis, EMS mutagenized sorghum populations were generated and screened to identify genes that cause a loss of C4 function. Stable carbon isotope ratio (δ13C) of leaf dry matter has been used to distinguishspecies with C3 and C4 photosynthetic pathways. Here, we report the identification of a sorghum (Sorghum bicolor) mutant with a low δ13C characteristic. A mutant (named Mut33) with a pale phenotype and stunted growth was identified from an EMS treated sorghum M2 population. The stable carbon isotope analysis of the mutants showed a decrease of 13C uptake capacity. The noise of random mutation was reduced by crossing the mutant and its wildtype (WT). The back-cross (BC1F1) progenies were like the WT parent in terms of 13C values and plant phenotypes. All the BC1F2 plants with low δ13C died before they produced their 6th leaf. Gas exchange measurements of the low δ13C sorghum mutants showed a higher CO2 compensation point (25.24 μmol CO2.mol-1air) and the maximum rate of photosynthesis was less than 5μmol.m-2.s-1. To identify the genetic determinant of this trait, four DNA pools were isolated; two each from normal and low δ13C BC1F2 mutant plants. These were sequenced using an Illumina platform. Comparison of allele frequency of the single nucleotide polymorphisms (SNPs) between the pools with contrasting phenotype showed that a locus in Chromosome 10 between 57,941,104 and 59,985,708 bps had an allele frequency of 1. There were 211 mutations and 37 genes in the locus, out of which mutations in 9 genes showed non-synonymous changes. This finding is expected to contribute to future research on the identification of the causal factor differentiating C4 from C3 species that can be used in the transformation of C3 to C4 plants.

  1. A sorghum (Sorghum bicolor) mutant with altered carbon isotope ratio

    PubMed Central

    Karki, Shanta; Thakur, Vivek; Wanchana, Samart; Alonso-Cantabrana, Hugo; Dionora, Jacque; Sheehy, John E.; Furbank, Robert; von Caemmerer, Susanne; Quick, William Paul

    2017-01-01

    Recent efforts to engineer C4 photosynthetic traits into C3 plants such as rice demand an understanding of the genetic elements that enable C4 plants to outperform C3 plants. As a part of the C4 Rice Consortium’s efforts to identify genes needed to support C4 photosynthesis, EMS mutagenized sorghum populations were generated and screened to identify genes that cause a loss of C4 function. Stable carbon isotope ratio (δ13C) of leaf dry matter has been used to distinguishspecies with C3 and C4 photosynthetic pathways. Here, we report the identification of a sorghum (Sorghum bicolor) mutant with a low δ13C characteristic. A mutant (named Mut33) with a pale phenotype and stunted growth was identified from an EMS treated sorghum M2 population. The stable carbon isotope analysis of the mutants showed a decrease of 13C uptake capacity. The noise of random mutation was reduced by crossing the mutant and its wildtype (WT). The back-cross (BC1F1) progenies were like the WT parent in terms of 13C values and plant phenotypes. All the BC1F2 plants with low δ13C died before they produced their 6th leaf. Gas exchange measurements of the low δ13C sorghum mutants showed a higher CO2 compensation point (25.24 μmol CO2.mol-1air) and the maximum rate of photosynthesis was less than 5μmol.m-2.s-1. To identify the genetic determinant of this trait, four DNA pools were isolated; two each from normal and low δ13C BC1F2 mutant plants. These were sequenced using an Illumina platform. Comparison of allele frequency of the single nucleotide polymorphisms (SNPs) between the pools with contrasting phenotype showed that a locus in Chromosome 10 between 57,941,104 and 59,985,708 bps had an allele frequency of 1. There were 211 mutations and 37 genes in the locus, out of which mutations in 9 genes showed non-synonymous changes. This finding is expected to contribute to future research on the identification of the causal factor differentiating C4 from C3 species that can be used in the transformation of C3 to C4 plants. PMID:28640841

  2. Flame retardants and methoxylated and hydroxylated polybrominated diphenyl ethers in two Norwegian Arctic top predators: glaucous gulls and polar bears.

    PubMed

    Verreault, Jonathan; Gabrielsen, Geir W; Chu, Shaogang; Muir, Derek C G; Andersen, Magnus; Hamaed, Ahmad; Letcher, Robert J

    2005-08-15

    The brominated flame retardants have been subject of a particular environmental focus in the Arctic. The present study investigated the congener patterns and levels of total hexabromocyclododecane (HBCD), polybrominated biphenyls, polybrominated diphenyl ethers (PBDEs), as well as methoxylated (MeO) and hydroxylated (OH) PBDEs in plasma samples of glaucous gulls (Larus hyperboreus) and polar bears (Ursus maritimus) from the Norwegian Arctic. The analyses revealed the presence of total HBCD (0.07-1.24 ng/g wet wt) and brominated biphenyl 101 (< 0.13-0.72 ng/g wet wt) in glaucous gull samples whereas these compounds were generally found at nondetectable or transient concentrations in polar bears. Sum (sigma) concentrations of the 12 PBDEs monitored in glaucous gulls (range: 8.23-67.5 ng/g wet wt) surpassed largely those of polar bears (range: 2.65-9.72 ng/g wet wt). Two higher brominated PBDEs, BDE183 and BDE209, were detected, and thus bioaccumulated to a limited degree, in glaucous gulls with concentrations ranging from < 0.03 to 0.43 ng/g wet wt and from < 0.05 to 0.33 ng/g wet wt, respectively. In polar bear plasma, BDE183 was < 0.04 ng/g wet wt for all animals, and BDE209 was only detected in 7% of the samples at concentrations up to 0.10 ng/g wet wt. Of the 15 MeO-PBDEs analyzed in plasma samples, 3-MeO-BDE47 was consistently dominant in glaucous gulls (sigmaMeO-PBDE: 0.30-4.30 ng/g wet wt) and polar bears (sigmaMeO-PBDE up to 0.17 ng/g wet wt), followed by 4'-MeO-BDE49 and 6-MeO-BDE47. The 3-OH-BDE47, 4'-OH-BDE49, and 6-OH-BDE47 congeners were also detected in glaucous gulls (sigmaOH-PBDE up to 1.05 ng/g wet wt), although in polar bears 4'-OH-BDE49 was the only congener quantifiable in 13% of the samples. The presence of MeO- and OH-PBDEs in plasma of both species suggests possible dietary uptake from naturally occurring sources (e.g., marine sponges and green algae), but also metabolically derived biotransformation of PBDEs such as BDE47 could be a contributing factor. Our findings suggest that there are dissimilar biochemical mechanisms involved in PCB and PBDE metabolism and accumulation/elimination and/or OH-PBDE accumulation and retention in glaucous gulls and polar bears.

  3. Thermococcus sulfurophilus sp. nov., a New Hyperthermophilic, Sulfur-Reducing Archaeon Isolated from Deep-Sea Hydrothermal Vent

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Whitman, William B.; Marsic, Damien; Garriott, Owen; Six, N. Frank (Technical Monitor)

    2002-01-01

    A new hyperthermophilic, anaerobic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P, was isolated from "black smoker" chimney material at the Rainbow hydrothermal vent site in the Atlantic Ocean (36.2 N; 33.9 W). The cells of strain OGL-20P have irregular coccoid shape and are motile with a single flagellum. Growth occurs within pH range of 5.5-8.2 (optimal at pH 7.0-7.2), salinity range of 1-5% NaCl (optimal concentration 3% NaCl wt/vol), and temperature range of +55 C to +94 C (optimal growth at +83 C to +85 C). Strain OGL-20P is resistant to freezing (at -20 C). New isolate is strictly anaerobic with sulfur-type of respiration. A limited number of compounds are utilized as electron donors, including peptone, becto-tryptone, casamino-acids, and yeast extract but does not grow with separate amino acids. Sulfur and Iron can be used as electron acceptors; but not sulfate, sulfite, thiosulfate or nitrate. Strain OGL-20P is resistant to chloramphenicol, kanamycin, and gentamycin. Growth of str. OGL20P is inhibited by tetracyclin but not by Na2MoO4. The G+C content of DNA is 57.2 mol%. The 16S ribosomal RNA sequence analysis allows one to classify strain OGL-20P as a representative of a now species of Thermococcus genus. The name Thermococcus sulfurophilus op. nov., was suggested for the new isolate, type strain OGL-20P (sup T) (= ATCC BAA_394 (sup T) = DSM...(supT)).

  4. Influence of Li Addition to Zn-Al Alloys on Cu Substrate During Spreading Test and After Aging Treatment

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Pstrus, Janusz; Cempura, Grzegorz; Berent, Katarzyna

    2016-12-01

    The spreading of Zn-Al eutectic-based alloys with 0.05 wt.%, 0.1 wt.%, and 0.2 wt.% Li on Cu substrate has been studied using the sessile drop method in presence of QJ201 flux. Wetting tests were performed after 1 min, 3 min, 8 min, 15 min, 30 min, and 60 min of contact at temperatures of 475°C, 500°C, 525°C, and 550°C. Samples after spreading at 500°C for 1 min were subjected to aging for 1 day, 10 days, and 30 days at temperature of 120°C, 170°C, and 250°C. The spreadability of eutectic Zn-5.3Al alloy with different Li contents on Cu substrate was determined in accordance with ISO 9455-10:2013-03. Selected solidified solder-substrate couples were, after spreading and aging tests, cross-sectioned and subjected to scanning electron microscopy, energy-dispersive spectroscopy (EDS), and x-ray diffraction (XRD) analysis of the interfacial microstructure. An experiment was designed to demonstrate the effect of Li addition on the kinetics of the formation and growth of CuZn, Cu5Zn8, and CuZn4 intermetallic compound (IMC) phases, during spreading and aging. The IMC layers formed at the interface were identified using XRD and EDS analyses. Increasing addition of Li to Zn-Al alloy caused a reduction in the thickness of the IMC layer at the interface during spreading, and an increase during aging. The activation energy was calculated, being found to increase for the Cu5Zn8 phase but decrease for the CuZn and CuZn4 phases with increasing Li content in the Zn-Al-Li alloys. The highest value of 142 kJ mol-1 was obtained for Zn-Al with 1.0 Li during spreading and 69.2 kJ mol-1 for Zn-Al with 0.05 Li during aging. Aging at 250°C caused an increase in only the Cu5Zn8 layer, which has the lowest Gibbs energy in the Cu-Zn system. This result is connected to the high diffusion of Cu from the substrate to the solder.

  5. O2 reduction and denitrification rates in shallow aquifers

    NASA Astrophysics Data System (ADS)

    Tesoriero, Anthony J.; Puckett, Larry J.

    2011-12-01

    O2 reduction and denitrification rates were determined in shallow aquifers of 12 study areas representing a wide range in sedimentary environments and climatic conditions. Zero- and first-order rates were determined by relating reactant or product concentrations to apparent groundwater age. O2 reduction rates varied widely within and between sites, with zero-order rates ranging from <3 μmol L-1 yr-1 to more than 140 μmol L-1 yr-1 and first-order rates ranging from 0.02 to 0.27 yr-1. Moderate denitrification rates (10-100 μmol N L-1 yr-1; 0.06-0.30 yr-1) were observed in most areas with O2 concentrations below 60 μmol L-1, while higher rates (>100 μmol N L-1 yr-1; >0.36 yr-1) occur when changes in lithology result in a sharp increase in the supply of electron donors. Denitrification lag times (i.e., groundwater travel times prior to the onset of denitrification) ranged from <20 yr to >80 yr. The availability of electron donors is indicated as the primary factor affecting O2 reduction rates. Concentrations of dissolved organic carbon (DOC) and/or sulfate (an indicator of sulfide oxidation) were positively correlated with groundwater age at sites with high O2 reduction rates and negatively correlated at sites with lower rates. Furthermore, electron donors from recharging DOC are not sufficient to account for appreciable O2 and nitrate reduction. These relations suggest that lithologic sources of DOC and sulfides are important sources of electrons at these sites but surface-derived sources of DOC are not. A review of published rates suggests that denitrification tends to occur more quickly when linked with sulfide oxidation than with carbon oxidation.

  6. O 2 reduction and denitrification rates in shallow aquifers

    USGS Publications Warehouse

    Tesoriero, A.J.; Puckett, L.J.

    2011-01-01

    O 2 reduction and denitrification rates were determined in shallow aquifers of 12 study areas representing a wide range in sedimentary environments and climatic conditions. Zero-and first-order rates were determined by relating reactant or product concentrations to apparent groundwater age. O 2 reduction rates varied widely within and between sites, with zero-order rates ranging from <3 ??mol L -1 yr -1 to more than 140 ??mol L -1 yr -1 and first-order rates ranging from 0.02 to 0.27 yr -1. Moderate denitrification rates (10-100 ??mol N L -1 yr -1; 0.06-0.30 yr -1) were observed in most areas with O 2 concentrations below 60 mol L -1, while higher rates (>100 mol N L -1 yr -1; >0.36 yr -1) occur when changes in lithology result in a sharp increase in the supply of electron donors. Denitrification lag times (i.e., groundwater travel times prior to the onset of denitrification) ranged from <20 yr to >80 yr. The availability of electron donors is indicated as the primary factor affecting O 2 reduction rates. Concentrations of dissolved organic carbon (DOC) and/or sulfate (an indicator of sulfide oxidation) were positively correlated with groundwater age at sites with high O 2 reduction rates and negatively correlated at sites with lower rates. Furthermore, electron donors from recharging DOC are not sufficient to account for appreciable O 2 and nitrate reduction. These relations suggest that lithologic sources of DOC and sulfides are important sources of electrons at these sites but surface-derived sources of DOC are not. A review of published rates suggests that denitrification tends to occur more quickly when linked with sulfide oxidation than with carbon oxidation. copyright 2011 by the American Geophysical Union.

  7. Magnetic, Electric and Optical Properties of Mg-Substituted Ni-Cu-Zn Ferrites

    NASA Astrophysics Data System (ADS)

    Kabbur, S. M.; Ghodake, U. R.; Kambale, Rahul C.; Sartale, S. D.; Chikhale, L. P.; Suryavanshi, S. S.

    2017-10-01

    The Ni0.25- x Mg x Cu0.30Zn0.45Fe2O4 ( x = 0.00 mol, 0.05 mol, 0.10 mol, 0.15 mol, 0.20 mol and 0.25 mol) magnetic oxide system was prepared by a sol-gel auto-combustion method using glycine as a fuel. X-ray diffraction study reveals the formation of pure spinel lattice symmetry along with the presence of a small fraction of unreacted Fe2O3 phase as a secondary phase due to incomplete combustion reaction between fuel and oxidizer. The lattice constant ( a) was found to decrease with the increase of Mg2+ content; the average crystallite size ( D) is observed in the range of 26.78-33.14 nm. At room temperature, all the samples show typical magnetic hysteresis loops with the decrease of magnetic moment ( n B) of Ni-Cu-Zn ferrites with the increase of Mg2+ content. The intrinsic vibrational absorption bands for the tetrahedral and octahedral sites of the spinel structure were confirmed by infrared (IR) spectroscopy. The optical parameters such as refractive index ( η), velocity of IR waves ( v) and jump rates ( J 1, J 2, J) were studied and found to be dependent on the variation of the lattice constant. The Curie temperature ( T c) of Ni-Cu-Zn mixed ferrite was found to decrease with Mg2+ addition. The composition x = 0.15 mol.% with a low dielectric loss tangent of 2% seems to have potential for multilayer chip inductor applications at a wide range of frequencies.

  8. Insight into proton transfer in phosphotungstic acid functionalized mesoporous silica-based proton exchange membrane fuel cells.

    PubMed

    Zhou, Yuhua; Yang, Jing; Su, Haibin; Zeng, Jie; Jiang, San Ping; Goddard, William A

    2014-04-02

    We have developed for fuel cells a novel proton exchange membrane (PEM) using inorganic phosphotungstic acid (HPW) as proton carrier and mesoporous silica as matrix (HPW-meso-silica) . The proton conductivity measured by electrochemical impedance spectroscopy is 0.11 S cm(-1) at 90 °C and 100% relative humidity (RH) with a low activation energy of ∼14 kJ mol(-1). In order to determine the energetics associated with proton migration within the HPW-meso-silica PEM and to determine the mechanism of proton hopping, we report density functional theory (DFT) calculations using the generalized gradient approximation (GGA). These DFT calculations revealed that the proton transfer process involves both intramolecular and intermolecular proton transfer pathways. When the adjacent HPWs are close (less than 17.0 Å apart), the calculated activation energy for intramolecular proton transfer within a HPW molecule is higher (29.1-18.8 kJ/mol) than the barrier for intermolecular proton transfer along the hydrogen bond. We find that the overall barrier for proton movement within the HPW-meso-silica membranes is determined by the intramolecular proton transfer pathway, which explains why the proton conductivity remains unchanged when the weight percentage of HPW on meso-silica is above 67 wt %. In contrast, the activation energy of proton transfer on a clean SiO2 (111) surface is computed to be as high as ∼40 kJ mol(-1), confirming the very low proton conductivity on clean silica surfaces observed experimentally.

  9. Microstructure and hardness of carbon and tool steel quenched with high-frequency currents

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Fedoseev, Maksim E.; Palkanov, Pavel A.; Voyko, Aleksey V.; Fomina, Marina A.; Koshuro, Vladimir A.; Zakharevich, Andrey M.; Kalganova, Svetlana G.; Rodionov, Igor V.

    2018-04-01

    In the course of high-temperature treatment with high-frequency currents (HFC) in the range from 600 to 1300 °C, carbon and tool steels are strengthened. After the heat treatment the hardness reaches 64-70 HRC for carbon steel (carbon content 0.4-0.5%) and 68-71 HRC for tool steel 1.3343 (R6M5 steel analogue with 0.9-1.0% C content, W - 5-6 wt%, Mo - 3.5-5.3 wt%, V - 1.3-1.8 wt%, Cr - 3.8-4.3 wt%, Mn+Si - 0.5-1 wt%, Fe - balance). The resulting structure is a carbide network, and in the case of tool steel - complex carbides around a high-strength martensitic phase.

  10. D/H and Water Concentrations of Submarine MORB Glass Around the World: Analytical Aspects, Standardization, and (re)defining Mantle D/H Ranges

    NASA Astrophysics Data System (ADS)

    Bindeman, I. N.; Dixon, J. E.; Langmuir, C. H.; Palandri, J. L.

    2015-12-01

    The advent and calibration of the Thermal Combustion Element Analyzer (TCEA) continuous flow system coupled with the large-radius mass spectrometer MAT253 permits precise (±0.02 wt.% H2O, ±1-3‰ D/H) measurements in 1-10 mg of volcanic glass (0.1 wt.% H2O requires ~10 mg glass), which permits the targeting of small amounts of the freshest concentrate. This is a >100 factor reduction in sample size over conventional methods, four times over more common Delta series instruments. We investigated in triplicate 115 samples of submarine MORB glasses ranging from water-poor (0.1-0.2wt%) to water-rich (1.2-1.5wt%). These samples were previously investigated for major and trace elements, radiogenic isotopes; a large subset of these samples coming from the FAZAR expedition were studied previously by FTIR for water concentration. We also ran samples previously studied by the conventional off-line technique: MORB glass including those from the Easter Platform and the Alvin 526-1 standard (0.2wt% H2O). We observe excellent 1:1 correspondence (1.02x+0.02, R2=0.94) of wt% water by FTIR and TCEA suggesting complete extraction of water and no dependence on water concentration. We measure 51‰ total range in D/H that correlates with all other chemical and isotopic indicators of mantle enrichment, with the heaviest values occurring in the most enriched samples. When used uncorrected values of H2 gas run against H2 gas of known composition, this range agrees nicely with previous D/H range for MORB (-30 to -90‰), measured for samples run conventionally. Uncorrected analyses of Alvin glass 526-1 gives -66‰. When run against SMOW, SLAP and -41‰ water sealed in silver cups, the range is shifted by -15‰; when standardization is done by with three commonly used mica standards as is done most commonly in different labs, the range is shifted downward by -30-32‰. There are no isotopic offsets related to total water or D/H range requiring different slope or non-linear correction. The NBS30 mica standard has been recently shown to be heavier and more heterogeneous than previously thought, and older conventional methods that relied on Pt reduction unreliable. Based on these new TCEA results, the D/H values of MORB and mantle samples may need to be revised to lighter values by 15‰.

  11. Formation of Multiple-Phase Catalysts for the Hydrogen Storage of Mg Nanoparticles by Adding Flowerlike NiS.

    PubMed

    Xie, Xiubo; Ma, Xiujuan; Liu, Peng; Shang, Jiaxiang; Li, Xingguo; Liu, Tong

    2017-02-22

    In order to enhance the hydrogen storage properties of Mg, flowerlike NiS particles have been successfully prepared by solvothermal reaction method, and are subsequently ball milled with Mg nanoparticles (NPs) to fabricate Mg-5 wt % NiS nanocomposite. The nanocomposite displays Mg/NiS core/shell structure. The NiS shell decomposes into Ni, MgS and Mg 2 Ni multiple-phases, decorating on the surface of the Mg NPs after the first hydrogen absorption and desorption cycle at 673 K. The Mg-MgS-Mg 2 Ni-Ni nanocomposite shows enhanced hydrogenation and dehydrogenation rates: it can quickly uptake 3.5 wt % H 2 within 10 min at 423 K and release 3.1 wt % H 2 within 10 min at 573 K. The apparent hydrogen absorption and desorption activation energies are decreased to 45.45 and 64.71 kJ mol -1 . The enhanced sorption kinetics of the nanocomposite is attributed to the synergistic catalytic effects of the in situ formed MgS, Ni and Mg 2 Ni multiple-phase catalysts during the hydrogenation/dehydrogenation process, the porthole effects for the volume expansion and microstrain of the phase transformation of Mg 2 Ni and Mg 2 NiH 4 and the reduced hydrogen diffusion distance caused by nanosized Mg. This novel method of in situ producing multiple-phase catalysts gives a new horizon for designing high performance hydrogen storage material.

  12. Washboard Terrain on Pluto

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey M.; White, Oliver L.; Howard, Alan D.; Umurhan, Orkan M.; Schenk, Paul M.; Beyer, Ross A.; McKinnnon, William B.; Singer, Kelsi N.; Lauer, Tod R.; Cheng, Andrew F.; Young, Leslie; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine; Ennico, Kimberly; New Horizons Science Team

    2017-10-01

    Washboard texture or patterning consists of fields of parallel to sub-parallel ridges typically spaced ~1-2 km crest to crest and a few 100 m in amplitude (Fig. 4a in Moore et al., 2016, Science, 351, 1284-1293). For the most part, underlying topography can be easily discerned. We will refer to discrete, well-bounded patches of these landforms as Washboard Terrain (WT). WT is observed to occur along the rim, and just beyond the rim, of Sputnik basin from the West to NNW. Where it is seen in high-resolution data, it has clearly defined limits, beyond which it would be able to be seen if it were there. WT doesn’t occur at very low latitudes or very high latitudes (ranging from 22°N to 62°N). WT seems to occur most conspicuously on relatively level, gently sloping terrain. It is restricted to elevations between ~-2 km to <+1.5 km (i.e. not at high elevations). The most noticeable regional aspect of the area in which WT occurs is the sinuous valley network, which is suspected to have been formed, or at least substantially modified, by glaciation. WT also appears to occur mainly on an intermediate-albedo reddish material, where seen in enhanced color data. Where it occurs in level terrain, WT tends to trend ENE - there doesn’t seem to be a strong local control of its orientation in response to valley drainage directions. WT can display a greater range of orientations where it occurs in higher-relief (not higher elevation) settings such as spurs. WT appears superposed on very ancient landscapes, but is itself cratered locally by clusters of small (~1-3 km) craters, which may be secondaries. This implies that WT may be intermediate in age. Of several working hypotheses, we currently provisionally favor that WT may be akin to terrestrial recessional moraines (or de Geer moraines) associated with the retreat of a higher stand of N2 glaciation that once overfilled Sputnik basin. These putative moraine features may owe their spacing to superseasonal retreat on Milankovitch timescales of ~1 Ma. If this hypothesis has validity, then perhaps the intermediate-albedo reddish material may be akin to ground moraine deposits.

  13. Morphological and physical characterization of poly(styrene-isobutylene-styrene) block copolymers and ionomers thereof

    NASA Astrophysics Data System (ADS)

    Baugh, Daniel Webster, III

    Poly(styrene-isobutylene-styrene) block copolymers made by living cationic polymerization using a difunctional initiator and the sequential monomer addition technique were analyzed using curve-resolution software in conjunction with high-resolution GPC. Fractional precipitation and selective solvent extraction were applied to a representative sample in order to confirm the identity of contaminating species. The latter were found to be low molecular weight polystyrene homopolymer, diblock copolymer, and higher molecular weight segmented block copolymers formed by intermolecular electrophilic aromatic substitution linking reactions occurring late in the polymerization of the styrene outer blocks. Solvent-cast films of poly(styrene-isobutylene-styrene) (PS-PIB-PS) block copolymers and block ionomers were analyzed using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Four block copolymer samples with center block molecular weights of 52,000 g/mol and PS volume fractions (o sbPS) ranging from 0.17 to 0.31 were studied. All samples exhibited hexagonally packed cylinders of PS within the PIB matrix. Cylinder spacing was in the range 32 to 36 nm for most samples, while cylinder diameters varied from 14 to 21 nm. Porod analysis of the scattering data indicated the presence of isolated phase mixing and sharp phase boundaries. PS-PIB-PS block copolymers and ionomers therefrom were analyzed using dynamic mechanical analysis (DMA) and tensile testing. The study encompassed five block copolymer samples with similar PIB center blocks with molecular weights of approx52,000 g/mol and PS weight fractions ranging from 0.127 to 0.337. Ionomers were prepared from two of these materials by lightly sulfonating the PS outer blocks. Sulfonation levels varied from 1.7 to 4.7 mol % and the sodium and potassium neutralized forms were compared to the parent block copolymers. Dynamic mechanical analysis (DMA) of the block copolymer films indicated the existence of a third phase attributed to PIB chains near the PS domain interface which experience reduced mobility due to their firm attachment to the hard PS domain. The relative amount of this phase decreased in samples with larger PS blocks, while the temperature of the associated transition increased. Tensile testing showed increased tensile strength but decreased elongation at break with larger PS blocks. DMA of the ionomers indicated improved dynamic modulus at temperatures above 100spcirc$C. Tensile testing of the ionomers indicated slight improvements in tensile strength with little loss in elongation at break. PS-PIB-PS block copolymer ionomer (BCP01, center block molecular weight = 53,000 g/mole; 25.5 wt % polystyrene, 4.7% sulfonation of phenyl units, 100% neutralized with KOH) was compounded with various organic and inorganic acid salts of 2-ethylhexyl-p-dimethyl aminobenzoate (ODAB) to explore the efficacy of these compounds as ionic plasticizers. (Abstract shortened by UMI.)

  14. Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and dioxin-like coplanar polychlorinated biphenyls in mackerel obtained from the Japanese market, 1999-2003.

    PubMed

    Nakatani, Tadashi; Yamano, Testuo

    2017-09-01

    This study analysed the concentrations and toxic-equivalent (TEQ) levels of dioxin congeners in mackerel commercially available in Japan in early 2000s. The content of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and dioxin-like coplanar polychlorinated biphenyls (DL-PCBs) was determined in 17 mackerel samples from different areas. TEQ levels in mackerel muscle were 0.78 pg TEQ g - 1 wet weight (wt) on average (range = 0.21-2.26 pg TEQ g - 1 wet wt) for PCDD/Fs (PCDDs plus PCDFs), 2.81 pg TEQ g - 1 wet wt on average (range = 1.02-8.5 pg TEQ g - 1 wet wt) for DL-PCBs, and 3.59 pg TEQ g - 1 wet wt on average (range = 1.24-10.8 pg g - 1 wet wt) for dioxins (PCDD/Fs plus DL-PCBs). The results revealed somewhat higher TEQ levels for dioxins compared with the other data for fish and shellfish in the Japanese market. TEQ levels were well correlated with mackerel body weight; the main contributors were tetra- and penta-CDD/Fs, some hexa-CDD/Fs, and all 12 DL-PCBs, which are known to have high bioaccumulation potential. In particular, PCB 126 was mostly responsible for the observed correlation of DL-PCB and dioxins-TEQ levels with mackerel body weight. The average daily intake of dioxins in terms of TEQ through mackerel consumption was estimated to be 4.81 pg TEQ/person/day, accounting for 7% of the total intake of dioxins-TEQ through fish and shellfish in Japan.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Heyningen, V.; Bickmore, W.A.; Seawright, A.

    Detailed molecular definition of the WAGR region at chromosome 11p13 has been achieved by chromosome breakpoint analysis and long-range restriction mapping. Here the authors describe the molecular detection of a cytogenetically invisible 1-megabase deletion in an individual with aniridia, cryptorchidism, and hypospadias but no Wilms tumor (WT). The region of overlap between this deletion and one associated with WT and similar genital anomalies but no aniridia covers a region of 350-400 kilobases, which is coincident with the extent of homozygous deletion detected in tumor tissue from a sporadic WT. A candidate WT gene located within this region has recently beenmore » isolated, suggesting nonpenetrance for tumor expression in the first individual. The inclusion within the overlap region of a gene for WT predisposition and a gene for the best-documented WT-associated genitourinary malformations leads to suggest that both of these anomalies result from a loss-of-function mutation at the same locus. This in turn implies that the WT gene exerts pleiotropic effect on both kidney and genitourinary development, a possibility supported by the observed expression pattern of the WT candidate gene in developing kidney and gonads.« less

  16. Optical, electrical, thermal properties of cadmium chloride doped PVA – PVP blend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraker, Basavarajeshwari M.; Hammannavar, Preeti B.; Lobo, Blaise, E-mail: blaise.lobo@gmail.com

    2015-06-24

    Films of polyvinylalcohol (PVA) – polyvinylpyrrolidone (PVP) blend doped with Cadmium Chloride (CdCl{sub 2}) in the doping range 1 wt% to 40 wt% were prepared by solution casting technique. These films were characterized using optical/UV-Vis- NIR spectroscopy, Differential Scanning Calorimetry (DSC) and DC electrical measurements. The UV-Visible spectra were quantitatively analyzed to yield the optical parameters. The UV-Visible Spectra show intermediate absorption bands (before the final absorption edge) due to formation of energy bands in the forbidden gap of PVA-PVP. There is a prominent absorption band at 2.9 eV, from 0.5 wt% up to 1.8 wt% doping level (DL) causedmore » by the dopant (CdCl{sub 2}). The DC electrical studies showed an increase in activation energy from 2.8 eV at 0.5 wt% DL up to 3.5 eV at 4.4 wt% DL, reaching a low of 2.4 eV at 11.2 wt% DL. DSC scans show evidence of formation of chain fragments, at doping levels beyond 8 wt%.« less

  17. Heterogeneous Interactions of Acetaldehyde and Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L. T.

    2004-01-01

    The uptake of acetaldehyde [CH3CHO] by aqueous sulfuric acid has been studied via Knudsen cell experiments over ranges of temperature (210-250 K) and acid concentration (40-80 wt. %) representative of the upper troposphere. The Henry's law constants for acetaldehyde calculated from these data range from 6 x 10(exp 2) M/atm for 40 wt. % H2SO4 at 228 K to 2 x 10(exp 5) M/atm for 80 wt. % H2SO4 at 212 K. In some instances, acetaldehyde uptake exhibits apparent steady-state loss. The possible sources of this behavior, including polymerization, will be explored. Furthermore, the implications for heterogeneous reactions of aldehydes in sulfate aerosols in the upper troposphere will be discussed.

  18. Polypeptide profiles of human oocytes and preimplantation embryos.

    PubMed

    Capmany, G; Bolton, V N

    1993-11-01

    The polypeptides that direct fertilization and early development until activation of the embryonic genome occurs, at the 4-8 cell stage in the human, are exclusively maternal in origin, and are either synthesized during oogenesis or translated later from maternal mRNA. Using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and silver stain, we have visualized and compared the polypeptides present in different populations of human oocytes and cleavage stage embryos obtained after superovulation and insemination in vitro. Two polypeptide patterns were resolved, differing in the region of mol. wt 69 kDa. The distribution of these patterns showed no correlation with the ability of individual oocytes to achieve fertilization and develop normally to the 8-cell stage.

  19. Structure and creep rupture properties of directionally solidified eutectic gamma/gamma-prime-alpha alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Wirth, G.

    1982-01-01

    A simple ternary gamma/gamma-prime-alpha alloy of nominal composition (wt-%) Ni-32Mo-6Al has been directionally solidified at 17 mm/h and tested in creep rupture at 1073, 1173, and 1273 K. A uniform microstructure consisting of square-shaped Mo fibers in a gamma + gamma-prime matrix was found despite some variation in the molybdenum and aluminum concentrations along the growth direction. Although the steady-state creep rate is well described by the normal stress temperature equation, the stress exponent (12) and the activation energy (580 kJ/mol) are high. The rupture behavior is best characterized by the Larson-Miller parameter where the constant equals 20.

  20. Crystallization and characterization of Y2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Drummond, C. H., III; Lee, W. E.; Sanders, W. A.; Kiser, J. D.

    1988-01-01

    Glasses in the yttria-silica system with 20-40 mol pct Y2O3 have been subjected to recrystallization studies after melting at 1900-2100 C in W crucibles in 1 and 50 atm N2. The TEM and XRD results obtained indicate the presence of the delta, gamma, gamma-prime, and beta-Y2Si2O7 crystalline phases, depending on melting and quenching conditions. Heat-treatment in air at 1100-1600 C increased the amount of crystallization, and led to the formation of Y2SiO5, cristobalite, and polymorphs of Y2Si2O7. Also investigated were the effects of 5 and 10 wt pct zirconia additions.

  1. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet.

    PubMed

    Sumi, H; Hamada, H; Tsushima, H; Mihara, H; Muraki, H

    1987-10-15

    A strong fibrinolytic activity was demonstrated in the vegetable cheese Natto, which is a typical soybean food eaten in Japan. The average activity was calculated at about 40 CU (plasmin units)/g wet weight. This novel fibrinolytic enzyme, named nattokinase, was easily extracted with saline. The mol. wt and pI were about 20,000 and 8.6, respectively. Nattokinase not only digested fibrin but also the plasmin substrate H-D-Val-Leu-Lys-pNA (S-2251), which was more sensitive to the enzyme than other substrates tried. Diisopropyl fluorophosphate and 2,2,2-trichloro-1-hydroxyethyl-o,o-dimethylphosphate strongly inhibited this fibrinolytic enzyme.

  2. Appearance and partial purification of a high molecular weight protein in crabs exposed to saxitoxin.

    PubMed

    Barber, K G; Kitts, D D; Townsley, P M; Smith, D S

    1988-01-01

    This paper provides evidence for a protein component which appears to be involved in the seasonal resistance of small shore crabs, Hemigrapsus oregonesis and Hemigrapsus nudus to saxitoxin, a principle neurotoxin involved in paralytic shellfish poisoning (PSP). This unique protein complex was isolated and partially purified by ion exchange chromatography using DEAE-cellulose from visceral tissue extracts of resistant crabs. The complex was absent in control crabs that were sensitive to saxitoxin. In addition, the protein complex was induced in the crab after acute administration of low doses of saxitoxin. Results indicate that the protein complex is acidic in nature and has an apparent mol. wt of 145,000.

  3. Enhanced field-dependent conductivity of magnetorheological gels with low-doped carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Qu, Hang; Yu, Miao; Fu, Jie; Yang, Pingan; Liu, Yuxuan

    2017-10-01

    Magnetorheological gels (MRG) exhibit field-dependent conductivity and controllable mechanical properties. In order to extend their application field, filling a large number of traditional conductive materials is the most common means to enhance the poor conductivity of MRG. In this study, the conductivity of MRG is improved by low-doped carbon nanotubes (CNTs). The influence of CNTs on the magnetoresistance of MRG is discussed from two aspects—the improvement in electrical conductivity and the magnetic sensitivity of conductivity variation. The percolation threshold of CNTs in MRG should be between 1 wt% and 2 wt%. The conductivity of a 4 wt% CNT-doped sample increases more than 28 000 times compared with pure MRG. However, there is a cliff-like drop for the range and rate of conductivity variation when the doping amount of CNTs is between 3 wt% and 4 wt%. Therefore, it is concluded that the optimal mass fraction of CNTs is 3%, which can maintain a suitable variation range and a strong conductivity. Compared with pure MRG, its conductivity increases by at least two orders of magnitude. Finally, a sketch of particle motion simulation is developed to understand the improving mechanism and the effect of CNTs.

  4. Warthin tumor arising from the minor salivary gland.

    PubMed

    Iwai, Toshinori; Baba, Junichi; Murata, Shogo; Mitsudo, Kenji; Maegawa, Jiro; Nagahama, Kiyotaka; Tohnai, Iwai

    2012-09-01

    Warthin tumor (WT) accounts for 4% to 13% of all salivary gland tumors. This benign tumor, which commonly arises in the parotid gland, is the second most common tumor of the salivary gland. WT is multicentric in 12% to 20% of patients and is bilateral in 5% to 14%. The mean age at diagnosis is 62 years (range, 12-92 years), and it rarely presents (<6%) before age 40 years. Extraparotid WT, arising from the submandibular gland or cervical lymph node for example, is very infrequent, with corresponding incidences of 0.4% to 6.9% and 8%, respectively. Moreover, WT arising from the minor salivary gland is extremely rare, with a reported incidence of merely 0.1% to 1.2%. We report here WT arising from the minor salivary gland in the buccal mucosa in a 66-year-old woman and review cases of WT of the minor salivary gland reported in the English literature.

  5. Resolution of parenteral nutrition-associated jaundice on changing from a soybean oil emulsion to a complex mixed-lipid emulsion.

    PubMed

    Muhammed, Rafeeq; Bremner, Ronald; Protheroe, Sue; Johnson, Tracey; Holden, Chris; Murphy, M Stephen

    2012-06-01

    Resolution of parenteral nutrition (PN)-associated jaundice has been reported in children given a reduced dose of intravenous fat using a fish oil-derived lipid emulsion. The aim of the present study was to examine the effect on PN-associated jaundice of changing from a soybean oil-derived lipid to a mixed lipid emulsion derived from soybean, coconut, olive, and fish oils without reducing the total amount of lipid given. Retrospective cohort comparison examining serum bilirubin during 6 months in children with PN-associated jaundice who changed to SMOFlipid (n=8) or remained on Intralipid (n=9). At entry, both groups received most of their energy as PN (SMOFlipid 81.5%, range 65.5-100 vs Intralipid 92.2%, range 60.3-100; P=0.37). After 6 months, both tolerated increased enteral feeding but still received large proportions of their energy as PN (SMOFlipid 68.4%, range 36.6-100 vs Intralipid 50%, range 37.6-76; P=0.15). The median bilirubin at the outset was 143 μmol/L (range 71-275) in the SMOFlipid group and 91 μmol/L (range 78-176) in the Intralipid group. After 6 months, 5 of 8 children in the SMOFlipid and 2 of 9 children in the Intralipid group had total resolution of jaundice. The median bilirubin fell by 99 μmol/L in the SMOFlipid group but increased by 79 μmol/L in the Intralipid group (P=0.02). SMOFlipid may have important protective properties for the liver and may constitute a significant advance in PN formulation. Randomised trials are needed to study the efficacy of SMOFlipid in preventing PN liver disease.

  6. Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay

    USGS Publications Warehouse

    Yates, K.K.; Dufore, C.; Smiley, N.; Jackson, C.; Halley, R.B.

    2007-01-01

    Oxygen and carbonate system parameters were measured, in situ, over diurnal cycles in Tampa Bay and Florida Bay, Florida. All system parameters showed distinct diurnal trends in Tampa Bay with an average range of diurnal variation of 39.1 μmol kg− 1 for total alkalinity, 165.1 μmol kg− 1 for total CO2, 0.22 for pH, 0.093 mmol L− 1 for dissolved oxygen, and 218.1 μatm for pCO2. Average range of diurnal variation for system parameters in Tampa Bay was 73% to 93% of the seasonal range of variability for dissolved oxygen and pH. All system parameters measured in Florida Bay showed distinct variation over diurnal time-scales. However, clear diurnal trends were less evident. The average range of diurnal variability in Florida Bay was 62.8 μmol kg− 1 for total alkalinity, 130.4 μmol kg− 1 for total CO2, 0.13 for pH, 0.053 mmol L− 1 for dissolved oxygen, and 139.8 μatm for pCO2. The average range of diurnal variation was 14% to 102% of the seasonal ranges for these parameters. Diurnal variability in system parameters was most influenced by primary productivity and respiration of benthic communities in Tampa Bay, and by precipitation and dissolution of calcium carbonate in Florida Bay. Our data indicate that use of seasonal data sets without careful consideration of diurnal variability may impart significant error in calculations of annual carbon and oxygen budgets. These observations reinforce the need for higher temporal resolution measurements of oxygen and carbon system parameters in coastal ecosystems.

  7. Acute Toxicity Evaluation of Nitroaromatic Compounds

    DTIC Science & Technology

    1991-03-01

    eye of any animal during the observation period. Extreme fluorescein staining was evident in all of the test animals. Pannus (corneal vasculation) was...treated eyes at this time point showed signs of pannus . 39 0 TABLE 13 ACUTE ORAL - RANGE FINDING - RATS 1,3,5-TRINITROBENZENE Dose Dose Wt (g) Wt (g) Wt...the cornea at the 24h, 48h, 72h and 96h observation points. Additional Observations: Pannus (corneal vascularization) was noted at the 96h observation

  8. Induced smectic phase in binary mixtures of twist-bend nematogens.

    PubMed

    Knežević, Anamarija; Dokli, Irena; Sapunar, Marin; Šegota, Suzana; Baumeister, Ute; Lesac, Andreja

    2018-01-01

    The investigation of liquid crystal (LC) mixtures is of great interest in tailoring material properties for specific applications. The recent discovery of the twist-bend nematic phase (N TB ) has sparked great interest in the scientific community, not only from a fundamental viewpoint, but also due to its potential for innovative applications. Here we report on the unexpected phase behaviour of a binary mixture of twist-bend nematogens. A binary phase diagram for mixtures of imino-linked cyanobiphenyl (CBI) dimer and imino-linked benzoyloxy-benzylidene (BB) dimer shows two distinct domains. While mixtures containing less than 35 mol % of BB possess a wide temperature range twist-bend nematic phase, the mixtures containing 55-80 mol % of BB exhibit a smectic phase despite that both pure compounds display a Iso-N-N TB -Cr phase sequence. The phase diagram shows that the addition of BB of up to 30 mol % significantly extends the temperature range of the N TB phase, maintaining the temperature range of the nematic phase. The periodicity, obtained by atomic force microscopy (AFM) imaging, is in the range of 6-7 nm. The induction of the smectic phase in the mixtures containing 55-80 mol % of BB was confirmed using polarising optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction. The origin of the intercalated smectic phase was unravelled by combined spectroscopic and computational methods and can be traced to conformational disorder of the terminal chains. These results show the importance of understanding the phase behaviour of binary mixtures, not only in targeting a wide temperature range but also in controlling the self-organizing processes.

  9. A MRCC study of the isomerisation of cyclopropane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Jakub; Švaňa, Matej; Demel, Ondřej

    2017-01-19

    Mukherjee’s and Brillouin-Wigner multi-reference coupled cluster methods were used to study the isomerization of cyclopropane to propene through a trimethylene/propylidene diradicals. Main aim was to obtain high quality ab-initio data using advanced methods that treat both static and dynamic correlation in the involved species. The MkCCSD(T)/cc-pVQZ activation energy of cyclopropane isomerization via trimethylene is 65.6 kcal/mol, in a good agreement with experimental values in the range 60-65 kcal/mol. The MkCCSD(T)/cc-pV5Z adiabatic singlet-triplet gap in trimethylene is 0.6 kcal/mol, slightly higher than previous CASPT2 result -0.7 kcal/mol by Skancke et al.

  10. Kinetic analysis of manure pyrolysis and combustion processes.

    PubMed

    Fernandez-Lopez, M; Pedrosa-Castro, G J; Valverde, J L; Sanchez-Silva, L

    2016-12-01

    Due to the depletion of fossil fuel reserves and the environmental issues derived from their use, biomass seems to be an excellent source of renewable energy. In this work, the kinetics of the pyrolysis and combustion of three different biomass waste samples (two dairy manure samples before (Pre) and after (Dig R) anaerobic digestion and one swine manure sample (SW)) was studied by means of thermogravimetric analysis. In this work, three iso-conversional methods (Friedman, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS)) were compared with the Coats-Redfern method. The E a values of devolatilization stages were in the range of 152-170kJ/mol, 148-178kJ/mol and 156-209kJ/mol for samples Pre, Dig R and SW, respectively. Concerning combustion process, char oxidation stages showed lower E a values than that obtained for the combustion devolatilization stage, being in the range of 140-175kJ/mol, 178-199kJ/mol and 122-144kJ/mol for samples Pre, Dig R and SW, respectively. These results were practically the same for samples Pre and Dig R, which means that the kinetics of the thermochemical processes were not affected by anaerobic digestion. Finally, the distributed activation energy model (DAEM) and the pseudo-multi component stage model (PMSM) were applied to predict the weight loss curves of pyrolysis and combustion. DAEM was the best model that fitted the experimental data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Antiproliferative and apoptosis-inducing effects of lipophilic vitamins on human melanoma A375 cells in vitro.

    PubMed

    Ishibashi, Mai; Arai, Mariko; Tanaka, Sachiko; Onda, Kenji; Hirano, Toshihiko

    2012-01-01

    The effects of six lipophilic vitamins: tretinoin (ATRA), vitamin D(3) (VD(3)), VE, VK(1), VK(3), and VK(5) on cell proliferation and apoptosis in human A375 melanoma cells were investigated. VD(3), VK(3), and VK(5) were found to inhibit cell proliferation significantly at concentration ranges of 10-100 μmol/L (p<0.01), while the other vitamins did not show inhibitory effects at 100 μmol/L. VK(3) and VK(5) showed the strongest effects with IC(50) values of less than 10 μmol/L. Dacarbazine slightly inhibited the proliferation of A375 cells at a concentration range of 25-100 μmol/L, but the effects were not statistically significant. VK(3) and VK(5) increased annexin-V positive apoptotic cells, as well as activating caspase-3, in A375 cells. Our findings showed that VD(3), VK(3,) and VK(5) inhibited the growth of dacarbazine resistant human melanoma cells, while ATRA, VE, and VK(1) had little effect on the cell growth. The effects of VK(3) and VK(5) were observed at concentrations lower than 10 μmol/L, which are suggested to have resulted from apoptosis-induction in the melanoma cells.

  12. Up-conversion green emission of Yb3+/Er3+ ions doped YVO4 nanocrystals obtained via modified Pechini's method

    NASA Astrophysics Data System (ADS)

    Szczeszak, Agata; Runowski, Marcin; Wiglusz, Rafal J.; Grzyb, Tomasz; Lis, Stefan

    2017-12-01

    A series of lanthanide doped yttrium vanadates were prepared by Pechini's method (sol-gel process). The as-prepared precursors, in the presence of citric acid, were calcined in the temperature range of 600-900 °C. The obtained products were composed of small nanoparticles, in the size range of 20-50 nm, depending on the annealing temperature, exhibiting a bright green up-conversion emission, under NIR laser irradiation, and emission lifetimes in the range of 4.7-18.3 μs. Their structural, morphological and spectroscopic properties were investigated in detail by XRD, HR-TEM including FFT analysis, EDX and spectroscopic techniques (emission, power dependence and emission kinetics). The luminescence quenching phenomenon, manifested in a decrease of up-conversion intensity and shortening of emission lifetime, was observed with increasing of the Yb3+ ion concentration and decreasing the particle size. The optimal concentration of the Yb3+ ions was found to be 15 mol% (YVO4: Yb3+ 15 mol%, Er3+ 2 mol%).

  13. Sulfur mustard gas adsorption on ZnO fullerene-like nanocage: Quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Kazemi, Mohammad; Rad, Ali Shokuhi

    2017-06-01

    In the present study, we used density functional theory calculations (at B3LYP and ωB97XD Levels) to search on the adsorption of Sulfur mustard gas (defined as mustard gas) on the surface of fullerene-like ZnO nanocage as a semiconductor. We found three different configurations of adsorbed gas on the surface of this nanostructure semiconductor. The values of adsorption energy of mustard gas are calculated in the range of -144∼ -200 kJ/mol with enthalpies in the range of -132∼-195 kJ/mol and Gibbs free energies in the range of -88∼-144 kJ/mol (T = 298 K, based on ωB97XD level), which indicate exothermic and spontaneous chemisorption. For all geometries, we calculated geometry parameters by taking into account the charge analysis and frontier molecular orbital study. The result of this study can be a support for next studies to develop new nanomaterials as adsorbent/sensor for mustard gas.

  14. Anomalous thermal expansion behaviors in Sm-Ba-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Okaji, Masahiro; Yamada, Naofumi; Mase, Atsushi; Ikuta, Hiroshi; Mizutani, Uichiro

    2000-11-01

    Linear thermal expansion coefficients α of c-axis oriented Ag-added Sm-Ba-Cu-O superconductors have been measured in the range of 10 - 300 K. The α showed a large bump along the c-axis and a large dent along the ab-plane around 170 - 260 K for the 2 wt% and 5 wt% Ag 2O specimens, but these anomalies essentially disappeared with thermal cycles between room and cryogenic temperatures. In contrast, there were no significant anomalies for the 10 wt% and 20 wt% Ag 2O specimens. These results suggest that the addition of Ag 2O should moderate deformation and help to increase mechanical strength.

  15. Surface diffusion of In on Ge(111) studied by optical second harmonic microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suni, I.I.; Seebauer, E.G.

    Surface diffusion of In on Ge(111) has been measured by optical second harmonic microscopy. This technique employs surface second harmonic generation to directly image submonolayer surface concentration profiles. The coverage dependence of the diffusivity [ital D] can then be obtained from a Boltzmann--Matano analysis. In the coverage range 0.1[lt][theta][lt]0.48, the activation energy [ital E][sub diff] decreased with increasing coverage, ranging from 31 kcal/mol at [theta]=0.1 to 23 kcal/mol at [theta]=0.48. Over the same coverage range, the pre-exponential factor [ital D][sub 0] decreased from 5[times]10[sup 2] to 1[times]10[sup [minus]1] cm[sup 2]/s. This gradual change reflects a change in diffusion mechanism arisingmore » from the disordered nature of the Ge(111) surface. At low coverages, In adatoms sink into the top layer of Ge, and diffusion is dominated by thermal formation of adatom-vacancy pairs. At high coverages, diffusion occurs by normal site-to-site hopping. The gradual change in diffusion parameters with coverage was interrupted by an apparent phase transition at [theta]=0.16. At this point, both [ital E][sub diff] and [ital D][sub 0] peaked sharply at 41 kcal/mol and 6[times]10[sup 5] cm[sup 2]/s, respectively. The desorption energy [ital E][sub des] was measured by temperature programmed desorption. [ital E][sub des] decreased from 60 kcal/mol at submonolayer coverages to 55 kcal/mol at multilayer coverages.« less

  16. Reductive Elimination of H2 Activates Nitrogenase to Reduce the N≡N Triple Bond: Characterization of the E4(4H) Janus Intermediate in Wild-Type Enzyme.

    PubMed

    Lukoyanov, Dmitriy; Khadka, Nimesh; Yang, Zhi-Yong; Dean, Dennis R; Seefeldt, Lance C; Hoffman, Brian M

    2016-08-24

    We proposed a reductive elimination/oxidative addition (re/oa) mechanism for reduction of N2 to 2NH3 by nitrogenase, based on identification of a freeze-trapped intermediate of the α-70(Val→Ile) MoFe protein as the Janus intermediate that stores four reducing equivalents on FeMo-co as two [Fe-H-Fe] bridging hydrides (denoted E4(4H)). The mechanism postulates that obligatory re of the hydrides as H2 drives reduction of N2 to a state (denoted E4(2N2H)) with a moiety at the diazene (HN═NH) reduction level bound to the catalytic FeMo-co. EPR/ENDOR/photophysical measurements on wild type (WT) MoFe protein now establish this mechanism. They show that a state freeze-trapped during N2 reduction by WT MoFe is the same Janus intermediate, thereby establishing the α-70(Val→Ile) intermediate as a reliable guide to mechanism. Monitoring the Janus state in WT MoFe during N2 reduction under mixed-isotope condition, H2O buffer/D2, and the converse, establishes that the bridging hydrides/deuterides do not exchange with solvent during enzymatic turnover, thereby solving longstanding puzzles. Relaxation of E4(2N2H) to the WT resting-state is shown to occur via oa of H2 and release of N2 to form Janus, followed by sequential release of two H2, demonstrating the kinetic reversibility of the re/oa equilibrium. Relative populations of E4(2N2H)/E4(4H) freeze-trapped during WT turnover furthermore show that the reversible re/oa equilibrium between [E4(4H) + N2] and [E4(2N2H) + H2] is ∼ thermoneutral (ΔreG(0) ∼ -2 kcal/mol), whereas, by itself, hydrogenation of N2(g) is highly endergonic. These findings demonstrate that (i) re/oa accounts for the historical Key Constraints on mechanism, (ii) that Janus is central to N2 reduction by WT enzyme, which (iii) indeed occurs via the re/oa mechanism. Thus, emerges a picture of the central mechanistic steps by which nitrogenase carries out one of the most challenging chemical transformations in biology.

  17. Sub-Model Partial Least Squares for Improved Accuracy in Quantitative Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Anderson, R. B.; Clegg, S. M.; Frydenvang, J.

    2015-12-01

    One of the primary challenges faced by the ChemCam instrument on the Curiosity Mars rover is developing a regression model that can accurately predict the composition of the wide range of target types encountered (basalts, calcium sulfate, feldspar, oxides, etc.). The original calibration used 69 rock standards to train a partial least squares (PLS) model for each major element. By expanding the suite of calibration samples to >400 targets spanning a wider range of compositions, the accuracy of the model was improved, but some targets with "extreme" compositions (e.g. pure minerals) were still poorly predicted. We have therefore developed a simple method, referred to as "submodel PLS", to improve the performance of PLS across a wide range of target compositions. In addition to generating a "full" (0-100 wt.%) PLS model for the element of interest, we also generate several overlapping submodels (e.g. for SiO2, we generate "low" (0-50 wt.%), "mid" (30-70 wt.%), and "high" (60-100 wt.%) models). The submodels are generally more accurate than the "full" model for samples within their range because they are able to adjust for matrix effects that are specific to that range. To predict the composition of an unknown target, we first predict the composition with the submodels and the "full" model. Then, based on the predicted composition from the "full" model, the appropriate submodel prediction can be used (e.g. if the full model predicts a low composition, use the "low" model result, which is likely to be more accurate). For samples with "full" predictions that occur in a region of overlap between submodels, the submodel predictions are "blended" using a simple linear weighted sum. The submodel PLS method shows improvements in most of the major elements predicted by ChemCam and reduces the occurrence of negative predictions for low wt.% targets. Submodel PLS is currently being used in conjunction with ICA regression for the major element compositions of ChemCam data.

  18. Factors controlling denitrification rates of tidal mudflats and fringing salt marshes in south-west England

    NASA Astrophysics Data System (ADS)

    Koch, M. S.; Maltby, E.; Oliver, G. A.; Bakker, S. A.

    1992-05-01

    Denitrification rates were determined utilizing the acetylene blockage technique at three sites: upper mudflat, lower mudflat, and Halimione portulacoides marsh on the fringing wetlands of the Torridge River Estuary in South-west England. Denitrification rates were calculated from nitrous oxide (N 2O) production each month for 1 year with intact sediment cores extracted at low tide (0-5 cm). In the lower and upper mudflat sites denitrification rates were low ranging from 0·52 to 5·78 μmol and 1·28 to 4·36 μmol N 2 m -2 h -1, respectively. Denitrification rates in marsh sediments were consistently higher than those of the mudflat ranging from 2·51 to 59·00 μmol N 2 m -2 h -1. Amending river water to sediment cores stimulated lower and upper mudflat denitrification rates approximately 10-fold up to 106·39 and 96·73 μmol N 2 m -2 h -1, respectively. In marsh sediments, a two-fold increase in denitrification was found with river water amended resulting in a maximum rate of 114·80 μmol N 2 m -2 h -1. During the winter months, when riverine NO 3-N levels were at a maximum (2·47 to 2·93 mg l -1), denitrification rates were highest (75·24 to 114·99 μmol N 2 m -2 h -1) and conversely, during the summer both NO 3-N concentrations (1·0 to 1·70 mg l -1) and denitrification (0·95 to 37·38 μmol N 2 m -2 h -1) rates were at a minimum. Mudflat sediment redox potentials (Eh), within the theoretical range of NO 3-1 instability, were limited to the upper 5 mm, thus maximum denitrification rates may be restricted to the sediment surface. When calculating annual denitrification rates in tidal estuaries several factors should be considered including: seasonal NO 3-1 concentrations in tidal water, tidal flooding duration and amplitude, and the depth of the aerobic/anaerobic zone of the sediment.

  19. Novel hybrid membranes based on polybenzimidazole and ETS-10 titanosilicate type material for high temperature proton exchange membrane fuel cells: A comprehensive study on dense and porous systems

    NASA Astrophysics Data System (ADS)

    Eguizábal, A.; Lemus, J.; Urbiztondo, M.; Garrido, O.; Soler, J.; Blazquez, J. A.; Pina, M. P.

    Novel hybrid membranes based on polybenzimidazole (PBI) and ETS-10 titanosilicate type materials functionalized with sulfonic groups have been developed for high temperature PEMFC applications. In particular, 45% porous ETS-10/PBI electrolyte membranes in porosity have been reported for the first time in this work. A clear conduction outperforming is shown by porous PBI + 3 wt.% SO 3H-ETS-10 doped at 50 °C, attaining "in-plane" conductivity values up to 74 mS cm -1 at 180 °C under dry N 2 flow. The transport selectivity of the as prepared dense and porous PBI based membranes has been evaluated by comparison of "in-plane" conductivity/methanol permeability values at 50 °C, 100 °C and 150 °C. Accounting from that, dense pure PBI membranes are preferred at 50 °C (4.7 × 10 6 S·s·bar mol -1); whereas at 150 °C, dense PBI + 3% SO 3H-ETS-10 counterparts exhibit the higher conductivity/methanol permeability ratio (2.5 × 10 8 S·s·bar mol -1).

  20. Synthesis of hierarchical flower-like Co3O4 superstructure and its excellent catalytic property for ammonium perchlorate decomposition

    NASA Astrophysics Data System (ADS)

    Li, Gang; Bai, Weiyang

    2018-04-01

    Hierarchical flower-like cobalt tetroxide (Co3O4) was successfully synthesized via a facile precipitation method in combination with heat treatment of the cobalt oxalate precursor. The samples were systematically characterized by thermo gravimetric analysis and derivative thermo gravimetric analysis (TGA-DTG), X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and N2 adsorption-desorption measurements. The results indicate that the as-fabricated Co3O4 exhibits uniform flower-like morphologies with diameters of 8-12 μm, which are constructed by one-dimensional nanowires. Furthermore, catalytic effect of this hierarchical porous Co3O4 on ammonium perchlorate (AP) pyrolysis was investigated using differential scanning calorimetry (DSC) techniques. It is found that the pyrolysis temperature of AP shifts 142 °C downward with a 2 wt% addition content of Co3O4. Meanwhile, the addition of Co3O4 results in a dramatic reduction of the apparent activation energy of AP pyrolysis from 216 kJ mol-1 to 152 kJ mol-1, determined by the Kissinger correlation. The results endorse this material as a potential catalyst in AP decomposition.

  1. Rational Design of Porous Conjugated Polymers and Roles of Residual Palladium for Photocatalytic Hydrogen Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lianwei; Cai, Zhengxu; Wu, Qinghe

    Developing high efficient photocatalyts for splitting water into oxygen and hydrogen is one of the biggest chemical challenges in solar energy utilization. In this paper, we report our effort in rationally designing conjugated porous polymer (CPP) photocatalysts for photocatalytic hydrogen production (PHP) from water. A series of CPP photocatalysts with different chromophore components and bipyridyl (bpy) contents were synthesized and found to evolve hydrogen photocatalytically from water. The PHP activity of bpy-containing CPPs can be greatly enhanced due to the improved light absorption, better wettability, higher crystallinity and the improved charge separation process. Moreover, the CPP photocatalyst made of strongmore » and fully conjugated donor chromo-phore DBD shows the highest hydrogen production rate ~ 33 μmol/h. The results indicate that copolymerization between a strong donor and weak acceptor is a useful strategy for the devel-opment of efficient photocatalysts. This study clarifies that the residual palladium in the CPP networks plays a key role for the catalytic performance. The PHP activity of CPP photocatalyst can be further enhanced to 164 μmol/h with an apparent quantum yield of 1.8% at 350 nm by loading 2 wt% of extra platinum cocat-alyst.« less

  2. Project Hotspot: Temporal Compositional Variation in Basalts of the Kimama Core and Implications for Magma Source Evolution, Snake River Scientific Drilling Project, Idaho

    NASA Astrophysics Data System (ADS)

    Potter, K. E.; Shervais, J. W.; Champion, D.; Duncan, R. A.; Christiansen, E. H.

    2012-12-01

    Project Hotspot produced continuous core from three drill sites in the Snake River plain, including 1912 m of core from the Kimama drill site on the axis of the plain. Ongoing major and trace element chemical characterization of the Kimama core and new 40Ar/39Ar and paleomagnetic age data demonstrate temporal variations in the evolution of Snake River Plain volcanism. Cyclic fluctuations in magma chemistry identify over a hundred chemically distinct basalt flow groups (comprising 550 individual lava flows) within 54 periods of volcanic activity, separated by hiatuses of decades to many millennia. From a surface age of 700 ka to a bottom-hole age of 6.5 Ma, the Kimama core records the presence of several nearly coeval but compositionally different lava flows, ranging from highly evolved lavas to non-evolved tholeiites. Determining whether Kimama lavas are genetically unrelated or extreme differentiates of a single magma batch relies upon a combination of detailed chemostratigraphy and absolute and relative age data. Age and geochemical data introduce new ideas on the role of multiple magma sources and/or differentiation processes in the development of central Snake River Plain volcanic systems. The relatively short gestation of evolved liquids is demonstrated throughout the Kimama core, with evidence for cyclic fractionation of mafic lavas at depths of 318 m, 350 m, 547 m, and 1078 m. Here, highly evolved lava flows (FeOT 16.0-18.4 wt %; TiO2 3.43-4.62 wt %) are stratigraphically bounded by more primitive tholeiitic basalts (FeOT 9.9-14.8 wt%; TiO2 1.22-3.56 wt%) within the same inclination range, suggesting that cyclic fractionation is a regular feature of shield volcano development on the central Snake River Plain. Between 1.60 ± 0.13 Ma (453.5 m depth) and 1.54 ± 0.15 Ma (320.0 m depth), Kimama lavas ranged in composition from primitive tholeiite (FeOT 11.7 wt %; TiO2 1.76 wt %) to evolved basalt (FeOT 16.0 wt %; TiO2 4.00 wt %). At depths of 1119 m and 1138 m, evolved lava flows (FeOT 17.2 and 17.0 wt %; TiO2 4.20 and 4.09 wt %, respectively) of negative polarity are stratigraphically bounded by more primitive tholeittic lava flows (FeOT 13.6 and 14.5 wt %; TiO2 2.92 and 3.24 wt %, respectively) of positive polarity, a chronological transition that may represent many millennia and magma source variability. Kimama core stratigraphy as well as paleomagnetic, and radiometric age data demonstrate that mafic volcanism on the central Snake River Plain has been relatively continuous for the last 6.5 Ma. The compositional variability in Kimama basalts introduces broader implications for the timing of cyclic fractionation processes and the development of regional magma sources.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz Vieira, I. da; Fatibello-Filho, O.

    An amperometric biosensor for the determination of phenols is proposed using a crude extract of sweet potato (Ipomoea batatas (L.) Lam.) as an enzymatic source of polyphenol oxidase (PPO; tyrosinase; catechol oxidase; EC 1.14.18.1). The biosensor is constructed by the immobilization of sweet potato crude extract with glutaraldehyde and bovine serum albumin onto an oxygen membrane. This biosensor provides a linear response for catechol, pyrogallol, phenol and p-cresol in the concentration ranges of 2.0 x 10{sup -5} -4.3 x 10{sup -4} mol L{sup -1}, 2.0 x 10{sup -5} -4.3 x 10{sup -4} mol L{sup -1}, 2.0 x 10{sup -5} -4.5more » x 10{sup -4} mol L{sup -1} and 2.0 x 10{sup -5} -4.5 x 10{sup -4} mol L{sup -1}, respectively. The response time was about 3-5 min for the useful response range, and the lifetime of this electrode was excellent for fifteen days (over 220 determinations for each enzymatic membrane). Application of this biosensor for the determination of phenols in industrial wastewaters is presented.« less

  4. Design and Processing of Structural Composite Batteries

    DTIC Science & Technology

    2007-09-01

    The woven fabric, e is 72wt% LiFePO4 , 8wt% acetylene lack, and 20wt% poly(ethylene oxide) 200k as a binder. Acetylene black ensures electrical will...2.1.3 Cathode The composite cathode material utilizes LiFePO4 chemistry. The composition of the cathode material film deposited onto the metal substrat... LiFePO4 chemistry (over a 2.8-4.0V range (8)) including stainless steel and titanium. Stainless steel was evaluated in this udy due to its high

  5. Investigating the structural impact of S311C mutation in DRD2 receptor by molecular dynamics & docking studies.

    PubMed

    Podder, Avijit; Pandey, Deeksha; Latha, N

    2016-04-01

    Dopamine receptors (DR) are neuronal cell surface proteins that mediate the action of neurotransmitter dopamine in brain. Dopamine receptor D2 (DRD2) that belongs to G-protein coupled receptors (GPCR) family is a major therapeutic target for of various neurological and psychiatric disorders in human. The third inter cellular loop (ICL3) in DRD2 is essential for coupling G proteins and several signaling scaffold proteins. A mutation in ICL3 can interfere with this binding interface, thereby altering the DRD2 signaling. In this study we have examined the deleterious effect of serine to cysteine mutation at position 311 (S311C) in the ICL3 region that is implicated in diseases like schizophrenia and alcoholism. An in silico structure modeling approach was employed to determine the wild type (WT) and mutant S311C structures of DRD2, scaffold proteins - Gαi/o and NEB2. Protein-ligand docking protocol was exercised to predict the interactions of natural agonist dopamine with both the WT and mutant structures of DRD2. Besides, atomistic molecular dynamics (MD) simulations were performed to provide insights into essential dynamics of the systems-unbound and dopamine bound DRD2 (WT and mutant) and three independent simulations for Gαi, Gαo and NEB2 systems. To provide information on intra-molecular arrangement of the structures, a comprehensive residue interactions network of both dopamine bound WT and mutant DRD2 protein were studied. We also employed a protein-protein docking strategy to find the interactions of scaffold proteins - Gαi/o and NEB2 with both dopamine bound WT and mutant structures of DRD2. We observed a marginal effect of the mutation in dopamine binding mechanism on the trajectories analyzed. However, we noticed a significant structural alteration of the mutant receptor which affects Gαi/o and NEB2 binding that can be causal for malfunctioning in cAMP-dependent signaling and Ca(+) homeostasis in the brain dopaminergic system leading to neuropsychiatric disorders. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. The Standard Hydrous Olivine (SHO) conductivity model: A new tool for probing water in the upper mantle

    NASA Astrophysics Data System (ADS)

    Gardés, Emmanuel; Gaillard, Fabrice; Tarits, Pascal

    2014-05-01

    It has long been assumed that the incorporation of water in olivine has dramatic effects on the physical properties of the mantle, affecting large scale geodynamic processesand triggering most electrical conductivity anomalies in the mantle. But the conductivity models for hydrous olivine based on experimental measurements predict contrasting effects of water (e.g. Wang et al. 2006; Yoshino et al. 2009), precluding any unequivocal interpretation of electrical conductivities in the mantle. Our thesis is that the uncertainties and biases in the water contents of the olivines used for experiments were inappropriately appreciated, resulting in apparent incompatibilities when analysing the different datasets and in significant biases in the models outside of their range of calibration. Here, we analyse all published experimental work and provide a new model, SHO, that settles these major inconstancies. SHO is calibrated on the largest database of raw conductivity measurements on oriented single crystals and polycrystals of hydrous olivine, with water concentrations and temperatures spreading over 0-2220 wt. ppm and 200-1440° C. Our model provides both oriented conductivities, allowing for calculating conductivity anisotropy, and isotropic conductivity, relevant for olivine aggregates without preferential orientation. SHO isotropic conductivity (S/m) is given by 2.93 - 157000 -1.54 - 87000-1820C1/H32O σ = 10 e RT + 10 CH2Oe RT , where CH2O is the water concentration in olivine (wt. ppm), T the temperature (K) and R = 8.314 J/K/mol. In the normally hot mantle, our model predicts a moderate effect of water on the conductivity of olivine. High conductivities (~ 0.1 S/m) are obtained at great depths and elevated water concentrations only (> 350 km and > 400 wt. ppm). The strongest effects are therefore expected in the coldest regions of the mantle, like cratonic lithospheres or subduction zones, where higher incorporation of water in olivine is allowed. Wang, D., Mookherjee, M., Xu, Y., Karato, S. The effect of water on the electrical conductivity of olivine. Nature 443, 977-980 (2006) Yoshino, T., Matsuzaki, T., Shatskiy, A., Katsura, T. The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet. Sc. Lett. 288, 291-300 (2009)

  7. Dodecylamine-loaded halloysite nanocontainers for active anticorrosion coatings

    NASA Astrophysics Data System (ADS)

    Falcón, Jesus; Sawczen, Tiago; Aoki, Idalina

    2015-11-01

    Currently the most promising approach in the corrosion protection by smart coatings is the use of nanoreservoirs loaded with corrosion inhibitors. Nanocontainers are filled with anti-corrosive agents and embedded into a primer coating. Future prospective containers are halloysite nanotubes due to their low price, availability, durability, with high mechanical strength and biocompatibility. The aim of this work is to study the use of halloysite nanotubes as nanocontainers for encapsulated dodecylamine for active corrosion protection of carbon steel. Halloysite clay was characterized by XRD and TGA- thermogravimetric analysis techniques. Halloysite nanotubes were loaded with dodecylamine and embedded into an alkyd primer with a weight ratio of 10 wt.% . The anticorrosive performance of the alkyd primer doped with 10 wt.% of entrapped-dodecylamine halloysite was tested on coated carbon steel by direct exposure of the coated samples with a provoked defect into 0.01 mol/L NaCl corrosive media using electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET). EIS and SVET measurements showed the self-healing properties of the doped alkyd coating. Coated samples were also evaluated in a salt spray chamber and the self-healing effect was unequivocally noticed.

  8. Silicone-based elastic composites able to generate energy on micromechanical impulse

    NASA Astrophysics Data System (ADS)

    Racles, Carmen; Ignat, Mircea; Bele, Adrian; Dascalu, Mihaela; Lipcinski, Daniel; Cazacu, Maria

    2016-08-01

    Elastic composites were prepared based on a polydimethylsiloxane-α,ω-diol (M w = 139 000 g mol-1), different α,ω-bis(trimethylsiloxy)poly(methylcyanopropyl-methylhexyl-methylhydro)siloxanes as the polar group component and TEOS as a cross-linking agent and silica generator. The resulting materials consisted of polar-nonpolar interconnected networks as matrices which had 7.4 or 9.5 wt% in situ generated silica and contained up to 2.74 wt% CN groups. The films formed were tested for electromechanical response to a micromechanical impulse. It was found that their performance was proportional to their electromechanical sensitivity (β = ɛ‧/Y, where ɛ‧ is the dielectric permittivity and Y is Young’s modulus); thus it can be adjusted by their composition, via tailoring the dielectric and mechanical properties. The generated voltage peak-to-peak measured was between 3.75 and 12.3 V mm-1. The best result for the tested materials (i.e. harvested energy of 460 nJ or energy density of 4.6 μJ cm-3, as a response to a micro-impulse of 0.017 kg m s-1) was obtained for a film having ɛ‧ = 3.6 and Y = 0.19 MPa.

  9. Enhancing hydrogen storage performances of MgH2 by Ni nano-particles over mesoporous carbon CMK-3

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Zhang, Yao; Chen, Jian; Guo, Xinli; Zhu, Yunfeng; Li, Liquan

    2018-06-01

    Nano-dispersed Ni particles over mesoporous carbon material CMK-3 (Ni/CMK-3) was fabricated by means of impregnation-reduction strategy using precursor NiCl2 · 6H2O, which is beneficial to improving the de/rehydrogenation performances of MgH2. The dehydrogenation onset temperature of MgH2–Ni/CMK-3 is significantly lowered by 170 K from that of pristine MgH2 (around 603 K). Totally 5.9 wt% of hydrogen absorption capacity is liberated within 1 h at a temperature of 423 K under a pressure of 3 MPa. This composite can absorb 3.9 wt% hydrogen even at a temperature of 328 K under 3 MPa H2. Activation energy values of both dehydrogenation (43.4 kJ mol‑1) and rehydrogenation (37.4 kJ mol‑1) for MgH2–Ni/CMK-3 are greatly enhanced from those of as-milled MgH2. Ni/CMK-3 also slightly destabilizes the dehydrogenation of MgH2 by 1.5 kJ mol {{{{H}}}2}-1. The enhanced performances can be attributed to the synergistic effects of both destabilization and activation from nano-dispersed Ni particles.

  10. Synthesis of structured lipids by transesterification of trilinolein catalyzed by Lipozyme IM60.

    PubMed

    Sellappan, S; Akoh, C C

    2001-04-01

    Structured lipids (SL) containing caprylic, stearic, and linoleic acids were synthesized by enzymatic transesterification using Lipozyme IM60. Pure trilinolein and free fatty acids were used as substrates. Incorporation of stearic acid was higher than that of caprylic acid in all parameters. Highest incorporations of both acids were achieved at 32 h, mole ratio of 1:4:4 (trilinolein/caprylic/stearic acids), water content of 1% (wt %), temperature of 55 degrees C, and 10% (wt %) enzyme load. The maximal incorporations of caprylic and stearic acids were 23.73 and 62.46 mol %, respectively. Reaction time, water content, and enzyme load had major influences on the reaction, whereas substrate mole ratio and temperature showed less influence. Lipozyme showed good stability over six reuses. Differential scanning calorimetric analysis of SL gave a melting profile with a very low melting peak of 0-3.3 degrees C and a solid fat content of 25.21% at 0 degrees C. The melting profile and solid fat content of SL were compared with those of fats extracted from commercially available solid and liquid margarine products. The data suggest that enzymatically produced SL could be used in liquid margarine products.

  11. Brucite-driven CO2 uptake in serpentinized dunites (Ligurian Ophiolites, Montecastelli, Tuscany)

    NASA Astrophysics Data System (ADS)

    Boschi, Chiara; Dini, Andrea; Baneschi, Ilaria; Bedini, Federica; Perchiazzi, Natale; Cavallo, Andrea

    2017-09-01

    Understanding the mechanism of serpentinite weathering at low temperature - that involves carbonate formation - has become increasingly important because it represents an analog study for a cost-efficient carbon disposal strategy (i.e. carbon mineralization technology or mineral Carbon dioxide Capture and Storage, CCS). At Montecastelli (Tuscany, Italy), on-going spontaneous mineral CO2 sequestration is enhanced by brucite-rich serpentinized dunites. The dunites are embedded in brucite-free serpentinized harzburgites that belong to the ophiolitic Ligurian Units (Northern Apennine thrust-fold belt). Two main serpentinization events produced two distinct mineral assemblages in the reactive dunite bodies. The first assemblage consists of low-T pseudomorphic, mesh-textured serpentine, Fe-rich brucite (up to 20 mol.% Fe(OH)2) and minor magnetite. This was overprinted by a non-pseudomorphic, relatively high-T assemblage consisting of serpentine, Fe-poor brucite (ca. 4 mol% Fe(OH)2) and abundant magnetite. The harzburgite host rock developed a brucite-free paragenesis made of serpentine and magnetite. Present-day interaction of serpentinized dunites with slightly acidic and oxidizing meteoric water, enhances brucite dissolution and leads to precipitation of both Mg-Fe layered double hydroxides (coalingite-pyroaurite, LDHs) and hydrous Mg carbonates (hydromagnesite and nesquehonite). In contrast, the brucite-free serpentinized harzburgites are not affected by the carbonation process. In the serpentinized dunites, different carbonate minerals form depending on brucite composition (Fe-rich vs Fe-poor). Reactions in serpentinized dunites containing Fe-rich brucite produce a carbonate assemblage dominated by LDHs and minor amount of hydromagnesite. Serpentinites with a Fe-poor brucite assemblage contain large amounts of hydromagnesite and minor LDHs. Efficiency of CO2 mineral sequestration is different in the two cases owing to the distinct carbon content of LDHs (ca. 1.5 wt.%) and hydromagnesite (ca. 10 wt.%). Here, for the first time, we link the mineral composition of serpentinized ultramafic rocks to carbonate formation, concluding that Fe-poor brucite maximizes the mineral CCS efficiency.

  12. Nucleotide sequence and genetic organization of barley stripe mosaic virus RNA gamma.

    PubMed

    Gustafson, G; Hunter, B; Hanau, R; Armour, S L; Jackson, A O

    1987-06-01

    The complete nucleotide sequences of RNA gamma from the Type and ND18 strains of barley stripe mosaic virus (BSMV) have been determined. The sequences are 3164 (Type) and 2791 (ND18) nucleotides in length. Both sequences contain a 5'-noncoding region (87 or 88 nucleotides) which is followed by a long open reading frame (ORF1). A 42-nucleotide intercistronic region separates ORF1 from a second, shorter open reading frame (ORF2) located near the 3'-end of the RNA. There is a high degree of homology between the Type and ND18 strains in the nucleotide sequence of ORF1. However, the Type strain contains a 366 nucleotide direct tandem repeat within ORF1 which is absent in the ND18 strain. Consequently, the predicted translation product of Type RNA gamma ORF1 (mol wt 87,312) is significantly larger than that of ND18 RNA gamma ORF1 (mol wt 74,011). The amino acid sequence of the ORF1 polypeptide contains homologies with putative RNA polymerases from other RNA viruses, suggesting that this protein may function in replication of the BSMV genome. The nucleotide sequence of RNA gamma ORF2 is nearly identical in the Type and ND18 strains. ORF2 codes for a polypeptide with a predicted molecular weight of 17,209 (Type) or 17,074 (ND18) which is known to be translated from a subgenomic (sg) RNA. The initiation point of this sgRNA has been mapped to a location 27 nucleotides upstream of the ORF2 initiation codon in the intercistronic region between ORF1 and ORF2. The sgRNA is not coterminal with the 3'-end of the genomic RNA, but instead contains heterogeneous poly(A) termini up to 150 nucleotides long (J. Stanley, R. Hanau, and A. O. Jackson, 1984, Virology 139, 375-383). In the genomic RNA gamma, ORF2 is followed by a short poly(A) tract and a 238-nucleotide tRNA-like structure.

  13. In situ monitoring of corrosion mechanisms and phosphate inhibitor surface deposition during corrosion of zinc-magnesium-aluminium (ZMA) alloys using novel time-lapse microscopy.

    PubMed

    Sullivan, James; Cooze, Nathan; Gallagher, Callum; Lewis, Tom; Prosek, Tomas; Thierry, Dominique

    2015-01-01

    In situ time-lapse optical microscopy was used to examine the microstructural corrosion mechanisms in three zinc-magnesium-aluminium (ZMA) alloy coated steels immersed in 1% NaCl pH 7. Preferential corrosion of MgZn(2) lamellae within the eutectic phases was observed in all the ZMA alloys followed by subsequent dissolution of Zn rich phases. The total extent and rate of corrosion, measured using time-lapse image analysis and scanning vibrating electrode technique (SVET) estimated mass loss, decreased as Mg and Al alloying additions were increased up to a level of 3 wt% Mg and 3.7 wt% Al. This was probably due to the increased presence of MgO and Al(2)O(3) at the alloy surface retarding the kinetics of cathodic oxygen reduction. The addition of 1 × 10(-2) mol dm(-3) Na(3)PO(4) to 1% NaCl pH 7 had a dramatic influence on the corrosion mechanism for a ZMA with passivation of anodic sites through phosphate precipitation observed using time-lapse image analysis. Intriguing rapid precipitation of filamentous phosphate was also observed and it is postulated that these filaments nucleate and grow due to super saturation effects. Polarisation experiments showed that the addition of 1 × 10(-2) mol dm(-3) Na(3)PO(4) to the 1% NaCl electrolyte promoted an anodic shift of 50 mV in open circuit potential for the ZMA alloy with a reduction in anodic current of 2.5 orders of magnitude suggesting that it was acting primarily as an anodic inhibitor supporting the inferences from the time-lapse investigations. These phosphate additions resulted in a 98% reduction in estimated mass loss as measured by SVET demonstrating the effectiveness of phosphate inhibitors for this alloy system.

  14. Structure and biochemical composition of desmosomes and tonofilaments isolated from calf muzzle epidermis

    PubMed Central

    1978-01-01

    Complexes of plasma membrane segments with desmosomes and attached tonofilaments were separated from the stratum spinosum cells of calf muzzle by means of moderately alkaline buffers of low ionic strength and mechanical homogenization. These structures were further fractionated by the use of various treatments including sonication, sucrose gradient centrifugation, and extraction with buffers containing high concentrations of salt, urea, citric acid, or detergents. Subfractions enriched in desmosome-tonofilament-complexes and tonofilament fragments were studied in detail. The desmosome structures such as the midline, the trilaminar membrane profile, and the desmosomal plaque appeared well preserved and were notably resistant to the various treatments employed. Fractions containing desmosome- tonofilament complexes were invariably dominated by the nonmembranous proteins of the tonofilaments which appeared as five major polypeptide bands (apparent molecular weights: 48,000; 51,000; 58,000; 60,000; 68,000) present in molar ratios of approx. 2:1:1:2:2. Four of these polypeptide bands showed electrophoretic mobilities similar to those of prekeratin polypeptides from bovine hoof. However, the largest polypeptide (68,000 mol wt) migrated significantly less in polyacrylamide gels than the largest component of the hoof prekeratin (approximately 63,000 mol wt). In addition, a series of minor bands, including carbohydrate-containing proteins, were identified and concluded to represent constituents of the desmosomal membrane. The analysis of protein-bound carbohydrates (total 270 microgram/mg phospholipid in desmosome-enriched subfractions) showed the presence of relatively high amounts of glucosamine, mannose, galactose, and sialic acids. These data as well as the lipid composition (e.g., high ratio of cholesterol to phospholipids, relatively high contents of sphingomyelin and gangliosides, and fatty acid pattern) indicate that the desmosomal membrane is complex in protein and lipid composition and has a typical plasma membrane character. The similarity of the desmosome-associated tonofilaments to prekeratin filaments and other forms of intermediate- sized filaments is discussed. PMID:569157

  15. Structure and biochemical composition of desmosomes and tonofilaments isolated from calf muzzle epidermis.

    PubMed

    Drochmans, P; Freudenstein, C; Wanson, J C; Laurent, L; Keenan, T W; Stadler, J; Leloup, R; Franke, W W

    1978-11-01

    Complexes of plasma membrane segments with desmosomes and attached tonofilaments were separated from the stratum spinosum cells of calf muzzle by means of moderately alkaline buffers of low ionic strength and mechanical homogenization. These structures were further fractionated by the use of various treatments including sonication, sucrose gradient centrifugation, and extraction with buffers containing high concentrations of salt, urea, citric acid, or detergents. Subfractions enriched in desmosome-tonofilament-complexes and tonofilament fragments were studied in detail. The desmosome structures such as the midline, the trilaminar membrane profile, and the desmosomal plaque appeared well preserved and were notably resistant to the various treatments employed. Fractions containing desmosome-tonofilament complexes were invariably dominated by the nonmembranous proteins of the tonofilaments which appeared as five major polypeptide bands (apparent molecular weights: 48,000; 51,000; 58,000; 60,000; 68,000) present in molar ratios of approx. 2:1:1:2:2. Four of these polypeptide bands showed electrophoretic mobilities similar to those of prekeratin polypeptides from bovine hoof. However, the largest polypeptide (68,000 mol wt) migrated significantly less in polyacrylamide gels than the largest component of the hoof prekeratin (approximately 63,000 mol wt). In addition, a series of minor bands, including carbohydrate-containing proteins, were identified and concluded to represent constituents of the desmosomal membrane. The analysis of protein-bound carbohydrates (total 270 microgram/mg phospholipid in desmosome-enriched subfractions) showed the presence of relatively high amounts of glucosamine, mannose, galactose, and sialic acids. These data as well as the lipid composition (e.g., high ratio of cholesterol to phospholipids, relatively high contents of sphingomyelin and gangliosides, and fatty acid pattern) indicate that the desmosomal membrane is complex in protein and lipid composition and has a typical plasma membrane character. The similarity of the desmosome-associated tonofilaments to prekeratin filaments and other forms of intermediate-sized filaments is discussed.

  16. Evidence for alternative pathways of granulosa cell death in healthy and slightly atretic bovine antral follicles.

    PubMed

    Van Wezel, I L; Dharmarajan, A M; Lavranos, T C; Rodgers, R J

    1999-06-01

    Granulosa cell death is an early feature of atresia; however, there are many apparent contradictions in the literature concerning the mode of granulosa cell death. We have therefore examined this process in bovine healthy and atretic antral follicles, using a variety of established techniques. Light and electron microscopic observations indicated the presence of pyknotic or shrunken nuclei in both the membrana granulosa and the antrum. In the membrana granulosa, these nuclei were frequently crescent shaped and uniformly electron dense and were approximately the same size as healthy nuclei, all of which are typical of early apoptosis. However, these nuclei were within the membranes of a healthy granulosa cell, suggesting that phagocytosis by a neighboring granulosa cell is an unusually early event in the apoptotic pathway of granulosa cells. In the membrana granulosa, pyknotic nuclei stained intensely with hematoxylin but weakly with the DNA-intercalating stain propidium iodide. A percentage of these pyknotic nuclei stained by TUNEL (terminal deoxy-UTP nick end-labeling). However, in the antrum, the pyknotic nuclei and larger globules of DNA stained intensely with both hematoxylin and propidium iodide, but were not TUNEL positive. The comet assay of cell death produced a streak tail of randomly nicked DNA, rather than the plume of low mol wt apoptotic DNA. Globules collected from fresh follicular fluid stained intensely with propidium iodide and were shown by PAGE to contain DNA, the majority of which was high mol wt. In conclusion, granulosa cells within the membrana granulosa die by apoptosis, with phagocytosis by a neighboring cell preceding any potential budding of the nucleus or cell itself. Granulosa cells near the antrum are sloughed off into the antrum, and their death has features more consistent with that of other cell types that undergo death as a result of terminal differentiation.

  17. The short-term effects of increasing plasma colloid osmotic pressure in patients with noncardiac pulmonary edema

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibbald, W.J.; Driedger, A.A.; Wells, G.A.

    1983-05-01

    We infused hyperoncotic albumin (25 or 50 gm of a 50% solution) into patients with noncardiac pulmonary edema (adult respiratory distress syndrome (ARDS)) to evaluate its effect on the transmicrovascular flux from blood to pulmonary edema fluid of two radiotracers--/sup 111/In-DTPA (mol wt 504) and /sup 125/I-human serum albumin (HSA) (mol wt 69,000). Two groups of patients were studied--one with a modest increase in permeability of the pulmonary alveolocapillary membrane to /sup 125/I-HSA (group 1) and another with a large increase in permeability to /sup 125/I-HSA (group 2). We used furosemide, when necessary, to minimize the effect of albumin infusionmore » to increase the pulmonary microvascular hydrostatic pressure (Pmv), measured clinically as the pulmonary capillary wedge pressure (PCWP). Therapy significantly increased the mean colloid osmotic pressure (COP) in both groups, but not the mean PCWP or calculated Pmv. Albumin had no significant effect on the mean pulmonary transmicrovascular flux of the radiotracers in either group, despite the increase in COP. In individual patients, a change in the Pmv in response to albumin infusion was directly correlated with the change in flux of /sup 111/In-DTPA (group 1: delta In-DTPA (%) . 8.66 + 1.4 delta Pmv (%) r . 0.51, P less than 0.02; group 2: delta In-DTPA (%) . -3.43 + 1.6 delta Pmv (%) r . 0.67, P less than 0.01). A change in the transmicrovascular flux of I-HSA also correlated with a change in the intravascular Starling forces in both groups. We conclude that albumin infusion in patients with ARDS will not augment the pulmonary transmicrovascular flux of low or high molecular-weight solutes when the effect of albumin to increase the Pmv is minimized; nor, however, does an increase in plasma COP significantly reduce the flux of such solutes.« less

  18. The formation of FHA coating on biodegradable Mg-Zn-Zr alloy using a two-step chemical treatment method

    NASA Astrophysics Data System (ADS)

    Jiang, S. T.; Zhang, J.; Shun, S. Z.; Chen, M. F.

    2016-12-01

    To improve the corrosion resistance of the biomedical magnesium alloy, a two-step chemical treatment method has been employed to prepare an FHA coating on the alloy surface. Prior to forming an FHA layer, the samples of Mg-3 wt% Zn-0.5 wt% Zr alloy were soaked in HF with concentration of 20% (v/v) at 37 °C temperature for 2 h, and were then placed into an aqueous solution with 0.1 mol/L Ca(NO3).4H2O and 0.06 mol/L NH4H2PO4 at 90 °C to prepare the Ca-P coating. The concentrations of Mg2+, F- ions, and pH variation with immersing time in the solution were investigated to explore the growth mechanism of FHA. The surface morphologies and compositions of the coatings were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results showed that the alloy surface treated with acid formed a layer of MgF2 nanoparticles with a thickness of 0.7 μm. The corrosion resistance of coatings in SBF solution was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The results showed that the substrate with FHA coating had good corrosion resistance. After immersing into the calcium phosphate solution, some small spherical particles were first formed on the surface; these then cover the surface completely after 20 min. Some clusters consisting of needle-like crystal were observed in the spherical particles covering the surface, and the Ca/P ratio of the needle-like crystal was 1.46, clearly growing along the c axis preferred orientation growth. After immersion for 60 min, the FHA coating with completely uniform growth was obtained on the Mg-Zn-Zr alloy surface with its thickness reaching about 120 μm.

  19. Direct cardiac effects of intracoronary bupivacaine, levobupivacaine and ropivacaine in the sheep

    PubMed Central

    Chang, Dennis H-T; Ladd, Leigh A; Copeland, Susan; Iglesias, Miguel A; Plummer, John L; Mather, Laurence E

    2001-01-01

    The racemic local anaesthetic agent bupivacaine is widely used clinically for its long duration of action. Levobupivacaine and ropivacaine are bupivacaine enantiopure congeners, developed to improve upon the clinical safety of bupivacaine, especially the risk of fatal arrhythmogenesis. In previous preclinical studies of the safety of these drugs with intravenous administration in conscious ewes over a wide dose range, we found that central nervous system (CNS) excito-toxicity reversed the cardiac depressant effects when doses approached the convulsant threshold and thus precluded accurate comparison of their cardiovascular system (CVS) effects. To study CVS effects over a wide range of doses with minimal CNS and other influences, brief (3 min) infusions of bupivacaine, levobupivacaine or ropivacaine were administered into the left main coronary arteries of previously instrumented conscious ewes (∼50 Kg body weight). After dose-ranging studies, the drugs were compared in a randomized, blinded, parallel group design. Equimolar doses were increased from 8 μmol (≈amp;2.5 mg) in 8 μmol increments, to either a fatal outcome or a 40 μmol (≈amp;12.5 mg) maximum. All three drugs produced tachycardia, decreased myocardial contractility and stroke volume and widening of electrocardiographic QRS complexes. Thirteen of 19 animals died of ventricular fibrillation: four of six with bupivacaine (mean±s.e.mean actual fatal dose: 21.8±6.4 μmol), five of seven with levobupivacaine (22.9±3.5 μmol), four of six with ropivacaine (22.9±5.9 μmol). No significant differences in survival or in fatal doses between these drugs were found. The findings suggest that ropivacaine, levobupivacaine and bupivacaine have similar intrinsic ability to cause direct fatal cardiac toxicity when administered by left intracoronary arterial infusion in conscious sheep and do not explain the differences between the drugs found with intravenous dosage. PMID:11159717

  20. H2O-CO2-S-Cl partitioning and mixing in rhyolitic melts and fluid - Implications on closed-system degassing in rhyolite

    NASA Astrophysics Data System (ADS)

    Ding, S.; Webster, J. D.

    2017-12-01

    Magmatic degassing involving multiple volatile components (C, O, H, S, Cl, etc.) is one of the key factors influencing the timing and nature of volcanic eruptions, and the chemistry of volcanic gases released to the surface. In particular, exsolution of these volatiles from silicic magma during ascent could trigger explosive volcanic eruptions, which can exert strong impacts on surface temperature, ecology and human health. However, quantitative evaluation of this process in silicic magma remains ambiguous due to the lack of experiments in such chemically complex systems. Rhyolite-fluid(s) equilibria experiments were conducted in an IHPVat 100-300 MPa and 800 ° C to determine the solubilities, fluid-melt partitioning, and mixing properties of H2O, CO2, S, and Cl in the oxygen fugacity (fO2) range of FMQ to FMQ+3. The integrated bulk fluids contain up to 94 mol% H2O, 32 mol% CO2, 1 mol% S and 1mol% Cl. Rhyolite melt dissolved 20- 770 ppm CO2 and 4-7 wt.% H2O, varying with pressure, fluid composition, and fO2. Concentrations of H2O and CO2 in melt from C-O-H-S-Cl- bearing experiments at 100 and 200 MPa, and from C-O-H only experiments are generally consistent with the predictions of existing CO2-H2O solubility models based on the C-O-H only system [1-4], while the solubilities of H2O and CO2 in melt with addition of S±Cl at 300 MPa are less than those of the C-O-H- only system. This reduction in H2O and CO2 solubilities exceeds the effects of simple dilution of the coexisting fluid owing to addition of other volatiles, and rather, reflects complex mixing relations. Rhyolite melt also dissolved 20-150 ppm S and 850-2000 ppm Cl, varying with pressure. At 300 MPa, S concentrations in the melt change with fO2. The partitioning of CO2 and S between fluid and melt varies as a function of fluid composition and fO2. Solubilities and complex mixing relationships of CO2, H2O, S and Cl revealed in our experiments can be applied to massive rhyolitic eruptions like those of the Bishop tuff, Toba tuff and Pinatubo to better understand the degassing process, to estimate fluid compositions, and thus, to evaluate the potential environmental impacts of these super eruptions. [1] Ghiorso amd Gualda, 2015, CMP; [2] Liu et al., 2005, J. Volcanol. Geotherm. Res.; [3] Newman and Lowenstern, 2002, Comput. Geosci.; [3] Tamic et al., 2001, Chem. Geol..

  1. The temperature-dependence of adenylate cyclase from baker's yeast.

    PubMed Central

    Londesborough, J; Varimo, K

    1979-01-01

    The Michaelis constant of membrane-bound adenylate cyclase increased from 1.1 to 1.8 mM between 7 and 38 degrees C (delta H = 13 kJ/mol). Over this temperature range, the maximum velocity increased 10-fold, and the Arrhenius plot was nearly linear, with an average delta H* of 51 kJ/mol. The temperature-dependence of the reaction rate at 2 mM-ATP was examined in more detail: for Lubrol-dispersed enzyme, Arrhenius plots were nearly linear with average delta H* values of 45 and 68 kJ/mol, respectively, for untreated and gel-filtered enzymes; for membrane-bound enzyme, delta H changed from 40 kJ/mol above about 21 degrees C to 62 kJ/mol below 21 degrees C, but this behaviour does not necessarily indicate an abrupt, lipid-induced, transition in the reaction mechanism. PMID:391221

  2. Study of the interaction of flavonoids with 3-mercaptopropionic acid modified CdTe quantum dots mediated by cetyltrimethyl ammonium bromide in aqueous medium

    NASA Astrophysics Data System (ADS)

    Aucelio, Ricardo Q.; Carvalho, Juliana M.; Real, Juliana T.; Maqueira-Espinosa, Luis; Pérez-Gramatges, Aurora; da Silva, Andrea R.

    2017-02-01

    Flavonoids are polyphenols that help the maintenance of health, aiding the prevention of diseases. In this work, CdTe QDs coated with 3-mercaptopropionic acid (3MPA), with an average size of 2.7 nm, were used as photoluminescence probe for flavonoids in different conditions. The interaction between 14 flavonoids and QDs was evaluated in aqueous dispersions in the absence and in the presence of cetyltrimethylammonium bromide (CTAB). To establish a relationship between photoluminescence quenching and the concentration of flavonoids, the Stern-Volmer model was used. In the absence of CTAB, the linear ranges for quercetin, morin and rutin were from 5.0 × 10- 6 mol L- 1 to 6.0 × 10- 5 mol L- 1 and from 1.0 × 10- 5 mol L- 1 to 6.0 × 10- 4 mol L- 1 for kaempferol. The sensibility of the Stern-Volmer curves (Ks) indicated that quercetin interacts more strongly with the probe: Ks quercetin > Ks kaempferol > Ks rutin > Ks morin. The conjugation extension in the 3 rings, and the acidic hydroxyl groups (positions 3ʹand 4ʹ) in the B-ring enhanced the interaction with 3MPA-CdTe QDs. The other flavonoids do not interact with the probe at 10- 5 mol L- 1 level. In CTAB organized dispersions, Ks 3-hydroxyflavone > Ks 7-hydroxyflavone > Ks flavona > Ks rutin in the range from 1.0 × 10- 6 mol L- 1 to 1.2 × 10- 5 mol L- 1 for flavones and of 1.0 × 10- 6 mol L- 1 to 1.0 × 10- 5 mol L- 1 for rutin. Dynamic light scattering, conductometric measurements and microenvironment polarity studies were employed to elucidate the QDs-flavonoids interaction in systems containing CTAB. The quenching can be attributed to the preferential solubility of hydrophobic flavonoid in the palisade layer of the CTAB aggregates adsorbed on the surface of the 3MPA CdTe QDs.

  3. Uptake and Dissolution of Gaseous Ethanol in Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Michelsen, Rebecca R.; Staton, Sarah J. R.; Iraci, Laura T.

    2006-01-01

    The solubility of gas-phase ethanol (ethyl alcohol, CH3CH2OH, EtOH) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (209-237 K) and acid composition (39-76 wt % H2SO4). Ethanol is very soluble under these conditions: effective Henry's law coefficients, H*, range from 4 x 10(exp 4) M/atm in the 227 K, 39 wt % acid to greater than 10(exp 7) M/atm in the 76 wt % acid. In 76 wt % sulfuric acid, ethanol solubility exceeds that which can be precisely determined using the Knudsen cell technique but falls in the range of 10(exp 7)-10(exp 10) M/atm. The equilibrium concentration of ethanol in upper tropospheric/lower stratospheric (UT/LS) sulfate particles is calculated from these measurements and compared to other small oxygenated organic compounds. Even if ethanol is a minor component in the gas phase, it may be a major constituent of the organic fraction in the particle phase. No evidence for the formation of ethyl hydrogen sulfate was found under our experimental conditions. While the protonation of ethanol does augment solubility at higher acidity, the primary reason H* increases with acidity is an increase in the solubility of molecular (i.e., neutral) ethanol.

  4. A petrologic study of the Teanaway Basalt: Eocene slab window volcanism in central WA

    NASA Astrophysics Data System (ADS)

    Roepke, E.; Tepper, J. H.; Ivener, D.

    2013-12-01

    The Teanaway Basalt (TB) includes subaerial basalt to andesite flows, mafic to felsic tuffs, and rhyolite domes in the Central Cascades of Washington State. These volcanics overlie the extensive ~47 Ma Teanaway Dike Swarm (TDS) that cuts the underlying Swauk Formation. This study focuses on the tectonic setting of eruption and geochemical variations relating to geography and stratigraphy within the TB. The western-most area of the TB, Easton Ridge (ER), is compared with the eastern-most area of the TB, Liberty Ridge (LR) - 40 km to the east of ER. The bimodal TB consists predominantly of basaltic andesite and andesite (45.3-63.1 wt% SiO2) with subordinate rhyolite (75.9-79.4 wt% SiO2). The mafic rocks classify as primarily medium-K tholeiites (0.1-3.0 wt% K2O), but a few samples classify as alkaline. Enrichment in LILE and depletion in HFSE on spidergrams are indicative of an arc setting. However, compared with the modern Cascade Arc, the TB is distinctly higher in Fe2O3T (8.8-17.1 wt%) and TiO2 (1.1-2.7 wt%), and distinctly lower in Al2O3 (11.2-14.6) and K2O, with a similar range of Mg #s (0.15-0.48). Most tectonic discrimination plots characterize the TB as MORB, but some indicate an arc or within-plate setting. Preliminary Pb isotopic data (206Pb/204Pb = 19.13-19.19, 207Pb/204Pb = 15.62-15.64, and 208Pb/204Pb = 38.78-38.90) indicate the TB and TDS are more enriched than Cascade Arc rocks in 206Pb/204Pb and 208Pb/204Pb. Overall, these geochemical data are consistent with a model in which asthenospheric mantle ascending through a slab window interacts with mantle wedge that has previously acquired arc chemical traits. The existence of a slab window in this region during the mid-Eocene is compatible with plate reconstructions and evidence of extension that have been attributed to subduction of the Resurrection-Kula ridge (Haeussler et al., 2003). Harker plots show lavas at LR are generally more enriched than those at ER in Fe2O3T (11.9-17.1 wt% vs 8.8-15.7 wt%) MnO (0.16-0.28 wt% vs 0.11-0.24 wt%), and TiO2 (1.2-2.4 wt% vs 0.8-2.7 wt%), and have a narrower range of CaO (1.5-9.4 wt%) and Na2O (1.5-3.3 wt%) concentrations. Both LR and ER samples display modest LREE enrichment (La/Yb = 2.1-3.7) and similar incompatible element ratios, suggesting similar sources. ER samples show a broader range of REE contents but extend to lower levels, and have smaller negative Eu anomalies (Eu/Eu* = 0.55-0.96). Pearce element ratio plots suggest much of the variation reflects different degrees of plag+cpx fractionation. Alkaline lavas are restricted to ER and the central area of the TB. Differences in concentration at similar Mg# (most notably in Fe2O3T, TiO2, MnO, and Na2O) suggest multiple parent magmas, probably from similar mantle sources. With increasing stratigraphic height in the ~1.6 km thick LR section, there are general decreases in SiO2 (60 to 54 wt%), and general increases in CaO (4 to 8 wt%), MnO (0.1-0.15 wt%), and P2O5 (0.2-0.65 wt%). Mg# displays several cycles of decrease followed by increase, each extending over 400-1000m. These trends are suggestive of an evolving system that experienced multiple replenishment events.

  5. Nuclear matrix and hnRNP share a common structural constituent associated with premessenger RNA.

    PubMed Central

    Gallinaro, H; Puvion, E; Kister, L; Jacob, M

    1983-01-01

    Nuclear matrix and heterogeneous nuclear ribonucleoprotein (hnRNP) were compared to establish whether premessenger RNA (premRNA) was associated with a same constituent in both structures. The isolation of nuclear matrix included the removal of chromatin and of 0.4 M KCl-soluble material. HnRNP, isolated by a standard method was also treated by 0.4 M KCl. Both isolation procedures caused the removal of DNA, histones, a fraction of small nuclear RNA and of nonhistone proteins including the hnRNP proteins in the 30 000-40 000 mol. wt. range. High resolution autoradiography showed that hnRNA remained associated with the residual fibrils in both structures. They both contained the same premRNA and maturation products as shown by the analysis of the transcripts of the early region 3 of adenovirus 2. In addition, the small nuclear RNA and protein of the salt-resistant complexes were also present in the matrix. The results are compatible with the idea that the salt-resistant complexes from hnRNP constitute the fibrils associated with premRNA in the nucleoplasmic matrix. The fibrils may be the basic unit of splicing and their organization in matrix might provide the spatial configuration necessary for regulation. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 7. PMID:6557026

  6. [Super Liquid Crystalline Polysaccharides Produced by Ultimately-ecological Microreactors].

    PubMed

    Kaneko, Tatsuo; Okajima, Maiko K

    2018-01-01

     Cyanobacteria fix carbon dioxide and nitrogen from the atmosphere using solar energy to produce various biomolecules, and thus are regarded as ultimately ecological microreactors. Sacran is a cyanobacterial polysaccharide with a very high molecular weight of 29 Mg/mol, which is extracted from Aphanothece sacrum cyanobacterium mass-cultivated in freshwater environments such as river or spring. Sacran is a water-soluble heteropolysaccharide comprising more than 6 kinds of sugar residues and contains 12% sulfate anionic groups and 27% carboxyls. Sacran has a super-absorbent function of water, which can retain 6000 mL for 1 g specimen, due to very long hydrating chains. The value is much higher than hyaluronic acid or conventional super-absorbent polymers. Sacran exhibits self-orienting behavior in dilute solution at a concentration range over 0.25 wt%, which is quite low when compared with conventional liquid crystalline polysaccharides. Mesogenic helical chains of sacrans have extremely high aspect ratios of 1600 for highly persistent lengths of 32 micrometer. Through the liquid crystallinity, sacran solution shows a shear-thinning behavior and the solution spread over a substrate such as biological skin very efficiently to create a thin layer. Applied on atopic dermatitis skin sacran solution exerts excellent moisturizing effect and anti-itching action.

  7. Amphiphilic Copolymers Shuttle Drugs Across the Blood-Brain Barrier.

    PubMed

    Clemens-Hemmelmann, Mirjam; Kuffner, Christiane; Metz, Verena; Kircher, Linda; Schmitt, Ulrich; Hiemke, Christoph; Postina, Rolf; Zentel, Rudolf

    2016-05-01

    Medical treatment of diseases of the central nervous system requires transport of drugs across the blood-brain barrier (BBB). Here, it is extended previously in vitro experiments with a model compound to show that the non-water-soluble and brain-impermeable drug domperidone (DOM) itself can be enriched in the brain by use of an amphiphilic copolymer as a carrier. This carrier consists of poly(N-(2-hydroxypropyl)-methacrylamide), statistically copolymerized with 10 mol% hydrophobic lauryl methacrylate, into whose micellar aggregates DOM is noncovalently absorbed. As tested in a BBB model efficient transport of DOM across, the BBB is achievable over a wide range of formulations, containing 0.8 to 35.5 wt% domperidone per copolymer. In neither case, the polymer itself is translocated across the BBB model. In vivo experiments in mice show that already 10 min after intraperitoneal injection of the polymer/domperidone (PolyDOM) formulation, domperidone can be detected in blood and in the brain. Highest serum and brain levels of domperidone are detected 40 min after injection. At that time point serum domperidone is increased 48-fold. Most importantly, domperidone is exclusively detectable in high amounts in the brain of PolyDOM injected mice and not in mice injected with bare domperidone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Stability of carbonated basaltic melt at the base of the Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Litasov, K.; Ohtani, E.; Suzuki, A.

    2006-12-01

    Seismological observations of low velocity zones (LVZ) at the top of the 410-km discontinuity reveal possible existence of dense melt at this boundary (e.g. Reveanugh and Sipkin, 1994). Density measurements of anhydrous basaltic melts indicate that it is denser than surrounding mantle near 410-km depth (Ohtani and Maeda, 2001). However, melting temperature of peridotite is much higher than about 1400°C, estimated at 410-km depth. It has been shown recently that hydrous basaltic melt containing up to 2 wt.% H2O is denser than peridotite atop 410-km and therefore can be accumulated at the base of the upper mantle (Sakamaki et al., 2006). CO2 is another major volatile component in the mantle and it could be also important for explanation of LVZ near 410 km. In the present study, we have measured the density of carbonated basaltic melt at high pressures and high temperatures and discussed its possible stability at the base of the upper mantle. The density of the melt was determined using sink/float technique. The starting material was synthetic MORB glass. 5 and 10 wt.% CO2 was added to the glass as CaCO3 and Na2CO3, adjusting to proportions of related oxides. Experiments were carried out at 16-22 GPa and 2200-2300°C using a multianvil apparatus at Tohoku University, Japan. We observed neutral buoyancy of diamond density marker in MORB + 5 wt.% CO2 at 18 GPa and 2300°C, whereas, diamond was completely dissolved in the carbonated MORB melt containing 10 wt.% CO2 in 0.5-1 minute experiments. Based on the buoyancy test, the density of the carbonated basaltic melt, containing 5 wt.% CO2, is 3.56 g/cm3 at 18 GPa and 2300°C using an equation of state of diamond. To calculate the bulk modulus we assume that the pressure derivative of the isothermal bulk modulus is the same as that of the dry MORB melt, dKT/dP=5.0 and zero-pressure partial molar volume of CO2 is 32 cm3/mol (based on low-pressure experiments on carbonated basaltic melts and carbonatites, e.g. Dobson et al., 1996; Liu and Lange, 2003). Accordingly, the isothermal bulk modulus (KT) of the carbonated MORB melt containing 5 wt.% CO2 calculated using the Birch-Murnaghan equation of state is 16.3 ± 1 GPa. This value is close to that of dry MORB (KT=18 GPa) and indicates that addition of 5 wt.% CO2 to basaltic melt has minor influence on its compressibility. Density of MORB + 5 wt.% CO2 is almost same with the density of MORB + 2 wt.% H2O at 15-20 GPa. Comparison of the density of carbonated basaltic melt with PREM density profile at 1600°C indicates that it is buoyant above the 410 km discontinuity in the mantle only if it contains more than about 5 wt.% CO2.

  9. Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops on Mars

    NASA Astrophysics Data System (ADS)

    Berk, Wolfgang; Fu, Yunjiao; Ilger, Jan-Michael

    2012-10-01

    The well defined composition of the Comanche rock's carbonate (Magnesite0.62Siderite0.25Calcite0.11Rhodochrosite0.02) and its host rock's composition, dominated by Mg-rich olivine, enable us to reproduce the atmospheric CO2partial pressure that may have triggered the formation of these carbonates. Hydrogeochemical one-dimensional transport modeling reveals that similar aqueous rock alteration conditions (including CO2partial pressure) may have led to the formation of Mg-Fe-Ca carbonate identified in the Comanche rock outcrops (Gusev Crater) and also in the ultramafic rocks exposed in the Nili Fossae region. Hydrogeochemical conditions enabling the formation of Mg-rich solid solution carbonate result from equilibrium species distributions involving (1) ultramafic rocks (ca. 32 wt% olivine; Fo0.72Fa0.28), (2) pure water, and (3) CO2partial pressures of ca. 0.5 to 2.0 bar at water-to-rock ratios of ca. 500 molH2O mol-1rock and ca. 5°C (278 K). Our modeled carbonate composition (Magnesite0.64Siderite0.28Calcite0.08) matches the measured composition of carbonates preserved in the Comanche rocks. Considerably different carbonate compositions are achieved at (1) higher temperature (85°C), (2) water-to-rock ratios considerably higher and lower than 500 mol mol-1 and (3) CO2partial pressures differing from 1.0 bar in the model set up. The Comanche rocks, hosting the carbonate, may have been subjected to long-lasting (>104 to 105 years) aqueous alteration processes triggered by atmospheric CO2partial pressures of ca. 1.0 bar at low temperature. Their outcrop may represent a fragment of the upper layers of an altered olivine-rich rock column, which is characterized by newly formed Mg-Fe-Ca solid solution carbonate, and phyllosilicate-rich alteration assemblages within deeper (unexposed) units.

  10. Effect of carbon, sulfur and silicon on iron melting at high pressure: Implications for composition and evolution of the planetary terrestrial cores

    NASA Astrophysics Data System (ADS)

    Deng, Liwei; Fei, Yingwei; Liu, Xi; Gong, Zizheng; Shahar, Anat

    2013-08-01

    High-pressure melting experiments in the Fe-S-C ternary and Fe-S-Si-C quaternary systems have been conducted in the range of 3.5-20 GPa and 920-1700 °C in the multi-anvil press. The mutual solubility, melting relations, and crystallization sequences were systematically investigated with changes of pressure, temperature and bulk composition. Five starting materials of Fe(84.69 wt%)-C(4.35 wt%)-S(7.85 wt%), Fe(84.87 wt%)-C(2.08 wt%)-S(11.41 wt%), Fe(86.36 wt%)-C(0.96 wt%)-S(10.31 wt%), Fe(85.71 wt%)-C(0.33 wt%)-S(11.86 wt%) and Fe(82.95 wt%)-C(0.66 wt%)-S(13.7 wt%)-Si(2.89 wt%) were employed. For Fe(84.69 wt%)-C(4.35 wt%)-S(7.85 wt%), the first crystallized phase is Fe3C at 5 GPa and Fe7C3 at 10-20 GPa. For Fe(84.87 wt%)-C(2.08 wt%)-S(11.41 wt%), Fe3C is the stable carbide at subsolidus temperature at 5-15 GPa. For Fe(86.36 wt%)-C(0.96 wt%)-S(10.31 wt%) and Fe(85.71 wt%)-C(0.33 wt%)-S(11.86 wt%), the first crystallized phase is metallic Fe instead of iron carbide at 5-10 GPa. The cotectic curves in Fe-S-C ternary system indicate only a small amount of C is needed to form an iron carbide solid inner core with the presence of S. Experiments on Fe(82.95 wt%)-C(0.66 wt%)-S(13.7 wt%)-Si(2.89 wt%) showed that a small amount of C does not significantly change the closure pressure of miscibility gap compared with that in Fe-S-Si system. It is observed that S preferentially partitions into molten iron while a significant amount of Si enters the solid phase with temperature decrease. Meanwhile, the C concentration in the liquid and solid iron metal changes little with temperature variations. If S, C and Si partitioning behavior between molten iron and solid iron metal with temperature remains the same under Earth's present core pressure conditions, the solid inner core should be iron dominated with dissolved Si. On the other hand, the liquid outer core will be S rich and Si poor. Moderate carbon will be evenly present in both solid and liquid cores. Based on our melting data in a multi-component system, no layered liquid core should exist in the Earth, Mars and Mercury.

  11. Production of Biodiesel from Acid Oil via a Two-Step Enzymatic Transesterification.

    PubMed

    Choi, Nakyung; Lee, Jeom-Sig; Kwak, Jieun; Lee, Junsoo; Kim, In-Hwan

    2016-11-01

    A two-step enzymatic transesterification process in a solvent-free system has been developed as a novel approach to the production of biodiesel using acid oil from rice bran oil soapstock. The acid oil consisted of 53.7 wt% fatty acids, 2.4 wt% monoacylglycerols, 9.1 wt% diacylglycerols, 28.8 wt% triacylglycerols, and 6.0 wt% others. Three immobilized lipases were evaluated as potential biocatalysts, including Novozym 435 from Candida antarctica, Lipozyme RM IM from Rhizomucor miehei, and Lipozyme TL IM from Thermomyces lanuginosus. The effects of molar ratio of acid oil to ethanol, temperature, and enzyme loading were investigated to determine the optimum conditions for the transesterification with the three immobilized lipases. The optimum conditions of the three immobilized lipases were a molar ratio of 1:5 (acid oil to ethanol), the temperature range of 30-40°C, and the enzyme loading range of 5-10%. The two-step transesterification was then conducted under the optimum conditions of each lipase. The stepwise use of Novozym 435 and Lipozyme TL IM or Lipozyme RM IM and Lipozyme TL IM resulted in similar or higher levels of yield to the individual lipases. The maximum yields obtained in both stepwise uses were ca. 92%.

  12. Washboard Terrain on Pluto

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; White, Oliver L.; Howard, Alan D.; Umurhan, Orkan M.; Schenk, Paul M.; Beyer, Ross A.; McKinnon, William B.; Singer, Kelsi N.; Lauer, Tod R.; Cheng, Andrew F.; hide

    2017-01-01

    Washboard texture or patterning consists of fields of parallel to sub-parallel ridges typically spaced 1-2 km crest to crest and a few 100 m in amplitude (Fig. 4a in Moore et al., 2016, Science, 351, 1284-1293). For the most part, underlying topography can be easily discerned. We will refer to discrete, well-bounded patches of these landforms as Washboard Terrain (WT). WT is observed to occur along the rim, and just beyond the rim, of Sputnik basin from the West to NNW. Where it is seen in high-resolution data, it has clearly defined limits, beyond which it would be able to be seen if it were there. WT doesn't occur at very low latitudes or very high latitudes (ranging from 22degN to 62degN). WT seems to occur most conspicuously on relatively level, gently sloping terrain. It is restricted to elevations between approximately 2 km to less than +1.5 km (i.e. not at high elevations). The most noticeable regional aspect of the area in which WT occurs is the sinuous valley network, which is suspected to have been formed, or at least substantially modified, by glaciation. WT also appears to occur mainly on an intermediate-albedo reddish material, where seen in enhanced color data. Where it occurs in level terrain, WT tends to trend ENE - there doesn't seem to be a strong local control of its orientation in response to valley drainage directions. WT can display a greater range of orientations where it occurs in higher-relief (not higher elevation) settings such as spurs. WT appears superposed on very ancient landscapes, but is itself cratered locally by clusters of small (approximately 1-3 km) craters, which may be secondaries. This implies that WT may be intermediate in age. Of several working hypotheses, we currently provisionally favor that WT may be akin to terrestrial recessional moraines (or de Geer moraines) associated with the retreat of a higher stand of N2 glaciation that once overfilled Sputnik basin. These putative moraine features may owe their spacing to superseasonal retreat on Milankovitch timescales of approximately 1 Ma. If this hypothesis has validity, then perhaps the intermediate-albedo reddish material may be akin to ground moraine deposits.

  13. A Diaminopropane-Appended Metal–Organic Framework Enabling Efficient CO 2 Capture from Coal Flue Gas via a Mixed Adsorption Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milner, Phillip J.; Siegelman, Rebecca L.; Forse, Alexander C.

    A new diamine-functionalized metal–organic framework comprised of 2,2-dimethyl-1,3-diaminopropane (dmpn) appended to the Mg 2+ sites lining the channels of Mg 2(dobpdc) (dobpdc4– = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) is characterized for the removal of CO 2 from the flue gas emissions of coal-fired power plants. Unique to members of this promising class of adsorbents, dmpn–Mg2(dobpdc) displays facile step-shaped adsorption of CO 2 from coal flue gas at 40 °C and near complete CO 2 desorption upon heating to 100 °C, enabling a high CO 2 working capacity (2.42 mmol/g, 9.1 wt %) with a modest 60 °C temperature swing. Evaluation of the thermodynamic parametersmore » of adsorption for dmpn–Mg 2(dobpdc) suggests that the narrow temperature swing of its CO 2 adsorption steps is due to the high magnitude of its differential enthalpy of adsorption (Δhads = -73 ± 1 kJ/mol), with a larger than expected entropic penalty for CO 2 adsorption (Δsads = -204 ± 4 J/mol·K) positioning the step in the optimal range for carbon capture from coal flue gas. In addition, thermogravimetric analysis and breakthrough experiments indicate that, in contrast to many adsorbents, dmpn–Mg 2(dobpdc) captures CO 2 effectively in the presence of water and can be subjected to 1000 humid adsorption/desorption cycles with minimal degradation. Solid-state 13C NMR spectra and single-crystal X-ray diffraction structures of the Zn analogue reveal that this material adsorbs CO 2 via formation of both ammonium carbamates and carbamic acid pairs, the latter of which are crystallographically verified for the first time in a porous material. Taken together, these properties render dmpn–Mg 2(dobpdc) one of the most promising adsorbents for carbon capture applications.« less

  14. A Diaminopropane-Appended Metal-Organic Framework Enabling Efficient CO2 Capture from Coal Flue Gas via a Mixed Adsorption Mechanism.

    PubMed

    Milner, Phillip J; Siegelman, Rebecca L; Forse, Alexander C; Gonzalez, Miguel I; Runčevski, Tomče; Martell, Jeffrey D; Reimer, Jeffrey A; Long, Jeffrey R

    2017-09-27

    A new diamine-functionalized metal-organic framework comprised of 2,2-dimethyl-1,3-diaminopropane (dmpn) appended to the Mg 2+ sites lining the channels of Mg 2 (dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) is characterized for the removal of CO 2 from the flue gas emissions of coal-fired power plants. Unique to members of this promising class of adsorbents, dmpn-Mg 2 (dobpdc) displays facile step-shaped adsorption of CO 2 from coal flue gas at 40 °C and near complete CO 2 desorption upon heating to 100 °C, enabling a high CO 2 working capacity (2.42 mmol/g, 9.1 wt %) with a modest 60 °C temperature swing. Evaluation of the thermodynamic parameters of adsorption for dmpn-Mg 2 (dobpdc) suggests that the narrow temperature swing of its CO 2 adsorption steps is due to the high magnitude of its differential enthalpy of adsorption (Δh ads = -73 ± 1 kJ/mol), with a larger than expected entropic penalty for CO 2 adsorption (Δs ads = -204 ± 4 J/mol·K) positioning the step in the optimal range for carbon capture from coal flue gas. In addition, thermogravimetric analysis and breakthrough experiments indicate that, in contrast to many adsorbents, dmpn-Mg 2 (dobpdc) captures CO 2 effectively in the presence of water and can be subjected to 1000 humid adsorption/desorption cycles with minimal degradation. Solid-state 13 C NMR spectra and single-crystal X-ray diffraction structures of the Zn analogue reveal that this material adsorbs CO 2 via formation of both ammonium carbamates and carbamic acid pairs, the latter of which are crystallographically verified for the first time in a porous material. Taken together, these properties render dmpn-Mg 2 (dobpdc) one of the most promising adsorbents for carbon capture applications.

  15. Mega-supramolecules for safer, cleaner fuel

    NASA Astrophysics Data System (ADS)

    Kornfield, Julie

    Guided by the statistical mechanics of ring-chain equilibrium, we designed and synthesized polymers that self-assemble into ``mega-supramolecules'' (>=5,000 kg/mol) at low concentration (<=0.3%wt) in hydrocarbon liquids. Experimental results accord with model predictions that end-functional polymers, which distribute among cyclic and linear supramolecules, can form a significant population of mega-supramolecules at low total polymer concentration--if, and only if , the backbones are long (>400 kg/mol) and end-association strength is optimal (16-18kT). Hydrocarbon liquid fuels are the world's dominant power source (34% of global energy consumption). Transportation relies heavily on such liquids, presenting the risk of explosive post-impact fires. The collapse of the World Trade Center on September 11, 2001 inspired us to revisit polymers for mist control to mitigate post-impact fuel explosions. Rheological and both light and neutron scattering measurements of long end-functional polymers having polycyclooctadiene backbones and acid or amine end groups verify formation of mega-supramolecules. Post-impact flame propagations experiments show that mega-supramolecules control misting. Turbulent flow measurements show that mega-supramolecules reduce drag like ultra-long covalent polymers. With individual building blocks short enough to avoid hydrodynamic chain scission (400

  16. An accurate and efficient computational protocol for obtaining the complete basis set limits of the binding energies of water clusters at the MP2 and CCSD(T) levels of theory: Application to (H₂O) m, m=2-6, 8, 11, 16 and 17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2015-06-21

    We report MP2 and CCSD(T) binding energies with basis sets up to pentuple zeta quality for the m = 2-6, 8 clusters. Or best CCSD(T)/CBS estimates are -4.99 kcal/mol (dimer), -15.77 kcal/mol (trimer), -27.39 kcal/mol (tetramer), -35.9 ± 0.3 kcal/mol (pentamer), -46.2 ± 0.3 kcal/mol (prism hexamer), -45.9 ± 0.3 kcal/mol (cage hexamer), -45.4 ± 0.3 kcal/mol (book hexamer), -44.3 ± 0.3 kcal/mol (ring hexamer), -73.0 ± 0.5 kcal/mol (D 2d octamer) and -72.9 ± 0.5 kcal/mol (S4 octamer). We have found that the percentage of both the uncorrected (dimer) and BSSE-corrected (dimer CP e) binding energies recovered with respectmore » to the CBS limit falls into a narrow range for each basis set for all clusters and in addition this range was found to decrease upon increasing the basis set. Relatively accurate estimates (within < 0.5%) of the CBS limits can be obtained when using the “ 2/3, 1/3” (for the AVDZ set) or the “½ , ½” (for the AVTZ, AVQZ and AV5Z sets) mixing ratio between dimer e and dimer CPe. Based on those findings we propose an accurate and efficient computational protocol that can be used to estimate accurate binding energies of clusters at the MP2 (for up to 100 molecules) and CCSD(T) (for up to 30 molecules) levels of theory. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multi program national laboratory operated for DOE by Battelle. This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. AC02-05CH11231.« less

  17. Preliminary evaluation of monolithic column high-performance liquid chromatography with tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection for the determination of quetiapine in human body fluids.

    PubMed

    Bellomarino, Sara A; Brown, Allyson J; Conlan, Xavier A; Barnett, Neil W

    2009-03-15

    High-performance liquid chromatography (HPLC) with tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection methodology is reported for the determination of the atypical antipsychotic drug quetiapine and the observation of its major active and inactive metabolites in human urine and serum. The method uses a monolithic chromatographic column allowing high flow rates of 3 mLmin(-1) enabling rapid quantification. Flow injection analysis (FIA) with tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection and HPLC time of flight mass spectrometry (TOF-MS) were used for the determination of quetiapine in a pharmaceutical preparation to establish its suitability as a calibration standard. The limit of detection achieved with FIA was 2 x 10(-11) molL(-1) in simple aqueous solution. The limits of detection achieved with HPLC were 7 x 10(-8) and 2 x 10(-10) molL(-1) in urine and serum, respectively. The calibration range for FIA was between 5 x 10(-9) and 1 x 10(-6) molL(-1). The calibration ranges for HPLC were between 1 x 10(-7)-1 x 10(-4) and 1 x 10(-8)-1 x 10(-4) molL(-1) in urine and serum, respectively. The quetiapine concentrations in patient samples were found to be 3 x 10(-6) molL(-1) in urine and 7 x 10(-7) molL(-1) in serum. Without the need for preconcentration, the HPLC detection limits compared favourably with those in previously published methodologies. The metabolites were identified using HPLC-TOF-MS.

  18. Pyrolysis of Date palm waste in a fixed-bed reactor: Characterization of pyrolytic products.

    PubMed

    Bensidhom, Gmar; Ben Hassen-Trabelsi, Aïda; Alper, Koray; Sghairoun, Maher; Zaafouri, Kaouther; Trabelsi, Ismail

    2018-01-01

    The pyrolysis of several Tunisian Date Palm Wastes (DPW): Date Palm Rachis (DPR), Date Palm Leaflets (DPL), Empty Fruit Bunches (EFB) and Date Palm Glaich (DPG) was run using a fixed-bed reactor, from room temperature to 500°C, with 15°C/min as heating rate and -5°C as condensation temperature, in order to produce bio-oil, biochar and syngas. In these conditions, the bio-oil yield ranges from 17.03wt% for DPL to 25.99wt% for EFB. For the biochar, the highest yield (36.66wt%) was obtained for DPL and the lowest one (31.66wt%) was obtained from DPG while the syngas production varies from 39.10wt% for DPR to 46.31wt% DPL. The raw material and pyrolysis products have been characterized using elemental analysis thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM). The syngas composition has been characterized using gas analyzer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Relationships of cadmium, mercury, and selenium with nutrient reserves of female lesser scaup (Aythya affinis) during winter and spring migration

    USGS Publications Warehouse

    Anteau, M.J.; Afton, A.D.; Custer, Christine M.; Custer, T.W.

    2007-01-01

    Trace elements may have important effects on body condition of ducks during spring migration, because individuals are experiencing energetically costly events (e.g., migration, nutrient reserve accumulation, pair formation, feather molt, and ovarian follicle development). We examined relationships among hepatic cadmium, mercury, and selenium concentrations (microg/g dry wt) and nutrient reserves (lipid, protein, and mineral) of female lesser scaup (Aythya affinis) during winter and spring migration at four locations within the Mississippi Flyway (LA, IL, and MN, USA, and MB, Canada). Selenium concentrations (range, 3.73-52.29 microg/g dry wt) were positively correlated with lipid reserves (F1,73 = 22.69, p < 0.001, type III partial r2 = 0.24), whereas cadmium was negatively correlated with lipid reserves (F1,73 = 6.92, p = 0.010, type III partial r2 = 0.09). The observed relationship between cadmium and lipid reserves may be cause for concern, because lipid reserves of females declined by 55 g (47%), on average, within the range of observed cadmium concentrations (0.23-7.24 microg/g dry wt), despite the relatively low cadmium concentrations detected. Mean cadmium concentrations were higher in Minnesota (1.23 microg/g dry wt) and Manitoba (1.11 microg/g dry wt) than in Louisiana (0.80 microg/g dry wt) and Illinois (0.69 microg/g dry wt). However, mean cadmium concentrations predict lipid reserves of females to be only 11 g lower, on average, in Minnesota than in Illinois. Previous research documented that lipid reserves were 100 g lower in Minnesota than in Illinois; consequently, cadmium is unlikely to be the sole cause for decreases in lipid reserves of females during late-spring migration.

  20. Beyond Point Charges: Dynamic Polarization from Neural Net Predicted Multipole Moments.

    PubMed

    Darley, Michael G; Handley, Chris M; Popelier, Paul L A

    2008-09-09

    Intramolecular polarization is the change to the electron density of a given atom upon variation in the positions of the neighboring atoms. We express the electron density in terms of multipole moments. Using glycine and N-methylacetamide (NMA) as pilot systems, we show that neural networks can capture the change in electron density due to polarization. After training, modestly sized neural networks successfully predict the atomic multipole moments from the nuclear positions of all atoms in the molecule. Accurate electrostatic energies between two atoms can be then obtained via a multipole expansion, inclusive of polarization effects. As a result polarization is successfully modeled at short-range and without an explicit polarizability tensor. This approach puts charge transfer and multipolar polarization on a common footing. The polarization procedure is formulated within the context of quantum chemical topology (QCT). Nonbonded atom-atom interactions in glycine cover an energy range of 948 kJ mol(-1), with an average energy difference between true and predicted energy of 0.2 kJ mol(-1), the largest difference being just under 1 kJ mol(-1). Very similar energy differences are found for NMA, which spans a range of 281 kJ mol(-1). The current proof-of-concept enables the construction of a new protein force field that incorporates electron density fragments that dynamically respond to their fluctuating environment.

  1. Method for increasing subterranean formation permeability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R.R.

    1966-09-06

    In a waterflooding operation the water premeability of the reservoir rock may be improved be adding certain chemical compounds to the waterflood. These compounds are selected from a group consisting of quebracho, pyrocatechole and hydroquinone. The amounts of chemicals used are in the ranges of 0.01 to 10 wt % based on floodwater. In one aspect of the method, the reservoir rock is rendered perferentially oil-wet by injecting quebracho tannin with the floodwater in an amount ranging from 0.5 to 5.0 wt % based on floodwater. In this case the floodwater should have a pH range of 7 to 14.more » (6 claims)« less

  2. Methane fluxes along a salinity gradient on a restored salt marsh, Harpswell, ME

    NASA Astrophysics Data System (ADS)

    Gunn, Cailene; Johnson, Beverly, ,, Dr.; Dostie, Phil; Bohlen, Curtis; Craig, Matthew

    2016-04-01

    This study functions as a pilot project to understand the relationship between salinity and methane emissions on a recently restored salt marsh in Casco Bay, Maine. Salt marshes are dynamic and highly productive ecosystems that provide a multitude of ecosystem services including nutrient filtration, storm-water buffering and carbon sequestration. These ecosystems are highly susceptible to anthropogenic alteration. The emplacement of causeways and narrow culverts, restricts tidal flow and leads to loss of healthy salinity gradients. Consequently, numerous salt marshes have experienced increases in freshwater vegetation growth as a result of coastal population expansion. Recent restoration efforts on Long Marsh, Harpswell, ME replaced a severely undersized culvert with a larger one in February, 2014. The salinity gradient has since been restored along much of the marsh, and freshwater vegetation that encroached on the marsh platform has died back. Vegetation and salinity are key indicators and drivers of CH4 emissions on salt marshes. Using static gas chambers, we quantified CH4 fluxes along two transects at five diverse sites ranging from healthy marsh (salinity of 27 to 31 psu) with Spartina vegetation, to regions invaded by Typha and other freshwater vegetation (salinity of 0 to 4 psu). Sampling was executed in the months of July, August and October. CH4 concentrations were determined using a gas chromatograph with a flame-ionization detector. Preliminary findings suggest reintroduction of healthy tidal flows into the marsh inhibits CH4 production, where the lowest fluxes with least variability were observed at the most saline sites with Spartina vegetation. The largest range of CH4 fluxes exhibited emissions from 0.75 μmol CH4/m2/hr to 518.4 μmol CH4/m2/hr at the Typha dominated sites from July to October. Fluxes at the saltwater and brackish regions were far less variable with ranges from 0.94 μmol CH4/m2/hr to 8.2 μmol CH4/m2/hr and 2.6 to 9.5 μmol CH4/m2/hr, respectively. The transitional sites exhibited ranges from 1.2 μmol CH4/m2/hr to 16.8 μmol CH4/m2/hr. For all sites, lowest fluxes were observed during the month of October, suggesting seasonal influence on CH4 emissions. These data will be complimented by sediment analyses at each site providing δC and % organic carbon using isotope-ratio mass spectrometry, as well as bulk density and rates of decomposition using a tea bag index.

  3. Hydration and ion pair formation in aqueous Y(3+)-salt solutions.

    PubMed

    Rudolph, Wolfram W; Irmer, Gert

    2015-11-14

    Raman spectra of aqueous yttrium perchlorate, triflate (trifluoromethanesulfonate), chloride and nitrate solutions were measured over a broad concentration range (0.198-3.252 mol L(-1)). The spectra range from low wavenumbers to 4200 cm(-1). A very weak mode at 384 cm(-1) with a full width at half height at 50 cm(-1) in the isotropic spectrum suggests that the Y(3+)- octa-aqua ion is thermodynamically stable in dilute perchlorate solutions (∼0.5 mol L(-1)) while in concentrated perchlorate solutions outer-sphere ion pairs and contact ion pairs are formed. The octa-hydrate, [Y(OH2)8](3+) was also detected in a 1.10 mol L(-1) aqueous Y(CF3SO3)3 solution. Furthermore, very weak and broad depolarized modes could be detected which are assigned to [Y(OH2)8](3+)(aq) at 100, 166, 234 and 320 cm(-1) confirming that a hexa-hydrate is not compatible with the hydrated species in solution. In yttrium chloride solutions contact ion pair formation was detected over the measured concentration range from 0.479-3.212 mol L(-1). The contact ion pairs in YCl3(aq) are fairly weak and disappear with dilution. At a concentration <0.2 mol L(-1) almost all complexes have disappeared. In YCl3 solutions, with additional HCl, chloro-complexes of the type [Y(OH2)8-nCln](+3-n) (n = 1,2) are formed. The Y(NO3)3(aq) spectra were compared with a spectrum of a dilute NaNO3 solution and it was concluded that in Y(NO3)3(aq) over the concentration range from 2.035-0.198 mol L(-1) nitrato-complexes [Y(OH2)8-n(NO3)ln](+3-n) (n = 1,2) are formed. The nitrato-complexes are weak and disappear with dilution <0.1 mol L(-1). DFT geometry optimizations and frequency calculations are reported for both the yttrium-water cluster in the gas phase and the cluster within a polarizable continuum model in order to implicitly describe the presence of the bulk solvent. The bond distance and angle for the square antiprismatic cluster geometry of [Y(OH2)8](3+) with the polarizable dielectric continuum is in good agreement with data from recent structural experimental measurements. The DFT frequency of the Y-O stretching mode of the [Y(OH2)8](3+) cluster, in a polarizable continuum, is at 372 cm(-1) in satisfactory agreement with the experimental value.

  4. Magma storage and evolution of the most recent effusive and explosive eruptions from Yellowstone Caldera

    NASA Astrophysics Data System (ADS)

    Befus, Kenneth S.; Gardner, James E.

    2016-04-01

    Between 70 and 175 ka, over 350 km3 of high-silica rhyolite magma erupted both effusively and explosively from within the Yellowstone Caldera. Phenocrysts in all studied lavas and tuffs are remarkably homogenous at the crystal, eruption, and caldera-scale, and yield QUILF temperatures of 750 ± 25 °C. Phase equilibrium experiments replicate the observed phenocryst assemblage at those temperatures and suggest that the magmas were all stored in the upper crust. Quartz-hosted glass inclusions contain 1.0-2.5 % H2O and 50-600 ppm CO2, but some units are relatively rich in CO2 (300-600 ppm) and some are CO2-poor (50-200 ppm). The CO2-rich magmas were stored at 90-150 MPa and contained a fluid that was 60-75 mol% CO2. CO2-poor magmas were stored at 50-70 MPa, with a more H2O-rich fluid (X_{{{text{CO}}2 }} = 40-60 %). Storage pressures and volatiles do not correlate with eruption age, volume, or style. Trace-element contents in glass inclusions and host matrix glass preserve a systematic evolution produced by crystal fractionation, estimated to range from 36 ± 12 to 52 ± 12 wt%. Because the erupted products contain <10 wt% crystals, crystal-poor melts likely separated from evolving crystal-rich mushes prior to eruption. In the Tuffs of Bluff Point and Cold Mountain Creek, matrix glass is less evolved than most inclusions, which may indicate that more primitive rhyolite was injected into the reservoir just before those eruptions. The presence and dissolution of granophyre in one flow may record evidence for heating prior to eruption and also demonstrate that the Yellowstone magmatic system may undergo rapid changes. The variations in depth suggest the magmas were sourced from multiple chambers that follow similar evolutionary paths in the upper crust.

  5. Equation of state of pyrite to 80 GPa and 2400 K

    DOE PAGES

    Thompson, Elizabeth C.; Chidester, Bethany A.; Fischer, Rebecca A.; ...

    2016-05-02

    The high-cosmic abundance of sulfur is not reflected in the terrestrial crust, implying it is either sequestered in the Earth’s interior or was volatilized during accretion. As it has widely been suggested that sulfur could be one of the contributing light elements leading to the density deficit of Earth’s core, a robust thermal equation of state of iron sulfide is useful for understanding the evolution and properties of Earth’s interior. We performed X-ray diffraction measurements on FeS 2 achieving pressures from 15 to 80 GPa and temperatures up to 2400 K using laser-heated diamond-anvil cells. No phase transitions were observedmore » in the pyrite structure over the pressure and temperature ranges investigated. Combining our new P-V-T data with previously published room-temperature compression and thermochemical data, we fit a Debye temperature of 624(14) K and determined a Mie-Grüneisen equation of state for pyrite having bulk modulus K T = 141.2(18) GPa, pressure derivative K' T = 5.56(24), Grüneisen parameter γ 0 = 1.41, anharmonic coefficient A 2 = 2.53(27) × 10 –3 J/(K 2·mol), and q = 2.06(27). These findings are compared to previously published equation of state parameters for pyrite from static compression, shock compression, and ab initio studies. This revised equation of state for pyrite is consistent with an outer core density deficit satisfied by 11.4(10) wt% sulfur, yet matching the bulk sound speed of PREM requires an outer core composition of 4.8(19) wt% S. Here, this discrepancy suggests that sulfur alone cannot satisfy both seismological constraints simultaneously and cannot be the only light element within Earth’s core, and so the sulfur content needed to satisfy density constraints using our FeS 2 equation of state should be considered an upper bound for sulfur in the Earth’s core.« less

  6. Development and validation of a 2nd tier test for identification of purine nucleoside phosphorylase deficiency patients during expanded newborn screening by liquid chromatography-tandem mass spectrometry.

    PubMed

    la Marca, Giancarlo; Giocaliere, Elisa; Malvagia, Sabrina; Villanelli, Fabio; Funghini, Silvia; Ombrone, Daniela; Della Bona, Maria; Forni, Giulia; Canessa, Clementina; Ricci, Silvia; Romano, Francesca; Guerrini, Renzo; Resti, Massimo; Azzari, Chiara

    2016-04-01

    Purine nucleoside phosphorylase (PNP) deficiency has been recently introduced in the newborn screening program in Tuscany. In order to improve the PNP screening efficiency, we developed a 2nd tier test to quantify PNP primary markers deoxyguanosine (dGuo) and deoxyinosine (dIno). Dried blood spots (DBS) samples were extracted with 200 μL of methanol and 100 μL of water (by two steps). Internal standards were added at a final concentration of 10 μmol/L. After extraction, samples were analysed by LC-MS/MS. The chromatographic run was performed in gradient mode by using a Synergi Fusion column. The assay was linear over a concentration range of 0.05-50 μmol/L (R2>0.999) for dGuo and 0.5-50 μmol/L (R2>0.998) for dIno. Intra- and interassay imprecision (mean CVs) for dIno and dGuo ranged from 2.9% to 12%. Limit of quantitaion (LOQ) were found to be 0.05 μmol/L and 0.5 μmol/L for dGuo and dIno, respectively. The reference ranges, obtained by measuring dGuo and dIno concentrations on DBS, were close to zero for both biomarkers. Moreover, DBS samples from seven patients with confirmed PNP were retrospectively evaluated and correctly identified. The LC-MS/MS method can reliably measure dIno and dGuo in DBS for the diagnosis of PNP. Validation data confirm the present method is characterised by good reproducibility, accuracy and imprecision for the quantitation of dIno and dGuo. The assay also appears suitable for use in monitoring treatment of PNP patients.

  7. Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids.

    PubMed

    Copolovici, Lucian O; Niinemets, Ulo

    2005-12-01

    To model the emission dynamics and changes in fractional composition of monoterpenoids from plant leaves, temperature dependencies of equilibrium coefficients must be known. Henry's law constants (H(pc), Pa m3 mol(-1) and octanol/water partition coefficients (K(OW), mol mol(-1)) were determined for 10 important plant monoterpenes at physiological temperature ranges (25-50 degrees C for H(pc) and 20-50 degrees C for K(OW)). A standard EPICS procedure was established to determine H(pc) and a shake flask method was used for the measurements of K(OW). The enthalpy of volatilization (deltaH(vol)) varied from 18.0 to 44.3 kJ mol(-1) among the monoterpenes, corresponding to a range of temperature-dependent increase in H(pc) between 1.3- and 1.8-fold per 10 degrees C rise in temperature. The enthalpy of water-octanol phase change varied from -11.0 to -23.8 kJ mol(-1), corresponding to a decrease of K(OW) between 1.15- and 1.32-fold per 10 degrees C increase in temperature. Correlations among physico-chemical characteristics of a wide range of monoterpenes were analyzed to seek the ways of derivation of H(pc) and K(OW) values from other monoterpene physico-chemical characteristics. H(pc) was strongly correlated with monoterpene saturated vapor pressure (P(v)), and for lipophilic monoterpenes, deltaH(vol) scaled positively with the enthalpy of vaporization that characterizes the temperature dependence of P(v) Thus, P(v) versus temperature relations may be employed to derive the temperature relations of H(pc) for these monoterpenes. These data collectively indicate that monoterpene differences in H(pc) and K(OW) temperature relations can importantly modify monoterpene emissions from and deposition on plant leaves.

  8. Investigation of dielectric behavior of the PVC/BaTiO3 composite in low-frequencies

    NASA Astrophysics Data System (ADS)

    Berrag, A.; Belkhiat, S.; Madani, L.

    2018-04-01

    Polyvinyl chloride (PVC) is widely used as insulator in electrical engineering especially as cable insulation sheaths. In order to improve the dielectric properties, polymers are mixed with ceramics. In this paper, PVC composites with different weight percentages 2 wt.%, 5 wt.%, 8 wt.% and 10 wt.% were prepared and investigated. Loss index (𝜀″) and dielectric constant (𝜀‧) have been measured using an impedance analyzer RLC. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray (EDX) have been used as characterization techniques. The incorporation of BaTiO3 does not modify the crystallinity and the morphology of the PVC but reduces the space charges, therefore the dielectric losses. The frequency response analysis has been followed in the frequency ranges (20-140 Hz and 115-1 MHz). Relaxation frequencies have been evaluated in each frequency range. Experimental measurements have been validated using Cole-Cole’s model. Experimental results show well that BaTiO3 as a filler improves the dielectric properties of PVC.

  9. Defective calmodulin binding to the cardiac ryanodine receptor plays a key role in CPVT-associated channel dysfunction

    PubMed Central

    Xu, Xiaojuan; Yano, Masafumi; Uchinoumi, Hitoshi; Hino, Akihiro; Suetomi, Takeshi; Ono, Makoto; Tateishi, Hiroki; Oda, Tetsuro; Okuda, Shinichi; Doi, Masahiro; Kobayashi, Shigeki; Yamamoto, Takeshi; Ikeda, Yasuhiro; Ikemoto, Noriaki; Matsuzaki, Masunori

    2010-01-01

    Calmodulin (CaM), one of the accessory proteins of the cardiac ryanodine receptor (RyR2), is known to play a significant role in the channel regulation of the RyR2. However, the possible involvement of calmodulin in the pathogenic process of catecholaminergic polymorphic ventricular tachycardia (CPVT) has not been investigated. In this study, we investigated the state of RyR2-bound CaM and channel dysfunctions using a knock-in (KI) mouse model with CPVT-linked RyR2 mutation (R2474S). Without added effectors, the affinity of CaM binding to the RyR2 was indistinguishable between KI and WT hearts. In response to cAMP (1 μmol/L), the RyR2 phosphorylation at Ser2808 increased in both WT and KI hearts to the same extent. However, cAMP caused a significant decrease of the CaM binding affinity in KI hearts, but the affinity was unchanged in WT. Dantrolene restored a normal level of CaM-binding affinity in the cAMP-treated KI hearts, suggesting that defective inter-domain interaction between the N-terminal domain and the central domain of the RyR2 (the target of therapeutic effect of dantrolene) is involved in the cAMP-induced reduction of the CaM binding affinity. In saponin-permeabilized cardiomyocytes, the addition of cAMP increased the frequency of spontaneous Ca2+ sparks to a significantly larger extent in KI cardiomyocytes than in WT cardiomyocytes, whereas the addition of a high concentration of CaM attenuated the aberrant increase of Ca2+ sparks. In conclusion, CPVT mutation causes defective inter-domain interaction, significant reduction in the ability of CaM binding to the RyR2, spontaneous Ca2+ leak, and then lethal arrhythmia. PMID:20226167

  10. Silica and boron-containing ultraphosphate laser glass with low concentration quenching and improved thermal shock resistance

    DOEpatents

    Cook, Lee M.; Stokowski, Stanley E.

    1987-04-28

    Neodymium-doped phosphate glasses having a refractive index, nd>1.520; an Abbe number, Vd, <60; a density <3.0 g/cm.sup.3, a thermal expansion coefficient, .alpha., .ltoreq.110.times.10.sup.-7 .degree.C..sup.-1 ; a Young's Modulus, E, <70.times.10.sup.3 N/mm.sup.2 ; a Poisson's Ratio, .nu., <0.28; a thermal conductivity, K, >0.5 W/m.multidot.K, a thermal FOM=(1-.nu.).multidot.K/.alpha.E>0.7, consisting essentially of, in mol. %: P.sub.2 O.sub.5 : 40-70% SiO.sub.2 : 0-20% B.sub.2 O.sub.3 : 5-20% Sum SiO.sub.2 +B.sub.2 O.sub.3 : 5-35% Sum Li.sub.2 O+Na.sub.2 O+K.sub.2 O: 5-20% Sum La.sub.2 O.sub.3 +Nd.sub.2 O.sub.3 : 3-10% Sum MgO+CaO+SrO+BaO+ZnO: 0-10% and preferably containing an amount of Nd.sub.2 O.sub.3 effective for laser activity having an emission cross-section, .sigma., >3.5.times.10.sup.-20 cm.sup.2 ; a fluorescence linewidth (.DELTA..lambda..sub.f1)<23.5 nm; a first e-folding time of the Nd.sup.3+ fluorescence at 0.5 wt. % Nd.sub.2 O.sub.3 >375 .mu.sec, and a first e-folding time of the Nd.sup.3+ fluorescence at 10 wt. % >175 .mu.sec at 10 wt. %, have very low self-concentration quenching rates.

  11. Effective Approach for Increasing the Heteroatom Doping Levels of Porous Carbons for Superior CO2 Capture and Separation Performance.

    PubMed

    Abdelmoaty, Yomna H; Tessema, Tsemre-Dingel; Norouzi, Nazgol; El-Kadri, Oussama M; Turner, Joseph B McGee; El-Kaderi, Hani M

    2017-10-18

    Development of efficient sorbents for carbon dioxide (CO 2 ) capture from flue gas or its removal from natural gas and landfill gas is very important for environmental protection. A new series of heteroatom-doped porous carbon was synthesized directly from pyrazole/KOH by thermolysis. The resulting pyrazole-derived carbons (PYDCs) are highly doped with nitrogen (14.9-15.5 wt %) as a result of the high nitrogen-to-carbon ratio in pyrazole (43 wt %) and also have a high oxygen content (16.4-18.4 wt %). PYDCs have a high surface area (SA BET = 1266-2013 m 2 g -1 ), high CO 2 Q st (33.2-37.1 kJ mol -1 ), and a combination of mesoporous and microporous pores. PYDCs exhibit significantly high CO 2 uptakes that reach 2.15 and 6.06 mmol g -1 at 0.15 and 1 bar, respectively, at 298 K. At 273 K, the CO 2 uptake improves to 3.7 and 8.59 mmol g -1 at 0.15 and 1 bar, respectively. The reported porous carbons also show significantly high adsorption selectivity for CO 2 /N 2 (128) and CO 2 /CH 4 (13.4) according to ideal adsorbed solution theory calculations at 298 K. Gas breakthrough studies of CO 2 /N 2 (10:90) at 298 K showed that PYDCs display excellent separation properties. The ability to tailor the physical properties of PYDCs as well as their chemical composition provides an effective strategy for designing efficient CO 2 sorbents.

  12. Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek

    2018-02-01

    Nanoparticles show potential use in applications associated with upstream oil and gas engineering to increase the performance of numerous methods such as wettability alteration, interfacial tension reduction, thermal conductivity and enhanced oil recovery operations. Surface tension optimization is an important parameter in enhanced oil recovery. Current work focuses on the new economical method of surface tension optimization of ZnO nanofluids for oil-water interfacial tension reduction in enhanced oil recovery. In this paper, zinc oxide (ZnO) nanocrystallites were prepared using the chemical route and explored for enhanced oil recovery (EOR). Adsorption of ZnO nanoparticles (NPs) on calcite (111) surface was investigated using the adsorption locator module of Materials Studio software. It was found that ZnO nanoparticles show maximum adsorption energy of - 253 kcal/mol. The adsorption of ZnO on the rock surface changes the wettability which results in capillary force reduction and consequently increasing EOR. The nanofluids have been prepared by varying the concentration of ZnO nanoparticles to find the optimum value for surface tension. The surface tension (ST) was calculated with different concentration of ZnO nanoparticles using the pendant drop method. The results show a maximum value of ST 35.57 mN/m at 0.3 wt% of ZnO NPs. It was found that the nanofluid with highest surface tension (0.3 wt%) resulted in higher recovery efficiency. The highest recovery factor of 11.82% at 0.3 wt% is due to the oil/water interfacial tension reduction and wettability alteration.

  13. ALK Inhibitor Response in Melanomas Expressing EML4-ALK Fusions and Alternate ALK Isoforms.

    PubMed

    Couts, Kasey L; Bemis, Judson; Turner, Jacqueline A; Bagby, Stacey M; Murphy, Danielle; Christiansen, Jason; Hintzsche, Jennifer D; Le, Anh; Pitts, Todd M; Wells, Keith; Applegate, Allison; Amato, Carol; Multani, Pratik; Chow-Maneval, Edna; Tentler, John J; Shellman, Yiqun G; Rioth, Matthew J; Tan, Aik-Choon; Gonzalez, Rene; Medina, Theresa; Doebele, Robert C; Robinson, William A

    2018-01-01

    Oncogenic ALK fusions occur in several types of cancer and can be effectively treated with ALK inhibitors; however, ALK fusions and treatment response have not been characterized in malignant melanomas. Recently, a novel isoform of ALK ( ALK ATI ) was reported in 11% of melanomas but the response of melanomas expressing ALK ATI to ALK inhibition has not been well characterized. We analyzed 45 melanoma patient-derived xenograft models for ALK mRNA and protein expression. ALK expression was identified in 11 of 45 (24.4%) melanomas. Ten melanomas express wild-type (wt) ALK and/or ALK ATI and one mucosal melanoma expresses multiple novel EML4-ALK fusion variants. Melanoma cells expressing different ALK variants were tested for response to ALK inhibitors. Whereas the melanoma expressing EML4-ALK were sensitive to ALK inhibitors in vitro and in vivo , the melanomas expressing wt ALK or ALK ATI were not sensitive to ALK inhibitors. In addition, a patient with mucosal melanoma expressing ALK ATI was treated with an ALK/ROS1/TRK inhibitor (entrectinib) on a phase I trial but did not respond. Our results demonstrate ALK fusions occur in malignant melanomas and respond to targeted therapy, whereas melanomas expressing ALK ATI do not respond to ALK inhibitors. Targeting ALK fusions is an effective therapeutic option for a subset of melanoma patients, but additional clinical studies are needed to determine the efficacy of targeted therapies in melanomas expressing wt ALK or ALK ATI Mol Cancer Ther; 17(1); 222-31. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Extraction of Gold(III) from Hydrochloric Acid Solutions with a PVC-based Polymer Inclusion Membrane (PIM) Containing Cyphos(®) IL 104.

    PubMed

    Bonggotgetsakul, Ya Ya Nutchapurida; Cattrall, Robert W; Kolev, Spas D

    2015-12-08

    Poly(vinyl chloride) (PVC) based polymer inclusion membranes (PIMs), with different concentrations of Cyphos® IL 104 as the membrane extractant/carrier, were studied for their ability to extract Au(III) from hydrochloric acid solutions. Some of the PIMs also contained one of the following plasticizers or modifiers: 2-nitrophenyloctyl ether, dioctylphthalate, 1-dodecanol, 1-tetradecanol, or tri(2-ethylhexyl) phosphate. The best performance, in terms of extraction rate and amount of Au(III) extracted, was exhibited by a PIM consisting of 25 wt% Cyphos(®) IL 104, 5 wt% 1-dodecanol, and 70 wt% PVC. An almost complete back-extraction of the Au(III) extracted from this membrane was achieved by using a 0.10 mol L(-1) Na₂SO₃ receiver solution at pH 8. The stoichiometry of the extracted Au(III)/Cyphos® IL 104 adduct was determined as [P]⁺ [AuCl₄](-) H⁺ [PO₂](-) where [P]⁺ and [PO₂](-) represent trihexyl(tetradecyl) phosphonium and bis(2,4,4-trimethylpentyl) phosphinate ions, respectively. Back-extraction of Au(III) is suggested to occur by reduction of Au(III) to Au(I), with the formation of the species [Au(SO₃)₂](3-) in the aqueous receiver solution. Loss of 1-dodecanol from the newly developed PIM to the aqueous solutions in contact with it was observed, which indicated that this membrane was suitable for single use in the efficient recovery of Au(III) from hydrochloric acid solutions of electronic scrap or recycled jewelry.

  15. Crystallization and characterization of Y2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III; Lee, William E.; Sanders, W. A.; Kiser, J. D.

    1991-01-01

    Glasses in the yttria-silica system with 20 to 40 mol pct Y2O3 were subjected to recrystallization studies after melting at 1900 to 2100 C in W crucibles in 1 and 50 atm N2. The TEM and XRD results obtained indicate the presence of the delta, gamma, gamma prime, and beta-Y2Si2O7 crystalline phases, depending on melting and quenching conditions. Heat treatment in air at 1100 to 1600 C increased the amount of crystallization, and led to the formation of Y2SiO5, cristabalite, and polymorphs of Y2Si2O7. Also investigated were the effects of 5 and 10 wt pct zirconia additions.

  16. Interaction of Ethyl Alcohol Vapor with Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2006-01-01

    We investigated the uptake of ethyl alcohol (ethanol) vapor by sulfuric acid solutions over the range approx.40 to approx.80 wt % H2SO4 and temperatures of 193-273 K. Laboratory studies used a fast flow-tube reactor coupled to an electron-impact ionization mass spectrometer for detection of ethanol and reaction products. The uptake coefficients ((gamma)) were measured and found to vary from 0.019 to 0.072, depending upon the acid composition and temperature. At concentrations greater than approx.70 wt % and in dilute solutions colder than 220 K, the values approached approx.0.07. We also determined the effective solubility constant of ethanol in approx.40 wt % H2SO4 in the temperature range 203-223 K. The potential implications to the budget of ethanol in the global troposphere are briefly discussed.

  17. Refractive index of dark-adapted bacteriorhodopsin and tris(hydroxymethyl)aminomethane buffer between 390 and 880 nm.

    PubMed

    Heiner, Zsuzsanna; Osvay, Károly

    2009-08-10

    The refractivity of wild-type bacteriorhodopsin (bR(WT)) suspended in tris(hydroxymethyl)aminomethane (TRIS) buffer has been measured in the spectral range of 390-840 nm by the method of angle of minimal deviation with the use of a hollow glass prism. The refractive indices of pure bR(WT) as well as of TRIS buffer have been determined from the concentration dependent refraction values. Sellmeier-type dispersion equations have been fitted for both the TRIS buffer and pure bR(WT).

  18. Some studies on the composition and surface properties of oil bodies from the seed cotyledons of safflower (Carthamus tinctorius) and linseed (Linum ustatissimum).

    PubMed Central

    Slack, C R; Bertaud, W S; Shaw, B D; Holland, R; Browse, J; Wright, H

    1980-01-01

    1. The average oil-body diameter in intact cells of developing linseed (Linum usitatissimum) and safflower (Carthamus tinctorius) cotyledons was similar (about 1.4 micrometer), and there was little change in size after oil bodies were isolated and repeatedly washed. 2. The glycerolipid composition of washed oil bodies from both developing and mature cotyledons of the two species was similar; oil bodies from ten different batches of cotyledons contained 4.3 +/- 0.16 mumol of 3-sn-phosphatidylcholine and 25.2 +/- 1.7 mumol of diacylglycerol per 1000 mumol of triacylglycerol. During four successive washings of a once-washed oil-body preparation, the proportion of diacylglycerol to triacylglycerol remained constant and that of 3-sn-phosphatidylcholine to triacylglycerol decreased by only 20%. 3. The protein content of thrice-washed oil bodies from the two species was similar, about 2.4% of the weight of glycerolipids, and appeared to be independent of the stage of cotyledon maturity. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis indicated that the protein of purified oil bodies from the two species consisted mainly of only four polypeptides and that two of the polypeptides from each species had apparent mol.wts. of 17500 and 15500. Similar patterns of polypeptides were obtained after the hydrolysis of the 15500-mol.wt. polypeptides from linseed and safflower oil bodies by Staphylococcus aureus V8 proteinase, whereas the proteolysis of the 17500-mol.wt. polypeptides from the two species produced different patterns of polypeptides. 4. The 3-sn-phosphatidylcholine in oil-body preparations was hydrolysed about 85% by bee-venom phospholipase A2 without any apparent coalescence of the oil bodies. Incubation with lipase from Rhizopus arrhizus caused rapid coalescence of the oil bodies, and this lipase appeared to initially hydrolyse diacylglycerols in preference to triacylglycerol. 5. Oil bodies from both species were almost completely dispersed in suspensions of pH between 7.1 and 8.3, but formed large aggregates at pH values between 6.7 and 3.9; pH-induced aggregation caused no coalescence. Aggregates formed under acidic conditions were dispersed by re-adjusting the pH of suspensions to 8.3. 6. A freeze-etch electron-microscopic examination of isolated oil bodies indicated that these organelles were bounded by some form of membrane with a particle-free outer surface. Images Fig. 1. Fig. 2. PLATE 1 PLATE 2 PMID:7008782

  19. Fossilized microorganisms associated with zeolite-carbonate interfaces in sub-seafloor hydrothermal environments.

    PubMed

    Ivarsson, M; Lindblom, S; Broman, C; Holm, N G

    2008-03-01

    In this paper we describe carbon-rich filamentous structures observed in association with the zeolite mineral phillipsite from sub-seafloor samples drilled and collected during the Ocean Drilling Program (ODP) Leg 197 at the Emperor Seamounts. The filamentous structures are approximately 5 microm thick and approximately 100-200 microm in length. They are found attached to phillipsite surfaces in veins and entombed in vein-filling carbonates. The carbon content of the filaments ranges between approximately 10 wt% C and 55 wt% C. They further bind to propidium iodide (PI), which is a dye that binds to damaged cell membranes and remnants of DNA. Carbon-rich globular microstructures, 1-2 microm in diameter, are also found associated with the phillipsite surfaces as well as within wedge-shaped cavities in phillipsite assemblages. The globules have a carbon content that range between approximately 5 wt% C and 55 wt% C and they bind to PI. Ordinary globular iron oxides found throughout the samples differ in that they contain no carbon and do not bind to the dye PI. The carbon-rich globules are mostly concentrated to a film-like structure that is attached to the phillipsite surfaces. This film has a carbon content that ranges between approximately 25 wt% C and 75 wt% C and partially binds to PI. EDS analyses show that the carbon in all structures described are not associated with calcium and therefore not bound in carbonates. The carbon content and the binding to PI may indicate that the filamentous structures could represent fossilized filamentous microorganisms, the globules could represent fossilized microbial cells and the film-like structures could represent a microbially produced biofilm. Our results extend the knowledge of possible habitable niches for a deep biosphere in sub-seafloor environments and suggests, as phillipsite is one of the most common zeolite mineral in volcanic rocks of the oceanic crust, that it could be a common feature in the oceanic crust elsewhere.

  20. Validation of a reversed-phase high-performance liquid chromatographic method for the determination of free amino acids in rice using l-theanine as the internal standard.

    PubMed

    Liyanaarachchi, G V V; Mahanama, K R R; Somasiri, H P P S; Punyasiri, P A N

    2018-02-01

    The study presents the validation results of the method carried out for analysis of free amino acids (FAAs) in rice using l-theanine as the internal standard (IS) with o-phthalaldehyde (OPA) reagent using high-performance liquid chromatography-fluorescence detection. The detection and quantification limits of the method were in the range 2-16μmol/kg and 3-19μmol/kg respectively. The method had a wide working range from 25 to 600μmol/kg for each individual amino acid, and good linearity with regression coefficients greater than 0.999. Precision measured in terms of repeatability and reproducibility, expressed as percentage relative standard deviation (% RSD) was below 9% for all the amino acids analyzed. The recoveries obtained after fortification at three concentration levels were in the range 75-105%. In comparison to l-norvaline, findings revealed that l-theanine is suitable as an IS and the validated method can be used for FAA determination in rice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: kinetic analysis for the drying and devolatilization stages.

    PubMed

    Chen, Dengyu; Zheng, Yan; Zhu, Xifeng

    2013-03-01

    An in-depth investigation was conducted on the kinetic analysis of raw biomass using thermogravimetric analysis (TGA), from which the activation energy distribution of the whole pyrolysis process was obtained. Two different stages, namely, drying stage (Stage I) and devolatilization stage (Stage II), were shown in the pyrolysis process in which the activation energy values changed with conversion. The activation energy at low conversions (below 0.15) in the drying stage ranged from 10 to 30 kJ/mol. Such energy was calculated using the nonisothermal Page model, known as the best model to describe the drying kinetics. Kinetic analysis was performed using the distributed activation energy model in a wide range of conversions (0.15-0.95) in the devolatilization stage. The activation energy first ranged from 178.23 to 245.58 kJ/mol and from 159.66 to 210.76 kJ/mol for corn straw and wheat straw, respectively, then increasing remarkably with an irregular trend. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. [Study on high temperature oxidation of Ni-Cr ceramic alloys. Effects of Cr and Mo].

    PubMed

    Mizutani, M

    1990-03-01

    The effects of Cr and Mo addition to Ni-Cr alloys on high temperature oxidation were investigated. The alloys were prepared with the composition of Cr ranging from 5 to 40 wt%. Also 2, 4 and 9 wt% of Mo was added to both Ni-5% Cr and Ni-20% Cr binary alloys. The alloys were heated at 800 degrees C, 900 degrees C and 1000 degrees C for 15 minutes in air, and the weight change after heat treatment was measured by electric automatic balance. The weight change during heating was measured by thermogravimetric measurement (TG). The products after heat treatment were characterized by X-ray diffraction and scanning electron microscopy (SEM). The results are summarized as follows: The Ni-Cr binary alloys were classified into three types of Cr ranging from 5 to 20 wt%, Cr 25% and Cr from 30 wt% to 40 wt% according to the weight gains with oxidation. In the case of the more than 25 wt% Cr content of the Ni-Cr binary alloys, the weight gain was extremely low and the heating temperature effects on the weight change were also small. X-ray diffraction study showed that NiO, NiCr2O4 and Cr2O3 formed on the surface of the Ni-Cr binary alloys whose composition of Cr ranged from 5 to 25 wt%, whereas NiO and NiCr2O4 rarely formed on the Ni-Cr binary alloys whose composition of Cr ranged from 30 to 40 wt%. This suggests that the formation of Cr2O3 prevents the formation of NiO on the alloy with a high Cr content. The weight gain of the Ni-Cr-Mo ternary alloys was smaller than that of the Ni-Cr binary alloys without Mo, and the temperature effects on the weight gain of the Ni-Cr-Mo ternary alloys were different for each Cr content. However, the effect of the amounts of Mo was small. NiO, NiCr2O4, Cr2O3 and MoO2 were identified by X-ray diffraction on the surface of the Ni-Cr-Mo ternary alloys. According to the SEM observation, it seems that NiO was formed at the outermost layer, both NiCr2O4 and Cr2O3 at the inside layer, and MoO2 at the innermost layer. The formation of both NiO and Cr2O3 on the Ni-Cr-Mo ternary alloys was restrained compared with that of the Ni-Cr binary alloys. However, the adhesion of oxides to the Ni-Cr-Mo ternary alloys was lower than that of the Ni-Cr binary alloys.

  3. Effect of ethanol on the gelation of aqueous solutions of Pluronic F127.

    PubMed

    Chaibundit, Chiraphon; Ricardo, Nágila M P S; Ricardo, Nádja M P S; Muryn, Christopher A; Madec, Marie-Beatrice; Yeates, Stephen G; Booth, Colin

    2010-11-01

    In dilute aqueous solution unimers of copolymer F127 (E(98)P(67)E(98)) associate to form micelles, and in more concentrated solution micelles pack to form high-modulus gels. Cosolvents are known to affect these processes, and ethanol/water mixtures have been of particular interest. Dynamic light scattering from dilute solutions was used to confirm micellization, but major attention was directed towards the gels. Visual observation of mobility (tube inversion) was used to detect gel formation, oscillatory rheometry to confirm gel formation and provide values of the elastic moduli over a wide temperature range, and small-angle X-ray scattering to determine gel structure. The solvents were limited to 10, 20 and 30 wt.% ethanol/water. Critical concentrations for gel formation were similar for 10 and 20 wt.% ethanol/water but were significantly increased for 30 wt.% ethanol/water, e.g. at T=45 degrees C from c approximately 15 wt.% to c approximately 28 wt.%. The elastic moduli reached maximum values at T approximately 50 degrees C: e.g. G' approximately 25 kPa for 25 wt.% F127 in 10 and 20 wt.% ethanol/water and a similar value for 30 wt.% F127 in 30 wt.% ethanol/water. Hard gels of 30 and 35 wt.% F127 in ethanol/water at 25 and 40 degrees C had the body-centered cubic (bcc) structure. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Genotype-phenotype associations in WT1 glomerulopathy.

    PubMed

    Lipska, Beata S; Ranchin, Bruno; Iatropoulos, Paraskevas; Gellermann, Jutta; Melk, Anette; Ozaltin, Fatih; Caridi, Gianluca; Seeman, Tomas; Tory, Kalman; Jankauskiene, Augustina; Zurowska, Aleksandra; Szczepanska, Maria; Wasilewska, Anna; Harambat, Jerome; Trautmann, Agnes; Peco-Antic, Amira; Borzecka, Halina; Moczulska, Anna; Saeed, Bassam; Bogdanovic, Radovan; Kalyoncu, Mukaddes; Simkova, Eva; Erdogan, Ozlem; Vrljicak, Kristina; Teixeira, Ana; Azocar, Marta; Schaefer, Franz

    2014-05-01

    WT1 mutations cause a wide spectrum of renal and extrarenal manifestations. Here we evaluated disease prevalence, phenotype spectrum, and genotype-phenotype correlations of 61 patients with WT1-related steroid-resistant nephrotic syndrome relative to 700 WT1-negative patients, all with steroid-resistant nephrotic syndrome. WT1 patients more frequently presented with chronic kidney disease and hypertension at diagnosis and exhibited more rapid disease progression. Focal segmental glomerulosclerosis was equally prevalent in both cohorts, but diffuse mesangial sclerosis was largely specific for WT1 disease and was present in 34% of cases. Sex reversal and/or urogenital abnormalities (52%), Wilms tumor (38%), and gonadoblastoma (5%) were almost exclusive to WT1 disease. Missense substitutions affecting DNA-binding residues were associated with diffuse mesangial sclerosis (74%), early steroid-resistant nephrotic syndrome onset, and rapid progression to ESRD. Truncating mutations conferred the highest Wilms tumor risk (78%) but typically late-onset steroid-resistant nephrotic syndrome. Intronic (KTS) mutations were most likely to present as isolated steroid-resistant nephrotic syndrome (37%) with a median onset at an age of 4.5 years, focal segmental glomerulosclerosis on biopsy, and slow progression (median ESRD age 13.6 years). Thus, there is a wide range of expressivity, solid genotype-phenotype associations, and a high risk and significance of extrarenal complications in WT1-associated nephropathy. We suggest that all children with steroid-resistant nephrotic syndrome undergo WT1 gene screening.

  5. The Effect of TiO2 on the Liquidus Zone and Apparent Viscosity of SiO2-CaO-8wt.%MgO-14wt.%Al2O3 System

    NASA Astrophysics Data System (ADS)

    Yan, Zhiming; Lv, Xuewei; Zhang, Jie; Xu, Jian

    TiO2 has been approved as a viscosity-decreasing agent in blast furnace slag under inert atmosphere both by experimental and structure calculation. However, the validity of the above conclusion in a much bigger zone in CaO-SiO2-Al2O3-MgO phase diagram has not approved. The viscosity of slag dependent on the TiO2 content and basicity were measured in the present work. It was found that the viscosity and viscous activation energy decrease with increasing TiO2 content and basicity at a reasonable range, indicating TiO2 behaved as a viscosity-decreasing agent by depolymerizing the silicate network structure when its less than 50wt. %. The liquidity of the slag can be improved when TiO2 content less than 50wt. % and basicity from 0.5 to 1.1. The free running temperature increase at TiO2 content from 10wt.% to 30wt. %. The results of calculation does not agree well with the experimental values at a high basicity of 1.3 with TiO2 content from 20wt.% to 30wt.% and the lower basicity of 0.5 with TiO2 content more than 50wt.%.

  6. Isolation of copper-binding proteins from activated sludge culture.

    PubMed

    Fukushi, K; Kato, S; Antsuki, T; Omura, T

    2001-01-01

    Six copper-binding microbial proteins were isolated from activated sludge cultures grown on media containing copper at various concentrations. Molecular weights among isolated proteins were ranged from 1.3k to 1 74k dalton. Isolated proteins were compared for their copper binding capabilities. Proteins isolated from cultures grown in the presence of copper in the growth media exhibited higher copper binding capabilities than those isolated from the culture grown in the absence of copper. The highest metal uptake of 61.23 (mol copper/mol protein) was observed by a protein isolated from a culture grown with copper at a concentration of 0.25 mM. This isolated protein (CBP2) had a molecular weight of 24k dalton. Other protein exhibited copper binding capability of 4.8-32.5 (mol copper/mol protein).

  7. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber

    PubMed Central

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265

  8. The distribution of dimethylsulfoniopropionate in tropical Pacific coral reef invertebrates

    NASA Astrophysics Data System (ADS)

    van Alstyne, Kathryn L.; Schupp, Peter; Slattery, Marc

    2006-08-01

    Dimethylsulfoniopropionate (DMSP) is an important component of the global sulfur cycle and may be involved, via its cleavage product dimethylsulfide, in climate regulation. Although it is common in many algae, reports of DMSP in animals, particularly tropical invertebrates, are limited. This study examined the distribution of DMSP in a diverse group of coral reef invertebrates. DMSP was present in all 22 species of cnidarians and ranged from 9 to 723 μmol g-1 of dry mass (DM) with a mean (± 1SD) of 110 ± 180 μmol g-1 DM. It was not detected in a flatworm and an ascidian or in two of five sponges. Concentrations in sponges ranged from undetectable to 16 μmol g-1 DM with a mean of 4 ± 7 μmol g-1 DM. Within the cnidarians, DMSP concentrations did not differ among orders. Among cnidarian species, DMSP concentrations were correlated with symbiotic zooxanthellae densities. Within cnidarian species, DMSP concentrations of individuals were positively correlated with zooxanthellae densities in three of the four species examined. We speculate that DMSP is dietarily derived in sponges and derived from zooxanthellae in the cnidarians. The functions of DMSP in coral reef invertebrates are not known.

  9. PMMA microreactor for chemiluminescence detection of Cu (II) based on 1,10-Phenanthroline-hydrogen peroxide reaction.

    PubMed

    Chen, Xueye; Shen, Jienan; Li, Tiechuan

    2016-01-01

    A microreactor for the chemiluminescence detection of copper (II) in water samples, based on the measurement of light emitted from the copper (II) catalysed oxidation of 1,10-phenanthroline by hydrogen peroxide in basic aqueous solution, is presented. Polymethyl methacrylate (PMMA) was chose as material for fabricating the microreactor with mill and hot bonding method. Optimized reagents conditions were found to be 6.3 × 10(-5)mol/L 1,10-phenanthroline, 1.5 × 10(-3)mol/L hydrogen peroxide, 7.0 × 10(-2)mol/L sodium hydroxide and 2.4 × 10(-5)mol/L Hexadecyl trimethyl ammonium Bromide (CTMAB). In the continuous flow injection mode the system can perform fully automated detection with a reagent consumption of only 3.5 μL each time. The linear range of the Cu (II) ions concentration was 1.5 × 10(-8) mol/L to 1.0 × 10(-4) mol/L, and the detection limit was 9.4 × 10(-9)mol/L with the S/N ratio of 4. The relative standard deviation was 3.0 % for 2.0 × 10(-6) mol/L Cu (II) ions (n = 10). The most obvious features of the detection method are simplicity, rapidity and easy fabrication of the microreactor.

  10. Extracellular micronutrient levels and pro-/antioxidant status in trauma patients with wound healing disorders: results of a cross-sectional study.

    PubMed

    Blass, Sandra C; Goost, Hans; Burger, Christof; Tolba, René H; Stoffel-Wagner, Birgit; Stehle, Peter; Ellinger, Sabine

    2013-12-05

    Disorders in wound healing (DWH) are common in trauma patients, the reasons being not completely understood. Inadequate nutritional status may favor DWH, partly by means of oxidative stress. Reliable data, however, are lacking. This study should investigate the status of extracellular micronutrients in patients with DWH within routine setting. Within a cross-sectional study, the plasma/serum status of several micronutrients (retinol, ascorbic acid, 25-hydroxycholecalciferol, α-tocopherol, β-carotene, selenium, and zinc) were determined in 44 trauma patients with DWH in addition to selected proteins (albumin, prealbumin, and C-reactive protein; CRP) and markers of pro-/antioxidant balance (antioxidant capacity, peroxides, and malondialdehyde). Values were compared to reference values to calculate the prevalence for biochemical deficiency. Correlations between CRP, albumin and prealbumin, and selected micronutrients were analyzed by Pearson's test. Statistical significance was set at P < 0.05. Mean concentrations of ascorbic acid (23.1 ± 15.9 μmol/L), 25-hydroxycholecalciferol (46.2±30.6 nmol/L), β-carotene (0.6 ± 0.4 μmol/L), selenium (0.79±0.19 μmol/L), and prealbumin (24.8 ± 8.2 mg/dL) were relatively low. Most patients showed levels of ascorbic acid (<28 μmol/L; 64%), 25-hydroxycholecalciferol (<50 μmol/L; 59%), selenium (≤ 94 μmol/L; 71%) and β-carotene (<0.9 μmol/L; 86%) below the reference range. Albumin and prealbumin were in the lower normal range and CRP was mostly above the reference range. Plasma antioxidant capacity was decreased, whereas peroxides and malondialdehyde were increased compared to normal values. Inverse correlations were found between CRP and albumin (P < 0.05) and between CRP and prealbumin (P < 0.01). Retinol (P < 0.001), ascorbic acid (P < 0.01), zinc (P < 0.001), and selenium (P < 0.001) were negatively correlated with CRP. Trauma patients with DWH frequently suffer from protein malnutrition and reduced plasma concentrations of several micronutrients probably due to inflammation, increased requirement, and oxidative burden. Thus, adequate nutritional measures are strongly recommended to trauma patients.

  11. Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler.

    PubMed

    Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku

    2017-02-28

    The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0-20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler.

  12. Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler

    PubMed Central

    Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku

    2017-01-01

    The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0–20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler. PMID:28772603

  13. Provenance analysis of the Oligocene turbidites (Andaman Flysch), South Andaman Island: A geochemical approach

    NASA Astrophysics Data System (ADS)

    Bandopadhyay, P. C.; Ghosh, Biswajit

    2015-07-01

    The Oligocene-aged sandstone-shale turbidites of the Andaman Flysch are best exposed along the east coast of the South Andaman Island. Previously undocumented sandstone-shale geochemistry, investigated here, provides important geochemical constraints on turbidite provenance. The average 70.75 wt% SiO2, 14.52 wt% Al2O3, 8.2 wt% FeMgO and average 0.20 Al2O3/SiO2 and 1.08 K2O/Na2O ratios in sandstones, compare with quartzwackes. The shale samples have average 59.63 wt% SiO2, 20.29 wt% Al2O3, 12.63 wt% FeMgO and average 2.42 K2O/Na2O and 0.34 Al2O3/SiO2 ratios. Geochemical data on CaO-Na2O-K2O diagram fall close to a granite field and on K2O/Na2O-SiO2 diagram within an active continental margin tectonic setting. The range and average values of Rb and Rb/Sr ratios are consistent with acid-intermediate igneous source rocks, while the values and ratios for Cr and Ni are with mafic rocks. Combined geochemical, petrographic and palaeocurrent data indicate a dominantly plutonic-metamorphic provenance with a lesser contribution from sedimentary and volcanic source, which is possibly the Shan-Thai continental block and volcanic arc of the north-eastern and eastern Myanmar. Chemical index of alteration (CIA) values suggests a moderate range of weathering of a moderate relief terrane under warm and humid climate.

  14. Thermodynamics of the binding of L-arabinose and of D-galactose to the L-arabinose-binding protein of Escherichia coli.

    PubMed

    Fukada, H; Sturtevant, J M; Quiocho, F A

    1983-11-10

    The thermodynamics of the binding of L-arabinose and of D-galactose to the L-arabinose-binding protein of Escherichia coli have been studied by isothermal and scanning calorimetry. The binding reaction with arabinose is characterized by an enthalpy change of -15.3 +/- 0.5 kcal mol-1 at 25 degrees C, and a large decrease in apparent heat capacity, amounting to -0.44 +/- 0.05 kcal K-1 mol-1, which is constant over the temperature range 8 to 30 degrees C. Very similar results were obtained with D-galactose. These calorimetric results have been combined with binding constants determined by equilibrium dialysis (Clark, A. F., Gerken, T. A., and Hogg, R. W. (1982) Biochemistry 21, 2227-2233) to obtain free energy and entropy changes over the range 5 to 30 degrees C, and by extrapolation to 60 degrees C. The protein undergoes reversible unfolding on being heated with an increase in enthalpy at 53.5 degrees C of 151.8 +/- 1.1 kcal mol-1 (169.2 +/- 1.2 kcal mol-1 at 59.0 degrees C) and in apparent heat capacity of 3.16 +/- 0.07 kcal K-1 mol-1. In the presence of arabinose, the unfolding enthalpy is increased to 200.7 +/- 1.8 kcal mol-1 at 59.0 degrees C, the increase being due to the enthalpy of dissociation of the ligand which amounts to 31 kcal mol-1 at the unfolding temperature. The unfolding temperature is increased by the presence of excess arabinose or galactose, an effect which is due solely to displacement by the added ligand of the unfolding-dissociation equilibrium. The thermodynamic data are discussed in connection with the detailed structural information available for this system from x-ray crystallography (Newcomer, M. E., Gilliland, G. L. and Quiocho, F. A. (1981) J. Biol. Chem. 256, 13213-13217, and references cited therein).

  15. Effects of chemical cues on larval survival, settlement and metamorphosis of abalone Haliotis asinina

    NASA Astrophysics Data System (ADS)

    Wang, Xiaobing; Bai, Yang; Huang, Bo

    2010-11-01

    Low larval survival, poor settlement, and abnormal metamorphosis are major problems in seed production of donkey-ear abalone Haliotis asinina. We examined the effects of chemical cues including epinephrine, nor-epinephrine, and serotonin on larval survival, settlement, and metamorphosis in order to determine the possibility of using these chemicals to induce the problems. The results show that epinephrine could enhance metamorphosis rate at 10-6 mol/L only but higher concentrations (10-3-10-4 mol/L); and nor-epinephrine could inhibit the performance significantly, and serotonin could increase significantly the performance at a wide-range concentration (10-3-10-6 mol/L). Treatment with serotonin at 10-5 mol/L for 72 hours resulted in the highest settlement rate (42.2%) and survival rate (49.3%), while at 10-4 mol/L for 72 hours resulted in the highest metamorphosis rate (38.8%). Therefore, serotonin may be used as a fast metamorphosis inducer in abalone culture.

  16. Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids.

    PubMed

    Dinda, Srikanta; Patwardhan, Anand V; Goud, Vaibhav V; Pradhan, Narayan C

    2008-06-01

    The kinetics of epoxidation of cottonseed oil by peroxyacetic acid generated in situ from hydrogen peroxide and glacial acetic acid in the presence of liquid inorganic acid catalysts were studied. It was possible to obtain up to 78% relative conversion to oxirane with very less oxirane cleavage by in situ technique. The rate constants for sulphuric acid catalysed epoxidation of cottonseed oil were in the range 0.39-5.4 x 10(-6)L mol(-1)s(-1) and the activation energy was found to be 11.7 kcal mol(-1). Some thermodynamic parameters such as enthalpy, entropy, and free energy of activation were determined to be of 11.0 kcal mol(-1), -51.4 cal mol(-1)K(-1) and 28.1 kcal mol(-1), respectively. The order of effectiveness of catalysts was found to be sulphuric acid>phosphoric acid>nitric acid>hydrochloric acid. Acetic acid was found to be superior to formic acid for the in situ cottonseed oil epoxidation.

  17. DFT benchmark study for the oxidative addition of CH 4 to Pd. Performance of various density functionals

    NASA Astrophysics Data System (ADS)

    de Jong, G. Theodoor; Geerke, Daan P.; Diefenbach, Axel; Matthias Bickelhaupt, F.

    2005-06-01

    We have evaluated the performance of 24 popular density functionals for describing the potential energy surface (PES) of the archetypal oxidative addition reaction of the methane C-H bond to the palladium atom by comparing the results with our recent ab initio [CCSD(T)] benchmark study of this reaction. The density functionals examined cover the local density approximation (LDA), the generalized gradient approximation (GGA), meta-GGAs as well as hybrid density functional theory. Relativistic effects are accounted for through the zeroth-order regular approximation (ZORA). The basis-set dependence of the density-functional-theory (DFT) results is assessed for the Becke-Lee-Yang-Parr (BLYP) functional using a hierarchical series of Slater-type orbital (STO) basis sets ranging from unpolarized double-ζ (DZ) to quadruply polarized quadruple-ζ quality (QZ4P). Stationary points on the reaction surface have been optimized using various GGA functionals, all of which yield geometries that differ only marginally. Counterpoise-corrected relative energies of stationary points are converged to within a few tenths of a kcal/mol if one uses the doubly polarized triple-ζ (TZ2P) basis set and the basis-set superposition error (BSSE) drops to 0.0 kcal/mol for our largest basis set (QZ4P). Best overall agreement with the ab initio benchmark PES is achieved by functionals of the GGA, meta-GGA, and hybrid-DFT type, with mean absolute errors of 1.3-1.4 kcal/mol and errors in activation energies ranging from +0.8 to -1.4 kcal/mol. Interestingly, the well-known BLYP functional compares very reasonably with an only slightly larger mean absolute error of 2.5 kcal/mol and an underestimation by -1.9 kcal/mol of the overall barrier (i.e., the difference in energy between the TS and the separate reactants). For comparison, with B3LYP we arrive at a mean absolute error of 3.8 kcal/mol and an overestimation of the overall barrier by 4.5 kcal/mol.

  18. NIST gravimetrically prepared atmospheric level methane in dry air standards suite.

    PubMed

    Rhoderick, George C; Carney, Jennifer; Guenther, Franklin R

    2012-04-17

    The Gas Metrology Group at the National Institute of Standards and Technology was tasked, by a congressional climate change act, to support the atmospheric measurement community through standards development of key greenhouse gases. This paper discusses the development of a methane (CH(4)) primary standard gas mixture (PSM) suite to support CH(4) measurement needs over a large amount-of-substance fraction range 0.3-20,000 μmol mol(-1), but with emphasis at the atmospheric level 300-4000 nmol mol(-1). Thirty-six CH(4) in dry air PSMs were prepared in 5.9 L high-pressure aluminum cylinders with use of a time-tested gravimetric technique. Ultimately 14 of these 36 PSMs define a CH(4) standard suite covering the nominal ambient atmospheric range of 300-4000 nmol mol(-1). Starting materials of pure CH(4) and cylinders of dry air were exhaustively analyzed to determine the purity and air composition. Gas chromatography with flame-ionization detection (GC-FID) was used to determine a CH(4) response for each of the 14 PSMs where the reproducibility of average measurement ratios as a standard error was typically (0.04-0.26) %. An ISO 6134-compliant generalized least-squares regression (GenLine) program was used to analyze the consistency of the CH(4) suite. All 14 PSMs passed the u-test with residuals between the gravimetric and the GenLine solution values being between -0.74 and 1.31 nmol mol(-1); (0.00-0.16)% relative absolute. One of the 14 PSMs, FF4288 at 1836.16 ± 0.75 nmol mol(-1) (k = 1) amount-of-substance fraction, was sent to the Korea Research Institute of Standards and Science (KRISS), the Republic of Korea's National Metrology Institute, for comparison. The same PSM was subsequently sent to the National Oceanic and Atmospheric Administration (NOAA) for analysis to their standards. Results show agreement between KRISS-NIST of +0.13% relative (+2.3 nmol mol(-1)) and NOAA-NIST of -0.14% relative (-2.54 nmol mol(-1)).

  19. Effect of temperature on pyrolysis product of empty fruit bunches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati

    2015-04-24

    Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The charmore » obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel.« less

  20. Solubility of acetic acid and trifluoroacetic acid in low-temperature (207-245 k) sulfuric acid solutions: implications for the upper troposphere and lower stratosphere.

    PubMed

    Andersen, Mads P Sulbaek; Axson, Jessica L; Michelsen, Rebecca R H; Nielsen, Ole John; Iraci, Laura T

    2011-05-05

    The solubility of gas-phase acetic acid (CH(3)COOH, HAc) and trifluoroacetic acid (CF(3)COOH, TFA) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (207-245 K) and acid composition (40-75 wt %, H(2)SO(4)). For both HAc and TFA, the effective Henry's law coefficient, H*, is inversely dependent on temperature. Measured values of H* for TFA range from 1.7 × 10(3) M atm(-1) in 75.0 wt % H(2)SO(4) at 242.5 K to 3.6 × 10(8) M atm(-1) in 40.7 wt % H(2)SO(4) at 207.8 K. Measured values of H* for HAc range from 2.2 × 10(5) M atm(-1) in 57.8 wt % H(2)SO(4) at 245.0 K to 3.8 × 10(8) M atm(-1) in 74.4 wt % H(2)SO(4) at 219.6 K. The solubility of HAc increases with increasing H(2)SO(4) concentration and is higher in strong sulfuric acid than in water. In contrast, the solubility of TFA decreases with increasing sulfuric acid concentration. The equilibrium concentration of HAc in UT/LS aerosol particles is estimated from our measurements and is found to be up to several orders of magnitude higher than those determined for common alcohols and small carbonyl compounds. On the basis of our measured solubility, we determine that HAc in the upper troposphere undergoes aerosol partitioning, though the role of H(2)SO(4) aerosol particles as a sink for HAc in the upper troposphere and lower stratosphere will only be discernible under high atmospheric sulfate perturbations.

  1. Oxidation of 2,4-dichlorophenoxyacetic acid by ionizing radiation: degradation, detoxification and mineralization

    NASA Astrophysics Data System (ADS)

    Zona, Robert; Solar, Sonja

    2003-02-01

    The gamma-radiation-induced degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in aerated (A) and in during irradiation air saturated (AS) solutions. Whereas the decomposition rates were not influenced by AS, chloride elimination, detoxification as well as mineralization were significantly enhanced. In the range 50-500 μmol dm -3 2,4-D, degradation showed proportionality to concentration, while chloride formation was successively retarded. The ratios of the pseudo first-order rate constants for degradation and chloride formation, kde/ kCl, increase in AS solutions from 1.4 (50 μmol dm -3) to 2.7 (500 μmol dm -3) and in A solutions from 1.4 to 3.3. In AS for total chloride release 0.7 kGy (50 μmol dm -3) to 10 kGy (500 μmol dm -3) were required, the reduction of organic carbon at 10 kGy was 95% (50 μmol dm -3) and 50% (500 μmol dm -3). Increase and decrease of toxicity during irradiation correlated well with formation and degradation of intermediate phenolic products. The doses for detoxification corresponded to those of total dehalogenation. The oxygen uptake was ˜1.1 ppm 100 Gy -1. The presence of the inorganic components of Vienna drinking water affect the degradation parameters insignificantly.

  2. 2,2′-Bi(9,9-di­ethyl­fluorene)

    PubMed Central

    Park, Ki-Min; Oh, Hankook; Kang, Youngjin

    2014-01-01

    The title compound, C34H34, systematic name 9,9,9′,9′-tetra­ethyl-2,2′-bi(9H-fluorene), crystallized with two crystallographically independent mol­ecules (A and B) in the asymmetric unit. These differ mainly in the orientation of the lateral ethyl chains: in mol­ecule A, they are both on the same side of the mol­ecule whereas in mol­ecule B, one di­ethyl­fluorene moiety has undergone a 180° rotation such that the two pairs of ethyl residues appear on opposite sides of the mol­ecule. The fluorene ring systems subtend dihedral angles of 31.37 (4) and 43.18 (3)° in mol­ecules A and B, respectively. Hence the two fluorene moieties are tilted slightly toward one another. This may be due to the presence of inter­molecular C—H⋯π inter­actions between neighboring mol­ecules. The lateral ethyl chains (excluding H atoms) are also almost planar, with each pair almost perpendicular to the plane of the fluorene system to which they are attached with dihedral angles between the ethyl and fluorene planes in the range 86.04 (8)–89.5 (1)°. PMID:24764898

  3. The effect of vegetarian diet on selected essential nutrients in children.

    PubMed

    Laskowska-Klita, Teresa; Chełchowska, Magdalena; Ambroszkiewicz, Jadwiga; Gajewska, Joanna; Klemarczyk, Witold

    2011-01-01

    Vegetarian diets are considered to promote health and reduce the risk of some chronic diseases. It is also known that restriction or exclusion of animal foods may result in low intake of essential nutrients. The aim of the presented study was to assess the intake and serum status of vitamin B12, folate, vitamins A, E and D, as well as concentrations of homocysteine, total antioxidant status and iron balance in Polish vegetarian children. The study included 50 children, aged 5-11 who had been referred to the Institute of Mother and Child for dietary consultation. From those, 32 were vegetarians (aged 6.5±4.2 years) and 18 omnivores (aged 7.9±2.7 years). Dietary constituents were analyzed using the nutritional programme Dietetyk2®. Folate and vitamin B12 were determined with a chemiluminescence immunoassay, total homocysteine with a fluorescence polarization immunoassay and TAS (total antioxidant status) by colorimetric method. Vitamin A and E in serum were determined by the high-pressure liquid chromatography method (HPLC) and vitamin D by immunoenzymatic assay (ELISA). Concentrations of iron, ferritin, transferrin and total iron-binding capacity (TIBC) in serum were determined by commercially available kits. In vegetarian children daily intake of vitamin B12 (1.6 ěg) was in the recommended range, that of folate (195 ěg) and vitamin A (1245 ěg) higher, but vitamin E slightly lower (6.6 ěg) and three-fold lower vitamin D (1.1 ěg) than references allowance. Serum concentrations of vitamin B12 (548 pg/ml), folate (12.8 ng/ml), vitamin A (1.2 ěmol/L), vitamin E (15.6 ěmol/l) were within physiological range, but that of vitamin D (13.7 ěg/L) was only half of the lowest limit of the reference value. In vegetarian children in comparison to omnivorous similar levels of homocysteine (6.13 ěmol/L vs 5.45 ěmol/L) and vitamin A (1,17 ěmol/L vs 1.32 ěmol/L) were observed. Lower (p<0.05) values of vitamin E (15.6 ěmol/L vs 18.4 ěmol/L) and TAS (1.21 mmol/L vs 1.30 mmol/L; p<0.0001) were found. Concentrations of iron markers were in physiological range. Obtained results indicated that intakes of vitamin B12 and folic acid from vegetarian diets are sufficient to maintain serum concentrations of both homocysteine and iron in the range observed in omnivorous children. High consumption of vitamin A and low vitamin E only slightly affected their serum values. Significantly lower concentration of serum vitamin E in vegetarian children in comparison to nonvegetarians may be reflected with statistically significant lowering of total antioxidant status. Insufficient intake of vitamin D and its low serum concentration should be under close monitoring in vegetarian children. In order to prevent vitamin D deficiency appropriate age-dependent supplementation should be considered.

  4. Estimated Glomerular Filtration Rate Is a Poor Predictor of Concentration for a Broad Range of Uremic Toxins

    PubMed Central

    Schepers, Eva; Barreto, Daniela V.; Barreto, Fellype C.; Liabeuf, Sophie; Van Biesen, Wim; Verbeke, Francis; Glorieux, Griet; Choukroun, Gabriel; Massy, Ziad; Vanholder, Raymond

    2011-01-01

    Summary Background and objectives The degree of chronic kidney disease (CKD) is currently expressed in terms of GFR, which can be determined directly or estimated according to different formulas on the basis of serum creatinine and/or cystatin C measurements (estimated GFR [eGFR]). The purpose of this study was to investigate whether eGFR values are representative for uremic toxin concentrations in patients with different degrees of CKD. Design, setting, participants, & measurements Associations between eGFR based on serum cystatin C and different uremic solutes (mol wt range 113 to 240 D; determined by colorimetry, HPLC, or ELISA) were evaluated in 95 CKD patients not on dialysis (CKD stage 2 to 5). The same analysis was also applied for six other eGFR formulas. Results There was a substantial disparity in fits among solutes. In linear regression, explained variance of eGFR was extremely low for most solutes, with eGFR > 0.4 only for creatinine. The other eGFR formulations gave comparably disappointing results with regard to their association to uremic solutes. Relative similarity in R2 values per solute for the different eGFR values and the strong disparity in values between solutes suggest that the differences in R2 are mainly due to discrepancies in solute handling apart from GFR. Conclusions eGFR is poorly associated with concentrations of all studied uremic toxins in patients with different degrees of CKD, correlates differently with each individual solute, and can thus not be considered representative for evaluating the accumulation of solutes in the course of CKD. PMID:21617084

  5. Identification of strengthening phases in Al-Cu-Li alloy Weldalite 049

    NASA Technical Reports Server (NTRS)

    Langan, T. J.; Pickens, J. R.

    1989-01-01

    The tensile properties in the peak-strength T8 temper for Weldalite 049, a family of ultrahigh-strength weldable Al-Cu-Li-based alloys with a Li content ranging from 0 to 1.9 wt percent, are investigated, and strengthening precipitates at selected Li levels are identified. Relatively small amounts of Ag and Mg were found to be extremely effective in stimulating precipitation in Weldalite 049, resulting in a homogeneous distribution of fine, platelike precipitates with a 111-type habit plane in the peak-aged, T8 temper. The yield and tensile strengths are strongly dependent on Li content, with a peak in the range of 1.1 to 1.4 wt percent Li. At above 1.4 wt percent Li, strength decreases rapidly, which is associated with delta-prime precipitation. For high-resolution TEM, the structure of T(1)-type precipitates in Weldalite 049 is similar to that of T(1) platelets in 2090.

  6. Biocorrosion study of titanium-cobalt alloys.

    PubMed

    Chern Lin, J H; Lo, S J; Ju, C P

    1995-05-01

    The present work provides experimental results of corrosion behaviour in Hank's physiological solution and some other properties of in-house fabricated titanium-cobalt alloys with cobalt ranging from 25-30% in weight. X-ray diffraction (XRD) shows that, in water-quenched (WQ) alloys, beta-titanium is largely retained, whereas in furnace-cooled (FC) alloys, little beta-titanium is found. Hardness of the alloys increases with increasing cobalt content, ranging from 455 VHN for WQ Ti-25 wt% Co to 525 VHN for WQ Ti-30 wt% Co. Differential thermal analysis (DTA) indicates that melting temperatures of the alloys are lower than that of pure titanium by about 600 degrees C. Potentiodynamic polarization results show that all measured break-down potentials in Hank's solution at 37 degrees C are higher than 800 mV. The breakdown potential for the FC Ti-25 Wt% Co alloy is even as high as nearly 1200 mV.

  7. Wide range humidity sensing of LiCl incorporated in mesoporous silica circular discs

    NASA Astrophysics Data System (ADS)

    Kunchakara, Suhasini; Shah, Jyoti; Singh, Vaishali; Kotnala, R. K.

    2017-12-01

    Lithium chloride (LiCl) incorporated MCM-41 has been synthesised by sol-gel method using tetraethyl orthosilicate as a precursor in basic medium. 5, 10, 15, 20, 25, 30 and 35 wt% of LiCl were incorporated in mesoporous silica to investigate the humidity sensing. With increasing wt% of LiCl broadening of O-H peak is observed in the Fourier Transform Infrared spectra, indicating greater adsorption of hydroxyl groups on porous silica. The surface area of the MCM-41 circular discs was determined by Brunauer-Emmett-Teller (BET). Scanning electron microscopy images suggest that incorporation of LiCl leads to coalescence of grains in mesoporous silica. 25 wt% LiCl incorporated MCM-41 showed a wide range linear response of impedance change for 11%-90% RH exhibiting 3.5-order drop in impedance at a 1 kHz frequency. The Nyquist plots for all compositions showed increased ionic conduction with increasing relative humidity.

  8. Temperature dependence of rat liver mitochondrial respiration with uncoupling of oxidative phosphorylation by fatty acids. Influence of inorganic phosphate.

    PubMed

    Samartsev, V N; Chezganova, S A; Polishchuk, L S; Paydyganov, A P; Vidyakina, O V; Zeldi, I P

    2003-06-01

    The respiration rate of liver mitochondria in the course of succinate oxidation depends on temperature in the presence of palmitate more strongly than in its absence (in state 4). In the Arrhenius plot, the temperature dependence of the palmitate-induced stimulation of respiration has a bend at 22 degrees C which is characterized by transition of the activation energy from 120 to 60 kJ/mol. However, a similar dependence of respiration in state 4 is linear over the whole temperature range and corresponds to the activation energy of 17 kJ/mol. Phosphate partially inhibits the uncoupling effect of palmitate. This effect of phosphate is increased on decrease in temperature. In the presence of phosphate the temperature dependence in the Arrhenius plot also has a bend at 22 degrees C, and the activation energy increases from 128 to 208 kJ/mol in the range from 13 to 22 degrees C and from 56 to 67 kJ/mol in the range from 22 to 37 degrees C. Mersalyl (10 nmol/mg protein), an inhibitor of the phosphate carrier, similarly to phosphate, suppresses the uncoupling effect of laurate, and the effects of mersalyl and phosphate are not additive. The recoupling effects of phosphate and mersalyl seem to show involvement of the phosphate carrier in the uncoupling effect of fatty acids in liver mitochondria. Possible mechanisms of involvement of the phosphate carrier in the uncoupling effect of fatty acids are discussed.

  9. Preparation of high density heavy metal fluoride glasses with extended ultraviolet and infra red ranges, and such high density heavy metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Martin, Steven W. (Inventor); Huebsch, Jesse (Inventor)

    2001-01-01

    A heavy metal fluoride glass composition range (in mol percent) consisting essentially of: (16-30)BaF.sub.2.(8-26)HfF.sub.4.(6-24)InF.sub.3 or GaF.sub.3.(4-16)CdF.sub.2.(6-24)YbF.sub.3.(4-22)ZnF.sub.2. In an alternative embodiment, a heavy metal fluoride glass composition range (in mol percent) comprises (16-30)BaF.sub.2.(8-26)HfF.sub.4.(6-24) of (0-24)InF.sub.3, (0-24)GaF.sub.3 and (0-19)AlF.sub.3.(1-16)CdF.sub.2.(6-24)YbF.sub.3.(4-26)ZnF.sub.2. A preferred heavy metal fluoride glass produced in accordance with the present invention comprises a composition (in mol %) and comprises about 26BaF.sub.2.18HfF.sub.4.7InF.sub.3.5GaF.sub.3.10CdF.sub.2.18YbF.sub.3. 16ZnF.sub.2. A preferred heavy metal fluoride glass has maximum thickness of most preferably about 3 mm. Another preferred heavy metal fluoride glass comprises a composition (in mol %) and comprises about 26BaF.sub.2.18HfF.sub.4.12AlF.sub.3.10CdF.sub.2.18YbF.sub.3.16ZnF.sub.2.

  10. Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers.

    PubMed

    Ibrahim, Hamdy; Farag, Mahmoud; Megahed, Hassan; Mehanny, Sherif

    2014-01-30

    The aim of this work is to study the behavior of completely biodegradable starch-based composites containing date palm fibers in the range from 20 to 80 wt%. Hybrid composites containing date palm and flax fibers, 25 wt% each, were also examined. The composites were preheated and then hot pressed at 5 MPa and 160°C for 30 min. SEM investigation showed strong adhesion between fibers and matrix. Density measurements showed very small void fraction (less than 0.142%) for composites containing up to 50 wt% fiber content. Increasing fiber weight fraction up to 50 wt% increased the composite static tensile and flexural mechanical properties (stiffness and strength). Composite thermal stability, water uptake and biodegradation improved with increasing fiber content. The present work shows that starch-based composites with 50 wt% fibers content have the optimum mechanical properties. The hybrid composite of flax and date palm fibers, 25 wt% each, has good properties and provides a competitive eco-friendly candidate for various applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Dripping and evolution behavior of primary slag bearing TiO2 through the coke packed bed in a blast-furnace hearth

    NASA Astrophysics Data System (ADS)

    Liu, Yan-xiang; Zhang, Jian-liang; Wang, Zhi-yu; Jiao, Ke-xin; Zhang, Guo-hua; Chou, Kuo-chih

    2017-02-01

    To investigate the flow of primary slag bearing TiO2 in the cohesive zone of blast furnaces, experiments were carried out based on the laboratory-scale packed bed systems. It is concluded that the initial temperature of slag dripping increases with decreasing FeO content and increasing TiO2 content. The slag holdup decreases when the FeO content is in the range of 5wt%-10wt%, whereas it increases when the FeO content exceeds 10wt%. Meanwhile, the slag holdup decreases when the TiO2 content increases from 5wt% to 10wt% but increases when the TiO2 content exceeds 10wt%. Moreover, slag/coke interface analysis shows that the reaction between FeO and TiO2 occurs between the slag and the coke. The slag/coke interface is divided into three layers: slag layer, iron-rich layer, and coke layer. TiO2 in the slag is reduced by carbon, and the generated Ti diffuses into iron.

  12. Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6 wt.% Zn Scaffolds for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Yan, Yang; Kang, Yijun; Li, Ding; Yu, Kun; Xiao, Tao; Wang, Qiyuan; Deng, Youwen; Fang, Hongjie; Jiang, Dayue; Zhang, Yu

    2018-03-01

    Porous Mg-based scaffolds have been extensively researched as biodegradable implants due to their attractive biological and excellent mechanical properties. In this study, porous Mg-6 wt.% Zn scaffolds were prepared by powder metallurgy using ammonium bicarbonate particles as space-holder particles. The effects of space-holder particle content on the microstructure, mechanical properties and corrosion resistance of the Mg-6 wt.% Zn scaffolds were studied. The mean porosity and pore size of the open-cellular scaffolds were within the range 6.7-52.2% and 32.3-384.2 µm, respectively. Slight oxidation was observed at the grain boundaries and on the pore walls. The Mg-6 wt.% Zn scaffolds were shown to possess mechanical properties comparable with those of natural bone and had variable in vitro degradation rates. Increased content of space-holder particles negatively affected the mechanical behavior and corrosion resistance of the Mg-6 wt.% Zn scaffolds, especially when higher than 20%. These results suggest that porous Mg-6 wt.% Zn scaffolds are promising materials for application in bone tissue engineering.

  13. Microstructural and thermal study of Al-Si-Mg/melon shell ash particulate composite

    NASA Astrophysics Data System (ADS)

    Abdulwahab, M.; Umaru, O. B.; Bawa, M. A.; Jibo, H. A.

    The microstructural study via scanning electron microscope (SEM) and thermal study via differential scanning calorimetric (DSC) study of Al-7%Si-0.3Mg/melon shell ash particulate composite has been carried out. The melon shell ash was used in the production of MMC ranging from 5% to 20% at interval of 5% addition using stir casting method. The melon shell ash was characterized using X-ray fluorescent (XRF) that reveal the presence of CaO, SiO2, Al2O3, MgO, and TiO2 as major compounds. The composite was machined and subjected to heat treatment. Microstructural analyses of the composite produced were done using scanning electron microscope (SEM). The microstructure obtained reveals a dark ceramic (reinforcer) and white metallic phase. Equally, the 5 wt% DSC result gives better thermal conductivity than other proportions (10 wt%, 15 wt%, and 20 wt%). These results showed that an improved property of Al-Si-Mg alloy was achieved using melon shell ash particles as reinforcement up to a maximum of 20 wt% for microstructural and 5% wt DSC respectively.

  14. Glycomacropeptide in children with phenylketonuria: does its phenylalanine content affect blood phenylalanine control?

    PubMed

    Daly, A; Evans, S; Chahal, S; Santra, S; MacDonald, A

    2017-08-01

    In phenylketonuria (PKU), there are no data available for children with respect to evaluating casein glycomacropeptide (CGMP) as an alternative to phenylalanine-free protein substitutes [Phe-free L-amino acid (AA)]. CGMP contains a residual amount of phenylalanine, which may alter blood phenylalanine control. In a prospective 6-month pilot study, we investigated the effect on blood phenylalanine control of CGMP-amino acid (CGMP-AA) protein substitute in 22 PKU subjects (13 boys, nine girls), median age (range) 11 years (6-16 years). Twelve received CGMP-AA and nine received Phe-free L-AA, (1 CGMP-AA withdrawal). Subjects partially or wholly replaced Phe-free L-AA with CGMP-AA. If blood phenylalanine exceeded the target range, the CGMP-AA dose was reduced and replaced with Phe-free L-amino acids. The control group remained on Phe-free L-AAs. Phenylalanine, tyrosine and Phe : Tyr ratio concentrations were compared with the results for the previous year. In the CGMP-AA group, there was a significant increase in blood phenylalanine concentrations (pre-study, 275 μmol L -1 ; CGMP-AA, 317 μmol L -1 ; P = 0.02), a decrease in tyrosine concentrations (pre-study, 50 μmol L -1 ; CGMP-AA, 40 μmol L -1 ; P = 0.03) and an increase in Phe : Tyr ratios (pre-study, Phe : Tyr 4.9:1; CGMP-AA, Phe : Tyr 8:1; P = 0.02). In the control group there was a non-significant fall in phenylalanine concentrations (pre-study 325μmol/L: study 280μmol/L [p = 0.9], and no significant changes for tyrosine or phe/tyr ratios [p = 0.9]. Children taking the CGMP-AA found it more acceptable to L-AA. Blood phenylalanine control declined with CGMP-AA but, by titrating the dose of CGMP-AA, blood phenylalanine control remained within target range. The additional intake of phenylalanine may have contributed to the change in blood phenylalanine concentration. CGMP-AA use requires careful monitoring in children. © 2017 The British Dietetic Association Ltd.

  15. Biologically labile photoproducts from riverine non-labile dissolved organic carbon in the coastal waters

    NASA Astrophysics Data System (ADS)

    Kasurinen, V.; Aarnos, H.; Vähätalo, A.

    2015-06-01

    In order to assess the production of biologically labile photoproducts (BLPs) from non-labile riverine dissolved organic carbon (DOC), we collected water samples from ten major rivers, removed labile DOC and mixed the residual non-labile DOC with artificial seawater for microbial and photochemical experiments. Bacteria grew on non-labile DOC with a growth efficiency of 11.5% (mean; range from 3.6 to 15.3%). Simulated solar radiation transformed a part of non-labile DOC into BLPs, which stimulated bacterial respiration and production, but did not change bacterial growth efficiency (BGE) compared to the non-irradiated dark controls. In the irradiated water samples, the amount of BLPs stimulating bacterial production depended on the photochemical bleaching of chromophoric dissolved organic matter (CDOM). The apparent quantum yields for BLPs supporting bacterial production ranged from 9.5 to 76 (mean 39) (μmol C mol photons-1) at 330 nm. The corresponding values for BLPs supporting bacterial respiration ranged from 57 to 1204 (mean 320) (μmol C mol photons-1). According to the calculations based on spectral apparent quantum yields and local solar radiation, the annual production of BLPs ranged from 21 (St. Lawrence) to 584 (Yangtze) mmol C m-2 yr-1 in the plumes of the examined rivers. Complete photobleaching of riverine CDOM in the coastal ocean was estimated to produce 10.7 Mt C BLPs yr-1 from the rivers examined in this study and globally 38 Mt yr-1 (15% of riverine DOC flux from all rivers), which support 4.1 Mt yr-1 of bacterial production and 33.9 Mt yr-1 bacterial respiration.

  16. Properties of the LiCl-KCl-Li2O system as operating medium for pyro-chemical reprocessing of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Mullabaev, Albert; Tkacheva, Olga; Shishkin, Vladimir; Kovrov, Vadim; Zaikov, Yuriy; Sukhanov, Leonid; Mochalov, Yuriy

    2018-03-01

    Crystallization temperatures (liquidus and solidus) in the LiCl-Li2O and (LiCl-KCl)-Li2O systems with the KCl content of 10 and 20 mol.% were obtained with independent methods of thermal analysis using cooling curves, isothermal saturation, and differential scanning calorimetry. The linear sweep voltammetry was applied to control the time of the equilibrium establishment in the molten system after the Li2O addition, which depended on the composition of the base melt and the concentration of Li2O. The fragments of the binary LiCl-Li2O and quazi-binary [LiCl-KCl(10 mol.%)]-Li2O and [LiCl-KCl(20 mol.%)]-Li2O phase diagrams in the Li2O concentration range from 0 to 12 mol.% were obtained. The KCl presence in the LiCl-KCl-Li2O molten mixture in the amount of 10 and 20 mol.% reduces the liquidus temperature by 30 and 80°, respectively, but the region of the homogeneous molten state of the system is considerably narrowed, which complicates its practical application. The Li2O solubility in the molten LiCl, LiCl-KCl(10 mol.%) and LiCl-KCl(20 mol.%) decreases with increasing the KCl content and is equal to 11.5, 7.7 and 3.9 mol.% at 650°С, respectively. The LiCl-KCl melt with 10 mol.% KCl can be recommended for practical use as a medium for the SNF pyro-chemical reprocessing at temperature below 700 °C.

  17. The color tuning of PS-b-P2VP lamellar films with changing the alkyl chain length of 1-iodoalkanes.

    PubMed

    Shin, Sung-Eui; Kim, Su-Young; Shin, Dong-Myung

    2011-05-01

    Photonic crystals with tunability in the visible or near-infrared region have drawn increasing attention for controlling and processing light for the active components of future display. We prepared polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) lamellar films which is hydrophobic block-hydrophilic polyelectrolyte block polymer of 57 kg/mol-b-57 kg/mol. The lamellar stacks, which is alternating layer of hydrophilic and hydrophobic moiety of PS-b-P2VP, are obtained by exposing the spin coated film under chloroform vapor. The band gaps of the lamellar films interestingly varied after immersion into the quaternizing solvents containing 5 wt% of iodomethane, iodoethane, 1-iodobutane, 1-iodopentane, 1-iodohexane and 1-iodooctane solubilized in n-hexane. The iodoalkanes reacted with pyridine groups in PS-b-P2VP and generated the alkyl pyridinium salts readily. The degree of quaternization, alkyl chain length of iodoalkane and the salt water concentration affects the spacing of layer structure of PS-b-P2VP. The iodomethane and iodohexane produced similar band gaps and salt concentration dependence. These results are very much dependent on the hydrophobic-hydrophilic characters of PS-b-P2VP lamellar surface.

  18. A Comparative Study of the CO2 Absorption in Some Solvent-Free Alkanolamines and in Aqueous Monoethanolamine (MEA).

    PubMed

    Barzagli, Francesco; Mani, Fabrizio; Peruzzini, Maurizio

    2016-07-05

    The neat secondary amines 2-(methylamino)ethanol, 2-(ethylamino)ethanol, 2-(isopropylamino)ethanol, 2-(benzylamino)ethanol and 2-(butylamino)ethanol react with CO2 at 50-60 °C and room pressure yielding liquid carbonated species without their dilution with any additional solvent. These single-component absorbents have the theoretical CO2 capture capacity of 0.50 (mol CO2/mol amine) due to the formation of the corresponding amine carbamates and protonated amines that were identified by the (13)C NMR analysis. These single-component absorbents were used for CO2 capture (15% and 40% v/v in air) in two series of different procedures: (1) batch experiments aimed at investigating the efficiency and the rate of CO2 capture; (2) continuous cycles of absorption-desorption carried out in packed columns with absorption temperatures brought at 50-60 °C and desorption temperatures at 100-120 °C at room pressure. A number of different amines and experimental setups gave CO2 capture efficiency greater than 90%. For comparison purposes, 30 wt % aqueous MEA was used for CO2 capture under the same operational conditions described for the solvent-free amines. The potential advantages of solvent-free alkanolamines over aqueous MEA in the CO2 capture process were discussed.

  19. Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants.

    PubMed

    Azab, Ehab; Hegazy, Ahmad K; El-Sharnouby, Mohamed E; Abd Elsalam, Hassan E

    2016-01-01

    The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants.

  20. Rational Design of Porous Conjugated Polymers and Roles of Residual Palladium for Photocatalytic Hydrogen Production.

    PubMed

    Li, Lianwei; Cai, Zhengxu; Wu, Qinghe; Lo, Wai-Yip; Zhang, Na; Chen, Lin X; Yu, Luping

    2016-06-22

    Developing highly efficient photocatalyts for water splitting is one of the grand challenges in solar energy conversion. Here, we report the rational design and synthesis of porous conjugated polymer (PCP) that photocatalytically generates hydrogen from water splitting. The design mimics natural photosynthetics systems with conjugated polymer component to harvest photons and the transition metal part to facilitate catalytic activities. A series of PCPs have been synthesized with different light harvesting chromophores and transition metal binding bipyridyl (bpy) sites. The photocatalytic activity of these bpy-containing PCPs can be greatly enhanced due to the improved light absorption, better wettability, local ordering structure, and the improved charge separation process. The PCP made of strong and fully conjugated donor chromophore DBD (M4) shows the highest hydrogen production rate at ∼33 μmol/h. The results indicate that copolymerization between a strong electron donor and weak electron acceptor into the same polymer chain is a useful strategy for developing efficient photocatalysts. This study also reveals that the residual palladium in the PCP networks plays a key role for the catalytic performance. The hydrogen generation activity of PCP photocatalyst can be further enhanced to 164 μmol/h with an apparent quantum yield of 1.8% at 350 nm by loading 2 wt % of extra platinum cocatalyst.

  1. Osmotic Engine: Translating Osmotic Pressure into Macroscopic Mechanical Force via Poly(Acrylic Acid) Based Hydrogels

    PubMed Central

    Arens, Lukas; Weißenfeld, Felix; Klein, Christopher O.; Schlag, Karin

    2017-01-01

    Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2–12 lower in seawater‐like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be used to move a piston in an osmotic motor. Consequently, chemical energy is translated into mechanical energy. This conversion is driven by differences in chemical potential and by changes in entropy. This is special, as most thermodynamic engines rely instead on the conversion of heat into mechanical energy. To optimize the efficiency of this process, the degree of neutralization, the degree of crosslinking, and the particle size of the hydrogels are varied. Additionally, different osmotic engine prototypes are constructed. The maximum mean power of 0.23 W kg−1 dry hydrogel is found by using an external load of 6 kPa, a polymer with 1.7 mol% crosslinking, a degree of neutralization of 10 mol%, and a particle size of 370–670 µm. As this is achieved only in the first round of optimization, higher values of the maximum power average over one cycle seem realistic. PMID:28932675

  2. Roles of Segmental and Oligomeric Diffusion on the Gel Effect in Free Radical Polymerization

    NASA Astrophysics Data System (ADS)

    Wisnudel, M. B.; Torkelson, J. M.

    1996-03-01

    Termination between radicals has been simulated by phosphorescence quenching, showing strong roles for segmental and oligomeric radical self-diffusion in the origin of the gel effect. Quenching rate constants (k_q) were measured between benzil-terminated polymer as a function of anthracene-terminated polymer in polymer solutions. In dilute solution, interactions between 10k or 73k MW benzil-terminated polystyrene (PS- B) and anthracence-terminated polystyrene (PS-A) of varying MW, the MW effect is weaker than the Smoluchowski eq. prediction (kq MW^- 0.5). At higher concentration, interactions of PS-B and PS-A of like MW show only weak dependence of kq on MW and a concentration dependence similar to that of segmental mobility, indicating that segmental diffusion is important in termination. Finally, with interactions between 73k MW PS-B and PS-A of varying MW at 35 wt% PS, kq decreases by a factor of 10 in going from MW's of 100 to 1000 g/mol; beyond 1000 g/mol, kq is MW independent. Such effects cannot be explained by polymer-radical self-diffusion. However, they support the notion that the gel effect onset is associated with the concentration dependence of oligomeric radical self-diffusion and polymer radical chain-end segmental mobility.

  3. Immobilized Candida antarctica lipase B on ZnO nanowires/macroporous silica composites for catalyzing chiral resolution of (R,S)-2-octanol.

    PubMed

    Shang, Chuan-Yang; Li, Wei-Xun; Zhang, Rui-Feng

    2014-01-01

    ZnO nanowires were successfully introduced into a macroporous SiO2 by in situ hydrothermal growth in 3D pores. The obtained composites were characterized by SEM and XRD, and used as supports to immobilize Candida antarctica lipase B (CALB) through adsorption. The high specific surface area (233 m(2)/g) and strong electrostatic interaction resulted that the average loading amount of the composite supports (196.8 mg/g) was 3-4 times of that of macroporous SiO2 and approximate to that of a silica-based mesoporous material. Both adsorption capacity and the activity of the CALB immobilized on the composite supports almost kept unchanged as the samples were soaked in buffer solution for 48 h. The chiral resolution of 2-octanol was catalyzed by immobilized CALB. A maximum molar conversion of 49.1% was achieved with 99% enantiomeric excess of (R)-2-octanol acetate under the optimal condition: a reaction using 1.0 mol/L (R,S)-2-octanol, 2.0 mol/L vinyl acetate and 4.0 wt.% water content at 60°C for 8h. After fifteen recycles the immobilized lipase could retain 96.9% of relative activity and 93.8% of relative enantioselectivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Preparation of NiS/ZnIn2S4 as a superior photocatalyst for hydrogen evolution under visible light irradiation

    PubMed Central

    Wei, Liang; Chen, Yongjuan; Zhao, Jialin

    2013-01-01

    Summary In this study, NiS/ZnIn2S4 nanocomposites were successfully prepared via a facile two-step hydrothermal process. The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Their photocatalytic performance for hydrogen evolution under visible light irradiation was also investigated. It was found that the photocatalytic hydrogen evolution activity over hexagonal ZnIn2S4 can be significantly increased by loading NiS as a co-catalyst. The formation of a good junction between ZnIn2S4 and NiS via the two step hydrothermal processes is beneficial for the directional migration of the photo-excited electrons from ZnIn2S4 to NiS. The highest photocatalytic hydrogen evolution rate (104.7 μmol/h), which is even higher than that over Pt/ZnIn2S4 nanocomposite (77.8 μmol/h), was observed over an optimum NiS loading amount of 0.5 wt %. This work demonstrates a high potential of the developing of environmental friendly, cheap noble-metal-free co-catalyst for semiconductor-based photocatalytic hydrogen evolution. PMID:24455453

  5. Facile synthesis of hydroxy-modified MOF-5 for improving the adsorption capacity of hydrogen by lithium doping.

    PubMed

    Kubo, Masaru; Hagi, Hayato; Shimojima, Atsushi; Okubo, Tatsuya

    2013-11-01

    A facile synthesis of partially hydroxy-modified MOF-5 and its improved H2-adsorption capacity by lithium doping are reported. The reaction of Zn(NO3)2·6H2O with a mixture of terephthalic acid (H2BDC) and 2-hydroxyterephthalic acid (H2BDC-OH) in DMF gave hydroxy-modified MOF-5 (MOF-5-OH-x), in which the molar fraction (x) of BDC-OH(2-) was up to 0.54 of the whole ligand. The MOF-5-OH-x frameworks had high BET surface areas (about 3300 m(2) g(-1)), which were comparable to that of MOF-5. We suggest that the MOF-5-OH-x frameworks are formed by the secondary growth of BDC(2-)-rich MOF-5 seed crystals, which are nucleated during the early stage of the reaction. Subsequent Li doping into MOF-5-OH-x results in increased H2 uptake at 77 K and 0.1 MPa from 1.23 to 1.39 wt.% and an increased isosteric heat of H2 adsorption from 5.1-4.2 kJ mol(-1) to 5.5-4.4 kJ mol(-1). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fluorinated organic compounds in an eastern Arctic marine food web.

    PubMed

    Tomy, Gregg T; Budakowski, Wes; Halldorson, Thor; Helm, Paul A; Stern, Gary A; Friesen, Ken; Pepper, Karen; Tittlemier, Sheryl A; Fisk, Aaron T

    2004-12-15

    An eastern Arctic marine food web was analyzed for perfluorooctanesulfonate (PFOS, C8F17SO3-), perfluorooctanoate (PFOA, C7F15COO-), perfluorooctane sulfonamide (PFOSA, C8F17SO2NH2), and N-ethylperfluorooctane sulfonamide (N-EtPFOSA, C8F17SO2NHCH2CH3) to examine the extent of bioaccumulation. PFOS was detected in all species analyzed, and mean concentrations ranged from 0.28 +/- 0.09 ng/g (arithmetic mean +/- 1 standard error, wet wt, whole body) in clams (Mya truncata) to 20.2 +/- 3.9 ng/g (wet wt, liver) in glaucous gulls (Larus hyperboreus). PFOA was detected in approximately 40% of the samples analyzed at concentrations generally smaller than those found for PFOS; the greatest concentrations were observed in zooplankton (2.6 +/- 0.3 ng/g, wet wt). N-EtPFOSA was detected in all species except redfish with mean concentrations ranging from 0.39 +/- 0.07 ng/g (wet wt) in mixed zooplankton to 92.8 +/- 41.9 ng/g (wet wt) in Arctic cod (Boreogadus saida). This is the first report of N-EtPFOSA in Arctic biota. PFOSA was only detected in livers of beluga (Delphinapterus leucas) (20.9 +/- 7.9 ng/g, wet wt) and narwhal (Monodon monoceros) (6.2 +/- 2.3 ng/g, wet wt), suggesting that N-EtPFOSA and other PFOSA-type precursors are likely present but are being biotransformed to PFOSA. A positive linear relationship was found between PFOS concentrations (wet wt) and trophic level (TL), based on delta15N values, (r2 = 0.51, p < 0.0001) resulting in a trophic magnification factor of 3.1. TL-corrected biomagnification factor estimates for PFOS ranged from 0.4 to 9. Both results indicate that PFOS biomagnifies in the Arctic marine food web when liver concentrations of PFOS are used for seabirds and marine mammals. However, transformation of N-EtPFOSA and PFOSA and potential other perfluorinated compounds to PFOS may contribute to PFOS levels in marine mammals and may inflate estimated biomagnification values. None of the other fluorinated compounds (N-EtPFOSA, PFOSA, and PFOA) were found to have a significant relationship with TL, but BMF(TL) values of these compounds were often >1, suggesting potential for these compounds to biomagnify. The presence of perfluorinated compounds in seabirds and mammals provides evidence that trophic transfer is an important exposure route of these chemicals to Arctic biota.

  7. Self-Lubricating Composite Containing Chromium Oxide

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher (Inventor); Edmonds, Brian J. (Inventor)

    1999-01-01

    A self lubricating. friction and wear reducing composite material useful over a wide temperature range of from cryogenic temperature up to about 900 C. contains 60 80 wt. % of particulate Cr2O3, dispersed in a metal binder of a metal alloy containing Cr and at least 50 wt. % of Ni, Cr or a mature of Ni and Cr. It also contains 5-20 wt. % of a fluoride of at least one Group I, Group II or rare earth metal and. optionally, 5-20 wt. % of a low temperature lubricant metal, such as Ag. Au, Pt, Pd, Rh and Cu. This composite exhibits less oxidation instability and less abrasiveness than composites containing chromium carbide, is readily applied using plasma spray and can be ground and polished with a silicon carbide abrasive.

  8. Monitoring the mechanical behaviour of electrically conductive polymer nanocomposites under ramp and creep conditions.

    PubMed

    Pedrazzoli, D; Dorigato, A; Pegoretti, A

    2012-05-01

    Various amounts of carbon black (CB) and carbon nanofibres (CNF) were dispersed in an epoxy resin to prepare nanocomposites whose mechanical behaviour, under ramp and creep conditions, was monitored by electrical measurements. The electrical resistivity of the epoxy resin was dramatically reduced by both nanofillers after the percolation threshold (1 wt% for CB and 0.5 wt% for CNF), reaching values in the range of 10(3)-10(4) omega . cm for filler loadings higher than 2 wt%. Due to the synergistic effects between the nanofillers, an epoxy system containing a total nanofiller amount of 2 wt%, with a relative CB/CNF ratio of 90/10 was selected for the specific applications. A direct correlation between the tensile strain and the increase of the electrical resistance was observed over the whole experimental range, and also the final failure of the samples was clearly detected. Creep tests confirmed the possibility to monitor the various deformational stages under constant loads, with a strong dependency from the temperature and the applied stress. The obtained results are encouraging for a possible application of nanomodified epoxy resin as a matrix for the preparation of structural composites with sensing (i.e., damage-monitoring) capabilities.

  9. Effect of temperature on storage modulus and glass transition temperature of ZnS/PS nanocomposites

    NASA Astrophysics Data System (ADS)

    Agarwal, Sonalika; Awasthi, Kamlendra; Saxena, N. S.

    2018-05-01

    In the present study, a simplified solution casting method has been used for preparation of ZnS/PS nanocomposites, based on mixing the ZnS nano filler in nanometer range with the polymer matrix. The prepared nanocomposites with different concentration (0, 2, 4, 6 & 8 wt %) are structurally characterized through X-ray diffraction (XRD) and transmission electron microscope (TEM). The main objective of this study is to investigate the variation of storage modulus and glass transition temperature (Tg) within temperature range 30oC to 150oC for PS and ZnS/PS nanocomposites and have been performed through dynamic mechanical analyzer (DMA). The result shows that storage modulus and Tg of nanocomposites increase with the increase of ZnS nanoparticles up to 4 wt. % in PS and beyond this wt. %, both storage modulus and Tg decrease. The increasing behavior is due to the good adhesion between the ZnS nanoparticles and PS matrix which indicates that ZnS nanoparticles are capable of reinforcing the PS matrix. Beside this the decreasing behaviour at higher filler concentration (6 and 8 wt. %) is due to the agglomeratation of nanoparticles in polymer matrix.

  10. Chemical energetics of force development, force maintenance, and relaxation in mammalian smooth muscle

    PubMed Central

    1980-01-01

    High-energy phosphate utilization (delta approximately P) associated with force development, force maintenance, and relaxation has been determined during single isometric tetani in the rabbit taenia coli. ATP resynthesis from glycolysis and respiration was stopped without deleterious effects on the muscle. At 18 degrees C and a muscle length of 95% l0, the resting rate of energy utilization is 1.8 +/- 0.2 nmol/g . s-1, or 0.85 +/- 0.2 mmol approximately P/mol of total creatine (Ct) . s-1, where Ct = 2.7 mumol/g wet wt. During the initial 25 s of stimulation when force is developed, the average rate of delta approximately P was -8.2 +/- 0.8 mmol/mol Ct . s-1, some four times greater than during the subsequent 35 s of force maintenance, when the rate was -2.0 +/- 0.6 mmol approximately P/mol Ct . s-1. The energy cost of force redevelopment (0 to 95% P0) after a quick release from the peak of a tetanus is very low compared with the initial force development. Therefore, the high rate of energy utilization during force development is not due only to internal work done against the series elasticity nor to any high rate of cross-bridge cycling inherently associated with force development. The high economy of force maintenance compared with other muscle types is undoubtedly due to a slower cross-bridge cycle time. The energy utilization during 45 s of relaxation was not statistically significant, and integral of Pdt/delta approximately P was higher during relaxation than during force maintenance in the stimulated muscle. PMID:6969290

  11. High CO2 absorption capacity by chemisorption at cations and anions in choline-based ionic liquids.

    PubMed

    Bhattacharyya, Shubhankar; Filippov, Andrei; Shah, Faiz Ullah

    2017-11-29

    The effect of CO 2 absorption on the aromaticity and hydrogen bonding in ionic liquids is investigated. Five different ionic liquids with choline based cations and aprotic N-heterocyclic anions were synthesized. Purity and structures of the synthesized ionic liquids were characterized by 1 H and 13 C NMR spectroscopy. CO 2 capture performance was studied at 20 °C and 40 °C under three different pressures (1, 3, 6 bar). The IL [N 1,1,6,2OH ][4-Triz] showed the highest CO 2 capture capacity (28.6 wt%, 1.57 mol of CO 2 per mol of the IL, 6.48 mol of CO 2 per kg of the ionic liquid) at 20 °C and 1 bar. The high CO 2 capture capacity of the [N 1,1,6,2OH ][4-Triz] IL is due to the formation of carbonic acid (-OCO 2 H) together with carbamate by participation of the -OH group of the [N 1,1,6,2OH ] + cation in the CO 2 capture process. The structure of the adduct formed by CO 2 reaction with the IL [N 1,1,6,2OH ][4-Triz] was probed by using IR, 13 C NMR and 1 H- 13 C HMBC NMR experiments utilizing 13 C labeled CO 2 gas. 1 H and 13 C PFG NMR studies were performed before and after CO 2 absorption to explore the effect of cation-anion structures on the microscopic ion dynamics in ILs. The ionic mobility was significantly increased after CO 2 reaction due to lowering of aromaticity in the case of ILs with aromatic N-heterocyclic anions.

  12. Effect of some operational parameters on the hydrogen generation efficiency of Ni-ZnO/PANI composite under visible-light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nsib, Mohamed Faouzi, E-mail: Mohamed.faouzi.ncib@gmail.com; National School of Engineers; Naffati, Naima

    2015-10-15

    Graphical abstract: UV–vis spectra of PANI, ZnO, Ni{sub 0.01}Zn{sub 0.99}O, Ni{sub 0.01}Zn{sub 0.99}O/PANI3 and Ni{sub 0.1}Zn{sub 0.9}O/PANI{sub 10} nanocomposites. - Highlights: • Ni{sub x}Zn{sub 1−x}O/PANI{sub y} photocatalysts are synthesized by the impregnation method. • Ni{sup 2+} amount control the morphology of ZnO and enhances its photoactivity. • Both Ni{sup 2+} and PANI extend the light absorption of ZnO toward the visible region. • Both Ni{sup 2+} and PANI enhance the electron–hole separation. - Abstract: Ni{sub x}Zn{sub 1−x}O/Polyaniline hybrid photocatalysts are synthesized and used for the experiments of hydrogen production from water-splitting under visible irradiation. XRD, UV–vis DRS and SEM aremore » used to characterize the prepared materials. It is shown that the Ni{sup 2+} amount doped into ZnO controls its morphology and enhances its photoactivity for H{sub 2} generation. Polyaniline (PANI) is shown to sensitize ZnO and to extend its light absorption toward the visible region. The hybrid photocatalyst with 10 mol% Ni{sup 2+} and 10 wt.% PANI shows the maximum photocatalytic H{sub 2} production for one hour of visible irradiation: ∼558 μmol while only ∼178 μmol in the presence of pure ZnO. Additives like sacrificial electron donors and carbonate salts are found to play a key role in the improvement of H{sub 2} evolution. Thus, the hydrogen photoproduction efficiency increases in the order: thiosulfate > sulfide > propanol and HCO{sub 3}{sup −} > CO{sub 3}{sup 2−}.« less

  13. Protein resistance efficacy of PEO-silane amphiphiles: Dependence on PEO-segment length and concentration

    PubMed Central

    Rufin, Marc A.; Barry, Mikayla E.; Adair, Paige A.; Hawkins, Melissa L.; Raymond, Jeffery E.; Grunlan, Melissa A.

    2016-01-01

    In contrast to modification with conventional PEO-silanes (i.e. no siloxane tether), silicones with dramatically enhanced protein resistance have been previously achieved via bulk-modification with poly (ethylene oxide) (PEO)-silane amphiphiles α-(EtO)3Si(CH2)2-oligodimethylsiloxane13-block-PEOn-OCH3 when n = 8 and 16 but not when n = 3. In this work, their efficacy was evaluated in terms of optimal PEO-segment length and minimum concentration required in silicone. For each PEO-silane amphiphile (n = 3, 8, and 16), five concentrations (5, 10, 25, 50, and 100 μmol per 1 g silicone) were evaluated. Efficacy was quantified in terms of the modified silicones’ abilities to undergo rapid, water-driven surface restructuring to form hydrophilic surfaces as well as resistance to fibrinogen adsorption. Only n = 8 and 16 were effective, with a lower minimum concentration in silicone required for n = 8 (10 μmol per 1 g silicone) versus n = 16 (25 μmol per 1 g silicone). Statement of Significance Silicone is commonly used for implantable medical devices, but its hydrophobic surface promotes protein adsorption which leads to thrombosis and infection. Typical methods to incorporate poly(ethylene oxide) (PEO) into silicones have not been effective due to the poor migration of PEO to the surface-biological interface. In this work, PEO-silane amphiphiles – comprised of a siloxane tether (m = 13) and variable PEO segment lengths (n = 3, 8, 16) – were blended into silicone to improve its protein resistance. The efficacy of the amphiphiles was determined to be dependent on PEO length. With the intermediate PEO length (n = 8), water-driven surface restructuring and resulting protein resistance was achieved with a concentration of only 1.7 wt%. PMID:27090588

  14. Polyacrylonitrile nanocomposite fibers from acrylonitrile-grafted carbon nanofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiremath, Nitilaksha; Evora, Maria Cecilia; Naskar, Amit K.

    For the first time, uniform distribution of surface functionalized carbon nanofibers (CNFs) has been achieved in low molecular weight (≈120,000 g/mol) textile grade-polyacrylonitrile (PAN)-based composite filaments. Furthermore, surface grafting of CNFs with acrylonitrile enhances the dispersion of nanofibers in PAN fiber matrix. XPS study reveals high atomic nitrogen content (7%) on the CNF surface due to the grafting reaction. The solution-spun filaments have been characterized for distribution of CNFs in the PAN matrix by electron microscopy. PAN composite filaments containing 3.2 wt.% CNF and processed at draw ratio of ≈6.3 exhibit enhanced tensile strength and modulus by more than threemore » folds compared to the control PAN filament. Because of chemically compatible surface modification of the nanofibers, better dispersion and improved mechanical properties were accomplished in the reinforced PAN fibers. This should then allow the production of CNF reinforced carbon fibers with improved tensile properties. An increase in CNF loading (6.4 wt.%), however, reduced performance due to inefficient alignment of CNF along the fiber axis. Nevertheless, hot stretching (at draw ratio ≈ 10) of the filaments enhanced tensile strength and elastic modulus of PAN composite filaments by 20–30% compared to the control hot stretched PAN filaments.« less

  15. Prediction of thermodynamically reversible hydrogen storage reactions utilizing Ca-M(M = Li, Na, K)-B-H systems: a first-principles study.

    PubMed

    Guo, Yajuan; Ren, Ying; Wu, Haishun; Jia, Jianfeng

    2013-12-01

    Calcium borohydride is a potential candidate for onboard hydrogen storage because it has a high gravimetric capacity (11.5 wt.%) and a high volumetric hydrogen content (∼130 kg m(-3)). Unfortunately, calcium borohydride suffers from the drawback of having very strongly bound hydrogen. In this study, Ca(BH₄)₂ was predicted to form a destabilized system when it was mixed with LiBH₄, NaBH₄, or KBH₄. The release of hydrogen from Ca(BH₄)₂ was predicted to proceed via two competing reaction pathways (leading to CaB₆ and CaH₂ or CaB₁₂H₁₂ and CaH₂) that were found to have almost equal free energies. Using a set of recently developed theoretical methods derived from first principles, we predicted five new hydrogen storage reactions that are among the most attractive of those presently known. These combine high gravimetric densities (>6.0 wt.% H₂) with have low enthalpies [approximately 35 kJ/(mol(-1) H₂)] and are thermodynamically reversible at low pressure within the target window for onboard storage that is actively being considered for hydrogen storage applications. Thus, the first-principles theoretical design of new materials for energy storage in future research appears to be possible.

  16. Polyacrylonitrile nanocomposite fibers from acrylonitrile-grafted carbon nanofibers

    DOE PAGES

    Hiremath, Nitilaksha; Evora, Maria Cecilia; Naskar, Amit K.; ...

    2017-07-31

    For the first time, uniform distribution of surface functionalized carbon nanofibers (CNFs) has been achieved in low molecular weight (≈120,000 g/mol) textile grade-polyacrylonitrile (PAN)-based composite filaments. Furthermore, surface grafting of CNFs with acrylonitrile enhances the dispersion of nanofibers in PAN fiber matrix. XPS study reveals high atomic nitrogen content (7%) on the CNF surface due to the grafting reaction. The solution-spun filaments have been characterized for distribution of CNFs in the PAN matrix by electron microscopy. PAN composite filaments containing 3.2 wt.% CNF and processed at draw ratio of ≈6.3 exhibit enhanced tensile strength and modulus by more than threemore » folds compared to the control PAN filament. Because of chemically compatible surface modification of the nanofibers, better dispersion and improved mechanical properties were accomplished in the reinforced PAN fibers. This should then allow the production of CNF reinforced carbon fibers with improved tensile properties. An increase in CNF loading (6.4 wt.%), however, reduced performance due to inefficient alignment of CNF along the fiber axis. Nevertheless, hot stretching (at draw ratio ≈ 10) of the filaments enhanced tensile strength and elastic modulus of PAN composite filaments by 20–30% compared to the control hot stretched PAN filaments.« less

  17. Water transport and clustering behavior in homopolymer and graft copolymer polylactide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, An; Koo, Donghun; Theryo, Grayce

    2015-02-19

    Polylactide is a bio-based and biodegradable polymer well-known for its renewable origins. Water sorption and clustering behavior in both a homopolymer polylactide and a graft copolymer of polylactide was studied using the quartz crystal microbalance/heat conduction calorimetry (QCM/HCC) technique. The graft copolymer, poly(1,5-cyclooctadiene-co-5-norbornene-2-methanol-graft-D,L-lactide), contained polylactide chains (95 wt.%) grafted onto a hydrophobic rubbery backbone (5 wt.%). Clustering is an important phenomenon in the study of water transport properties in polymers since the presence of water clusters can affect the water diffusivity. The HCC method using the thermal power signals and Van't Hoff's law were both employed to estimate the watermore » sorption enthalpy. Sorption enthalpy of water in both polymers was determined to be approximately -40 kJ/mol for all water activity levels. Zimm-Lundberg analysis showed that water clusters start to form at a water activity of 0.4. The engaged species induced clustering (ENSIC) model was used to curve fit sorption isotherms and showed that the affinity among water molecules is higher than that between water molecules and polymer chains. All the methods used indicate that clustering of water molecules exists in both polymers.« less

  18. Synthesis of Polyvinylpyrrolidone (PVP)-Green Tea Extract Composite Nanostructures using Electrohydrodynamic Spraying Technique

    NASA Astrophysics Data System (ADS)

    Kamaruddin; Edikresnha, D.; Sriyanti, I.; Munir, M. M.; Khairurrijal

    2017-05-01

    Green Tea Extract (GTE) as an active substance has successfully loaded to PVP nanostructures using electrohydrodynamic spraying technique. The precursor solution was the mixture of ethanolic polyvinylpyrrolidone (PVP) with a molecular weight of 1,300 kg/mol and ethanolic GTE solutions at a weight concentration of 4 wt.% and 2 wt.%, respectively, and it was estimated that the entanglement number was 2. The electrospraying was conducted at the voltage of 15 kV, the flow rate of 10 µL/min., and the distance between the collector and the tip of the nozzle of 10 cm. The SEM images showed that the PVP/GTE nanostructures had a combination of agglomerated beads (less spherical particles) and nanofibers. This occurred because if the PVP concentration is low, the PVP/GTE composite has weak core structures that cause the shell to be easily agglomerated each other. The intermolecular interaction between PVP and GTE in the PVP/GTE nanostructures occurred as confirmed by the peak at 3396 cm-1, which is the carboxyl group, proving that the PVP/GTE nanostructures contained water, alcohols, and phenols. The peak at 1040 cm-1, which is the stretching of C-O group in amino acid, gave another proof to the intermolecular interaction.

  19. DuraLith geopolymer waste form for Hanford secondary waste: correlating setting behavior to hydration heat evolution.

    PubMed

    Xu, Hui; Gong, Weiliang; Syltebo, Larry; Lutze, Werner; Pegg, Ian L

    2014-08-15

    The binary furnace slag-metakaolin DuraLith geopolymer waste form, which has been considered as one of the candidate waste forms for immobilization of certain Hanford secondary wastes (HSW) from the vitrification of nuclear wastes at the Hanford Site, Washington, was extended to a ternary fly ash-furnace slag-metakaolin system to improve workability, reduce hydration heat, and evaluate high HSW waste loading. A concentrated HSW simulant, consisting of more than 20 chemicals with a sodium concentration of 5 mol/L, was employed to prepare the alkaline activating solution. Fly ash was incorporated at up to 60 wt% into the binder materials, whereas metakaolin was kept constant at 26 wt%. The fresh waste form pastes were subjected to isothermal calorimetry and setting time measurement, and the cured samples were further characterized by compressive strength and TCLP leach tests. This study has firstly established quantitative linear relationships between both initial and final setting times and hydration heat, which were never discovered in scientific literature for any cementitious waste form or geopolymeric material. The successful establishment of the correlations between setting times and hydration heat may make it possible to efficiently design and optimize cementitious waste forms and industrial wastes based geopolymers using limited testing results. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Novel utilization of waste marine sponge (Demospongiae) as a catalyst in ultrasound-assisted transesterification of waste cooking oil.

    PubMed

    Hindryawati, Noor; Maniam, Gaanty Pragas

    2015-01-01

    This study demonstrates the potential of Na-silica waste sponge as a source of low cost catalyst in the transesterification of waste cooking oil aided by ultrasound. In this work an environmentally friendly and efficient transesterification process using Na-loaded SiO2 from waste sponge skeletons as a solid catalyst is presented. The results showed that the methyl esters content of 98.4±0.4wt.% was obtainable in less than an hour (h) of reaction time at 55°C. Optimization of reaction parameters revealed that MeOH:oil, 9:1; catalyst, 3wt.% and reaction duration of 30min as optimum reaction conditions. The catalyst is able to tolerant free fatty acid and moisture content up to 6% and 8%, respectively. In addition, the catalyst can be reused for seven cycles while maintaining the methyl esters content at 86.3%. Ultrasound undoubtedly assisted in achieving this remarkable result in less than 1h reaction time. For the kinetics study at 50-60°C, a pseudo first order model was proposed, and the activation energy of the reaction is determined as 33.45kJ/mol using Arrhenius equation. Copyright © 2014 Elsevier B.V. All rights reserved.

Top