Sample records for molding sensitivity analysis

  1. Sensitization to Alternaria and Cladosporium in patients with respiratory allergy and outdoor counts of mold spores in Ankara atmosphere, Turkey.

    PubMed

    Bavbek, Sevim; Erkekol, Ferda Oner; Ceter, Talip; Mungan, Dilşad; Ozer, Faruk; Pinar, Münevver; Misirligil, Zeynep

    2006-08-01

    Sensitization to Alternaria and Cladosporium has been reported to be 3% to 30% in European countries. However, in Turkey, there is limited data about the prevalence of sensitization to these molds and the intensity of the two mold spores in Ankara atmosphere. This study was designed to evaluate the sensitization to Alternaria and Cladosporium in patients with respiratory allergy in Ankara and also the concentration of the two molds in Ankara atmosphere. Allergic rhinitis and asthma patients living in Ankara were included in the study. Demographic and diagnostic data of the patients were recorded. A skin prick test with extracts supplied by three different laboratories was used to evaluate the sensitization to Alternaria and Cladosporium. Mold spores were measured using a Burkard 7-day recording volumetric spore trap in Ankara atmosphere during a year. Overall sensitization to the two molds was found to be 14.8%, and isolated Alternaria or Cladosporiumsensitization was 3%. Considering the positive reaction to at least one of the three suppliers, the sensitization rate was 11.9% and 8.1% for Alternaria and Cladosporium, respectively. Cochran's Q homogenization test demonstrated that the positive and negative reaction were not homogeneous among three laboratories. The total number of mold spores in Ankara atmosphere was 429,264 spores/m3 of which 75.5% and 6% were constituted by Cladosporium and Alternaria, respectively. The prevalence of Cladosporium and Alternaria sensitization in respiratory allergy patients is quite similar to European countries; however, our data indicate that commercial mold extracts should be standardized to establish the real sensitization rates. Additionally, considering the great numbers of these mold spores in Ankara atmosphere, long-term follow-up studies are needed to evaluate the relationship between the mold load and sensitization patterns.

  2. Mold and Health

    EPA Pesticide Factsheets

    Molds have the potential to cause health problems. Molds produce allergens (substances that can cause allergic reactions) and irritants. Inhaling or touching mold or mold spores may cause allergic reactions in sensitive individuals.

  3. Pressure redistribution by molded inserts in diabetic footwear: a pilot study.

    PubMed

    Lord, M; Hosein, R

    1994-08-01

    A small-scale trial is described to demonstrate and evaluate the redistribution of plantar pressure resulting from the use of custom-molded inserts in the orthopedic shoes of diabetic patients at risk of plantar ulceration. A pressure-measuring insole based on force-sensitive resistor technology enabled the load distribution to be compared using molded inserts and flat inserts fitted into the same shoes. An analysis of the 12 peaks of pressure that could be identified under a discrete metatarsal head of six subjects in the trial showed that the pressure was significantly reduced with the use of molded inserts (flat inserts: 305 +/- 79 kPa; molded inserts: 216 +/- 70 kPa; n = 6 p < 0.005). Technical limitations of the equipment and the difficult choice of match of flat insert to molded for comparison suggest that further studies are required for a definitive result.

  4. The association of residential mold exposure and adenotonsillar hypertrophy in children living in damp environments.

    PubMed

    Atan Sahin, Ozlem; Kececioglu, Nuray; Serdar, Muhittin; Ozpinar, Aysel

    2016-09-01

    There are many consequences of mold exposure related to respiratory system health of children This retrospective cohort study aims to find the association between adenoid hypertrophy and mold exposure in children living in damp environments. Children with history of recurrent respiratory tract infections were enrolled in the study between June 2012 and June 2013 and were followed up for adenoid hypertrophy from June 2013 to June 2016. One hundred and forty two children were residents of moldy houses and 242 were living in normal houses. Skin prick test results for 60 common allergens, vitamin D levels, IgE levels, age, presence of comorbidities such as urticaria, atopic dermatitis, allergic conjunctivitis, allergic rhinitis, asthma, frequency of upper respiratory tract infections and lower respiratory tract infections, were evaluated in both groups. A total of 384 children (mean age ± standard deviation = 53.37 ± 36 months; 198 males and 186 females) were included. The children were classified into 2 groups (1)Children living normal houses (n = 242) (2); Children living in damp houses (n = 142) according to mold exposure. Children with adenoid hypertrophy (p < 0,001) and higher IgE levels (p < 0,001) were more common in mold exposed group. Lower respiratory tract infections were more common in children with mold exposure (p < 0,05). Bivariate correlation analysis showed no significant association between IgE levels and adenoid hypertrophy. Multiple linear regression analysis was performed to evaluate IgE levels, vitamin D levels, and presence of adenoid as independent variables; age as dependent variable among two groups and was found statistically significant (p < 0,001). Dermatophagoid sensitive group living in damp houses had a significant increase in adenoid hypertrophy (p = 0,01). Housedustmite sensitive children with recurrent lower respiratory tract infection and upper respiratory tract infection were mainly residents of damp houses (p < 0,001). Allergic comorbidities were significantly more in damp environment group (p < 0,001), but there was no significant increase in any of the subgroups. Children with mold exposure had significantly increased adenoid hypertrophy regardless of their atopic nature, however, they may have become more sensitized due to other environmental triggers and genetic factors. In damp environments, sensitization to dermatophagoids, was significantly increased in children with adenoid hypertrophy. During the period of infancy, when children were mostly vitamin D supplemented, they were not sensitized and had normal adenoids. As children with recurrent respiratory tract infections grow, they tend to have lower vitamin D levels, become more atopic and tend to have adenoid hypertrophy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Increased Sensitization to Mold Allergens Measured by Intradermal Skin Testing following Hurricanes

    PubMed Central

    Hurst, David

    2017-01-01

    Objective. To report on changes in sensitivity to mold allergens determined by changes in intradermal skin testing reactivity, after exposure to two severe hurricanes. Methods. A random, retrospective allergy charts review divided into 2 groups of 100 patients each: Group A, patients tested between 2003 and 2010 prior to hurricanes, and Group B, patients tested in 2014 and 2015 following hurricanes. Reactivity to eighteen molds was determined by intradermal skin testing. Test results, age, and respiratory symptoms were recorded. Chi-square test determined reactivity/sensitivity differences between groups. Results. Posthurricane patients had 34.6 times more positive results (p < 0.0001) at weaker dilutions, all tested molds were found to be more reactive, and 95% had at least one positive test versus only 62% before the hurricanes (p < 0.0001); average mold reactivity was 55% versus 16% while 17% of patients reacted to the entire panel versus none before the hurricanes (p < 0.0001). The posthurricane population was younger (p < 0.001) and included more patients with asthma or lower respiratory symptoms (p < 0.05). Conclusion. Reactivity and sensitization to mold allergens increased compared to patients before the hurricanes. This supports climatologists' hypothesis that environmental changes resulting from hurricanes can be a health risk as reflected in increased allergic sensitivities and symptoms and has significant implications for physicians treating patients from affected areas. PMID:28491100

  6. Increased Sensitization to Mold Allergens Measured by Intradermal Skin Testing following Hurricanes.

    PubMed

    Saporta, Diego; Hurst, David

    2017-01-01

    Objective . To report on changes in sensitivity to mold allergens determined by changes in intradermal skin testing reactivity, after exposure to two severe hurricanes. Methods . A random, retrospective allergy charts review divided into 2 groups of 100 patients each: Group A, patients tested between 2003 and 2010 prior to hurricanes, and Group B, patients tested in 2014 and 2015 following hurricanes. Reactivity to eighteen molds was determined by intradermal skin testing. Test results, age, and respiratory symptoms were recorded. Chi-square test determined reactivity/sensitivity differences between groups. Results . Posthurricane patients had 34.6 times more positive results ( p < 0.0001) at weaker dilutions, all tested molds were found to be more reactive, and 95% had at least one positive test versus only 62% before the hurricanes ( p < 0.0001); average mold reactivity was 55% versus 16% while 17% of patients reacted to the entire panel versus none before the hurricanes ( p < 0.0001). The posthurricane population was younger ( p < 0.001) and included more patients with asthma or lower respiratory symptoms ( p < 0.05). Conclusion . Reactivity and sensitization to mold allergens increased compared to patients before the hurricanes. This supports climatologists' hypothesis that environmental changes resulting from hurricanes can be a health risk as reflected in increased allergic sensitivities and symptoms and has significant implications for physicians treating patients from affected areas.

  7. Diagnosis of mold allergy by RAST and skin prick testing.

    PubMed

    Nordvall, S L; Agrell, B; Malling, H J; Dreborg, S

    1990-11-01

    Sera from 33 patients with mold allergy proven by bronchial provocation were analyzed for specific IgE against six mold species comparing an improved Phadebas RAST with four other techniques. The new method was more sensitive and gave significantly higher IgE antibody concentrations for all tested molds except Cladosporium herbarum.

  8. Traditional Mold Analysis Compared to a DNA-based Method of Mold Analysis with Applications in Asthmatics' Homes

    EPA Science Inventory

    Traditional environmental mold analysis is based-on microscopic observations and counting of mold structures collected from the air on a sticky surface or culturing of molds on growth media for identification and quantification. A DNA-based method of mold analysis called mol...

  9. Deflectometric analysis of high volume injection molds for production of occupational eye wear.

    PubMed

    Speck, Alexis; Zelzer, Benedikt; Speich, Marco; Börret, Rainer; Langenbucher, Achim; Eppig, Timo

    2013-12-01

    Most of the protective eye wear devices currently on the market are manufactured on simple polycarbonate shields, produced by injection molding techniques. Despite high importance of optical quality, injection molds are rarely inspected for surface quality before or during the manufacturing process. Quality degradation is mainly monitored by optical testing of the molded parts. The purpose of this work was to validate a non-contact deflectometric measurement technique for surface and shape analysis of injection molds to facilitate deterministic surface quality control and to monitor minor conformity of the injection mold with the design data. The system is based on phase-measuring deflectometry with a operating measurement field of 80×80 mm(2) (±18° slope), a lateral resolution of 60μm and a local sensitivity of some nanometers. The calibration was tested with a calibration normal and a reference sphere. The results were crosschecked against a measurement of the same object with a tactile coordinate measuring machine. Eight injection molds for production of safety goggles with radii of +58mm (convex) and -60mm (concave) were measured in this study. The molds were separated into two groups (cavity 1 and 2 of the tool with different polishing techniques) and measured to test whether the measurement tool could extract differences. The analysis was performed on difference height between the measured surface and the spherical model. The device could derive the surface change due to polishing and discriminate between both polishing techniques, on the basis of the measured data. The concave nozzle sides of the first group (cavity 1) showed good shape conformity. In comparison, the nozzle sides of the second group (cavity 2) showed local deviations from design data up to 14.4μm. Local form variations of about 5μm occurred in the field of view. All convex ejector sides of both groups (cavity 1 and 2) showed rotational symmetric errors and the molds were measured in general flatter than design data. We applied a deflectometric system for measuring and evaluating specular reflective injection molding tools to optimize the production process of occupational eye wear. The surface quality could be inline monitored in the production processes for actual spectacle models. Copyright © 2013. Published by Elsevier GmbH.

  10. Epidemiology of invasive respiratory disease caused by emerging non-Aspergillus molds in lung transplant recipients.

    PubMed

    Peghin, M; Monforte, V; Martin-Gomez, M T; Ruiz-Camps, I; Berastegui, C; Saez, B; Riera, J; Solé, J; Gavaldá, J; Roman, A

    2016-02-01

    Our aim was to assess the impact of positive cultures for non-Aspergillus molds on the risk of progression to invasive fungal infection (IFI), and the effect of prophylactic nebulized liposomal amphotericin B (n-LAB) on these pathogens. This was an observational study (2003-2013) including lung transplant recipients (LTR) receiving lifetime n-LAB prophylaxis, in whom non-Aspergillus molds were isolated on respiratory culture before and after transplantation (minimum 1-year follow-up). We studied 412 patients, with a mean postoperative follow-up of 2.56 years (interquartile range 1.01-4.65). Pre- and post-transplantation respiratory samples were frequently positive for non-Aspergillus molds (11.9% and 16.9% of LTR respectively). Post transplantation, 10 (2.42%) patients developed non-Aspergillus mold infection (4 Scedosporium species, 4 Purpureocillium species, 1 Penicillium species, and 1 Scopulariopsis species); 5 (1.21%) had IFI, with 60% IFI-related mortality. Non-Aspergillus molds with intrinsic amphotericin B (AB) resistance were more commonly isolated in bronchoscopy samples than AB-variably sensitive or AB-sensitive molds (54.5% vs. 25%, P = 0.04) and were associated with a higher risk of infection (56.3% vs. 1.3%%, P < 0.01). In LTR undergoing n-LAB prophylaxis, pre- and post-transplantation isolation of non-Aspergillus molds is frequent, but IFI incidence (1.21%) is low. Purpureocillium is an emerging mold. AB-resistant non-Aspergillus species were found more often in bronchoscopy samples and were associated with a higher risk of infection. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system

    NASA Astrophysics Data System (ADS)

    Kuhn, Sascha; Burr, August; Kübler, Michael; Deckert, Matthias; Bleesen, Christoph

    2011-02-01

    In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.

  12. Creating mold-free buildings: a key to avoiding health effects of indoor molds.

    PubMed

    Small, Bruce M

    2003-08-01

    In view of the high costs of building diagnostics and repair subsequent to water damage--as well as the large medical diagnostic and healthcare costs associated with mold growth in buildings--commitment to a philosophy of proactive preventive maintenance for home, apartment, school, and commercial buildings could result in considerable cost savings and avoidance of major health problems among building occupants. The author identifies common causes of mold growth in buildings and summarizes key building design and construction principles essential for preventing mold contamination indoors. Physicians and healthcare workers must be made aware of conditions within buildings that can give rise to mold growth, and of resulting health problems. Timely advice provided to patients already sensitized by exposure to molds could save these individuals, and their families, from further exposures as a result of inadequate building maintenance or an inappropriate choice of replacement housing.

  13. Saliva secretory IgA antibodies against molds and mycotoxins in patients exposed to toxigenic fungi.

    PubMed

    Vojdani, Aristo; Kashanian, Albert; Vojdani, Elroy; Campbell, Andrew W

    2003-11-01

    Upper respiratory exposure to different environmental antigens results first in the activation of mucosal immunity and production of IgA antibodies in different secretions including saliva. Despite this there is no study, which addresses secretory antibodies against molds and mycotoxins. The purpose of this study was to evaluate mold-specific salivary IgA in individuals exposed to molds and mycotoxins in a water-damaged building environment. Saliva IgA antibody levels against seven different molds and two mycotoxins were studied in 40 patients exposed to molds and in 40 control subjects. Mold-exposed patients showed significantly higher levels of salivary IgA antibodies against one or more mold species. A majority of patients with high IgA antibodies against molds exhibited elevation in salivary IgA against mycotoxins, as well. These IgA antibodies against molds and mycotoxins are specific, since using molds and mycotoxins in immune absorption could reduce antibody levels, significantly. Detection of high counts of molds in water-damaged buildings, strongly suggests the existence of a reservoir of mold spores in the environment. This viable microbial activity with specific mold and mycotoxin IgA in saliva may assist in the diagnosis of mold exposure. Whether mold and mycotoxin specific IgA antibodies detected in saliva are indicative of the role of IgA antibodies in the late phase of type-1 hypersensitivity reaction or in type-2 and type-3 delayed sensitivities is a matter that warrants further investigation.

  14. High-performance genetic analysis on microfabricated capillary array electrophoresis plastic chips fabricated by injection molding.

    PubMed

    Dang, Fuquan; Tabata, Osamu; Kurokawa, Masaya; Ewis, Ashraf A; Zhang, Lihua; Yamaoka, Yoshihisa; Shinohara, Shouji; Shinohara, Yasuo; Ishikawa, Mitsuru; Baba, Yoshinobu

    2005-04-01

    We have developed a novel technique for mass production of microfabricated capillary array electrophoresis (mu-CAE) plastic chips for high-speed, high-throughput genetic analysis. The mu-CAE chips, containing 10 individual separation channels of 50-microm width, 50-microm depth, and a 100-microm lane-to-lane spacing at the detection region and a sacrificial channel network, were fabricated on a poly(methyl methacrylate) substrate by injection molding and then bonded manually using a pressure-sensitive sealing tape within several seconds at room temperature. The conditions for injection molding and bonding were carefully characterized to yield mu-CAE chips with well-defined channel and injection structures. A CCD camera equipped with an image intensifier was used to monitor simultaneously the separation in a 10-channel array with laser-induced fluorescence detection. High-performance electrophoretic separations of phiX174 HaeIII DNA restriction fragments and PCR products related to the human beta-globin gene and SP-B gene (the surfactant protein B) have been demonstrated on mu-CAE plastic chips using a methylcellulose sieving matrix in individual channels. The current work demonstrated greatly simplified the fabrication process as well as a detection scheme for mu-CAE chips and will bring the low-cost mass production and application of mu-CAE plastic chips for genetic analysis.

  15. Differentiation of four Aspergillus species and one Zygosaccharomyces with two electronic tongues based on different measurement techniques.

    PubMed

    Söderström, C; Rudnitskaya, A; Legin, A; Krantz-Rülcker, C

    2005-09-29

    Two electronic tongues based on different measurement techniques were applied to the discrimination of four molds and one yeast. Chosen microorganisms were different species of Aspergillus and yeast specie Zygosaccharomyces bailii, which are known as food contaminants. The electronic tongue developed in Linköping University was based on voltammetry. Four working electrodes made of noble metals were used in a standard three-electrode configuration in this case. The St. Petersburg electronic tongue consisted of 27 potentiometric chemical sensors with enhanced cross-sensitivity. Sensors with chalcogenide glass and plasticized PVC membranes were used. Two sets of samples were measured using both electronic tongues. Firstly, broths were measured in which either one of the molds or the yeast grew until late logarithmic phase or border of the stationary phase. Broths inoculated by either one of molds or the yeast was measured at five different times during microorganism growth. Data were evaluated using principal component analysis (PCA), partial least square regression (PLS) and linear discriminant analysis (LDA). It was found that both measurement techniques could differentiate between fungi species. Merged data from both electronic tongues improved differentiation of the samples in selected cases.

  16. High environmental relative moldiness index during infancy as a predictor of asthma at 7 years of age.

    PubMed

    Reponen, Tiina; Vesper, Stephen; Levin, Linda; Johansson, Elisabet; Ryan, Patrick; Burkle, Jeffery; Grinshpun, Sergey A; Zheng, Shu; Bernstein, David I; Lockey, James; Villareal, Manuel; Khurana Hershey, Gurjit K; LeMasters, Grace

    2011-08-01

    Mold exposures may contribute to the development of asthma, but previous studies have lacked a standardized approach to quantifying exposures. To determine whether mold exposures at the ages of 1 and/or 7 years were associated with asthma at the age of 7 years. This study followed up a high-risk birth cohort from infancy to 7 years of age. Mold was assessed by a DNA-based analysis for the 36 molds that make up the Environmental Relative Moldiness Index (ERMI) at the ages of 1 and 7 years. At the age of 7 years, children were evaluated for allergic sensitization and asthma based on symptom history, spirometry, exhaled nitric oxide, and airway reversibility. A questionnaire was administered to the parent regarding the child's asthma symptoms and other potential cofactors. At the age of 7 years, 31 of 176 children (18%) were found to be asthmatic. Children living in a high ERMI value (≥5.2) home at 1 year of age had more than twice the risk of developing asthma than those in low ERMI value homes (<5.2) (adjusted odds ratio [aOR], 2.6; 95% confidence interval [CI], 1.10-6.26). Of the other covariates, only parental asthma (aOR, 4.0; 95% CI, 1.69-9.62) and allergic sensitization to house dust mite (aOR, 4.1; 95% CI, 1.55-11.07) were risk factors for asthma development. In contrast, air-conditioning at home reduced the risk of asthma development (aOR, 0.3; 95% CI, 0.14-0.83). A high ERMI value at 7 years of age was not associated with asthma at 7 years of age. Early exposure to molds as measured by ERMI at 1 year of age, but not 7 years of age, significantly increased the risk for asthma at 7 years of age. Copyright © 2011 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Final Shape of Precision Molded Optics: Part 2 - Validation and Sensitivity to Material Properties and Process Parameters

    DTIC Science & Technology

    2012-06-27

    of the critical contributors to deviation include structural relaxation of the glass, thermal expansion of the molds, TRS and viscoelastic behavior...the critical contributors to deviation include structural relaxation of the glass, thermal expansion of the molds, TRS and viscoelastic behavior of the...data. In that article glass was modeled as purely viscous and thermal expansion was accounted for with a constant coefficient of thermal expansion (CTE

  18. Association between sensitization to Aureobasidium pullulans (Pullularia sp) and severity of asthma.

    PubMed

    Niedoszytko, Marek; Chełmińska, Marta; Jassem, Ewa; Czestochowska, Eugenia

    2007-02-01

    Recent data indicate that fungi may contribute to increased severity of asthma. To determine the prevalence of allergy to 15 mold allergens among patients hospitalized because of exacerbation of asthma and to evaluate the relationship between the severity of the disease and allergy to particular molds. Skin prick tests with standard aeroallergens of airborne allergens, including grass, tree, Dermatophagoides pteronyssinus, Dermatophagoides farinae, feather, and cat and dog fur, and a panel of mold allergens, including Alternaria, Cladosporium, Aspergillus, Penicillium, Trichothecium, Chaetomium globosum, Epicoccum, Epidermophyton, Helminthosporium, Aureobasidium pullulans, Rhizopus nigricans, Fusarium, Mucor, Merulius lacrymans, and yeast mix, were performed in 105 asthmatic patients and 30 controls. Positive skin prick test results were found in 98% of asthmatic patients and 66% of controls. Sensitivity to A pullulans was significantly associated with more severe asthma (odds ratio, 1.4; 95% confidence interval, 1.09-1.75; P = .006). Sensitization to Helminthosporium was associated with an increased number of asthma exacerbations that required hospitalization (17% vs 38%; chi2 test P = .03). Sensitization to A pullulans is a risk factor for severe asthma. Sensitization to Helminthosporium may be related to asthma exacerbation that requires hospitalization.

  19. MOLD-SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS

    EPA Science Inventory

    Molds can cause health problems like infections and allergies, destroy crops, and contaminate our food or pharmaceuticals. We can't avoid molds. Molds are essential players in the biological processes on earth, but we can now identify and quantify the molds that will be most pr...

  20. Occurrence of fludioxonil resistance in penicillium digitatum from citrus in California

    USDA-ARS?s Scientific Manuscript database

    Penicillium digitatum is the causal agent of green mold, the most important postharvest disease of citrus (Citrus spp.). Fludioxonil is marketed as either a solo product or in combination with azoxystrobin for control of green mold and other postharvest diseases. Baseline sensitivity to fludioxonil ...

  1. Simultaneous Detection of Displacement, Rotation Angle, and Contact Pressure Using Sandpaper Molded Elastomer Based Triple Electrode Sensor

    PubMed Central

    Sul, Onejae; Lee, Seung-Beck

    2017-01-01

    In this article, we report on a flexible sensor based on a sandpaper molded elastomer that simultaneously detects planar displacement, rotation angle, and vertical contact pressure. When displacement, rotation, and contact pressure are applied, the contact area between the translating top elastomer electrode and the stationary three bottom electrodes change characteristically depending on the movement, making it possible to distinguish between them. The sandpaper molded undulating surface of the elastomer reduces friction at the contact allowing the sensor not to affect the movement during measurement. The sensor showed a 0.25 mm−1 displacement sensitivity with a ±33 μm accuracy, a 0.027 degree−1 of rotation sensitivity with ~0.95 degree accuracy, and a 4.96 kP−1 of pressure sensitivity. For possible application to joint movement detection, we demonstrated that our sensor effectively detected the up-and-down motion of a human forefinger and the bending and straightening motion of a human arm. PMID:28878166

  2. Simultaneous Detection of Displacement, Rotation Angle, and Contact Pressure Using Sandpaper Molded Elastomer Based Triple Electrode Sensor.

    PubMed

    Choi, Eunsuk; Sul, Onejae; Lee, Seung-Beck

    2017-09-06

    In this article, we report on a flexible sensor based on a sandpaper molded elastomer that simultaneously detects planar displacement, rotation angle, and vertical contact pressure. When displacement, rotation, and contact pressure are applied, the contact area between the translating top elastomer electrode and the stationary three bottom electrodes change characteristically depending on the movement, making it possible to distinguish between them. The sandpaper molded undulating surface of the elastomer reduces friction at the contact allowing the sensor not to affect the movement during measurement. The sensor showed a 0.25 mm −1 displacement sensitivity with a ±33 μm accuracy, a 0.027 degree −1 of rotation sensitivity with ~0.95 degree accuracy, and a 4.96 kP −1 of pressure sensitivity. For possible application to joint movement detection, we demonstrated that our sensor effectively detected the up-and-down motion of a human forefinger and the bending and straightening motion of a human arm.

  3. Modeling and flow analysis of pure nylon polymer for injection molding process

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  4. Valuing the Economic Costs of Allergic Rhinitis, Acute Bronchitis, and Asthma from Exposure to Indoor Dampness and Mold in the US

    PubMed Central

    2016-01-01

    Two foundational methods for estimating the total economic burden of disease are cost of illness (COI) and willingness to pay (WTP). WTP measures the full cost to society, but WTP estimates are difficult to compute and rarely available. COI methods are more often used but less likely to reflect full costs. This paper attempts to estimate the full economic cost (2014$) of illnesses resulting from exposure to dampness and mold using COI methods and WTP where the data is available. A limited sensitivity analysis of alternative methods and assumptions demonstrates a wide potential range of estimates. In the final estimates, the total annual cost to society attributable to dampness and mold is estimated to be $3.7 (2.3–4.7) billion for allergic rhinitis, $1.9 (1.1–2.3) billion for acute bronchitis, $15.1 (9.4–20.6) billion for asthma morbidity, and $1.7 (0.4–4.5) billion for asthma mortality. The corresponding costs from all causes, not limited to dampness and mold, using the same approach would be $24.8 billion for allergic rhinitis, $13.5 billion for acute bronchitis, $94.5 billion for asthma morbidity, and $10.8 billion for asthma mortality. PMID:27313630

  5. An Impedance-Based Mold Sensor with on-Chip Optical Reference

    PubMed Central

    Papireddy Vinayaka, Poornachandra; van den Driesche, Sander; Blank, Roland; Tahir, Muhammad Waseem; Frodl, Mathias; Lang, Walter; Vellekoop, Michael J.

    2016-01-01

    A new miniaturized sensor system with an internal optical reference for the detection of mold growth is presented. The sensor chip comprises a reaction chamber provided with a culture medium that promotes the growth of mold species from mold spores. The mold detection is performed by measuring impedance changes with integrated electrodes fabricated inside the reaction chamber. The impedance change in the culture medium is caused by shifts in the pH (i.e., from 5.5 to 8) as the mold grows. In order to determine the absolute pH value without the need for calibration, a methyl red indicator dye has been added to the culture medium. It changes the color of the medium as the pH passes specific values. This colorimetric principle now acts as a reference measurement. It also allows the sensitivity of the impedance sensor to be established in terms of impedance change per pH unit. Major mold species that are involved in the contamination of food, paper and indoor environments, like Fusarium oxysporum, Fusarium incarnatum, Eurotium amstelodami, Aspergillus penicillioides and Aspergillus restrictus, have been successfully analyzed on-chip. PMID:27690039

  6. Fungicide resistance profiling in Botrytis cinerea populations from blueberries in California and Washington and their impact on control of gray mold

    USDA-ARS?s Scientific Manuscript database

    Gray mold caused by Botrytis cinerea is a major postharvest disease of blueberries grown in the Central Valley of California (CA) and western Washington State (WA). Sensitivities to boscalid, cyprodinil, fenhexamid, fludioxonil, and pyraclostrobin, representing five different fungicide classes, were...

  7. Viscoelastic properties of chalcogenide glasses and the simulation of their molding processes

    NASA Astrophysics Data System (ADS)

    Liu, Weiguo; Shen, Ping; Jin, Na

    In order to simulate the precision molding process, the viscoelastic properties of chalcogenide glasses under high temperatures were investigated. Thermomechanical analysis were performed to measure and analysis the thermomechanical properties of chalcogenide glasses. The creep responses of the glasses at different temperatures were obtained. Finite element analysis was applied for the simulation of the molding processes. The simulation results were in consistence with previously reported experiment results. Stress concentration and evolution during the molding processes was also described with the simulation results.

  8. Medical diagnostics for indoor mold exposure.

    PubMed

    Hurraß, Julia; Heinzow, Birger; Aurbach, Ute; Bergmann, Karl-Christian; Bufe, Albrecht; Buzina, Walter; Cornely, Oliver A; Engelhart, Steffen; Fischer, Guido; Gabrio, Thomas; Heinz, Werner; Herr, Caroline E W; Kleine-Tebbe, Jörg; Klimek, Ludger; Köberle, Martin; Lichtnecker, Herbert; Lob-Corzilius, Thomas; Merget, Rolf; Mülleneisen, Norbert; Nowak, Dennis; Rabe, Uta; Raulf, Monika; Seidl, Hans Peter; Steiß, Jens-Oliver; Szewszyk, Regine; Thomas, Peter; Valtanen, Kerttu; Wiesmüller, Gerhard A

    2017-04-01

    In April 2016, the German Society of Hygiene, Environmental Medicine and Preventative Medicine (Gesellschaft für Hygiene, Umweltmedizin und Präventivmedizin (GHUP)) together with other scientific medical societies, German and Austrian medical societies, physician unions and experts has provided an AWMF (Association of the Scientific Medical Societies) guideline 'Medical diagnostics for indoor mold exposure'. This guideline shall help physicians to advise and treat patients exposed indoors to mold. Indoor mold growth is a potential health risk, even without a quantitative and/or causal association between the occurrence of individual mold species and health effects. Apart from the allergic bronchopulmonary aspergillosis (ABPA) and the mycoses caused by mold, there is only sufficient evidence for the following associations between moisture/mold damages and different health effects: Allergic respiratory diseases, asthma (manifestation, progression, exacerbation), allergic rhinitis, exogenous allergic alveolitis and respiratory tract infections/bronchitis. In comparison to other environmental allergens, the sensitizing potential of molds is estimated to be low. Recent studies show a prevalence of sensitization of 3-10% in the total population of Europe. The evidence for associations to mucous membrane irritation and atopic eczema (manifestation, progression, exacerbation) is classified as limited or suspected. Inadequate or insufficient evidence for an association is given for COPD, acute idiopathic pulmonary hemorrhage in children, rheumatism/arthritis, sarcoidosis, and cancer. The risk of infections from indoor molds is low for healthy individuals. Only molds that are capable to form toxins can cause intoxications. The environmental and growth conditions and especially the substrate determine whether toxin formation occurs, but indoor air concentrations are always very low. In the case of indoor moisture/mold damages, everyone can be affected by odor effects and/or impairment of well-being. Predisposing factors for odor effects can be given by genetic and hormonal influences, imprinting, context and adaptation effects. Predisposing factors for impairment of well-being are environmental concerns, anxieties, conditioning and attributions as well as a variety of diseases. Risk groups that must be protected are patients with immunosuppression and with mucoviscidosis (cystic fibrosis) with regard to infections and individuals with mucoviscidosis and asthma with regard to allergies. If an association between mold exposure and health effects is suspected, the medical diagnosis includes medical history, physical examination, conventional allergy diagnosis, and if indicated, provocation tests. For the treatment of mold infections, it is referred to the AWMF guidelines for diagnosis and treatment of invasive Aspergillus infections. Regarding mycotoxins, there are currently no validated test methods that could be used in clinical diagnostics. From the perspective of preventive medicine, it is important that mold damages cannot be tolerated in indoor environments. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Selection of antifungal protein-producing molds from dry-cured meat products.

    PubMed

    Acosta, Raquel; Rodríguez-Martín, Andrea; Martín, Alberto; Núñez, Félix; Asensio, Miguel A

    2009-09-30

    To control unwanted molds in dry-cured meats it is necessary to allow the fungal development essential for the desired characteristics of the final product. Molds producing antifungal proteins could be useful to prevent hazards due to the growth of mycotoxigenic molds. The objective has been to select Penicillium spp. that produce antifungal proteins against toxigenic molds. To obtain strains adapted to these products, molds were isolated from dry-cured ham. A first screening with 281 isolates by the radial inhibition assay revealed that 166 were active against some of the toxigenic P. echinulatum, P. commune, and Aspergillusniger used as reference molds. The activity of different extracts from cultured medium was evaluated by a microspectroscopic assay. Molds producing active chloroform extracts were eliminated from further consideration. A total of 16 Penicillium isolates were screened for antifungal activity from both cell-free media and the aqueous residues obtained after chloroform extraction. The cell-free media of 10 isolates that produced a strong inhibition of the three reference molds were fractionated by FPLC on a cationic column. For protein purification, the fractions of the three molds that showed high inhibitory activity were further chromatographed on a gel filtration column, and the subfractions containing the highest absorbance peaks were assayed against the most sensitive reference molds. One subfraction each from strains AS51D and RP42C from Penicilliumchrysogenum confirmed the inhibitory activity against the reference molds. SDS-PAGE revealed a single band from each subfraction, with estimated molecular masses of 37kDa for AS51D and 9kDa for RP42C. Although further characterisation is required, both these proteins and the producing strains can be of interest to control unwanted molds on foods.

  10. Sensitization to Indigenous Pollen and Molds and Other Outdoor and Indoor Allergens in Allergic Patients From Saudi Arabia, United Arab Emirates, and Sudan

    PubMed Central

    2012-01-01

    Background Airborne allergens vary from one climatic region to another. Therefore, it is important to analyze the environment of the region to select the most prevalent allergens for the diagnosis and treatment of allergic patients. Objective To evaluate the prevalence of positive skin tests to pollen and fungal allergens collected from local indigenous plants or isolated molds, as well as other outdoor and indoor allergens in allergic patients in 6 different geographical areas in the Kingdom of Saudi Arabia (KSA), the United Arab Emirates, and Sudan. Materials and methods Four hundred ninety-two consecutive patients evaluated at different Allergy Clinics (276 women and 256 men; mean age, 30 years) participated in this study. The selection of indigenous allergens was based on research findings in different areas from Riyadh and adjoining areas. Indigenous raw material for pollen grains was collected from the desert near the capital city of Riyadh, KSA. The following plants were included: Chenopodium murale, Salsola imbricata, Rumex vesicarius, Ricinus communis, Artiplex nummularia, Amaranthus viridis, Artemisia monosperma, Plantago boissieri, and Prosopis juliflora. Indigenous molds were isolated from air sampling in Riyadh and grown to obtain the raw material. These included the following: Ulocladium spp., Penicillium spp., Aspergillus fumigatus, Cladosporium spp., and Alternaria spp. The raw material was processed under Good Manufacturing Practices for skin testing. Other commercially available outdoor (grass and tree pollens) and indoor (mites, cockroach, and cat dander) allergens were also tested. Results The highest sensitization to indigenous pollens was detected to C. murale (32%) in Khartoum (Sudan) and S. imbricata (30%) and P. juliflora (24%) in the Riyadh region. The highest sensitization to molds was detected in Khartoum, especially to Cladosporium spp. (42%), Aspergillus (40%), and Alternaria spp. (38%). Sensitization to mites was also very prevalent in Khartoum (72%), as well as in Abu Dhabi (United Arab Emirates) (46%) and Jeddah (KSA) (30%). Conclusions The allergenicity of several indigenous pollens and molds derived from autochthonous sources was demonstrated. Prevalence studies in different regions of KSA and neighbor countries indicate different sensitization rates to these and other outdoor and indoor allergens. PMID:23283107

  11. 21ST CENTURY MOLD ANALYSIS IN FOOD

    EPA Science Inventory

    Traditionally, the indoor air community has relied on mold analysis performed by either microscopic observations or the culturing of molds on various media to assess indoor air quality. These techniques were developed in the 19th century and are very laborious and time consumin...

  12. Reflections of a Wave: An Analysis of Photonic Doppler Velocimetry Systems

    DTIC Science & Technology

    2015-03-16

    system employed by the Advanced Initiation Sciences team, (Munitions Direc - torate, AFRL) is capable of explosive sensitivity testing. The errors from...1961, experiments proved that Semenov Theory aligned well with well- stirred liquids [25, p. 179]. In combat applications, the military usually utilizes...solid explosives instead of liquid ones due to the higher stability of solid-molded explosives where conduction has a huge influence on initiation

  13. Characterization of curing behavior of UV-curable LSR for LED embedded injection mold

    NASA Astrophysics Data System (ADS)

    Tae, Joon-Sung; Yim, Kyung-Gyu; Rhee, Byung-Ohk; Kwak, Jae B.

    2016-11-01

    For many applications, liquid silicone rubber (LSR) injection molding is widely used for their great design flexibility and high productivity. In particular, a sealing part for a mobile device such as smartphone and watch has been produced by injection molding. While thermally curable LSR causes deformation problem due to a high mold temperature, UV-curable LSR can be molded at room temperature, which has advantages for over-molding with inserts of temperature-sensitive materials. Ultraviolet light-emitting diodes (UV LEDs) have advantages such as a longer service life, a lower heat dissipation, and smaller size to equip into the mold than conventional halogen or mercury UV lamps. In this work, rheological behavior of UV-curable LSR during curing process was analyzed by UV LEDs available in the market. UV-LEDs of various wave lengths and intensities were tested. The steady shear test was applied to find the starting time of curing and the SAOS was applied to find the ending time of curing to estimate processing time. In addition, the hardness change with irradiation energy was compared with the rheological data to confirm the reliability of the rheological test.

  14. Multicomponent micropatterned sol-gel materials by capillary molding

    NASA Astrophysics Data System (ADS)

    Lochhead, Michael J.; Yager, Paul

    1997-10-01

    A physically and chemically benign method for patterning multiple sol-gel materials onto a single substrate is described. Structures are demonstrated for potential micro- optical chemical sensor, biosensor, and waveguiding applications. Fabrication is based on the micro molding in capillaries (MIMIC) approach. A novel mold design allows several sols to be cast simultaneously. Closely spaced, organically modified silica ridges containing fluorescent dyes are demonstrated. Ridges have cross sectional dimensions from one to 50 micrometers and are centimeters in length. Processing issues, particularly those related to mold filling, are discussed in detail. Because sol-gel MIMIC avoids the harsh physical and chemical environments normally associated with patterning, the approach allows full exploitation of sol- gel processing advantages, such as the ability to entrap sensitive organic dopant molecules in the sol-gel matrix.

  15. CROSS REACTIVITY IN ALLERGIC ASTHMA-LIKE RESPONSES BETWEEN MOLD AND HOUSE DUST MITE IN MICE

    EPA Science Inventory

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic asthma. Some mold allergens have been implicated as the causal agent for allergic asthma. Western blot analysis demonstrated IgE-binding cross-reactivity among m...

  16. MOLD SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS

    EPA Science Inventory

    Today I will talk about the use of quantitative or Real time PCR for the standardized identification and quantification of molds. There are probably at least 100,000 species of molds or fungi. But there are actually about 100 typically found indoors. Some pose a threat to human...

  17. Serum IgG and IgE antibodies against mold-derived antigens in patients with symptoms of hypersensitivity.

    PubMed

    Makkonen, K; Viitala, K I; Parkkila, S; Niemelä, O

    2001-03-01

    Exposure to mold in water-damaged buildings has been suggested to be responsible for various health problems such as hypersensitivity and upper respiratory tract diseases. However, only little information is available on possible diagnostic tools for examining mold-associated health problems. We used recently developed immunofluorometric IgG and IgE assays (UniCAP) to examine serum IgG and IgE antibodies against mold-derived allergens from 70 mold-exposed individuals with (n = 55) or without (n = 15) symptoms of sensitization. Controls were healthy individuals (n = 31) without any history of such exposure. The IgG titers exceeded the upper normal limits of control individuals (mean +/- 2 S.D.) in 35% of symptomatic men and in 25% of women. The IgG titers were usually higher in women than in men (P < 0.05) showing no significant association with the severity of symptoms. During follow-up of eight mold-exposed subjects for 9-12 months the IgG titers remained relatively constant. Elevated anti-mold IgEs were found in six (11%) of the exposed subjects who were all symptomatic. Measurements of anti-mold IgGs may help to confirm exposure in patients with hypersensitivity symptoms and evidence of mold growth in living or working environment. Some exposed symptomatic patients present IgE-mediated responses. Combined measurements of IgGs and IgEs may prove to be of value in the comprehensive assessment and treatment of such patients.

  18. Thermophilic molds: Biology and applications.

    PubMed

    Singh, Bijender; Poças-Fonseca, Marcio J; Johri, B N; Satyanarayana, Tulasi

    2016-11-01

    Thermophilic molds thrive in a variety of natural habitats including soils, composts, wood chip piles, nesting materials of birds and other animals, municipal refuse and others, and ubiquitous in their distribution. These molds grow in simple media containing carbon and nitrogen sources and mineral salts. Polyamines are synthesized in these molds and the composition of lipids varies considerably, predominantly containing palmitic, oleic and linoleic acids with low levels of lauric, palmiotoleic and stearic acids. Thermophilic molds are capable of efficiently degrading organic materials by secreting thermostable enzymes, which are useful in the bioremediation of industrial wastes and effluents that are rich in oil, heavy metals, anti-nutritional factors such as phytic acid and polysaccharides. Thermophilic molds synthesize several antimicrobial substances and biotechnologically useful miscellaneous enzymes. The analysis of genomes of thermophilic molds reveals high G:C contents, shorter introns and intergenic regions with lesser repetitive sequences, and further confirms their ability to degrade agro-residues efficiently. Genetic engineering has aided in ameliorating the characteristics of the enzymes of thermophilic molds. This review is aimed at focusing on the biology of thermophilic molds with emphasis on recent developments in the analysis of genomes, genetic engineering and potential applications.

  19. Botrytis californica, a new cryptic species in the B. cinerea species complex causing gray mold in blueberries and table grapes.

    PubMed

    Saito, S; Margosan, D; Michailides, T J; Xiao, C L

    2016-01-01

    The Botrytis cinerea species complex comprises two cryptic species, originally referred to Group I and Group II based on Bc-hch gene RFLP haplotyping. Group I was described as a new cryptic species B. pseudocinerea During a survey of Botrytis spp. causing gray mold in blueberries and table grapes in the Central Valley of California, six isolates, three from blueberries and three from table grapes, were placed in Group I but had a distinct morphological character with conidiophores significantly longer than those of B. cinerea and B. pseudocinerea We compared these with B. cinerea and B. pseudocinerea by examining morphological and physiological characters, sensitivity to fenhexamid and phylogenetic analysis inferred from sequences of three nuclear genes. Phylogenetic analysis with the three partial gene sequences encoding glyceraldehyde-3-phosate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60) and DNA-dependent RNA polymerase subunit II (RPB2) supported the proposal of a new Botrytis species, B. californica, which is closely related genetically to B. cinerea, B. pseudocinerea and B. sinoviticola, all known as causal agents of gray mold of grapes. Botrytis californica caused decay on blueberry and table grape fruit inoculated with the fungus. This study suggests that B. californica is a cryptic species sympatric with B. cinerea on blueberries and table grapes in California. © 2016 by The Mycological Society of America.

  20. Low home ventilation rate in combination with moldy odor from the building structure increase the risk for allergic symptoms in children.

    PubMed

    Hägerhed-Engman, L; Sigsgaard, T; Samuelson, I; Sundell, J; Janson, S; Bornehag, C-G

    2009-06-01

    There are consistent findings on associations between asthma and allergy symptoms and residential mold and moisture. However, definitions of 'dampness' in studies are diverse because of differences in climate and building construction. Few studies have estimated mold problems inside the building structure by odor assessments. In a nested case-control study of 400 Swedish children, observations and measurements were performed in their homes by inspectors, and the children were examined by physicians for diagnoses of asthma, eczema, and rhinitis. In conclusion, we found an association between moldy odor along the skirting board and allergic symptoms among children, mainly rhinitis. No associations with any of the allergic symptoms were found for discoloured stains, 'floor dampness' or a general mold odor in the room. A moldy odor along the skirting board can be a proxy for hidden moisture problem inside the outer wall construction or in the foundation construction. There are indications that such dampness problems increase the risk for sensitization but the interpretation of data in respect of sensitization is difficult as about 80% of the children with rhinitis were sensitized. Furthermore, low ventilation rate in combination with moldy odor along the skirting board further increased the risk for three out of four studied outcomes, indicating that the ventilation rate is an effect modifier for indoor pollutants. This study showed that mold odor at the skirting board level is strongly associated with allergic symptoms among children. Such odor at that specific place can be seen as a proxy for some kind of hidden moisture or mold problem in the building structure, such as the foundation or wooden ground beam. In houses with odor along the skirting board, dismantling of the structure is required for an investigation of possible moisture damage, measurements, and choice of actions. In homes with low ventilation in combination with mold odor along the skirting board, there was even a higher risk of health effects. This emphasizes the need for the appropriate remediation as this is an ever increasing problem in poorly ventilated houses that are damp.

  1. Structural and compositional analysis of a casting mold sherd from ancient China.

    PubMed

    Zong, Yunbing; Yao, Shengkun; Lang, Jianfeng; Chen, Xuexiang; Fan, Jiadong; Sun, Zhibin; Duan, Xiulan; Li, Nannan; Fang, Hui; Zhou, Guangzhao; Xiao, Tiqiao; Li, Aiguo; Jiang, Huaidong

    2017-01-01

    Casting had symbolic significance and was strictly controlled in the Shang dynasty of ancient China. Vessel casting was mainly distributed around the Shang capital, Yin Ruins, which indicates a rigorous centralization of authority. Thus, for a casting mold to be excavated far from the capital region is rare. In addition to some bronze vessel molds excavated at the Buyao Village site, another key discovery of a bronze vessel mold occurred at Daxinzhuang. The Daxinzhuang site was a core area in the east of Shang state and is an important site to study the eastward expansion of the Shang. Here, combining synchrotron X-rays and other physicochemical analysis methods, nondestructive three-dimensional structure imaging and different elemental analyses were conducted on this mold sherd. Through high penetration X-ray tomography, we obtained insights on the internal structure and discovered some pores. We infer that the generation of pores inside the casting mold sherd was used to enhance air permeability during casting. Furthermore, we suppose that the decorative patterns on the surface were carved and not pasted onto it. Considering the previous compositional studies of bronze vessels, the copper and iron elements were analyzed by different methods. Unexpectedly, a larger amount of iron than of copper was detected on the surface. According to the data analysis and archaeological context, the source of iron on the casting mold sherd could be attributed to local soil contamination. A refined compositional analysis confirms that this casting mold was fabricated locally and used for bronze casting.

  2. Finite Element Modeling of Reheat Stretch Blow Molding of PET

    NASA Astrophysics Data System (ADS)

    Krishnan, Dwarak; Dupaix, Rebecca B.

    2004-06-01

    Poly (ethylene terephthalate) or PET is a polymer used as a packaging material for consumer products such as beverages, food or other liquids, and in other applications including drawn fibers and stretched films. Key features that make it widely used are its transparency, dimensional stability, gas impermeability, impact resistance, and high stiffness and strength in certain preferential directions. These commercially useful properties arise from the fact that PET crystallizes upon deformation above the glass transition temperature. Additionally, this strain-induced crystallization causes the deformation behavior of PET to be highly sensitive to processing conditions. It is thus crucial for engineers to be able to predict its performance at various process temperatures, strain rates and strain states so as to optimize the manufacturing process. In addressing these issues; a finite element analysis of the reheat blow molding process with PET has been carried out using ABAQUS. The simulation employed a constitutive model for PET developed by Dupaix and Boyce et al.. The model includes the combined effects of molecular orientation and strain-induced crystallization on strain hardening when the material is deformed above the glass transition temperature. The simulated bottles were also compared with actual blow molded bottles to evaluate the validity of the simulation.

  3. Moisture Durability Assessment of Selected Well-insulated Wall Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallin, Simon B.; Boudreaux, Philip R.; Kehrer, Manfred

    2015-12-01

    This report presents the results from studying the hygrothermal performance of two well-insulated wall assemblies, both complying with and exceeding international building codes (IECC 2015 2014, IRC 2015). The hygrothermal performance of walls is affected by a large number of influential parameters (e.g., outdoor and indoor climates, workmanship, material properties). This study was based on a probabilistic risk assessment in which a number of these influential parameters were simulated with their natural variability. The purpose of this approach was to generate simulation results based on laboratory chamber measurements that represent a variety of performances and thus better mimic realistic conditions.more » In total, laboratory measurements and 6,000 simulations were completed for five different US climate zones. A mold growth indicator (MGI) was used to estimate the risk of mold which potentially can cause moisture durability problems in the selected wall assemblies. Analyzing the possible impact on the indoor climate due to mold was not part of this study. The following conclusions can be reached from analyzing the simulation results. In a hot-humid climate, a higher R-value increases the importance of the airtightness because interior wall materials are at lower temperatures. In a cold climate, indoor humidity levels increase with increased airtightness. Air leakage must be considered in a hygrothermal risk assessment, since air efficiently brings moisture into buildings from either the interior or exterior environment. The sensitivity analysis of this study identifies mitigation strategies. Again, it is important to remark that MGI is an indicator of mold, not an indicator of indoor air quality and that mold is the most conservative indicator for moisture durability issues.« less

  4. A Comparative Cost Analysis of Cleft Lip Adhesion and Nasoalveolar Molding before Formal Cleft Lip Repair.

    PubMed

    Shay, Paul L; Goldstein, Jesse A; Paliga, J Thomas; Wink, Jason; Jackson, Oksana A; Low, David; Bartlett, Scott P; Taylor, Jesse A

    2015-12-01

    Patients with complete cleft lip and palate may benefit from cleft lip adhesion or nasoalveolar molding before formal cleft lip repair. The authors compared the relative costs to insurers of these two treatment modalities and the burden of care to families. A retrospective analysis was performed of cleft lip and palate patients treated with nasoalveolar molding or cleft lip adhesion at The Children's Hospital of Philadelphia between January of 2007 and June of 2012. Demographic, appointment, and surgical data were reviewed; surgical, inpatient hospital, and orthodontic charges and costs were obtained. Multivariate linear regression and two-sample, two-tailed independent t tests were performed to compare cost and appointment data between groups. Forty-two cleft adhesion and 35 nasoalveolar molding patients met inclusion criteria. Mean costs for nasoalveolar molding were $3550.24 ± $667.27. Cleft adhesion costs, consisting of both hospital and surgical costs, were $9370.55 ± $1691.79. Analysis of log costs demonstrated a significant difference between the groups, with the mean total cost for nasoalveolar molding significantly lower than that for adhesion (p < 0.0001). Nasoalveolar molding patients had significantly more made, cancelled, no-show, and missed visits and a higher missed percentage than adhesion patients (p < 0.0001) for all except no-show appointments, (p = 0.0199), indicating a higher burden of care to families. Nasoalveolar molding may cost less before formal cleft lip repair treatment than cleft lip adhesion. Third-party payers who cover adhesion and not nasoalveolar molding may not be acting in their own best interest. Nasoalveolar molding places a higher burden of care on families, and this fact should be considered in planning treatment.

  5. On processing development for fabrication of fiber reinforced composite, part 2

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Hou, Gene J. W.; Sheen, Jeen S.

    1989-01-01

    Fiber-reinforced composite laminates are used in many aerospace and automobile applications. The magnitudes and durations of the cure temperature and the cure pressure applied during the curing process have significant consequences for the performance of the finished product. The objective of this study is to exploit the potential of applying the optimization technique to the cure cycle design. Using the compression molding of a filled polyester sheet molding compound (SMC) as an example, a unified Computer Aided Design (CAD) methodology, consisting of three uncoupled modules, (i.e., optimization, analysis and sensitivity calculations), is developed to systematically generate optimal cure cycle designs. Various optimization formulations for the cure cycle design are investigated. The uniformities in the distributions of the temperature and the degree with those resulting from conventional isothermal processing conditions with pre-warmed platens. Recommendations with regards to further research in the computerization of the cure cycle design are also addressed.

  6. Imprint Molding of a Microfluidic Optical Cell on Thermoplastics with Reduced Surface Roughness for the Detection of Copper Ions.

    PubMed

    Wu, Jing; Lee, Nae Yoon

    2016-01-01

    Here, we introduce a simple and facile technique for fabricating microfluidic optical cells by utilizing a micropatterned polymer mold, followed by imprinting on thermoplastic substrates. This process has reduced the surface roughness of the microchannel, making it suitable for microscale optical measurements. The micropatterned polymer mold was fabricated by first micromilling on a poly(methylmethacrylate) (PMMA) substrate, and then transferring the micropattern onto an ultraviolet (UV)-curable optical adhesive. After an anti-adhesion treatment of the polymer mold fabricated using the UV-curable optical adhesive, the polymer mold was used repeatedly for imprinting onto various thermoplastics, such as PMMA, polycarbonate (PC), and poly(ethyleneterephthalate) (PET). The roughness values for the PMMA, PC, and PET microchannels were approximately 11.3, 20.3, and 14.2 nm, respectively, as compared to those obtained by micromilling alone, which were 15.9, 76.8, and 207.5 nm, respectively. Using the imprint-molded thermoplastic optical cell, rhodamine B and copper ions were successfully quantified. The reduced roughness of the microchannel surface resulted in improved sensitivity and reduced noise, paving the way for integration of the detection module so as to realize totally integrated microdevices.

  7. Footwear contact dermatitis from dimethyl fumarate.

    PubMed

    Švecová, Danka; Šimaljakova, Maria; Doležalová, Anna

    2013-07-01

    Dimethyl fumarate (DMF) is an effective inhibitor of mold growth. In very low concentrations, DMF is a potent sensitizer that can cause severe allergic contact dermatitis (ACD). It has been identified as the agent responsible for furniture contact dermatitis in Europe. The aim of this study was to evaluate patients in Slovakia with footwear ACD associated with DMF, with regard to clinical manifestations, patch test results, and results of chemical analysis of their footwear. Nine patients with suspected footwear contact dermatitis underwent patch testing with the following allergens: samples of their own footwear, commercial DMF, the European baseline, shoe screening, textile and leather dye screening, and industrial biocides series. The results were recorded according to international guidelines. The content of DMF in footwear and anti-mold sachets was analyzed using gas chromatography and mass spectrometry. Acute ACD was observed in nine Caucasian female patients. All patients developed delayed sensitization, as demonstrated by positive patch testing using textile footwear lining. Seven patients were patch tested with 0.1% DMF, and all seven were positive. Chemical analysis of available footwear showed that DMF was present in very high concentrations (25-80 mg/Kg). Dimethyl fumarate is a new footwear allergen and was responsible for severe ACD in our patients. To avoid an increase in the number of cases, the already approved European preventive measures should be accepted and commonly employed. © 2013 The International Society of Dermatology.

  8. Structural and compositional analysis of a casting mold sherd from ancient China

    PubMed Central

    Zong, Yunbing; Yao, Shengkun; Lang, Jianfeng; Chen, Xuexiang; Fan, Jiadong; Sun, Zhibin; Duan, Xiulan; Li, Nannan; Fang, Hui; Zhou, Guangzhao; Xiao, Tiqiao; Li, Aiguo; Jiang, Huaidong

    2017-01-01

    Casting had symbolic significance and was strictly controlled in the Shang dynasty of ancient China. Vessel casting was mainly distributed around the Shang capital, Yin Ruins, which indicates a rigorous centralization of authority. Thus, for a casting mold to be excavated far from the capital region is rare. In addition to some bronze vessel molds excavated at the Buyao Village site, another key discovery of a bronze vessel mold occurred at Daxinzhuang. The Daxinzhuang site was a core area in the east of Shang state and is an important site to study the eastward expansion of the Shang. Here, combining synchrotron X-rays and other physicochemical analysis methods, nondestructive three-dimensional structure imaging and different elemental analyses were conducted on this mold sherd. Through high penetration X-ray tomography, we obtained insights on the internal structure and discovered some pores. We infer that the generation of pores inside the casting mold sherd was used to enhance air permeability during casting. Furthermore, we suppose that the decorative patterns on the surface were carved and not pasted onto it. Considering the previous compositional studies of bronze vessels, the copper and iron elements were analyzed by different methods. Unexpectedly, a larger amount of iron than of copper was detected on the surface. According to the data analysis and archaeological context, the source of iron on the casting mold sherd could be attributed to local soil contamination. A refined compositional analysis confirms that this casting mold was fabricated locally and used for bronze casting. PMID:28296963

  9. Innate immune recognition of molds and homology to the inner ear protein, cochlin, in patients with autoimmune inner ear disease

    PubMed Central

    Pathak, Shresh; Hatam, Lynda J.; Bonagura, Vincent; Vambutas, Andrea

    2013-01-01

    Autoimmune Inner Ear Disease (AIED) is characterized by bilateral, fluctuating sensorineural hearing loss with periods of hearing decline triggered by unknown stimuli. Here we examined whether an environmental exposure to mold in these AIED patients is sufficient to generate a pro-inflammatory response that may, in part, explain periods of acute exacerbation of disease. We hypothesized that molds may stimulate an aberrant immune response in these patients as both several Aspergillus species and penecillium share homology with the LCCL domain of the inner ear protein, cochlin. We showed the presence of higher levels of anti-mold IgG in plasma of AIED patients at dilution of 1:256 (p=0.032) and anti-cochlin IgG 1:256 (p=0.0094 and at 1:512 p=0.024) as compared with controls. Exposure of peripheral blood mononuclear cells (PBMC) of AIED patients to mold resulted in an up-regulation of IL-1β mRNA expression, enhanced IL-1β and IL-6 secretion, and generation of IL-17 expressing cells in mold-sensitive AIED patients, suggesting mold acts as a PAMP in a subset of these patients. Naïve B cells secreted IgM when stimulated with conditioned supernatant from AIED patients’ monocytes treated with mold extract. In conclusion, the present studies indicate that fungal exposure can trigger autoimmunity in a subset of susceptible AIED patients. PMID:23912888

  10. Dimensional Precision Research of Wax Molding Rapid Prototyping based on Droplet Injection

    NASA Astrophysics Data System (ADS)

    Mingji, Huang; Geng, Wu; yan, Shan

    2017-11-01

    The traditional casting process is complex, the mold is essential products, mold quality directly affect the quality of the product. With the method of rapid prototyping 3D printing to produce mold prototype. The utility wax model has the advantages of high speed, low cost and complex structure. Using the orthogonal experiment as the main method, analysis each factors of size precision. The purpose is to obtain the optimal process parameters, to improve the dimensional accuracy of production based on droplet injection molding.

  11. Neurologic and neuropsychiatric syndrome features of mold and mycotoxin exposure.

    PubMed

    Empting, L D

    2009-01-01

    Human exposure to molds, mycotoxins, and water-damaged buildings can cause neurologic and neuropsychiatric signs and symptoms. Many of these clinical features can partly mimic or be similar to classic neurologic disorders including pain syndromes, movement disorders, delirium, dementia, and disorders of balance and coordination. In this article, the author delineates the signs and symptoms of a syndrome precipitated by mold and mycotoxin exposure and contrasts and separates these findings neurodiagnostically from known neurologic diseases. This clinical process is designed to further the scientific exploration of the underlying neuropathophysiologic processes and to promote better understanding of effects of mold/mycotoxin/water-damaged buildings on the human nervous system and diseases of the nervous system. It is clear that mycotoxins can affect sensitive individuals, and possibly accelerate underlying neurologic/pathologic processes, but it is crucial to separate known neurologic and neuropsychiatric disorders from mycotoxin effects in order to study it properly.

  12. Bio-inspired piezoelectric artificial hair cell sensor fabricated by powder injection molding

    NASA Astrophysics Data System (ADS)

    Han, Jun Sae; Oh, Keun Ha; Moon, Won Kyu; Kim, Kyungseop; Joh, Cheeyoung; Seo, Hee Seon; Bollina, Ravi; Park, Seong Jin

    2015-12-01

    A piezoelectric artificial hair cell sensor was fabricated by the powder injection molding process in order to make an acoustic vector hydrophone. The entire process of powder injection molding was developed and optimized for PMN-PZT ceramic powder. The artificial hair cell sensor, which consists of high aspect ratio hair cell and three rectangular mechanoreceptors, was precisely fabricated through the developed powder injection molding process. The density and the dielectric property of the fabricated sensor shows 98% of the theoretical density and 85% of reference dielectric property of PMN-PZT ceramic powder. With regard to homogeneity, three rectangular mechanoreceptors have the same dimensions, with 3 μm of tolerance with 8% of deviation of dielectric property. Packaged vector hydrophones measure the underwater acoustic signals from 500 to 800 Hz with -212 dB of sensitivity. Directivity of vector hydrophone was acquired at 600 Hz as analyzing phase differences of electric signals.

  13. Fungi in cystic fibrosis and non-cystic fibrosis bronchiectasis.

    PubMed

    Moss, Richard B

    2015-04-01

    Bronchiectasis is a pathologic bronchial dilatation with loss of function that can result from multiple inflammatory and infectious injuries to the conducting airways of the lung. Molds, particularly the filamentous fungus Aspergillus fumigatus, have been implicated as a common cause of both cystic fibrosis (CF) and non-CF bronchiectasis, the latter primarily in patients with severe asthma. The pathogenesis of mold-associated bronchiectasis is usually due to atopic sensitization to mold allergens in the presence of active chronic endobronchial fungal infection with host innate and adaptive immune deviation to a Th2-dominated inflammation, a condition known as allergic bronchopulmonary aspergillosis (ABPA) (or allergic bronchopulmonary mycosis if a non-Aspergillus mold is implicated). Diagnostic criteria of ABPA continue to evolve, while treatment relies upon downregulation of the allergic inflammatory response with immunomodulatory agents and antifungal pharmacotherapy. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Moisture damage and asthma: a birth cohort study.

    PubMed

    Karvonen, Anne M; Hyvärinen, Anne; Korppi, Matti; Haverinen-Shaughnessy, Ulla; Renz, Harald; Pfefferle, Petra I; Remes, Sami; Genuneit, Jon; Pekkanen, Juha

    2015-03-01

    Excess moisture and visible mold are associated with increased risk of asthma. Only a few studies have performed detailed home visits to characterize the extent and location of moisture damage and mold growth. Structured home inspections were performed in a birth cohort study when the children were 5 months old (on average). Children (N = 398) were followed up to the age of 6 years. Specific immunoglobulin E concentrations were determined at 6 years. Moisture damage and mold at an early age in the child's main living areas (but not in bathrooms or other interior spaces) were associated with the risk of developing physician-diagnosed asthma ever, persistent asthma, and respiratory symptoms during the first 6 years. Associations with asthma ever were strongest for moisture damage with visible mold in the child's bedroom (adjusted odds ratio: 4.82 [95% confidence interval: 1.29-18.02]) and in the living room (adjusted odds ratio: 7.51 [95% confidence interval: 1.49-37.83]). Associations with asthma ever were stronger in the earlier part of the follow-up and among atopic children. No consistent associations were found between moisture damage with or without visible mold and atopic sensitization. Moisture damage and mold in early infancy in the child's main living areas were associated with asthma development. Atopic children may be more susceptible to the effects of moisture damage and mold. Copyright © 2015 by the American Academy of Pediatrics.

  15. Neuropsychological exploration of alleged mold neurotoxicity.

    PubMed

    Reinhard, Matthew J; Satz, Paul; Scaglione, Cris A; D'Elia, Louis F; Rassovsky, Yuri; Arita, Anthony A; Hinkin, Charles H; Thrasher, Delaney; Ordog, Gary

    2007-05-01

    Cognitive and emotional correlates of toxic mold exposure and potential dose-response effects for both outcomes were investigated. Self-reported length of exposure, time since last exposure, and serum immunoglobulin (IgG) levels were assessed. Despite CNS complaints often seen with mold exposed individuals, overall results did not uncover concomitant cognitive deficits suggested in previous studies or a significant reduction in intellectual functioning. Fewer subjects were excluded as result of failing effort/motivation assessment than expected. Correlations of IgG and cognitive function are discussed. A dose-effect for self-reported length of exposure and cognitive outcome was not seen. The sample's overall Minnesota Multiphasic Personality Inventory II (MMPI-2) profile indicated elevations on scales 1, 2, 3, 7 and 8. MMPI-2 clinical scales 1 and 3 were significantly correlated with length of exposure. The MMPI-2 may be sensitive to increasing physical and emotional sequelae as length of exposure increases. A potential subgroup of cognitively impaired outliers within mold exposure litigants is explored. Limitations of self-reported and objective measurements for mold exposure and exploratory statistical methodology are discussed.

  16. Design and Checking Analysis of Injection Mold for a Plastic Cup

    NASA Astrophysics Data System (ADS)

    Li, Xuebing

    2018-03-01

    A special injection mold was designed for the structural characteristics of a plastic cup part. The mold was simulated by Moldflow software and verified by calculating the stripping force, the pulling force and the clamping force of the mold so that to determine the appropriate injection parameters. It has been proved that the injection mold is effective and practical in the actual producing and can meet the quality requirements during the course of using it, which solved some problems for injection molding of this kind of parts and can provide some reference for the production of other products in the same industry.

  17. Studies on the injection molding of polyvinyl chloride: Analysis of viscous heating and degradation in simple geometries

    NASA Astrophysics Data System (ADS)

    Garcia, Jose Luis

    2000-10-01

    In injection molding processes, computer aided engineering (CAE) allows processors to evaluate different process parameters in order to achieve complete filling of a cavity and, in some cases, it predicts shrinkage and warpage. However, because commercial computational packages are used to design complex geometries, detail in the thickness direction is limited. Approximations in the thickness direction lead to the solution of a 2½-D problem instead of a 3-D problem. These simplifications drastically reduce computational times and memory requirements. However, these approximations hinder the ability to predict thermal and/or mechanical degradation. The goal of this study was to determine the degree of degradation during PVC injection molding and to compare the results with a computational model. Instead of analyzing degradation in complex geometries, the computational analysis and injection molding trials were performed on typical sections found in complex geometries, such as flow in a tube, flow in a rectangular channel, and radial flow. This simplification reduces the flow problem to a 1-D problem and allows one to develop a computational model with a higher level of detail in the thickness direction, essential for the determination of degradation. Two different geometries were examined in this study: a spiral mold, in order to approximate the rectangular channel, and a center gated plate for the radial flow. Injection speed, melt temperature, and shot size were varied. Parts varying in degree of degradation, from no to severe degradation, were produced to determine possible transition points. Furthermore, two different PVC materials were used, low and high viscosity, M3800 and M4200, respectively (The Geon Company, Avon Lake, OH), to correlate the degree of degradation with the viscous heating observed during injection. It was found that a good agreement between experimental and computational results was obtained only if the reaction was assumed to be more thermally sensitive than found in literature. The results from this study show that, during injection, the activation energy for degradation was 65 kcal/mol, compared to 17--30 kcal/mol found in literature for quiescent systems.

  18. METHOD FOR EVALUATING MOLD GROWTH ON CEILING TILE

    EPA Science Inventory

    A method to extract mold spores from porous ceiling tiles was developed using a masticator blender. Ceiling tiles were inoculated and analyzed using four species of mold. Statistical analysis comparing results obtained by masticator extraction and the swab method was performed. T...

  19. METHODS TO CLASSIFY ENVIRONMENTAL SAMPLES BASED ON MOLD ANALYSES BY QPCR

    EPA Science Inventory

    Quantitative PCR (QPCR) analysis of molds in indoor environmental samples produces highly accurate speciation and enumeration data. In a number of studies, eighty of the most common or potentially problematic indoor molds were identified and quantified in dust samples from homes...

  20. DNA BASED METHOD OF MOLD AND APPLYING THE ENVIRONMENTAL RELATIVE MOLDINESS INDEX (ERMI)

    EPA Science Inventory

    NASA facilities can potentially have mold contamination problems. The EPA has created an Environmental Relative Moldiness Index based on the analysis of dust by Mold Specific Quantitative PCR (MSQPCR). In this presentation, the scientific background for the ERMI will be present...

  1. Sensitivity Equation Derivation for Transient Heat Transfer Problems

    NASA Technical Reports Server (NTRS)

    Hou, Gene; Chien, Ta-Cheng; Sheen, Jeenson

    2004-01-01

    The focus of the paper is on the derivation of sensitivity equations for transient heat transfer problems modeled by different discretization processes. Two examples will be used in this study to facilitate the discussion. The first example is a coupled, transient heat transfer problem that simulates the press molding process in fabrication of composite laminates. These state equations are discretized into standard h-version finite elements and solved by a multiple step, predictor-corrector scheme. The sensitivity analysis results based upon the direct and adjoint variable approaches will be presented. The second example is a nonlinear transient heat transfer problem solved by a p-version time-discontinuous Galerkin's Method. The resulting matrix equation of the state equation is simply in the form of Ax = b, representing a single step, time marching scheme. A direct differentiation approach will be used to compute the thermal sensitivities of a sample 2D problem.

  2. The use of image analysis in evaluation of the fibers orientation in Wood-polymer composites (WPC)

    NASA Astrophysics Data System (ADS)

    Bednarz, Arkadiusz; Frącz, Wiesław; Janowski, Grzegorz

    2016-12-01

    In this paper a novel way of a digital analysis of fibers orientation with a five-step algorithmwas presented. In the study, a molded piece with a dumbbell shape prepared from wood-polymer composite was used. The injection molding process was examined in experimental and numerical way. Based on the developed mathematical algorithm, a significant compliance of fiber orientation in different areas of the molded piece was obtained. The main aim of thisworkwas fiber orientation analysis of wood-polymer composites. An additional goal of thiswork was the comparison of the results reached in numerical analysis with results obtained from an experiment. The results of this research were important for the scientific and also from the practical point of view. In future works the prepared algorithm could be used to reach optimal parameters of the injection molding process.

  3. Thermal Molding of Organic Thin-Film Transistor Arrays on Curved Surfaces.

    PubMed

    Sakai, Masatoshi; Watanabe, Kento; Ishimine, Hiroto; Okada, Yugo; Yamauchi, Hiroshi; Sadamitsu, Yuichi; Kudo, Kazuhiro

    2017-12-01

    In this work, a thermal molding technique is proposed for the fabrication of plastic electronics on curved surfaces, enabling the preparation of plastic films with freely designed shapes. The induced strain distribution observed in poly(ethylene naphthalate) films when planar sheets were deformed into hemispherical surfaces clearly indicated that natural thermal contraction played an important role in the formation of the curved surface. A fingertip-shaped organic thin-film transistor array molded from a real human finger was fabricated, and slight deformation induced by touching an object was detected from the drain current response. This type of device will lead to the development of robot fingers equipped with a sensitive tactile sense for precision work such as palpation or surgery.

  4. Thermal Molding of Organic Thin-Film Transistor Arrays on Curved Surfaces

    NASA Astrophysics Data System (ADS)

    Sakai, Masatoshi; Watanabe, Kento; Ishimine, Hiroto; Okada, Yugo; Yamauchi, Hiroshi; Sadamitsu, Yuichi; Kudo, Kazuhiro

    2017-05-01

    In this work, a thermal molding technique is proposed for the fabrication of plastic electronics on curved surfaces, enabling the preparation of plastic films with freely designed shapes. The induced strain distribution observed in poly(ethylene naphthalate) films when planar sheets were deformed into hemispherical surfaces clearly indicated that natural thermal contraction played an important role in the formation of the curved surface. A fingertip-shaped organic thin-film transistor array molded from a real human finger was fabricated, and slight deformation induced by touching an object was detected from the drain current response. This type of device will lead to the development of robot fingers equipped with a sensitive tactile sense for precision work such as palpation or surgery.

  5. QUANTITATIVE PCR ANALYSIS OF HOUSE DUST CAN REVEAL ABNORMAL MOLD CONDITIONS

    EPA Science Inventory

    Indoor mold populations were measured in the dust of homes in Cleveland and Cincinnati, OH, by quantitative PCR (QPCR) and, in Cincinnati, also by culturing. QPCR assays for 82 species (or groups of species) were used to identify and quantify indoor mold populations in moldy home...

  6. Flexible Packaging by Film-Assisted Molding for Microintegration of Inertia Sensors

    PubMed Central

    Hera, Daniel; Berndt, Armin; Günther, Thomas; Schmiel, Stephan; Harendt, Christine; Zimmermann, André

    2017-01-01

    Packaging represents an important part in the microintegration of sensors based on microelectromechanical system (MEMS). Besides miniaturization and integration density, functionality and reliability in combination with flexibility in packaging design at moderate costs and consequently high-mix, low-volume production are the main requirements for future solutions in packaging. This study investigates possibilities employing printed circuit board (PCB-)based assemblies to provide high flexibility for circuit designs together with film-assisted transfer molding (FAM) to package sensors. The feasibility of FAM in combination with PCB and MEMS as a packaging technology for highly sensitive inertia sensors is being demonstrated. The results prove the technology to be a viable method for damage-free packaging of stress- and pressure-sensitive MEMS. PMID:28653992

  7. 3D customized and flexible tactile sensor using a piezoelectric nanofiber mat and sandwich-molded elastomer sheets

    NASA Astrophysics Data System (ADS)

    Bit Lee, Han; Kim, Young Won; Yoon, Jonghun; Lee, Nak Kyu; Park, Suk-Hee

    2017-04-01

    We developed a skin-conformal flexible sensor in which three-dimensional (3D) free-form elastomeric sheets were harmoniously integrated with a piezoelectric nanofiber mat. The elastomeric sheets were produced by polydimethylsiloxane (PDMS) molding via using a 3D printed mold assembly, which was adaptively designed from 3D scanned skin surface geometry. The mold assembly, fabricated using a multi-material 3D printer, was composed of a pair of upper/lower mold parts and an interconnecting hinge, with material properties are characterized by different flexibilities. As a result of appropriate deformabilites of the upper mold part and hinge, the skin-conformal PDMS structures were successfully sandwich molded and demolded with good repeatability. An electrospun poly(vinylidene fluoride trifluoroethylene) nanofiber mat was prepared as the piezoelectric active layer and integrated with the 3D elastomeric parts. We confirmed that the highly responsive sensing performances of the 3D integrated sensor were identical to those of a flat sensor in terms of sensitivity and the linearity of the input-output relationship. The close 3D conformal skin contact of the flexible sensor enabled discernable perception of various scales of physical stimuli, such as tactile force and even minute skin deformation caused by the tester’s pulse. Collectively from the 3D scanning design to the practical application, our achievements can potentially meet the needs of tailored human interfaces in the field of wearable devices and human-like robots.

  8. Applying simulation to optimize plastic molded optical parts

    NASA Astrophysics Data System (ADS)

    Jaworski, Matthew; Bakharev, Alexander; Costa, Franco; Friedl, Chris

    2012-10-01

    Optical injection molded parts are used in many different industries including electronics, consumer, medical and automotive due to their cost and performance advantages compared to alternative materials such as glass. The injection molding process, however, induces elastic (residual stress) and viscoelastic (flow orientation stress) deformation into the molded article which alters the material's refractive index to be anisotropic in different directions. Being able to predict and correct optical performance issues associated with birefringence early in the design phase is a huge competitive advantage. This paper reviews how to apply simulation analysis of the entire molding process to optimize manufacturability and part performance.

  9. Differentiation of Toxic Molds via Headspace SPME-GC/MS and Canine Detection

    PubMed Central

    Griffith, Robert T.; Jayachandran, Krishnaswamy; Shetty, Kateel G.; Whitstine, William; Furton, Kenneth G.

    2007-01-01

    Indoor mold growth has recently become a concern in the legal world in regards to insurance litigation. Hazardous mold exposure to humans has been linked to many acute and chronic adverse health effects including death. As it grows, mold produces several types of primary and secondary metabolites, including microbial volatile organic compounds (MVOCs). Microbial volatile organic compound emission may be used as a preliminary indication of a mold infestation that is invisible to the unaided eye. The objective of the study is to identify the unique odor signatures of three species of molds, Aspergillus versicolor, Penicillium chrysogenum, and Stachybotrys chartarum by SPME-GC/MS analysis. Determining the compounds that are emitted by the selected species has made it possible to conduct validation studies of canine detection of these mold species through a series of field tests.

  10. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals.

    PubMed

    Wang, Xuewen; Gu, Yang; Xiong, Zuoping; Cui, Zheng; Zhang, Ting

    2014-03-05

    Flexible and transparent E-skin devices are achieved by combining silk-molded micro-patterned polydimethylsiloxane (PDMS) with single-walled carbon nanotube (SWNT) ultrathin films. The E-skin sensing device demonstrates superior sensitivity, a very low detectable pressure limit, a fast response time, and a high stability for the detection of superslight pressures, which may broaden their potential use as cost-effective wearable electronics for healthcare applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Experimental and Numerical Analysis of Injection Molding of Ti-6Al-4V Powders for High-Performance Titanium Parts

    NASA Astrophysics Data System (ADS)

    Lin, Dongguo; Kang, Tae Gon; Han, Jun Sae; Park, Seong Jin; Chung, Seong Taek; Kwon, Young-Sam

    2018-02-01

    Both experimental and numerical analysis of powder injection molding (PIM) of Ti-6Al-4V alloy were performed to prepare a defect-free high-performance Ti-6Al-4V part with low carbon/oxygen contents. The prepared feedstock was characterized with specific experiments to identify its viscosity, pressure-volume-temperature and thermal properties to simulate its injection molding process. A finite-element-based numerical scheme was employed to simulate the thermomechanical process during the injection molding. In addition, the injection molding, debinding, sintering and hot isostatic pressing processes were performed in sequence to prepare the PIMed parts. With optimized processing conditions, the PIMed Ti-6Al-4V part exhibits excellent physical and mechanical properties, showing a final density of 99.8%, tensile strength of 973 MPa and elongation of 16%.

  12. Analysis of Impact of 3D Printing Technology on Traditional Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Wu, Niyan; Chen, Qi; Liao, Linzhi; Wang, Xin

    With quiet rise of 3D printing technology in automobile, aerospace, industry, medical treatment and other fields, many insiders hold different opinions on its development. This paper objectively analyzes impact of 3D printing technology on mold making technology and puts forward the idea of fusion and complementation of 3D printing technology and mold making technology through comparing advantages and disadvantages of 3D printing mold and traditional mold making technology.

  13. [Effects of different excipients on properties of Tongsaimai mixture and pellet molding].

    PubMed

    Wang, Jin; Lv, Zhiyang; Wu, Xiaoyan; Di, Liuqing; Dong, Yu; Cai, Baochang

    2011-01-01

    To study preliminarily on the relationship between properties of the mixture composed of Tongsaimai extract and different excipients and pellet molding. The multivariate regression analysis was used to investigate the correlation of different mixture and pellet molding by measuring the cohesion, liquid-plastic limit of mixture, and the powder properties of pellets. The weighted coefficients of the powder properties were determined by analytic hierarchy process combined with criteria importance through intercriteria correlation. The results showed that liquid-plastic limit seemed to be a major factor, which had positive correlation with pellet molding, while cohesion had negative correlation with pellet molding in the measured range. The physical properties of the mixture has marked influence on pellet molding.

  14. High-efficiency control of gray mold by the novel SDHI fungicide benzovindiflupyr combined with a reasonable application approach of dipping flower.

    PubMed

    He, Leiming; Cui, Kaidi; Song, Yufei; Mu, Wei; Liu, Feng

    2018-06-11

    ABSTRACT:In this study, a novel succinate dehydrogenase inhibitor (SDHI) fungicide benzovindiflupyr was found to have strong inhibitory activity against gray mold caused by Botrytis cinerea. The sensitivity of B. cinerea to benzovindiflupyr was determined by testing 103 pathogen isolates with mean values of 2.15 ± 0.19 mg liter-1 and 0.89 ± 0.14 mg liter-1 for mycelial growth and spore germination inhibition, respectively. Furthermore, benzovindiflupyr had excellent long-lasting protective activity. Unfortunately, there were positive correlations between benzovindiflupyr and boscalid (r=0.3, P=0.04) and between benzovindiflupyr and isopyrazam (r=0.31, P=0.04). In the field, cucumber flowers are susceptible to infection by B. cinerea. Benzovindiflupyr applied at 20 mg liter-1 by dipping flower could successfully control cucumber gray mold, with the benzovindiflupyr dose of dipping flower application less than 1% of that of spraying application. Benzovindiflupyr combined with dipping flower application showed significant control of gray mold.

  15. Integrated System of Thermal/Dimensional Analysis for Quality Control of Metallic Melt and Ductile Iron Casting Solidification

    NASA Astrophysics Data System (ADS)

    Stan, Stelian; Chisamera, Mihai; Riposan, Iulian; Neacsu, Loredana; Cojocaru, Ana Maria; Stan, Iuliana

    2018-03-01

    The main objective of the present work is to introduce a specific experimental instrument and technique for simultaneously evaluating cooling curves and expansion or contraction of cast metals during solidification. Contraction/expansion analysis illustrates the solidification parameters progression, according to the molten cast iron characteristics, which are dependent on the melting procedure and applied metallurgical treatments, mold media rigidity and thermal behavior [heat transfer parameters]. The first part of the paper summarizes the performance of this two-mold device. Its function is illustrated by representative shrinkage tendency results in ductile cast iron as affected by mold rigidity (green sand and furan resin sand molds) and inoculant type (FeSi-based alloys), published in part previously. The second part of the paper illustrates an application of this equipment adapted for commercial foundry use. It conducts thermal analysis and volume change measurements in a single ceramic cup so that mold media as well as solidification conditions are constants, with cast iron quality as the variable. Experiments compared gray and ductile cast iron solidification patterns. Gray iron castings are characterized by higher undercooling at the beginning and at the end of solidification and lower graphitic expansion. Typically, ductile cast iron exhibits higher graphitic, initial expansion, conducive for shrinkage formation in soft molds.

  16. Influence of modified atmosphere packaging on the shelf life of prebaked pizza dough with and without preservative added.

    PubMed

    Rodríguez, Valle; Medina, Luis; Jordano, Rafael

    2003-04-01

    The possible effect of different modified atmospheres on the shelf life of prebaked pizza dough, with and without added calcium propionate, was investigated. Three packaging atmospheres were tested: 20% CO2: 80% N2, 50% CO2: 50% N2, 100% CO2, and air (control). Samples were examined daily for visible mold growth and analysed after 2, 8, 17 and 31 days throughout storage (15-20 degrees C and 54-65% relative humidity, RH) for changes in gaseous composition, pH and microbial populations (mesophilic aerobic and anaerobic bacteria, lactic acid bacteria (LAB), and yeasts and molds). Microbiological results showed that molds had a greater sensitivity to CO2 than bacteria and yeasts. Products containing calcium propionate did not show mold growth throughout storage (31 days) when packaged in air or in CO2-enriched atmospheres (20, 50 and 100%). However, in pizza dough without preservative (calcium propionate), mold growth was evident after 7 days, except under 100% CO2 atmosphere (13 days) regardless of the packaging atmosphere. From these results we conclude that the addition of calcium propionate had more and decisive influence on the shelf life extension of prebaked pizza dough.

  17. Effect of mold designs on molten metal behaviour in high-pressure die casting

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. D.; Rahman, M. R. A.; Khan, A. A.; Mohamad, M. R.; Suffian, M. S. Z. M.; Yunos, Y. S.; Wong, L. K.; Mohtar, M. Z.

    2017-04-01

    This paper presents a research study conducted in a local automotive component manufacturer that produces aluminium alloy steering housing local and global markets. This study is to investigate the effect of design modification of mold in die casting as to improve the production rate. Design modification is carried out on the casting shot of the mold. Computer flow simulation was carried out to study the flow of molten metal in the mold with respect to the mold design modification. The design parameters of injection speed, die temperature and clamping force has been included in the study. The result of the simulation showed that modifications of casting shot give significant impact towards the molten flow behaviour in casting process. The capabilities and limitations of die casting process simulation to conduct defect analysis had been optimized. This research will enhance the efficiency of the mass production of the industry of die casting with the understanding of defect analysis, which lies on the modification of the mold design, a way early in its stages of production.

  18. Effecting aging time of epoxy molding compound to molding process for integrated circuit packaging

    NASA Astrophysics Data System (ADS)

    Tachapitunsuk, Jirayu; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about effecting aging time of epoxy molding compound (EMC) that effect to reliability performance of integrated circuit (IC) package in molding process. Molding process is so important of IC packaging process for protecting IC chip (or die) from temperature and humidity environment using encapsulated EMC. For general molding process, EMC are stored in the frozen at 5°C and left at room temperature at 25 °C for aging time on self before molding of die onto lead frame is 24 hours. The aging time effect to reliability performance of IC package due to different temperature and humidity inside the package. In experiment, aging time of EMC were varied from 0 to 24 hours for molding process of SOIC-8L packages. For analysis, these packages were tested by x-ray and scanning acoustic microscope to analyze properties of EMC with an aging time and also analyzed delamination, internal void, and wire sweep inside the packages with different aging time. The results revealed that different aging time of EMC effect to properties and reliability performance of molding process.

  19. ARES I Aerodynamic Testing at the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Wilcox, Floyd J.

    2011-01-01

    Small-scale force and moment and pressure models based on the outer mold lines of the Ares I design analysis cycle crew launch vehicle were tested in the NASA Langley Research Center Unitary Plan Wind Tunnel from May 2006 to September 2009. The test objectives were to establish supersonic ascent aerodynamic databases and to obtain force and moment, surface pressure, and longitudinal line-load distributions for comparison to computational predictions. Test data were obtained at low through high supersonic Mach numbers for ranges of the Reynolds number, angle of attack, and roll angle. This paper focuses on (1) the sensitivity of the supersonic aerodynamic characteristics to selected protuberances, outer mold line changes, and wind tunnel boundary layer transition techniques, (2) comparisons of experimental data to computational predictions, and (3) data reproducibility. The experimental data obtained in the Unitary Plan Wind Tunnel captured the effects of evolutionary changes to the Ares I crew launch vehicle, exhibited good agreement with predictions, and displayed satisfactory within-test and tunnel-to-tunnel data reproducibility.

  20. State of the art diagnostic of mold diseases: a practical guide for clinicians.

    PubMed

    Beirão, F; Araujo, R

    2013-01-01

    The epidemiology of fungal diseases changed, and molds have been increasingly associated with high mortality in severe immunocompromised patients. Invasive mold diseases may originate from the airborne conidia through inhalation or inoculation in skin fissures associated with indwelling catheters, wounds, burns, or onychomycosis. The diagnosis and treatment of fungal diseases is problematic and raises considerable challenges. Diagnosis of invasive mold diseases includes several methodologies, of which the most commonly used are the cultural methods, antigen testing, nucleic acid detection, and radiological imaging. Galactomannan and (1 → 3)-β-D-glucan detection significantly improved mold diagnosis in the last decade. Several molecular strategies have been proposed over the years but no consensus was achieved for standardized protocols or cut-off values. Recently, the first commercially available molecular assay for detection of Aspergillus was tested and the results were highly reproducible. In addition, blood cultures may also be helpful for invasive aspergillosis by following a novel procedure for the recovery of Aspergillus spp. from blood cultures. The association of distinct diagnostic methods, particularly molecular tests, galactomannan, and/or (1 → 3)-β-D-glucan detection, may provide earlier and more sensitive diagnosis of mold diseases and be indicative for early antifungal treatment. Accurate routine use of diagnostic tests can be cost-effective for laboratories and be of great value to patients.

  1. NUTRITION OF CELLULAR SLIME MOLDS I.

    PubMed Central

    Hohl, Hans-Rudolf; Raper, Kenneth B.

    1963-01-01

    Hohl, Hans-Rudolf (University of Wisconsin, Madison) and Kenneth B. Raper. Nutrition of cullular slime molds. I. Growth on living and dead bacteria. J. Bacteriol. 85:191–198. 1963.—Methods for growing selected species of cellular slime molds in liquid culture on living and dead bacteria are described. Species investigated included Polysphondylium pallidum, P. violaceum, Dictyostelium discoideum, and D. purpureum. Maximal growth of myxamoebae occurred in suspensions of 1010 living bacteria (Escherichia coli B/r)/ml in Sörensen's phosphate buffer (pH 6.0), reaching a density of 107 to 2 × 107 cells/ml in 48 hr. The generation time for the different slime molds ranged from 2.4 hr for P. violaceum to 2.9 hr for D. discoideum (strain V-12). Good growth of P. pallidum occurred between pH 3.6 and 7.8. The slime molds grew less well on dead (autoclaved) than on living bacteria and, except for P. pallidum, the amount and rate of growth decreased markedly as the time of autoclaving was increased from 2.5 to 80 min. Bacteria killed with propylene oxide supported growth equal to those autoclaved for a few minutes. The myxamoebae were very sensitive to the osmotic pressure of the culture medium, especially in the presence of living bacteria, and addition of as little as 0.01 m NaCl caused a measurable decrease in slime mold growth. The culture techniques employed afford useful methods for investigating the nutritional requirements of the cellular slime molds, and the experiments described provide the bases for subsequent studies relating to the axenic cultivation of these singular microorganisms. Images PMID:13961228

  2. Analysis of improved criteria for mold growth in ASHRAE standard 160 by comparison with field observations

    Treesearch

    Samuel V. Glass; Stanley D. Gatland II; Kohta Ueno; Christopher J. Schumacher

    2017-01-01

    ASHRAE Standard 160, Criteria for Moisture-Control Design Analysis in Buildings, was published in 2009. The standard sets criteria for moisture design loads, hygrothermal analysis methods, and satisfactory moisture performance of the building envelope. One of the evaluation criteria specifies conditions necessary to avoid mold growth. The current standard requires that...

  3. Numerical prediction of flow induced fibers orientation in injection molded polymer composites

    NASA Astrophysics Data System (ADS)

    Oumer, A. N.; Hamidi, N. M.; Mat Sahat, I.

    2015-12-01

    Since the filling stage of injection molding process has important effect on the determination of the orientation state of the fibers, accurate analysis of the flow field for the mold filling stage becomes a necessity. The aim of the paper is to characterize the flow induced orientation state of short fibers in injection molding cavities. A dog-bone shaped model is considered for the simulation and experiment. The numerical model for determination of the fibers orientation during mold-filling stage of injection molding process was solved using Computational Fluid Dynamics (CFD) software called MoldFlow. Both the simulation and experimental results showed that two different regions (or three layers of orientation structures) across the thickness of the specimen could be found: a shell region which is near to the mold cavity wall, and a core region at the middle of the cross section. The simulation results support the experimental observations that for thin plates the probability of fiber alignment to the flow direction near the mold cavity walls is high but low at the core region. It is apparent that the results of this study could assist in decisions regarding short fiber reinforced polymer composites.

  4. [Determination of acrylonitrile in injection molding process: data analysis and recommendations].

    PubMed

    Zhong, X P; Chen, Z R; Zhu, Z L

    2017-07-20

    Objective: To investigate whether the identification of acrylonitrile, an occupational hazard factor for the industry of injection molding and plastic products, reported in literature is reasonable, and to put forward some recommendations. Methods: Professional articles published from 1990 to 2016 were searched, and an analysis was performed for the data on the determination of acrylonitrile in the industry of injection molding and plastic products from 2003 to 2016 in Longhua Center for Disease Control and Prevention of Shenzhen. Results: According to the literature, the detection rate of acrylonitrile was 10.7%, and the detection results did not exceed the limit. Conclusion: At present, acrylonitrile may not be used as a routine test item for the industry of injection molding and plastic products, in order to save manpower and material resources.

  5. [A strategy for assessing environmental influence on airway allergy using a regression binary tree-based method].

    PubMed

    Yoshioka, Fumi; Azuma, Emiko; Nakajima, Takae; Hashimoto, Masafumi; Toyoshima, Kyoichiro; Komachi, Yoshio

    2004-08-01

    To clarify the living environment factors that increase the risk of allergic sensitization to house dust mites, we applied a regression binary tree-based method (CART, Classification & Regression Trees) to an epidemiological study on airway allergy. The utility of the tree map in personal sanitary guidance for preventing allergic sensitization was examined with respect to feasibility and validity. A questionnaire was given to 386 healthy adult women, asking them about their individual living environments. Also, blood samples were collected to measure Dermatophagoides pteronyssinus (Dp)-specific IgE, the presence/absence of Dp-sensitization being expressed as positive/negative. The questionnaire consisted of nine items on (1) home ventilation by keeping windows open, (2) personal or family smoking habits, (3) use of air conditioners in hot weather, (4) type of flooring (tatami/wooden/carpet) in the living room, (5) visible mold proliferation in the kitchen, (6) type of housing (concrete/wooden), (7) residential area (heavy or light traffic area) (8) heating system (use of unventilated combustion appliances), and (9) frequency of cleaning (every day or less often). There also were queries on the past history of airway allergic diseases, such as bronchial asthma and allergic rhinitis. CART and a multivariate logistic regression analysis (MLRA) were performed. The subjects were first classified into two groups, with and without a history of airway allergic diseases (Groups WPH and WOPH). In each group, the involvement of living environment factors in Dp-sensitization was examined using CART and MLRA. In the MLRA study, individual living environment factors showed promotional or suppressive effects on Dp-sensitization with differences between the two groups. With respect to the CART results, the two groups were first split by the factor that had the most significant odds ratio for MLRA. In Group WPH, which had a Dp-sensitization risk of 19.5%, the first split was by the factor of visible mold proliferation in the kitchen into the factor-present group with a risk value of 45.5% and the factor-absent group with 13.5%. The mold proliferation group was split with reference to frequent cleaning, and the risk rose to 75% in the factor-absent group and to 100% when family smoking habits were reported. Group WOPH (the risk: 10.8%) was first split into two groups according to the use of air conditioners in hot weather for more than 6 hours a day or less, which showed risk values of 16.7% and 6.9%, respectively. The risk of the group that intensively used air conditioners fell to 8.3% with tatami as flooring in the living room, and, if others, rose to 20.8%. The risk of the factor-lacking group fell to 4.0% without wooden flooring. CART analysis enables us to express complex relationships between living environment factors and Dp-sensitization simply by a binary regression tree, pointing to preventive strategies that can be flexibly changed according to the individual living environments of the subjects.

  6. Genetics of Eosinophilic Esophagitis

    DTIC Science & Technology

    2012-03-01

    cells, left panel, and differential cell counts , right panel) in bronchoalveolar lavage fluid (BALF) in IL- 21R-/- mice compared to wild-type (WT). A...positive skin tests. A third group (30%) had multiple sensitivities to foods and pollens (GM total IgE 285 IU/ ml). Tests for IgE to carbohydrate antigens...milk sensitized, and those with multiple pollen allergies. The frequent occurrence of multiple associated sensitivities to grains, legumes, molds, and

  7. Nonaqueous slip casting of high temperature ceramic superconductors using an investment casting technique

    NASA Technical Reports Server (NTRS)

    Hooker, Matthew W. (Inventor); Taylor, Theodore D. (Inventor); Wise, Stephanie A. (Inventor); Buckley, John D. (Inventor); Vasquez, Peter (Inventor); Buck, Gregory M. (Inventor); Hicks, Lana P. (Inventor)

    1993-01-01

    A process for slip casting ceramic articles that does not employ parting agents and affords the casting of complete, detailed, precision articles that do not possess parting lines is presented. This process is especially useful for high temperature superconductors and water-sensitive ceramics. A wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell mold of the calcium sulfate-bonded investment material. The shell mold is cooled to room temperature, and a ceramic slip, created by dispersing a ceramic powder in an organic liquid, is poured therein. After a ceramic shell of desired thickness or a solid article has set up in the shell mold, excess ceramic slip is poured out. The shell mold is misted with water and peeled away from the ceramic article, after which the ceramic is fired to provide a complete, detailed, precision, high temperature superconductive ceramic article without parting lines. The casting technique may take place in the presence of a magnetic field to orient the ceramic powders during the casting process.

  8. Stable isotope composition (δ(13)C and δ(15)N values) of slime molds: placing bacterivorous soil protozoans in the food web context.

    PubMed

    Tiunov, Alexei V; Semenina, Eugenia E; Aleksandrova, Alina V; Tsurikov, Sergey M; Anichkin, Alexander E; Novozhilov, Yuri K

    2015-08-30

    Data on the bulk stable isotope composition of soil bacteria and bacterivorous soil animals are required to estimate the nutrient and energy fluxes via bacterial channels within detrital food webs. We measured the isotopic composition of slime molds (Myxogastria, Amoebozoa), a group of soil protozoans forming macroscopic spore-bearing fruiting bodies. An analysis of largely bacterivorous slime molds can provide information on the bulk stable isotope composition of soil bacteria. Fruiting bodies of slime molds were collected in a monsoon tropical forest of Cat Tien National Park, Vietnam, and analyzed by continuous-flow isotope ratio mass spectrometry. Prior to stable isotope analysis, carbonates were removed from a subset of samples by acidification. To estimate the trophic position of slime molds, their δ(13) C and δ(15) N values were compared with those of plant debris, soil, microbial destructors (litter-decomposing, humus-decomposing, and ectomycorrhizal fungi) and members of higher trophic levels (oribatid mites, termites, predatory macroinvertebrates). Eight species of slime molds represented by at least three independent samples were 3-6‰ enriched in (13) C and (15) N relative to plant litter. A small but significant difference in the δ(13) C and δ(15) N values suggests that different species of myxomycetes can differ in feeding behavior. The slime molds were enriched in (15) N compared with litter-decomposing fungi, and depleted in (15) N compared with mycorrhizal or humus-decomposing fungi. Slime mold sporocarps and plasmodia largely overlapped with oribatid mites in the isotopic bi-plot, but were depleted in (15) N compared with predatory invertebrates and humiphagous termites. A comparison with reference groups of soil organisms suggests strong trophic links of slime molds to saprotrophic microorganisms which decompose plant litter, but not to humus-decomposing microorganisms or to mycorrhizal fungi. Under the assumption that slime molds are primarily feeding on bacteria, the isotopic similarity of slime molds and mycophagous soil animals indicates that saprotrophic soil bacteria and fungi are similar in bulk isotopic composition. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Phenolic Molding Compounds

    NASA Astrophysics Data System (ADS)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  10. Finite element analysis and simulation of rheological properties of bulk molding compound (BMC)

    NASA Astrophysics Data System (ADS)

    Ergin, M. Fatih; Aydin, Ismail

    2013-12-01

    Bulk molding compound (BMC) is one of the important composite materials with various engineering applications. BMC is a thermoset plastic resin blend of various inert fillers, fiber reinforcements, catalysts, stabilizers and pigments that form a viscous, molding compound. Depending on the end-use application, bulk molding compounds are formulated to achieve close dimensional control, flame and scratch resistance, electrical insulation, corrosion and stain resistance, superior mechanical properties, low shrink and color stability. Its excellent flow characteristics, dielectric properties, and flame resistance make this thermoset material well-suited to a wide variety of applications requiring precision in detail and dimensions as well as high performance. When a BMC is used for these purposes, the rheological behavior and properties of the BMC is the main concern. In this paper, finite element analysis of rheological properties of bulk molding composite material was studied. For this purpose, standard samples of composite material were obtained by means of uniaxial hot pressing. 3 point flexural tests were then carried out by using a universal testing machine. Finite element analyses were then performed with defined material properties within a specific constitutive material behavior. Experimental and numerical results were then compared. Good correlation between the numerical simulation and the experimental results was obtained. It was expected with this study that effects of various process parameters and boundary conditions on the rheological behavior of bulk molding compounds could be determined by means of numerical analysis without detailed experimental work.

  11. Failure Analysis in Platelet Molded Composite Systems

    NASA Astrophysics Data System (ADS)

    Kravchenko, Sergii G.

    Long-fiber discontinuous composite systems in the form of chopped prepreg tapes provide an advanced, structural grade, molding compound allowing for fabrication of complex three-dimensional components. Understanding of process-structure-property relationship is essential for application of prerpeg platelet molded components, especially because of their possible irregular disordered heterogeneous morphology. Herein, a structure-property relationship was analyzed in the composite systems of many platelets. Regular and irregular morphologies were considered. Platelet-based systems with more ordered morphology possess superior mechanical performance. While regular morphologies allow for a careful inspection of failure mechanisms derived from the morphological characteristics, irregular morphologies are representative of the composite architectures resulting from uncontrolled deposition and molding with chopped prerpegs. Progressive failure analysis (PFA) was used to study the damaged deformation up to ultimate failure in a platelet-based composite system. Computational damage mechanics approaches were utilized to conduct the PFA. The developed computational models granted understanding of how the composite structure details, meaning the platelet geometry and system morphology (geometrical arrangement and orientation distribution of platelets), define the effective mechanical properties of a platelet-molded composite system, its stiffness, strength and variability in properties.

  12. High prevalence of Anisakis simplex hypersensitivity and allergy in Sicily, Italy.

    PubMed

    Heffler, Enrico; Sberna, Maria Eva; Sichili, Stefania; Intravaia, Rossella; Nicolosi, Giuliana; Porto, Morena; Liuzzo, Maria Teresa; Picardi, Giuseppe; Fichera, Silvia; Crimi, Nunzio

    2016-02-01

    Anisakis simplex can elicit allergic reactions when ingested in raw or marinated fish. The prevalence of A simplex hypersensitivity and allergy in Sicily (Italy), an area where the consumption of raw or marinated fish is very common, has not been investigated thus far. To investigate the prevalence of A simplex sensitization and its clinical relevance in a large group of unselected patients. All consecutive patients referred to the authors' allergy clinic during a 22 month-period were included in the study, evaluated for sensitization to A simplex and other allergens depending on their clinical history, and investigated for allergic symptoms after the ingestion of raw or marinated fish. Of 3,419 patients screened, 527 (15.4%) were sensitized to A simplex and 29 of these (5.5% of sensitized patients) had a history of A simplex allergy. Approximately 30% of patients had mono-sensitization to A simplex. Co-sensitization to house dust mites or molds yielded an odds ratio of 1.98 or 3.18, respectively, for allergy to A simplex. A high prevalence of A simplex sensitization in a large proportion of patients with mono-sensitization was found, confirming that eating habits influence sensitization to this nematode. Allergic symptoms from A simplex ingestion in raw or marinated fish were quite frequent, with symptoms ranging from oral allergy syndrome to anaphylaxis. Patients sensitized to A simplex were more prone to have allergic symptoms when they had co-sensitization to house dust mites or molds, suggesting possible cross-reactive but clinically relevant allergens between these allergenic sources. Copyright © 2016. Published by Elsevier Inc.

  13. Surface quality of unsaturated polyester resin processed via continuous multi-shot rotational molding

    NASA Astrophysics Data System (ADS)

    Ogila, K. O.; Yang, W.; Shao, M.; Tan, J.

    2017-05-01

    Unsaturated Polyester Resin is a versatile and cost efficient thermosetting plastic whose application in rotational molding is currently limited by its relatively high initial viscosity and heat of reaction. These material characteristics result in uneven material distribution, poor surface finish and imperfections in the moldings especially when large wall thicknesses are required. The current work attempts to remedy these shortcomings through the development of a continuous multi-shot system which adds predetermined loads of unsaturated polyester resin into a rotating mold at various intervals. As part of this system, a laboratory-scale uniaxial rotational molding machine was used to produce Unsaturated Polyester Resin moldings in single and double shots. Optimal processing conditions were determined through visual studies, three dimensional microscopic studies, thickness distribution analysis and Fourier Transform Infrared spectroscopy. Volume filling fractions of 0.049-0.065, second shot volumes of 0.5-0.75 from the first shot, rotational speeds of 15-20 rpm and temperatures of 30-50 °C resulted in moldings of suitable quality on both the inner and outer surfaces.

  14. A Review of Metal Injection Molding- Process, Optimization, Defects and Microwave Sintering on WC-Co Cemented Carbide

    NASA Astrophysics Data System (ADS)

    Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.

    2017-08-01

    This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.

  15. Study of a Compression-Molding Process for Ultraviolet Light-Emitting Diode Exposure Systems via Finite-Element Analysis

    PubMed Central

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-01-01

    Although wafer-level camera lenses are a very promising technology, problems such as warpage with time and non-uniform thickness of products still exist. In this study, finite element simulation was performed to simulate the compression molding process for acquiring the pressure distribution on the product on completion of the process and predicting the deformation with respect to the pressure distribution. Results show that the single-gate compression molding process significantly increases the pressure at the center of the product, whereas the multi-gate compressing molding process can effectively distribute the pressure. This study evaluated the non-uniform thickness of product and changes in the process parameters through computer simulations, which could help to improve the compression molding process. PMID:28617315

  16. Compact surface plasmon resonance biosensor utilizing an injection-molded prism

    NASA Astrophysics Data System (ADS)

    Chen, How-Foo; Chen, Chih-Han; Chang, Yun-Hsiang; Chuang, Hsin-Yuan

    2016-05-01

    Targeting at a low cost and accessible diagnostic device in clinical practice, a compact surface plasmon resonance (SPR) biosensor with a large dynamic range in high sensitivity is designed to satisfy commercial needs in food safety, environmental bio-pollution monitoring, and fast clinical diagnosis. The core component integrates an optical coupler, a sample-loading plate, and angle-tuning reflectors is injection-molded as a free-from prism made of plastic optics. This design makes a matching-oil-free operation during operation. The disposability of this low-cost component ensures testing or diagnosis without cross contamination in bio-samples.

  17. Clinical Diagnosis of the Dampness and Mold Hypersensitivity Syndrome: Review of the Literature and Suggested Diagnostic Criteria

    PubMed Central

    Valtonen, Ville

    2017-01-01

    A great variety of non-specific symptoms may occur in patients living or working in moisture-damaged buildings. In the beginning, these symptoms are usually reversible, mild, and present irritation of mucosa and increased morbidity due to respiratory tract infections and asthma-like symptoms. Later, the disease may become chronic and a patient is referred to a doctor where the assessment of dampness and mold hypersensitivity syndrome (DMHS) often presents diagnostic challenges. Currently, unanimously accepted laboratory tests are not yet available. Therefore, the diagnosis of DMHS is clinical and is based on the patient’s history and careful examination. In this publication, I reviewed contemporary knowledge on clinical presentations, laboratory methods, and clinical assessment of DMHS. From the literature, I have not found any proposed diagnostic clinical criteria. Therefore, I propose five clinical criteria to diagnose DMHS: (1) the history of mold exposure in water-damaged buildings, (2) increased morbidity to due infections, (3) sick building syndrome, (4) multiple chemical sensitivity, and (5) enhanced scent sensitivity. If all the five criteria are met, the patient has a very probable DMHS. To resolve the current problems in assigning correct DMHS diagnosis, we also need novel assays to estimate potential risks of developing DMHS. PMID:28848553

  18. Clinical Diagnosis of the Dampness and Mold Hypersensitivity Syndrome: Review of the Literature and Suggested Diagnostic Criteria.

    PubMed

    Valtonen, Ville

    2017-01-01

    A great variety of non-specific symptoms may occur in patients living or working in moisture-damaged buildings. In the beginning, these symptoms are usually reversible, mild, and present irritation of mucosa and increased morbidity due to respiratory tract infections and asthma-like symptoms. Later, the disease may become chronic and a patient is referred to a doctor where the assessment of dampness and mold hypersensitivity syndrome (DMHS) often presents diagnostic challenges. Currently, unanimously accepted laboratory tests are not yet available. Therefore, the diagnosis of DMHS is clinical and is based on the patient's history and careful examination. In this publication, I reviewed contemporary knowledge on clinical presentations, laboratory methods, and clinical assessment of DMHS. From the literature, I have not found any proposed diagnostic clinical criteria. Therefore, I propose five clinical criteria to diagnose DMHS: (1) the history of mold exposure in water-damaged buildings, (2) increased morbidity to due infections, (3) sick building syndrome, (4) multiple chemical sensitivity, and (5) enhanced scent sensitivity. If all the five criteria are met, the patient has a very probable DMHS. To resolve the current problems in assigning correct DMHS diagnosis, we also need novel assays to estimate potential risks of developing DMHS.

  19. QUANTITATIVE PCR ANALYSIS OF MOLDS IN THE DUST FROM HOMES OF ASTHMATIC CHILDREN IN NORTH CAROLINA

    EPA Science Inventory

    The vacuum bag (VB) dust was analyzed by mold specific quantitative PCR. These results were compared to the analysis survey calculated for each of the homes. The mean and standard deviation (SD) of the ERMI values in the homes of the NC asthmatic children was 16.4 (6.77), compa...

  20. CAE for Injection Molding — Past, Present and the Future

    NASA Astrophysics Data System (ADS)

    Wang, Kuo K.

    2004-06-01

    It is well known that injection molding is the most effective process for mass-producing discrete plastic parts of complex shape to the highest precision at the lowest cost. However, due to the complex property of polymeric materials undergoing a transient non-isothermal process, it is equally well recognized that the quality of final products is often difficult to be assured. This is particularly true when a new mold or material is encountered. As a result, injection molding has often been viewed as an art than a science. During the past few decades, numerical simulation of injection molding process based on analytic models has become feasible for practical use as computers became faster and cheaper continually. A research effort was initiated at the Cornell Injection Molding Program (CIMP) in 1974 under a grant from the National Science Foundation. Over a quarter of the century, CIMP has established some scientific bases ranging from materials characterization, flow analysis, to prediction of part quality. Use of such CAE tools has become common place today in industry. Present effort has been primarily aimed at refinements of many aspects of the process. Computational efficiency and user-interface have been main thrusts by commercial software developers. Extension to 3-dimensional flow analysis for certain parts has drawn some attention. Research activities are continuing on molding of fiber-filled materials and reactive polymers. Expanded molding processes such as gas-assisted, co-injection, micro-molding and many others are continually being investigated. In the future, improvements in simulation accuracy and efficiency will continue. This will include in-depth studies on materials characterization. Intelligent on-line process control may draw more attention in order to achieve higher degree of automation. As Internet technology continues to evolve, Web-based CAE tools for design, production, remote process monitoring and control can come to path. The CAE tools will eventually be integrated into an Enterprise Resources Planning (ERP) system as the trend of enterprise globalization continues.

  1. Ultrasonically-assisted Polymer Molding: An Evaluation

    NASA Astrophysics Data System (ADS)

    Moles, Matthew; Roy, Anish; Silberschmidt, Vadim

    Energy reduction in extrusion and injection molding processes can be achieved by the introduction of ultrasonic energy. Polymer flow can be enhanced on application of ultrasonic vibration, which can reduce the thermal and pressure input requirements to produce the same molding; higher productivity may also be achieved. In this paper, a design of an ultrasound-assisted injection mold machine is explored. An extrusion-die design was augmented with a commercial 1.5 kW ultrasonic transducer and sonotrode designed to resonate close to 20 kHz with up to 100 μm vibration amplitude. The design was evaluated with modal and thermal analysis using finite-element analysis software. The use of numerical techniques, including computational fluid dynamics, fluid-structure interaction and coupled Lagrangian-Eulerian method, to predict the effect of ultrasound on polymer flow was considered. A sonotrode design utilizing ceramic to enhance thermal isolation was also explored.

  2. Effect of Injection Molding Melt Temperatures on PLGA Craniofacial Plate Properties during In Vitro Degradation.

    PubMed

    de Melo, Liliane Pimenta; Salmoria, Gean Vitor; Fancello, Eduardo Alberto; Roesler, Carlos Rodrigo de Mello

    2017-01-01

    The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures.

  3. Predictive engineering tools for injection-molded long-carbon-fiber thermoplastic composites - FY 2015 third quarterly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Fifield, Leonard S.; Mori, Steven

    During the third quarter of FY 2015, the following technical progress has been made toward project milestones: 1) Magna oversaw the tool build and prepared the molding plan for the complex part of Phase II. 2) PlastiComp hosted a visit by Magna and Toyota on April 23rd to finalize the molding scope and schedule. The plan for molding trials including selection of molding parameters for both LFT and D-LFT for the U-shape complex part was established. 3) Toyota shipped the U-shape complex part tool to Magna on May 28th, 2015. 4) Plasticomp provided 30wt% LCF/PP and 30wt% LCF/PA66 compounded pelletsmore » to Magna for molding the complex part. 5) Magna performed preliminary molding trials on June 2nd, 2015 to validate wall thickness, fill profile, tool temperature and shot size requirements for the complex part. 6) Magna performed the first complex part run on June 16th and 17th, 2015 at Magna’s Composite Centre of Excellence in Concord, ON, Canada. Dale Roland of Plasticomp, and Umesh Gandhi of Toyota also attended the molding. 7) Magna discussed and finalized the plan with PNNL and the team for cutting samples from molded parts at selected locations for fiber orientation and length measurements. 8) Magna provided the computer-aided design (CAD) files of the complex parts with and without ribs to PNNL and Autodesk to build the corresponding ASMI models for injection molding simulations. Magna also provided the actual parameters used. 9) Plasticomp’s provided knowledge and experience of molding LCF materials essential to the successful molding of the parts including optimization of fill speed, tool temperatures, and plasticizing conditions for the 30wt% LCF/PP and 30wt% LCF/PA66 materials in both rib and non-rib versions. 10) Magna molded additional parts for evaluation of mechanical property testing including torsional stiffness on June 29th and 30th, 2015 at Magna’s Composite Center of Excellence. 11) Toyota began preparation for the torsion test of the specimens. Preparation of a computer-aided engineering (CAE) model to predict the performance is in progress. 12) Autodesk fixed an error in the implementation of the proper orthogonal decomposition (POD) calculation of fiber length that had caused the ASMI solution to crash and provided an updated build of ASMI containing the fix. 13)Autodesk reviewed and provided feedback for the complex part molding and measurement locations. 14) Autodesk provided support to set up the workflow for ASMI-ABAQUS® analysis, and provided a fix and workaround for a bug in the ASMI-ABAQUS® output command. 15) Autodesk helped build ASMI analysis models for the complex parts with and without ribs. 16) Autodesk worked on improving the orientation prediction accuracy in the shearing layer for 3D meshes based on comparison to measured data of the plaque moldings. 17) PNNL installed a new ASMI version received from Autodesk and performed comparative analyses to assess mid-plane versus 3D fiber length predictions using the full fiber length model and the reduced-order model (ROM) using POD. 18) PNNL presented the project scope, accomplishments, significant results and future plans to DOE and the USCAR Materials Tech Team on June 3rd, 2015. 19) PNNL discussed the cutting of samples from molded parts and finalized a plan with Magna and the team suggesting the sample size, locations and number of samples per location. 20) PNNL and Autodesk built ASMI models for the complex parts with and without ribs, and preliminary analyses of the part with ribs were conducted using the actual molding parameters received from Magna. 21) PNNL worked on a procedure to extract fiber orientation and length results from a 3D ASMI analysis to a 3D ABAQUS model. This procedure is essential to import ASMI fiber orientation and length to a 3D ABAQUS model of the part allowing future part structural analysis for weight reduction study.« less

  4. A novel tool to standardize rheology testing of molten polymers for pharmaceutical applications.

    PubMed

    Treffer, Daniel; Troiss, Alexander; Khinast, Johannes

    2015-11-10

    Melt rheology provides information about material properties that are of great importance for equipment design and simulations, especially for novel pharmaceutical manufacturing operations, including extrusion, injection molding or 3d printing. To that end, homogeneous samples must be prepared, most commonly via compression or injection molding, both of which require costly equipment and might not be applicable for shear- and heat-sensitive pharmaceutical materials. Our study introduces a novel vacuum compression molding (VCM) tool for simple preparation of thermoplastic specimens using standard laboratory equipment: a hot plate and a vacuum source. Sticking is eliminated by applying polytetrafluoroethylene (PTFE) coated separation foils. The evacuation of the tool leads to compression of the sample chamber, which is cost-efficient compared to conventional methods, such as compression molding or injection molding that require special equipment. In addition, this compact design reduces the preparation time and the heat load. The VCM tool was used to prepare samples for a rheological study of three pharmaceutical polymers (Soluplus(®), Eudragit(®)E, EVA Rowalit(®) 300-1/28). The prepared samples were without any air inclusions or voids, and the measurements had a high reproducibility. All relative standard deviations were below 3%. The obtained data were fitted to the Carreau-Yasuda model and time-temperature superposition was applied. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Precision glass molding: Toward an optimal fabrication of optical lenses

    NASA Astrophysics Data System (ADS)

    Zhang, Liangchi; Liu, Weidong

    2017-03-01

    It is costly and time consuming to use machining processes, such as grinding, polishing and lapping, to produce optical glass lenses with complex features. Precision glass molding (PGM) has thus been developed to realize an efficient manufacture of such optical components in a single step. However, PGM faces various technical challenges. For example, a PGM process must be carried out within the super-cooled region of optical glass above its glass transition temperature, in which the material has an unstable non-equilibrium structure. Within a narrow window of allowable temperature variation, the glass viscosity can change from 105 to 1012 Pas due to the kinetic fragility of the super-cooled liquid. This makes a PGM process sensitive to its molding temperature. In addition, because of the structural relaxation in this temperature window, the atomic structure that governs the material properties is strongly dependent on time and thermal history. Such complexity often leads to residual stresses and shape distortion in a lens molded, causing unexpected changes in density and refractive index. This review will discuss some of the central issues in PGM processes and provide a method based on a manufacturing chain consideration from mold material selection, property and deformation characterization of optical glass to process optimization. The realization of such optimization is a necessary step for the Industry 4.0 of PGM.

  6. IMPACT OF ATRA ON OVALBUMIN AND MOLD-SENSITIZED F344 RATS AND REVERSAL OF HEALTH-RELATED IMPLICATIONS BY CITRAL.

    PubMed

    Farah, Ibrahim O; Holt-Gray, Carlene; Cameron, Joseph A; Tucci, Michelle; Benghuzzi, Hamed

    2017-01-01

    The role of retinoic acid (All Trans Retinoic Acid; ATRA) in the development of hypervitaminosis A pathophysiology is not well understood or established in the literature. As well, the role of Citral (inhibitor of retinoid function; a non-toxic chemical that exists in two forms (diethyl; C1 or cis-trans dimethyl; C2).) in the reversal of pathophysiological implications is also not ascertained under an in vivo setting. Therefore, it is hypothesized that ovalbumin exposure will sensitize the body to supra-physiologic levels of retinoic acid leading to a negative pathophysiological impact and that Citrals 1 and 2 will reverse or ameliorate the related damage to the body's pathophysiology. Even though ovalbumin and retinoic have been previously applied through intra-tracheal route in cancer prevention and immunological research, the objective of this study was to evaluate their interaction as a remedy for hypervitaminosis A. This IACUC approved in vivo study used Fischer 344 rats ( n = 80 ;229 to 273g), which were randomly assigned to controls as well as ovalbumin and mold-sensitized treatment groups (0.80 mg/kg and 1X109 mold spores combined from 4 strains/100 μl intra-tracheal; all others were dosed by intra-peritoneal injection at days 1 and 7 with 80 mg/kg each of ATRA as well as 20 and 50 mg/kg each of Citrals 1 or 2 individually or in combination to represent all four chemicals and mold spores treatments.. Positive and negative controls for each treatment were also included in the study. Animals were housed in rat cages at the JSU Research Animal Core Facilities and were placed on a 12:12 light dark cycle. A standard rodent diet and water access were provided ad-libidum. Rat weights were recorded on day 1 and 21, all animals were sacrificed on day 21 and blood was collected and processed for hematological parameters. Results showed that even though C1 and C2 were not toxic individually, their combination at high dosing was lethal. Exposure of ovalbumin-sensitized rats to ATRA showed various levels of weight losses and negative hematological implications that were ameliorated by exposure to Citrals at various combinations with retinoic acid. Taken together, the study showed that there are variable pathophysiological responses from the interaction of ovalbumin, mold spores and retinoic acid and that Citrals were found to be individually effective in reversing health-related pathophysiologies. These findings warrants further investigations as to the actual role of these interactions in relation to acute pathophysiologic health implications and the possibility of reversing hypervitaminosis A-mediated health-related impacts.

  7. Optimization of injection molding process parameters for a plastic cell phone housing component

    NASA Astrophysics Data System (ADS)

    Rajalingam, Sokkalingam; Vasant, Pandian; Khe, Cheng Seong; Merican, Zulkifli; Oo, Zeya

    2016-11-01

    To produce thin-walled plastic items, injection molding process is one of the most widely used application tools. However, to set optimal process parameters is difficult as it may cause to produce faulty items on injected mold like shrinkage. This study aims at to determine such an optimum injection molding process parameters which can reduce the fault of shrinkage on a plastic cell phone cover items. Currently used setting of machines process produced shrinkage and mis-specified length and with dimensions below the limit. Thus, for identification of optimum process parameters, maintaining closer targeted length and width setting magnitudes with minimal variations, more experiments are needed. The mold temperature, injection pressure and screw rotation speed are used as process parameters in this research. For optimal molding process parameters the Response Surface Methods (RSM) is applied. The major contributing factors influencing the responses were identified from analysis of variance (ANOVA) technique. Through verification runs it was found that the shrinkage defect can be minimized with the optimal setting found by RSM.

  8. Simulation of cracking cores when molding piston components

    NASA Astrophysics Data System (ADS)

    Petrenko, Alena; Soukup, Josef

    2014-08-01

    The article deals with pistons casting made from aluminum alloy. Pistons are casting at steel mold with steel core. The casting is provided by gravity casting machine. The each machine is equipped by two metal molds, which are preheated above temperature 160 °C before use. The steel core is also preheated by flame. The metal molds and cores are heated up within the casting process. The temperature of the metal mold raise up to 200 °C and temperature of core is higher. The surface of the core is treated by nitration. The mold and core are cooled down by water during casting process. The core is overheated and its top part is finally cracked despite its intensive water-cooling. The life time cycle of the core is decreased to approximately 5 to 15 thousands casting, which is only 15 % of life time cycle of core for production of other pistons. The article presents the temperature analysis of the core.

  9. Comparison of work-related symptoms and visual contrast sensitivity between employees at a severely water-damaged school and a school without significant water damage.

    PubMed

    Thomas, Gregory; Burton, Nancy Clark; Mueller, Charles; Page, Elena; Vesper, Stephen

    2012-09-01

    The National Institute for Occupational Safety and Health (NIOSH) conducted a health hazard evaluation (HHE) of a water-damaged school in New Orleans (NO), Louisiana. Our aim in this evaluation was to document employee health effects related to exposure to the water-damaged school, and to determine if VCS testing could serve as a biomarker of effect for occupants who experienced adverse health effects in a water-damaged building. NIOSH physicians and staff administered a work history and medical questionnaire, conducted visual contrast sensitivity (VCS) testing, and collected sticky-tape, air, and dust samples at the school. Counting, culturing, and/or a DNA-based technology, called mold-specific quantitative PCR (MSQPCR), were also used to quantify the molds. A similar health and environmental evaluation was performed at a comparable school in Cincinnati, Ohio which was not water-damaged. Extensive mold contamination was documented in the water-damaged school and employees (n = 95) had higher prevalences of work-related rashes and nasal, lower respiratory, and constitutional symptoms than those at the comparison school (n = 110). VCS values across all spatial frequencies were lower among employees at the water-damaged school. Employees exposed to an extensively water-damaged environment reported adverse health effects, including rashes and nasal, lower respiratory, and constitutional symptoms. VCS values were lower in the employees at the water-damaged school, but we do not recommend using it in evaluation of people exposed to mold. Am. J. Ind. Med. 55:844-854, 2012. This article is a U.S. Government work and is in the public domain in the USA. Published 2012 Wiley Periodicals, Inc. This article is a U.S. Government work and is in the public domain in the USA.

  10. Molecular biological researches of Kuro-Koji molds, their classification and safety.

    PubMed

    Yamada, Osamu; Takara, Ryo; Hamada, Ryoko; Hayashi, Risa; Tsukahara, Masatoshi; Mikami, Shigeaki

    2011-09-01

    To assess the position of Kuro-Koji molds in black Aspergillus, we performed sequence analysis of approximately 2500 nucleotides of partial gene fragments, such as histone 3, on a total of 57 Aspergillus strains, including Aspergillus kawachii NBRC 4308, 12 Kuro-Koji molds isolated from awamori breweries in Japan, Aspergillus niger ATCC 1015, and A. tubingensis ATCC10550. Sequence results showed that all black Aspergillus strains could be classified into 3 types, type N which includes A. niger ATCC 1015, type T which includes A. tubingensis ATCC 10550, and type L which includes A. kawachii NBRC 4308. Phylogenetic analysis showed these three types belong to different clusters. All 12 Kuro-Koji molds isolated from awamori breweries were classified as type L, thus we concluded type L represents the industrial Kuro-Koji molds. We found all type L strains lack the An15g07920 gene which is required for ochratoxin A biosynthesis in black Aspergillus. This sequence is present in the genome of A. niger CBS 513.88 and has homology to the polyketide synthase fragment of A. ochraceus which is involved in ochratoxin A biosynthesis. Based on the industrial importance and the safety of Kuro-Koji molds, we propose to classify the type L strains as Aspergillus luchuensis, as initially reported by Dr. Inui. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. HISTOPATHOLOGICAL ANALYSIS OF THE F344 RAT LUNG UPON EXPOSURE TO RETENOIC ACID, OVALBUMIN, MOLD SPORES AND CITRAL.

    PubMed

    Farah, Ibrahim O; Holt-Gray, Carlene; Cameron, Joseph A; Tucci, Michelle; Benghuzzi, Hamed

    2017-01-01

    The paradoxical role of retinoic acid (All Trans Retinoic Acid; ATRA) in the development of allergic and/or inflammatory complications in contrast to a therapeutic modality for lung pathology is not well understood or established in the literature. As well, the role of Citral (inhibitor of retinoid function; a non-toxic chemical that exists in two forms (diethyl; C1 or cis-trans dimethyl; C2), in the reversal of retinoic acid, ovalbumin and allergic mold spore pathophysiology is also not well ascertained under an in vivo setting. Therefore, it is hypothesized that exposure of F344 lung tissues to supra-physiologic levels of retinoic acid, ovalbumin and mold spores individually or in combination with each other will lead to inflammatory tissue pathology and that Citral 1 and 2 will reverse or ameliorate the related pathological damage to lung tissues. Even though ovalbumin and retinoic acid have been previously applied through intra-tracheal route in cancer prevention and immunological research, the objective of this study was to evaluate the histopathological implications of such exposure in vivo. This IACUC approved in vivo study used Fischer 344 rats ( n = 80 ; 229 to 273g), which were randomly assigned to controls as well as ovalbumin and mold-sensitized treatment groups (0.80 mg/kg and 1×10 9 mold spores combined from 4 strains/100 μl intra-tracheal; all others were dosed by intra-peritoneal injection at days 1 and 7 with 80 mg/kg each of ATRA as well as 20 and 50 mg/kg each of Citrals 1 or 2 individually or in combination to represent all four chemicals and mold spores treatments. Positive and negative controls for each treatment were also included in the study. Animals were housed in rat cages at the JSU Research Animal Core Facilities and were placed on a 12:12 light-dark cycle. A standard rodent diet and water access were provided ad libidum. All animals were sacrificed on day 21 and lung tissues were processed for histopathology. Slides were prepared and were digitized for comparison of tissues pathology. Results showed that exposure of the F344 rats to ovalbumin and ATRA showed various levels of lung tissue damage that was ameliorated by Citral 2 in combination. Mold and ATRA exposure caused various levels of lung tissue damage that was reversed by C1 in combination with each other. Taken together, the study showed that there are variable pathologic inflammatory responses from the interaction of ovalbumin, Citrals, mold spores and retinoic acid, and that the addition of Citrals have reversed lung tissue pathologies. These findings warrants further investigation as to the actual role of these interactions in relation to acute/chronic lung disease and the possibility of reversing retinoid-mediated pathologies in the Fisher rat model.

  12. Allergens in household dust and serological indicators of atopy and sensitization in Detroit children with history-based evidence of asthma.

    PubMed

    Williams, Ann Houston; Smith, James Travis; Hudgens, Edward E; Rhoney, Scott; Ozkaynak, Halûk; Hamilton, Robert G; Gallagher, Jane E

    2011-09-01

    Home exposure to allergens is an important factor in the development of sensitization and subsequent exacerbations of allergic asthma. We investigated linkages among allergen exposure, immunological measurements, and asthma by examining (1) reservoir dust allergen levels in homes, (2) associations between presence of allergens in homes and sensitization status of resident children, and (3) associations between asthma status and total IgE, atopy (by Phadiatop), and positive allergen-specific tests. The study protocol was approved by Institutional Review Boards (IRBs) of the University of North Carolina Chapel Hill; Westat, Inc.; and the US Environmental Protection Agency Human Research Protocol Office. Data were collected from questionnaires, serum analyses, and household vacuum dust. Children (n = 205) were predominately African American (AA) (85.4%) and 51.6% were asthmatic. Sera from 185 children and home dust samples (n = 141) were analyzed for total and specific IgE antibodies to allergens from cat and dog dander, cockroach, dust mites, mice, rats, and molds. Sixty percent of the homes had detectable levels of three or more dust allergens. The proportions of children with positive allergen-specific IgE tests were dust mite (32%), dog (28%), cat (23%), cockroach (18%), mouse (5%), rat (4%), and molds (24-36%). Children testing positive to a single allergen also had positive responses to other allergens. Those children with positive serum tests for cat, dog, and dust mite lived in homes with detectable levels of cat (51%), dog (90%), and dust mite (Der f 1) (92%) allergens. Correlations between children's specific IgE levels and dust levels were linearly related for dog (p < .04), but not for cat (p = .12) or dust mite (Der f 1) (p = .21). Odds ratios (95% CI) for the associations between asthma and serum-specific IgE were over 1.0 for cat, dog, dust mite (Der f 1), cockroach, and four types of molds. House dust allergen exposure levels, however, exhibited no differences between asthmatic and non-asthmatic homes. Both the co-occurrence of multiple allergens in dust and the high frequency of multiple allergen sensitizations indicate that a broad-based intervention aimed at reducing multiple allergens (pets, pests, and molds) would be more successful than any approach that aimed at reducing one type of allergen.

  13. Immediate-type hypersensitivity reaction to ingestion of mycoprotein (Quorn) in a patient allergic to molds caused by acidic ribosomal protein P2.

    PubMed

    Hoff, Michael; Trüeb, Ralph M; Ballmer-Weber, Barbara K; Vieths, Stefan; Wuethrich, Brunello

    2003-05-01

    Quorn is the brand name for a line of foods made with so-called "mycoprotein," which springs from the mold Fusarium venenatum. Since the introduction on the food market, there have been complaints from consumers reporting adverse gastrointestinal reactions after ingestion of mycoprotein. To date, it is not clear whether the reported symptoms are IgE-mediated. The aim of the study was to describe for the first time a case history of an asthmatic patient with severe hypersensitivity reactions to ingested mycoprotein and to identify and characterize the potential allergen that might be responsible for this. The sensitization pattern of the asthmatic subject was characterized, and food allergy to mycoprotein was assessed by double-blinded placebo-controlled food challenge. Afterward, specific IgE antibodies of the serum of this patient were used to screen a Fusarium culmorum cDNA expression library. The coding sequence of one enriched cDNA-clone was expressed in Escherichia coli to produce a recombinant protein that was further purified and immunologically characterized. The patient showed high sensitization to many known aeroallergens but apart from Quorn not to any other tested food samples. The deduced amino acid sequence of the enriched cDNA-clone (Fus c 1) showed large identity to the 60S acidic ribosomal protein P2 which is highly conserved among several species and also described as minor allergen in other mold species. The frequency of IgE reactivity of sera from F culmorum -sensitized subjects to rFus c 1 was approximately 35%. By enzyme allergosorbent test inhibition, we found 65% inhibition of mycoprotein IgE reactivity by rFus c 1. On the opposite we found reduced IgE reactivity of rFus c 1 of 68% by using mycoprotein as inhibitor. Sensitization to mold allergens by the respiratory tract and subsequent oral ingestion of cross-reactive proteins may lead to severe food-allergic reactions. Thus, the 60S acidic ribosomal protein P2 of F venenatum probably is the reason for the described severe hypersensitivity reactions of the patient to Quorn-mycoprotein because of its potential cross-reactivity to the F culmorum allergen Fus c 1.

  14. Genetics of Eosinophilic Esophagitis

    DTIC Science & Technology

    2011-03-01

    cellular content (total cells, left panel, and differential cell counts , right panel) in bronchoalveolar lavage fluid (BALF) in IL-21R-/- mice compared...group (30%) had multiple sensitivities to foods and pollens (GM total IgE 285 IU/ ml). Tests for IgE to carbohydrate antigens were negative in all...those with multiple pollen allergies. The frequent occurrence of multiple associated sensitivities to grains, legumes, molds, and pollens suggests that

  15. FRET-based quantum dot immunoassay for rapid and sensitive detection of Aspergillus amstelodami.

    PubMed

    Kattke, Michele D; Gao, Elizabeth J; Sapsford, Kim E; Stephenson, Larry D; Kumar, Ashok

    2011-01-01

    In this study, a fluorescence resonance energy transfer (FRET)-based quantum dot (QD) immunoassay for detection and identification of Aspergillus amstelodami was developed. Biosensors were formed by conjugating QDs to IgG antibodies and incubating with quencher-labeled analytes; QD energy was transferred to the quencher species through FRET, resulting in diminished fluorescence from the QD donor. During a detection event, quencher-labeled analytes are displaced by higher affinity target analytes, creating a detectable fluorescence signal increase from the QD donor. Conjugation and the resulting antibody:QD ratios were characterized with UV-Vis spectroscopy and QuantiT protein assay. The sensitivity of initial fluorescence experiments was compromised by inherent autofluorescence of mold spores, which produced low signal-to-noise and inconsistent readings. Therefore, excitation wavelength, QD, and quencher were adjusted to provide optimal signal-to-noise over spore background. Affinities of anti-Aspergillus antibody for different mold species were estimated with sandwich immunoassays, which identified A. fumigatus and A. amstelodami for use as quencher-labeled- and target-analytes, respectively. The optimized displacement immunoassay detected A. amstelodami concentrations as low as 10(3) spores/mL in five minutes or less. Additionally, baseline fluorescence was produced in the presence of 10(5) CFU/mL heat-killed E. coli O157:H7, demonstrating high specificity. This sensing modality may be useful for identification and detection of other biological threat agents, pending identification of suitable antibodies. Overall, these FRET-based QD-antibody biosensors represent a significant advancement in detection capabilities, offering sensitive and reliable detection of targets with applications in areas from biological terrorism defense to clinical analysis.

  16. FRET-Based Quantum Dot Immunoassay for Rapid and Sensitive Detection of Aspergillus amstelodami

    PubMed Central

    Kattke, Michele D.; Gao, Elizabeth J.; Sapsford, Kim E.; Stephenson, Larry D.; Kumar, Ashok

    2011-01-01

    In this study, a fluorescence resonance energy transfer (FRET)-based quantum dot (QD) immunoassay for detection and identification of Aspergillus amstelodami was developed. Biosensors were formed by conjugating QDs to IgG antibodies and incubating with quencher-labeled analytes; QD energy was transferred to the quencher species through FRET, resulting in diminished fluorescence from the QD donor. During a detection event, quencher-labeled analytes are displaced by higher affinity target analytes, creating a detectable fluorescence signal increase from the QD donor. Conjugation and the resulting antibody:QD ratios were characterized with UV-Vis spectroscopy and QuantiT protein assay. The sensitivity of initial fluorescence experiments was compromised by inherent autofluorescence of mold spores, which produced low signal-to-noise and inconsistent readings. Therefore, excitation wavelength, QD, and quencher were adjusted to provide optimal signal-to-noise over spore background. Affinities of anti-Aspergillus antibody for different mold species were estimated with sandwich immunoassays, which identified A. fumigatus and A. amstelodami for use as quencher-labeled- and target-analytes, respectively. The optimized displacement immunoassay detected A. amstelodami concentrations as low as 103 spores/mL in five minutes or less. Additionally, baseline fluorescence was produced in the presence of 105 CFU/mL heat-killed E. coli O157:H7, demonstrating high specificity. This sensing modality may be useful for identification and detection of other biological threat agents, pending identification of suitable antibodies. Overall, these FRET-based QD-antibody biosensors represent a significant advancement in detection capabilities, offering sensitive and reliable detection of targets with applications in areas from biological terrorism defense to clinical analysis. PMID:22163961

  17. Simulation of mechanical behavior and optimization of simulated injection molding process for PLA based antibacterial composite and nanocomposite bone screws using central composite design.

    PubMed

    Heidari, Behzad Shiroud; Oliaei, Erfan; Shayesteh, Hadi; Davachi, Seyed Mohammad; Hejazi, Iman; Seyfi, Javad; Bahrami, Mozhgan; Rashedi, Hamid

    2017-01-01

    In this study, injection molding of three poly lactic acid (PLA) based bone screws was simulated and optimized through minimizing the shrinkage and warpage of the bone screws. The optimization was carried out by investigating the process factors such as coolant temperature, mold temperature, melt temperature, packing time, injection time, and packing pressure. A response surface methodology (RSM), based on the central composite design (CCD), was used to determine the effects of the process factors on the PLA based bone screws. Upon applying the method of maximizing the desirability function, optimization of the factors gave the lowest warpage and shrinkage for nanocomposite PLA bone screw (PLA9). Moreover, PLA9 has the greatest desirability among the selected materials for bone screw injection molding. Meanwhile, a finite element analysis (FE analysis) was also performed to determine the force values and concentration points which cause yielding of the screws under certain conditions. The Von-Mises stress distribution showed that PLA9 screw is more resistant against the highest loads as compared to the other ones. Finally, according to the results of injection molding simulations, the design of experiments (DOE) and structural analysis, PLA9 screw is recommended as the best candidate for the production of biomedical materials among all the three types of screws. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Investigation on the Effect of Mold Constraints and Cooling Rate on Residual Stress During the Sand-Casting Process of 1086 Steel by Employing a Thermomechanical Model

    NASA Astrophysics Data System (ADS)

    Baghani, Amir; Davami, Parviz; Varahram, Naser; Shabani, Mohsen Ostad

    2014-06-01

    In this study, the effects of mold constraints and cooling rate on residual stress were analyzed during the shaped casting process. For this purpose, an H-shaped sample was designed in which the contraction of its middle portion is highly restricted by the mold during the cooling process. The effects of an increasing cooling rate combined with mold constraints were analyzed by reducing the thickness of the middle portion in the second sample. A three-dimensional coupled temperature-displacement analysis was performed in finite-element code ABAQUS to simulate residual stress distribution, and then numerical results were verified by the hole-drilling strain-gauge method. It was concluded that the mold constraints have a greater effect on the values of residual stress than the cooling rate (thin section) in steel sand casting. Increasing the cooling rate would increase the amount of residual stress, only in the presence of mold constraints. It is also suggested that employing the elastic-plastic stress model for the sand mold will satisfy the experimental results and avoid exaggerated values of residual stress in simulation.

  19. Design and thermal analysis of a mold used in the injection of elastomers

    NASA Astrophysics Data System (ADS)

    Fekiri, Nasser; Canto, Cécile; Madec, Yannick; Mousseau, Pierre; Plot, Christophe; Sarda, Alain

    2017-10-01

    In the process of injection molding of elastomers, improving the energy efficiency of the tools is a current challenge for industry in terms of energy consumption, productivity and product quality. In the rubber industry, 20% of the energy consumed by capital goods comes from heating processes; more than 50% of heat losses are linked to insufficient control and thermal insulation of Molds. The design of the tooling evolves in particular towards the reduction of the heated mass and the thermal insulation of the molds. In this paper, we present a complex tool composed, on one hand, of a multi-cavity mold designed by reducing the heated mass and equipped with independent control zones placed closest to each molding cavity and, on the other hand, of a regulated channel block (RCB) which makes it possible to limit the waste of rubber during the injection. The originality of this tool lies in thermally isolating the regulated channel block from the mold and the cavities between them in order to better control the temperature field in the material which is transformed. We present the design and the instrumentation of the experimental set-up. Experimental measurements allow us to understand the thermal of the tool and to show the thermal heterogeneities on the surface of the mold and in the various cavities. Tests of injection molding of the rubber and a thermal balance on the energy consumption of the tool are carried out.

  20. Comparison of glare in YAG-damaged intraocular lenses: injection-molded versus lathe-cut.

    PubMed

    Bath, P E; Dang, Y; Martin, W H

    1986-11-01

    A comparative analysis of YAG laser intraocular lens (IOL) damage was undertaken on injection-molded and lathe-cut IOLs. Damage sites were evaluated with polarized light. A consistent positive polarization was observed in the damage sites of lathe-cut IOLs. A consistent negative polarization was observed in the damage sites of injection-molded IOLs. The presence of positive polarization in IOL damage sites may be correlated with increased potential for glare. Results and clinical implications are discussed.

  1. An unusual case of anaphylaxis. Mold in pancake mix.

    PubMed

    Bennett, A T; Collins, K A

    2001-09-01

    Anaphylactic reactions involve contact with an antigen that evokes an immune reaction that is harmful. This type of reaction is a rapidly developing immunologic reaction termed a type I hypersensitivity reaction. The antigen complexes with an IgE antibody that is bound to mast cells and basophils in a previously sensitized individual. Upon re-exposure, vasoactive and spasmogenic substances are released that act on vessels and smooth muscle. The reaction can be local or systemic and may be fatal. The authors report the death of a 19-year-old white male who had a history of "multiple allergies," including pets, molds, and penicillin. One morning, he and his friends made pancakes with a packaged mix that had been opened and in the cabinet for approximately 2 years. The friends stopped eating the pancakes because they said that they tasted like "rubbing alcohol." The decedent continued to eat the pancakes and suddenly became short of breath. He was taken to a nearby clinic, where he became unresponsive and died. At autopsy, laryngeal edema and hyperinflated lungs with mucous plugging were identified. Microscopically, edema and numerous degranulating mast cells were identified in the larynx. The smaller airways contained mucus, and findings of chronic asthma were noted. Serum tryptase was elevated at 14.0 ng/ml. The pancake mix was analyzed and found to contain a total mold count of 700/g of mix as follows: Penicillium, Fusarium, Mucor, and Aspergillus. Witness statements indicate that the decedent ate two pancakes; thus he consumed an approximate mold count of 21,000. The decedent had a history of allergies to molds and penicillin, and thus was allergic to the molds in the pancake mix. The authors present this unusual case of anaphylaxis and a review of the literature.

  2. Biocontrol of mold growth in high-moisture wheat stored under airtight conditions by Pichia anomala, Pichia guilliermondii, and Saccharomyces cerevisiae.

    PubMed Central

    Petersson, S; Schnürer, J

    1995-01-01

    Pichia anomala inhibits the growth of Penicillium roqueforti and Aspergillus candidus on agar. In this investigation, antagonistic activity on agar against 17 mold species was determined. The abilities of Pichia anomala, Pichia guilliermondii, and Saccharomyces cerevisiae to inhibit the growth of the mold Penicillium roqueforti in nonsterile high-moisture wheat were compared by adding 10(3) Penicillium roqueforti spores and different amounts of yeast cells per gram of wheat. Inoculated grain was packed in glass tubes, incubated at 25 degrees C with a restricted air supply, and the numbers of yeast and mold CFU were determined on selective media after 7 and 14 days. Pichia anomala reduced growth on agar plates for all of the mold species tested in a dose-dependent manner. Aspergillus fumigatus and Eurotium amstelodami were the most sensitive, while Penicillium italicum and Penicillium digitatum were the most resistant. Pichia anomala had the strongest antagonistic activity in wheat, with 10(5) and 10(6) CFU/g completely inhibiting the growth of Penicillium roqueforti. Inhibition was least pronounced at the optimum temperature (21 degrees C) and water activity (0.95) for the growth of Penicillium roqueforti. Pichia guilliermondii slightly reduced the growth of Penicillium roqueforti in wheat inoculated with 10(5) and 10(6) yeast CFU/g. S. cerevisiae inhibited mold growth only weakly at the highest inoculum level. Pichia anomala grew from 10(3) to 10(7) CFU/g of wheat in 1 week. To reach the same level, Pichia guilliermondii had to be inoculated at 10(4) CFU while S. cerevisiae required an inoculum of 10(5) CFU to reach 10(7) CFU/g of wheat. PMID:7793907

  3. Nasoalveolar molding in cleft care: is it efficacious?

    PubMed

    Abbott, Megan M; Meara, John G

    2012-09-01

    In the era of evidence-based medicine, new treatment protocols and interventions should be routinely evaluated for their efficacy by reviewing the available evidence. In the cleft literature, nasoalveolar molding has garnered attention over the last decade as a new option for improving nasal form and symmetry before primary surgical repair. Systematic review of the evidence is, however, currently lacking. This review evaluates whether nasoalveolar molding can improve nasal symmetry and form toward the norm, as well as whether nasoalveolar molding demonstrates advantages over other protocols in achieving this goal. A literature search of five databases plus relevant reference lists retrieved 98 articles regarding nasoalveolar molding, 21 of which reported objective outcome measures of nasal symmetry and form, and six of which were able to be given evidence level ratings, all in the unilateral cleft population. Statistical analysis was not possible given the range of techniques and outcomes. Studies of bilateral cleft were not given evidence level ratings, given the inability to separate the effects of nasoalveolar molding from other primary nasal interventions in studies that would have otherwise been rated. In unilateral cleft lip-cleft palate, there was some evidence that nasoalveolar molding may improve nasal outcomes, though comparison with other techniques was limited. Despite a relative paucity of high-level evidence, nasoalveolar molding appears to be a promising technique that deserves further study.

  4. Effects of process parameters on the molding quality of the micro-needle array

    NASA Astrophysics Data System (ADS)

    Qiu, Z. J.; Ma, Z.; Gao, S.

    2016-07-01

    Micro-needle array, which is used in medical applications, is a kind of typical injection molded products with microstructures. Due to its tiny micro-features size and high aspect ratios, it is more likely to produce short shots defects, leading to poor molding quality. The injection molding process of the micro-needle array was studied in this paper to find the effects of the process parameters on the molding quality of the micro-needle array and to provide theoretical guidance for practical production of high-quality products. With the shrinkage ratio and warpage of micro needles as the evaluation indices of the molding quality, the orthogonal experiment was conducted and the analysis of variance was carried out. According to the results, the contribution rates were calculated to determine the influence of various process parameters on molding quality. The single parameter method was used to analyse the main process parameter. It was found that the contribution rate of the holding pressure on shrinkage ratio and warpage reached 83.55% and 94.71% respectively, far higher than that of the other parameters. The study revealed that the holding pressure is the main factor which affects the molding quality of micro-needle array so that it should be focused on in order to obtain plastic parts with high quality in the practical production.

  5. Effects of mold design of aspheric projector lens for head up display

    NASA Astrophysics Data System (ADS)

    Chen, Chao-Chang A.; Tang, Jyun-Cing; Teng, Lin-Ming

    2010-08-01

    This paper investigates the mold design and related effects on an aspheric projector lens for Head Up Display (HUD) with injection molding process. Injection flow analysis with a commercial software, Moldex3D has been used to simulate this projector lens for filling, packing, shrinkage, and flow-induced residual stress. This projector lens contains of variant thickness due to different aspheric design on both surfaces. Defects may be induced as the melt front from the gate into the cavity with jet-flow phenomenon, short shot, weld line, and even shrinkage. Thus, this paper performs a gate design to find the significant parameters including injection velocity, melt temperature, and mold temperature. After simulation by the Moldex3D, gate design for the final assembly of Head Up Display (HUD) has been obtained and then experimental tests have been proceeded for verification of short-shot, weight variation, and flow-induced stress. Moreover, warpage analysis of the Head Up Display (HUD) can be integrated with the optical design specification in future work.

  6. Influence of Processing Conditions on the Mechanical Behavior and Morphology of Injection Molded Poly(lactic-co-glycolic acid) 85:15

    PubMed Central

    Fancello, Eduardo Alberto

    2017-01-01

    Two groups of PLGA specimens with different geometries (notched and unnotched) were injection molded under two melting temperatures and flow rates. The mechanical properties, morphology at the fracture surface, and residual stresses were evaluated for both processing conditions. The morphology of the fractured surfaces for both specimens showed brittle and smooth fracture features for the majority of the specimens. Fracture images of the notched specimens suggest that the surface failure mechanisms are different from the core failure. Polarized light techniques indicated birefringence in all specimens, especially those molded with lower temperature, which suggests residual stress due to rapid solidification. DSC analysis confirmed the existence of residual stress in all PLGA specimens. The specimens molded using the lower injection temperature and the low flow rate presented lower loss tangent values according to the DMA and higher residual stress as shown by DSC, and the photoelastic analysis showed extensive birefringence. PMID:28848605

  7. Effect of Injection Molding Melt Temperatures on PLGA Craniofacial Plate Properties during In Vitro Degradation

    PubMed Central

    Fancello, Eduardo Alberto

    2017-01-01

    The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures. PMID:29056968

  8. Replica molding-based nanopatterning of tribocharge on elastomer with application to electrohydrodynamic nanolithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiang; Peer, Akshit; Cho, In Ho

    Replica molding often induces tribocharge on elastomers. To date, this phenomenon has been studied only on untextured elastomer surfaces even though replica molding is an effective method for their nanotexturing. Here we show that on elastomer surfaces nanotextured through replica molding the induced tribocharge also becomes patterned at nanoscale in close correlation with the nanotexture. Here, by applying Kelvin probe microscopy, electrohydrodynamic lithography, and electrostatic analysis to our model nanostructure, poly(dimethylsiloxane) nanocup arrays replicated from a polycarbonate nanocone array, we reveal that the induced tribocharge is highly localized within the nanocup, especially around its rim. Through finite element analysis, wemore » also find that the rim sustains the strongest friction during the demolding process. From these findings, we identify the demolding-induced friction as the main factor governing the tribocharge’s nanoscale distribution pattern. Finally, by incorporating the resulting annular tribocharge into electrohydrodynamic lithography, we also accomplish facile realization of nanovolcanos with 10 nm-scale craters.« less

  9. Replica molding-based nanopatterning of tribocharge on elastomer with application to electrohydrodynamic nanolithography

    DOE PAGES

    Li, Qiang; Peer, Akshit; Cho, In Ho; ...

    2018-03-02

    Replica molding often induces tribocharge on elastomers. To date, this phenomenon has been studied only on untextured elastomer surfaces even though replica molding is an effective method for their nanotexturing. Here we show that on elastomer surfaces nanotextured through replica molding the induced tribocharge also becomes patterned at nanoscale in close correlation with the nanotexture. Here, by applying Kelvin probe microscopy, electrohydrodynamic lithography, and electrostatic analysis to our model nanostructure, poly(dimethylsiloxane) nanocup arrays replicated from a polycarbonate nanocone array, we reveal that the induced tribocharge is highly localized within the nanocup, especially around its rim. Through finite element analysis, wemore » also find that the rim sustains the strongest friction during the demolding process. From these findings, we identify the demolding-induced friction as the main factor governing the tribocharge’s nanoscale distribution pattern. Finally, by incorporating the resulting annular tribocharge into electrohydrodynamic lithography, we also accomplish facile realization of nanovolcanos with 10 nm-scale craters.« less

  10. Systematic internal transcribed spacer sequence analysis for identification of clinical mold isolates in diagnostic mycology: a 5-year study.

    PubMed

    Ciardo, Diana E; Lucke, Katja; Imhof, Alex; Bloemberg, Guido V; Böttger, Erik C

    2010-08-01

    The implementation of internal transcribed spacer (ITS) sequencing for routine identification of molds in the diagnostic mycology laboratory was analyzed in a 5-year study. All mold isolates (n = 6,900) recovered in our laboratory from 2005 to 2009 were included in this study. According to a defined work flow, which in addition to troublesome phenotypic identification takes clinical relevance into account, 233 isolates were subjected to ITS sequence analysis. Sequencing resulted in successful identification for 78.6% of the analyzed isolates (57.1% at species level, 21.5% at genus level). In comparison, extended in-depth phenotypic characterization of the isolates subjected to sequencing achieved taxonomic assignment for 47.6% of these, with a mere 13.3% at species level. Optimization of DNA extraction further improved the efficacy of molecular identification. This study is the first of its kind to testify to the systematic implementation of sequence-based identification procedures in the routine workup of mold isolates in the diagnostic mycology laboratory.

  11. Design of Revolute Joints for In-Mold Assembly Using Insert Molding.

    PubMed

    Ananthanarayanan, Arvind; Ehrlich, Leicester; Desai, Jaydev P; Gupta, Satyandra K

    2011-12-01

    Creating highly articulated miniature structures requires assembling a large number of small parts. This is a very challenging task and increases cost of mechanical assemblies. Insert molding presents the possibility of creating a highly articulated structure in a single molding step. This can be accomplished by placing multiple metallic bearings in the mold and injecting plastic on top of them. In theory, this idea can generate a multi degree of freedom structures in just one processing step without requiring any post molding assembly operations. However, the polymer material has a tendency to shrink on top of the metal bearings and hence jam the joints. Hence, until now insert molding has not been used to create articulated structures. This paper presents a theoretical model for estimating the extent of joint jamming that occurs due to the shrinkage of the polymer on top of the metal bearings. The level of joint jamming is seen as the effective torque needed to overcome the friction in the revolute joints formed by insert molding. We then use this model to select the optimum design parameters which can be used to fabricate functional, highly articulating assemblies while meeting manufacturing constraints. Our analysis shows that the strength of weld-lines formed during the in-mold assembly process play a significant role in determining the minimum joint dimensions necessary for fabricating functional revolute joints. We have used the models and methods described in this paper to successfully fabricate the structure for a minimally invasive medical robot prototype with potential applications in neurosurgery. To the best of our knowledge, this is the first demonstration of building an articulated structure with multiple degrees of freedom using insert molding.

  12. Building dampness and mold in European homes in relation to climate, building characteristics and socio-economic status: The European Community Respiratory Health Survey ECRHS II.

    PubMed

    Norbäck, D; Zock, J-P; Plana, E; Heinrich, J; Tischer, C; Jacobsen Bertelsen, R; Sunyer, J; Künzli, N; Villani, S; Olivieri, M; Verlato, G; Soon, A; Schlünssen, V; Gunnbjörnsdottir, M I; Jarvis, D

    2017-09-01

    We studied dampness and mold in homes in relation to climate, building characteristics and socio-economic status (SES) across Europe, for 7127 homes in 22 centers. A subsample of 3118 homes was inspected. Multilevel analysis was applied, including age, gender, center, SES, climate, and building factors. Self-reported water damage (10%), damp spots (21%), and mold (16%) in past year were similar as observed data (19% dampness and 14% mold). Ambient temperature was associated with self-reported water damage (OR=1.63 per 10°C; 95% CI 1.02-2.63), damp spots (OR=2.95; 95% CI 1.98-4.39), and mold (OR=2.28; 95% CI 1.04-4.67). Precipitation was associated with water damage (OR=1.12 per 100 mm; 95% CI 1.02-1.23) and damp spots (OR=1.11; 95% CI 1.02-1.20). Ambient relative air humidity was not associated with indoor dampness and mold. Older buildings had more dampness and mold (P<.001). Manual workers reported less water damage (OR=0.69; 95% CI 0.53-0.89) but more mold (OR=1.27; 95% CI 1.03-1.55) as compared to managerial/professional workers. There were correlations between reported and observed data at center level (Spearman rho 0.61 for dampness and 0.73 for mold). In conclusion, high ambient temperature and precipitation and high building age can be risk factors for dampness and mold in homes in Europe. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. High Sensitivity, Wearable, Piezoresistive Pressure Sensors Based on Irregular Microhump Structures and Its Applications in Body Motion Sensing.

    PubMed

    Wang, Zongrong; Wang, Shan; Zeng, Jifang; Ren, Xiaochen; Chee, Adrian J Y; Yiu, Billy Y S; Chung, Wai Choi; Yang, Yong; Yu, Alfred C H; Roberts, Robert C; Tsang, Anderson C O; Chow, Kwok Wing; Chan, Paddy K L

    2016-07-01

    A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa(-1) , broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real-time health monitoring, and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 3D printing facilitated scaffold-free tissue unit fabrication.

    PubMed

    Tan, Yu; Richards, Dylan J; Trusk, Thomas C; Visconti, Richard P; Yost, Michael J; Kindy, Mark S; Drake, Christopher J; Argraves, William Scott; Markwald, Roger R; Mei, Ying

    2014-06-01

    Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing microdroplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit microdroplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell-cell adhesion, tissue formation and maturation.

  15. Tracing the Origin of Non-ferrous Oxides in Lamination Defects on Hot-Rolled Coils: Mold Slag Entrainment vs Submerged Entry Nozzle Reaction Products

    NASA Astrophysics Data System (ADS)

    Sengo, Sabri; Romano Triguero, Patricia; Zinngrebe, Enno; Mensonides, Fokko

    2017-06-01

    In this work, lamination defects (slivers) on hot-rolled coils of Ca-treated steel were investigated for microstructure and composition using optical and scanning electron microscopy combined with microanalysis (SEM/EDS). The goal was to identify possible origins for the observed defects which contain a complex assemblage of phases, such as different types of calcium aluminates (CA, CA2, CA6), melilite (C2AS), spinel (MA), and a newly identified phase, CNA2. Mold slag similar to that employed during the cast was absent. Analysis of the bulk composition of some of the defects indicated these to be too rich in alumina to be derived from mold slag through steel-slag redox exchange. In contrast, microstructural observation of the inner side of the submerged entry nozzles (SEN) used during casting showed deposits with compositions comparable to those of the defect material. Based on an estimation of the chemical evolution of mold slag interacting with steel, it is found that the defects are not likely to be entrained mold slag but remobilized SEN deposits, as supported by several microstructural and trace phase criteria. However, it should be noted that extensive reduction of mold slag by steel can lead to compositions rich in sodic-calcic aluminates (CNA2). Therefore, differentiation between specific locations of the defect materials within a casting system requires detailed analysis from the potential sources of origin as well as from the materials found in the defects.

  16. Modeling and Analysis of Process Parameters for Evaluating Shrinkage Problems During Plastic Injection Molding of a DVD-ROM Cover

    NASA Astrophysics Data System (ADS)

    Öktem, H.

    2012-01-01

    Plastic injection molding plays a key role in the production of high-quality plastic parts. Shrinkage is one of the most significant problems of a plastic part in terms of quality in the plastic injection molding. This article focuses on the study of the modeling and analysis of the effects of process parameters on the shrinkage by evaluating the quality of the plastic part of a DVD-ROM cover made with Acrylonitrile Butadiene Styrene (ABS) polymer material. An effective regression model was developed to determine the mathematical relationship between the process parameters (mold temperature, melt temperature, injection pressure, injection time, and cooling time) and the volumetric shrinkage by utilizing the analysis data. Finite element (FE) analyses designed by Taguchi (L27) orthogonal arrays were run in the Moldflow simulation program. Analysis of variance (ANOVA) was then performed to check the adequacy of the regression model and to determine the effect of the process parameters on the shrinkage. Experiments were conducted to control the accuracy of the regression model with the FE analyses obtained from Moldflow. The results show that the regression model agrees very well with the FE analyses and the experiments. From this, it can be concluded that this study succeeded in modeling the shrinkage problem in our application.

  17. An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds.

    PubMed

    Kramschuster, Adam; Turng, Lih-Sheng

    2010-02-01

    In this research, injection molding was combined with a novel material combination, supercritical fluid processing, and particulate leaching techniques to produce highly porous and interconnected structures that have the potential to act as scaffolds for tissue engineering applications. The foamed structures, molded with polylactide (PLA) and polyvinyl alcohol (PVOH) with salt as the particulate, were processed without the aid of organic solvents, which can be detrimental to tissue growth. The pore size in the scaffolds is controlled by salt particulates and interconnectivity is achieved by the co-continuous blending morphology of biodegradable PLA matrix with water-soluble PVOH. Carbon dioxide (CO(2)) at the supercritical state is used to serve as a plasticizer, thereby imparting moldability of blends even with an ultra high salt particulate content, and allows the use of low processing temperatures, which are desirable for temperature-sensitive biodegradable polymers. Interconnected pores of approximately 200 microm in diameter and porosities of approximately 75% are reported and discussed.

  18. Effects of particle size of fiberglass-resin powder from PCBs on the properties and volatile behavior of phenolic molding compound.

    PubMed

    Guo, Jie; Rao, Qunli; Xu, Zhenming

    2010-03-15

    Fiberglass-resin powder (FR powder), a mixture of resin powder and glass fibers reclaimed from pulverized waste printed circuit boards (PCBs), is used as a partial substitute of wood flour in the production of modified phenolic molding compound (MPMC). The results show that incorporation of FR powder into MPMC as a filler enhances the thermal stability represented by heat deflection temperature (HDT). MPMC with FR powder smaller than 0.07 mm shows better properties, with a flexural strength of 73 MPa, a charpy notched impact strength of 3.0 kJ/m(2), a HDT of 167 degrees C, and a dielectric strength of 3.7 MV/m, all of which meet the standard data. Thermogravimetric analysis shows that thermal degradation of MPMC mainly includes three steps, and over 55% weight loss of MPMC occurs between temperatures of 370 degrees C and 575 degrees C. Phenol is the main volatile compound released from molding powder during the production of molding product. After molding powder cures to molding product, low level of residual phenol is detected. All the results indicate that the MPMC can be used as a new type of molding compound. (c) 2009 Elsevier B.V. All rights reserved.

  19. Classification of buildings mold threat using electronic nose

    NASA Astrophysics Data System (ADS)

    Łagód, Grzegorz; Suchorab, Zbigniew; Guz, Łukasz; Sobczuk, Henryk

    2017-07-01

    Mold is considered to be one of the most important features of Sick Building Syndrome and is an important problem in current building industry. In many cases it is caused by the rising moisture of building envelopes surface and exaggerated humidity of indoor air. Concerning historical buildings it is mostly caused by outdated raising techniques among that is absence of horizontal isolation against moisture and hygroscopic materials applied for construction. Recent buildings also suffer problem of mold risk which is caused in many cases by hermetization leading to improper performance of gravitational ventilation systems that make suitable conditions for mold development. Basing on our research there is proposed a method of buildings mold threat classification using electronic nose, based on a gas sensors array which consists of MOS sensors (metal oxide semiconductor). Used device is frequently applied for air quality assessment in environmental engineering branches. Presented results show the interpretation of e-nose readouts of indoor air sampled in rooms threatened with mold development in comparison with clean reference rooms and synthetic air. Obtained multivariate data were processed, visualized and classified using a PCA (Principal Component Analysis) and ANN (Artificial Neural Network) methods. Described investigation confirmed that electronic nose - gas sensors array supported with data processing enables to classify air samples taken from different rooms affected with mold.

  20. Analysis of moisture content, acidity and contamination by yeast and molds in Apis mellifera L. honey from central Brazil

    PubMed Central

    Ananias, Karla Rubia; de Melo, Adriane Alexandre Machado; de Moura, Celso José

    2013-01-01

    The development of mold of environmental origin in honey affects its quality and leads to its deterioration, so yeasts and molds counts have been used as an important indicator of hygiene levels during its processing, transportation and storage. The aim of this study was to evaluate the levels of yeasts and molds contamination and their correlation with moisture and acidity levels in Apis mellifera L. honey from central Brazil. In 20% of the samples, the yeasts and molds counts exceeded the limit established by legislation for the marketing of honey in the MERCOSUR, while 42.8% and 5.7% presented above-standard acidity and moisture levels, respectively. Although samples showed yeasts and molds counts over 1.0 × 102 UFC.g−1, there was no correlation between moisture content and the number of microorganisms, since, in part of the samples with above-standard counts, the moisture level was below 20%. In some samples the acidity level was higher than that established by legislation, but only one sample presented a yeasts and molds count above the limit established by MERCOSUR, which would suggest the influence of the floral source on this parameter. In general, of the 35 samples analyzed, the quality was considered inadequate in 45.7% of cases. PMID:24516434

  1. Analysis of moisture content, acidity and contamination by yeast and molds in Apis mellifera L. honey from central Brazil.

    PubMed

    Ananias, Karla Rubia; de Melo, Adriane Alexandre Machado; de Moura, Celso José

    2013-01-01

    The development of mold of environmental origin in honey affects its quality and leads to its deterioration, so yeasts and molds counts have been used as an important indicator of hygiene levels during its processing, transportation and storage. The aim of this study was to evaluate the levels of yeasts and molds contamination and their correlation with moisture and acidity levels in Apis mellifera L. honey from central Brazil. In 20% of the samples, the yeasts and molds counts exceeded the limit established by legislation for the marketing of honey in the MERCOSUR, while 42.8% and 5.7% presented above-standard acidity and moisture levels, respectively. Although samples showed yeasts and molds counts over 1.0 × 10(2) UFC.g(-1), there was no correlation between moisture content and the number of microorganisms, since, in part of the samples with above-standard counts, the moisture level was below 20%. In some samples the acidity level was higher than that established by legislation, but only one sample presented a yeasts and molds count above the limit established by MERCOSUR, which would suggest the influence of the floral source on this parameter. In general, of the 35 samples analyzed, the quality was considered inadequate in 45.7% of cases.

  2. Ring-Mold Craters on Lineated Valley Fill, Lobate Debris Aprons, and Concentric Crater Fill on Mars: Implications for Near-Surface Structure, Composition, and Age.

    NASA Astrophysics Data System (ADS)

    Kress, A.; Head, J. W.

    2009-03-01

    Analysis of ring-mold crater populations on lineated valley fill, lobate debris aprons, and concentric crater fill on Mars and of ice-impact experiments suggest crater-count-derived ages may be erroneously old.

  3. REAL TIME PCR ANALYSIS OF INDOOR MOLDS: PRINCIPLES, PROCEDURES AND APPLICATIONS

    EPA Science Inventory

    This presentation will endeavor to present an overview of the real time polymerase chain reaction method developed for indoor mold detection and quantification by the EPA. It will begin with a brief discussion of the PCR technology that provides the basis for this method and how ...

  4. ELISA MEASUREMENT OF STACHYLYSIN (TM) IN SERUM TO QUANTIFY HUMAN EXPOSURES TO THE INDOOR MOLD STACHYBOTRYS CHARTARUM

    EPA Science Inventory

    Antibodies were produced against the hemolytic agent stachylysin obtained from the mold Stachybotryis chartarum. These antibodies were used to develop two enzyme-linked immunosorbent assay (ELISA) methods for the analysis of stachylysin in human and rat sera and environmental sa...

  5. Roles of conjugated double bonds in electron-donating capacity of sorghum grains

    USDA-ARS?s Scientific Manuscript database

    Electron-donating and metal ion complexation ability of tannins play key roles as antioxidants and in mold/bird resistance. In this study, rapid, sensitive, and nondestructive fluorescence excitation-emission (EEM) spectrophotometry was utilized to correlate structural attributes of sorghum tannins...

  6. Orientation-Controllable ZnO Nanorod Array Using Imprinting Method for Maximum Light Utilization in Dye-Sensitized Solar Cells.

    PubMed

    Jeong, Huisu; Song, Hui; Lee, Ryeri; Pak, Yusin; Kumaresan, Yogeenth; Lee, Heon; Jung, Gun Young

    2015-12-01

    We present a holey titanium dioxide (TiO2) film combined with a periodically aligned ZnO nanorod layer (ZNL) for maximum light utilization in dye-sensitized solar cells (DSCs). Both the holey TiO2 film and the ZNL were simultaneously fabricated by imprint technique with a mold having vertically aligned ZnO nanorod (NR) array, which was transferred to the TiO2 film after imprinting. The orientation of the transferred ZNL such as laid, tilted, and standing ZnO NRs was dependent on the pitch and height of the ZnO NRs of the mold. The photoanode composed of the holey TiO2 film with the ZNL synergistically utilized the sunlight due to enhanced light scattering and absorption. The best power conversion efficiency of 8.5 % was achieved from the DSC with the standing ZNL, which represented a 33 % improvement compared to the reference cell with a planar TiO2.

  7. Indoor risk factors for cough and their relation to wheeze and sensitization in Chilean young adults.

    PubMed

    Potts, James F; Rona, Roberto J; Oyarzun, Manuel J; Amigo, Hugo; Bustos, Patricia

    2008-04-01

    We assessed the effects of indoor risk factors, including smoking, on different types of cough and on cough and wheeze in combination. Our sample was composed of 1232 men and women residing in a semirural area of Chile. We used a standardized questionnaire, sensitization to 8 allergens, and bronchial hyperresponsiveness to methacholine to assess cough and wheeze characteristics. Information was gathered on dampness, mold, ventilation, heating, housing quality, smoking, and environmental tobacco smoke exposure. Most exposures were associated with cough alone or cough in combination with wheeze. Smoking, past smoking, and environmental tobacco smoke exposure were strongly associated with dry cough and wheeze. The use of coal for heating was associated with dry cough. Leaks, mold, and lack of kitchen ventilation were associated with cough and wheeze. Nocturnal cough and productive cough were associated with specific types of sensitization, but dry cough was not. Productive cough was associated with hyperresponsiveness to methacholine. Several different types of indoor exposures, including environmental tobacco smoke exposure, are important contributors to morbidity associated with cough and wheeze. A vigorous preventive strategy designed to lower exposures to indoor risk factors would lower rates of respiratory morbidity.

  8. Indoor risk factors for cough and their relation to wheeze and sensitization in Chilean young adults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potts, J.F.; Rona, R.J.; Oyarzun, M.J.

    2008-04-15

    We assessed the effects of indoor risk factors, including smoking, on different types of cough and on cough and wheeze in combination. Our sample was composed of 1232 men and women residing in a semi-rural area of Chile. We used a standardized questionnaire, sensitization to 8 allergens, and bronchial hyperresponsiveness to methacholine to assess cough and wheeze characteristics. Information was gathered on dampness, mold, ventilation, heating, housing quality, smoking, and environmental tobacco smoke exposure. Most exposures were associated with cough alone or cough in combination with wheeze. Smoking, past smoking, and environmental tobacco smoke exposure were strongly associated with drymore » cough and wheeze. The use of coal for heating was associated with dry cough. Leaks, mold, and lack of kitchen ventilation were associated with cough and wheeze. Nocturnal cough and productive cough were associated with specific types of sensitization, but dry cough was not. Productive cough was associated with hyperresponsiveness to methacholine. Several different types of indoor exposures, including environmental tobacco smoke exposure, are important contributors to morbidity associated with cough and wheeze. A vigorous preventive strategy designed to lower exposures to indoor risk factors would lower rates of respiratory morbidity.« less

  9. Association of Streptomyces community composition determined by PCR-denaturing gradient gel electrophoresis with indoor mold status

    PubMed Central

    Johansson, Elisabet; Reponen, Tiina; Meller, Jarek; Vesper, Stephen; Yadav, Jagjit

    2014-01-01

    Both Streptomyces species and mold species have previously been isolated from moisture-damaged building materials; however, an association between these two groups of microorganisms in indoor environments is not clear. In this study we used a culture-independent method, PCR denaturing gradient gel electrophoresis (PCR-DGGE) to investigate the composition of the Streptomyces community in house dust. Twenty-three dust samples each from two sets of homes categorized as high-mold and low-mold based on mold specific quantitative PCR-analysis were used in the study. Taxonomic identification of prominent bands was performed by cloning and sequencing. Associations between DGGE amplicon band intensities and home mold status were assessed using univariate analyses, as well as multivariate recursive partitioning (decision trees) to test the predictive value of combinations of bands intensities. In the final classification tree, a combination of two bands was significantly associated with mold status of the home (p = 0.001). The sequence corresponding to one of the bands in the final decision tree matched a group of Streptomyces species that included S. coelicolor and S. sampsonii, both of which have been isolated from moisture-damaged buildings previously. The closest match for the majority of sequences corresponding to a second band consisted of a group of Streptomyces species that included S. hygroscopicus, an important producer of antibiotics and immunosuppressors. Taken together, the study showed that DGGE can be a useful tool for identifying bacterial species that may be more prevalent in mold-damaged buildings. PMID:25331035

  10. Thermal sensors to control polymer forming. Challenge and solutions

    NASA Astrophysics Data System (ADS)

    Lemeunier, F.; Boyard, N.; Sarda, A.; Plot, C.; Lefèvre, N.; Petit, I.; Colomines, G.; Allanic, N.; Bailleul, J. L.

    2017-10-01

    Many thermal sensors are already used, for many years, to better understand and control material forming processes, especially polymer processing. Due to technical constraints (high pressure, sealing, sensor dimensions…) the thermal measurement is often performed in the tool or close its surface. Thus, it only gives partial and disturbed information. Having reliable information about the heat flux exchanges between the tool and the material during the process would be very helpful to improve the control of the process and to favor the development of new materials. In this work, we present several sensors developed in labs to study the molding steps in forming processes. The analysis of the obtained thermal measurements (temperature, heat flux) shows the required sensitivity threshold of sensitivity of thermal sensors to be able to detect on-line the rate of thermal reaction. Based on these data, we will present new sensor designs which have been patented.

  11. Experimental analysis for fabrication of high-aspect-ratio piezoelectric ceramic structure by micro-powder injection molding process

    NASA Astrophysics Data System (ADS)

    Han, Jun Sae; Gal, Chang Woo; Park, Jae Man; Kim, Jong Hyun; Park, Seong Jin

    2018-04-01

    Aspect ratio effects in the micro-powder injection molding process were experimentally analyzed for fabrication of high-aspect-ratio piezoelectric ceramic structure. The mechanisms of critical defects have been studied according to individual manufacturing steps. In the molding process, incomplete filling phenomenon determines the critical aspect ratios of a micro pattern. According to mold temperature, an incomplete filling phenomenon has been analyzed with respect to different pattern sizes and aspect ratio. In demolding and drying process, the capillary behavior of sacrificial polymeric mold insert determines the critical aspect ratio of a micro pattern. With respect to pattern dimensions, slumping behavior has been analyzed. Based on our current systems, micro PZT feature has stability when it has lower aspect ratio than 5. Under optimized processing conditions, 20 μm and 40 μm ceramic rod array feature which has 5 of aspect ratio were successfully fabricated by the developed process. Further modification points to fabricate the smaller and higher feature were specifically addressed.

  12. A feasible injection molding technique for the manufacturing of large diameter aspheric plastic lenses

    NASA Astrophysics Data System (ADS)

    Shieh, Jen-Yu; Wang, Luke K.; Ke, Shih-Ying

    2010-07-01

    A computer aided engineering (CAE) tool-assisted technique, using Moldex3D and aspheric analysis utility (AAU) software in a polycarbonate injection molding design, is proposed to manufacture large diameter aspheric plastic lenses. An experiment is conducted to verify the applicability/feasibility of the proposed technique. Using the preceding two software tools, these crucial process parameters associated with the surface profile errors and birefringence of a molded lens can be attainable. The strategy adopted here is to use the actual quantity of shrinkage after an injection molding trial of an aspherical plastic lens as a reference to perform the core shaping job while keeping the coefficients of aspheric surface, radius, and conic constant unchanged. The design philosophy is characterized by using the CAE tool as a guideline to pursue the best symmetry condition, followed by injection molding trials, to accelerate a product’s developmental time. The advantages are less design complexity and shorter developmental time for a product.

  13. Controlling Radiative Heat Transfer Across the Mold Flux Layer by the Scattering Effect of the Borosilicate Mold Flux System with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Yoon, Dae-Woo; Cho, Jung-Wook; Kim, Seon-Hyo

    2017-08-01

    The present study proposes a countermeasure for regulating total heat flux through the mold flux layer by designed mold flux with additive metallic iron particles. The heat flux through the B2O3-CaO-SiO2-Na2O-CaF2-Fe system was investigated using the infrared emitter technique to evaluate total flux density across the mold flux film. Both scanning electron microscope (SEM) and X-ray diffraction analysis were employed in order to identify the morphological and compositional changes of the crystalline phase, according to increasing iron contents in the mold flux. It was confirmed that the crystalline layer of studied mold fluxes does not have a meaningful effect on the total heat flux density due to the similar structure and fraction of the crystalline phase. The extinction coefficient was measured for glassy mold fluxes using an ultraviolet/visible and a Fourier transformation-infrared ray spectrometer in the range of 0.5 to 5 μm. For analyzing the scattering behavior of iron particles on the extinction coefficient, the number density and diameter of particles were observed by an automated SEM (auto-SEM). With these data, Mie scattering theory is adopted to define the scattering behavior of dispersed iron droplets in glassy matrix. It was found that the theoretical scattering coefficient demonstrated about 1623 to 3295 m-1, which is in accordance with the experimental results. In doing so, this study successfully achieves the strong scattering behavior that would contribute greatly to the optimization of overall heat flux through the mold flux film during the casting process.

  14. Effect of environmental molds on risk of death from asthma during the pollen season.

    PubMed

    Targonski, P V; Persky, V W; Ramekrishnan, V

    1995-05-01

    Many studies have noted an association of ambient aeroallergen levels with exacerbation of asthma. This study was undertaken to examine the relationship of aeroallergen levels with asthma-related mortality in Chicago. The association of environmental aeroallergen levels with death caused by asthma among 5- to 34-year-olds in Chicago was examined for the period of 1985 through 1989. Logistic regression analysis was used to compare the probability of a death caused by asthma occurring on the basis of environmental tree, grass, or ragweed pollen and mold spore levels. Mean mold spore levels but not tree, grass, or ragweed pollen levels were significantly higher for days on which asthma-related death occurred than for days on which no deaths occurred (z = 2.80, p < 0.005). The odds of a death caused by asthma occurring on days with mold spore counts of 1000 spores per cubic meter or greater was 2.16 times higher (95% confidence interval = 1.31, 3.56, p = 0.003) than on days on which mold spore counts were less than 1000 spores per cubic meter. The association with mold spore levels remained significant on multivariate logistic regression with mold spore counts measured as a continuous variable and controlling for pollens, with the odds of an asthma-related death occurring being 1.2 times higher (95% confidence interval = 1.07-1.34) for every increase of 1000 spores per cubic meter in daily mold spore levels. Although death caused by asthma also involves personal, social, and medical access factors, these data suggest that exposure to environmental molds may play a role in asthma-related mortality and should be considered in prevention strategies.

  15. A Kinetic Study of the Effect of Basicity on the Mold Fluxes Crystallization

    NASA Astrophysics Data System (ADS)

    Zhou, Lejun; Wang, Wanlin; Ma, Fanjun; Li, Jin; Wei, Juan; Matsuura, Hiroyuki; Tsukihashi, Fumitaka

    2012-04-01

    The effect of basicity on the mold fluxes crystallization was investigated in this article. The time-temperature-transformation (TTT) diagrams and continuous-cooling-transformation (CCT) diagrams of mold fluxes with different basicity were constructed by using single, hot thermocouple technology (SHTT). The results showed that with the increase of basicity, the incubation time of isothermal crystallization became shorter, the crystallization temperature was getting higher, and the critical cooling rate of continuous cooling crystallization became faster. The X-ray diffraction analysis suggested that calcium silicate (CaO·SiO2) was precipitated at the upper part of the TTT diagram and cuspidine (Ca4Si2O7F2) was formed at the lower part, when the basicity of mold fluxes was within 1.0 to 1.2. However, when basicity was 0.8, only the cuspidine phase was formed. A kinetic study of isothermal crystallization process indicated that the increase of the basicity tended to enhance the mold flux crystallization, and the crystallization activation energy became smaller. The crystallization mechanism of cupsidine was changing from one-dimensional growth to three-dimensional growth with a constant number of nuclei, when the basicity of mold fluxes varied from 0.8 to 1.2.

  16. Micro Dot Patterning on the Light Guide Panel Using Powder Blasting

    PubMed Central

    Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam

    2008-01-01

    This study is to develop a micromachining technology for a light guide panel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a single injection process instead of existing screen printing processes. The micro powder blasting technique is applied to form micro dot patterns on the LGP mold surface. The optimal conditions for masking, laminating, exposure, and developing processes to form the micro dot patterns are first experimentally investigated. A LGP mold with masked micro patterns is then machined using the micro powder blasting method and the machinability of the micro dot patterns is verified. A prototype LGP is test- injected using the developed LGP mold and a shape analysis of the patterns and performance testing of the injected LGP are carried out. As an additional approach, matte finishing, a special surface treatment method, is applied to the mold surface to improve the light diffusion characteristics, uniformity and brightness of the LGP. The results of this study show that the applied powder blasting method can be successfully used to manufacture LGPs with micro patterns by just single injection using the developed mold and thereby replace existing screen printing methods. PMID:27879740

  17. 76 FR 20669 - Oreck Corporation; Analysis of Proposed Consent Order To Aid Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... use, in killing virtually all bacteria, viruses, germs, mold and allergens that exist on carpets and... reduces the risk of or prevents other illnesses or ailments caused by bacteria, viruses, molds, and... also alleges that Oreck claimed that the Oreck Halo's UV-C light is effective against germs, bacteria...

  18. Spore trap analysis and MSQPCR in evaluating mold burden: a flooded gymnasium case study

    EPA Science Inventory

    A school gymnasium was accidentally flooded by the fire-suppression sprinkler system. The surface water was removed but after 25 days, the school decided to evaluate whether there was any mold growth in the gymnasium. Thirty, five-minute air samples (75 m3 air) were collected w...

  19. Systematic Internal Transcribed Spacer Sequence Analysis for Identification of Clinical Mold Isolates in Diagnostic Mycology: a 5-Year Study▿ †

    PubMed Central

    Ciardo, Diana E.; Lucke, Katja; Imhof, Alex; Bloemberg, Guido V.; Böttger, Erik C.

    2010-01-01

    The implementation of internal transcribed spacer (ITS) sequencing for routine identification of molds in the diagnostic mycology laboratory was analyzed in a 5-year study. All mold isolates (n = 6,900) recovered in our laboratory from 2005 to 2009 were included in this study. According to a defined work flow, which in addition to troublesome phenotypic identification takes clinical relevance into account, 233 isolates were subjected to ITS sequence analysis. Sequencing resulted in successful identification for 78.6% of the analyzed isolates (57.1% at species level, 21.5% at genus level). In comparison, extended in-depth phenotypic characterization of the isolates subjected to sequencing achieved taxonomic assignment for 47.6% of these, with a mere 13.3% at species level. Optimization of DNA extraction further improved the efficacy of molecular identification. This study is the first of its kind to testify to the systematic implementation of sequence-based identification procedures in the routine workup of mold isolates in the diagnostic mycology laboratory. PMID:20573873

  20. Sensory quality of Camembert-type cheese: Relationship between starter cultures and ripening molds.

    PubMed

    Galli, Bruno Domingues; Martin, José Guilherme Prado; da Silva, Paula Porrelli Moreira; Porto, Ernani; Spoto, Marta Helena Fillet

    2016-10-03

    Starter cultures and ripening molds used in the manufacture of moldy cheese aimed at obtaining characteristic flavors and textures considerably differ among dairy industries. Thus, the study of variables inherent to the process and their influence on sensory patterns in cheese can improve the standardization and control of the production process. The aim of this work was to study the influence of three different variables on the sensory quality of Camembert-type cheese: type of lactic bacteria, type of ripener molds and inoculation method. Batches of Camembert-type cheese were produced using O or DL-type mesophilic starter culture, ripened with Penicillium camemberti or Penicillium candidum and mold inoculation was made directly into the milk or by spraying. All batches were sensorially evaluated using Quantitative Descriptive Analysis (QDA) with panelists trained for various attributes. Among the combinations analyzed, those resulting in more typical Camembert-type cheese were those using O-type mesophilic starter culture and P. candidum maturation mold directly applied into the milk or sprayed and those using DL-type mesophilic starter and P. camemberti ripener mold applied by surface spraying. These results demonstrate, therefore, that the combination of different ripener molds, inoculation methods and starter cultures directly influences the sensory quality of Camembert-type cheese, modifying significantly its texture, appearance, aroma and taste. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Indoor dampness and molds and development of adult-onset asthma: a population-based incident case-control study.

    PubMed Central

    Jaakkola, Maritta S; Nordman, Henrik; Piipari, Ritva; Uitti, Jukka; Laitinen, Jukka; Karjalainen, Antti; Hahtola, Paula; Jaakkola, Jouni J K

    2002-01-01

    Previous cross-sectional and prevalent case-control studies have suggested increased risk of asthma in adults related to dampness problems and molds in homes. We conducted a population-based incident case-control study to assess the effects of indoor dampness problems and molds at work and at home on development of asthma in adults. We recruited systematically all new cases of asthma during a 2.5-year study period (1997-2000) and randomly selected controls from a source population consisting of adults 21-63 years old living in the Pirkanmaa Hospital district, South Finland. The clinically diagnosed case series consisted of 521 adults with newly diagnosed asthma and the control series of 932 controls, after we excluded 76 (7.5%) controls with a history of asthma. In logistic regression analysis adjusting for confounders, the risk of asthma was related to the presence of visible mold and/or mold odor in the workplace (odds ratio, 1.54; 95% confidence interval, 1.01-2.32) but not to water damage or damp stains alone. We estimated the fraction of asthma attributable to workplace mold exposure to be 35.1% (95% confidence interval, 1.0-56.9%) among the exposed. Present results provide new evidence of the relation between workplace exposure to indoor molds and adult-onset asthma. PMID:12003761

  2. Visually observed mold and moldy odor versus quantitatively measured microbial exposure in homes

    PubMed Central

    Reponen, Tiina; Singh, Umesh; Schaffer, Chris; Vesper, Stephen; Johansson, Elisabet; Adhikari, Atin; Grinshpun, Sergey A.; Indugula, Reshmi; Ryan, Patrick; Levin, Linda; LeMasters, Grace

    2010-01-01

    The main study objective was to compare different methods for assessing mold exposure in conjunction with an epidemiologic study on the development of children’s asthma. Homes of 184 children were assessed for mold by visual observations and dust sampling at child’s age 1 (Year 1). Similar assessment supplemented with air sampling was conducted in Year 7. Samples were analyzed for endotoxin, (1–3)-β-D-glucan, and fungal spores. The Mold Specific Quantitative Polymerase Chain Reaction assay was used to analyze 36 mold species in dust samples, and the Environmental Relative Moldiness Index (ERMI) was calculated. Homes were categorized based on three criteria: 1) visible mold damage, 2) moldy odor, and 3) ERMI. Even for homes where families had not moved, Year 7 endotoxin and (1–3)-β-D-glucan exposures were significantly higher than those in Year 1 (p<0.001), whereas no difference was seen for ERMI (p=0.78). Microbial concentrations were not consistently associated with visible mold damage categories, but were consistently higher in homes with moldy odor and in homes that had high ERMI. Low correlations between results in air and dust samples indicate different types or durations of potential microbial exposures from dust vs. air. Future analysis will indicate which, if any, of the assessment methods is associated with the development of asthma. PMID:20810150

  3. Environmental triggers and avoidance in the management of asthma

    PubMed Central

    Gautier, Clarisse; Charpin, Denis

    2017-01-01

    Identifying asthma triggers forms the basis of environmental secondary prevention. These triggers may be allergenic or nonallergenic. Allergenic triggers include indoor allergens, such as house dust mites (HDMs), molds, pets, cockroaches, and rodents, and outdoor allergens, such as pollens and molds. Clinical observations provide support for the role of HDM exposure as a trigger, although avoidance studies provide conflicting results. Molds and their metabolic products are now considered to be triggers of asthma attacks. Pets, dogs, and especially cats can undoubtedly trigger asthmatic symptoms in sensitized subjects. Avoidance is difficult and rarely adhered to by families. Cockroach allergens contribute to asthma morbidity, and avoidance strategies can lead to clinical benefit. Mouse allergens are mostly found in inner-city dwellings, but their implication in asthma morbidity is debated. In the outdoors, pollens can induce seasonal asthma in sensitized individuals. Avoidance relies on preventing pollens from getting into the house and on minimizing seasonal outdoor exposure. Outdoor molds may lead to severe asthma exacerbations. Nonallergenic triggers include viral infections, active and passive smoking, meteorological changes, occupational exposures, and other triggers that are less commonly involved. Viral infection is the main asthma trigger in children. Active smoking is associated with higher asthma morbidity, and smoking cessation interventions should be personalized. Passive smoking is also a risk factor for asthma exacerbation. The implementation of public smoking bans has led to a reduction in the hospitalization of asthmatic children. Air pollution levels have been linked with asthmatic symptoms, a decrease in lung function, and increased emergency room visits and hospitalizations. Since avoidance is not easy to achieve, clean air policies remain the most effective strategy. Indoor air is also affected by air pollutants, such as cigarette smoke and volatile organic compounds generated by building and cleaning materials. Occupational exposures include work-exacerbated asthma and work-related asthma. PMID:28331347

  4. Yeast Ivy1p Is a Putative I-BAR-domain Protein with pH-sensitive Filament Forming Ability in vitro.

    PubMed

    Itoh, Yuzuru; Kida, Kazuki; Hanawa-Suetsugu, Kyoko; Suetsugu, Shiro

    2016-01-01

    Bin-Amphiphysin-Rvs161/167 (BAR) domains mold lipid bilayer membranes into tubules, by forming a spiral polymer on the membrane. Most BAR domains are thought to be involved in forming membrane invaginations through their concave membrane binding surfaces, whereas some members have convex membrane binding surfaces, and thereby mold membranes into protrusions. The BAR domains with a convex surface form a subtype called the inverse BAR (I-BAR) domain or IRSp53-MIM-homology domain (IMD). Although the mammalian I-BAR domains have been studied, those from other organisms remain elusive. Here, we found putative I-BAR domains in Fungi and animal-like unicellular organisms. The fungal protein containing the putative I-BAR-domain is known as Ivy1p in yeast, and is reportedly localized in the vacuole. The phylogenetic analysis of the I-BAR domains revealed that the fungal I-BAR-domain containing proteins comprise a distinct group from those containing IRSp53 or MIM. Importantly, Ivy1p formed a polymer with a diameter of approximately 20 nm in vitro, without a lipid membrane. The filaments were formed at neutral pH, but disassembled when pH was reverted to basic. Moreover, Ivy1p and the I-BAR domain expressed in mammalian HeLa cells was localized at a vacuole-like structure as filaments as revealed by super-resolved microscopy. These data indicate the pH-sensitive polymer forming ability and the functional conservation of Ivy1p in eukaryotic cells.

  5. Cost-effectiveness of various methods of diagnosing hypersensitivity to Alternaria.

    PubMed

    Escudero, A I; Sánchez-Guerrero, I M; Mora, A M; Soriano, V; López, J D; García, F J; Negro, J M; Hernández, J; Pagán, J A

    1993-01-01

    This study was undertaken for two reasons: 1) It is more difficult to diagnose hypersensitivity to molds than to other allergens, so an evaluation of diagnostic tests was needed. 2) Alternaria is the principal cause of mold sensitization in our area. Sixty-six patients (20 +/- 4 years) were selected and divided into two groups. Group A was made up of patients with rhinitis and/or asthma due to Alternaria sensitization. Group B consisted of patients sensitized to other allergens and patients with nonrespiratory allergic disorders. Skin tests (prick and intradermal), challenge tests (conjunctival, nasal, and bronchial), and specific IgE determination were performed for all patients. A biologically standardized extract of Alternaria tenuis (Alergia e Inmunología Abelló, S. A., Madrid, Spain) obtained from a single batch was used for all tests. Our diagnostic criterion was a clinical history of rhinitis or asthma that coincided with the results of nasal/bronchial challenge. The diagnostic value of the other tests was compared to this criterion. In the group of rhinitic patients, skin tests and conjunctival challenge were more sensitive than specific IgE determination. In asthmatic patients, the most sensitive techniques were nasal and conjunctival challenges, followed by prick and intradermal skin tests, and, lastly, serum specific IgE determination. When rhinitis and asthma were considered jointly, the most sensitive test was conjunctival challenge, followed by skin-prick and intradermal tests. All tests had the same specificity, regardless of disorder. Nasal challenge was positive in all patients. Skin tests are easy to perform, cheap, non-traumatic for the patient, and sufficiently specific and sensitive for the diagnosis of Alternaria hypersensitivity.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Use of (1-3)-β-D-glucan Concentrations in Dust as a Surrogate Method for Estimating Specific Mold Exposures

    EPA Science Inventory

    Indoor exposure to fungi has been associated with respiratory symptoms, often attributed to their major cell wall component, (1-3)-β-D-glucan (DG). This and the ease and low cost of performing DG analysis rather than cultivation or microscopic counting of mold spores, has prompte...

  7. Surface Coating of Gypsum-Based Molds for Maxillofacial Prosthetic Silicone Elastomeric Material: The Surface Topography.

    PubMed

    Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal

    2015-07-01

    This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p < 0.05. Roughness was significantly reduced in the silicone elastomers processed against coated gypsum materials (p < 0.001). The AFM and SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.

  8. An Evolutionary-Based Framework for Analyzing Mold and Dampness-Associated Symptoms in DMHS

    PubMed Central

    Daschner, Alvaro

    2017-01-01

    Among potential environmental harmful factors, fungi deserve special consideration. Their intrinsic ability to actively germinate or infect host tissues might determine a prominent trigger in host defense mechanisms. With the appearance of fungi in evolutionary history, other organisms had to evolve strategies to recognize and cope with them. Existing controversies around dampness and mold hypersensitivity syndrome (DMHS) can be due to the great variability of clinical symptoms but also of possible eliciting factors associated with mold and dampness. An hypothesis is presented, where an evolutionary analysis of the different response patterns seen in DMHS is able to explain the existing variability of disease patterns. Classical interpretation of immune responses and symptoms are addressed within the field of pathophysiology. The presented evolutionary analysis seeks for the ultimate causes of the vast array of symptoms in DMHS. Symptoms can be interpreted as induced by direct (toxic) actions of spores, mycotoxins, or other fungal metabolites, or on the other side by the host-initiated response, which aims to counterbalance and fight off potentially deleterious effects or fungal infection. Further, individual susceptibility of immune reactions can confer an exaggerated response, and magnified symptoms are then explained in terms of immunopathology. IgE-mediated allergy fits well in this scenario, where individuals with an atopic predisposition suffer from an exaggerated response to mold exposure, but studies addressing why such responses have evolved and if they could be advantageous are scarce. Human history is plenty of plagues and diseases connected with mold exposure, which could explain vulnerability to mold allergy. Likewise, multiorgan symptoms in DMHS are analyzed for its possible adaptive role not only in the defense of an active infection, but also as evolved mechanisms for avoidance of potentially harmful environments in an evolutionary past or present setting. PMID:28119688

  9. Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a Drosophila bioassay.

    PubMed

    Zhao, G; Yin, G; Inamdar, A A; Luo, J; Zhang, N; Yang, I; Buckley, B; Bennett, J W

    2017-05-01

    Superstorm Sandy provided an opportunity to study filamentous fungi (molds) associated with winter storm damage. We collected 36 morphologically distinct fungal isolates from flooded buildings. By combining traditional morphological and cultural characters with an analysis of ITS sequences (the fungal DNA barcode), we identified 24 fungal species that belong to eight genera: Penicillium (11 species), Fusarium (four species), Aspergillus (three species), Trichoderma (two species), and one species each of Metarhizium, Mucor, Pestalotiopsis, and Umbelopsis. Then, we used a Drosophila larval assay to assess possible toxicity of volatile organic compounds (VOCs) emitted by these molds. When cultured in a shared atmosphere with growing cultures of molds isolated after Hurricane Sandy, larval toxicity ranged from 15 to 80%. VOCs from Aspergillus niger 129B were the most toxic yielding 80% mortality to Drosophila after 12 days. The VOCs from Trichoderma longibrachiatum 117, Mucor racemosus 138a, and Metarhizium anisopliae 124 were relatively non-toxigenic. A preliminary analysis of VOCs was conducted using solid-phase microextraction-gas chromatography-mass spectrometry from two of the most toxic, two of the least toxic, and two species of intermediate toxicity. The more toxic molds produced higher concentrations of 1-octen-3-ol, 3-octanone, 3-octanol, 2-octen-1-ol, and 2-nonanone; while the less toxic molds produced more 3-methyl-1-butanol and 2-methyl-1-propanol, or an overall lower amount of volatiles. Our data support the hypothesis that at certain concentrations, some VOCs emitted by indoor molds are toxigenic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates.

    PubMed

    Van Lancker, Fien; Adams, An; Delmulle, Barbara; De Saeger, Sarah; Moretti, Antonio; Van Peteghem, Carlos; De Kimpe, Norbert

    2008-10-01

    An automated headspace solid phase microextraction method followed by GC-MS analysis was used to evaluate and compare the in vitro production of microbial volatile organic compounds (MVOCs) on malt extract agar, plasterboard and wallpaper. Five fungal strains were isolated from the walls of water-damaged houses and identified. In addition, four other common molds were studied. In general, MVOC production was the highest on malt extract agar. On this synthetic medium, molds typically produced 2-methylpropanol, 2-methylbutanol and 3-methylbutanol. On wallpaper, mainly 2-ethylhexanol, methyl 2-ethylhexanoate and compounds of the C8-complex such as 1-octene-3-ol, 3-octanone, 3-octanol and 1,3-octadiene were detected. The detection of 2-ethylhexanol and methyl 2-ethylhexanoate indicates an enhanced degradation of the substrate by most fungi. For growth on plasterboard, no typical metabolites were detected. Despite these metabolite differences on malt extract agar, wallpaper and plasterboard, some molds also produced specific compounds independently of the used substrate, such as trichodiene from Fusarium sporotrichioides and aristolochene from Penicillium roqueforti. Therefore, these metabolites can be used as markers for the identification and maybe also mycotoxin production of these molds. All five investigated Penicillium spp. in this study were able to produce two specific diterpenes, which were not produced by the other species studied. These two compounds, which remain unidentified until now, therefore seem specific for Penicillium spp. and are potentially interesting for the monitoring of this fungal genus. Further experiments will be performed with other Penicillium spp. to study the possibility that these two compounds are specific for this group of molds.

  11. An Evolutionary-Based Framework for Analyzing Mold and Dampness-Associated Symptoms in DMHS.

    PubMed

    Daschner, Alvaro

    2016-01-01

    Among potential environmental harmful factors, fungi deserve special consideration. Their intrinsic ability to actively germinate or infect host tissues might determine a prominent trigger in host defense mechanisms. With the appearance of fungi in evolutionary history, other organisms had to evolve strategies to recognize and cope with them. Existing controversies around dampness and mold hypersensitivity syndrome (DMHS) can be due to the great variability of clinical symptoms but also of possible eliciting factors associated with mold and dampness. An hypothesis is presented, where an evolutionary analysis of the different response patterns seen in DMHS is able to explain the existing variability of disease patterns. Classical interpretation of immune responses and symptoms are addressed within the field of pathophysiology. The presented evolutionary analysis seeks for the ultimate causes of the vast array of symptoms in DMHS. Symptoms can be interpreted as induced by direct (toxic) actions of spores, mycotoxins, or other fungal metabolites, or on the other side by the host-initiated response, which aims to counterbalance and fight off potentially deleterious effects or fungal infection. Further, individual susceptibility of immune reactions can confer an exaggerated response, and magnified symptoms are then explained in terms of immunopathology. IgE-mediated allergy fits well in this scenario, where individuals with an atopic predisposition suffer from an exaggerated response to mold exposure, but studies addressing why such responses have evolved and if they could be advantageous are scarce. Human history is plenty of plagues and diseases connected with mold exposure, which could explain vulnerability to mold allergy. Likewise, multiorgan symptoms in DMHS are analyzed for its possible adaptive role not only in the defense of an active infection, but also as evolved mechanisms for avoidance of potentially harmful environments in an evolutionary past or present setting.

  12. Semi-contact-writing of polymer molds for prototyping PDMS chips with low surface roughness, sharp edges and locally varying channel heights

    NASA Astrophysics Data System (ADS)

    Gutzweiler, Ludwig; Stumpf, Fabian; Tanguy, Laurent; Roth, Guenter; Koltay, Peter; Zengerle, Roland; Riegger, Lutz

    2016-04-01

    Microfluidic systems fabricated in polydimethylsiloxane (PDMS) enable a broad variety of applications and are widespread in the field of Lab-on-a-Chip. Here we demonstrate semi-contact-writing, a novel method for fabrication of polymer based molds for casting microfluidic PDMS chips in a highly flexible, time and cost-efficient manner. The method is related to direct-writing of an aqueous polymer solution on a planar glass substrate and substitutes conventional, time- and cost-consuming UV-lithography. This technique facilitates on-demand prototyping in a low-cost manner and is therefore ideally suited for rapid chip layout iterations. No cleanroom facilities and less expertise are required. Fabrication time from scratch to ready-to-use PDMS-chip is less than 5 h. This polymer writing method enables structure widths down to 140 μm and controllable structure heights ranging from 5.5 μm for writing single layers up to 98 μm by stacking. As a unique property, freely selectable height variations across a substrate can be achieved by application of local stacking. Furthermore, the molds exhibit low surface roughness (R a   =  24 nm, R RMS  =  28 nm) and high fidelity edge sharpness. We validated the method by fabrication of molds to cast PDMS chips for droplet based flow-through PCR with single-cell sensitivity.

  13. Development of batch producible hot embossing 3D nanostructured surface-enhanced Raman scattering chip technology

    NASA Astrophysics Data System (ADS)

    Huang, Chu-Yu; Tsai, Ming-Shiuan

    2017-09-01

    The main purpose of this study is to develop a batch producible hot embossing 3D nanostructured surface-enhanced Raman chip technology for high sensitivity label-free plasticizer detection. This study utilizing the AAO self-assembled uniform nano-hemispherical array barrier layer as a template to create a durable nanostructured nickel mold. With the hot embossing technique and the durable nanostructured nickel mold, we are able to batch produce the 3D Nanostructured Surface-enhanced Raman Scattering Chip with consistent quality. In addition, because of our SERS chip can be fabricated by batch processing, the fabrication cost is low. Therefore, the developed method is very promising to be widespread and extensively used in rapid chemical and biomolecular detection applications.

  14. Comparative Analysis of Three-Dimensional Nasal Shape of Casts from Patients With Unilateral Cleft Lip and Palate Treated at Two Institutions Following Rotation Advancement Only (Iowa) or Nasoalveolar Molding and Rotation Advancement in Conjunction With Primary Rhinoplasty (New York).

    PubMed

    Hosseinian, Banafsheh; Rubin, Marcie S; Clouston, Sean A P; Almaidhan, Asma; Shetye, Pradip R; Cutting, Court B; Grayson, Barry H

    2018-01-01

    To compare 3-dimensional nasal symmetry in patients with UCLP who had either rotation advancement alone or nasoalveolar molding (NAM) followed by rotation advancement in conjunction with primary nasal repair. Pilot retrospective cohort study. Nasal casts of 23 patients with UCLP from 2 institutions were analyzed; 12 in the rotation advancement only group (Iowa) and 11 in the NAM, rotation advancement with primary nasal repair group (New York). Casts from patients aged 6 to 18 years were scanned using the 3Shape scanner and 3-dimensional analysis of nasal symmetry performed using 3dMD Vultus software, Version 2507, 3dMD, Atlanta, GA. Cleft and noncleft side columellar height, nasal dome height, alar base width, and nasal projection were linearly measured. Inter- and intragroup analyses were performed using t tests and paired t tests as appropriate. A statistically significant difference in mean-scaled 3-dimensional asymmetry index was found between groups with group 1 having a larger measure of asymmetry (4.69 cm 3 ) than group 2 (2.56 cm 3 ; P = .02). Intergroup analysis performed on the most sensitive linear measure, alar base width, revealed significantly less asymmetry on average in group 2 than in group 1 ( P = .013). This study suggests the NAM followed by rotation advancement in conjunction with primary nasal repair approach may result in less nasal asymmetry compared to rotation advancement alone.

  15. Warpage of QFN Package in Post Mold Cure Process of integrated circuit packaging

    NASA Astrophysics Data System (ADS)

    Sriwithoon, Nattha; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about warpage of QFN package in post mold cure process of integrated circuit (IC) packages using pre-plated (PPF) leadframe. For IC package, epoxy molding compound (EMC) are molded by cross linking of compound stiffness but incomplete crosslinked network and leading the fully cured thermoset by post mold cure (PMC) process. The cure temperature of PMC can change microstructure of EMC in term of stress inside the package and effect to warpage of the package due to coefficient of thermal expansion (CTE) between EMC and leadframe. In experiment, cure temperatures were varied to check the effect of internal stress due to different cure temperature after completed post mold cure for TDFN 2×3 8L. The cure temperature were varied with 180 °C, 170 °C, 160 °C, and 150°C with cure time 4 and 6 hours, respectively. For analysis, the TDFN 2×3 8L packages were analyzed the warpage by thickness gauge and scanning acoustic microscope (SAM) after take the test samples out from the oven cure. The results confirmed that effect of different CTE between EMC and leadframe due to different cure temperature resulting to warpage of the TDFN 2×3 8L packages.

  16. Surface detail reproduction and dimensional accuracy of molds: influence of disinfectant solutions and elastomeric impression materials.

    PubMed

    Guiraldo, Ricardo D; Berger, Sandrine B; Siqueira, Ronaldo Mt; Grandi, Victor H; Lopes, Murilo B; Gonini-Júnior, Alcides; Caixeta, Rodrigo V; de Carvalho, Rodrigo V; Sinhoreti, Mário Ac

    2017-04-01

    This study compared the surface detail reproduction and dimensional accuracy of molds after disinfection using 2% sodium hypochlorite, 2% chlorhexidine digluconate or 0.2% peracetic acid to those of molds that were not disinfected, for four elastomeric impression materials: polysulfide (Light Bodied Permlastic), polyether (Impregum Soft), polydimethylsiloxane (Oranwash L) andpolyvinylsiloxane (Aquasil Ultra LV). The molds were prepared on a matrix by applying pressure, using a perforated metal tray. The molds were removed following polymerization and either disinfected (by soaking in one of the solutions for 15 minutes) or not disinfected. The samples were thus divided into 16 groups (n=5). Surface detail reproduction and dimensional accuracy were evaluated using optical microscopy to assess the 20-μm line over its entire 25 mm length. The dimensional accuracy results (%) were subjected to analysis of variance (ANOVA) and the means were compared by Tukey's test (a=5%). The 20-μm line was completely reproduced by all elastomeric impression materials, regardless of disinfection procedure. There was no significant difference between the control group and molds disinfected with peracetic acid for the elastomeric materials Impregum Soft (polyether) and Aquasil Ultra LV (polyvinylsiloxane). The high-level disinfectant peracetic acid would be the choice material for disinfection. Sociedad Argentina de Investigación Odontológica.

  17. Optimization of process parameters in the RF-DC plasma N2-H2 for AISI420 molds and dies

    NASA Astrophysics Data System (ADS)

    Herdianto, Hengky; Djoko, D. J.; Santjojo, H.; Masruroh

    2017-11-01

    The RF-DC plasma N2-H2 was used to make precise AISI420 molds and dies have complex textured geometry. The quality of the molds and dies directly affect the quality of the produced parts. The excellent examples of molds were used for injection molding lenses and dies used for the precision forging of automotive drive train components. In this study, a temperature, DC bias, and duration as process parameters of the RF-DC plasma N2-H2 have been optimized for molds and dies fabrication. The mask-less micro-patterned method was utilized to draw the initial 2D micro patterns directly onto the AISI420 substrate surface. The unprinted substrate surfaces were selectively nitrided by the RF-DC plasma N2-H2 at 673 K for 5400 s by 70 Pa with hollow cathode device. Energy Dispersive X-ray was utilized to describe the nitrogen content distribution at the vicinity of the border between the unprinted surfaces. This exclusive nitrogen mapping proves that only the unprinted parts of the substrate have high content nitrogen solutes. XRD analysis was performed to investigate whether the iron nitrides were precipitated by RF-DC plasma N2-H2 in the AISI420.

  18. Dimensional changes of acrylic resin denture bases: conventional versus injection-molding technique.

    PubMed

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-07-01

    Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding.

  19. Analysis of Deformation and Equivalent Stress during Biomass Material Compression Molding

    NASA Astrophysics Data System (ADS)

    Xu, Guiying; Wei, Hetao; Zhang, Zhien; Yu, Shaohui; Wang, Congzhe; Huang, Guowen

    2018-02-01

    Ansys is adopted to analyze mold deformation and stress field distribution rule during the process of compressing biomass under pressure of 20Mpa. By means of unit selection, material property setting, mesh partition, contact pair establishment, load and constraint applying, and solver setting, the stress and strain of overall mold are analyzed. Deformation and equivalent Stress of compression structure, base, mold, and compression bar were analyzed. We can have conclusions: The distribution of stress forced on compressor is not completely uniform, where the stress at base is slightly decreased; the stress and strain of compression bar is the largest, and stress concentration my occur at top of compression bar, which goes against compression bar service life; the overall deformation of main mold is smaller; although there is slight difference between upper and lower part, the overall variation is not obvious, but the stress difference between upper and lower part of main mold is extremely large so that reaches to 10 times; the stress and strain in base decrease in circular shape, but there is still stress concentration in ledge, which goes against service life; contact stress does not distribute uniformly, there is increasing or decreasing trend in adjacent parts, which is very large in some parts. in constructing both.

  20. Dimensional Changes of Acrylic Resin Denture Bases: Conventional Versus Injection-Molding Technique

    PubMed Central

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-01-01

    Objective: Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. Materials and Methods: SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. Results: After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Conclusion: Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding. PMID:25584050

  1. Sensitivity and variability of Presage dosimeter formulations in sheet form with application to SBRT and SRS QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumas, Michael, E-mail: mdumas1127@gmail.com; Rakowski, Joseph T.

    Purpose: To measure sensitivity and stability of the Presage dosimeter in sheet form for various chemical concentrations over a range of clinical photon energies and examine its use for stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) QA. Methods: Presage polymer dosimeters were formulated to investigate and optimize their sensitivity and stability. The dosimeter is composed of clear polyurethane base, leucomalachite green (LMG) reporting dye, and bromoform radical initiator in 0.9–1.0 mm thick sheets. The chemicals are mixed together for 2 min, cast in an aluminum mold, and left to cure at 60 psi for a minimum of twomore » days. Dosimeter response was characterized at energies Co-60, 6 MV, 10 MV flattening-filter free, 15 MV, 50 kVp (mean 19.2 keV), and Ir-192. The dosimeters were scanned by a Microtek Scanmaker i800 at 300 dpi, 2{sup 16} bit depth per color channel. Red component images were analyzed with ImageJ and RIT. SBRT QA was done with gamma analysis tolerances of 2% and 2 mm DTA. Results: The sensitivity of the Presage dosimeter increased with increasing concentration of bromoform. Addition of tin catalyst decreased curing time and had negligible effect on sensitivity. LMG concentration should be at least as high as the bromoform, with ideal concentration being 2% wt. Gamma Knife SRS QA measurements of relative output and profile widths were within 2% of manufacturer’s values validated at commissioning, except the 4 mm collimator relative output which was within 3%. The gamma pass rate of Presage with SBRT was 73.7%, compared to 93.1% for EBT2 Gafchromic film. Conclusions: The Presage dosimeter in sheet form was capable of detecting radiation over all tested photon energies and chemical concentrations. The best sensitivity and photostability of the dosimeter were achieved with 2.5% wt. LMG and 8.2% wt. bromoform. Scanner used should not emit any UV radiation as it will expose the dosimeter, as with the Epson 10000 XL scanner. Presage dosimeter in this form was sensitive enough for use in SRS and SBRT QA. The lower gamma pass rate for Presage compared to Gafchromic film can be attributed to the simple equipment used in the fabrication process, which limited the dosimeter’s sensitivity uniformity by agglomeration of air bubbles in the material, nonuniform concentration of chemicals throughout the material, and thickness variations. This demands improvements in mixing tools and molds.« less

  2. Micro Dot Patterning on the Light Guide Panel Using Powder Blasting.

    PubMed

    Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam

    2008-02-08

    This study is to develop a micromachining technology for a light guidepanel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a singleinjection process instead of existing screen printing processes. The micro powder blastingtechnique is applied to form micro dot patterns on the LGP mold surface. The optimalconditions for masking, laminating, exposure, and developing processes to form the microdot patterns are first experimentally investigated. A LGP mold with masked micro patternsis then machined using the micro powder blasting method and the machinability of themicro dot patterns is verified. A prototype LGP is test- injected using the developed LGPmold and a shape analysis of the patterns and performance testing of the injected LGP arecarried out. As an additional approach, matte finishing, a special surface treatment method,is applied to the mold surface to improve the light diffusion characteristics, uniformity andbrightness of the LGP. The results of this study show that the applied powder blastingmethod can be successfully used to manufacture LGPs with micro patterns by just singleinjection using the developed mold and thereby replace existing screen printing methods.

  3. Factors influencing microinjection molding replication quality

    NASA Astrophysics Data System (ADS)

    Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Trannoy-Orban, Nathalie; Pignon, Maxime; Mauclair, Cyril; Valette, Stéphane; Benayoun, Stéphane

    2018-01-01

    In recent years, there has been increased interest in producing and providing high-precision plastic parts that can be manufactured by microinjection molding: gears, pumps, optical grating elements, and so on. For all of these applications, the replication quality is essential. This study has two goals: (1) fabrication of high-precision parts using the conventional injection molding machine; (2) identification of robust parameters that ensure production quality. Thus, different technological solutions have been used: cavity vacuuming and the use of a mold coated with DLC or CrN deposits. AFM and SEM analyses were carried out to characterize the replication profile. The replication quality was studied in terms of the process parameters, coated and uncoated molds and crystallinity of the polymer. Specific studies were processed to quantify the replicability of injection molded parts (ABS, PC and PP). Analysis of the Taguchi experimental designs permits prioritization of the impact of each parameter on the replication quality. A discussion taking into account these new parameters and the thermal and spreading properties on the coatings is proposed. It appeared that, in general, increasing the mold temperature improves the molten polymer fill in submicron features except for the steel insert (for which the presence of a vacuum is the most important factor). Moreover, the DLC coating was the best coating to increase the quality of the replication. This result could be explained by the lower thermal diffusivity of this coating. We noted that the viscosity of the polymers is not a primordial factor of the replication quality.

  4. Analysis of form deviation in non-isothermal glass molding

    NASA Astrophysics Data System (ADS)

    Kreilkamp, H.; Grunwald, T.; Dambon, O.; Klocke, F.

    2018-02-01

    Especially in the market of sensors, LED lighting and medical technologies, there is a growing demand for precise yet low-cost glass optics. This demand poses a major challenge for glass manufacturers who are confronted with the challenge arising from the trend towards ever-higher levels of precision combined with immense pressure on market prices. Since current manufacturing technologies especially grinding and polishing as well as Precision Glass Molding (PGM) are not able to achieve the desired production costs, glass manufacturers are looking for alternative technologies. Non-isothermal Glass Molding (NGM) has been shown to have a big potential for low-cost mass manufacturing of complex glass optics. However, the biggest drawback of this technology at the moment is the limited accuracy of the manufactured glass optics. This research is addressing the specific challenges of non-isothermal glass molding with respect to form deviation of molded glass optics. Based on empirical models, the influencing factors on form deviation in particular form accuracy, waviness and surface roughness will be discussed. A comparison with traditional isothermal glass molding processes (PGM) will point out the specific challenges of non-isothermal process conditions. Furthermore, the underlying physical principle leading to the formation of form deviations will be analyzed in detail with the help of numerical simulation. In this way, this research contributes to a better understanding of form deviations in non-isothermal glass molding and is an important step towards new applications demanding precise yet low-cost glass optics.

  5. Application of Matrix Projection Exposure Using a Liquid Crystal Display Panel to Fabricate Thick Resist Molds

    NASA Astrophysics Data System (ADS)

    Fukasawa, Hirotoshi; Horiuchi, Toshiyuki

    2009-08-01

    The patterning characteristics of matrix projection exposure using an analog liquid crystal display (LCD) panel in place of a reticle were investigated, in particular for oblique patterns. In addition, a new method for fabricating practical thick resist molds was developed. At first, an exposure system fabricated in past research was reconstructed. Changes in the illumination optics and the projection lens were the main improvements. Using fly's eye lenses, the illumination light intensity distribution was homogenized. The projection lens was changed from a common camera lens to a higher-grade telecentric lens. In addition, although the same metal halide lamp was used as an exposure light source, the central exposure wavelength was slightly shortened from 480 to 450 nm to obtain higher resist sensitivity while maintaining almost equivalent contrast between black and white. Circular and radial patterns with linewidths of approximately 6 µm were uniformly printed in all directions throughout the exposure field owing to these improvements. The patterns were smoothly printed without accompanying stepwise roughness caused by the cell matrix array. On the bases of these results, a new method of fabricating thick resist molds for electroplating was investigated. It is known that thick resist molds fabricated using the negative resist SU-8 (Micro Chem) are useful because very high aspect patterns are printable and the side walls are perpendicular to the substrate surfaces. However, the most suitable exposure wavelength of SU-8 is 365 nm, and SU-8 is insensitive to light of 450 nm wavelength, which is most appropriate for LCD matrix exposure. For this reason, a novel multilayer resist process was proposed, and micromolds of SU-8 of 50 µm thickness were successfully obtained. As a result, feasibility for fabricating complex resist molds including oblique patterns was demonstrated.

  6. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity.

    PubMed

    Su, Bin; Gong, Shu; Ma, Zheng; Yap, Lim Wei; Cheng, Wenlong

    2015-04-24

    A bio-inspired flexible pressure sensor is generated with high sensitivity (50.17 kPa(-1)), quick responding time (<20 ms), and durable stability (negligible loading-unloading signal changes over 10 000 cycles). Notably, the key resource of surface microstructures upon sensor substrates results from the direct molding of natural mimosa leaves, presenting a simple, environment-friendly and easy scale-up fabrication process for these flexible pressure sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Influence of mold surface temperature on polymer part warpage in rapid heat cycle molding

    NASA Astrophysics Data System (ADS)

    Berger, G. R.; Pacher, G. A.; Pichler, A.; Friesenbichler, W.; Gruber, D. P.

    2014-05-01

    Dynamic mold surface temperature control was examined for its influence on the warpage. A test mold, featuring two different rapid heat cycle molding (RHCM) technologies was used to manufacture complex plate-shaped parts having different ribs, varying thin-wall regions, and both, circular and rectangular cut-outs. The mold's nozzle side is equipped with the areal heating and cooling technology BFMOLD®, where the heating/cooling channels are replaced by a ball-filled slot near the cavity surface flooded through with hot and cold water sequentially. Two local electrical ceramic heating elements are installed into the mold's ejection side. Based on a 23 full-factorial design of experiments (DoE) plan, varying nozzle temperature (Tnozzle), rapid heat cycle molding temperature (TRHCM) and holding pressure (pn), specimens of POM were manufactured systematically. Five specimens were examined per DoE run. The resulting warpage was measured at 6 surface line scans per part using the non-contact confocal topography system FRT MicroProf®. Two warpage parameters were calculated, the curvature of a 2nd order approximation a, and the vertical deflection at the profile center d. Both, the influence strength and the acting direction of the process parameters and their interactions on a and d were calculated by statistical analysis. Linear mathematical process models were determined for a and d to predict the warpage as a function of the process parameter settings. Finally, an optimum process setting was predicted, based on the process models and Microsoft Excel GRG solver. Clear and significant influences of TRHCM, pn, Tnozzle, and the interaction of TRHCM and pn were determined. While TRHCM was dominant close to the gate, pn became more effective as the flow length increased.

  8. Alveolar Molding Effect in Infants With Unilateral Cleft Lip and Palate: Comparison of Two- and Three-Dimensional Measurements.

    PubMed

    Lim, Won Hee; Park, Eun Woo; Chae, Hwa Sung; Kwon, Soon Man; Jung, Hoi-In; Baek, Seung-Hak

    2017-06-01

    The purpose of this study was to compare the results of two- (2D) and three-dimensional (3D) measurements for the alveolar molding effect in patients with unilateral cleft lip and palate. The sample consisted of 23 unilateral cleft lip and palate infants treated with nasoalveolar molding (NAM) appliance. Dental models were fabricated at initial visit (T0; mean age, 23.5 days after birth) and after alveolar molding therapy (T1; mean duration, 83 days). For 3D measurement, virtual models were constructed using a laser scanner and 3D software. For 2D measurement, 1:1 ratio photograph images of dental models were scanned by a scanner. After setting of common reference points and lines for 2D and 3D measurements, 7 linear and 5 angular variables were measured at the T0 and T1 stages, respectively. Wilcoxon signed rank test and Bland-Altman analysis were performed for statistical analysis. The alveolar molding effect of the maxilla following NAM treatment was inward bending of the anterior part of greater segment, forward growth of the lesser segment, and decrease in the cleft gap in the greater segment and lesser segment. Two angular variables showed difference in statistical interpretation of the change by NAM treatment between 2D and 3D measurements (ΔACG-BG-PG and ΔACL-BL-PL). However, Bland-Altman analysis did not exhibit significant difference in the amounts of change in these variables between the 2 measurements. These results suggest that the data from 2D measurement could be reliably used in conjunction with that from 3D measurement.

  9. Composite materials molding simulation for purpose of automotive industry

    NASA Astrophysics Data System (ADS)

    Grabowski, Ł.; Baier, A.; Majzner, M.; Sobek, M.

    2016-08-01

    Composite materials loom large increasingly important role in the overall industry. Composite material have a special role in the ever-evolving automotive industry. Every year the composite materials are used in a growing number of elements included in the cars construction. Development requires the search for ever new applications of composite materials in areas where previously were used only metal materials. Requirements for modern solutions, such as reducing the weight of vehicles, the required strength and vibration damping characteristics go hand in hand with the properties of modern composite materials. The designers faced the challenge of the use of modern composite materials in the construction of bodies of power steering systems in vehicles. The initial choice of method for producing composite bodies was the method of molding injection of composite material. Molding injection of polymeric materials is a widely known and used for many years, but the molding injection of composite materials is a relatively new issue, innovative, it is not very common and is characterized by different conditions, parameters and properties in relation to the classical method. Therefore, for the purpose of selecting the appropriate composite material for injection for the body of power steering system computer analysis using Siemens NX 10.0 environment, including Moldex 3d and EasyFill Advanced tool to simulate the injection of materials from the group of possible solutions were carried out. Analyses were carried out on a model of a modernized wheel case of power steering system. During analysis, input parameters, such as temperature, pressure injectors, temperature charts have been analysed. An important part of the analysis was to analyse the propagation of material inside the mold during injection, so that allowed to determine the shape formability and the existence of possible imperfections of shapes and locations air traps. A very important parameter received from computer analysis was to determine the occurrence of the shrinkage of the material, which significantly affects the behaviour of the assumed geometry of the tested component. It also allowed the prediction of existence of shrincage of material during the process of modelling the shape of body. The next step was to analyse the numerical analysis results received from Siemens NX 10 and Moldex 3D EasyFlow Advanced environment. The process of injection were subjected to shape of prototype body of power steering. The material used in process of injection was similar to one of excepted material to be used in process of molding. Nextly, the results were analysed in purpose of geometry, where samples has aberrations in comparison to a given shape of mold. The samples were also analysed in terms of shrinkage. Research and results were described in detail in this paper.

  10. Development of an efficient fungal DNA extraction method to be used in random amplified polymorphic DNA-PCR analysis to differentiate cyclopiazonic acid mold producers.

    PubMed

    Sánchez, Beatriz; Rodríguez, Mar; Casado, Eva M; Martín, Alberto; Córdoba, Juan J

    2008-12-01

    A variety of previously established mechanical and chemical treatments to achieve fungal cell lysis combined with a semiautomatic system operated by a vacuum pump were tested to obtain DNA extract to be directly used in randomly amplified polymorphic DNA (RAPD)-PCR to differentiate cyclopiazonic acid-producing and -nonproducing mold strains. A DNA extraction method that includes digestion with proteinase K and lyticase prior to using a mortar and pestle grinding and a semiautomatic vacuum system yielded DNA of high quality in all the fungal strains and species tested, at concentrations ranging from 17 to 89 ng/microl in 150 microl of the final DNA extract. Two microliters of DNA extracted with this method was directly used for RAPD-PCR using primer (GACA)4. Reproducible RAPD fingerprints showing high differences between producer and nonproducer strains were observed. These differences in the RAPD patterns did not differentiate all the strains tested in clusters by cyclopiazonic acid production but may be very useful to distinguish cyclopiazonic acid producer strains from nonproducer strains by a simple RAPD analysis. Thus, the DNA extracts obtained could be used directly without previous purification and quantification for RAPD analysis to differentiate cyclopiazonic acid producer from nonproducer mold strains. This combined analysis could be adaptable to other toxigenic fungal species to enable differentiation of toxigenic and non-toxigenic molds, a procedure of great interest in food safety.

  11. Respiratory diseases and allergic sensitization in swine breeders: a population-based cross-sectional study.

    PubMed

    Galli, Luigina; Facchetti, Susanna; Raffetti, Elena; Donato, Francesco; D'Anna, Mauro

    2015-11-01

    The daily occupation as a swine breeder involves exposure to several bacterial components and organic dusts and inhalation of a large amount of allergens. To investigate the risk of respiratory diseases and atopy in swine breeders compared with the general population living in the same area. A population-based cross-sectional study was conducted in an agricultural area of northern Italy that enrolled a random sample of resident male breeders and non-breeders. Demographic features, comorbidities, and presence of allergic respiratory disease were retrieved through interview. Prick tests for common allergens were performed. An evaluation of pollen and mold in air samples taken inside and outside some swine confinement buildings also was performed. One hundred one male breeders (78 native-born, mean age ± SD 43.0 ± 11.1 years) and 82 non-breeders (43.0 ± 11.1 years) were enrolled. When restricting the analysis to native-born subjects, breeders vs non-breeders showed a lower prevalence of respiratory allergy (12.8% vs 31.1%, respectively, P = .002), asthma (6.4% vs 15.8%, P = .059), rhinitis (16.7% vs 51.2%, P < .001), persistent cough (5.1% vs 15.9%, P = .028), and sensitization to grass (7.7% vs 25.6%, P = .002). There was no difference in prick test positivity, polysensitization, nasal cytologic pattern, forced expiratory volume in 1 second, and the ratio of forced expiratory volume in 1 second to forced vital capacity between breeders and non-breeders. Air concentration of molds and pollens was lower inside than outside the swine buildings investigated, particularly when the pigs were inside vs outside the buildings. This study suggests that swine breeding does not increase, and might decrease, the risk of pollen sensitization and allergic disease. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. Injection molding as a one-step process for the direct production of pharmaceutical dosage forms from primary powders.

    PubMed

    Eggenreich, K; Windhab, S; Schrank, S; Treffer, D; Juster, H; Steinbichler, G; Laske, S; Koscher, G; Roblegg, E; Khinast, J G

    2016-05-30

    The objective of the present study was to develop a one-step process for the production of tablets directly from primary powder by means of injection molding (IM), to create solid-dispersion based tablets. Fenofibrate was used as the model API, a polyvinyl caprolactame-polyvinyl acetate-polyethylene glycol graft co-polymer served as a matrix system. Formulations were injection-molded into tablets using state-of-the-art IM equipment. The resulting tablets were physico-chemically characterized and the drug release kinetics and mechanism were determined. Comparison tablets were produced, either directly from powder or from pre-processed pellets prepared via hot melt extrusion (HME). The content of the model drug in the formulations was 10% (w/w), 20% (w/w) and 30% (w/w), respectively. After 120min, both powder-based and pellet-based injection-molded tablets exhibited a drug release of 60% independent of the processing route. Content uniformity analysis demonstrated that the model drug was homogeneously distributed. Moreover, analysis of single dose uniformity also revealed geometric drug homogeneity between tablets of one shot. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Resin bleed improvement on surface mount semiconductor device

    NASA Astrophysics Data System (ADS)

    Rajoo, Indra Kumar; Tahir, Suraya Mohd; Aziz, Faieza Abdul; Shamsul Anuar, Mohd

    2018-04-01

    Resin bleed is a transparent layer of epoxy compound which occurs during molding process but is difficult to be detected after the molding process. Resin bleed on the lead on the unit from the focused package, SOD123, can cause solderability failure at end customer. This failed unit from the customer will be considered as a customer complaint. Generally, the semiconductor company has to perform visual inspection after the plating process to detect resin bleed. Mold chase with excess hole, split cavity & stepped design ejector pin hole have been found to be the major root cause of resin bleed in this company. The modifications of the mold chase, changing of split cavity to solid cavity and re-design of the ejector pin proposed were derived after a detailed study & analysis conducted to arrive at these solutions. The solutions proposed have yield good results during the pilot run with zero (0) occurrence of resin bleed for 3 consecutive months.

  14. Retention of denture bases fabricated by three different processing techniques – An in vivo study

    PubMed Central

    Chalapathi Kumar, V. H.; Surapaneni, Hemchand; Ravikiran, V.; Chandra, B. Sarat; Balusu, Srilatha; Reddy, V. Naveen

    2016-01-01

    Aim: Distortion due to Polymerization shrinkage compromises the retention. To evaluate the amount of retention of denture bases fabricated by conventional, anchorized, and injection molding polymerization techniques. Materials and Methods: Ten completely edentulous patients were selected, impressions were made, and master cast obtained was duplicated to fabricate denture bases by three polymerization techniques. Loop was attached to the finished denture bases to estimate the force required to dislodge them by retention apparatus. Readings were subjected to nonparametric Friedman two-way analysis of variance followed by Bonferroni correction methods and Wilcoxon matched-pairs signed-ranks test. Results: Denture bases fabricated by injection molding (3740 g), anchorized techniques (2913 g) recorded greater retention values than conventional technique (2468 g). Significant difference was seen between these techniques. Conclusions: Denture bases obtained by injection molding polymerization technique exhibited maximum retention, followed by anchorized technique, and least retention was seen in conventional molding technique. PMID:27382542

  15. In-situ Crystallization of Highly Volatile Commercial Mold Flux Using an Isolated Observation System in the Confocal Laser Scanning Microscope

    NASA Astrophysics Data System (ADS)

    Park, Jun-Yong; Ryu, Jae Wook; Sohn, Il

    2014-08-01

    The in situ crystallization behavior of highly volatile commercial mold fluxes for medium carbon steels was investigated using the confocal laser scanning microscope (CLSM) equipped with an optimized isolated observation system. The highly volatile compounds of the mold flux were suppressed during heating allowing direct observation in the CLSM. Cooling rates of 25, 50, 100, 400, and 800 K/min were incorporated and continuous cooling transformation (CCT) diagrams of 4 different commercial mold fluxes for medium carbon steels were developed. Identification of the crystalline phase was conducted with XRD and SEM-EDS analysis. A cuspidine crystalline was observed in all samples at various cooling rates. With higher basicity, CaF2, and NaF, the crystallization of the fluxes was enhanced according to the CCT diagram. As the slag structure becomes depolymerized, the diffusion rate of the cathodic ions seems to increase.

  16. Characterization of postharvest fungicide-resistant Botrytis cinerea isolates from commercially stored apple fruit

    USDA-ARS?s Scientific Manuscript database

    Botrytis cinerea causes grey mold of apple fruit and is one of the most economically important postharvest pathogens of global concern. Eight fludioxonil sensitive B. cinerea isolates from Pennsylvania had EC50 values ranging from 0.004 to 0.0038 µg/ml fludioxonil that were dual resistant to pyrimet...

  17. First report of Penicillium expansum isolates with reduced sensitivity to fludioxonil from a commercial packinghouse in Pennsylvania

    USDA-ARS?s Scientific Manuscript database

    Blue mold is caused by Penicillium expansum and is among the most economically significant disease of stored apples worldwide. The fungus gains ingress through cracks, natural openings, and wounds in the fruit and produces mycotoxins that contaminate processed apple products. All commercial apples a...

  18. A Study of the Oscillation Marks' Characteristics of Continuously Cast Incoloy Alloy 825 Blooms

    NASA Astrophysics Data System (ADS)

    Saleem, Saud; Vynnycky, Michael; Fredriksson, Hasse

    2016-08-01

    A comprehensive experimental study of oscillation mark (OM) formation and its characteristics during the solidification of Incoloy alloy 825 in the continuous casting of blooms is investigated by plant trials and metallographic study. The experiments involved two heats with the same casting and mold conditions and sampling at different locations across the strand. The metallographic study combined macro/micro-examinations of OMs and segregation analysis of Cr, Mn, Mo, Ni, and Si by microprobe analysis. The results show that OMs have widely different characteristics, such as mark type, depth, segregation, and accompanying microstructure. Furthermore, the mark pitch can vary considerably even for the similar casting conditions, leading to different conditions for the marks' formation in relation to the mold's cyclic movement. Finally, a mechanism for the OM formation is discussed and proposed. Possible solutions for minimizing the observed defects by optimizing the mold conditions are suggested.

  19. Principles of Biomimetic Vascular Network Design Applied to a Tissue-Engineered Liver Scaffold

    PubMed Central

    Hoganson, David M.; Pryor, Howard I.; Spool, Ira D.; Burns, Owen H.; Gilmore, J. Randall

    2010-01-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow. PMID:20001254

  20. Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold.

    PubMed

    Hoganson, David M; Pryor, Howard I; Spool, Ira D; Burns, Owen H; Gilmore, J Randall; Vacanti, Joseph P

    2010-05-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow.

  1. [Comparison of surface light scattering of acrylic intraocular lenses made by lathe-cutting and cast-molding methods--long-term observation and experimental study].

    PubMed

    Nishihara, Hitoshi; Ayaki, Masahiko; Watanabe, Tomiko; Ohnishi, Takeo; Kageyama, Toshiyuki; Yaguchi, Shigeo

    2004-03-01

    To compare the long-term clinical and experimental results of soft acrylic intraocular lenses(IOLs) manufactured by the lathe-cut(LC) method and by the cast-molding(CM) method. This was a retrospective study of 20 patients(22 eyes) who were examined in a 5- and 7-year follow-up study. Sixteen eyes were implanted with polyacrylic IOLs manufactured by the LC method and 6 eyes were implanted with polyacrylic IOLs manufactured by the CM method. Postoperative measurements included best corrected visual acuity, contrast sensitivity, biomicroscopic examination, and Scheimpflug slit-lamp images to evaluate surface light scattering. Scanning electron microscopy and three-dimensional surface analysis were conducted. At 7 years, the mean visual acuity was 1.08 +/- 0.24 (mean +/- standard deviation) in the LC group and 1.22 +/- 0.27 in the CM group. Surface light-seatter was 12.0 +/- 4.0 computer compatible tapes(CCT) in the LC group and 37.4 +/- 5.4 CCT in the CM group. Mean surface roughness was 0.70 +/- 0.07 nm in the LC group and 6.16 +/- 0.97 nm in the CM group. Acrylic IOLs manufactured by the LC method are more stable in long-termuse.

  2. Liquid-liquid phase separation and solidification behavior of Al55Bi36Cu9 monotectic alloy with different cooling rates

    NASA Astrophysics Data System (ADS)

    Bo, Lin; Li, Shanshan; Wang, Lin; Wu, Di; Zuo, Min; Zhao, Degang

    2018-03-01

    The cooling rate has a significant effect on the solidification behavior and microstructure of monotectic alloy. In this study, different cooling rate was designed through casting in the copper mold with different bore diameters. The effects of different cooling rate on the solidification behavior of Al55Bi36Cu9 (at.%) immiscible alloy have been investigated. The liquid-liquid phase separation of Al55Bi36Cu9 immiscible alloy melt was investigated by resistivity test. The solidification microstructure and phase analysis of Al55Bi36Cu9 immiscible alloy were performed by the SEM and XRD, respectively. The results showed that the liquid-liquid phase separation occurred in the solidification of Al55Bi36Cu9 monotectic melt from 917 °C to 653 °C. The monotectic temperature, liquid phase separation temperature and immiscibility zone of Al55Bi36Cu9 monotectic alloy was lower than those of Al-Bi binary monotectic alloy. The solidification morphology of Al55Bi36Cu9 monotectic alloy was very sensitive to the cooling rate. The Al/Bi core-shell structure formed when Al55Bi36Cu9 melt was cast in the copper mold with a 8 mm bore diameter.

  3. Psychological, neuropsychological, and electrocortical effects of mixed mold exposure.

    PubMed

    Crago, B Robert; Gray, Michael R; Nelson, Lonnie A; Davis, Marilyn; Arnold, Linda; Thrasher, Jack D

    2003-08-01

    The authors assessed the psychological, neuropsychological, and electrocortical effects of human exposure to mixed colonies of toxigenic molds. Patients (N = 182) with confirmed mold-exposure history completed clinical interviews, a symptom checklist (SCL-90-R), limited neuropsychological testing, quantitative electroencephalogram (QEEG) with neurometric analysis, and measures of mold exposure. Patients reported high levels of physical, cognitive, and emotional symptoms. Ratings on the SCL-90-R were "moderate" to "severe," with a factor reflecting situational depression accounting for most of the variance. Most of the patients were found to suffer from acute stress, adjustment disorder, or post-traumatic stress. Differential diagnosis confirmed an etiology of a combination of external stressors, along with organic metabolically based dysregulation of emotions and decreased cognitive functioning as a result of toxic or metabolic encephalopathy. Measures of toxic mold exposure predicted QEEG measures and neuropsychological test performance. QEEG results included narrowed frequency bands and increased power in the alpha and theta bands in the frontal areas of the cortex. These findings indicated a hypoactivation of the frontal cortex, possibly due to brainstem involvement and insufficient excitatory input from the reticular activating system. Neuropsychological testing revealed impairments similar to mild traumatic brain injury. In comparison with premorbid estimates of intelligence, findings of impaired functioning on multiple cognitive tasks predominated. A dose-response relationship between measures of mold exposure and abnormal neuropsychological test results and QEEG measures suggested that toxic mold causes significant problems in exposed individuals. Study limitations included lack of a comparison group, patient selection bias, and incomplete data sets that did not allow for comparisons among variables.

  4. Evaluation of DuPont Qualicon Bax System PCR assay for yeast and mold.

    PubMed

    Wallace, F Morgan; Burns, Frank; Fleck, Lois; Andaloro, Bridget; Farnum, Andrew; Tice, George; Ruebl, Joanne

    2010-01-01

    Evaluations were conducted to test the performance of the BAX System PCR assay which was certified as Performance Tested Method 010902 for screening yeast and mold in yogurt, corn starch, and milk-based powdered infant formula. Method comparison studies performed on samples with low-level inoculates showed that the BAX System demonstrates a sensitivity equivalent to the U.S. Food and Drug Administration's Bacteriological Analytical Manual culture method, but with a significantly shorter time to obtain results. Tests to evaluate inclusivity and exclusivity returned no false-negative and no false-positive results on a diverse panel of isolates, and tests for lot-to-lot variability and tablet stability demonstrated consistent performance. Ruggedness studies determined that none of the factors examined affected the performance of the assay.

  5. Modeling and control of flow during impregnation of heterogeneous porous media, with application to composite mold-filling processes

    NASA Astrophysics Data System (ADS)

    Bickerton, Simon

    Liquid Composite Molding (LCM) encompasses a growing list of composite material manufacturing techniques. These processes have provided the promise for complex fiber reinforced plastics parts, manufactured from a single molding step. In recent years a significant research effort has been invested in development of process simulations, providing tools that have advanced current LCM technology and broadened the range of applications. The requirement for manufacture of larger, more complex parts has motivated investigation of active control of LCM processes. Due to the unlimited variety of part geometries that can be produced, finite element based process simulations will be used to some extent in design of actively controlled processes. Ongoing efforts are being made to improve material parameter specification for process simulations, increasing their value as design tools. Several phenomena occurring during mold filling have been addressed through flow visualization experimentation and analysis of manufactured composite parts. The influence of well defined air channels within a mold cavity is investigated, incorporating their effects within existing filling simulations. Three different flow configurations have been addressed, testing the application of 'equivalent permeabilities', effectively approximating air channels as representative porous media. LCM parts having doubly curved regions require preform fabrics to undergo significant, and varying deformation throughout a mold cavity. Existing methods for predicting preform deformation, and the resulting permeability distribution have been applied to a conical mold geometry. Comparisons between experiment and simulation are promising, while the geometry studied has required large deformation over much of the part, shearing the preform fabric beyond the scope of the models applied. An investigational study was performed to determine the magnitude of effect, if any, on mold filling caused by corners within LCM mold cavities. The molds applied in this study have required careful consideration of cavity thickness variations. Any effects on mold filling due to corner radii have been overshadowed by those due to preform compression. While numerical tools are available to study actively controlled mold filling in a virtual environment, some development is required for the physical equipment to implement this in practice. A versatile, multiple line fluid injection system is developed here. The equipment and control algorithms employed have provided servo control of flow rate, or injection pressure, and have been tested under very challenging conditions. The single injection line developed is expanded to a multiple line system, and shows great potential for application to actual resin systems. A case study is presented, demonstrating design and implementation of a simple actively controlled injection scheme. The experimental facility developed provides an excellent testbed for application of actively controlled mold filling concepts, an area that is providing great promise for the advancement of LCM processes.

  6. Comparison of The Dimensional Stability of Kel-F 81 and Neoflon CTFE M400H Polychlorotrifluoroethylenes Used in Valve Seat Application

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Beeson, Harold D.; Newton, Barry E.; Fries, Joseph (Technical Monitor)

    2000-01-01

    The dimensional stability of polychlorotrifluoroethylene (PCTFE) valve seats used in oxygen regulator applications was determined by thermomechanical analysis (TMA). Two traceable grades of PCTFE were tested; Kel-F 81 and Neoflon CTFE M400H. For these particular resins, the effect of percent crystallinity, zero strength time (ZST) molecular weight, resin grade, process history (compression-molded versus extruded) on the dimensional stability and annealing behavior was determined. In addition to the traceable Kel-F 81 and Neoflon CTFE M400H grades, actual PCI'PH valve seats of differing geometry and design were tested by TMA. The PCTFE valve seats were of unspecified resin grade, although certain inferences about the grade could be drawn based on knowledge of the valve seat fabrication date. Results consistently revealed dimensional instability of varying magnitude at temperatures ranging from 40 to 70 degrees Celsius. Furthermore, some of the pre- 1 995 seats appeared to be more dimensionally stable than those fabricated after 1995. The TMA results are discussed in the context of several proposed ignition mechanisms; namely, particle impact, presence of contaminant oils and fibers, and localized heating by flow friction and/or resonance. The effect of metal constraint on the dimensional stability of PCTFE is also discussed. Finally, the effect of percent crystallinity, ZST molecular weight, resin grade, process history (compression-molded versus extruded) on the AIT, delta Hc and impact sensitivity of various types of Neoflon CTFE M400H was determined using Kel-F 81 as a control. Results show that the AIT, delta Hc and impact sensitivity were essentially independent of Neoflon CTFE process history and structure.

  7. Bacillus sp. BS061 Suppresses Gray Mold and Powdery Mildew through the Secretion of Different Bioactive Substances.

    PubMed

    Kim, Young-Sook; Song, Ja-Gyeong; Lee, In-Kyoung; Yeo, Woon-Hyung; Yun, Bong-Sik

    2013-09-01

    A Bacillus sp. BS061 significantly reduced disease incidence of gray mold and powdery mildew. To identify the active principle, the culture filtrate was partitioned between butanol and water. The antifungal activity against B. cinerea was evident in the butanol-soluble portion, and active substances were identified as cyclic lipopeptides, iturin A series, by nuclear magnetic resonance spectrometry (NMR) and mass analysis. Interestingly, antifungal activity against powdery mildew was observed in the water-soluble portion, suggesting that cyclic lipopeptides have no responsibility to suppress powdery mildew. This finding reveals that biocontrol agents of Bacillus origin suppress gray mold and powdery mildew through the secretion of different bioactive substances.

  8. Occupational styrene exposure for twelve product categories in the reinforced-plastics industry.

    PubMed

    Lemasters, G K; Carson, A; Samuels, S J

    1985-08-01

    Approximately 1500 occupational styrene exposure values from 28 reinforced-plastic manufacturers were collected retrospectively from companies and state and federal agencies. This report describes the major types of manufacturing processes within the reinforced-plastics industry and reports on the availability, collection and analysis of historical exposure information. Average exposure to styrene in most open-mold companies (24-82 ppm) was generally 2-3 times the exposure in press-mold companies (11-26 ppm). Manufacturers of smaller boats had mean styrene exposures of 82 ppm as compared to 37 ppm for yacht companies. There was considerable overlap in styrene exposure among job titles classified as directly exposed within open- and press-mold processing.

  9. Ion channel recordings on an injection-molded polymer chip.

    PubMed

    Tanzi, Simone; Matteucci, Marco; Christiansen, Thomas Lehrmann; Friis, Søren; Christensen, Mette Thylstrup; Garnaes, Joergen; Wilson, Sandra; Kutchinsky, Jonatan; Taboryski, Rafael

    2013-12-21

    In this paper, we demonstrate recordings of the ion channel activity across the cell membrane in a biological cell by employing the so-called patch clamping technique on an injection-molded polymer microfluidic device. The findings will allow direct recordings of ion channel activity to be made using the cheapest materials and production platform to date and with the potential for very high throughput. The employment of cornered apertures for cell capture allowed the fabrication of devices without through holes and via a scheme comprising master origination by dry etching in a silicon substrate, electroplating in nickel and injection molding of the final part. The most critical device parameters were identified as the length of the patching capillary and the very low surface roughness on the inside of the capillary. The cross-sectional shape of the orifice was found to be less critical, as both rectangular and semicircular profiles seemed to have almost the same ability to form tight seals with cells with negligible leak currents. The devices were functionally tested using human embryonic kidney cells expressing voltage-gated sodium channels (Nav1.7) and benchmarked against a commercial state-of-the-art system for automated ion channel recordings. These experiments considered current-voltage (IV) relationships for activation and inactivation of the Nav1.7 channels and their sensitivity to a local anesthetic, lidocaine. Both IVs and lidocaine dose-response curves obtained from the injection-molded polymer device were in good agreement with data obtained from the commercial system.

  10. Comparison of methods to evaluate the fungal biomass in heating, ventilation, and air-conditioning (HVAC) dust.

    PubMed

    Biyeyeme Bi Mve, Marie-Jeanne; Cloutier, Yves; Lacombe, Nancy; Lavoie, Jacques; Debia, Maximilien; Marchand, Geneviève

    2016-12-01

    Heating, ventilation, and air-conditioning (HVAC) systems contain dust that can be contaminated with fungal spores (molds), which may have harmful effects on the respiratory health of the occupants of a building. HVAC cleaning is often based on visual inspection of the quantity of dust, without taking the mold content into account. The purpose of this study is to propose a method to estimate fungal contamination of dust in HVAC systems. Comparisons of different analytical methods were carried out on dust deposited in a controlled-atmosphere exposure chamber. Sixty samples were analyzed using four methods: culture, direct microscopic spore count (DMSC), β-N-acetylhexosaminidase (NAHA) dosing and qPCR. For each method, the limit of detection, replicability, and repeatability were assessed. The Pearson correlation coefficients between the methods were also evaluated. Depending on the analytical method, mean spore concentrations per 100 cm 2 of dust ranged from 10,000 to 682,000. Limits of detection varied from 120 to 217,000 spores/100 cm 2 . Replicability and repeatability were between 1 and 15%. Pearson correlation coefficients varied from -0.217 to 0.83. The 18S qPCR showed the best sensitivity and precision, as well as the best correlation with the culture method. PCR targets only molds, and a total count of fungal DNA is obtained. Among the methods, mold DNA amplification by qPCR is the method suggested for estimating the fungal content found in dust of HVAC systems.

  11. Quantifying Mold Biomass on Gypsum Board: Comparison of Ergosterol and Beta-N-Acetylhexosaminidase as Mold Biomass Parameters

    PubMed Central

    Reeslev, M.; Miller, M.; Nielsen, K. F.

    2003-01-01

    Two mold species, Stachybotrys chartarum and Aspergillus versicolor, were inoculated onto agar overlaid with cellophane, allowing determination of a direct measurement of biomass density by weighing. Biomass density, ergosterol content, and beta-N-acetylhexosaminidase (3.2.1.52) activity were monitored from inoculation to stationary phase. Regression analysis showed a good linear correlation to biomass density for both ergosterol content and beta-N-acetylhexosaminidase activity. The same two mold species were inoculated onto wallpapered gypsum board, from which a direct biomass measurement was not possible. Growth was measured as an increase in ergosterol content and beta-N-acetylhexosaminidase activity. A good linear correlation was seen between ergosterol content and beta-N-acetylhexosaminidase activity. From the experiments performed on agar medium, conversion factors (CFs) for estimating biomass density from ergosterol content and beta-N-acetylhexosaminidase activity were determined. The CFs were used to estimate the biomass density of the molds grown on gypsum board. The biomass densities estimated from ergosterol content and beta-N-acetylhexosaminidase activity data gave similar results, showing significantly slower growth and lower stationary-phase biomass density on gypsum board than on agar. PMID:12839773

  12. Identification of a penicillin-sensitive carboxypeptidase in the cellular slime mold Dictyostelium discoideum.

    PubMed

    Yasukawa, Hiro; Kuroita, Toshihiro; Tamura, Kentaro; Yamaguchi, Kazuo

    2003-07-01

    Penicillin binding proteins (PBPs) are penicillin-sensitive DD-peptidases catalyzing the terminal stages of bacterial cell wall assembly. We identified a Dictyostelium discoideum gene that encodes a protein of 522 amino acids showing similarity to Escherichia coli PBP4. The D. discoideum protein conserves three consensus sequences (SXXK, SXN and KTG) that are responsible for the catalytic activities of PBPs. The gene product prepared in the cell-free translation system showed carboxypeptidase activity but the activity was not detected in the presence of penicillin G. These results demonstrate that the D. discoideum gene encodes a eukaryotic form of penicillin-sensitive carboxypeptidase.

  13. Manufacturing plastic injection optical molds

    NASA Astrophysics Data System (ADS)

    Bourque, David

    2008-08-01

    ABCO Tool & Die, Inc. is a mold manufacturer specializing in the manufacturing of plastic injection molds for molded optical parts. The purpose of this presentation is to explain the concepts and procedures required to build a mold that produces precision optical parts. Optical molds can produce a variety of molded parts ranging from safety eyewear to sophisticated military lens parts, which must meet precise optical specifications. The manufacturing of these molds begins with the design engineering of precision optical components. The mold design and the related optical inserts are determined based upon the specific optical criteria and optical surface geometry. The mold manufacturing techniques will be based upon the optical surface geometry requirements and specific details. Manufacturing processes used will be specific to prescribed geometrical surface requirements of the molded part. The combined efforts result in a robust optical mold which can produce molded parts that meet the most precise optical specifications.

  14. Preparation and properties of an internal mold release for rigid urethane foam

    NASA Astrophysics Data System (ADS)

    Paker, B. G.

    1980-08-01

    Most mold release agents used in the molding of rigid polyurethane foam are applied to the internal surfaces of the mold. These materials form a thin layer between the surface of the mold and the foam, allowing for easy release of the molded parts. This type of mold release must be applied prior to each molding operation; and, after repeated use, cleaning of the mold is required. Small amounts of this mold release are transferred to the molded part, resulting in a part with poor surface bondability characteristics. An internal release agent, which can be mixed in a urethane foam resin was investigated. The internal mold release provided good releasability and resulted in urethane foam that has excellent surface bondability. No compatibility problems are expected from the use of this type of release agent.

  15. Simulation Analysis and Performance Study of CoCrMo Porous Structure Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Guoqing, Zhang; Junxin, Li; Jin, Li; Chengguang, Zhang; Zefeng, Xiao

    2018-04-01

    To fabricate porous implants with improved biocompatibility and mechanical properties that are matched to their application using selective laser melting (SLM), flow within the mold and compressive properties and performance of the porous structures must be comprehensively studied. Parametric modeling was used to build 3D models of octahedron and hexahedron structures. Finite element analysis was used to evaluate the mold flow and compressive properties of the parametric porous structures. A DiMetal-100 SLM molding apparatus was used to manufacture the porous structures and the results evaluated by light microscopy. The results showed that parametric modeling can produce robust models. Square structures caused higher blood cell adhesion than cylindrical structures. "Vortex" flow in square structures resulted in chaotic distribution of blood elements, whereas they were mostly distributed around the connecting parts in the cylindrical structures. No significant difference in elastic moduli or compressive strength was observed in square and cylindrical porous structures of identical characteristics. Hexahedron, square and cylindrical porous structures had the same stress-strain properties. For octahedron porous structures, cylindrical structures had higher stress-strain properties. Using these modeling and molding results, an important basis for designing and the direct manufacture of fixed biological implants is provided.

  16. Simulation Analysis and Performance Study of CoCrMo Porous Structure Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Guoqing, Zhang; Junxin, Li; Jin, Li; Chengguang, Zhang; Zefeng, Xiao

    2018-05-01

    To fabricate porous implants with improved biocompatibility and mechanical properties that are matched to their application using selective laser melting (SLM), flow within the mold and compressive properties and performance of the porous structures must be comprehensively studied. Parametric modeling was used to build 3D models of octahedron and hexahedron structures. Finite element analysis was used to evaluate the mold flow and compressive properties of the parametric porous structures. A DiMetal-100 SLM molding apparatus was used to manufacture the porous structures and the results evaluated by light microscopy. The results showed that parametric modeling can produce robust models. Square structures caused higher blood cell adhesion than cylindrical structures. "Vortex" flow in square structures resulted in chaotic distribution of blood elements, whereas they were mostly distributed around the connecting parts in the cylindrical structures. No significant difference in elastic moduli or compressive strength was observed in square and cylindrical porous structures of identical characteristics. Hexahedron, square and cylindrical porous structures had the same stress-strain properties. For octahedron porous structures, cylindrical structures had higher stress-strain properties. Using these modeling and molding results, an important basis for designing and the direct manufacture of fixed biological implants is provided.

  17. Replication of the nano-scale mold fabricated with focused ion beam

    NASA Astrophysics Data System (ADS)

    Gao, J. X.; Chan-Park, M. B.; Xie, D. Z.; Ngoi, Bryan K. A.

    2004-12-01

    Silicon mold fabricated with Focused Ion Beam lithography (FIB) was used to make silicone elastomer molds. The silicon mold is composed of lattice of holes which the diameter and depth are about 200 nm and 60 nm, respectively. The silicone elastomer material was then used to replicate slavery mold. Our study show the replication process with the elastomer mold had been performed successfully and the diameter of humps on the elastomer mold is near to that of holes on the master mold. But the height of humps in the elastomer mold is only 42 nm and it is different from the depth of holes in the master mold.

  18. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOEpatents

    Battiste, Richard L.

    2007-12-25

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into the mold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with the fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a temperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into the mold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  19. Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy

    NASA Astrophysics Data System (ADS)

    Chidley, Matthew D.; Liang, Chen; Descour, Michael R.; Sung, Kung-Bin; Richards-Kortum, Rebecca R.; Gillenwater, Ann

    2002-12-01

    In collaboration with the Department of Biomedical Engineering at the University of Texas at Austin and the UT MD Anderson Cancer Center, a laser scanning fiber confocal reflectance microscope (FCRM) system has been designed and tested for in vivo detection of cervical and oral pre-cancers. This system along with specially developed diagnosis algorithms and techniques can achieve an unprecedented specificity and sensitivity for the diagnosis of pre-cancers in epithelial tissue. The FCRM imaging system consists of an NdYAG laser (1064 nm), scanning mirrors/optics, precision pinhole, detector, and an endoscopic probe (the objective). The objective is connected to the rest of the imaging system via a fiber bundle. The fiber bundle allows the rest of the system to be remotely positioned in a convenient location. Only the objective comes into contact with the patient. It is our intent that inexpensive mass-produced disposable endoscopic probes would be produced for large clinical trials. This paper touches on the general design process of developing a miniature, high numerical aperture, injection-molded (IM) objective. These IM optical designs are evaluated and modified based on manufacturing and application constraints. Based on these driving criteria, one specific optical design was chosen and a detailed tolerance analysis was conducted. The tolerance analysis was custom built to create a realistic statistical analysis for integrated IM lens elements that can be stacked one on top of another using micro-spheres resting in tiny circular grooves. These configurations allow each lens element to be rotated and possibly help compensate for predicted manufacturing errors. This research was supported by a grant from the National Institutes of Health (RO1 CA82880). Special thanks go to Applied Image Group/Optics for the numerous fabrication meetings concerning the miniature IM objective.

  20. Allergies, asthma, and molds

    MedlinePlus

    Reactive airway - mold; Bronchial asthma - mold; Triggers - mold; Allergic rhinitis - pollen ... Things that make allergies or asthma worse are called triggers. Mold is a common trigger. When your asthma or allergies become worse due to mold, you are ...

  1. In-line characterization of nanostructured mass-produced polymer components using scatterometry

    NASA Astrophysics Data System (ADS)

    Skovlund Madsen, Jonas; Højlund Thamdrup, Lasse; Czolkos, Ilja; Hansen, Poul Erik; Johansson, Alicia; Garnaes, Jørgen; Nygård, Jesper; Hannibal Madsen, Morten

    2017-08-01

    Scatterometry is used as an in-line metrology solution for injection molded nanostructures to evaluate the pattern replication fidelity. The method is used to give direct feedback to an operator when testing new molding parameters and for continuous quality control. A compact scatterometer has been built and tested at a fabrication facility. The scatterometry measurements, including data analysis and handling of the samples, are much faster than the injection molding cycle time, and thus, characterization does not slow down the production rate. Fabrication and characterization of 160 plastic parts with line gratings are presented here, and the optimal molding temperatures for replication of nanostructures are found for two polymers. Scatterometry results are compared to state of the art metrology solutions: atomic force and scanning electron microscopy. It is demonstrated that the scatterometer can determine the structural parameters of the samples with an accuracy of a few nanometers in less than a second, thereby enabling in-line characterization.

  2. Use of DSC and DMA Techniques to Help Investigate a Material Anomaly for PTFE Used in Processing a Piston Cup for the Urine Processor Assembly (UPA) on International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Wingard, Doug

    2010-01-01

    Human urine and flush water are eventually converted into drinking water with the Urine Processor Assembly (UPA) aboard the International Space Station (ISS). This conversion is made possible through the Distillation Assembly (DA) of the UPA. One component of the DA is a molded circular piston cup made of virgin polytetrafluoroethylene (PTFE). The piston cup is assembled to a titanium component using eight fasteners and washers. Molded PTFE produced for spare piston cups in the first quarter of 2010 was different in appearance and texture, and softer than material molded for previous cups. For the suspect newer PTFE material, cup fasteners were tightened to only one-half the required torque value, yet the washers embedded almost halfway into the material. The molded PTFE used in the DA piston cup should be Type II, based on AMS 3667D and ASTM D4894 specifications. The properties of molded PTFE are considerably different between Type I and II materials. Engineers working with the DA thought that if Type I PTFE was molded by mistake instead of Type II material, that could have resulted in the anomalous material properties. Typically, the vendor molds flat sheet PTFE from the same material lot used to mold the piston cups, and tensile testing as part of quality control should verify that the PTFE is Type II material. However, for this discrepant lot of material, such tensile data was not available. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were two of the testing techniques used at the NASA/Marshall Space Flight Center (MSFC) to investigate the anomaly for the PTFE material. Other techniques used on PTFE specimens were: Shore D hardness testing, tensile testing on dog bone specimens and a qualitative estimation of porosity by optical and scanning electron microscopy.

  3. Replication fidelity improvement of PMMA microlens array based on weight evaluation and optimization

    NASA Astrophysics Data System (ADS)

    Jiang, Bing-yan; Shen, Long-jiang; Peng, Hua-jiang; Yin, Xiang-lin

    2007-12-01

    High replication fidelity is a prerequisite of high quality plastic microlens array in injection molding. But, there's not an economical and practical method to evaluate and improve the replication fidelity until now. Based on part weight evaluation and optimization, this paper presents a new method of replication fidelity improvement. Firstly, a simplified analysis model of PMMA micro columns arrays (5×16) with 200μm diameter was set up. And then, Flow (3D) module of Moldflow MPI6.0 based on Navier-Stokes equations was used to calculate the weight of the micro columns arrays in injection molding. The effects of processing parameters (melt temperature, mold temperature, injection time, packing pressure and packing time) on the part weight were investigated in the simulations. The simulation results showed that the mold temperature and the injection time have important effects on the filling of micro columns; the optimal mold temperature and injection time for better replication fidelity could be determined by the curves of mold temperature vs part weight and injection time vs part weight. At last, the effects of processing parameters on part weight of micro columns array were studied experimentally. The experimental results showed that the increase of melt temperature and mold temperature can make the packing pressure transfer to micro cavity more effectively through runner system, and increase the part weight. From the observation results of the image measuring apparatus, it was discovered that the higher the part weight, the better the filling of the microstructures. In conclusion, part weight can be used to evaluate the replication fidelity of micro-feature structured parts primarily; which is an economical and practical method to improve the replication fidelity of microlens arrays based on weight evaluation and optimization.

  4. Retrospective review of immunocompromised children undergoing skin biopsy for suspected invasive infection: Analysis of factors predictive of invasive mold.

    PubMed

    Smith, Robert J; Klieger, Sarah B; Sulieman, Salwa E; Berger, Emily; Treat, James R; Fisher, Brian T

    2018-01-01

    Cutaneous lesions are often the first marker of invasive mold infection, which can cause substantial morbidity in immunocompromised children. The purpose of this study was to describe the evaluation and outcomes of immunocompromised children who presented with findings requiring skin biopsy because of concern about invasive infection. In children who were biopsied, we sought to determine the factors predictive of invasive mold infection. A retrospective review was conducted at the Children's Hospital of Philadelphia. Patients included in the study were immunocompromised individuals younger than 26 years old who underwent skin biopsy by the inpatient dermatology consultation team between January 1, 2003, and March 15, 2015, because of development of new cutaneous lesions that were suspected of being invasive infection. One hundred five encounters met the inclusion criteria. Fifty (47.6%) biopsied individuals had an infectious pathogen identified on histopathology or culture. Mold was the most common (36%) pathogen, followed by bacteria (32%) and yeast (26%). The presence of a single lesion (P = .001) and prior occlusion at the site of the lesion (P < .001) were associated with mold on biopsy. The combination of a single lesion, history of occlusion, and tissue necrosis on examination was highly predictive for invasive mold infection (86.3% [95% confidence interval 55.1-97.0%]). Of the 18 individuals with confirmed invasive mold infection, 13 (72%) underwent surgical resection, of whom 12 (92%) survived the 30-day follow-up period. Skin biopsy enabled the detection of a pathogen that informed directed therapeutic interventions in nearly half of participants. Institutions caring for immunocompromised children should ensure adequate staffing of clinical personnel approved to perform skin biopsies. © 2017 Wiley Periodicals, Inc.

  5. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide.

    PubMed

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-05-10

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.

  6. Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide

    PubMed Central

    Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il

    2013-01-01

    Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents. PMID:28809248

  7. Prompt remediation of water intrusion corrects the resultant mold contamination in a home.

    PubMed

    Rockwell, William

    2005-01-01

    More patients are turning to their allergists with symptoms compatible with allergic rhinitis, allergic sinusitis, and/or bronchial asthma after exposure to mold-contaminated indoor environments. These patients often seek guidance from their allergists in the remediation of the contaminated home or office. The aim of this study was to determine baseline mold spore counts for noncontaminated homes and report a successful mold remediation in one mold-contaminated home. Indoor air quality was tested using volumetric spore counts in 50 homes where homeowners reported no mold-related health problems and in one mold-contaminated home that was remediated. The health of the occupant of the mold-contaminated home also was assessed. Indoor volumetric mold spore counts ranged from 300 to 1200 spores/m3 in the baseline homes. For the successful remediation, the mold counts started at 300 spores/m3, increased to 2800 spores/m3 at the height of the mold contamination, and then fell to 800 spores/m3 after remediation. The occupant's allergic symptoms ceased on complete remediation of the home. Indoor volumetric mold counts taken with the Allergenco MK-3 can reveal a potential indoor mold contamination, with counts above 1000 spores/m3 suggesting indoor mold contamination. Once the presence of indoor mold growth is found, a prompt and thorough remediation can bring mold levels back to near-baseline level and minimize negative health effects for occupants.

  8. Transferability of glass lens molding

    NASA Astrophysics Data System (ADS)

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  9. Mold Allergy

    MedlinePlus

    ... Home ▸ Conditions & Treatments ▸ Allergies ▸ Mold Allergy Share | Mold Allergy Overview Symptoms & Diagnosis Treatment & Management Mold Allergy Overview Molds are tiny fungi whose spores float ...

  10. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangirala, Mani

    The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynesmore » 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which demonstrated the importance of proper heat treat cycles for Homogenization, and Solutionizing parameters selection and implementation. 3) Step blocks casting of Nimonic 263: Carried out casting solidification simulation analysis, NDT inspection methods evaluation, detailed test matrix for Chemical, Tensile, LCF, stress rupture, CVN impact, hardness and J1C Fracture toughness section sensitivity data and were reported. 4) Centrifugal Casting of Haynes 282, weighing 1400 lbs. with hybrid mold (half Graphite and half Chromite sand) mold assembly was cast using compressor casing production tooling. This test provided Mold cooling rates influence on centrifugally cast microstructure and mechanical properties. Graphite mold section out performs sand mold across all temperatures for 0.2% YS; %Elongation, %RA, UTS at 1400°F. Both Stress-LMP and conditional Fracture toughness plots data were in the scatter band of the wrought alloy. 5) Fundamental Studies on Cooling rates and SDAS test program. Evaluated the influence of 6 mold materials Silica, Chromite, Alumina, Silica with Indirect Chills, Zircon and Graphite on casting solidification cooling rates. Actual Casting cooling rates through Liquidus to Solidus phase transition were measured with 3 different locations based thermocouples placed in each mold. Compared with solidification simulation cooling rates and measurement of SDAS, microstructure features were reported. The test results provided engineered casting potential methods, applicable for heavy section Haynes 282 castings for optimal properties, with foundry process methods and tools. 6) Large casting of Haynes 282 Drawings and Engineering FEM models and supplemental requirements with applicable specifications were provided to suppliers for the steam turbine proto type feature valve casing casting. Molding, melting and casting pouring completed per approved Manufacturing Process Plan during 2014 Q4. The partial valve casing was successfully cast after casting methods were validated with solidification simulation analysis and the casting met NDT inspection and acceptance criteria. Heat treated and sectioned to extract trepan samples at different locations comparing with cast on coupons test data. Material properties requisite for design, such as tensile, creep/rupture, LCF, Fracture Toughness, Charpy V-notch chemical analysis testing were carried out. The test results will be presented in the final report. The typical Haynes 282 large size Steam Turbine production casting from Order to Delivery foundry schedule with the activity break up is shown in Figures 107 and 108. • From Purchase Order placement to Casting pouring ~ 26 weeks. 1. Sales and commercial review 3 2. Engineering Drawings/models review 4 3. Pattern and core box manufacturing 6 4. Casting process engineering review 4 5. FEM and solidification simulation analysis 4 6. Gating & Feeder Attachments, Ceramic tiling 2 7. Molding and coremaking production scheduling 6 8. Melting planning and schedule 3 9. Pouring, cooling and shake out 2 • From Pouring to casting Delivery ~ 29 weeks 10. Shot blast and riser cutting, gates removal 3 11. Homogenizing , solutionizing HT furnace prep 4 12. Grinding, Fettling 2 13. Aging HT Cycle, cooling 2 14. VT and LPT NDT inspections 2 15. Radiographic inspection 4 16. Mechanical testing, Chemical analysis test certs 4 17. Casting weld repair upgrades and Aging PWHT 4 18. NDT after weld repairs and casting upgrades 3 19. Casting Final Inspection and test certifications 3 20. Package and delivery 2 Hence the Total Lead time from P.O to Casting delivery is approximately 55 weeks. The Task 4.2 and Task 4.3 activities and reporting completed.« less

  11. Correlation between Nasoalveolar Molding and Surgical, Aesthetic, Functional and Socioeconomic Outcomes Following Primary Repair Surgery: a Systematic Review.

    PubMed

    Maillard, Sophie; Retrouvey, Jean-Marc; Ahmed, Mairaj K; Taub, Peter J

    2017-01-01

    The authors performed a systematic review to evaluate the potential beneficial effects of the nasoalveolar molding appliance on nonsyndromic unilateral clefts of the lip and/or palate prior to primary lip repair. A literature search was performed using three electronic databases (PubMed, Embase, Web of Science) and three journals ("Cleft Palate-Craniofacial Journal", "Plastic and Reconstructive Surgery Journal" and "American Journal of Orthodontics and Dentofacial Orthopaedic") from January 1980 to April 2017. Data extraction was performed with tables treating different subjects: surgical, aesthetical, functional, socio-economical effects of nasoalveolar molding (NAM) appliances and the evolution of NAM appliances, especially three-dimensional technology. Of the 145 articles retrieved in the literature surveys, 28 were qualified for the final analysis and 20 studies were excluded because of their small sample size (less than 10 patients) and/or too long follow-up (exceeded 18 months). Four randomized controlled trials were available. Although literature allowed discussing the short-term benefits of NAM appliance and the three-dimensional technology, scientific evidence is lacking. Based on the results, nasoalveolar molding appliances have positive surgical, aesthetical, functional and socio-economical effects on unilateral clefts of the lip and/or palate treatment before the primary repair surgeries. Three-dimensional technology results in a more efficient and predictable nasoalveolar molding appliance treatment. However, nasoalveolar molding appliance effect in a short term remains unclear with the available literature. Further studies that integrate three-dimensional technology in a large scale are still needed.

  12. Inactivation of Mold Spores from Moist Carpet Using Steam Vapor: Contact Time and Temperature.

    PubMed

    Ong, Kee-Hean; Emo, Brett; Lewis, Roger D; Kennedy, Jason; Thummalakunta, Laxmi N A; Elliott, Michael

    2015-01-01

    Steam vapor has been shown to reduce viable mold spores in carpet, but the minimal effective temperature and contact time has not been established. This study evaluated the effectiveness of steam vapor in reducing the number of viable mold spores in carpet as a function of temperature and contact time. Seventy carpet samples were inoculated with a liquid suspension of Cladosporium sphaerospermum and incubated over a water-saturated foam carpet pad for 24 hr. Steam was applied to the samples as the temperature was measured from the carpet backing. Contact time was closely monitored over seven time intervals: 0, 2, 4, 8, 12, 16, and 20 sec. Following steam vapor treatment, mold spores were extracted from the carpet samples and the extract was plated on DG-18 plates at 1:1, 1:10, 1:100 dilutions followed by one week of incubation. Raw colony forming units were determined using an automated colony counter and adjusted based on dilution factor, extraction volume, and plated volume. Analysis of variance and linear regression were used to test for statistically significant relationships. Steam contact time exhibited a linear relationship to observed temperature of carpet backing (F = 90.176, R(2) = 0.609). Observed temperature of carpet backing had a positive relationship to percent reduction of mold (F = 76.605, R(2) = 0.569). Twelve seconds of steam vapor contact time was needed to achieve over 90% mold reduction on moist carpet.

  13. Effect of cross sectional geometry on PDMS micro peristaltic pump performance: comparison of SU-8 replica molding vs. micro injection molding.

    PubMed

    Graf, Neil J; Bowser, Michael T

    2013-10-07

    Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM). The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold's bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold's bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries.

  14. Investigation of compression behavior of PE/EVA foam injection molded parts

    NASA Astrophysics Data System (ADS)

    Spina, Roberto

    2017-10-01

    The main objective of the presented work is to evaluate the compression behavior of a polymeric foam blend by using a robust framework for the testing sequence of foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of new matrix material. The research purpose is to assess parameters influencing compression behavior and give useful suggestions for the implementation of a finite element analysis. The polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the injection molding process for two specimen types.

  15. Numerical-experimental investigation of PE/EVA foam injection molded parts

    NASA Astrophysics Data System (ADS)

    Spina, Roberto

    The main objective of the presented work is to propose a robust framework to test foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of a new foam material based on numerical and experimental results. The research purpose is to assess parameters influencing several aspects, such as foam morphology and compression behavior, using useful suggestions from finite element analysis. The investigated polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the numerical models and the parameters of the injection molding process.

  16. Evaluation of RTV as a Moldable Matrix When Combined With Molecular Sieve and Organic Hydrogen Getter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, J. A.

    2011-12-01

    This work was undertaken in an effort to develop a combined RTV 615/3Å molecular sieve/DEB molded component. A molded RTV 615/3Å molecular sieve component is currently in production, and an RTV 615/DEB component was produced in the past. However, all three materials have never before been combined in a single production part, and this is an opportunity to create a new component capable of being molded to shape, performing desiccation, and hydrogen gettering. This analysis looked at weapons system parameters and how they might influence part design. It also looked at material processing and how it related to mixing, activatingmore » a dessicant, and hydrogen uptake testing.« less

  17. Mechanism of Void Prediction in Flip Chip Packages with Molded Underfill

    NASA Astrophysics Data System (ADS)

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-08-01

    Voids have always been present using the molded underfill (MUF) package process, which is a problem that needs further investigation. In this study, the process was studied using the Moldex3D numerical analysis software. The effects of gas (air vent effect) on the overall melt front were also considered. In this isothermal process containing two fluids, the gas and melt colloid interact in the mold cavity. Simulation enabled an appropriate understanding of the actual situation to be gained, and, through analysis, the void region and exact location of voids were predicted. First, the global flow end area was observed to predict the void movement trend, and then the local flow ends were observed to predict the location and size of voids. In the MUF 518 case study, simulations predicted the void region as well as the location and size of the voids. The void phenomenon in a flip chip ball grid array underfill is discussed as part of the study.

  18. Rapid Prototyping Technology for Manufacturing GTE Turbine Blades

    NASA Astrophysics Data System (ADS)

    Balyakin, A. V.; Dobryshkina, E. M.; Vdovin, R. A.; Alekseev, V. P.

    2018-03-01

    The conventional approach to manufacturing turbine blades by investment casting is expensive and time-consuming, as it takes a lot of time to make geometrically precise and complex wax patterns. Turbine blade manufacturing in pilot production can be sped up by accelerating the casting process while keeping the geometric precision of the final product. This paper compares the rapid prototyping method (casting the wax pattern composition into elastic silicone molds) to the conventional technology. Analysis of the size precision of blade casts shows that silicon-mold casting features sufficient geometric precision. Thus, this method for making wax patterns can be a cost-efficient solution for small-batch or pilot production of turbine blades for gas-turbine units (GTU) and gas-turbine engines (GTE). The paper demonstrates how additive technology and thermographic analysis can speed up the cooling of wax patterns in silicone molds. This is possible at an optimal temperature and solidification time, which make the process more cost-efficient while keeping the geometric quality of the final product.

  19. Thermosetting Fluoropolymer Foams

    NASA Technical Reports Server (NTRS)

    Lee, Sheng Yen

    1987-01-01

    New process makes fluoropolymer foams with controllable amounts of inert-gas fillings in foam cells. Thermosetting fluoropolymers do not require foaming additives leaving undesirable residues and do not have to be molded and sintered at temperatures of about 240 to 400 degree C. Consequently, better for use with electronic or other parts sensitive to high temperatures or residues. Uses include coatings, electrical insulation, and structural parts.

  20. Comparison of Work-related Symptoms and Visual Contrast Sensitivity between Employees at a Severely Water-damaged School and a School without Significant Water Damage

    EPA Science Inventory

    NIOSH received a request for a health hazard evaluation at a water-damaged school in New Orleans, Louisiana. Employees submitted the request because of concerns about exposure to mold in their school building. We administered a work history and health symptom questionnaire. We al...

  1. 53. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL MOLDS IN THE MORAVIAN POTTERY AND TILE WORKS COLLECTION, AND ARE USED TO PRESS TILES. THE FACTORY KEEPS TEN PRODUCTION MOLDS FOR EACH IMAGE. THE ORIGINAL MOLDS ARE NOT USED IN PRODUCTION. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  2. Resin film infusion mold tooling and molding method

    NASA Technical Reports Server (NTRS)

    Burgess, Roger (Inventor); Grossheim, Brian (Inventor); Mouradian, Karbis (Inventor); Thrash, Patrick J. (Inventor)

    1999-01-01

    A mold apparatus and method for resin film infusion molding including an outer mold tool having a facing sheet adapted to support a resin film and preform assembly. The facing sheet includes attachment features extending therefrom. An inner mold tool is positioned on the facing sheet to enclose the resin film and preform assembly for resin film infusion molding. The inner mold tool includes a plurality of mandrels positioned for engagement with the resin film and preform assembly. Each mandrel includes a slot formed therein. A plurality of locating bars cooperate with the slots and with the attachment features for locating the mandrels longitudinally on the outer mold tool.

  3. Improved compression molding process

    NASA Technical Reports Server (NTRS)

    Heier, W. C.

    1967-01-01

    Modified compression molding process produces plastic molding compounds that are strong, homogeneous, free of residual stresses, and have improved ablative characteristics. The conventional method is modified by applying a vacuum to the mold during the molding cycle, using a volatile sink, and exercising precise control of the mold closure limits.

  4. Optimization simulated injection molding process for ultrahigh molecular weight polyethylene nanocomposite hip liner using response surface methodology and simulation of mechanical behavior.

    PubMed

    Heidari, Behzad Shiroud; Davachi, Seyed Mohammad; Moghaddam, Amin Hedayati; Seyfi, Javad; Hejazi, Iman; Sahraeian, Razi; Rashedi, Hamid

    2018-05-01

    In this study, injection molding process of ultrahigh molecular weight polyethylene (UHMWPE) reinforced with nano-hydroxyapatite (nHA) was simulated and optimized through minimizing the shrinkage and warpage of the hip liners as an essential part of a hip prosthesis. Fractional factorial design (FFD) was applied to the design of the experiment, modeling, and optimizing the shrinkage and warpage of UHMWPE/nHA composite liners. The Analysis of variance (ANOVA) was applied to find the importance of operative parameters and their effects. In this experiment, seven input parameters were surveyed, including mold temperature (A), melt temperature (B), injection time (C), packing time (D), packing pressure (E), coolant temperature (F), and type of liner (G). Two models were capable of predicting warpage and volumetric shrinkage (%) in different conditions with R 2 of 0.9949 and 0.9989, respectively. According to the models, the optimized values of warpage and volumetric shrinkage are 0.287222 mm and 13.6613%, respectively. Meanwhile, a finite element analysis (FE analysis) was also carried out to examine the stress distribution in liners under the force values of demanding and daily activities. The Von-Mises stress distribution showed that both of the liners can be applied to all activities with no failure. However, UHMWPE/nHA liner is more resistant to the highest loads than UHMWPE liner due to the effect of nHA in the nanocomposite. Finally, according to the results of injection molding simulations, optimization, structural analysis as well as the tensile strength and wear resistance, UHMWPE/nHA liner is recommended for the production of a hip prosthesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM) Process.

    PubMed

    Shin, Kwangho; Heo, Youngmoo; Park, Hyungpil; Chang, Sungho; Rhee, Byungohk

    2013-12-12

    In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM) process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE) simulation. PE (high density polyethylene (HDPE) and low density polyethylene (LDPE)) and polypropylene (PP) resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.

  6. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM) Process

    PubMed Central

    Shin, Kwangho; Heo, Youngmoo; Park, Hyungpil; Chang, Sungho; Rhee, Byungohk

    2013-01-01

    In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM) process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE) simulation. PE (high density polyethylene (HDPE) and low density polyethylene (LDPE)) and polypropylene (PP) resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made. PMID:28788427

  7. Experimental Studies of Heat-Transfer Behavior at a Casting/Water-Cooled-Mold Interface and Solution of the Heat-Transfer Coefficient

    NASA Astrophysics Data System (ADS)

    Zeng, Y. D.; Wang, F.

    2018-02-01

    In this paper, we propose an experimental model for forming an air gap at the casting/mold interface during the solidification process of the casting, with the size and formation time of the air gap able to be precisely and manually controlled. Based on this model, experiments of gravity casting were performed, and on the basis of the measured temperatures at different locations inside the casting and the mold, the inverse analysis method of heat transfer was applied to solve for the heat-transfer coefficient at the casting/mold interface during the solidification process. Furthermore, the impacts of the width and formation time of the air gap on the interface heat-transfer coefficient (IHTC) were analyzed. The results indicate that the experimental model succeeds in forming an air gap having a certain width at any moment during solidification of the casting, thus allowing us to conveniently and accurately study the impact of the air gap on IHTC using the model. In addition, the casting/mold IHTC is found to first rapidly decrease as the air gap forms and then slowly decrease as the solidification process continues. Moreover, as the width of the air gap and the formation time of the air gap increase, the IHTC decreases.

  8. Populations of some molds in water-damaged homes may differ if the home was constructed with gypsum drywall compared to plaster.

    PubMed

    Vesper, Stephen; Wymer, Larry; Cox, David; Dewalt, Gary

    2016-08-15

    Starting in the 1940s, gypsum drywall began replacing plaster and lathe in the U.S. home construction industry. Our goal was to evaluate whether some mold populations differ in water- damaged homes primarily constructed with gypsum drywall compared to plaster. The dust samples from the 2006 Department of Housing and Urban Development's (HUD) American Health Homes Survey (AHHS) were the subject of this analysis. The concentrations of the 36 Environmental Relative Moldiness Index (ERMI) molds were compared in homes of different ages. The homes (n=301) were built between 1878 and 2005. Homes with ERMI values >5 (n=126) were defined as water-damaged. Homes with ERMI values >5 were divided in the years 1976 to 1977 into two groups, i.e., older (n=61) and newer (n=65). Newer water-damaged homes had significantly (p=0.002) higher mean ERMI values than older water-damaged homes, 11.18 and 8.86, respectively. The Group 1 molds Aspergillus flavus, Ammophilus fumigatus, Aspergillus ochraceus, Cladosporium sphaerospermum and Trichoderma viride were found in significantly higher concentrations in newer compared to older high-ERMI homes. Some mold populations in water-damaged homes may have changed after the introduction of gypsum drywall. Published by Elsevier B.V.

  9. Populations of some molds in water-damaged homes may ...

    EPA Pesticide Factsheets

    Starting in the 1940s, gypsum drywall began replacing plaster and lathe in the U.S. home construction industry. Our goal was to evaluate whether some mold populations differ in water- damaged homes primarily constructed with gypsum drywall compared to plaster. The dust samples from the 2006 Department of Housing and Urban Development's (HUD) American Health Homes Survey (AHHS) were the subject of this analysis. The concentrations of the 36 Environmental Relative Moldiness Index (ERMI) molds were compared in homes of different ages. The homes (n = 301) were built between 1878 and 2005. Homes with ERMI values > 5 (n = 126) were defined as water-damaged. Homes with ERMI values > 5 were divided in the years 1976 to 1977 into two groups, i.e., older (n = 61) and newer (n = 65). Newer water-damaged homes had significantly (p = 0.002) higher mean ERMI values than older water-damaged homes, 11.18 and 8.86, respectively. The Group 1 molds Aspergillus flavus, Ammophilus fumigatus, Aspergillus ochraceus, Cladosporium sphaerospermum and Trichoderma viride were found in significantly higher concentrations in newer compared to older high-ERMI homes. Some mold populations in water-damaged homes may have changed after the introduction of gypsum drywall. This research provides insight into the asthma epidemic in the US.

  10. 92. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL MOLDS IN THE MORAVIAN POTTERY AND TILE WORKS COLLECTION, AND ARE USED TO PRESS TILES. THE FACTORY KEEPS TEN PRODUCTION MOLDS FOR EACH IMAGE. THE ORIGINAL MOLDS ARE NOT USED IN PRODUCTION. SAME VIEW AS PA-107-53. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  11. Mold and Endotoxin Levels in the Aftermath of Hurricane Katrina: A Pilot Project of Homes in New Orleans Undergoing Renovation

    PubMed Central

    Chew, Ginger L.; Wilson, Jonathan; Rabito, Felicia A.; Grimsley, Faye; Iqbal, Shahed; Reponen, Tiina; Muilenberg, Michael L.; Thorne, Peter S.; Dearborn, Dorr G.; Morley, Rebecca L.

    2006-01-01

    Background After Hurricane Katrina, many New Orleans homes remained flooded for weeks, promoting heavy microbial growth. Objectives A small demonstration project was conducted November 2005–January 2006 aiming to recommend safe remediation techniques and safe levels of worker protection, and to characterize airborne mold and endotoxin throughout cleanup. Methods Three houses with floodwater lines between 0.3 and 2 m underwent intervention, including disposal of damaged furnishings and drywall, cleaning surfaces, drying remaining structure, and treatment with a biostatic agent. We measured indoor and outdoor bioaerosols before, during, and after intervention. Samples were analyzed for fungi [culture, spore analysis, polymerase chain reaction (PCR)] and endotoxin. In one house, real-time particle counts were also assessed, and respirator-efficiency testing was performed to establish workplace protection factors (WPF). Results At baseline, culturable mold ranged from 22,000 to 515,000 colony-forming units/m3, spore counts ranged from 82,000 to 630,000 spores/m3, and endotoxin ranged from 17 to 139 endotoxin units/m3. Culture, spore analysis, and PCR indicated that Penicillium, Aspergillus, and Paecilomyces predominated. After intervention, levels of mold and endotoxin were generally lower (sometimes, orders of magnitude). The average WPF against fungal spores for elastomeric respirators was higher than for the N-95 respirators. Conclusions During baseline and intervention, mold and endotoxin levels were similar to those found in agricultural environments. We strongly recommend that those entering, cleaning, and repairing flood-damaged homes wear respirators at least as protective as elastomeric respirators. Recommendations based on this demonstration will benefit those involved in the current cleanup activities and will inform efforts to respond to future disasters. PMID:17185280

  12. Mold and endotoxin levels in the aftermath of Hurricane Katrina: a pilot project of homes in New Orleans undergoing renovation.

    PubMed

    Chew, Ginger L; Wilson, Jonathan; Rabito, Felicia A; Grimsley, Faye; Iqbal, Shahed; Reponen, Tiina; Muilenberg, Michael L; Thorne, Peter S; Dearborn, Dorr G; Morley, Rebecca L

    2006-12-01

    After Hurricane Katrina, many New Orleans homes remained flooded for weeks, promoting heavy microbial growth. A small demonstration project was conducted November 2005-January 2006 aiming to recommend safe remediation techniques and safe levels of worker protection, and to characterize airborne mold and endotoxin throughout cleanup. Three houses with floodwater lines between 0.3 and 2 m underwent intervention, including disposal of damaged furnishings and drywall, cleaning surfaces, drying remaining structure, and treatment with a biostatic agent. We measured indoor and outdoor bioaerosols before, during, and after intervention. Samples were analyzed for fungi [culture, spore analysis, polymerase chain reaction (PCR)] and endotoxin. In one house, realtime particle counts were also assessed, and respirator-efficiency testing was performed to establish workplace protection factors (WPF). At baseline, culturable mold ranged from 22,000 to 515,000 colony-forming units/m3, spore counts ranged from 82,000 to 630,000 spores/m3, and endotoxin ranged from 17 to 139 endotoxin units/m3. Culture, spore analysis, and PCR indicated that Penicillium, Aspergillus, and Paecilomyces predominated. After intervention, levels of mold and endotoxin were generally lower (sometimes, orders of magnitude). The average WPF against fungal spores for elastomeric respirators was higher than for the N95 respirators. During baseline and intervention, mold and endotoxin levels were similar to those found in agricultural environments. We strongly recommend that those entering, cleaning, and repairing flood-damaged homes wear respirators at least as protective as elastomeric respirators. Recommendations based on this demonstration will benefit those involved in the current cleanup activities and will inform efforts to respond to future disasters.

  13. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOEpatents

    Battiste, Richard L

    2013-12-31

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into th emold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with a fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a termperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into th emold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  14. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - Fourth FY 2015 Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Fifield, Leonard S.; Wollan, Eric J.

    2015-11-13

    During the last quarter of FY 2015, the following technical progress has been made toward project milestones: 1) PlastiComp used the PlastiComp direct in-line (D-LFT) Pushtrusion system to injection mold 40 30wt% LCF/PP parts with ribs, 40 30wt% LCF/PP parts without ribs, 10 30wt% LCF/PA66 parts with ribs, and 35 30wt% LCF/PA66 parts without ribs. In addition, purge materials from the injection molding nozzle were obtained for fiber length analysis, and molding parameters were sent to PNNL for process modeling. 2) Magna cut samples at four selected locations (named A, B, C and D) from the non-ribbed Magna-molded parts basedmore » on a plan discussed with PNNL and the team and shipped these samples to Virginia Tech for fiber orientation and length measurements. 3) Virginia Tech started fiber orientation and length measurements for the samples taken from the complex parts using Virginia Tech’s established procedure. 4) PNNL and Autodesk built ASMI models for the complex parts with and without ribs, reviewed process datasheets and performed preliminary analyses of these complex parts using the actual molding parameters received from Magna and PlastiComp to compare predicted to experimental mold filling patterns. 5) Autodesk assisted PNNL in developing the workflow to use Moldflow fiber orientation and length results in ABAQUS® simulations. 6) Autodesk advised the team on the practicality and difficulty of material viscosity characterization from the D-LFT process. 7) PNNL developed a procedure to import fiber orientation and length results from a 3D ASMI analysis to a 3D ABAQUS® model for structural analyses of the complex part for later weight reduction study. 8) In discussion with PNNL and Magna, Toyota developed mechanical test setups and built fixtures for three-point bending and torsion tests of the complex parts. 9) Toyota built a finite element model for the complex parts subjected to torsion loading. 10) PNNL built the 3D ABAQUS® model of the complex ribbed part subjected to 3-point bending. 11) University of Illinois (Prof. C.L. Tucker) advised the team on fiber orientation and fiber length measurement options, modeling issues as well as interpretation of data.« less

  15. Curbing indoor mold growth with mold inhibitors

    Treesearch

    Carol A. Clausen; Vina W. Yang

    2004-01-01

    Environmentally acceptable mold inhibitors are needed to curb the growth of mold fungi in woodframe housing when moisture management measures fail. Excess indoor moisture can lead to rapid mold establishment which, in turn, can have deleterious affects on indoor air quality. Compounds with known mold inhibitory properties and low mammalian toxicity, such as food...

  16. Indoor Molds and Respiratory Hypersensitivity: A Comparison of Selected Molds and House Dust Mite Induced Responses in a Mouse Model**

    EPA Science Inventory

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases. Damp/moldy environments have been associated with asthma exacerbation, but mold's role in allergic asthma induction is less clear. The molds selected for these studies are commonl...

  17. Method to Create Arbitrary Sidewall Geometries in 3-Dimensions Using Liga with a Stochastic Optimization Framework

    NASA Technical Reports Server (NTRS)

    Eyre, Francis B. (Inventor); Fink, Wolfgang (Inventor)

    2011-01-01

    Disclosed herein is a method of making a three dimensional mold comprising the steps of providing a mold substrate; exposing the substrate with an electromagnetic radiation source for a period of time sufficient to render the portion of the mold substrate susceptible to a developer to produce a modified mold substrate; and developing the modified mold with one or more developing reagents to remove the portion of the mold substrate rendered susceptible to the developer from the mold substrate, to produce the mold having a desired mold shape, wherein the electromagnetic radiation source has a fixed position, and wherein during the exposing step, the mold substrate is manipulated according to a manipulation algorithm in one or more dimensions relative to the electromagnetic radiation source; and wherein the manipulation algorithm is determined using stochastic optimization computations.

  18. Analysis of specific proteolytic digestion of the peptidoglutaminase-asparaginase of koji molds.

    PubMed

    Ito, Kotaro; Koyama, Yasuji

    2014-09-01

    AsGahB, a peptidoglutaminase-asparaginase acting as the main glutaminase in Aspergillus sojae, was previously purified from the cytoplasm of overexpressing strains. Here, we found that specific proteolytic digestion of AsGahB by extracellular proteases of koji molds is similar to that of AsGahA which exists in proteolytic form under solid-state culture. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Visualization analysis of tiger-striped flow mark generation phenomena in injection molding

    NASA Astrophysics Data System (ADS)

    Owada, Shigeru; Yokoi, Hidetoshi

    2016-03-01

    The generation mechanism of tiger-striped flow marks of polypropylene (PP)/rubber/talc blends in injection molding was investigated by dynamic visualization analysis in a glass-inserted mold. The analysis revealed that the behavior of the melt flow front correlates with the flow mark generation. The cloudy part in the tiger-striped flow marks corresponded to the low transcription rate area of the melt diverging near the cavity wall, while the glossy part corresponded to the high transcription rate area of the melt converging toward the cavity wall side. The melt temperature at the high transcription rate area was slightly lower than that at the low transcription rate area. These phenomena resulted due to the difference in the temperature of the melt front that was caused by the asymmetric fountain flow. These results suggest the followings; At the moment when the melt is broken near the one side of cavity wall due to piling the extensional strains up to a certain level, the melt spurts out near the broken side. It results in generating asymmetric fountain flow temporarily to relax the extensional front surface, which moves toward the opposite side to form the high transcription area.

  20. Modeling of short fiber reinforced injection moulded composite

    NASA Astrophysics Data System (ADS)

    Kulkarni, A.; Aswini, N.; Dandekar, C. R.; Makhe, S.

    2012-09-01

    A micromechanics based finite element model (FEM) is developed to facilitate the design of a new production quality fiber reinforced plastic injection molded part. The composite part under study is composed of a polyetheretherketone (PEEK) matrix reinforced with 30% by volume fraction of short carbon fibers. The constitutive material models are obtained by using micromechanics based homogenization theories. The analysis is carried out by successfully coupling two commercial codes, Moldflow and ANSYS. Moldflow software is used to predict the fiber orientation by considering the flow kinetics and molding parameters. Material models are inputted into the commercial software ANSYS as per the predicted fiber orientation and the structural analysis is carried out. Thus in the present approach a coupling between two commercial codes namely Moldflow and ANSYS has been established to enable the analysis of the short fiber reinforced injection moulded composite parts. The load-deflection curve is obtained based on three constitutive material model namely an isotropy, transversely isotropy and orthotropy. Average values of the predicted quantities are compared to experimental results, obtaining a good correlation. In this manner, the coupled Moldflow-ANSYS model successfully predicts the load deflection curve of a composite injection molded part.

  1. Optimization of Injection Molding Parameters for HDPE/TiO₂ Nanocomposites Fabrication with Multiple Performance Characteristics Using the Taguchi Method and Grey Relational Analysis.

    PubMed

    Pervez, Hifsa; Mozumder, Mohammad S; Mourad, Abdel-Hamid I

    2016-08-22

    The current study presents an investigation on the optimization of injection molding parameters of HDPE/TiO₂ nanocomposites using grey relational analysis with the Taguchi method. Four control factors, including filler concentration (i.e., TiO₂), barrel temperature, residence time and holding time, were chosen at three different levels of each. Mechanical properties, such as yield strength, Young's modulus and elongation, were selected as the performance targets. Nine experimental runs were carried out based on the Taguchi L₉ orthogonal array, and the data were processed according to the grey relational steps. The optimal process parameters were found based on the average responses of the grey relational grades, and the ideal operating conditions were found to be a filler concentration of 5 wt % TiO₂, a barrel temperature of 225 °C, a residence time of 30 min and a holding time of 20 s. Moreover, analysis of variance (ANOVA) has also been applied to identify the most significant factor, and the percentage of TiO₂ nanoparticles was found to have the most significant effect on the properties of the HDPE/TiO₂ nanocomposites fabricated through the injection molding process.

  2. Mold Testing or Sampling

    EPA Pesticide Factsheets

    In most cases, if visible mold growth is present, sampling is unnecessary. Since no EPA or other federal limits have been set for mold or mold spores, sampling cannot be used to check a building's compliance with federal mold standards.

  3. Method for making an elastomeric member with end pieces

    DOEpatents

    Hoppie, L.O.; McNinch, J.H. Jr.; Nowell, G.C.

    1984-10-23

    A molding process is described for molding an elongated elastomeric member with wire mesh sleeves bonded to the ends. A molding preform of elastomeric material is positioned within a seamless mold cylinder, and the open ends of the wire mesh sleeves are mounted to end plug assemblies slidably received into the mold cylinder and positioned against the ends of the preform. A specialized profile is formed into surfaces of the respective end plug assemblies and by heating of the mold, the ends of the elastomeric preform are molded to the profile, as well as bonded to the reinforcing wire mesh sleeves. Vacuum is applied to the interior of the mold to draw outgassing vapors through relief spaces there through. The completed elastomeric member is removed from the mold cylinder by stretching, the consequent reduction in diameter enabling ready separation from the mold cylinder and removal thereof. 9 figs.

  4. Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals.

    PubMed

    de Lacy Costello, Ben P J; Adamatzky, Andrew I

    2013-09-01

    The chemotaxis behavior of the plasmodial stage of the true slime mold Physarum Polycephalum was assessed when given a binary choice between two volatile organic chemicals (VOCs) placed in its environment. All possible binary combinations were tested between 19 separate VOCs selected due to their prevalence and biological activity in common plant and insect species. The slime mold exhibited positive chemotaxis toward a number of VOCs with the following order of preference:   Farnesene > β-myrcene > tridecane > limonene > p-cymene > 3-octanone > β-pinene > m-cresol > benzylacetate > cis-3-hexenylacetate. For the remaining compounds, no positive chemotaxis was observed in any of the experiments, and for most compounds there was an inhibitory effect on the growth of the slime mold. By assessing this lack of growth or failure to propagate, it was possible to produce a list of compounds ranked in terms of their inhibitory effect: nonanal > benzaldehyde > methylbenzoate > linalool > methyl-p-benzoquinone > eugenol > benzyl alcohol > geraniol > 2-phenylethanol. This analysis shows a distinct preference of the slime mold for non-oxygenated terpene and terpene-like compounds (farnesene, β-myrcene, limonene, p-cymene and β-pinene). In contrast, terpene-based alcohols such as geraniol and linalool were found to have a strong inhibitory effect on the slime mold. Both the aldehydes utilized in this study had the strongest inhibitory effect on the slime mold of all the 19 VOCs tested. Interestingly, 3-octanone, which has a strong association with a "fungal odor," was the only compound with an oxygenated functionality where Physarum Polycephalum exhibits distinct positive chemotaxis.

  5. Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals

    PubMed Central

    de Lacy Costello, Ben P.J.; Adamatzky, Andrew I.

    2013-01-01

    The chemotaxis behavior of the plasmodial stage of the true slime mold Physarum Polycephalum was assessed when given a binary choice between two volatile organic chemicals (VOCs) placed in its environment. All possible binary combinations were tested between 19 separate VOCs selected due to their prevalence and biological activity in common plant and insect species. The slime mold exhibited positive chemotaxis toward a number of VOCs with the following order of preference:   Farnesene > β-myrcene > tridecane > limonene > p-cymene > 3-octanone > β-pinene > m-cresol > benzylacetate > cis-3-hexenylacetate. For the remaining compounds, no positive chemotaxis was observed in any of the experiments, and for most compounds there was an inhibitory effect on the growth of the slime mold. By assessing this lack of growth or failure to propagate, it was possible to produce a list of compounds ranked in terms of their inhibitory effect: nonanal > benzaldehyde > methylbenzoate > linalool > methyl-p-benzoquinone > eugenol > benzyl alcohol > geraniol > 2-phenylethanol. This analysis shows a distinct preference of the slime mold for non-oxygenated terpene and terpene-like compounds (farnesene, β-myrcene, limonene, p-cymene and β-pinene). In contrast, terpene-based alcohols such as geraniol and linalool were found to have a strong inhibitory effect on the slime mold. Both the aldehydes utilized in this study had the strongest inhibitory effect on the slime mold of all the 19 VOCs tested. Interestingly, 3-octanone, which has a strong association with a “fungal odor,” was the only compound with an oxygenated functionality where Physarum Polycephalum exhibits distinct positive chemotaxis. PMID:24265848

  6. Aluminum-fly ash metal matrix composites for automotive parts. [Reports for October 1 to December 31, 1999, and January 1 - to March 31, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, David; Purgert, Robert; Rhudy, Richard

    2000-04-21

    The highlights of this report are: (1) fly ash classified by less than 100 microns in size was mixed into a 300 lb melt of alloy 535 without the need of a magnesium additive; (2) a vibratory feeder fitted with a sieve was used as the means to minimize particle clustering while introducing fly ash into the aluminum alloy 535 melt; and (3) the industrial-size field test was successful in that sand mold castings and permanent mold castings of tensile bars, K mold bars, and ingots were made from aluminum alloy 535-fly ash mix. Use of aluminum alloy 535 containingmore » 7% magnesium precluded the need to introduce additional magnesium into the melt. The third round of sand mold castings as well as permanent mold castings produced components and ingots of alloy 535 instead of alloy 356. The ingots will be remelted and cast into parts to assess the improvement of flyash distribution which occurs through reheating and the solidification wetting process. Microstructure analysis continues on sand and permanent mold castings to study particle distribution in the components. A prototype sand cast intake manifold casting was found to be pressure tight which is a major performance requirement for this part. Another heat of pressure die cast brackets of A380-classified fly ash will be made to examine their strength and fly ash distribution. Ingots of A356-fly ash have been made at Eck for remelting at Thompson Aluminum for squeeze casting into motor mounts.« less

  7. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  8. Observed Home Dampness and Mold Are Associated with Sustained Spikes in Personal Exposure to Particulate Matter Less than 10 μm in Diameter in Exacerbation-Prone Children with Asthma.

    PubMed

    Dutmer, Cullen M; Schiltz, Allison M; Freeman, Kristy L; Christie, Matthew J; Cerna, Juana A; Cho, Seung-Hyun; Chartier, Ryan T; Thornburg, Jonathan W; Hamlington, Katharine L; Crooks, James L; Fingerlin, Tasha E; Schwartz, David A; Liu, Andrew H

    2018-04-01

    Home dampness and mold are associated with asthma severity and exacerbations, but little is known about the nature of these exposures in at-risk children. To test the hypothesis that observed dampness, water damage, and mold in the home are associated with higher exposure to particulate matter less than 10 μm in diameter in a cohort of at-risk children with asthma. We performed a pilot study in 8- to 16-year-old children with exacerbation-prone asthma (n = 29; Denver Asthma Panel Study). Exposure to particulate matter less than 10 μm in diameter was measured over ∼72 hours with personal wearable monitors (MicroPEM [RTI International] and iTrack Micro GPS tracker) and stationary bedroom-located monitors (PEM, MSP Corporation). Mean percentage personal monitored time was 93% (95% confidence interval, 90-96%). Mean and spikes of real-time exposure to particulate matter less than 10 μm in diameter were calculated and, for personal monitored samples, partitioned into exposure while at home, school, or other locations. We defined a sustained spike exposure as a continuous period of 20 minutes or longer during which levels were greater than 50 μg/μL over the participant's minimum levels, using a 2-minute moving average of the particulate matter measurements. Mold and dampness were assessed by detailed home inspection. Visible water damage/moisture/mold and mold/mildew were common in the homes of exacerbation-prone children: bathroom, 60% and 46%; basement, 30% and 34%; kitchen, 22% and 39%; living room, 20% and 2%; bedroom, 12% and 2%; and other rooms, 21% and 7%, respectively. Personal and bedroom filter-based levels of particulate matter less than 10 μm in diameter were associated with home cumulative measures of water damage/moisture/mold (personal r 2  = 0.13, P = 0.02; bedroom r 2  = 0.19, P = 0.006; analysis of variance) and mold/mildew (personal r 2  = 0.11, P = 0.04; bedroom r 2  = 0.18, P = 0.008). Real-time integrated particulate matter less than 10 μm in diameter during sustained spike exposures that occurred when participants were home (normalized by total duration of sustained spike exposures) was associated with cumulative drips/leaks/wet areas (r 2  = 0.27; P = 0.004), mold/mildew (r 2  = 0.15; P = 0.04), and water damage/moisture/mold (r 2  = 0.14; P = 0.04). Other measures of exposure to particulate matter less than 10 μm in diameter from personal or stationary monitors were not associated with home dampness or mold indicators. Although mold exposure was not directly quantified in the respirable aerosol in this study, observations of home dampness and mold were associated with sustained spikes in respirable particulate matter less than 10 μm in diameter that was measured by wearable real-time monitors. In our cohort of at-risk children, this finding could imply that mold may exert respiratory health effects via sustained spikes in exposure and help to guide future studies and interventions to reduce these spikes and improve asthma outcomes.

  9. Exploring the problem of mold growth and the efficacy of various mold inhibitor methods during moisture sorption isotherm measurements.

    PubMed

    Yu, X; Martin, S E; Schmidt, S J

    2008-03-01

    Mold growth is a common problem during the equilibration of food materials at high relative humidity values using the standard saturated salt slurry method. Exposing samples to toluene vapor and mixing samples with mold inhibitor chemicals are suggested methods for preventing mold growth while obtaining isotherms. However, no published research was found that examined the effect of mold growth on isotherm performance or the efficacy of various mold inhibitor methods, including their possible effect on the physicochemical properties of food materials. Therefore, the objectives of this study were to (1) explore the effect of mold growth on isotherm performance in a range of food materials, (2) investigate the effectiveness of 4 mold inhibitor methods, irradiation, 2 chemical inhibitors (potassium sorbate and sodium acetate), and toluene vapor, on mold growth on dent corn starch inoculated with A. niger, and (3) examine the effect of mold inhibitor methods on the physicochemical properties of dent corn starch, including isotherm performance, pasting properties, gelatinization temperature, and enthalpy. Mold growth was found to affect starch isotherm performance by contributing to weight changes during sample equilibration. Among the 4 mold inhibitor methods tested, irradiation and toluene vapor were found to be the most effective for inhibiting growth of A. niger on dent cornstarch. However, both methods exhibited a significant impact on the starches' physiochemical properties, suggesting the need to probe the efficacy of other mold inhibitor methods and explore the use of new rapid isotherm instruments, which hamper mold growth by significantly decreasing measurement time.

  10. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Existing Open Molding Sources, New Open Molding Sources Emitting Less Than 100 TPY of HAP, and New and... CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites... Existing Open Molding Sources, New Open Molding Sources Emitting Less Than 100 TPY of HAP, and New and...

  11. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort cheese...

  12. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort cheese...

  13. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort cheese...

  14. Implications of diamond-turned versus diamond-ground mold fabrication techniques on precision-molded optics

    NASA Astrophysics Data System (ADS)

    Mertus, Lou; Symmons, Alan

    2012-10-01

    In recent years, the trend within the molded optics community has been an overall advancement in the capability to diamond grind molds using a variety of grinding techniques. Improvements in grinding equipment, materials and tooling have enabled higher quality ceramic and carbide molds and thereby lenses. Diamond turned molds from ductile metals are still used prevalently throughout the molding industry. Each technology presents a unique set of advantages and disadvantages whether used for precision injection molding of plastic optics or precision glass molding. This paper reviews the manufacturing techniques for each approach and applicable molding process. The advantages and disadvantages of each are compared and analyzed. The subtle differences that exist in optics molded from each technique and the impact they have on the performance in various applications is reviewed. Differences stemming from tooling material properties, material-specific minor defects, as well as cutting and grinding process-induced artifacts are described in detail as well as their influence on the roughness, waviness, and form errors present on the molded surface. A comparison with results between similar surfaces for both diamond grinding and diamond turning is presented.

  15. Predictive Engineering Tools for Injection-molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 Third Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Sanborn, Scott E.; Mathur, Raj N.

    2014-08-15

    This report describes the technical progresses made during the third quarter of FY 2014: 1) Autodesk introduced the options for fiber inlet condition to the 3D solver. These options are already available in the mid-plane/dual domain solver. 2) Autodesk improved the accuracy of 3D fiber orientation calculation around the gate. 3) Autodesk received consultant services from Prof. C.L. Tucker at the University of Illinois on the implementation of the reduced order model for fiber length, and discussed with Prof. Tucker the methods to reduce memory usage. 4) PlastiComp delivered to PNNL center-gated and edge-fan-gated 20-wt% to 30-wt% LCF/PP and LCF/PA66more » (7”x7”x1/8”) plaques molded by the in-line direct injection molding (D-LFT) process. 5) PlastiComp molded ASTM tensile, flexural and impact bars under the same D-LFT processing conditions used for plaques for Certification of Assessment and ascertaining the resultant mechanical properties. 6) Purdue developed a new polishing routine, utilizing the automated polishing machine, to reduce fiber damage during surface preparation. 7) Purdue used a marker-based watershed segmentation routine, in conjunction with a hysteresis thresholding technique, for fiber segmentation during fiber orientation measurement. 8) Purdue validated Purdue’s fiber orientation measurement method using the previous fiber orientation data obtained from the Leeds machine and manually measured data by the University of Illinois. 9) PNNL conducted ASMI mid-plane analyses for a 30wt% LCF/PP plaque and compared the predicted fiber orientations with the measured data provided by Purdue University at the selected locations on this plaque. 10) PNNL put together the DOE 2014 Annual Merit Review (AMR) presentation with the team and presented it at the AMR meetings on June 17, 2014. 11) PNNL built ASMI dual domain models for the Toyota complex part and commenced mold filling analyses of the complex part with different wall thicknesses in order to support part molding. 12) Toyota and Magna discussed with PNNL on tool modification for molding the complex part. Toyota sent the CAD files of the complex part to PNNL to build ASMI models of the part for mold filling analysis to provide guidance to tooling and part molding.« less

  16. Dimensional change in complete dentures fabricated by injection molding and microwave processing.

    PubMed

    Keenan, Phillip L J; Radford, David R; Clark, Robert K F

    2003-01-01

    Acrylic resin complete dentures undergo dimensional changes during polymerization. Techniques with injection molding and polymerization and microwave polymerization are reported to reduce these changes and thereby improve clinical fit. These dimensional changes need to be quantified. The purpose of this study was to compare differences in dimensional changes of simulated maxillary complete dentures during polymerization and storage in water after injection molding and conventional polymerization, or microwave polymerization against a control of conventionally packed and polymerized simulated maxillary complete dentures. Forty identical maxillary denture bases were prepared in dental wax with anatomic teeth. They were invested and the wax eliminated from the molds. Ten specimens each were randomly assigned to 1 of 4 groups. Group 1 was compression molded and conventionally polymerized; group 2 was injection molded and conventionally polymerized (Success); group 3 was injection molded and microwave polymerized (Acron MC); and group 4 was injection molded and microwave polymerized (Microbase). Intermolar width and changes in vertical dimension of occlusion, were determined after polymerization and after storage in water for 28 days. Measurements in triplicate were made between points scribed on the second molar teeth with a traveling microscope (accurate to 0.005 mm). Vertical dimension of occlusion was measured between points scribed on the upper and lower members of an articulator by use of an internal micrometer (accurate to 0.05 mm). Data were analyzed by use of a 1-way analysis of variance with Tukey post-hoc contrasts (P <.05). Polymerization contractions (intermolar widths) for each group were: group 1, -0.24%; group 2, -0.27%; group 3, -0.35%; and group 4, -0.37%. The Microbase specimens had greater shrinkage than conventionally polymerized specimens, but there were no significant differences between the groups. All injection methods had less postpolymerization increase in vertical dimension of occlusion (0.63 to 0.41 mm) than the conventional Trevalon control (0.74 mm), but only group 4 was significantly different (P<.004). After storage in water for 28 days, all specimens increased in vertical dimension of occlusion (0.10% to 0.16%) from polymerization techniques, but there were no significant differences between groups. Within the limitations of this study, injection molding resulted in a slightly less increase of vertical dimension of occlusion than conventional polymerization techniques, the difference being significant for Microbase compared with the conventional Trevalon control.

  17. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  18. Staged mold for encapsulating hazardous wastes

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  19. Method for encapsulating hazardous wastes using a staged mold

    DOEpatents

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1989-01-01

    A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  20. A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives

    NASA Astrophysics Data System (ADS)

    Sameoto, D.; Menon, C.

    2009-11-01

    We present a low-cost, large-scale method of fabricating biomimetic dry adhesives. This process is useful because it uses all photosensitive polymers with minimum fabrication costs or complexity to produce molds for silicone-based dry adhesives. A thick-film lift-off process is used to define molds using AZ 9260 photoresist, with a slow acting, deep UV sensitive material, PMGI, used as both an adhesion promoter for the AZ 9260 photoresist and as an undercutting material to produce mushroom-shaped fibers. The benefits to this process are ease of fabrication, wide range of potential layer thicknesses, no special surface treatment requirements to demold silicone adhesives and easy stripping of the full mold if process failure does occur. Sylgard® 184 silicone is used to cast full sheets of biomimetic dry adhesives off 4" diameter wafers, and different fiber geometries are tested for normal adhesion properties. Additionally, failure modes of the adhesive during fabrication are noted and strategies for avoiding these failures are discussed. We use this fabrication method to produce different fiber geometries with varying cap diameters and test them for normal adhesion strengths. The results indicate that the cap diameters relative to post diameters for mushroom-shaped fibers dominate the adhesion properties.

  1. Lactobacillus plantarum with Broad Antifungal Activity as a Protective Starter Culture for Bread Production

    PubMed Central

    Russo, Pasquale; Longo, Angela; Spano, Giuseppe; Capozzi, Vittorio

    2017-01-01

    Bread is a staple food consumed worldwide on a daily basis. Fungal contamination of bread is a critical concern for producers since it is related to important economic losses and safety hazards due to the negative impact of sensorial quality and to the potential occurrence of mycotoxins. In this work, Lactobacillus plantarum UFG 121, a strain with characterized broad antifungal activity, was analyzed as a potential protective culture for bread production. Six different molds belonging to Aspergillus spp., Penicillium spp., and Fusarium culmorum were used to artificially contaminate bread produced with two experimental modes: (i) inoculation of the dough with a commercial Saccharomyces cerevisiae strain (control) and (ii) co-inoculation of the dough with the commercial S. cerevisiae strain and with L. plantarum UFG 121. L. plantarum strain completely inhibited the growth of F. culmorum after one week of storage. The lactic acid bacterium modulated the mold growth in samples contaminated with Aspergillus flavus, Penicillium chrysogenum, and Penicillium expansum, while no antagonistic effect was found against Aspergillus niger and Penicillium roqueforti. These results indicate the potential of L. plantarum UFG 121 as a biocontrol agent in bread production and suggest a species- or strain-depending sensitivity of the molds to the same microbial-based control strategy. PMID:29232917

  2. Hypersensitivity pneumonitis in a hardwood processing plant related to heavy mold exposure.

    PubMed

    Veillette, Marc; Cormier, Yvon; Israël-Assayaq, Evelyne; Meriaux, Anne; Duchaine, Caroline

    2006-06-01

    Two workers employed in a hardwood floor plant presented symptoms suggestive of hypersensitivity pneumonitis (HP). At that plant, kiln-dried wood often shows moldy growth and is subsequently brought inside for processing. This study evaluated the environment in attempt to identify the causative antigen and verify whether other workers of this and similar plants had or were at risk of developing HP. Dust from dust-removing systems and molds on the surface of wood planks were collected and air samples taken from a sister plant. Blood samples, spirometry, and symptoms' questionnaires were obtained from 11 co-workers. Dense Paecilomyces growth was observed on the surface of the dried processed wood in the index plant. This fungal genus was not detected in the sister plant. An additional worker had symptoms suggestive of HP, and his bronchoalveolar lavage revealed a lymphocytic alveolitis. The 3 confirmed cases of HP and the other 10 workers had positive specific IgG antibodies to Paecilomyces. We report 3 cases of HP out of 13 workers and a 100% sensitization to molds in workers of a hardwood processing plant. This rate is much higher than what is commonly seen in other environments associated with HP. The drying process is suspected of being responsible for the massive Paecilomyces contamination likely responsible for the HP.

  3. Label free biosensor incorporating a replica-molded, vertically emitting distributed feedback laser

    NASA Astrophysics Data System (ADS)

    Lu, M.; Choi, S. S.; Wagner, C. J.; Eden, J. G.; Cunningham, B. T.

    2008-06-01

    A label free biosensor based upon a vertically emitting distributed feedback (DFB) laser has been demonstrated. The DFB laser comprises a replica-molded, one-dimensional dielectric grating coated with laser dye-doped polymer as the gain medium. Adsorption of biomolecules onto the laser surface alters the DFB laser emission wavelength, thereby permitting the kinetic adsorption of a protein polymer monolayer or the specific binding of small molecules to be quantified. A bulk sensitivity of 16.6nm per refractive index unit and the detection of a monolayer of the protein polymer poly(Lys, Phe) have been observed with this biosensor. The sensor represents a departure from conventional passive resonant optical sensors from the standpoint that the device actively generates its own narrowband high intensity output without stringent requirements on the coupling alignments, resulting in a simple, robust illumination and detection configuration.

  4. Presurgical Nasoalveolar Molding for Correction of Cleft Lip Nasal Deformity: Experience From Northern India

    PubMed Central

    Mishra, Brijesh; Singh, Arun K.; Zaidi, Javed; Singh, G. K.; Agrawal, Rajiv; Kumar, Vijay

    2010-01-01

    Context: The cleft lip type nasal deformity presents one of the most complex surgical challenges. The long-term postoperative results are still not satisfactory despite an emphasis on primary nasal correction. This is attributed to tissue memory and healing. Nasoalveolar molding is used effectively to reshape the nasal cartilage and to mold the maxillary arch before cleft lip repair. Aims: This study was undertaken to evaluate the role of presurgical nasoalveolar molding in correction of cleft lip nasal deformity for patients with unilateral and bilateral clefts of the lip. Settings and Design: Twenty-three cases of clefts of lip and palate with nasal deformity were subjected to present study from May 2004 to May 2006. These cases were initially treated on outpatient basis, and they were admitted at the time of operation. All of these patients were children of less than 1 year of age, belonging to north Indian population. Material and Methods: Study consisted of patients of cleft lip and palate who were given presurgical nasoalveolar splints at early age. Lip repair was done after at least 2 months of molding. These patients along with control group (without presurgical nasoalveolar molding) were followed up for 1 year. Measurements were taken at different intervals in study over dental cast and on patients. Data obtained from comparison of 2 groups were analyzed using “MSTAT” analysis software (developed by Dr Russel Freed, Professor & Director, Crop & Soil Sciences Department, Michigan State University, East Lansing, Michigan). Results: In our study, we found that nostril height was more in patients of experimental group (P = .18), while nostril width and alar perimeter were not changed significantly. Children with nasoalveolar molding had significant lengthening of columella (P = .02). Patients of unilateral cleft lip had more reduction in alveolar gap (P = .08) than bilateral group (P = .15). Conclusions: Nasoalveolar molding can be a useful adjunct for treatment of cleft lip nasal deformity. It is a cost-effective technique that can reduce the number of future surgeries such as alveolar bone grafting and secondary rhinoplasties. PMID:20694165

  5. Comparison of dry sheet media and conventional agar media methods for enumerating yeasts and molds in food.

    PubMed

    Beuchat, L R; Mann, David A; Gurtler, Joshua B

    2007-11-01

    A study was done to compare Nissui Compact Dry Yeast and Mold plates (CDYM), 3M Petrifilm Yeast and Mold count plates (PYM), dichloran-rose bengal chloramphenicol (DRBC) agar, and dichloran 18% glycerol (DG18) agar for enumerating yeasts and molds naturally occurring in 97 foods (grains, legumes, raw fruits and vegetables, nuts, dairy products, meats, and miscellaneous processed foods and dry mixes). Correlation coefficients for plates incubated for 5 days were DG18 versus DRBC (0.93), PYM versus DRBC (0.81), CDYM versus DG18 (0.81), PYM versus DG18 (0.80), CDYM versus DRBC (0.79), and CDYM versus PYM (0.75). The number of yeasts and molds recovered from a group of foods (n = 32) analyzed on a weight basis (CFU per gram) was not significantly different (alpha = 0.05) when samples were plated on DRBC, DG18, PYM, or CDYM. However, the order of recovery from foods (n = 65) in a group analyzed on a unit or piece basis, or a composite of both groups (n = 97), was DRBC > DG18 = CDYM > PYM. Compared with PYM, CDYM recovered equivalent, significantly higher (alpha = 0.05) or significantly lower (alpha = 0.05) numbers of yeasts and molds in 51.5, 27.8, and 20.6%, respectively, of the 97 foods tested; respective values were 68.8, 15.6, and 15.6% in the small group (n = 32) and 43.1, 33.8, and 23.1% in the large group (n = 65) of foods. The two groups contained different types of foods, the latter consisting largely (73.8%) of raw fruits (n = 16) and vegetables (n = 32). Differences in efficacy of the four methods in recovering yeasts and molds from foods in the two groups are attributed in part to differences in genera and predominant mycoflora. While DG18 agar, CDYM, and PYM appear to be acceptable for enumerating yeasts and molds in the foods analyzed in this study, overall, DRBC agar recovered higher numbers from the 97 test foods, thereby supporting its recommended use as a general purpose medium for mycological analysis.

  6. Processing and characterization of novel biobased and biodegradable materials

    NASA Astrophysics Data System (ADS)

    Pilla, Srikanth

    Human society has benefited tremendously from the use of petroleum-based plastics. However, there are growing concerns with their adverse environmental impacts and volatile costs attributed to the skyrocketing oil prices. Additionally most of the petroleum-based polymers are non-biodegradable causing problems about their disposal. Thus, during the last couple of decades, scientists ail over the world have been focusing on developing new polymeric materials that are biobased and biodegradable, also termed as green plastics . This study aims to develop green materials based on polylactide (PLA) biopolymer that can be made from plants. Although PLA can provide important advantages in terms of sustainability and biodegradability, it has its own challenges such as high cost, brittleness, and narrow processing window. These challenges are addressed in this study by investigating both new material formulations and processes. To improve the material properties and control the material costs, PLA was blended with various fillers and modifiers. The types of fillers investigated include carbon nanotube (CNT) nanoparticles and various natural fibers such as pine-wood four, recycled-wood fibers and flax fiber. Using natural fibers as fillers for PLA can result in fully biodegradable and eco-friendly biocomposites. Also due to PLA's sensitivity to moisture and temperature, molecular degradation can occur during processing leading to inferior material properties. To address this issue, one of the approaches adopted by this study was to incorporate a multifunctional chain-extender into PLA, which increased the molecular weight of PLA thereby improving the material properties. To improve the processability and reduce the material cost, both microcellular injection molding and extrusion processes have been studied. The microcellular technology allows the materials to be processed at a lower temperature, which is attractive for thermo- and moisture-sensitive materials like PLA. They are also capable of mass-producing foamed plastics with less material and less energy. Injection-molded or extruded components based on a number of different formulations were characterized extensively using various techniques such as tensile testing, dynamical mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, electron microscopy (scanning and transmission), and density and molecular weight measurement, etc. Ultimately, the composition-processing-structure-property relationships in five material systems have been established.

  7. Environmental Sustainability and Mold Hygiene in Buildings

    PubMed Central

    Ng, Tsz Wai; Lai, Ka Man

    2018-01-01

    Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management. PMID:29617339

  8. Environmental Sustainability and Mold Hygiene in Buildings.

    PubMed

    Wu, Haoxiang; Ng, Tsz Wai; Wong, Jonathan Wc; Lai, Ka Man

    2018-04-04

    Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management.

  9. Method for making an elastomeric member with end pieces

    DOEpatents

    Hoppie, Lyle O.; McNinch, Jr., Joseph H.; Nowell, Gregory C.

    1984-01-01

    A molding process for molding an elongated elastomeric member (60) with wire mesh sleeves (16) bonded to the ends (14). A molding preform (10) of elastomeric material is positioned within a seamless mold cylinder (26), and the open ends of the wire mesh sleeves (16) are mounted to end plug assemblies (30) slidably received into the mold cylinder (26) and positioned against the ends (14) of the preform (10). A specialized profile is formed into surfaces (44) of the respective end plug assemblies (30) and by heating of the mold (26), the ends (14) of the elastomeric preform (10) are molded to the profile, as well as bonded to the reinforcing wire mesh sleeves (16). Vacuum is applied to the interior of the mold to draw outgassing vapors through relief spaces therethrough. The completed elastomeric member (60) is removed from the mold cylinder (26) by stretching, the consequent reduction in diameter enabling ready separation from the mold cylinder (26) and removal thereof.

  10. High resolution PFPE-based molding High resolution PFPE-based molding High resolution PFPE-based molding techniques for nanofabrication of high pattern density sub-20 nm features: A fundamental materials approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Stuart S; Samulski, Edward; Lopez, Renee

    2010-01-01

    ABSTRACT. Described herein is the development and investigation of PFPE-based elastomers for high resolution replica molding applications. The modulus of the elastomeric materials was increased through synthetic and additive approaches while maintaining relatively low surface energies (<25 mN/m). Using practically relevant large area master templates, we show that the resolution of the molds is strongly dependant upon the elastomeric mold modulus. A composite mold approach was used to form flexible molds out of stiff, high modulus materials that allow for replication of sub-20 nm post structures. Sub-100 nm line grating master templates, formed using e-beam lithography, were used to determinemore » the experimental stability of the molding materials. It was observed that as the feature spacing decreased, high modulus composite molds were able to effectively replicate the nano-grating structures without cracking or tear-out defects that typically occur with high modulus elastomers.« less

  11. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    NASA Astrophysics Data System (ADS)

    Hobæk, Thor Christian; Matschuk, Maria; Kafka, Jan; Pranov, Henrik J.; Larsen, Niels B.

    2015-03-01

    We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process. At isothermal mold conditions, the average pillar height increases by up to 100% and a more uniform height distribution is observed compared to a traditional metal mold insert. Thermal heat transfer simulations predict that the HSQ film retards the cooling of the polymer melt during the initial stages of replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical stability of thermally cured HSQ makes it a promising material for nanopattern replication on an industrial scale without the need for slow and energy intensive variotherm processes.

  12. Experimental and Numerical Studies on Fiber Deformation and Formability in Thermoforming Process Using a Fast-Cure Carbon Prepreg: Effect of Stacking Sequence and Mold Geometry.

    PubMed

    Bae, Daeryeong; Kim, Shino; Lee, Wonoh; Yi, Jin Woo; Um, Moon Kwang; Seong, Dong Gi

    2018-05-21

    A fast-cure carbon fiber/epoxy prepreg was thermoformed against a replicated automotive roof panel mold (square-cup) to investigate the effect of the stacking sequence of prepreg layers with unidirectional and plane woven fabrics and mold geometry with different drawing angles and depths on the fiber deformation and formability of the prepreg. The optimum forming condition was determined via analysis of the material properties of epoxy resin. The non-linear mechanical properties of prepreg at the deformation modes of inter- and intra-ply shear, tensile and bending were measured to be used as input data for the commercial virtual forming simulation software. The prepreg with a stacking sequence containing the plain-woven carbon prepreg on the outer layer of the laminate was successfully thermoformed against a mold with a depth of 20 mm and a tilting angle of 110°. Experimental results for the shear deformations at each corner of the thermoformed square-cup product were compared with the simulation and a similarity in the overall tendency of the shear angle in the path at each corner was observed. The results are expected to contribute to the optimization of parameters on materials, mold design and processing in the thermoforming mass-production process for manufacturing high quality automotive parts with a square-cup geometry.

  13. Experimental and Numerical Studies on Fiber Deformation and Formability in Thermoforming Process Using a Fast-Cure Carbon Prepreg: Effect of Stacking Sequence and Mold Geometry

    PubMed Central

    Bae, Daeryeong; Kim, Shino; Lee, Wonoh; Yi, Jin Woo; Um, Moon Kwang; Seong, Dong Gi

    2018-01-01

    A fast-cure carbon fiber/epoxy prepreg was thermoformed against a replicated automotive roof panel mold (square-cup) to investigate the effect of the stacking sequence of prepreg layers with unidirectional and plane woven fabrics and mold geometry with different drawing angles and depths on the fiber deformation and formability of the prepreg. The optimum forming condition was determined via analysis of the material properties of epoxy resin. The non-linear mechanical properties of prepreg at the deformation modes of inter- and intra-ply shear, tensile and bending were measured to be used as input data for the commercial virtual forming simulation software. The prepreg with a stacking sequence containing the plain-woven carbon prepreg on the outer layer of the laminate was successfully thermoformed against a mold with a depth of 20 mm and a tilting angle of 110°. Experimental results for the shear deformations at each corner of the thermoformed square-cup product were compared with the simulation and a similarity in the overall tendency of the shear angle in the path at each corner was observed. The results are expected to contribute to the optimization of parameters on materials, mold design and processing in the thermoforming mass-production process for manufacturing high quality automotive parts with a square-cup geometry. PMID:29883413

  14. Development of an environmental relative moldiness index for US homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesper, Sephen J.; McKinstry, Craig A.; Haugland, Richard A.

    2007-08-01

    As part of the HUD American Healthy Survey, dust samples were collected by vacuuming 2 m2 in the bedroom plus 2 m2 in the living room of a nationally representative 1096 homes in the USA using the Mitest™ sampler. Five mg of sieved (300 µ pore, nylon mesh) dust was analyzed by mold specific quantitative PCR for the 36 EPA Mold Panel Species. On this basis, an “environmental relative moldiness index” (ERMI) was created with values ranging from about -10 to 20 (lowest to highest). In order to try to reduce the cost of this analysis, the number of testmore » species was reduced by selecting only those species with a national average concentration of 30 cell equivalents (CE) per mg dust or greater. Only 19 of 36 species met this criterion. (In 40% of the homes, an additional 46 species were quantified from the same dust sample. All of these species had average concentrations less than 30 CE per mg dust.) These 19 species were then categorized into two groups based on their coefficient of variation (CV). If the CV was > 9, the mold was placed in Category 1 (10/19) and the other molds were placed in Category 2 (9/19). Using these Categories, the sum of the log-transformed concentrations of three Category 2 molds (C. herbarum, A. alternata and C. cladosporioides Type 1) was subtracted from the sum of the log-transformed concentrations of the ten Category 1 molds (Aspergillus niger, A. ochraceus, A. penicillioides, A. restrictus, A. sydowii, Chaetomium globosum, Eurotium amsteldoami, Paecilomyces variotii, Penicillium chrysogenum and Wallemia sebi). Assembling these values for the 1096 AHHS homes from lowest to highest produced the “American relative moldiness index” (ARMI). The correlation between the ERMI and ARMI values was 0.88. The ERMI or ARMI scales may be useful as a standard for mold exposure estimates in epidemiological studies.« less

  15. Effect of Cross Sectional Geometry on PDMS Micro Peristaltic Pump Performance: Comparison of SU-8 Replica Molding vs. Micro Injection Molding

    PubMed Central

    Graf, Neil J.

    2013-01-01

    Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM).1 The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold’s bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold’s bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries. PMID:23917263

  16. Challenges in mold manufacturing for high precision molded diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Schweizer, Klaus; Bergs, Thomas

    2016-09-01

    Isothermal precision glass molding of imaging optics is the key technology for mass production of precise optical elements. Especially for numerous consumer applications (e.g. digital cameras, smart phones, …), high precision glass molding is applied for the manufacturing of aspherical lenses. The usage of diffractive optical elements (DOEs) can help to further reduce the number of lenses in the optical systems which will lead to a reduced weight of hand-held optical devices. But today the application of molded glass DOEs is limited due to the technological challenges in structuring the mold surfaces. Depending on the application submicrometer structures are required on the mold surface. Furthermore these structures have to be replicated very precisely to the glass lens surface. Especially the micro structuring of hard and brittle mold materials such as Tungsten Carbide is very difficult and not established. Thus a multitude of innovative approaches using diffractive optical elements cannot be realized. Aixtooling has investigated in different mold materials and different suitable machining technologies for the micro- and sub-micrometer structuring of mold surfaces. The focus of the work lays on ultra-precision grinding to generate the diffractive pattern on the mold surfaces. This paper presents the latest achievements in diffractive structuring of Tungsten Carbide mold surfaces by ultra-precision grinding.

  17. Feasibility of using Big Area Additive Manufacturing to Directly Manufacture Boat Molds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Brian K.; Chesser, Phillip C.; Lind, Randall F.

    The goal of this project was to explore the feasibility of using Big Area Additive Manufacturing (BAAM) to directly manufacture a boat mold without the need for coatings. All prior tooling projects with BAAM required the use to thick coatings to overcome the surface finish limitations of the BAAM process. While the BAAM process significantly lowers the cost of building the mold, the high cost element rapidly became the coatings (cost of the material, labor on coating, and finishing). As an example, the time and cost to manufacture the molds for the Wind Turbine project with TPI Composites Inc. andmore » the molds for the submarine project with Carderock Naval Warfare Systems was a fraction of the time and cost of the coatings. For this project, a catamaran boat hull mold was designed, manufactured, and assembled with an additional 0.15” thickness of material on all mold surfaces. After printing, the mold was immediately machined and assembled. Alliance MG, LLC (AMG), the industry partner of this project, experimented with mold release agents on the carbon-fiber reinforced acrylonitrile butadiene styrene (CF ABS) to verify that the material can be directly used as a mold (rather than needing a coating). In addition, for large molds (such as the wind turbine mold with TPI Composites Inc.), the mold only provided the target surface. A steel subframe had to be manufactured to provide structural integrity. If successful, this will significantly reduce the time and cost necessary for manufacturing large resin infusion molds using the BAAM process.« less

  18. Optimization of Micro Metal Injection Molding By Using Grey Relational Grade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, M. H. I.; Precision Process Research Group, Dept. of Mechanical and Materials Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia; Muhamad, N.

    2011-01-17

    Micro metal injection molding ({mu}MIM) which is a variant of MIM process is a promising method towards near net-shape of metallic micro components of complex geometry. In this paper, {mu}MIM is applied to produce 316L stainless steel micro components. Due to highly stringent characteristic of {mu}MIM properties, the study has been emphasized on optimization of process parameter where Taguchi method associated with Grey Relational Analysis (GRA) will be implemented as it represents novel approach towards investigation of multiple performance characteristics. Basic idea of GRA is to find a grey relational grade (GRG) which can be used for the optimization conversionmore » from multi objectives case which are density and strength to a single objective case. After considering the form 'the larger the better', results show that the injection time(D) is the most significant followed by injection pressure(A), holding time(E), mold temperature(C) and injection temperature(B). Analysis of variance (ANOVA) is also employed to strengthen the significant of each parameter involved in this study.« less

  19. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers.

    PubMed

    Hearon, Keith; Smith, Sarah E; Maher, Cameron A; Wilson, Thomas S; Maitland, Duncan J

    2013-02-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities-that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150°C for up to five hours or to 125°C for up to 24 hours if stabilized with 10,000 ppm BQ and could also be heated to 125°C for up to 5 hours if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of radiation sensitizers, thereby facilitating further development of radiation crosslinkable thermoplastic SMPs.

  20. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers

    NASA Astrophysics Data System (ADS)

    Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-02-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because the thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150 °C for up to 5 h or to 125 °C for up to 24 h if stabilized with 10,000 ppm BQ and could also be heated to 125 °C for up to 5 h if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of radiation sensitizers, thereby facilitating further development of radiation crosslinkable thermoplastic SMPs.

  1. Tunable sensitivity phase detection of transmitted-type dual-channel guided-mode resonance sensor based on phase-shift interferometry.

    PubMed

    Kuo, Wen-Kai; Syu, Siang-He; Lin, Peng-Zhi; Yu, Hsin Her

    2016-02-01

    This paper reports on a transmitted-type dual-channel guided-mode resonance (GMR) sensor system that uses phase-shifting interferometry (PSI) to achieve tunable phase detection sensitivity. Five interference images are captured for the PSI phase calculation within ∼15  s by using a liquid crystal retarder and a USB web camera. The GMR sensor structure is formed by a nanoimprinting process, and the dual-channel sensor device structure for molding is fabricated using a 3D printer. By changing the rotation angle of the analyzer in front of the camera in the PSI system, the sensor detection sensitivity can be tuned. The proposed system may achieve high throughput as well as high sensitivity. The experimental results show that an optimal detection sensitivity of 6.82×10(-4)  RIU can be achieved.

  2. Modeling transport phenomena and uncertainty quantification in solidification processes

    NASA Astrophysics Data System (ADS)

    Fezi, Kyle S.

    Direct chill (DC) casting is the primary processing route for wrought aluminum alloys. This semicontinuous process consists of primary cooling as the metal is pulled through a water cooled mold followed by secondary cooling with a water jet spray and free falling water. To gain insight into this complex solidification process, a fully transient model of DC casting was developed to predict the transport phenomena of aluminum alloys for various conditions. This model is capable of solving mixture mass, momentum, energy, and species conservation equations during multicomponent solidification. Various DC casting process parameters were examined for their effect on transport phenomena predictions in an alloy of commercial interest (aluminum alloy 7050). The practice of placing a wiper to divert cooling water from the ingot surface was studied and the results showed that placement closer to the mold causes remelting at the surface and increases susceptibility to bleed outs. Numerical models of metal alloy solidification, like the one previously mentioned, are used to gain insight into physical phenomena that cannot be observed experimentally. However, uncertainty in model inputs cause uncertainty in results and those insights. The analysis of model assumptions and probable input variability on the level of uncertainty in model predictions has not been calculated in solidification modeling as yet. As a step towards understanding the effect of uncertain inputs on solidification modeling, uncertainty quantification (UQ) and sensitivity analysis were first performed on a transient solidification model of a simple binary alloy (Al-4.5wt.%Cu) in a rectangular cavity with both columnar and equiaxed solid growth models. This analysis was followed by quantifying the uncertainty in predictions from the recently developed transient DC casting model. The PRISM Uncertainty Quantification (PUQ) framework quantified the uncertainty and sensitivity in macrosegregation, solidification time, and sump profile predictions. Uncertain model inputs of interest included the secondary dendrite arm spacing, equiaxed particle size, equiaxed packing fraction, heat transfer coefficient, and material properties. The most influential input parameters for predicting the macrosegregation level were the dendrite arm spacing, which also strongly depended on the choice of mushy zone permeability model, and the equiaxed packing fraction. Additionally, the degree of uncertainty required to produce accurate predictions depended on the output of interest from the model.

  3. Selected Heat-Sensitive Antibiotics Are Not Inactivated During Polymethylmethacrylate Curing and Can Be Used in Cement Spacers for Periprosthetic Joint Infection.

    PubMed

    Carli, Alberto V; Sethuraman, Arvinth S; Bhimani, Samrath J; Ross, Frederick P; Bostrom, Mathias P G

    2018-06-01

    Antibiotic use in polymethylmethacrylate (PMMA) spacers has historically been limited to those which are "heat-stable" and thus retain their antimicrobial properties after exposure to the high temperatures which occur during PMMA curing. This study examines the requirement of "heat stability" by measuring temperatures of Palacos and Simplex PMMA as they cure inside commercial silicone molds of the distal femur and proximal tibia. Temperature probes attached to thermocouples were placed at various depths inside the molds and temperatures were recorded for 20 minutes after PMMA introduced and a temperature curve for each PMMA product was determined. A "heat-stable" antibiotic, vancomycin, and a "heat-sensitive" antibiotic, ceftazidime, were placed in a programmable thermocycler and exposed to the same profile of PMMA curing temperatures. Antimicrobial activity against Staphylococcus aureus was compared for heat-treated antibiotics vs room temperature controls. Peak PMMA temperatures were significantly higher in tibial (115.2°C) vs femoral (85.1°C; P < .001) spacers. In the hottest spacers, temperatures exceeded 100°C for 3 minutes. Simplex PMMA produced significantly higher temperatures (P < .05) compared with Palacos. Vancomycin bioactivity did not change against S aureus with heat exposure. Ceftazidime bioactivity did not change when exposed to femoral temperature profiles and was reduced only 2-fold with tibial profiles. The curing temperatures of PMMA in knee spacers are not high enough or maintained long enough to significantly affect the antimicrobial efficacy of ceftazidime, a known "heat-sensitive" antibiotic. Future studies should investigate if more "heat-sensitive" antibiotics could be used clinically in PMMA spacers. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Fabrication of robust tooling for mass production of polymeric microfluidic devices

    NASA Astrophysics Data System (ADS)

    Fu, G.; Tor, S. B.; Loh, N. H.; Hardt, D. E.

    2010-08-01

    Polymer microfluidic devices are gaining popularity for bio-applications. In both commonly used methods for the fabrication of polymer microfluidic devices, i.e. injection molding and hot-embossing, the quality of a mold insert is of high importance. Micro powder injection molding (μPIM) provides a suitable option for metal mold insert fabrication. In this paper, two mold inserts with micro-features of different patterns and sizes were produced using 316L stainless steel powder and an in-house binder system. The mold inserts were successfully used to produce cyclic olefin copolymer (COC, trade name TOPAS) micromixer plates with micro-channels of widths 100 µm and 50 µm. Compared with CNC-machined hot work steel mold inserts, the quality of the micro-channels is better as far as geometrical quality and dimensional tolerance are concerned. However, surface finish and flatness of the μPIM mold inserts are inferior to those of CNC-machined mold inserts.

  5. Localized mold heating with the aid of selective induction for injection molding of high aspect ratio micro-features

    NASA Astrophysics Data System (ADS)

    Park, Keun; Lee, Sang-Ik

    2010-03-01

    High-frequency induction is an efficient, non-contact means of heating the surface of an injection mold through electromagnetic induction. Because the procedure allows for the rapid heating and cooling of mold surfaces, it has been recently applied to the injection molding of thin-walled parts or micro/nano-structures. The present study proposes a localized heating method involving the selective use of mold materials to enhance the heating efficiency of high-frequency induction heating. For localized induction heating, a composite injection mold of ferromagnetic material and paramagnetic material is used. The feasibility of the proposed heating method is investigated through numerical analyses in terms of its heating efficiency for localized mold surfaces and in terms of the structural safety of the composite mold. The moldability of high aspect ratio micro-features is then experimentally compared under a variety of induction heating conditions.

  6. Evaluation of the microstructure, secondary dendrite arm spacing, and mechanical properties of Al-Si alloy castings made in sand and Fe-Cr slag molds

    NASA Astrophysics Data System (ADS)

    Narasimha Murthy, I.; Babu Rao, J.

    2017-07-01

    The microstructure and mechanical properties of as-cast A356 (Al-Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome (Fe-Cr) slag, and a mixture of sand and Fe-Cr. A sodium silicate-CO2 process was used to make the necessary molds. Cylindrical-shaped castings were prepared. Cast products with no porosity and a good surface finish were achieved in all of the molds. These castings were evaluated for their metallography, secondary dendrite arm spacing (SDAS), and mechanical properties, including hardness, compression, tensile, and impact properties. Furthermore, the tensile and impact samples were analyzed by fractography. The results show that faster heat transfer in the Fe-Cr slag molds than in either the silica sand or mixed molds led to lower SDAS values with a refined microstructure in the products cast in Fe-Cr slag molds. Consistent and enhanced mechanical properties were observed in the slag mold products than in the castings obtained from either sand or mixed molds. The fracture surface of the slag mold castings shows a dimple fracture morphology with a transgranular fracture nature. However, the fracture surfaces of the sand mold castings display brittle fracture. In conclusion, products cast in Fe-Cr slag molds exhibit an improved surface finish and enhanced mechanical properties compared to those of products cast in sand and mixed molds.

  7. Injection-Molded Long-Fiber Thermoplastic Composites: From Process Modeling to Prediction of Mechanical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Jin, Xiaoshi

    2013-12-18

    This article illustrates the predictive capabilities for long-fiber thermoplastic (LFT) composites that first simulate the injection molding of LFT structures by Autodesk® Simulation Moldflow® Insight (ASMI) to accurately predict fiber orientation and length distributions in these structures. After validating fiber orientation and length predictions against the experimental data, the predicted results are used by ASMI to compute distributions of elastic properties in the molded structures. In addition, local stress-strain responses and damage accumulation under tensile loading are predicted by an elastic-plastic damage model of EMTA-NLA, a nonlinear analysis tool implemented in ABAQUS® via user-subroutines using an incremental Eshelby-Mori-Tanaka approach. Predictedmore » stress-strain responses up to failure and damage accumulations are compared to the experimental results to validate the model.« less

  8. Real-time PCR assays for detection and quantification of aflatoxin-producing molds in foods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Luque, M Isabel; Martín, Alberto; Córdoba, Juan J

    2012-08-01

    Aflatoxins are among the most toxic mycotoxins. Early detection and quantification of aflatoxin-producing species is crucial to improve food safety. In the present work, two protocols of real-time PCR (qPCR) based on SYBR Green and TaqMan were developed, and their sensitivity and specificity were evaluated. Primers and probes were designed from the o-methyltransferase gene (omt-1) involved in aflatoxin biosynthesis. Fifty-three mold strains representing aflatoxin producers and non-producers of different species, usually reported in food products, were used as references. All strains were tested for aflatoxins production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the proposed qPCR method was demonstrated by the strong linear relationship of the standard curves constructed with the omt-1 gene copy number and Ct values for the different aflatoxin producers tested. The ability of the qPCR protocols to quantify aflatoxin-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 4 to 1 log cfu/g per reaction for all qPCR assays in the different food matrices (peanuts, spices and dry-fermented sausages). The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g for SYBR Green and TaqMan assays. No significant effect was observed due to the different equipment, operator, and qPCR methodology used in the tests of repeatability and reproducibility for different foods. The proposed methods quantified with high efficiency the fungal load in foods. These qPCR protocols are proposed for use to quantify aflatoxin-producing molds in food products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Nasoalveolar molding improves appearance of children with bilateral cleft lip-cleft palate.

    PubMed

    Lee, Catherine T H; Garfinkle, Judah S; Warren, Stephen M; Brecht, Lawrence E; Cutting, Court B; Grayson, Barry H

    2008-10-01

    Bilateral cleft lip-cleft palate is associated with nasal deformities typified by a short columella. The authors compared nasal outcomes of cleft patients treated with banked fork flaps to those of patients who underwent nasoalveolar molding and primary retrograde nasal reconstruction. A retrospective review of 26 consecutive patients with bilateral cleft lip-cleft palate was performed. Group 1 patients (n = 13) had a cleft lip repair and nasal correction with banked fork flaps. Group 2 patients (n = 13) had nonsurgical columellar elongation with nasoalveolar molding followed by cleft lip closure and primary retrograde nasal correction. Group 3 patients (n = 13) were age-matched controls. Columellar length was measured at presentation and at 3 years of age. The number of nasal operations was recorded to 9 years. The Kruskal-Wallis and Tukey-Kramer tests were used for statistical analysis. Initial columellar length was 0.49 +/- 0.37 mm in group 1 and 0.42 +/- 0.62 mm in group 2. Post-nasoalveolar molding columellar length was 4.5 +/- 0.76 mm in group 2. By 3 years of age, columellar length was 3.03 +/- 1.47 mm in group 1, 5.98 +/- 1.09 mm in group 2, and 6.35 +/- 0.99 mm in group 3. Group 2 columellar length was significantly greater (p < 0.001) than that of group 1 and not statistically different from that of group 3 (p > 0.05). All group 1 patients (13 of 13) needed secondary nasal surgery. No nasoalveolar molding patients (zero of 13, group 2) required secondary nasal surgery. Nonsurgical columellar elongation with nasoalveolar molding followed by primary retrograde nasal reconstruction restored columellar length to normal by 3 years and significantly reduced the need for secondary nasal surgery.

  10. Evaluation of a local exhaust system used in the manufacture of small parts made of reinforced plastic.

    PubMed

    Lazure, L P

    2000-09-01

    Fiber-reinforced plastics are used to manufacture a large variety of products, particularly for the transportation sector. Hand lay-up molding and projection molding are the main methods of manufacture. The users of these processes are exposed to appreciable emissions of styrene; in Quebec, more than 3000 workers work in this industry. A statistical analysis of styrene concentrations measured over a five-year period by the Institut de recherche en santé et en sécurité du travail (IRSST, Occupational Health and Safety Research Institute) reveals that for all of the main manufacturing sectors involved, between 40 percent and 78 percent of the results exceed the exposure standard of 50 ppm. This study evaluated the effectiveness of a ventilated table in controlling worker exposure to styrene and acetone in a shop that manufactures fiber-reinforced plastics parts. The evaluated local extraction system consists of a ventilated table with a surface area of 1.2 m x 1.2 m. During molding, the styrene emissions are exhausted through the ventilated table as well as through the slots in a lateral hood. Replacement air, introduced vertically through a supply air shower located above the worker, limits the diffusion of contaminants toward the worker's breathing zone. The reduction in worker exposure to styrene and acetone during hand lay-up molding was measured in the breathing zone for two sizes of molds. The results show that exhaust ventilation reduced the styrene concentrations by 91 percent and that the introduction of replacement air increased the efficiency of the ventilated table to 96 percent. The evaluation performed indicates that the ventilated table adequately controls worker exposure to styrene and acetone during the molding of small components.

  11. Indoor mold exposure associated with neurobehavioral and pulmonary impairment: a preliminary report.

    PubMed

    Kilburn, Kaye H

    2003-07-01

    Recently, patients who have been exposed indoors to mixed molds, spores, and mycotoxins have reported asthma, airway irritation and bleeding, dizziness, and impaired memory and concentration, all of which suggest the presence of pulmonary and neurobehavioral problems. The author evaluated whether such patients had measurable pulmonary and neurobehavioral impairments by comparing consecutive cases in a series vs. a referent group. Sixty-five consecutive outpatients exposed to mold in their respective homes in Arizona, California, and Texas were compared with 202 community subjects who had no known mold or chemical exposures. Balance, choice reaction time, color discrimination, blink reflex, visual fields, grip, hearing, problem-solving, verbal recall, perceptual motor speed, and memory were measured. Medical histories, mood states, and symptom frequencies were recorded with checklists, and spirometry was used to measure various pulmonary volumes and flows. Neurobehavioral comparisons were made after individual measurements were adjusted for age, educational attainment, and sex. Significant differences between groups were assessed by analysis of variance; a p value of less than 0.05 was used for all statistical tests. The mold-exposed group exhibited decreased function for balance, reaction time, blink-reflex latency, color discrimination, visual fields, and grip, compared with referents. The exposed group's scores were reduced for the following tests: digit-symbol substitution, peg placement, trail making, verbal recall, and picture completion. Twenty-one of 26 functions tested were abnormal. Airway obstructions were found, and vital capacities were reduced. Mood state scores and symptom frequencies were elevated. The author concluded that indoor mold exposures were associated with neurobehavioral and pulmonary impairments that likely resulted from the presence of mycotoxins, such as trichothecenes.

  12. Environmental Mold and Mycotoxin Exposures Elicit Specific Cytokine and Chemokine Responses

    PubMed Central

    Rosenblum Lichtenstein, Jamie H.; Hsu, Yi-Hsiang; Gavin, Igor M.; Donaghey, Thomas C.; Molina, Ramon M.; Thompson, Khristy J.; Chi, Chih-Lin; Gillis, Bruce S.; Brain, Joseph D.

    2015-01-01

    Background Molds can cause respiratory symptoms and asthma. We sought to use isolated peripheral blood mononuclear cells (PBMCs) to understand changes in cytokine and chemokine levels in response to mold and mycotoxin exposures and to link these levels with respiratory symptoms in humans. We did this by utilizing an ex vivo assay approach to differentiate mold-exposed patients and unexposed controls. While circulating plasma chemokine and cytokine levels from these two groups might be similar, we hypothesized that by challenging their isolated white blood cells with mold or mold extracts, we would see a differential chemokine and cytokine release. Methods and Findings Peripheral blood mononuclear cells (PBMCs) were isolated from blood from 33 patients with a history of mold exposures and from 17 controls. Cultured PBMCs were incubated with the most prominent Stachybotrys chartarum mycotoxin, satratoxin G, or with aqueous mold extract, ionomycin, or media, each with or without PMA. Additional PBMCs were exposed to spores of Aspergillus niger, Cladosporium herbarum and Penicillium chrysogenum. After 18 hours, cytokines and chemokines released into the culture medium were measured by multiplex assay. Clinical histories, physical examinations and pulmonary function tests were also conducted. After ex vivo PBMC exposures to molds or mycotoxins, the chemokine and cytokine profiles from patients with a history of mold exposure were significantly different from those of unexposed controls. In contrast, biomarker profiles from cells exposed to media alone showed no difference between the patients and controls. Conclusions These findings demonstrate that chronic mold exposures induced changes in inflammatory and immune system responses to specific mold and mycotoxin challenges. These responses can differentiate mold-exposed patients from unexposed controls. This strategy may be a powerful approach to document immune system responsiveness to molds and other inflammation-inducing environmental agents. PMID:26010737

  13. Development of In-Mold Assembly Methods for Producing Mesoscale Revolute Joints

    DTIC Science & Technology

    2009-01-01

    tolerances available for manufacturing the molds are relatively low. Any inaccuracy in mold First stage part (ABS) Second stage part ( LDPE ) Pins...case, the viscosity of LDPE is also a function of temperature. For each of these cases, they have considered the filling of a thin mold cavity. From...predicting the weld-line strengths of crystalline polymers such as LDPE . 63 3 Issues in In-Mold Assembly at the Mesoscale 3.1 Motivation In-mold

  14. Fabrication of metallic microstructures by micromolding nanoparticles

    DOEpatents

    Morales, Alfredo M.; Winter, Michael R.; Domeier, Linda A.; Allan, Shawn M.; Skala, Dawn M.

    2002-01-01

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  15. Orthotic comfort is related to kinematics, kinetics, and EMG in recreational runners.

    PubMed

    Mündermann, Anne; Nigg, Benno M; Humble, R Neil; Stefanyshyn, Darren J

    2003-10-01

    The purpose of this study was to determine the relationship between differences in comfort and changes in lower extremity kinematic and kinetic variables and muscle activity in response to foot orthoses. Twenty-one recreational runners volunteered for this study. Three orthotic conditions (posting, custom-molding, and posting and custom-molding) were compared with a control (flat) insert. Lower extremity kinematic, kinetic, and EMG data were collected for 108 trials per subject and condition in nine sessions per subject for overground running at 4 m.s-1. Comfort for all orthotic conditions was assessed in each session using a visual analog scale. The statistical tests used included repeated measures ANOVA, linear regression analysis, and discriminant analysis (alpha = 0.05). Comfort ratings were significantly different between orthotic conditions and the control condition ([lower, upper] confidence limits; posting: [-3.1, -0.8]; molding: [0.4, 3.4]; and posting and molding: [-1.1, 1.9]); 34.9% of differences in comfort were explained by changes in 15 kinematic, kinetic, and EMG variables. The 15 kinematic, kinetic, and EMG variables that partially explained differences in comfort classified 75.0% of cases correctly to the corresponding orthotic condition. In general, comfort is an important and relevant feature of foot orthoses. Evaluations of foot orthoses using comfort do not only reflect subjective perceptions but also differences in functional biomechanical variables. Future research should focus on defining the relationship between comfort and biomechanical variables for material modifications of footwear, different modes of locomotion, and the general population.

  16. Wicking Tests for Unidirectional Fabrics: Measurements of Capillary Parameters to Evaluate Capillary Pressure in Liquid Composite Molding Processes.

    PubMed

    Pucci, Monica Francesca; Liotier, Pierre-Jacques; Drapier, Sylvain

    2017-01-27

    During impregnation of a fibrous reinforcement in liquid composite molding (LCM) processes, capillary effects have to be understood in order to identify their influence on void formation in composite parts. Wicking in a fibrous medium described by the Washburn equation was considered equivalent to a flow under the effect of capillary pressure according to the Darcy law. Experimental tests for the characterization of wicking were conducted with both carbon and flax fiber reinforcement. Quasi-unidirectional fabrics were then tested by means of a tensiometer to determine the morphological and wetting parameters along the fiber direction. The procedure was shown to be promising when the morphology of the fabric is unchanged during capillary wicking. In the case of carbon fabrics, the capillary pressure can be calculated. Flax fibers are sensitive to moisture sorption and swell in water. This phenomenon has to be taken into account to assess the wetting parameters. In order to make fibers less sensitive to water sorption, a thermal treatment was carried out on flax reinforcements. This treatment enhances fiber morphological stability and prevents swelling in water. It was shown that treated fabrics have a linear wicking trend similar to those found in carbon fabrics, allowing for the determination of capillary pressure.

  17. Design and Fabrication of FRP Truck Trailer Side Racks.

    DTIC Science & Technology

    1983-08-01

    0.100 in. All contact surfaces in the mold were sealed with white shellac and finished with five coats of carnauba wax . The completed mold is shown in...Figure 10. 15 II Figure 10. FRP prototype mold. FRP molding procedures were duplicated for each part produced. In general, the waxed mold was coated

  18. ILLUSTRATED HANDBOOK OF SOME COMMON MOLDS.

    ERIC Educational Resources Information Center

    CHANDLER, MARION N.

    THIS DOCUMENT IS A PICTURE GUIDE FOR THE IDENTIFICATION OF TEN COMMON MOLDS. IT IS DESIGNED FOR USE WITH THE ELEMENTARY SCIENCE STUDY UNIT "MICROGARDENING" AND IS SUGGESTED FOR UPPER ELEMENTARY GRADES. INCLUDED FOR EACH MOLD ARE COLOR PHOTOGRAPHS AND PHOTOMICROGRAPHS OF THE INTACT MOLD MASS AND OF THE MOLD'S SPORE PRODUCING STRUCTURES.…

  19. 40 CFR Table 9 to Subpart Wwww of... - Initial Compliance With Work Practice Standards

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compression/injection molding uncover, unwrap or expose only one charge per mold cycle per compression/injection molding machine. For machines with multiple molds, one charge means sufficient material to fill... cycle per compression/injection molding machine, or prior to the loader, hoppers are closed except when...

  20. Micro-optical fabrication by ultraprecision diamond machining and precision molding

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.

    2017-06-01

    Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.

  1. Production and Characterization of Antifungal Compounds Produced by Lactobacillus plantarum IMAU10014

    PubMed Central

    Wang, HaiKuan; Yan, YanHua; Wang, JiaMing; Zhang, HePing; Qi, Wei

    2012-01-01

    Lactobacillus plantarum IMAU10014 was isolated from koumiss that produces a broad spectrum of antifungal compounds, all of which were active against plant pathogenic fungi in an agar plate assay. Two major antifungal compounds were extracted from the cell-free supernatant broth of L. plantarum IMAU10014. 3-phenyllactic acid and Benzeneacetic acid, 2-propenyl ester were carried out by HPLC, LC-MS, GC-MS, NMR analysis. It is the first report that lactic acid bacteria produce antifungal Benzeneacetic acid, 2-propenyl ester. Of these, the antifungal products also have a broad spectrum of antifungal activity, namely against Botrytis cinerea, Glomerella cingulate, Phytophthora drechsleri Tucker, Penicillium citrinum, Penicillium digitatum and Fusarium oxysporum, which was identified by the overlay and well-diffusion assay. F. oxysporum, P. citrinum and P. drechsleri Tucker were the most sensitive among molds. PMID:22276116

  2. Mold exposure and health effects following hurricanes Katrina and Rita.

    PubMed

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact.

  3. Mold prevention strategies and possible health effects in the aftermath of hurricanes and major floods.

    PubMed

    Brandt, Mary; Brown, Clive; Burkhart, Joe; Burton, Nancy; Cox-Ganser, Jean; Damon, Scott; Falk, Henry; Fridkin, Scott; Garbe, Paul; McGeehin, Mike; Morgan, Juliette; Page, Elena; Rao, Carol; Redd, Stephen; Sinks, Tom; Trout, Douglas; Wallingford, Kenneth; Warnock, David; Weissman, David

    2006-06-09

    Extensive water damage after major hurricanes and floods increases the likelihood of mold contamination in buildings. This report provides information on how to limit exposure to mold and how to identify and prevent mold-related health effects. Where uncertainties in scientific knowledge exist, practical applications designed to be protective of a person's health are presented. Evidence is included about assessing exposure, clean-up and prevention, personal protective equipment, health effects, and public health strategies and recommendations. The recommendations assume that, in the aftermath of major hurricanes or floods, buildings wet for <48 hours will generally support visible and extensive mold growth and should be remediated, and excessive exposure to mold-contaminated materials can cause adverse health effects in susceptible persons regardless of the type of mold or the extent of contamination. For the majority of persons, undisturbed mold is not a substantial health hazard. Mold is a greater hazard for persons with conditions such as impaired host defenses or mold allergies. To prevent exposure that could result in adverse health effects from disturbed mold, persons should 1) avoid areas where mold contamination is obvious; 2) use environmental controls; 3) use personal protective equipment; and 4) keep hands, skin, and clothing clean and free from mold-contaminated dust. Clinical evaluation of suspected mold-related illness should follow conventional clinical guidelines. In addition, in the aftermath of extensive flooding, health-care providers should be watchful for unusual mold-related diseases. The development of a public health surveillance strategy among persons repopulating areas after extensive flooding is recommended to assess potential health effects and the effectiveness of prevention efforts. Such a surveillance program will help CDC and state and local public health officials refine the guidelines for exposure avoidance, personal protection, and clean-up and assist health departments to identify unrecognized hazards.

  4. Interim Report on Mixing During the Casting of LEU-10Mo Plates in the Triple Plate Molds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikin, Jr., Robert M.

    LEU-10%Mo castings are commonly produced by down blending unalloyed HEU with a DU-12.7%Mo master-alloy. This work uses process modeling to provide insight into the mixing of the unalloyed uranium and U-Mo master alloy during melting and mold filling of a triple plate casting. Two different sets of situations are considered: (1) mixing during mold filling from a compositionally stratified crucible and (2) convective mixing of a compositionally stratified crucible during mold heating. The mold filling simulations are performed on the original Y-12 triple plate mold and the horizontal triple plate mold.

  5. Development of processes and techniques for molding thermally stable, fire-retardant, low-smoke-emitting polymeric materials

    NASA Technical Reports Server (NTRS)

    Silverman, B.

    1979-01-01

    All available newly developed nonmetallic thermally stable polymers were examined for the development of processes and techniques by compression molding, injection molding, or thermoforming cabin interior parts. Efforts were directed toward developing molding techniques of new polymers to economically produce usable nonmetallic molded parts. Data on the flame resistant characteristics of the materials were generated from pilot plant batches. Preliminary information on the molding characteristics of the various thermoplastic materials was obtained by producing actual parts.

  6. HIGH TEMPERATURE REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-10-21

    An improved foundry mold coating for use with graphite molds used in the casting of uranium is presented. The refractory mold coating serves to keep the molten uranium from contact with graphite of the mold and thus prevents carbon pickup by the molten metal. The refractory coating is made by dry mixing certain specific amounts of aluminum oxide, bentonite, Tennessee ball clay, and a soluble silicate salt. Water is then added to the mixture and the suspension thus formed is applied by spraying onto the mold.

  7. Optimization of Injection Molding Parameters for HDPE/TiO2 Nanocomposites Fabrication with Multiple Performance Characteristics Using the Taguchi Method and Grey Relational Analysis

    PubMed Central

    Pervez, Hifsa; Mozumder, Mohammad S.; Mourad, Abdel-Hamid I.

    2016-01-01

    The current study presents an investigation on the optimization of injection molding parameters of HDPE/TiO2 nanocomposites using grey relational analysis with the Taguchi method. Four control factors, including filler concentration (i.e., TiO2), barrel temperature, residence time and holding time, were chosen at three different levels of each. Mechanical properties, such as yield strength, Young’s modulus and elongation, were selected as the performance targets. Nine experimental runs were carried out based on the Taguchi L9 orthogonal array, and the data were processed according to the grey relational steps. The optimal process parameters were found based on the average responses of the grey relational grades, and the ideal operating conditions were found to be a filler concentration of 5 wt % TiO2, a barrel temperature of 225 °C, a residence time of 30 min and a holding time of 20 s. Moreover, analysis of variance (ANOVA) has also been applied to identify the most significant factor, and the percentage of TiO2 nanoparticles was found to have the most significant effect on the properties of the HDPE/TiO2 nanocomposites fabricated through the injection molding process. PMID:28773830

  8. Indoor Molds and Respiratory Hypersensitivity: A Comparison of Selected Molds and House Dust Mite Induced Responses in a Mouse Model

    EPA Science Inventory

    Introduction/Study Goal Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic lung diseases. The Institute of Medicine reports and WHO gUidelines concluded that the role of molds in asthma induction is not clear bu...

  9. Mold Allergy: Proper Humidifier Care

    MedlinePlus

    ... Training Home Conditions Allergy Allergy Overview Allergy Allergens Mold Allergy Proper Humidifier Care Proper Humidifier Care Make ... neglected humidifier can be a major source of mold and mold spores. Learn how to keep a ...

  10. Molds

    MedlinePlus

    Molds are fungi that can be found both outdoors and indoors. They grow best in warm, damp and humid conditions. If ... spots in your house, you will probably get mold. Molds can cause health problems. Inhaling or touching ...

  11. Molds in the Environment

    MedlinePlus

    ... visit this page: About CDC.gov . Mold Cleanup & Remediation Homeowner’s and Renter’s Guide to Mold Cleanup After ... Home or Building with Mold Damage Prevention and Remediation Strategies for the Control and Removal of Fungal ...

  12. Soft lithography of ceramic microparts using wettability-tunable poly(dimethylsiloxane) (PDMS) molds

    NASA Astrophysics Data System (ADS)

    Su, Bo; Zhang, Aijun; Meng, Junhu; Zhang, Zhaozhu

    2016-07-01

    Green alumina microparts were fabricated from a high solid content aqueous suspension by microtransfer molding using air plasma-treated poly(dimethylsiloxane) (PDMS) molds. The wettability of the air plasma-treated PDMS molds spontaneously changed between the hydrophilic and hydrophobic states during the process. Initial hydrophilicity of the air plasma-treated PDMS molds significantly improved the flowability of the concentrated suspension. Subsequent hydrophobic recovery of the air plasma-treated PDMS molds enabled a perfect demolding of the green microparts. Consequently, defect-free microchannel parts of 60 μm and a micromixer with an area of several square centimeters were successfully fabricated. In soft lithography, tuning the wetting behavior of PDMS molds has a great effect on the quality of ceramic microparts. Using wettability-tunable PDMS molds has great potential in producing complex-shaped and large-area ceramic microparts and micropatterns.

  13. Study of parameters in precision optical glass molding

    NASA Astrophysics Data System (ADS)

    Ni, Ying; Wang, Qin-hua; Yu, Jing-chi

    2010-10-01

    Precision glass compression molding is an attractive approach to manufacture small precision optics in large volume over traditional manufacturing techniques because of its advantages such as lower cost, faster time to market and being environment friendly. In order to study the relationship between the surface figures of molded lenses and molding process parameters such as temperature, pressure, heating rate, cooling rate and so on, we present some glass compression molding experiments using same low Tg (transition temperature) glass material to produce two different kinds of aspheric lenses by different molding process parameters. Based on results from the experiments, we know the major factors influencing surface figure of molded lenses and the changing range of these parameters. From the knowledge we could easily catch proper molding parameters which are suitable for aspheric lenses with diameter from 10mm to 30mm.

  14. Fabrication of spherical microlens array by combining lapping on silicon wafer and rapid surface molding

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohua; Zhou, Tianfeng; Zhang, Lin; Zhou, Wenchen; Yu, Jianfeng; Lee, L. James; Yi, Allen Y.

    2018-07-01

    Silicon is a promising mold material for compression molding because of its properties of hardness and abrasion resistance. Silicon wafers with carbide-bonded graphene coating and micro-patterns were evaluated as molds for the fabrication of microlens arrays. This study presents an efficient but flexible manufacturing method for microlens arrays that combines a lapping method and a rapid molding procedure. Unlike conventional processes for microstructures on silicon wafers, such as diamond machining and photolithography, this research demonstrates a unique approach by employing precision steel balls and diamond slurries to create microlenses with accurate geometry. The feasibility of this method was demonstrated by the fabrication of several microlens arrays with different aperture sizes and pitches on silicon molds. The geometrical accuracy and surface roughness of the microlens arrays were measured using an optical profiler. The measurement results indicated good agreement with the optical profile of the design. The silicon molds were then used to copy the microstructures onto polymer substrates. The uniformity and quality of the samples molded through rapid surface molding were also assessed and statistically quantified. To further evaluate the optical functionality of the molded microlens arrays, the focal lengths of the microlens arrays were measured using a simple optical setup. The measurements showed that the microlens arrays molded in this research were compatible with conventional manufacturing methods. This research demonstrated an alternative low-cost and efficient method for microstructure fabrication on silicon wafers, together with the follow-up optical molding processes.

  15. Precision molding of advanced glass optics: innovative production technology for lens arrays and free form optics

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert

    2012-10-01

    Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.

  16. Monolithic molecular imprinted polymer fiber for recognition and solid phase microextraction of ephedrine and pseudoephedrine in biological samples prior to capillary electrophoresis analysis.

    PubMed

    Deng, Dong-Li; Zhang, Ji-You; Chen, Chen; Hou, Xiao-Ling; Su, Ying-Ying; Wu, Lan

    2012-01-06

    A novel capillary electrophoresis (CE) method coupled with monolithic molecular imprinted polymer (MIP) fiber based solid phase microextraction (SPME) was developed for selective and sensitive determination of ephedrine (E) and pseudoephedrine (PE). With in situ polymerization in a silica capillary mold and E as template, the MIP fibers could be produced in batch reproducibly and each fiber was available for 50 extraction cycles without significant decrease in extraction ability. Using the MIP fiber under optimized extraction conditions, CE detection limits of E and PE were greatly lowered from 0.20 to 0.00096 μg/mL and 0.12 to 0.0011 μg/mL, respectively. Analysis of urine and serum samples by the MIP-SPME-CE method was also performed, with results indicating that E and PE could be selectively extracted. The recoveries and relative standard deviations (RSDs) for sample analysis were found in the range of 91-104% and 3.8-9.1%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Indoor and Outdoor Allergies.

    PubMed

    Singh, Madhavi; Hays, Amy

    2016-09-01

    In last 30 to 40 years there has been a significant increase in the incidence of allergy. This increase cannot be explained by genetic factors alone. Increasing air pollution and its interaction with biological allergens along with changing lifestyles are contributing factors. Dust mites, molds, and animal allergens contribute to most of the sensitization in the indoor setting. Tree and grass pollens are the leading allergens in the outdoor setting. Worsening air pollution and increasing particulate matter worsen allergy symptoms and associated morbidity. Cross-sensitization of allergens is common. Treatment involves avoidance of allergens, modifying lifestyle, medical treatment, and immunotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Bronchitis and Its Associated Risk Factors in First Nations Children

    PubMed Central

    Karunanayake, Chandima P.; Rennie, Donna C.; Ramsden, Vivian R.; Fenton, Mark; Kirychuk, Shelley; Lawson, Joshua A.; Henderson, Raina; Jimmy, Laurie; Seeseequasis, Jeremy; Abonyi, Sylvia; Dosman, James A.; Pahwa, Punam

    2017-01-01

    Respiratory diseases, such as bronchitis and pneumonia, are common in First Nations children in Canada. The objectives are to determine prevalence and associated risk factors of bronchitis in children 6–17 years old residing in two reserve communities. The cross-sectional study was conducted in 2013 and children from two First Nations reserve communities participated. The outcome was ever presence/absence of bronchitis. Logistic regression analysis was conducted to examine the relationship between bronchitis and the individual and environmental factors. A total of 351 First Nations children participated in the study. The prevalence of bronchitis was 17.9%. While 86.6% had at least one parent who smoked, smoking inside home was 43.9%. Signs of mold and mildew in homes were high. Prevalence of houses with any damage caused by dampness was 42.2%, with 44.2% of homes showing signs of mold or mildew. Significant predictors of increased risk of bronchitis were: being obese; having respiratory allergies; exposed to parental cigarette smoking; and signs of mold and mildew in the home. There are several modifiable risk factors that should be considered when examining preventive interventions for bronchitis including obesity, smoking exposure, and home mold or dampness. PMID:29186802

  19. Incidence of oronasal fistula formation after nasoalveolar molding and primary cleft repair.

    PubMed

    Dec, Wojciech; Shetye, Pradip R; Grayson, Barry H; Brecht, Lawrence E; Cutting, Court B; Warren, Stephen M

    2013-01-01

    The incidence of postoperative complications in cleft care is low. In this 19-year retrospective analysis of cleft lip and palate patients treated with preoperative nasoalveolar molding, we examine the incidence of postoperative oronasal fistulae. The charts of 178 patients who underwent preoperative nasoalveolar molding by the same orthodontist/prosthodontist team and primary cleft lip/palate repair by the same surgeon over a 19-year period were reviewed. Millard, Mohler, Cutting, or Mulliken-type techniques were used for cleft lip repairs. Oxford-, Bardach-, or von Langenbeck-type techniques were used for cleft palate repairs. One nasolabial fistula occurred after primary cleft lip repair (0.56% incidence) and was repaired surgically. Four palatal fistulae (3 at the junction between soft and hard palate and 1 at the right anterior palate near the incisive foramen) occurred, but 3 healed spontaneously. Only 1 palatal fistula (0.71%) required surgical repair. All 5 fistulae occurred within the first 8 years of the study period, with 4 (80%) of 5 occurring within the first 3 years. Although fistula rate may be related to surgeon experience and the evolution of presurgical techniques, nasoalveolar molding in conjunction with nasal floor closure contributes to a low incidence of oronasal fistulae.

  20. Manufacturing Process Selection of Composite Bicycle’s Crank Arm using Analytical Hierarchy Process (AHP)

    NASA Astrophysics Data System (ADS)

    Luqman, M.; Rosli, M. U.; Khor, C. Y.; Zambree, Shayfull; Jahidi, H.

    2018-03-01

    Crank arm is one of the important parts in a bicycle that is an expensive product due to the high cost of material and production process. This research is aimed to investigate the potential type of manufacturing process to fabricate composite bicycle crank arm and to describe an approach based on analytical hierarchy process (AHP) that assists decision makers or manufacturing engineers in determining the most suitable process to be employed in manufacturing of composite bicycle crank arm at the early stage of the product development process to reduce the production cost. There are four types of processes were considered, namely resin transfer molding (RTM), compression molding (CM), vacuum bag molding and filament winding (FW). The analysis ranks these four types of process for its suitability in the manufacturing of bicycle crank arm based on five main selection factors and 10 sub factors. Determining the right manufacturing process was performed based on AHP process steps. Consistency test was performed to make sure the judgements are consistent during the comparison. The results indicated that the compression molding was the most appropriate manufacturing process because it has the highest value (33.6%) among the other manufacturing processes.

  1. Analysis of Meniscus Fluctuation in a Continuous Casting Slab Mold

    NASA Astrophysics Data System (ADS)

    Zhang, Kaitian; Liu, Jianhua; Cui, Heng; Xiao, Chao

    2018-06-01

    A water model of slab mold was established to analyze the microscopic and macroscopic fluctuation of meniscus. The fast Fourier transform and wavelet entropy were adopted to analyze the wave amplitude, frequency, and components of fluctuation. The flow patterns under the meniscus were measured by using particle image velocimetry measurement and then the mechanisms of meniscus fluctuation were discussed. The results reflected that wavelet entropy had multi-scale and statistical properties, and it was suitable for the study of meniscus fluctuation details both in time and frequency domain. The basic wave, frequency of which exceeding 1 Hz in the condition of no mold oscillation, was demonstrated in this work. In fact, three basic waves were found: long-wave with low frequency, middle-wave with middle frequency, and short-wave with high frequency. In addition, the upper roll flow in mold had significant effect on meniscus fluctuation. When the position of flow impinged was far from the meniscus, long-wave dominated the fluctuation and the stability of meniscus was enhanced. However, when the velocity of flow was increased, the short-wave dominated the meniscus fluctuation and the meniscus stability was decreased.

  2. Mold colonization of fiberglass insulation of the air distribution system: effects on patients with hematological malignancies.

    PubMed

    Takuma, Takahiro; Okada, Kaoru; Yamagata, Akihiro; Shimono, Nobuyuki; Niki, Yoshihito

    2011-02-01

    We investigated mold colonization of air handling units (AHUs) of heating, ventilating, and air conditioning (HVAC) systems and its effects, including invasive pulmonary mycoses and febrile neutropenia, in patients with hematological malignancies. Sample collection with transparent adhesive tape and culture swabs revealed that AHUs were heavily colonized with molds, including thermotolerant, variously distributed Penicillium spp. Cases of nosocomial invasive pulmonary mycosis were not clustered in specific patient rooms but did occur frequently when the HVAC systems were not in use, prior to intervention (i.e., sealing and disuse of AHUs in private room), and during construction of a new hospital building. Multivariate logistic regression analysis of initial episodes of febrile neutropenia showed that the rate of febrile neutropenia was significantly associated with the duration of neutropenia (odds ratio [OR]: 1.16; 95% confidence interval [CI]: 1.07-1.27) and with sex (OR: 0.469; CI: 0.239-0.902). An evaluation of private rooms showed that female patients also had a lower rate of fever after intervention (OR: 0.0016; 95% CI: 0.000-0.209). The reduced rate of febrile neutropenia after intervention suggests that mold colonization of AHUs had adverse effects on patients with hematological malignancies.

  3. Exposure to Airborne Particles and Volatile Organic Compounds from Polyurethane Molding, Spray Painting, Lacquering, and Gluing in a Workshop

    PubMed Central

    Mølgaard, Bjarke; Viitanen, Anna-Kaisa; Kangas, Anneli; Huhtiniemi, Marika; Larsen, Søren Thor; Vanhala, Esa; Hussein, Tareq; Boor, Brandon E.; Hämeri, Kaarle; Koivisto, Antti Joonas

    2015-01-01

    Due to the health risk related to occupational air pollution exposure, we assessed concentrations and identified sources of particles and volatile organic compounds (VOCs) in a handcraft workshop producing fishing lures. The work processes in the site included polyurethane molding, spray painting, lacquering, and gluing. We measured total VOC (TVOC) concentrations and particle size distributions at three locations representing the various phases of the manufacturing and assembly process. The mean working-hour TVOC concentrations in three locations studied were 41, 37, and 24 ppm according to photo-ionization detector measurements. The mean working-hour particle number concentration varied between locations from 3000 to 36,000 cm−3. Analysis of temporal and spatial variations of TVOC concentrations revealed that there were at least four substantial VOC sources: spray gluing, mold-release agent spraying, continuous evaporation from various lacquer and paint containers, and either spray painting or lacquering (probably both). The mold-release agent spray was indirectly also a major source of ultrafine particles. The workers’ exposure can be reduced by improving the local exhaust ventilation at the known sources and by increasing the ventilation rate in the area with the continuous source. PMID:25849539

  4. Remelt Ingot Production Technology

    NASA Astrophysics Data System (ADS)

    Grandfield, J. F.

    The technology related to the production of remelt ingots (small ingots, sows and T-Bar) is reviewed. Open mold conveyors, sow casting, wheel and belt casting and VDC and HDC casting are described and compared. Process economics, capacity, product quality and process problems are listed. Trends in casting machine technology such as longer open mold conveyor lines are highlighted. Safety issues related to the operation of these processes are discussed. The advantages and disadvantages of the various machine configurations and options e.g. such as dry filling with the mold out of water and wet filling with the mold in water for open mould conveyors are discussed. The effect of mold design on machine productivity, mold cracking and mold life is also examined.

  5. Transfer molding of PMR-15 polyimide resin

    NASA Technical Reports Server (NTRS)

    Reardon, J. P.; Moyer, D. W.; Nowak, B. E.

    1985-01-01

    Transfer molding is an economically viable method of producing small shapes of PMR-15 polyimide. It is shown that with regard to flexural, compressive, and tribological properties transfer-molded PMR-15 polyimide is essentially equivalent to PMR-15 polyimide produced by the more common method of compression molding. Minor variations in anisotropy are predictable effects of molding design and secondary finishing operations.

  6. Method and composition for molding low-density desiccant syntactic-foam articles

    DOEpatents

    Not Available

    1981-12-07

    These and other objects of the invention are achieved by a process for molding to size a desiccant syntactic foam article having a density of 0.2 to 0.9 g/cc and a moisture capacity of 1 to 12% by weight, comprising the steps of: charging a mold with a powdery mixture of an activated desiccant, microspheres and a thermosetting resin, the amount of the desiccant being sufficient to provide the required moisture capacity, and the amounts of the microspheres and resin being such that the microspheres/desiccant volume fraction exceeds the packing factor by an amount sufficient to substantially avoid shrinkage without causing excessively high molding pressures; covering the mold and heating the covered mold to a temperature and for an amount of time sufficient to melt the resin; and tightly closing the mold and heating the closed mold to a temperature and for an amount of time sufficient to cure the resin, and removing the resultant desiccant syntactic foam article from the mold. In a composition of matter aspect, the present invention provides desiccant syntactic foam articles, and a composition of matter for use in molding the same.

  7. Antibodies to molds and satratoxin in individuals exposed in water-damaged buildings.

    PubMed

    Vojdani, Aristo; Thrasher, Jack D; Madison, Roberta A; Gray, Michael R; Heuser, Gunnar; Campbell, Andrew W

    2003-07-01

    Immunoglobulin (Ig)A, IgM, and IgG antibodies against Penicillium notatum, Aspergillus niger, Stachybotrys chartarum, and satratoxin H were determined in the blood of 500 healthy blood donor controls, 500 random patients, and 500 patients with known exposure to molds. The patients were referred to the immunological testing laboratory for health reasons other than mold exposure, or for measurement of mold antibody levels. Levels of IgA, IgM, and IgG antibodies against molds were significantly greater in the patients (p < 0.001 for all measurements) than in the controls. However, in mold-exposed patients, levels of these antibodies against satratoxin differed significantly for IgG only (p < 0.001), but not for IgM or IgA. These differences in the levels of mold antibodies among the 3 groups were confirmed by calculation of z score and by Scheffé's significant difference tests. A general linear model was applied in the majority of cases, and 3 different subsets were formed, meaning that the healthy control groups were different from the random patients and from the mold-exposed patients. These findings indicated that mold exposure was more common in patients who were referred for immunological evaluation than it was in healthy blood donors. The detection of antibodies to molds and satratoxin H likely resulted from antigenic stimulation of the immune system and the reaction of serum with specially prepared mold antigens. These antigens, which had high protein content, were developed in this laboratory and used in the enzyme-linked immunosorbent assay (ELISA) procedure. The authors concluded that the antibodies studied are specific to mold antigens and mycotoxins, and therefore could be useful in epidemiological and other studies of humans exposed to molds and mycotoxins.

  8. Mold and Indoor Air Quality in Schools

    MedlinePlus

    ... Centers Mold Contact Us Share Mold and Indoor Air Quality in Schools Mold and Moisture in Schools Webinar ... premier resource on this issue is the Indoor Air Quality Tools for Schools kit. Our schools-related resources ...

  9. Cellulose-reinforced composites and SRIM and RTM modeling

    NASA Astrophysics Data System (ADS)

    Fahrurrozi, Mohammad

    Structural reaction injection molding (SRIM) cellulosic/polyurethane composites were prepared from various forms of cellulosic mats, and elastomeric polyurea-urethane (PUU) and rigid polyurethane (PU) formulations. Mats (woven and non-woven) prepared from different sources of fibers with lignin content ranging from zero (cotton) to at least 10% (sugar cane and kenaf fibers) performed comparably in PUU/cellulosic composites. Young's modulus and tensile strength of PUU/cellulosic composites were doubled with 5% and 7% fiber loading respectively. Young's modulus and tensile strength of PU/cellulosic composites were improved by 300% and 30%, respectively, with 7% fiber loading, whereas their bending moduli and strengths were improved up to 100% and 50%, respectively, with 18% fiber loading. However, the mechanical properties of PU composites were more sensitive to the fiber properties and fiber macroscopic arrangements. The study with chemical ratio variations indicates that as the fiber loading increases, the cellulose hydroxyl presence starts shifting the chemical balance and thus should be accounted for. Mats prepared from sugar cane fibers extracted from rind with low alkali concentration (0.2 N) followed by steam explosion require lower injection pressures compared to the ones prepared from fiber obtained from higher alkali treatment (above 0.5 N) without steam explosion. Hence, the steam exploded mats are more suitable for SRIM purposes. The PU kinetics was studied using an adiabatic temperature rise method. An Arrhenius type empirical equation was used to fit the data. The fitted equation was second order to the partial conversion, and the gelling time at adiabatic condition is less than 5 seconds (much quicker than the 10 to 12 seconds in mold gel time quoted by the manufacturer). FORTRAN programs were written to solve the SRIM model based on Darcy's equation. The model incorporated heat transfer and chemical reaction. The modeling was intended to aid in interpreting in-mold pressure data obtained from mat permeability characterization. The model also has other wider applications such as mold design and SRIM and resin transfer molding (RTM) simulation. The model predicts some experimental data from this work and the literature satisfactorily.

  10. Onychomycosis due to opportunistic molds*

    PubMed Central

    Martínez-Herrera, Erick Obed; Arroyo-Camarena, Stefanie; Tejada-García, Diana Luz; Porras-López, Carlos Francisco; Arenas, Roberto

    2015-01-01

    BACKGROUND: Onychomycosis are caused by dermatophytes and Candida, but rarely by non- dermatophyte molds. These opportunistic agents are filamentous fungi found as soil and plant pathogens. OBJECTIVES: To determine the frequency of opportunistic molds in onychomycosis. METHODS: A retrospective analysis of 4,220 cases with onychomycosis, diagnosed in a 39-month period at the Institute of Dermatology and Skin surgery "Prof. Dr. Fernando A. Cordero C." in Guatemala City, and confirmed with a positive KOH test and culture. RESULTS: 32 cases (0.76%) of onychomycosis caused by opportunistic molds were confirmed. The most affected age group ranged from 41 to 65 years (15 patients, 46.9%) and females were more commonly affected (21 cases, 65.6%) than males. Lateral and distal subungual onychomycosis (OSD-L) was detected in 20 cases (62.5%). The microscopic examination with KOH showed filaments in 19 cases (59.4%), dermatophytoma in 9 cases (28.1%), spores in 2 cases (6.25%), and filaments and spores in 2 cases (6.25%). Etiologic agents: Aspergillus sp., 11 cases (34.4%); Scopulariopsis brevicaulis, 8 cases (25.0%); Cladosporium sp., 3 cases (9.4%); Acremonium sp., 2 cases (6.25%); Paecilomyces sp., 2 cases (6.25%); Tritirachium oryzae, 2 cases (6.25%); Fusarium sp., Phialophora sp., Rhizopus sp. and Alternaria alternate, 1 case (3.1%) each. CONCLUSIONS: We found onychomycosis by opportunistic molds in 0.76% of the cases and DLSO was present in 62.5%. The most frequent isolated etiological agents were: Aspergillus sp. and Scopulariopsis brevicaulis. PMID:26131862

  11. Direct micropatterning of polymer materials by ice mold

    NASA Astrophysics Data System (ADS)

    Yu, Xinhong; Xing, Rubo; Luan, Shifang; Wang, Zhe; Han, Yanchun

    2006-10-01

    Micropatterning of functional polymer materials by micromolding in capillaries (MIMIC) with ice mold is reported in this paper. Ice mold was selected due to its thaw or sublimation. Thus, the mold can be easily removed. Furthermore, the polymer solution did not react with, swell, or adhere to the ice mold, so the method is suitable for many kinds of materials (such as P3HT, PMMA Alq 3/PVK, PEDOT: PSS, PS, P2VP, etc.). Freestanding polymer microstructures, binary polymer pattern, and microchannels have been fabricated by the use of ice mold freely.

  12. Modeling of magnetic particle orientation in magnetic powder injection molding

    NASA Astrophysics Data System (ADS)

    Doo Jung, Im; Kang, Tae Gon; Seul Shin, Da; Park, Seong Jin

    2018-03-01

    The magnetic micro powder orientation under viscous shear flow has been analytically understood and characterized into a new analytical orientation model for a powder injection molding process. The effects of hydrodynamic force from the viscous flow, external magnetic force and internal dipole-dipole interaction were considered to predict the orientation under given process conditions. Comparative studies with a finite element method proved the calculation validity with a partial differential form of the model. The angular motion, agglomeration and magnetic chain formation have been simulated, which shows that the effect of dipole-dipole interaction among powders on the orientation state becomes negligible at a high Mason number condition and at a low λ condition (the ratio of external magnetic field strength and internal magnetic moment of powder). Our developed model can be very usefully employed in the process analysis and design of magnetic powder injection molding.

  13. Acoustic emission detection of macro-cracks on engraving tool steel inserts during the injection molding cycle using PZT sensors.

    PubMed

    Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez

    2013-05-14

    This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.

  14. Acoustic Emission Detection of Macro-Cracks on Engraving Tool Steel Inserts during the Injection Molding Cycle Using PZT Sensors

    PubMed Central

    Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez

    2013-01-01

    This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process. PMID:23673677

  15. A Statistics-Based Cracking Criterion of Resin-Bonded Silica Sand for Casting Process Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Huimin; Lu, Yan; Ripplinger, Keith; Detwiler, Duane; Luo, Alan A.

    2017-02-01

    Cracking of sand molds/cores can result in many casting defects such as veining. A robust cracking criterion is needed in casting process simulation for predicting/controlling such defects. A cracking probability map, relating to fracture stress and effective volume, was proposed for resin-bonded silica sand based on Weibull statistics. Three-point bending test results of sand samples were used to generate the cracking map and set up a safety line for cracking criterion. Tensile test results confirmed the accuracy of the safety line for cracking prediction. A laboratory casting experiment was designed and carried out to predict cracking of a cup mold during aluminum casting. The stress-strain behavior and the effective volume of the cup molds were calculated using a finite element analysis code ProCAST®. Furthermore, an energy dispersive spectroscopy fractographic examination of the sand samples confirmed the binder cracking in resin-bonded silica sand.

  16. ELISA measurement of stachylysin in serum to quantify human exposures to the indoor mold Stachybotrys chartarum.

    PubMed

    Van Emon, Jeanette M; Reed, Allan W; Yike, Iwona; Vesper, Stephen J

    2003-06-01

    The goal of this research was to develop a measurable indicator of human exposure to Stachyborys chartarum. Antibodies were produced against the hemolytic agent stachylysin obtained from the mold S. chartarum. These antibodies were used to develop two enzyme-linked immunosorbent assay methods for the analysis of stachylysin in human and rat sera and environmental samples. Stachylysin was measured in rat pups that received nasal instillations of S. chartarum conidia but not in control rat serum. Stachylysin in the serum of five human adults exposed to S. chartarum in water-damaged environments was 371 ng/mL but none was detected in the control serum. Stachylysin was also quantified in spore, wallboard, mycelial, and dust samples. The measurement of stachylysin may be a useful indicator in assessing human exposure to S. chartarum and in determining the presence of this indoor mold.

  17. Molded underfill (MUF) encapsulation for flip-chip package: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Abdullah, M. K.; Abdullah, M. Z.; Ariff, Z. M.; Saad, Abdullah Aziz; Hamid, M. F.; Ismail, M. A.

    2017-07-01

    This paper presents the numerical simulation of epoxy molding compound (EMC) filling in multi flip-chip packages during encapsulation process. The empty and a group flip chip packages were considered in the mold cavity in order to study the flow profile of the EMC. SOLIDWORKS software was used for three-dimensional modeling and it was incorporated into fluid analysis software namely as ANSYS FLUENT. The volume of fluid (VOF) technique was used for capturing the flow front profiles and Power Law model was applied for its rheology model. The numerical result are compared and discussed with previous experimental and it was shown a good conformity for model validation. The prediction of flow front was observed and analyzed at different filling time. The possibility and visual of void formation in the package is captured and the number of flip-chip is one factor that contributed to the void formation.

  18. Static Mixer for Heat Transfer Enhancement for Mold Cooling Application

    NASA Astrophysics Data System (ADS)

    Becerra, Rodolfo; Barbosa, Raul; Lee, Kye-Hwan; Park, Younggil

    Injection molding is the process by which a material is melted in a barrel and then it is injected through a nozzle in the mold cavity. When it cools down, the material solidifies into the shape of the cavity. Typical injection mold has cooling channels to maintain constant mold temperature during injection molding process. Even and constant temperature throughout the mold are very critical for a part quality and productivity. Conformal cooling improves the quality and productivity of injection molding process through the implementation of cooling channels that ``conform'' to the shape of the molded part. Recent years, the use of conformal cooling increases with advance of 3D printing technology such as Selective Laser Melting (SLM). Although it maximizes cooling, material and dimension limitations make SLM methods highly expensive. An alternative is the addition of static mixers in the molds with integrated cooling channels. A static mixer is a motionless mixing device that enhances heat transfer by producing improved flow mixing in the pipeline. In this study, the performance of the cooling channels will be evaluated with and without static mixers, by measuring temperature, pressure drop, and flow rate. The following question is addressed: Can a static mixer effectively enhance heat transfer for mold cooling application processes? This will provide insight on the development of design methods and guidelines that can be used to increase cooling efficiency at a lower cost.

  19. Use of acrylic sheet molds for elastomeric products

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Koerner, A. E.; Messineo, S. M.

    1970-01-01

    Molds constructed of acrylic sheet are more easily machined than metal, are transparent to ensure complete filling during injection, and have smooth surfaces free of contamination. Technique eliminates flashing on molded parts and mold release agents.

  20. Interactive Mold House Tour

    EPA Pesticide Factsheets

    Get a quick glimpse of some of the most important ways to protect your home from mold by this interactive tour of the Mold House. Room-by-room, you'll learn about common mold issues and how to address them.

  1. Process for slip casting textured tubular structures

    DOEpatents

    Steinlage, Greg A.; Trumble, Kevin P.; Bowman, Keith J.

    2002-01-01

    A process for centrifugal slip casting a textured hollow tube. A slip made up of a carrier fluid and a suspended powder is introduced into a porous mold which is rotated at a speed sufficient to create a centrifugal force that forces the slip radially outward toward the inner surface of the mold. The suspended powder, which is formed of particles having large dimensional aspect ratios such as particles of superconductive BSCCO, settles in a textured fashion radially outward toward the mold surface. The carrier fluid of the slip passes by capillary action radially outward around the settled particles and into the absorbent mold. A layer of mold release material is preferably centrifugally slip cast to cover the mold inner surface prior to the introduction of the BSCCO slip, and the mold release layer facilitates removal of the BSCCO greenbody from the mold without fracturing.

  2. Direct molding of pavement tiles made of ground tire rubber

    NASA Astrophysics Data System (ADS)

    Quadrini, Fabrizio; Gagliardi, Donatella; Tedde, Giovanni Matteo; Santo, Loredana; Musacchi, Ettore

    2016-10-01

    Large rubber products can be molded by using only ground tire rubber (GTR) without any additive or binder due to a new technology called "direct molding". Rubber granules and powders from tire recycling are compression molded at elevated temperatures and pressures. The feasibility of this process was clearly shown in laboratory but the step to the industrial scale was missing. Thanks to an European Project (SMART "Sustainable Molding of Articles from Recycled Tires") this step has been made and some results are reported in this study. The press used for compression molding is described. Some tests were made to measure the energy consumption so as to evaluate costs for production in comparison with conventional technologies for GTR molding (by using binders). Results show that 1 m2 tiles can be easily molded with several thicknesses in a reasonable low time. Energy consumption is higher than conventional technologies but it is lower than the cost for binders.

  3. Effect of Reclamation on the Skin Layer of Ductile Iron Cast in Furan Molds

    NASA Astrophysics Data System (ADS)

    Dańko, R.; Holtzer, M.; Górny, M.; Żymankowska-Kumon, S.

    2013-11-01

    The paper presents the results of investigations of the influence of the quality of molding sand with furan resin hardened by paratoluenesulfonic acid, on the formation of microstructure and surface quality of ductile iron castings. Within the studies different molding sands were used: molding sand prepared with fresh sand and molding sands prepared with reclaimed sands of a different purification degree, determined by the ignition loss value. Various concentrations of sulfur and nitrogen in the sand molds as a function of the ignition loss were shown in the paper. A series of experimental melts of ductile iron in molds made of molding sand characterized by different levels of surface-active elements (e.g., sulfur) and different gas evolution rates were performed. It was shown that there exists a significant effect of the quality of the sand on the formation of the graphite degeneration layer.

  4. [Histopathological Diagnosis of Invasive Fungal Infections in Formalin-Fixed and Paraffin-Embedded Tissues in Conjunction with Molecular Methods].

    PubMed

    Shinozaki, Minoru; Tochigi, Naobumi; Sadamoto, Sota; Yamagata Murayama, Somay; Wakayama, Megumi; Nemoto, Tetsuo

    2018-01-01

    The main objective of this study was to evaluate the relationship between histopathology, polymerase chain reaction (PCR), and in situ hybridization (ISH) for the identification of causative fungi in formalin-fixed and paraffin-embedded (FFPE) tissue specimens. Since pathogenic fungi in tissue specimens can be difficult to identify morphologically, PCR and ISH have been usually employed as auxiliary procedures. However, little comparison has been made on the sensitivity and specificity of PCR and ISH using FFPE specimens. Therefore, to compare and clarify the reproducibility and usefulness of PCR and ISH as auxiliary procedures for histological identification, we performed histopathological review, PCR assays, and ISH to identify pathogenic fungi in 59 FFPE tissue specimens obtained from 49 autopsies. The following are the main findings for this retrospective review: i) even for cases classified as "mold not otherwise specified" (MNOS), two cases could be identified as Aspergillus species by molecular methods; ii) all cases classified as non-zygomycetes mold (NZM) were Aspergillus species and were not identified by molecular methods as other fungi; iii) all 3 cases classified as zygomycetes mold (ZM) could be identified by molecular methods as Mucorales; iv) except for 1 case identified by molecular methods as Trichosporon spp., 5 cases were originally identified as dimorphic yeast (DY). As a measure of nucleic acid integrity, PCR and ISH successfully detected human and fungal nucleic acids in approximately 60% of the specimens. Detection of Aspergillus DNA by nested PCR assay and by ISH against the A. fumigatus ALP gene were similarly sensitive and significant (p<0.01). Thus, our findings demonstrated the potential risk of error in the classification of fungi based on pathological diagnosis. Combining molecular methods such as ISH and PCR on FFPE specimens with pathological diagnosis should improve diagnostic accuracy of fungal infection.

  5. Method of reusably sealing a silicone rubber vacuum bag to a mold for composite manufacture

    NASA Technical Reports Server (NTRS)

    Steinbach, John (Inventor)

    1989-01-01

    A silicone rubber vacuum bag for use in composite article manufacture is reusably sealed to a mold, without mechanical clamping means. The mold-mating portion of the bag is primed with a silicone rubber adhesive, which is cured thereto, and a layer of semiadhesive sealer is applied between the primed mold-mating portion of the bag and the mold.

  6. 56. ORIGINAL MOLDS. THE MORAVIAN POTTERY AND TILE WORKS HAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. ORIGINAL MOLDS. THE MORAVIAN POTTERY AND TILE WORKS HAS APPROXIMATELY 6,000 PLASTER MOLDS OF VARIOUS TYPES, INCLUDING THE DEEP CAVITY MOLDS IN THE CENTER OF THE PHOTOGRAPH. THESE MOLDS PRODUCED ALLEGORICAL FIGURES TO BE INSTALLED AROUND THE CORNICES OF PUBLIC SCHOOLS. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  7. Impact of plasma treatment under atmospheric pressure on surface chemistry and surface morphology of extruded and injection-molded wood-polymer composites (WPC)

    NASA Astrophysics Data System (ADS)

    Hünnekens, Benedikt; Avramidis, Georg; Ohms, Gisela; Krause, Andreas; Viöl, Wolfgang; Militz, Holger

    2018-05-01

    The influence of plasma treatment performed at atmospheric pressure and ambient air as process gas by a dielectric barrier discharge (DBD) on the morphological and chemical surface characteristics of wood-polymer composites (WPC) was investigated by applying several surface-sensitive analytical methods. The surface free energy showed a distinct increase after plasma treatment for all tested materials. The analyzing methods for surface topography-laser scanning microscopy (LSM) and atomic force microscopy (AFM)-revealed a roughening induced by the treatment which is likely due to a degradation of the polymeric surface. This was accompanied by the formation of low-molecular-weight oxidized materials (LMWOMs), appearing as small globular structures. With increasing discharge time, the nodules increase in size and the material degradation proceeds. The surface degradation seems to be more serious for injection-molded samples, whereas the formation of nodules became more apparent and were evenly distributed on extruded surfaces. These phenomena could also be confirmed by scanning electron microscopy (SEM). In addition, differences between extruded and injection-molded surfaces could be observed. Besides the morphological changes, the chemical composition of the substrates' surfaces was affected by the plasma discharge. Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) indicated the formation of new oxygen containing polar groups on the modified surfaces.

  8. Evacuated, displacement compression mold. [of tubular bodies from thermosetting plastics

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1974-01-01

    A process of molding long thin-wall tubular bodies from thermosetting plastic molding compounds is described wherein the tubular body lengths may be several times the diameters. The process is accomplished by loading a predetermined quantity of molding compound into a female mold cavity closed at one end by a force mandrel. After closing the other end of the female mold with a balance mandrel, the loaded cavity is evacuated by applying a vacuum of from one-to-five mm pressure for a period of fifteen-to-thirty minutes. The mold temperature is raised to the minimum temperature at which the resin constituent of the compound will soften or plasticize and a pressure of 2500 psi is applied.

  9. Mathematical modeling of the process of filling a mold during injection molding of ceramic products

    NASA Astrophysics Data System (ADS)

    Kulkov, S. N.; Korobenkov, M. V.; Bragin, N. A.

    2015-10-01

    Using the software package Fluent it have been predicted of the filling of a mold in injection molding of ceramic products is of great importance, because the strength of the final product is directly related to the presence of voids in the molding, making possible early prediction of inaccuracies in the mold prior to manufacturing. The calculations were performed in the formulation of mathematical modeling of hydrodynamic turbulent process of filling a predetermined volume of a viscous liquid. The model used to determine the filling forms evaluated the influence of density and viscosity of the feedstock, and the injection pressure on the mold filling process to predict the formation of voids in the area caused by the shape defect geometry.

  10. Controlled study of mold growth and cleaning procedure on treated and untreated wet gypsum wallboard in an indoor environment.

    PubMed

    Krause, Michael; Geer, William; Swenson, Lonie; Fallah, Payam; Robbins, Coreen

    2006-08-01

    The basis for some common gypsum wallboard mold remediation practices was examined. The bottom inch of several gypsum wallboard panels was immersed in bottled drinking water; some panels were coated and others were untreated. The panels were examined and tested for a period of 8 weeks. This study investigated: (a) whether mold growth, detectable visually or with tape lift samples, occurs within 1 week on wet gypsum wallboard; (b) the types, timing, and extent of mold growth on wet gypsum wallboard; (c) whether mold growth is present on gypsum wallboard surfaces 6 inches from visible mold growth; (d) whether some commonly used surface treatments affect the timing of occurrence and rate of mold growth; and (e) if moldy but dried gypsum wallboard can be cleaned with simple methods and then sealed with common surface treatments so that residual mold particles are undetectable with typical surface sampling techniques. Mold growth was not detected visually or with tape lift samples after 1 week on any of the wallboard panels, regardless of treatment, well beyond the 24-48 hours often mentioned as the incubation period. Growth was detected at 2 weeks on untreated gypsum. Penicillium, Cladosporium, and Acremonium were early colonizers of untreated panels. Aspergillus, Epicoccum, Alternaria, and Ulocladium appeared later. Stachybotrys was not found. Mold growth was not detected more than 6 inches beyond the margin of visible mold growth, suggesting that recommendations to remove gypsum wallboard more than 1 foot beyond visible mold are excessive. The surface treatments resulted in delayed mold growth and reduced the area of mold growth compared with untreated gypsum wallboard. Results showed that simple cleaning of moldy gypsum wallboard was possible to the extent that mold particles beyond "normal trapping" were not found on tape lift samples. Thus, cleaning is an option in some situations where removal is not feasible or desirable. In cases where conditions are not similar to those of this study, or where large areas may be affected, a sample area could be cleaned and tested to verify that the cleaning technique is sufficient to reduce levels to background or normal trapping. These results are generally in agreement with laboratory studies of mold growth on, and cleaning of, gypsum wallboard.

  11. A programmable nanoreplica molding for the fabrication of nanophotonic devices.

    PubMed

    Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng

    2016-03-01

    The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively.

  12. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding.

    PubMed

    Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo

    2014-06-27

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications.

  13. Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R.; Watkins, Thomas R.; List, III, Frederick Alyious

    2015-12-01

    The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this tooling forces the design decision to make cast aluminum parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. In addition to reducing the weight of components, polymer injection molding allows the opportunity for the alternative cooling methods, via nitrogen gas. Nitrogen gas cooling offersmore » an environmentally and economically attractive cooling option, if the mold can be manufactured economically. In this project, a current injection molding design was optimized for cooling using nitrogen gas. The various components of the injection mold tooling were fabricated using the Renishaw powder bed laser additive manufacturing technology. Subsequent machining was performed on the as deposited components to form a working assembly. The injection mold is scheduled to be tested in a projection setting at a commercial vendor selected by Cummins.« less

  14. A programmable nanoreplica molding for the fabrication of nanophotonic devices

    PubMed Central

    Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng

    2016-01-01

    The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively. PMID:26925828

  15. Commercial and Residential Water Damage: The Mold Connection.

    ERIC Educational Resources Information Center

    Williams, Del

    2002-01-01

    Describes the problem of toxic mold in residential and commercial property resulting from excess moisture. Includes common sources of unwanted moisture, design and construction flaws, determining the presence of mold, and advice for identifying and hiring reputable mold remediators. (PKP)

  16. Molding process for imidazopyrrolone polymers

    NASA Technical Reports Server (NTRS)

    Johnson, C. L. (Inventor)

    1973-01-01

    A process is described for producing shaped articles of imidazopyrrolone polymers comprising molding imidazopyrrolone polymer molding power under pressure and at a temperature greater than 475 C. Moderate pressures may be employed. Preferably, prior to molding, a preform is prepared by isostatic compression. The preform may be molded at a relatively low initial pressure and temperature; as the temperature is increased to a value greater than 475 C., the pressure is also increased.

  17. Apparatus for injection casting metallic nuclear energy fuel rods

    DOEpatents

    Seidel, Bobby R.; Tracy, Donald B.; Griffiths, Vernon

    1991-01-01

    Molds for making metallic nuclear fuel rods are provided which present reduced risks to the environment by reducing radioactive waste. In one embodiment, the mold is consumable with the fuel rod, and in another embodiment, part of the mold can be re-used. Several molds can be arranged together in a cascaded manner, if desired, or several long cavities can be integrated in a monolithic multiple cavity re-usable mold.

  18. Precision injection molding of freeform optics

    NASA Astrophysics Data System (ADS)

    Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong

    2016-08-01

    Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

  19. Using Direct Metal Deposition to Fabricate Mold Plates for an Injection Mold Machine Allowing for the Evaluation of Cost Effective Near-Sourcing Opportunities in Larger, High Volume Consumer Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duty, Chad E; Groh, Bill

    2014-10-31

    ORNL collaborated with Radio Systems Corporation to investigate additive manufacturing (AM) of mold plates for plastic injection molding by direct metal deposition. The team s modelling effort identified a 100% improvement in heat transfer through use of conformal cooling lines that could be built into the mold using a revolutionary design enabled by additive manufacturing. Using the newly installed laser deposition system at the ORNL Manufacturing Demonstration Facility (MDF) a stainless steel mold core was printed.

  20. Investigation of micro-injection molding based on longitudinal ultrasonic vibration core.

    PubMed

    Qiu, Zhongjun; Yang, Xue; Zheng, Hui; Gao, Shan; Fang, Fengzhou

    2015-10-01

    An ultrasound-assisted micro-injection molding method is proposed to improve the rheological behavior of the polymer melt radically, and a micro-injection molding system based on a longitudinal ultrasonic vibration core is developed and employed in the micro-injection molding process of Fresnel lenses. The verification experiments show that the filling mold area of the polymer melt is increased by 6.08% to 19.12%, and the symmetric deviation of the Fresnel lens is improved 15.62% on average. This method improved the filling performance and replication quality of the polymer melt in the injection molding process effectively.

  1. Brightness field distributions of microlens arrays using micro molding.

    PubMed

    Cheng, Hsin-Chung; Huang, Chiung-Fang; Lin, Yi; Shen, Yung-Kang

    2010-12-20

    This study describes the brightness field distributions of microlens arrays fabricated by micro injection molding (μIM) and micro injection-compression molding (μICM). The process for fabricating microlens arrays used room-temperature imprint lithography, photoresist reflow, electroforming, μIM, μICM, and optical properties measurement. Analytical results indicate that the brightness field distribution of the molded microlens arrays generated by μICM is better than those made using μIM. Our results further demonstrate that mold temperature is the most important processing parameter for brightness field distribution of molded microlens arrays made by μIM or μICM.

  2. Genomic characterization of recurrent mold infections in thoracic transplant recipients.

    PubMed

    Messina, Julia A; Wolfe, Cameron R; Hemmersbach-Miller, Marion; Milano, Carmelo; Todd, Jamie L; Reynolds, John; Alexander, Barbara D; Schell, Wiley A; Cuomo, Christina A; Perfect, John R

    2018-05-31

    Invasive mold disease in thoracic organ transplant recipients is a well-recognized complication, but the long-term persistence of molds within the human body and evasion of host defenses has not been well-described. We present 2 cases of invasive mold disease (Verruconis gallopava and Aspergillus fumigatus) in thoracic transplant recipients who had the same mold cultured years prior to the invasive disease presentation. The paired isolates from the index and recurrent infections in both patients were compared using whole-genome sequencing to determine if the same strain of mold caused both the index and recurrent infections. In Case 1, the isolates were found to be of the same strain indicating that the initial colonizing isolate identified pre-transplant eventually caused invasive mold disease post-transplant while in Case 2, the 2 isolates were not of the same strain. These results demonstrate the distinct possibility of molds both persisting within the human body for years prior to invasive mold disease or the long-term risk of recurrent, persistent infection with more than one strain. Further studies of long-term molecular epidemiology of IMD and risk factors for mold persistence in transplant recipients are encouraged. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. 210 Study on the Sensitization Rates to Airbone Pollen and Mold in Children

    PubMed Central

    Park, So Hyun; Lim, Dae Hyun; Son, Byong Kwan; Kim, Jeong Hee; Oh, In Bo; Kim, Yang Ho; Lee, Keun Hwa; Kim, Su Young; Hong, Sung Chul

    2012-01-01

    Background Aeroallergens are important causative factors for allergies such as allergic rhinitis, allergic conjunctivitis and asthma. Previous studies for the sensitization rate to aeroallergen were based on those patient groups who had visited the pediatric allergy clinic. Compared to that, we inquired into the sensitization rates based on general school aged student population group in the city of Incheon, Jeju and Ulsan. Methods With informed consent, skin prick tests were performed on 5,094 students between April and June, 2010. Common 21 aeroallergens were used on elementary school student while middle and high school students were tested upon 28 allergens. 28 allergen list as positive control (1%Histamine), negative control (Normal saline), D.pteronyssinus, D.farinae, Citrus red mite, pollen (Birch, Alder, Oak, Japanese cedar, Pine, Willow, Elm, Maple, Bermuda grass, Timothy grass, Rye grass, Orchard, Meadow grass, Vernal grass, Mugwort, Japanese hop, Fat hen, Ragweed, Plantain), mold (Penicillatum, Asperugillus, Cladosporium, Alternaria) and 21 kinds of allergens that were used on elementary school students count as same as above except Elm, Rye grass, Orchard, Meadow grass, Vernal grass, Fat hen, Plantain. Results If arranged in rates of higher sensitization were D. pteronyssinus (25.79%), D. farinae (18.66%), Mugwort (6.20%), Willow (4.07%) in Incheon, D. pteronyssinus (33.35%), D. farinae (24.78%), Japanese cedar (15.36%), Alternaria (7.33%) in Jeju, D. pteronyssinus (32.79%), D. farinae (30.27%), Alder (10.13%), Birch (8.68%) in Ulsan respectively. The sensitization rate of Japanese cedar was statistically significantly higher in Jeju. The sensitization rate of Birch, Alder, Oak was higher in Ulsan. The sensitization rate of Ragweed was 0.99% in Incheon, 1.07% in Jeju, 0.81% in Ulsan. The sensitization rate of Mugwort in Incheon was 6.20% which was meaningfully higher in comparison to 2.32% of Jeju and 2.73% of Ulsan. The sensitization rate of Alternaria was 2.98% in Incheon, 7.33% in Jeju, 2.39% in Ulsan and as we can see it was higher in Jeju. The sensitization rate of Dermatophagoides had an increasing tendency with increasing age. Conclusions Changes in exposure rate to allergens with increasing ages brings changes in sensitization rates. And because there are changes in sensitization rates due to different regional living environmental status and discrepancies of surrounding biologic species, this would leave us there lies needs for subsequent studies and nationwide researches.

  4. Influence of Turbulent Flows in the Nozzle on Melt Flow Within a Slab Mold and Stability of the Metal-Flux Interface

    NASA Astrophysics Data System (ADS)

    Calderon-Ramos, Ismael; Morales, R. D.

    2016-06-01

    The design of the ports of a casting nozzle has profound effects on the fluid flow patterns in slab molds. The influence of these outlets have also considerable effects on the turbulent flow and turbulence variables inside the nozzle itself. To understand the effects of nozzle design, three approaches were employed: a theoretical analysis based on the turbulent viscosity hypothesis, dimensional analysis (both analyses aided by computer fluid dynamics), and experiments using particle image velocimetry. The first approach yields a linear relation between calculated magnitudes of scalar fields of ɛ (dissipation rate of kinetic energy) and k 2 (square of the turbulent kinetic energy), which is derived from the wall and the logarithmic-wall laws in the boundary layers. The smaller the slope of this linear relation is, the better the performance of a given nozzle is for maintaining the stability of the melt-flux interface. The second approach yields also a linear relation between flow rate of liquid metal and the cubic root of the dissipation rate of kinetic energy. In this case, the larger the slope of the linear relation is, the better the performance of a given nozzle is for maintaining the stability of the melt-flux interface. Finally, PIV measurements in a mold water model, together with equations for estimation of critical melt velocities for slag entrainment, were used to quantify the effects of nozzle design on the dynamics of the metal-slag interface. The three approaches agree in the characterization of turbulent flows in continuous casting molds using different nozzles.

  5. Three-dimensional analysis of positional plagiocephaly before and after molding helmet therapy in comparison to normal head growth.

    PubMed

    Schweitzer, Tilmann; Böhm, Hartmut; Linz, Christian; Jager, Beatrice; Gerstl, Lucia; Kunz, Felix; Stellzig-Eisenhauer, Angelika; Ernestus, Ralf-Ingo; Krauß, Jürgen; Meyer-Marcotty, Philipp

    2013-07-01

    Stereophotogrammetry enables a simple and radiation free longitudinal analysis of skull asymmetries: in a three-dimensional coordinate system various distances (length, breadth, cephalic index, oblique diameters, ear shift, head circumference) can be analyzed. We also defined separate volume sections in order to further quantify the degree of asymmetry in the posterior and anterior components of both sides of the head. In 51 infants (mean age, 6 months; SD 0.97) with positional plagiocephaly, we determined these parameters at the beginning as well as at the end of molding helmet therapy (mean therapy time 4.9 months). Thirty-seven infants without positional deformity (mean age, 6.4 months; SD 0.3) served as control group and provided data about what appears to be normal and how these parameters change during growth over a comparable period of time. Compared with the control group, the plagiocephalic heads were more brachycephalic, but closely approximated the normal shape under molding therapy. The striking volume difference between the left and right posterior sections in the plagiocephalic children (the mean volume of the flattened side being 21% smaller than the one on the contralateral side) improved as well (to a residual difference of mean 8%) and ended up with a value close to the control group (mean 6%). There is a broad clinical application area for stereophotogrammetry analyzing skull morphology: In plagiocephalic infants we demonstrate impressive changes of head shape under molding therapy; in normal-looking infants we describe the extent of unperceived asymmetry.

  6. [Correlation between physical characteristics of sticks and quality of traditional Chinese medicine pills prepared by plastic molded method].

    PubMed

    Wang, Ling; Xian, Jiechen; Hong, Yanlong; Lin, Xiao; Feng, Yi

    2012-05-01

    To quantify the physical characteristics of sticks of traditional Chinese medicine (TCM) honeyed pills prepared by the plastic molded method and the correlation of adhesiveness and plasticity-related parameters of sticks and quality of pills, in order to find major parameters and the appropriate range impacting pill quality. Sticks were detected by texture analyzer for their physical characteristic parameters such as hardness and compression action, and pills were observed by visual evaluation for their quality. The correlation of both data was determined by the stepwise discriminant analysis. Stick physical characteristic parameter l(CD) can exactly depict the adhesiveness, with the discriminant equation of Y0 - Y1 = 6.415 - 41.594l(CD). When Y0 < Y1, pills were scattered well; when Y0 > Y1, pills were adhesive with each other. Pills' physical characteristic parameters l(CD) and l(AC), Ar, Tr can exactly depict smoothness of pills, with the discriminant equation of Z0 - Z1 = -195.318 + 78.79l(AC) - 3 258. 982Ar + 3437.935Tr. When Z0 < Z1, pills were smooth on surface. When Z0 > Z1, pills were rough on surface. The stepwise discriminant analysis is made to show the obvious correlation between key physical characteristic parameters l(CD) and l(AC), Ar, Tr of sticks and appearance quality of pills, defining the molding process for preparing pills by the plastic molded and qualifying ranges of key physical characteristic parameters characterizing intermediate sticks, in order to provide theoretical basis for prescription screening and technical parameter adjustment for pills.

  7. Multiphysics modeling of the steel continuous casting process

    NASA Astrophysics Data System (ADS)

    Hibbeler, Lance C.

    This work develops a macroscale, multiphysics model of the continuous casting of steel. The complete model accounts for the turbulent flow and nonuniform distribution of superheat in the molten steel, the elastic-viscoplastic thermal shrinkage of the solidifying shell, the heat transfer through the shell-mold interface with variable gap size, and the thermal distortion of the mold. These models are coupled together with carefully constructed boundary conditions with the aid of reduced-order models into a single tool to investigate behavior in the mold region, for practical applications such as predicting ideal tapers for a beam-blank mold. The thermal and mechanical behaviors of the mold are explored as part of the overall modeling effort, for funnel molds and for beam-blank molds. These models include high geometric detail and reveal temperature variations on the mold-shell interface that may be responsible for cracks in the shell. Specifically, the funnel mold has a column of mold bolts in the middle of the inside-curve region of the funnel that disturbs the uniformity of the hot face temperatures, which combined with the bending effect of the mold on the shell, can lead to longitudinal facial cracks. The shoulder region of the beam-blank mold shows a local hot spot that can be reduced with additional cooling in this region. The distorted shape of the funnel mold narrow face is validated with recent inclinometer measurements from an operating caster. The calculated hot face temperatures and distorted shapes of the mold are transferred into the multiphysics model of the solidifying shell. The boundary conditions for the first iteration of the multiphysics model come from reduced-order models of the process; one such model is derived in this work for mold heat transfer. The reduced-order model relies on the physics of the solution to the one-dimensional heat-conduction equation to maintain the relationships between inputs and outputs of the model. The geometric parameters in the model are calibrated such that the reduced-order model temperatures match a small, periodic subdomain of the mold. These parameters are demonstrated to be insensitive to the calibration conditions. The thermal behavior of the detailed, three-dimensional mold models used in this work can be approximated closely with a few arithmetic calculations after calibrating the reduced-order model of mold heat transfer. The example application of the model includes the effects of the molten steel jet on the solidification front and the ferrostatic pressure. The model is demonstrated to match measurements of mold heat removal and the thickness of a breakout shell all the way around the perimeter of the mold, and gives insight to the cause of breakouts in a beam-blank caster. This multiphysics modeling approach redefines the state of the art of process modeling for continuous casting, and can be~used in future work to explore the formation and prevention of defects and other practical issues. This work also explores the eigen-problem for an arbitrary 3x3 matrix. An explicit, algebraic formula for the eigenvectors is presented.

  8. Grinding technoloy of aspheric molds for glass-molding; Technical Digest

    NASA Astrophysics Data System (ADS)

    Kojima, Yoichi

    2005-05-01

    We introduce the method of precisely grinding of axis-symmetric aspherical glass-molding dies by using a diamond wheel. Those show how to select vertical-grinding or slant-grinding, how to grind molds with high accuracy and actual grinding results.

  9. Epoxy-resin patterns speed shell-molding of aluminum parts

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Half patterns cast from commercial epoxy resin containing aluminum powder are used for shell-molding of aluminum parts. The half patterns are cast in plastic molds of the original wooden pattern. Ten serviceable sand resin molds are made from each epoxy pattern.

  10. Failure strengths of denture teeth fabricated on injection molded or compression molded denture base resins.

    PubMed

    Robison, Nathan E; Tantbirojn, Daranee; Versluis, Antheunis; Cagna, David R

    2016-08-01

    Denture tooth fracture or debonding remains a common problem in removable prosthodontics. The purpose of this in vitro study was to explore factors determining failure strengths for combinations of different denture tooth designs (shape, materials) and injection or compression molded denture base resins. Three central incisor denture tooth designs were tested: nanohybrid composite (NHC; Ivoclar Phonares II), interpenetrating network (IPN; Dentsply Portrait), and microfiller reinforced polyacrylic (MRP; VITA Physiodens). Denture teeth of each type were processed on an injection molded resin (IvoBase HI; Ivoclar Vivadent AG) or a compression molded resin (Lucitone 199; Dentsply Intl) (n=11 or 12). The denture teeth were loaded at 45 degrees on the incisal edge. The failure load was recorded and analyzed with 2-way ANOVA (α=.05), and the fracture mode was categorized from observed fracture surfaces as cohesive, adhesive, or mixed failure. The following failure loads (mean ±SD) were recorded: NHC/injection molded 280 ±52 N; IPN/injection molded 331 ±41 N; MRP/injection molded 247 ±23 N; NHC/compression molded 204 ±31 N; IPN/compression molded 184 ±17 N; MRP/compression molded 201 ±16 N. Injection molded resin yielded significantly higher failure strength for all denture teeth (P<.001), among which IPN had the highest strength. Failure was predominantly cohesive in the teeth, with the exception of mixed mode for the IPN/compression group. When good bonding was achieved, the strength of the structure (denture tooth/base resin combination) was determined by the strength of the denture teeth, which may be affected by the processing technique. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Injection molding of iPP samples in controlled conditions and resulting morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sessa, Nino, E-mail: ninosessa.ns@gmail.com; De Santis, Felice, E-mail: fedesantis@unisa.it; Pantani, Roberto, E-mail: rpantani@unisa.it

    2015-12-17

    Injection molded parts are driven down in size and weight especially for electronic applications. In this work, an investigation was carried out on the process of injection molding of thin iPP samples and on the morphology of these parts. Melt flow in the mold cavity was analyzed and described with a mathematical model. Influence of mold temperature and injection pressure was analyzed. Samples orientation was studied using optical microscopy.

  12. Electron-Beam Vapor Deposition of Mold Inserts Final Report CRADA No. TSB-777-94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepp, T.; Feeley, T.

    Lawrence Livermore National Laboratory and H.G.G. Laser Fare, Inc. studied the application of electron-beam vapor deposition technology to the production of mold inserts for use in an injection molding machine by Laser Fare. Laser Fare provided LLNL with the requirements of the mold inserts as well as sample inserts. LLNL replicated the mold insert(s) to Laser Fare for testing by Laser Fare.

  13. Comparison of Fit of Dentures Fabricated by Traditional Techniques Versus CAD/CAM Technology.

    PubMed

    McLaughlin, J Bryan; Ramos, Van; Dickinson, Douglas P

    2017-11-14

    To compare the shrinkage of denture bases fabricated by three methods: CAD/CAM, compression molding, and injection molding. The effect of arch form and palate depth was also tested. Nine titanium casts, representing combinations of tapered, ovoid, and square arch forms and shallow, medium, and deep palate depths, were fabricated using electron beam melting (EBM) technology. For each base fabrication method, three poly(vinyl siloxane) impressions were made from each cast, 27 dentures for each method. Compression-molded dentures were fabricated using Lucitone 199 poly methyl methacrylate (PMMA), and injection molded dentures with Ivobase's Hybrid Pink PMMA. For CAD/CAM, denture bases were designed and milled by Avadent using their Light PMMA. To quantify the space between the denture and the master cast, silicone duplicating material was placed in the intaglio of the dentures, the titanium master cast was seated under pressure, and the silicone was then trimmed and recovered. Three silicone measurements per denture were recorded, for a total of 243 measurements. Each silicone measurement was weighed and adjusted to the surface area of the respective arch, giving an average and standard deviation for each denture. Comparison of manufacturing methods showed a statistically significant difference (p = 0.0001). Using a ratio of the means, compression molding had on average 41% to 47% more space than injection molding and CAD/CAM. Comparison of arch/palate forms showed a statistically significant difference (p = 0.023), with shallow palate forms having more space with compression molding. The ovoid shallow form showed CAD/CAM and compression molding had more space than injection molding. Overall, injection molding and CAD/CAM fabrication methods produced equally well-fitting dentures, with both having a better fit than compression molding. Shallow palates appear to be more affected by shrinkage than medium or deep palates. Shallow ovoid arch forms appear to benefit from the use of injection molding compared to CAD/CAM and compression molding. © 2017 by the American College of Prosthodontists.

  14. Route 20, Autobahn 7, and Slime Mold: Approximating the Longest Roads in USA and Germany With Slime Mold on 3-D Terrains.

    PubMed

    Adamatzky, Andrew I

    2014-01-01

    A cellular slime mould Physarum polycephalum is a monstrously large single cell visible by an unaided eye. The slime mold explores space in parallel, is guided by gradients of chemoattractants, and propagates toward sources of nutrients along nearly shortest paths. The slime mold is a living prototype of amorphous biological computers and robotic devices capable of solving a range of tasks of graph optimization and computational geometry. When presented with a distribution of nutrients, the slime mold spans the sources of nutrients with a network of protoplasmic tubes. This protoplasmic network matches a network of major transport routes of a country when configuration of major urban areas is represented by nutrients. A transport route connecting two cities should ideally be a shortest path, and this is usually the case in computer simulations and laboratory experiments with flat substrates. What searching strategies does the slime mold adopt when exploring 3-D terrains? How are optimal and transport routes approximated by protoplasmic tubes? Do the routes built by the slime mold on 3-D terrain match real-world transport routes? To answer these questions, we conducted pioneer laboratory experiments with Nylon terrains of USA and Germany. We used the slime mold to approximate route 20, the longest road in USA, and autobahn 7, the longest national motorway in Europe. We found that slime mold builds longer transport routes on 3-D terrains, compared to flat substrates yet sufficiently approximates man-made transport routes studied. We demonstrate that nutrients placed in destination sites affect performance of slime mold, and show how the mold navigates around elevations. In cellular automaton models of the slime mold, we have shown variability of the protoplasmic routes might depends on physiological states of the slime mold. Results presented will contribute toward development of novel algorithms for sensorial fusion, information processing, and decision making, and will provide inspirations in design of bioinspired amorphous robotic devices.

  15. RELATIVE MOLDINESS INDEX© AS PREDICTOR OF CHILDHOOD RESPIRATORY ILLNESS

    EPA Science Inventory

    The results of a traditional visual mold inspection were compared to a mold evaluation based on the Relative Moldiness Index (RMI). The RMI is calculated from mold specific quantitative PCR (MSQPCR) measurements of the concentation of 36 species of molds in floor dust samples. ...

  16. Mold-Resistant Construction.

    ERIC Educational Resources Information Center

    Huckabee, Christopher

    2003-01-01

    Asserts that one of the surest ways to prevent indoor air quality and mold issues is to use preventive construction materials, discussing typical resistance to dealing with mold problems (usually budget-related) and describing mold-resistant construction, which uses concrete masonry, brick, and stone and is intended to withstand inevitable…

  17. Differential allergy induction by molds found in water-damaged homes**

    EPA Science Inventory

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic lung diseases. The Institute of Medicine reports (NAS, 2004) and World Health Organization guidelines (WHO, 2009) concluded that the role of molds in asthma indu...

  18. Rapid control of mold temperature during injection molding process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liparoti, Sara; Titomanlio, Giuseppe; Hunag, Tsang Min

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during themore » entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.« less

  19. Fundamentals of rapid injection molding for microfluidic cell-based assays.

    PubMed

    Lee, Ulri N; Su, Xiaojing; Guckenberger, David J; Dostie, Ashley M; Zhang, Tianzi; Berthier, Erwin; Theberge, Ashleigh B

    2018-01-30

    Microscale cell-based assays have demonstrated unique capabilities in reproducing important cellular behaviors for diagnostics and basic biological research. As these assays move beyond the prototyping stage and into biological and clinical research environments, there is a need to produce microscale culture platforms more rapidly, cost-effectively, and reproducibly. 'Rapid' injection molding is poised to meet this need as it enables some of the benefits of traditional high volume injection molding at a fraction of the cost. However, rapid injection molding has limitations due to the material and methods used for mold fabrication. Here, we characterize advantages and limitations of rapid injection molding for microfluidic device fabrication through measurement of key features for cell culture applications including channel geometry, feature consistency, floor thickness, and surface polishing. We demonstrate phase contrast and fluorescence imaging of cells grown in rapid injection molded devices and provide design recommendations to successfully utilize rapid injection molding methods for microscale cell-based assay development in academic laboratory settings.

  20. Disseminated cutaneous Curvularia infection in an immunocompromised host; diagnostic challenges and experience with voriconazole.

    PubMed

    Balla, Agnes; Pierson, Joseph; Hugh, Jeremy; Wojewoda, Christina; Gibson, Pamela; Greene, Laura

    2016-04-01

    An increasing spectrum and number of opportunistic fungal pathogens have been reported to cause disease in humans over the past decade. Disseminated phaeohyphomycoses caused by rare dematiaceous molds in immunocompromised patients have a high mortality rate and are increasingly reported in the literature. Early diagnosis of disseminated phaehyphomycosis is critical especially in neutropenic patients but can be hindered by the low sensitivity of fungal blood cultures and low clinical suspicion. Cutaneous manifestations are often the earliest sign of disease and conducting a thorough skin exam in febrile neutropenic patients can lead to more rapid diagnosis and initiation of treatment. PCR amplification and sequencing of mold RNA extracted from paraffin-embedded tissue can be useful for diagnosing rare fungal infections when negative fungal cultures preclude morphologic diagnosis. Effective treatment for disseminated phaehyphomycosis is lacking and there is a need to report experiences with the use of newer antifungals. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Method for preparing dosimeter for measuring skin dose

    DOEpatents

    Jones, Donald E.; Parker, DeRay; Boren, Paul R.

    1982-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with neutron-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  2. Dosimeter for measuring skin dose and more deeply penetrating radiation

    DOEpatents

    Jones, Donald E.; Parker, DeRay; Boren, Paul R.

    1981-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with netruon-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  3. Antibodies against molds and mycotoxins following exposure to toxigenic fungi in a water-damaged building.

    PubMed

    Vojdani, Aristo; Campbell, Andrew W; Kashanian, Albert; Vojdani, Elroy

    2003-06-01

    Exposure to molds in water-damaged buildings can cause allergy, asthma, hypersensitivity pneumonitis, mucus membrane irritation, and toxicity--alone or in combination. Despite this, significant emphasis has been placed only on Type I allergy and asthma, but not on the other 3 types of allergies. In this study, we sought to evaluate simultaneous measurements of immunoglobulin (Ig) G, IgM, IgA, and IgE antibodies against the most common molds, and their mycotoxins, cultured from water-damaged buildings. Antibodies against 7 different molds and 2 mycotoxins were determined by enzyme-linked immunosorbent assay (ELISA) in the blood of 40 controls and 40 mold-exposed patients. The IgG antibody levels against all 7 of the molds used, as well as the 2 mycotoxins, were significantly greater in patients than in controls. The IgM antibody levels were significantly different in patients for only 6 of 9 determinations. Regarding IgA determinations, antibodies were elevated significantly against all antigens tested, except Epicoccum. However, the differences in IgE levels in controls and mold-exposed patients were significant only for Aspergillus and satratoxin. These differences implied that, overall, the healthy control group was different from the mold-exposed patients for IgG, IgM, and IgA antibodies, but not for the IgE anti-mold antibody. Most patients with high levels of antibodies against various mold antigens also exhibited elevated antibodies against purified mycotoxins, indicating that the patients had been exposed to mold spores and mycotoxins. Detection of high levels (colony-forming units per cubic meter) of molds--which, in this study, strongly suggested that there existed a reservoir of spores in the building at the time of sampling--along with a significant elevation in IgG, IgM, or IgA antibodies against molds and mycotoxins, could be used in future epidemiologic investigations of fungal exposure. In addition to IgE, measurements of IgG, IgM, and IgA antibodies should be considered in mold-exposed individuals.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Haksoo; Welford, Scott; Fabien, Jeffrey

    Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, withmore » radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm). A passing rate of 99% was measured in areas of above 40% of the prescription dose. The final inverse treatment plan was comprised of 43 beams ranging from 5 to 12.5 mm in diameter (2.5 mm size increments are available up to 15 mm in diameter collimation). Using the Xsight Spine Tracking module, the CyberKnife system could not reliably identify and track the tiny mouse spine; however, the CyberKnife system could identify and track the fiducial markers on the 3D mold.In vivo positional accuracy analysis using the 3D mold generated a mean error of 1.41 mm ± 0.73 mm when fiducial markers were used for position tracking. Analysis of the dissected brain confirmed the ability to target the correct brain volume. Conclusions: With the use of a stereotactic body mold with fiducial markers, microCT imaging, and resolution down-sampling, the CyberKnife system can successfully perform small-animal radiotherapy studies.« less

  5. Testing single point incremental forming molds for thermoforming operations

    NASA Astrophysics Data System (ADS)

    Afonso, Daniel; de Sousa, Ricardo Alves; Torcato, Ricardo

    2016-10-01

    Low pressure polymer processing processes as thermoforming or rotational molding use much simpler molds then high pressure processes like injection. However, despite the low forces involved with the process, molds manufacturing for this operations is still a very material, energy and time consuming operation. The goal of the research is to develop and validate a method for manufacturing plastically formed sheets metal molds by single point incremental forming (SPIF) operation for thermoforming operation. Stewart platform based SPIF machines allow the forming of thick metal sheets, granting the required structural stiffness for the mold surface, and keeping the short lead time manufacture and low thermal inertia.

  6. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

    NASA Astrophysics Data System (ADS)

    Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng

    2018-03-01

    A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

  7. Injection molding ceramics to high green densities

    NASA Technical Reports Server (NTRS)

    Mangels, J. A.; Williams, R. M.

    1983-01-01

    The injection molding behavior of a concentrated suspension of Si powder in wax was studied. It was found that the injection molding behavior was a function of the processing techniques used to generate the powder. Dry ball-milled powders had the best molding behavior, while air classified and impact-milled powders demonstrated poorer injection moldability. The relative viscosity of these molding batches was studied as a function of powder properties: distribution shape, surface area, packing density, and particle morphology. The experimental behavior, in all cases, followed existing theories. The relative viscosity of an injection molding composition composed of dry ball-milled powders could be expressed using Farris' relation.

  8. Computer-aided injection molding system

    NASA Astrophysics Data System (ADS)

    Wang, K. K.; Shen, S. F.; Cohen, C.; Hieber, C. A.; Isayev, A. I.

    1982-10-01

    Achievements are reported in cavity-filling simulation, modeling viscoelastic effects, measuring and predicting frozen-in birefringence in molded parts, measuring residual stresses and associated mechanical properties of molded parts, and developing an interactive mold-assembly design program and an automatic NC maching data generation and verification program. The Cornell Injection Molding Program (CIMP) consortium is discussed as are computer user manuals that have been published by the consortium. Major tasks which should be addressed in future efforts are listed, including: (1) predict and experimentally determine the post-fillin behavior of thermoplastics; (2) simulate and experimentally investigate the injection molding of thermosets and filled materials; and (3) further investigate residual stresses, orientation and mechanical properties.

  9. VIEW OF INTERIOR OF SOUTHERN DUCTILE CASTING COMPANY, CENTERVILLE FOUNDRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF INTERIOR OF SOUTHERN DUCTILE CASTING COMPANY, CENTERVILLE FOUNDRY SHOWING MOLD MAKING WITH PNEWMATIC JOLT SQUEEZE COPE AND DRAG MOLDING MACHINES THAT INDIVIDUALLY MADE EITHER A COPE OR DRAG AND A SMALL WHEELED MATCHPLATE JOLT-SQUEEZE MACHINE THAT COMPRESSED AN ENTIRE MOLD AT A SINGLE TIME USING A DOUBLE-SIDED PATTERN (MATCHPLATE). ALSO SHOWN ARE RAILED PALLET CAR CONVEYORS THAT CARRIED COMPLETED MOLDS FROM MOLDING MACHINES TO POURING AREAS WHERE WORKERS USED SMALL OVERHEAD CRANE TO LIFT JACKETS AND WEIGHTS ONTO THE MOLDS TO HOLD THEM TOGETHER WHILE POURING. - Southern Ductile Casting Company, Centerville Foundry, 101 Airport Road, Centreville, Bibb County, AL

  10. Pressurized Shell Molds For Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday K.; Lusignea, Richard N.; Cornie, James

    1993-01-01

    Balanced-pressure molds used to make parts in complex shapes from fiber-reinforced metal-matrix composite materials. In single step, molding process makes parts in nearly final shapes; only minor finishing needed. Because molding pressure same on inside and outside, mold does not have to be especially strong and can be made of cheap, nonstructural material like glass or graphite. Fibers do not have to be cut to conform to molds. Method produces parts with high content of continuous fibers. Parts stiff but light in weight, and coefficients of thermal expansion adjusted. Parts resistant to mechanical and thermal fatigue superior to similar parts made by prior fabrication methods.

  11. Method for Fabricating Soft Tissue Implants with Microscopic Surface Roughness

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1999-01-01

    A method for fabricating soft tissue implants using a mold. The cavity surface of an initially untextured mold. made of an organic material such as epoxy. is given a thin film coating of material that has pinholes and is resistant to atomic particle bombardment. The mold cavity surface is then subjected to atomic particle bombardment, such as when placed in an isotropic atomic oxygen environment. Microscopic depressions in the mold cavity surface are created at the pinhole sites on the thin film coating. The thin film coating is removed and the mold is then used to cast the soft tissue implant. The thin film coating having pinholes may be created by chilling the mold below the dew point such that water vapor condenses upon it; distributing particles, that can partially dissolve and become attached to the mold cavity surface, onto the mold cavity surface; removing the layer of condensate, such as by evaporation; applying the thin film coating over the entire mold surface; and, finally removing the particles, such as by dissolving or brushing it off. Pinholes are created in the thin film coating at the sites previously occupied by the particles.

  12. Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding

    PubMed Central

    Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  13. Study on In-mold Punching during PPS/GF Injection Molding

    NASA Astrophysics Data System (ADS)

    Inuzuka, Takayuki; Fujita, Akihiro; Nakai, Asami; Hamada, Hiroyuki

    The influence of the punching condition on strength and the amount of shear droop was investigated to optimize the processing condition for punching in the mold during glass fiber reinforced polyphenylenesulfide (PPS/GF) injection molding. For in-mold punching part during cooling process, the tensile strength was constant because the pressure loss by the punch did not occur. The amount of the shear droop decreased in line with the increase in delay time because the rigidity of injection molded part in the mold increased when the resin was cooled. Moreover, when the resin temperature lowered more than the glass transition temperature, the amount of the shear droop was constant because the rigidity became constant. It is necessary to begin punching when the resin temperature lowers more than the glass transition temperature after holding pressure process is completed, to secure high strength and to assume 0.05 mm or less, at which level the shear droop cannot be visually recognized. The shortest delay time for PPS/GF is 8 sec. The delay time to minimize the amount of the shear droop can be guessed by analyzing the temperature change of the resin in the mold by injection molding CAE.

  14. Molten metal injector system and method

    DOEpatents

    Meyer, Thomas N.; Kinosz, Michael J.; Bigler, Nicolas; Arnaud, Guy

    2003-04-01

    Disclosed is a molten metal injector system including a holder furnace, a casting mold supported above the holder furnace, and a molten metal injector supported from a bottom side of the mold. The holder furnace contains a supply of molten metal having a metal oxide film surface. The bottom side of the mold faces the holder furnace. The mold defines a mold cavity for receiving the molten metal from the holder furnace. The injector projects into the holder furnace and is in fluid communication with the mold cavity. The injector includes a piston positioned within a piston cavity defined by a cylinder for pumping the molten metal upward from the holder furnace and injecting the molten metal into the mold cavity under pressure. The piston and cylinder are at least partially submerged in the molten metal when the holder furnace contains the molten metal. The cylinder further includes a molten metal intake for receiving the molten metal into the piston cavity. The molten metal intake is located below the metal oxide film surface of the molten metal when the holder furnace contains the molten metal. A method of injecting molten metal into a mold cavity of a casting mold is also disclosed.

  15. Digital Twin concept for smart injection molding

    NASA Astrophysics Data System (ADS)

    Liau, Y.; Lee, H.; Ryu, K.

    2018-03-01

    Injection molding industry has evolved over decades and became the most common method to manufacture plastic parts. Monitoring and improvement in the injection molding industry are usually performed separately in each stage, i.e. mold design, mold making and injection molding process. However, in order to make a breakthrough and survive in the industrial revolution, all the stages in injection molding need to be linked and communicated with each other. Any changes in one stage will cause a certain effect in other stage because there is a correlation between each other. Hence, the simulation should not only based on the input of historical data, but it also needs to include the current condition of equipment and prediction of future events in other stages to make the responsive decision. This can be achieved by implementing the concept of Digital Twin that models the entire process as a virtual model and enables bidirectional control with the physical process. This paper presented types of data and technology required to build the Digital Twin for the injection molding industry. The concept includes Digital Twin of each stage and integration of these Digital Twin model as a thoroughgoing model of the injection molding industry.

  16. Molds for cable dielectrics

    DOEpatents

    Roose, L.D.

    1996-12-10

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. 5 figs.

  17. TRUFLO GONDOLA, USED WITH THE HUNTER 10 MOLDING MACHINE, OPERATES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRUFLO GONDOLA, USED WITH THE HUNTER 10 MOLDING MACHINE, OPERATES THE SAME AS THE TWO LARGER TRUFLOS USED IN CONJUNCTION WITH THE TWO HUNTER 20S. EACH GONDOLA IS CONNECTED TO THE NEXT AND RIDES ON A SINGLE TRACK RAIL FROM MOLDING MACHINES THROUGH POURING AREAS CARRYING A MOLD AROUND TWICE BEFORE THE MOLD IS PUSHED OFF ONTO A VIBRATING SHAKEOUT CONVEYOR. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  18. Modeling and Simulation of Compression Molding Process for Sheet Molding Compound (SMC) of Chopped Carbon Fiber Composites

    DOE PAGES

    Li, Yang; Chen, Zhangxing; Xu, Hongyi; ...

    2017-01-02

    Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial softwaremore » packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In this study, SMC plaques are prepared through compression molding process. The corresponding simulation models are built in Autodesk Moldflow with the same part geometry and processing conditions as in the molding tests. The output variables of the compression molding simulations, including press force history and fiber orientation of the part, are compared with experimental data. Influence of the processing conditions to the fiber orientation of the SMC plaque is also discussed. It is found that generally Autodesk Moldflow can achieve a good simulation of the compression molding process for chopped carbon fiber SMC, yet quantitative discrepancies still remain between predicted variables and experimental results.« less

  19. Modeling and Simulation of Compression Molding Process for Sheet Molding Compound (SMC) of Chopped Carbon Fiber Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Chen, Zhangxing; Xu, Hongyi

    Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial softwaremore » packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In this study, SMC plaques are prepared through compression molding process. The corresponding simulation models are built in Autodesk Moldflow with the same part geometry and processing conditions as in the molding tests. The output variables of the compression molding simulations, including press force history and fiber orientation of the part, are compared with experimental data. Influence of the processing conditions to the fiber orientation of the SMC plaque is also discussed. It is found that generally Autodesk Moldflow can achieve a good simulation of the compression molding process for chopped carbon fiber SMC, yet quantitative discrepancies still remain between predicted variables and experimental results.« less

  20. A hybrid optimization approach in non-isothermal glass molding

    NASA Astrophysics Data System (ADS)

    Vu, Anh-Tuan; Kreilkamp, Holger; Krishnamoorthi, Bharathwaj Janaki; Dambon, Olaf; Klocke, Fritz

    2016-10-01

    Intensively growing demands on complex yet low-cost precision glass optics from the today's photonic market motivate the development of an efficient and economically viable manufacturing technology for complex shaped optics. Against the state-of-the-art replication-based methods, Non-isothermal Glass Molding turns out to be a promising innovative technology for cost-efficient manufacturing because of increased mold lifetime, less energy consumption and high throughput from a fast process chain. However, the selection of parameters for the molding process usually requires a huge effort to satisfy precious requirements of the molded optics and to avoid negative effects on the expensive tool molds. Therefore, to reduce experimental work at the beginning, a coupling CFD/FEM numerical modeling was developed to study the molding process. This research focuses on the development of a hybrid optimization approach in Non-isothermal glass molding. To this end, an optimal configuration with two optimization stages for multiple quality characteristics of the glass optics is addressed. The hybrid Back-Propagation Neural Network (BPNN)-Genetic Algorithm (GA) is first carried out to realize the optimal process parameters and the stability of the process. The second stage continues with the optimization of glass preform using those optimal parameters to guarantee the accuracy of the molded optics. Experiments are performed to evaluate the effectiveness and feasibility of the model for the process development in Non-isothermal glass molding.

  1. Effect of mold diameter on the depth of cure of a resin-based composite material.

    PubMed

    Erickson, Robert L; Barkmeier, Wayne W

    2017-02-01

    The purpose of this study was to examine the effect of mold diameter on depth of cure of a resin-based composite material for varying amounts of irradiation. A resin-based composite was light-cured for 10-80 s in stainless-steel molds of either 6 mm or 4 mm in diameter and then dark-stored for 24 h. Specimens were then scraped back and the length of the cured specimens was measured to provide depth of cure (D SB ). Radiant exposure to each of the mold diameters was determined by measuring the power. The D SB values using the 4-mm molds were lower than those of the 6-mm molds. The average difference between the two groups for each irradiation time was 0.45 ± 0.02 mm. A fixed depth of cure required about 39% more irradiation time for the 4-mm mold than for the 6-mm mold but 75% more radiant exposure. The difference in cure depth for a fixed radiant exposure was 0.79 mm. A better comparison of depth of cure is obtained by using identical radiant exposures for different mold diameters. It is believed that greater loss of light by absorption at the stainless-steel cylinder walls for the 4-mm-diameter cylinders accounts for the lower depth of cure when compared with the 6-mm molds. © 2017 Eur J Oral Sci.

  2. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Randommore » orientation of fibers was noted in the composites test bars produced from divergent melt flow.« less

  3. Purification, Cloning and Immuno-Biochemical Characterization of a Fungal Aspartic Protease Allergen Rhi o 1 from the Airborne Mold Rhizopus oryzae

    PubMed Central

    Sircar, Gaurab; Saha, Bodhisattwa; Mandal, Rahul Shubhra; Pandey, Naren; Saha, Sudipto; Gupta Bhattacharya, Swati

    2015-01-01

    Background Fungal allergy is considered as serious health problem worldwide and is increasing at an alarming rate in the industrialized areas. Rhizopus oyzae is a ubiquitously present airborne pathogenic mold and an important source of inhalant allergens for the atopic population of India. Here, we report the biochemical and immunological features of its 44 kDa sero-reactive aspartic protease allergen, which is given the official designation ‘Rhi o 1’. Method The natural Rhi o 1 was purified by sequential column chromatography and its amino acid sequence was determined by mass spectrometry and N-terminal sequencing. Based on its amino acid sequence, the cDNA sequence was identified, cloned and expressed to produce recombinant Rhi o 1. The allergenic activity of rRhi o 1 was assessed by means of its IgE reactivity and histamine release ability. The biochemical property of Rhi o 1 was studied by enzyme assay. IgE-inhibition experiments were performed to identify its cross-reactivity with the German cockroach aspartic protease allergen Bla g 2. For precise characterization of the cross-reactive epitope, we used anti-Bla g 2 monoclonal antibodies for their antigenic specificity towards Rhi o 1. A homology based model of Rhi o 1 was built and mapping of the cross-reactive conformational epitope was done using certain in silico structural studies. Results The purified natural nRhi o 1 was identified as an endopeptidase. The full length allergen cDNA was expressed and purified as recombinant rRhi o 1. Purified rRhi o 1 displayed complete allergenicity similar to the native nRhi o 1. It was recognized by the serum IgE of the selected mold allergy patients and efficiently induced histamine release from the sensitized PBMC cells. This allergen was identified as an active aspartic protease functional in low pH. The Rhi o 1 showed cross reactivity with the cockroach allergen Bla g 2, as it can inhibit IgE binding to rBla g 2 up to certain level. The rBla g 2 was also found to cross-stimulate histamine release from the effector cells sensitized with anti-Rhi o 1 serum IgE. This cross-reactivity was found to be mediated by a common mAb4C3 recognizable conformational epitope. Bioinformatic studies revealed high degree of structural resemblances between the 4C3 binding sites of both the allergens. Conclusion/Significance The present study reports for the first time anew fungal aspartic protease allergen designated as Rhi o 1, which triggers IgE-mediated sensitization leading to various allergic diseases. Here we have characterized the recombinant Rhi o 1 and its immunological features including cross-reactive epitope information that will facilitate the component-resolved diagnosis of mold allergy. PMID:26672984

  4. Allergy and "toxic mold syndrome".

    PubMed

    Edmondson, David A; Nordness, Mark E; Zacharisen, Michael C; Kurup, Viswanath P; Fink, Jordan N

    2005-02-01

    "Toxic mold syndrome" is a controversial diagnosis associated with exposure to mold-contaminated environments. Molds are known to induce asthma and allergic rhinitis through IgE-mediated mechanisms, to cause hypersensitivity pneumonitis through other immune mechanisms, and to cause life-threatening primary and secondary infections in immunocompromised patients. Mold metabolites may be irritants and may be involved in "sick building syndrome." Patients with environmental mold exposure have presented with atypical constitutional and systemic symptoms, associating those symptoms with the contaminated environment. To characterize the clinical features and possible etiology of symptoms in patients with chief complaints related to mold exposure. Review of patients presenting to an allergy and asthma center with the chief complaint of toxic mold exposure. Symptoms were recorded, and physical examinations, skin prick/puncture tests, and intracutaneous tests were performed. A total of 65 individuals aged 1 1/2 to 52 years were studied. Symptoms included rhinitis (62%), cough (52%), headache (34%), respiratory symptoms (34%), central nervous system symptoms (25%), and fatigue (23%). Physical examination revealed pale nasal mucosa, pharyngeal "cobblestoning," and rhinorrhea. Fifty-three percent (33/62) of the patients had skin reactions to molds. Mold-exposed patients can present with a variety of IgE- and non-IgE-mediated symptoms. Mycotoxins, irritation by spores, or metabolites may be culprits in non-IgE presentations; environmental assays have not been perfected. Symptoms attributable to the toxic effects of molds and not attributable to IgE or other immune mechanisms need further evaluation as to pathogenesis. Allergic, rather than toxic, responses seemed to be the major cause of symptoms in the studied group.

  5. Bleach Neutralizes Mold Allergens

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Researchers at National Jewish Medical and Research Center have demonstrated that dilute bleach not only kills common household mold, but may also neutralize the mold allergens that cause most mold-related health complaints. The study, published in the Journal of Allergy and Clinical Immunology, is the first to test the effect on allergic…

  6. 40 CFR 428.60 - Applicability; description of the medium-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general molded, extruded, and...

  7. 40 CFR 428.60 - Applicability; description of the medium-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general molded...

  8. 40 CFR 428.60 - Applicability; description of the medium-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general molded...

  9. Snow Mold Investigations in Eastern Washington

    Treesearch

    T. H. Filer; A. G. Law

    1961-01-01

    "Snow mold of turf" in the Pacific Northwest must include both Fusarium Patch caused by Calonectria graminicola (Berk and Br.) (conidial stage Fusarium nivale (Fr. ) CES.), and Gray snow mold caused by Typhula itoana Imai, which occur together to give a disease complex. Snow mold of turf is the most...

  10. Study of injection molded microcellular polyamide-6 nanocomposites

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Daniel Caulfield; Chris Hunt; Rick Spindler

    2004-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The microcellular nanocomposite processing was performed on an injection-molding machine equipped with a commercially available supercritical fluid (SCF) system. The molded samples produced based on the Design of Experiments (...

  11. 75 FR 55340 - Recovery Fact Sheet 9580.100, Mold Remediation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ...] Recovery Fact Sheet 9580.100, Mold Remediation AGENCY: Federal Emergency Management Agency, DHS. ACTION... accepting comments on Recovery Fact Sheet RP9580.100, Mold Remediation. DATES: Comments must be received by... 20472-3100. II. Background The Recovery Fact Sheet RP9580.100, Mold Remediation, identifies the expenses...

  12. Shrinkage Behavior of Polystyrene-based Foam Molded Parts Depending on Volatile Matter Content and Other Factors

    NASA Astrophysics Data System (ADS)

    Ghafafian, Carineh

    Polymer foam materials play a large role in the modern world. Expanded polystyrene (EPS) bead foam is a lightweight, low density, and good thermal and acoustic insulating material whose properties make it attractive for a number of applications, especially as building insulation. However, EPS also experiences post-molding shrinkage; it shrinks dimensionally from its molded size after processing. This means parts must be stored in warehouses until they are considered stable by the industry standard, DIN EN 1603. This often takes 11--18 weeks and is thus very timely and expensive. This study aims to decrease the post-molding shrinkage time of EPS foam by understanding the mechanisms of shrinkage behavior. Samples were split into two groups based on their amount of initial volatile matter content and storage conditions, then compared to a control group. Based on thermogravimetric analysis and gas chromatography with mass spectrometry, the volatile matter content and composition was found to not be the sole contributor to EPS foam dimensional stability. Residual stress testing was done with the hole drilling method and Raman spectroscopy. As this type of testing has not been done with polymer foams before, the aim was to see if either method could reliably produce residual stress values. Both methods measured residual stress values with unknown accuracy. All samples stored at a higher temperature (60°C) reached dimensional stability by the end of this study. Thus, air diffusion into EPS foam, encouraged by the high temperature storage, was found to play a significant role in post-molding shrinkage.

  13. EXHIBIT - SPACESUITS

    NASA Image and Video Library

    1982-02-08

    S82-26645 (March 1982) --- Spacesuit inner gloves consist of pressure bladders covered by Beta Cloth. EVA outer gloves are made of Beta Cloth, Mylar and a metallic mesh hand area. The thumb and fingertips of the glove are molded of silicone rubber to permit a degree of sensitivity. The inner gloves attach to the suit by pressure sealing rings, similar to these used in helmet-to-suit connections. The outer gloves served as a cover to protect from micrometeorites, abrasions and heat.

  14. Acute pulmonary hemorrhage during isoflurane anesthesia in two cats exposed to toxic black mold (Stachybotrys chartarum).

    PubMed

    Mader, Douglas R; Yike, Iwona; Distler, Anne M; Dearborn, Dorr G

    2007-09-01

    Acute pulmonary hemorrhage developed during isoflurane anesthesia in 2 Himalayan cats undergoing routine dental cleaning and prophylaxis. The cats were siblings and lived together. In both cats, results of pre-operative physical examinations and laboratory testing were unremarkable. Blood pressure and oxygen saturation were within reference ranges throughout the dental procedure. Approximately 15 to 20 minutes after administration of isoflurane was begun, frothy blood was noticed within the endotracheal tube. Blood was suctioned from the endotracheal tube, and the cats were allowed to recover from anesthesia. 1 cat initially responded to supportive care but developed a second episode of spontaneous pulmonary hemorrhage approximately 30 hours later and died. The other cat responded to supportive care and was discharged after 4 days, but its condition deteriorated, and the cat died 10 days later. Subsequently, it was discovered that the home was severely contaminated with mold as a result of storm damage that had occurred approximately 7 months previously. Retrospective analysis of banked serum from the cats revealed satratoxin G, a biomarker for Stachybotrys chartarum, commonly referred to as "toxic black mold." Findings highlight the potential risk of acute pulmonary hemorrhage in animals living in an environment contaminated with mold following flood damage.

  15. Additive Manufacturing of Molds for Fabrication of Insulated Concrete Block

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Lonnie J.; Lloyd, Peter D.

    ORNL worked with concrete block manufacturer, NRG Insulated Block, to demonstrate additive manufacturing of a multi-component block mold for its line of insulated blocks. Solid models of the mold parts were constructed from existing two-dimensional drawings and the parts were fabricated on a Stratasys Fortus 900 using ULTEM 9085. Block mold parts were delivered to NRG and installed on one of their fabrication lines. While form and fit were acceptable, the molds failed to function during NRG’s testing.

  16. Fuel cell collector plate and method of fabrication

    DOEpatents

    Braun, James C.; Zabriskie, Jr., John E.; Neutzler, Jay K.; Fuchs, Michel; Gustafson, Robert C.

    2001-01-01

    An improved molding composition is provided for compression molding or injection molding a current collector plate for a polymer electrolyte membrane fuel cell. The molding composition is comprised of a polymer resin combined with a low surface area, highly-conductive carbon and/or graphite powder filler. The low viscosity of the thermoplastic resin combined with the reduced filler particle surface area provide a moldable composition which can be fabricated into a current collector plate having improved current collecting capacity vis-a-vis comparable fluoropolymer molding compositions.

  17. Fungal growth and the presence of sterigmatocystin in hard cheese.

    PubMed

    Northolt, M D; van Egmond, H P; Soentoro, P; Deijll, E

    1980-01-01

    Molds isolated from visibly molded cheeses in shops, households, and warehouses have been identified. Mold flora of cheeses in shops and households consisted mainly of Penicillium verrucosum var. cyclopium. On cheeses ripening in warehouses, Penicillium verrucosum var. cyclopium, Aspergillus versicolor, Aspergillus repens, and Enicillium verrucosum var. verrucosum were the dominant mold species. Cheese ripening in warehouses and molded with A. versicolor were examined for sterigmatocystin. Nine of 39 cheese samples contained sterigmatocystin in the surface layer in concentrations ranging from 5 to 600 micrograms/kg.

  18. Improved compression molding technology for continuous fiber reinforced composite laminates. Part 2: AS-4/Polyimidesulfone prepreg system

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Hou, Tan-Hung; Kidder, Paul W.; Reddy, Rakasi M.

    1991-01-01

    AS-4/polyimidesulfone (PISO2) composite prepreg was utilized for the improved compression molding technology investigation. This improved technique employed molding stops which advantageously facilitate the escape of volatile by-products during the B-stage curing step, and effectively minimize the neutralization of the consolidating pressure by intimate interply fiber-fiber contact within the laminate in the subsequent molding cycle. Without the modifying the resin matrix properties, composite panels with both unidirectional and angled plies with outstanding C-scans and mechanical properties were successfully molded using moderate molding conditions, i.e., 660 F and 500 psi, using this technique. The size of the panels molded were up to 6.00 x 6.00 x 0.07 in. A consolidation theory was proposed for the understanding and advancement of the processing science. Processing parameters such as vacuum, pressure cycle design, prepreg quality, etc. were explored.

  19. From micro- to nano-scale molding of metals : size effect during molding of single crystal Al with rectangular strip punches.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, K.; Meng, W. J.; Mei, F.

    2011-02-01

    A single crystal Al specimen was molded at room temperature with long, rectangular, strip diamond punches. Quantitative molding response curves were obtained at a series of punch widths, ranging from 5 {micro}m to 550 nm. A significant size effect was observed, manifesting itself in terms of significantly increasing characteristic molding pressure as the punch width decreases to 1.5 {micro}m and below. A detailed comparison of the present strip punch molding results was made with Berkovich pyramidal indentation on the same single crystal Al specimen. The comparison reveals distinctly different dependence of the characteristic pressure on corresponding characteristic length. The presentmore » results show the feasibility of micro-/nano-scale compression molding as a micro-/nano-fabrication technique, and offer an experimental test case for size-dependent plasticity theories.« less

  20. Cross Section of Legislative Approaches to Reducing Indoor Dampness and Mold

    PubMed Central

    Boese, Gerald W.

    2017-01-01

    Exposure to indoor dampness and mold is associated with numerous adverse respiratory conditions, including asthma. While no quantitative health-based threshold currently exists for mold, the conditions that support excessive dampness and mold are known and preventable; experts agree that controlling these conditions could lead to substantial savings in health care costs and improvement in public health. This article reviews a sample of state and local policies to limit potentially harmful exposures. Adoption of laws to strengthen building codes, specify dampness and mold in habitability laws, regulate mold contractors, and other legislative approaches are discussed, as are key factors supporting successful implementation. Communicating these lessons learned could accelerate the process for other jurisdictions considering similar approaches. Information about effectiveness of legislation as prevention is lacking; thus, evaluation could yield important information to inform the development of model state or local laws that significantly address mold as a public health concern. PMID:27977504

  1. Understanding the impact of molds on indoor air quality and possible links to health effects Indoor Molds - More than Just a Musty Smell

    EPA Science Inventory

    Molds are multi-celled, colony forming, eukaryotic microorganisms lacking chlorophyll belonging to the Kingdom Fungi. Furthermore, molds are ubiquitous in both indoor and outdoor environments. There are more than 200 different types of fungi to which people are routinely exposed ...

  2. HOW to Recognize and Control Sooty Molds

    Treesearch

    Kenneth J. Jr. Kessler

    1992-01-01

    Sooty molds are dark fungi that grow on honeydew excreted by sucking insects or on exudates from leaves of certain plants. Typically, sooty mold growths are composed of fungal complexes made up of ascomycetes and fungi imperfecti. Some of the common genera of fungi found in sooty mold complexes are Cladosporium, Aureobasidium, Antennariella, Limacinula, Scorias, and...

  3. Mold inhibition on unseasoned southern pine

    Treesearch

    Carol A. Clausen; Vina W. Yang

    2003-01-01

    Concerns about indoor air quality due to mold growth have increased dramatically in the United States. In the absence of moisture management, fungicides need to be developed for indoor use to control mold establishment. An ideal fungicide for prevention of indoor mold growth on wood-based materials needs to specifically prevent spore germination and provide long-term...

  4. DNA-Based Analyses of Molds in Singapore Public Buildings Results in a Proposed Singapore Environmental Relative Moldiness Index

    EPA Science Inventory

    Dust samples (n=75) were collected from shopping malls, hotels and libraries in Singapore and then analyzed using Mold Specific Quantitative Polymerase Chain Reaction(MSQPCR) for the 36 molds that make up the Environmental Relative Moldiness Index (ERMI). Most of these molds (23/...

  5. A rapid colorimetric assay for mold spore germination using XTT tetrazolium salt

    Treesearch

    Carol A. Clausen; Vina W. Yang

    2011-01-01

    Current laboratory test methods to measure efficacy of new mold inhibitors are time consuming, some require specialized test equipment and ratings are subjective. Rapid, simple quantitative assays to measure the efficacy of mold inhibitors are needed. A quantitative, colorimetric microassay was developed using XTT tetrazolium salt to metabolically assess mold spore...

  6. 40 CFR 63.7710 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gases from mold vents in pouring areas and pouring stations that use a sand mold system. This operation... including quality assurance procedures. (iv) How the bag leak detection system will be maintained including...) Procedures for providing an ignition source to mold vents of sand mold systems in each pouring area and...

  7. Flexible Nonstick Replica Mold for Transfer Printing of Ag Ink.

    PubMed

    Lee, Bong Kuk; Yu, Han Young; Kim, Yarkyeon; Yoon, Yong Sun; Jang, Won Ik; Do, Lee-Mi; Park, Ji-Ho; Park, Jaehoon

    2016-03-01

    We report the fabrication of flexible replica molds for transfer printing of Ag ink on a rigid glass substrate. As mold precursors, acrylic mixtures were prepared from silsesquioxane-based materials, silicone acrylate, poly(propylene glycol) diacrylate, 3,3,4,4,5,5,6,6,7,7,8,8, 9,9,10,10,10-heptadecafluorodecyl methacrylate, and photoinitiator. By using these materials, the replica molds were fabricated from a silicon master onto a flexible substrate by means of UV-assisted molding process at room temperature. The wettability of Ag ink decreased with increase in the water contact angle of replica molds. On the other hand, the transfer rate of Ag ink onto adhesive-modified substrates increased with increase in the water contact angle of replica molds. Transferred patterns were found to be thermally stable on the photocurable adhesive layer, whereas Ag-ink patterns transferred on non-photocurable adhesives were distorted by thermal treatment. We believe that these characteristics of replica molds and adhesives offer a new strategy for the development of the transfer printing of solution-based ink materials.

  8. Peri-implant bone formation and surface characteristics of rough surface zirconia implants manufactured by powder injection molding technique in rabbit tibiae.

    PubMed

    Park, Young-Seok; Chung, Shin-Hye; Shon, Won-Jun

    2013-05-01

    To evaluate osseointegration in rabbit tibiae and to investigate surface characteristics of novel zirconia implants made by powder injection molding (PIM) technique, using molds with and without roughened inner surfaces. A total of 20 rabbits received three types of external hex implants with identical geometry on the tibiae: machined titanium implants, PIM zirconia implants without mold etching, and PIM zirconia implants with mold etching. Surface characteristics of the three types of implant were evaluated. Removal torque tests and histomorphometric analyses were performed. The roughness of PIM zirconia implants was higher than that of machined titanium implants. The PIM zirconia implants exhibited significantly higher bone-implant contact and removal torque values than the machined titanium implants (P < 0.001). The PIM zirconia implants using roughened mold showed significantly higher removal torque values than PIM zirconia implants without using roughened mold (P < 0.001). It is concluded that the osseointegration of PIM zirconia implant is promising and PIM using roughened mold etching technique can produce substantially rough surfaces on zirconia implants. © 2012 John Wiley & Sons A/S.

  9. Interface conditions of two-shot molded parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisslinger, Thomas, E-mail: thomas.kisslinger@pccl.at; Bruckmoser, Katharina, E-mail: katharina.bruckmoser@unileoben.ac.at; Resch, Katharina, E-mail: katharina.resch@unileoben.ac.at

    2014-05-15

    The focus of this work is on interfaces of two-shot molded parts. It is well known that e.g. material combination, process parameters and contact area structures show significant effects on the bond strength of multi-component injection molded parts. To get information about the bond strength at various process parameter settings and material combinations a test mold with core back technology was used to produce two-component injection molded tensile test specimens. At the core back process the different materials are injected consecutively, so each component runs through the whole injection molding cycle (two-shot process). Due to this consecutive injection molding processes,more » a cold interface is generated. This is defined as overmolding of a second melt to a solidified polymer preform. Strong interest lies in the way the interface conditions change during the adhesion formation between the individual components. Hence the interface conditions were investigated by computed tomography and Raman spectroscopy. By analyzing these conditions the understanding of the adhesion development during the multi-component injection molding was improved.« less

  10. Testing of molded high temperature plastic actuator road seals for use in advanced aircraft hydraulic systems

    NASA Technical Reports Server (NTRS)

    Waterman, A. W.; Huxford, R. L.; Nelson, W. G.

    1976-01-01

    Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.

  11. A would-be nervous system made from a slime mold.

    PubMed

    Adamatzky, Andrew

    2015-01-01

    The slime mold Physarum polycephalum is a huge single cell that has proved to be a fruitful material for designing novel computing architectures. The slime mold is capable of sensing tactile, chemical, and optical stimuli and converting them to characteristic patterns of its electrical potential oscillations. The electrical responses to stimuli may propagate along protoplasmic tubes for distances exceeding tens of centimeters, as impulses in neural pathways do. A slime mold makes decisions about its propagation direction based on information fusion from thousands of spatially extended protoplasmic loci, similarly to a neuron collecting information from its dendritic tree. The analogy is distant yet inspiring. We speculate on whether alternative-would-be-nervous systems can be developed and practically implemented from the slime mold. We uncover analogies between the slime mold and neurons, and demonstrate that the slime mold can play the roles of primitive mechanoreceptors, photoreceptors, and chemoreceptors; we also show how the Physarum neural pathways develop. The results constituted the first step towards experimental laboratory studies of nervous system implementation in slime molds.

  12. Rotational molding of pultruded profiles reinforced polyethylene

    NASA Astrophysics Data System (ADS)

    Greco, Antonio; Maffezzoli, Alfonso; Romano, Giorgio

    2014-05-01

    The aim of this paper is the production of fiber reinforced LLDPE components by rotational molding. To this purpose, a process upgrade was developed, for the incorporation of pultruded tapes in the rotational molding cycle. Pultruded tapes, made of 50% by weight of glass fibers dispersed in a high density polyethylene(HDPE) matrix, were glued on the internal surface of a cubic mold, and rotational molding process was run using the same processing conditions used for conventional LLDPE processing. During processing, melting of LLDPE powders and of HDPE allowed to incorporate the tapes inside rotational molded LLDPE. The glass fiber reinforced prototypes were characterized in terms of mechanical properties. Plate bending tests were performed on the square faces extracted from the rotational molded product. The rotational molding products were also subjected to internal hydrostatic pressure tests up to 10 bar. In any case, no failure of the cubic samples was observed. In both cases, it was found that addition of a single pultruded strips, which corresponds to addition of about 0.6% by weight of glass fibers, involved an increase of the stiffness of the faces by about 25%.

  13. Particle Image Velocimetry During Injection Molding

    NASA Astrophysics Data System (ADS)

    Bress, Thomas; Dowling, David

    2012-11-01

    Injection molding involves the unsteady non-isothermal flow of a non-Newtonian polymer melt. An optical-access mold has been used to perform particle image velocimetry (PIV) on molten polystyrene during injection molding. Velocimetry data of the mold-filling flow will be presented. Statistical assessments of the velocimetry data and scaled residuals of the continuity equation suggest that PIV can be conducted in molten plastics with an uncertainty of +/-2 percent. Simulations are often used to model polymer flow during injection molding to design molds and select processing parameters but it is difficult to determine the accuracy of these simulations due to a lack of in-mold velocimetry and melt-front progression data. Moldflow was used to simulate the filling of the optical-access mold, and these simulated results are compared to the appropriately-averaged time-varying velocity field measurements. Simulated results for melt-front progression are also compared with the experimentally observed flow fronts. The ratio of the experimentally measured average velocity magnitudes to the simulation magnitudes was found on average to be 0.99 with a standard deviation of 0.25, and the difference in velocity orientations was found to be 0.9 degree with a standard deviation of 3.2 degrees. formerly at the University of Michigan.

  14. Effect of Slag-Steel Reaction on the Initial Solidification of Molten Steel during Continuous Casting

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Lou, Zhican; Zhang, Haihui

    2018-03-01

    With the mold simulator technique, the effect of slag-steel reaction on the initial shell solidification as well as the heat transfer and lubrication behavior of the infiltrated mold/shell slag film was studied in this article. The results showed that the Al2O3 content, the CaO/SiO2 ratio, and the viscosity of mold flux were increased with the progress of the slag-steel reaction during casting. The slag-steel reaction has two major effects on the initial shell solidification: one is increasing the mold heat flux and shell thickness by the decrease of slag film thickness. The other is the reduction of mold heat flux by the increase of crystal fraction in slag film. Mold flux with a lower basicity, viscosity, and crystallization temperature would result in a larger liquid slag consumption and the uneven infiltration of slag into the mold and shell gap that eventually leads to the irregular solidification of initial shell with a poor surface quality, such as slag entrapment and depressions as well as glaciation marks. Conversely, mold flux with a higher viscosity, basicity, and crystallization temperature would result in a smaller liquid slag consumption, which would cause the poor mold lubrication, the longitudinal shell surface defects, and drag marks.

  15. Dynamic Feed Control For Injection Molding

    DOEpatents

    Kazmer, David O.

    1996-09-17

    The invention provides methods and apparatus in which mold material flows through a gate into a mold cavity that defines the shape of a desired part. An adjustable valve is provided that is operable to change dynamically the effective size of the gate to control the flow of mold material through the gate. The valve is adjustable while the mold material is flowing through the gate into the mold cavity. A sensor is provided for sensing a process condition while the part is being molded. During molding, the valve is adjusted based at least in part on information from the sensor. In the preferred embodiment, the adjustable valve is controlled by a digital computer, which includes circuitry for acquiring data from the sensor, processing circuitry for computing a desired position of the valve based on the data from the sensor and a control data file containing target process conditions, and control circuitry for generating signals to control a valve driver to adjust the position of the valve. More complex embodiments include a plurality of gates, sensors, and controllable valves. Each valve is individually controllable so that process conditions corresponding to each gate can be adjusted independently. This allows for great flexibility in the control of injection molding to produce complex, high-quality parts.

  16. Effect of Slag-Steel Reaction on the Initial Solidification of Molten Steel during Continuous Casting

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Lou, Zhican; Zhang, Haihui

    2018-06-01

    With the mold simulator technique, the effect of slag-steel reaction on the initial shell solidification as well as the heat transfer and lubrication behavior of the infiltrated mold/shell slag film was studied in this article. The results showed that the Al2O3 content, the CaO/SiO2 ratio, and the viscosity of mold flux were increased with the progress of the slag-steel reaction during casting. The slag-steel reaction has two major effects on the initial shell solidification: one is increasing the mold heat flux and shell thickness by the decrease of slag film thickness. The other is the reduction of mold heat flux by the increase of crystal fraction in slag film. Mold flux with a lower basicity, viscosity, and crystallization temperature would result in a larger liquid slag consumption and the uneven infiltration of slag into the mold and shell gap that eventually leads to the irregular solidification of initial shell with a poor surface quality, such as slag entrapment and depressions as well as glaciation marks. Conversely, mold flux with a higher viscosity, basicity, and crystallization temperature would result in a smaller liquid slag consumption, which would cause the poor mold lubrication, the longitudinal shell surface defects, and drag marks.

  17. Is Mold Toxicity Really a Problem for Our Patients? Part 2—Nonrespiratory Conditions

    PubMed Central

    Pizzorno, Joseph; Shippy, Ann

    2016-01-01

    In my last editorial, I addressed the respiratory effects of mold exposure. The surprising research shows that as many as 50% of residential and work environments have water damage1 and that mold toxicity should be considered in all patients with any chronic respiratory condition. This is especially true in adult-onset asthma, two-thirds of which appears to be caused by toxins released from water-damaged buildings. The carcinogenic effects of food-borne mold contamination are also well documented. Less clear is the role of indoor mold exposure in water-damaged buildings and its relationship to nonrespiratory conditions. As we look at the research on mold toxicity and toxins in general, we propose that the medical community (by all its names) has focused too much on the “yellow canaries” and missed the big picture that toxins have now become a primary driver of disease in the general population, not only among those most susceptible. The mold toxicity conundrum illustrates this issue quite well. As summarized in this editorial, there clearly is a portion of the population, the size of which is currently unknown, who experience neurological and/or immunological damage from mold toxicity. In addition, a substantial portion of the population experiences chronic respiratory problems from mold exposure. This does not mean we should stop paying attention to our more affected patients. Rather, we need to realize that almost everyone is being affected by toxins to some degree: molds, metals, solvents, persistent organic pollutants, etc. PMID:27547160

  18. Is Mold Toxicity Really a Problem for Our Patients? Part 2-Nonrespiratory Conditions.

    PubMed

    Pizzorno, Joseph; Shippy, Ann

    2016-06-01

    In my last editorial, I addressed the respiratory effects of mold exposure. The surprising research shows that as many as 50% of residential and work environments have water damage1 and that mold toxicity should be considered in all patients with any chronic respiratory condition. This is especially true in adult-onset asthma, two-thirds of which appears to be caused by toxins released from water-damaged buildings. The carcinogenic effects of food-borne mold contamination are also well documented. Less clear is the role of indoor mold exposure in water-damaged buildings and its relationship to nonrespiratory conditions. As we look at the research on mold toxicity and toxins in general, we propose that the medical community (by all its names) has focused too much on the "yellow canaries" and missed the big picture that toxins have now become a primary driver of disease in the general population, not only among those most susceptible. The mold toxicity conundrum illustrates this issue quite well. As summarized in this editorial, there clearly is a portion of the population, the size of which is currently unknown, who experience neurological and/or immunological damage from mold toxicity. In addition, a substantial portion of the population experiences chronic respiratory problems from mold exposure. This does not mean we should stop paying attention to our more affected patients. Rather, we need to realize that almost everyone is being affected by toxins to some degree: molds, metals, solvents, persistent organic pollutants, etc.

  19. Atomic layer deposition as pore diameter adjustment tool for nanoporous aluminum oxide injection molding masks.

    PubMed

    Miikkulainen, Ville; Rasilainen, Tiina; Puukilainen, Esa; Suvanto, Mika; Pakkanen, Tapani A

    2008-05-06

    The wetting properties of polypropylene (PP) surfaces were modified by adjusting the dimensions of the surface nanostructure. The nanostructures were generated by injection molding with nanoporous anodized aluminum oxide (AAO) as the mold insert. Atomic layer deposition (ALD) of molybdenum nitride film was used to control the pore diameters of the AAO inserts. The original 50-nm pore diameter of AAO was adjusted by depositing films of thickness 5, 10, and 15 nm on AAO. Bis(tert-butylimido)-bis(dimethylamido)molybdenum and ammonia were used as precursors in deposition. The resulting pore diameters in the nitride-coated AAO inserts were 40, 30, and 20 nm, respectively. Injection molding of PP was conducted with the coated inserts, as well as with the non-coated insert. Besides the pore diameter, the injection mold temperature was varied with temperatures of 50, 70, and 90 degrees C tested. Water contact angles of PP casts were measured and compared with theoretical contact angles calculated from Wenzel and Cassie-Baxter theories. The highest contact angle, 140 degrees , was observed for PP molded with the AAO mold insert with 30-nm pore diameter. The Cassie-Baxter theory showed better fit than the Wenzel theory to the experimental values. With the optimal AAO mask, the nanofeatures in the molded PP pieces were 100 nm high. In explanation of this finding, it is suggested that some sticking and stretching of the nanofeatures occurs during the molding. Increase in the mold temperature increased the contact angle.

  20. Mold and Human Health: a Reality Check.

    PubMed

    Borchers, Andrea T; Chang, Christopher; Eric Gershwin, M

    2017-06-01

    There are possibly millions of mold species on earth. The vast majority of these mold spores live in harmony with humans, rarely causing disease. The rare species that does cause disease does so by triggering allergies or asthma, or may be involved in hypersensitivity diseases such as allergic bronchopulmonary aspergillosis or allergic fungal sinusitis. Other hypersensitivity diseases include those related to occupational or domiciliary exposures to certain mold species, as in the case of Pigeon Breeder's disease, Farmer's lung, or humidifier fever. The final proven category of fungal diseases is through infection, as in the case of onchomycosis or coccidiomycosis. These diseases can be treated using anti-fungal agents. Molds and fungi can also be particularly important in infections that occur in immunocompromised patients. Systemic candidiasis does not occur unless the individual is immunodeficient. Previous reports of "toxic mold syndrome" or "toxic black mold" have been shown to be no more than media hype and mass hysteria, partly stemming from the misinterpreted concept of the "sick building syndrome." There is no scientific evidence that exposure to visible black mold in apartments and buildings can lead to the vague and subjective symptoms of memory loss, inability to focus, fatigue, and headaches that were reported by people who erroneously believed that they were suffering from "mycotoxicosis." Similarly, a causal relationship between cases of infant pulmonary hemorrhage and exposure to "black mold" has never been proven. Finally, there is no evidence of a link between autoimmune disease and mold exposure.

  1. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings.

    PubMed

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-03-30

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting's surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.

  2. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings

    PubMed Central

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-01-01

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control. PMID:29601543

  3. Precision lens molding of asphero diffractive surfaces in chalcogenide materials

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Scordato, M.; Schwertz, K.; Bagwell, J.

    2015-10-01

    Finished lens molding, and the similar process of precision lens molding, have long been practiced for high volume, accurate replication of optical surfaces on oxide glass. The physics surrounding these processes are well understood, and the processes are capable of producing high quality optics with great fidelity. However, several limitations exist due to properties inherent with oxide glasses. Tooling materials that can withstand the severe environmental conditions of oxide glass molding cannot easily be machined to produce complex geometries such as diffractive surfaces, lens arrays, and off axis features. Current machining technologies coupled with a limited selection of tool materials greatly limits the type of structures that can be molded into the finished optic. Tooling for chalcogenide glasses are not bound by these restrictions since the molding temperatures required are much lower than for oxide glasses. Innovations in tooling materials and manufacturing techniques have enabled the production of complex geometries to optical quality specifications and have demonstrated the viability of creating tools for molding diffractive surfaces, off axis features, datums, and arrays. Applications for optics having these features are found in automotive, defense, security, medical, and industrial domains. This paper will discuss results achieved in the study of various molding techniques for the formation of positive diffractive features on a concave spherical surface molded from As2Se3 chalcogenide glass. Examples and results of molding with tools having CTE match with the glass and non CTE match will be reviewed. The formation of stress within the glass during molding will be discussed, and methods of stress management will also be demonstrated and discussed. Results of process development methods and production of good diffractive surfaces will be shown.

  4. Mold Flux Crystallization and Mold Thermal Behavior

    NASA Astrophysics Data System (ADS)

    Peterson, Elizabeth Irene

    Mold flux plays a small but critical role in the continuous casting of steel. The carbon-coated powder is added at the top of the water-cooled copper mold, over time it melts and infiltrates the gap between the copper mold and the solidifying steel strand. Mold powders serve five primary functions: (1) chemical insulation, (2) thermal insulation, (3) lubrication between the steel strand and mold, (4) absorption of inclusions, and (5) promotion of even heat flux. All five functions are critical to slab casting, but surface defect prevention is primarily controlled through even heat flux. Glassy fluxes have high heat transfer and result in a thicker steel shell. Steels with large volumetric shrinkage on cooling must have a crystalline flux to reduce the radiative heat transfer and avoid the formation of cracks in the shell. Crystallinity plays a critical role in steel shell formation, therefore it is important to study the thermal conditions that promote each phase and its morphology. Laboratory tests were performed to generate continuous cooling transformation (CCT) and time-temperature-transformation (TTT) diagrams. Continuous cooling transformation tests were performed in an instrumented eight cell step chill mold. Results showed that cuspidine was the only phase formed in conventional fluxes and all observed structures were dendritic. An isothermal tin bath quench method was also developed to isothermally age glassy samples. Isothermal tests yielded different microstructures and different phases than those observed by continuous cooling. Comparison of aged tests with industrial flux films indicates similar faceted structures along the mold wall, suggesting that mold flux first solidifies as a glass along the mold wall, but the elevated temperature devitrifies the glassy structure forming crystals that cannot form by continuous cooling.

  5. Mold growth in on-reserve homes in Canada: the need for research, education, policy, and funding.

    PubMed

    Optis, Michael; Shaw, Karena; Stephenson, Peter; Wild, Peter

    2012-01-01

    The impact of mold growth in homes located on First Nations reserves in Canada is part of a national housing crisis that has not been adequately studied. Nearly half of the homes on reserves contain mold at levels of contamination associated with high rates of respiratory and other illnesses to residents. Mold thrives due to increased moisture levels in building envelopes and interior spaces. Increased moisture stems from several deficiencies in housing conditions, including structural damage to the building envelope, overcrowding and insufficient use of ventilation systems, and other moisture-control strategies. These deficiencies have developed due to a series of historical and socioeconomic factors, including disenfranchisement from traditional territory, environmentally inappropriate construction, high unemployment rates, lack of home ownership, and insufficient federal funding for on-reserve housing and socioeconomic improvements. The successful, long-term reduction of mold growth requires increased activity in several research and policy areas. First, the actual impacts on health need to be studied and associated with comprehensive experimental data on mold growth to understand the unique environmental conditions that permit the germination and growth of toxic mold species. Second, field data documenting the extent of mold growth in on-reserve homes do not exist but are essential in understanding the full extent of the crisis. Third, current government initiatives to educate homeowners in mold remediation and prevention techniques must be long lasting and effective. Finally, and most importantly, the federal government must make a renewed and lasting commitment to improve the socioeconomic conditions on reserves that perpetuate mold growth in homes. Without such improvement, the mold crisis will surely persist and likely worsen.

  6. Antifungal effectiveness of potassium sorbate incorporated in edible coatings against spoilage molds of apples, cucumbers, and tomatoes during refrigerated storage.

    PubMed

    Mehyar, Ghadeer F; Al-Qadiri, Hamzah M; Abu-Blan, Hifzi A; Swanson, Barry G

    2011-04-01

    Predominant spoilage molds of fresh apples, cucumbers, and tomatoes stored at 4 °C were isolated and examined for resistance to potassium sorbate (PS) incorporated in polysaccharide edible coatings. The isolated molds were Penicillium expansum, Cladosporium herbarum, and Aspergillus niger from apples. P. oxalicum and C. cucumerinum were isolated from cucumbers and P. expansium and C. fulvum from tomatoes. Guar gum edible coating incorporated with PS was the most effective mold inhibitor, significantly (P<0.05) reducing the isolated spoilage molds for 20, 15, and 20 d of storage at 4 °C on apples, cucumbers, and tomatoes, respectively. PS incorporated into pea starch edible coating was less effective and selectively inhibited the isolated mold species, causing significant (P<0.05) reduction in mold on apples, cucumbers, and tomatoes counts for 20, 10 to 15, and 15 to 20 d of storage at 4 °C, respectively. The isolated mold species exhibited different resistances to PS incorporated in the edible coatings. The greatest inhibition (2.9 log CFU/g) was obtained with C. herbarum on apples and the smallest (1.1 log CFU/g) was with P. oxalicum on cucumbers and the other isolated mold species exhibited intermediate resistance. The coatings tested, in general, inhibited molds more effectively on apples than on tomatoes and cucumbers. Addition of PS to pea starch and guar gum, edible coatings improved the antifungal activity of PS against isolated spoilage molds on apples, cucumbers, and tomatoes. PS inhibition was most effective against C. herbarum on apples and least effective against P. oxalicum on cucumbers.

  7. Sonic Boom Mitigation Through Aircraft Design and Adjoint Methodology

    NASA Technical Reports Server (NTRS)

    Rallabhandi, Siriam K.; Diskin, Boris; Nielsen, Eric J.

    2012-01-01

    This paper presents a novel approach to design of the supersonic aircraft outer mold line (OML) by optimizing the A-weighted loudness of sonic boom signature predicted on the ground. The optimization process uses the sensitivity information obtained by coupling the discrete adjoint formulations for the augmented Burgers Equation and Computational Fluid Dynamics (CFD) equations. This coupled formulation links the loudness of the ground boom signature to the aircraft geometry thus allowing efficient shape optimization for the purpose of minimizing the impact of loudness. The accuracy of the adjoint-based sensitivities is verified against sensitivities obtained using an independent complex-variable approach. The adjoint based optimization methodology is applied to a configuration previously optimized using alternative state of the art optimization methods and produces additional loudness reduction. The results of the optimizations are reported and discussed.

  8. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    NASA Astrophysics Data System (ADS)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to prevent segregation, and sintering and cristobalite transformation in fused silica compacts.

  9. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.; Wimmer, J. M.; Huang, H. H.; Rorabaugh, M. E.; Schienle, J.; Styhr, K. H.

    1985-01-01

    The AiResearch Casting Company baseline silicon nitride (92 percent GTE SN-502 Si sub 3 N sub 4 plus 6 percent Y sub 2 O sub 3 plus 2 percent Al sub 2 O sub 3) was characterized with methods that included chemical analysis, oxygen content determination, electrophoresis, particle size distribution analysis, surface area determination, and analysis of the degree of agglomeration and maximum particle size of elutriated powder. Test bars were injection molded and processed through sintering at 0.68 MPa (100 psi) of nitrogen. The as-sintered test bars were evaluated by X-ray phase analysis, room and elevated temperature modulus of rupture strength, Weibull modulus, stress rupture, strength after oxidation, fracture origins, microstructure, and density from quantities of samples sufficiently large to generate statistically valid results. A series of small test matrices were conducted to study the effects and interactions of processing parameters which included raw materials, binder systems, binder removal cycles, injection molding temperatures, particle size distribution, sintering additives, and sintering cycle parameters.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nick Cannell; Dr. Mark Samonds; Adi Sholapurwalla

    The investment casting process is an expendable mold process where wax patterns of the part and rigging are molded, assembled, shelled and melted to produce a ceramic mold matching the shape of the component to be cast. Investment casting is an important manufacturing method for critical parts because of the ability to maintain dimensional shape and tolerances. However, these tolerances can be easily exceeded if the molding components do not maintain their individual shapes well. In the investment casting process there are several opportunities for the final casting shape to not maintain the intended size and shape, such as shrinkagemore » of the wax in the injection tool, the modification of the shape during shell heating, and with the thermal shrink and distortion in the casting process. Studies have been completed to look at the casting and shell distortions through the process in earlier phases of this project. Dr. Adrian Sabau at Oak Ridge National Labs performed characterizations and validations of 17-4 PH stainless steel in primarily fused silica shell systems with good agreement between analysis results and experimental data. Further tasks provided material property measurements of wax and methodology for employing a viscoelastic definition of wax materials into software. The final set of tasks involved the implementation of the findings into the commercial casting analysis software ProCAST, owned and maintained by ESI Group. This included: o the transfer of the wax material property data from its raw form into separate temperature-dependent thermophysical and mechanical property datasets o adding this wax material property data into an easily viewable and modifiable user interface within the pre-processing application of the ProCAST suite, namely PreCAST o and validating the data and viscoelastic wax model with respect to experimental results« less

  11. Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis

    PubMed Central

    Marty, Amber J.; Broman, Aimee T.; Zarnowski, Robert; Dwyer, Teigan G.; Bond, Laura M.; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Ntambi, James M.; Keleş, Sündüz; Kendziorski, Christina; Gauthier, Gregory M.

    2015-01-01

    In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s) underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ) fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0–48 hours), gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C) and during the phase transition to mold (22°C). This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition. PMID:26114571

  12. Brittle Materials Design, High Temperature Gas Turbine

    DTIC Science & Technology

    1975-04-01

    was directed toward fabricating flaw- free one-piece first stage stators using a silicon metal powder injection molding composition yielding reaction...process was used because this composition utilizes thermoset polymers which cannot be handled on available injection molding equipment. Silicon...molded of several compositions incorporating slight variations. Some of the components molded had completely filled the die cavity and appeared

  13. 40 CFR 63.5728 - What standards must I meet for closed molding resin operations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operation does not meet the definition of closed molding, then you must comply with the limit for open... molding operation must comply with the limit for open molding resin and gel coat operations specified in § 63.5698. Examples of these operations include gel coat or skin coat layers that are applied before...

  14. Thermoplastics for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Silverman, B.

    1978-01-01

    The goal for this contract is the development of processes and techniques for molding thermally stable, fire retardant, low smoke emitting polymeric materials. Outlined in this presentation are: (1) the typical molding types; (2) a program schedule; (3) physical properties of molding types with the test methods to be used; (4) general properties of injection molding materials; and (5) preliminary materials selection.

  15. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cure 25 lb/ton.4 NA—this is considered to be a closed molding operation. 25 lb/ton.4 Use the... vented during spinning and cure 20 lb/ton.4 NA—this is considered to be a closed molding operation. 20 lb...

  16. Manufacturing injection-moleded Fresnel lens parquets for point-focus concentrating photovoltaic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, E.M.; Masso, J.D.

    This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.

  17. REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-06-24

    Refractory coating for graphite molds used in the casting of uranium is described. The coating is an alumino-silicate refractory composition which may be used as a mold surface in solid form or as a coating applied to the graphite mold. The composition consists of a mixture of ball clay, kaolin, alumina cement, alumina, water, sodium silicate, and sodium carbonate.

  18. Moldicidal properties of seven essential oils

    Treesearch

    Vina W. Yang; Carol A. Clausen

    2006-01-01

    When wood and wood products are exposed to moisture during storage, construction or while in-service, mold growth can occur in 24 to 48 hours. Mold growth could be suppressed or prevented if wood was treated with an effective mold inhibitor. The objective of this study was to evaluate the mold inhibiting properties of natural plant extracts such as essential oils....

  19. A Mold by Any Other Name: One Librarian's Battle Against a Mold Bloom.

    ERIC Educational Resources Information Center

    Smith, Laura Katz

    1997-01-01

    Describes how library staff at Virginia Polytechnic Institute and State University cleaned up materials after a mold bloom in the rare book room. Includes advice for controlling mold: set up a hygrothermograph, clean dust from books, set up fans, do a "skin" test at regular intervals, keep windows closed, have dehumidifiers available.…

  20. Investigation of the adhesion interface obtained through two-component injection molding

    NASA Astrophysics Data System (ADS)

    Fetecau, Catalin; Stan, Felicia; Dobrea, Daniel

    2011-01-01

    In this paper we study the interface strength obtained through two-component (2C) injection molding of LDPE-HDPE polymers. First, numerical simulation of the over-molding process is carried out using Moldflow technology. Second, butt-joint specimens were produced by over-molding under different process condition, and tested. Two injection sequences were considered, injection of LDPE on HDPE polymer, and HDLE on LDPE, respectively. To investigate the effects of the mold surface roughness on the polymers adhesion at interface, different inserts with different roughness are employed.

  1. Porous media heat transfer for injection molding

    DOEpatents

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  2. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1997-08-19

    Spacers are disclosed for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate. 3 figs.

  3. Index change of chalcogenide materials from precision glass molding processes

    NASA Astrophysics Data System (ADS)

    Deegan, J.; Walsh, K.; Lindberg, G.; Benson, R.; Gibson, D.; Bayya, S.; Sanghera, J.; Stover, E.

    2015-05-01

    With the increase in demand for infrared optics for thermal applications and the use of glass molding of chalcogenide materials to support these higher volume optical designs, an investigation of changes to the optical properties of these materials is required. Typical precision glass molding requires specific thermal conditions for proper lens molding of any type of optical glass. With these conditions a change (reduction) of optical index occurs after molding of all oxide glass types and it is presumed that a similar behavior will happen with chalcogenide based materials. We will discuss the effects of a typical molding thermal cycle for use with commercially and newly developed chalcogenide materials and show results of index variation from nominally established material data.

  4. Effects of process parameters in plastic, metal, and ceramic injection molding processes

    NASA Astrophysics Data System (ADS)

    Lee, Shi W.; Ahn, Seokyoung; Whang, Chul Jin; Park, Seong Jin; Atre, Sundar V.; Kim, Jookwon; German, Randall M.

    2011-09-01

    Plastic injection molding has been widely used in the past and is a dominant forming approach today. As the customer demands require materials with better engineering properties that were not feasible with polymers, powder injection molding with metal and ceramic powders has received considerable attention in recent decades. To better understand the differences in the plastic injection molding, metal injection molding, and ceramic injection molding, the effects of the core process parameters on the process performances has been studied using the state-of-the-art computer-aided engineering (CAE) design tool, PIMSolver® The design of experiments has been conducted using the Taguchi method to obtain the relative contributions of various process parameters onto the successful operations.

  5. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.

    1997-01-01

    Spacers for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate.

  6. Residential Culturable Fungi, (1–3, 1–6)-β-D-glucan, and Ergosterol Concentrations in Dust Are Not Associated with Asthma, Rhinitis or Eczema Diagnoses in Children

    PubMed Central

    Choi, Hyunok; Byrne, Sam; Larsen, Lisbeth Suldrup; Sigsgaard, Torben; Thorne, Peter S.; Larsson, Lennart; Sebastian, Aleksandra; Bornehag, Carl-Gustaf

    2014-01-01

    Background Qualitative reporting of home indoor moisture problems predicts respiratory diseases. However, causal agents underlying such qualitative markers remain unknown. Methods In the homes of 198 multiple allergic case children and 202 controls in Sweden, we cultivated culturable fungi by directly plating dust, and quantified(1–3, 1–6)-β-D-glucan, and ergosterol in dust samples from the child’s bedroom. We examined the relationship between these fungal agents and degree of parent or inspector reported home indoor dampness, and microbiological laboratory’s mold index. We also compared the concentrations of these agents between multiple allergic cases and healthy controls, as well as IgE-sensitization among cases. Results The concentrations of culturable fungal agents were comparable between houses with parent and inspector reported mold issues and those without. There were no differences in concentrations of the individual or the total summed culturable fungi, (1–3, 1–6)-β-D-glucan, and ergosterol between the controls and the multiple allergic case children, or individual diagnosis of asthma, rhinitis or eczema. Conclusion Culturable fungi, (1–3, 1–6)-β-D-glucan, and ergosterol in dust were not associated with qualitative markers of indoor dampness or mold or indoor humidity. Furthermore, these agents in dust samples were not associated with any health outcomes in the children. PMID:24016225

  7. Pyrotechnic filled molding powder

    DOEpatents

    Hartzel, Lawrence W.; Kettling, George E.

    1978-01-01

    The disclosure relates to thermosetting molding compounds and more particularly to a pyrotechnic filled thermosetting compound comprising a blend of unfilled diallyl phthalate molding powder and a pyrotechnic mixture.

  8. Association of residential dampness and mold with respiratory tract infections and bronchitis: a meta-analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, William J.; Eliseeva, Ekaterina A.; Mendell, Mark J.

    Dampness and mold have been shown in qualitative reviews to be associated with a variety of adverse respiratory health effects, including respiratory tract infections. Several published meta-analyses have provided quantitative summaries for some of these associations, but not for respiratory infections. Demonstrating a causal relationship between dampness-related agents, which are preventable exposures, and respiratory tract infections would suggest important new public health strategies. We report the results of quantitative meta-analyses of published studies that examined the association of dampness or mold in homes with respiratory infections and bronchitis. For primary studies meeting eligibility criteria, we transformed reported odds ratios (ORs)more » and confidence intervals (CIs) to the log scale. Both fixed and random effects models were applied to the log ORs and their variances. Most studies contained multiple estimated ORs. Models accounted for the correlation between multiple results within the studies analyzed. One set of analyses was performed with all eligible studies, and another set restricted to studies that controlled for age, gender, smoking, and socioeconomic status. Subgroups of studies were assessed to explore heterogeneity. Funnel plots were used to assess publication bias. The resulting summary estimates of ORs from random effects models based on all studies ranged from 1.38 to 1.50, with 95% CIs excluding the null in all cases. Use of different analysis models and restricting analyses based on control of multiple confounding variables changed findings only slightly. ORs (95% CIs) from random effects models using studies adjusting for major confounding variables were, for bronchitis, 1.45 (1.32-1.59); for respiratory infections, 1.44 (1.31-1.59); for respiratory infections excluding nonspecific upper respiratory infections, 1.50 (1.32-1.70), and for respiratory infections in children or infants, 1.48 (1.33-1.65). Little effect of publication bias was evident. Estimated attributable risk proportions ranged from 8% to 20%. Residential dampness and mold are associated with substantial and statistically significant increases in both respiratory infections and bronchitis. If these associations were confirmed as causal, effective control of dampness and mold in buildings would prevent a substantial proportion of respiratory infections.« less

  9. Effect of Propellant Composition to the Temperature Sensitivity of Composite Propellant

    NASA Astrophysics Data System (ADS)

    Aziz, Amir; Mamat, Rizalman; Amin, Makeen; Ali, Wan Khairuddin Wan

    2012-09-01

    The propellant composition is one of several parameter that influencing the temperature sensitivity of composite propellant. In this paper, experimental investigation of temperature sensitivity in burning rate of composite propellant was conducted. Four sets of different propellant compositions had been prepared with the combination of ammonium perchlorate (AP) as an oxidizer, aluminum (Al) as fuel and hydroxy-terminated polybutadiene (HTPB) as fuel and binder. For each mixture, HTPB binder was fixed at 15% and cured with isophorone diisocyanate (IPDI). By varying AP and Al, the effect of oxidizer- fuel mixture ratio (O/F) on the whole propellant can be determined. The propellant strands were manufactured using compression molded method and burnt in a strand burner using wire technique over a range of pressure from 1 atm to 31 atm. The results obtained shows that the temperature sensitivity, a, increases with increasing O/F. Propellant p80 which has O/F ratio of 80/20 gives the highest value of temperature sensitivity which is 1.687. The results shows that the propellant composition has significant effect on the temperature sensitivity of composite propellant

  10. Experimental validation on the effect of material geometries and processing methodology of Polyoxymethylene (POM)

    NASA Astrophysics Data System (ADS)

    Hafizzal, Y.; Nurulhuda, A.; Izman, S.; Khadir, AZA

    2017-08-01

    POM-copolymer bond breaking leads to change depending with respect to processing methodology and material geometries. This paper present the oversights effect on the material integrity due to different geometries and processing methodology. Thermo-analytical methods with reference were used to examine the degradation of thermomechanical while Thermogravimetric Analysis (TGA) was used to judge the thermal stability of sample from its major decomposition temperature. Differential Scanning Calorimetry (DSC) investigation performed to identify the thermal behaviour and thermal properties of materials. The result shown that plastic gear geometries with injection molding at higher tonnage machine more stable thermally rather than resin geometries. Injection plastic gear geometries at low tonnage machine faced major decomposition temperatures at 313.61°C, 305.76 °C and 307.91 °C while higher tonnage processing method are fully decomposed at 890°C, significantly higher compared to low tonnage condition and resin geometries specimen at 398°C. Chemical composition of plastic gear geometries with injection molding at higher and lower tonnage are compare based on their moisture and Volatile Organic Compound (VOC) content, polymeric material content and the absence of filler. Results of higher moisture and Volatile Organic Compound (VOC) content are report in resin geometries (0.120%) compared to higher tonnage of injection plastic gear geometries which is 1.264%. The higher tonnage of injection plastic gear geometry are less sensitive to thermo-mechanical degradation due to polymer chain length and molecular weight of material properties such as tensile strength, flexural strength, fatigue strength and creep resistance.

  11. Improved Sensing Coils for SQUIDs

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Hahn, Inseob; Eom, Byeong Ho

    2007-01-01

    An improvement in the design and fabrication of sensing coils of superconducting quantum interference device (SQUID) magnetometers has been proposed to increase sensitivity. It has been estimated that, in some cases, it would be possible to increase sensitivity by about half or to reduce measurement time correspondingly. The pertinent aspects of the problems of design and fabrication can be summarized as follows: In general, to increase the sensitivity of a SQUID magnetometer, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. It is often beneficial to fabricate the coil from a thicker wire to reduce its self-inductance. Moreover, to optimize the design of the coil with respect to sensitivity, it may be necessary to shape the wire to other than a commonly available circular or square cross-section. On the other hand, it is not practical to use thicker superconducting wire for the entire superconducting circuit, especially if the design of a specific device requires a persistent-current loop enclosing a remotely placed SQUID sensor. It may be possible to bond a thicker sensing-coil wire to thinner superconducting wires leading to a SQUID sensor, but it could be difficult to ensure reliable superconducting connections, especially if the bonded wires are made of different materials. The main idea is to mold the sensing coil in place, to more nearly optimum cross sectional shape, instead of making the coil by winding standard pre-fabricated wire. For this purpose, a thin superconducting wire loop that is an essential part of the SQUID magnetometer would be encapsulated in a form that would serve as a mold. A low-melting-temperature superconducting metal (e.g., indium, tin, or a lead/tin alloy) would be melted into the form, which would be sized and shaped to impart the required cross section to the coil thus formed.

  12. Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction

    DOE PAGES

    Chen, Zhangxing; Huang, Tianyu; Shao, Yimin; ...

    2018-03-15

    Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less

  13. Multiscale finite element modeling of sheet molding compound (SMC) composite structure based on stochastic mesostructure reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhangxing; Huang, Tianyu; Shao, Yimin

    Predicting the mechanical behavior of the chopped carbon fiber Sheet Molding Compound (SMC) due to spatial variations in local material properties is critical for the structural performance analysis but is computationally challenging. Such spatial variations are induced by the material flow in the compression molding process. In this work, a new multiscale SMC modeling framework and the associated computational techniques are developed to provide accurate and efficient predictions of SMC mechanical performance. The proposed multiscale modeling framework contains three modules. First, a stochastic algorithm for 3D chip-packing reconstruction is developed to efficiently generate the SMC mesoscale Representative Volume Element (RVE)more » model for Finite Element Analysis (FEA). A new fiber orientation tensor recovery function is embedded in the reconstruction algorithm to match reconstructions with the target characteristics of fiber orientation distribution. Second, a metamodeling module is established to improve the computational efficiency by creating the surrogates of mesoscale analyses. Third, the macroscale behaviors are predicted by an efficient multiscale model, in which the spatially varying material properties are obtained based on the local fiber orientation tensors. Our approach is further validated through experiments at both meso- and macro-scales, such as tensile tests assisted by Digital Image Correlation (DIC) and mesostructure imaging.« less

  14. Design and high-volume manufacture of low-cost molded IR aspheres for personal thermal imaging devices

    NASA Astrophysics Data System (ADS)

    Zelazny, A. L.; Walsh, K. F.; Deegan, J. P.; Bundschuh, B.; Patton, E. K.

    2015-05-01

    The demand for infrared optical elements, particularly those made of chalcogenide materials, is rapidly increasing as thermal imaging becomes affordable to the consumer. The use of these materials in conjunction with established lens manufacturing techniques presents unique challenges relative to the cost sensitive nature of this new market. We explore the process from design to manufacture, and discuss the technical challenges involved. Additionally, facets of the development process including manufacturing logistics, packaging, supply chain management, and qualification are discussed.

  15. Production of Insulated Footwear Using Liquid Injection Molding Equipment. 2. Instruction Manual

    DTIC Science & Technology

    1980-09-01

    Viscosity 0 70 0 C 20 Poise Speci fic Gravity 1.04 Nonstickenstoffe release agent and Stapler Wax are commercial preparations with no typical...soluble in most organic solvents. It decomposes in acidic solvents. 2. HANDLING LUCEL-4 is intended for industrial use only. It should be handled with...SENSITIVE GLUED 3" wide (7.6 cm), 60 lb, TAPE (27 kilograms), 3" pr. SOURCE: Industrial Paper Co., Waterbury, CT 47 11. CASE Plain Kraft, Printed

  16. Molding resonant energy transfer by colloidal crystal: Dexter transfer and electroluminescence

    NASA Astrophysics Data System (ADS)

    González-Urbina, Luis; Kolaric, Branko; Libaers, Wim; Clays, Koen

    2010-05-01

    Building photonic crystals by combination of colloidal ordering and metal sputtering we were able to construct a system sensitive to an electrical field. In corresponding crystals we embedded the Dexter pair (Ir(ppy3) and BAlq) and investigated the influence of the band gap on the resonant energy transfer when the system is excited by light and by an electric field respectively. Our investigations extend applications of photonic crystals into the field of electroluminescence and LED technologies.

  17. Allergies to molds caused by fungal spores in air conditioning equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schata, M.; Jorde, W.; Elixmann, J.H.

    1989-01-01

    People suffering from various symptoms while in air-conditioned rooms often show sensitizations to fungi that can be isolated when the fungi are removed from air conditioners. By using specific challenge tests it was shown that fungal spores in air conditioners can evoke allergic symptoms. Hyposensitization was the specific therapy prescribed for such allergic reactions. After hyposensitization therapy, more than 70% of the patients so treated could live and work again in air-conditioned rooms without developing specific symptoms.

  18. 3D Printer Generated Tissue iMolds for Cleared Tissue Using Single- and Multi-Photon Microscopy for Deep Tissue Evaluation.

    PubMed

    Miller, Sean J; Rothstein, Jeffrey D

    2017-01-01

    Pathological analyses and methodology has recently undergone a dramatic revolution. With the creation of tissue clearing methods such as CLARITY and CUBIC, groups can now achieve complete transparency in tissue samples in nano-porous hydrogels. Cleared tissue is then imagined in a semi-aqueous medium that matches the refractive index of the objective being used. However, one major challenge is the ability to control tissue movement during imaging and to relocate precise locations post sequential clearing and re-staining. Using 3D printers, we designed tissue molds that fit precisely around the specimen being imaged. First, images are taken of the specimen, followed by importing and design of a structural mold, then printed with affordable plastics by a 3D printer. With our novel design, we have innovated tissue molds called innovative molds (iMolds) that can be generated in any laboratory and are customized for any organ, tissue, or bone matter being imaged. Furthermore, the inexpensive and reusable tissue molds are made compatible for any microscope such as single and multi-photon confocal with varying stage dimensions. Excitingly, iMolds can also be generated to hold multiple organs in one mold, making reconstruction and imaging much easier. Taken together, with iMolds it is now possible to image cleared tissue in clearing medium while limiting movement and being able to relocate precise anatomical and cellular locations on sequential imaging events in any basic laboratory. This system provides great potential for screening widespread effects of therapeutics and disease across entire organ systems.

  19. Indoor visible mold and mold odor are associated with new-onset childhood wheeze in a dose-dependent manner.

    PubMed

    Shorter, Caroline; Crane, Julian; Pierse, Nevil; Barnes, Phillipa; Kang, Janice; Wickens, Kristin; Douwes, Jeroen; Stanley, Thorsten; Täubel, Martin; Hyvärinen, Anne; Howden-Chapman, Philippa

    2018-01-01

    Evidence is accumulating that indoor dampness and mold are associated with the development of asthma. The underlying mechanisms remain unknown. New Zealand has high rates of both asthma and indoor mold and is ideally placed to investigate this. We conducted an incident case-control study involving 150 children with new-onset wheeze, aged between 1 and 7 years, each matched to two control children with no history of wheezing. Each participant's home was assessed for moisture damage, condensation, and mold growth by researchers, an independent building assessor and parents. Repeated measures of temperature and humidity were made, and electrostatic dust cloths were used to collect airborne microbes. Cloths were analyzed using qPCR. Children were skin prick tested for aeroallergens to establish atopy. Strong positive associations were found between observations of visible mold and new-onset wheezing in children (adjusted odds ratios ranged between 1.30 and 3.56; P ≤ .05). Visible mold and mold odor were consistently associated with new-onset wheezing in a dose-dependent manner. Measurements of qPCR microbial levels, temperature, and humidity were not associated with new-onset wheezing. The association between mold and new-onset wheeze was not modified by atopic status, suggesting a non-allergic association. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Severe Sequelae to Mold-Related Illness as Demonstrated in Two Finnish Cohorts.

    PubMed

    Tuuminen, Tamara; Rinne, Kyösti Sakari

    2017-01-01

    The presence of toxic indoor molds with accompanying bacterial growth is clearly detrimental to human health. The pathophysiological and toxicological effects of toxins and structural components of molds and bacteria have been clarified in experiments conducted in tissue culture and animals, and there is convincing epidemiologic evidence; nonetheless their implications for human health are either ignored or denied, at least in Finland. In this communication, we describe two cohorts suffering severe sequelae to mold-related illness. One cohort is a nine-member family with pets that moved into a new house, which soon proved to be infested with pathogenic molds. The other cohort consists of 30 teachers and 50 students from a mold-infested school building. The first cohort experienced a plethora of mucosal irritation, neurological, skin, allergic, and other symptoms, with all family members ultimately developing a multiple chemical syndrome. In the second cohort, we detected a greatly elevated prevalence of autoimmune conditions and malignancies. We claim that mold-related illness exists in multiple facets; if not simply a transient mucosal irritation or even an increased risk of asthma onset or its exacerbation. We propose a scheme to explain the natural course of the mold-related illness. We recommend that future studies should combine data from, e.g., cancer, autoimmune, and endocrine disorder registers and neurological and mental health or neuropsychological registers with mold-exposed individuals being monitored for prolonged follow-up times.

Top