Sample records for molecular activation analysis

  1. Maintenance of Genome Stability and Breast Cancer: Molecular Analysis of DNA Damage-Activated Kinases

    DTIC Science & Technology

    2008-03-01

    Breast Cancer: Molecular Analysis of DNA Damage-Activated Kinases PRINCIPAL INVESTIGATOR: Daniel Mordes...Maintenance of Genome Stability and Breast Cancer: Molecular Analysis of DNA Damage-Activated Kinases 5b. GRANT NUMBER W81XWH-06-1-0352 5c...shown that this domain of Dpb11 stimulates the kinase activity of wild-type Mec1-Ddc2 yet did not simulate Mec1-ddc2-top. Thus, we have demonstrated

  2. Quantitative structure-activity relationship of organosulphur compounds as soybean 15-lipoxygenase inhibitors using CoMFA and CoMSIA.

    PubMed

    Caballero, Julio; Fernández, Michael; Coll, Deysma

    2010-12-01

    Three-dimensional quantitative structure-activity relationship studies were carried out on a series of 28 organosulphur compounds as 15-lipoxygenase inhibitors using comparative molecular field analysis and comparative molecular similarity indices analysis. Quantitative information on structure-activity relationships is provided for further rational development and direction of selective synthesis. All models were carried out over a training set including 22 compounds. The best comparative molecular field analysis model only included steric field and had a good Q² = 0.789. Comparative molecular similarity indices analysis overcame the comparative molecular field analysis results: the best comparative molecular similarity indices analysis model also only included steric field and had a Q² = 0.894. In addition, this model predicted adequately the compounds contained in the test set. Furthermore, plots of steric comparative molecular similarity indices analysis field allowed conclusions to be drawn for the choice of suitable inhibitors. In this sense, our model should prove useful in future 15-lipoxygenase inhibitor design studies. © 2010 John Wiley & Sons A/S.

  3. Computational studies of novel chymase inhibitors against cardiovascular and allergic diseases: mechanism and inhibition.

    PubMed

    Arooj, Mahreen; Thangapandian, Sundarapandian; John, Shalini; Hwang, Swan; Park, Jong K; Lee, Keun W

    2012-12-01

    To provide a new idea for drug design, a computational investigation is performed on chymase and its novel 1,4-diazepane-2,5-diones inhibitors that explores the crucial molecular features contributing to binding specificity. Molecular docking studies of inhibitors within the active site of chymase were carried out to rationalize the inhibitory properties of these compounds and understand their inhibition mechanism. The density functional theory method was used to optimize molecular structures with the subsequent analysis of highest occupied molecular orbital, lowest unoccupied molecular orbital, and molecular electrostatic potential maps, which revealed that negative potentials near 1,4-diazepane-2,5-diones ring are essential for effective binding of inhibitors at active site of enzyme. The Bayesian model with receiver operating curve statistic of 0.82 also identified arylsulfonyl and aminocarbonyl as the molecular features favoring and not favoring inhibition of chymase, respectively. Moreover, genetic function approximation was applied to construct 3D quantitative structure-activity relationships models. Two models (genetic function approximation model 1 r(2) = 0.812 and genetic function approximation model 2 r(2) = 0.783) performed better in terms of correlation coefficients and cross-validation analysis. In general, this study is used as example to illustrate how combinational use of 2D/3D quantitative structure-activity relationships modeling techniques, molecular docking, frontier molecular orbital density fields (highest occupied molecular orbital and lowest unoccupied molecular orbital), and molecular electrostatic potential analysis may be useful to gain an insight into the binding mechanism between enzyme and its inhibitors. © 2012 John Wiley & Sons A/S.

  4. A SAR and QSAR study of new artemisinin compounds with antimalarial activity.

    PubMed

    Santos, Cleydson Breno R; Vieira, Josinete B; Lobato, Cleison C; Hage-Melim, Lorane I S; Souto, Raimundo N P; Lima, Clarissa S; Costa, Elizabeth V M; Brasil, Davi S B; Macêdo, Williams Jorge C; Carvalho, José Carlos T

    2013-12-30

    The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs) and molecular docking were used to investigate the interaction between ligands and the receptor (heme). Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE), the charge on the O11 oxygen atom (QO11), the torsion angle O1-O2-Fe-N2 (D2) and the maximum rate of R/Sanderson Electronegativity (RTe+). These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.

  5. Study on the activity of non-purine xanthine oxidase inhibitor by 3D-QSAR modeling and molecular docking

    NASA Astrophysics Data System (ADS)

    Li, Peizhen; Tian, Yueli; Zhai, Honglin; Deng, Fangfang; Xie, Meihong; Zhang, Xiaoyun

    2013-11-01

    Non-purine derivatives have been shown to be promising novel drug candidates as xanthine oxidase inhibitors. Based on three-dimensional quantitative structure-activity relationship (3D-QSAR) methods including comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), two 3D-QSAR models for a series of non-purine xanthine oxidase (XO) inhibitors were established, and their reliability was supported by statistical parameters. Combined 3D-QSAR modeling and the results of molecular docking between non-purine xanthine oxidase inhibitors and XO, the main factors that influenced activity of inhibitors were investigated, and the obtained results could explain known experimental facts. Furthermore, several new potential inhibitors with higher activity predicted were designed, which based on our analyses, and were supported by the simulation of molecular docking. This study provided some useful information for the development of non-purine xanthine oxidase inhibitors with novel structures.

  6. 2D- and 3D-quantitative structure-activity relationship studies for a series of phenazine N,N'-dioxide as antitumour agents.

    PubMed

    Cunha, Jonathan Da; Lavaggi, María Laura; Abasolo, María Inés; Cerecetto, Hugo; González, Mercedes

    2011-12-01

    Hypoxic regions of tumours are associated with increased resistance to radiation and chemotherapy. Nevertheless, hypoxia has been used as a tool for specific activation of some antitumour prodrugs, named bioreductive agents. Phenazine dioxides are an example of such bioreductive prodrugs. Our 2D-quantitative structure activity relationship studies established that phenazine dioxides electronic and lipophilic descriptors are related to survival fraction in oxia or in hypoxia. Additionally, statistically significant models, derived by partial least squares, were obtained between survival fraction in oxia and comparative molecular field analysis standard model (r² = 0.755, q² = 0.505 and F = 26.70) or comparative molecular similarity indices analysis-combined steric and electrostatic fields (r² = 0.757, q² = 0.527 and F = 14.93), and survival fraction in hypoxia and comparative molecular field analysis standard model (r² = 0.736, q² = 0.521 and F = 18.63) or comparative molecular similarity indices analysis-hydrogen bond acceptor field (r² = 0.858, q² = 0.737 and F = 27.19). Categorical classification was used for the biological parameter selective cytotoxicity emerging also good models, derived by soft independent modelling of class analogy, with both comparative molecular field analysis standard model (96% of overall classification accuracy) and comparative molecular similarity indices analysis-steric field (92% of overall classification accuracy). 2D- and 3D-quantitative structure-activity relationships models provided important insights into the chemical and structural basis involved in the molecular recognition process of these phenazines as bioreductive agents and should be useful for the design of new structurally related analogues with improved potency. © 2011 John Wiley & Sons A/S.

  7. Molecular Cloning and Analysis of a DNA Repetitive Element from the Mouse Genome

    ERIC Educational Resources Information Center

    Geisinger, Adriana; Cossio, Gabriela; Wettstein, Rodolfo

    2006-01-01

    We report the development of a 3-week laboratory activity for an undergraduate molecular biology course. This activity introduces students to the practice of basic molecular techniques such as restriction enzyme digestion, agarose gel electrophoresis, cloning, plasmid DNA purification, Southern blotting, and sequencing. Students learn how to carry…

  8. Quantum chemical and statistical study of megazol-derived compounds with trypanocidal activity

    NASA Astrophysics Data System (ADS)

    Rosselli, F. P.; Albuquerque, C. N.; da Silva, A. B. F.

    In this work we performed a structure-activity relationship (SAR) study with the aim to correlate molecular properties of the megazol compound and 10 of its analogs with the biological activity against Trypanosoma cruzi (trypanocidal or antichagasic activity) presented by these molecules. The biological activity indication was obtained from in vitro tests and the molecular properties (variables or descriptors) were obtained from the optimized chemical structures by using the PM3 semiempirical method. It was calculated ˜80 molecular properties selected among steric, constitutional, electronic, and lipophilicity properties. In order to reduce dimensionality and investigate which subset of variables (descriptors) would be more effective in classifying the compounds studied, according to their degree of trypanocidal activity, we employed statistical methodologies (pattern recognition and classification techniques) such as principal component analysis (PCA), hierarchical cluster analysis (HCA), K-nearest neighbor (KNN), and discriminant function analysis (DFA). These methods showed that the descriptors molecular mass (MM), energy of the second lowest unoccupied molecular orbital (LUMO+1), charge on the first nitrogen at substituent 2 (qN'), dihedral angles (D1 and D2), bond length between atom C4 and its substituent (L4), Moriguchi octanol-partition coefficient (MLogP), and length-to-breadth ratio (L/Bw) were the variables responsible for the separation between active and inactive compounds against T. cruzi. Afterwards, the PCA, KNN, and DFA models built in this work were used to perform trypanocidal activity predictions for eight new megazol analog compounds.

  9. Molecular activity prediction by means of supervised subspace projection based ensembles of classifiers.

    PubMed

    Cerruela García, G; García-Pedrajas, N; Luque Ruiz, I; Gómez-Nieto, M Á

    2018-03-01

    This paper proposes a method for molecular activity prediction in QSAR studies using ensembles of classifiers constructed by means of two supervised subspace projection methods, namely nonparametric discriminant analysis (NDA) and hybrid discriminant analysis (HDA). We studied the performance of the proposed ensembles compared to classical ensemble methods using four molecular datasets and eight different models for the representation of the molecular structure. Using several measures and statistical tests for classifier comparison, we observe that our proposal improves the classification results with respect to classical ensemble methods. Therefore, we show that ensembles constructed using supervised subspace projections offer an effective way of creating classifiers in cheminformatics.

  10. Molecular design of anticancer drug leads based on three-dimensional quantitative structure-activity relationship.

    PubMed

    Huang, Xiao Yan; Shan, Zhi Jie; Zhai, Hong Lin; Li, Li Na; Zhang, Xiao Yun

    2011-08-22

    Heat shock protein 90 (Hsp90) takes part in the developments of several cancers. Novobiocin, a typically C-terminal inhibitor for Hsp90, will probably used as an important anticancer drug in the future. In this work, we explored the valuable information and designed new novobiocin derivatives based on a three-dimensional quantitative structure-activity relationship (3D QSAR). The comparative molecular field analysis and comparative molecular similarity indices analysis models with high predictive capability were established, and their reliabilities are supported by the statistical parameters. Based on the several important influence factors obtained from these models, six new novobiocin derivatives with higher inhibitory activities were designed and confirmed by the molecular simulation with our models, which provide the potential anticancer drug leads for further research.

  11. 3D-quantitative structure-activity relationship studies on benzothiadiazepine hydroxamates as inhibitors of tumor necrosis factor-alpha converting enzyme.

    PubMed

    Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram

    2008-04-01

    A set of 29 benzothiadiazepine hydroxamates having selective tumor necrosis factor-alpha converting enzyme inhibitory activity were used to compare the quality and predictive power of 3D-quantitative structure-activity relationship, comparative molecular field analysis, and comparative molecular similarity indices models for the atom-based, centroid/atom-based, data-based, and docked conformer-based alignment. Removal of two outliers from the initial training set of molecules improved the predictivity of models. Among the 3D-quantitative structure-activity relationship models developed using the above four alignments, the database alignment provided the optimal predictive comparative molecular field analysis model for the training set with cross-validated r(2) (q(2)) = 0.510, non-cross-validated r(2) = 0.972, standard error of estimates (s) = 0.098, and F = 215.44 and the optimal comparative molecular similarity indices model with cross-validated r(2) (q(2)) = 0.556, non-cross-validated r(2) = 0.946, standard error of estimates (s) = 0.163, and F = 99.785. These models also showed the best test set prediction for six compounds with predictive r(2) values of 0.460 and 0.535, respectively. The contour maps obtained from 3D-quantitative structure-activity relationship studies were appraised for activity trends for the molecules analyzed. The comparative molecular similarity indices models exhibited good external predictivity as compared with that of comparative molecular field analysis models. The data generated from the present study helped us to further design and report some novel and potent tumor necrosis factor-alpha converting enzyme inhibitors.

  12. Molecular description of α-keto-based inhibitors of cruzain with activity against Chagas disease combining 3D-QSAR studies and molecular dynamics.

    PubMed

    Saraiva, Ádria P B; Miranda, Ricardo M; Valente, Renan P P; Araújo, Jéssica O; Souza, Rutelene N B; Costa, Clauber H S; Oliveira, Amanda R S; Almeida, Michell O; Figueiredo, Antonio F; Ferreira, João E V; Alves, Cláudio Nahum; Honorio, Kathia M

    2018-04-22

    In this work, a group of α-keto-based inhibitors of the cruzain enzyme with anti-chagas activity was selected for a three-dimensional quantitative structure-activity relationship study (3D-QSAR) combined with molecular dynamics (MD). Firstly, statistical models based on Partial Least Square (PLS) regression were developed employing comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) descriptors. Validation parameters (q 2 and r 2 )for the models were, respectively, 0.910 and 0.997 (CoMFA) and 0.913 and 0.992 (CoMSIA). In addition, external validation for the models using a test group revealed r 2 pred  = 0.728 (CoMFA) and 0.971 (CoMSIA). The most relevant aspect in this study was the generation of molecular fields in both favorable and unfavorable regions based on the models developed. These fields are important to interpret modifications necessary to enhance the biological activities of the inhibitors. This analysis was restricted considering the inhibitors in a fixed conformation, not interacting with their target, the cruzain enzyme. Then, MD was employed taking into account important variables such as time and temperature. MD helped describe the behavior of the inhibitors and their properties showed similar results as those generated by QSAR-3D study. © 2018 John Wiley & Sons A/S.

  13. Molecular modeling-driven approach for identification of Janus kinase 1 inhibitors through 3D-QSAR, docking and molecular dynamics simulations.

    PubMed

    Itteboina, Ramesh; Ballu, Srilata; Sivan, Sree Kanth; Manga, Vijjulatha

    2017-10-01

    Janus kinase 1 (JAK 1) belongs to the JAK family of intracellular nonreceptor tyrosine kinase. JAK-signal transducer and activator of transcription (JAK-STAT) pathway mediate signaling by cytokines, which control survival, proliferation and differentiation of a variety of cells. Three-dimensional quantitative structure activity relationship (3 D-QSAR), molecular docking and molecular dynamics (MD) methods was carried out on a dataset of Janus kinase 1(JAK 1) inhibitors. Ligands were constructed and docked into the active site of protein using GLIDE 5.6. Best docked poses were selected after analysis for further 3 D-QSAR analysis using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methodology. Employing 60 molecules in the training set, 3 D-QSAR models were generate that showed good statistical reliability, which is clearly observed in terms of r 2 ncv and q 2 loo values. The predictive ability of these models was determined using a test set of 25 molecules that gave acceptable predictive correlation (r 2 Pred ) values. The key amino acid residues were identified by means of molecular docking, and the stability and rationality of the derived molecular conformations were also validated by MD simulation. The good consonance between the docking results and CoMFA/CoMSIA contour maps provides helpful clues about the reasonable modification of molecules in order to design more efficient JAK 1 inhibitors. The developed models are expected to provide some directives for further synthesis of highly effective JAK 1 inhibitors.

  14. Evolution & Phylogenetic Analysis: Classroom Activities for Investigating Molecular & Morphological Concepts

    ERIC Educational Resources Information Center

    Franklin, Wilfred A.

    2010-01-01

    In a flexible multisession laboratory, students investigate concepts of phylogenetic analysis at both the molecular and the morphological level. Students finish by conducting their own analysis on a collection of skeletons representing the major phyla of vertebrates, a collection of primate skulls, or a collection of hominid skulls.

  15. MOLECULAR INTERACTION POTENTIALS FOR THE DEVELOPMENT OF STRUCTURE-ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Abstract
    One reasonable approach to the analysis of the relationships between molecular structure and toxic activity is through the investigation of the forces and intermolecular interactions responsible for chemical toxicity. The interaction between the xenobiotic and the bio...

  16. The Future of Molecular Analysis in Melanoma: Diagnostics to Direct Molecularly Targeted Therapy.

    PubMed

    Akabane, Hugo; Sullivan, Ryan J

    2016-02-01

    Melanoma is a malignancy of pigment-producing cells that is driven by a variety of genetic mutations and aberrations. In most cases, this leads to upregulation of the mitogen-activated protein kinase (MAPK) pathway through activating mutations of upstream mediators of the pathway including BRAF and NRAS. With the advent of effective MAPK pathway inhibitors, including the US FDA-approved BRAF inhibitors vemurafenib and dabrafenib and MEK inhibitor trametinib, molecular analysis has become an integral part of the care of patients with metastatic melanoma. In this article, the key molecular targets and strategies to inhibit these targets therapeutically are presented, and the techniques of identifying these targets, in both tissue and blood, are discussed.

  17. Quantitative Structure-Activity Relationship Modeling Coupled with Molecular Docking Analysis in Screening of Angiotensin I-Converting Enzyme Inhibitory Peptides from Qula Casein Hydrolysates Obtained by Two-Enzyme Combination Hydrolysis.

    PubMed

    Lin, Kai; Zhang, Lanwei; Han, Xue; Meng, Zhaoxu; Zhang, Jianming; Wu, Yifan; Cheng, Dayou

    2018-03-28

    In this study, Qula casein derived from yak milk casein was hydrolyzed using a two-enzyme combination approach, and high angiotensin I-converting enzyme (ACE) inhibitory activity peptides were screened by quantitative structure-activity relationship (QSAR) modeling integrated with molecular docking analysis. Hydrolysates (<3 kDa) derived from combinations of thermolysin + alcalase and thermolysin + proteinase K demonstrated high ACE inhibitory activities. Peptide sequences in hydrolysates derived from these two combinations were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). On the basis of the QSAR modeling prediction, a total of 16 peptides were selected for molecular docking analysis. The docking study revealed that four of the peptides (KFPQY, MPFPKYP, MFPPQ, and QWQVL) bound the active site of ACE. These four novel peptides were chemically synthesized, and their IC 50 was determined. Among these peptides, KFPQY showed the highest ACE inhibitory activity (IC 50 = 12.37 ± 0.43 μM). Our study indicated that Qula casein presents an excellent source to produce ACE inhibitory peptides.

  18. Comparison of 3D quantitative structure-activity relationship methods: Analysis of the in vitro antimalarial activity of 154 artemisinin analogues by hypothetical active-site lattice and comparative molecular field analysis

    NASA Astrophysics Data System (ADS)

    Woolfrey, John R.; Avery, Mitchell A.; Doweyko, Arthur M.

    1998-03-01

    Two three-dimensional quantitative structure-activity relationship (3D-QSAR) methods, comparative molecular field analysis (CoMFA) and hypothetical active site lattice (HASL), were compared with respect to the analysis of a training set of 154 artemisinin analogues. Five models were created, including a complete HASL and two trimmed versions, as well as two CoMFA models (leave-one-out standard CoMFA and the guided-region selection protocol). Similar r2 and q2 values were obtained by each method, although some striking differences existed between CoMFA contour maps and the HASL output. Each of the four predictive models exhibited a similar ability to predict the activity of a test set of 23 artemisinin analogues, although some differences were noted as to which compounds were described well by either model.

  19. Molecular similarity measures.

    PubMed

    Maggiora, Gerald M; Shanmugasundaram, Veerabahu

    2011-01-01

    Molecular similarity is a pervasive concept in chemistry. It is essential to many aspects of chemical reasoning and analysis and is perhaps the fundamental assumption underlying medicinal chemistry. Dissimilarity, the complement of similarity, also plays a major role in a growing number of applications of molecular diversity in combinatorial chemistry, high-throughput screening, and related fields. How molecular information is represented, called the representation problem, is important to the type of molecular similarity analysis (MSA) that can be carried out in any given situation. In this work, four types of mathematical structure are used to represent molecular information: sets, graphs, vectors, and functions. Molecular similarity is a pairwise relationship that induces structure into sets of molecules, giving rise to the concept of chemical space. Although all three concepts - molecular similarity, molecular representation, and chemical space - are treated in this chapter, the emphasis is on molecular similarity measures. Similarity measures, also called similarity coefficients or indices, are functions that map pairs of compatible molecular representations that are of the same mathematical form into real numbers usually, but not always, lying on the unit interval. This chapter presents a somewhat pedagogical discussion of many types of molecular similarity measures, their strengths and limitations, and their relationship to one another. An expanded account of the material on chemical spaces presented in the first edition of this book is also provided. It includes a discussion of the topography of activity landscapes and the role that activity cliffs in these landscapes play in structure-activity studies.

  20. Prioritization of anti-malarial hits from nature: chemo-informatic profiling of natural products with in vitro antiplasmodial activities and currently registered anti-malarial drugs.

    PubMed

    Egieyeh, Samuel Ayodele; Syce, James; Malan, Sarel F; Christoffels, Alan

    2016-01-29

    A large number of natural products have shown in vitro antiplasmodial activities. Early identification and prioritization of these natural products with potential for novel mechanism of action, desirable pharmacokinetics and likelihood for development into drugs is advantageous. Chemo-informatic profiling of these natural products were conducted and compared to currently registered anti-malarial drugs (CRAD). Natural products with in vitro antiplasmodial activities (NAA) were compiled from various sources. These natural products were sub-divided into four groups based on inhibitory concentration (IC50). Key molecular descriptors and physicochemical properties were computed for these compounds and analysis of variance used to assess statistical significance amongst the sets of compounds. Molecular similarity analysis, estimation of drug-likeness, in silico pharmacokinetic profiling, and exploration of structure-activity landscape were also carried out on these sets of compounds. A total of 1040 natural products were selected and a total of 13 molecular descriptors were analysed. Significant differences were observed among the sub-groups of NAA and CRAD for at least 11 of the molecular descriptors, including number of hydrogen bond donors and acceptors, molecular weight, polar and hydrophobic surface areas, chiral centres, oxygen and nitrogen atoms, and shape index. The remaining molecular descriptors, including clogP, number of rotatable bonds and number of aromatic rings, did not show any significant difference when comparing the two compound sets. Molecular similarity and chemical space analysis identified natural products that were structurally diverse from CRAD. Prediction of the pharmacokinetic properties and drug-likeness of these natural products identified over 50% with desirable drug-like properties. Nearly 70% of all natural products were identified as potentially promiscuous compounds. Structure-activity landscape analysis highlighted compound pairs that form 'activity cliffs'. In all, prioritization strategies for the NAA were proposed. Chemo-informatic profiling of NAA and CRAD have produced a wealth of information that may guide decisions and facilitate anti-malarial drug development from natural products. Articulation of the information provided within an interactive data-mining environment led to a prioritized list of NAA.

  1. Quantitative functional characterization of conserved molecular interactions in the active site of mannitol 2-dehydrogenase

    PubMed Central

    Lucas, James E; Siegel, Justin B

    2015-01-01

    Enzyme active site residues are often highly conserved, indicating a significant role in function. In this study we quantitate the functional contribution for all conserved molecular interactions occurring within a Michaelis complex for mannitol 2-dehydrogenase derived from Pseudomonas fluorescens (pfMDH). Through systematic mutagenesis of active site residues, we reveal that the molecular interactions in pfMDH mediated by highly conserved residues not directly involved in reaction chemistry can be as important to catalysis as those directly involved in the reaction chemistry. This quantitative analysis of the molecular interactions within the pfMDH active site provides direct insight into the functional role of each molecular interaction, several of which were unexpected based on canonical sequence conservation and structural analyses. PMID:25752240

  2. Understanding the conformational flexibility and electrostatic properties of curcumin in the active site of rhAChE via molecular docking, molecular dynamics, and charge density analysis.

    PubMed

    Saravanan, Kandasamy; Kalaiarasi, Chinnasamy; Kumaradhas, Poomani

    2017-12-01

    Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer's disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.

  3. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    NASA Astrophysics Data System (ADS)

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  4. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    PubMed Central

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  5. Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity.

    PubMed

    Brudzynski, Katrina; Miotto, Danielle

    2011-08-01

    Size-exclusion chromatography (SEC) and activity-guided fractionation of honeys allowed the isolation of high molecular weight brown compounds, ranging in size from 66 to 235kDa that exhibited peroxyl radical-scavenging activity. Their concentrations, antioxidant activity and degree of browning increased after heat-treatment of honeys, suggesting that they represent melanoidins. Chemical analysis of melanoidins demonstrated the presence of proteins, polyphenols and oligosaccharides. Heat-treatment caused an increased incorporation of phenolics into high molecular weight melanoidins and drastically decreased the protein content in these fractions with a concomitant appearance of high molecular weight protein-polyphenol complexes of reduced solubility. LC-ESI-MS demonstrated the presence of oligosaccharide moieties, supporting the postulated origin of melanoidins. The changes in the phenolic content of melanoidins from heated honeys were strongly correlated with their oxygen radical absorbance capacity (ORAC) values (R=0.75, p<0.0001), indicating that polyphenols contribute to the antioxidant activity of melanoidins. In summary, honey melanoidins are multi-component polymers consisting of protein-polyphenol-oligosaccharide complexes. A direct interaction between polyphenols and melanoidins resulted in a loss or gain of function for melanoidin antioxidant activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. R-based Tool for a Pairwise Structure-activity Relationship Analysis.

    PubMed

    Klimenko, Kyrylo

    2018-04-01

    The Structure-Activity Relationship analysis is a complex process that can be enhanced by computational techniques. This article describes a simple tool for SAR analysis that has a graphic user interface and a flexible approach towards the input of molecular data. The application allows calculating molecular similarity represented by Tanimoto index & Euclid distance, as well as, determining activity cliffs by means of Structure-Activity Landscape Index. The calculation is performed in a pairwise manner either for the reference compound and other compounds or for all possible pairs in the data set. The results of SAR analysis are visualized using two types of plot. The application capability is demonstrated by the analysis of a set of COX2 inhibitors with respect to Isoxicam. This tool is available online: it includes manual and input file examples. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Analysis of molecular interactions in solid dosage forms; challenge to molecular pharmaceutics.

    PubMed

    Yamamoto, Keiji; Limwikrant, Waree; Moribe, Kunikazu

    2011-01-01

    The molecular states of active pharmaceutical ingredients (APIs) in pharmaceutical dosage forms strongly affect the properties and quality of a drug. Various important fundamental physicochemical studies were reviewed from the standpoint of molecular pharmaceutics. Mechanochemical effects were evaluated in mixtures of APIs and pharmaceutical additives. Amorphization, complex formation and nanoparticle formation are observed after grinding process depending on the combination of APIs and pharmaceutical additives. Sealed-heating method and mesoporous materials have been used to investigate drug molecular interactions in dosage forms. Molecular states have been investigated using powder X-ray diffraction, thermal analysis, IR, solid state fluorometry, and NMR. © 2011 Pharmaceutical Society of Japan

  8. Research relative to atmosphere physics and spacecraft applications studies

    NASA Technical Reports Server (NTRS)

    Greenwood, Stuart W.

    1987-01-01

    Progress is reported in several areas of research. Brief descriptions are given in each of the following areas: Spacelab data analysis; San Marco activity; Molecular physics; Stellar energy analysis; Troposphere data analysis; Voyager encounter analysis; Laser activity; Gravity wave study; Venus studies; and Shuttle environmental studies.

  9. Rational design of methicillin resistance staphylococcus aureus inhibitors through 3D-QSAR, molecular docking and molecular dynamics simulations.

    PubMed

    Ballu, Srilata; Itteboina, Ramesh; Sivan, Sree Kanth; Manga, Vijjulatha

    2018-04-01

    Staphylococcus aureus is a gram positive bacterium. It is the leading cause of skin and respiratory infections, osteomyelitis, Ritter's disease, endocarditis, and bacteraemia in the developed world. We employed combined studies of 3D QSAR, molecular docking which are validated by molecular dynamics simulations and in silico ADME prediction have been performed on Isothiazoloquinolones inhibitors against methicillin resistance Staphylococcus aureus. Three-dimensional quantitative structure-activity relationship (3D-QSAR) study was applied using comparative molecular field analysis (CoMFA) with Q 2 of 0.578, R 2 of 0.988, and comparative molecular similarity indices analysis (CoMSIA) with Q 2 of 0.554, R 2 of 0.975. The predictive ability of these model was determined using a test set of molecules that gave acceptable predictive correlation (r 2 Pred) values 0.55 and 0.57 of CoMFA and CoMSIA respectively. Docking, simulations were employed to position the inhibitors into protein active site to find out the most probable binding mode and most reliable conformations. Developed models and Docking methods provide guidance to design molecules with enhanced activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Spectral investigations, DFT computations and molecular docking studies of 1,7,8,9-tetrachloro-10,10-dimethoxy-4-{3-[4-(2-methylphenyl)piperazin-1-yl]propyl}-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione

    NASA Astrophysics Data System (ADS)

    Resmi, K. S.; Mary, Y. Sheena; Varghese, Hema Tresa; Panicker, C. Yohannan; Pakosińska-Parys, Magdalena; Alsenoy, C. Van

    2015-10-01

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of the title compound have been investigated experimentally and theoretically. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analysed using NBO analysis. The hyperpolarisability calculation reveals the present material has a reasonably good propensity for nonlinear optical activity. Due to the different potential biological activity of the title compound, molecular docking study is also reported and the compound might exhibit inhibitory activity against human M2 muscarinic acetylcholine receptor.

  11. Insight into the interaction mechanism of human SGLT2 with its inhibitors: 3D-QSAR studies, homology modeling, and molecular docking and molecular dynamics simulations.

    PubMed

    Dong, Lili; Feng, Ruirui; Bi, Jiawei; Shen, Shengqiang; Lu, Huizhe; Zhang, Jianjun

    2018-03-06

    Human sodium-dependent glucose co-transporter 2 (hSGLT2) is a crucial therapeutic target in the treatment of type 2 diabetes. In this study, both comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were applied to generate three-dimensional quantitative structure-activity relationship (3D-QSAR) models. In the most accurate CoMFA-based and CoMSIA-based QSAR models, the cross-validated coefficients (r 2 cv ) were 0.646 and 0.577, respectively, while the non-cross-validated coefficients (r 2 ) were 0.997 and 0.991, respectively, indicating that both models were reliable. In addition, we constructed a homology model of hSGLT2 in the absence of a crystal structure. Molecular docking was performed to explore the bonding mode of inhibitors to the active site of hSGLT2. Molecular dynamics (MD) simulations and binding free energy calculations using MM-PBSA and MM-GBSA were carried out to further elucidate the interaction mechanism. With regards to binding affinity, we found that hydrogen-bond interactions of Asn51 and Glu75, located in the active site of hSGLT2, with compound 40 were critical. Hydrophobic and electrostatic interactions were shown to enhance activity, in agreement with the results obtained from docking and 3D-QSAR analysis. Our study results shed light on the interaction mode between inhibitors and hSGLT2 and may aid in the development of C-aryl glucoside SGLT2 inhibitors.

  12. Molecular design of new aggrecanases-2 inhibitors.

    PubMed

    Shan, Zhi Jie; Zhai, Hong Lin; Huang, Xiao Yan; Li, Li Na; Zhang, Xiao Yun

    2013-10-01

    Aggrecanases-2 is a very important potential drug target for the treatment of osteoarthritis. In this study, a series of known aggrecanases-2 inhibitors was analyzed by the technologies of three-dimensional quantitative structure-activity relationships (3D-QSAR) and molecular docking. Two 3D-QSAR models, which based on comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods, were established. Molecular docking was employed to explore the details of the interaction between inhibitors and aggrecanases-2 protein. According to the analyses for these models, several new potential inhibitors with higher activity predicted were designed, and were supported by the simulation of molecular docking. This work propose the fast and effective approach to design and prediction for new potential inhibitors, and the study of the interaction mechanism provide a better understanding for the inhibitors binding into the target protein, which will be useful for the structure-based drug design and modifications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Investigation of binding features: effects on the interaction between CYP2A6 and inhibitors.

    PubMed

    Ai, Chunzhi; Li, Yan; Wang, Yonghua; Li, Wei; Dong, Peipei; Ge, Guangbo; Yang, Ling

    2010-07-15

    A computational investigation has been carried out on CYP2A6 and its naphthalene inhibitors to explore the crucial molecular features contributing to binding specificity. The molecular bioactive orientations were obtained by docking (FlexX) these compounds into the active site of the enzyme. And the density functional theory method was further used to optimize the molecular structures with the subsequent analysis of molecular lipophilic potential (MLP) and molecular electrostatic potential (MEP). The minimal MLPs, minimal MEPs, and the band gap energies (the energy difference between the highest occupied molecular orbital and lowest unoccupied molecular orbital) showed high correlations with the inhibition activities (pIC(50)s), illustrating their significant roles in driving the inhibitor to adopt an appropriate bioactive conformation oriented in the active site of CYP2A6 enzyme. The differences in MLPs, MEPs, and the orbital energies have been identified as key features in determining the binding specificity of this series of compounds to CYP2A6 and the consequent inhibitory effects. In addition, the combinational use of the docking, MLP and MEP analysis is also demonstrated as a good attempt to gain an insight into the interaction between CYP2A6 and its inhibitors. Copyright 2010 Wiley Periodicals, Inc.

  14. A Short Review of the Generation of Molecular Descriptors and Their Applications in Quantitative Structure Property/Activity Relationships.

    PubMed

    Sahoo, Sagarika; Adhikari, Chandana; Kuanar, Minati; Mishra, Bijay K

    2016-01-01

    Synthesis of organic compounds with specific biological activity or physicochemical characteristics needs a thorough analysis of the enumerable data set obtained from literature. Quantitative structure property/activity relationships have made it simple by predicting the structure of the compound with any optimized activity. For that there is a paramount data set of molecular descriptors (MD). This review is a survey on the generation of the molecular descriptors and its probable applications in QSP/AR. Literatures have been collected from a wide class of research journals, citable web reports, seminar proceedings and books. The MDs were classified according to their generation. The applications of the MDs on the QSP/AR have also been reported in this review. The MDs can be classified into experimental and theoretical types, having a sub classification of the later into structural and quantum chemical descriptors. The structural parameters are derived from molecular graphs or topology of the molecules. Even the pixel of the molecular image can be used as molecular descriptor. In QSPR studies the physicochemical properties include boiling point, heat capacity, density, refractive index, molar volume, surface tension, heat of formation, octanol-water partition coefficient, solubility, chromatographic retention indices etc. Among biological activities toxicity, antimalarial activity, sensory irritant, potencies of local anesthetic, tadpole narcosis, antifungal activity, enzyme inhibiting activity are some important parameters in the QSAR studies. The classification of the MDs is mostly generic in nature. The application of the MDs in QSP/AR also has a generic link. Experimental MDs are more suitable in correlation analysis than the theoretical ones but are more expensive for generation. In advent of sophisticated computational tools and experimental design proliferation of MDs is inevitable, but for a highly optimized MD, studies on generation of MD is an unending process.

  15. Ultrathin inorganic molecular nanowire based on polyoxometalates

    PubMed Central

    Zhang, Zhenxin; Murayama, Toru; Sadakane, Masahiro; Ariga, Hiroko; Yasuda, Nobuhiro; Sakaguchi, Norihito; Asakura, Kiyotaka; Ueda, Wataru

    2015-01-01

    The development of metal oxide-based molecular wires is important for fundamental research and potential practical applications. However, examples of these materials are rare. Here we report an all-inorganic transition metal oxide molecular wire prepared by disassembly of larger crystals. The wires are comprised of molybdenum(VI) with either tellurium(IV) or selenium(IV): {(NH4)2[XMo6O21]}n (X=tellurium(IV) or selenium(IV)). The ultrathin molecular nanowires with widths of 1.2 nm grow to micrometre-scale crystals and are characterized by single-crystal X-ray analysis, Rietveld analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, thermal analysis and elemental analysis. The crystals can be disassembled into individual molecular wires through cation exchange and subsequent ultrasound treatment, as visualized by atomic force microscopy and transmission electron microscopy. The ultrathin molecular wire-based material exhibits high activity as an acid catalyst, and the band gap of the molecular wire-based crystal is tunable by heat treatment. PMID:26139011

  16. Lacosamide derivatives with anticonvulsant activity as carbonic anhydrase inhibitors. Molecular modeling, docking and QSAR analysis.

    PubMed

    Garro Martinez, Juan C; Vega-Hissi, Esteban G; Andrada, Matías F; Duchowicz, Pablo R; Torrens, Francisco; Estrada, Mario R

    2014-01-01

    Lacosamide is an anticonvulsant drug which presents carbonic anhydrase inhibition. In this paper, we analyzed the apparent relationship between both activities performing a molecular modeling, docking and QSAR studies on 18 lacosamide derivatives with known anticonvulsant activity. Docking results suggested the zinc-binding site of carbonic anhydrase is a possible target of lacosamide and lacosamide derivatives making favorable Van der Waals interactions with Asn67, Gln92, Phe131 and Thr200. The mathematical models revealed a poor relationship between the anticonvulsant activity and molecular descriptors obtained from DFT and docking calculations. However, a QSAR model was developed using Dragon software descriptors. The statistic parameters of the model are: correlation coefficient, R=0.957 and standard deviation, S=0.162. Our results provide new valuable information regarding the relationship between both activities and contribute important insights into the essential molecular requirements for the anticonvulsant activity.

  17. Transcriptome analysis supports viral infection and fluoride toxicity as contributors to chronic kidney disease of unknown etiology (CKDu) in Sri Lanka.

    PubMed

    Sayanthooran, Saravanabavan; Gunerathne, Lishanthe; Abeysekera, Tilak D J; Magana-Arachchi, Dhammika N

    2018-05-28

    Chronic kidney disease of unknown etiology (CKDu), having epidemic characteristics, is being diagnosed increasingly in certain tropical regions of the world, mainly Latin America and Sri Lanka. They have been observed primarily in farming communities and current hypotheses point toward many environmental and occupational triggers. CKDu does not have common etiologies of chronic kidney disease (CKD) such as hypertension, diabetes, or autoimmune disease. We aimed to understand the molecular processes underlying CKDu in Sri Lanka using transcriptome analysis. RNA extracted from whole blood was reverse transcribed and used for microarray analysis using the Human HT-12 v.4 array (Illumina). Pathway analysis was carried out using ingenuity pathway analysis (IPA-Qiagen). Microarray results were validated using real-time PCR of five selected genes. Pathways related to innate immune response, including interferon signaling, inflammasome signaling and TREM1 signaling had the most significant positive activation z scores, where as EIF2 signaling and mTOR signaling had the most significant negative activation z scores. Pathways previously linked to fluoride toxicity; G-protein activation, Cdc42 signaling, Rac signaling and RhoA signaling were activated in CKDu patients. The most significantly activated biological functions were cell death, cell movement and antimicrobial response. Significant toxicological functions were mitochondrial dysfunction, oxidative stress and apoptosis. Based on the molecular pathway analysis in CKDu patients and review of literature, viral infections and fluoride toxicity appear to be contributing to the molecular mechanisms underlying CKDu.

  18. Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding.

    PubMed

    Young, Tom; Abel, Robert; Kim, Byungchan; Berne, Bruce J; Friesner, Richard A

    2007-01-16

    The thermodynamic properties and phase behavior of water in confined regions can vary significantly from that observed in the bulk. This is particularly true for systems in which the confinement is on the molecular-length scale. In this study, we use molecular dynamics simulations and a powerful solvent analysis technique based on inhomogenous solvation theory to investigate the properties of water molecules that solvate the confined regions of protein active sites. Our simulations and analysis indicate that the solvation of protein active sites that are characterized by hydrophobic enclosure and correlated hydrogen bonds induce atypical entropic and enthalpic penalties of hydration. These penalties apparently stabilize the protein-ligand complex with respect to the independently solvated ligand and protein, which leads to enhanced binding affinities. Our analysis elucidates several challenging cases, including the super affinity of the streptavidin-biotin system.

  19. Molecular genetic analysis of activation-tagged transcription factors thought to be involved in photomorphogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neff, Michael M.

    This is a final report for Department of Energy Grant No. DE-FG02-08ER15927 entitled “Molecular Genetic Analysis of Activation-Tagged Transcription Factors Thought to be Involved in Photomorphogenesis”. Based on our preliminary photobiological and genetic analysis of the sob1-D mutant, we hypothesized that OBP3 is a transcription factor involved in both phytochrome and cryptochrome-mediated signal transduction. In addition, we hypothesized that OBP3 is involved in auxin signaling and root development. Based on our preliminary photobiological and genetic analysis of the sob2-D mutant, we also hypothesized that a related gene, LEP, is involved in hormone signaling and seedling development.

  20. Combining molecular docking and QSAR studies for modeling the anti-tyrosinase activity of aromatic heterocycle thiosemicarbazone analogues

    NASA Astrophysics Data System (ADS)

    Dong, Huanhuan; Liu, Jing; Liu, Xiaoru; Yu, Yanying; Cao, Shuwen

    2018-01-01

    A collection of thirty-six aromatic heterocycle thiosemicarbazone analogues presented a broad span of anti-tyrosinase activities were designed and obtained. A robust and reliable two-dimensional quantitative structure-activity relationship model, as evidenced by the high q2 and r2 values (0.848 and 0.893, respectively), was gained based on the analogues to predict the quantitative chemical-biological relationship and the new modifier direction. Inhibitory activities of the compounds were found to greatly depend on molecular shape and orbital energy. Substituents brought out large ovality and high highest-occupied molecular orbital energy values helped to improve the activity of these analogues. The molecular docking results provided visual evidence for QSAR analysis and inhibition mechanism. Based on these, two novel tyrosinase inhibitors O04 and O05 with predicted IC50 of 0.5384 and 0.8752 nM were designed and suggested for further research.

  1. Molecular structure, FT-IR, vibrational assignments, HOMO-LUMO, MEP, NBO analysis and molecular docking study of ethyl-6-(4-chlorophenyl)-4-(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate.

    PubMed

    Sheena Mary, Y; Yohannan Panicker, C; Sapnakumari, M; Narayana, B; Sarojini, B K; Al-Saadi, Abdulaziz A; Van Alsenoy, Christian; War, Javeed Ahmad

    2015-03-05

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of ethyl-6-(4-chlorophenyl)-4-(4-fluoro-phenyl)-2-oxocyclohex-3-ene-1-carboxylate have been investigated experimentally and theoretically using Gaussian09 software. The title compound was optimized using the HF and DFT levels of theory. The geometrical parameters are in agreement with the XRD data. The stability of the molecule has been analyzed by NBO analysis. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential was performed by the DFT method. As can be seen from the MEP map of the title compound, regions having the negative potential are over the electro negative atoms, the region having the positive potential are over the phenyl rings and the remaining species are surrounded by zero potential. First hyperpolarizability is calculated in order to find its role in non linear optics. The title compound binds at the active sites of both CypD and β-secretase and the molecular docking results draw the conclusion that the compound might exhibit β-secretase inhibitory activity which could be utilized for development of new anti-alzheimeric drugs with mild CypD inhibitory activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Molecular docking and spectroscopic investigations aided by density functional theory of Parkinson's drug 2-(3,4-dihydroxyphenyl)ethylamine

    NASA Astrophysics Data System (ADS)

    Sherlin, Y. Sheeba; Vijayakumar, T.; Roy, S. D. D.; Jayakumar, V. S.

    2018-05-01

    Molecular geometry of Parkinson's drug 2-(3,4-Dihydroxyphenyl)ethylamine hydrochloride (Dopamine, DA) has been evaluated and compared with experimental XRD data. Molecular docking and vibrational spectral analysis of DA have been carried out using FT-Raman and FT-IR spectra aided by Density Functional Theory at B3LYP/6-311++G(d,p). The present investigation deals with the analysis of structural and spectral features responsible for drug activities, nature of hydrogen bonding interactions of the molecule and the correlation of Parkinson's nature with its molecular structural features.

  3. (D)- and (L)-cyclohexenyl-G, a new class of antiviral agents: synthesis, conformational analysis, molecular modeling, and biological activity.

    PubMed

    Wang, J; Froeyen, M; Hendrix, C; Andrei, C; Snoeck, R; Lescrinier, E; De Clercq, E; Herdewijn, P

    2001-01-01

    (D)- and (L)-cyclohexeneyl-G were synthesized enantioselectively starting from (R)-carvone. Both show potent and selective anti-herpesvirus activity (HSV-1, HSV-2, VZV, CMV). Molecular modeling demonstrates that both isomers are bound in the active site of HSV-1 thymidine kinase in a high-energy conformation with the base moiety orienting in an equatorial position. It is believed that the flexibility of the cyclohexene ring is essential for their antiviral activity.

  4. Vibrational, spectroscopic, molecular docking and density functional theory studies on N-(5-aminopyridin-2-yl)acetamide

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Rekha, T. N.; Premkumar, S.; Mathavan, T.; Benial, A. Milton Franklin

    2016-12-01

    Conformational analysis was carried out for N-(5-aminopyridin-2-yl)acetamide (APA) molecule. The most stable, optimized structure was predicted by the density functional theory calculations using the B3LYP functional with cc-pVQZ basis set. The optimized structural parameters and vibrational frequencies were calculated. The experimental and theoretical vibrational frequencies were assigned and compared. Ultraviolet-visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated. Frontier molecular orbitals and related molecular properties were computed, which reveals that the higher molecular reactivity and stability of the APA molecule and further density of states spectrum was simulated. The natural bond orbital analysis was also performed to confirm the bioactivity of the APA molecule. Antidiabetic activity was studied based on the molecular docking analysis and the APA molecule was identified that it can act as a good inhibitor against diabetic nephropathy.

  5. Molecular Modeling Studies of 4,5-Dihydro-1H-pyrazolo[4,3-h] quinazoline Derivatives as Potent CDK2/Cyclin A Inhibitors Using 3D-QSAR and Docking

    PubMed Central

    Ai, Yong; Wang, Shao-Teng; Sun, Ping-Hua; Song, Fa-Jun

    2010-01-01

    CDK2/cyclin A has appeared as an attractive drug targets over the years with diverse therapeutic potentials. A computational strategy based on comparative molecular fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) followed by molecular docking studies were performed on a series of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as potent CDK2/cyclin A inhibitors. The CoMFA and CoMSIA models, using 38 molecules in the training set, gave r2cv values of 0.747 and 0.518 and r2 values of 0.970 and 0.934, respectively. 3D contour maps generated by the CoMFA and CoMSIA models were used to identify the key structural requirements responsible for the biological activity. Molecular docking was applied to explore the binding mode between the ligands and the receptor. The information obtained from molecular modeling studies may be helpful to design novel inhibitors of CDK2/cyclin A with desired activity. PMID:21152296

  6. Molecular modeling studies of 4,5-dihydro-1H-pyrazolo[4,3-h] quinazoline derivatives as potent CDK2/Cyclin a inhibitors using 3D-QSAR and docking.

    PubMed

    Ai, Yong; Wang, Shao-Teng; Sun, Ping-Hua; Song, Fa-Jun

    2010-09-28

    CDK2/cyclin A has appeared as an attractive drug targets over the years with diverse therapeutic potentials. A computational strategy based on comparative molecular fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) followed by molecular docking studies were performed on a series of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as potent CDK2/cyclin A inhibitors. The CoMFA and CoMSIA models, using 38 molecules in the training set, gave r(2) (cv) values of 0.747 and 0.518 and r(2) values of 0.970 and 0.934, respectively. 3D contour maps generated by the CoMFA and CoMSIA models were used to identify the key structural requirements responsible for the biological activity. Molecular docking was applied to explore the binding mode between the ligands and the receptor. The information obtained from molecular modeling studies may be helpful to design novel inhibitors of CDK2/cyclin A with desired activity.

  7. Synthesis, spectroscopic analyses, chemical reactivity and molecular docking study and anti-tubercular activity of pyrazine and condensed oxadiazole derivatives

    NASA Astrophysics Data System (ADS)

    Al-Tamimi, Abdul-Malek S.; Mary, Y. Sheena; Miniyar, Pankaj B.; Al-Wahaibi, Lamya H.; El-Emam, Ali A.; Armaković, Stevan; Armaković, Sanja J.

    2018-07-01

    The FT-IR spectral analysis and theoretical calculations of the wavenumbers of three oxadiazole derivatives, 2-(5-(2-chlorophenyl)-1,3,4-oxadiazol-2-yl)pyrazine (ORTHOPHPZ), 2-(5-(3-chlorophenyl)-1,3,4-oxadiazol-2-yl)pyrazine (METAPHPZ) and 2-(5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)pyrazine (PARAPHPZ) were reported in the present work. The theoretically predicted values of polarizability give the nonlinear behaviour of the compounds. The frontier molecular orbital analysis show the chemical stability of the title compounds and the NBO analysis gives the interactions in the molecular systems. Understanding of reactivity of newly synthetiszed oxadiazole derivatives in this study has been achieved thanks to combination of density functional theory (DFT) calculations, molecular dynamics (MD) simulations and molecular docking procedures. New oxadiazole derivatives have also been characterized experimentally through FT-IR and NMR approaches, thanks to which detailed structural properties have been understood. Both global and local reactivity properties have been investigated by calculations of quantum molecular descriptors such as molecular electrostatic potential (MEP), local average ionization energy (ALIE), Fukui functions, bond dissociation energies for hydrogen abstraction (H-BDE), radial distribution functions and binding energies of ligand against selected protein. The first hyperpolarizabilities of ORTHOPHPZ, METAPHPZ and PARAPHPZ are respectively, 84.62, 94.71 and 184.10 times that of urea. The docked ligands form stable complexes with the receptor 1-phosphatidylinositol phosphodiesterase and the results suggest that these compounds can be developed as new anti-cancer drugs. The anti-TB activity of PM series against M. tuberculosis H37RV strain was performed by Middlebrooke 7H-9 method. The compounds, ORTHOPHPZ, METAPHPZ and PARAPHPZ were moderately active between 25 and 50 μg/ml concentration as compared with the standard anti-TB agents and the -log MIC activity was found in the range of 1.011-1.274 as compared with isoniazid (INH) (1.137) and pyrazinamide (PZA) (1.115) standard anti-TB agents.

  8. Design of Novel Chemotherapeutic Agents Targeting Checkpoint Kinase 1 Using 3D-QSAR Modeling and Molecular Docking Methods.

    PubMed

    Balupuri, Anand; Balasubramanian, Pavithra K; Cho, Seung J

    2016-01-01

    Checkpoint kinase 1 (Chk1) has emerged as a potential therapeutic target for design and development of novel anticancer drugs. Herein, we have performed three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking analyses on a series of diazacarbazoles to design potent Chk1 inhibitors. 3D-QSAR models were developed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. Docking studies were performed using AutoDock. The best CoMFA and CoMSIA models exhibited cross-validated correlation coefficient (q2) values of 0.631 and 0.585, and non-cross-validated correlation coefficient (r2) values of 0.933 and 0.900, respectively. CoMFA and CoMSIA models showed reasonable external predictabilities (r2 pred) of 0.672 and 0.513, respectively. A satisfactory performance in the various internal and external validation techniques indicated the reliability and robustness of the best model. Docking studies were performed to explore the binding mode of inhibitors inside the active site of Chk1. Molecular docking revealed that hydrogen bond interactions with Lys38, Glu85 and Cys87 are essential for Chk1 inhibitory activity. The binding interaction patterns observed during docking studies were complementary to 3D-QSAR results. Information obtained from the contour map analysis was utilized to design novel potent Chk1 inhibitors. Their activities and binding affinities were predicted using the derived model and docking studies. Designed inhibitors were proposed as potential candidates for experimental synthesis.

  9. Combined 3D-QSAR modeling and molecular docking study on azacycles CCR5 antagonists

    NASA Astrophysics Data System (ADS)

    Ji, Yongjun; Shu, Mao; Lin, Yong; Wang, Yuanqiang; Wang, Rui; Hu, Yong; Lin, Zhihua

    2013-08-01

    The beta chemokine receptor 5 (CCR5) is an attractive target for pharmaceutical industry in the HIV-1, inflammation and cancer therapeutic areas. In this study, we have developed quantitative structure activity relationship (QSAR) models for a series of 41 azacycles CCR5 antagonists using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and Topomer CoMFA methods. The cross-validated coefficient q2 values of 3D-QASR (CoMFA, CoMSIA, and Topomer CoMFA) methods were 0.630, 0.758, and 0.852, respectively, the non-cross-validated R2 values were 0.979, 0.978, and 0.990, respectively. Docking studies were also employed to determine the most probable binding mode. 3D contour maps and docking results suggested that bulky groups and electron-withdrawing groups on the core part would decrease antiviral activity. Furthermore, docking results indicated that H-bonds and π bonds were favorable for antiviral activities. Finally, a set of novel derivatives with predicted activities were designed.

  10. Synthesis, crystal structures, computational studies and antimicrobial activity of new designed bis((5-aryl-1,3,4-oxadiazol-2-yl)thio)alkanes

    NASA Astrophysics Data System (ADS)

    Ahmed, Muhammad Naeem; Sadiq, Beenish; Al-Masoudi, Najim A.; Yasin, Khawaja Ansar; Hameed, Shahid; Mahmood, Tariq; Ayub, Khurshid; Tahir, Muhammad Nawaz

    2018-03-01

    A new series of bis((5-aryl-1,3,4-oxadiazol-2-yl)thio)alkanes 4-14 have been synthesized via nucleophilic substitution reaction of dihaloalkanes with respective 1,3,4-oxadiazole-2-thiols 3a-f, and characterized by spectroscopic techniques. The structures of 4 and 12 were unambiguously confirmed by single-crystal X-ray diffraction analysis. Density functional theory calculations at B3LYP/6-31 + G(d) level of theory were performed for comparison of X-ray geometric parameters, molecular electrostatic potential (MEP) and frontier molecular orbital analyses of synthesized compounds. MEP analysis revealed that these compounds are nucleophilic in nature. Frontier molecular orbitals (FMOs) analysis of 4-14 was performed for evaluation of kinetic stability. All synthesized compounds were screened in vitro for antimicrobial activity against three bacterial and three fungal strains and showed promising results.

  11. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), Fukui function, antimicrobial and molecular docking study of (E)-1-(3-bromobenzylidene)semicarbazide by DFT method

    NASA Astrophysics Data System (ADS)

    Raja, M.; Raj Muhamed, R.; Muthu, S.; Suresh, M.; Muthu, K.

    2017-02-01

    The title compound, (E)-1-(3-bromobenzylidene)semicarbazide (3BSC) was synthesized and characterized by FT-IR, FT-Raman, UV, 1HNMR and 13CNMR spectral analysis. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated by using density functional theory (DFT) B3LYP method with 6-311++G(d,p) basis set. The calculated HOMO and LUMO energies show that charge transfer within the molecule. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The hyperpolarizability calculation reveals the present material has a reasonably good propensity for nonlinear optical activity. Molecular electrostatic potential (MEP) and Fukui functions were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the 3BSC at different temperatures have been calculated. The biological applications of 3BSC have been screened for its antimicrobial activity and found to exhibit antifungal and antibacterial effects. In addition, the Molecular docking was also performed for the different receptors.

  12. Chemical characterization, antioxidant and antitumor activity of sulfated polysaccharide from Sargassum horneri.

    PubMed

    Shao, Ping; Chen, Xiaoxiao; Sun, Peilong

    2014-05-25

    Three water-soluble polysaccharide fractions (SHP30, SHP60, and SHP80) extracted from the Sargassum horneri were obtained by water extraction and radial flow chromatography. The high-performance gel-permeation chromatography analysis showed that the average molecular weight (Mw) of three polysaccharides were approximately 1.58×10(3), 1.92×10(3) and 11.2KDa, respectively. Their in vitro antioxidant activities, antitumor activities were investigated and compared. Among these three polysaccharides, SHP30 with the highest sulfate content and intermediate molecular weight exhibited excellent antioxidant and antitumor activities in the superoxide radical assay, hydroxyl radical assay, reducing power assay, and MTT assay. Then, flow cytometry assay and quantitative real-time reverse transcription-PCR analysis suggested that the accumulation of cells in G0/G1 and S phase effecting apoptosis-associated gene expressions such as Bcl-2 and Bax might account for the growth inhibition of DLD cells by SHP30. Based on these results, we have inferred that sulfate content and molecular weight were the factors influencing antioxidant and antitumor activities. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  13. Virantmycin, a new antiviral antibiotic produced by a strain of Streptomyces.

    PubMed

    Nakagawa, A; Iwai, Y; Hashimoto, H; Miyazaki, N; Oiwa, R; Takahashi, Y; Hirano, A; Shibukawa, N; Kojima, Y; Omura, S

    1981-11-01

    Virantmycin, a novel chlorine-containing antiviral antibiotic, has been isolated from Streptomyces nitrosporeus No. AM-2722. The active substance in culture broth is isolated as colorless needles by solvent extraction followed by high performance liquid chromatography on silicic acid. The molecular formula is C19H26NO3Cl (molecular weight 351) from the elemental analysis and mass spectrum. The antibiotic possesses antifungal activity and potent inhibitory activity against various RNA and DNA viruses.

  14. Activation of a camptothecin prodrug by specific carboxylesterases as predicted by quantitative structure-activity relationship and molecular docking studies.

    PubMed

    Yoon, Kyoung Jin P; Krull, Erik J; Morton, Christopher L; Bornmann, William G; Lee, Richard E; Potter, Philip M; Danks, Mary K

    2003-11-01

    7-Ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (irinotecan, CPT-11) is a camptothecin prodrug that is metabolized by carboxylesterases (CE) to the active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38), a topoisomerase I inhibitor. CPT-11 has shown encouraging antitumor activity against a broad spectrum of tumor types in early clinical trials, but hematopoietic and gastrointestinal toxicity limit its administration. To increase the therapeutic index of CPT-11 and to develop other prodrug analogues for enzyme/prodrug gene therapy applications, our laboratories propose to develop camptothecin prodrugs that will be activated by specific CEs. Specific analogues might then be predicted to be activated, for example, predominantly by human liver CE(hCE1), by human intestinal CE (hiCE), or in gene therapy approaches using a rabbit liver CE (rCE). This study describes a molecular modeling approach to relate the structure of rCE-activated camptothecin prodrugs with their biological activation. Comparative molecular field analysis, comparative molecular similarity index analysis, and docking studies were used to predict the biological activity of a 4-benzylpiperazine derivative of CPT-11 [7-ethyl-10-[4-(1-benzyl)-1-piperazino]carbonyloxycamptothecin (BP-CPT)] in U373MG glioma cell lines transfected with plasmids encoding rCE or hiCE. BP-CPT has been reported to be activated more efficiently than CPT-11 by a rat serum esterase activity; however, three-dimensional quantitative structure-activity relationship studies predicted that rCE would activate BP-CPT less efficiently than CPT-11. This was confirmed by both growth inhibition experiments and kinetic studies. The method is being used to design camptothecin prodrugs predicted to be activated by specific CEs.

  15. Synthesis of 4-aminophenyl substituted indole derivatives for the instrumental analysis and molecular docking evaluation studies

    NASA Astrophysics Data System (ADS)

    Singh, Navneet; Kumar, Keshav

    2017-07-01

    The Indole has been known to maintain celebrity status since so many decades and has been a centre point at the spectrum of pharmacological research. The present work stimulates an idea of generating a pool of library of lead compounds. The data collected can be used for the mapping of biologically active compounds. The reported derivatives of 4-aminophenyl substituted Indole were prepared by the methods of Fischer Indole synthesis and Vilsemeier reaction followed by screening for instrumental analysis and molecular docking studies. The synthesized compounds 4-(1-(2-phenylhydrazono)ethyl)aniline, 1, 4-(1H-indol-2-yl)aniline, 2 and 2-(4-aminophenyl)-1H-indole-3-carbaldehyde, 3 were found to have remarkable yield and instrumental data analysis and also showed remarkable docked characteristic. The molecular docking studies revealed that ligand (amino acids) of comp. 1, 2 and 3 had been docked successfully on the binding site of the 3JUS protein selected from PDB with H bonding. The molecular docking data showed that compound 1, would possess remarkable biological activity and compd. 2 and 3 would possess mild to moderate biological activity. Thus this research work paves the way to synthesize new derivatives and thus to develop new compounds in future with accurate prediction.

  16. Three-dimensional quantitative structure-activity relationship analysis for human pregnane X receptor for the prediction of CYP3A4 induction in human hepatocytes: structure-based comparative molecular field analysis.

    PubMed

    Handa, Koichi; Nakagome, Izumi; Yamaotsu, Noriyuki; Gouda, Hiroaki; Hirono, Shuichi

    2015-01-01

    The pregnane X receptor [PXR (NR1I2)] induces the expression of xenobiotic metabolic genes and transporter genes. In this study, we aimed to establish a computational method for quantifying the enzyme-inducing potencies of different compounds via their ability to activate PXR, for the application in drug discovery and development. To achieve this purpose, we developed a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) for predicting enzyme-inducing potencies, based on computer-ligand docking to multiple PXR protein structures sampled from the trajectory of a molecular dynamics simulation. Molecular mechanics-generalized born/surface area scores representing the ligand-protein-binding free energies were calculated for each ligand. As a result, the predicted enzyme-inducing potencies for compounds generated by the CoMFA model were in good agreement with the experimental values. Finally, we concluded that this 3D-QSAR model has the potential to predict the enzyme-inducing potencies of novel compounds with high precision and therefore has valuable applications in the early stages of the drug discovery process. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Molecular imaging assessment of periodontitis lesions in an experimental mouse model.

    PubMed

    Ideguchi, Hidetaka; Yamashiro, Keisuke; Yamamoto, Tadashi; Shimoe, Masayuki; Hongo, Shoichi; Kochi, Shinsuke; Yoshihara-Hirata, Chiaki; Aoyagi, Hiroaki; Kawamura, Mari; Takashiba, Shogo

    2018-06-06

    We aimed to evaluate molecular imaging as a novel diagnostic tool for mice periodontitis model induced by ligature and Porphyromonas gingivalis (Pg) inoculation. Twelve female mice were assigned to the following groups: no treatment as control group (n = 4); periodontitis group induced by ligature and Pg as Pg group (n = 4); and Pg group treated with glycyrrhizinic acid (GA) as Pg + GA group (n = 4). All mice were administered a myeloperoxidase (MPO) activity-specific luminescent probe and observed using a charge-coupled device camera on day 14. Image analysis on all mice was conducted using software to determine the signal intensity of inflammation. Additionally, histological and radiographic evaluation for periodontal inflammation and bone resorption at the site of periodontitis, and quantitative enzyme-linked immunosorbent assay (ELISA) were conducted on three mice for each group. Each experiment was performed three times. Levels of serum IgG antibody against P. gingivalis were significantly higher in the Pg than in the Pg + GA group. Histological analyses indicated that the number of osteoclasts and neutrophils were significantly lower in the Pg + GA than in the Pg group. Micro-CT image analysis indicated no difference in bone resorption between the Pg and Pg + GA groups. The signal intensity of MPO activity was detected on the complete craniofacial image; moreover, strong signal intensity was localized specifically at the periodontitis site in the ex vivo palate, with group-wise differences. Molecular imaging analysis based on MPO activity showed high sensitivity of detection of periodontal inflammation in mice. Molecular imaging analysis based on MPO activity has potential as a diagnostic tool for periodontitis.

  18. A pharmacophore model specific to active site of CYP1A2 with a novel molecular modeling explorer and CoMFA.

    PubMed

    Zhang, Tao; Wei, Dong-Qing; Chou, Kuo-Chen

    2012-03-01

    Comparative molecular field analysis (CoMFA) is a widely used 3D-QSAR method by which we can investigate the potential relation between biological activity of compounds and their structural features. In this study, a new application of this approach is presented by combining the molecular modeling with a new developed pharmacophore model specific to CYP1A2 active site. During constructing the model, we used the molecular dynamics simulation and molecular docking method to select the sensible binding conformations for 17 CYP1A2 substrates based on the experimental data. Subsequently, the results obtained via the alignment of binding conformations of substrates were projected onto the active- site residues, upon which a simple blueprint of active site was produced. It was validated by the experimental and computational results that the model did exhibit the high degree of rationality and provide useful insights into the substrate binding. It is anticipated that our approach can be extended to investigate the protein-ligand interactions for many other enzyme-catalyzed systems as well.

  19. Exploring the binding mechanism of Heteroaryldihydropyrimidines and Hepatitis B Virus capsid combined 3D-QSAR and molecular dynamics.

    PubMed

    Tu, Jing; Li, Jiao Jiao; Shan, Zhi Jie; Zhai, Hong Lin

    2017-01-01

    The non-nucleoside drugs have been developed to treat HBV infection owing to their increased efficacy and lesser side effects, in which heteroaryldihydropyrimidines (HAPs) have been identified as effective inhibitors of HBV capsid. In this paper, the binding mechanism of HAPs targeting on HBV capsid protein was explored through three-dimensional quantitative structure-activity relationship, molecular dynamics and binding free energy decompositions. The obtained models of comparative molecular field analysis and comparative molecular similarity indices analysis enable the sufficient interpretation of structure-activity relationship of HAPs-HBV. The binding free energy analysis correlates with the experimental data. The computational results disclose that the non-polar contribution is the major driving force and Y132A mutation enhances the binding affinity for inhibitor 2 bound to HBV. The hydrogen bond interactions between the inhibitors and Trp102 help to stabilize the conformation of HAPs-HBV. The study provides insight into the binding mechanism of HAPs-HBV and would be useful for the rational design and modification of new lead compounds of HAP drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Metabolic activation of sodium nitroprusside to nitric oxide in vascular smooth muscle.

    PubMed

    Kowaluk, E A; Seth, P; Fung, H L

    1992-09-01

    Sodium nitroprusside (SNP) is thought to exert its vasodilating activity, at least in part, by vascular activation to nitric oxide (NO), but the activation mechanism has not been delineated. This study has examined the potential for vascular metabolism of SNP to NO in bovine coronary arterial smooth muscle subcellular fractions using a sensitive and specific redox-chemiluminescence assay for NO. SNP was readily metabolized to NO in subcellular fractions, and the dominant site of metabolism appeared to be located in the membrane fractions. NO-generating activity was significantly enhanced by, but did not absolutely require, the addition of a NADPH-regenerating system, NADPH per se, NADH or cysteine. A correlation analysis of NO-generating activity (in the presence of a NADPH-regenerating system) with marker enzyme activities indicated that the SNP-directed NO-generating activity was primarily membrane-associated. Radiation inactivation target-size analysis revealed that the microsomal SNP-directed NO-generating activity was relatively insensitive to inactivation by radiation exposure, suggesting that the functioning catalytic unit might be quite small. A molecular weight of 5 to 11 kDa was estimated. NO-generating activity could be solubilized from the crude microsomes with 3-[(3-cholamidopropyl)- dimethylammonio]-1-propane sulfonate, and the solubilized extract was subjected to gel filtration chromatography. NO-generating activity was eluted in two peaks: one peak corresponding to an approximate molecular weight of 4 kDa, thus confirming the existence of a small molecular weight NO-generating activity, and a second activity peak corresponding to a molecular weight of 112 to 169 kDa, the functional significance of which is unclear at present.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Vibrational spectroscopic, structural and nonlinear optical activity studies on 6-aminonicotinamide: A DFT approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asath, R. Mohamed; Premkumar, S.; Mathavan, T.

    2016-05-23

    The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase andmore » liquid phase (ethanol) and the π to π* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.« less

  2. Vibrational spectroscopic, structural and nonlinear optical activity studies on 6-aminonicotinamide: A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase and liquid phase (ethanol) and the л to л* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.

  3. Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives

    DOE PAGES

    Jagiello, Karolina; Grzonkowska, Monika; Swirog, Marta; ...

    2016-08-29

    In this contribution, the advantages and limitations of two computational techniques that can be used for the investigation of nanoparticles activity and toxicity: classic nano-QSAR (Quantitative Structure–Activity Relationships employed for nanomaterials) and 3D nano-QSAR (three-dimensional Quantitative Structure–Activity Relationships, such us Comparative Molecular Field Analysis, CoMFA/Comparative Molecular Similarity Indices Analysis, CoMSIA analysis employed for nanomaterials) have been briefly summarized. Both approaches were compared according to the selected criteria, including: efficiency, type of experimental data, class of nanomaterials, time required for calculations and computational cost, difficulties in the interpretation. Taking into account the advantages and limitations of each method, we provide themore » recommendations for nano-QSAR modellers and QSAR model users to be able to determine a proper and efficient methodology to investigate biological activity of nanoparticles in order to describe the underlying interactions in the most reliable and useful manner.« less

  4. Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagiello, Karolina; Grzonkowska, Monika; Swirog, Marta

    In this contribution, the advantages and limitations of two computational techniques that can be used for the investigation of nanoparticles activity and toxicity: classic nano-QSAR (Quantitative Structure–Activity Relationships employed for nanomaterials) and 3D nano-QSAR (three-dimensional Quantitative Structure–Activity Relationships, such us Comparative Molecular Field Analysis, CoMFA/Comparative Molecular Similarity Indices Analysis, CoMSIA analysis employed for nanomaterials) have been briefly summarized. Both approaches were compared according to the selected criteria, including: efficiency, type of experimental data, class of nanomaterials, time required for calculations and computational cost, difficulties in the interpretation. Taking into account the advantages and limitations of each method, we provide themore » recommendations for nano-QSAR modellers and QSAR model users to be able to determine a proper and efficient methodology to investigate biological activity of nanoparticles in order to describe the underlying interactions in the most reliable and useful manner.« less

  5. [Study on action mechanism and material base of compound Danshen dripping pills in treatment of carotid atherosclerosis based on techniques of gene expression profile and molecular fingerprint].

    PubMed

    Zhou, Wei; Song, Xiang-gang; Chen, Chao; Wang, Shu-mei; Liang, Sheng-wang

    2015-08-01

    Action mechanism and material base of compound Danshen dripping pills in treatment of carotid atherosclerosis were discussed based on gene expression profile and molecular fingerprint in this paper. First, gene expression profiles of atherosclerotic carotid artery tissues and histologically normal tissues in human body were collected, and were screened using significance analysis of microarray (SAM) to screen out differential gene expressions; then differential genes were analyzed by Gene Ontology (GO) analysis and KEGG pathway analysis; to avoid some genes with non-outstanding differential expression but biologically importance, Gene Set Enrichment Analysis (GSEA) were performed, and 7 chemical ingredients with higher negative enrichment score were obtained by Cmap method, implying that they could reversely regulate the gene expression profiles of pathological tissues; and last, based on the hypotheses that similar structures have similar activities, 336 ingredients of compound Danshen dripping pills were compared with 7 drug molecules in 2D molecular fingerprints method. The results showed that 147 differential genes including 60 up-regulated genes and 87 down regulated genes were screened out by SAM. And in GO analysis, Biological Process ( BP) is mainly concerned with biological adhesion, response to wounding and inflammatory response; Cellular Component (CC) is mainly concerned with extracellular region, extracellular space and plasma membrane; while Molecular Function (MF) is mainly concerned with antigen binding, metalloendopeptidase activity and peptide binding. KEGG pathway analysis is mainly concerned with JAK-STAT, RIG-I like receptor and PPAR signaling pathway. There were 10 compounds, such as hexadecane, with Tanimoto coefficients greater than 0.85, which implied that they may be the active ingredients (AIs) of compound Danshen dripping pills in treatment of carotid atherosclerosis (CAs). The present method can be applied to the research on material base and molecular action mechanism of TCM.

  6. Analysis of structural changes in active site of luciferase adsorbed on nanofabricated hydrophilic Si surface by molecular-dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishiyama, Katsuhiko; Hoshino, Tadatsugu; Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522

    2007-05-21

    Interactions between luciferase and a nanofabricated hydrophilic Si surface were explored by molecular-dynamics simulations. The structural changes in the active-site residues, the residues affecting the luciferin binding, and the residues affecting the bioluminescence color were smaller on the nanofabricated hydrophilic Si surface than on both a hydrophobic Si surface and a hydrophilic Si surface. The nanofabrication and wet-treatment techniques are expected to prevent the decrease in activity of luciferase on the Si surface.

  7. Molecular investigation of active binding site of isoniazid (INH) and insight into resistance mechanism of S315T-MtKatG in Mycobacterium tuberculosis.

    PubMed

    Srivastava, Gaurava; Tripathi, Shubhandra; Kumar, Akhil; Sharma, Ashok

    2017-07-01

    Multi drug resistant tuberculosis is a major threat for mankind. Resistance against Isoniazid (INH), targeting MtKatG protein, is one of the most commonly occurring resistances in MDR TB strains. S315T-MtKatG mutation is widely reported for INH resistance. Despite having knowledge about the mechanism of INH, exact binding site of INH to MtKatG is still uncertain and proposed to have three presumable binding sites (site-1, site-2, and site-3). In the current study docking, molecular dynamics simulation, binding free energy estimation, principal component analysis and free energy landscape analysis were performed to get molecular level details of INH binding site on MtKatG, and to probe the effect of S315T mutation on INH binding. Molecular docking and MD analysis suggested site-1 as active binding site of INH, where the effects of S315T mutation were observed on both access tunnel as well as molecular interaction between INH and its neighboring residues. MMPBSA also supported site-1 as potential binding site with lowest binding energy of -44.201 kJ/mol. Moreover, PCA and FEL revealed that S315T mutation not only reduces the dimension of heme access tunnel but also showed that extra methyl group at 315 position altered heme cavity, enforcing heme group distantly from INH, and thus preventing INH activation. The present study not only investigated the active binding site of INH but also provides a new insight about the conformational changes in the binding site of S315T-MtKatG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Principal component analysis on molecular descriptors as an alternative point of view in the search of new Hsp90 inhibitors.

    PubMed

    Lauria, Antonino; Ippolito, Mario; Almerico, Anna Maria

    2009-10-01

    Inhibiting a protein that regulates multiple signal transduction pathways in cancer cells is an attractive goal for cancer therapy. Heat shock protein 90 (Hsp90) is one of the most promising molecular targets for such an approach. In fact, Hsp90 is a ubiquitous molecular chaperone protein that is involved in folding, activating and assembling of many key mediators of signal transduction, cellular growth, differentiation, stress-response and apoptothic pathways. With the aim to analyze which molecular descriptors have the higher importance in the binding interactions of these classes, we first performed molecular docking experiments on the 187 Hsp90 inhibitors included in the BindingDB, a public database of measured binding affinities. Further, for each frozen conformation obtained from the docking, a set of 250 molecular descriptors was calculated, and the resulting Structure/Descriptors matrix was submitted to Principal Component Analysis. From the factor scores it emerged a good clusterization among similar compounds both in terms of structural class and activity spectrum, while examination of the loadings of the first two factors also allowed to study the classes of descriptors which mainly contribute to each one.

  9. New Insights into the Organization, Recombination, Expression and Functional Mechanism of Low Molecular Weight Glutenin Subunit Genes in Bread Wheat

    PubMed Central

    Fan, Huajie; Sun, Jiazhu; Zhang, Zhongjuan; Qin, Huanju; Li, Bin; Hao, Shanting; Li, Zhensheng; Wang, Daowen; Zhang, Aimin; Ling, Hong-Qing

    2010-01-01

    The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding. PMID:20975830

  10. Toward the identification of a reliable 3D-QSAR model for the protein tyrosine phosphatase 1B inhibitors

    NASA Astrophysics Data System (ADS)

    Wang, Fangfang; Zhou, Bo

    2018-04-01

    Protein tyrosine phosphatase 1B (PTP1B) is an intracellular non-receptor phosphatase that is implicated in signal transduction of insulin and leptin pathways, thus PTP1B is considered as potential target for treating type II diabetes and obesity. The present article is an attempt to formulate the three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling of a series of compounds possessing PTP1B inhibitory activities using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. The optimum template ligand-based models are statistically significant with great CoMFA (R2cv = 0.600, R2pred = 0.6760) and CoMSIA (R2cv = 0.624, R2pred = 0.8068) values. Molecular docking was employed to elucidate the inhibitory mechanisms of this series of compounds against PTP1B. In addition, the CoMFA and CoMSIA field contour maps agree well with the structural characteristics of the binding pocket of PTP1B active site. The knowledge of structure-activity relationship and ligand-receptor interactions from 3D-QSAR model and molecular docking will be useful for better understanding the mechanism of ligand-receptor interaction and facilitating development of novel compounds as potent PTP1B inhibitors.

  11. Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis.

    PubMed

    Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe

    2017-12-06

    Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 < MoF 3 < MoF 6 before sharply decreasing for MoF 9 , with a similar effect for the supported systems (MoF 0 ≈ MoF 9 < MoF 6 < MoF 3 ). This is consistent with the different kinetic behavior (zeroth order in alkyne for MoF 9 derivatives instead of first order for the others) and the isolation of stable metallacyclobutadiene intermediates of MoF 9 for both molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.

  12. Synthesis, QSAR, and Molecular Dynamics Simulation of Amidino-substituted Benzimidazoles as Dipeptidyl Peptidase III Inhibitors.

    PubMed

    Rastija, Vesna; Agić, Dejan; Tomiš, Sanja; Nikolič, Sonja; Hranjec, Marijana; Grace, Karminski-Zamola; Abramić, Marija

    2015-01-01

    A molecular modeling study is performed on series of benzimidazol-based inhibitors of human dipeptidyl peptidase III (DPP III). An eight novel compounds were synthesized in excellent yields using green chemistry approach. This study is aimed to elucidate the structural features of benzimidazole derivatives required for antagonism of human DPP III activity using Quantitative Structure-Activity Relationship (QSAR) analysis, and to understand the mechanism of one of the most potent inhibitor binding into the active site of this enzyme, by molecular dynamics (MD) simulations. The best model obtained includes S3K and RDF045m descriptors which have explained 89.4 % of inhibitory activity. Depicted moiety for strong inhibition activity matches to the structure of most potent compound. MD simulation has revealed importance of imidazolinyl and phenyl groups in the mechanism of binding into the active site of human DPP III.

  13. New insights into the molecular characteristics behind the function of Renilla luciferase.

    PubMed

    Fanaei-Kahrani, Zahra; Ganjalikhany, Mohamad Reza; Rasa, Seyed Mohammad Mahdi; Emamzadeh, Rahman

    2018-02-01

    Renilla Luciferase (RLuc) is a blue light emitter protein which can be applied as a valuable tool in medical diagnosis. But due to lack of the crystal structure of RLuc-ligand complex, the functional motions and catalytic mechanism of this enzyme remain largely unknown. In the present study, the active site properties and the ligand-receptor interactions of the native RLuc and its red-shifted light emitting variant (Super RLuc 8) were investigated using molecular docking approach, molecular dynamics (MD) analysis, and MM-PBSA method. The detailed analysis of the main clusters led to identifying a lid-like structure and its functional motions. Furthermore, an induced-fit mechanism is proposed where ligand-binding induces conformational changes of the active site. Our findings give an insight into the deeper understanding of RLuc conformational changes during binding steps and ligand-receptor pattern. Moreover, our work broaden our understanding of how active site geometry is adjusted to support the catalytic activity and red-shifted light emission in Super RLuc 8. © 2017 Wiley Periodicals, Inc.

  14. Synthesis of a molecularly defined single-active site heterogeneous catalyst for selective oxidation of N-heterocycles.

    PubMed

    Zhang, Yujing; Pang, Shaofeng; Wei, Zhihong; Jiao, Haijun; Dai, Xingchao; Wang, Hongli; Shi, Feng

    2018-04-13

    Generally, a homogeneous catalyst exhibits good activity and defined active sites but it is difficult to recycle. Meanwhile, a heterogeneous catalyst can easily be reused but its active site is difficult to reveal. It is interesting to bridge the gap between homogeneous and heterogeneous catalysis via controllable construction of a heterogeneous catalyst containing defined active sites. Here, we report that a molecularly defined, single-active site heterogeneous catalyst has been designed and prepared via the oxidative polymerization of maleimide derivatives. These polymaleimide derivatives can be active catalysts for the selective oxidation of heterocyclic compounds to quinoline and indole via the recycling of -C=O and -C-OH groups, which was confirmed by tracing the reaction with GC-MS using maleimide as the catalyst and by FT-IR analysis with polymaleimide as the catalyst. These results might promote the development of heterogeneous catalysts with molecularly defined single active sites exhibiting a comparable activity to homogeneous catalysts.

  15. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The Neural Development Section (NDS) headed by Dr. Lino Tessarollo has an open postdoctoral fellow position. The candidate should have a background in neurobiology and basic expertise in molecular biology, cell biology, immunoistochemistry and biochemistry.  Experience in confocal analysis is desired. The NDS study the biology of neurotrophin and Trk receptors function by using both in vitro and in vivo approaches. Our group makes extensive use of engineered mouse models and cell culture models. The current research emphasis is on understanding the molecular mechanisms by which activated trk receptor function. Specifically, we are dissecting the molecular mechanism responsible for modulating Trk receptors activity, including their interaction with specific scaffold proteins and proteins leading to de-activation of Trk signaling. Moreover, we are attempting to identify new signaling pathways activated by truncated Trk receptors.

  16. Primary Culture of Undifferentiated Pleomorphic Sarcoma: Molecular Characterization and Response to Anticancer Agents

    PubMed Central

    Recine, Federica; Mercatali, Laura; Miserocchi, Giacomo; Spadazzi, Chiara; Liverani, Chiara; Bongiovanni, Alberto; Pieri, Federica; Casadei, Roberto; Riva, Nada; Fausti, Valentina; Amadori, Dino; Ibrahim, Toni

    2017-01-01

    Undifferentiated pleomorphic sarcoma (UPS) is an aggressive mesenchymal neoplasm with no specific line of differentiation. Eribulin, a novel synthetic microtubule inhibitor, has shown anticancer activity in several tumors, including soft tissue sarcomas (STS). We investigated the molecular biology of UPS, and the mechanisms of action of this innovative microtubule-depolymerizing drug. A primary culture from a patient with UPS was established and characterized in terms of gene expression. The activity of eribulin was also compared with that of other drugs currently used for STS treatment, including trabectedin. Finally, Western blot analysis was performed to better elucidate the activity of eribulin. Our results showed an upregulation of epithelial mesenchymal transition-related genes, and a downregulation of epithelial markers. Furthermore, genes involved in chemoresistance were upregulated. Pharmacological analysis confirmed limited sensitivity to chemotherapy. Interestingly, eribulin exhibited a similar activity to that of standard treatments. Molecular analysis revealed the expression of cell cycle arrest-related and pro-apoptotic-related proteins. These findings are suggestive of aggressive behavior in UPS. Furthermore, the identification of chemoresistance-related genes could facilitate the development of innovative drugs to improve patient outcome. Overall, the results from the present study furnish a rationale for elucidating the role of eribulin for the treatment of UPS. PMID:29292724

  17. The application of molecular modelling in the safety assessment of chemicals: A case study on ligand-dependent PPARγ dysregulation.

    PubMed

    Al Sharif, Merilin; Tsakovska, Ivanka; Pajeva, Ilza; Alov, Petko; Fioravanzo, Elena; Bassan, Arianna; Kovarich, Simona; Yang, Chihae; Mostrag-Szlichtyng, Aleksandra; Vitcheva, Vessela; Worth, Andrew P; Richarz, Andrea-N; Cronin, Mark T D

    2017-12-01

    The aim of this paper was to provide a proof of concept demonstrating that molecular modelling methodologies can be employed as a part of an integrated strategy to support toxicity prediction consistent with the mode of action/adverse outcome pathway (MoA/AOP) framework. To illustrate the role of molecular modelling in predictive toxicology, a case study was undertaken in which molecular modelling methodologies were employed to predict the activation of the peroxisome proliferator-activated nuclear receptor γ (PPARγ) as a potential molecular initiating event (MIE) for liver steatosis. A stepwise procedure combining different in silico approaches (virtual screening based on docking and pharmacophore filtering, and molecular field analysis) was developed to screen for PPARγ full agonists and to predict their transactivation activity (EC 50 ). The performance metrics of the classification model to predict PPARγ full agonists were balanced accuracy=81%, sensitivity=85% and specificity=76%. The 3D QSAR model developed to predict EC 50 of PPARγ full agonists had the following statistical parameters: q 2 cv =0.610, N opt =7, SEP cv =0.505, r 2 pr =0.552. To support the linkage of PPARγ agonism predictions to prosteatotic potential, molecular modelling was combined with independently performed mechanistic mining of available in vivo toxicity data followed by ToxPrint chemotypes analysis. The approaches investigated demonstrated a potential to predict the MIE, to facilitate the process of MoA/AOP elaboration, to increase the scientific confidence in AOP, and to become a basis for 3D chemotype development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. In vivo anti-radiation activities of the Ulva pertusa polysaccharides and polysaccharide-iron(III) complex.

    PubMed

    Shi, Jinming; Cheng, Cuilin; Zhao, Haitian; Jing, Jing; Gong, Ning; Lu, Weihong

    2013-09-01

    Polysaccharides with different molecular weights were extracted from Ulva pertusa and fractionated by ultrafiltration. Iron(III) complex of the low molecular-weight U. pertusa polysaccharides were synthesized. Atomic absorption spectrum showed that the iron content of iron(III)-polysaccharide complex was 27.4%. The comparison between U. pertusa polysaccharides and their iron(III) complex showed that iron chelating altered the structural characteristics of the polysaccharides. The bioactivity analysis showed that polysaccharide with low molecular weight was more effective than polysaccharide with high molecular weight in protecting mice from radiation induced damages on bone marrow cells and immune system. Results also proved that the anti-radiation and anti-oxidative activity of iron(III) complex of low molecular-weight polysaccharides were not less than that of low molecular-weight polysaccharides. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. 3D-QSAR modeling and molecular docking studies on a series of 2,5 disubstituted 1,3,4-oxadiazoles

    NASA Astrophysics Data System (ADS)

    Ghaleb, Adib; Aouidate, Adnane; Ghamali, Mounir; Sbai, Abdelouahid; Bouachrine, Mohammed; Lakhlifi, Tahar

    2017-10-01

    3D-QSAR (comparative molecular field analysis (CoMFA)) and comparative molecular similarity indices analysis (CoMSIA) were performed on novel 2,5 disubstituted 1,3,4-oxadiazoles analogues as anti-fungal agents. The CoMFA and CoMSIA models using 13 compounds in the training set gives Q2 values of 0.52 and 0.51 respectively, while R2 values of 0.92. The adapted alignment method with the suitable parameters resulted in reliable models. The contour maps produced by the CoMFA and CoMSIA models were employed to determine a three-dimensional quantitative structure-activity relationship. Based on this study a set of new molecules with high predicted activities were designed. Surflex-docking confirmed the stability of predicted molecules in the receptor.

  20. Synthesis, fungicidal evaluation and 3D-QSAR studies of novel 1,3,4-thiadiazole xylofuranose derivatives

    PubMed Central

    Zong, Guanghui; Yan, Xiaojing; Bi, Jiawei; Jiang, Rui; Qin, Yinan; Yuan, Huizhu; Lu, Huizhe; Dong, Yanhong; Jin, Shuhui; Zhang, Jianjun

    2017-01-01

    1,3,4-Thiadiazole and sugar-derived molecules have proven to be promising agrochemicals with growth promoting, insecticidal and fungicidal activities. In the research field of agricultural fungicide, applying union of active group we synthesized a new set of 1,3,4-thiadiazole xylofuranose derivatives and all of the compounds were characterized by 1H NMR and HRMS. In precise toxicity measurement, some of compounds exhibited more potent fungicidal activities than the most widely used commercial fungicide Chlorothalonil, promoting further research and development. Based on our experimental data, 3D-QSAR (three-dimensional quantitative structure-activity relationship) was established and investigated using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques, helping to better understand the structural requirements of lead compounds with high fungicidal activity and environmental compatibility. PMID:28746366

  1. Systematic understanding the mechanisms of vitiligo pathogenesis and its treatment by Qubaibabuqi formula.

    PubMed

    Pei, Tianli; Zheng, Chunli; Huang, Chao; Chen, Xuetong; Guo, Zihu; Fu, Yingxue; Liu, Jianling; Wang, Yonghua

    2016-08-22

    Vitiligo is a depigmentation disorder, which results in substantial cosmetic disfigurement and poses a detriment to patients' physical as well as mental. Now the molecular pathogenesis of vitiligo still remains unclear, which leads to a daunting challenge for vitiligo therapy in modern medicine. Herbal medicines, characterized by multi-compound and multi-target, have long been shown effective in treating vitiligo, but their molecular mechanisms of action also remain ambiguous. Here we proposed a systems pharmacology approach using a clinically effective herb formula as a tool to detect the molecular pathogenesis of vitiligo. This study provided an integrative analysis of active chemicals, drug targets and interacting pathways of the Uygur medicine Qubaibabuqi formula for curing Vitiligo. The results show that 56 active ingredients of Qubaibabuqi interacting with 83 therapeutic proteins were identified. And Qubaibabuqi probably participate in immunomodulation, neuromodulation and keratinocytes apoptosis inhibition in treatment of vitiligo by a synergistic/cooperative way. The drug-target network-based analysis and pathway-based analysis can provide a new approach for understanding the pathogenesis of vitiligo and uncovering the molecular mechanisms of Qubaibabuqi, which will also facilitate the application of traditional Chinese herbs in modern medicine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Molecular properties of steroids involved in their effects on the biophysical state of membranes.

    PubMed

    Wenz, Jorge J

    2015-10-01

    The activity of steroids on membranes was studied in relation to their ordering, rigidifying, condensing and/or raft promoting ability. The structures of 82 steroids were modeled by a semi-empirical procedure (AM1) and 245 molecular descriptors were next computed on the optimized energy conformations. Principal component analysis, mean contrasting and logistic regression were used to correlate the molecular properties with 212 cases of documented activities. It was possible to group steroids based on their properties and activities, indicating that steroids having similar molecular properties have similar activities on membranes. Steroids having high values of area, partition coefficient, volume, number of rotatable bonds, molar refractivity, polarizability or mass displayed ordering, rigidifying, condensing and/or raft promoting activity on membranes higher than those steroids having low values in such molecular properties. After a variable selection procedure circumventing correlation problems among descriptors, area and log P were found as the most relevant properties in governing and predicting the activity of steroids on membranes. A logistic regression model as a function of the area and log P of the steroids is proposed, which is able to predict correctly 92.5% of the cases. A rationale of the findings is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Quantum-SAR Extension of the Spectral-SAR Algorithm. Application to Polyphenolic Anticancer Bioactivity

    PubMed Central

    Putz, Mihai V.; Putz, Ana-Maria; Lazea, Marius; Ienciu, Luciana; Chiriac, Adrian

    2009-01-01

    Aiming to assess the role of individual molecular structures in the molecular mechanism of ligand-receptor interaction correlation analysis, the recent Spectral-SAR approach is employed to introduce the Quantum-SAR (QuaSAR) “wave” and “conversion factor” in terms of difference between inter-endpoint inter-molecular activities for a given set of compounds; this may account for inter-conversion (metabolization) of molecular (concentration) effects while indicating the structural (quantum) based influential/detrimental role on bio-/eco- effect in a causal manner rather than by simple inspection of measured values; the introduced QuaSAR method is then illustrated for a study of the activity of a series of flavonoids on breast cancer resistance protein. PMID:19399244

  4. Hierarchical Modeling of Activation Mechanisms in the ABL and EGFR Kinase Domains: Thermodynamic and Mechanistic Catalysts of Kinase Activation by Cancer Mutations

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2009-01-01

    Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases. PMID:19714203

  5. Crystallographic Determination of Molecular Parameters for K2SiF6: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Loehlin, James H.; Norton, Alexandra P.

    1988-01-01

    Describes a crystallography experiment using both diffraction-angle and diffraction-intensity information to determine the lattice constant and a lattice independent molecular parameter, while still employing standard X-ray powder diffraction techniques. Details the method, experimental details, and analysis for this activity. (CW)

  6. Inhibition of acetylcholinesterase by two genistein derivatives: kinetic analysis, molecular docking and molecular dynamics simulation.

    PubMed

    Fang, Jiansong; Wu, Ping; Yang, Ranyao; Gao, Li; Li, Chao; Wang, Dongmei; Wu, Song; Liu, Ai-Lin; Du, Guan-Hua

    2014-12-01

    In this study two genistein derivatives (G1 and G2) are reported as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and differences in the inhibition of AChE are described. Although they differ in structure by a single methyl group, the inhibitory effect of G1 (IC50=264 nmol/L) on AChE was 80 times stronger than that of G2 (IC50=21,210 nmol/L). Enzyme-kinetic analysis, molecular docking and molecular dynamics (MD) simulations were conducted to better understand the molecular basis for this difference. The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE. The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area (MM/GBSA) method were consistent with the experimental data. The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions (ΔE ele+ΔG GB) was responsible for the binding affinities of these two inhibitors. Additionally, analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124, Glu292, Val294 and Phe338 of AChE. In conclusion, the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds.

  7. Study of the coumarate decarboxylase and vinylphenol reductase activities of Dekkera bruxellensis (anamorph Brettanomyces bruxellensis) isolates.

    PubMed

    Godoy, L; Garrido, D; Martínez, C; Saavedra, J; Combina, M; Ganga, M A

    2009-04-01

    To evaluate the coumarate descarboxylase (CD) and vinylphenol reductase (VR) activities in Dekkera bruxellensis isolates and study their relationship to the growth rate, protein profile and random amplified polymorphic DNA (RAPD) molecular pattern. CD and VR activities were quantified, as well, the growth rate, intracellular protein profile and molecular analysis (RAPD) were determined in 12 isolates of D. bruxellensis. All the isolates studied showed CD activity, but only some showed VR activity. Those isolates with the greatest growth rate did not present a different protein profile from the others. The FASC showed a relationship between RAPD molecular patterns and VR activity. CD activity is common to all of the D. bruxellensis isolates. This was not the case with VR activity, which was detected at a low percentage in the analysed micro-organisms. A correlation was observed between VR activity and the RAPD patterns. This is the first study that quantifies the CD and VR enzyme activities in D. bruxellensis, demonstrating that these activities are not present in all isolates of this yeast.

  8. Novel thrombopoietin mimetic peptides bind c-Mpl receptor: Synthesis, biological evaluation and molecular modeling.

    PubMed

    Liu, Yaquan; Tian, Fang; Zhi, Dejuan; Wang, Haiqing; Zhao, Chunyan; Li, Hongyu

    2017-02-01

    Thrombopoietin (TPO) acts in promoting the proliferation of hematopoietic stem cells and by initiating specific maturation events in megakaryocytes. Now, TPO-mimetic peptides with amino acid sequences unrelated to TPO are of considerable pharmaceutical interest. In the present paper, four new TPO mimetic peptides that bind and activate c-Mpl receptor have been identified, synthesized and tested by Dual-Luciferase reporter gene assay for biological activities. The molecular modeling research was also approached to understand key molecular mechanisms and structural features responsible for peptide binding with c-Mpl receptor. The results presented that three of four mimetic peptides showed significant activities. In addition, the molecular modeling approaches proved hydrophobic interactions were the driven positive forces for binding behavior between peptides and c-Mpl receptor. TPO peptide residues in P7, P13 and P7' positions were identified by the analysis of hydrogen bonds and energy decompositions as the key ones for benefiting better biological activities. Our data suggested the synthesized peptides have considerable potential for the future development of stable and highly active TPO mimetic peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Structural Analysis Of CD59 Of Chinese Tree Shrew: A New Reference Molecule For Human Immune System Specific CD59 Drug Discovery.

    PubMed

    Panda, Subhamay; Kumari, Leena; Panda, Santamay

    2017-11-17

    Chinese tree shrews (Tupaia belangeri chinensis) bear several characteristics that are considered to be very crucial for utilizing in animal experimental models in biomedical research. Subsequent to the identification of key aspects and signaling pathways in nervous and immune systems, it is revealed that tree shrews acquires shared common as well as unique characteristics, and hence offers a genetic basis for employing this animal as a prospective model for biomedical research. CD59 glycoprotein, commonly referred to as MAC-inhibitory protein (MAC-IP), membrane inhibitor of reactive lysis (MIRL), or protectin, is encoded by the CD59 gene in human beings. It is the member of the LY6/uPAR/alpha-neurotoxin protein family. With this initial point the objective of this study was to determine a comparative composite based structure of CD59 of Chinese tree shrew. The additional objective of this study was to examine the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis with the assistance of several bioinformatical analytical tools. CD59 Amino acid sequence of Chinese tree shrew collected from the online database system of National Centre for Biotechnology Information. SignalP 4.0 online server was employed for detection of signal peptide instance within the protein sequence of CD59. Molecular model structure of CD59 protein was generated by the Iterative Threading ASSEmbly Refinement (I-TASSER) suite. The confirmation for three-dimensional structural model was evaluated by structure validation tools. Location of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, and hydrophobicity molecular surface analysis was performed with the help of Chimera tool. Electrostatic potential analysis was carried out with the adaptive Poisson-Boltzmann solver package. Subsequently validated model was used for the functionally critical amino acids and active site prediction. The functionally critical amino acids and ligand- binding site (LBS) of the proteins (modeled) was determined using the COACH program. Analysis of Ramachandran plot for Chinese tree shrew depicted that overall, 100% of the residues in homology model were observed in allowed and favored regions, sequentially leading to the validation of the standard of generated protein structural model. In case of CD59 of Chinese tree shrew, the total score of G-factor was found to be -0.66 that was generally larger than the acceptable value. This approach suggests the significance and acceptability of the modeled structure of CD59 of Chinese tree shrew. The molecular model data in cooperation to other relevant post model analysis data put forward molecular insight to protecting activity of CD59 protein molecule of Chinese tree shrew. In the present study, we have proposed the first molecular model structure of uncharted CD59 of Chinese tree shrew by significantly utilizing the comparative composite modeling approach. Therefore, the development of a structural model of the CD59 protein was carried out and analyzed further for deducing molecular enrichment technique. The collaborative effort of molecular model and other relevant data of post model analysis carry forward molecular understanding to protecting activity of CD59 functions towards better insight of features of this natural lead compound. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Comparative molecular field analysis to derive pharmacophore maps for induction doses of intravenous anaesthetic agents.

    PubMed

    Sear, J W

    2011-03-01

    The present study examines the molecular basis of induction of anaesthesia by i.v. hypnotic agents using comparative molecular field analysis (CoMFA). ED(50) induction doses for 14 i.v. anaesthetics in human subjects (expressed as molar dose per kilogram body weight) were obtained from the literature. Immobilizing potency data for the same 14 agents (expressed as the EC(50) plasma free drug concentrations that abolish movement in response to a noxious stimulus in 50% patients) were taken from our previous publication. These data were used to form CoMFA models for the two aspects of anaesthetic activity. Molecular alignment was achieved by field-fit minimization techniques. The lead structure for both models was eltanolone. The final CoMFA model for the ED(50) induction dose was based on two latent variables, and explained 99.3% of the variance in observed activities. It showed good intrinsic predictability (cross-validated q(2)=0.849). The equivalent model for immobilizing activity was also based on two latent variables, with r(2)=0.988 and q(2)=0.852. Although there was a correlation between -log ED(50) and -log EC(50) (r(2)=0.779), comparison of the pharmacophore maps showed poor correlation for both electrostatic and steric regions when isocontours were constructed by linking lattice grid points, making the greatest 40% contributions; the relative contributions of electrostatic and steric interactions differing between the models (induction dose: 2.5:1; immobilizing activity 1.8:1). Comparison of two CoMFA activity models shows only small elements of commonality, suggesting that different molecular features may be responsible for these two properties of i.v. anaesthetics.

  11. A ligand-based comparative molecular field analysis (CoMFA) and homology model based molecular docking studies on 3', 4'-dihydroxyflavones as rat 5-lipoxygenase inhibitors: Design of new inhibitors.

    PubMed

    Ahamed, T K Shameera; Muraleedharan, K

    2017-12-01

    In this study, ligand based comparative molecular field analysis (CoMFA) with five principal components was performed on class of 3', 4'-dihydroxyflavone derivatives for potent rat 5-LOX inhibitors. The percentage contributions in building of CoMFA model were 91.36% for steric field and 8.6% for electrostatic field. R 2 values for training and test sets were found to be 0.9320 and 0.8259, respectively. In case of LOO, LTO and LMO cross validation test, q 2 values were 0.6587, 0.6479 and 0.5547, respectively. These results indicate that the model has high statistical reliability and good predictive power. The extracted contour maps were used to identify the important regions where the modification was necessary to design a new molecule with improved activity. The study has developed a homology model for rat 5-LOX and recognized the key residues at the binding site. Docking of most active molecule to the binding site of 5-LOX confirmed the stability and rationality of CoMFA model. Based on molecular docking results and CoMFA contour plots, new inhibitors with higher activity with respect to the most active compound in data set were designed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 3D-QSAR and docking studies of flavonoids as potent Escherichia coli inhibitors

    PubMed Central

    Fang, Yajing; Lu, Yulin; Zang, Xixi; Wu, Ting; Qi, XiaoJuan; Pan, Siyi; Xu, Xiaoyun

    2016-01-01

    Flavonoids are potential antibacterial agents. However, key substituents and mechanism for their antibacterial activity have not been fully investigated. The quantitative structure-activity relationship (QSAR) and molecular docking of flavonoids relating to potent anti-Escherichia coli agents were investigated. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were developed by using the pIC50 values of flavonoids. The cross-validated coefficient (q2) values for CoMFA (0.743) and for CoMSIA (0.708) were achieved, illustrating high predictive capabilities. Selected descriptors for the CoMFA model were ClogP (logarithm of the octanol/water partition coefficient), steric and electrostatic fields, while, ClogP, electrostatic and hydrogen bond donor fields were used for the CoMSIA model. Molecular docking results confirmed that half of the tested flavonoids inhibited DNA gyrase B (GyrB) by interacting with adenosine-triphosphate (ATP) pocket in a same orientation. Polymethoxyl flavones, flavonoid glycosides, isoflavonoids changed their orientation, resulting in a decrease of inhibitory activity. Moreover, docking results showed that 3-hydroxyl, 5-hydroxyl, 7-hydroxyl and 4-carbonyl groups were found to be crucial active substituents of flavonoids by interacting with key residues of GyrB, which were in agreement with the QSAR study results. These results provide valuable information for structure requirements of flavonoids as antibacterial agents. PMID:27049530

  13. Identification of Phytochemicals Targeting c-Met Kinase Domain using Consensus Docking and Molecular Dynamics Simulation Studies.

    PubMed

    Aliebrahimi, Shima; Montasser Kouhsari, Shideh; Ostad, Seyed Nasser; Arab, Seyed Shahriar; Karami, Leila

    2018-06-01

    c-Met receptor tyrosine kinase is a proto-oncogene whose aberrant activation is attributed to a lower rate of survival in most cancers. Natural product-derived inhibitors known as "fourth generation inhibitors" constitute more than 60% of anticancer drugs. Furthermore, consensus docking approach has recently been introduced to augment docking accuracy and reduce false positives during a virtual screening. In order to obtain novel small-molecule Met inhibitors, consensus docking approach was performed using Autodock Vina and Autodock 4.2 to virtual screen Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database against active and inactive conformation of c-Met kinase domain structure. Two hit molecules that were in line with drug-likeness criteria, desired docking score, and binding pose were subjected to molecular dynamics simulations to elucidate intermolecular contacts in protein-ligand complexes. Analysis of molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area studies showed that ZINC08234189 is a plausible inhibitor for the active state of c-Met, whereas ZINC03871891 may be more effective toward active c-Met kinase domain compared to the inactive form due to higher binding energy. Our analysis showed that both the hit molecules formed hydrogen bonds with key residues of the hinge region (P1158, M1160) in the active form, which is a hallmark of kinase domain inhibitors. Considering the pivotal role of HGF/c-Met signaling in carcinogenesis, our results propose ZINC08234189 and ZINC03871891 as the therapeutic options to surmount Met-dependent cancers.

  14. Antimicrobial and anticancer potential of low molecular weight polypeptides extracted and characterized from leaves of Azadirachta indica.

    PubMed

    Al Saiqali, Mohammed; Tangutur, Anjana Devi; Banoth, Chandrasekhar; Bhukya, Bhima

    2018-07-15

    Low molecular weight antimicrobial polypeptides were extracted and purified from the young fresh leaves of Azadirachta indica (neem). The total protein extracted was precipitated with 15% TCA-Acetone. The total purified proteins yielded from the two extraction methods were 122.33±2.21 and 115.09±1.88mg/g of the total fresh weight. The SDS-PAGE analysis identified the presence of eight low molecular weight polypeptide bands. The antimicrobial activity of the resolved bands was detected by Polyacrylamide gel-Agar overlay diffusion assay (PAG-ADA). Their broad-spectrum bactericidal activity was confirmed using the same technique and found three low molecular weight bands from 11 to 14kDa collectively exhibiting superior bactericidal activities against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermis, Enterococcus faecalis, Pseudomonas aeruginosa and fungicidal activity against Candida tropicalis. The FTIR spectrum of the protein bands depicted the presence of hydroxyl and carbonyl groups in the protein bands. These polypeptides were characterized by MALDI-TOF/TOF analysis. Further, the purified protein extract was found to be active against HELA, BT-549 and Neuro-2a cell lines with IC 50 value of 74.03±2.31, 64.82±1.64, 238.32±2.12 and 109.94±2.96, 59.61±0.75 for 24h and 48h, respectively. The results of present study indicate that these polypeptides exhibit broad spectrum antimicrobial and anticancer activity and can therefore be explored for their therapeutic potential. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Application of 3D-QSAR, Pharmacophore, and Molecular Docking in the Molecular Design of Diarylpyrimidine Derivatives as HIV-1 Nonnucleoside Reverse Transcriptase Inhibitors.

    PubMed

    Liu, Genyan; Wang, Wenjie; Wan, Youlan; Ju, Xiulian; Gu, Shuangxi

    2018-05-11

    Diarylpyrimidines (DAPYs), acting as HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs), have been considered to be one of the most potent drug families in the fight against acquired immunodeficiency syndrome (AIDS). To better understand the structural requirements of HIV-1 NNRTIs, three-dimensional quantitative structure⁻activity relationship (3D-QSAR), pharmacophore, and molecular docking studies were performed on 52 DAPY analogues that were synthesized in our previous studies. The internal and external validation parameters indicated that the generated 3D-QSAR models, including comparative molecular field analysis (CoMFA, q 2 = 0.679, R 2 = 0.983, and r pred 2 = 0.884) and comparative molecular similarity indices analysis (CoMSIA, q 2 = 0.734, R 2 = 0.985, and r pred 2 = 0.891), exhibited good predictive abilities and significant statistical reliability. The docking results demonstrated that the phenyl ring at the C₄-position of the pyrimidine ring was better than the cycloalkanes for the activity, as the phenyl group was able to participate in π⁻π stacking interactions with the aromatic residues of the binding site, whereas the cycloalkanes were not. The pharmacophore model and 3D-QSAR contour maps provided significant insights into the key structural features of DAPYs that were responsible for the activity. On the basis of the obtained information, a series of novel DAPY analogues of HIV-1 NNRTIs with potentially higher predicted activity was designed. This work might provide useful information for guiding the rational design of potential HIV-1 NNRTI DAPYs.

  16. Combined 3D-QSAR, molecular docking and molecular dynamics study on thyroid hormone activity of hydroxylated polybrominated diphenyl ethers to thyroid receptors β

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaolin; Ye, Li; Wang, Xiaoxiang

    2012-12-15

    Several recent reports suggested that hydroxylated polybrominated diphenyl ethers (HO-PBDEs) may disturb thyroid hormone homeostasis. To illuminate the structural features for thyroid hormone activity of HO-PBDEs and the binding mode between HO-PBDEs and thyroid hormone receptor (TR), the hormone activity of a series of HO-PBDEs to thyroid receptors β was studied based on the combination of 3D-QSAR, molecular docking, and molecular dynamics (MD) methods. The ligand- and receptor-based 3D-QSAR models were obtained using Comparative Molecular Similarity Index Analysis (CoMSIA) method. The optimum CoMSIA model with region focusing yielded satisfactory statistical results: leave-one-out cross-validation correlation coefficient (q{sup 2}) was 0.571 andmore » non-cross-validation correlation coefficient (r{sup 2}) was 0.951. Furthermore, the results of internal validation such as bootstrapping, leave-many-out cross-validation, and progressive scrambling as well as external validation indicated the rationality and good predictive ability of the best model. In addition, molecular docking elucidated the conformations of compounds and key amino acid residues at the docking pocket, MD simulation further determined the binding process and validated the rationality of docking results. -- Highlights: ► The thyroid hormone activities of HO-PBDEs were studied by 3D-QSAR. ► The binding modes between HO-PBDEs and TRβ were explored. ► 3D-QSAR, molecular docking, and molecular dynamics (MD) methods were performed.« less

  17. QSAR and 3D QSAR of inhibitors of the epidermal growth factor receptor

    NASA Astrophysics Data System (ADS)

    Pinto-Bazurco, Mariano; Tsakovska, Ivanka; Pajeva, Ilza

    This article reports quantitative structure-activity relationships (QSAR) and 3D QSAR models of 134 structurally diverse inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase. Free-Wilson analysis was used to derive the QSAR model. It identified the substituents in aniline, the polycyclic system, and the substituents at the 6- and 7-positions of the polycyclic system as the most important structural features. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used in the 3D QSAR modeling. The steric and electrostatic interactions proved the most important for the inhibitory effect. Both QSAR and 3D QSAR models led to consistent results. On the basis of the statistically significant models, new structures were proposed and their inhibitory activities were predicted.

  18. Analysis of low molecular weight compounds by MALDI-FTICR-MS.

    PubMed

    Wang, Hao-Yang; Chu, Xu; Zhao, Zhi-Xiong; He, Xiao-Shuang; Guo, Yin-Long

    2011-05-15

    This review focuses on recent applications of matrix-assisted laser desorption ionization-Fourier-transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) in qualitative and quantitative analysis of low molecular weight compounds. The scope of the work includes amino acids, small peptides, mono and oligosaccharides, lipids, metabolic compounds, small molecule phytochemicals from medicinal herbs and even the volatile organic compounds from tobacco. We discuss both direct analysis and analysis following derivatization. In addition we review sample preparation strategies to reduce interferences in the low m/z range and to improve sensitivities by derivatization with charge tags. We also present coupling of head space techniques with MALDI-FTICR-MS. Furthermore, omics analyses based on MALDI-FTICR-MS were also discussed, including proteomics, metabolomics and lipidomics, as well as the relative MS imaging for bio-active low molecular weight compounds. Finally, we discussed the investigations on dissociation/rearrangement processes of low molecular weight compounds by MALDI-FTICR-MS. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Activation and manipulation of host responses by a Gram-positive bacterium

    PubMed Central

    Balaji, Vasudevan

    2008-01-01

    The interaction between tomato plants and Clavibacter michiganensis subsp. michiganensis (Cmm) represents a model pathosystem to study the interplay between the virulence determinants of a Gram-positive bacterium and the attempt of a crop plant to counteract pathogen invasion. To investigate plant responses activated during this compatible interaction, we recently analyzed gene expression profiles of tomato stems infected with Cmm. This analysis revealed activation of basal defense responses that are typically observed upon plant perception of pathogen-associated molecular patterns. In addition, Cmm infection upregulated the expression of host genes related to ethylene synthesis and response. Further analysis of tomato plants impaired in ethylene perception and production demonstrated an important role for ethylene in the development of disease symptoms. Here we discuss possible molecular strategies used by the plant to recognize Cmm infection and possible mechanisms employed by the pathogen to interfere with the activation of plant defense responses and promote disease. PMID:19704516

  20. Multiple biological activities and molecular docking studies of newly synthesized 3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide chalcone hybrids.

    PubMed

    Sribalan, Rajendran; Banuppriya, Govindharasu; Kirubavathi, Maruthan; Jayachitra, A; Padmini, Vediappen

    2016-12-01

    A series of fifteen new chemical entities, 3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide chalcones (6a-o), were synthesized as new hybrids with enriched biological activities compared to their parent molecules. The compounds were characterized by 1 H NMR, 13 C NMR, Mass and IR spectral studies. Their antibacterial, anti-inflammatory and antioxidant activities have been evaluated. These compounds showed moderate to good antibacterial, anti-inflammatory and antioxidant activities. The molecular docking analysis was performed with cyclooxygenase enzyme to ascertain the probable binding model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Let's 'play' with molecular pharmacology.

    PubMed

    Choudhury, Supriyo; Pradhan, Richeek; Sengupta, Gairik; Das, Manisha; Chatterjee, Manojit; Roy, Ranendra Kumar; Chatterjee, Suparna

    2015-01-01

    Understanding concepts of molecular mechanisms of drug action involves sequential visualization of physiological processes and drug effects, a task that can be difficult at an undergraduate level. Role-play is a teaching-learning methodology whereby active participation of students as well as clear visualization of the phenomenon is used to convey complex physiological concepts. However, its use in teaching drug action, a process that demands understanding of a second level of complexity over the physiological process, has not been investigated. We hypothesized that role-play can be an effective and well accepted method for teaching molecular pharmacology. In an observational study, students were guided to perform a role-play on a selected topic involving drug activity. Students' gain in knowledge was assessed comparing validated pre- and post-test questionnaires as well as class average normalized gain. The acceptance of role-play among undergraduate medical students was evaluated by Likert scale analysis and thematic analysis of their open-ended written responses. Significant improvement in knowledge (P < 0.001) was noted in the pre- to post-test knowledge scores, while a high gain in class average normalized score was evident. In Likert scale analysis, most students (93%) expressed that role-play was an acceptable way of teaching. In a thematic analysis, themes of both strengths and weaknesses of the session emerged. Role-play can be effectively utilized while teaching selected topics of molecular pharmacology in undergraduate medical curricula.

  2. Synthesis, X-ray crystallography, spectroscopic (FT-IR, 1H &13C NMR and UV), computational (DFT/B3LYP) and enzymes inhibitory studies of 7-hydroximinocholest-5-en-3-ol acetate

    NASA Astrophysics Data System (ADS)

    Ahmad, Faheem; Parveen, Mehtab; Alam, Mahboob; Azaz, Shaista; Malla, Ali Mohammed; Alam, Mohammad Jane; Lee, Dong-Ung; Ahmad, Shabbir

    2016-07-01

    The present study reports the synthesis of 7-Hydroximinocholest-5-en-3-ol acetate (syn. 3β-acetoxycholest-5-en-7-one oxime; in general, steroidal oxime). The identity of steroidal molecule was confirmed by NMR, FT-IR, MS, CHN microanalysis and X-ray crystallography. DFT calculations on the titled molecule have been performed. The molecular structure and spectra interpreted by Gaussian hybrid computational analysis theory (B3LYP) are found to be in good correlation with the experimental data obtained from the various spectrophotometric techniques. The vibrational bands appearing in the FTIR are assigned with great accuracy using harmonic frequencies along with intensities and animated modes. Molecular properties like HOMO-LUMO analysis, chemical reactivity descriptors, MEP mapping, dipole moment and natural atomic charges have been presented at the same level of theory. Moreover, the Hirshfeld analysis was carried out to ascertain the secondary interactions and associated 2D fingerprint plots. The percentages of various interactions are pictorialized by fingerprint plots of Hirshfeld surface. Steroidal oxime exhibited promising inhibitory activity against acetylcholinesterase (AChE) as compared to the reference drug, tacrine. Molecular docking was performed to introduce steroidal molecules into the X-ray crystal structures of acetylcholinesterase at the active site to find out the probable binding mode. The results of molecular docking admitted that steroidal oxime may exhibit enzyme inhibitor activity.

  3. [Comparison study on adsorption of middle molecular substances with multiwalled carbon nanotubes and activated carbon].

    PubMed

    Li, Guifeng; Wan, Jianxin; Huang, Xiangqian; Zeng, Qiao; Tang, Jing

    2011-08-01

    In recent years, multi-walled carbon nanotubes (MWCTs) are very favorable to the adsorption of middle molecular substances in the hemoperfusion because of their multiporous structure, large surface area and high reactivity, which are beneficial to the excellent absorption properties. The purpose of this study was to study the MWCTs on the adsorption capacity of the middle molecular substances. Vitamin B12 (VB12) was selected as a model of the middle molecular substances. The morphologies of MWCTs and activated carbon from commercial "carbon kidney" were observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The adsorption behavior of VB12 was compared to each other with UV-visible absorption spectra. The MWCTs formed a sophistaicate gap structure, and compared to the activated carbon, MWCTs had a larger surface area. By Langmuir equation and Freundlich equation fitting analysis, VB12 adsorption on MWCTs is fit for multi-molecular layer adsorption, and the adsorption type of activated carbon is more inclined to the model corresponding to Langmuir monolayer adsorption. The adsorption rate of MWCTs is faster than that of the activated carbon and the adsorption capacity is greater, which could be expected to become the new adsorbent in the hemoperfusion.

  4. Synthesis, X-ray diffraction method, spectroscopic characterization (FT-IR, 1H and 13C NMR), antimicrobial activity, Hirshfeld surface analysis and DFT computations of novel sulfonamide derivatives

    NASA Astrophysics Data System (ADS)

    Demircioğlu, Zeynep; Özdemir, Fethi Ahmet; Dayan, Osman; Şerbetçi, Zafer; Özdemir, Namık

    2018-06-01

    Synthesized compounds of N-(2-aminophenyl)benzenesulfonamide 1 and (Z)-N-(2-((2-nitrobenzylidene)amino)phenyl)benzenesulfonamide 2 were characterized by antimicrobial activity, FT-IR, 1H and 13C NMR. Two new Schiff base ligands containing aromatic sulfonamide fragment of (Z)-N-(2-((3-nitrobenzylidene)amino)phenyl)benzenesulfonamide 3 and (Z)-N-(2-((4-nitrobenzylidene)amino)phenyl)benzenesulfonamide 4 were synthesized and investigated by spectroscopic techniques including 1H and 13C NMR, FT-IR, single crystal X-ray diffraction, Hirshfeld surface, theoretical method analyses and by antimicrobial activity. The molecular geometry obtained from the X-ray structure determination was optimized Density Functional Theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set in ground state. From the optimized geometry of the molecules of 3 and 4, the geometric parameters, vibrational wavenumbers and chemical shifts were computed. The optimized geometry results, which were well represented the X-ray data, were shown that the chosen of DFT/B3LYP 6-311G++(d,p) was a successful choice. After a successful optimization, frontier molecular orbitals, chemical activity, non-linear optical properties (NLO), molecular electrostatic mep (MEP), Mulliken population method, natural population analysis (NPA) and natural bond orbital analysis (NBO), which cannot be obtained experimentally, were calculated and investigated.

  5. Molecular docking and 3D-QSAR studies on triazolinone and pyridazinone, non-nucleoside inhibitor of HIV-1 reverse transcriptase.

    PubMed

    Sivan, Sree Kanth; Manga, Vijjulatha

    2010-06-01

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are allosteric inhibitors of the HIV-1 reverse transcriptase. Recently a series of Triazolinone and Pyridazinone were reported as potent inhibitors of HIV-1 wild type reverse transcriptase. In the present study, docking and 3D quantitative structure activity relationship (3D QSAR) studies involving comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 31 molecules. Ligands were built and minimized using Tripos force field and applying Gasteiger-Hückel charges. These ligands were docked into protein active site using GLIDE 4.0. The docked poses were analyzed; the best docked poses were selected and aligned. CoMFA and CoMSIA fields were calculated using SYBYL6.9. The molecules were divided into training set and test set, a PLS analysis was performed and QSAR models were generated. The model showed good statistical reliability which is evident from the r2 nv, q2 loo and r2 pred values. The CoMFA model provides the most significant correlation of steric and electrostatic fields with biological activities. The CoMSIA model provides a correlation of steric, electrostatic, acceptor and hydrophobic fields with biological activities. The information rendered by 3D QSAR model initiated us to optimize the lead and design new potential inhibitors.

  6. Differential in Vitro Biological Action, Coregulator Interactions, and Molecular Dynamic Analysis of Bisphenol A (BPA), BPAF, and BPS Ligand-ERα Complexes.

    PubMed

    Li, Yin; Perera, Lalith; Coons, Laurel A; Burns, Katherine A; Tyler Ramsey, J; Pelch, Katherine E; Houtman, René; van Beuningen, Rinie; Teng, Christina T; Korach, Kenneth S

    2018-01-31

    Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) that might be harmful to human health. Recently, there has been widespread usage of bisphenol chemicals (BPs), such as bisphenol AF (BPAF) and bisphenol S (BPS), as replacements for BPA. However, the potential biological actions, toxicity, and the molecular mechanism of these compounds are still poorly understood. Our objective was to examine the estrogenic effects of BPA, BPAF, and BPS and the molecular mechanisms of action in the estrogen receptor alpha (ERα) complex. In vitro cell models were used to compare the estrogenic effects of BPA, BPAF, and BPS to estrogen. Microarray Assay for Real-Time Coregulator-Nuclear receptor Interaction (MARCoNI) analysis was used to identify coregulators of BPA, BPAF, and BPS, and molecular dynamic (MD) simulations were used to determine the compounds binding in the ERα complex. We demonstrated that BPA and BPAF have agonistic activity for both ERα and ERβ, but BPS has ERα-selective specificity. We concluded that coregulators were differentially recruited in the presence of BPA, BPAF, or BPS. Interestingly, BPS recruited more corepressors when compared to BPA and BPAF. From a series of MD analysis, we concluded that BPA, BPAF, and BPS can bind to the ER-ligand-binding domain with differing energetics and conformations. In addition, the binding surface of coregulator interactions on ERα was characterized for the BPA, BPAF, and BPS complexes. These findings further our understanding of the molecular mechanisms of EDCs, such as BPs, in ER-mediated transcriptional activation, biological activity, and their effects on physiological functions in human health. https://doi.org/10.1289/EHP2505.

  7. Investigation of antigen-antibody interactions of sulfonamides with a monoclonal antibody in a fluorescence polarization immunoassay using 3D-QSAR models

    USDA-ARS?s Scientific Manuscript database

    A three-dimensional quantitative structure-activity relationship (3D-QSAR) model of sulfonamide analogs binding a monoclonal antibody (MAbSMR) produced against sulfamerazine was carried out by Distance Comparison (DISCOtech), comparative molecular field analysis (CoMFA), and comparative molecular si...

  8. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), NLO, NBO, HOMO-LUMO, Fukui function and molecular docking study of (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide

    NASA Astrophysics Data System (ADS)

    Raja, M.; Raj Muhamed, R.; Muthu, S.; Suresh, M.

    2017-08-01

    The title compound, (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide (15BHS) was synthesized and characterized by FT-IR, FT-Raman, UV, 1HNMR and 13CNMR spectral analysis. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated by using density functional theory(DFT) B3LYP method with 6-311++G(d,p) basis set. The detailed interpretation of the vibrational spectra has been carried out by VEDA program. The calculated HOMO and LUMO energies show that charge transfer within the molecule. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The first order hyperpolarizability, Molecular electrostatic potential (MEP) and Fukui functions were also performed. To study the biological activity of the investigation molecule, molecular docking was done to identify the hydrogen bond lengths and binding energy with different antifungal proteins. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the 15BHS at different temperatures have been calculated.

  9. Spectroscopic characteristic (FT-IR, FT-Raman, UV, 1H and 13C NMR), theoretical calculations and biological activity of alkali metal homovanillates

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Piekut, J.; Regulska, E.; Lewandowski, W.

    2016-04-01

    The structural and vibrational properties of lithium, sodium, potassium, rubidium and cesium homovanillates were investigated in this paper. Supplementary molecular spectroscopic methods such as: FT-IR, FT-Raman in the solid phase, UV and NMR were applied. The geometrical parameters and energies were obtained from density functional theory (DFT) B3LYP method with 6-311++G** basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned. Geometric and magnetic aromaticity indices, atomic charges, dipole moments, HOMO and LUMO energies were also calculated. The microbial activity of investigated compounds was tested against Bacillus subtilis (BS), Pseudomonas aeruginosa (PA), Escherichia coli (EC), Staphylococcus aureus (SA) and Candida albicans (CA). The relationship between the molecular structure of tested compounds and their antimicrobial activity was studied. The principal component analysis (PCA) was applied in order to attempt to distinguish the biological activities of these compounds according to selected band wavenumbers. Obtained data show that the FT-IR spectra can be a rapid and reliable analytical tool and a good source of information for the quantitative analysis of the relationship between the molecular structure of the compound and its biological activity.

  10. Synthesis, Structural and Antioxidant Studies of Some Novel N-Ethyl Phthalimide Esters

    PubMed Central

    Chandraju, Siddegowda; Win, Yip-Foo; Tan, Weng Kang; Quah, Ching Kheng; Fun, Hoong-Kun

    2015-01-01

    A series of N-ethyl phthalimide esters 4(a-n) were synthesized and characterized by spectroscopic studies. Further, the molecular structure of majority of compounds were analysed by single crystal X-ray diffraction studies. The X-ray analysis revealed the importance of substituents on the crystal stability and molecular packing. All the synthesized compounds were tested for in vitro antioxidant activity by DPPH radical scavenging, FRAP and CUPRAC methods. Few of them have shown good antioxidant activity. PMID:25742494

  11. Synthesis, structural and antioxidant studies of some novel N-ethyl phthalimide esters.

    PubMed

    Chidan Kumar, C S; Loh, Wan-Sin; Chandraju, Siddegowda; Win, Yip-Foo; Tan, Weng Kang; Quah, Ching Kheng; Fun, Hoong-Kun

    2015-01-01

    A series of N-ethyl phthalimide esters 4(a-n) were synthesized and characterized by spectroscopic studies. Further, the molecular structure of majority of compounds were analysed by single crystal X-ray diffraction studies. The X-ray analysis revealed the importance of substituents on the crystal stability and molecular packing. All the synthesized compounds were tested for in vitro antioxidant activity by DPPH radical scavenging, FRAP and CUPRAC methods. Few of them have shown good antioxidant activity.

  12. Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor

    One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.

  13. Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms.

    PubMed

    Zhang, Lan; Hu, Yu; Duan, Xiaoyu; Tang, Tingting; Shen, Yingbin; Hu, Bin; Liu, Aiping; Chen, Hong; Li, Cheng; Liu, Yuntao

    2018-07-01

    Water-soluble polysaccharides were extracted from the caps and stipes of thirteen boletus mushrooms representing five different species collected in Southwest China. Investigations of their structures and antioxidant activities allowed an evaluation of structure-function relationships. The polysaccharides were composed mainly of the monosaccharides arabinose, xylose, mannose, glucose and galactose. Most samples displayed a broad molecular weight range, with significant differences observed between the molecular weight ranges of the polysaccharides from the caps and the stipes. FT-IR spectral analysis of the polysaccharides revealed that most of polysaccharides from boletus mushrooms (except Boletus edulis) contained a pyranose ring. The antioxidant activities of the polysaccharides in stipes showed a significant correlation with their monosaccharide composition, and were also related to their molecular weight and anomeric configuration. Suillellus luridus collected in Pingwu, Mianyang, Sichuan, China had remarkably superior antioxidant activity and might be developed as a natural antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. A complex study of 5-amino-3-methyl-4-[2-(5-amino-1,3,4-oxadiazolo)]-isoxazole monohydrate: A new low-molecular-weight immune response modifier

    NASA Astrophysics Data System (ADS)

    Ryng, Stanisław; Zimecki, Michał; Jezierska-Mazzarello, Aneta; Panek, Jarosław J.; Mączyński, Marcin; Głowiak, Tadeusz; Sawka-Dobrowolska, Wanda; Koll, Aleksander

    2011-07-01

    A new potential lead structure with immunological activity, 5-amino-3-methyl-4-[2-(5-amino-1,3,4-oxadiazolo)]-isoxazole monohydrate, was synthesized. A detailed description of synthesis is presented together with X-ray structural analysis. In vitro assays showed that the compound had a potent immunosuppressive activity. Next, Density Functional Theory (DFT) was employed to shed a light on molecular properties of the investigated isoxazole derivative. The molecular modeling part included geometric as well as electronic structure descriptions: (i) the conformational analysis was performed to localize the most appropriate conformation; (ii) the coordination energy and Basis Set Superposition Error (BSSE) were estimated for the complex of the isoxazole derivative interacting with water molecule; (iii) the potential energy distribution was used to assign molecular vibrations, and NBO population analysis served to describe the electronic structure; (iv) the electrostatic potential map was generated to provide the graphical presentation of regions exposed for intermolecular interactions. The contacts between the water molecule and the nitrogen atom of the isoxazole ring edge were present in the solid phase. On the other hand, the theoretical DFT prediction was that the oxygen atom of the edge should form a more stable complex with the water molecule.

  15. QSAR, molecular docking studies of thiophene and imidazopyridine derivatives as polo-like kinase 1 inhibitors

    NASA Astrophysics Data System (ADS)

    Cao, Shandong

    2012-08-01

    The purpose of the present study was to develop in silico models allowing for a reliable prediction of polo-like kinase inhibitors based on a large diverse dataset of 136 compounds. As an effective method, quantitative structure activity relationship (QSAR) was applied using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The proposed QSAR models showed reasonable predictivity of thiophene analogs (Rcv2=0.533, Rpred2=0.845) and included four molecular descriptors, namely IC3, RDF075m, Mor02m and R4e+. The optimal model for imidazopyridine derivatives (Rcv2=0.776, Rpred2=0.876) was shown to perform good in prediction accuracy, using GATS2m and BEHe1 descriptors. Analysis of the contour maps helped to identify structural requirements for the inhibitors and served as a basis for the design of the next generation of the inhibitor analogues. Docking studies were also employed to position the inhibitors into the polo-like kinase active site to determine the most probable binding mode. These studies may help to understand the factors influencing the binding affinity of chemicals and to develop alternative methods for prescreening and designing of polo-like kinase inhibitors.

  16. Molecular Modeling and Experimental Study of Nonlinear Optical Compounds: Mono-Substituted Derivatives of Dicyanovinylbenzene

    NASA Technical Reports Server (NTRS)

    Timofeeva, Tatyana V.; Nesterov, Vladimir N.; Antipin, Mikhael Y.; Clark, R. D.; Sanghadasa, M.; Cardelino, B. H.; Moore, C. E.; Frazier, Donald O.

    2000-01-01

    A search for potential nonlinear optical (NLO) compounds has been performed using the Cambridge Structural Database and molecular modeling. We have studied a series of mono-substituted derivatives of dicyanovinylbenzene as the NLO properties of one of its derivatives (o-methoxy-dicyanovinylbenzene, DIVA) were described earlier. The molecular geometry in the series of the compounds studied was investigated with an X- ray analysis and discussed along with results of molecular mechanics and ab initio quantum chemical calculations. The influence of crystal packing on the molecular planarity has been revealed. Two new compounds from the series studied were found to be active for second harmonic generation (SHG) in the powder. The measurements of SHG efficiency have shown that the o-F- and p-Cl-derivatives of dicyanovinylbenzene are about 10 and 20- times more active than urea, respectively. The peculiarities of crystal structure formation in the framework of balance between the van der Waals and electrostatic interactions have been discussed. The crystal morphology of DIVA and two new SHG-active compounds have been calculated on the basis of their known crystal structures.

  17. Analysis of molecular chaperones using a Xenopus oocyte protein refolding assay.

    PubMed

    Heikkila, John J; Kaldis, Angelo; Abdulle, Rashid

    2006-01-01

    Heat shock proteins (Hsps) are molecular chaperones that aid in the folding and translocation of protein under normal conditions and protect cellular proteins during stressful situations. A family of Hsps, the small Hsps, can maintain denatured target proteins in a folding-competent state such that they can be refolded and regain biological activity in the presence of other molecular chaperones. Previous assays have employed cellular lysates as a source of molecular chaperones involved in folding. In this chapter, we describe the production and purification of a Xenopus laevis recombinant small Hsp, Hsp30C, and an in vivo luciferase (LUC) refolding assay employing microinjected Xenopus oocytes. This assay tests whether LUC can be maintained in a folding-competent state when heat denatured in the presence of a small Hsp or other molecular chaperone. For example, micro-injection of heat-denatured LUC alone into oocytes resulted in minimal reactivation of enzyme activity. However, LUC heat denatured in the presence of Hsp30C resulted in 100% recovery of enzyme activity after microinjection. The in vivo oocyte refolding system is more sensitive and requires less molecular chaperone than in vitro refolding assays. Also, this protocol is not limited to testing Xenopus molecular chaperones because small Hsps from other organisms have been used successfully.

  18. Microarray analysis of gene expression profiles in ripening pineapple fruits.

    PubMed

    Koia, Jonni H; Moyle, Richard L; Botella, Jose R

    2012-12-18

    Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit ripening and non-climacteric fruit ripening in general.

  19. Microarray analysis of gene expression profiles in ripening pineapple fruits

    PubMed Central

    2012-01-01

    Background Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Results Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. Conclusions This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit ripening and non-climacteric fruit ripening in general. PMID:23245313

  20. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats.

    PubMed

    Bavithra, S; Selvakumar, K; Sundareswaran, L; Arunakaran, J

    2017-02-01

    There is ample evidence stating Polychlorinated biphenyls (PCBs) as neurotoxins. In the current study, we have analyzed the behavioural impact of PCBs exposure in adult rats and assessed the simultaneous effect of antioxidant melatonin against the PCBs action. The rats were grouped into four and treated intraperitoneally with vehicle, PCBs, PCBs + melatonin and melatonin alone for 30 days, respectively. After the treatment period the rats were tested for locomotor activity and anxiety behaviour analysis. We confirmed the neuronal damage in the cerebral cortex by molecular and histological analysis. Our data indicates that there is impairment in locomotor activity and behaviour of PCBs treated rats compared to control. The simultaneous melatonin treated rat shows increased motor coordination and less anxiety like behaviour compared to PCBs treated rats. Molecular and histological analysis supports that, the impaired motor coordination in PCBs treated rats is due to neurodegeneration in motor cortex region. The results proved that melatonin treatment improved the motor co-ordination and reduced anxiety behaviour, prevented neurodegeneration in the cerebral cortex of PCBs-exposed adult male rats.

  1. Immunophenotypic and Molecular Analysis of Human Dental Pulp Stem Cells Potential for Neurogenic Differentiation

    PubMed Central

    Fatima, Nikhat; Khan, Aleem A.; Vishwakarma, Sandeep K.

    2017-01-01

    Background: Growing evidence shows that dental pulp (DP) tissues could be a potential source of adult stem cells for the treatment of devastating neurological diseases and several other conditions. Aims: Exploration of the expression profile of several key molecular markers to evaluate the molecular dynamics in undifferentiated and differentiated DP-derived stem cells (DPSCs) in vitro. Settings and Design: The characteristics and multilineage differentiation ability of DPSCs were determined by cellular and molecular kinetics. DPSCs were further induced to form adherent (ADH) and non-ADH (NADH) neurospheres under serum-free condition which was further induced into neurogenic lineage cells and characterized for their molecular and cellular diversity at each stage. Statistical Analysis Used: Statistical analysis used one-way analysis of variance, Student's t-test, Livak method for relative quantification, and R programming. Results: Immunophenotypic analysis of DPSCs revealed >80% cells positive for mesenchymal markers CD90 and CD105, >70% positive for transferring receptor (CD71), and >30% for chemotactic factor (CXCR3). These cells showed mesodermal differentiation also and confirmed by specific staining and molecular analysis. Activation of neuronal lineage markers and neurogenic growth factors was observed during lineage differentiation of cells derived from NADH and ADH spheroids. Greater than 80% of cells were found to express β-tubulin III in both differentiation conditions. Conclusions: The present study reported a cascade of immunophenotypic and molecular markers to characterize neurogenic differentiation of DPSCs under serum-free condition. These findings trigger the future analyses for clinical applicability of DP-derived cells in regenerative applications. PMID:28566856

  2. The Molecular Biology of Nitroamine Degradation in Soils

    DTIC Science & Technology

    2015-07-26

    analysis and activity assays .............................................................................. 28 Determination of a putative...81 Figure 52: Specific XplA activity in cells treated with different nitrogen sources. .......... 83 Figure 53: Effect of... activity . Our efforts to develop a functional screen for genes from the soil metagenome were unsuccessful. We developed efficient methods of

  3. QTL analysis of ferric reductase activity in the model legume lotus japonicus

    USDA-ARS?s Scientific Manuscript database

    Physiological and molecular studies have demonstrated that iron accumulation from the soil into Strategy I plants can be limited by ferric reductase activity. An initial study of Lotus japonicus ecotypes Miyakojima MG-20 and Gifu B-129 identified significant leaf chlorosis and ferric reductase activ...

  4. Mode of action framework analysis for receptor-mediated toxicity: the Peroxisome Proliferator-Activated Receptor alpha (PPARα) as a case study

    EPA Science Inventory

    Therapeutic hypolipidemic agents and industrial chemicals that cause peroxisome proliferation and induce liver tumors in rodents activate the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα). Research has elucidated the cellular and molecular events by w...

  5. Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups.

    PubMed

    Sumazin, Pavel; Chen, Yidong; Treviño, Lisa R; Sarabia, Stephen F; Hampton, Oliver A; Patel, Kayuri; Mistretta, Toni-Ann; Zorman, Barry; Thompson, Patrick; Heczey, Andras; Comerford, Sarah; Wheeler, David A; Chintagumpala, Murali; Meyers, Rebecka; Rakheja, Dinesh; Finegold, Milton J; Tomlinson, Gail; Parsons, D Williams; López-Terrada, Dolores

    2017-01-01

    Despite being the most common liver cancer in children, hepatoblastoma (HB) is a rare neoplasm. Consequently, few pretreatment tumors have been molecularly profiled, and there are no validated prognostic or therapeutic biomarkers for HB patients. We report on the first large-scale effort to profile pretreatment HBs at diagnosis. Our analysis of 88 clinically annotated HBs revealed three risk-stratifying molecular subtypes that are characterized by differential activation of hepatic progenitor cell markers and metabolic pathways: high-risk tumors were characterized by up-regulated nuclear factor, erythroid 2-like 2 activity; high lin-28 homolog B, high mobility group AT-hook 2, spalt-like transcription factor 4, and alpha-fetoprotein expression; and high coordinated expression of oncofetal proteins and stem-cell markers, while low-risk tumors had low lin-28 homolog B and lethal-7 expression and high hepatic nuclear factor 1 alpha activity. Analysis of immunohistochemical assays using antibodies targeting these genes in a prospective study of 35 HBs suggested that these candidate biomarkers have the potential to improve risk stratification and guide treatment decisions for HB patients at diagnosis; our results pave the way for clinical collaborative studies to validate candidate biomarkers and test their potential to improve outcome for HB patients. (Hepatology 2017;65:104-121). © 2016 by the American Association for the Study of Liver Diseases.

  6. Comparative molecular field analysis and molecular docking studies on novel aryl chalcone derivatives against an important drug target cysteine protease in Plasmodium falciparum.

    PubMed

    Thillainayagam, Mahalakshmi; Anbarasu, Anand; Ramaiah, Sudha

    2016-08-21

    The computational studies namely molecular docking simulations and Comparative Molecular Field Analysis (CoMFA) are executed on series of 52 novel aryl chalcones derivatives using Plasmodium falciparum cysteine proteases (falcipain - 2) as vital target. In the present study, the correlation between different molecular field effects namely steric and electrostatic interactions and chemical structures to the inhibitory activities of novel aryl chalcone derivatives is inferred to perceive the major structural prerequisites for the rational design and development of potent and novel lead anti-malarial compound. The apparent binding conformations of all the compounds at the active site of falcipain - 2 and the hydrogen-bond interactions which could be used to modify the inhibitory activities are identified by using Surflex-dock study. Statistically significant CoMFA model has been developed with the cross-validated correlation coefficient (q(2)) of 0.912 and the non-cross-validated correlation coefficient (r(2)) of 0.901. Standard error of estimation (SEE) of 0.210, with the optimum number of components is ten. The predictability of the derived model is examined with a test set consists of sixteen compounds and the predicted r(2) value is found to be 0.924. The docking and QSAR study results confer crucial suggestions for the optimization of novel 1,3-diphenyl-2-propen-1-one derivatives and synthesis of effective anti- malarial compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. minepath.org: a free interactive pathway analysis web server.

    PubMed

    Koumakis, Lefteris; Roussos, Panos; Potamias, George

    2017-07-03

    ( www.minepath.org ) is a web-based platform that elaborates on, and radically extends the identification of differentially expressed sub-paths in molecular pathways. Besides the network topology, the underlying MinePath algorithmic processes exploit exact gene-gene molecular relationships (e.g. activation, inhibition) and are able to identify differentially expressed pathway parts. Each pathway is decomposed into all its constituent sub-paths, which in turn are matched with corresponding gene expression profiles. The highly ranked, and phenotype inclined sub-paths are kept. Apart from the pathway analysis algorithm, the fundamental innovation of the MinePath web-server concerns its advanced visualization and interactive capabilities. To our knowledge, this is the first pathway analysis server that introduces and offers visualization of the underlying and active pathway regulatory mechanisms instead of genes. Other features include live interaction, immediate visualization of functional sub-paths per phenotype and dynamic linked annotations for the engaged genes and molecular relations. The user can download not only the results but also the corresponding web viewer framework of the performed analysis. This feature provides the flexibility to immediately publish results without publishing source/expression data, and get all the functionality of a web based pathway analysis viewer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Interactions of dendrimers with biological drug targets: reality or mystery - a gap in drug delivery and development research.

    PubMed

    Ahmed, Shaimaa; Vepuri, Suresh B; Kalhapure, Rahul S; Govender, Thirumala

    2016-07-21

    Dendrimers have emerged as novel and efficient materials that can be used as therapeutic agents/drugs or as drug delivery carriers to enhance therapeutic outcomes. Molecular dendrimer interactions are central to their applications and realising their potential. The molecular interactions of dendrimers with drugs or other materials in drug delivery systems or drug conjugates have been extensively reported in the literature. However, despite the growing application of dendrimers as biologically active materials, research focusing on the mechanistic analysis of dendrimer interactions with therapeutic biological targets is currently lacking in the literature. This comprehensive review on dendrimers over the last 15 years therefore attempts to identify the reasons behind the apparent lack of dendrimer-receptor research and proposes approaches to address this issue. The structure, hierarchy and applications of dendrimers are briefly highlighted, followed by a review of their various applications, specifically as biologically active materials, with a focus on their interactions at the target site. It concludes with a technical guide to assist researchers on how to employ various molecular modelling and computational approaches for research on dendrimer interactions with biological targets at a molecular level. This review highlights the impact of a mechanistic analysis of dendrimer interactions on a molecular level, serves to guide and optimise their discovery as medicinal agents, and hopes to stimulate multidisciplinary research between scientific, experimental and molecular modelling research teams.

  9. Structural, vibrational spectroscopic and nonlinear optical activity studies on 2-hydroxy- 3, 5-dinitropyridine: A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-06-01

    The conformational analysis was carried out for 2-Hydroxy- 3, 5-dinitropyridine molecule using potential energy surface scan and the most stable optimized conformer was predicted. The vibrational frequencies and Mulliken atomic charge distribution were calculated for the optimized geometry of the molecule using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intramolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness values of the title molecule were carried out. The nonlinear optical activity of the molecule was studied by means of first order hyperpolarizability, which was computed as 7.64 times greater than urea. The natural bond orbital analysis was performed to confirm the nonlinear optical activity of the molecule.

  10. Probing Molecular Mechanisms of the Hsp90 Chaperone: Biophysical Modeling Identifies Key Regulators of Functional Dynamics

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2012-01-01

    Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based “conformational selection” of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected residue clusters may be a rather general functional requirement encoded across molecular chaperones. The obtained insights may be useful in guiding discovery of allosteric Hsp90 inhibitors targeting protein interfaces with co-chaperones and protein binding clients. PMID:22624053

  11. Influence of molecular weight on in vitro immunostimulatory properties of instant coffee.

    PubMed

    Passos, Cláudia P; Cepeda, Márcio R; Ferreira, Sónia S; Nunes, Fernando M; Evtuguin, Dmitry V; Madureira, Pedro; Vilanova, Manuel; Coimbra, Manuel A

    2014-10-15

    Instant coffee was prepared and fractionated into higher (>100kDa), medium (5-10, 10-30, 30-100kDa) and lower (1-5, <1kDa) molecular weight fractions. Sugars and linkage composition characteristics of arabinogalactans and galactomannans were recovered in all fractions. Also, amino acid analysis performed after hydrolysis showed similar compositions in all fractions. On the contrary, free chlorogenic acids and caffeine were only detected in the lowest molecular weight fraction (<1kDa). A direct relationship between the melanoidins browning index and the molecular weight was observed. The fractions obtained were incubated in vitro with murine spleen lymphocytes in order to evaluate their possible immunostimulatory abilities. The surface expression of CD69 (early activation marker) on different lymphocyte sub-populations showed that the fraction with 1-5kDa was able to induce activation of B-lymphocytes. This was the only fraction to induce B-lymphocyte activation, since all the other fractions failed, even when higher concentrations were used. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Studies on the self-catalyzed Knoevenagel condensation, characterization, DPPH radical scavenging activity, cytotoxicity, and molecular properties of 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones using single crystal XRD and DFT techniques

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, G. S.; Antony Muthu Prabhu, A.; Bhuvanesh, N.

    2014-10-01

    We have studied the self-catalyzed Knoevenagel condensation, spectral characterization, DPPH radical scavenging activity, cytotoxicity, and molecular properties of 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones using single crystal XRD and DFT techniques. In the absence of any catalyst, a series of novel 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones were synthesized using Meldrum’s acid and formylphenoxyaliphatic acid(s) in water. These molecules are arranged in the dimer form through intermolecular H-bonding in the single crystal XRD structure. Compounds have better DPPH radical scavenging activity and cytotoxicity against A431 cancer cell line. The optimized molecular structure, natural bond orbital analysis, electrostatic potential map, HOMO-LUMO energies, molecular properties, and atomic charges of these molecules have been studied by performing DFT/B3LYP/3-21G(*) level of theory in gas phase.

  13. Hyper-polyhedron model applied to molecular screening of guanidines as Na/H exchange inhibitors.

    PubMed

    Bao, Xin-Hua; Lu, Wen-Cong; Liu, Liang; Chen, Nian-Yi

    2003-05-01

    To investigate structure-activity relationships of N-(3-Oxo-3,4-dihydro-2H-benzo[1,4]oxazine-6-carbonyl) guanidines in Na/H exchange inhibitory activities and probe into a new method of the computer-aided molecular screening. The hyper-polyhedron model (HPM) was proposed in our lab. The samples with probably higher activities could be determined in such a way that their representing points should be in the hyper-polyhedron region where all known samples with high activities were distributed. And the predictive ability of different methods available was tested by the cross-validation experiment. The accurate rate of molecular screening of N-(3-Oxo-3,4-dihydro-2H-benzo[1,4]oxazine-6-carbonyl) guanidines by HPM was much higher than that obtained by PCA (principal component analysis) and Fisher methods for the data set available here. Therefore, HPM could be used as a powerful tool for screening new compounds with probably higher activities.

  14. Binding affinity toward human prion protein of some anti-prion compounds - Assessment based on QSAR modeling, molecular docking and non-parametric ranking.

    PubMed

    Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija

    2018-01-01

    The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Molecular cloning, characterization and expression analysis of TLR9, MyD88 and TRAF6 genes in common carp (Cyprinus carpio)

    USDA-ARS?s Scientific Manuscript database

    Induction of innate immune pathways is critical for early host defense but there is limited understanding of how teleost fish recognize pathogen molecules and activate these pathways. In mammals, cells of the innate immune system detect pathogenic molecular structures using pattern recognition rece...

  16. Synthesis, biological evaluation, QSAR study and molecular docking of novel N-(4-amino carbonylpiperazinyl) (thio)phosphoramide derivatives as cholinesterase inhibitors.

    PubMed

    Gholivand, Khodayar; Ebrahimi Valmoozi, Ali Asghar; Bonsaii, Mahyar

    2014-06-01

    Novel (thio)phosphoramidate derivatives based on piperidincarboxamide with the general formula of (NH2-C(O)-C5H9N)-P(X=O,S)R1R2 (1-5) and (NH2-C(O)-C5H9N)2-P(O)R (6-9) were synthesized and characterized by (31)P, (13)C, (1)H NMR, IR spectroscopy. Furthermore, the crystal structure of compound (NH2-C(O)-C5H9N)2-P(O)(OC6H5) (6) was investigated. The activities of derivatives on cholinesterases (ChE) were determined using a modified Ellman's method. Also the mixed-type mechanisms of these compounds were evaluated by Lineweaver-Burk plots. Molecular docking and quantitative structure-activity relationship (QSAR) were used to understand the relationship between molecular structural features and anti-ChE activity, and to predict the binding affinity of phosphoramido-piperidinecarboxamides (PAPCAs) to ChE receptors. From molecular docking analysis, noncovalent interactions especially hydrogen bonding as well as hydrophobic was found between PAPCAs and ChE. Based on the docking results, appropriate molecular structural parameters were adopted to develop a QSAR model. DFT-QSAR models for ChE enzymes demonstrated the importance of electrophilicity parameter in describing the anti-AChE and anti-BChE activities of the synthesized compounds. The correlation matrix of QSAR models and docking analysis confirmed that electrophilicity descriptor can control the influence of the hydrophobic properties of P=(O, S) and CO functional groups of PAPCA derivatives in the inhibition of human ChE enzymes. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Structural insights of Staphylococcus aureus FtsZ inhibitors through molecular docking, 3D-QSAR and molecular dynamics simulations.

    PubMed

    Ballu, Srilata; Itteboina, Ramesh; Sivan, Sree Kanth; Manga, Vijjulatha

    2018-02-01

    Filamentous temperature-sensitive protein Z (FtsZ) is a protein encoded by the FtsZ gene that assembles into a Z-ring at the future site of the septum of bacterial cell division. Structurally, FtsZ is a homolog of eukaryotic tubulin but has low sequence similarity; this makes it possible to obtain FtsZ inhibitors without affecting the eukaryotic cell division. Computational studies were performed on a series of substituted 3-arylalkoxybenzamide derivatives reported as inhibitors of FtsZ activity in Staphylococcus aureus. Quantitative structure-activity relationship models (QSAR) models generated showed good statistical reliability, which is evident from r 2 ncv and r 2 loo values. The predictive ability of these models was determined and an acceptable predictive correlation (r 2 Pred ) values were obtained. Finally, we performed molecular dynamics simulations in order to examine the stability of protein-ligand interactions. This facilitated us to compare free binding energies of cocrystal ligand and newly designed molecule B1. The good concordance between the docking results and comparative molecular field analysis (CoMFA)/comparative molecular similarity indices analysis (CoMSIA) contour maps afforded obliging clues for the rational modification of molecules to design more potent FtsZ inhibitors.

  18. Spectroscopic and molecular docking studies on N,N-di-tert-butoxycarbonyl (Boc)-2-amino pyridine: A potential bioactive agent for lung cancer treatment

    NASA Astrophysics Data System (ADS)

    Mohamed Asath, R.; Premkumar, R.; Mathavan, T.; Milton Franklin Benial, A.

    2017-09-01

    Potential energy surface scan was performed and the most stable molecular structure of the N,N-di-tert-butoxycarbonyl (Boc)-2-amino pyridine (DBAP) molecule was predicted. The most stable molecular structure of the molecule was optimized using B3LYP method with cc-pVTZ basis set. Anticancer activity of the DBAP molecule was evaluated by molecular docking analysis. The structural parameters and vibrational wavenumbers were calculated for the optimized molecular structure. The experimental and theoretical wavenumbers were assigned and compared. Ultraviolet-Visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated and Fukui function calculations were also carried out to investigate the reactive nature of the DBAP molecule. The natural bond orbital analysis was also performed to probe the intramolecular interactions and confirm the bioactivity of the DBAP molecule. The molecular docking analysis reveals the better inhibitory nature of the DBAP molecule against the epidermal growth factor receptor (EGFR) protein which causes lung cancer. Hence, the present study unveils the structural and bioactive nature of the title molecule. The DBAP molecule was identified as a potential inhibitor against the lung cancer which may be useful in further development of drug designing in the treatment of lung cancer.

  19. Data-mining of potential antitubercular activities from molecular ingredients of traditional Chinese medicines.

    PubMed

    Jamal, Salma; Scaria, Vinod

    2014-01-01

    Background. Traditional Chinese medicine encompasses a well established alternate system of medicine based on a broad range of herbal formulations and is practiced extensively in the region for the treatment of a wide variety of diseases. In recent years, several reports describe in depth studies of the molecular ingredients of traditional Chinese medicines on the biological activities including anti-bacterial activities. The availability of a well-curated dataset of molecular ingredients of traditional Chinese medicines and accurate in-silico cheminformatics models for data mining for antitubercular agents and computational filters to prioritize molecules has prompted us to search for potential hits from these datasets. Results. We used a consensus approach to predict molecules with potential antitubercular activities from a large dataset of molecular ingredients of traditional Chinese medicines available in the public domain. We further prioritized 160 molecules based on five computational filters (SMARTSfilter) so as to avoid potentially undesirable molecules. We further examined the molecules for permeability across Mycobacterial cell wall and for potential activities against non-replicating and drug tolerant Mycobacteria. Additional in-depth literature surveys for the reported antitubercular activities of the molecular ingredients and their sources were considered for drawing support to prioritization. Conclusions. Our analysis suggests that datasets of molecular ingredients of traditional Chinese medicines offer a new opportunity to mine for potential biological activities. In this report, we suggest a proof-of-concept methodology to prioritize molecules for further experimental assays using a variety of computational tools. We also additionally suggest that a subset of prioritized molecules could be used for evaluation for tuberculosis due to their additional effect against non-replicating tuberculosis as well as the additional hepato-protection offered by the source of these ingredients.

  20. Data-mining of potential antitubercular activities from molecular ingredients of traditional Chinese medicines

    PubMed Central

    Jamal, Salma

    2014-01-01

    Background. Traditional Chinese medicine encompasses a well established alternate system of medicine based on a broad range of herbal formulations and is practiced extensively in the region for the treatment of a wide variety of diseases. In recent years, several reports describe in depth studies of the molecular ingredients of traditional Chinese medicines on the biological activities including anti-bacterial activities. The availability of a well-curated dataset of molecular ingredients of traditional Chinese medicines and accurate in-silico cheminformatics models for data mining for antitubercular agents and computational filters to prioritize molecules has prompted us to search for potential hits from these datasets. Results. We used a consensus approach to predict molecules with potential antitubercular activities from a large dataset of molecular ingredients of traditional Chinese medicines available in the public domain. We further prioritized 160 molecules based on five computational filters (SMARTSfilter) so as to avoid potentially undesirable molecules. We further examined the molecules for permeability across Mycobacterial cell wall and for potential activities against non-replicating and drug tolerant Mycobacteria. Additional in-depth literature surveys for the reported antitubercular activities of the molecular ingredients and their sources were considered for drawing support to prioritization. Conclusions. Our analysis suggests that datasets of molecular ingredients of traditional Chinese medicines offer a new opportunity to mine for potential biological activities. In this report, we suggest a proof-of-concept methodology to prioritize molecules for further experimental assays using a variety of computational tools. We also additionally suggest that a subset of prioritized molecules could be used for evaluation for tuberculosis due to their additional effect against non-replicating tuberculosis as well as the additional hepato-protection offered by the source of these ingredients. PMID:25081126

  1. A molecular symmetry analysis of the electronic states and transition dipole moments for molecules with two torsional degrees of freedom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obaid, R.; Applied Chemistry Department, Palestine Polytechnic University, Hebron, Palestine; Leibscher, M., E-mail: monika.leibscher@itp.uni-hannover.de

    2015-02-14

    We present a molecular symmetry analysis of electronic states and transition dipole moments for molecules which undergo large amplitude intramolecular torsions. The method is based on the correlation between the point group of the molecule at highly symmetric configurations and the molecular symmetry group. As an example, we determine the global irreducible representations of the electronic states and transition dipole moments for the quinodimethane derivative 2-[4-(cyclopenta-2,4-dien-1-ylidene)cyclohexa-2,5-dien-1-ylidene]-2H-1, 3-dioxole for which two torsional degrees of freedom can be activated upon photo-excitation and construct the resulting symmetry adapted transition dipole functions.

  2. In-situ coupling between kinase activities and protein dynamics within single focal adhesions

    NASA Astrophysics Data System (ADS)

    Wu, Yiqian; Zhang, Kaiwen; Seong, Jihye; Fan, Jason; Chien, Shu; Wang, Yingxiao; Lu, Shaoying

    2016-07-01

    The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion. Employing single FA tracking and cross-correlation analysis, we quantified the dynamic coupling characteristics between biochemical kinase activities and structural FA within single FAs. We show that kinase activations and FA assembly are strongly and sequentially correlated, with the concurrent FA assembly and Src activation leading focal adhesion kinase (FAK) activation by 42.6 ± 12.6 sec. Strikingly, the temporal coupling between kinase activation and individual FA assembly reflects the fate of FAs at later stages. The FAs with a tight coupling tend to grow and mature, while the less coupled FAs likely disassemble. During FA disassembly, however, kinase activations lead the disassembly, with FAK being activated earlier than Src. Therefore, by integrating subcellularly targeted FRET biosensors and computational analysis, our study reveals intricate interplays between Src and FAK in regulating the dynamic life of single FAs in cancer cells.

  3. Functional and structural characterization of the pentapeptide insertion of Theileria annulata lactate dehydrogenase by site-directed mutagenesis, comparative modeling and molecular dynamics simulations.

    PubMed

    Erdemir, Aysegul; Mutlu, Ozal

    2017-06-01

    Lactate dehydrogenase (LDH) is an important metabolic enzyme in glycolysis and it has been considered as the main energy source in many organisms including apicomplexan parasites. Differences at the active site loop of the host and parasite LDH's makes this enzyme an attractive target for drug inhibitors. In this study, five amino acid insertions in the active site pocket of Theileria annulata LDH (TaLDH) were deleted by PCR-based site-directed mutagenesis, expression and activity analysis of mutant and wild type TaLDH enzymes were performed. Removal of the insertion at the active site loop caused production of an inactive enzyme. Furthermore, structures of wild and mutant enzymes were predicted by comparative modeling and the importance of the insertions at the active site loop were also assigned by molecular docking and dynamics simulations in order to evaluate essential role of this loop for the enzymatic activity. Pentapeptide insertion removal resulted in loss of LDH activity due to deletion of Trp96 and conformational change of Arg98 because of loop instability. Analysis of wild type and mutant enzymes with comparative molecular dynamics simulations showed that the fluctuations of the loop residues increase in mutant enzyme. Together with in silico studies, in vitro results revealed that active site loop has a vital role in the enzyme activity and our findings promise hope for the further drug design studies against theileriosis and other apicomplexan parasite diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Molecular friction dissipation and mode coupling in organic monolayers and polymer films.

    PubMed

    Knorr, Daniel B; Widjaja, Peggy; Acton, Orb; Overney, René M

    2011-03-14

    The impact of thermally active molecular rotational and translational relaxation modes on the friction dissipation process involving smooth nano-asperity contacts has been studied by atomic force microscopy, using the widely known Eyring analysis and a recently introduced method, dubbed intrinsic friction analysis. Two distinctly different model systems, i.e., monolayers of octadecyl-phosphonic acid (ODPA) and thin films of poly(tert-butyl acrylate) (PtBA) were investigated regarding shear-rate critical dissipation phenomena originating from diverging mode coupling behaviors between the external shear perturbation and the internal molecular modes of relaxation. Rapidly (ODPA) versus slowly (PtBA) relaxing systems, in comparison to the sliding rate, revealed monotonous logarithmic and nonmonotonous spectral shear rate dependences, respectively. Shear coupled, enthalpic activation energies of 46 kJ∕mol for ODPA and of 35 and ∼65 kJ∕mol for PtBA (below and above the glass transition) were found that could be attributed to intrinsic modes of relaxations. Also, entropic energies involved in the cooperative backbone mobility of PtBA could be quantified, dwarfing the activation energy by more than a factor of five. This study provides (i) a material specific understanding of the molecular scale dissipation process in shear compliant substances, (ii) analyses of material intrinsic shear-rate mode coupling, shear coordination and energetics, (iii) a verification of Eyring's model applied to tribological systems toward material intrinsic specificity, and (iv) a valuable extension of the Eyring analysis for complex macromolecular systems that are slowly relaxing, and thus, exhibit shear-rate mode coupling.

  5. Physico-chemical studies of the experimental and theoretical properties of organic nonlinear optical material 4-chloro-4'methoxy benzylideneaniline

    NASA Astrophysics Data System (ADS)

    George, Merin; John, Nimmy L.; Saravana Kumar, M.; Subashini, A.; Sajan, D.

    2017-01-01

    The FT-IR, FT-Raman and UV-visible spectral analysis of 4-chloro 4'-methoxy benzylidene aniline were done experimentally and interpreted with the aid of normal coordinate analysis based on density functional theory (DFT) at the B3LYP/6-311++G (d, p) level of theory. Natural Bond orbital analysis was performed to understand the charge transfer interactions and reactive sites within the system. HOMO-LUMO analysis and first static and dynamic hyperpolarizability calculations were carried out in order to confirm the NLO activity of CMOBA. Photophysical characterization was done to understand the fluorescence emission and lifetime of CMOBA leading to application in blue OLEDs. The Molecular Electrostatic Potential Map was simulated to identify the active sites for electrophilic and nucleophilic attack or the active sites of the molecule which can bind to proteins. Molecular docking analysis revealed its potential as an inhibitor for different proteins which are responsible for cancer and many inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, Crohn's disease and psoriasis. Experimental studies of invitro antiproliferative effect by MTT assay verified the anticancer properties of CMOBA.

  6. The effect of different extraction techniques on property and bioactivity of polysaccharides from Dioscorea hemsleyi.

    PubMed

    Zhao, Chengcheng; Li, Xia; Miao, Jing; Jing, Songsong; Li, Xuejiao; Huang, Luqi; Gao, Wenyuan

    2017-09-01

    The rhizoma of Dioscorea hemsleyi (DH) has been used as a treatment of diabetes in China for hundreds of years. Polysaccharides in DH were extracted by using ultrasonic-assisted extraction (UAE), cold water extraction (CWE), warm water extraction (WWE) and hot water extraction (HWE), separately. Then the different characterizations of four DH polysaccharide (DHP) samples were analyzed by high-performance liquid chromatography (HPLC), high-performance Gel permeation chromatography (HGPC), ultraviolet-visible spectroscopy(UV), fourier transform-infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Their activities in vitro of DHP were compared. Experimental results showed that HWE had the highest yield and large molecular weight. CWE had the highest uronic acid yield and little molecular weight, and its DPPH, AGI and AAI activity were the best. The molecular weight of UAE was small, and its RP and FRAP activity were the best. Four DHP samples had differences in the surface topography, while they all had the typical IR spectra characteristic of polysaccharides. According the correlation analysis, it showed that the more uronic acid and the lower molecular weight was, the higher the antioxidant activity was. The high content of monosaccharide composition of Xyl, Ara, GlcA and GalA, and little molecular weight have good effect on antidiabetic activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Discrete Fourier Transform-Based Multivariate Image Analysis: Application to Modeling of Aromatase Inhibitory Activity.

    PubMed

    Barigye, Stephen J; Freitas, Matheus P; Ausina, Priscila; Zancan, Patricia; Sola-Penna, Mauro; Castillo-Garit, Juan A

    2018-02-12

    We recently generalized the formerly alignment-dependent multivariate image analysis applied to quantitative structure-activity relationships (MIA-QSAR) method through the application of the discrete Fourier transform (DFT), allowing for its application to noncongruent and structurally diverse chemical compound data sets. Here we report the first practical application of this method in the screening of molecular entities of therapeutic interest, with human aromatase inhibitory activity as the case study. We developed an ensemble classification model based on the two-dimensional (2D) DFT MIA-QSAR descriptors, with which we screened the NCI Diversity Set V (1593 compounds) and obtained 34 chemical compounds with possible aromatase inhibitory activity. These compounds were docked into the aromatase active site, and the 10 most promising compounds were selected for in vitro experimental validation. Of these compounds, 7419 (nonsteroidal) and 89 201 (steroidal) demonstrated satisfactory antiproliferative and aromatase inhibitory activities. The obtained results suggest that the 2D-DFT MIA-QSAR method may be useful in ligand-based virtual screening of new molecular entities of therapeutic utility.

  8. Real-time single cell analysis of molecular mechanism of apoptosis and proliferation using FRET technique

    NASA Astrophysics Data System (ADS)

    Chen, Tongsheng; Xing, Da; Gao, Xuejuan; Wang, Fang

    2006-09-01

    Bcl-2 family proteins (such as Bid and Bak/Bax) and 14-3-3 proteins play a key role in the mitochondria-mediated cell apoptosis induced by cell death factors such as TNF-α and lower power laser irradiation (LPLI). In this report, fluorescence resonance energy transfer (FRET) has been used to study the molecular mechanism of apoptosis in living cells on a fluorescence scanning confocal microscope. Based on the genetic code technique and the green fluorescent proteins (GFPs), single-cell dynamic analysis of caspase3 activation, caspase8 activation, and PKCs activation are performed during apoptosis induced by laser irradiation in real-time. To investigate the cellular effect and mechanism of laser irradiation, human lung adenocarcinoma cells (ASTC-a-1) transfected with plasmid SCAT3 (pSCAT3)/ CKAR FRET reporter, were irradiated and monitored noninvasively with both FRET imaging. Our results show that high fluence lower power laser irradiation (HFLPLI) can induce an increase of caspase3 activation and a decrease of PKCs activation, and that LPLI induces the ASTC-a-1 cell proliferation by specifically activating PKCs.

  9. Quantitative molecular analysis in mantle cell lymphoma.

    PubMed

    Brízová, H; Hilská, I; Mrhalová, M; Kodet, R

    2011-07-01

    A molecular analysis has three major roles in modern oncopathology--as an aid in the differential diagnosis, in molecular monitoring of diseases, and in estimation of the potential prognosis. In this report we review the application of the molecular analysis in a group of patients with mantle cell lymphoma (MCL). We demonstrate that detection of the cyclin D1 mRNA level is a molecular marker in 98% of patients with MCL. Cyclin D1 quantitative monitoring is specific and sensitive for the differential diagnosis and for the molecular monitoring of the disease in the bone marrow. Moreover, the dynamics of cyclin D1 in bone marrow reflects the disease development and it predicts the clinical course. We employed the molecular analysis for a precise quantitative detection of proliferation markers, Ki-67, topoisomerase IIalpha, and TPX2, that are described as effective prognostic factors. Using the molecular approach it is possible to measure the proliferation rate in a reproducible, standard way which is an essential prerequisite for using the proliferation activity as a routine clinical tool. Comparing with immunophenotyping we may conclude that the quantitative PCR-based analysis is a useful, reliable, rapid, reproducible, sensitive and specific method broadening our diagnostic tools in hematopathology. In comparison to interphase FISH in paraffin sections quantitative PCR is less technically demanding and less time-consuming and furthermore it is more sensitive in detecting small changes in the mRNA level. Moreover, quantitative PCR is the only technology which provides precise and reproducible quantitative information about the expression level. Therefore it may be used to demonstrate the decrease or increase of a tumor-specific marker in bone marrow in comparison with a previously aspirated specimen. Thus, it has a powerful potential to monitor the course of the disease in correlation with clinical data.

  10. Molecular docking and 3D-QSAR studies on inhibitors of DNA damage signaling enzyme human PARP-1.

    PubMed

    Fatima, Sabiha; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2012-08-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) operates in a DNA damage signaling network. Molecular docking and three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on human PARP-1 inhibitors. Docked conformation obtained for each molecule was used as such for 3D-QSAR analysis. Molecules were divided into a training set and a test set randomly in four different ways, partial least square analysis was performed to obtain QSAR models using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Derived models showed good statistical reliability that is evident from their r², q²(loo) and r²(pred) values. To obtain a consensus for predictive ability from all the models, average regression coefficient r²(avg) was calculated. CoMFA and CoMSIA models showed a value of 0.930 and 0.936, respectively. Information obtained from the best 3D-QSAR model was applied for optimization of lead molecule and design of novel potential inhibitors.

  11. Quantitative Proteomics Identifies Activation of Hallmark Pathways of Cancer in Patient Melanoma.

    PubMed

    Byrum, Stephanie D; Larson, Signe K; Avaritt, Nathan L; Moreland, Linley E; Mackintosh, Samuel G; Cheung, Wang L; Tackett, Alan J

    2013-03-01

    Molecular pathways regulating melanoma initiation and progression are potential targets of therapeutic development for this aggressive cancer. Identification and molecular analysis of these pathways in patients has been primarily restricted to targeted studies on individual proteins. Here, we report the most comprehensive analysis of formalin-fixed paraffin-embedded human melanoma tissues using quantitative proteomics. From 61 patient samples, we identified 171 proteins varying in abundance among benign nevi, primary melanoma, and metastatic melanoma. Seventy-three percent of these proteins were validated by immunohistochemistry staining of malignant melanoma tissues from the Human Protein Atlas database. Our results reveal that molecular pathways involved with tumor cell proliferation, motility, and apoptosis are mis-regulated in melanoma. These data provide the most comprehensive proteome resource on patient melanoma and reveal insight into the molecular mechanisms driving melanoma progression.

  12. Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis

    NASA Astrophysics Data System (ADS)

    Ren, Jie

    2017-12-01

    The process by which a kinesin motor couples its ATPase activity with concerted mechanical hand-over-hand steps is a foremost topic of molecular motor physics. Two major routes toward elucidating kinesin mechanisms are the motility performance characterization of velocity and run length, and single-molecular state detection experiments. However, these two sets of experimental approaches are largely uncoupled to date. Here, we introduce an integrative motility state analysis based on a theorized kinetic graph theory for kinesin, which, on one hand, is validated by a wealth of accumulated motility data, and, on the other hand, allows for rigorous quantification of state occurrences and chemomechanical cycling probabilities. An interesting linear scaling for kinesin motility performance across species is discussed as well. An integrative kinetic graph theory analysis provides a powerful tool to bridge motility and state characterization experiments, so as to forge a unified effort for the elucidation of the working mechanisms of molecular motors.

  13. Distribution of molecular weight in glyceride polymerizates or aggregates of them after contact with lunar grains

    NASA Technical Reports Server (NTRS)

    Asunmaa, S. K.; Haack, R.

    1977-01-01

    An attempt is made to report on experiments in which a molecular-weight increase was determined in thin layers of triglyceride-containing glycerides after thin-layer contact for two years with lunar topsoil grains at 25 C without any thermal activation. It is noted that solidification was observed on both dielectric grains and metal-rich areas and that changes in viscosity and molecular weights were first detected by solidification of surface layers. Gel permeation chromatography is described which detected a general shift of the Gaussian distribution of the molecular-weight data toward generally higher molecular weights as well as an increase in mean molecular weight. Reaction mechanisms are considered, and results of spectrographic analysis are cited which support the interpretations of the molecular-weight data.

  14. Molecular Structural Characteristics of Polysaccharide Fractions from Canarium album (Lour.) Raeusch and Their Antioxidant Activities.

    PubMed

    Zeng, Hongliang; Miao, Song; Zheng, Baodong; Lin, Shan; Jian, Yeye; Chen, Shen; Zhang, Yi

    2015-11-01

    The objective of this study was to investigate the multiple relations between the preliminary molecular structural characteristics and antioxidant activities of polysaccharides from Canarium album (Lour.) Raeusch (CPS). Three polysaccharide fractions, CPS1, CPS2, and CPS3, were isolated from CPS by column chromatography. CPS1 and CPS3 were mainly composed of neutral polysaccharides linked by α- and β-glycosidic linkages while CPS2 was pectin polysaccharides mainly linked by β-glycosidic linkages. According to the SEC-MALLS-RI system, the molecular weight of CPS1 was greater compared to CPS2 and CPS3, and the molecular weight and radius of CPS did not display positive correlation. The chain conformation analysis indicated CPS1 and CPS2 were typical highly branched polysaccharides while CPS3 existed as a globular shape in aqueous. Furthermore, the antioxidant activity of CPS2 was better than that of CPS3, while that of CPS1 was the weakest. The antioxidant activities of polysaccharide fractions were affected by their monosaccharide composition, glycosidic linkage, molecular weight, and chain conformation. This functional property was a result of a combination of multiple molecular structural factors. CPS2 was the major antioxidant component of CPS and it could be exploited as a valued antioxidant product. The molecular structural characteristics, antioxidant activities, and structure-function relationships of polysaccharide fractions from Canarium album were first investigated in this study. The results provided background and practical knowledge for the deep-processed products of C. album with high added value. CPS2 was the major antioxidant component of CPS, which could be exploited as a valued antioxidant ingredient in food and pharmaceutical industries. © 2015 Institute of Food Technologists®

  15. Molecular insights into the activity and mechanism of cyanide hydratase enzyme associated with cyanide biodegradation by Serratia marcescens.

    PubMed

    Kushwaha, Madhulika; Kumar, Virender; Mahajan, Rishi; Bhalla, Tek Chand; Chatterjee, Subhankar; Akhter, Yusuf

    2018-05-09

    The present study provides molecular insights into the activity and mechanism of cyanide hydratase enzyme associated with degradation of cyanide compounds, using Serratia marcescens RL2b as a model organism. Resting cells harvested after 20 h achieved complete degradation of 12 mmol l - 1 cyanide in approximately 10 h. High-performance liquid chromatography analysis of reaction samples revealed formation of formamide as the only end product, which confirmed the presence of cyanide hydratase activity in S. marcescens RL2b. Comparative structural analysis with the other nitrilase family proteins, which was carried out using a sequence of cyanide hydratase from a phylogenetically related strain S. marcescens WW4, also revealed subtle but significant differences in amino acid residues of the substrate-binding pocket and catalytic triad (Cys-Lys-Glu).

  16. Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach

    NASA Astrophysics Data System (ADS)

    Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-06-01

    The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.

  17. Synthesis of Some Benzofuran Derivatives Containing Pyrimidine Moiety as Potent Antimicrobial Agents.

    PubMed

    Venkatesh, Talavara; Bodke, Yadav Dasharathrao; Joy, Muthipeedika Nibin; Dhananjaya, Bhadrapura Lakkappa; Venkataraman, Sivaramakrishnan

    2018-01-01

    In this investigation, the synthesis of 2-substituted pyrimidines by the reaction of benzofuran chalcones (3a-d) with urea, thiourea and guanidine hydrochloride was reported. The structures of title compounds (4a-d), (5a-d) and (6a-d) were established on the basis of analytical and spectral data. The synthesized compounds were screened for antimicrobial activity and molecular docking studies. Some of the compounds displayed excellent antimicrobial activity. The molecular docking analysis revealed that compounds 5a and 5c with the lowest binding energy in comparison to others suggesting its potential as best inhibitor of GluN-6-P. Consequently, it is confirmed from the above analysis that the compounds 5a and 5c might serve as a useful backbone scaffold for rational design, adaptation and investigation of more active analogs as potential broad spectrum antimicrobial agents.

  18. Mutational Analysis of Rab3 Function for Controlling Active Zone Protein Composition at the Drosophila Neuromuscular Junction

    PubMed Central

    Roche, John P.; Alsharif, Peter; Graf, Ethan R.

    2015-01-01

    At synapses, the release of neurotransmitter is regulated by molecular machinery that aggregates at specialized presynaptic release sites termed active zones. The complement of active zone proteins at each site is a determinant of release efficacy and can be remodeled to alter synapse function. The small GTPase Rab3 was previously identified as playing a novel role that controls the distribution of active zone proteins to individual release sites at the Drosophila neuromuscular junction. Rab3 has been extensively studied for its role in the synaptic vesicle cycle; however, the mechanism by which Rab3 controls active zone development remains unknown. To explore this mechanism, we conducted a mutational analysis to determine the molecular and structural requirements of Rab3 function at Drosophila synapses. We find that GTP-binding is required for Rab3 to traffick to synapses and distribute active zone components across release sites. Conversely, the hydrolytic activity of Rab3 is unnecessary for this function. Through a structure-function analysis we identify specific residues within the effector-binding switch regions that are required for Rab3 function and determine that membrane attachment is essential. Our findings suggest that Rab3 controls the distribution of active zone components via a vesicle docking mechanism that is consistent with standard Rab protein function. PMID:26317909

  19. Scarlet Fever Upsurge in England and Molecular-Genetic Analysis in North-West London, 2014.

    PubMed

    Turner, Claire E; Pyzio, Marta; Song, Bonita; Lamagni, Theresa; Meltzer, Margie; Chow, J Yimmy; Efstratiou, Androulla; Curtis, Sally; Sriskandan, Shiranee

    2016-06-01

    Scarlet fever notifications surged across the United Kingdom in spring 2014. Molecular epidemiologic investigation of Streptococcus pyogenes infections in North-West London highlighted increased emm4 and emm3 infections coincident with the upsurge. Unlike outbreaks in other countries, antimicrobial resistance was uncommon, highlighting an urgent need to better understand the drivers of scarlet fever activity.

  20. QSAR Analysis of 2-Amino or 2-Methyl-1-Substituted Benzimidazoles Against Pseudomonas aeruginosa

    PubMed Central

    Podunavac-Kuzmanović, Sanja O.; Cvetković, Dragoljub D.; Barna, Dijana J.

    2009-01-01

    A set of benzimidazole derivatives were tested for their inhibitory activities against the Gram-negative bacterium Pseudomonas aeruginosa and minimum inhibitory concentrations were determined for all the compounds. Quantitative structure activity relationship (QSAR) analysis was applied to fourteen of the abovementioned derivatives using a combination of various physicochemical, steric, electronic, and structural molecular descriptors. A multiple linear regression (MLR) procedure was used to model the relationships between molecular descriptors and the antibacterial activity of the benzimidazole derivatives. The stepwise regression method was used to derive the most significant models as a calibration model for predicting the inhibitory activity of this class of molecules. The best QSAR models were further validated by a leave one out technique as well as by the calculation of statistical parameters for the established theoretical models. To confirm the predictive power of the models, an external set of molecules was used. High agreement between experimental and predicted inhibitory values, obtained in the validation procedure, indicated the good quality of the derived QSAR models. PMID:19468332

  1. Structural analysis and anticoagulant activities of two sulfated polysaccharides from the sea cucumber Holothuria coluber.

    PubMed

    Yang, Wenjiao; Cai, Ying; Yin, Ronghua; Lin, Lisha; Li, Zhongkun; Wu, Mingyi; Zhao, Jinhua

    2018-05-01

    Sulfated polysaccharides such as fucosylated glycosaminoglycan and fucan sulfate from echinoderm possess complex chemical structure and various biological activities. The two sulfated polysaccharides were purified from the low-value sea cucumber Holothuria coluber. Their physicochemical properties and chemical structures were analyzed and characterized by chemical and instrumental methods. Structural analysis clarified that the sea cucumber fucosylated glycosaminoglycan contains a chondroitin sulfate-like backbone and fucosyl branches with four various sulfation patterns. The fucan sulfate with molecular weight of 64.6 kDa comprises a central core of regular α(1 → 4)-linked tetrasaccharide repeating units, each of which is linked by a 4-O-sulfated fucose residue. Anticoagulant assays indicated that these sulfated polysaccharides possessed strong APTT prolonging activities and intrinsic factor Xase inhibitory activities, both of which decreased with the reduction of their molecular weights. Our results expand knowledge on the structural types of sulfated polysaccharides from sea cucumbers and further illustrate their functionality. Copyright © 2018. Published by Elsevier B.V.

  2. Molecular structure, FT-IR, FT-Raman, NBO, HOMO and LUMO, MEP, NLO and molecular docking study of 2-[(E)-2-(2-bromophenyl)ethenyl]quinoline-6-carboxylic acid.

    PubMed

    Ulahannan, Rajeev T; Panicker, C Yohannan; Varghese, Hema Tresa; Musiol, Robert; Jampilek, Josef; Van Alsenoy, Christian; War, Javeed Ahmad; Srivastava, S K

    2015-01-01

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 2-[(E)-2-(2-bromophenyl)ethenyl]quinoline-6-carboxylic acid have been investigated experimentally and theoretically using Gaussian09 software package. Potential energy distribution of the normal modes of vibrations was done using GAR2PED program. (1)H NMR chemical shifts calculations were carried out by using B3LYP functional with SDD basis set. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. MEP was performed by the DFT method and the predicted infrared intensities and Raman activities have also been reported. The calculated geometrical parameters are in agreement with that of similar derivatives. The title compound forms a stable complex with PknB as is evident from the binding affinity values and the molecular docking results suggest that the compound might exhibit inhibitory activity against PknB and this may result in development of new anti-tuberculostic agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. In Silico Study of Chromatographic Lipophilicity Parameters of 3-(4-Substituted Benzyl)-5-Phenylhydantoins.

    PubMed

    Sekulic, Tatjana Djakovic; Keleman, Svetlana; Tot, Kristina; Tot, Jadranka; Trisovic, Nemanja; Uscumlic, Gordana

    2016-01-01

    New synthesized compounds, particularly those with biological activity, are potential drug candidates. This article describes experimental studies performed to estimate lipophilicity parameters of new 3-(4-substituted benzyl)-5-phenylhydantoins. Lipophilicity, as one of the most important molecular characteristics for the activity, was determined using the reversed-phase liquid chromatography (RP-18 stationary phase and methanol-water mobile phase). Molecular structures were used to generate in silico data which were used to estimate pharmacokinetic properties of the investigated compounds. The results show that generally, the investigated compounds attain good bioavailability properties. A more detailed analysis shows that the presence of a nitro, methoxy and tert-butyl group in the molecule is indicated as unfavorable for the oral bioavailability of hydantoins. Multivariate exploratory analysis was used in order to visualize grouping patterns among molecular descriptors as well as among the investigated compounds. Molecular docking study performed for two hydantoins with the highest bioavailability scores shows high binding affinity to tyrosine kinase receptor IGF-1R. The results achieved can be useful as a template for future development and further derivation or modification to obtain more potent and selective antitumor agents.

  4. Exploring the structure determinants of pyrazinone derivatives as PDE5 3HC8 inhibitors: an in silico analysis.

    PubMed

    Li, Yan; Wu, Wenzhao; Ren, Hong; Wang, Jinghui; Zhang, Shuwei; Li, Guohui; Yang, Ling

    2012-09-01

    Phosphodiesterase type 5 (PDE5) inhibitors are clinically indicated for the treatment of erectile dysfunction, pulmonary hypertension and various other diseases. In this work, both ligand- and receptor-based three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were carried out using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques on 122 pyrazinone derivatives as PDE inhibitors. The resultant optimum 3D-QSAR model exhibits a proper predictive ability as indicated by the statistical results of Q² of 0.584, R(ncv)² of 0.884 and R(pre)² of 0.817, respectively. In addition, docking analysis and molecular dynamics (MD) simulation were also applied to elucidate the probable binding modes of these inhibitors. Our main findings are: (1) Introduction of bulky, electropositive and hydrophobic substituents at 12- and 19-positions can increase the biological activities. (2) N atom at 8-position is detrimental to the inhibitor activity, and the effect of N atoms at 5- and 6-positions on compound activity is co-determined by both the hydrophobic force and the π-π stacking interaction. (3) Bulky and hydrophilic substitutions are favored at the 27-position of ring D. (4) Electronegative and hydrophilic substitutions around 5- and 6-positions increase the inhibitory activity. (5) Hydrophobic forces and π-π stacking interaction with Phe786 and Phe820 are crucial in determining the binding of pyrazinone derivatives to PDE5. (6) Bulky substitutions around ring C favors selectivity against PDE11, while bulky groups near the 21-position disfavor the selectivity. The information obtained from this work can be utilized to accurately predict the binding affinity of related analogues and also facilitate future rational designs of novel PDE5 inhibitors with improved activity and selectivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Molecular docking, 3D-QSAR and structural optimization on imidazo-pyridine derivatives dually targeting AT1 and PPARγ

    PubMed Central

    Zhang, Jun; Hao, Qing-Qing; Liu, Xin; Jing, Zhi; Jia, Wen-Qing; Wang, Shu-Qing; Xu, Wei-Ren; Cheng, Xian-Chao; Wang, Run-Ling

    2017-01-01

    Telmisartan, a bifunctional agent of blood pressure lowering and glycemia reduction, was previously reported to antagonize angiotensin II type 1 (AT1) receptor and partially activate peroxisome proliferator-activated receptor γ (PPARγ) simultaneously. Through the modification to telmisartan, researchers designed and obtained imidazo-\\pyridine derivatives with the IC50s of 0.49∼94.1 nM against AT1 and EC50s of 20∼3640 nM towards PPARγ partial activation. For minutely inquiring the interaction modes with the relevant receptor and analyzing the structure-activity relationships, molecular docking and 3D-QSAR (Quantitative structure-activity relationships) analysis of these imidazo-\\pyridines on dual targets were conducted in this work. Docking approaches of these derivatives with both receptors provided explicit interaction behaviors and excellent matching degree with the binding pockets. The best CoMFA (Comparative Molecular Field Analysis) models exhibited predictive results of q2=0.553, r2=0.954, SEE=0.127, r2pred=0.779 for AT1 and q2=0.503, r2=1.00, SEE=0.019, r2pred=0.604 for PPARγ, respectively. The contour maps from the optimal model showed detailed information of structural features (steric and electrostatic fields) towards the biological activity. Combining the bioisosterism with the valuable information from above studies, we designed six molecules with better predicted activities towards AT1 and PPARγ partial activation. Overall, these results could be useful for designing potential dual AT1 antagonists and partial PPARγ agonists. PMID:28445965

  6. Molecular docking, 3D-QSAR and structural optimization on imidazo-pyridine derivatives dually targeting AT1 and PPARg.

    PubMed

    Zhang, Jun; Hao, Qing-Qing; Liu, Xin; Jing, Zhi; Jia, Wen-Qing; Wang, Shu-Qing; Xu, Wei-Ren; Cheng, Xian-Chao; Wang, Run-Ling

    2017-04-11

    Telmisartan, a bifunctional agent of blood pressure lowering and glycemia reduction, was previously reported to antagonize angiotensin II type 1 (AT1) receptor and partially activate peroxisome proliferator-activated receptor γ (PPARγ) simultaneously. Through the modification to telmisartan, researchers designed and obtained imidazo-\\pyridine derivatives with the IC50s of 0.49~94.1 nM against AT1 and EC50s of 20~3640 nM towards PPARγ partial activation. For minutely inquiring the interaction modes with the relevant receptor and analyzing the structure-activity relationships, molecular docking and 3D-QSAR (Quantitative structure-activity relationships) analysis of these imidazo-\\pyridines on dual targets were conducted in this work. Docking approaches of these derivatives with both receptors provided explicit interaction behaviors and excellent matching degree with the binding pockets. The best CoMFA (Comparative Molecular Field Analysis) models exhibited predictive results of q2=0.553, r2=0.954, SEE=0.127, r2pred=0.779 for AT1 and q2=0.503, r2=1.00, SEE=0.019, r2pred=0.604 for PPARγ, respectively. The contour maps from the optimal model showed detailed information of structural features (steric and electrostatic fields) towards the biological activity. Combining the bioisosterism with the valuable information from above studies, we designed six molecules with better predicted activities towards AT1 and PPARγ partial activation. Overall, these results could be useful for designing potential dual AT1 antagonists and partial PPARγ agonists.

  7. Vibrational spectroscopic and DFT calculation studies of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile

    NASA Astrophysics Data System (ADS)

    Premkumar, S.; Jawahar, A.; Mathavan, T.; Kumara Dhas, M.; Milton Franklin Benial, A.

    2015-03-01

    The vibrational spectra of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile were recorded using fourier transform-infrared and fourier transform-Raman spectrometer. The optimized structural parameters, vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals, thermodynamic properties, temperature dependence of thermodynamic parameters, first order hyperpolarizability and natural bond orbital calculations of the molecule were performed using the Gaussian 09 program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program. The calculated first order hyperpolarizability of ABOBPC molecule was obtained as 6.908 × 10-30 issue, which was 10.5 times greater than urea. The nonlinear optical activity of the molecule was also confirmed by the frontier molecular orbitals and natural bond orbital analysis. The frontier molecular orbitals analysis shows that the lower energy gap of the molecule, which leads to the higher value of first order hyperpolarizability. The natural bond orbital analysis indicates that the nonlinear optical activity of the molecule arises due to the π → π∗ transitions. The Mulliken atomic charge distribution confirms the presence of intramolecular charge transfer within the molecule. The reactive site of the molecule was predicted from the molecular electrostatic potential contour map. The values of thermo dynamic parameters were increasing with increasing temperature.

  8. First report on 3D-QSAR and molecular dynamics based docking studies of GCPII inhibitors for targeted drug delivery applications

    NASA Astrophysics Data System (ADS)

    Pandit, Amit; Sengupta, Sagnik; Krishnan, Mena Asha; Reddy, Ramesh B.; Sharma, Rajesh; Venkatesh, Chelvam

    2018-05-01

    Prostate Specific Membrane Antigen (PSMA) or Glutamate carboxypeptidase II (GCPII) has been identified as an important target in diagnosis and therapy of prostate cancer. Among several types of inhibitors, urea based inhibitors are the most common and widely employed in preclinical and clinical studies. Computational studies have been carried out to uncover active sites and interaction of PSMA inhibitors with the protein by modifying the core structure of the ligand. Analysis of the literature, however, show lack of 3-D quantitative structure activity relationship (QSAR) and molecular dynamics based molecular docking study to identify structural modifications responsible for better GCPII inhibitory activity. The present study aims to fulfil this gap by analysing well known PSMA inhibitors reported in the literature with known experimental PSMA inhibition constants. Also in order to validate the in silico study, a new GCPII inhibitor 7 was designed, synthesized and experimental PSMA enzyme inhibition was evaluated by using freshly isolated PSMA protein from human cancer cell line derived from lymph node, LNCaP. 3D-QSAR CoMFA models on 58 urea based GCPII inhibitors were generated, and the best correlation was obtained in Gast-Huck charge assigning method with q2, r2 and predictive r2 values as 0.592, 0.995 and 0.842 respectively. Moreover, steric, electrostatic, and hydrogen bond donor field contribution analysis provided best statistical values from CoMSIA model (q2, r2 and predictive r2 as 0.527, 0.981 and 0.713 respectively). Contour maps study revealed that electrostatic field contribution is the major factor for discovering better binding affinity ligands. Further molecular dynamic assisted molecular docking was also performed on GCPII receptor (PDB ID 4NGM) and most active GCPII inhibitor, DCIBzL. 4NGM co-crystallised ligand, JB7 was used to validate the docking procedure and the amino acid interactions present in JB7 are compared with DCIBzL. The results suggest that Arg210, Asn257, Gly518, Tyr552, Lys699, and Tyr700 amino acid residues may play a crucial role in GCPII inhibition. Molecular Dynamics Simulation provides information about docked pose stability of DCIBzL. By combination of CoMFA-CoMSIA field analysis and docking interaction analysis studies, conclusive SAR was generated for urea based derivatives based on which GCPII inhibitor 7 was designed and chemically synthesized in our laboratory. Evaluation of GCPII inhibitory activity of 7 by performing NAALADase assay provided IC50 value of 113 nM which is in close agreement with in silico predicted value (119 nM). Thus we have successfully validated our 3D-QSAR and molecular docking based designing of GCPII inhibitors methodology through biological experiments. This conclusive SAR would be helpful to generate novel and more potent GCPII inhibitors for drug delivery applications.

  9. Novel mutant of Escherichia coli asparaginase II to reduction of the glutaminase activity in treatment of acute lymphocytic leukemia by molecular dynamics simulations and QM-MM studies.

    PubMed

    Ardalan, Noeman; Mirzaie, Sako; Sepahi, Abbas Akhavan; Khavari-Nejad, Ramazan Ali

    2018-03-01

    L-Asparaginases (ASNase) belong to a family of amidohydrolases, have both asparaginase and glutaminase activity. Acute lymphocytic leukemia (ALL) is an outrageous disease worldwide. Bacterial ASNase has been used for the treatment of ALL. Glutaminase activity of enzyme causes some side effect and it is not essential for anticancer activity. The aim of this study was engineering of Escherichia coli asparaginase II to find a mutant with reduced glutaminase activity by molecular docking, molecular dynamics (MD) and QM-MM (Quantum mechanics molecular dynamics) simulations. Residues with low free energy of binding to Asn and high free binding energy to Gln were chosen for mutagenesis. Then, a mutant with higher glutaminase free binding energy was selected for further studies. Additionally, the MD simulation and QM-MM computation of wild type (WT) were employed and the selected mutated ASNase were analyzed and discussed. Our data showed that V27T is a good candidate to reduction the glutaminase activity, while has no remarkable effect on asparaginase activity of the enzyme. The simulation analysis revealed that V27T mutant is more stable than WT and mutant simulation was successful completely. QM-MM results confirmed the successfulness of our mutagenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Figure analysis: A teaching technique to promote visual literacy and active Learning.

    PubMed

    Wiles, Amy M

    2016-07-08

    Learning often improves when active learning techniques are used in place of traditional lectures. For many of these techniques, however, students are expected to apply concepts that they have already grasped. A challenge, therefore, is how to incorporate active learning into the classroom of courses with heavy content, such as molecular-based biology courses. An additional challenge is that visual literacy is often overlooked in undergraduate science education. To address both of these challenges, a technique called figure analysis was developed and implemented in three different levels of undergraduate biology courses. Here, students learn content while gaining practice in interpreting visual information by discussing figures with their peers. Student groups also make connections between new and previously learned concepts on their own while in class. The instructor summarizes the material for the class only after students grapple with it in small groups. Students reported a preference for learning by figure analysis over traditional lecture, and female students in particular reported increased confidence in their analytical abilities. There is not a technology requirement for this technique; therefore, it may be utilized both in classrooms and in nontraditional spaces. Additionally, the amount of preparation required is comparable to that of a traditional lecture. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(4):336-344, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, R.N.; Robinson, H.; Klauer, A. A.

    The essential RNA helicase, Mtr4, performs a critical role in RNA processing and degradation as an activator of the nuclear exosome. The molecular basis for this vital function is not understood and detailed analysis is significantly limited by the lack of structural data. In this study, we present the crystal structure of Mtr4. The structure reveals a new arch-like domain that is specific to Mtr4 and Ski2 (the cytosolic homologue of Mtr4). In vivo and in vitro analyses demonstrate that the Mtr4 arch domain is required for proper 5.8S rRNA processing, and suggest that the arch functions independently of canonicalmore » helicase activity. In addition, extensive conservation along the face of the putative RNA exit site highlights a potential interface with the exosome. These studies provide a molecular framework for understanding fundamental aspects of helicase function in exosome activation, and more broadly define the molecular architecture of Ski2-like helicases.« less

  12. The study on molecular structure and microbiological activity of alkali metal 3-hydroxyphenylycetates

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Regulska, E.; Kowczyk-Sadowy, M.; Butarewicz, A.; Lewandowski, W.

    2017-10-01

    The biological activity of chemical compounds depends on their molecular structure. In this paper molecular structure of 3-hydroxyphenylacetates in comparison to 3-hydroxyphenylacetic acid was studied. FT-IR, FT-Raman and NMR spectroscopy and density functional theory (DFT) calculations was used. The B3LYP/6-311++G(d,p) hybrid functional method was used to calculate optimized geometrical structures of studied compounds. The Mulliken, APT, MK, ChelpG and NBO atomic charges as well as dipole moment and energy values were calculated. Theoretical chemical shifts in NMR spectra and the wavenumbers and intensities of the bands in vibrational spectra were analyzed. Calculated parameters were compared to experimental characteristic of studied compounds. Microbiological analysis of studied compounds was performed relative to: Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Klebsiella oxytoca. The relationship between spectroscopic and structure parameters of studied compounds in regard to their activity was analyzed.

  13. Synthesis, structural characterization, antimicrobial activities and theoretical investigations of some 4-(4-aminophenylsulfonyl) phenylimino) methyl)-4-(aryldiazenyl) phenol

    NASA Astrophysics Data System (ADS)

    Ghasemian, Motaleb; Kakanejadifard, Ali; Karami, Tahereh

    2016-11-01

    The azo-azomethine dyes with a different substitution have been designed from the reaction of 4,4‧-diaminodiphenyl sulfone with 2-hydroxy-5-(aryldiazenyl)benzaldehyde. The compounds have been characterized by elemental analysis, Mass, IR, UV-Vis, TGA-DTA and NMR spectroscopy. The solvatochromism behaviors, effects of substitution and pH on the electronic absorption spectra of dyes were evaluated. The in vitro antimicrobial activities were also screened for their potential for antibiotic activities by broth micro dilution method. Also, the optimum molecular geometries, molecular electrostatic potential (MEP), nucleus-independent chemical shift (NICS) and frontier molecular orbitals (FMO), vibrational spectra (IR) and electronic absorption (UV-Vis) spectra of the title compounds have been investigated with the help of DFT and TDDFT methods with 6-311 ++G(d,p) basis sets and PCM calculations. The results of the calculations show excellent agreement with the experimental value.

  14. 3D-QSAR Studies on a Series of Dihydroorotate Dehydrogenase Inhibitors: Analogues of the Active Metabolite of Leflunomide

    PubMed Central

    Li, Shun-Lai; He, Mao-Yu; Du, Hong-Guang

    2011-01-01

    The active metabolite of the novel immunosuppressive agent leflunomide has been shown to inhibit the enzyme dihydroorotate dehydrogenase (DHODH). This enzyme catalyzes the fourth step in de novo pyrimidine biosynthesis. Self-organizing molecular field analysis (SOMFA), a simple three-dimensional quantitative structure-activity relationship (3D-QSAR) method is used to study the correlation between the molecular properties and the biological activities of a series of analogues of the active metabolite. The statistical results, cross-validated rCV2 (0.664) and non cross-validated r2 (0.687), show a good predictive ability. The final SOMFA model provides a better understanding of DHODH inhibitor-enzyme interactions, and may be useful for further modification and improvement of inhibitors of this important enzyme. PMID:21686163

  15. 3D-QSAR and molecular docking studies on HIV protease inhibitors

    NASA Astrophysics Data System (ADS)

    Tong, Jianbo; Wu, Yingji; Bai, Min; Zhan, Pei

    2017-02-01

    In order to well understand the chemical-biological interactions governing their activities toward HIV protease activity, QSAR models of 34 cyclic-urea derivatives with inhibitory HIV were developed. The quantitative structure activity relationship (QSAR) model was built by using comparative molecular similarity indices analysis (CoMSIA) technique. And the best CoMSIA model has rcv2, rncv2 values of 0.586 and 0.931 for cross-validated and non-cross-validated. The predictive ability of CoMSIA model was further validated by a test set of 7 compounds, giving rpred2 value of 0.973. Docking studies were used to find the actual conformations of chemicals in active site of HIV protease, as well as the binding mode pattern to the binding site in protease enzyme. The information provided by 3D-QSAR model and molecular docking may lead to a better understanding of the structural requirements of 34 cyclic-urea derivatives and help to design potential anti-HIV protease molecules.

  16. Synthesis, crystal growth and characterization of bioactive material: 2- Amino-1H-benzimidazolium pyridine-3-carboxylate single crystal- a proton transfer molecular complex

    NASA Astrophysics Data System (ADS)

    Fathima, K. Saiadali; Kavitha, P.; Anitha, K.

    2017-09-01

    The 1:1 molecular adducts 2- Amino-1H-benzimidazolium pyridine-3-carboxylate (2ABPC) was synthesized and grown as single crystal where 2-aminobenzimidazole (ABI) acts as a donor and nicotinic acid (NA) acts as an acceptor. The presence of proton and carbon were predicted using 1H and 13C NMR spectral analysis. The molecular structure of the crystal was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R = 0.038 for 2469 reflections. The vibrational modes of functional group have been studied using FTIR and Raman spectroscopic analysis. The UV-Vis spectrum exhibited a visible band at 246 nm for 2ABPC due to the nicotinate anion of the molecule. Further, the antimicrobial activity of 2ABPC complex against B. subtilis, klebsiella pneumonia, Pseudomonas eruginos and E. coli pathogens was investigated. Minimum Inhibitory Concentration (MIC) for this crystal was obtained using UV spectrometer against MRSA pathogen. It was found that the benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of 2ABPC crystal.

  17. Single Active Site Mutation Causes Serious Resistance of HIV Reverse Transcriptase to Lamivudine: Insight from Multiple Molecular Dynamics Simulations.

    PubMed

    Moonsamy, Suri; Bhakat, Soumendranath; Walker, Ross C; Soliman, Mahmoud E S

    2016-03-01

    Molecular dynamics simulations, binding free energy calculations, principle component analysis (PCA), and residue interaction network analysis were employed in order to investigate the molecular mechanism of M184I single mutation which played pivotal role in making the HIV-1 reverse transcriptase (RT) totally resistant to lamivudine. Results showed that single mutations at residue 184 of RT caused (1) distortion of the orientation of lamivudine in the active site due to the steric conflict between the oxathiolane ring of lamivudine and the side chain of beta-branched amino acids Ile at position 184 which, in turn, perturbs inhibitor binding, (2) decrease in the binding affinity by (~8 kcal/mol) when compared to the wild-type, (3) variation in the overall enzyme motion as evident from the PCA for both systems, and (4) distortion of the hydrogen bonding network and atomic interactions with the inhibitor. The comprehensive analysis presented in this report can provide useful information for understanding the drug resistance mechanism against lamivudine. The results can also provide some potential clues for further design of novel inhibitors that are less susceptible to drug resistance.

  18. Apoptosis: a four-week laboratory investigation for advanced molecular and cellular biology students.

    PubMed

    DiBartolomeis, Susan M; Moné, James P

    2003-01-01

    Over the past decade, apoptosis has emerged as an important field of study central to ongoing research in many diverse fields, from developmental biology to cancer research. Apoptosis proceeds by a highly coordinated series of events that includes enzyme activation, DNA fragmentation, and alterations in plasma membrane permeability. The detection of each of these phenotypic changes is accessible to advanced undergraduate cell and molecular biology students. We describe a 4-week laboratory sequence that integrates cell culture, fluorescence microscopy, DNA isolation and analysis, and western blotting (immunoblotting) to follow apoptosis in cultured human cells. Students working in teams chemically induce apoptosis, and harvest, process, and analyze cells, using their data to determine the order of events during apoptosis. We, as instructors, expose the students to an environment closely simulating what they would encounter in an active cell or molecular biology research laboratory by having students coordinate and perform multiple tasks simultaneously and by having them experience experimental design using current literature, data interpretation, and analysis to answer a single question. Students are assessed by examination of laboratory notebooks for completeness of experimental protocols and analysis of results and for completion of an assignment that includes questions pertaining to data interpretation and apoptosis.

  19. Figure Analysis: A Teaching Technique to Promote Visual Literacy and Active Learning

    ERIC Educational Resources Information Center

    Wiles, Amy M.

    2016-01-01

    Learning often improves when active learning techniques are used in place of traditional lectures. For many of these techniques, however, students are expected to apply concepts that they have already grasped. A challenge, therefore, is how to incorporate active learning into the classroom of courses with heavy content, such as molecular-based…

  20. PRO_LIGAND: an approach to de novo molecular design. 2. Design of novel molecules from molecular field analysis (MFA) models and pharmacophores.

    PubMed

    Waszkowycz, B; Clark, D E; Frenkel, D; Li, J; Murray, C W; Robson, B; Westhead, D R

    1994-11-11

    A computational approach for molecular design, PRO_LIGAND, has been developed within the PROMETHEUS molecular design and simulation system in order to provide a unified framework for the de novo generation of diverse molecules which are either similar or complementary to a specified target. In this instance, the target is a pharmacophore derived from a series of active structures either by a novel interpretation of molecular field analysis data or by a pharmacophore-mapping procedure based on clique detection. After a brief introduction to PRO_LIGAND, a detailed description is given of the two pharmacophore generation procedures and their abilities are demonstrated by the elucidation of pharmacophores for steroid binding and ACE inhibition, respectively. As a further indication of its efficacy in aiding the rational drug design process, PRO_LIGAND is then employed to build novel organic molecules to satisfy the physicochemical constraints implied by the pharmacophores.

  1. Spectroscopic, quantum chemical calculation and molecular docking of dipfluzine

    NASA Astrophysics Data System (ADS)

    Srivastava, Karnica; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Wang, Jing

    2016-12-01

    Molecular structure and vibrational analysis of dipfluzine (C27H29FN2O) were presented using FT-IR and FT-Raman spectroscopy and quantum chemical calculations. The theoretical ground state geometry and electronic structure of dipfluzine are optimized by the DFT/B3LYP/6-311++G (d,p) method and compared with those of the crystal data. The 1D potential energy scan was performed by varying the dihedral angle using B3LYP functional at 6-31G(d,p) level of theory and thus the most stable conformer of the compound were determined. Molecular electrostatic potential surface (MEPS), frontier orbital analysis and electronic reactivity descriptor were used to predict the chemical reactivity of molecule. Energies of intra- and inter-molecular hydrogen bonds in molecule and their electronic aspects were investigated by natural bond orbital (NBO). To find out the anti-apoptotic activity of the title compound molecular docking studies have been performed against protein Fas.

  2. Collaborative study for the calibration of replacement batches for the heparin low-molecular-mass for assay biological reference preparation.

    PubMed

    Terao, E; Daas, A

    2016-01-01

    The European Pharmacopoeia (Ph. Eur.) prescribes the control of the activity of low molecular mass heparins by assays for anti-Xa and anti-IIa activities (monograph 0828), using a reference standard calibrated in International Units (IU). An international collaborative study coded BSP133 was launched in the framework of the Biological Standardisation Programme (BSP) run under the aegis of the Council of Europe and the European Commission to calibrate replacement batches for the dwindling stocks of the Heparin low-molecular-mass for assay Biological Reference Preparation (BRP) batch 8. Thirteen official medicines control and manufacturers laboratories from European and non-European countries took part in this study to calibrate two freeze-dried candidate batches against the 3rd International Standard (IS) for heparin, low molecular weight (11/176; 3rd IS). The Heparin low-molecular-mass for assay BRP (batch 8) was also included in the test panel to check the continuity between subsequent BRP batches. Taking into account the stability data, the results of this collaborative study and on the basis of the central statistical analysis performed at the European Directorate for the Quality of Medicines & HealthCare (EDQM), the 2 candidate batches were officially adopted by the Commission of the European Pharmacopoeia as Heparin low-molecular-mass for assay BRP batches 9 and 10 with assigned anti-Xa activities of 102 and 100 IU/vial and anti-IIa activities of 34 and 33 IU/vial respectively.

  3. 3D-QSAR (CoMFA, CoMSIA), molecular docking and molecular dynamics simulations study of 6-aryl-5-cyano-pyrimidine derivatives to explore the structure requirements of LSD1 inhibitors.

    PubMed

    Ding, Lina; Wang, Zhi-Zheng; Sun, Xu-Dong; Yang, Jing; Ma, Chao-Ya; Li, Wen; Liu, Hong-Min

    2017-08-01

    Recently, Histone Lysine Specific Demethylase 1 (LSD1) was regarded as a promising anticancer target for the novel drug discovery. And several small molecules as LSD1 inhibitors in different structures have been reported. In this work, we carried out a molecular modeling study on the 6-aryl-5-cyano-pyrimidine fragment LSD1 inhibitors using three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics simulations. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to generate 3D-QSAR models. The results show that the best CoMFA model has q 2 =0.802, r 2 ncv =0.979, and the best CoMSIA model has q 2 =0.799, r 2 ncv =0.982. The electrostatic, hydrophobic and H-bond donor fields play important roles in the models. Molecular docking studies predict the binding mode and the interactions between the ligand and the receptor protein. Molecular dynamics simulations results reveal that the complex of the ligand and the receptor protein are stable at 300K. All the results can provide us more useful information for our further drug design. Copyright © 2017. Published by Elsevier Ltd.

  4. Corin mutations K317E and S472G from preeclamptic patients alter zymogen activation and cell surface targeting. [Corrected].

    PubMed

    Dong, Ningzheng; Zhou, Tiantian; Zhang, Yue; Liu, Meng; Li, Hui; Huang, Xiaoyi; Liu, Zhenzhen; Wu, Yi; Fukuda, Koichi; Qin, Jun; Wu, Qingyu

    2014-06-20

    Corin is a membrane-bound serine protease that acts as the atrial natriuretic peptide (ANP) convertase in the heart. Recent studies show that corin also activates ANP in the pregnant uterus to promote spiral artery remodeling and prevent pregnancy-induced hypertension. Two CORIN gene mutations, K317E and S472G, were identified in preeclamptic patients and shown to have reduced activity in vitro. In this study, we carried out molecular modeling and biochemical experiments to understand how these mutations impair corin function. By molecular modeling, the mutation K317E was predicted to alter corin LDL receptor-2 module conformation. Western blot analysis of K317E mutant in HEK293 cells showed that the mutation did not block corin expression on the cell surface but inhibited corin zymogen activation. In contrast, the mutation S472G was predicted to abolish a β-sheet critical for corin frizzled-2 module structure. In Western blot analysis and flow cytometry, S472G mutant was not detected on the cell surface in transfected HEK293 cells. By immunostaining, the S472G mutant was found in the ER, indicating that the mutation S472G disrupted the β-sheet, causing corin misfolding and ER retention. Thus, these results show that mutations in the CORIN gene may impair corin function by entirely different mechanisms. Together, our data provide important insights into the molecular basis underlying corin mutations that may contribute to preeclampsia in patients. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Design, synthesis, antiviral bioactivity and three-dimensional quantitative structure-activity relationship study of novel ferulic acid ester derivatives containing quinazoline moiety.

    PubMed

    Wu, Zengxue; Zhang, Jian; Chen, Jixiang; Pan, Jianke; Zhao, Lei; Liu, Dengyue; Zhang, Awei; Chen, Jin; Hu, Deyu; Song, Baoan

    2017-10-01

    Ferulic acid and quinazoline derivatives possess good antiviral activities. In order to develop novel compounds with high antiviral activities, a series of ferulic acid ester derivatives containing quinazoline were synthesized and evaluated for their antiviral activities. Bioassays indicated that some of the compounds exhibited good antiviral activities in vivo against tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). One of the compounds demonstrated significant curative and protective activities against TMV and CMV, with EC 50 values of 162.14, 114.61 and 255.49, 138.81 mg L -1 , respectively, better than those of ningnanmycin (324.51, 168.84 and 373.88, 272.70 mg L -1 ). The values of q 2 and r 2 for comparative molecular field analysis and comparative molecular similarity index analysis in the TMV (0.508, 0.663 and 0.992, 0.930) and CMV (0.530, 0.626 and 0.997, 0.981) models presented good predictive abilities. Some of the title compounds demonstrated good antiviral activities. Three-dimensional quantitative structure-activity relationship models revealed that the antiviral activities depend on steric and electrostatic properties. These results could provide significant structural insights for the design of highly active ferulic acid derivatives. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.

  7. [CONTEMPORARY MOLECULAR-GENETIC METHODS USED FOR ETIOLOGIC DIAGNOSTICS OF SEPSIS].

    PubMed

    Gavrilov, S N; Skachkova, T S; Shipulina, O Yu; Savochkina, Yu A; Shipulin, G A; Maleev, V V

    2016-01-01

    Etiologic diagnostics of sepsis is one of the most difficult problems of contemporary medicine due to a wide variety of sepsis causative agents, many of which are components of normal human microflora. Disadvantages of contemporary "golden standard" of microbiologic diagnostics of sepsis etiology by seeding of blood for sterility are duration of cultivation, limitation in detection of non-cultivable forms of microorganisms, significant effect of preliminary empiric antibiotics therapy on results of the analysis. Methods of molecular diagnostics that are being actively developed and integrated during the last decade are deprived of these disadvantages. Main contemporary methods of molecular-biological diagnostics are examined in the review, actualdata on their diagnostic characteristic are provided. Special attention is given to methods of PCR-diagnostics, including novel Russian developments. Methods of nucleic acid hybridization and proteomic analysis are examined in comparative aspect. Evaluation of application and perspectives of development of methods of molecular diagnostics of sepsis is given.

  8. Discovery of an Unexplored Protein Structural Scaffold of Serine Protease from Big Blue Octopus (Octopus cyanea): A New Prospective Lead Molecule.

    PubMed

    Panda, Subhamay; Kumari, Leena

    2017-01-01

    Serine proteases are a group of enzymes that hydrolyses the peptide bonds in proteins. In mammals, these enzymes help in the regulation of several major physiological functions such as digestion, blood clotting, responses of immune system, reproductive functions and the complement system. Serine proteases obtained from the venom of Octopodidae family is a relatively unexplored area of research. In the present work, we tried to effectively utilize comparative composite molecular modeling technique. Our key aim was to propose the first molecular model structure of unexplored serine protease 5 derived from big blue octopus. The other objective of this study was to analyze the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis with the aid of different bioinformatic tools. In the present study, molecular model has been generated with the help of I-TASSER suite. Afterwards the refined structural model was validated with standard methods. For functional annotation of protein molecule we used Protein Information Resource (PIR) database. Serine protease 5 of big blue octopus was analyzed with different bioinformatical algorithms for the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis. The functionally critical amino acids and ligand- binding site (LBS) of the proteins (modeled) were determined using the COACH program. The molecular model data in cooperation to other pertinent post model analysis data put forward molecular insight to proteolytic activity of serine protease 5, which helps in the clear understanding of procoagulant and anticoagulant characteristics of this natural lead molecule. Our approach was to investigate the octopus venom protein as a whole or a part of their structure that may result in the development of new lead molecule. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Key Structures and Interactions for Binding of Mycobacterium tuberculosis Protein Kinase B Inhibitors from Molecular Dynamics Simulation.

    PubMed

    Punkvang, Auradee; Kamsri, Pharit; Saparpakorn, Patchreenart; Hannongbua, Supa; Wolschann, Peter; Irle, Stephan; Pungpo, Pornpan

    2015-07-01

    Substituted aminopyrimidine inhibitors have recently been introduced as antituberculosis agents. These inhibitors show impressive activity against protein kinase B, a Ser/Thr protein kinase that is essential for cell growth of M. tuberculosis. However, up to now, X-ray structures of the protein kinase B enzyme complexes with the substituted aminopyrimidine inhibitors are currently unavailable. Consequently, structural details of their binding modes are questionable, prohibiting the structural-based design of more potent protein kinase B inhibitors in the future. Here, molecular dynamics simulations, in conjunction with molecular mechanics/Poisson-Boltzmann surface area binding free-energy analysis, were employed to gain insight into the complex structures of the protein kinase B inhibitors and their binding energetics. The complex structures obtained by the molecular dynamics simulations show binding free energies in good agreement with experiment. The detailed analysis of molecular dynamics results shows that Glu93, Val95, and Leu17 are key residues responsible to the binding of the protein kinase B inhibitors. The aminopyrazole group and the pyrimidine core are the crucial moieties of substituted aminopyrimidine inhibitors for interaction with the key residues. Our results provide a structural concept that can be used as a guide for the future design of protein kinase B inhibitors with highly increased antagonistic activity. © 2014 John Wiley & Sons A/S.

  10. Molecular Quantum Similarity, Chemical Reactivity and Database Screening of 3D Pharmacophores of the Protein Kinases A, B and G from Mycobacterium tuberculosis.

    PubMed

    Morales-Bayuelo, Alejandro

    2017-06-21

    Mycobacterium tuberculosis remains one of the world's most devastating pathogens. For this reason, we developed a study involving 3D pharmacophore searching, selectivity analysis and database screening for a series of anti-tuberculosis compounds, associated with the protein kinases A, B, and G. This theoretical study is expected to shed some light onto some molecular aspects that could contribute to the knowledge of the molecular mechanics behind interactions of these compounds, with anti-tuberculosis activity. Using the Molecular Quantum Similarity field and reactivity descriptors supported in the Density Functional Theory, it was possible to measure the quantification of the steric and electrostatic effects through the Overlap and Coulomb quantitative convergence (alpha and beta) scales. In addition, an analysis of reactivity indices using global and local descriptors was developed, identifying the binding sites and selectivity on these anti-tuberculosis compounds in the active sites. Finally, the reported pharmacophores to PKn A, B and G, were used to carry out database screening, using a database with anti-tuberculosis drugs from the Kelly Chibale research group (http://www.kellychibaleresearch.uct.ac.za/), to find the compounds with affinity for the specific protein targets associated with PKn A, B and G. In this regard, this hybrid methodology (Molecular Mechanic/Quantum Chemistry) shows new insights into drug design that may be useful in the tuberculosis treatment today.

  11. Scarlet Fever Upsurge in England and Molecular-Genetic Analysis in North-West London, 2014

    PubMed Central

    Turner, Claire E.; Pyzio, Marta; Song, Bonita; Lamagni, Theresa; Meltzer, Margie; Chow, J. Yimmy; Efstratiou, Androulla; Curtis, Sally

    2016-01-01

    Scarlet fever notifications surged across the United Kingdom in spring 2014. Molecular epidemiologic investigation of Streptococcus pyogenes infections in North-West London highlighted increased emm4 and emm3 infections coincident with the upsurge. Unlike outbreaks in other countries, antimicrobial resistance was uncommon, highlighting an urgent need to better understand the drivers of scarlet fever activity. PMID:27192393

  12. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy

    NASA Astrophysics Data System (ADS)

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-01

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  13. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy.

    PubMed

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-09

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  14. Mathematical Justification of Expression-Based Pathway Activation Scoring (PAS).

    PubMed

    Aliper, Alexander M; Korzinkin, Michael B; Kuzmina, Natalia B; Zenin, Alexander A; Venkova, Larisa S; Smirnov, Philip Yu; Zhavoronkov, Alex A; Buzdin, Anton A; Borisov, Nikolay M

    2017-01-01

    Although modeling of activation kinetics for various cell signaling pathways has reached a high grade of sophistication and thoroughness, most such kinetic models still remain of rather limited practical value for biomedicine. Nevertheless, recent advancements have been made in application of signaling pathway science for real needs of prescription of the most effective drugs for individual patients. The methods for such prescription evaluate the degree of pathological changes in the signaling machinery based on two types of data: first, on the results of high-throughput gene expression profiling, and second, on the molecular pathway graphs that reflect interactions between the pathway members. For example, our algorithm OncoFinder evaluates the activation of molecular pathways on the basis of gene/protein expression data in the objects of the interest.Yet, the question of assessment of the relative importance for each gene product in a molecular pathway remains unclear unless one call for the methods of parameter sensitivity /stiffness analysis in the interactomic kinetic models of signaling pathway activation in terms of total concentrations of each gene product.Here we show two principal points: 1. First, the importance coefficients for each gene in pathways that were obtained using the extremely time- and labor-consuming stiffness analysis of full-scaled kinetic models generally differ from much easier-to-calculate expression-based pathway activation score (PAS) not more than by 30%, so the concept of PAS is kinetically justified. 2. Second, the use of pathway-based approach instead of distinct gene analysis, due to the law of large numbers, allows restoring the correlation between the similar samples that were examined using different transcriptome investigation techniques.

  15. Transcriptomic and Proteomic Responses of Sweetpotato Whitefly, Bemisia tabaci, to Thiamethoxam

    PubMed Central

    Yang, Nina; Xie, Wen; Yang, Xin; Wang, Shaoli; Wu, Qingjun; Li, Rumei; Pan, Huipeng; Liu, Baiming; Shi, Xiaobin; Fang, Yong; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2013-01-01

    Background The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), is one of the most widely distributed agricultural pests. Although it has developed resistance to many registered insecticides including the neonicotinoid insecticide thiamethoxam, the mechanisms that regulate the resistance are poorly understood. To understand the molecular basis of thiamethoxam resistance, “omics” analyses were carried out to examine differences between resistant and susceptible B. tabaci at both transcriptional and translational levels. Results A total of 1,338 mRNAs and 52 proteins were differentially expressed between resistant and susceptible B. tabaci. Among them, 11 transcripts had concurrent transcription and translation profiles. KEGG analysis mapped 318 and 35 differentially expressed genes and proteins, respectively, to 160 and 59 pathways (p<0.05). Thiamethoxam treatment activated metabolic pathways (e.g., drug metabolism), in which 118 transcripts were putatively linked to insecticide resistance, including up-regulated glutathione-S-transferase, UDP glucuronosyltransferase, glucosyl/glucuronosyl transferase, and cytochrome P450. Gene Ontology analysis placed these genes and proteins into protein complex, metabolic process, cellular process, signaling, and response to stimulus categories. Quantitative real-time PCR analysis validated “omics” response, and suggested a highly overexpressed P450, CYP6CX1, as a candidate molecular basis for the mechanistic study of thiamethoxam resistance in whiteflies. Finally, enzymatic activity assays showed elevated detoxification activities in the resistant B. tabaci. Conclusions This study demonstrates the applicability of high-throughput omics tools for identifying molecular candidates related to thiamethoxam resistance in an agricultural important insect pest. In addition, transcriptomic and proteomic analyses provide a solid foundation for future functional investigations into the complex molecular mechanisms governing the neonicotinoid resistance in whiteflies. PMID:23671574

  16. Vibrational spectroscopic, structural and nonlinear optical activity studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A DFT approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asath, R. Mohamed; Premkumar, S.; Mathavan, T.

    2016-05-23

    The conformational analysis was carried out for 2-amino-3-chloro-5-trifluoromethylpyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the moleculemore » were carried out. The nonlinear optical (NLO) activity was studied and the first order hyperpolarizability value was computed, which was 3.48 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ACTP molecule is a promising candidate for NLO materials.« less

  17. Vibrational spectroscopic, structural and nonlinear optical activity studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 2-amino-3-chloro-5-trifluoromethylpyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the molecule were carried out. The nonlinear optical (NLO) activity was studied and the first order hyperpolarizability value was computed, which was 3.48 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ACTP molecule is a promising candidate for NLO materials.

  18. Conformational, vibrational spectroscopic and nonlinear optical activity studies on N,N-Di-Boc-2-amino pyridine : A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, R.; Mathavan, T.; Benial, A. Milton Franklin

    2017-05-01

    The conformational analysis was carried out for N,N-Di-Boc-2-amino pyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVTZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the molecule were carried out. The nonlinear optical (NLO) activity was examined and the first order hyperpolarizability value was computed, which was 2.27 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the DBAP molecule is a promising candidate for NLO materials.

  19. QSAR, DFT and molecular modeling studies of peptides from HIV-1 to describe their recognition properties by MHC-I.

    PubMed

    Andrade-Ochoa, S; García-Machorro, J; Bello, Martiniano; Rodríguez-Valdez, L M; Flores-Sandoval, C A; Correa-Basurto, J

    2017-08-03

    Human immunodeficiency virus type-1 (HIV-1) has infected more than 40 million people around the world. HIV-1 treatment still has several side effects, and the development of a vaccine, which is another potential option for decreasing human infections, has faced challenges. This work presents a computational study that includes a quantitative structure activity relationship(QSAR) using density functional theory(DFT) for reported peptides to identify the principal quantum mechanics descriptors related to peptide activity. In addition, the molecular recognition properties of these peptides are explored on major histocompatibility complex I (MHC-I) through docking and molecular dynamics (MD) simulations accompanied by the Molecular Mechanics Generalized Born Surface Area (MMGBSA) approach for correlating peptide activity reported elsewhere vs. theoretical peptide affinity. The results show that the carboxylic acid and hydroxyl groups are chemical moieties that have an inverse relationship with biological activity. The number of sulfides, pyrroles and imidazoles from the peptide structure are directly related to biological activity. In addition, the HOMO orbital energy values of the total absolute charge and the Ghose-Crippen molar refractivity of peptides are descriptors directly related to the activity and affinity on MHC-I. Docking and MD simulation studies accompanied by an MMGBSA analysis show that the binding free energy without considering the entropic contribution is energetically favorable for all the complexes. Furthermore, good peptide interaction with the most affinity is evaluated experimentally for three proteins. Overall, this study shows that the combination of quantum mechanics descriptors and molecular modeling studies could help describe the immunogenic properties of peptides from HIV-1.

  20. Computer aided drug design

    NASA Astrophysics Data System (ADS)

    Jain, A.

    2017-08-01

    Computer based method can help in discovery of leads and can potentially eliminate chemical synthesis and screening of many irrelevant compounds, and in this way, it save time as well as cost. Molecular modeling systems are powerful tools for building, visualizing, analyzing and storing models of complex molecular structure that can help to interpretate structure activity relationship. The use of various techniques of molecular mechanics and dynamics and software in Computer aided drug design along with statistics analysis is powerful tool for the medicinal chemistry to synthesis therapeutic and effective drugs with minimum side effect.

  1. Identification of Neurodegenerative Factors Using Translatome-Regulatory Network Analysis

    PubMed Central

    Brichta, Lars; Shin, William; Jackson-Lewis, Vernice; Blesa, Javier; Yap, Ee-Lynn; Walker, Zachary; Zhang, Jack; Roussarie, Jean-Pierre; Alvarez, Mariano J.; Califano, Andrea; Przedborski, Serge; Greengard, Paul

    2016-01-01

    For degenerative disorders of the central nervous system, the major obstacle to therapeutic advancement has been the challenge of identifying the key molecular mechanisms underlying neuronal loss. We developed a combinatorial approach including translational profiling and brain regulatory network analysis to search for key determinants of neuronal survival or death. Following the generation of transgenic mice for cell type-specific profiling of midbrain dopaminergic neurons, we established and compared translatome libraries reflecting the molecular signature of these cells at baseline or under degenerative stress. Analysis of these libraries by interrogating a context-specific brain regulatory network led to the identification of a repertoire of intrinsic upstream regulators that drive the dopaminergic stress response. The altered activity of these regulators was not associated with changes in their expression levels. This strategy can be generalized for the elucidation of novel molecular determinants involved in the degeneration of other classes of neurons. PMID:26214373

  2. Mutated form (G52E) of inactive diphtheria toxin CRM197: molecular simulations clearly display effect of the mutation to NAD binding.

    PubMed

    Salmas, Ramin Ekhteiari; Mestanoglu, Mert; Unlu, Ayhan; Yurtsever, Mine; Durdagi, Serdar

    2016-11-01

    Mutated form (G52E) of diphtheria toxin (DT) CRM197 is an inactive and nontoxic enzyme. Here, we provided a molecular insight using comparative molecular dynamics (MD) simulations to clarify the influence of a single point mutation on overall protein and active-site loop. Post-processing MD analysis (i.e. stability, principal component analysis, hydrogen-bond occupancy, etc.) is carried out on both wild and mutated targets to investigate and to better understand the mechanistic differences of structural and dynamical properties on an atomic scale especially at nicotinamide adenine dinucleotide (NAD) binding site when a single mutation (G52E) happens at the DT. In addition, a docking simulation is performed for wild and mutated forms. The docking scoring analysis and docking poses results revealed that mutant form is not able to properly accommodate the NAD molecule.

  3. Evans hole and non linear optical activity in Bis(melaminium) sulphate dihydrate: A vibrational spectral study.

    PubMed

    Suresh Kumar, V R; Binoy, J; Dawn Dharma Roy, S; Marchewka, M K; Jayakumar, V S

    2015-01-01

    Bis(melaminium) sulphate dihydrate (BMSD), an interesting melaminium derivative for nonlinear optical activity, has been subjected to vibrational spectral analysis using FT IR and FT Raman spectra. The analysis has been aided by the Potential Energy Distribution (PED) of vibrational spectral bands, derived using density functional theory (DFT) at B3LYP/6-31G(d) level. The geometry is found to correlate well with the XRD structure and the band profiles for certain vibrations in the finger print region have been theoretically explained using Evans hole. The detailed Natural Bond Orbital (NBO) analysis of the hydrogen bonding in BMSD has also been carried out to understand the correlation between the stabilization energy of hyperconjugation of the lone pair of donor with the σ(∗) orbital of hydrogen-acceptor bond and the strength of hydrogen bond. The theoretical calculation shows that BMSD has NLO efficiency, 2.66 times that of urea. The frontier molecular orbital analysis points to a charge transfer, which contributes to NLO activity, through N-H…O intermolecular hydrogen bonding between the melaminium ring and the sulphate. The molecular electrostatic potential (MEP) mapping has also been performed for the detailed analysis of the mutual interactions between melaminium ring and sulphate ion. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Molecular analysis, biochemical characterization, antimicrobial activity and immunological analysis of proteus mirabilis isolated from broilers

    USDA-ARS?s Scientific Manuscript database

    Proteus mirabilis, a peritrichously flagellated Gram-negative bacterium, is ubiquitous in the environment and is the normal microflora in the human gastrointestinal tract. However, this bacterium is an opportunistic pathogen for human, often causing urinary tract infection. Moreover, Proteus has b...

  5. Composition and Antioxidant Activity of Water-Soluble Polysaccharides from Tuber indicum

    PubMed Central

    Luo, Qiang; Zhang, Jie; Yan, Liang; Tang, Yuanlin; Ding, Xiang; Yang, Zhirong

    2011-01-01

    Abstract Crude water-soluble Chinese truffle Tuber indicum polysaccharide (TIP) was extracted from the fruiting bodies with water and then successively purified by DEAE–cellulose 52 and Sephadex G-100 column chromatography, yielding two major polysaccharide fractions: TIP1-1 and TIP2-1. High-performance gel permeation chromatography analysis showed that the average molecular sizes of TIP1-1 and TIP2-1 were approximately 1.75×104 Da and 5.73×103 Da, respectively. Monosaccharide component analysis by gas chromatography indicated that TIP1-1 was composed of mannose, glucose, galactose, and rhamannose in the respective molar ratio of 3.93:1.24:0.75:1.26 and that TIP2-1 contained mannose, glucose, and arabinose in the respective molar ratio of 5.27:1.44:0.43. The antioxidant activity analyses revealed that TIP1-1 and TIP2-1 possessed considerable antioxidant activity. Compared with TIP1-1, which has a higher molecular weight and contains no uronic acid, TIP2-1 exhibited a protective effect on PC12 cells injured by H2O2 and a higher scavenging activity against free radicals. The relative effects of the lower molecular size, the presence of uronic acid, and the antioxidant activity of TIP2-1 appear to be significant. Accordingly, the Chinese truffle T. indicum might serve as an effective antioxidative healthcare food and source of natural antioxidants. PMID:21877953

  6. A strategy based on gas chromatography-mass spectrometry and virtual molecular docking for analysis and prediction of bioactive composition in natural product essential oil.

    PubMed

    Wang, Haiyang; Gu, Dongyu; Wang, Miao; Guo, Hong; Wu, Huijuan; Tian, Guangliang; Li, Qian; Yang, Yi; Tian, Jing

    2017-06-09

    The discovery of leads from medicinal plants is crucial to drug development. The present study presents a strategy based on GC-MS coupled with molecular docking for analysis, identification and prediction of protein tyrosine phosphatase 1B inhibitors in the essential oil from Himalayan Cedar (HC). The essential oil with IC 50 value of 120.71±0.26μg/mL exhibited potential activity against protein tyrosine phosphatase 1B (PTP1B) in vitro. After GC-MS analysis, 35 compounds were identified from this oil. The identified compounds were individually docked with PTP1B. Caryophyllene oxide with the lowest binding energy of -6.28kcal/mol was completely wrapped by the active site of PTP1B. The docking results indicated that caryophyllene oxide has potential PTP1B inhibitory activity and may be responsible for the PTP1B inhibitory activity of the essential oil. Caryophyllene oxide in the essential oil of Himalayan Cedar was isolated by HSCCC and the PTP1B inhibitory activity of this compound was then evaluated; the IC 50 value was 31.32±0.38μM. The result revealed that the present strategy can effectively discover the active composition from the complex mixture of medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Molecular Diagnostics of Copper-Transporting Protein Mutations Allows Early Onset Individual Therapy of Menkes Disease.

    PubMed

    Králík, L; Flachsová, E; Hansíková, H; Saudek, V; Zeman, J; Martásek, P

    2017-01-01

    Menkes disease is a severe X-linked recessive disorder caused by a defect in the ATP7A gene, which encodes a membrane copper-transporting ATPase. Deficient activity of the ATP7A protein results in decreased intestinal absorption of copper, low copper level in serum and defective distribution of copper in tissues. The clinical symptoms are caused by decreased activities of copper-dependent enzymes and include neurodegeneration, connective tissue disorders, arterial changes and hair abnormalities. Without therapy, the disease is fatal in early infancy. Rapid diagnosis of Menkes disease and early start of copper therapy is critical for the effectiveness of treatment. We report a molecular biology-based strategy that allows early diagnosis of copper transport defects and implementation of individual therapies before the full development of pathological symptoms. Low serum copper and decreased activity of copperdependent mitochondrial cytochrome c oxidase in isolated platelets found in three patients indicated a possibility of functional defects in copper-transporting proteins, especially in the ATPA7 protein, a copper- transporting P-type ATPase. Rapid mutational screening of the ATP7A gene using high-resolution melting analysis of DNA indicated presence of mutations in the patients. Molecular investigation for mutations in the ATP7A gene revealed three nonsense mutations: c.2170C>T (p.Gln724Ter); c.3745G>T (p.Glu1249Ter); and c.3862C>T (p.Gln1288Ter). The mutation c.3745G>T (p.Glu1249Ter) has not been identified previously. Molecular analysis of the ATOX1 gene as a possible modulating factor of Menkes disease did not reveal presence of pathogenic mutations. Molecular diagnostics allowed early onset of individual therapies, adequate genetic counselling and prenatal diagnosis in the affected families.

  8. Evidence that norflurazon affects chloroplast lipid unsaturation in soybean leaves (Glycine max L.).

    PubMed

    Abrous-Belbachir, Ouzna; De Paepe, Rosine; Trémolières, Antoine; Mathieu, Chantal; Ad, Fatiha; Benhassaine-Kesri, Ghouziel

    2009-12-09

    Norflurazon is a bleaching herbicide known to block carotenoid biosynthesis by inhibiting phytoene desaturase activity. Soybean plants were treated with norflurazon, and we examined the effects on the desaturation of lipid molecular species in leaves using ammonium [1-(14)C] oleate labeling. In monogalactosyldiacylglycerol (MGDG), the main chloroplast lipid, a decrease in 18:3/18:3 molecular species and an increase in its precursors 18:2/18:3 and 18:2/18:2 were observed suggesting that the omega(3) FAD7 desaturase activity in planta was inhibited by norflurazon. The in vitro activity of MGDG synthase was also inhibited by 69%. In contrast, the amount of 18:3/18:3 molecular species of phosphatidylcholine (PC) in the extraplastid compartment increased. The observed increase in in vitro lysoPC-acyltransferase activity and activation of desaturation of [1-(14)C] oleate suggest that extraplastid omega(3)FAD3 desaturase was activated. Analysis of the expression of omega(3) FAD3 and omega(3) FAD7 genes in norflurazon treated plants indicate that omega(3) FAD7 and omega(3) FAD3 desaturases are controlled at the post-transcriptional level.

  9. Characterisation and immunomodulating activities of exo-polysaccharides from submerged cultivation of Hypsizigus marmoreus.

    PubMed

    Zhang, Bing-Zhao; Inngjerdingen, Kari T; Zou, Yuan-Feng; Rise, Frode; Michaelsen, Terje E; Yan, Pei-Sheng; Paulsen, Berit S

    2014-11-15

    Exo-polysaccharides were purified and characterized from the fermentation broth of Hypsizigus marmoreus, a popular edible mushroom consumed in Asia. Among them, B-I-I and B-II-I exhibited potent complement fixating activity, meanwhile, B-N-I, B-I-I, B-II-I and B-II-II exhibited significant macrophage stimulating activity. Molecular weights of the four exo-polysaccharides were determined to be 6.3, 120, 150 and 11 kDa respectively. Molecular characterisation showed that B-N-I is basically an α-1→4 glucan, with branches on C6; B-I-I is a heavily branched α-mannan with 1→2 linked main chain. B-II-I and B-II-II, have a backbone of rhamno-galacturonan with 1→2 linked l-rhamnose interspersed with 1→4 linked galacturonic acid. Structure-activity relationship analysis indicated that monosaccharide compositions, molecular weight, certain structural units (rhamno-galacturonan type I and arabinogalactan type II) are the principal factors responsible for potent complement fixating and macrophage-stimulating activities. Their immunomodulating activities may, at least partly, explain the health benefits of the mushroom. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Studies on carboxymethyl cellulase and xylanase activities of anaerobic fungal isolate CR4 from the bovine rumen.

    PubMed

    Matsui, Hiroki; Ban-Tokuda, Tomomi

    2008-12-01

    An anaerobic fungal isolate, CR4, was isolated from the bovine rumen. The DNA sequence of internal transcribed spacer region 1 showed that CR4 belonged to the genus Caecocmyces. The dry matter digestibility of timothy hay by anaerobic fungal isolate CR4 was determined. The effects of carbohydrate growth substrates on carboxymethyl cellulase (CMCase) and xylanase activities also were examined. The extent of dry matter digestibility of timothy hay was 31% at 6 days' incubation. The highest specific activity of CMCase in the culture supernatant (SN) fraction was observed in xylose culture. The activity of CMCase was not detected in the SN fraction of cellobiose and xylan or in the cell-bound fraction of all growth substrates. The highest specific activity of xylanase in the SN fraction was observed in glucose culture. These results suggest that fiber-degrading enzyme activities were affected by growth substrates and that CR4 is xylanolytic. Zymogram analysis showed that CR4 produces three CMCases of molecular mass (95, 89, and 64 kDa) and three xylanases of molecular mass (82, 73, and 66 kDa). This is the first demonstration showing the molecular mass of fiber-degrading enzymes of Caecomyces.

  11. Antioxidant Activity of Individual Steryl Ferulates from Various Cereal Grain Sources.

    PubMed

    Zhu, Dan; Sánchez-Ferrer, Antoni; Nyström, Laura

    2016-02-26

    Steryl ferulates (SFs) are a subclass of bioactive lipids contributing to the health-promoting effects of whole grains. Most related studies focus on γ-oryzanol, a SF mixture from rice, since individual steryl ferulates are not commercially available. There is little evidence that individual SFs may vary in their bioactivity. The aim of this study was to evaluate the antioxidant activity of eight individual SFs by determining their radical scavenging capacity. Additional molecular properties of the individual SFs were determined by molecular simulation in order to identify correlations with their antioxidant activities. Our study demonstrates that individual SFs exhibit 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, and superoxide anion radical scavenging abilities with subtle differences that were highly dependent on the kind of reaction taking place. The grouping of SFs by principle component analysis was mainly attributed to molecular properties, not antioxidant activities. Solvation energy was significantly correlated with some experimental observations. To our knowledge, this is the first study to evaluate the antioxidant activity of eight individual steryl ferulates from different sources. Results of this work will provide better insight into the antioxidant activity of SFs and the health benefits of whole grains.

  12. Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids.

    PubMed

    Maurya, Shiv Shyam; Khan, Shabana I; Bahuguna, Aparna; Kumar, Deepak; Rawat, Diwan S

    2017-03-31

    A series of novel N-substituted 4-aminoquinoline-pyrimidine hybrids have been synthesized via simple and economic route and evaluated for their antimalarial activity. Most compounds showed potent antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. The most active compound 7b was analysed for heme binding activity using UV-spectrophotometer. Compound was found to interact with heme and a complex formation between compound and heme in a 1:1 stoichiometry ratio was determined using job plots. The interaction of these hybrids was also investigated by the molecular docking studies in the binding site of wild type Pf-DHFR-TS and quadruple mutant Pf-DHFR-TS. The pharmacokinetic property analysis of best active compounds was also studied by ADMET prediction. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Vibrational spectroscopic and DFT calculation studies of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile.

    PubMed

    Premkumar, S; Jawahar, A; Mathavan, T; Kumara Dhas, M; Milton Franklin Benial, A

    2015-03-05

    The vibrational spectra of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile were recorded using fourier transform-infrared and fourier transform-Raman spectrometer. The optimized structural parameters, vibrational frequencies, Mulliken atomic charge distribution, frontier molecular orbitals, thermodynamic properties, temperature dependence of thermodynamic parameters, first order hyperpolarizability and natural bond orbital calculations of the molecule were performed using the Gaussian 09 program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program. The calculated first order hyperpolarizability of ABOBPC molecule was obtained as 6.908×10(-30) issue, which was 10.5 times greater than urea. The nonlinear optical activity of the molecule was also confirmed by the frontier molecular orbitals and natural bond orbital analysis. The frontier molecular orbitals analysis shows that the lower energy gap of the molecule, which leads to the higher value of first order hyperpolarizability. The natural bond orbital analysis indicates that the nonlinear optical activity of the molecule arises due to the π→π(∗) transitions. The Mulliken atomic charge distribution confirms the presence of intramolecular charge transfer within the molecule. The reactive site of the molecule was predicted from the molecular electrostatic potential contour map. The values of thermo dynamic parameters were increasing with increasing temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Design of novel quinazolinone derivatives as inhibitors for 5HT7 receptor.

    PubMed

    Chitta, Aparna; Jatavath, Mohan Babu; Fatima, Sabiha; Manga, Vijjulatha

    2012-02-01

    To study the pharmacophore properties of quinazolinone derivatives as 5HT(7) inhibitors, 3D QSAR methodologies, namely Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) were applied, partial least square (PLS) analysis was performed and QSAR models were generated. The derived model showed good statistical reliability in terms of predicting the 5HT(7) inhibitory activity of the quinazolione derivative, based on molecular property fields like steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields. This is evident from statistical parameters like q(2) (cross validated correlation coefficient) of 0.642, 0.602 and r(2) (conventional correlation coefficient) of 0.937, 0.908 for CoMFA and CoMSIA respectively. The predictive ability of the models to determine 5HT(7) antagonistic activity is validated using a test set of 26 molecules that were not included in the training set and the predictive r(2) obtained for the test set was 0.512 & 0.541. Further, the results of the derived model are illustrated by means of contour maps, which give an insight into the interaction of the drug with the receptor. The molecular fields so obtained served as the basis for the design of twenty new ligands. In addition, ADME (Adsorption, Distribution, Metabolism and Elimination) have been calculated in order to predict the relevant pharmaceutical properties, and the results are in conformity with required drug like properties.

  15. Non-opioid analgesic drug flupirtine: Spectral analysis, DFT computations, in vitro bioactivity and molecular docking study

    NASA Astrophysics Data System (ADS)

    Leenaraj, D. R.; Hubert Joe, I.

    2017-06-01

    Spectral features of non-opioid analgesic drug flupirtine have been explored by the Fourier transform infrared, Raman and Nuclear magnetic resonance spectroscopic techniques combined with density functional theory computations. The bioactive conformer of flupirtine is stabilized by an intramolecular Csbnd H⋯N hydrogen bonding resulting by the steric strain of hydrogen atoms. Natural bond orbital and natural population analysis support this result. The charge redistribution also has been analyzed. Antimicrobial activities of flupirtine have been screened by agar well disc diffusion and molecular docking methods, which exposes the importance of triaminopyridine in flupirtine.

  16. Insight into the novel inhibition mechanism of apigenin to Pneumolysin by molecular modeling

    NASA Astrophysics Data System (ADS)

    Niu, Xiaodi; Yang, Yanan; Song, Meng; Wang, Guizhen; Sun, Lin; Gao, Yawen; Wang, Hongsu

    2017-11-01

    In this study, the mechanism of apigenin inhibition was explored using molecular modelling, binding energy calculation, and mutagenesis assays. Energy decomposition analysis indicated that apigenin binds in the gap between domains 3 and 4 of PLY. Using principal component analysis, we found that binding of apigenin to PLY weakens the motion of domains 3 and 4. Consequently, these domains cannot complete the transition from monomer to oligomer, thereby blocking oligomerisation of PLY and counteracting its haemolytic activity. This inhibitory mechanism was confirmed by haemolysis assays, and these findings will promote the future development of an antimicrobial agent.

  17. Facile synthesis, biological evaluation and molecular docking studies of novel substituted azole derivatives

    NASA Astrophysics Data System (ADS)

    Rafiq, Muhammad; Saleem, Muhammad; Jabeen, Farukh; Hanif, Muhammad; Seo, Sung-Yum; Kang, Sung Kwon; Lee, Ki Hwan

    2017-06-01

    In this study, we synthesized the series of novel azole derivatives and evaluated for enzyme inhibition assays, corresponding kinetic analysis and molecular modeling. Among the investigated bioassays, the oxadiazole derivatives 4a-k were found potent α-glucosidase inhibitors while the Schiff base derivatives 7a-k exhibited considerable potential toward urease inhibition. The inhibition kinetics for the most active compounds were analyzed by the Lineweaver-Burk plots to investigate the possible binding modes of the synthesized compounds toward the tested proteins. Moreover, the detailed docking studies were performed on the synthesized library of 4a-k and 7a-k to study the molecular interaction and binding mode in the active site of the modeled yeast α-glucosidase and Jack Bean Urease, respectively. It could be inferred from docking results that theoretical studies are in close agreement to that of the experimental results. The structure of one of the compound 7k was characterized by the single crystal X-ray diffraction analysis in order to find out the predominant conformation of the molecules.

  18. Inhibitory effect of phloretin on α-glucosidase: Kinetics, interaction mechanism and molecular docking.

    PubMed

    Han, Lin; Fang, Chun; Zhu, Ruixue; Peng, Qiang; Li, Ding; Wang, Min

    2017-02-01

    As the aglycone of phloridzin, phloretin belongs to dihydrochalcone with antioxidant, anti-inflammatory and antimicrobial activities. In this study, multispectroscopic techniques and molecular docking analysis were used to investigate the inhibitory activity and mechanisms of phloretin on α-glucosidase. The results showed that phloretin reversibly inhibited α-glucosidase in a mixed-type manner and the value of IC 50 was 31.26μgL -1 . The intrinsic fluorescence of α-glucosidase was quenched by the interactions with phloretin through a static quenching mechanism and spontaneously formed phloretin-α-glucosidase complex by the driving forces of van der Waals force and hydrogen bond. Atomic force microscope (AFM) studies and FT-IR measurements suggested that the interactions could change the micro-environments and conformation of the enzymes and the molecular docking analysis displayed the exact binding site of phloretin on α-glucosidase. These results indicated that phloretin is a strong α-glucosidase inhibitor, thus could be contribute to the improvement of diabetes mellitus. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Phenotypic and molecular identification of Fonsecaea pedrosoi strains isolated from chromoblastomycosis patients in Mexico and Venezuela.

    PubMed

    Carolina Rojas, O; León-Cachón, Rafael B R; Pérez-Maya, Antonio Alí; Aguirre-Garza, Marcelino; Moreno-Treviño, María G; González, Gloria M

    2015-05-01

    Chromoblastomycosis is a chronic granulomatous disease caused frequently by fungi of the Fonsecaea genus. The objective of this study was the phenotypic and molecular identification of F. pedrosoi strains isolated from chromoblastomycosis patients in Mexico and Venezuela. Ten strains were included in this study. For phenotypic identification, we used macroscopic and microscopic morphologies, carbohydrate assimilation test, urea hydrolysis, cixcloheximide tolerance, proteolitic activity and the thermotolerance test. The antifungal activity of five drugs was evaluated against the isolates. Molecular identification was performed by sequencing the internal transcribed spacer (ITS) ribosomal DNA regions of the isolated strains. The physiological analysis and morphological features were variable and the precise identification was not possible. All isolates were susceptible to itraconazole, terbinafine, voriconazole and posaconazole. Amphotericin B was the least effective drug. The alignment of the 559-nucleotide ITS sequences from our strains compared with sequences of GenBank revealed high homology with F. pedrosoi (EU285266.1). In this study, all patients were from rural areas, six from Mexico and four from Venezuela. Ten isolates were identified by phenotypic and molecular analysis, using ITS sequence and demonstrated that nine isolates from Mexico and Venezuela were 100% homologous and one isolate showed a small genetic distance. © 2015 Blackwell Verlag GmbH.

  20. Comparative studies on molecular structure, vibrational spectra and hyperpolarizabilies of NLO chromophore Ethyl 4-Dimethylaminobenzoate

    NASA Astrophysics Data System (ADS)

    Amalanathan, M.; Jasmine, G. Femina; Roy, S. Dawn Dharma

    2017-08-01

    The molecular structure, vibrational spectra and polarizabilities of Ethyl 4-Dimethylaminobenzoate (EDAB) was investigated by density functional theory employing Becke's three parameter hybrid exchange functional with Lee-Yang-Parr (B3LYP) co-relational functional involving 6-311++G(d,p) basis set and compared with some other levels. A detailed interpretation of the IR and Raman spectra of EDBA have been reported and analyzed. Complete vibrational assignments of the vibrational modes have been done on the basis of the potential energy distribution (TED) using VEDA software. The molecular electrostatic potential mapped onto total density surface has been obtained. A study on the electronic properties, such as absorption wavelength, and frontier molecular orbitals energy, was performed using DFT approach. The stability of the molecule arising from hyper conjugative interactions and accompanying charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The natural and Mulliken charge also calculated and compared with different level of calculation. The dipole moment, polarizability and first, second order hyperpolarizabilities of the title molecule were calculated and compared with the experimental values. The energy gap between frontier orbitals has been used along with electric moments and first order hyperpolarizability, to understand the non linear optical (NLO) activity of the molecule. The NLO activity of molecule was confirmed by SHG analysis.

  1. Density functional theory molecular modeling, chemical synthesis, and antimicrobial behaviour of selected benzimidazole derivatives

    NASA Astrophysics Data System (ADS)

    Marinescu, Maria; Tudorache, Diana Gabriela; Marton, George Iuliu; Zalaru, Christina-Marie; Popa, Marcela; Chifiriuc, Mariana-Carmen; Stavarache, Cristina-Elena; Constantinescu, Catalin

    2017-02-01

    Eco-friendly, one-pot, solvent-free synthesis of biologically active 2-substituted benzimidazoles is presented and discussed herein. Novel N-Mannich bases are synthesized from benzimidazoles, secondary amines and formaldehyde, and their structures are confirmed by 1H nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and elemental analysis. All benzimidazole derivatives are evaluated by qualitative and quantitative methods against 9 bacterial strains. The largest microbicide and anti-biofilm effect is observed for the 2-(1-hydroxyethyl)-compounds. Density functional theory (DFT) modeling of the molecular structure and frontier molecular orbitals, i.e. highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO/LUMO), is accomplished by using the GAMESS 2012 software. Antimicrobial activity is correlated with the electronic parameters (chemical hardness, electronic chemical potential, global electrophilicity index), Mullikan atomic charges and geometric parameters of the benzimidazole compounds. The planarity of the compound, symmetry of the molecule, and the presence of a nucleophilic group, are advantages for a high antimicrobial activity. Finally, we briefly show that further accurate processing of such compounds into thin films and hybrid structures, e.g. by laser ablation matrix-assisted pulsed laser evaporation and/or laser-induced forward transfer, may indeed provide simple and environmental friendly, state-of-the-art solutions for antimicrobial coatings.

  2. Spectroscopic investigation (FT-IR, FT-Raman), HOMO-LUMO, NBO, and molecular docking analysis of N-ethyl-N-nitrosourea, a potential anticancer agent

    NASA Astrophysics Data System (ADS)

    Singh, Priyanka; Islam, S. S.; Ahmad, Hilal; Prabaharan, A.

    2018-02-01

    Nitrosourea plays an important role in the treatment of cancer. N-ethyl-N-nitrosourea, also known as ENU, (chemical formula C3H7N3O2), is a highly potent mutagen. The chemical is an alkylating agent and acts by transferring the ethyl group of ENU to nucleobases (usually thymine) in nucleic acids. The molecular structure of N-ethyl-N-nitrosourea has been elucidated using experimental (FT-IR and FT-Raman) and theoretical (DFT) techniques. APT charges, Mulliken atomic charges, Natural bond orbital, Electrostatic potential, HOMO-LUMO and AIM analysis were performed to identify the reactive sites and charge transfer interactions. Furthermore, to evaluate the anticancer activity of ENU molecular docking studies were carried out against 2JIU protein.

  3. Probing vibrational activities, electronic properties, molecular docking and Hirshfeld surfaces analysis of 4-chlorophenyl ({[(1E)-3-(1H-imidazol-1-yl)-1-phenylpropylidene]amino}oxy)methanone: A promising anti-Candida agent

    NASA Astrophysics Data System (ADS)

    Jayasheela, K.; Al-Wahaibi, Lamya H.; Periandy, S.; Hassan, Hanan M.; Sebastian, S.; Xavier, S.; Daniel, Joseph C.; El-Emam, Ali A.; Attia, Mohamed I.

    2018-05-01

    The promising anti-Candida agent, 4-chlorophenyl ({[1E-3(1H-imidazole-1-yl)-1-phenylpropylidene}oxy)methanone (4-CPIPM) was comprehensively characterized by FT-IR, FT-Raman, UV, as well as 1H and 13C spectroscopic techniques. The theoretical calculations in the current study utilized Gaussian 09 W software with DFT approach of the B3LYP/6-311++G(d,p) method. The experimental X-ray diffraction data of the 4-CPIPM molecule were compared with the optimized structure and showed well agreement. Intermolecular electronic interactions and their stabilization energies have been analyzed by natural bond orbital method. Potential energy distribution confirmed the normal fundamental mode of vibration with the aid of MOLVIB software. The chemical shift values of the 1H and 13C spectra of the title compound were computed using gauge independent atomic orbital and the results were compared with the experimental values. The time-dependent density function theory method was used to predict the electronic, absorption wavelength and frontier molecular orbital energies. The HOMO-LUMO plots proved the charge transfer in the molecular system of the title compound through conjugated paths. The molecular electrostatic potential analysis provided the electrophilic and nucleophilic reactive sites in the title molecule which have been analyzed using Hirshfeld surface and two dimensions fingerprint plots. Non covalent interactions were also studied using reduced density gradient analysis and color filled electron density diagram. Molecular docking studies of the ligand-protein interactions along with their binding energies were carried out aiming to explain the potent anti-Candida activity of the title molecule.

  4. HBonanza: A Computer Algorithm for Molecular-Dynamics-Trajectory Hydrogen-Bond Analysis

    PubMed Central

    Durrant, Jacob D.; McCammon, J. Andrew

    2011-01-01

    In the current work, we present a hydrogen-bond analysis of 2,673 ligand-receptor complexes that suggests the total number of hydrogen bonds formed between a ligand and its protein receptor is a poor predictor of ligand potency; furthermore, even that poor prediction does not suggest a statistically significant correlation between hydrogen-bond formation and potency. While we are not the first to suggest that hydrogen bonds on average do not generally contribute to ligand binding affinities, this additional evidence is nevertheless interesting. The primary role of hydrogen bonds may instead be to ensure specificity, to correctly position the ligand within the active site, and to hold the protein active site in a ligand-friendly conformation. We also present a new computer program called HBonanza (hydrogen-bond analyzer) that aids the analysis and visualization of hydrogen-bond networks. HBonanza, which can be used to analyze single structures or the many structures of a molecular dynamics trajectory, is open source and python implemented, making it easily editable, customizable, and platform independent. Unlike many other freely available hydrogen-bond analysis tools, HBonanza provides not only a text-based table describing the hydrogen-bond network, but also a Tcl script to facilitate visualization in VMD, a popular molecular visualization program. Visualization in other programs is also possible. A copy of HBonanza can be obtained free of charge from http://www.nbcr.net/hbonanza. PMID:21880522

  5. Antioxidant activities and molecular mechanisms of the ethanol extracts of Baccharis propolis and Eucalyptus propolis in RAW64.7 cells.

    PubMed

    Zhang, Jianglin; Shen, Xiaoge; Wang, Kai; Cao, Xueping; Zhang, Cuiping; Zheng, Huoqing; Hu, Fuliang

    2016-10-01

    Context Numerous studies have reported that propolis possesses strong antioxidant activities. However, their antioxidant molecular mechanisms are unclear. Objective We utilize ethanol extracts of Chinese propolis (EECP) as a reference to compare ethanol extracts of Eucalyptus propolis (EEEP) with ethanol extracts of Baccharis propolis (EEBGP) based on their antioxidant capacities and underlying molecular mechanisms. Materials and methods HPLC and chemical analysis are utilized to evaluate compositions and antioxidant activities. ROS-eliminating effects of EEBGP (20-75 μg/mL), EEEP (1.25-3.75 μg/mL) and EECP (1.25-5 μg/mL) are also determined by flow cytometry analysis. Moreover, we compared antioxidant capacities by determining their effects on expressions of antioxidant genes in RAW264.7 cells with qRT-PCR, western blot and confocal microscopy analysis. Results EEBGP mainly contains chlorogenic acid (8.98 ± 0.86 mg/g), kaempferide (11.18 ± 8.31 mg/g) and artepillin C (107.70 ± 10.86 mg/g), but EEEP contains 10 compositions, whereas EECP contains 17 compositions. Meantime, although EEEP shows DPPH (IC50 19.55 ± 1.28), ABTS (IC50 20.0 ± 0.31) and reducing power (2.70 ± 0.08 mmol TE/g) better than EEBGP's DPPH (IC50 43.85 ± 0.54), ABTS (IC50 38.2 ± 0.33) and reducing power (1.53 ± 0.05 mmol TE/g), EEBGP exerts much higher ROS inhibition rate (40%) than EEEP (under 20%). Moreover, EEBGP strengthen antioxidant system by activating p38/p-p38 and Erk/p-Erk kinase via accelerating nucleus translocation of Nrf2. EEEP and EECP improve antioxidant gene expression only via Erk/p-Erk kinase-Nrf2 signalling pathway. Discussion and conclusion EEBGP and EEEP exert antioxidant activities via different molecular mechanisms, which may depend on chemical compositions.

  6. The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility.

    PubMed

    Lamontanara, Allan Joaquim; Georgeon, Sandrine; Tria, Giancarlo; Svergun, Dmitri I; Hantschel, Oliver

    2014-11-17

    The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.

  7. The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility

    NASA Astrophysics Data System (ADS)

    Lamontanara, Allan Joaquim; Georgeon, Sandrine; Tria, Giancarlo; Svergun, Dmitri I.; Hantschel, Oliver

    2014-11-01

    The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.

  8. mTOR Activation by PI3K/Akt and ERK Signaling in Short ELF-EMF Exposed Human Keratinocytes

    PubMed Central

    Patruno, Antonia; Pesce, Mirko; Grilli, Alfredo; Speranza, Lorenza; Franceschelli, Sara; De Lutiis, Maria Anna; Vianale, Giovina; Costantini, Erica; Amerio, Paolo; Muraro, Raffaella; Felaco, Mario; Reale, Marcella

    2015-01-01

    Several reports suggest that ELF-EMF exposures interact with biological processes including promotion of cell proliferation. However, the molecular mechanisms by which ELF-EMF controls cell growth are not completely understood. The present study aimed to investigate the effect of ELF-EMF on keratinocytes proliferation and molecular mechanisms involved. Effect of ELF-EMF (50 Hz, 1 mT) on HaCaT cell cycle and cells growth and viability was monitored by FACS analysis and BrdU assay. Gene expression profile by microarray and qRT-PCR validation was performed in HaCaT cells exposed or not to ELF-EMF. mTOR, Akt and MAPKs expressions were evaluated by Western blot analysis. In HaCaT cells, short ELF-EMF exposure modulates distinct patterns of gene expression involved in cell proliferation and in the cell cycle. mTOR activation resulted the main molecular target of ELF-EMF on HaCaT cells. Our data showed the increase of the canonical pathway of mTOR regulation (PI3K/Akt) and activation of ERK signaling pathways. Our results indicate that ELF-EMF selectively modulated the expression of multiple genes related to pivotal biological processes and functions that play a key role in physio-pathological mechanisms such as wound healing. PMID:26431550

  9. Molecular Determinants of Juvenile Hormone Action as Revealed by 3D QSAR Analysis in Drosophila

    PubMed Central

    Beňo, Milan; Farkaš, Robert

    2009-01-01

    Background Postembryonic development, including metamorphosis, of many animals is under control of hormones. In Drosophila and other insects these developmental transitions are regulated by the coordinate action of two principal hormones, the steroid ecdysone and the sesquiterpenoid juvenile hormone (JH). While the mode of ecdysone action is relatively well understood, the molecular mode of JH action remains elusive. Methodology/Principal Findings To gain more insights into the molecular mechanism of JH action, we have tested the biological activity of 86 structurally diverse JH agonists in Drosophila melanogaster. The results were evaluated using 3D QSAR analyses involving CoMFA and CoMSIA procedures. Using this approach we have generated both computer-aided and species-specific pharmacophore fingerprints of JH and its agonists, which revealed that the most active compounds must possess an electronegative atom (oxygen or nitrogen) at both ends of the molecule. When either of these electronegative atoms are replaced by carbon or the distance between them is shorter than 11.5 Å or longer than 13.5 Å, their biological activity is dramatically decreased. The presence of an electron-deficient moiety in the middle of the JH agonist is also essential for high activity. Conclusions/Significance The information from 3D QSAR provides guidelines and mechanistic scope for identification of steric and electrostatic properties as well as donor and acceptor hydrogen-bonding that are important features of the ligand-binding cavity of a JH target protein. In order to refine the pharmacophore analysis and evaluate the outcomes of the CoMFA and CoMSIA study we used pseudoreceptor modeling software PrGen to generate a putative binding site surrogate that is composed of eight amino acid residues corresponding to the defined molecular interactions. PMID:19547707

  10. Fermented Papaya Preparation Restores Age-Related Reductions in Peripheral Blood Mononuclear Cell Cytolytic Activity in Tube-Fed Patients

    PubMed Central

    Fujita, Yuhzo; Tsuno, Haruo; Nakayama, Jiro

    2017-01-01

    Tube-fed elderly patients are generally supplied with the same type of nutrition over long periods, resulting in an increased risk for micronutrient deficiencies. Dietary polyphenols promote immunity and have anti-inflammatory, anti-carcinogenic, and anti-oxidative properties. Carica papaya Linn. is rich in several polyphenols; however, these polyphenols are poorly absorbed from the digestive tract in their original polymerized form. Therefore, we determined the molecular components of a fermented Carica papaya Linn. preparation, as well as its effects on immunity and the composition of gut microbiota in tube-fed patients. Different doses of the fermented C. papaya L. preparation were administered to three groups of tube-fed patients for 30 days. Its effects on fecal microbiota composition and immunity were assessed by 16S rRNA gene sequencing and immune-marker analysis, respectively. The chemical composition of the fermented C. papaya L. preparation was analyzed by capillary electrophoresis- and liquid chromatography- time of flight mass spectrometry. The fermented C. papaya L. preparation restored peripheral blood mononuclear cell (PBMC) cytolytic activity; however, no other biomarkers of immunity were observed. Treatment with the preparation (9 g/day) significantly reduced the abundance of Firmicutes in the fecal microbiota. In particular, treatment reduced Clostridium scindens and Eggerthella lenta in most patients receiving 9 g/day. Chemical analysis identified low-molecular-weight phenolic acids as polyphenol metabolites; however, no polymerized, large-molecular-weight molecules were detected. Our study indicates that elderly patients who are tube-fed over the long-term have decreased PBMC cytolytic activity. In addition, low-molecular-weight polyphenol metabolites fermented from polymerized polyphenols restore PBMC cytolytic activity and modulate the composition of gut microbiota in tube-fed patients. PMID:28060858

  11. Analogs of methyllycaconitine as novel noncompetitive inhibitors of nicotinic receptors: pharmacological characterization, computational modeling, and pharmacophore development.

    PubMed

    McKay, Dennis B; Chang, Cheng; González-Cestari, Tatiana F; McKay, Susan B; El-Hajj, Raed A; Bryant, Darrell L; Zhu, Michael X; Swaan, Peter W; Arason, Kristjan M; Pulipaka, Aravinda B; Orac, Crina M; Bergmeier, Stephen C

    2007-05-01

    As a novel approach to drug discovery involving neuronal nicotinic acetylcholine receptors (nAChRs), our laboratory targeted nonagonist binding sites (i.e., noncompetitive binding sites, negative allosteric binding sites) located on nAChRs. Cultured bovine adrenal cells were used as neuronal models to investigate interactions of 67 analogs of methyllycaconitine (MLA) on native alpha3beta4* nAChRs. The availability of large numbers of structurally related molecules presents a unique opportunity for the development of pharmacophore models for noncompetitive binding sites. Our MLA analogs inhibited nicotine-mediated functional activation of both native and recombinant alpha3beta4* nAChRs with a wide range of IC(50) values (0.9-115 microM). These analogs had little or no inhibitory effects on agonist binding to native or recombinant nAChRs, supporting noncompetitive inhibitory activity. Based on these data, two highly predictive 3D quantitative structure-activity relationship (comparative molecular field analysis and comparative molecular similarity index analysis) models were generated. These computational models were successfully validated and provided insights into the molecular interactions of MLA analogs with nAChRs. In addition, a pharmacophore model was constructed to analyze and visualize the binding requirements to the analog binding site. The pharmacophore model was subsequently applied to search structurally diverse molecular databases to prospectively identify novel inhibitors. The rapid identification of eight molecules from database mining and our successful demonstration of in vitro inhibitory activity support the utility of these computational models as novel tools for the efficient retrieval of inhibitors. These results demonstrate the effectiveness of computational modeling and pharmacophore development, which may lead to the identification of new therapeutic drugs that target novel sites on nAChRs.

  12. Assessment of the associated particle prompt gamma neutron activation technique for total body nitrogen measurement in vivo

    USDA-ARS?s Scientific Manuscript database

    Total Body Nitrogen (TBN) can be used to estimate Total Body Protein (TBP), an important body composition component at the molecular level. A system using the associated particle technique in conjunction with prompt gamma neutron activation analysis has been developed for the measurement of TBN in ...

  13. Single-Molecule Studies of Actin Assembly and Disassembly Factors

    PubMed Central

    Smith, Benjamin A.; Gelles, Jeff; Goode, Bruce L.

    2014-01-01

    The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks. PMID:24630103

  14. Immunolocalization of betaine aldehyde dehydrogenase in porcine kidney.

    PubMed

    Figueroa-Soto, C G; Lopez-Cervantes, G; Valenzuela-Soto, E M

    1999-05-19

    Polyclonal anti-BADH serum was raised in rabbits against native BADH purified from porcine kidney. The antiserum cross-reacted strongly with BADH purified from kidney, Amaranthus palmierii, and Pseudomona aeuroginosa (1:1000), and weakly with Amaranthus hypochondriacus L (1:100). Antibodies bound to purified native kidney BADH in immunoblots showed a major band of an apparent molecular mass of 340 kDa and a subunit with an apparent molecular mass of 52 kDa. Data on activity assays showed higher activity in cortex sections (81.3 nmol/min/mg protein) than in medulla sections (21.3 nmol/min/mg protein). Immunolocalization of BADH in kidney tissue sections showed that BADH is found in cortex and medulla. In inner medulla, the enzyme was mainly localized in cells surrounding the tubules. Western blot analysis on extracts from the cortex and medulla sections showed higher concentration of BADH protein in cortex than in medulla. These results were in accordance with immunolocalization and activity analysis. Copyright 1999 Academic Press.

  15. Augmented multivariate image analysis applied to quantitative structure-activity relationship modeling of the phytotoxicities of benzoxazinone herbicides and related compounds on problematic weeds.

    PubMed

    Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson

    2013-09-11

    Two of major weeds affecting cereal crops worldwide are Avena fatua L. (wild oat) and Lolium rigidum Gaud. (rigid ryegrass). Thus, development of new herbicides against these weeds is required; in line with this, benzoxazinones, their degradation products, and analogues have been shown to be important allelochemicals and natural herbicides. Despite earlier structure-activity studies demonstrating that hydrophobicity (log P) of aminophenoxazines correlates to phytotoxicity, our findings for a series of benzoxazinone derivatives do not show any relationship between phytotoxicity and log P nor with other two usual molecular descriptors. On the other hand, a quantitative structure-activity relationship (QSAR) analysis based on molecular graphs representing structural shape, atomic sizes, and colors to encode other atomic properties performed very accurately for the prediction of phytotoxicities of these compounds against wild oat and rigid ryegrass. Therefore, these QSAR models can be used to estimate the phytotoxicity of new congeners of benzoxazinone herbicides toward A. fatua L. and L. rigidum Gaud.

  16. Cinnamaldehyde, Cinnamic Acid, and Cinnamyl Alcohol, the Bioactives of Cinnamomum cassia Exhibit HDAC8 Inhibitory Activity: An In vitro and In silico Study

    PubMed Central

    Patil, Mangesh; Choudhari, Amit S.; Pandita, Savita; Islam, Md Ataul; Raina, Prerna; Kaul-Ghanekar, Ruchika

    2017-01-01

    Background: The altered expression of histone deacetylase family member 8 (HDAC8) has been found to be linked with various cancers, thereby making its selective inhibition a potential strategy in cancer therapy. Recently, plant secondary metabolites, particularly phenolic compounds, have been shown to possess HDAC inhibitory activity. Objective: In the present work, we have evaluated the potential of cinnamaldehyde (CAL), cinnamic acid (CA), and cinnamyl alcohol (CALC) (bioactives of Cinnamomum) as well as aqueous cinnamon extract (ACE), to inhibit HDAC8 activity in vitro and in silico. Materials and Methods: HDAC8 inhibitory activity of ACE and cinnamon bioactives was determined in vitro using HDAC8 inhibitor screening kit. Trichostatin A (TSA), a well-known anti-cancer agent and HDAC inhibitor, was used as a positive control. In silico studies included molecular descriptor Analysis molecular docking absorption, distribution, metabolism, excretion, and toxicity prediction, density function theory calculation and synthetic accessibility program. Results: Pharmacoinformatics studies implicated that ACE and its Bioactives (CAL, CA, and CALC) exhibited comparable activity with that of TSA. The highest occupied molecular orbitals and lowest unoccupied molecular orbitals along with binding energy of cinnamon bioactives were comparable with that of TSA. Molecular docking results suggested that all the ligands maintained two hydrogen bond interactions within the active site of HDAC8. Finally, the synthetic accessibility values showed that cinnamon bioactives were easy to synthesize compared to TSA. Conclusion: It was evident from both the experimental and computational data that cinnamon bioactives exhibited significant HDAC8 inhibitory activity, thereby suggesting their potential therapeutic implications against cancer. SUMMARY Pharmacoinformatics studies revealed that cinnamon bioactives bound to the active site of HDAC8 enzyme in a way similar to that of TSAThe molecular descriptors of cinnamon compounds successfully correlated with TSA values. The binding interactions and energies were also found to be close to TSASynthetic accessibility values showed that cinnamon bioactives were easy to synthesize compared to TSA. Abbreviations used: ACE: Aqueous Cinnamon Extract; DFT: Density Function Theory; CAL: Cinnamaldehyde; CA: Cinnamic Acid; CALC: Cinnamyl Alcohol; MW: Molecular Weight; ROTBs: Rotatable Bonds; ROF: Lipinski's Rule of Five; TSA: Trichostatin A; PDB: Protein Data Bank; RMSD: Root Mean Square Deviation; HBA: Hydrogen Bond Acceptor; HBD: Hydrogen Bond Donor; ADMET: Absorption, Distribution, Metabolism, Excretion and Toxicity; FO: Frontier Orbital; HOMOs: Highest Occupied Molecular Orbitals; LUMOs: Lowest Unoccupied Molecular Orbitals; BE: Binding Energy. PMID:29142427

  17. Occurrence of a multimeric high-molecular-weight glyceraldehyde-3-phosphate dehydrogenase in human serum.

    PubMed

    Kunjithapatham, Rani; Geschwind, Jean-Francois; Devine, Lauren; Boronina, Tatiana N; O'Meally, Robert N; Cole, Robert N; Torbenson, Michael S; Ganapathy-Kanniappan, Shanmugasundaram

    2015-04-03

    Cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a phylogenetically conserved, ubiquitous enzyme that plays an indispensable role in energy metabolism. Although a wealth of information is available on cellular GAPDH, there is a clear paucity of data on its extracellular counterpart (i.e., the secreted or extracellular GAPDH). Here, we show that the extracellular GAPDH in human serum is a multimeric, high-molecular-weight, yet glycolytically active enzyme. The high-molecular-weight multimers of serum GAPDH were identified by immunodetection on one- and two-dimensional gel electrophoresis using multiple antibodies specific for various epitopes of GAPDH. Partial purification of serum GAPDH by DEAE Affigel affinity/ion exchange chromatography further established the multimeric composition of serum GAPDH. In vitro data demonstrated that human cell lines secrete a multimeric, high-molecular-weight enzyme similar to that of serum GAPDH. Furthermore, LC-MS/MS analysis of extracellular GAPDH from human cell lines confirmed the presence of unique peptides of GAPDH in the high-molecular-weight subunits. Furthermore, data from pulse-chase experiments established the presence of high-molecular-weight subunits in the secreted, extracellular GAPDH. Taken together, our findings demonstrate the presence of a high-molecular-weight, enzymatically active secretory GAPDH in human serum that may have a hitherto unknown function in humans.

  18. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands

    NASA Astrophysics Data System (ADS)

    Vettoretti, Gerolamo; Moroni, Elisabetta; Sattin, Sara; Tao, Jiahui; Agard, David A.; Bernardi, Anna; Colombo, Giorgio

    2016-04-01

    Controlling biochemical pathways through chemically designed modulators may provide novel opportunities to develop therapeutic drugs and chemical tools. The underlying challenge is to design new molecular entities able to act as allosteric chemical switches that selectively turn on/off functions by modulating the conformational dynamics of their target protein. We examine the origins of the stimulation of ATPase and closure kinetics in the molecular chaperone Hsp90 by allosteric modulators through atomistic molecular dynamics (MD) simulations and analysis of protein-ligand interactions. In particular, we focus on the cross-talk between allosteric ligands and protein conformations and its effect on the dynamic properties of the chaperone’s active state. We examine the impact of different allosteric modulators on the stability, structural and internal dynamics properties of Hsp90 closed state. A critical aspect of this study is the development of a quantitative model that correlates Hsp90 activation to the presence of a certain compound, making use of information on the dynamic adaptation of protein conformations to the presence of the ligand, which allows to capture conformational states relevant in the activation process. We discuss the implications of considering the conformational dialogue between allosteric ligands and protein conformations for the design of new functional modulators.

  19. Molecular dynamics simulations and modelling of the residue interaction networks in the BRAF kinase complexes with small molecule inhibitors: probing the allosteric effects of ligand-induced kinase dimerization and paradoxical activation.

    PubMed

    Verkhivker, G M

    2016-10-20

    Protein kinases are central to proper functioning of cellular networks and are an integral part of many signal transduction pathways. The family of protein kinases represents by far the largest and most important class of therapeutic targets in oncology. Dimerization-induced activation has emerged as a common mechanism of allosteric regulation in BRAF kinases, which play an important role in growth factor signalling and human diseases. Recent studies have revealed that most of the BRAF inhibitors can induce dimerization and paradoxically stimulate enzyme transactivation by conferring an active conformation in the second monomer of the kinase dimer. The emerging connections between inhibitor binding and BRAF kinase domain dimerization have suggested a molecular basis of the activation mechanism in which BRAF inhibitors may allosterically modulate the stability of the dimerization interface and affect the organization of residue interaction networks in BRAF kinase dimers. In this work, we integrated structural bioinformatics analysis, molecular dynamics and binding free energy simulations with the protein structure network analysis of the BRAF crystal structures to determine dynamic signatures of BRAF conformations in complexes with different types of inhibitors and probe the mechanisms of the inhibitor-induced dimerization and paradoxical activation. The results of this study highlight previously unexplored relationships between types of BRAF inhibitors, inhibitor-induced changes in the residue interaction networks and allosteric modulation of the kinase activity. This study suggests a mechanism by which BRAF inhibitors could promote or interfere with the paradoxical activation of BRAF kinases, which may be useful in informing discovery efforts to minimize the unanticipated adverse biological consequences of these therapeutic agents.

  20. Benefits of statistical molecular design, covariance analysis, and reference models in QSAR: a case study on acetylcholinesterase

    NASA Astrophysics Data System (ADS)

    Andersson, C. David; Hillgren, J. Mikael; Lindgren, Cecilia; Qian, Weixing; Akfur, Christine; Berg, Lotta; Ekström, Fredrik; Linusson, Anna

    2015-03-01

    Scientific disciplines such as medicinal- and environmental chemistry, pharmacology, and toxicology deal with the questions related to the effects small organic compounds exhort on biological targets and the compounds' physicochemical properties responsible for these effects. A common strategy in this endeavor is to establish structure-activity relationships (SARs). The aim of this work was to illustrate benefits of performing a statistical molecular design (SMD) and proper statistical analysis of the molecules' properties before SAR and quantitative structure-activity relationship (QSAR) analysis. Our SMD followed by synthesis yielded a set of inhibitors of the enzyme acetylcholinesterase (AChE) that had very few inherent dependencies between the substructures in the molecules. If such dependencies exist, they cause severe errors in SAR interpretation and predictions by QSAR-models, and leave a set of molecules less suitable for future decision-making. In our study, SAR- and QSAR models could show which molecular sub-structures and physicochemical features that were advantageous for the AChE inhibition. Finally, the QSAR model was used for the prediction of the inhibition of AChE by an external prediction set of molecules. The accuracy of these predictions was asserted by statistical significance tests and by comparisons to simple but relevant reference models.

  1. LC-MS analysis of Hep-2 and Hek-293 cell lines treated with Brazilian red propolis reveals differences in protein expression.

    PubMed

    da Silva Frozza, Caroline O; da Silva Brum, Emyle; Alving, Anjali; Moura, Sidnei; Henriques, João A P; Roesch-Ely, Mariana

    2016-08-01

    Red propolis, an exclusive variety of propolis found in the northeast of Brazil has shown to present antitumour activity, among several other biological properties. This article aimed to help to evaluate the underlying molecular mechanisms of the potential anticancer effects of red propolis on tumour, Hep-2, and non-tumour cells, Hek-293. Differentially expressed proteins in human cell lines were identified through label-free quantitative MS-based proteomic platform, and cells were stained with Giemsa to show morphological changes. A total of 1336 and 773 proteins were identified for Hep-2 and Hek-293, respectively. Among the proteins here identified, 16 were regulated in the Hep-2 cell line and 04 proteins in the Hek-293 line. Over a total of 2000 proteins were identified under MS analysis, and approximately 1% presented differential expression patterns. The GO annotation using Protein Analysis THrough Evolutionary Relationships classification system revealed predominant molecular function of catalytic activity, and among the biological processes, the most prominent was associated to cell metabolism. The proteomic profile here presented should help to elucidate further molecular mechanisms involved in inhibition of cancer cell proliferation by red propolis, which remain unclear to date. © 2016 Royal Pharmaceutical Society.

  2. Physicochemical and Biological Studies on Various Preparations of Tuberculin Purifield Protein Derivative

    PubMed Central

    Landi, S.; Held, H. R.

    1965-01-01

    Tuberculin purified protein derivative (PPD) has been prepared by seven different precipitation methods from culture filtrate of Mycobacterium tuberculosis var. hominis. It was found to contain 48 to 99% tuberculoprotein, depending on the method of precipitation. The remaining percentage is represented by nucleic acid, polysaccharide, and ash. Activation analysis on tuberculin PPD and on tubercle bacilli has revealed the presence of trace elements. The molecular weight of tuberculin PPD has been found to be of the order of 14,800 to 27,800. The biological activity of tuberculin PPD varies from lot to lot and from method to method. A correlation between its molecular weight and its biological activity seems to exist. Images Fig. 1 Fig. 3 PMID:14325869

  3. Antioxidation activities of low-molecular-weight gelatin hydrolysate isolated from the sea cucumber Stichopus japonicus

    NASA Astrophysics Data System (ADS)

    Wang, Jingfeng; Wang, Yuming; Tang, Qingjuan; Wang, Yi; Chang, Yaoguang; Zhao, Qin; Xue, Changhu

    2010-03-01

    Gelatin extracted from the body wall of the sea cucumber ( Stichopus japonicus) was hydrolyzed with flavourzyme. Low-molecular-weight gelatin hydrolysate (LMW-GH) of 700-1700 Da was produced using an ultrafiltration membrane bioreactor system. Chemiluminescence analysis revealed that LMW-GH scavenges high free radicals in a concentration-dependent manner; IC50 value for superoxide and hydroxyl radicals was 442 and 285 μg mL-1, respectively. LMW-GH exhibited excellent inhibitory characteristics against melanin synthesis and tyrosinase activity in B16 cells. Furthermore, LMW-GH notably increased intracellular glutathione (GSH), which in turn suppressed melanogenesis. LMW-GH performs antioxidation activity, holding the potential of being used as a valuable ingredient in function foods, cosmetics and pharmaceuticals or nutriceuticals.

  4. Small Peptides Derived from Penetratin as Antibacterial Agents.

    PubMed

    Parravicini, Oscar; Somlai, Csaba; Andujar, Sebastián A; Garro, Adriana D; Lima, Beatriz; Tapia, Alejandro; Feresin, Gabriela; Perczel, Andras; Tóth, Gabor; Cascales, Javier López; Rodríguez, Ana M; Enriz, Ricardo D

    2016-04-01

    The synthesis, in vitro evaluation and conformational study of several small-size peptides acting as antibacterial agents are reported. Among the compounds evaluated, the peptides Arg-Gln-Ile-Lys-Ile-Trp-Arg-Arg-Met-Lys-Trp-Lys-Lys-NH2 , Arg-Gln-Ile-Lys-Ile-Arg-Arg-Met-Lys-Trp-Arg-NH2 , and Arg-Gln-Ile-Trp-Trp-Trp-Trp-Gln-Arg-NH2 exhibited significant antibacterial activity. These were found to be very active antibacterial compounds, considering their small molecular size. In order to better understand the antibacterial activity obtained for these peptides, an exhaustive conformational analysis was performed, using both theoretical calculations and experimental measurements. Molecular dynamics simulations using two different media (water and trifluoroethanol/water) were employed. The results of these theoretical calculations were corroborated by experimental circular dichroism measurements. A brief discussion on the possible mechanism of action of these peptides at molecular level is also presented. Some of the peptides reported here constitute very interesting structures to be used as starting compounds for the design of new small-size peptides possessing antibacterial activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Spectroscopic analysis and molecular docking of imidazole derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Thomas, Renjith; Hossain, Mossaraf; Mary, Y. Sheena; Resmi, K. S.; Armaković, Stevan; Armaković, Sanja J.; Nanda, Ashis Kumar; Ranjan, Vivek Kumar; Vijayakumar, G.; Van Alsenoy, C.

    2018-04-01

    Solvent-free synthesis pathway for obtaining two imidazole derivatives (2-chloro-1-(4-methoxyphenyl)-4,5-dimethyl-1H-imidazole (CLMPDI) and 1-(4-bromophenyl)-2-chloro-4,5-dimethyl-1H-imidazole (BPCLDI) has been reported in this work, followed by detailed experimental and computational spectroscopic characterization and reactivity study. Spectroscopic methods encompassed IR, FT-Raman and NMR techniques, with the mutual comparison of experimentally and computationally obtained results at DFT/B3LYP level of theory. Reactivity study based on DFT calculations encompassed molecular orbitals analysis, followed by calculations of molecular electrostatic potential (MEP) and average local ionization energy (ALIE) values, Fukui functions and bond dissociation energies (BDE). Additionally, the stability of title molecules in water has been investigated via molecular dynamics (MD) simulations, while interactivity with aspulvinonedimethylallyl transferase protein has been evaluated by molecular docking procedure. CLMPDI compound showed antimicrobial activity against all four bacterial strain in both gram positive and gram negative bacteria while, BPCLDI showed only in gram positive bacteria, Staphylococcus Aureus (MTCC1144). The first order hyperpolarizability of CLMPDI and BPCLDI are 20.15 and 6.10 times that of the standard NLO material urea.

  6. Pharmacophore-based virtual screening, molecular docking, molecular dynamics simulation, and biological evaluation for the discovery of novel BRD4 inhibitors.

    PubMed

    Yan, Guoyi; Hou, Manzhou; Luo, Jiang; Pu, Chunlan; Hou, Xueyan; Lan, Suke; Li, Rui

    2018-02-01

    Bromodomain is a recognition module in the signal transduction of acetylated histone. BRD4, one of the bromodomain members, is emerging as an attractive therapeutic target for several types of cancer. Therefore, in this study, an attempt has been made to screen compounds from an integrated database containing 5.5 million compounds for BRD4 inhibitors using pharmacophore-based virtual screening, molecular docking, and molecular dynamics simulations. As a result, two molecules of twelve hits were found to be active in bioactivity tests. Among the molecules, compound 5 exhibited potent anticancer activity, and the IC 50 values against human cancer cell lines MV4-11, A375, and HeLa were 4.2, 7.1, and 11.6 μm, respectively. After that, colony formation assay, cell cycle, apoptosis analysis, wound-healing migration assay, and Western blotting were carried out to learn the bioactivity of compound 5. © 2017 John Wiley & Sons A/S.

  7. Molecular genetics of Liddle's syndrome.

    PubMed

    Yang, Kun-Qi; Xiao, Yan; Tian, Tao; Gao, Ling-Gen; Zhou, Xian-Liang

    2014-09-25

    Liddle's syndrome, an autosomal dominant form of monogenic hypertension, is characterized by salt-sensitive hypertension with early penetrance, hypokalemia, metabolic alkalosis, suppression of plasma rennin activity and aldosterone secretion, and a clear-cut response to epithelial sodium channel (ENaC) blockers but not spironolactone therapy. Our understanding of ENaCs and Na(+) transport defects has expanded greatly over the past two decades and provides detailed insight into the molecular basis of Liddle's syndrome. In this review, we offer an overview of recent advances in understanding the molecular genetics of Liddle's syndrome, involving mutation analysis, molecular mechanisms and genetic testing. The ENaC in the distal nephron is composed of α, β and γ subunits that share similar structures. Mutations associated with Liddle's syndrome are positioned in either β or γ subunits and disturb or truncate a conserved proline-rich sequence (i.e., PY motif), leading to constitutive activation of the ENaC. Genetic testing has made it possible to make accurate diagnoses and develop tailored therapies for mutation carriers. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Theoretical Calculation of the Uv-Vis Spectral Band Locations of Pahs with Unknown Syntheses Procedures and Prospective Carcinogenic Activity

    NASA Astrophysics Data System (ADS)

    Ona-Ruales, Jorge Oswaldo; Ruiz-Morales, Yosadara

    2017-06-01

    Annellation Theory and ZINDO/S semiempirical calculations have been used for the calculation of the locations of maximum absorbance (LMA) of the Ultraviolet-Visible (UV-Vis) of 31 C_{34}H_{16} PAHs (molecular mass 424 Da) with unknown protocols of synthesis. The presence of benzo[a]pyrene bay-like regions and dibenzo[a,l]pyrene fjord-like regions in several of the structures that could be linked to an enhancement of the biological behavior and carcinogenic activity stresses the importance of C_{34}H_{16} PAHs in fields like molecular biology and cancer research. In addition, the occurrence of large PAHs in oil asphaltenes exemplifies the importance of these calculations for the characterization of complex systems. The C_{34}H_{16} PAH group is the largest molecular mass group of organic compounds analyzed so far following the Annellation Theory and ZINDO/S methodology. Future analysis using the same approach will provide evidence regarding the LMA of other high molecular mass PAHs.

  9. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets.

    PubMed

    Van Laere, Steven J; Ueno, Naoto T; Finetti, Pascal; Vermeulen, Peter; Lucci, Anthony; Robertson, Fredika M; Marsan, Melike; Iwamoto, Takayuki; Krishnamurthy, Savitri; Masuda, Hiroko; van Dam, Peter; Woodward, Wendy A; Viens, Patrice; Cristofanilli, Massimo; Birnbaum, Daniel; Dirix, Luc; Reuben, James M; Bertucci, François

    2013-09-01

    Inflammatory breast cancer (IBC) is a poorly characterized form of breast cancer. So far, the results of expression profiling in IBC are inconclusive due to various reasons including limited sample size. Here, we present the integration of three Affymetrix expression datasets collected through the World IBC Consortium allowing us to interrogate the molecular profile of IBC using the largest series of IBC samples ever reported. Affymetrix profiles (HGU133-series) from 137 patients with IBC and 252 patients with non-IBC (nIBC) were analyzed using unsupervised and supervised techniques. Samples were classified according to the molecular subtypes using the PAM50-algorithm. Regression models were used to delineate IBC-specific and molecular subtype-independent changes in gene expression, pathway, and transcription factor activation. Four robust IBC-sample clusters were identified, associated with the different molecular subtypes (P<0.001), all of which were identified in IBC with a similar prevalence as in nIBC, except for the luminal A subtype (19% vs. 42%; P<0.001) and the HER2-enriched subtype (22% vs. 9%; P<0.001). Supervised analysis identified and validated an IBC-specific, molecular subtype-independent 79-gene signature, which held independent prognostic value in a series of 871 nIBCs. Functional analysis revealed attenuated TGF-β signaling in IBC. We show that IBC is transcriptionally heterogeneous and that all molecular subtypes described in nIBC are detectable in IBC, albeit with a different frequency. The molecular profile of IBC, bearing molecular traits of aggressive breast tumor biology, shows attenuation of TGF-β signaling, potentially explaining the metastatic potential of IBC tumor cells in an unexpected manner. ©2013 AACR.

  10. Identification of Leishmania donovani Topoisomerase 1 inhibitors via intuitive scaffold hopping and bioisosteric modification of known Top 1 inhibitors

    NASA Astrophysics Data System (ADS)

    Mamidala, Rajinikanth; Majumdar, Papiya; Jha, Kunal Kumar; Bathula, Chandramohan; Agarwal, Rahul; Chary, M. Thirumala; Mazumdar, H. K.; Munshi, Parthapratim; Sen, Subhabrata

    2016-05-01

    A library of arylidenefuropyridinediones was discovered as potent inhibitors of Leishmania donovani Topoisomerase 1 (LdTop1) where the active molecules displayed considerable inhibition with single digit micromolar EC50 values. This molecular library was designed via intuitive scaffold hopping and bioisosteric modification of known topoisomerase 1 inhibitors such as camptothecin, edotecarin and etc. The design was rationalized by molecular docking analysis of the compound prototype with human topoisomerase 1 (HTop1) and Leishmania donovani topoisomerase 1(LdTop1). The most active compound 4 displayed no cytotoxicity against normal mammalian COS7 cell line (~100 fold less inhibition at the EC50). Similar to camptothecin, 4 interacted with free LdTop1 as observed in the preincubation DNA relaxation inhibition experiment. It also displayed anti-protozoal activity against Leishmania donovani promastigote. Crystal structure investigation of 4 and its molecular modelling with LdTop1 revealed putative binding sites in the enzyme that could be harnessed to generate molecules with better potency.

  11. Resolving the substructure of molecular clouds in the LMC

    NASA Astrophysics Data System (ADS)

    Wong, Tony; Hughes, Annie; Tokuda, Kazuki; Indebetouw, Remy; Wojciechowski, Evan; Bandurski, Jeffrey; MC3 Collaboration

    2018-01-01

    We present recent wide-field CO and 13CO mapping of giant molecular clouds in the Large Magellanic Cloud with ALMA. Our sample exhibits diverse star-formation properties, and reveals comparably diverse molecular cloud properties including surface density and velocity dispersion at a given scale. We first present the results of a recent study comparing two GMCs at the extreme ends of the star formation activity spectrum. Our quiescent cloud exhibits 10 times lower surface density and 5 times lower velocity dispersion than the active 30 Doradus cloud, yet in both clouds we find a wide range of line widths at the smallest resolved scales, spanning nearly the full range of line widths seen at all scales. This suggests an important role for feedback on sub-parsec scales, while the energetics on larger scales are dominated by clump-to-clump relative velocities. We then extend our analysis to four additional clouds that exhibit intermediate levels of star formation activity.

  12. Random amplified polymorphic DNA PCR in the teaching of molecular epidemiology.

    PubMed

    Reinoso, Elina B; Bettera, Susana G

    2016-07-08

    In this article, we describe a basic practical laboratory designed for fifth-year undergraduate students of Microbiology as part of the Epidemiology course. This practice provides the students with the tools for molecular epidemiological analysis of pathogenic microorganisms using a rapid and simple PCR technique. The aim of this work was to assay RAPD-PCR technique in order to infer possible epidemiological relationships. The activity gives students an appreciation of the value of applying a simple molecular biological method as RAPD-PCR to a discipline-specific question. It comprises a three-session laboratory module to genetically assay DNAs from strains isolated from a food outbreak. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(4):391-396, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  13. Structure-Activity Relationships Based on 3D-QSAR CoMFA/CoMSIA and Design of Aryloxypropanol-Amine Agonists with Selectivity for the Human β3-Adrenergic Receptor and Anti-Obesity and Anti-Diabetic Profiles.

    PubMed

    Lorca, Marcos; Morales-Verdejo, Cesar; Vásquez-Velásquez, David; Andrades-Lagos, Juan; Campanini-Salinas, Javier; Soto-Delgado, Jorge; Recabarren-Gajardo, Gonzalo; Mella, Jaime

    2018-05-16

    The wide tissue distribution of the adrenergic β3 receptor makes it a potential target for the treatment of multiple pathologies such as diabetes, obesity, depression, overactive bladder (OAB), and cancer. Currently, there is only one drug on the market, mirabegron, approved for the treatment of OAB. In the present study, we have carried out an extensive structure-activity relationship analysis of a series of 41 aryloxypropanolamine compounds based on three-dimensional quantitative structure-activity relationship (3D-QSAR) techniques. This is the first combined comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) study in a series of selective aryloxypropanolamines displaying anti-diabetes and anti-obesity pharmacological profiles. The best CoMFA and CoMSIA models presented values of r ² ncv = 0.993 and 0.984 and values of r ² test = 0.865 and 0.918, respectively. The results obtained were subjected to extensive external validation ( q ², r ², r ² m , etc.) and a final series of compounds was designed and their biological activity was predicted (best pEC 50 = 8.561).

  14. Pectinase hydrolysis of Dendrobium huoshanense polysaccharide and its effect on protein nonenzymatic glycation.

    PubMed

    Zha, Xue-Qiang; Li, Xiao-Long; Zhang, Hai-Lin; Cui, Shao-Hua; Liu, Jian; Wang, Jun-Hui; Pan, Li-Hua; Luo, Jian-Ping

    2013-10-01

    The aim of this study was to investigate the inhibitory effects of molecular weight alteration of Dendrobium huoshanense polysaccharide on protein nonenzymatic glycation. For this purpose, one homogeneous active polysaccharide DHPD1 with molecular weight 3.2 kDa was extracted from D. huoshanense. GC analysis showed that DHPD1 was mainly composed of glucose, arabinose, galactose in a molar ratio of 0.023:1.023:0.021 with a trace of mannose and xylose. In order to get DHPD1-derived fragments with different molecular weight, response surface methodology was employed to optimize the enzymatic degradation conditions. The maximum reducing sugar production (0.399 mg/mL) was obtained under an optimal condition including pectinase dosage 126 U/mL, reaction pH 4.46 and reaction temperature 48 °C. By applying this condition, three DHPD1-derived fragments with different molecular weights were obtained through changing the hydrolysis time. Infrared spectroscopy analysis indicated that the backbone structure of DHPD1 was not destroyed by pectinase hydrolysis. Monosaccharide composition analysis showed that pectinase preferred to liberate glucose from DHPD1. The inhibitory action of DHPD1 on protein nonenzymatic glycation reduced with the decrease of molecular weight. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Molecular weight determination and correlation analysis of Dalbergia sissoo polysaccharide with constituent oligosaccharides.

    PubMed

    Kumar, Vineet; Rana, Vikas; Soni, P L

    2013-01-01

    Mucilaginous polysaccharide extracted from Dalbergia sissoo Roxb. leaves has a number of medicinal applications. Molecular weight studies and correlation analysis of the structure of polysaccharide with oligosaccharides can be helpful for further utilisation, modification and structure-activity relationship for biological applications. To determine molecular weight of medicinally important polysaccharide. To establish an unequivocal correlation of the polysaccharide monosugars with constituting oligosaccharides and glucuronic acid content based on gas-liquid chromatography (GLC) with the spectrophotometric method. Complete and partial hydrolytic studies of pure polysaccharide yielded constituting monosugars and oligosaccharides. The ratio of sugars in polysaccharide and oligosaccharides was studied by preparation of alditol acetates and analysed using GLC. The uronic acid content was studied by GLC analysis and spectrophotometry. Molecular weight of the polysaccharide was determined using the viscometric method. Dalbergia sissoo leaves yielded 14.0% pure polysaccharide, containing 15.7% of glucuronic acid. Complete hydrolysis and GLC analysis of alditol acetate derivatives of reduced and unreduced monosugars indicated the presence of L-rhamnose, D-glucuronic acid, D-galactose and D-glucose in 1.00:1.00:2.00:2.33 molar ratios. Partial hydrolysis followed by monosugar analysis of oligosaccharides established the monosugar ratio in complete agreement with polysaccharide, thereby corroborating the sugar ratio. Similar uronic acid content was obtained by GLC and spectrophotometry. The polysaccharide had an average molecular weight of 1.5 × 10⁵  Da. The study has established an obvious correlation of the structure of polysaccharide with oligosaccharides, leading to unambiguous identification of monosaccharides, which normally is not studied conclusively while reporting the polysaccharide structure. The molecular weight of the polysaccharide was determined. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Improved solubility and bioactivity of theophylline (a bronchodilator drug) through its new nitrate salt analysed by experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Mary Novena, L.; Suresh Kumar, S.; Athimoolam, S.

    2016-07-01

    Synthesis, crystal structure, vibrational spectroscopy, quantum chemical studies and biological activity of the new semi organic compound, Theophyllinium Nitrate [C7H9N4 O2)+. (NO3)-], are reported here. Crystals of Theophyllinium nitrate (TN) were grown by slow solvent evaporation technique. The crystal packing is dominated by N-H···O intermolecular hydrogen bonds. The cations and anions are aggregated almost parallel leading to a lamellar structure. This molecular aggregation features two alternate hydrogen bonded chain C22(8) and C21(6) motifs. Further, a bifurcated ring R12(4) motifs is also seen. This aggregated molecular sheets are parallel to (2 bar 06) and (20 6 bar) planes of the crystal. The solubility test is carried out to enhance the physico-chemical activity of the compound. The atomic charge distribution on different atoms of TN has been calculated by Mulliken charge analysis. A detailed interpretation of FT-IR and FT-Raman spectra of TN show that most of the bands are matching between the experimental and theoretical methods. The strong intensity bands and shifting of bands due to intermolecular hydrogen bonds are also investigated. The NBO analysis is carried out to elucidate the stability of the molecule and charge delocalization within the molecule. The HOMO-LUMO analysis reveals molecular stability and chemical reactivity of the present compound. Also, the compound was examined for its antibacterial activity and found to exhibit notable activity against Pseudomonas aeruginosa. This shows that the present compound is a good candidate for the antimicrobial agent apart from its inherent Bronchodilator drug property. Hence, the new compound (TN) may be a good alternative for patients with Chronic Obstructive Pulmonary Disease (COPD) and bacterial infections.

  17. Synthesis and in silico studies of novel sulfonamides having oxadiazole ring: As β-glucuronidase inhibitors.

    PubMed

    Taha, Muhammad; Baharudin, Mohd Syukri; Ismail, Nor Hadiani; Selvaraj, Manikandan; Salar, Uzma; Alkadi, Khaled A A; Khan, Khalid Mohammed

    2017-04-01

    Novel sulfonamides having oxadiazole ring were synthesized by multistep reaction and evaluated to check in vitro β-glucuronidase inhibitory activity. Luckily, except compound 13, all compounds were found to demonstrate good inhibitory activity in the range of IC 50 =2.40±0.01-58.06±1.60μM when compared to the standard d-saccharic acid 1,4-lactone (IC 50 =48.4±1.25μM). Structure activity relationship was also presented. However, in order to ensure the SAR as well as the molecular interactions of compounds with the active site of enzyme, molecular docking studies on most active compounds 19, 16, 4 and 6 was carried out. All derivatives were fully characterized by 1 H NMR, 13 C NMR and EI-MS spectroscopic techniques. CHN analysis was also presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Antifungal activity of oligochitosans (short chain chitosans) against some Candida species and clinical isolates of Candida albicans: molecular weight-activity relationship.

    PubMed

    Kulikov, Sergey N; Lisovskaya, Svetlana A; Zelenikhin, Pavel V; Bezrodnykh, Evgeniya A; Shakirova, Diana R; Blagodatskikh, Inesa V; Tikhonov, Vladimir E

    2014-03-03

    A series of oligochitosans (short chain chitosans) prepared by acidic hydrolysis of chitosan and characterized by their molecular weight, polydispersity and degree of deacetylation were used to determine their anticandidal activities. This study has demonstrated that oligochitosans show a high fungistatic activity (MIC 8-512 μg/ml) against Candida species and clinical isolates of Candida albicans, which are resistant to a series of classic antibiotics. Flow cytometry analysis showed that oligochitosan possessed a high fungicidal activity as well. For the first time it was shown that even sub-MIC oligochitosan concentration suppressed the formation of C. albicans hyphal structures, cause severe cell wall alterations, and altered internal cell structure. These results indicate that oligochitosan should be considered as a possible alternative/additive to known anti-yeast agents in pharmaceutical compositions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Multiple receptor conformation docking, dock pose clustering and 3D QSAR studies on human poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors.

    PubMed

    Fatima, Sabiha; Jatavath, Mohan Babu; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2014-10-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) functions as a DNA damage sensor and signaling molecule. It plays a vital role in the repair of DNA strand breaks induced by radiation and chemotherapeutic drugs; inhibitors of this enzyme have the potential to improve cancer chemotherapy or radiotherapy. Three-dimensional quantitative structure activity relationship (3D QSAR) models were developed using comparative molecular field analysis, comparative molecular similarity indices analysis and docking studies. A set of 88 molecules were docked into the active site of six X-ray crystal structures of poly(ADP-ribose)polymerase-1 (PARP-1), by a procedure called multiple receptor conformation docking (MRCD), in order to improve the 3D QSAR models through the analysis of binding conformations. The docked poses were clustered to obtain the best receptor binding conformation. These dock poses from clustering were used for 3D QSAR analysis. Based on MRCD and QSAR information, some key features have been identified that explain the observed variance in the activity. Two receptor-based QSAR models were generated; these models showed good internal and external statistical reliability that is evident from the [Formula: see text], [Formula: see text] and [Formula: see text]. The identified key features enabled us to design new PARP-1 inhibitors.

  20. Electron-density descriptors as predictors in quantitative structure--activity/property relationships and drug design.

    PubMed

    Matta, Chérif F; Arabi, Alya A

    2011-06-01

    The use of electron density-based molecular descriptors in drug research, particularly in quantitative structure--activity relationships/quantitative structure--property relationships studies, is reviewed. The exposition starts by a discussion of molecular similarity and transferability in terms of the underlying electron density, which leads to a qualitative introduction to the quantum theory of atoms in molecules (QTAIM). The starting point of QTAIM is the topological analysis of the molecular electron-density distributions to extract atomic and bond properties that characterize every atom and bond in the molecule. These atomic and bond properties have considerable potential as bases for the construction of robust quantitative structure--activity/property relationships models as shown by selected examples in this review. QTAIM is applicable to the electron density calculated from quantum-chemical calculations and/or that obtained from ultra-high resolution x-ray diffraction experiments followed by nonspherical refinement. Atomic and bond properties are introduced followed by examples of application of each of these two families of descriptors. The review ends with a study whereby the molecular electrostatic potential, uniquely determined by the density, is used in conjunction with atomic properties to elucidate the reasons for the biological similarity of bioisosteres.

  1. Molecular Pathways: Extracting Medical Knowledge from High Throughput Genomic Data

    PubMed Central

    Goldstein, Theodore; Paull, Evan O.; Ellis, Matthew J.; Stuart, Joshua M.

    2013-01-01

    High-throughput genomic data that measures RNA expression, DNA copy number, mutation status and protein levels provide us with insights into the molecular pathway structure of cancer. Genomic lesions (amplifications, deletions, mutations) and epigenetic modifications disrupt biochemical cellular pathways. While the number of possible lesions is vast, different genomic alterations may result in concordant expression and pathway activities, producing common tumor subtypes that share similar phenotypic outcomes. How can these data be translated into medical knowledge that provides prognostic and predictive information? First generation mRNA expression signatures such as Genomic Health's Oncotype DX already provide prognostic information, but do not provide therapeutic guidance beyond the current standard of care – which is often inadequate in high-risk patients. Rather than building molecular signatures based on gene expression levels, evidence is growing that signatures based on higher-level quantities such as from genetic pathways may provide important prognostic and diagnostic cues. We provide examples of how activities for molecular entities can be predicted from pathway analysis and how the composite of all such activities, referred to here as the “activitome,” help connect genomic events to clinical factors in order to predict the drivers of poor outcome. PMID:23430023

  2. Subclinical hyperthyroidism due to a thyrotropin receptor (TSHR) gene mutation (S505R).

    PubMed

    Pohlenz, Joachim; Pfarr, Nicole; Krüger, Silvia; Hesse, Volker

    2006-12-01

    To identify the molecular defect by which non-autoimmune subclinical hyperthyroidism was caused in a 6-mo-old infant who presented with weight loss. Congenital non-autoimmune hyperthyroidism is caused by activating germline mutations in the thyrotropin receptor (TSHR) gene. Therefore, the TSHR gene was sequenced directly from the patient's genomic DNA. Molecular analysis revealed a heterozygous point mutation (S505R) in the TSHR gene as the underlying defect. A constitutively activating mutation in the TSHR gene has to be considered not only in patients with severe congenital non-autoimmune hyperthyroidism, but also in children with subclinical non-autoimmune hyperthyroidism.

  3. Density functional theory studies on molecular structure and vibrational spectra of NLO crystal L-phenylalanine phenylalanium nitrate for THz application

    NASA Astrophysics Data System (ADS)

    Amalanathan, M.; Hubert Joe, I.; Rastogi, V. K.

    2011-12-01

    Molecular structure, FT-IR and Raman spectra of L-phenylalanine phenylalanium nitrate have been investigated using density functional theory calculation. The polarizability and hyperpolarizability value of the crystal is also calculated. Natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction. Simultaneous activation of ring C sbnd C stretching modes shows the non-centrosymmetric symmetry. Terahertz time-domain spectroscopy has been used to detect the absorption spectra in the frequency range from 0.05 to 1.3 THz. Theoretically predicted β value exhibits the high nonlinear optical activity.

  4. Antioxidant behavior of mearnsetin and myricetin flavonoid compounds — A DFT study

    NASA Astrophysics Data System (ADS)

    Sadasivam, K.; Kumaresan, R.

    2011-06-01

    The molecular characteristics of two naturally occurring flavonoid compounds mearnsetin and myricetin have been computed using density functional theory (DFT) approach with B3LYP/6-311G(d,p) level of theory. The computation and analysis of bond dissociation enthalpy magnitudes for all the OH sites for both the compounds clearly denotes the contribution of the B-ring for the antioxidant activity. The analysis has also indicated the higher values of BDE on the C5-OH radical species in both the compounds. The computed vibrational frequency analysis indicates the absence of imaginary frequency in the neutral as well as radical species of both the flavonoid compounds. The ionisation potential (IP) analysis was found to be within the range of the IP of synthetic food additives. In addition, various molecular descriptors such as electron affinity, hardness, softness, electronegativity, electrophilic index have also been calculated and the validity of Koopman's theorem is verified. The plot of frontier molecular orbital and spin density distribution analysis for neutral and the corresponding radical species for both the compounds have been computed and interpreted. The polar nature and their polarizing capacity are well established through the analysis of dipole moment and polarisability magnitudes.

  5. Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation.

    PubMed Central

    Scheer, A; Fanelli, F; Costa, T; De Benedetti, P G; Cotecchia, S

    1996-01-01

    Site-directed mutagenesis and molecular dynamics simulations of the alpha 1B-adrenergic receptor (AR) were combined to explore the potential molecular changes correlated with the transition from R (inactive state) to R (active state). Using molecular dynamics analysis we compared the structural/dynamic features of constitutively active mutants with those of the wild type and of an inactive alpha 1B-AR to build a theoretical model which defines the essential features of R and R. The results of site-directed mutagenesis were in striking agreement with the predictions of the model supporting the following hypothesis. (i) The equilibrium between R and R depends on the equilibrium between the deprotonated and protonated forms, respectively, of D142 of the DRY motif. In fact, replacement of D142 with alanine confers high constitutive activity to the alpha 1B-AR. (ii) The shift of R143 of the DRY sequence out of a conserved 'polar pocket' formed by N63, D91, N344 and Y348 is a feature common to all the active structures, suggesting that the role of R143 is fundamental for mediating receptor activation. Disruption of these intramolecular interactions by replacing N63 with alanine constitutively activates the alpha 1B-AR. Our findings might provide interesting generalities about the activation process of G protein-coupled receptors. Images PMID:8670860

  6. ECUT: Energy Conversion and Utilization Technologies program - Biocatalysis research activity

    NASA Technical Reports Server (NTRS)

    Wilcox, R.

    1984-01-01

    The activities of the Biocatalysis Research Activity are organized into the Biocatalysis and Molecular Modeling work elements and a supporting planning and analysis function. In the Biocatalysis work element, progress is made in developing a method for stabilizing genetically engineered traits in microorganisms, refining a technique for monitoring cells that are genetically engineered, and identifying strains of fungi for highly efficient preprocessing of biomass for optimizing the efficiency of bioreactors. In the Molecular Modeling work element, a preliminary model of the behavior of enzymes is developed. A preliminary investigation of the potential for synthesizing enzymes for use in electrochemical processes is completed. Contact with industry and universities is made to define key biocatalysis technical issues and to broaden the range of potential participants in the activity. Analyses are conducted to identify and evaluate potential concepts for future research funding.

  7. First simultaneous detection of terrestrial ionospheric molecular ions in the Earth's inner magnetosphere and at the Moon

    NASA Astrophysics Data System (ADS)

    Dandouras, Iannis; Poppe, Andrew R.; Fillingim, Matt O.; Kistler, Lynn M.; Mouikis, Christopher G.; Rème, Henri

    2017-04-01

    Heavy molecular ions escaping from a planetary atmosphere can contribute to the long-term evolution of its composition. The ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) spacecraft has recently observed outflowing molecular ions at lunar distances in the terrestrial magnetotail (Poppe et al., 2016). Backward particle tracing indicated that these ions should originate from the terrestrial inner magnetosphere. Here we have examined Cluster data acquired by the CIS-CODIF (Cluster Ion Spectrometry-Composition Distribution Function) ion mass spectrometer, obtained in the terrestrial magnetosphere. An event was selected where the orbital conditions were favourable and the Cluster spacecraft were in the high-latitude inner magnetosphere a few hours before the ARTEMIS molecular ion detection. Analysis shows that the CIS-CODIF instrument detected a series of energetic ion species, including not only O+ but also a group of molecular ions around 30 amu. Given the 5-7 m/Δm mass resolution of the instrument, these could include N2+, NO+, or O2+. These ions were detected by Cluster about 14 hours before the ARTEMIS observation in the lunar environment, a time which is compatible with the transfer to lunar distances. The event was during an active period followed by a northward rotation of the IMF. Although energetic heavy molecular ions have been detected in the storm time magnetosphere in the past (e.g. Klecker et al., 1986; Christon et al., 1994), this event constitutes the first coordinated observation in the Earth's inner magnetosphere and at the Moon. Additional events of coordinated outflowing molecular ion observations are currently under analysis. Future missions, as the proposed ESCAPE mission, should investigate in detail the mechanisms of molecular ion acceleration and escape, their link to the solar and magnetospheric activity, and their role in the magnetospheric dynamics and in the long-term evolution of the atmospheric composition.

  8. A new look into the quantum chemical and spectroscopic investigations of 5-chloro-1-methyl-4-nitroimidazole.

    PubMed

    Arjunan, V; Raj, Arushma; Anitha, R; Mohan, S

    2014-05-05

    Optimised geometrical structural parameters, harmonic vibrational frequencies, natural bonding orbital analysis and frontier molecular orbitals are determined by B3LYP and B3PW91 methods. The exact geometry of 5-chloro-1-methyl-4-nitroimidazole is determined through conformational analysis. The experimentally observed infrared and Raman bands have been assigned and analysed. The (13)C and (1)H NMR chemical shifts of the compound are investigated. The total electron density and molecular electrostatic potentials are determined. The electrostatic potential (electron+nuclei) distribution, molecular shape, size and dipole moments of the molecule have been displayed. The energies of the frontier molecular orbitals and LUMO-HOMO energy gap are measured. The possible electronic transitions of the molecule are studied by TD-DFT method along with the UV-Visible spectrum. The structure-activity relationship of the compound is also investigated by conceptual DFT methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. QSAR studies on triazole derivatives as sglt inhibitors via CoMFA and CoMSIA

    NASA Astrophysics Data System (ADS)

    Zhi, Hui; Zheng, Junxia; Chang, Yiqun; Li, Qingguo; Liao, Guochao; Wang, Qi; Sun, Pinghua

    2015-10-01

    Forty-six sodium-dependent glucose cotransporters-2 (SGLT-2) inhibitors with hypoglycemic activity were selected to develop three-dimensional quantitative structure-activity relationship (3D-QSAR) using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models. A training set of 39 compounds were used to build up the models, which were then evaluated by a series of internal and external cross-validation techniques. A test set of 7 compounds was used for the external validation. The CoMFA model predicted a q2 value of 0.792 and an r2 value of 0.985. The best CoMSIA model predicted a q2 value of 0.633 and an r2 value of 0.895 based on a combination of steric, electrostatic, hydrophobic and hydrogen-bond acceptor effects. The predictive correlation coefficients (rpred2) of CoMFA and CoMSIA models were 0.872 and 0.839, respectively. The analysis of the contour maps from each model provided insight into the structural requirements for the development of more active sglt inhibitors, and on the basis of the models 8 new sglt inhibitors were designed and predicted.

  10. Synthesis, spectral characterization and computed optical analysis of potent triazole based compounds

    NASA Astrophysics Data System (ADS)

    Sumrra, Sajjad H.; Mushtaq, Fazila; Khalid, Muhammad; Raza, Muhammad Asam; Nazar, Muhammad Faizan; Ali, Bakhat; Braga, Ataualpa A. C.

    2018-02-01

    Biologically active triazole Schiff base ligand (L) and metal complexes [Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] are reported herein. The ligand acted as tridentate and coordinated towards metallic ions via azomethine-N, triazolic-N moiety and deprotonated-O of phenyl substituents in an octahedral manner. These compounds were characterized by physical, spectral and analytical analysis. The synthesized ligand and metal complexes were screened for antibacterial pathogens against Chromohalobacter salexigens, Chromohalobacter israelensi, Halomonas halofila and Halomonas salina, antifungal bioassay against Aspergillus niger and Aspergellus flavin, antioxidant (DPPH, phosphomolybdate) and also for enzyme inhibition [butyrylcholinesterase (BChE) and acetylcholinesterase (AChE)] studies. The results of these activities indicated the ligand to possess potential activity which significantly increased upon chelation. Moreover, vibrational bands, frontier molecular orbitals (FMOs) and natural bond analysis (NBO) of ligand (1) were carried out through density functional theory (DFT) with B3lYP/6-311 ++G (d,p) approach. While, UV-Vis analysis was performed by time dependent TD-DFT with B3lYP/6-311 ++G (d,p) method. NBO analysis revealed that investigated compound (L) contains enormous molecular stability owing to hyper conjugative interactions. Theoretical spectroscopic findings showed good agreement to experimental spectroscopic data. Global reactivity descriptors were calculated using the energies of FMOs which indicated compound (L) might be bioactive. These parameters confirmed the charge transfer phenomenon and reasonable correspondence with experimental bioactivity results.

  11. An integrated computational approach of molecular dynamics simulations, receptor binding studies and pharmacophore mapping analysis in search of potent inhibitors against tuberculosis.

    PubMed

    Agarwal, Shivangi; Verma, Ekta; Kumar, Vivek; Lall, Namrita; Sau, Samaresh; Iyer, Arun K; Kashaw, Sushil K

    2018-05-03

    Tuberculosis is an infectious chronic disease caused by obligate pathogen Mycobacterium tuberculosis that affects millions of people worldwide. Although many first and second line drugs are available for its treatment, but their irrational use has adversely lead to the emerging cases of multiple drug resistant and extensively drug-resistant tuberculosis. Therefore, there is an intense need to develop novel potent analogues for its treatment. This has prompted us to develop potent analogues against TB. The Mycobacterium tuberculosis genome provides us with number of validated targets to combat against TB. Study of Mtb genome disclosed six epoxide hydrolases (A to F) which convert harmful epoxide into diols and act as a potential drug target for rational drug design. Our current strategy is to develop such analogues which inhibits epoxide hydrolase enzyme present in Mtb genome. To achieve this, we adopted an integrated computational approach involving QSAR, pharmacophore mapping, molecular docking and molecular dynamics simulation studies. The approach envisaged vital information about the role of molecular descriptors, essential pharmacophoric features and binding energy for compounds to bind into the active site of epoxide hydrolase. Molecular docking analysis revealed that analogues exhibited significant binding to Mtb epoxide hydrolase. Further, three docked complexes 2s, 37s and 15s with high, moderate and low docking scores respectively were selected for molecular dynamics simulation studies. RMSD analysis revealed that all complexes are stable with average RMSD below 2 Å throughout the 10 ns simulations. The B-factor analysis showed that the active site residues of epoxide hydrolase are flexible enough to interact with inhibitor. Moreover, to confirm the binding of these urea derivatives, MM-GBSA binding energy analysis were performed. The calculations showed that 37s has more binding affinity (ΔGtotal = -52.24 kcal/mol) towards epoxide hydrolase compared to 2s (ΔGtotal = -51.70 kcal/mol) and 15s (ΔGtotal = -49.97 kcal/mol). The structural features inferred in our study may provide the future directions to the scientists towards the discovery of new chemical entity exhibiting anti-TB property. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Functional Analyses of Resurrected and Contemporary Enzymes Illuminate an Evolutionary Path for the Emergence of Exolysis in Polysaccharide Lyase Family 2.

    PubMed

    McLean, Richard; Hobbs, Joanne K; Suits, Michael D; Tuomivaara, Sami T; Jones, Darryl R; Boraston, Alisdair B; Abbott, D Wade

    2015-08-28

    Family 2 polysaccharide lyases (PL2s) preferentially catalyze the β-elimination of homogalacturonan using transition metals as catalytic cofactors. PL2 is divided into two subfamilies that have been generally associated with secretion, Mg(2+) dependence, and endolysis (subfamily 1) and with intracellular localization, Mn(2+) dependence, and exolysis (subfamily 2). When present within a genome, PL2 genes are typically found as tandem copies, which suggests that they provide complementary activities at different stages along a catabolic cascade. This relationship most likely evolved by gene duplication and functional divergence (i.e. neofunctionalization). Although the molecular basis of subfamily 1 endolytic activity is understood, the adaptations within the active site of subfamily 2 enzymes that contribute to exolysis have not been determined. In order to investigate this relationship, we have conducted a comparative enzymatic analysis of enzymes dispersed within the PL2 phylogenetic tree and elucidated the structure of VvPL2 from Vibrio vulnificus YJ016, which represents a transitional member between subfamiles 1 and 2. In addition, we have used ancestral sequence reconstruction to functionally investigate the segregated evolutionary history of PL2 progenitor enzymes and illuminate the molecular evolution of exolysis. This study highlights that ancestral sequence reconstruction in combination with the comparative analysis of contemporary and resurrected enzymes holds promise for elucidating the origins and activities of other carbohydrate active enzyme families and the biological significance of cryptic metabolic pathways, such as pectinolysis within the zoonotic marine pathogen V. vulnificus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Synthesis, spectroscopic characterization, DFT studies and antifungal activity of (E)-4-amino-5-[N'-(2-nitro-benzylidene)-hydrazino]-2,4-dihydro-[1,2,4]triazole-3-thione

    NASA Astrophysics Data System (ADS)

    Joshi, Rachana; Pandey, Nidhi; Yadav, Swatantra Kumar; Tilak, Ragini; Mishra, Hirdyesh; Pokharia, Sandeep

    2018-07-01

    The hydrazino Schiff base (E)-4-amino-5-[N'-(2-nitro-benzylidene)-hydrazino]-2,4-dihydro-[1,2,4]triazole-3-thione was synthesized and structurally characterized by elemental analysis, FT-IR, Raman, 1H and 13C-NMR and UV-Vis studies. A density functional theory (DFT) based electronic structure calculations were accomplished at B3LYP/6-311++G(d,p) level of theory. A comparative analysis of calculated vibrational frequencies with experimental vibrational frequencies was carried out and significant bands were assigned. The results indicate a good correlation (R2 = 0.9974) between experimental and theoretical IR frequencies. The experimental 1H and 13C-NMR resonance signals were also compared to the calculated values. The theoretical UV-Vis spectral studies were carried out using time dependent-DFT method in gas phase and IEFPCM model in solvent field calculation. The geometrical parameters were calculated in the gas phase. Atomic charges at selected atoms were calculated by Mulliken population analysis (MPA), Hirshfeld population analysis (HPA) and Natural population analysis (NPA) schemes. The molecular electrostatic potential (MEP) map was calculated to assign reactive site on the surface of the molecule. The conceptual-DFT based global and local reactivity descriptors were calculated to obtain an insight into the reactivity behaviour. The frontier molecular orbital analysis was carried out to study the charge transfer within the molecule. The detailed natural bond orbital (NBO) analysis was performed to obtain an insight into the intramolecular conjugative electronic interactions. The titled compound was screened for in vitro antifungal activity against four fungal strains and the results obtained are explained through in silico molecular docking studies.

  14. Synthesis, spectroscopic characterization (FT-IR, FT-Raman, and NMR), quantum chemical studies and molecular docking of 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione

    NASA Astrophysics Data System (ADS)

    Avdović, Edina H.; Milenković, Dejan; Dimitrić Marković, Jasmina M.; Đorović, Jelena; Vuković, Nenad; Vukić, Milena D.; Jevtić, Verica V.; Trifunović, Srećko R.; Potočňák, Ivan; Marković, Zoran

    2018-04-01

    The experimental and theoretical investigations of structure of the 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione were performed. X-ray structure analysis and spectroscopic methods (FTIR and FT-Raman, 1H and 13C NMR), along with the density functional theory calculations (B3LYP functional with empirical dispersion corrections D3BJ in combination with the 6-311 + G(d,p) basis set), were used in order to characterize the molecular structure and spectroscopic behavior of the investigated coumarin derivative. Molecular docking analysis was carried out to identify the potency of inhibition of the title molecule against human's Ubiquinol-Cytochrome C Reductase Binding Protein (UQCRB) and Methylenetetrahydrofolate reductase (MTHFR). The inhibition activity was obtained for ten conformations of ligand inside the proteins.

  15. Synthesis, crystal structure analysis, spectral investigations, DFT computations and molecular dynamics and docking study of 4-benzyl-5-oxomorpholine-3-carbamide, a potential bioactive agent

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Sheena Mary, Y.; Shyma Mary, Y.; Panicker, C. Yohannan; Suneetha, V.; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Suchetan, P. A.

    2017-04-01

    4-benzyl-5-oxomorpholine-3-carbamide has been synthesized; single crystals were grown by slow evaporation solution growth technique at room temperature and characterized by single crystal X-ray diffraction, FT-IR, FT-Raman and 1H-NMR. The compound crystallizes in the monoclinic space group P21/n. The molecular geometry of the compound was optimized by using Density Functional Theory (DFT/B3LYP) method with 6-311++G(d,p) basis set in the ground state and geometric parameters are in agreement with the X-ray analysis results of the structure. The experimental vibrational spectra were compared with the calculated spectra and each vibrational wave number was assigned on the basis of potential energy distribution (PED). The electronic and charge transfer properties have been explained on the basis of highest occupied molecular orbital's (HOMOs) and lowest unoccupied molecular orbital's (LUMOs). Besides molecular electrostatic potential (MEP), frontier molecular orbital's (FMOs), some global reactivity descriptors, thermodynamic properties, non-linear optical (NLO) behavior and Mullikan charge analysis of the title compound were computed with the same method in gas phase, theoretically. Potential reactive sites of the title compound have been identified by average local ionization energy and Fukui functions, both mapped to the electron density surface. Bond dissociation energies for all single acyclic bonds have been calculated in order to investigate autoxidation and degradation properties of the title compound. Atoms with pronounced interactions with water molecules have been detected by calculations of radial distribution functions after molecular dynamics simulations. The experimental results are compared with the theoretical calculations using DFT methods for the fortification of the paper. Further the docking studies revealed that the title compound as a docked ligand forms a stable complex with pyrrole inhibitor with a binding affinity value of -7.5 kcal/mol. This suggests that the title compound might exhibit inhibitory activity against pyrrole inhibitor. To confirm the potential practical applicability of the title compound antimicrobial activity was tested against gram negative and gram positive bacteria.

  16. Molecular structure, Normal Coordinate Analysis, harmonic vibrational frequencies, Natural Bond Orbital, TD-DFT calculations and biological activity analysis of antioxidant drug 7-hydroxycoumarin

    NASA Astrophysics Data System (ADS)

    Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T.

    2013-01-01

    In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis of Umbelliferone also known as 7-hydroxycoumarin (7HC). The optimized geometric bond lengths and bond angles obtained by computation (monomer and dimmer) shows good agreement with experimental XRD data. Harmonic frequencies of 7HC were determined and analyzed by DFT utilizing 6-311+G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The change in electron density (ED) in the σ* and π* antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra. Microbial activity of studied compounds was tested against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Psuedomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Shigella flexneri, Salmonella typhi and Enterococcus faecalis.

  17. 3D QSAR based design of novel oxindole derivative as 5HT7 inhibitors.

    PubMed

    Chitta, Aparna; Sivan, Sree Kanth; Manga, Vijjulatha

    2014-06-01

    To understand the structural requirements of 5-hydroxytryptamine (5HT7) receptor inhibitors and to design new ligands against 5HT7 receptor with enhanced inhibitory potency, a three-dimensional quantitative structure-activity relationship study with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for a data set of 56 molecules consisting of oxindole, tetrahydronaphthalene, aryl ketone substituted arylpiperazinealkylamide derivatives was performed. Derived model showed good statistical reliability in terms of predicting 5HT7 inhibitory activity of the molecules, based on molecular property fields like steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields. This is evident from statistical parameters like conventional r2 and a cross validated (q2) values of 0.985, 0.743 for CoMFA and 0.970, 0.608 for CoMSIA, respectively. Predictive ability of the models to determine 5HT7 antagonistic activity is validated using a test set of 16 molecules that were not included in the training set. Predictive r2 obtained for the test set was 0.560 and 0.619 for CoMFA and CoMSIA, respectively. Steric, electrostatic fields majorly contributed toward activity which forms the basis for design of new molecules. Absorption, distribution, metabolism and elimination (ADME) calculation using QikProp 2.5 (Schrodinger 2010, Portland, OR) reveals that the molecules confer to Lipinski's rule of five in majority of the cases.

  18. Structural Insight into and Mutational Analysis of Family 11 Xylanases: Implications for Mechanisms of Higher pH Catalytic Adaptation.

    PubMed

    Bai, Wenqin; Zhou, Cheng; Zhao, Yueju; Wang, Qinhong; Ma, Yanhe

    2015-01-01

    To understand the molecular basis of higher pH catalytic adaptation of family 11 xylanases, we compared the structures of alkaline, neutral, and acidic active xylanases and analyzed mutants of xylanase Xyn11A-LC from alkalophilic Bacillus sp. SN5. It was revealed that alkaline active xylanases have increased charged residue content, an increased ratio of negatively to positively charged residues, and decreased Ser, Thr, and Tyr residue content relative to non-alkaline active counterparts. Between strands β6 and β7, alkaline xylanases substitute an α-helix for a coil or turn found in their non-alkaline counterparts. Compared with non-alkaline xylanases, alkaline active enzymes have an inserted stretch of seven amino acids rich in charged residues, which may be beneficial for xylanase function in alkaline conditions. Positively charged residues on the molecular surface and ionic bonds may play important roles in higher pH catalytic adaptation of family 11 xylanases. By structure comparison, sequence alignment and mutational analysis, six amino acids (Glu16, Trp18, Asn44, Leu46, Arg48, and Ser187, numbering based on Xyn11A-LC) adjacent to the acid/base catalyst were found to be responsible for xylanase function in higher pH conditions. Our results will contribute to understanding the molecular mechanisms of higher pH catalytic adaptation in family 11 xylanases and engineering xylanases to suit industrial applications.

  19. Structural Insight into and Mutational Analysis of Family 11 Xylanases: Implications for Mechanisms of Higher pH Catalytic Adaptation

    PubMed Central

    Bai, Wenqin; Zhou, Cheng; Zhao, Yueju; Wang, Qinhong; Ma, Yanhe

    2015-01-01

    To understand the molecular basis of higher pH catalytic adaptation of family 11 xylanases, we compared the structures of alkaline, neutral, and acidic active xylanases and analyzed mutants of xylanase Xyn11A-LC from alkalophilic Bacillus sp. SN5. It was revealed that alkaline active xylanases have increased charged residue content, an increased ratio of negatively to positively charged residues, and decreased Ser, Thr, and Tyr residue content relative to non-alkaline active counterparts. Between strands β6 and β7, alkaline xylanases substitute an α-helix for a coil or turn found in their non-alkaline counterparts. Compared with non-alkaline xylanases, alkaline active enzymes have an inserted stretch of seven amino acids rich in charged residues, which may be beneficial for xylanase function in alkaline conditions. Positively charged residues on the molecular surface and ionic bonds may play important roles in higher pH catalytic adaptation of family 11 xylanases. By structure comparison, sequence alignment and mutational analysis, six amino acids (Glu16, Trp18, Asn44, Leu46, Arg48, and Ser187, numbering based on Xyn11A-LC) adjacent to the acid/base catalyst were found to be responsible for xylanase function in higher pH conditions. Our results will contribute to understanding the molecular mechanisms of higher pH catalytic adaptation in family 11 xylanases and engineering xylanases to suit industrial applications. PMID:26161643

  20. Design and prediction of new acetylcholinesterase inhibitor via quantitative structure activity relationship of huprines derivatives.

    PubMed

    Zhang, Shuqun; Hou, Bo; Yang, Huaiyu; Zuo, Zhili

    2016-05-01

    Acetylcholinesterase (AChE) is an important enzyme in the pathogenesis of Alzheimer's disease (AD). Comparative quantitative structure-activity relationship (QSAR) analyses on some huprines inhibitors against AChE were carried out using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR) methods. Three highly predictive QSAR models were constructed successfully based on the training set. The CoMFA, CoMSIA, and HQSAR models have values of r (2) = 0.988, q (2) = 0.757, ONC = 6; r (2) = 0.966, q (2) = 0.645, ONC = 5; and r (2) = 0.957, q (2) = 0.736, ONC = 6. The predictabilities were validated using an external test sets, and the predictive r (2) values obtained by the three models were 0.984, 0.973, and 0.783, respectively. The analysis was performed by combining the CoMFA and CoMSIA field distributions with the active sites of the AChE to further understand the vital interactions between huprines and the protease. On the basis of the QSAR study, 14 new potent molecules have been designed and six of them are predicted to be more active than the best active compound 24 described in the literature. The final QSAR models could be helpful in design and development of novel active AChE inhibitors.

  1. Identification and characterization of contrasting sunflower genotypes to early leaf senescence process combining molecular and physiological studies (Helianthus annuus L.).

    PubMed

    López Gialdi, A I; Moschen, S; Villán, C S; López Fernández, M P; Maldonado, S; Paniego, N; Heinz, R A; Fernandez, P

    2016-09-01

    Leaf senescence is a complex mechanism ruled by multiple genetic and environmental variables that affect crop yields. It is the last stage in leaf development, is characterized by an active decline in photosynthetic rate, nutrients recycling and cell death. The aim of this work was to identify contrasting sunflower inbred lines differing in leaf senescence and to deepen the study of this process in sunflower. Ten sunflower genotypes, previously selected by physiological analysis from 150 inbred genotypes, were evaluated under field conditions through physiological, cytological and molecular analysis. The physiological measurement allowed the identification of two contrasting senescence inbred lines, R453 and B481-6, with an increase in yield in the senescence delayed genotype. These findings were confirmed by cytological and molecular analysis using TUNEL, genomic DNA gel electrophoresis, flow sorting and gene expression analysis by qPCR. These results allowed the selection of the two most promising contrasting genotypes, which enables future studies and the identification of new biomarkers associated to early senescence in sunflower. In addition, they allowed the tuning of cytological techniques for a non-model species and its integration with molecular variables. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Biological Evaluation in Vitro and in Silico of Azetidin-2-one Derivatives as Potential Anticancer Agents.

    PubMed

    Olazaran, Fabián E; Rivera, Gildardo; Pérez-Vázquez, Alondra M; Morales-Reyes, Cynthia M; Segura-Cabrera, Aldo; Balderas-Rentería, Isaías

    2017-01-12

    Potential anticancer activity of 16 azetidin-2-one derivatives was evaluated showing that compound 6 [ N -( p -methoxy-phenyl)-2-( p -methyl-phenyl)-3-phenoxy-azetidin-2-one] presented cytotoxic activity in SiHa cells and B16F10 cells. The caspase-3 assay in B16F10 cells displayed that azetidin-2-one derivatives induce apoptosis. Microarray and molecular analysis showed that compound 6 was involved on specific gene overexpression of cytoskeleton regulation and apoptosis due to the inhibition of some cell cycle genes. From the 16 derivatives, compound 6 showed the highest selectivity to neoplastic cells, it was an inducer of apoptosis, and according to an in silico analysis of chemical interactions with colchicine binding site of human α/β-tubulin, the mechanism of action could be a molecular interaction involving the amino acids outlining such binding site.

  3. Biological Evaluation in Vitro and in Silico of Azetidin-2-one Derivatives as Potential Anticancer Agents

    PubMed Central

    2016-01-01

    Potential anticancer activity of 16 azetidin-2-one derivatives was evaluated showing that compound 6 [N-(p-methoxy-phenyl)-2-(p-methyl-phenyl)-3-phenoxy-azetidin-2-one] presented cytotoxic activity in SiHa cells and B16F10 cells. The caspase-3 assay in B16F10 cells displayed that azetidin-2-one derivatives induce apoptosis. Microarray and molecular analysis showed that compound 6 was involved on specific gene overexpression of cytoskeleton regulation and apoptosis due to the inhibition of some cell cycle genes. From the 16 derivatives, compound 6 showed the highest selectivity to neoplastic cells, it was an inducer of apoptosis, and according to an in silico analysis of chemical interactions with colchicine binding site of human α/β-tubulin, the mechanism of action could be a molecular interaction involving the amino acids outlining such binding site. PMID:28105271

  4. Multielectron, multisubstrate molecular catalysis of electrochemical reactions: Formal kinetic analysis in the total catalysis regime.

    PubMed

    Costentin, Cyrille; Nocera, Daniel G; Brodsky, Casey N

    2017-10-24

    Cyclic voltammetry responses are derived for two-electron, two-step homogeneous electrocatalytic reactions in the total catalysis regime. The models developed provide a framework for extracting kinetic information from cyclic voltammograms (CVs) obtained in conditions under which the substrate or cosubstrate is consumed in a multielectron redox process, as is particularly prevalent for very active catalysts that promote energy conversion reactions. Such determination of rate constants in the total catalysis regime is a prerequisite for the rational benchmarking of molecular electrocatalysts that promote multielectron conversions of small-molecule reactants. The present analysis is illustrated with experimental systems encompassing various limiting behaviors.

  5. Ginger (Zingiber officinale) phytochemicals-gingerenone-A and shogaol inhibit SaHPPK: molecular docking, molecular dynamics simulations and in vitro approaches.

    PubMed

    Rampogu, Shailima; Baek, Ayoung; Gajula, Rajesh Goud; Zeb, Amir; Bavi, Rohit S; Kumar, Raj; Kim, Yongseong; Kwon, Yong Jung; Lee, Keun Woo

    2018-04-02

    Antibiotic resistance is a defense mechanism, harbored by pathogens to survive under unfavorable conditions. Among several antibiotic resistant microbial consortium, Staphylococcus aureus is one of the most havoc microorganisms. Staphylococcus aureus encodes a unique enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (SaHPPK), against which, none of existing antibiotics have been reported. Computational approaches have been instrumental in designing and discovering new drugs for several diseases. The present study highlights the impact of ginger phytochemicals on Staphylococcus aureus SaHPPK. Herein, we have retrieved eight ginger phytochemicals from published literature and investigated their inhibitory interactions with SaHPPK. To authenticate our work, the investigation proceeds considering the known antibiotics alongside the phytochemicals. Molecular docking was performed employing GOLD and CDOCKER. The compounds with the highest dock score from both the docking programmes were tested for their inhibitory capability in vitro. The binding conformations that were seated within the binding pocket showing strong interactions with the active sites residues rendered by highest dock score were forwarded towards the molecular dynamic (MD) simulation analysis. Based on molecular dock scores, molecular interaction with catalytic active residues and MD simulations studies, two ginger phytochemicals, gingerenone-A and shogaol have been proposed as candidate inhibitors against Staphylococcus aureus. They have demonstrated higher dock scores than the known antibiotics and have represented interactions with the key residues within the active site. Furthermore, these compounds have rendered considerable inhibitory activity when tested in vitro. Additionally, their superiority was corroborated by stable MD results conducted for 100 ns employing GROMACS package. Finally, we suggest that gingerenone-A and shogaol may either be potential SaHPPK inhibitors or can be used as fundamental platforms for novel SaHPPK inhibitor development.

  6. Relationship between molecular weight, monosaccharide composition and immunobiologic activity of Astragalus polysaccharides.

    PubMed

    Jiang, Yiping; Qi, Xiaohui; Gao, Kai; Liu, Wenjun; Li, Na; Cheng, Ningbo; Ding, Gang; Huang, Wenzhe; Wang, Zhenzhong; Xiao, Wei

    2016-10-01

    Four Astragalus polysaccharides (APS1-APS4) were isolated from the water extract of Radix Astragali and purified through ethanol precipitation with 20 %, 40 %, 60 % and 80 % ethanol, respectively. The total sugar content was measured by sulfuric acid-phenol method. Their molecular weight was determined using high performance gel permeation chromatography (HPGPC) and their monosaccharide composition was analyzed by reversed-phase high performance liquid chromatography (HPLC) after pre-column derivatization. Then the immunobiologic activity of APS was evaluated by the experiment of spleen lymphocytes proliferation in vitro. The data suggested that precipitation by different concentration of ethanol will obtain different molecular weight APS, the higher concentration of ethanol the smaller molecular weight for APS. The molecular weights of four APS were 257.7 kDa, 40.1 kDa, 15.3 kDa and 3.2 kDa. Monosaccharide composition analysis indicated that APS1 consisted of glucose only, and APS2 all consisted of arabinose. APS3 consisted of rhamnose, glucose, galactose and arabinose and APS4 consisted of galactose and arabinose, in a molar ratio of 1:10.76:6.55:12 and 3.02:1. The result of immunobiologic activity assay showed that both APS2 and APS3 can effectively stimulate normal spleen lymphocyte proliferation in vitro. Apart from this, the effect of APS2 also showed dose dependent tendency from 6.25 μg/mL to 800 μg/mL. The result of this research indicated that Astragalus polysaccharides, which consist of arabinose and their molecular weight between 15.2 kDa to 40.1 kDa, neither too high nor too low, had significant immune activity.

  7. A Systematic Analysis of Candidate Genes Associated with Nicotine Addiction

    PubMed Central

    Liu, Meng; Li, Xia; Fan, Rui; Liu, Xinhua; Wang, Ju

    2015-01-01

    Nicotine, as the major psychoactive component of tobacco, has broad physiological effects within the central nervous system, but our understanding of the molecular mechanism underlying its neuronal effects remains incomplete. In this study, we performed a systematic analysis on a set of nicotine addiction-related genes to explore their characteristics at network levels. We found that NAGenes tended to have a more moderate degree and weaker clustering coefficient and to be less central in the network compared to alcohol addiction-related genes or cancer genes. Further, clustering of these genes resulted in six clusters with themes in synaptic transmission, signal transduction, metabolic process, and apoptosis, which provided an intuitional view on the major molecular functions of the genes. Moreover, functional enrichment analysis revealed that neurodevelopment, neurotransmission activity, and metabolism related biological processes were involved in nicotine addiction. In summary, by analyzing the overall characteristics of the nicotine addiction related genes, this study provided valuable information for understanding the molecular mechanisms underlying nicotine addiction. PMID:26097843

  8. Integrative network analysis unveils convergent molecular pathways in Parkinson's disease and diabetes.

    PubMed

    Santiago, Jose A; Potashkin, Judith A

    2013-01-01

    Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level. Using a random walk algorithm within the human functional linkage network we identified a molecular cluster of 478 neighboring genes closely associated with confirmed Parkinson's disease and type 2 diabetes genes. Biological and functional analysis identified the protein serine-threonine kinase activity, MAPK cascade, activation of the immune response, and insulin receptor and lipid signaling as convergent pathways. Integration of results from microarrays studies identified a blood signature comprising seven genes whose expression is dysregulated in Parkinson's disease and type 2 diabetes. Among this group of genes, is the amyloid precursor protein (APP), previously associated with neurodegeneration and insulin regulation. Quantification of RNA from whole blood of 192 samples from two independent clinical trials, the Harvard Biomarker Study (HBS) and the Prognostic Biomarker Study (PROBE), revealed that expression of APP is significantly upregulated in Parkinson's disease patients compared to healthy controls. Assessment of biomarker performance revealed that expression of APP could distinguish Parkinson's disease from healthy individuals with a diagnostic accuracy of 80% in both cohorts of patients. These results provide the first evidence that Parkinson's disease and diabetes are strongly linked at the molecular level and that shared molecular networks provide an additional source for identifying highly sensitive biomarkers. Further, these results suggest for the first time that increased expression of APP in blood may modulate the neurodegenerative phenotype in type 2 diabetes patients.

  9. Aspergillus Oryzae S2 α-Amylase Domain C Involvement in Activity and Specificity: In Vivo Proteolysis, Molecular and Docking Studies

    PubMed Central

    Sahnoun, Mouna; Jemli, Sonia; Trabelsi, Sahar; Ayadi, Leila; Bejar, Samir

    2016-01-01

    We previously reported that Aspergillus oryzae strain S2 had produced two α-amylase isoforms named AmyA and AmyB. The apparent molecular masses revealed by SDS-PAGE were 50 and 42 kDa, respectively. Yet AmyB has a higher catalytic efficiency. Based on a monitoring study of the α-amylase production in both the presence and absence of different protease inhibitors, a chymotrypsin proteolysis process was detected in vivo generating AmyB. A. oryzae S2 α-amylase gene was amplified, cloned and sequenced. The sequence analysis revealed nine exons, eight introns and an encoding open reading frame of 1500 bp corresponding to AmyA isoform. The amino-acid sequence analysis revealed aY371 potential chymotrypsin cleaving site, likely to be the AmyB C-Terminal end and two other potential sites at Y359, and F379. A zymogram with a high acrylamide concentration was used. It highlighted two other closed apparent molecular mass α-amylases termed AmyB1 and AmyB2 reaching40 kDa and 43 kDa. These isoforms could be possibly generated fromY359, and F379secondary cut, respectively. The molecular modeling study showed that AmyB preserved the (β/α)8 barrel domain and the domain B but lacked the C-terminal domain C. The contact map analysis and the docking studies strongly suggested a higher activity and substrate binding affinity for AmyB than AmyA which was previously experimentally exhibited. This could be explained by the easy catalytic cleft accessibility. PMID:27101008

  10. Molecular characterization of Clonorchis sinensis secretory myoglobin: Delineating its role in anti-oxidative survival

    PubMed Central

    2014-01-01

    Background Clonorchiasis is a globally important, neglected food-borne disease caused by Clonorchis sinensis (C. sinensis), and it is highly related to cholangiocarcinoma and hepatocellular carcinoma. Increased molecular evidence has strongly suggested that the adult worm of C. sinensis continuously releases excretory-secretory proteins (ESPs), which play important roles in the parasite-host interactions, to establish successful infection and ensure its own survival. Myoglobin, a hemoprotein, is present in high concentrations in trematodes and ESPs. To further understand the biological function of CsMb and its putative roles in the interactions of C. sinensis with its host, we explored the molecular characterization of CsMb in this paper. Methods We expressed CsMb and its mutants in E. coli BL21 and identified its molecular characteristics using bioinformatics analysis and experimental approaches. Reverse transcription PCR analysis was used to measure myoglobin transcripts of C. sinensis with different culture conditions. The peroxidase activity of CsMb was confirmed by spectrophotometry. We co-cultured RAW264.7 cells with recombinant CsMb (rCsMb), and we then measured the production of hydrogen peroxide (H2O2) and nitric oxide (NO) in addition to the mRNA levels of inducible nitric oxide synthase (iNOS), Cu-Zn superoxide dismutase (SOD1) and Mn superoxide dismutase (SOD2) in activated RAW264.7 cells. Results In the in vitro culture of adult worms, the transcripts of CsMb increased with the increase of oxygen content. Oxidative stress conditions induced by H2O2 increased the levels of CsMb transcripts in a dose-dependent manner. Furthermore, CsMb catalyzed oxidation reactions in the presence of H2O2, and amino acid 34 of CsMb played an essential role in its reaction with H2O2. In addition, CsMb significantly reduced H2O2 and NO levels in LPS-activated macrophages, and CsMb downregulated iNOS and SOD expression in activated macrophages. Conclusion The present study is the first to investigate the peroxidase activity of CsMb. This investigation suggested that C. sinensis may decrease the redox activation of macrophages by CsMb expression to evade host immune responses. These studies contribute to a better understanding of the role of CsMb in the molecular mechanisms involved in ROS detoxification by C. sinensis. PMID:24885788

  11. Molecular Profiling of Glatiramer Acetate Early Treatment Effects in Multiple Sclerosis

    PubMed Central

    Achiron, Anat; Feldman, Anna; Gurevich, Michael

    2009-01-01

    Background: Glatiramer acetate (GA, Copaxone®) has beneficial effects on the clinical course of relapsing-remitting multiple sclerosis (RRMS). However, the exact molecular mechanisms of GA effects are only partially understood. Objective: To characterized GA molecular effects in RRMS patients within 3 months of treatment by microarray profiling of peripheral blood mononuclear cells (PBMC). Methods: Gene-expression profiles were determined in RRMS patients before and at 3 months after initiation of GA treatment using Affimetrix (U133A-2) microarrays containing 14,500 well-characterized human genes. Most informative genes (MIGs) of GA-induced biological convergent pathways operating in RRMS were constructed using gene functional annotation, enrichment analysis and pathway reconstruction bioinformatic softwares. Verification at the mRNA and protein level was performed by qRT-PCR and FACS. Results: GA induced a specific gene expression molecular signature that included altered expression of 480 genes within 3 months of treatment; 262 genes were up-regulated, and 218 genes were down-regulated. The main convergent mechanisms of GA effects were related to antigen-activated apoptosis, inflammation, adhesion, and MHC class-I antigen presentation. Conclusions: Our findings demonstrate that GA treatment induces alternations of immunomodulatory gene expression patterns that are important for suppression of disease activity already at three months of treatment and can be used as molecular markers of GA activity. PMID:19893201

  12. Curcumin and derivatives function through protein phosphatase 2A and presenilin orthologues in Dictyostelium discoideum

    PubMed Central

    Cocorocchio, Marco; Baldwin, Amy J.; Stewart, Balint; Kim, Lou; Harwood, Adrian J.; Thompson, Christopher R. L.; Andrews, Paul L. R.

    2018-01-01

    ABSTRACT Natural compounds often have complex molecular structures and unknown molecular targets. These characteristics make them difficult to analyse using a classical pharmacological approach. Curcumin, the main curcuminoid of turmeric, is a complex molecule possessing wide-ranging biological activities, cellular mechanisms and roles in potential therapeutic treatment, including Alzheimer's disease and cancer. Here, we investigate the physiological effects and molecular targets of curcumin in Dictyostelium discoideum. We show that curcumin exerts acute effects on cell behaviour, reduces cell growth and slows multicellular development. We employed a range of structurally related compounds to show the distinct role of different structural groups in curcumin's effects on cell behaviour, growth and development, highlighting active moieties in cell function, and showing that these cellular effects are unrelated to the well-known antioxidant activity of curcumin. Molecular mechanisms underlying the effect of curcumin and one synthetic analogue (EF24) were then investigated to identify a curcumin-resistant mutant lacking the protein phosphatase 2A regulatory subunit (PsrA) and an EF24-resistant mutant lacking the presenilin 1 orthologue (PsenB). Using in silico docking analysis, we then showed that curcumin might function through direct binding to a key regulatory region of PsrA. These findings reveal novel cellular and molecular mechanisms for the function of curcumin and related compounds. PMID:29361519

  13. Curcumin and derivatives function through protein phosphatase 2A and presenilin orthologues in Dictyostelium discoideum.

    PubMed

    Cocorocchio, Marco; Baldwin, Amy J; Stewart, Balint; Kim, Lou; Harwood, Adrian J; Thompson, Christopher R L; Andrews, Paul L R; Williams, Robin S B

    2018-01-29

    Natural compounds often have complex molecular structures and unknown molecular targets. These characteristics make them difficult to analyse using a classical pharmacological approach. Curcumin, the main curcuminoid of turmeric, is a complex molecule possessing wide-ranging biological activities, cellular mechanisms and roles in potential therapeutic treatment, including Alzheimer's disease and cancer. Here, we investigate the physiological effects and molecular targets of curcumin in Dictyostelium discoideum We show that curcumin exerts acute effects on cell behaviour, reduces cell growth and slows multicellular development. We employed a range of structurally related compounds to show the distinct role of different structural groups in curcumin's effects on cell behaviour, growth and development, highlighting active moieties in cell function, and showing that these cellular effects are unrelated to the well-known antioxidant activity of curcumin. Molecular mechanisms underlying the effect of curcumin and one synthetic analogue (EF24) were then investigated to identify a curcumin-resistant mutant lacking the protein phosphatase 2A regulatory subunit (PsrA) and an EF24-resistant mutant lacking the presenilin 1 orthologue (PsenB). Using in silico docking analysis, we then showed that curcumin might function through direct binding to a key regulatory region of PsrA. These findings reveal novel cellular and molecular mechanisms for the function of curcumin and related compounds. © 2018. Published by The Company of Biologists Ltd.

  14. Hyperphenylalaninemia due to defects in tetrahydrobiopterin metabolism: Molecular characterization of mutations in 6-pyruvoyl-tetrahydropterin synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoeny, B.; Leimbacher, W.; Blau, N.

    1994-05-01

    A variant type of hyperphenylalaninemia is caused by a deficiency of tetrahydrobiopterin (BH[sub 4]), the obligatory cofactor for phenylalanine hydroxylase. The most frequent form of this cofactor deficiency is due to lack of 6-pyruvoyl-tetrahydropterin synthase (PTPS) activity, the second enzyme in the biosynthetic pathway for BH[sub 4]. The human liver cDNA for PTPS was previously isolated, and the recombinant protein was found to be active when expressed in Escherichia coli. The authors now have investigated two patients for their molecular nature of this autosomal recessive disorder. Both patients were diagnosed as PTPS deficient, one with the central and one withmore » the peripheral form, on the basis of an elevated serum phenylalanine concentration concomitant with lowered levels of urinary biopterin and PTPS activity in erythrocytes. Molecular analysis was performed on the patients' cultured primary skin fibroblasts. PTPS activities were found in vitro to be reduced to background activity. Direct cDNA sequence analysis using reverse transcriptase-PCR technology showed for the patient with the central form a homozygous G-to-A transition at codon 25, causing the replacement of an arginine by glutamine (R25Q). Expression of this mutant allele in E.coli revealed 14% activity when compared with the wild-type enzyme. The patient with the peripheral form exhibited compound heteroxygosity, having on one allele a C-to-T transition resulting in the substitution of arginine 16 for cysteine (R16C) in the enzyme and having on the second allele a 14-bp deletion ([Delta]14bp), leading to a frameshift at lysine 120 and a premature stop codon (K120[yields]Stop). Heterologous expression of the enzyme with the single-amino-acid exchange R16C revealed only 7% enzyme activity, whereas expression of the deletion allele [Delta]14bp exhibited no detectable activity. All three mutations result in reduced enzymatic activity when reconstituted in E. coli.« less

  15. A systems biology strategy to identify molecular mechanisms of action and protein indicators of traumatic brain injury.

    PubMed

    Yu, Chenggang; Boutté, Angela; Yu, Xueping; Dutta, Bhaskar; Feala, Jacob D; Schmid, Kara; Dave, Jitendra; Tawa, Gregory J; Wallqvist, Anders; Reifman, Jaques

    2015-02-01

    The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  16. [Molecular mechanisms of thymocyte differentiation].

    PubMed

    Kuklina, E M

    2003-01-01

    A review of the main molecular events occurring during differentiation of T-lymphocytes in the thymus: T-cell specialization of early intrathymic precursors, formation and expression of antigen receptor, formation of antigen recognizing cell repertoire, and alpha beta/gamma beta- and CD4/CD8-commitment. The mechanisms of glucocorticoid-induced apoptosis of thymocytes and its blockade during antigen-dependent activation are considered. A special attention is paid to the analysis of intracellular signals underlying the clonal selection of thymocytes.

  17. The Interaction Properties of the Human Rab GTPase Family – A Comparative Analysis Reveals Determinants of Molecular Binding Selectivity

    PubMed Central

    Stein, Matthias; Pilli, Manohar; Bernauer, Sabine; Habermann, Bianca H.; Zerial, Marino; Wade, Rebecca C.

    2012-01-01

    Background Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood. Methodology/Principal Findings Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics. Conclusions/Significance We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity. PMID:22523562

  18. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane

    PubMed Central

    Hellriegel, Christian; Caiolfa, Valeria R.; Corti, Valeria; Sidenius, Nicolai; Zamai, Moreno

    2011-01-01

    We studied the molecular forms of the GPI-anchored urokinase plasminogen activator receptor (uPAR-mEGFP) in the human embryo kidney (HEK293) cell membrane and demonstrated that the binding of the amino-terminal fragment (ATF) of urokinase plasminogen activator is sufficient to induce the dimerization of the receptor. We followed the association kinetics and determined precisely the dimeric stoichiometry of uPAR-mEGFP complexes by applying number and brightness (N&B) image analysis. N&B is a novel fluctuation-based approach for measuring the molecular brightness of fluorophores in an image time sequence in live cells. Because N&B is very sensitive to long-term temporal fluctuations and photobleaching, we have introduced a filtering protocol that corrects for these important sources of error. Critical experimental parameters in N&B analysis are illustrated and analyzed by simulation studies. Control experiments are based on mEGFP-GPI, mEGFP-mEGFP-GPI, and mCherry-GPI, expressed in HEK293. This work provides a first direct demonstration of the dimerization of uPAR in live cells. We also provide the first methodological guide on N&B to discern minor changes in molecular composition such as those due to dimerization events, which are involved in fundamental cell signaling mechanisms.—Hellriegel, C., Caiolfa, V. R., Corti, V., Sidenius, N., Zamai, M. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane. PMID:21602447

  19. An Investigation of Molecular Docking and Molecular Dynamic Simulation on Imidazopyridines as B-Raf Kinase Inhibitors.

    PubMed

    Xie, Huiding; Li, Yupeng; Yu, Fang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-11-16

    In the recent cancer treatment, B-Raf kinase is one of key targets. Nowadays, a group of imidazopyridines as B-Raf kinase inhibitors have been reported. In order to investigate the interaction between this group of inhibitors and B-Raf kinase, molecular docking, molecular dynamic (MD) simulation and binding free energy (ΔGbind) calculation were performed in this work. Molecular docking was carried out to identify the key residues in the binding site, and MD simulations were performed to determine the detail binding mode. The results obtained from MD simulation reveal that the binding site is stable during the MD simulations, and some hydrogen bonds (H-bonds) in MD simulations are different from H-bonds in the docking mode. Based on the obtained MD trajectories, ΔGbind was computed by using Molecular Mechanics Generalized Born Surface Area (MM-GBSA), and the obtained energies are consistent with the activities. An energetic analysis reveals that both electrostatic and van der Waals contributions are important to ΔGbind, and the unfavorable polar solvation contribution results in the instability of the inhibitor with the lowest activity. These results are expected to understand the binding between B-Raf and imidazopyridines and provide some useful information to design potential B-Raf inhibitors.

  20. Molecular Docking and Drug Discovery in β-Adrenergic Receptors.

    PubMed

    Vilar, Santiago; Sobarzo-Sanchez, Eduardo; Santana, Lourdes; Uriarte, Eugenio

    2017-01-01

    Evolution in computer engineering, availability of increasing amounts of data and the development of new and fast docking algorithms and software have led to improved molecular simulations with crucial applications in virtual high-throughput screening and drug discovery. Moreover, analysis of protein-ligand recognition through molecular docking has become a valuable tool in drug design. In this review, we focus on the applicability of molecular docking on a particular class of G protein-coupled receptors: the β-adrenergic receptors, which are relevant targets in clinic for the treatment of asthma and cardiovascular diseases. We describe the binding site in β-adrenergic receptors to understand key factors in ligand recognition along with the proteins activation process. Moreover, we focus on the discovery of new lead compounds that bind the receptors, on the evaluation of virtual screening using the active/ inactive binding site states, and on the structural optimization of known families of binders to improve β-adrenergic affinity. We also discussed strengths and challenges related to the applicability of molecular docking in β-adrenergic receptors. Molecular docking is a valuable technique in computational chemistry to deeply analyze ligand recognition and has led to important breakthroughs in drug discovery and design in the field of β-adrenergic receptors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Potential human cholesterol esterase inhibitor design: benefits from the molecular dynamics simulations and pharmacophore modeling studies.

    PubMed

    John, Shalini; Thangapandian, Sundarapandian; Lee, Keun Woo

    2012-01-01

    Human pancreatic cholesterol esterase (hCEase) is one of the lipases found to involve in the digestion of large and broad spectrum of substrates including triglycerides, phospholipids, cholesteryl esters, etc. The presence of bile salts is found to be very important for the activation of hCEase. Molecular dynamic simulations were performed for the apoform and bile salt complexed form of hCEase using the co-ordinates of two bile salts from bovine CEase. The stability of the systems throughout the simulation time was checked and two representative structures from the highly populated regions were selected using cluster analysis. These two representative structures were used in pharmacophore model generation. The generated pharmacophore models were validated and used in database screening. The screened hits were refined for their drug-like properties based on Lipinski's rule of five and ADMET properties. The drug-like compounds were further refined by molecular docking simulation using GOLD program based on the GOLD fitness score, mode of binding, and molecular interactions with the active site amino acids. Finally, three hits of novel scaffolds were selected as potential leads to be used in novel and potent hCEase inhibitor design. The stability of binding modes and molecular interactions of these final hits were re-assured by molecular dynamics simulations.

  2. Study on the structure, vibrational analysis and molecular docking of fluorophenyl derivatives using FT-IR and density functional theory computations

    NASA Astrophysics Data System (ADS)

    Al-Tamimi, Abdul-Malek S.; Mary, Y. Sheena; Hassan, Hanan M.; Resmi, K. S.; El-Emam, Ali A.; Narayana, B.; Sarojini, B. K.

    2018-07-01

    The density functional calculations were performed at the B3LYP/6-311++G (5D, 7F) level to find the geometrical parameters, vibrational wavenumbers and various molecular properties of three fluorophenyl derivatives, methyl 4,4″-difluoro-5‧-methoxy-1,1':3‧,1″-terphenyl-4‧-carboxylate (MDFMTPC), 2,2'-(disulfanediyl)bis[4,6-(4-fluorophenyl)pyrimidine] (DFFPPY) and (6Z)-3,5‧-bis(4-fluorophenyl)-6-(1-hydroxyethylidene)cyclohex-2-en-1-one (FPHYCY). The phenyl ring Csbnd C, Cdbnd O and Csbnd H stretching modes produces VCD spectrum and these modes are efficient configuration markers. Using natural bond orbital analysis the stability of the molecules due to hyper-conjugative interactions were discussed. From the HOMO and LUMO energies, the chemical descriptors are compared for the title compounds. The first hyperpolarizabilities of MDFMTPC, DFFPPY and FPHYCY are respectively, 41.08, 69.27 and 38.38 times that of urea. Molar refractivity values are increasing in the order, FPHYCY > MDFMTPC > DFFPPY and this is responsible for the binding nature of the molecular assembly and can be used for the cure of different diseases. PASS analysis of the title compounds predicts chlordecone reductase inhibitor activity for MDFMTPC, thioredoxin inhibitor activity for DFFPPY and testosterone 17beta-dehydrogenase (NADP+) inhibitor activity for FPHYCY. Docking studies reveal that MDFMTPC, DFFPPY and FPHYCY can be lead compounds for developing new anti-cancerous, anti-tumor, prostate cancer drugs. Using Hirshfeld surface and 2D-finger print plots, the type and nature of intermolecular interactions were reported.

  3. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall

    PubMed Central

    Schmitt-Kopplin, Philippe; Gabelica, Zelimir; Gougeon, Régis D.; Fekete, Agnes; Kanawati, Basem; Harir, Mourad; Gebefuegi, Istvan; Eckel, Gerhard; Hertkorn, Norbert

    2010-01-01

    Numerous descriptions of organic molecules present in the Murchison meteorite have improved our understanding of the early interstellar chemistry that operated at or just before the birth of our solar system. However, all molecular analyses were so far targeted toward selected classes of compounds with a particular emphasis on biologically active components in the context of prebiotic chemistry. Here we demonstrate that a nontargeted ultrahigh-resolution molecular analysis of the solvent-accessible organic fraction of Murchison extracted under mild conditions allows one to extend its indigenous chemical diversity to tens of thousands of different molecular compositions and likely millions of diverse structures. This molecular complexity, which provides hints on heteroatoms chronological assembly, suggests that the extraterrestrial chemodiversity is high compared to terrestrial relevant biological- and biogeochemical-driven chemical space. PMID:20160129

  4. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall.

    PubMed

    Schmitt-Kopplin, Philippe; Gabelica, Zelimir; Gougeon, Régis D; Fekete, Agnes; Kanawati, Basem; Harir, Mourad; Gebefuegi, Istvan; Eckel, Gerhard; Hertkorn, Norbert

    2010-02-16

    Numerous descriptions of organic molecules present in the Murchison meteorite have improved our understanding of the early interstellar chemistry that operated at or just before the birth of our solar system. However, all molecular analyses were so far targeted toward selected classes of compounds with a particular emphasis on biologically active components in the context of prebiotic chemistry. Here we demonstrate that a nontargeted ultrahigh-resolution molecular analysis of the solvent-accessible organic fraction of Murchison extracted under mild conditions allows one to extend its indigenous chemical diversity to tens of thousands of different molecular compositions and likely millions of diverse structures. This molecular complexity, which provides hints on heteroatoms chronological assembly, suggests that the extraterrestrial chemodiversity is high compared to terrestrial relevant biological- and biogeochemical-driven chemical space.

  5. Genetic, molecular and physiological basis of variation in Drosophila gut immunocompetence.

    PubMed

    Bou Sleiman, Maroun S; Osman, Dani; Massouras, Andreas; Hoffmann, Ary A; Lemaitre, Bruno; Deplancke, Bart

    2015-07-27

    Gut immunocompetence involves immune, stress and regenerative processes. To investigate the determinants underlying inter-individual variation in gut immunocompetence, we perform enteric infection of 140 Drosophila lines with the entomopathogenic bacterium Pseudomonas entomophila and observe extensive variation in survival. Using genome-wide association analysis, we identify several novel immune modulators. Transcriptional profiling further shows that the intestinal molecular state differs between resistant and susceptible lines, already before infection, with one transcriptional module involving genes linked to reactive oxygen species (ROS) metabolism contributing to this difference. This genetic and molecular variation is physiologically manifested in lower ROS activity, lower susceptibility to ROS-inducing agent, faster pathogen clearance and higher stem cell activity in resistant versus susceptible lines. This study provides novel insights into the determinants underlying population-level variability in gut immunocompetence, revealing how relatively minor, but systematic genetic and transcriptional variation can mediate overt physiological differences that determine enteric infection susceptibility.

  6. In Silico Identification of Novel APRIL Peptide Antagonists and Binding Insights by Molecular Modeling and Immunosorbent Assays.

    PubMed

    Silva, Joao H M da; Calmon-Hamaty, Flavia; Savino, Wilson; Hahne, Michael; Caffarena, Ernesto R

    2015-01-01

    The "A proliferation inducing ligand" protein (APRIL) is a cytokine over-expressed in many transformed and tumoral cells acting onto two distinct receptors of the Tumoral Necrosis Factor B cell maturation antigen (BCMA) and the transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI). We herein describe, through a detailed computational approach, the molecular interactions between TACI and its ligands APRIL and another structurally similar protein called B-cell activating factor (BAFF) by means of molecular dynamics. Dynamical analysis suggests R84 and D85 residues from TACI as possible mutation candidates, yielding increased affinity between TACI and APRIL. The association of computational simulations, site directed mutagenesis and peptide design could be a powerful tool, driving to better in vitro experiments. Our results contribute to the elucidation of APRIL signaling and help clarify the effects of blocking interaction between APRIL and its receptors through the use of particular peptides.

  7. [Removal Characteristics of Elemental Mercury by Mn-Ce/molecular Sieve].

    PubMed

    Tan, Zeng-qiang; Niu, Guo-ping; Chen, Xiao-wen; An, Zhen

    2015-06-01

    The impregnation method was used to support molecular sieve with active manganese and cerium components to obtain a composite molecular sieve catalyst. The mercury removal performance of the catalyst was studied with a bench-scale setup. XPS analysis was used to characterize the sample before and after the modification in order to study the changes in the active components of the catalyst prepared. The results showed that the catalyst carrying manganese and cerium components had higher oxidation ability of elemental mercury in the temperature range of 300 degrees C - 450 degrees C, especially at 450 degrees C, the oxidation efficiency of elemental mercury was kept above 80%. The catalyst had more functional groups that were conducive to the oxidation of elemental mercury, and the mercury removal mainly depended on the chemical adsorption. The SO2 and NO in flue gas could inhibit the oxidation of elemental mercury to certain extent.

  8. Component analysis and free radicals scavenging activity of Cicer arietinum L. husk pectin.

    PubMed

    Urias-Orona, Vania; Huerta-Oros, Joselina; Carvajal-Millán, Elizabeth; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustin; Gardea, Alfonso A

    2010-10-11

    A pectin (CAP) was extracted from the husk of Cicer arietinum L. Monosaccharide analysis of CAP revealed the dominance of galacturonic acid and smaller amounts of galactose, arabinose, rhamnose, glucose, xylose and mannose. Viscosimetric analysis showed that the intrinsic viscosity ([η]) and the molecular weight (MW) of CAP were 296 mL/g and 105 kDa, respectively. The degree of esterification (DE = 10%) was determined by FTIR spectroscopy. CAP exhibited a dose-dependent free radical scavenging activity, as shown by its DPPH radical inhibition. At 1.0 mg/mL CAP exhibited a scavenging rate of 29% on DPPH radicals. The evaluation of antioxidant activity suggested that CAP had good potential for DPPH radical scavenging activity and should be explored as a novel potential antioxidant.

  9. Molecular determinants of the olfactory receptor Olfr544 activation by azelaic acid.

    PubMed

    Thach, Trung Thanh; Hong, Yu-Jung; Lee, Sangho; Lee, Sung-Joon

    2017-04-01

    The mouse olfactory receptor Olfr544 is expressed in several non-olfactory tissues and has been suggested as a functional receptor regulating different signaling pathways. However, the molecular interaction between Olfr544 and its natural ligand, azelaic acid (AzA), remains poorly characterized, primarily due to difficulties in the heterologous expression of the receptor protein on the cell membrane and lack of entire protein structure. In this report, we describe the molecular determinants of Olfr544 activation by AzA. N-terminal lucy-flag-rho tag ensured the heterologous expression of Olfr544 on the Hana3A cell surface. Molecular modeling and docking combined with mutational analysis identified amino acid residues in the Olfr544 for the interaction with AzA. Our data demonstrated that the Y109 residue in transmembrane helix 3 forms a hydrogen bond with AzA, which is crucial for the receptor-ligand interaction and activation. Y109 is required for the Olfr544 activation by AzA which, in turn, stimulates the Olfr544-dependent CREB-PGC-1α signaling axis and is followed by the induction of mitochondrial biogenesis in Olfr544 wild-type transfected Hana3A cells, but not in mock or Y109A mutant transfected cells. Collectively, these data indicated that a hydrogen bond between Y109 residue and AzA is a major determinant of the Olfr544-AzA interaction and activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A Combined Pharmacophore Modeling, 3D QSAR and Virtual Screening Studies on Imidazopyridines as B-Raf Inhibitors

    PubMed Central

    Xie, Huiding; Chen, Lijun; Zhang, Jianqiang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-01-01

    B-Raf kinase is an important target in treatment of cancers. In order to design and find potent B-Raf inhibitors (BRIs), 3D pharmacophore models were created using the Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Database (GALAHAD). The best pharmacophore model obtained which was used in effective alignment of the data set contains two acceptor atoms, three donor atoms and three hydrophobes. In succession, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 39 imidazopyridine BRIs to build three dimensional quantitative structure-activity relationship (3D QSAR) models based on both pharmacophore and docking alignments. The CoMSIA model based on the pharmacophore alignment shows the best result (q2 = 0.621, r2pred = 0.885). This 3D QSAR approach provides significant insights that are useful for designing potent BRIs. In addition, the obtained best pharmacophore model was used for virtual screening against the NCI2000 database. The hit compounds were further filtered with molecular docking, and their biological activities were predicted using the CoMSIA model, and three potential BRIs with new skeletons were obtained. PMID:26035757

  11. A Combined Pharmacophore Modeling, 3D QSAR and Virtual Screening Studies on Imidazopyridines as B-Raf Inhibitors.

    PubMed

    Xie, Huiding; Chen, Lijun; Zhang, Jianqiang; Xie, Xiaoguang; Qiu, Kaixiong; Fu, Jijun

    2015-05-29

    B-Raf kinase is an important target in treatment of cancers. In order to design and find potent B-Raf inhibitors (BRIs), 3D pharmacophore models were created using the Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Database (GALAHAD). The best pharmacophore model obtained which was used in effective alignment of the data set contains two acceptor atoms, three donor atoms and three hydrophobes. In succession, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 39 imidazopyridine BRIs to build three dimensional quantitative structure-activity relationship (3D QSAR) models based on both pharmacophore and docking alignments. The CoMSIA model based on the pharmacophore alignment shows the best result (q(2) = 0.621, r(2)(pred) = 0.885). This 3D QSAR approach provides significant insights that are useful for designing potent BRIs. In addition, the obtained best pharmacophore model was used for virtual screening against the NCI2000 database. The hit compounds were further filtered with molecular docking, and their biological activities were predicted using the CoMSIA model, and three potential BRIs with new skeletons were obtained.

  12. Combined 3D-QSAR Modeling and Molecular Docking Studies on Pyrrole-Indolin-2-ones as Aurora A Kinase Inhibitors

    PubMed Central

    Ai, Yong; Wang, Shao-Teng; Sun, Ping-Hua; Song, Fa-Jun

    2011-01-01

    Aurora kinases have emerged as attractive targets for the design of anticancer drugs. 3D-QSAR (comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA)) and Surflex-docking studies were performed on a series of pyrrole-indoline-2-ones as Aurora A inhibitors. The CoMFA and CoMSIA models using 25 inhibitors in the training set gave r2cv values of 0.726 and 0.566, and r2 values of 0.972 and 0.984, respectively. The adapted alignment method with the suitable parameters resulted in reliable models. The contour maps produced by the CoMFA and CoMSIA models were employed to rationalize the key structural requirements responsible for the activity. Surflex-docking studies revealed that the sulfo group, secondary amine group on indolin-2-one, and carbonyl of 6,7-dihydro-1H-indol-4(5H)-one groups were significant for binding to the receptor, and some essential features were also identified. Based on the 3D-QSAR and docking results, a set of new molecules with high predicted activities were designed. PMID:21673910

  13. Combined 3D-QSAR modeling and molecular docking studies on pyrrole-indolin-2-ones as Aurora A kinase inhibitors.

    PubMed

    Ai, Yong; Wang, Shao-Teng; Sun, Ping-Hua; Song, Fa-Jun

    2011-01-01

    Aurora kinases have emerged as attractive targets for the design of anticancer drugs. 3D-QSAR (comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA)) and Surflex-docking studies were performed on a series of pyrrole-indoline-2-ones as Aurora A inhibitors. The CoMFA and CoMSIA models using 25 inhibitors in the training set gave r(2) (cv) values of 0.726 and 0.566, and r(2) values of 0.972 and 0.984, respectively. The adapted alignment method with the suitable parameters resulted in reliable models. The contour maps produced by the CoMFA and CoMSIA models were employed to rationalize the key structural requirements responsible for the activity. Surflex-docking studies revealed that the sulfo group, secondary amine group on indolin-2-one, and carbonyl of 6,7-dihydro-1H-indol-4(5H)-one groups were significant for binding to the receptor, and some essential features were also identified. Based on the 3D-QSAR and docking results, a set of new molecules with high predicted activities were designed.

  14. NKp44 expression, phylogenesis and function in non-human primate NK cells

    PubMed Central

    De Maria, Andrea; Ugolotti, Elisabetta; Rutjens, Erik; Mazza, Stefania; Radic, Luana; Faravelli, Alessandro; Koopman, Gerrit; Di Marco, Eddi; Costa, Paola; Ensoli, Barbara; Cafaro, Aurelio; Mingari, Maria Cristina; Moretta, Lorenzo; Heeney, Jonathan

    2009-01-01

    Molecular and functional characterization of the natural cytotoxicity receptor (NCR) NKp44 in species other than Homo sapiens has been elusive, so far. Here, we provide complete phenotypic, molecular and functional characterization for NKp44 triggering receptor on Pan troglodytes NK cells, the closest human relative, and the analysis of NKp44-genomic locus and transcription in Macaca fascicularis. Similar to H. sapiens, NKp44 expression is detectable on chimpanzee NK cells only upon activation. However, basal NKp44 transcription is 5-fold higher in chimpanzees with lower differential increases upon cell activation compared with humans. Upon activation, an overall 12-fold lower NKp44 gene expression is observed in P. troglodytes compared with H. sapiens NK cells with only a slight reduction in NKp44 surface expression. Functional analysis of ‘in vitro’ activated purified NK cells confirms the NKp44 triggering potential compared with other major NCRs. These findings suggest the presence of a post-transcriptional regulation that evolved differently in H. sapiens. Analysis of cynomolgus NKp44-genomic sequence and transcription pattern showed very low levels of transcription with occurrence of out-of-frame transcripts and no surface expression. The present comparative analysis suggests that NKp44-genomic organization appears during macaque speciation, with considerable evolution of its transcriptional and post-transcriptional tuning. Thus, NKp44 may represent an NCR being only recently emerged during speciation, acquiring functional relevance only in non-human primates closest to H. sapiens. PMID:19147838

  15. Synthesis, crystal structure analysis, spectral (NMR, FT-IR, FT-Raman and UV-Vis) investigations, molecular docking studies, antimicrobial studies and quantum chemical calculations of a novel 4-chloro-8-methoxyquinoline-2(1H)-one: An effective antimicrobial agent and an inhibition of DNA gyrase and lanosterol-14α-demethylase enzymes

    NASA Astrophysics Data System (ADS)

    Murugavel, S.; Sundramoorthy, S.; Lakshmanan, D.; Subashini, R.; Pavan Kumar, P.

    2017-03-01

    The novel title compound 4-chloro-8-methoxyquinoline-2(1H)-one (4CMOQ) has been synthesized by slow evaporation solution growth technique at room temperature. The synthesized 4CMOQ molecule was characterized experimentally by FT-IR, FT-Raman, UV-Vis, NMR and single crystal diffraction (XRD) and theoretically by quantum chemical calculations. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311++G (d,p) basis set in ground state and compared with the experimental data. The entire vibrational assignments of wave numbers were made on the basis of potential energy distribution (PED) by VEDA 4 programme. The nuclear magnetic resonance spectra (1H and 13C NMR) are obtained by using the gauge-invariant atomic orbital (GIAO) method. The change in electron density (ED) in the antibonding orbital's and stabilization energies E(2) of the molecule have been evaluated by natural bond orbital (NBO) analysis to give clear evidence of stabilization. Moreover, electronic characteristics such as HOMO and LUMO energies, Mulliken atomic charges and molecular electrostatic potential surface are investigated. Absorption spectrum analysis, nonlinear optical properties, chemical reactivity descriptors and thermodynamic features are also outlined theoretically. Molecular docking studies were executed to understand the inhibitory activity of 4CMOQ against DNA gyrase and Lanosterol 14 α-demethylase. The antimicrobial activity of 4CMOQ was determined against bacterial strains such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and fungal strains such as Aspergillus niger, Monascus purpureus and Penicillium citrinum. The obtained results show that the compound exhibited good to moderate antimicrobial activity.

  16. Three-dimensional quantitative structure-activity relationship CoMSIA/CoMFA and LeapFrog studies on novel series of bicyclo [4.1.0] heptanes derivatives as melanin-concentrating hormone receptor R1 antagonists.

    PubMed

    Morales-Bayuelo, Alejandro; Ayazo, Hernan; Vivas-Reyes, Ricardo

    2010-10-01

    Comparative molecular similarity indices analysis (CoMSIA) and comparative molecular field analysis (CoMFA) were performed on a series of bicyclo [4.1.0] heptanes derivatives as melanin-concentrating hormone receptor R1 antagonists (MCHR1 antagonists). Molecular superimposition of antagonists on the template structure was performed by database alignment method. The statistically significant model was established on sixty five molecules, which were validated by a test set of ten molecules. The CoMSIA model yielded the best predictive model with a q(2) = 0.639, non cross-validated R(2) of 0.953, F value of 92.802, bootstrapped R(2) of 0.971, standard error of prediction = 0.402, and standard error of estimate = 0.146 while the CoMFA model yielded a q(2) = 0.680, non cross-validated R(2) of 0.922, F value of 114.351, bootstrapped R(2) of 0.925, standard error of prediction = 0.364, and standard error of estimate = 0.180. CoMFA analysis maps were employed for generating a pseudo cavity for LeapFrog calculation. The contour maps obtained from 3D-QSAR studies were appraised for activity trends for the molecules analyzed. The results show the variability of steric and electrostatic contributions that determine the activity of the MCHR1 antagonist, with these results we proposed new antagonists that may be more potent than previously reported, these novel antagonists were designed from the addition of highly electronegative groups in the substituent di(i-C(3)H(7))N- of the bicycle [4.1.0] heptanes, using the model CoMFA which also was used for the molecular design using the technique LeapFrog. The data generated from the present study will further help to design novel, potent, and selective MCHR1 antagonists. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  17. Biochemical, physicochemical and molecular characterization of a genuine 2-Cys-peroxiredoxin purified from cowpea [Vigna unguiculata (L.) Walpers] leaves.

    PubMed

    Silva, Fredy D A; Vasconcelos, Ilka M; Lobo, Marina D P; de Castro, Patrícia G; Magalhães, Vladimir G; de Freitas, Cléverson D T; Carlini, Célia R R S; Pinto, Paulo M; Beltramini, Leila M; Filho, José H A; Barros, Eduardo B; Alencar, Luciana M R; Grangeiro, Thalles B; Oliveira, José T A

    2012-07-01

    Peroxiredoxins have diverse functions in cellular defense-signaling pathways. 2-Cys-peroxiredoxins (2-Cys-Prx) reduce H2O2 and alkyl-hydroperoxide. This study describes the purification and characterization of a genuine 2-Cys-Prx from Vigna unguiculata (Vu-2-Cys-Prx). Vu-2-Cys-Prx was purified from leaves by ammonium sulfate fractionation, chitin affinity and ion exchange chromatography. Vu-2-Cys-Prx reduces H2O2 using NADPH and DTT. Vu-2-Cys-Prx is a 44 kDa (SDS-PAGE)/46 kDa (exclusion chromatography) protein that appears as a 22 kDa molecule under reducing conditions, indicating that it is a homodimer linked intermolecularly by disulfide bonds and has a pI range of 4.56–4.72; its NH2-terminal sequence was similar to 2-Cys-Prx from Phaseolus vulgaris (96%) and Populus tricocarpa (96%). Analysis by ESI-Q-TOF MS/MS showed a molecular mass/pI of 28.622 kDa/5.18. Vu-2-Cys-Prx has 8% α-helix, 39% β-sheet, 22% of turns and 31% of unordered forms. Vu-2-Cys-Prx was heat stable, has optimal activity at pH 7.0, and prevented plasmid DNA degradation. Atomic force microscopy shows that Vu-2-Cys-Prx oligomerized in decamers which might be associated with its molecular chaperone activity that prevented denaturation of insulin and citrate synthase. Its cDNA analysis showed that the redox-active Cys52 residue and the amino acids Pro45, Thr49 and Arg128 are conserved as in other 2-Cys-Prx. The biochemical and molecular features of Vu-2-Cys-Prx are similar to other members of 2-Cys-Prx family. To date, only one publication reported on the purification of native 2-Cys-Prx from leaves and the subsequent analysis by N-terminal Edman sequencing, which is crucial for construction of stromal recombinant 2-Cys-Prx proteins.

  18. A low molecular weight protein tyrosine phosphatase from Synechocystis sp. strain PCC 6803: enzymatic characterization and identification of its potential substrates

    PubMed Central

    Mukhopadhyay, Archana; Kennelly, Peter J.

    2011-01-01

    The predicted protein product of open reading frame slr0328 from Synechocystis sp. PCC 6803, SynPTP, possesses significant amino acid sequence similarity with known low molecular weight protein tyrosine phosphatases (PTPs). To determine the functional properties of this hypothetical protein, open reading frame slr0328 was expressed in Escherichia coli. The purified recombinant protein, SynPTP, displayed its catalytic phosphatase activity towards several tyrosine, but not serine, phosphorylated exogenous protein substrates. The protein phosphatase activity of SynPTP was inhibited by sodium orthovanadate, a known inhibitor of tyrosine phosphatases, but not by okadaic acid, an inhibitor for many serine/threonine phosphatases. Kinetic analysis indicated that the Km and Vmax values for SynPTP towards p-nitrophenyl phosphate are similar to those of other known bacterial low molecular weight PTPs. Mutagenic alteration of the predicted catalytic cysteine of PTP, Cys7, to serine abolished enzyme activity. Using a combination of immunodetection, mass spectrometric analysis and mutagenically altered Cys7SerAsp125Ala-SynPTP, we identified PsaD (photosystem I subunit II), CpcD (phycocyanin rod linker protein) and phycocyanin-α and -β subunits as possible endogenous substrates of SynPTP in this cyanobacterium. These results indicate that SynPTP might be involved in the regulation of photosynthesis in Synechocystis sp. PCC 6803. PMID:21288886

  19. X-ray structures of the anticoagulants coumatetralyl and chlorophacinone. Theoretical calculations and SAR investigations on thirteen anticoagulant rodenticides

    NASA Astrophysics Data System (ADS)

    Dolmella, A.; Gatto, S.; Girardi, E.; Bandoli, G.

    1999-12-01

    Coumatetralyl and chlorophacinone, two substances related to 4-hydroxycoumarin (HC) and to 1,3-indandione (ID), respectively, show activity as anticoagulant rodenticides. In the present study we have investigated the solid-state structures of coumatetralyl and chlorophacinone by means of X-ray single-crystal and powder diffraction, along with thermal analysis. The crystal structures of the two compounds have been used as input geometries for a series of computational chemistry efforts, involving other anticoagulant derivatives as well. Thus, ab initio, semiempirical molecular orbital, molecular mechanics and molecular dynamics/simulated annealing calculations have been performed on thirteen anticoagulant rodenticides. In particular, the annealing calculations have been made to assess the conformational freedom of the compounds under scrutiny. All the generated conformers have been classified into families. The classification has first been made empirically, and then validated by means of a cluster analysis. A number of structural and physico-chemical parameters derived from the calculations has been used in turn for structure-activity relationships (SARs) investigations. In the latter, we have assessed how the selected parameters affect toxicity. The results seem to be consistent with a three-dimensional biophore model, in which higher toxicity is predicted for the more voluminous rodenticides. We suggest that these compounds better fit the active site of the target enzyme vitamin K 2,3-epoxide reductase (KO-reductase).

  20. Trends in Regenerative Medicine: Repigmentation in Vitiligo Through Melanocyte Stem Cell Mobilization.

    PubMed

    Birlea, Stanca A; Costin, Gertrude-E; Roop, Dennis R; Norris, David A

    2017-07-01

    Vitiligo is the most frequent human pigmentary disorder, characterized by progressive autoimmune destruction of mature epidermal melanocytes. Of the current treatments offering partial and temporary relief, ultraviolet (UV) light is the most effective, coordinating an intricate network of keratinocyte and melanocyte factors that control numerous cellular and molecular signaling pathways. This UV-activated process is a classic example of regenerative medicine, inducing functional melanocyte stem cell populations in the hair follicle to divide, migrate, and differentiate into mature melanocytes that regenerate the epidermis through a complex process involving melanocytes and other cell lineages in the skin. Using an in-depth correlative analysis of multiple experimental and clinical data sets, we generated a modern molecular research platform that can be used as a working model for further research of vitiligo repigmentation. Our analysis emphasizes the active participation of defined molecular pathways that regulate the balance between stemness and differentiation states of melanocytes and keratinocytes: p53 and its downstream effectors controlling melanogenesis; Wnt/β-catenin with proliferative, migratory, and differentiation roles in different pigmentation systems; integrins, cadherins, tetraspanins, and metalloproteinases, with promigratory effects on melanocytes; TGF-β and its effector PAX3, which control differentiation. Our long-term goal is to design pharmacological compounds that can specifically activate melanocyte precursors in the hair follicle in order to obtain faster, better, and durable repigmentation. © 2016 Wiley Periodicals, Inc.

  1. Trends in Regenerative Medicine: Repigmentation in Vitiligo Through Melanocyte Stem Cell Mobilization

    PubMed Central

    Birlea, Stanca A.; Costin, Gertrude-E.; Roop, Dennis R.; Norris, David A.

    2017-01-01

    Vitiligo is the most frequent human pigmentary disorder, characterized by progressive autoimmune destruction of mature epidermal melanocytes. Of the current treatments offering partial and temporary relief, ultraviolet (UV) light is the most effective, coordinating an intricate network of keratinocyte and melanocyte factors that control numerous cellular and molecular signaling pathways. This UV-activated process is a classic example of regenerative medicine, inducing functional melanocyte stem cell populations in the hair follicle to divide, migrate, and differentiate into mature melanocytes that regenerate the epidermis through a complex process involving melanocytes and other cell lineages in the skin. Using an in-depth correlative analysis of multiple experimental and clinical data sets, we generated a modern molecular research platform that can be used as a working model for further research of vitiligo repigmentation. Our analysis emphasizes the active participation of defined molecular pathways that regulate the balance between stemness and differentiation states of melanocytes and keratinocytes: p53 and its downstream effectors controlling melanogenesis; Wnt/β-catenin with proliferative, migratory, and differentiation roles in different pigmentation systems; integrins, cadherins, tetraspanins, and metalloproteinases, with promigratory effects on melanocytes; TGF-β and its effector PAX3, which control differentiation. Our long-term goal is to design pharmacological compounds that can specifically activate melanocyte precursors in the hair follicle in order to obtain faster, better, and durable repigmentation. PMID:28029168

  2. Platelet antiheparin activity. The isolation and characterisation of platelet factor 4 released from thrombin-aggregated washed human platelets and its dissociation into subunits and the isolation of membrane-bound antiheparin activity.

    PubMed

    Moore, S; Pepper, D S; Cash, J D

    1975-02-27

    Platelet factor 4 was isolated by gel filtration from the soluble release products of thrombin-aggregated washed human platelets as a proteoglycan-platelet factor 4 complex of molecular weight 358 000, Stokes radius (r-s) of 14.0 nm, sedimentation coefficient (s) of 7.1 S and frictional ratio (f/f-o) of 3.04. The complex was dissociated at high ionic strength (I equals 0.75) and the proteoglycan separated from platelet factor 4 by gel filtration. Platelet factor 4 had a molecular weight of 27 100, r-s of 2.52 nm, s of 2.4 S and f/f-o of 1.26, was insoluble under physiological conditions but readily soluble at pH 3. Under these conditions platelet factor 4 dissociated into four subunits with a molecular weight of 6900, r-s of 1.92 nm, s of 0.8 S, and f/f-o of 1.52. Qualitative N-terminal amino acid analysis showed the presence of glutamic acid or glutamine as the major end group. Platelet factor 4 was compared with protamine sulphate, which has similar biological properties, by electrophoresis at pH 2.2, in which both migrated as single bands but with differing mobility, and by amino acid analysis which showed a more normal distribution of residues than occurred in protamine sulphate. Of the basic amino acids platelet factor 4 (molecular weight 27 100) contained 5.97% arginine, 3.18% histidine, and 12.31% lysine compared to protamine sulphate with 64.2% arginine, 0.6% lysine and no histidine. A partial specific volume (v) of 0.747 was calculated for platelet factor 4 from its amino acid analysis. A membrane fraction with antiheparin activity, an isopycnic density of 1.090-1.110 and r-s of 15-35 nm, was also isolated by sucrose density gradient centrifugation from the ultrasonicated insoluble platelet residue remaining after thrombin-induced aggregation of washed human platelets. Trypsin treatment of the membrane fraction neither solubilised nor destroyed the activity.

  3. Molecular biology of pancreatic cancer: how useful is it in clinical practice?

    PubMed

    Sakorafas, George H; Smyrniotis, Vasileios

    2012-07-10

    During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Reports about clinical implications of molecular biology in patients with pancreatic cancer were retrieved from PubMed. These reports were selected on the basis of their clinical relevance, and the data of their publication (preferentially within the last 5 years). Emphasis was placed on reports investigating diagnostic, prognostic, and therapeutic implications. Molecular biology can be used to identify individuals at high-risk for pancreatic cancer development. Intensive surveillance is indicated in these patients to detect pancreatic neoplasia ideally at a preinvasive stage, when curative resection is still possible. Molecular biology can also be used in the diagnosis of pancreatic cancer, with molecular analysis on samples of biologic material, such as serum or plasma, duodenal fluid or preferentially pure pancreatic juice, pancreatic cells or tissue, and stools. Molecular indices have also prognostic significance. Finally, molecular biology may have therapeutic implications by using various therapeutic approaches, such as antiangiogenic factors, purine synthesis inhibitors, matrix metalloproteinase inhibitors, factors modulating tumor-stroma interaction, inactivation of the hedgehog pathway, gene therapy, oncolytic viral therapy, immunotherapy (both passive as well as active) etc. Molecular biology may have important clinical implications in patients with pancreatic cancer and represents one of the most active areas on cancer research. Hopefully clinical applications of molecular biology in pancreatic cancer will expand in the future, improving the effectiveness of treatment and prognosis of patients with pancreatic cancer. 

  4. Structure-activity relationships of pyrethroid insecticides. Part 2. The use of molecular dynamics for conformation searching and average parameter calculation

    NASA Astrophysics Data System (ADS)

    Hudson, Brian D.; George, Ashley R.; Ford, Martyn G.; Livingstone, David J.

    1992-04-01

    Molecular dynamics simulations have been performed on a number of conformationally flexible pyrethroid insecticides. The results indicate that molecular dynamics is a suitable tool for conformational searching of small molecules given suitable simulation parameters. The structures derived from the simulations are compared with the static conformation used in a previous study. Various physicochemical parameters have been calculated for a set of conformations selected from the simulations using multivariate analysis. The averaged values of the parameters over the selected set (and the factors derived from them) are compared with the single conformation values used in the previous study.

  5. Interaction of methotrexate with trypsin analyzed by spectroscopic and molecular modeling methods

    NASA Astrophysics Data System (ADS)

    Wang, Yanqing; Zhang, Hongmei; Cao, Jian; Zhou, Qiuhua

    2013-11-01

    Trypsin is one of important digestive enzymes that have intimate correlation with human health and illness. In this work, the interaction of trypsin with methotrexate was investigated by spectroscopic and molecular modeling methods. The results revealed that methotrexate could interact with trypsin with about one binding site. Methotrexate molecule could enter into the primary substrate-binding pocket, resulting in inhibition of trypsin activity. Furthermore, the thermodynamic analysis implied that electrostatic force, hydrogen bonding, van der Waals and hydrophobic interactions were the main interactions for stabilizing the trypsin-methotrexate system, which agreed well with the results from the molecular modeling study.

  6. A theoretical study of the molecular mechanism of the GAPDH Trypanosoma cruzi enzyme involving iodoacetate inhibitor

    NASA Astrophysics Data System (ADS)

    Carneiro, Agnaldo Silva; Lameira, Jerônimo; Alves, Cláudio Nahum

    2011-10-01

    The glyceraldehyde-3-phosphate dehydrogenase enzyme (GAPDH) is an important biological target for the development of new chemotherapeutic agents against Chagas disease. In this Letter, the inhibition mechanism of GAPDH involving iodoacetate (IAA) inhibitor was studied using the hybrid quantum mechanical/molecular mechanical (QM/MM) approach and molecular dynamic simulations. Analysis of the potential energy surface and potential of mean force show that the covalent attachment of IAA inhibitor to the active site of the enzyme occurs as a concerted process. In addition, the energy terms decomposition shows that NAD+ plays an important role in stabilization of the reagents and transition state.

  7. The synthesis, antimalarial activity and CoMFA analysis of novel aminoalkylated quercetin analogs.

    PubMed

    Helgren, Travis R; Sciotti, Richard J; Lee, Patricia; Duffy, Sandra; Avery, Vicky M; Igbinoba, Osayawemwen; Akoto, Matthew; Hagen, Timothy J

    2015-01-15

    A series of novel aminoalkylated quercetin analogs, prepared via the Mannich reaction of various primary and secondary amines with formaldehyde, were tested for antimalarial activity. The compounds were screened against three drug resistant malarial strains (D6, C235 and W2) and were found to exhibit sub-micromolar activity across all three strains (0.065-13.0μM). The structure-activity relationship determined from the antimalarial activity data suggests the inclusion of phenethyl amine sidechains on the quercetin scaffolding is necessary for potent activity. Additionally, the most active compounds ((5) and (6)) were tested for both early and late stage anti-gametocytocidal activity. Finally, the antimalarial activity data were utilized to construct comparative molecular field analysis (CoMFA) models to be used for further compound refinement. Copyright © 2014 Elqsevier Ltd. All rights reserved.

  8. Mesoscale Thermodynamic Analysis of Atomic-Scale Dislocation-Obstacle Interactions Simulated by Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monet, Giath; Bacon, David J; Osetskiy, Yury N

    2010-01-01

    Given the time and length scales in molecular dynamics (MD) simulations of dislocation-defect interactions, quantitative MD results cannot be used directly in larger scale simulations or compared directly with experiment. A method to extract fundamental quantities from MD simulations is proposed here. The first quantity is a critical stress defined to characterise the obstacle resistance. This mesoscopic parameter, rather than the obstacle 'strength' designed for a point obstacle, is to be used for an obstacle of finite size. At finite temperature, our analyses of MD simulations allow the activation energy to be determined as a function of temperature. The resultsmore » confirm the proportionality between activation energy and temperature that is frequently observed by experiment. By coupling the data for the activation energy and the critical stress as functions of temperature, we show how the activation energy can be deduced at a given value of the critical stress.« less

  9. Ionic liquid mediated synthesis and molecular docking study of novel aromatic embedded Schiff bases as potent cholinesterase inhibitors.

    PubMed

    Abd Razik, Basma M; Osman, Hasnah; Basiri, Alireza; Salhin, Abdussalam; Kia, Yalda; Ezzat, Mohammed Oday; Murugaiyah, Vikneswaran

    2014-12-01

    Novel aromatic embedded Schiff bases have been synthesized in ionic liquid [bmim]Br and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activities. Among the newly synthesized compounds, 5f, 5h and 7j displayed higher AChE enzyme inhibitory activities than standard drug, galanthamine, with IC50 values of 1.88, 2.05 and 2.03μM, respectively. Interestingly, all the compounds except for compound 5c displayed higher BChE inhibitories than standard with IC50 values ranging from 3.49 to 19.86μM. Molecular docking analysis for 5f and 7j possessing the most potent AChE and BChE inhibitory activities, disclosed their binding interaction templates to the active site of AChE and BChE enzymes, respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. [Studies on the structure-activity relationship of retinoids--Hansch analysis and 3D-OSAR studies on specific ligands of retinoid x receptor].

    PubMed

    Huang, N; Chu, F; Guo, Z

    1998-06-01

    Retinoids (Vitamin A, its metabolites and synthetic analogues) play important roles in a variety of biological processes, including cellular differentiation, proliferation and apoptosis. The many diverse actions of retinoids attribute to the ability of regulating transcription of different target genes through activation of multiple retinoid nuclear receptors (RAR of RXR). So, retinoids with selective binding ability to specific receptor may not only have improved therapeutic indices, but may also be invaluable for elucidating the molecular mechanism of retinoidal transcriptional activation. Based on the two dimensional and three dimensional quantitative structure-activity relationships of specific ligands of RXR, we carried out mimesis of environment of ligands interacting with their receptor and, to some extent, mapping the topological and physico-chemical characteristics of receptor. The knowledge of the QSAR study will offer detailed molecular information for design, synthesis and biological evaluation in drug research and development.

  11. IMPDHII Protein Inhibits Toll-like Receptor 2-mediated Activation of NF-κB*

    PubMed Central

    Toubiana, Julie; Rossi, Anne-Lise; Grimaldi, David; Belaidouni, Nadia; Chafey, Philippe; Clary, Guilhem; Courtine, Emilie; Pene, Frederic; Mira, Jean-Paul; Claessens, Yann-Erick; Chiche, Jean-Daniel

    2011-01-01

    Toll-like receptor 2 (TLR2) plays an essential role in innate immunity by the recognition of a large variety of pathogen-associated molecular patterns. It induces its recruitment to lipid rafts induces the formation of a membranous activation cluster necessary to enhance, amplify, and control downstream signaling. However, the exact composition of the TLR2-mediated molecular complex is unknown. We performed a proteomic analysis in lipopeptide-stimulated THP1 and found IMPDHII protein rapidly recruited to lipid raft. Whereas IMPDHII is essential for lymphocyte proliferation, its biologic function within innate immune signal pathways has not been established yet. We report here that IMPDHII plays an important role in the negative regulation of TLR2 signaling by modulating PI3K activity. Indeed, IMPDHII increases the phosphatase activity of SHP1, which participates to the inactivation of PI3K. PMID:21460227

  12. Interaction of Herbal Compounds with Biological Targets: A Case Study with Berberine

    PubMed Central

    Chen, Xiao-Wu; Di, Yuan Ming; Zhang, Jian; Zhou, Zhi-Wei; Li, Chun Guang; Zhou, Shu-Feng

    2012-01-01

    Berberine is one of the main alkaloids found in the Chinese herb Huang lian (Rhizoma Coptidis), which has been reported to have multiple pharmacological activities. This study aimed to analyze the molecular targets of berberine based on literature data followed by a pathway analysis using the PANTHER program. PANTHER analysis of berberine targets showed that the most classes of molecular functions include receptor binding, kinase activity, protein binding, transcription activity, DNA binding, and kinase regulator activity. Based on the biological process classification of in vitro berberine targets, those targets related to signal transduction, intracellular signalling cascade, cell surface receptor-linked signal transduction, cell motion, cell cycle control, immunity system process, and protein metabolic process are most frequently involved. In addition, berberine was found to interact with a mixture of biological pathways, such as Alzheimer's disease-presenilin and -secretase pathways, angiogenesis, apoptosis signalling pathway, FAS signalling pathway, Hungtington disease, inflammation mediated by chemokine and cytokine signalling pathways, interleukin signalling pathway, and p53 pathways. We also explored the possible mechanism of action for the anti-diabetic effect of berberine. Further studies are warranted to elucidate the mechanisms of action of berberine using systems biology approach. PMID:23213296

  13. [Key effect genes responding to nerve injury identified by gene ontology and computer pattern recognition].

    PubMed

    Pan, Qian; Peng, Jin; Zhou, Xue; Yang, Hao; Zhang, Wei

    2012-07-01

    In order to screen out important genes from large gene data of gene microarray after nerve injury, we combine gene ontology (GO) method and computer pattern recognition technology to find key genes responding to nerve injury, and then verify one of these screened-out genes. Data mining and gene ontology analysis of gene chip data GSE26350 was carried out through MATLAB software. Cd44 was selected from screened-out key gene molecular spectrum by comparing genes' different GO terms and positions on score map of principal component. Function interferences were employed to influence the normal binding of Cd44 and one of its ligands, chondroitin sulfate C (CSC), to observe neurite extension. Gene ontology analysis showed that the first genes on score map (marked by red *) mainly distributed in molecular transducer activity, receptor activity, protein binding et al molecular function GO terms. Cd44 is one of six effector protein genes, and attracted us with its function diversity. After adding different reagents into the medium to interfere the normal binding of CSC and Cd44, varying-degree remissions of CSC's inhibition on neurite extension were observed. CSC can inhibit neurite extension through binding Cd44 on the neuron membrane. This verifies that important genes in given physiological processes can be identified by gene ontology analysis of gene chip data.

  14. Molecular details of secretory phospholipase A2 from flax (Linum usitatissimum L.) provide insight into its structure and function.

    PubMed

    Gupta, Payal; Dash, Prasanta K

    2017-09-11

    Secretory phospholipase A 2 (sPLA 2 ) are low molecular weight proteins (12-18 kDa) involved in a suite of plant cellular processes imparting growth and development. With myriad roles in physiological and biochemical processes in plants, detailed analysis of sPLA 2 in flax/linseed is meagre. The present work, first in flax, embodies cloning, expression, purification and molecular characterisation of two distinct sPLA 2 s (I and II) from flax. PLA 2 activity of the cloned sPLA 2 s were biochemically assayed authenticating them as bona fide phospholipase A 2 . Physiochemical properties of both the sPLA 2 s revealed they are thermostable proteins requiring di-valent cations for optimum activity.While, structural analysis of both the proteins revealed deviations in the amino acid sequence at C- & N-terminal regions; hydropathic study revealed LusPLA 2 I as a hydrophobic protein and LusPLA 2 II as a hydrophilic protein. Structural analysis of flax sPLA 2 s revealed that secondary structure of both the proteins are dominated by α-helix followed by random coils. Modular superimposition of LusPLA 2 isoforms with rice sPLA 2 confirmed monomeric structural preservation among plant phospholipase A 2 and provided insight into structure of folded flax sPLA 2 s.

  15. Enhancement of Chaperone Activity of Plant-Specific Thioredoxin through γ-Ray Mediated Conformational Change.

    PubMed

    Lee, Seung Sik; Jung, Hyun Suk; Park, Soo-Kwon; Lee, Eun Mi; Singh, Sudhir; Lee, Yuno; Lee, Kyun Oh; Lee, Sang Yeol; Chung, Byung Yeoup

    2015-11-13

    AtTDX, a thioredoxin-like plant-specific protein present in Arabidopsis is a thermo-stable and multi-functional enzyme. This enzyme is known to act as a thioredoxin and as a molecular chaperone depending upon its oligomeric status. The present study examines the effects of γ-irradiation on the structural and functional changes of AtTDX. Holdase chaperone activity of AtTDX was increased and reached a maximum at 10 kGy of γ-irradiation and declined subsequently in a dose-dependent manner, together with no effect on foldase chaperone activity. However, thioredoxin activity decreased gradually with increasing irradiation. Electrophoresis and size exclusion chromatography analysis showed that AtTDX had a tendency to form high molecular weight (HMW) complexes after γ-irradiation and γ-ray-induced HMW complexes were tightly associated with a holdase chaperone activity. The hydrophobicity of AtTDX increased with an increase in irradiation dose till 20 kGy and thereafter decreased further. Analysis of the secondary structures of AtTDX using far UV-circular dichroism spectra revealed that the irradiation remarkably increased the exposure of β-sheets and random coils with a dramatic decrease in α-helices and turn elements in a dose-dependent manner. The data of the present study suggest that γ-irradiation may be a useful tool for increasing holdase chaperone activity without adversely affecting foldase chaperone activity of thioredoxin-like proteins.

  16. Rational design and validation of a vanilloid-sensitive TRPV2 ion channel.

    PubMed

    Yang, Fan; Vu, Simon; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2016-06-28

    Vanilloids activation of TRPV1 represents an excellent model system of ligand-gated ion channels. Recent studies using cryo-electron microcopy (cryo-EM), computational analysis, and functional quantification revealed the location of capsaicin-binding site and critical residues mediating ligand-binding and channel activation. Based on these new findings, here we have successfully introduced high-affinity binding of capsaicin and resiniferatoxin to the vanilloid-insensitive TRPV2 channel, using a rationally designed minimal set of four point mutations (F467S-S498F-L505T-Q525E, termed TRPV2_Quad). We found that binding of resiniferatoxin activates TRPV2_Quad but the ligand-induced open state is relatively unstable, whereas binding of capsaicin to TRPV2_Quad antagonizes resiniferatoxin-induced activation likely through competition for the same binding sites. Using Rosetta-based molecular docking, we observed a common structural mechanism underlying vanilloids activation of TRPV1 and TRPV2_Quad, where the ligand serves as molecular "glue" that bridges the S4-S5 linker to the S1-S4 domain to open these channels. Our analysis revealed that capsaicin failed to activate TRPV2_Quad likely due to structural constraints preventing such bridge formation. These results not only validate our current working model for capsaicin activation of TRPV1 but also should help guide the design of drug candidate compounds for this important pain sensor.

  17. Atomistic insights into regulatory mechanisms of the HER2 tyrosine kinase domain: a molecular dynamics study.

    PubMed

    Telesco, Shannon E; Radhakrishnan, Ravi

    2009-03-18

    HER2 (ErbB2/Neu) is a receptor tyrosine kinase belonging to the epidermal growth factor receptor (EGFR)/ErbB family and is overexpressed in 20-30% of human breast cancers. Although several crystal structures of ErbB kinases have been solved, the precise mechanism of HER2 activation remains unknown, and it has been suggested that HER2 is unique in its requirement for phosphorylation of Y877, a key tyrosine residue located in the activation loop. To elucidate mechanistic details of kinase domain regulation, we performed molecular dynamics simulations of a homology-modeled HER2 kinase structure in active and inactive conformations. Principal component analysis of the atomistic fluctuations reveals a tight coupling between the activation loop and catalytic loop that may contribute to alignment of residues required for catalysis in the active kinase. The free energy perturbation method is also employed to predict a role for phosphorylated Y877 in stabilizing the kinase conformations. Finally, simulation results are presented for a HER2/EGFR heterodimer and reveal that the dimeric interface induces a rearrangement of the alphaC helix toward the active conformation. Elucidation of the molecular regulatory mechanisms in HER2 will help establish structure-function relationships in the wild-type kinase, as well as predict mutations with a propensity for constitutive activation in HER2-mediated cancers.

  18. Binding and molecular dynamic studies of sesquiterpenes (2R-acetoxymethyl-1,3,3-trimethyl-4t-(3-methyl-2-buten-1-yl)-1t-cyclohexanol) derived from marine Streptomyces sp. VITJS8 as potential anticancer agent.

    PubMed

    Naine, S Jemimah; Devi, C Subathra; Mohanasrinivasan, V; Doss, C George Priya; Kumar, D Thirumal

    2016-03-01

    The main aim of the current study is to explore the bioactive potential of Streptomyces sp. VITJS8 isolated from the marine saltern. The cultural, biochemical, and morphological studies were performed to acquire the characteristic features of the potent isolate VITJS8. The 16Sr DNA sequencing was performed to investigate the phylogenetic relationship between the Streptomyces genera. The structure of the compound was elucidated by gas chromatography-mass spectrometry (GC-MS), infra-red (IR), and ultra-violet (UV) spectroscopic data analysis. The GC-MS showed the retention time at 22.39 with a single peak indicating the purity of the active compound, and the molecular formula was established as C14H9ONCl2 based on the peak at m/z 277 [M](+). Furthermore, separated by high-performance liquid chromatography (HPLC), their retention time (t r) 2.761 was observed with the absorption maxima at 310 nm. The active compound showed effective inhibitory potential against four clinical pathogens at 500 μg/mL. The antioxidant activity was found effective at the IC50 value of 500 μg/mL with 90 % inhibition. The 3-(4,5-dimethylthiazol-2-yl)-2,5-ditetrazolium bromide (MTT) assay revealed the cytotoxicity against HepG2 cells at IC50 of 250 μg/mL. The progression of apoptosis was evidenced by morphological changes by nuclear staining. The DNA fragmentation pattern was observed at 250 μg/mL concentration. Based on flow cytometric analysis, it was evident that the compound was effective in inhibiting the sub-G0/G1 phase of cell cycle. The in vitro findings were also supported by the binding mode molecular docking studies. The active compound revealed minimum binding energy of -7.84 and showed good affinity towards the active region of topoisomerase-2α that could be considered as a suitable inhibitor. Lastly, we performed 30 ns molecular dynamic simulation analysis using GROMACS to aid in better designing of anticancer drugs. Simulation result of root mean square deviation (RMSD) analysis showed that protein-ligand complex reaches equilibration state around 10 ns that illustrates the docked complex is stable. We propose the possible mechanism of sesquiterpenes to play a significant role in antitumor cascade. Hence, our studies open up a new facet for a potent drug as an anticancer agent.

  19. Molecular expression in transfected corneal endothelial cells

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Miao, Zhuang; Lu, Chengwei; Hao, Jilong

    2017-10-01

    To investigate the capability of human corneal endothelial cells serving as immunological cells. Expression of HLA-DP, -DQ, -DR, CD40, CD80, and CD86 was determined by immunohistochemical methods. Meanwhile, purified peripheral blood mononuclear cells were cocultured with human corneal endothelial cells which were pre-treated with and without -IFN respectively, activation of lymphocytes was determined by FACS analysis. In coculture system, T lymphocyte was activated by corneal endothelial cells, HLA-DP, -DQ, -DR and CD40 expression were increased by - IFN induction. Costimulatory molecular CD80 was shown on the endothelial cells. Human corneal endothelial cells were assumed to be involved in the corneal transplantation rejection process as potential antigen presenting cells.

  20. Imidazole derivatives as angiotensin II AT1 receptor blockers: Benchmarks, drug-like calculations and quantitative structure-activity relationships modeling

    NASA Astrophysics Data System (ADS)

    Alloui, Mebarka; Belaidi, Salah; Othmani, Hasna; Jaidane, Nejm-Eddine; Hochlaf, Majdi

    2018-03-01

    We performed benchmark studies on the molecular geometry, electron properties and vibrational analysis of imidazole using semi-empirical, density functional theory and post Hartree-Fock methods. These studies validated the use of AM1 for the treatment of larger systems. Then, we treated the structural, physical and chemical relationships for a series of imidazole derivatives acting as angiotensin II AT1 receptor blockers using AM1. QSAR studies were done for these imidazole derivatives using a combination of various physicochemical descriptors. A multiple linear regression procedure was used to design the relationships between molecular descriptor and the activity of imidazole derivatives. Results validate the derived QSAR model.

  1. Diagnosis of gastrointestinal stromal tumors from minute specimens: cytomorphology, immunohistochemistry, and molecular diagnostic findings.

    PubMed

    Layfield, Lester J; Wallander, Michelle L

    2012-06-01

    Gastrointestinal stromal tumors (GIST) are the most common mesenchymal neoplasm arising from the gastrointestinal tract. Workup of these lesions includes morphologic study and immunohistochemical and often molecular diagnostic analysis. Historically, these neoplasms had been included under a number of diagnostic categories including leiomyoma, leiomyosarcoma, schwannoma, and leiomyoblastoma. The lesions that were clearly sarcomatous were difficult to treat and therapeutically refractory to chemotherapeutic agents. Significant progress in our understanding of these neoplasms and our ability to successfully treat them occurred following the discovery that they were immunoreactive for KIT protein and harbored activating mutations in the KIT gene. Many are initially diagnosed by fine-needle aspiration (FNA) but workup may include mutational analysis to help direct therapy. This review outlines a practical approach to the cytologic diagnosis of GISTs and their molecular workup on small specimens obtained by FNA or core biopsy. Copyright © 2012 Wiley Periodicals, Inc.

  2. Synthesis, spectroscopic characterization (FT-IR, FT-Raman, and NMR), quantum chemical studies and molecular docking of 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione.

    PubMed

    Avdović, Edina H; Milenković, Dejan; Dimitrić Marković, Jasmina M; Đorović, Jelena; Vuković, Nenad; Vukić, Milena D; Jevtić, Verica V; Trifunović, Srećko R; Potočňák, Ivan; Marković, Zoran

    2018-04-15

    The experimental and theoretical investigations of structure of the 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione were performed. X-ray structure analysis and spectroscopic methods (FTIR and FT-Raman, 1 H and 13 C NMR), along with the density functional theory calculations (B3LYP functional with empirical dispersion corrections D3BJ in combination with the 6-311 + G(d,p) basis set), were used in order to characterize the molecular structure and spectroscopic behavior of the investigated coumarin derivative. Molecular docking analysis was carried out to identify the potency of inhibition of the title molecule against human's Ubiquinol-Cytochrome C Reductase Binding Protein (UQCRB) and Methylenetetrahydrofolate reductase (MTHFR). The inhibition activity was obtained for ten conformations of ligand inside the proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Effect of substituents on prediction of TLC retention of tetra-dentate Schiff bases and their Copper(II) and Nickel(II) complexes.

    PubMed

    Stevanović, Nikola R; Perušković, Danica S; Gašić, Uroš M; Antunović, Vesna R; Lolić, Aleksandar Đ; Baošić, Rada M

    2017-03-01

    The objectives of this study were to gain insights into structure-retention relationships and to propose the model to estimating their retention. Chromatographic investigation of series of 36 Schiff bases and their copper(II) and nickel(II) complexes was performed under both normal- and reverse-phase conditions. Chemical structures of the compounds were characterized by molecular descriptors which are calculated from the structure and related to the chromatographic retention parameters by multiple linear regression analysis. Effects of chelation on retention parameters of investigated compounds, under normal- and reverse-phase chromatographic conditions, were analyzed by principal component analysis, quantitative structure-retention relationship and quantitative structure-activity relationship models were developed on the basis of theoretical molecular descriptors, calculated exclusively from molecular structure, and parameters of retention and lipophilicity. Copyright © 2016 John Wiley & Sons, Ltd.

  4. The Molecular Basis of Wound Healing Processes Induced by Lithospermi Radix: A Proteomics and Biochemical Analysis

    PubMed Central

    Hsiao, Chia-Yen; Tsai, Tung-Hu; Chak, Kin-Fu

    2012-01-01

    Lithospermi Radix (LR) is an effective traditional Chinese herb in various types of wound healing; however, its mechanism of action remains unknown. A biochemical and proteomic platform was generated to explore the biological phenomena associated with LR and its active component shikonin. We found that both LR ethanol extracts and shikonin are able to promote cell proliferation by up to 25%. The results of proteomic analysis revealed that twenty-two differentially expressed proteins could be identified when fibroblast cells were treated with LR or shikonin. The functions of those proteins are associated with antioxidant activity, antiapoptosis activity, the regulation of cell mobility, the secretion of collagen, the removal of abnormal proteins, and the promotion of cell proliferation, indicating that the efficacy of LR in wound healing may be derived from a synergistic effect on a number of factors induced by the herbal medicine. Furthermore, an animal model confirmed that LR is able to accelerate wound healing on the flank back of the SD rats. Together these findings help to pinpoint the molecular basis of wound healing process induced by LR. PMID:23024692

  5. Strategies to determine diversity, growth, and activity of ammonia-oxidizing archaea in soil.

    PubMed

    Nicol, Graeme W; Prosser, James I

    2011-01-01

    Ecological studies of soil microorganisms require reliable techniques for assessment of microbial community composition, abundance, growth, and activity. Soil structure and physicochemical properties seriously limit the applicability and value of methods involving direct observation, and ecological studies have focused on communities and populations, rather than single cells or microcolonies. Although ammonia-oxidizing archaea were discovered 5 years ago, there are still no cultured representatives from soil and there remains a lack of knowledge regarding their genomic composition, physiology, or functional diversity. Despite these limitations, however, significant insights into their distribution, growth characteristics, and metabolism have been made through the use of a range of molecular methodologies. As well as the analysis of taxonomic markers such as 16S rRNA genes, the development of PCR primers based on a limited number of (mostly marine) sequences has enabled the analysis of homologues encoding proteins involved in energy and carbon metabolism. This chapter will highlight the range of molecular methodologies available for examining the diversity, growth, and activity of ammonia-oxidizing archaea in the soil environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. 1,4-Naphthoquinones potently inhibiting P2X7 receptor activity.

    PubMed

    Faria, R X; Oliveira, F H; Salles, J P; Oliveira, A S; von Ranke, N L; Bello, M L; Rodrigues, C R; Castro, H C; Louvis, A R; Martins, D L; Ferreira, V F

    2018-01-01

    P2X7 receptor (P2X7R) is an ATP-gated ion-channel with potential therapeutic applications. In this study, we prepared and searched a series of 1,4-naphthoquinones derivatives to evaluate their antagonistic effect on both human and murine P2X7 receptors. We explored the structure-activity relationship and binding mode of the most active compounds using a molecular modeling approach. Biological analysis of this series (eight analogues and two compounds) revealed significant in vitro inhibition against both human and murine P2X7R. Further characterization revealed that AN-03 and AN-04 had greater potency than BBG and A740003 in inhibiting dye uptake, IL-1β release, and carrageenan-induced paw edema in vivo. Moreover, we used electrophysiology and molecular docking analysis for characterizing AN-03 and AN-04 action mechanism. These results suggest 1,4-napthoquinones, mainly AN-04, as potential leads to design new P2X7R blockers and anti-inflammatory drugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Bacterial community structure and activity of sulfate reducing bacteria in a membrane aerated biofilm analyzed by microsensor and molecular techniques.

    PubMed

    Liu, Hong; Tan, Shuying; Sheng, Zhiya; Liu, Yang; Yu, Tong

    2014-11-01

    The activities and vertical spatial distribution of sulfate reducing bacteria (SRB) in an oxygen (O2 )-based membrane aerated biofilm (MAB) were investigated using microsensor (O2 and H2 S) measurements and molecular techniques (polymerase chain reaction-denaturing gradient gel electrophoresis [PCR-DGGE] and fluorescence in situ hybridization [FISH]). The O2 concentration profile revealed that O2 penetrated from the bottom (substratum) of the gas permeable membrane, and was gradually consumed within the biofilm until it was completely depleted near the biofilm/bulk liquid interface, indicating oxic and anoxic zone in the MAB. The H2 S concentration profile showed that H2 S production was found in the upper 285 µm of the biofilm, indicating a high activity of SRB in this region. The results from DGGE of the PCR-amplified dissimilatory sulfite reductase subunit B (dsrB) gene and FISH showed an uneven spatial distribution of SRB. The maximum SRB biomass was located in the upper biofilm. The information from the molecular analysis can be supplemented with that from microsensor measurements to better understand the microbial community and activity of SRB in the MAB. © 2014 Wiley Periodicals, Inc.

  8. Network analysis reveals the recognition mechanism for complex formation of mannose-binding lectins

    NASA Astrophysics Data System (ADS)

    Jian, Yiren; Zhao, Yunjie; Zeng, Chen

    The specific carbohydrate binding of lectin makes the protein a powerful molecular tool for various applications including cancer cell detection due to its glycoprotein profile on the cell surface. Most biologically active lectins are dimeric. To understand the structure-function relation of lectin complex, it is essential to elucidate the short- and long-range driving forces behind the dimer formation. Here we report our molecular dynamics simulations and associated dynamical network analysis on a particular lectin, i.e., the mannose-binding lectin from garlic. Our results, further supported by sequence coevolution analysis, shed light on how different parts of the complex communicate with each other. We propose a general framework for deciphering the recognition mechanism underlying protein-protein interactions that may have potential applications in signaling pathways.

  9. Microarray analysis of gene expression after electrical stimulation of the dura mater surrounding the superior sagittal sinus in conscious adult rats.

    PubMed

    Jiang, Lei; Dong, Zhao; Li, Fengpeng; Liu, Ruozhuo; Qiu, Enchao; Wang, Xiaolin; Yu, Shengyuan

    2014-01-01

    The molecular and cellular origins of migraine headache are among the most complex problems in contemporary neurology. Up to now the pathogenesis of migraine still remains unclearly defined. The objective of this study was to explore new factors that may be related to the mechanism of migraine. The present study performed a comprehensive analysis of gene expression in the trigeminal nucleus caudalis induced by electrical stimulation of dura mater surrounding the superior sagittal sinus in conscious rats using microarray analysis followed by quantitative real-time reverse-transcribed polymerase chain reaction (qRT-PCR) verification. Student's two sample t-test was employed when two groups were compared. A P value <0.05 was considered to be statistically significant. Comparing the placebo and the electrical stimulation groups, 40 genes were determined to be significantly differentially expressed. These significantly differentially expressed genes were involved in many pathways, including transporter activity, tryptophan metabolism, G protein signaling, kinase activity, actin binding, signal transducer activity, anion transport, protein folding, enzyme inhibitor activity, coenzyme metabolism, binding, ion transport, cell adhesion, metal ion transport, oxidoreductase activity, mitochondrion function, and others. Most of the genes were involved in more than 2 pathways. Of particular interest is the up-regulation of Phactr3 and Akap5 and the down-regulation of Kdr. These findings may provide important clues for a better understanding of the molecular mechanism of migraine.

  10. Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs.

    PubMed

    Pachov, Dimitar V; van den Bedem, Henry

    2015-07-01

    Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins and their complexes. The low frequency modes of normal mode analysis (NMA) report on molecular fluctuations associated with biological activity. However, NMA is limited to a second order expansion about a minimum of the potential energy function, which limits opportunities to observe diffusional motions. By contrast, kino-geometric conformational sampling (KGS) permits large perturbations while maintaining the exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotrimeric stimulatory protein Gs exhibits structural features implicated in its activation pathway. Activation of protein Gs by G protein-coupled receptors (GPCRs) is associated with GDP release and large conformational changes of its α-helical domain. Our method reveals a coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an activated conformation. These motions are moderated in the activated state. The motion centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4. We find that comparative NMA-based ensembles underestimate the amplitudes of the motion. Additionally, the ensembles fall short in predicting the accepted direction of the full activation pathway. Taken together, our findings suggest that nullspace sampling with explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms involved in GDP release and protein Gs activation, and further establish conformational coupling between key structural elements of Gαs.

  11. Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs

    PubMed Central

    Pachov, Dimitar V.; van den Bedem, Henry

    2015-01-01

    Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins and their complexes. The low frequency modes of normal mode analysis (NMA) report on molecular fluctuations associated with biological activity. However, NMA is limited to a second order expansion about a minimum of the potential energy function, which limits opportunities to observe diffusional motions. By contrast, kino-geometric conformational sampling (KGS) permits large perturbations while maintaining the exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotrimeric stimulatory protein Gs exhibits structural features implicated in its activation pathway. Activation of protein Gs by G protein-coupled receptors (GPCRs) is associated with GDP release and large conformational changes of its α-helical domain. Our method reveals a coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an activated conformation. These motions are moderated in the activated state. The motion centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4. We find that comparative NMA-based ensembles underestimate the amplitudes of the motion. Additionally, the ensembles fall short in predicting the accepted direction of the full activation pathway. Taken together, our findings suggest that nullspace sampling with explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms involved in GDP release and protein Gs activation, and further establish conformational coupling between key structural elements of Gαs. PMID:26218073

  12. A trimeric structural fusion of an antagonistic tumor necrosis factor-α mutant enhances molecular stability and enables facile modification.

    PubMed

    Inoue, Masaki; Ando, Daisuke; Kamada, Haruhiko; Taki, Shintaro; Niiyama, Mayumi; Mukai, Yohei; Tadokoro, Takashi; Maenaka, Katsumi; Nakayama, Taisuke; Kado, Yuji; Inoue, Tsuyoshi; Tsutsumi, Yasuo; Tsunoda, Shin-Ichi

    2017-04-21

    Tumor necrosis factor-α (TNF) exerts its biological effect through two types of receptors, p55 TNF receptor (TNFR1) and p75 TNF receptor (TNFR2). An inflammatory response is known to be induced mainly by TNFR1, whereas an anti-inflammatory reaction is thought to be mediated by TNFR2 in some autoimmune diseases. We have been investigating the use of an antagonistic TNF mutant (TNFR1-selective antagonistic TNF mutant (R1antTNF)) to reveal the pharmacological effect of TNFR1-selective inhibition as a new therapeutic modality. Here, we aimed to further improve and optimize the activity and behavior of this mutant protein both in vitro and in vivo Specifically, we examined a trimeric structural fusion of R1antTNF, formed via the introduction of short peptide linkers, as a strategy to enhance bioactivity and molecular stability. By comparative analysis with R1antTNF, the trimeric fusion, referred to as single-chain R1antTNF (scR1antTNF), was found to retain in vitro molecular properties of receptor selectivity and antagonistic activity but displayed a marked increase in thermal stability. The residence time of scR1antTNF in vivo was also significantly prolonged. Furthermore, molecular modification using polyethylene glycol (PEG) was easily controlled by limiting the number of reactive sites. Taken together, our findings show that scR1antTNF displays enhanced molecular stability while maintaining biological activity compared with R1antTNF. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Fabrication of IrSi(3)/p-Si Schottky diodes by a molecular beam epitaxy technique

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Iannelli, J. M.

    1990-01-01

    IrSi(3)/p-Si Schottky diodes have been fabricated by a molecular beam epitaxy technique at 630 C. Good surface morphology was observed for IrSi(3) layers grown at temperatures below 680 C, and an increasing tendency to form islands is observed in samples grown at higher temperatures. Good diode current-voltage characteristics were observed and Schottky barrier heights of 0.14-0.18 eV were determined by activation energy analysis and spectral response measurement.

  14. Development of quantitative structure-activity relationships and its application in rational drug design.

    PubMed

    Yang, Guang-Fu; Huang, Xiaoqin

    2006-01-01

    Over forty years have elapsed since Hansch and Fujita published their pioneering work of quantitative structure-activity relationships (QSAR). Following the introduction of Comparative Molecular Field Analysis (CoMFA) by Cramer in 1998, other three-dimensional QSAR methods have been developed. Currently, combination of classical QSAR and other computational techniques at three-dimensional level is of greatest interest and generally used in the process of modern drug discovery and design. During the last several decades, a number of different mythologies incorporating a range of molecular descriptors and different statistical regression ways have been proposed and successfully applied in developing of new drugs, thus QSAR method has been proven to be indispensable in not only the reliable prediction of specific properties of new compounds, but also the help to elucidate the possible molecular mechanism of the receptor-ligand interactions. Here, we review the recent developments in QSAR and their applications in rational drug design, focusing on the reasonable selection of novel molecular descriptors and the construction of predictive QSAR models by the help of advanced computational techniques.

  15. Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin.

    PubMed

    Sogo, Takayuki; Terahara, Norihiko; Hisanaga, Ayami; Kumamoto, Takuma; Yamashiro, Takaaki; Wu, Shusong; Sakao, Kozue; Hou, De-Xing

    2015-01-01

    Delphinidin 3-sambubioside (Dp3-Sam), a Hibiscus anthocyanin, was isolated from the dried calices of Hibiscus sabdariffa L, which has been used for folk beverages and herbal medicine although the molecular mechanisms are poorly defined. Based on the properties of Dp3-Sam and the information of inflammatory processes, we investigated the anti-inflammatory activity and molecular mechanisms in both cell and animal models in the present study. In the cell model, Dp3-Sam and Delphinidin (Dp) reduced the levels of inflammatory mediators including iNOS, NO, IL-6, MCP-1, and TNF-α induced by LPS. Cellular signaling analysis revealed that Dp3-Sam and Dp downregulated NF-κB pathway and MEK1/2-ERK1/2 signaling. In animal model, Dp3-Sam and Dp reduced the production of IL-6, MCP-1 and TNF-α and attenuated mouse paw edema induced by LPS. Our in vitro and in vivo data demonstrated that Hibiscus Dp3-Sam possessed potential anti-inflammatory properties. © 2015 International Union of Biochemistry and Molecular Biology.

  16. Virtual Screening and Molecular Dynamics Simulations from a Bank of Molecules of the Amazon Region Against Functional NS3-4A Protease-Helicase Enzyme of Hepatitis C Virus.

    PubMed

    Pinheiro, Alan Sena; Duarte, Jaqueline Bianca Carvalho; Alves, Cláudio Nahum; de Molfetta, Fábio Alberto

    2015-07-01

    Hepatitis C virus (HCV) infection is a disease that affects approximately 3% of the global population and requires new therapeutic agents without the inconvenience associated with current anti-HCV treatment. This paper reports on a study of a virtual screening and a molecular dynamics simulation of compounds derived from natural products from the Amazon region that are potentially effective against the NS3-4A enzyme of HCV, which plays an important role in the replication process of this virus. According to the results of the molecular docking calculations and subsequent consensual analysis, the best scored compounds showed interactions between hydrogen and residues of the catalytic triad as well as interactions with residues that guide ligands to the active site of the enzyme. They also showed stability in the molecular dynamics simulation, as the structures preserved important interactions at the active site of the enzyme. The root mean square deviation (RMSD) values were stabilized at the end of the simulation time. Such compounds are considered promising as novel therapies against HCV.

  17. Kinetics of initiation, propagation, and termination for the [rac-(C(2)H(4)(1-indenyl)(2))ZrMe][MeB(C(6)F(5))(3)]-catalyzed polymerization of 1-hexene.

    PubMed

    Liu, Z; Somsook, E; White, C B; Rosaaen, K A; Landis, C R

    2001-11-14

    Metallocene-catalyzed polymerization of 1-alkenes offers fine control of critical polymer attributes such as molecular weight, polydispersity, tacticity, and comonomer incorporation. Enormous effort has been expended on the synthesis and discovery of new catalysts and activators, but elementary aspects of the catalytic processes remain unclear. For example, it is unclear how the catalyst is distributed among active and dormant sites and how this distribution influences the order in monomer for the propagation rates, for which widely varying values are reported. Similarly, although empirical relationships between average molecular weights and monomer have been established for many systems, the underlying mechanisms of chain termination are unclear. Another area of intense interest concerns the role of ion-pairing in controlling the activity and termination mechanisms of metallocene-catalyzed polymerizations. Herein we report the application of quenched-flow kinetics, active site counting, polymer microstructure analysis, and molecular weight distribution analysis to the determination of fundamental rate laws for initiation, propagation, and termination for the polymerization of 1-hexene in toluene solution as catalyzed by the contact ion-pair, [rac-(C(2)H(4)(1-indenyl)(2))ZrMe][MeB(C(6)F(5))(3)] (1) over the temperature range of -10 to 50 degrees C. Highly isotactic (>99% mmmm) poly-1-hexene is produced with no apparent enchained regioerrors. Initiation and propagation processes are first order in the concentrations of 1-hexene and 1 but independent of excess borane or the addition of the contact ion-pair [PhNMe(3)][MeB(C(6)F(5))(3)]. Active site counting and the reaction kinetics provide no evidence of catalyst accumulation in dormant or inactive sites. Initiation is slower than propagation by a factor of 70. The principal termination process is the formation of unsaturates of two types: vinylidene end groups that arise from termination after a 1,2 insertion and vinylene end groups that follow 2,1 insertions. The rate law for the former termination process is independent of the 1-hexene concentration, whereas the latter is first order. Analysis of (13)C-labeled polymer provides support for a mechanism of vinylene end group formation that is not chain transfer to monomer. Deterministic modeling of the molecular weight distributions using the fundamental rate laws and kinetic constants demonstrates the robustness of the kinetic analysis. Comparisons of insertion frequencies with estimated limits on the rates of ion-pair symmetrization obtained by NMR suggest that ion-pair separation prior to insertion is not required, but the analysis requires assumptions that cannot be validated.

  18. Heparin/heparan sulfate 6-O-sulfatase from Flavobacterium heparinum: integrated structural and biochemical investigation of enzyme active site and substrate specificity.

    PubMed

    Myette, James R; Soundararajan, Venkataramanan; Shriver, Zachary; Raman, Rahul; Sasisekharan, Ram

    2009-12-11

    Heparin and heparan sulfate glycosaminoglycans (HSGAGs) comprise a chemically heterogeneous class of sulfated polysaccharides. The development of structure-activity relationships for this class of polysaccharides requires the identification and characterization of degrading enzymes with defined substrate specificity and enzymatic activity. Toward this end, we report here the molecular cloning and extensive structure-function analysis of a 6-O-sulfatase from the Gram-negative bacterium Flavobacterium heparinum. In addition, we report the recombinant expression of this enzyme in Escherichia coli in a soluble, active form and identify it as a specific HSGAG sulfatase. We further define the mechanism of action of the enzyme through biochemical and structural studies. Through the use of defined substrates, we investigate the kinetic properties of the enzyme. This analysis was complemented by homology-based molecular modeling studies that sought to rationalize the substrate specificity of the enzyme and mode of action through an analysis of the active-site topology of the enzyme including identifying key enzyme-substrate interactions and assigning key amino acids within the active site of the enzyme. Taken together, our structural and biochemical studies indicate that 6-O-sulfatase is a predominantly exolytic enzyme that specifically acts on N-sulfated or N-acetylated 6-O-sulfated glucosamines present at the non-reducing end of HSGAG oligosaccharide substrates. This requirement for the N-acetyl or N-sulfo groups on the glucosamine substrate can be explained through eliciting favorable interactions with key residues within the active site of the enzyme. These findings provide a framework that enables the use of 6-O-sulfatase as a tool for HSGAG structure-activity studies as well as expand our biochemical and structural understanding of this important class of enzymes.

  19. Specificity and Catalytic Mechanism in Family 5 Uracil DNA Glycosylase*

    PubMed Central

    Xia, Bo; Liu, Yinling; Li, Wei; Brice, Allyn R.; Dominy, Brian N.; Cao, Weiguo

    2014-01-01

    UDGb belongs to family 5 of the uracil DNA glycosylase (UDG) superfamily. Here, we report that family 5 UDGb from Thermus thermophilus HB8 is not only a uracil DNA glycosyase acting on G/U, T/U, C/U, and A/U base pairs, but also a hypoxanthine DNA glycosylase acting on G/I, T/I, and A/I base pairs and a xanthine DNA glycosylase acting on all double-stranded and single-stranded xanthine-containing DNA. Analysis of potentials of mean force indicates that the tendency of hypoxanthine base flipping follows the order of G/I > T/I, A/I > C/I, matching the trend of hypoxanthine DNA glycosylase activity observed in vitro. Genetic analysis indicates that family 5 UDGb can also act as an enzyme to remove uracil incorporated into DNA through the existence of dUTP in the nucleotide pool. Mutational analysis coupled with molecular modeling and molecular dynamics analysis reveals that although hydrogen bonding to O2 of uracil underlies the UDG activity in a dissociative fashion, Tth UDGb relies on multiple catalytic residues to facilitate its excision of hypoxanthine and xanthine. This study underscores the structural and functional diversity in the UDG superfamily. PMID:24838246

  20. The discovery of novel histone lysine methyltransferase G9a inhibitors (part 1): molecular design based on a series of substituted 2,4-diamino-7- aminoalkoxyquinazoline by molecular-docking-guided 3D quantitative structure-activity relationship studies.

    PubMed

    Feng, Taotao; Wang, Hai; Zhang, Xiaojin; Sun, Haopeng; You, Qidong

    2014-06-01

    Protein lysine methyltransferase G9a, which catalyzes methylation of lysine 9 of histone H3 (H3K9) and lysine 373 (K373) of p53, is overexpressed in human cancers. This suggests that small molecular inhibitors of G9a might be attractive antitumor agents. Herein we report our efforts on the design of novel G9a inhibitor based on the 3D quantitative structure-activity relationship (3D-QSAR) analysis of a series of 2,4-diamino-7-aminoalkoxyquinazolineas G9a inhibitors. The 3D-QSAR model was generated from 47 compounds using docking based molecular alignment. The best predictions were obtained with CoMFA standard model (q2 =0.700, r2 = 0.952) and CoMSIA model combined with steric, electrostatic, hydrophobic, hydrogen bond donor and acceptor fields (q2 = 0.724, r2 =0.960). The structural requirements for substituted 2,4-diamino-7-aminoalkoxyquinazoline for G9a inhibitory activity can be obtained by analysing the COMSIA plots. Based on the information, six novel follow-up analogs were designed.

  1. Molecular dynamics simulations reveal the conformational dynamics of Arabidopsis thaliana BRI1 and BAK1 receptor-like kinases.

    PubMed

    Moffett, Alexander S; Bender, Kyle W; Huber, Steven C; Shukla, Diwakar

    2017-07-28

    The structural motifs responsible for activation and regulation of eukaryotic protein kinases in animals have been studied extensively in recent years, and a coherent picture of their activation mechanisms has begun to emerge. In contrast, non-animal eukaryotic protein kinases are not as well understood from a structural perspective, representing a large knowledge gap. To this end, we investigated the conformational dynamics of two key Arabidopsis thaliana receptor-like kinases, brassinosteroid-insensitive 1 (BRI1) and BRI1-associated kinase 1 (BAK1), through extensive molecular dynamics simulations of their fully phosphorylated kinase domains. Molecular dynamics simulations calculate the motion of each atom in a protein based on classical approximations of interatomic forces, giving researchers insight into protein function at unparalleled spatial and temporal resolutions. We found that in an otherwise "active" BAK1 the αC helix is highly disordered, a hallmark of deactivation, whereas the BRI1 αC helix is moderately disordered and displays swinging behavior similar to numerous animal kinases. An analysis of all known sequences in the A. thaliana kinome found that αC helix disorder may be a common feature of plant kinases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Recovery of oxygenated ignitable liquids by zeolites, Part I: Novel extraction methodology in fire debris analysis.

    PubMed

    St Pierre, Kathryne A; Desiderio, Vincent J; Hall, Adam B

    2014-07-01

    The recovery of low molecular weight oxygenates in fire debris samples is severely compromised by the use of heated passive headspace concentration with an activated charcoal strip, as outlined in ASTM E-1412. The term "oxygenate" is defined herein as a small, polar, organic molecule, such as acetone, methanol, ethanol, or isopropanol, which can be employed as an ignitable liquid and referred to in the ASTM classification scheme as the "oxygenated solvents" class. Although a well accepted technique, the higher affinity of activated carbon strips for heavy molecular weight products over low molecular weight products and hydrocarbons over oxygenated products, it does not allow for efficient recovery of oxygenates such as low molecular weight alcohols and acetone. The objective of this study was to develop and evaluate a novel method for the enhanced recovery of oxygenates from fire debris samples. By optimizing conditions of the heated passive headspace technique, the utilization of zeolites allowed for the successful collection and concentration of oxygenates. The results demonstrated that zeolites increased the recovery of oxygenates by at least 1.5-fold compared to the activated carbon strip and may complement the currently used extraction technique. Copyright © 2014. Published by Elsevier Ireland Ltd.

  3. Medulloblastoma, WNT-activated/SHH-activated: clinical impact of molecular analysis and histogenetic evaluation.

    PubMed

    Cambruzzi, Eduardo

    2018-05-01

    Medulloblastoma (MDB) is a small cell poorly differentiated embryonal tumor of the cerebellum, which more frequently compromises children. Overall prognosis is favorable, but dependent of stage, histopathological pattern and molecular group. Approximately 30% of the affected patients will die from the disease. WHO 2016 Classification of Tumors of the Central Nervous System (CNS) has been classified MDB into four principal groups: WNT-activated MDB, SHH-activated MDB, group 3 MDB, and group 4 MDB. WNT-activated MDB is associated to monosomy 6, CTNNB1, DDX3X and TP53 mutations, beta-catenin nuclear immunoexpression, and a better prognosis than SHH-activated MDB. WNT-activated tumors account approximately for 10% of cases of MDBs, and are thought to arise from cells in the dorsal brain stem/lower rhombic lip progenitor cells. SHH-activated MDB more frequently arises in the lateral hemispheres of the cerebellum, and clinical outcome in this group is variable. TP53-mutant SHHactivated MDB usually shows the large cell/anaplastic pattern, and can be related to MYCN amplification, GLI2 amplification and 17p loss. TP53-wildtype SHH-activated MDB is more commonly of desmoplastic/nodular morphology, and can be related to PTCH1 deletion and 10q loss. Gene expression and methylation profiling is the gold standard for defining molecular groups of MDB. In immunohistochemistry assays, anti-GAB1 antibody expression is positive in tumors showing SHH pathway activation or PTCH mutation, while positive immunoexpression for YAP1 antibody can be only found in WNT-activated and SHH-activated MDB.

  4. Biochemical and molecular analysis of an X-linked case of Leigh syndrome associated with thiamin-responsive pyruvate dehydrogenase deficiency.

    PubMed

    Naito, E; Ito, M; Yokota, I; Saijo, T; Matsuda, J; Osaka, H; Kimura, S; Kuroda, Y

    1997-08-01

    We report molecular analysis of thiamin-responsive pyruvate dehydrogenase complex (PDHC) deficiency in a patient with an X-linked form of Leigh syndrome. PDHC activity in cultured lymphoblastoid cells of this patient and his asymptomatic mother were normal in the presence of a high thiamin pyrophosphate (TPP) concentration (0.4 mmol/L). However, in the presence of a low concentration (1 x 10(-4) mmol/L) of TPP, the activity was significantly decreased, indicating that PDHC deficiency in this patient was due to decreased affinity of PDHC for TPP. The patient's older brother also was diagnosed as PDHC deficiency with Leigh syndrome, suggesting that PDHC deficiency in these two brothers was not a de novo mutation. Sequencing of the X-linked PDHC E1 alpha subunit revealed a C-->G point mutation at nucleotide 787, resulting in a substitution of glycine for arginine 263. Restriction enzyme analysis of the E1 alpha gene revealed that the mother was a heterozygote, indicating that thiamin-responsive PDHC deficiency associated with Leigh syndrome due to this mutation is transmitted by X-linked inheritance.

  5. Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism.

    PubMed

    Yuan, Dan; Ma, Bin; Yang, Jing-yu; Xie, Yuan-yuan; Wang, Li; Zhang, Li-jia; Kano, Yoshihiro; Wu, Chun-fu

    2009-12-01

    Excessive production of nitric oxide (NO) and proinflammatory cytokines from activated microglia contributes to human neurodegenerative disorders. Our previous study demonstrated the potent inhibition of lipopolysaccharide (LPS)-induced NO production in rat primary microglial cells by rhynchophylline (RIN) and isorhynchophylline (IRN), a pair of isomeric alkaloids of Uncaria rhynchophylla (Miq.) Jacks. that has been used in China for centuries as a "cognitive enhancer" as well as to treat strokes. We further investigated whether RIN and IRN effectively suppress release of proinflammatory cytokines in LPS-activated microglial cells and the underling molecular mechanism for the inhibition of microglial activation. RIN and IRN concentration-dependently attenuated LPS-induced production of proinflammatory cytokines such as TNF-alpha and IL-1beta as well as NO in mouse N9 microglial cells, with IRN showing more potent inhibition of microglial activation. The western blotting analysis indicated that the potential molecular mechanism for RIN or IRN-mediated attenuation was implicated in suppressions of iNOS protein level, phosphorylation of ERK and p38 MAPKs, and degradation of IkappaBalpha. In addition, the differential regulation of the three signaling pathways by two isomers was shown. Our results suggest that RIN and IRN may be effective therapeutic candidates for use in the treatment of neurodegenerative diseases accompanied by microglial activation.

  6. Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase

    PubMed Central

    Saura-Valls, Marc; Fauré, Régis; Ragàs, Sergi; Piens, Kathleen; Brumer, Harry; Teeri, Tuula T.; Cottaz, Sylvain; Driguez, Hugues; Planas, Antoni

    2005-01-01

    Plant XETs [XG (xyloglucan) endotransglycosylases] catalyse the transglycosylation from a XG donor to a XG or low-molecular-mass XG fragment as the acceptor, and are thought to be important enzymes in the formation and remodelling of the cellulose-XG three-dimensional network in the primary plant cell wall. Current methods to assay XET activity use the XG polysaccharide as the donor substrate, and present limitations for kinetic and mechanistic studies of XET action due to the polymeric and polydisperse nature of the substrate. A novel activity assay based on HPCE (high performance capillary electrophoresis), in conjunction with a defined low-molecular-mass XGO {XG oligosaccharide; (XXXGXXXG, where G=Glcβ1,4- and X=[Xylα1,6]Glcβ1,4-)} as the glycosyl donor and a heptasaccharide derivatized with ANTS [8-aminonaphthalene-1,3,6-trisulphonic acid; (XXXG-ANTS)] as the acceptor substrate was developed and validated. The recombinant enzyme PttXET16A from Populus tremula x tremuloides (hybrid aspen) was characterized using the donor/acceptor pair indicated above, for which preparative scale syntheses have been optimized. The low-molecular-mass donor underwent a single transglycosylation reaction to the acceptor substrate under initial-rate conditions, with a pH optimum at 5.0 and maximal activity between 30 and 40 °C. Kinetic data are best explained by a ping-pong bi-bi mechanism with substrate inhibition by both donor and acceptor. This is the first assay for XETs using a donor substrate other than polymeric XG, enabling quantitative kinetic analysis of different XGO donors for specificity, and subsite mapping studies of XET enzymes. PMID:16356166

  7. Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase.

    PubMed

    Saura-Valls, Marc; Fauré, Régis; Ragàs, Sergi; Piens, Kathleen; Brumer, Harry; Teeri, Tuula T; Cottaz, Sylvain; Driguez, Hugues; Planas, Antoni

    2006-04-01

    Plant XETs [XG (xyloglucan) endotransglycosylases] catalyse the transglycosylation from a XG donor to a XG or low-molecular-mass XG fragment as the acceptor, and are thought to be important enzymes in the formation and remodelling of the cellulose-XG three-dimensional network in the primary plant cell wall. Current methods to assay XET activity use the XG polysaccharide as the donor substrate, and present limitations for kinetic and mechanistic studies of XET action due to the polymeric and polydisperse nature of the substrate. A novel activity assay based on HPCE (high performance capillary electrophoresis), in conjunction with a defined low-molecular-mass XGO {XG oligosaccharide; (XXXGXXXG, where G=Glcbeta1,4- and X=[Xylalpha1,6]Glcbeta1,4-)} as the glycosyl donor and a heptasaccharide derivatized with ANTS [8-aminonaphthalene-1,3,6-trisulphonic acid; (XXXG-ANTS)] as the acceptor substrate was developed and validated. The recombinant enzyme PttXET16A from Populus tremula x tremuloides (hybrid aspen) was characterized using the donor/acceptor pair indicated above, for which preparative scale syntheses have been optimized. The low-molecular-mass donor underwent a single transglycosylation reaction to the acceptor substrate under initial-rate conditions, with a pH optimum at 5.0 and maximal activity between 30 and 40 degrees C. Kinetic data are best explained by a ping-pong bi-bi mechanism with substrate inhibition by both donor and acceptor. This is the first assay for XETs using a donor substrate other than polymeric XG, enabling quantitative kinetic analysis of different XGO donors for specificity, and subsite mapping studies of XET enzymes.

  8. Alcoholytic Cleavage of Polyhydroxyalkanoate Chains by Class IV Synthases Induced by Endogenous and Exogenous Ethanol

    PubMed Central

    Hyakutake, Manami; Tomizawa, Satoshi; Mizuno, Kouhei; Abe, Hideki

    2014-01-01

    Polyhydroxyalkanoate (PHA)-producing Bacillus strains express class IV PHA synthase, which is composed of the subunits PhaR and PhaC. Recombinant Escherichia coli expressing PHA synthase from Bacillus cereus strain YB-4 (PhaRCYB-4) showed an unusual reduction of the molecular weight of PHA produced during the stationary phase of growth. Nuclear magnetic resonance analysis of the low-molecular-weight PHA revealed that its carboxy end structure was capped by ethanol, suggesting that the molecular weight reduction was the result of alcoholytic cleavage of PHA chains by PhaRCYB-4 induced by endogenous ethanol. This scission reaction was also induced by exogenous ethanol in both in vivo and in vitro assays. In addition, PhaRCYB-4 was observed to have alcoholysis activity for PHA chains synthesized by other synthases. The PHA synthase from Bacillus megaterium (PhaRCBm) from another subgroup of class IV synthases was also assayed and was shown to have weak alcoholysis activity for PHA chains. These results suggest that class IV synthases may commonly share alcoholysis activity as an inherent feature. PMID:24334666

  9. Inferring rules of lineage commitment in haematopoiesis.

    PubMed

    Pina, Cristina; Fugazza, Cristina; Tipping, Alex J; Brown, John; Soneji, Shamit; Teles, Jose; Peterson, Carsten; Enver, Tariq

    2012-02-19

    How the molecular programs of differentiated cells develop as cells transit from multipotency through lineage commitment remains unexplored. This reflects the inability to access cells undergoing commitment or located in the immediate vicinity of commitment boundaries. It remains unclear whether commitment constitutes a gradual process, or else represents a discrete transition. Analyses of in vitro self-renewing multipotent systems have revealed cellular heterogeneity with individual cells transiently exhibiting distinct biases for lineage commitment. Such systems can be used to molecularly interrogate early stages of lineage affiliation and infer rules of lineage commitment. In haematopoiesis, population-based studies have indicated that lineage choice is governed by global transcriptional noise, with self-renewing multipotent cells reversibly activating transcriptome-wide lineage-affiliated programs. We examine this hypothesis through functional and molecular analysis of individual blood cells captured from self-renewal cultures, during cytokine-driven differentiation and from primary stem and progenitor bone marrow compartments. We show dissociation between self-renewal potential and transcriptome-wide activation of lineage programs, and instead suggest that multipotent cells experience independent activation of individual regulators resulting in a low probability of transition to the committed state.

  10. Structural and molecular docking studies of biologically active mercaptopyrimidine Schiff bases

    NASA Astrophysics Data System (ADS)

    Kirubavathy, S. Jone; Velmurugan, R.; Karvembu, R.; Bhuvanesh, N. S. P.; Enoch, Israel V. M. V.; Selvakumar, P. Mosae; Premnath, D.; Chitra, S.

    2017-01-01

    Novel Schiff bases derived from the treatment of mercapto-diamino pyrimidine with two different aldehydes are characterized using elemental analysis, single crystal X-ray diffraction and 1H NMR spectroscopy. The pharmacological action of the synthesized compounds viz., antimicrobial, anticancer and antitubercular activities is studied. The Schiff bases show a very good activity against various test pathogens. DNA and β-CD binding interactions of the compounds are studied using UV-Visible absorption and fluorescence spectral measurements. The binding constants of the compounds towards β-CD are in the order of 103 to 104. Molecular docking is done using MOE program on the 3D structure of the enzymes, viz., human thymidylate synthase complexed with dump and raltitrex, candida albicans N-myristoyltransferasepeptidic inhibitor, catalytic domain of protein kinase pKnb from mycobacterium tuberculosis in complex with mitoxantrone, pare, topoisomerase atpase inhibitor, E. coli and lactobacillus casdihydrofolatereductase. The MIC/IC50 values of the Schiff bases are compared with the glide scores from the molecular docking studies. The number of hydrogen bonding interactions between the Schiff bases and amino acid residues are also reported.

  11. Modification of benzoxazole derivative by bromine-spectroscopic, antibacterial and reactivity study using experimental and theoretical procedures

    NASA Astrophysics Data System (ADS)

    Aswathy, V. V.; Alper-Hayta, Sabiha; Yalcin, Gözde; Mary, Y. Sheena; Panicker, C. Yohannan; Jojo, P. J.; Kaynak-Onurdag, Fatma; Armaković, Stevan; Armaković, Sanja J.; Yildiz, Ilkay; Van Alsenoy, C.

    2017-08-01

    N-[2-(2-bromophenyl)-1,3-benzoxazol-5-yl]-2-phenylacetamide (NBBPA) was synthesized in this study as an original compound in order to evaluate its antibacterial activity against representative Gram-negative and Gram-positive bacteria, with their drug-resistant clinical isolate. Microbiological results showed that this compound had moderate antibacterial activity. Study also encompassed detailed FT-IR, FT-Raman and NMR experimental and theoretical spectroscopic characterization and assignation of the ring breathing modes of the mono-, ortho- and tri-substituted phenyl rings is in agreement with the literature data. DFT calculations were also used to identify specific reactivity properties of NBBPA molecule based on the molecular orbital, charge distribution and electron density analysis, which indicated the reactive importance of carbonyl and NH2 groups, together with bromine atom. DFT calculations were also used for investigation of sensitivity of the NBBPA molecules towards the autoxidation mechanism, while molecular dynamics (MD) simulations were used to investigate the influence of water. The molecular docking results suggest that the compound might exhibit inhibitory activity against GyrB complex.

  12. Impact of molecular weight on the formation of electrosprayed chitosan microcapsules as delivery vehicles for bioactive compounds.

    PubMed

    Gómez-Mascaraque, Laura G; Sanchez, Gloria; López-Rubio, Amparo

    2016-10-05

    The molecular weight of chitosan is one of its most determinant characteristics, which affects its processability and its performance as a biomaterial. However, information about the effect of this parameter on the formation of electrosprayed chitosan microcapsules is scarce. In this work, the impact of chitosan molecular weight on its electrosprayability was studied and correlated with its effect on the viscosity, surface tension and electrical conductivity of solutions. A Discriminant Function Analysis revealed that the morphology of the electrosprayed chitosan materials could be correctly predicted using these three parameters for almost 85% of the samples. The suitability of using electrosprayed chitosan capsules as carriers for bioactive agents was also assessed by loading them with a model active compound, (-)-epigallocatechin gallate (EGCG). This encapsulation, with an estimated efficiency of around 80% in terms of preserved antioxidant activity, showed the potential to prolong the antiviral activity of EGCG against murine norovirus via gradual bioactive release combined with its protection against degradation in simulated physiological conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Saccharification efficiencies of multi-enzyme complexes produced by aerobic fungi.

    PubMed

    Badhan, Ajay; Huang, Jiangli; Wang, Yuxi; Abbott, D Wade; Di Falco, Marcos; Tsang, Adrian; McAllister, Tim

    2018-05-24

    In the present study, we have characterized high molecular weight multi-enzyme complexes in two commercial enzymes produced by Trichoderma reesei (Spezyme CP) and Penicillium funiculosum (Accellerase XC). We successfully identified 146-1000 kDa complexes using Blue native polyacrylamide gel electrophoresis (BN-PAGE) to fractionate the protein profile in both preparations. Identified complexes dissociated into lower molecular weight constituents when loaded on SDS PAGE. Unfolding of the secondary structure of multi-enzyme complexes with trimethylamine (pH >10) suggested that they were not a result of unspecific protein aggregation. Cellulase (CMCase) profiles of extracts of BN-PAGE fractionated protein bands confirmed cellulase activity within the multi-enzyme complexes. A microassay was used to identify protein bands that promoted high levels of glucose release from barley straw. Those with high saccharification yield were subjected to LC-MS analysis to identify the principal enzymatic activities responsible. The results suggest that secretion of proteins by aerobic fungi leads to the formation of high molecular weight multi-enzyme complexes that display activity against carboxymethyl cellulose and barley straw. Copyright © 2018. Published by Elsevier B.V.

  14. Butyrylcholinesterase: K variant, plasma activity, molecular forms and rivastigmine treatment in Alzheimer's disease in a Southern Brazilian population.

    PubMed

    Bono, G F; Simão-Silva, D P; Batistela, M S; Josviak, N D; Dias, P F R; Nascimento, G A; Souza, R L R; Piovezan, M R; Souza, R K M; Furtado-Alle, L

    2015-02-01

    Alzheimer's disease (AD) is a neurodegenerative disorder in which there is a decline of cholinergic function. The symptomatic AD treatment involves the use of ChEIs (cholinesterase inhibitors) as rivastigimine, a dual inhibitor. The human butyrylcholinesterase (BChE) is an enzyme that has specific roles in cholinergic neurotransmission and it has been associated with AD. In the serum, BChE is found in four main molecular forms: G1 (monomer); G1-ALB (monomer linked to albumin); G2 (dimer); and G4 (tetramer). The interaction between the products of BCHE gene and CHE2 locus results in CHE2 C5+ and CHE2 C5- phenotypes. CHE2 C5+ phenotype and BChE-K are factors that influence on BChE activity. This work aimed to verify the proportions of BChE molecular forms, total and relative activity in 139 AD patients and 139 elderly controls, taking into account K variant, CHE2 locus, rivastigmine treatment and clinical dementia rating (CDR) of AD patients. Phenotypic frequencies of CHE2 C5+ and frequency of the carriers of the K allele were similar between groups. Total BChE activity in plasma was significantly lower in AD patients than in elderly controls. Furthermore, we found that reduction on plasma BChE activity is associated directly with AD progression in AD patients and that rivastigmine treatment has a stronger effect on BChE activity within the CDR2 group. The reduction in BChE activity did not occur proportionally in all molecular forms. Multiple regression analysis results confirmed that AD acts as the main factor in plasma BChE activity reduction and that severe stages are related with an even greater reduction. These findings suggest that the reduction of total plasma BChE and relative BChE molecular forms activity in AD patients is probably associated with a feedback mechanism and provides a future perspective of using this enzyme as a possible plasmatic secondary marker for AD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Studies of New Fused Benzazepine as Selective Dopamine D3 Receptor Antagonists Using 3D-QSAR, Molecular Docking and Molecular Dynamics

    PubMed Central

    Liu, Jing; Li, Yan; Zhang, Shuwei; Xiao, Zhengtao; Ai, Chunzhi

    2011-01-01

    In recent years, great interest has been paid to the development of compounds with high selectivity for central dopamine (DA) D3 receptors, an interesting therapeutic target in the treatment of different neurological disorders. In the present work, based on a dataset of 110 collected benzazepine (BAZ) DA D3 antagonists with diverse kinds of structures, a variety of in silico modeling approaches, including comparative molecular field analysis (CoMFA), comparative similarity indices analysis (CoMSIA), homology modeling, molecular docking and molecular dynamics (MD) were carried out to reveal the requisite 3D structural features for activity. Our results show that both the receptor-based (Q2 = 0.603, R2ncv = 0.829, R2pre = 0.690, SEE = 0.316, SEP = 0.406) and ligand-based 3D-QSAR models (Q2 = 0.506, R2ncv =0.838, R2pre = 0.794, SEE = 0.316, SEP = 0.296) are reliable with proper predictive capacity. In addition, a combined analysis between the CoMFA, CoMSIA contour maps and MD results with a homology DA receptor model shows that: (1) ring-A, position-2 and R3 substituent in ring-D are crucial in the design of antagonists with higher activity; (2) more bulky R1 substituents (at position-2 of ring-A) of antagonists may well fit in the binding pocket; (3) hydrophobicity represented by MlogP is important for building satisfactory QSAR models; (4) key amino acids of the binding pocket are CYS101, ILE105, LEU106, VAL151, PHE175, PHE184, PRO254 and ALA251. To our best knowledge, this work is the first report on 3D-QSAR modeling of the new fused BAZs as DA D3 antagonists. These results might provide information for a better understanding of the mechanism of antagonism and thus be helpful in designing new potent DA D3 antagonists. PMID:21541053

  16. Studies of new fused benzazepine as selective dopamine D3 receptor antagonists using 3D-QSAR, molecular docking and molecular dynamics.

    PubMed

    Liu, Jing; Li, Yan; Zhang, Shuwei; Xiao, Zhengtao; Ai, Chunzhi

    2011-02-18

    In recent years, great interest has been paid to the development of compounds with high selectivity for central dopamine (DA) D3 receptors, an interesting therapeutic target in the treatment of different neurological disorders. In the present work, based on a dataset of 110 collected benzazepine (BAZ) DA D3 antagonists with diverse kinds of structures, a variety of in silico modeling approaches, including comparative molecular field analysis (CoMFA), comparative similarity indices analysis (CoMSIA), homology modeling, molecular docking and molecular dynamics (MD) were carried out to reveal the requisite 3D structural features for activity. Our results show that both the receptor-based (Q(2) = 0.603, R(2) (ncv) = 0.829, R(2) (pre) = 0.690, SEE = 0.316, SEP = 0.406) and ligand-based 3D-QSAR models (Q(2) = 0.506, R(2) (ncv) =0.838, R(2) (pre) = 0.794, SEE = 0.316, SEP = 0.296) are reliable with proper predictive capacity. In addition, a combined analysis between the CoMFA, CoMSIA contour maps and MD results with a homology DA receptor model shows that: (1) ring-A, position-2 and R(3) substituent in ring-D are crucial in the design of antagonists with higher activity; (2) more bulky R(1) substituents (at position-2 of ring-A) of antagonists may well fit in the binding pocket; (3) hydrophobicity represented by MlogP is important for building satisfactory QSAR models; (4) key amino acids of the binding pocket are CYS101, ILE105, LEU106, VAL151, PHE175, PHE184, PRO254 and ALA251. To our best knowledge, this work is the first report on 3D-QSAR modeling of the new fused BAZs as DA D3 antagonists. These results might provide information for a better understanding of the mechanism of antagonism and thus be helpful in designing new potent DA D3 antagonists.

  17. The Molecular Composition of Dissolved Organic Matter in Forest Soils as a Function of pH and Temperature

    PubMed Central

    Roth, Vanessa-Nina; Dittmar, Thorsten; Gaupp, Reinhard; Gleixner, Gerd

    2015-01-01

    We examined the molecular composition of forest soil water during three different seasons at three different sites, using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). We examined oxic soils and tested the hypothesis that pH and season correlate with the molecular composition of dissolved organic matter (DOM). We used molecular formulae and their relative intensity from ESI-FT-ICR-MS for statistical analysis. Applying unconstrained and constrained ordination methods, we observed that pH, dissolved organic carbon (DOC) concentration and season were the main factors correlating with DOM molecular composition. This result is consistent with a previous study where pH was a main driver of the molecular differences between DOM from oxic rivers and anoxic bog systems in the Yenisei River catchment. At a higher pH, the molecular formulae had a lower degree of unsaturation and oxygenation, lower molecular size and a higher abundance of nitrogen-containing compounds. These characteristics suggest a higher abundance of tannin connected to lower pH that possibly inhibited biological decomposition. Higher biological activity at a higher pH might also be related to the higher abundance of nitrogen-containing compounds. Comparing the seasons, we observed a decrease in unsaturation, molecular diversity and the number of nitrogen-containing compounds in the course of the year from March to November. Temperature possibly inhibited biological degradation during winter, which could cause the accumulation of a more diverse compound spectrum until the temperature increased again. Our findings suggest that the molecular composition of DOM in soil pore waters is dynamic and a function of ecosystem activity, pH and temperature. PMID:25793306

  18. Three-dimensional quantitative structure-activity relationship studies on novel series of benzotriazine based compounds acting as Src inhibitors using CoMFA and CoMSIA.

    PubMed

    Gueto, Carlos; Ruiz, José L; Torres, Juan E; Méndez, Jefferson; Vivas-Reyes, Ricardo

    2008-03-01

    Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of benzotriazine derivatives, as Src inhibitors. Ligand molecular superimposition on the template structure was performed by database alignment method. The statistically significant model was established of 72 molecules, which were validated by a test set of six compounds. The CoMFA model yielded a q(2)=0.526, non cross-validated R(2) of 0.781, F value of 88.132, bootstrapped R(2) of 0.831, standard error of prediction=0.587, and standard error of estimate=0.351 while the CoMSIA model yielded the best predictive model with a q(2)=0.647, non cross-validated R(2) of 0.895, F value of 115.906, bootstrapped R(2) of 0.953, standard error of prediction=0.519, and standard error of estimate=0.178. The contour maps obtained from 3D-QSAR studies were appraised for activity trends for the molecules analyzed. Results indicate that small steric volumes in the hydrophobic region, electron-withdrawing groups next to the aryl linker region, and atoms close to the solvent accessible region increase the Src inhibitory activity of the compounds. In fact, adding substituents at positions 5, 6, and 8 of the benzotriazine nucleus were generated new compounds having a higher predicted activity. The data generated from the present study will further help to design novel, potent, and selective Src inhibitors as anticancer therapeutic agents.

  19. Antitumor evaluation and 3D-QSAR studies of a new series of the spiropyrroloquinoline isoindolinone/aza-isoindolinone derivatives by comparative molecular field analysis (CoMFA).

    PubMed

    Sadeghzadeh, Masoud; Salahinejad, Maryam; Zarezadeh, Nahid; Ghandi, Mehdi; Baghery, Maryam Keshavarz

    2017-11-01

    In current study, antitumor activity of two series of the newly synthesized spiropyrroloquinoline isoindolinone and spiropyrroloquinoline aza-isoindolinone scaffolds was evaluated against three human breast normal and cancer cell lines (MCF-10A, MCF-7 and SK-BR-3) and compared with cytotoxicity values of doxorubicin and colchicine as the standard drugs. It was found that several compounds were endowed with cytotoxicity in the low micromolar range. Among these two series, compounds 6i, 6j, 6k and 7l, 7m, 7n, 7o containing 3-ethyl-1H-indole moiety were found to be highly effective against both cancer cell lines ranging from [Formula: see text] to [Formula: see text] in comparison with the corresponding analogs. Compared with human cancer cells, the most potent compounds did not show high cytotoxicity against human breast normal MCF-10A cells. Generally, most of the evaluated compounds 6a-l and 7a-o series showed more antitumor activity against SK-BR-3 than MCF-7 cells. Moreover, comparative molecular field analysis (CoMFA) as a popular tools of three-dimensional quantitative structure-activity relationship (3D-QSAR) studies was carried out on 27 spiropyrroloquinolineisoindolinone and spiropyrroloquinolineaza-isoindolinone derivatives with antitumor activity against on SK-BR-3 cells. The obtained CoMFA models showed statistically excellent performance, which also possessed good predictive ability for an external test set. The results confirm the important effect of molecular steric and electrostatic interactions of these compounds on in vitro cytotoxicity against SK-BR-3.

  20. Method for improved selectivity in photo-activation and detection of molecular diagnostic agents

    DOEpatents

    Wachter, Eric A.; Fisher, Walter G.; Dees, H. Craig

    1998-01-01

    A method for the imaging of a particular volume of plant or animal tissue, wherein the plant or animal tissue contains at least one photo-active molecular agent. The method includes the steps of treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of the photo-active molecular agent contained in the particular volume of the plant or animal tissue, photo-activating at least one of the at least one photo-active molecular agent in the particular volume of the plant or animal tissue, thereby producing at least one photo-activated molecular agent, wherein the at least one photo-activated molecular agent emits energy, detecting the energy emitted by the at least one photo-activated molecular agent, and producing a detected energy signal which is characteristic of the particular volume of plant or animal tissue. The present invention is also a method for the imaging of a particular volume of material, wherein the material contains at least one photo-active molecular agent.

  1. Method for improved selectivity in photo-activation and detection of molecular diagnostic agents

    DOEpatents

    Wachter, E.A.; Fisher, W.G.; Dees, H.C.

    1998-11-10

    A method for the imaging of a particular volume of plant or animal tissue, wherein the plant or animal tissue contains at least one photo-active molecular agent. The method includes the steps of treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of the photo-active molecular agent contained in the particular volume of the plant or animal tissue, photo-activating at least one of the at least one photo-active molecular agent in the particular volume of the plant or animal tissue, thereby producing at least one photo-activated molecular agent, wherein the at least one photo-activated molecular agent emits energy, detecting the energy emitted by the at least one photo-activated molecular agent, and producing a detected energy signal which is characteristic of the particular volume of plant or animal tissue. The present invention is also a method for the imaging of a particular volume of material, wherein the material contains at least one photo-active molecular agent. 13 figs.

  2. Methods for improved selectivity in photo-activation and detection of molecular diagnostic agents

    DOEpatents

    Wachter, Eric A [Oak Ridge, TN; Fisher, Walter G [Knoxville, TN; Dees, H Craig [Knoxville, TN

    2008-03-18

    A method for the imaging of a particular volume of plant or animal tissue, wherein the plant or animal tissue contains at least one photo-active molecular agent. The method comprises the steps of treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of the photo-active molecular agent contained in the particular volume of the plant or animal tissue, photo-activating at least one of the at least one photo-active molecular agent in the particular volume of the plant or animal tissue, thereby producing at least one photo-activated molecular agent, wherein the at least one photo-activated molecular agent emits energy, detecting the energy emitted by the at least one photo-activated molecular agent, and producing a detected energy signal which is characteristic of the particular volume of plant or animal tissue. The present invention also provides a method for the imaging of a particular volume of material, wherein the material contains at least one photo-active molecular agent.

  3. Ole e 13 is the unique food allergen in olive: Structure-functional, substrates docking, and molecular allergenicity comparative analysis.

    PubMed

    Jimenez-Lopez, J C; Robles-Bolivar, P; Lopez-Valverde, F J; Lima-Cabello, E; Kotchoni, S O; Alché, J D

    2016-05-01

    Thaumatin-like proteins (TLPs) are enzymes with important functions in pathogens defense and in the response to biotic and abiotic stresses. Last identified olive allergen (Ole e 13) is a TLP, which may also importantly contribute to food allergy and cross-allergenicity to pollen allergen proteins. The goals of this study are the characterization of the structural-functionality of Ole e 13 with a focus in its catalytic mechanism, and its molecular allergenicity by extensive analysis using different molecular computer-aided approaches covering a) functional-regulatory motifs, b) comparative study of linear sequence, 2-D and 3D structural homology modeling, c) molecular docking with two different β-D-glucans, d) conservational and evolutionary analysis, e) catalytic mechanism modeling, and f) IgE-binding, B- and T-cell epitopes identification and comparison to other allergenic TLPs. Sequence comparison, structure-based features, and phylogenetic analysis identified Ole e 13 as a thaumatin-like protein. 3D structural characterization revealed a conserved overall folding among plants TLPs, with mayor differences in the acidic (catalytic) cleft. Molecular docking analysis using two β-(1,3)-glucans allowed to identify fundamental residues involved in the endo-1,3-β-glucanase activity, and defining E84 as one of the conserved residues of the TLPs responsible of the nucleophilic attack to initiate the enzymatic reaction and D107 as proton donor, thus proposing a catalytic mechanism for Ole e 13. Identification of IgE-binding, B- and T-cell epitopes may help designing strategies to improve diagnosis and immunotherapy to food allergy and cross-allergenic pollen TLPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. In silico approach to explore the disruption in the molecular mechanism of human hyaluronidase 1 by mutant E268K that directs Natowicz syndrome.

    PubMed

    Meshach Paul, D; Rajasekaran, R

    2017-03-01

    Natowicz syndrome (mucopolysaccharidoses type 9) is a lysosomal storage disorder caused by deficient or defective human hyaluronidase 1. The disorder is not well studied at the molecular level. Therefore, a new in silico approach was proposed to study the molecular basis on which one clinically observed mutation, Glu268Lys, results in a defective enzyme. The native and mutant structures were subjected to comparative analyses using a conformational sampling approach for geometrical variables viz, RMSF, RMSD, and Ramachandran plot. In addition, the strength of a Cys207-Cys221 disulfide bond and electrostatic interaction between Arg265 and Asp206 were studied, as they are known to be involved in the catalytic activity of the enzyme. Native and mutant E268K showed statistically significant variations with p < 0.05 in RMSD, Ramachandran plot, strengths of disulfide bond, and electrostatic interactions. Further, single model analysis showed variations between native and mutant structures in terms of intra-protein interactions, hydrogen bond dilution, secondary structure, and dihedral angles. Docking analysis predicted the mutant to have a less favorable substrate binding energy compared to the native protein. Additionally, steered MD analysis indicated that the substrate should have more affinity to the native than mutant enzymes. The observed changes theoretically explain the less favorable binding energy of substrate towards mutant E268K, thereby providing a structural basis for its reduced catalytic activity. Hence, our study provides a basis for understanding the disruption in the molecular mechanism of human hyaluronidase 1 by mutation E268K, which may prove useful for the development of synthetic chaperones as a treatment option for Natowicz syndrome.

  5. Molecular docking, TG/DTA, molecular structure, harmonic vibrational frequencies, natural bond orbital and TD-DFT analysis of diphenyl carbonate by DFT approach

    NASA Astrophysics Data System (ADS)

    Xavier, S.; Periandy, S.; Carthigayan, K.; Sebastian, S.

    2016-12-01

    Vibrational spectral analysis of Diphenyl Carbonate (DPC) is carried out by using FT-IR and FT-Raman spectroscopic techniques. It is found that all vibrational modes are in the expected region. Gaussian computational calculations were performed using B3LYP method with 6-311++G (d, p) basis set. The computed geometric parameters are in good agreement with XRD data. The observation shows that the structure of the carbonate group is unsymmetrical by ∼5° due to the attachment of the two phenyl rings. The stability of the molecule arising from hyperconjugative interaction and charge delocalization are analyzed by Natural Bond Orbital (NBO) study and the results show the lone pair transition has higher stabilization energy compared to all other. The 1H and 13C NMR chemical shifts are calculated using the Gauge-Including Atomic Orbital (GIAO) method with B3LYP/6-311++G (d, p) method. The chemical shifts computed theoretically go very closer to the experimental results. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies and Molecular electrostatic potential (MEP) exhibit the high reactivity nature of the molecule. The non-linear optical property of the DPC molecule predicted theoretically found to be good candidate for NLO material. TG/DTA analysis was made and decomposition of the molecule with respect to the temperature was studied. DPC having the anthelmintic activity is docked in the Hemoglobin of Fasciola hepatica protein. The DPC has been screened to antimicrobial activity and found to exhibit antibacterial effects.

  6. Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus.

    PubMed

    Vecsey, Christopher G; Peixoto, Lucia; Choi, Jennifer H K; Wimmer, Mathieu; Jaganath, Devan; Hernandez, Pepe J; Blackwell, Jennifer; Meda, Karuna; Park, Alan J; Hannenhalli, Sridhar; Abel, Ted

    2012-10-17

    Sleep deprivation is a common problem of considerable health and economic impact in today's society. Sleep loss is associated with deleterious effects on cognitive functions such as memory and has a high comorbidity with many neurodegenerative and neuropsychiatric disorders. Therefore, it is crucial to understand the molecular basis of the effect of sleep deprivation in the brain. In this study, we combined genome-wide and traditional molecular biological approaches to determine the cellular and molecular impacts of sleep deprivation in the mouse hippocampus, a brain area crucial for many forms of memory. Microarray analysis examining the effects of 5 h of sleep deprivation on gene expression in the mouse hippocampus found 533 genes with altered expression. Bioinformatic analysis revealed that a prominent effect of sleep deprivation was to downregulate translation, potentially mediated through components of the insulin signaling pathway such as the mammalian target of rapamycin (mTOR), a key regulator of protein synthesis. Consistent with this analysis, sleep deprivation reduced levels of total and phosphorylated mTOR, and levels returned to baseline after 2.5 h of recovery sleep. Our findings represent the first genome-wide analysis of the effects of sleep deprivation on the mouse hippocampus, and they suggest that the detrimental effects of sleep deprivation may be mediated by reductions in protein synthesis via downregulation of mTOR. Because protein synthesis and mTOR activation are required for long-term memory formation, our study improves our understanding of the molecular mechanisms underlying the memory impairments induced by sleep deprivation.

  7. Distinct chromosome segregation roles for spindle checkpoint proteins.

    PubMed

    Warren, Cheryl D; Brady, D Michelle; Johnston, Raymond C; Hanna, Joseph S; Hardwick, Kevin G; Spencer, Forrest A

    2002-09-01

    The spindle checkpoint plays a central role in the fidelity of chromosome transmission by ensuring that anaphase is initiated only after kinetochore-microtubule associations of all sister chromatid pairs are complete. In this study, we find that known spindle checkpoint proteins do not contribute equally to chromosome segregation fidelity in Saccharomyces cerevisiae. Loss of Bub1 or Bub3 protein elicits the largest effect. Analysis of Bub1p reveals the presence of two molecular functions. An N-terminal 608-amino acid (nonkinase) portion of the protein supports robust checkpoint activity, and, as expected, contributes to chromosome segregation. A C-terminal kinase-encoding segment independently contributes to chromosome segregation through an unknown mechanism. Both molecular functions depend on association with Bub3p. A 156-amino acid fragment of Bub1p functions in Bub3p binding and in kinetochore localization by one-hybrid assay. An adjacent segment is required for Mad1p binding, detected by deletion analysis and coimmunoprecipitation. Finally, overexpression of wild-type BUB1 or MAD3 genes leads to chromosome instability. Analysis of this activity indicates that the Bub3p-binding domain of Bub1p contributes to this phenotype through disruption of checkpoint activity as well as through introduction of kinetochore or spindle damage.

  8. Distinct Chromosome Segregation Roles for Spindle Checkpoint Proteins

    PubMed Central

    Warren, Cheryl D.; Brady, D. Michelle; Johnston, Raymond C.; Hanna, Joseph S.; Hardwick, Kevin G.; Spencer, Forrest A.

    2002-01-01

    The spindle checkpoint plays a central role in the fidelity of chromosome transmission by ensuring that anaphase is initiated only after kinetochore-microtubule associations of all sister chromatid pairs are complete. In this study, we find that known spindle checkpoint proteins do not contribute equally to chromosome segregation fidelity in Saccharomyces cerevisiae. Loss of Bub1 or Bub3 protein elicits the largest effect. Analysis of Bub1p reveals the presence of two molecular functions. An N-terminal 608-amino acid (nonkinase) portion of the protein supports robust checkpoint activity, and, as expected, contributes to chromosome segregation. A C-terminal kinase-encoding segment independently contributes to chromosome segregation through an unknown mechanism. Both molecular functions depend on association with Bub3p. A 156-amino acid fragment of Bub1p functions in Bub3p binding and in kinetochore localization by one-hybrid assay. An adjacent segment is required for Mad1p binding, detected by deletion analysis and coimmunoprecipitation. Finally, overexpression of wild-type BUB1 or MAD3 genes leads to chromosome instability. Analysis of this activity indicates that the Bub3p-binding domain of Bub1p contributes to this phenotype through disruption of checkpoint activity as well as through introduction of kinetochore or spindle damage. PMID:12221113

  9. A Computational Drug-Target Network for Yuanhu Zhitong Prescription

    PubMed Central

    Lu, Peng; Zhang, Fangbo; Yuan, Yuan; Wang, Songsong

    2013-01-01

    Yuanhu Zhitong prescription (YZP) is a typical and relatively simple traditional Chinese medicine (TCM), widely used in the clinical treatment of headache, gastralgia, and dysmenorrhea. However, the underlying molecular mechanism of action of YZP is not clear. In this study, based on the previous chemical and metabolite analysis, a complex approach including the prediction of the structure of metabolite, high-throughput in silico screening, and network reconstruction and analysis was developed to obtain a computational drug-target network for YZP. This was followed by a functional and pathway analysis by ClueGO to determine some of the pharmacologic activities. Further, two new pharmacologic actions, antidepressant and antianxiety, of YZP were validated by animal experiments using zebrafish and mice models. The forced swimming test and the tail suspension test demonstrated that YZP at the doses of 4 mg/kg and 8 mg/kg had better antidepressive activity when compared with the control group. The anxiolytic activity experiment showed that YZP at the doses of 100 mg/L, 150 mg/L, and 200 mg/L had significant decrease in diving compared to controls. These results not only shed light on the better understanding of the molecular mechanisms of YZP for curing diseases, but also provide some evidence for exploring the classic TCM formulas for new clinical application. PMID:23762151

  10. [Comparative evaluation of the efficiency of the effect of very high frequency electromagnetic waves on platelet functional activity].

    PubMed

    Kirichuk, V F; Maĭborodin, A V; Volin, M V; Krenitskiĭ, A P; Tupikin, V D

    2001-01-01

    A comparative analysis was made of the effect of two kinds of EMI MMD-radiation: EMI MMD-waves, generated by a vehicle "Jav-1 M" (42.2 and 53.5 HHz), and EMI MMD-waves exerting influence with frequencies of molecular spectrum of radiation and nitric oxide absorption (150.176-150.644 HHz), obtained with a specially created generator, with respect to their influence on the functional ability of platelets of unstable angina pectoris patients. It was shown that in vitro EMI MMD-fluctuations with frequencies of molecular spectrum of radiation and nitric oxide absorption exert a stronger inhibiting influence on the functional activity of platelets of unstable angina pectoris patients. Features of the action of various kinds of EMI MMD-effect on the activative-high-speed characteristics of platelet aggregation are shown.

  11. Angiotensin-I converting enzyme (ACE): structure, biological roles, and molecular basis for chloride ion dependence.

    PubMed

    Masuyer, Geoffrey; Yates, Christopher J; Sturrock, Edward D; Acharya, K Ravi

    2014-10-01

    Somatic angiotensin-I converting enzyme (sACE) has an essential role in the regulation of blood pressure and electrolyte fluid homeostasis. It is a zinc protease that cleaves angiotensin-I (AngI), bradykinin, and a broad range of other signalling peptides. The enzyme activity is provided by two homologous domains (N- and C-), which display clear differences in substrate specificities and chloride activation. The presence of chloride ions in sACE and its unusual role in activity was identified early on in the characterisation of the enzyme. The molecular mechanisms of chloride activation have been investigated thoroughly through mutagenesis studies and shown to be substrate-dependent. Recent results from X-ray crystallography structural analysis have provided the basis for the intricate interactions between ACE, its substrate and chloride ions. Here we describe the role of chloride ions in human ACE and its physiological consequences. Insights into the chloride activation of the N- and C-domains could impact the design of improved domain-specific ACE inhibitors.

  12. Structural analysis and antimicrobial activity of 2[1H]-pyrimidinethione/selenone derivatives

    NASA Astrophysics Data System (ADS)

    Żesławska, Ewa; Korona-Głowniak, Izabela; Szczesio, Małgorzata; Olczak, Andrzej; Żylewska, Alicja; Tejchman, Waldemar; Malm, Anna

    2017-08-01

    Four new crystal structures of sulfur and selenium analogues of 2[1H]-pyrimidinone derivatives were determined with the use of X-ray diffraction method. The molecular geometry and intermolecular interactions of the investigated molecules were analyzed in order to find the structural features and geometrical parameters, which can be responsible for antimicrobial activities. The influence of chalcogen substituents (sulfur and selenium) on the crystal packing was also studied. The main differences in the molecular structures exist in mutual arrangement of two aromatic rings. The intermolecular interactions in all investigated compounds are similar. Furthermore, the in vitro antibacterial and antifungal activities for these compounds were evaluated. Preliminary investigations have identified two highly potent antibacterial compounds containing selenium atom, which display selectivity towards staphylococci and micrococci. This selectivity was not observed for a control compound used as a drug, namely vancomycin. These compounds possess also good antifungal activity. This is the first report of biological activities of 2[1H]-pyrimidineselenone derivatives.

  13. Transcriptomic responses of a simplified soil microcosm to a plant pathogen and its biocontrol agent reveal a complex reaction to harsh habitat.

    PubMed

    Perazzolli, Michele; Herrero, Noemí; Sterck, Lieven; Lenzi, Luisa; Pellegrini, Alberto; Puopolo, Gerardo; Van de Peer, Yves; Pertot, Ilaria

    2016-10-27

    Soil microorganisms are key determinants of soil fertility and plant health. Soil phytopathogenic fungi are one of the most important causes of crop losses worldwide. Microbial biocontrol agents have been extensively studied as alternatives for controlling phytopathogenic soil microorganisms, but molecular interactions between them have mainly been characterised in dual cultures, without taking into account the soil microbial community. We used an RNA sequencing approach to elucidate the molecular interplay of a soil microbial community in response to a plant pathogen and its biocontrol agent, in order to examine the molecular patterns activated by the microorganisms. A simplified soil microcosm containing 11 soil microorganisms was incubated with a plant root pathogen (Armillaria mellea) and its biocontrol agent (Trichoderma atroviride) for 24 h under controlled conditions. More than 46 million paired-end reads were obtained for each replicate and 28,309 differentially expressed genes were identified in total. Pathway analysis revealed complex adaptations of soil microorganisms to the harsh conditions of the soil matrix and to reciprocal microbial competition/cooperation relationships. Both the phytopathogen and its biocontrol agent were specifically recognised by the simplified soil microcosm: defence reaction mechanisms and neutral adaptation processes were activated in response to competitive (T. atroviride) or non-competitive (A. mellea) microorganisms, respectively. Moreover, activation of resistance mechanisms dominated in the simplified soil microcosm in the presence of both A. mellea and T. atroviride. Biocontrol processes of T. atroviride were already activated during incubation in the simplified soil microcosm, possibly to occupy niches in a competitive ecosystem, and they were not further enhanced by the introduction of A. mellea. This work represents an additional step towards understanding molecular interactions between plant pathogens and biocontrol agents within a soil ecosystem. Global transcriptional analysis of the simplified soil microcosm revealed complex metabolic adaptation in the soil environment and specific responses to antagonistic or neutral intruders.

  14. Negative allosteric modulators that target human alpha4beta2 neuronal nicotinic receptors.

    PubMed

    Henderson, Brandon J; Pavlovicz, Ryan E; Allen, Jerad D; González-Cestari, Tatiana F; Orac, Crina M; Bonnell, Andrew B; Zhu, Michael X; Boyd, R Thomas; Li, Chenglong; Bergmeier, Stephen C; McKay, Dennis B

    2010-09-01

    Allosteric modulation of neuronal nicotinic acetylcholine receptors (nAChRs) is considered to be one of the most promising approaches for therapeutics. We have previously reported on the pharmacological activity of several compounds that act as negative allosteric modulators (NAMs) of nAChRs. In the following studies, the effects of 30 NAMs from our small chemical library on both human alpha4beta2 (Halpha4beta2) and human alpha3beta4 (Halpha3beta4) nAChRs expressed in human embryonic kidney ts201 cells were investigated. During calcium accumulation assays, these NAMs inhibited nAChR activation with IC(50) values ranging from 2.4 microM to more than 100 microM. Several NAMs showed relative selectivity for Halpha4beta2 nAChRs with IC(50) values in the low micromolar range. A lead molecule, KAB-18, was identified that shows relative selectivity for Halpha4beta2 nAChRs. This molecule contains three phenyl rings, one piperidine ring, and one ester bond linkage. Structure-activity relationship (SAR) analyses of our data revealed three regions of KAB-18 that contribute to its relative selectivity. Predictive three-dimensional quantitative SAR (comparative molecular field analysis and comparative molecular similarity indices analysis) models were generated from these data, and a pharmacophore model was constructed to determine the chemical features that are important for biological activity. Using docking approaches and molecular dynamics on a Halpha4beta2 nAChR homology model, a binding mode for KAB-18 at the alpha/beta subunit interface that corresponds to the predicted pharmacophore is described. This binding mode was supported by mutagenesis studies. In summary, these studies highlight the importance of SAR, computational, and molecular biology approaches for the design and synthesis of potent and selective antagonists targeting specific nAChR subtypes.

  15. Negative Allosteric Modulators That Target Human α4β2 Neuronal Nicotinic Receptors

    PubMed Central

    Henderson, Brandon J.; Pavlovicz, Ryan E.; Allen, Jerad D.; González-Cestari, Tatiana F.; Orac, Crina M.; Bonnell, Andrew B.; Zhu, Michael X.; Boyd, R. Thomas; Li, Chenglong; Bergmeier, Stephen C.

    2010-01-01

    Allosteric modulation of neuronal nicotinic acetylcholine receptors (nAChRs) is considered to be one of the most promising approaches for therapeutics. We have previously reported on the pharmacological activity of several compounds that act as negative allosteric modulators (NAMs) of nAChRs. In the following studies, the effects of 30 NAMs from our small chemical library on both human α4β2 (Hα4β2) and human α3β4 (Hα3β4) nAChRs expressed in human embryonic kidney ts201 cells were investigated. During calcium accumulation assays, these NAMs inhibited nAChR activation with IC50 values ranging from 2.4 μM to more than 100 μM. Several NAMs showed relative selectivity for Hα4β2 nAChRs with IC50 values in the low micromolar range. A lead molecule, KAB-18, was identified that shows relative selectivity for Hα4β2 nAChRs. This molecule contains three phenyl rings, one piperidine ring, and one ester bond linkage. Structure–activity relationship (SAR) analyses of our data revealed three regions of KAB-18 that contribute to its relative selectivity. Predictive three-dimensional quantitative SAR (comparative molecular field analysis and comparative molecular similarity indices analysis) models were generated from these data, and a pharmacophore model was constructed to determine the chemical features that are important for biological activity. Using docking approaches and molecular dynamics on a Hα4β2 nAChR homology model, a binding mode for KAB-18 at the α/β subunit interface that corresponds to the predicted pharmacophore is described. This binding mode was supported by mutagenesis studies. In summary, these studies highlight the importance of SAR, computational, and molecular biology approaches for the design and synthesis of potent and selective antagonists targeting specific nAChR subtypes. PMID:20551292

  16. Potential and kinetic energetic analysis of phonon modes in varied molecular solids

    NASA Astrophysics Data System (ADS)

    Kraczek, Brent

    2015-03-01

    We calculate partitioned kinetic and potential energies of the phonon modes in molecular solids to illuminate the dynamical behavior of the constituent molecules. This enables analysis of the relationship between the characteristics of sets of phonon modes, molecular structure and chemical reactivity by partitioning the kinetic energy into the translational, rotational and vibrational motions of groups of atoms (including molecules), and the potential energy into the energy contained within interatomic interactions. We consider three solids of differing size and rigidity: naphthalene (C1 0 H6), nitromethane (CH3NO2)andα-HMX(C4H8N8O8). Naphthalene and nitromethane mostly act in the semi-rigid manner often expected in molecular solids. HMX exhibits behavior that is significantly less-rigid. While there are definite correlations between the kinetic and potential energetic analyses, there are also differences, particularly in the excitation of chemical bonds by low-frequency lattice modes. This suggests that in many cases computational and experimental methods dependent on atomic displacements may not identify phonon modes active in chemical reactivity.

  17. Small renal masses: The molecular markers associated with outcome of patients with kidney tumors 7 cm or less

    NASA Astrophysics Data System (ADS)

    Spirina, L. V.; Usynin, Y. A.; Kondakova, I. V.; Yurmazov, Z. A.; Slonimskaya, E. M.; Pikalova, L. V.

    2016-08-01

    The investigation of molecular mechanisms of tumor cell behavior in small renal masses is required to achieve the better cancer survival. The aim of the study is to find molecular markers associated with outcome of patients with kidney tumors 7 cm or less. A homogenous group of 20 patients T1N0M0-1 (mean age 57.6 ± 2.2 years) with kidney cancer was selected for the present analysis. The content of transcription and growth factors was determined by ELISA. The levels of AKT-mTOR signaling pathway components were measured by Western blotting analysis. The molecular markers associated with unfavorable outcome of patients with kidney tumors 7 cm or less were high levels of NF-kB p50, NF-kB p65, HIF-1, HIF-2, VEGF and CAIX. AKT activation with PTEN loss also correlated with the unfavorable outcome of kidney cancer patients with tumor size 7 cm or less. It is observed that the biological features of kidney cancer could predict the outcome of patients.

  18. Nonketotic hyperglycinemia: Functional assessment of missense variants in GLDC to understand phenotypes of the disease.

    PubMed

    Bravo-Alonso, Irene; Navarrete, Rosa; Arribas-Carreira, Laura; Perona, Almudena; Abia, David; Couce, María Luz; García-Cazorla, Angels; Morais, Ana; Domingo, Rosario; Ramos, María Antonia; Swanson, Michael A; Van Hove, Johan L K; Ugarte, Magdalena; Pérez, Belén; Pérez-Cerdá, Celia; Rodríguez-Pombo, Pilar

    2017-06-01

    The rapid analysis of genomic data is providing effective mutational confirmation in patients with clinical and biochemical hallmarks of a specific disease. This is the case for nonketotic hyperglycinemia (NKH), a Mendelian disorder causing seizures in neonates and early-infants, primarily due to mutations in the GLDC gene. However, understanding the impact of missense variants identified in this gene is a major challenge for the application of genomics into clinical practice. Herein, a comprehensive functional and structural analysis of 19 GLDC missense variants identified in a cohort of 26 NKH patients was performed. Mutant cDNA constructs were expressed in COS7 cells followed by enzymatic assays and Western blot analysis of the GCS P-protein to assess the residual activity and mutant protein stability. Structural analysis, based on molecular modeling of the 3D structure of GCS P-protein, was also performed. We identify hypomorphic variants that produce attenuated phenotypes with improved prognosis of the disease. Structural analysis allows us to interpret the effects of mutations on protein stability and catalytic activity, providing molecular evidence for clinical outcome and disease severity. Moreover, we identify an important number of mutants whose loss-of-functionality is associated with instability and, thus, are potential targets for rescue using folding therapeutic approaches. © 2017 Wiley Periodicals, Inc.

  19. Identification and evaluation of magnolol and chrysophanol as the principle protein tyrosine phosphatase-1B inhibitory compounds in a Kampo medicine, Masiningan.

    PubMed

    Onoda, Toshihisa; Li, Wei; Sasaki, Tatsunori; Miyake, Megumi; Higai, Koji; Koike, Kazuo

    2016-06-20

    Masiningan is a traditional medicine consisting of six crude drugs that have been used for treating constipation and diabetes mellitus in both Japan and China. Masiningan has been reported to have significant PTP1B inhibitory activity and to affect cells in the insulin-signaling pathway. The aim of the present study is to identify the PTP1B inhibitory compounds in Masiningan. Bioactivity peaks were identified by analytical HPLC profiling and PTP1B inhibitory activity profiling of sub-fractions from Masiningan extract. The bioactive compounds were isolated by tracking two identified bioactive peaks, and the chemical structures were determined by spectroscopic analyses. The bioactive compounds were further investigated for their inhibitory effect against PTP1B by enzymatic kinetic analysis, molecular docking simulation, inhibitory selectivity against other PTPs, and cellular activity in the insulin signal transduction pathway. From Masiningan, magnolol (1) and chrysophanol (2) were isolated as compounds that exhibited significant dose-dependent inhibitory activities against PTP1B, with IC50 values of 24.6 and 12.3μM, respectively. Kinetic analysis revealed that 1 is a non-competitive and that 2 is a competitive PTP1B inhibitor. In the molecular docking simulation, compound 2 was stably positioned in the active pocket of PTP1B, and the CDOCKER energy was calculated to be 24.3411kcal/mol. Both compounds demonstrated remarkably high selectivity against four PTPs and revealed cellular activity against the insulin signal transduction pathway. Magnolol (1) and chrysophanol (2) were identified as the principle PTP1B inhibitory active compounds in Masiningan, and their actions were investigated in detail. These findings demonstrated the effectiveness of Masiningan on diabetes mellitus through the inhibition of PTP1B at a molecular level as well as the potential of magnolol (1) and chrysophanol (2) as lead compounds in future anti-diabetes drug development. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Scanning number and brightness yields absolute protein concentrations in live cells: a crucial parameter controlling functional bio-molecular interaction networks.

    PubMed

    Papini, Christina; Royer, Catherine A

    2018-02-01

    Biological function results from properly timed bio-molecular interactions that transduce external or internal signals, resulting in any number of cellular fates, including triggering of cell-state transitions (division, differentiation, transformation, apoptosis), metabolic homeostasis and adjustment to changing physical or nutritional environments, amongst many more. These bio-molecular interactions can be modulated by chemical modifications of proteins, nucleic acids, lipids and other small molecules. They can result in bio-molecular transport from one cellular compartment to the other and often trigger specific enzyme activities involved in bio-molecular synthesis, modification or degradation. Clearly, a mechanistic understanding of any given high level biological function requires a quantitative characterization of the principal bio-molecular interactions involved and how these may change dynamically. Such information can be obtained using fluctation analysis, in particular scanning number and brightness, and used to build and test mechanistic models of the functional network to define which characteristics are the most important for its regulation.

  1. Data driven linear algebraic methods for analysis of molecular pathways: application to disease progression in shock/trauma.

    PubMed

    McGuire, Mary F; Sriram Iyengar, M; Mercer, David W

    2012-04-01

    Although trauma is the leading cause of death for those below 45years of age, there is a dearth of information about the temporal behavior of the underlying biological mechanisms in those who survive the initial trauma only to later suffer from syndromes such as multiple organ failure. Levels of serum cytokines potentially affect the clinical outcomes of trauma; understanding how cytokine levels modulate intra-cellular signaling pathways can yield insights into molecular mechanisms of disease progression and help to identify targeted therapies. However, developing such analyses is challenging since it necessitates the integration and interpretation of large amounts of heterogeneous, quantitative and qualitative data. Here we present the Pathway Semantics Algorithm (PSA), an algebraic process of node and edge analyses of evoked biological pathways over time for in silico discovery of biomedical hypotheses, using data from a prospective controlled clinical study of the role of cytokines in multiple organ failure (MOF) at a major US trauma center. A matrix algebra approach was used in both the PSA node and PSA edge analyses with different matrix configurations and computations based on the biomedical questions to be examined. In the edge analysis, a percentage measure of crosstalk called XTALK was also developed to assess cross-pathway interference. In the node/molecular analysis of the first 24h from trauma, PSA uncovered seven molecules evoked computationally that differentiated outcomes of MOF or non-MOF (NMOF), of which three molecules had not been previously associated with any shock/trauma syndrome. In the edge/molecular interaction analysis, PSA examined four categories of functional molecular interaction relationships--activation, expression, inhibition, and transcription--and found that the interaction patterns and crosstalk changed over time and outcome. The PSA edge analysis suggests that a diagnosis, prognosis or therapy based on molecular interaction mechanisms may be most effective within a certain time period and for a specific functional relationship. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Data driven linear algebraic methods for analysis of molecular pathways: application to disease progression in shock/trauma

    PubMed Central

    McGuire, Mary F.; Iyengar, M. Sriram; Mercer, David W.

    2012-01-01

    Motivation Although trauma is the leading cause of death for those below 45 years of age, there is a dearth of information about the temporal behavior of the underlying biological mechanisms in those who survive the initial trauma only to later suffer from syndromes such as multiple organ failure. Levels of serum cytokines potentially affect the clinical outcomes of trauma; understanding how cytokine levels modulate intra-cellular signaling pathways can yield insights into molecular mechanisms of disease progression and help to identify targeted therapies. However, developing such analyses is challenging since it necessitates the integration and interpretation of large amounts of heterogeneous, quantitative and qualitative data. Here we present the Pathway Semantics Algorithm (PSA), an algebraic process of node and edge analyses of evoked biological pathways over time for in silico discovery of biomedical hypotheses, using data from a prospective controlled clinical study of the role of cytokines in multiple organ failure (MOF) at a major US trauma center. A matrix algebra approach was used in both the PSA node and PSA edge analyses with different matrix configurations and computations based on the biomedical questions to be examined. In the edge analysis, a percentage measure of crosstalk called XTALK was also developed to assess cross-pathway interference. Results In the node/molecular analysis of the first 24 hours from trauma, PSA uncovered 7 molecules evoked computationally that differentiated outcomes of MOF or non-MOF (NMOF), of which 3 molecules had not been previously associated with any shock / trauma syndrome. In the edge/molecular interaction analysis, PSA examined four categories of functional molecular interaction relationships – activation, expression, inhibition, and transcription – and found that the interaction patterns and crosstalk changed over time and outcome. The PSA edge analysis suggests that a diagnosis, prognosis or therapy based on molecular interaction mechanisms may be most effective within a certain time period and for a specific functional relationship. PMID:22200681

  3. Glycolytic activity in breast cancer using 18F-FDG PET/CT as prognostic predictor: A molecular phenotype approach.

    PubMed

    Garcia Vicente, A M; Soriano Castrejón, A; Amo-Salas, M; Lopez Fidalgo, J F; Muñoz Sanchez, M M; Alvarez Cabellos, R; Espinosa Aunion, R; Muñoz Madero, V

    2016-01-01

    To explore the relationship between basal (18)F-FDG uptake in breast tumors and survival in patients with breast cancer (BC) using a molecular phenotype approach. This prospective and multicentre study included 193 women diagnosed with BC. All patients underwent an (18)F-FDG PET/CT prior to treatment. Maximum standardized uptake value (SUVmax) in tumor (T), lymph nodes (N), and the N/T index was obtained in all the cases. Metabolic stage was established. As regards biological prognostic parameters, tumors were classified into molecular sub-types and risk categories. Overall survival (OS) and disease free survival (DFS) were obtained. An analysis was performed on the relationship between semi-quantitative metabolic parameters with molecular phenotypes and risk categories. The effect of molecular sub-type and risk categories in prognosis was analyzed using Kaplan-Meier and univariate and multivariate tests. Statistical differences were found in both SUVT and SUVN, according to the molecular sub-types and risk classifications, with higher semi-quantitative values in more biologically aggressive tumors. No statistical differences were observed with respect to the N/T index. Kaplan-Meier analysis revealed that risk categories were significantly related to DFS and OS. In the multivariate analysis, metabolic stage and risk phenotype showed a significant association with DFS. High-risk phenotype category showed a worst prognosis with respect to the other categories with higher SUVmax in primary tumor and lymph nodes. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  4. In Silico Characterization of the Binding Affinity of Dendrimers to Penicillin-Binding Proteins (PBPs): Can PBPs be Potential Targets for Antibacterial Dendrimers?

    PubMed

    Ahmed, Shaimaa; Vepuri, Suresh B; Ramesh, Muthusamy; Kalhapure, Rahul; Suleman, Nadia; Govender, Thirumala

    2016-04-01

    We have shown that novel silver salts of poly (propyl ether) imine (PETIM) dendron and dendrimers developed in our group exhibit preferential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus. This led us to examine whether molecular modeling methods could be used to identify the key structural design principles for a bioactive lead molecule, explore the mechanism of binding with biological targets, and explain their preferential antibacterial activity. The current article reports the conformational landscape as well as mechanism of binding of generation 1 PETIM dendron and dendrimers to penicillin-binding proteins (PBPs) in order to understand the antibacterial activity profiles of their silver salts. Molecular dynamics at different simulation protocols and conformational analysis were performed to elaborate on the conformational features of the studied dendrimers, as well as to create the initial structure for further binding studies. The results showed that for all compounds, there were no significant conformational changes due to variation in simulation conditions. Molecular docking calculations were performed to investigate the binding theme between the studied dendrimers and PBPs. Interestingly, in significant accordance with the experimental data, dendron and dendrimer with aliphatic cores were found to show higher activity against S. aureus than the dendrimer with an aromatic core. The latter showed higher activity against MRSA. The findings from this computational and molecular modeling report together with the experimental results serve as a road map toward designing more potent antibacterial dendrimers against resistant bacterial strains.

  5. Activity of IPI-504, a Novel Heat-Shock Protein 90 Inhibitor, in Patients With Molecularly Defined Non–Small-Cell Lung Cancer

    PubMed Central

    Sequist, Lecia V.; Gettinger, Scott; Senzer, Neil N.; Martins, Renato G.; Jänne, Pasi A.; Lilenbaum, Rogerio; Gray, Jhanelle E.; Iafrate, A. John; Katayama, Ryohei; Hafeez, Nafeeza; Sweeney, Jennifer; Walker, John R.; Fritz, Christian; Ross, Robert W.; Grayzel, David; Engelman, Jeffrey A.; Borger, Darrell R.; Paez, Guillermo; Natale, Ronald

    2010-01-01

    Purpose IPI-504 is a novel, water-soluble, potent inhibitor of heat-shock protein 90 (Hsp90). Its potential anticancer activity has been validated in preclinical in vitro and in vivo models. We studied the activity of IPI-504 after epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy in patients with advanced, molecularly defined non–small-cell lung cancer (NSCLC). Patients and Methods Patients with advanced NSCLC, prior treatment with EGFR TKIs, and tumor tissue available for molecular genotyping were enrolled in this prospective, nonrandomized, multicenter, phase II study of IPI-504 monotherapy. The primary outcome was objective response rate (ORR). Secondary aims included safety, progression-free survival (PFS), and analysis of activity by molecular subtypes. Results Seventy-six patients were enrolled between December 2007 and May 2009 from 10 United States cancer centers. An ORR of 7% (five of 76) was observed in the overall study population, 10% (four of 40) in patients who were EGFR wild-type, and 4% (one of 28) in those with EGFR mutations. Although both EGFR groups were below the target ORR of 20%, among the three patients with an ALK gene rearrangement, two had partial responses and the third had prolonged stable disease (7.2 months, 24% reduction in tumor size). The most common adverse events included grades 1 and 2 fatigue, nausea, and diarrhea. Grade 3 or higher liver function abnormalities were observed in nine patients (11.8%). Conclusion IPI-504 has clinical activity in patients with NSCLC, particularly among patients with ALK rearrangements. PMID:20940188

  6. Mediators of Physical Activity on Neurocognitive Function: A Review at Multiple Levels of Analysis.

    PubMed

    Stillman, Chelsea M; Cohen, Jamie; Lehman, Morgan E; Erickson, Kirk I

    2016-01-01

    Physical activity (PA) is known to maintain and improve neurocognitive health. However, there is still a poor understanding of the mechanisms by which PA exerts its effects on the brain and cognition in humans. Many of the most widely discussed mechanisms of PA are molecular and cellular and arise from animal models. While information about basic cellular and molecular mechanisms is an important foundation from which to build our understanding of how PA promotes cognitive health in humans, there are other pathways that could play a role in this relationship. For example, PA-induced changes to cellular and molecular pathways likely initiate changes to macroscopic properties of the brain and/or to behavior that in turn influence cognition. The present review uses a more macroscopic lens to identify potential brain and behavioral/socioemotional mediators of the association between PA and cognitive function. We first summarize what is known regarding cellular and molecular mechanisms, and then devote the remainder of the review to discussing evidence for brain systems and behavioral/socioemotional pathways by which PA influences cognition. It is our hope that discussing mechanisms at multiple levels of analysis will stimulate the field to examine both brain and behavioral mediators. Doing so is important, as it could lead to a more complete characterization of the processes by which PA influences neurocognitive function, as well as a greater variety of targets for modifying neurocognitive function in clinical contexts.

  7. Structural and theoretical study of 1-[1-oxo-3-phenyl-(2-benzosulfonamide)-propyl amido] - anthracene-9,10-dione to be i-motif inhibitor

    NASA Astrophysics Data System (ADS)

    Vatsal, Manu; Devi, Vandna; Awasthi, Pamita

    2018-04-01

    The 1-[1-oxo-3-phenyl-(2-benzosulfonamide)-propyl amido] - anthracene-9,10-dione (BPAQ) an analogue of anthracenedione class of antibiotic has been synthesized. To characterize molecular functional groups FT-IR and FT-Raman spectrum were recorded and vibrational frequencies were assigned accordingly. The optimized geometrical parameters, vibrational assignments, chemical shifts and thermodynamic properties of title compound were computed by ab initio calculations at Density Functional Theory (DFT) method with 6-31G(d,p) as basis set. The calculated harmonic vibrational frequencies of molecule were then analysed in comparison to experimental FT-IR and Raman spectrum. Gauge independent atomic orbital (GIAO) method was used for determining, (1H) and carbon (13C) nuclear magnetic resonance (NMR) spectra of the molecule. Molecular parameters were calculated along with its periodic boundary conditions calculation (PBC) analysis supported by X-ray diffraction studies. The frontier molecular orbital (HOMO, LUMO) analysis describes charge distribution and stability of the molecule which concluded that nucleophilic substitution is more preferred and the mullikan charge analysis also confirmed the same. Further the title compound showed an inhibitory action at d(TCCCCC), an intermolecular i-motif sequence, hence molecular docking study suggested the inhibitory activity of the compound at these junction.

  8. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    PubMed

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  9. Proteomic Analysis of Carbon Concentrating Chemolithotrophic Bacteria Serratia sp. for Sequestration of Carbon Dioxide

    PubMed Central

    Bharti, Randhir K.; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials. PMID:24619032

  10. Branched chain amino acids maintain the molecular weight of poly(γ-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation.

    PubMed

    Mitsunaga, Hitoshi; Meissner, Lena; Büchs, Jochen; Fukusaki, Eiichiro

    2016-10-01

    Poly(γ-glutamic acid) mainly produced by Bacillus spp. is an industrially important compound due to several useful features. Among them, molecular weight is an important characteristic affecting on the physical properties such as viscosities and negative charge densities. However, it is difficult to control the molecular size of PGA since it decreases during fermentation. Previous study reported that PGA produced in the media containing different carbon sources such as glucose and glycerol showed differences in molecular weight. Therefore in this study, the effect of carbon source on the PGA molecular weight was examined; with the aim of developing a strategy to maintain the high molecular weight of PGA during fermentation. Our result showed that the weight average molecular weight (Mw) of PGA of Bacillus licheniformis ATCC 9945 cultivated in the media containing PTS-sugars were higher than the medium containing glycerol (non-PTS). The result of metabolome analysis indicated the possibility of CodY (a global regulator protein) activation in the cells cultivated in the media containing PTS-sugars. To mimic this effect, branched-chain amino acids (BCAAs), which are activators of CodY, were added to a medium containing glycerol. As the result, the Mw of PGA in the BCAAs-supplemented media were maintained and high during the early production phase compared to the non BCAAs-supplemented medium. These results indicate that BCAAs can repress the PGA molecular weight reduction during fermentation in B. licheniformis ATCC 9945. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Extraction of inhibitor-free metagenomic DNA from polluted sediments, compatible with molecular diversity analysis using adsorption and ion-exchange treatments.

    PubMed

    Desai, Chirayu; Madamwar, Datta

    2007-03-01

    PCR inhibitor-free metagenomic DNA of high quality and high yield was extracted from highly polluted sediments using a simple remediation strategy of adsorption and ion-exchange chromatography. Extraction procedure was optimized with series of steps, which involved gentle mechanical lysis, treatment with powdered activated charcoal (PAC) and ion-exchange chromatography with amberlite resin. Quality of the extracted DNA for molecular diversity analysis was tested by amplifying bacterial 16S rDNA (16S rRNA gene) with eubacterial specific universal primers (8f and 1492r), cloning of the amplified 16S rDNA and ARDRA (amplified rDNA restriction analysis) of the 16S rDNA clones. The presence of discrete differences in ARDRA banding profiles provided evidence for expediency of the DNA extraction protocol in molecular diversity studies. A comparison of the optimized protocol with commercial Ultraclean Soil DNA isolation kit suggested that method described in this report would be more efficient in removing metallic and organic inhibitors, from polluted sediment samples.

  12. Orientation of N-benzoyl glycine on silver nanoparticles: SERS and DFT studies

    NASA Astrophysics Data System (ADS)

    Parameswari, A.; Asath, R. Mohamed; Premkumar, R.; Benial, A. Milton Franklin

    2017-05-01

    Surface enhanced Raman scattering (SERS) studies of N-benzoyl glycine (NBG) adsorbed on silver nanoparticles (AgNPs) was studied by experimental and density functional theory (DFT) approach. Single crystals of NBG were prepared using slow evaporation method. The AgNPs were prepared and characterized. The DFT/ B3PW91 method with LanL2DZ basis set was used to optimize the molecular structure of NBG and NBG adsorbed on silver cluster. The calculated and observed vibrational frequencies were assingned on the basis of potential energy distribution calculation. The reduced band gap value was obtained for NBG adsorbed on silver nanoparticles from the frontier molecular orbitals analysis. Natural bond orbital analysis was carried out to inspect the intra-molecular stabilization interactions, which are responsible for the bio activity and nonlinear optical property of the molecule. The spectral analysis was also evidenced that NBG would adsorb tilted orientation on the silver surface over the binding sites such as lone pair electron of N atom in amine group and through phenyl ring π system.

  13. Synthesis, spectral characterization, thermal behaviour, antibacterial activity and DFT calculation on N‧-[bis(methylsulfanyl) methylene]-2-hydroxybenzohydrazide and N‧-(4-methoxy benzoyl)-hydrazinecarbodithioic acid ethyl ester

    NASA Astrophysics Data System (ADS)

    Bharty, M. K.; Dani, R. K.; Kushawaha, S. K.; Prakash, Om; Singh, Ranjan K.; Sharma, V. K.; Kharwar, R. N.; Singh, N. K.

    2015-06-01

    Two new compounds N‧-[bis(methylsulfanyl) methylene]-2-hydroxybenzohydrazide {Hbmshb (1)} and N‧-(4-methoxy benzoyl)-hydrazinecarbodithioic acid ethyl ester {H2mbhce (2)} have been synthesized and characterized with the aid of elemental analyses, IR, NMR and single crystal X-ray diffraction data. Compounds 1 and 2 crystallize in orthorhombic and monoclinic systems with space group Pna21 and P21/n, respectively. Inter and intra molecular hydrogen bonding link two molecules and provide linear chain structure. In addition to this, compound 2 is stabilized by CH⋯π and NH⋯π interactions. Molecular geometry from X-ray analysis, geometry optimization, charge distribution, bond analysis, frontier molecular orbital (FMO) analysis and non-linear optical (NLO) effects have been performed using the density functional theory (DFT) with the B3LYP functional. The bioefficacy of compounds has been examined against the growth of bacteria to evaluate their anti-microbial potential. Compounds 1 and 2 are thermally stable and show NLO behaviour better than the urea crystal.

  14. Pitfalls in lung cancer molecular pathology: how to limit them in routine practice?

    PubMed

    Ilie, M; Hofman, P

    2012-01-01

    New treatment options in advanced non-small cell lung carcinoma (NSCLC) targeting activating epidermal growth factor receptor (EGFR) gene mutations and other genetic alterations demonstrated the clinical significance of the molecular features of specific subsets of tumors. Therefore, the development of personalized medicine has stimulated the routine integration into pathology departments of somatic mutation testing. However, clinical mutation testing must be optimized and standardized with regard to histological profile, type of samples, pre-analytical steps, methodology and result reporting. Routine molecular testing in NSCLC is currently moving beyond EGFR mutational analysis. Recent progress of targeted therapies will require molecular testing for a wide panel of mutations for a personalized molecular diagnosis. As a consequence, efficient testing of multiple molecular abnormalities is an urgent requirement in thoracic oncology. Moreover, increasingly limited tumor sample becomes a major challenge for molecular pathology. Continuous efforts should be made for safe, effective and specific molecular analyses. This must be based on close collaboration between the departments involved in the management of lung cancer. In this review we explored the practical issues and pitfalls surrounding the routine implementation of molecular testing in NSCLC in a pathology laboratory.

  15. Analytical characterization and structure elucidation of metabolites from Aspergillus ochraceus MP2 fungi.

    PubMed

    Meenupriya, J; Thangaraj, M

    2011-10-01

    To isolate and characterize the bioactive secondary metabolites from Aspergillus ochraceus (A. ochraceus) MP2 fungi. The anti bacterial activity of marine sponge derived fungi A. ochraceus MP2 was thoroughly investigated against antagonistic human pathogens. The optimum inhibitory concentration of the fungi in the elite solvent was also determined. The promising extracts that showed good antimicrobial activity were subjected to further analytical separation to get individual distinct metabolites and the eluants were further identified by GC MS instrumental analysis. The molecular characterization of the elite fungal strains were done by isolating their genomic DNA and amplify the internal transcribed spacer (ITS) region of 5.8s rRNA using specific ITS primer. The novelty of the strain was proved by homology search tools and elite sequences was submitted to GENBANK. Three bioactive compounds were characterized to reveal their identity, chemical formula and structure. The first elutant was identified asα- Campholene aldehyde with chemical formula C10 H16 O and molecular weight 152 Da. The second elutant was identified as Lucenin-2 and chemical formula C27 H30 O16 and molecular weight 610 Da. The third elutant was identified as 6-Ethyloct- 3-yl- 2- ethylhexyl ester with Chemical formula C26 H42 O4 with molecular weight 418 Da. The isolated compounds showed significant antimicrobial activity against potential human pathogens. Microbial secondary metabolites represent a large source of compounds endowed with ingenious structures and potent biological activities.

  16. Spectral molecular line surveys of active galaxies

    NASA Astrophysics Data System (ADS)

    Villicana Pedraza, Ilhuiyolitzin

    The enormous mass of molecular gas and dust found in the nuclei of active galaxies has a major role in feeding the activity (either starburst or AGN) and therefore in the galactic evolution. Thus, observations of the molecular can provide clues to identify and analyze the type of activity in very deeply obscured galactic nuclei. Indeed, studies of the chemical composition in starburst galaxies via wide band spectral has shown the potential of molecular spectroscopy to trace the physical and chemical propierties of their central ISM material. In this work we present the analysis of the emission of molecules such as HCN, CCH, CN,CS,HCO+, HNC, CH3OH, among others obtained from the survey of spectra of the 3 near seyfert galaxies observed with the APEX Telescope. We have also found that one of the molecules is not at LTE conditions- H3O+ molecule. Whether radiatively pumped or maser enhanced, the emission of H3O+ is emerging from a different region from most other molecules (distributed in two molecular lobes seen as the two velocity components). H3O+ emission peaks close to the systemic velocity of the system, particularly clear in NGC 253, which suggest the emission to be centrally peaked towards the nuclear engine, It is common in the same kind of galaxies? In adition, preliminar conclusions show isotopic ratio 12C/13C in starburst galaxies is higher than nuclei of the Milky Way indicating that interestelar matter in starburst nuclei is less processed than in the nucleus of the Milky Way .There are two possible explanations for this effect in starburst, nucleosynthesis differences due stellar population history and acretion of matter from halo.

  17. [Molecular epidemiological analysis of HIV-1 in Kazakhstan in 2009-2013].

    PubMed

    Lapovok, I A; Laga, V Y; Kazennova, E V; Vasilyev, A V; Dzissyuk, N V; Utegenova, A K; Abishev, A T; Tukeev, M S; Bobkova, M R

    2015-01-01

    In this study pol gene analysis of 205 HIV-1 samples collected in Kazakhstan in 2009 and 2012-2013 was carried out. CRF02_AG variant is dominating in Almaty and actively circulates in East Kazakhstan Province. IDU-A variant is dominating in the rest of Kazakhstan. The data on low prevalence (3%) of HIV drug resistance mutations in native patients were obtained.

  18. Characterization of the myometrial transcriptome in women with an arrest of dilatation during labor

    PubMed Central

    Chaemsaithong, Piya; Madan, Ichchha; Romero, Roberto; Than, Nandor G; Tarca, Adi L; Draghici, Sorin; Bhatti, Gaurav; Mazor, Moshe; Kim, Chong Jai; Hassan, Sonia S; Chaiworapongsa, Tinnakorn

    2014-01-01

    Objective The molecular basis of failure to progress in labor is poorly understood. This study was undertaken to characterize the myometrial transcriptome of patients with an arrest of dilatation (AODIL). Study design Human myometrium was prospectively collected from women in the following groups: 1) spontaneous term labor (TL; n=29); and 2) arrest of dilatation (AODIL; n=14). Gene expression was characterized using Illumina® HumanHT-12 microarrays. A moderated student t-test and false discovery rate adjustment were used for analysis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of selected genes was performed in an independent sample set. Pathway analysis was performed on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database using Pathway Analysis with Down-weighting of Overlapping Genes (PADOG). The Metacore knowledge base was also mined for pathway analysis. Results 1) 42 genes differentially expressed were identified in women with an AODIL; 2) gene ontology analysis indicated enrichment of biological processes, which included: regulation of angiogenesis, response to hypoxia, inflammatory response, and chemokine-mediated signaling pathway. Enriched molecular functions included: transcription repressor activity, Heat shock protein (Hsp) 90 binding, and nitric oxide synthase (NOS) activity; 3) Metacore analysis identified immune response chemokine (C-C motif) ligand 2 (CCL2) signaling, muscle contraction regulation of eNOS activity in endothelial cells, and Triiodothyronine and Thyroxine signaling as significantly over-represented (FDR<0.05); 4) qRT-PCR confirmed overexpression of Nitric oxide synthase 3 NOS3; hypoxic ischemic factor (HIF1A), Chemokine (C-C motif) ligand 2 (CCL2); angiopoietin-like 4 (ANGPTL4), ADAM metallopeptidase with thrombospondin type 1, motif 9 (ADAMTS9), G protein-coupled receptor 4 (GPR4), metallothionein 1A (MT1A), MT2A, selectin E (SELE) in an AODIL. Conclusion The myometrium of women with arrest of dilatation have a stereotypic transcriptome profile. This disorder was associated with a pattern of gene expression involved in muscle contraction, an inflammatory response, and hypoxia. This is the first comprehensive and unbiased examination of the molecular basis of an AODIL. PMID:23893668

  19. Immunomodulatory activity of polysaccharides isolated from Alchornea cordifolia

    PubMed Central

    Kouakou, Koffi; Schepetkin, Igor A.; Yapi, Ahoua; Kirpotina, Liliya N.; Jutila, Mark A.; Quinn, Mark T.

    2013-01-01

    Ethnopharmacological relevance Extracts of leaves from different species of the genus Alchornea have been used for centuries to treat a variety of medicinal problems in tropical Africa. However, little is known about the high-molecular weight active components conferring therapeutic properties to these extracts. Objective The aim of this study was to evaluate the immunomodulatory activity of polysaccharides isolated from the leaves of Alchornea cordifolia. Materials and methods Water-soluble polysaccharides from leaves of A. cordifolia were extracted and fractionated by DEAE-cellulose, Diaion HP-20, and size-exclusion chromatography. Molecular weight, sugar analysis, and other physical and chemical characterization of the fractions were performed. Immunomodulatory activity of the polysaccharide fractions was evaluated by determining their ability to induce monocyte/macrophage nitric oxide (NO) and cytokine production. Activation of mitogen activated protein kinases (MAPK) was also assessed using a phospho-MAPK array. Activation of nuclear factor κB (NF-κB) was measured using an alkaline phosphatase reporter gene assay in THP1-Blue monocytic cells. Results Six polysaccharide fractions from A. cordifolia were isolated. Fractions containing type II arabinogalactan had potent immunomodulatory activity. Particularly, the parent fraction AP-AU and its high-molecular weight sub-fraction AP-AU1 (average Mr was estimated to be 39.5 kDa) induced production of NO and cytokines [interleukin (IL)-1β, -6, -10, tumor necrosis factor (TNF)-α, and granulocyte macrophage-colony stimulating factor (GM-CSF)] in human peripheral blood mononuclear cells and human and murine monocyte/macrophages cell lines in vitro. Furthermore, treatment with AP-AU1 induced phosphorylation of Akt2, p38δ/p38γ, p70S6K1, RSK2, and mTOR, as well as stimulation of NF-κB transcriptional activity. Conclusion Our results provide a molecular basis to explain a portion of the beneficial therapeutic properties of water extracts from A. cordifolia leaves in traditional folk medicine of Africa. PMID:23291534

  20. Immunomodulatory activity of polysaccharides isolated from Alchornea cordifolia.

    PubMed

    Kouakou, Koffi; Schepetkin, Igor A; Yapi, Ahoua; Kirpotina, Liliya N; Jutila, Mark A; Quinn, Mark T

    2013-03-07

    Extracts of leaves from different species of the genus Alchornea have been used for centuries to treat a variety of medicinal problems in tropical Africa. However, little is known about the high-molecular weight active components conferring therapeutic properties to these extracts. The aim of this study was to evaluate the immunomodulatory activity of polysaccharides isolated from the leaves of Alchornea cordifolia. Water-soluble polysaccharides from leaves of Alchornea cordifolia were extracted and fractionated by DEAE-cellulose, Diaion HP-20, and size-exclusion chromatography. Molecular weight, sugar analysis, and other physical and chemical characterization of the fractions were performed. Immunomodulatory activity of the polysaccharide fractions was evaluated by determining their ability to induce monocyte/macrophage nitric oxide (NO) and cytokine production. Activation of mitogen activated protein kinases (MAPK) was also assessed using a phospho-MAPK array. Activation of nuclear factor κB (NF-κB) was measured using an alkaline phosphatase reporter gene assay in THP1-Blue monocytic cells. Six polysaccharide fractions from Alchornea cordifolia were isolated. Fractions containing type II arabinogalactan had potent immunomodulatory activity. Particularly, the parent fraction AP-AU and its high-molecular weight sub-fraction AP-AU1 (average M(r) was estimated to be 39.5kDa) induced production of NO and cytokines [interleukin (IL)-1β, -6, -10, tumor necrosis factor (TNF)-α, and granulocyte-macrophage-colony stimulating factor (GM-CSF)] in human peripheral blood mononuclear cells and human and murine monocyte/macrophages cell lines in vitro. Furthermore, treatment with AP-AU1 induced phosphorylation of Akt2, p38δ/p38γ, p70S6K1, RSK2, and mTOR, as well as stimulation of NF-κB transcriptional activity. Our results provide a molecular basis to explain a portion of the beneficial therapeutic properties of water extracts from Alchornea cordifolia leaves in traditional folk medicine of Africa. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Synthesis and Surface-Specific Analysis of Molecular Constituents Relevant to Biogenic Secondary Organic Aerosol Material

    NASA Astrophysics Data System (ADS)

    Be, A. G.; Upshur, M. A.; Chase, H. M.; Geiger, F.; Thomson, R. J.

    2017-12-01

    Secondary organic aerosol (SOA) particles formed from the oxidation of biogenic volatile organic compounds (BVOCs) remain a principal, yet elusive, class of airborne particulate matter that impacts the Earth's radiation budget. Given the characteristic molecular complexity comprising biogenic SOA particles, chemical information selective to the gas-aerosol interface may be valuable in the investigation of such systems, as surface considerations likely dictate the phenomena driving particle evolution mechanisms and climate effects. In particular, cloud activation processes may be parameterized using the surface tension depression that coincides with partitioning of surface-active organic species to the gas-droplet interface. However, the extent to which surface chemical processes, such as cloud droplet condensation, are influenced by the chemical structure and reactivity of individual surface-active molecules in SOA particles is largely unknown. We seek to study terpene-derived organic species relevant to the surfaces of biogenic SOA particles via synthesis of putative oxidation products followed by analysis using surface-selective physicochemical measurements. Using dynamic surface tension measurements, considerable differences are observed in the surface tension depression of aqueous pendant droplets that contain synthetically prepared ozonolysis products derived from abundant terpene precursors. Furthermore, sum frequency generation spectroscopy is utilized for comparison of the surface vibrational spectral responses of synthesized reference compounds with those observed for laboratory aerosol toward probing the surface composition of SOA material. Such ongoing findings highlight the underlying importance of molecular structure and reactivity when considering the surface chemistry of biogenic terpene-derived atmospheric aerosols.

  2. Synthesis, crystal structure analysis, spectral investigations, DFT computations, Biological activities and molecular docking of methyl(2E)-2-{[N-(2-formylphenyl)(4-methylbenzene) sulfonamido]methyl}-3-(4-fluorophenyl)prop-2-enoate, a potential bioactive agent

    NASA Astrophysics Data System (ADS)

    Murugavel, S.; Vetri Velan, V.; Kannan, Damodharan; Bakthadoss, Manickam

    2016-03-01

    The title compound methyl(2E)-2-{[N-(2-formylphenyl) (4-methylbenzene)sulfonamido]methyl}-3-(4-fluorophenyl) prop-2-enoate (MFMSF) has been synthesized and single crystals were grown by slow evaporation solution growth technique at room temperature. The grown crystals were characterized by FTIR, 1H NMR, 13C NMR, and single crystal X-ray diffraction. In the crystal, molecules are linked by intermolecular C-H…O hydrogen bonds forming a two-dimensional supramolecular network along [110] direction. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311G (d,p) basis set in ground state and compared with the experimental data. The entire vibrational assignments of wave numbers were made on the basis of potential energy distribution (PED) by VEDA 4 programme. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. In addition, NLO, MEP, Mulliken, thermodynamic properties, HOMO and LUMO energy gap were theoretically predicted. The global chemical reactivity descriptors are calculated for MFMSF and used to predict their relative stability and reactivity. The antibacterial activity of the compound was also tested against various pathogens. The molecular docking studies concede that title compound may exhibit PBP-2X inhibitor activity.

  3. Interdisciplinary Research for Undergraduates at the Center for Great Lakes Studies.

    ERIC Educational Resources Information Center

    Nealson, Kenneth H.

    1988-01-01

    Describes a research program that has active areas of research ranging from hydrology, water chemistry, geology, gene cloning, satellite image analysis and remote sensing, and molecular biology. Provides information on selection procedures, design of program, benefits, and names of participants. (RT)

  4. Conformational, spectroscopic and nonlinear optical properties of biologically active N,N-dimethyltryptamine molecule: A theoretical study

    NASA Astrophysics Data System (ADS)

    Öner, Nazmiye; Tamer, Ömer; Avcı, Davut; Atalay, Yusuf

    2014-12-01

    The effective psychoactive properties of N,N-dimethyltryptamine (DMT) known as the near-death molecule have encouraged the imagination of many research disciplines for several decades. Although there is no theoretical study, a number of paper composed by experimental techniques have been reported for DMT molecule. In this study, the molecular modeling of DMT was carried out using B3LYP and HSEh1PBE levels of density functional theory (DFT). Our calculations showed that the energy gap between HOMO and LUMO is low, demonstrating that DMT is a biologically active molecule. Large hyperconjugation interaction energies imply that molecular charge transfer occurs in DMT. Moreover, NLO analysis indicates that DMT can be used an effective NLO material.

  5. Antioxidant and antibacterial activities of polysaccharides isolated and purified from Diaphragma juglandis fructus.

    PubMed

    Meng, Qingran; Li, Yinghao; Xiao, Tiancun; Zhang, Lianfu; Xu, Dan

    2017-12-01

    A water-soluble polysaccharide fraction (DJP-2) isolated from Diaphragma juglandis was successfully purified by ion-exchange chromatography (DEAE-cellulose) and gel-permeation chromatography (Sephadex G-100). The weight-average molecular weight (Mw) and number-average molecular weight (Mn) of DJP-2 were 4.95 and 3.99kDa, respectively. Monosaccharide component analysis indicated that DJP-2 comprised arabinose, galactose, glucose, xylose, and mannose in a molar ratio of 0.27:0.55:1:0.14:0.08. The evaluation of the antioxidant and antibacterial activities of polysaccharides from Diaphragma juglandis fructus indicated that they could be explored as promising natural antioxidant and bacteriostatic agents in the food and pharmaceutical industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Molecular dynamics simulation analysis of Focal Adhesive Kinase (FAK) docked with solanesol as an anti-cancer agent

    PubMed Central

    Daneial, Betty; Joseph, Jacob Paul Vazhappilly; Ramakrishna, Guruprasad

    2017-01-01

    Focal adhesion kinase (FAK) plays a primary role in regulating the activity of many signaling molecules. Increased FAK expression has been associated in a series of cellular processes like cell migration and survival. FAK inhibition by an anti cancer agent is critical. Therefore, it is of interest to identify, modify, design, improve and develop molecules to inhibit FAK. Solanesol is known to have inhibitory activity towards FAK. However, the molecular principles of its binding with FAK is unknown. Solanesol is a highly flexible ligand (25 rotatable bonds). Hence, ligand-protein docking was completed using AutoDock with a modified contact based scoring function. The FAK-solanesol complex model was further energy minimized and simulated in GROMOS96 (53a6) force field followed by post simulation analysis such as Root mean square deviation (RMSD), root mean square fluctuations (RMSF) and solvent accessible surface area (SASA) calculations to explain solanesol-FAK binding. PMID:29081606

  7. Existence of Inverted Profile in Chemically Responsive Molecular Pathways in the Zebrafish Liver

    PubMed Central

    Zhang, Xun; Li, Hu; Ma, Jing; Zhang, Louxin; Li, Baowen; Gong, Zhiyuan

    2011-01-01

    How a living organism maintains its healthy equilibrium in response to endless exposure of potentially harmful chemicals is an important question in current biology. By transcriptomic analysis of zebrafish livers treated by various chemicals, we defined hubs as molecular pathways that are frequently perturbed by chemicals and have high degree of functional connectivity to other pathways. Our network analysis revealed that these hubs were organized into two groups showing inverted functionality with each other. Intriguingly, the inverted activity profiles in these two groups of hubs were observed to associate only with toxicopathological states but not with physiological changes. Furthermore, these inverted profiles were also present in rat, mouse, and human under certain toxicopathological conditions. Thus, toxicopathological-associated anti-correlated profiles in hubs not only indicate their potential use in diagnosis but also development of systems-based therapeutics to modulate gene expression by chemical approach in order to rewire the deregulated activities of hubs back to normal physiology. PMID:22140468

  8. Molecular dynamics simulation analysis of Focal Adhesive Kinase (FAK) docked with solanesol as an anti-cancer agent.

    PubMed

    Daneial, Betty; Joseph, Jacob Paul Vazhappilly; Ramakrishna, Guruprasad

    2017-01-01

    Focal adhesion kinase (FAK) plays a primary role in regulating the activity of many signaling molecules. Increased FAK expression has been associated in a series of cellular processes like cell migration and survival. FAK inhibition by an anti cancer agent is critical. Therefore, it is of interest to identify, modify, design, improve and develop molecules to inhibit FAK. Solanesol is known to have inhibitory activity towards FAK. However, the molecular principles of its binding with FAK is unknown. Solanesol is a highly flexible ligand (25 rotatable bonds). Hence, ligand-protein docking was completed using AutoDock with a modified contact based scoring function. The FAK-solanesol complex model was further energy minimized and simulated in GROMOS96 (53a6) force field followed by post simulation analysis such as Root mean square deviation (RMSD), root mean square fluctuations (RMSF) and solvent accessible surface area (SASA) calculations to explain solanesol-FAK binding.

  9. A novel integrated framework and improved methodology of computer-aided drug design.

    PubMed

    Chen, Calvin Yu-Chian

    2013-01-01

    Computer-aided drug design (CADD) is a critical initiating step of drug development, but a single model capable of covering all designing aspects remains to be elucidated. Hence, we developed a drug design modeling framework that integrates multiple approaches, including machine learning based quantitative structure-activity relationship (QSAR) analysis, 3D-QSAR, Bayesian network, pharmacophore modeling, and structure-based docking algorithm. Restrictions for each model were defined for improved individual and overall accuracy. An integration method was applied to join the results from each model to minimize bias and errors. In addition, the integrated model adopts both static and dynamic analysis to validate the intermolecular stabilities of the receptor-ligand conformation. The proposed protocol was applied to identifying HER2 inhibitors from traditional Chinese medicine (TCM) as an example for validating our new protocol. Eight potent leads were identified from six TCM sources. A joint validation system comprised of comparative molecular field analysis, comparative molecular similarity indices analysis, and molecular dynamics simulation further characterized the candidates into three potential binding conformations and validated the binding stability of each protein-ligand complex. The ligand pathway was also performed to predict the ligand "in" and "exit" from the binding site. In summary, we propose a novel systematic CADD methodology for the identification, analysis, and characterization of drug-like candidates.

  10. Eco-friendly synthesis, in vitro anti-proliferative evaluation, and 3D-QSAR analysis of a novel series of monocationic 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazole mesylates.

    PubMed

    Racané, Livio; Ptiček, Lucija; Sedić, Mirela; Grbčić, Petra; Kraljević Pavelić, Sandra; Bertoša, Branimir; Sović, Irena; Karminski-Zamola, Grace

    2018-04-17

    Herein, we describe the synthesis of twenty-one novel water-soluble monocationic 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazole mesylates 3a-3u and present the results of their anti-proliferative assays. Efficient syntheses were achieved by three complementary simple two-step synthetic protocols based on the condensation reaction of aryl/heteroaryl carbaldehydes or carboxylic acid. We developed an eco-friendly synthetic protocol using glycerol as green solvent, particularly appropriate for the condensation of thermally and acid-sensitive heterocycles such as furan, benzofuran, pyrrole, and indole. Screening of anti-proliferative activity was performed on four human tumour cell lines in vitro including pancreatic cancer (CFPAC-1), metastatic colon cancer (SW620), hepatocellular carcinoma (HepG2), and cervical cancer (HeLa), as well as in normal human fibroblast cell lines. All tested compounds showed strong to moderate anti-proliferative activity on tested cell lines depending on the structure containing aryl/heteroaryl moiety coupled to 6-(2-imidazolinyl)benzothiazole moiety. The most potent cytostatic effects on all tested cell lines with [Formula: see text] values ranging from 0.1 to 3.70 [Formula: see text] were observed for benzothiazoles substituted with naphthalene-2-yl 3c, benzofuran-2-yl 3e, indole-3-yl 3j, indole-2-yl 3k, quinoline-2-yl 3s, and quinoline-3-yl 3t and derivatives substituted with phenyl 3a, naphthalene-1-yl 3b, benzothiazole-2-yl 3g, benzothiazole-6-yl 3h, N-methylindole-3-yl 3l, benzimidazole-2-yl 3n, benzimidazole-5(6)-yl 3o, and quinolone-4-yl 3u with [Formula: see text] values ranging from 1.1 to 29.1 [Formula: see text]. Based on obtained anti-proliferative activities, 3D-QSAR models for five cell lines were derived. Molecular volume, molecular surface, the sum of hydrophobic surface areas, molecular mass, and possibility of making dispersion forces were identified by QSAR analyses as molecular properties that are positively correlated with anti-proliferative activity, while compound's capability to accept H-bond was identified as a negatively correlated property. Comparison of molecular properties identified for different cell lines enabled assumptions about similarity of mode of action through which anti-proliferative activities against different cell lines are accomplished. Novel compounds that are predicted to have enhanced activities in comparison with herein presented ones were designed using 3D-QSAR analysis as guideline.

  11. GEAR: genomic enrichment analysis of regional DNA copy number changes.

    PubMed

    Kim, Tae-Min; Jung, Yu-Chae; Rhyu, Mun-Gan; Jung, Myeong Ho; Chung, Yeun-Jun

    2008-02-01

    We developed an algorithm named GEAR (genomic enrichment analysis of regional DNA copy number changes) for functional interpretation of genome-wide DNA copy number changes identified by array-based comparative genomic hybridization. GEAR selects two types of chromosomal alterations with potential biological relevance, i.e. recurrent and phenotype-specific alterations. Then it performs functional enrichment analysis using a priori selected functional gene sets to identify primary and clinical genomic signatures. The genomic signatures identified by GEAR represent functionally coordinated genomic changes, which can provide clues on the underlying molecular mechanisms related to the phenotypes of interest. GEAR can help the identification of key molecular functions that are activated or repressed in the tumor genomes leading to the improved understanding on the tumor biology. GEAR software is available with online manual in the website, http://www.systemsbiology.co.kr/GEAR/.

  12. Docking, molecular dynamics and quantitative structure-activity relationship studies for HEPTs and DABOs as HIV-1 reverse transcriptase inhibitors.

    PubMed

    Mao, Yating; Li, Yan; Hao, Ming; Zhang, Shuwei; Ai, Chunzhi

    2012-05-01

    As a key component in combination therapy for acquired immunodeficiency syndrome (AIDS), non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been proven to be an essential way in stopping HIV-1 replication. In the present work, in silico studies were conducted on a series of 119 NNRTIs, including 1-(2-hydroxyethoxymethyl)-6-(phenylthio)thymine (HEPT) and dihydroalkoxybenzyloxopyrimidine (DABO) derivatives by using the comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), docking simulations and molecular dynamics (MD). The statistical results of the optimal model, the ligand-based CoMSIA one (Q(2) = 0.48, R(ncv)(2) =0.847, R(pre)(2) = 0.745) validates its satisfactory predictive capacity both internally and externally. The contour maps, docking and MD results correlate well with each other, drawing conclusions as follows: 1) Compounds with bulky substituents in position-6 of ring A, hydrophobic groups around position- 1, 2, 6 are preferable to the biological activities; 2) Two hydrogen bonds between RT inhibitor and the Tyr 318, Lys 101 residues, respectively, and a π-π bond between the inhibitor and Trp 188 are formed and crucial to the orientation of the active conformation of the molecules; 3) The binding pocket is essentially hydrophobic, which are determined by residues such as Trp 229, Tyr 318, Val 179, Tyr 188 and Val 108, and hydrophobic substituents may bring an improvement to the biological activity; 4) DABO and HEPT derivatives have different structures but take a similar mechanism to inhibit RT. The potency difference between two isomers in HEPTs can be explained by the distinct locations of the 6-naphthylmethyl substituent and the reasons are explained in details. All these results could be employed to alter the structural scaffold in order to develop new HIV-1 RT inhibitors that have an improved biological property. To the best of our knowledge, this is the first report on 3D-QSAR modeling of this series of HEPT and DABO NNRTs. The QSAR model and the information derived, we hope, will be of great help in presenting clear guidelines and accurate activity predictions for newly designed HIV-1 reverse transcriptase (RT) inhibitor.

  13. Combined 3D-QSAR and molecular docking study on 7,8-dialkyl-1,3-diaminopyrrolo-[3,2-f] Quinazoline series compounds to understand the binding mechanism of DHFR inhibitors

    NASA Astrophysics Data System (ADS)

    Aouidate, Adnane; Ghaleb, Adib; Ghamali, Mounir; Chtita, Samir; Choukrad, M'barek; Sbai, Abdelouahid; Bouachrine, Mohammed; Lakhlifi, Tahar

    2017-07-01

    A series of nineteen DHFR inhibitors was studied based on the combination of two computational techniques namely, three-dimensional quantitative structure activity relationship (3D-QSAR) and molecular docking. The comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) were developed using 19 molecules having pIC50 ranging from 9.244 to 5.839. The best CoMFA and CoMSIA models show conventional determination coefficients R2 of 0.96 and 0.93 as well as the Leave One Out cross-validation determination coefficients Q2 of 0.64 and 0.72, respectively. The predictive ability of those models was evaluated by the external validation using a test set of five compounds with predicted determination coefficients R2test of 0.92 and 0.94, respectively. The binding mode between this kind of compounds and the DHFR enzyme in addition to the key amino acid residues were explored by molecular docking simulation. Contour maps and molecular docking identified that the R1 and R2 natures at the pyrazole moiety are the important features for the optimization of the binding affinity to the DHFR receptor. According to the good concordance between the CoMFA/CoMSIA contour maps and docking results, the obtained information was explored to design novel molecules.

  14. Insight into the reactive properties of newly synthesized 1,2,4-triazole derivative by combined experimental (FT-IR and FR-Raman) and theoretical (DFT and MD) study

    NASA Astrophysics Data System (ADS)

    Mary, Y. Sheena; Al-Omary, Fatmah A. M.; Mostafa, Gamal A. E.; El-Emam, Ali A.; Manjula, P. S.; Sarojini, B. K.; Narayana, B.; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.

    2017-08-01

    The vibrational spectral analysis has been carried out on 4-[(E)-(4-hydroxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione (HBAMTT) in order explore the chemical and pharmacological properties. The most important reactive sites have been identified employing molecular electrostatic potential map. Nonlinear optical properties are identified and the first hyperpolarizability is 80.35 times that of urea, which is standard NLO material. The molecular activity is studied from the dislocation of the frontier molecular orbitals and NBO analysis is carried to gain an insight into the charge transfer within the molecular system. Using molecular electrostatic potential map, the electrophilic and nucleophilic sites are identified. Title molecule was further investigated from the aspect of local reactivity properties by calculations of average local ionization energies (ALIE) and Fukui functions. Vulnerability towards autoxidation and hydrolysis mechanisms has been assessed thanks to the calculations of bond dissociation energies (BDE) and radial distribution functions (RDF), respectively. This information was also valuable for the initial investigation of degradation properties of the title molecule. Thanks to the molecular docking studies, it can be concluded that docked ligand forms a stable complex with AChE and could be used as a new drug for the Alzheimer's disease, myasthenia gravis and glaucoma.

  15. Discovery of functional interactions among actin regulators by analysis of image fluctuations in an unperturbed motile cell system.

    PubMed

    Isogai, Tadamoto; Danuser, Gaudenz

    2018-05-26

    Cell migration is driven by propulsive forces derived from polymerizing actin that pushes and extends the plasma membrane. The underlying actin network is constantly undergoing adaptation to new mechano-chemical environments and intracellular conditions. As such, mechanisms that regulate actin dynamics inherently contain multiple feedback loops and redundant pathways. Given the highly adaptable nature of such a system, studies that use only perturbation experiments (e.g. knockdowns, overexpression, pharmacological activation/inhibition, etc.) are challenged by the nonlinearity and redundancy of the pathway. In these pathway configurations, perturbation experiments at best describe the function(s) of a molecular component in an adapting (e.g. acutely drug-treated) or fully adapted (e.g. permanent gene silenced) cell system, where the targeted component now resides in a non-native equilibrium. Here, we propose how quantitative live-cell imaging and analysis of constitutive fluctuations of molecular activities can overcome these limitations. We highlight emerging actin filament barbed-end biology as a prime example of a complex, nonlinear molecular process that requires a fluctuation analytic approach, especially in an unperturbed cellular system, to decipher functional interactions of barbed-end regulators, actin polymerization and membrane protrusion.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  16. Proteome-wide prediction of targets for aspirin: new insight into the molecular mechanism of aspirin

    PubMed Central

    Dai, Shao-Xing; Li, Wen-Xing

    2016-01-01

    Besides its anti-inflammatory, analgesic and anti-pyretic properties, aspirin is used for the prevention of cardiovascular disease and various types of cancer. The multiple activities of aspirin likely involve several molecular targets and pathways rather than a single target. Therefore, systematic identification of these targets of aspirin can help us understand the underlying mechanisms of the activities. In this study, we identified 23 putative targets of aspirin in the human proteome by using binding pocket similarity detecting tool combination with molecular docking, free energy calculation and pathway analysis. These targets have diverse folds and are derived from different protein family. However, they have similar aspirin-binding pockets. The binding free energy with aspirin for newly identified targets is comparable to that for the primary targets. Pathway analysis revealed that the targets were enriched in several pathways such as vascular endothelial growth factor (VEGF) signaling, Fc epsilon RI signaling and arachidonic acid metabolism, which are strongly involved in inflammation, cardiovascular disease and cancer. Therefore, the predicted target profile of aspirin suggests a new explanation for the disease prevention ability of aspirin. Our findings provide a new insight of aspirin and its efficacy of disease prevention in a systematic and global view. PMID:26989626

  17. Proteome-wide prediction of targets for aspirin: new insight into the molecular mechanism of aspirin.

    PubMed

    Dai, Shao-Xing; Li, Wen-Xing; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    Besides its anti-inflammatory, analgesic and anti-pyretic properties, aspirin is used for the prevention of cardiovascular disease and various types of cancer. The multiple activities of aspirin likely involve several molecular targets and pathways rather than a single target. Therefore, systematic identification of these targets of aspirin can help us understand the underlying mechanisms of the activities. In this study, we identified 23 putative targets of aspirin in the human proteome by using binding pocket similarity detecting tool combination with molecular docking, free energy calculation and pathway analysis. These targets have diverse folds and are derived from different protein family. However, they have similar aspirin-binding pockets. The binding free energy with aspirin for newly identified targets is comparable to that for the primary targets. Pathway analysis revealed that the targets were enriched in several pathways such as vascular endothelial growth factor (VEGF) signaling, Fc epsilon RI signaling and arachidonic acid metabolism, which are strongly involved in inflammation, cardiovascular disease and cancer. Therefore, the predicted target profile of aspirin suggests a new explanation for the disease prevention ability of aspirin. Our findings provide a new insight of aspirin and its efficacy of disease prevention in a systematic and global view.

  18. Evaluation and Utilization as a Public Health Tool of a National Molecular Epidemiological Tuberculosis Outbreak Database within the United Kingdom from 1997 to 2001

    PubMed Central

    Drobniewski, F. A.; Gibson, A.; Ruddy, M.; Yates, M. D.

    2003-01-01

    The aim of this study was to develop a national model and analyze the value of a molecular epidemiological Mycobacterium tuberculosis DNA fingerprint-outbreak database. Incidents were investigated by the United Kingdom PHLS Mycobacterium Reference Unit (MRU) from June 1997 to December 2001, inclusive. A total of 124 incidents involving 972 tuberculosis cases, including 520 patient cultures from referred incidents and 452 patient cultures related to two population studies, were examined by using restriction fragment length polymorphism IS6110 fingerprinting and rapid epidemiological typing. Investigations were divided into the following three categories, reflecting different operational strategies: retrospective passive analysis, retrospective active analysis, and retrospective prospective analysis. The majority of incidents were in the retrospective passive analysis category, i.e., the individual submitting isolates has a suspicion they may be linked. Outbreaks were examined in schools, hospitals, farms, prisons, and public houses, and laboratory cross-contamination events and unusual clinical presentations were investigated. Retrospective active analysis involved a major outbreak centered on a high school. Contact tracing of a teenager with smear-positive pulmonary tuberculosis matched 14 individuals, including members of his class, and another 60 cases were identified in schools clinically and radiologically and by skin testing. Retrospective prospective analysis involved an outbreak of 94 isoniazid-resistant tuberculosis cases in London, United Kingdom, that began after cases were identified at one hospital in January 2000. Contact tracing and comparison with MRU databases indicated that the earliest matched case had occurred in 1995. Subsequently, the MRU changed to an active prospective analysis targeting linked isoniazid-monoresistant isolates for follow up. The patients were multiethnic, born mainly in the United Kingdom, and included professionals, individuals from the music industry, intravenous drug abusers, and prisoners. PMID:12734218

  19. Evaluation and utilization as a public health tool of a national molecular epidemiological tuberculosis outbreak database within the United Kingdom from 1997 to 2001.

    PubMed

    Drobniewski, F A; Gibson, A; Ruddy, M; Yates, M D

    2003-05-01

    The aim of this study was to develop a national model and analyze the value of a molecular epidemiological Mycobacterium tuberculosis DNA fingerprint-outbreak database. Incidents were investigated by the United Kingdom PHLS Mycobacterium Reference Unit (MRU) from June 1997 to December 2001, inclusive. A total of 124 incidents involving 972 tuberculosis cases, including 520 patient cultures from referred incidents and 452 patient cultures related to two population studies, were examined by using restriction fragment length polymorphism IS6110 fingerprinting and rapid epidemiological typing. Investigations were divided into the following three categories, reflecting different operational strategies: retrospective passive analysis, retrospective active analysis, and retrospective prospective analysis. The majority of incidents were in the retrospective passive analysis category, i.e., the individual submitting isolates has a suspicion they may be linked. Outbreaks were examined in schools, hospitals, farms, prisons, and public houses, and laboratory cross-contamination events and unusual clinical presentations were investigated. Retrospective active analysis involved a major outbreak centered on a high school. Contact tracing of a teenager with smear-positive pulmonary tuberculosis matched 14 individuals, including members of his class, and another 60 cases were identified in schools clinically and radiologically and by skin testing. Retrospective prospective analysis involved an outbreak of 94 isoniazid-resistant tuberculosis cases in London, United Kingdom, that began after cases were identified at one hospital in January 2000. Contact tracing and comparison with MRU databases indicated that the earliest matched case had occurred in 1995. Subsequently, the MRU changed to an active prospective analysis targeting linked isoniazid-monoresistant isolates for follow up. The patients were multiethnic, born mainly in the United Kingdom, and included professionals, individuals from the music industry, intravenous drug abusers, and prisoners.

  20. Rational design and validation of a vanilloid-sensitive TRPV2 ion channel

    PubMed Central

    Yang, Fan; Vu, Simon; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2016-01-01

    Vanilloids activation of TRPV1 represents an excellent model system of ligand-gated ion channels. Recent studies using cryo-electron microcopy (cryo-EM), computational analysis, and functional quantification revealed the location of capsaicin-binding site and critical residues mediating ligand-binding and channel activation. Based on these new findings, here we have successfully introduced high-affinity binding of capsaicin and resiniferatoxin to the vanilloid-insensitive TRPV2 channel, using a rationally designed minimal set of four point mutations (F467S–S498F–L505T–Q525E, termed TRPV2_Quad). We found that binding of resiniferatoxin activates TRPV2_Quad but the ligand-induced open state is relatively unstable, whereas binding of capsaicin to TRPV2_Quad antagonizes resiniferatoxin-induced activation likely through competition for the same binding sites. Using Rosetta-based molecular docking, we observed a common structural mechanism underlying vanilloids activation of TRPV1 and TRPV2_Quad, where the ligand serves as molecular “glue” that bridges the S4–S5 linker to the S1–S4 domain to open these channels. Our analysis revealed that capsaicin failed to activate TRPV2_Quad likely due to structural constraints preventing such bridge formation. These results not only validate our current working model for capsaicin activation of TRPV1 but also should help guide the design of drug candidate compounds for this important pain sensor. PMID:27298359

  1. Comparative Analysis of Transcriptomes of Macrophage Revealing the Mechanism of the Immunoregulatory Activities of a Novel Polysaccharide Isolated from Boletus speciosus Frost.

    PubMed

    Ding, Xiang; Zhu, Hongqing; Hou, Yiling; Hou, Wanru; Zhang, Nan; Fu, Lei

    2017-01-01

    The mechanism of the immunoregulatory activities of polysaccharide is still not clear. Here, we performed the B-cell, T-cell, and macrophage cell proliferation, the cell cycle analysis of macrophage cells, sequenced the transcriptomes of control group macrophages, and Boletus speciosus Frost polysaccharide (BSF-1) group macrophages using Illumina sequencing technology to identify differentially expressed genes (DEGs) to determine the molecular mechanisms of immunomodulatory activity of BSF-1 in macrophages. These results suggested that BSF-1 could promote the proliferation of B-cell, T-cell, and macrophages, promote the proliferation of macrophage cells by abolishing cell cycle arrests in the G0/G1 phases, and promote cell cycle progression in S-phase and G2/M phase, which might induce cell division. A total of 12,498,414 and 11,840,624 bp paired-end reads were obtained for the control group and BSF-1 group, respectively, and they corresponded to a total size of 12.5 G bp and 11.8 G bp, respectively, after the low-quality reads and adapter sequences were removed. Approximately 81.83% of the total number of genes (8,257) were expressed reads per kilobase per million mapped reads (RPKM ≥1) and more than 1366 genes were highly expressed (RPKM >60) in the BSF-1 group. A gene ontology-enrichment analysis generated 13,042 assignments to cellular components, 13,094 assignments to biological processes, and 13,135 assignments to molecular functions. A Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the mitogen-activated protein kinase (MAPK) signaling pathways are significantly enriched for DEGs between the two cell groups. An analysis of transcriptome resources enabled us to examine gene expression profiles, verify differential gene expression, and select candidate signaling pathways as the mechanisms of the immunomodulatory activity of BSF-1. Based on the experimental data, we believe that the significant antitumor activities of BSF-1 in vivo mainly involve the MAPK signaling pathways. Boletus speciosus Frost-1 (BSF-1) could promote the proliferation of B-cell, T-cell, and macrophages, promote the proliferation of macrophage cells by abolishing cell cycle arrests in the G0/G1 phases, and promote cell cycle progression in S-phase and G2/M phase, which might induce cell divisionApproximately 81.83% of the total number of genes (8257) were expressed (reads per kilobase per million mapped reads [RPKM] =1) and more than 1366 genes were highly expressed (RPKM >60) in the BSF-1 groupA gene ontology-enrichment analysis generated 13,042 assignments to cellular components, 13,094 assignments to biological processes, and 13,135 assignments to molecular functionsA Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the mitogen-activated protein kinase signaling pathways are significantly enriched for DEGs between the two cell groups. Abbreviations used: BSF-1: Boletus speciosus Frost polysaccharide.

  2. Modeling corrosion inhibition efficacy of small organic molecules as non-toxic chromate alternatives using comparative molecular surface analysis (CoMSA).

    PubMed

    Fernandez, Michael; Breedon, Michael; Cole, Ivan S; Barnard, Amanda S

    2016-10-01

    Traditionally many structural alloys are protected by primer coatings loaded with corrosion inhibiting additives. Strontium Chromate (or other chromates) have been shown to be extremely effectively inhibitors, and find extensive use in protective primer formulations. Unfortunately, hexavalent chromium which imbues these coatings with their corrosion inhibiting properties is also highly toxic, and their use is being increasingly restricted by legislation. In this work we explore a novel tridimensional Quantitative-Structure Property Relationship (3D-QSPR) approach, comparative molecular surface analysis (CoMSA), which was developed to recognize "high-performing" corrosion inhibitor candidates from the distributions of electronegativity, polarizability and van der Waals volume on the molecular surfaces of 28 small organic molecules. Multivariate statistical analysis identified five prototypes molecules, which are capable of explaining 71% of the variance within the inhibitor data set; whilst a further five molecules were also identified as archetypes, describing 75% of data variance. All active corrosion inhibitors, at a 80% threshold, were successfully recognized by the CoMSA model with adequate specificity and precision higher than 70% and 60%, respectively. The model was also capable of identifying structural patterns, that revealed reasonable starting points for where structural changes may augment corrosion inhibition efficacy. The presented methodology can be applied to other functional molecules and extended to cover structure-activity studies in a diverse range of areas such as drug design and novel material discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Prior knowledge guided active modules identification: an integrated multi-objective approach.

    PubMed

    Chen, Weiqi; Liu, Jing; He, Shan

    2017-03-14

    Active module, defined as an area in biological network that shows striking changes in molecular activity or phenotypic signatures, is important to reveal dynamic and process-specific information that is correlated with cellular or disease states. A prior information guided active module identification approach is proposed to detect modules that are both active and enriched by prior knowledge. We formulate the active module identification problem as a multi-objective optimisation problem, which consists two conflicting objective functions of maximising the coverage of known biological pathways and the activity of the active module simultaneously. Network is constructed from protein-protein interaction database. A beta-uniform-mixture model is used to estimate the distribution of p-values and generate scores for activity measurement from microarray data. A multi-objective evolutionary algorithm is used to search for Pareto optimal solutions. We also incorporate a novel constraints based on algebraic connectivity to ensure the connectedness of the identified active modules. Application of proposed algorithm on a small yeast molecular network shows that it can identify modules with high activities and with more cross-talk nodes between related functional groups. The Pareto solutions generated by the algorithm provides solutions with different trade-off between prior knowledge and novel information from data. The approach is then applied on microarray data from diclofenac-treated yeast cells to build network and identify modules to elucidate the molecular mechanisms of diclofenac toxicity and resistance. Gene ontology analysis is applied to the identified modules for biological interpretation. Integrating knowledge of functional groups into the identification of active module is an effective method and provides a flexible control of balance between pure data-driven method and prior information guidance.

  4. Electro-activation of sweet defatted whey: Impact on the induced Maillard reaction products and bioactive peptides.

    PubMed

    Kareb, Ourdia; Gomaa, Ahmed; Champagne, Claude P; Jean, Julie; Aïder, Mohammed

    2017-04-15

    Electro-activation was used to add value to sweet defatted whey. This study aimed to investigate and to characterize the bioactive compounds formed under different electro-activation conditions by molecular and proteomic approaches. The effects of electric current intensity (400, 500 or 600mA) and whey concentration (7, 14 or 21% (w/v)) as a function of the electro-activation time (0, 15, 30 or 45min) were evaluated. The targeted dependent variables were the formation of Maillard reaction products (MRPs), protein hydrolysates and glycated compounds. It was shown that the MRPs derived from electro-activated whey at a concentration of 14% had the highest potential of biological activity. SDS-PAGE analyses indicated the formation of hydrolysates and glycated compounds with different molecular weight distributions. FTIR indicated the predominance of intermediate MRPs, such as the Schiff base compounds. LC-MS/MS and proteomics analysis showed the production of multi-functional bioactive peptides due to the hydrolysis of whey proteins. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  5. [Screening of anti-aging active ingredients and mechanism analysis based on molecular docking technology].

    PubMed

    Du, Ran-Feng; Zhang, Xiao-Hua; Ye, Xiao-Tong; Yu, Wen-Kang; Wang, Yun

    2016-07-01

    Dampness evil is the source of all diseases, which is easy to cause disease and promote aging, while aging could also promote the occurence and development of diseases. In this paper, the relationship between the dampness evil and aging would be discussed, to find the anti-aging active ingredients in traditional Chinese medicine (TCM), and analyze the anti-aging mechanism of dampness eliminating drug. Molecular docking technology was used, with aging-related mammalian target of rapamycin as the docking receptors, and chemical components of Fuling, Sangzhi, Mugua, Yiyiren and Houpo as the docking molecules, to preliminarily screen the anti-aging active ingredients in dampness eliminating drug. Through the comparison with active drugs already on the market (temsirolimus and everolimus), 12 kinds of potential anti-aging active ingredients were found, but their drug gability still needs further study. The docking results showed that various components in the dampness eliminating drug can play anti-aging activities by acting on mammalian target of rapamycin. This result provides a new thought and direction for the method of delaying aging by eliminating dampness. Copyright© by the Chinese Pharmaceutical Association.

  6. Extraction, characterization and antioxidant activities of Se-enriched tea polysaccharides.

    PubMed

    Wang, Yuanfeng; Li, Yongfu; Liu, Yangyang; Chen, Xueqing; Wei, Xinlin

    2015-01-01

    Se-polysaccharides from Se-enriched tea leaves were purified by DEAE-sepharose fast flow gel column (2.5×60cm) and three polysaccharide fractions (Se-TPS1, Se-TPS2, and Se-TPS3) were isolated and purified with yields of 6.5, 37.14, and 8.57%, respectively. The average sizes of Se-TPS1 and Se-TPS2 were determined by HPGPC system, with molecular weights of 1.1×10(5) and 2.4×10(5)Da, respectively. Se-TPS3 was a polysaccharide polymer with two peaks with molecular weights of 9.2×10(5) and 2.5×10(5)Da. Monosaccharide components analysis by ion chromatography revealed Se-polysaccharides were acidic polysaccharoses and different from each other in monosaccharide kinds and molar ratio. Elements of Se, C, H, N, S, and 14 kinds of mineral elements were analyzed by AFS, EA, and ICP-AES, respectively. Spectral analysis (IR and UV) indicated Se-polysaccharides were typical glycoproteins. Morphological analyses of the samples were determined by SEM and AFM. In addition, the DPPH and superoxide radicals scavenging activities were also discussed to assess antioxidant activities of the samples, and Se-polysaccharides showed higher antioxidant activities compared to the ordinary polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Isolation and molecular characterization of thermostable phytase from Bacillus subtilis (BSPhyARRMK33).

    PubMed

    Reddy, Chinreddy Subramanyam; Achary, V Mohan Murali; Manna, Mrinalini; Singh, Jitender; Kaul, Tanushri; Reddy, Malireddy K

    2015-03-01

    The thermostable phytase gene was isolated from Bacillus subtilis ARRMK33 (BsPhyARRMK33). The gene has an ORF of 1152 bp and that encodes a protein of 383 amino acids. Sequence analysis showed high homology with Bacillus sp. phytase proteins, but no similarity was found with other phytases. SDS-PAGE analysis exhibited a predicted molecular mass of 42 kDa. Homology modeling of BsPhyARRMK33 protein based on Bacillus amyloliquefaciens crystal structure disclosed its β-propeller structure. BsPhyARRMK33 recombinant plasmid in pET-28a(+) was expressed in Rosetta gami B DE3 cells and the maximum phytase activity 15.3 U mg(-1) obtained. The enzyme exhibits high thermostability at various temperatures and broad pH ranges. The recombinant protein retained 74% of its original activity after incubation at 95 °C for 10 min. In the presence of Ca(2+), the recombinant phytase activity was maximal where as it was inhibited by EDTA. The optimal pH and temperature for the recombinant phytase activity is achieved at 7.0 and 55 °C, respectively. Thermostable nature and wide range of pH are promising features of recombinant BsPhyARRMK33 protein that may be employed as an efficient alternative to commercially known phytases and thereby alleviate environmental eutrophication.

  8. Isolation of circulating tumor cells by immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS) for molecular profiling.

    PubMed

    Magbanua, Mark Jesus M; Park, John W

    2013-12-01

    Circulating tumor cells (CTCs) are cells shed by the primary tumor into the blood stream capable of initiating distant metastasis. In the past decade, numerous assays have been developed to reliably detect these extremely rare cells. However, methods for purification of CTCs with little or no contamination of normal blood cells for molecular profiling are limited. We have developed a novel protocol to isolate CTCs by combining immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS). The two-part assay includes (1) immunomagnetic capture using magnetic beads conjugated to monoclonal antibody against an epithelial cell adhesion marker (EpCAM) to enrich for tumor cells; and (2) FACS analysis using EpCAM to purify tumor cells away from mononuclear cells of hematopoietic lineage. Downstream molecular analyses of single and pooled cells confirmed the isolation of highly pure CTCs with characteristics typical that of malignant cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Discovery of novel DAPY-IAS hybrid derivatives as potential HIV-1 inhibitors using molecular hybridization based on crystallographic overlays.

    PubMed

    Huang, Boshi; Wang, Xueshun; Liu, Xinhao; Chen, Zihui; Li, Wanzhuo; Sun, Songkai; Liu, Huiqing; Daelemans, Dirk; De Clercq, Erik; Pannecouque, Christophe; Zhan, Peng; Liu, Xinyong

    2017-08-15

    Crystallographic overlap studies and pharmacophoric analysis indicated that diarylpyrimidine (DAPY)-based HIV-1 NNRTIs showed a similar binding mode and pharmacophoric features as indolylarylsulfones (IASs), another class of potent NNRTIs. Thus, a novel series of DAPY-IAS hybrid derivatives were identified as newer NNRTIs using structure-based molecular hybridization. Some target compounds exhibited moderate activities against HIV-1 IIIB strain, among which the two most potent inhibitors possessed EC 50 values of 1.48μM and 1.61μM, respectively. They were much potent than the reference drug ddI (EC 50 =76.0μM) and comparable to 3TC (EC 50 =2.54μM). Compound 7a also exhibited the favorable selectivity index (SI=80). Preliminary structure-activity relationships (SARs), structure-cytotoxicity relationships, molecular modeling studies, and in silico calculation of physicochemical properties of these new inhibitors were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ion channel profile of TRPM8 cold receptors reveals a novel role of TASK-3 potassium channels in thermosensation

    PubMed Central

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L.; Bayliss, Douglas A.; Viana, Félix

    2017-01-01

    Summary Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold sensitive neurons, combining BAC transgenesis with a molecular profiling approach in FACS purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3 and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a novel role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  11. Molecular Mechanisms Underlying Anti-Inflammatory Actions of 6-(Methylsulfinyl)hexyl Isothiocyanate Derived from Wasabi (Wasabia japonica)

    PubMed Central

    Uto, Takuhiro; Hou, De-Xing; Morinaga, Osamu; Shoyama, Yukihiro

    2012-01-01

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in wasabi (Wasabia japonica), which is a typical Japanese pungent spice. Recently, in vivo and in vitro studies demonstrated that 6-MSITC has several biological properties, including anti-inflammatory, antimicrobial, antiplatelet, and anticancer effects. We previously reported that 6-MSITC strongly suppresses cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokines, which are important factors that mediate inflammatory processes. Moreover, molecular analysis demonstrated that 6-MSITC blocks the expressions of these factors by suppressing multiple signal transduction pathways to attenuate the activation of transcriptional factors. Structure-activity relationships of 6-MSITC and its analogues containing an isothiocyanate group revealed that methylsulfinyl group and the length of alkyl chain of 6-MSITC might be related to high inhibitory potency. In this paper, we review the anti-inflammatory properties of 6-MSITC and discuss potential molecular mechanisms focusing on inflammatory responses by macrophages. PMID:22927840

  12. Molecular Mechanisms Underlying Anti-Inflammatory Actions of 6-(Methylsulfinyl)hexyl Isothiocyanate Derived from Wasabi (Wasabia japonica).

    PubMed

    Uto, Takuhiro; Hou, De-Xing; Morinaga, Osamu; Shoyama, Yukihiro

    2012-01-01

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in wasabi (Wasabia japonica), which is a typical Japanese pungent spice. Recently, in vivo and in vitro studies demonstrated that 6-MSITC has several biological properties, including anti-inflammatory, antimicrobial, antiplatelet, and anticancer effects. We previously reported that 6-MSITC strongly suppresses cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokines, which are important factors that mediate inflammatory processes. Moreover, molecular analysis demonstrated that 6-MSITC blocks the expressions of these factors by suppressing multiple signal transduction pathways to attenuate the activation of transcriptional factors. Structure-activity relationships of 6-MSITC and its analogues containing an isothiocyanate group revealed that methylsulfinyl group and the length of alkyl chain of 6-MSITC might be related to high inhibitory potency. In this paper, we review the anti-inflammatory properties of 6-MSITC and discuss potential molecular mechanisms focusing on inflammatory responses by macrophages.

  13. Molecular Characterization and Antioxidant Potential of Three Wild Culinary-Medicinal Mushrooms from Tripura, Northeast India.

    PubMed

    Das, Aparajita Roy; Borthakur, Madhusmita; Saha, Ajay Krishna; Joshi, Santa Ram; Das, Panna

    2017-01-01

    The aim of this study was to characterize 3 wild culinary-medicinal mushrooms using molecular tools and to analyze their antioxidant activity. Antioxidant properties were studied by evaluating free radical scavenging, reducing power, and chelating effect. The mushrooms were identified as Lentinus squarrosulus, L. tuber-regium, and Macrocybe gigantean by amplifying internal transcribed spacer regions of ribosomal DNA. The results demonstrated that the methanolic extract of M. gigantean has the highest free radical scavenging effect and chelating effect, whereas the methanolic extract of L. squarrosulus has the highest reducing power. The highest total phenol content and the most ascorbic acid were found in the M. gigantean extracts. Among the 3 mushroom extracts, M. gigantean displayed the most potent antioxidant activity. Molecular characterization using the nuclear ribosomal internal transcribed spacer region as a universal DNA marker was an effective tool in the identification and phylogenetic analysis of the studied mushrooms. The study also indicated that these wild macrofungi are rich sources of natural antioxidants.

  14. Synthesis, crystal structures, molecular docking and urease inhibition studies of Ni(II) and Cu(II) Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Sangeeta, S.; Ahmad, K.; Noorussabah, N.; Bharti, S.; Mishra, M. K.; Sharma, S. R.; Choudhary, M.

    2018-03-01

    [Ni(L)2] 1 and [Cu(L)2] 2 [HL = 2-((E)-(2-methoxyphenylimino)methyl)-4,6-dichlorophenol] Schiff base complexes have been successfully synthesized and were characterized by FT-IR, UV-Vis, fluorescence spectroscopy and thermogravimetric analysis. The crystal structures of the two complexes were determined through X-ray crystallography. Its inhibitory activity against Helicobacter pylori urease was evaluated in vitro and showed strong inhibitory activity against H. pylori urease compared with acetohydroxamic acid (IC50 = 42.12 μmolL-1), which is a positive reference. A docking analysis using the AutoDock 4.0 program could explain the inhibitory activity of the complex against urease.

  15. Structural, spectral and NBO analysis of 3-(1-(3-hydroxypropylamino)ethylidene)chroman-2,4-dione

    NASA Astrophysics Data System (ADS)

    Avdović, Edina H.; Milenković, Dejan; Dimitrić-Marković, Jasmina M.; Vuković, Nenad; Trifunović, Srećko R.; Marković, Zoran

    2017-11-01

    The structure of the newly synthesized coumarin derivative, 3-(1-(3-hydroxypropylamino)-ethylidene)-chroman-2,4-dione, was investigated experimentally and theoretically. FTIR, 1H and 13C NMR spectroscopic methods along with the density functional theory calculations, with B3LYP functional (and with empirical dispersion corrections D3BJ) in combination with the 6-311+G(d,p) basis set, are performed in order to characterize the molecular structure and spectroscopic behavior of the investigated coumarin derivative. Molecular docking analysis was carried out in order to identify the potency of inhibition of the title molecule against human C-reactive protein. The inhibition activity was obtained for ten conformations of ligand inside protein.

  16. Exploring Molecular Mechanisms of Paradoxical Activation in the BRAF Kinase Dimers: Atomistic Simulations of Conformational Dynamics and Modeling of Allosteric Communication Networks and Signaling Pathways

    PubMed Central

    Tse, Amanda; Verkhivker, Gennady M.

    2016-01-01

    The recent studies have revealed that most BRAF inhibitors can paradoxically induce kinase activation by promoting dimerization and enzyme transactivation. Despite rapidly growing number of structural and functional studies about the BRAF dimer complexes, the molecular basis of paradoxical activation phenomenon is poorly understood and remains largely hypothetical. In this work, we have explored the relationships between inhibitor binding, protein dynamics and allosteric signaling in the BRAF dimers using a network-centric approach. Using this theoretical framework, we have combined molecular dynamics simulations with coevolutionary analysis and modeling of the residue interaction networks to determine molecular determinants of paradoxical activation. We have investigated functional effects produced by paradox inducer inhibitors PLX4720, Dabrafenib, Vemurafenib and a paradox breaker inhibitor PLX7904. Functional dynamics and binding free energy analyses of the BRAF dimer complexes have suggested that negative cooperativity effect and dimer-promoting potential of the inhibitors could be important drivers of paradoxical activation. We have introduced a protein structure network model in which coevolutionary residue dependencies and dynamic maps of residue correlations are integrated in the construction and analysis of the residue interaction networks. The results have shown that coevolutionary residues in the BRAF structures could assemble into independent structural modules and form a global interaction network that may promote dimerization. We have also found that BRAF inhibitors could modulate centrality and communication propensities of global mediating centers in the residue interaction networks. By simulating allosteric communication pathways in the BRAF structures, we have determined that paradox inducer and breaker inhibitors may activate specific signaling routes that correlate with the extent of paradoxical activation. While paradox inducer inhibitors may facilitate a rapid and efficient communication via an optimal single pathway, the paradox breaker may induce a broader ensemble of suboptimal and less efficient communication routes. The central finding of our study is that paradox breaker PLX7904 could mimic structural, dynamic and network features of the inactive BRAF-WT monomer that may be required for evading paradoxical activation. The results of this study rationalize the existing structure-functional experiments by offering a network-centric rationale of the paradoxical activation phenomenon. We argue that BRAF inhibitors that amplify dynamic features of the inactive BRAF-WT monomer and intervene with the allosteric interaction networks may serve as effective paradox breakers in cellular environment. PMID:27861609

  17. Development of concepts on the interaction of drugs with opioid receptors

    NASA Astrophysics Data System (ADS)

    Kuzmina, N. E.; Kuzmin, V. S.

    2011-02-01

    The development of concepts on the molecular mechanisms of the action of medicinal drugs on the opioid receptors is briefly surveyed. The modern point of view on the mechanism of activation of opioid receptors is given based on the data from chimeric and site-directed mutagenesis of the cloned opioid receptors and the computer-aided simulations of the reception zone and ligand-receptor complexes. Three-dimensional models of the opioid pharmacophore derived by both conventional methods and a comparative analysis of molecular fields are described in detail.

  18. Analyzing cell fate control by cytokines through continuous single cell biochemistry.

    PubMed

    Rieger, Michael A; Schroeder, Timm

    2009-10-01

    Cytokines are important regulators of cell fates with high clinical and commercial relevance. However, despite decades of intense academic and industrial research, it proved surprisingly difficult to describe the biological functions of cytokines in a precise and comprehensive manner. The exact analysis of cytokine biology is complicated by the fact that individual cytokines control many different cell fates and activate a multitude of intracellular signaling pathways. Moreover, although activating different molecular programs, different cytokines can be redundant in their biological effects. In addition, cytokines with different biological effects can activate overlapping signaling pathways. This prospect article will outline the necessity of continuous single cell biochemistry to unravel the biological functions of molecular cytokine signaling. It focuses on potentials and limitations of recent technical developments in fluorescent time-lapse imaging and single cell tracking allowing constant long-term observation of molecules and behavior of single cells. (c) 2009 Wiley-Liss, Inc.

  19. Proteome Characterization of Leaves in Common Bean

    PubMed Central

    Robison, Faith M.; Heuberger, Adam L.; Brick, Mark A.; Prenni, Jessica E.

    2015-01-01

    Dry edible bean (Phaseolus vulgaris L.) is a globally relevant food crop. The bean genome was recently sequenced and annotated allowing for proteomics investigations aimed at characterization of leaf phenotypes important to agriculture. The objective of this study was to utilize a shotgun proteomics approach to characterize the leaf proteome and to identify protein abundance differences between two bean lines with known variation in their physiological resistance to biotic stresses. Overall, 640 proteins were confidently identified. Among these are proteins known to be involved in a variety of molecular functions including oxidoreductase activity, binding peroxidase activity, and hydrolase activity. Twenty nine proteins were found to significantly vary in abundance (p-value < 0.05) between the two bean lines, including proteins associated with biotic stress. To our knowledge, this work represents the first large scale shotgun proteomic analysis of beans and our results lay the groundwork for future studies designed to investigate the molecular mechanisms involved in pathogen resistance. PMID:28248269

  20. Synthesis, antimalarial evaluation and molecular docking studies of some thiolactone derivatives

    NASA Astrophysics Data System (ADS)

    Sainy, Jitendra; Sharma, Rajesh

    2017-04-01

    In present study novel thiolactone derivatives were designed, synthesized and characterized by various analytical techniques such as IR, 1H NMR, 13C NMR, mass spectral data and elemental analysis. All synthesized compounds were evaluated for in vitro antimalarial activity against Dd2 and 3d7 strain of P. falciparum. All synthesized compounds were also subjected for molecular docking study with pf KASI/II enzyme to analyze their binding orientation in the active site of the enzyme. Compounds 5d, 5e, and 5i found to be most potent with IC50 in the range of 0.09-0.19 μM and 0.03-0.04 μM against the Dd2 strain and 3D7 strain respectively as well as they showed good binding affinities with the residues of the active site of pf KASI/II.

  1. Dynamic Coupling and Allosteric Networks in the α Subunit of Heterotrimeric G Proteins.

    PubMed

    Yao, Xin-Qiu; Malik, Rabia U; Griggs, Nicholas W; Skjærven, Lars; Traynor, John R; Sivaramakrishnan, Sivaraj; Grant, Barry J

    2016-02-26

    G protein α subunits cycle between active and inactive conformations to regulate a multitude of intracellular signaling cascades. Important structural transitions occurring during this cycle have been characterized from extensive crystallographic studies. However, the link between observed conformations and the allosteric regulation of binding events at distal sites critical for signaling through G proteins remain unclear. Here we describe molecular dynamics simulations, bioinformatics analysis, and experimental mutagenesis that identifies residues involved in mediating the allosteric coupling of receptor, nucleotide, and helical domain interfaces of Gαi. Most notably, we predict and characterize novel allosteric decoupling mutants, which display enhanced helical domain opening, increased rates of nucleotide exchange, and constitutive activity in the absence of receptor activation. Collectively, our results provide a framework for explaining how binding events and mutations can alter internal dynamic couplings critical for G protein function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Design, synthesis, antiviral activity and three-dimensional quantitative structure-activity relationship study of novel 1,4-pentadien-3-one derivatives containing the 1,3,4-oxadiazole moiety.

    PubMed

    Gan, Xiuhai; Hu, Deyu; Li, Pei; Wu, Jian; Chen, Xuewen; Xue, Wei; Song, Baoan

    2016-03-01

    1,4-Pentadien-3-one and 1,3,4-oxadiazole derivatives possess good antiviral activities, and their substructure units are usually used in antiviral agent design. In order to discover novel molecules with high antiviral activities, a series of 1,4-pentadien-3-one derivatives containing the 1,3,4-oxadiazole moiety were designed and synthesised. Bioassays showed that most of the title compounds exhibited good inhibitory activities against tobacco mosaic virus (TMV) in vivo. The compound 8f possessing the best protective activity against TMV had an EC50 value of 135.56 mg L(-1) , which was superior to that of ribavirin (435.99 mg L(-1) ). Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) techniques were used in three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of protective activities, with values of q(2) and r(2) for the CoMFA and CoMSIA models of 0.751 and 0.775 and 0.936 and 0.925 respectively. Compound 8k with higher protective activity (EC50 = 123.53 mg L(-1) ) according to bioassay was designed and synthesised on the basis of the 3D-QSAR models. Some of the title compounds displayed good antiviral activities. 3D-QSAR models revealed that the appropriate compact electron-withdrawing and hydrophobic group at the benzene ring could enhance antiviral activity. These results could provide important structural insights for the design of highly active 1,4-pentadien-3-one derivatives. © 2015 Society of Chemical Industry.

  3. Production in Pichia pastoris, antifungal activity and crystal structure of a class I chitinase from cowpea (Vigna unguiculata): Insights into sugar binding mode and hydrolytic action.

    PubMed

    Landim, Patrícia G Castro; Correia, Tuana O; Silva, Fredy D A; Nepomuceno, Denise R; Costa, Helen P S; Pereira, Humberto M; Lobo, Marina D P; Moreno, Frederico B M B; Brandão-Neto, José; Medeiros, Suelen C; Vasconcelos, Ilka M; Oliveira, José T A; Sousa, Bruno L; Barroso-Neto, Ito L; Freire, Valder N; Carvalho, Cristina P S; Monteiro-Moreira, Ana C O; Grangeiro, Thalles B

    2017-04-01

    A cowpea class I chitinase (VuChiI) was expressed in the methylotrophic yeast P. pastoris. The recombinant protein was secreted into the culture medium and purified by affinity chromatography on a chitin matrix. The purified chitinase migrated on SDS-polyacrylamide gel electrophoresis as two closely-related bands with apparent molecular masses of 34 and 37 kDa. The identity of these bands as VuChiI was demonstrated by mass spectrometry analysis of tryptic peptides and N-terminal amino acid sequencing. The recombinant chitinase was able to hydrolyze colloidal chitin but did not exhibit enzymatic activity toward synthetic substrates. The highest hydrolytic activity of the cowpea chitinase toward colloidal chitin was observed at pH 5.0. Furthermore, most VuChiI activity (approximately 92%) was retained after heating to 50 °C for 30 min, whereas treatment with 5 mM Cu 2+ caused a reduction of 67% in the enzyme's chitinolytic activity. The recombinant protein had antifungal activity as revealed by its ability to inhibit the spore germination and mycelial growth of Penicillium herquei. The three-dimensional structure of VuChiI was resolved at a resolution of 1.55 Å by molecular replacement. The refined model had 245 amino acid residues and 381 water molecules, and the final R-factor and R free values were 14.78 and 17.22%, respectively. The catalytic domain of VuChiI adopts an α-helix-rich fold, stabilized by 3 disulfide bridges and possessing a wide catalytic cleft. Analysis of the crystallographic model and molecular docking calculations using chito-oligosaccharides provided evidences about the VuChiI residues involved in sugar binding and catalysis, and a possible mechanism of antifungal action is suggested. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. Characterization of angiotensin-I converting enzyme inhibiting peptide from Venerupis philippinarum with nano-liquid chromatography in combination with orbitrap mass spectrum detection and molecular docking

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Wu, Tizhi; Sheng, Naijuan; Yang, Li; Wang, Qian; Liu, Rui; Wu, Hao

    2017-06-01

    The complexity and diversity of peptide mixture from protein hydrolysates make their characterization difficult. In this study, a method combining nano LC-MS/MS with molecular docking was applied to identifying and characterizing a peptide with angiotensin-I converting enzyme (ACE-I) inhibiting activity from Venerupis philippinarum hydrolysate. Firstly, ethanol supernatant of V. philippinarum hydrolysate was separated into active fractions with chromatographic methods such as ion-exchange chromatography and high performance liquid chromatography in combination. Then seven peptides from active fraction were identified according to the searching result of the MS/MS spectra against protein databases. Peptides were synthesized and subjected to ACE-I-inhibition assay. The peptide NTLTLIDTGIGMTK showed the highest potency with an IC50 of 5.75 μmol L-1. The molecular docking analysis showed that the ACE-I inhibiting peptide NTLTLIDTGIGMTK bond with residues Glu123, Glu403, Arg522, Glu376, Gln281 and Asn285 of ACE-I. Therefore, active peptides could be identified with the present method rather than the traditional purification and identification strategies. It may also be feasible to identify other food-derived peptides which target other enzymes and receptors with the method developed in this study.

  5. Muscle Expression of SOD1G93A Triggers the Dismantlement of Neuromuscular Junction via PKC-Theta.

    PubMed

    Dobrowolny, Gabriella; Martini, Martina; Scicchitano, Bianca Maria; Romanello, Vanina; Boncompagni, Simona; Nicoletti, Carmine; Pietrangelo, Laura; De Panfilis, Simone; Catizone, Angela; Bouchè, Marina; Sandri, Marco; Rudolf, Rüdiger; Protasi, Feliciano; Musarò, Antonio

    2018-04-20

    Neuromuscular junction (NMJ) represents the morphofunctional interface between muscle and nerve. Several chronic pathologies such as aging and neurodegenerative diseases, including muscular dystrophy and amyotrophic lateral sclerosis, display altered NMJ and functional denervation. However, the triggers and the molecular mechanisms underlying the dismantlement of NMJ remain unclear. Here we provide evidence that perturbation in redox signaling cascades, induced by muscle-specific accumulation of mutant SOD1 G93A in transgenic MLC/SOD1 G93A mice, is causally linked to morphological alterations of the neuromuscular presynaptic terminals, high turnover rate of acetylcholine receptor, and NMJ dismantlement. The analysis of potential molecular mechanisms that mediate the toxic activity of SOD1 G93A revealed a causal link between protein kinase Cθ (PKCθ) activation and NMJ disintegration. The study discloses the molecular mechanism that triggers functional denervation associated with the toxic activity of muscle SOD1 G93A expression and suggests the possibility of developing a new strategy to counteract age- and pathology-associated denervation based on pharmacological inhibition of PKCθ activity. Collectively, these data indicate that muscle-specific accumulation of oxidative damage can affect neuromuscular communication and induce NMJ dismantlement through a PKCθ-dependent mechanism. Antioxid. Redox Signal. 28, 1105-1119.

  6. Fractionation of enzymatic hydrolysis lignin by sequential extraction for enhancing antioxidant performance.

    PubMed

    An, Liangliang; Wang, Guanhua; Jia, Hongyu; Liu, Cuiyun; Sui, Wenjie; Si, Chuanling

    2017-06-01

    The heterogeneity of lignin chemical structure and molecular weight results in the lignin inhomogeneous properties which also covers the antioxidant performance. In order to evaluate the effects of lignin heterogeneity on its antioxidant activity, four lignin fractions from enzymatic hydrolysis lignin were classified by sequential organic solvent extraction and further evaluated by DPPH (1,1-Diphenyl-2-Picrylhydrazyl) free radical scavenging capacity and reducing power analysis. The characterization including FTIR, 1 H NMR and GPC showed that the fractionation process could effectively separate lignin fractions with distinctly different molecular weight and weaken the heterogeneity of unfractionated lignin. The antioxidant performance comparison of lignin fractions indicated that the dichloromethane fraction (F1) with lowest molecular weight (4585g/mol) and highest total phenolics content (246.13mg GAE/g) exhibited the highest antioxidant activity whose value was close to commercial antioxidant BHT (butylated hydroxytoluene). Moreover, the relationship between the antioxidant activity and the structure of lignin was further discussed to elucidate the mechanism of antioxidant activity improvement of lignin fractionation. Consequently, this study suggested that the sequential extraction was an effective way to obtain relatively homogeneous enzymatic hydrolysis lignin fractions which showed the potential for the value-added antioxidant application. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Structure and haemostatic effects of generic versions of enoxaparin available for clinical use in Brazil: similarity to the original drug.

    PubMed

    Glauser, Bianca F; Vairo, Bruno C; Oliveira, Stephan-Nicollas M C G; Cinelli, Leonardo P; Pereira, Mariana S; Mourão, Paulo A S

    2012-02-01

    Patent protection for enoxaparin has expired. Generic preparations are developed and approved for clinical use in different countries. However, there is still skepticism about the possibility of making an exact copy of the original drug due to the complex processes involved in generating low-molecular-weight heparins. We have undertaken a careful analysis of generic versions of enoxaparin available for clinical use in Brazil. Thirty-three batches of active ingredient and 70 of the final pharmaceutical product were obtained from six different suppliers. They were analysed for their chemical composition, molecular size distribution, in vitro anticoagulant activity and pharmacological effects on animal models of experimental thrombosis and bleeding. Clearly, the generic versions of enoxaparin available for clinical use in Brazil are similar to the original drug. Only three out of 33 batches of active ingredient from one supplier showed differences in molecular size distribution, resulting from a low percentage of tetrasaccharide or the presence of a minor component eluted as monosaccharide. Three out of 70 batches of the final pharmaceutical products contained lower amounts of the active ingredient than that declared by the suppliers. Our results suggest that the generic versions of enoxaparin are a viable therapeutic option, but their use requires strict regulations to ensure accurate standards.

  8. Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensis PETase.

    PubMed

    Fecker, Tobias; Galaz-Davison, Pablo; Engelberger, Felipe; Narui, Yoshie; Sotomayor, Marcos; Parra, Loreto P; Ramírez-Sarmiento, César A

    2018-03-27

    Polyethylene terephthalate (PET) is one of the most-consumed synthetic polymers, with an annual production of 50 million tons. Unfortunately, PET accumulates as waste and is highly resistant to biodegradation. Recently, fungal and bacterial thermophilic hydrolases were found to catalyze PET hydrolysis with optimal activities at high temperatures. Strikingly, an enzyme from Ideonella sakaiensis, termed PETase, was described to efficiently degrade PET at room temperature, but the molecular basis of its activity is not currently understood. Here, a crystal structure of PETase was determined at 2.02 Å resolution and employed in molecular dynamics simulations showing that the active site of PETase has higher flexibility at room temperature than its thermophilic counterparts. This flexibility is controlled by a novel disulfide bond in its active site, with its removal leading to destabilization of the catalytic triad and reduction of the hydrolase activity. Molecular docking of a model substrate predicts that PET binds to PETase in a unique and energetically favorable conformation facilitated by several residue substitutions within its active site when compared to other enzymes. These computational predictions are in excellent agreement with recent mutagenesis and PET film degradation analyses. Finally, we rationalize the increased catalytic activity of PETase at room temperature through molecular dynamics simulations of enzyme-ligand complexes for PETase and other thermophilic PET-degrading enzymes at 298, 323, and 353 K. Our results reveal that both the binding pose and residue substitutions within PETase favor proximity between the catalytic residues and the labile carbonyl of the substrate at room temperature, suggesting a more favorable hydrolytic reaction. These results are valuable for enabling detailed evolutionary analysis of PET-degrading enzymes and for rational design endeavors aiming at increasing the efficiency of PETase and similar enzymes toward plastic degradation. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Inhibition of MAO-A and stimulation of behavioural activities in mice by the inactive prodrug form of the anti-influenza agent oseltamivir.

    PubMed

    Hiasa, Miki; Isoda, Yumiko; Kishimoto, Yasushi; Saitoh, Kenta; Kimura, Yasuaki; Kanai, Motomu; Shibasaki, Masakatsu; Hatakeyama, Dai; Kirino, Yutaka; Kuzuhara, Takashi

    2013-05-01

    Oseltamivir is the most widely prescribed anti-influenza medication. However, in rare instances, it has been reported to stimulate behavioural activities in adolescents. The goal of this study was to determine the molecular mechanism responsible for these behavioural activities. We performed an in vitro assay of MAO-A, the enzyme responsible for neurotransmitter degradation, using either the active form - oseltamivir carboxylate (OC) or the inactive prodrug - oseltamivir ethyl ester (OEE). We also analysed the docking of MAO-A with OEE or OC in silico. Mouse behaviours after OEE or OC administration were monitored using automated video and computer analysis. OEE, but not OC, competitively and selectively inhibited human MAO-A. The estimated Ki value was comparable with the Km values of native substrates of MAO-A. Docking simulations in silico based on the tertiary structure of MAO-A suggested that OEE could fit into the inner pocket of the enzyme. Behavioural monitoring using automated video analysis further revealed that OEE, not OC, significantly enhanced spontaneous behavioural activities in mice, such as jumping, rearing, sniffing, turning and walking. Our multilevel analyses suggested OEE to be the cause of the side effects associated with oseltamivir and revealed the molecular mechanism underlying the stimulated behaviours induced by oseltamivir in some circumstances. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  10. Inhibition of MAO-A and stimulation of behavioural activities in mice by the inactive prodrug form of the anti-influenza agent oseltamivir

    PubMed Central

    Hiasa, Miki; Isoda, Yumiko; Kishimoto, Yasushi; Saitoh, Kenta; Kimura, Yasuaki; Kanai, Motomu; Shibasaki, Masakatsu; Hatakeyama, Dai; Kirino, Yutaka; Kuzuhara, Takashi

    2013-01-01

    Background and Purpose Oseltamivir is the most widely prescribed anti-influenza medication. However, in rare instances, it has been reported to stimulate behavioural activities in adolescents. The goal of this study was to determine the molecular mechanism responsible for these behavioural activities. Experimental Approach We performed an in vitro assay of MAO-A, the enzyme responsible for neurotransmitter degradation, using either the active form – oseltamivir carboxylate (OC) or the inactive prodrug – oseltamivir ethyl ester (OEE). We also analysed the docking of MAO-A with OEE or OC in silico. Mouse behaviours after OEE or OC administration were monitored using automated video and computer analysis. Key Results OEE, but not OC, competitively and selectively inhibited human MAO-A. The estimated Ki value was comparable with the Km values of native substrates of MAO-A. Docking simulations in silico based on the tertiary structure of MAO-A suggested that OEE could fit into the inner pocket of the enzyme. Behavioural monitoring using automated video analysis further revealed that OEE, not OC, significantly enhanced spontaneous behavioural activities in mice, such as jumping, rearing, sniffing, turning and walking. Conclusions and Implications Our multilevel analyses suggested OEE to be the cause of the side effects associated with oseltamivir and revealed the molecular mechanism underlying the stimulated behaviours induced by oseltamivir in some circumstances. PMID:23320399

  11. Structural dynamic analysis of apo and ATP-bound IRAK4 kinase

    NASA Astrophysics Data System (ADS)

    Gosu, Vijayakumar; Choi, Sangdun

    2014-07-01

    Interleukin-1 receptor-associated kinases (IRAKs) are Ser/Thr protein kinases that play an important role as signaling mediators in the signal transduction facilitated by the Toll-like receptor (TLR) and interleukin-1 receptor families. Among IRAK family members, IRAK4 is one of the drug targets for diseases related to the TLR and IL-1R signaling pathways. Experimental evidence suggests that the IRAK4 kinase domain is phosphorylated in its activation loop at T342, T345, and S346 in the fully activated state. However, the molecular interactions of subdomains within the active and inactive IRAK4 kinase domain are poorly understood. Hence, we employed a long-range molecular dynamics (MD) simulation to compare apo IRAK4 kinase domains (phosphorylated and unphosphorylated) and ATP-bound phosphorylated IRAK4 kinase domains. The MD results strongly suggested that lobe uncoupling occurs in apo unphosphorylated IRAK4 kinase via the disruption of the R334/T345 and R310/T345 interaction. In addition, apo unphosphorylated trajectory result in high mobility, particularly in the N lobe, activation segment, helix αG, and its adjoining loops. The Asp-Phe-Gly (DFG) and His-Arg-Asp (HRD) conserved kinase motif analysis showed the importance of these motifs in IRAK4 kinase activation. This study provides important information on the structural dynamics of IRAK4 kinase, which will aid in inhibitor development.

  12. Combined analysis of mRNA and miRNA identifies dehydration and salinity responsive key molecular players in citrus roots.

    PubMed

    Xie, Rangjin; Zhang, Jin; Ma, Yanyan; Pan, Xiaoting; Dong, Cuicui; Pang, Shaoping; He, Shaolan; Deng, Lie; Yi, Shilai; Zheng, Yongqiang; Lv, Qiang

    2017-02-06

    Citrus is one of the most economically important fruit crops around world. Drought and salinity stresses adversely affected its productivity and fruit quality. However, the genetic regulatory networks and signaling pathways involved in drought and salinity remain to be elucidated. With RNA-seq and sRNA-seq, an integrative analysis of miRNA and mRNA expression profiling and their regulatory networks were conducted using citrus roots subjected to dehydration and salt treatment. Differentially expressed (DE) mRNA and miRNA profiles were obtained according to fold change analysis and the relationships between miRNAs and target mRNAs were found to be coherent and incoherent in the regulatory networks. GO enrichment analysis revealed that some crucial biological processes related to signal transduction (e.g. 'MAPK cascade'), hormone-mediated signaling pathways (e.g. abscisic acid- activated signaling pathway'), reactive oxygen species (ROS) metabolic process (e.g. 'hydrogen peroxide catabolic process') and transcription factors (e.g., 'MYB, ZFP and bZIP') were involved in dehydration and/or salt treatment. The molecular players in response to dehydration and salt treatment were partially overlapping. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-seq and sRNA-seq analysis. This study provides new insights into the molecular mechanisms how citrus roots respond to dehydration and salt treatment.

  13. Combined analysis of mRNA and miRNA identifies dehydration and salinity responsive key molecular players in citrus roots

    PubMed Central

    Xie, Rangjin; Zhang, Jin; Ma, Yanyan; Pan, Xiaoting; Dong, Cuicui; Pang, Shaoping; He, Shaolan; Deng, Lie; Yi, Shilai; Zheng, Yongqiang; Lv, Qiang

    2017-01-01

    Citrus is one of the most economically important fruit crops around world. Drought and salinity stresses adversely affected its productivity and fruit quality. However, the genetic regulatory networks and signaling pathways involved in drought and salinity remain to be elucidated. With RNA-seq and sRNA-seq, an integrative analysis of miRNA and mRNA expression profiling and their regulatory networks were conducted using citrus roots subjected to dehydration and salt treatment. Differentially expressed (DE) mRNA and miRNA profiles were obtained according to fold change analysis and the relationships between miRNAs and target mRNAs were found to be coherent and incoherent in the regulatory networks. GO enrichment analysis revealed that some crucial biological processes related to signal transduction (e.g. ‘MAPK cascade’), hormone-mediated signaling pathways (e.g. abscisic acid- activated signaling pathway’), reactive oxygen species (ROS) metabolic process (e.g. ‘hydrogen peroxide catabolic process’) and transcription factors (e.g., ‘MYB, ZFP and bZIP’) were involved in dehydration and/or salt treatment. The molecular players in response to dehydration and salt treatment were partially overlapping. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-seq and sRNA-seq analysis. This study provides new insights into the molecular mechanisms how citrus roots respond to dehydration and salt treatment. PMID:28165059

  14. Molecular pathway activation - new type of biomarkers for tumor morphology and personalized selection of target drugs.

    PubMed

    Buzdin, Anton; Sorokin, Maxim; Garazha, Andrew; Sekacheva, Marina; Kim, Ella; Zhukov, Nikolay; Wang, Ye; Li, Xinmin; Kar, Souvik; Hartmann, Christian; Samii, Amir; Giese, Alf; Borisov, Nicolas

    2018-06-20

    Anticancer target drugs (ATDs) specifically bind and inhibit molecular targets that play important roles in cancer development and progression, being deeply implicated in intracellular signaling pathways. To date, hundreds of different ATDs were approved for clinical use in the different countries. Compared to previous chemotherapy treatments, ATDs often demonstrate reduced side effects and increased efficiency, but also have higher costs. However, the efficiency of ATDs for the advanced stage tumors is still insufficient. Different ATDs have different mechanisms of action and are effective in different cohorts of patients. Personalized approaches are therefore needed to select the best ATD candidates for the individual patients. In this review, we focus on a new generation of biomarkers - molecular pathway activation - and on their applications for predicting individual tumor response to ATDs. The success in high throughput gene expression profiling and emergence of novel bioinformatic tools reinforced quick development of pathway related field of molecular biomedicine. The ability to quantitatively measure degree of a pathway activation using gene expression data has revolutionized this field and made the corresponding analysis quick, robust and inexpensive. This success was further enhanced by using machine learning algorithms for selection of the best biomarkers. We review here the current progress in translating these studies to clinical oncology and patient-oriented adjustment of cancer therapy. Copyright © 2018. Published by Elsevier Ltd.

  15. Functional analysis of thioredoxin from the desert lichen-forming fungus, Endocarpon pusillum Hedwig, reveals its role in stress tolerance

    PubMed Central

    Li, Hui; Wei, Jiang-Chun

    2016-01-01

    Endocarpon pusillum is a lichen-forming fungus with an outstanding stress resistance property closely related to its antioxidant system. In this study, thioredoxin (Trx), one of the main components of antioxidant defense systems in E. pusillum (EpTrx), was characterized and analyzed both in transgenic yeasts and in vitro. Our analyses identified that the heterologous expression of EpTrx in the yeast Pichia pastoris significantly enhanced its resistance to osmotic and oxidative stresses. Assays in vitro showed EpTrx acted as a disulfide reductase as well as a molecular chaperone by assembling into various polymeric structures. Upon exposure to heat-shock stress, EpTrx exhibited weaker disulfide reductase activity but stronger chaperone activity, which coincided with the switching of the protein complexes from low molecular weight forms to high molecular weight complexes. Specifically, we found that Cys31 near but not at the active site was crucial in promoting the structural and functional transitions, most likely by accelerating the formation of intermolecular disulfide bond. Transgenic Saccharomyces cerevisiae harboring the native EpTrx exhibited stronger tolerance to oxidative, osmotic and high temperature stresses than the corresponding yeast strain containing the mutant EpTrx (C31S). Our results provide the first molecular evidence on how Trx influences stress response in lichen-forming fungi. PMID:27251605

  16. Hydrogen bonded charge transfer molecular salt (4-chloro anilinium-3-nitrophthalate) for photophysical and pharmacological applications

    NASA Astrophysics Data System (ADS)

    Singaravelan, K.; Chandramohan, A.; Saravanabhavan, M.; Muthu Vijayan Enoch, I. V.; Suganthi, V. S.

    2017-09-01

    Radical scavenging activity against DPPH radical and binding properties of a hydrogen bonded charge transfer molecular salt 4-chloro anilinium-3-nitrophthalate(CANP) with calf thymus DNA has been studied by electronic absorption and emission spectroscopy. The molecular structure and crystallinity of the CANP salt have been established by carried out powder and single crystal X-ray diffraction analysis which indicated that cation and anion are linked through strong N+sbnd H…O- type of hydrogen bond. FTIR spectroscopic study was carried out to know the various functional groups present in the crystal. 1H and 13C NMR spectra were recorded to further confirm the molecular structure of the salt crystal. The thermal stability of the title salt was established by TG/DTA analyses simultaneously on the powdered sample of the title crystal. Further, the CANP salt was examined against various bacteria and fungi strains which showed a remarkable antimicrobial activity compared to that of the standards Ciproflaxin and Clotrimazole. The results showed that the CANP salt could interact with CT-DNA through intercalation. Antioxidant studies of the substrates alone and synthesized CANP salt showed that the latter has been better radical scavenging activity than that of the former against DPPH radical. The third order nonlinear susceptibility of the CANP salt was established by the Z-scan study.

  17. Metabolomic Analysis in Brain Research: Opportunities and Challenges

    PubMed Central

    Vasilopoulou, Catherine G.; Margarity, Marigoula; Klapa, Maria I.

    2016-01-01

    Metabolism being a fundamental part of molecular physiology, elucidating the structure and regulation of metabolic pathways is crucial for obtaining a comprehensive perspective of cellular function and understanding the underlying mechanisms of its dysfunction(s). Therefore, quantifying an accurate metabolic network activity map under various physiological conditions is among the major objectives of systems biology in the context of many biological applications. Especially for CNS, metabolic network activity analysis can substantially enhance our knowledge about the complex structure of the mammalian brain and the mechanisms of neurological disorders, leading to the design of effective therapeutic treatments. Metabolomics has emerged as the high-throughput quantitative analysis of the concentration profile of small molecular weight metabolites, which act as reactants and products in metabolic reactions and as regulatory molecules of proteins participating in many biological processes. Thus, the metabolic profile provides a metabolic activity fingerprint, through the simultaneous analysis of tens to hundreds of molecules of pathophysiological and pharmacological interest. The application of metabolomics is at its standardization phase in general, and the challenges for paving a standardized procedure are even more pronounced in brain studies. In this review, we support the value of metabolomics in brain research. Moreover, we demonstrate the challenges of designing and setting up a reliable brain metabolomic study, which, among other parameters, has to take into consideration the sex differentiation and the complexity of brain physiology manifested in its regional variation. We finally propose ways to overcome these challenges and design a study that produces reproducible and consistent results. PMID:27252656

  18. Tryptophan biosynthetic enzymes of Staphylococcus aureus.

    PubMed

    Proctor, A R; Kloos, W E

    1973-04-01

    Tryptophan biosynthetic enzymes were assayed in various tryptophan mutants of Staphylococcus aureus strain 655 and the wild-type parent. All mutants, except trpB mutants, lacked only the activity corresponding to the particular biosynthetic block, as suggested previously by analysis of accumulated intermediates and auxonography. Tryptophan synthetase A was not detected in extracts of either trpA or trpB mutants but appeared normal in other mutants. Mutants in certain other classes exhibited partial loss of another particular tryptophan enzyme activity. Tryptophan synthetase B activity was not detected in cell extract preparations but was detected in whole cells. The original map order proposed for the S. aureus tryptophan gene cluster was clarified by the definition of trpD (phosphoribosyl transferase(-)) and trpF (phosphoribosyl anthranilate isomerase(-)) mutants. These mutants were previously unresolved and designated as trp(DF) mutants (anthranilate accumulators). Phosphoribosyl anthranilate isomerase and indole-3-glycerol phosphate synthetase enzymes were separable by molecular sieve chromatography, suggesting that these functions are coded by separate loci. Molecular sieve chromatography failed to reveal aggregates involving anthranilate synthetase, phosphoribosyl transferase, phosphoribosyl anthranilate isomerase, and indole-3-glycerol phosphate synthetase, and this procedure provided an estimate of the molecular weights of these enzymes. Tryptophan was shown to repress synthesis of all six tryptophan biosynthetic enzymes, and derepression of all six activities was incident upon tryptophan starvation. Tryptophan inhibited the activity of anthranilate synthetase, the first enzyme of the pathway.

  19. Lignocellulose-converting enzyme activity profiles correlate with molecular systematics and phylogeny grouping in the incoherent genus Phlebia (Polyporales, Basidiomycota).

    PubMed

    Kuuskeri, Jaana; Mäkelä, Miia R; Isotalo, Jarkko; Oksanen, Ilona; Lundell, Taina

    2015-10-19

    The fungal genus Phlebia consists of a number of species that are significant in wood decay. Biotechnological potential of a few species for enzyme production and degradation of lignin and pollutants has been previously studied, when most of the species of this genus are unknown. Therefore, we carried out a wider study on biochemistry and systematics of Phlebia species. Isolates belonging to the genus Phlebia were subjected to four-gene sequence analysis in order to clarify their phylogenetic placement at species level and evolutionary relationships of the genus among phlebioid Polyporales. rRNA-encoding (5.8S, partial LSU) and two protein-encoding gene (gapdh, rpb2) sequences were adopted for the evolutionary analysis, and ITS sequences (ITS1+5.8S+ITS2) were aligned for in-depth species-level phylogeny. The 49 fungal isolates were cultivated on semi-solid milled spruce wood medium for 21 days in order to follow their production of extracellular lignocellulose-converting oxidoreductases and carbohydrate active enzymes. Four-gene phylogenetic analysis confirmed the polyphyletic nature of the genus Phlebia. Ten species-level subgroups were formed, and their lignocellulose-converting enzyme activity profiles coincided with the phylogenetic grouping. The highest enzyme activities for lignin modification (manganese peroxidase activity) were obtained for Phlebia radiata group, which supports our previous studies on the enzymology and gene expression of this species on lignocellulosic substrates. Our study implies that there is a species-level connection of molecular systematics (genotype) to the efficiency in production of both lignocellulose-converting carbohydrate active enzymes and oxidoreductases (enzyme phenotype) on spruce wood. Thus, we may propose a similar phylogrouping approach for prediction of lignocellulose-converting enzyme phenotypes in new fungal species or genetically and biochemically less-studied isolates of the wood-decay Polyporales.

  20. Synthesis, Density Functional Theory (DFT), Urease Inhibition and Antimicrobial Activities of 5-Aryl Thiophenes Bearing Sulphonylacetamide Moieties.

    PubMed

    Noreen, Mnaza; Rasool, Nasir; Gull, Yasmeen; Zubair, Muhammad; Mahmood, Tariq; Ayub, Khurshid; Nasim, Faiz-Ul-Hassan; Yaqoob, Asma; Zia-Ul-Haq, Muhammad; de Feo, Vincenzo

    2015-11-05

    A variety of novel 5-aryl thiophenes 4a-g containing sulphonylacetamide (sulfacetamide) groups were synthesized in appreciable yields via Pd[0] Suzuki cross coupling reactions. The structures of these newly synthesized compounds were determined using spectral data and elemental analysis. Density functional theory (DFT) studies were performed using the B3LYP/6-31G (d, p) basis set to gain insight into their structural properties. Frontier molecular orbital (FMOs) analysis of all compounds 4a-g was computed at the same level of theory to get an idea about their kinetic stability. The molecular electrostatic potential (MEP) mapping over the entire stabilized geometries of the molecules indicated the reactive sites. First hyperpolarizability analysis (nonlinear optical response) were simulated at the B3LYP/6-31G (d, p) level of theory as well. The compounds were further evaluated for their promising antibacterial and anti-urease activities. In this case, the antibacterial activities were estimated by the agar well diffusion method, whereas the anti-urease activities of these compounds were determined using the indophenol method by quantifying the evolved ammonia produced. The results revealed that all the sulfacetamide derivatives displayed antibacterial activity against Bacillus subtiles, Escherichia coli, Staphylococcus aureus, Shigella dysenteriae, Salmonella typhae, Pseudomonas aeruginosa at various concentrations. Furthermore, the compound 4g N-((5-(4-chlorophenyl)thiophen-2-yl)sulfonyl) acetamide showed excellent urease inhibition with percentage inhibition activity ~46.23 ± 0.11 at 15 µg/mL with IC50 17.1 µg/mL. Moreover, some other compounds 4a-f also exhibited very good inhibition against urease enzyme.

  1. Separation of cordycepin from Cordyceps militaris fermentation supernatant using preparative HPLC and evaluation of its antibacterial activity as an NAD+-dependent DNA ligase inhibitor

    PubMed Central

    Zhou, Xiaofeng; Cai, Guoqiang; He, Yi; Tong, Guotong

    2016-01-01

    Cordycepin exhibits various bio-activities, including anticancer, antibacterial, antiviral and immune regulation activities, and is a significant focus of research. However, the preparation of high-purity cordycepin remains challenging. Also, the molecular target with which cordycepin interacts to cause an antibacterial effect remains unknown. In the present study, cordycepin was prepared by preparative high-performance liquid chromatography (prep-HPLC) and the purity obtained was 99.6%, indicating that this technique may be useful for the large-scale isolation of cordycepin in the future. The results of computational molecular docking analysis indicated that the interaction energy between cordycepin and NAD+-dependent DNA ligase (LigA) was lower than that between cordycepin and other common antibacterial targets. The highly pure cordycepin obtained by prep-HPLC demonstrated inhibitory activity against LigA from various bacteria in vitro. In conclusion, cordycepin may be useful as a broad-spectrum antibiotic targeting LigA in various bacteria. PMID:27588098

  2. Preparation and physiological activities of carboxymethylated derivative purified from corn bran

    NASA Astrophysics Data System (ADS)

    Zhu, Linghui; Fang, Miaoli; Ma, Jianjun; Mo, Qing

    2017-06-01

    Two water-soluble polysaccharides extracted from corn bran were chemically modified to obtain their carboxymethylated derivatives (C-CBP1, C-CBP2). Theresults of degree of substitution and FT-IR analysis showed the carboxymethylation of polysaccharides were successful. The average molecular weight (Mw) of C-CBP1 and C-CBP2 were 368 and 263kDa, respectively. The degree of substitution (DS) of C-CBP1 and C-CBP2 were determined to be 0.44 and 0.46. The results showed that derivatives were effective in antioxidant and bile acidbinding activityin a dose dependent way. And C-CBP2 had the higher activity for hydroxyl radical, superoxide anion scavenging activities and bile acid capacity, as lower molecular weight plays a critical role in antioxidant activities and bile acid capacity. The results suggest that the carboxymethylated derivatives are potential natural antioxidant and blood fat reduce agent that can be used as drugs or functional food ingredients.

  3. Effect of axial ligands on the molecular configurations, stability, reactivity, and photodynamic activities of silicon phthalocyanines.

    PubMed

    Luan, Liqiang; Ding, Lanlan; Shi, Jiawei; Fang, Wenjuan; Ni, Yuxing; Liu, Wei

    2014-12-01

    To demonstrate the effect of axial ligands on the structure-activity relationship, a series of axially substituted silicon phthalocyanines (SiPcs) have been synthesized with changes to the axial ligands. The reactivity of the axial ligand upon shielding by the phthalocyanine ring current, along with their stability, photophysical, and photodynamic therapy (PDT) activities were compared and evaluated for the first time. As revealed by single-crystal XRD analysis, rotation of the axial -OMe ligands was observed in SiPc 3, which resulted in two molecular configurations coexisting synchronously in both the solid and solution states and causing a split of the phthalocyanine α protons in the (1)H NMR spectra that is significantly different from all SiPcs reported so far. The remarkable photostability, good singlet oxygen quantum yield, and efficient in vitro photodynamic activity synergistically show that compound 3 is one of the most promising photosensitizers for PDT. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A comparative DFT study on the antioxidant activity of apigenin and scutellarein flavonoid compounds

    NASA Astrophysics Data System (ADS)

    Sadasivam, K.; Kumaresan, R.

    2011-03-01

    The potent antioxidant activity of flavonoids relevant to their ability to scavenge reactive oxygen species is the most important function of flavonoids. Density functional theory calculations were explored to investigate the antioxidant activity of flavonoid compounds such as apigenin and scutellarein. The biological characteristics are dependent on electronic parameters, describing the charge distribution on the rings of the flavonoid molecules. The computation of structural and various molecular descriptors such as polarizability, dipole moment, energy gap, homolytic O-H bond dissociation enthalpies (BDEs), ionization potential (IP), electron affinity, hardness, softness, electronegativity, electrophilic index and density plot of molecular orbital for neutral as well as radical species were carried out and studied. The B3LYP/6-311G(d,p) basis set was adopted for all the computations. This computation reveals that scutellarein exhibits higher degree of antioxidant activity than apigenin. Their dipole moment and polarizability analysis show that both the compounds are polar in nature and have the capacity to polarize other atoms.

  5. Diagnosis of abnormal biliary copper excretion by positron emission tomography with targeting of 64Copper-asialofetuin complex in LEC rat model of Wilson’s disease

    PubMed Central

    Bahde, Ralf; Kapoor, Sorabh; Bhargava, Kuldeep K; Palestro, Christopher J; Gupta, Sanjeev

    2014-01-01

    Identification by molecular imaging of key processes in handling of transition state metals, such as copper (Cu), will be of considerable clinical value. For instance, the ability to diagnose Wilson’s disease with molecular imaging by identifying copper excretion in an ATP7B-dependent manner will be very significant. To develop highly effective diagnostic approaches, we hypothesized that targeting of radiocopper via the asialoglycoprotein receptor will be appropriate for positron emission tomography, and examined this approach in a rat model of Wilson’s disease. After complexing 64Cu to asialofetuin we studied handling of this complex compared with 64Cu in healthy LEA rats and diseased homozygous LEC rats lacking ATP7B and exhibiting hepatic copper toxicosis. We analyzed radiotracer clearance from blood, organ uptake, and biliary excretion, including sixty minute dynamic positron emission tomography recordings. In LEA rats, 64Cu-asialofetuin was better cleared from blood followed by liver uptake and greater biliary excretion than 64Cu. In LEC rats, 64Cu-asialofetuin activity cleared even more rapidly from blood followed by greater uptake in liver, but neither 64Cu-asialofetuin nor 64Cu appeared in bile. Image analysis demonstrated rapid visualization of liver after 64Cu-asialofetuin administration followed by decreased liver activity in LEA rats while liver activity progressively increased in LEC rats. Image analysis resolved this difference in hepatic activity within one hour. We concluded that 64Cu-asialofetuin complex was successfully targeted to the liver and radiocopper was then excreted into bile in an ATP7B-dependent manner. Therefore, hepatic targeting of radiocopper will be appropriate for improving molecular diagnosis and for developing drug/cell/gene therapies in Wilson’s disease. PMID:25250203

  6. Identification of new benzamide inhibitor against α-subunit of tryptophan synthase from Mycobacterium tuberculosis through structure-based virtual screening, anti-tuberculosis activity and molecular dynamics simulations.

    PubMed

    Naz, Sadia; Farooq, Umar; Ali, Sajid; Sarwar, Rizwana; Khan, Sara; Abagyan, Ruben

    2018-03-13

    Multi-drug-resistant tuberculosis and extensively drug-resistant tuberculosis has emerged as global health threat, causing millions of deaths worldwide. Identification of new drug candidates for tuberculosis (TB) by targeting novel and less explored protein targets will be invaluable for antituberculosis drug discovery. We performed structure-based virtual screening of eMolecules database against a homology model of relatively unexplored protein target: the α-subunit of tryptophan synthase (α-TRPS) from Mycobacterium tuberculosis essential for bacterial survival. Based on physiochemical properties analysis and molecular docking, the seven candidate compounds were selected and evaluated through whole cell-based activity against the H37Rv strain of M. tuberculosis. A new Benzamide inhibitor against α-subunit of tryptophan synthase (α-TRPS) from M. tuberculosis has been identified causing 100% growth inhibition at 25 μg/ml and visible bactericidal activity at 6 μg/ml. This benzamide inhibitor displayed a good predicted binding score (-48.24 kcal/mol) with the α-TRPS binding pocket and has logP value (2.95) comparable to Rifampicin. Further refinement of docking results and evaluation of inhibitor-protein complex stability were investigated through Molecular dynamic (MD) simulations studies. Following MD simulations, Root mean square deviation, Root mean square fluctuation and secondary structure analysis confirmed that protein did not unfold and ligand stayed inside the active pocket of protein during the explored time scale. This identified benzamide inhibitor against the α-subunit of TRPS from M. tuberculosis could be considered as candidate for drug discovery against TB and will be further evaluated for enzyme-based inhibition in future studies.

  7. Effects of helix and fingertip mutations on the thermostability of xyn11A investigated by molecular dynamics simulations and enzyme activity assays.

    PubMed

    Sutthibutpong, Thana; Rattanarojpong, Triwit; Khunrae, Pongsak

    2017-12-04

    Local conformational changes and global unfolding pathways of wildtype xyn11A recombinant and its mutated structures were studied through a series of atomistic molecular dynamics (MD) simulations, along with enzyme activity assays at three incubation temperatures to investigate the effects of mutations at three different sites to the thermostability. The first mutation was to replace an unstable negatively charged residue at a surface beta turn near the active site (D32G) by a hydrophobic residue. The second mutation was to create a disulphide bond (S100C/N147C) establishing a strong connection between an alpha helix and a distal beta hairpin associated with the thermally sensitive Thumb loop, and the third mutation add an extra hydrogen bond (A155S) to the same alpha helix. From the MD simulations performed, MM/PBSA energy calculations of the unfolding energy were in a good agreement with the enzyme activities measured from the experiment, as all mutated structures demonstrated the improved thermostability, especially the S100C/N147C proved to be the most stable mutant both by the simulations and the experiment. Local conformational analysis at the catalytic sites and the xylan access region also suggested that mutated xyn11A structures could accommodate xylan binding. However, the analysis of global unfolding pathways showed that structural disruptions at the beta sheet regions near the N-terminal were still imminent. These findings could provide the insight on the molecular mechanisms underlying the enhanced thermostability due to mutagenesis and changes in the protein unfolding pathways for further protein engineering of the GH11 family xylanase enzymes.

  8. Transcriptome Sequencing of Gracilariopsis lemaneiformis to Analyze the Genes Related to Optically Active Phycoerythrin Synthesis.

    PubMed

    Huang, Xiaoyun; Zang, Xiaonan; Wu, Fei; Jin, Yuming; Wang, Haitao; Liu, Chang; Ding, Yating; He, Bangxiang; Xiao, Dongfang; Song, Xinwei; Liu, Zhu

    2017-01-01

    Gracilariopsis lemaneiformis (aka Gracilaria lemaneiformis) is a red macroalga rich in phycoerythrin, which can capture light efficiently and transfer it to photosystemⅡ. However, little is known about the synthesis of optically active phycoerythrinin in G. lemaneiformis at the molecular level. With the advent of high-throughput sequencing technology, analysis of genetic information for G. lemaneiformis by transcriptome sequencing is an effective means to get a deeper insight into the molecular mechanism of phycoerythrin synthesis. Illumina technology was employed to sequence the transcriptome of two strains of G. lemaneiformis- the wild type and a green-pigmented mutant. We obtained a total of 86915 assembled unigenes as a reference gene set, and 42884 unigenes were annotated in at least one public database. Taking the above transcriptome sequencing as a reference gene set, 4041 differentially expressed genes were screened to analyze and compare the gene expression profiles of the wild type and green mutant. By GO and KEGG pathway analysis, we concluded that three factors, including a reduction in the expression level of apo-phycoerythrin, an increase of chlorophyll light-harvesting complex synthesis, and reduction of phycoerythrobilin by competitive inhibition, caused the reduction of optically active phycoerythrin in the green-pigmented mutant.

  9. Whole-genome analysis of genetic recombination of hepatitis delta virus: molecular domain in delta antigen determining trans-activating efficiency.

    PubMed

    Chao, Mei; Lin, Chia-Chi; Lin, Feng-Ming; Li, Hsin-Pai; Iang, Shan-Bei

    2015-12-01

    Hepatitis delta virus (HDV) is the only animal RNA virus that has an unbranched rod-like genome with ribozyme activity and is replicated by host RNA polymerase. HDV RNA recombination was previously demonstrated in patients and in cultured cells by analysis of a region corresponding to the C terminus of the delta antigen (HDAg), the only viral-encoded protein. Here, a whole-genome recombination map of HDV was constructed using an experimental system in which two HDV-1 sequences were co-transfected into cultured cells and the recombinants were analysed by sequencing of cloned reverse transcription-PCR products. Fifty homologous recombinants with 60 crossovers mapping to 22 junctions were identified from 200 analysed clones. Small HDAg chimeras harbouring a junction newly detected in the recombination map were then constructed. The results further indicated that the genome-replication level of HDV was sensitive to the sixth amino acid within the N-terminal 22 aa of HDAg. Therefore, the recombination map established in this study provided a tool for not only understanding HDV RNA recombination, but also elucidating the related mechanisms, such as molecular elements responsible for the trans-activation levels of the small HDAg.

  10. Toxicity tests, antioxidant activity, and antimicrobial activity of chitosan

    NASA Astrophysics Data System (ADS)

    Kurniasih, M.; Purwati; Dewi, R. S.

    2018-04-01

    Chitosan is a naturally occurring cationic biopolymer, obtained by alkaline deacetylation of chitin. This research aims to investigate the toxicity, antioxidant activity and antibacterial activity of chitosan from shrimp chitin. In this study, chitin extracted from shrimp waste material. Chitin is then deacetylation with 60% NaOH so that chitosan produced. Degrees of deacetylation, molecular weight, toxicity test, antioxidant activity and antimicrobial activity of chitosan then evaluated. Toxicity test using Brine Shrimp Lethality Test. The antioxidant analysis was performed using DPPH method (2, 2-diphenyl-1-picrylhydrazyl) and FTC method (ferric thiocyanate) in which the radical formed will reduce Ferro to Ferri resulting in a complex with thiocyanate. To determine the antibacterial activity of Staphylococcus aureus, antifungal in Candida albicans and Aspergillus niger by measuring antimicrobial effects and minimum inhibitory concentrations (MIC). Based on the result of research, the value of degrees of deacetylation, molecular weight, and LC50 values of chitosan synthesis was 94,32, 1052.93 g/mol and 1364.41 ppm, respectively. In general, the antioxidative activities increased as the concentration of chitosan increased. MIC value of chitosan against S. aureus, C. albicans, and A. niger was 10 ppm, 15.6 ppm, and 5 ppm, respectively.

  11. The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape.

    PubMed

    Fajer, Mikolai; Meng, Yilin; Roux, Benoît

    2017-04-20

    Tyrosine kinases are important cellular signaling allosteric enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Their activity must be tightly controlled, and malfunction can lead to a variety of diseases, particularly cancer. The nonreceptor tyrosine kinase c-Src, a prototypical model system and a representative member of the Src-family, functions as complex multidomain allosteric molecular switches comprising SH2 and SH3 domains modulating the activity of the catalytic domain. The broad picture of self-inhibition of c-Src via the SH2 and SH3 regulatory domains is well characterized from a structural point of view, but a detailed molecular mechanism understanding is nonetheless still lacking. Here, we use advanced computational methods based on all-atom molecular dynamics simulations with explicit solvent to advance our understanding of kinase activation. To elucidate the mechanism of regulation and self-inhibition, we have computed the pathway and the free energy landscapes for the "inactive-to-active" conformational transition of c-Src for different configurations of the SH2 and SH3 domains. Using the isolated c-Src catalytic domain as a baseline for comparison, it is observed that the SH2 and SH3 domains, depending upon their bound orientation, promote either the inactive or active state of the catalytic domain. The regulatory structural information from the SH2-SH3 tandem is allosterically transmitted via the N-terminal linker of the catalytic domain. Analysis of the conformational transition pathways also illustrates the importance of the conserved tryptophan 260 in activating c-Src, and reveals a series of concerted events during the activation process.

  12. Novel insights into the composition, variation, organization, and expression of the low-molecular-weight glutenin subunit gene family in common wheat

    PubMed Central

    Zhang, Xiaofei; Liu, Dongcheng; Zhang, Jianghua; Jiang, Wei; Luo, Guangbin; Yang, Wenlong; Sun, Jiazhu; Tong, Yiping; Cui, Dangqun; Zhang, Aimin

    2013-01-01

    Low-molecular-weight glutenin subunits (LMW-GS), encoded by a complex multigene family, play an important role in the processing quality of wheat flour. Although members of this gene family have been identified in several wheat varieties, the allelic variation and composition of LMW-GS genes in common wheat are not well understood. In the present study, using the LMW-GS gene molecular marker system and the full-length gene cloning method, a comprehensive molecular analysis of LMW-GS genes was conducted in a representative population, the micro-core collections (MCC) of Chinese wheat germplasm. Generally, >15 LMW-GS genes were identified from individual MCC accessions, of which 4–6 were located at the Glu-A3 locus, 3–5 at the Glu-B3 locus, and eight at the Glu-D3 locus. LMW-GS genes at the Glu-A3 locus showed the highest allelic diversity, followed by the Glu-B3 genes, while the Glu-D3 genes were extremely conserved among MCC accessions. Expression and sequence analysis showed that 9–13 active LMW-GS genes were present in each accession. Sequence identity analysis showed that all i-type genes present at the Glu-A3 locus formed a single group, the s-type genes located at Glu-B3 and Glu-D3 loci comprised a unique group, while high-diversity m-type genes were classified into four groups and detected in all Glu-3 loci. These results contribute to the functional analysis of LMW-GS genes and facilitate improvement of bread-making quality by wheat molecular breeding programmes. PMID:23536608

  13. Characterization of the Host Response to Pichinde Virus Infection in the Syrian Golden Hamster by Species-Specific Kinome Analysis*

    PubMed Central

    Falcinelli, Shane; Gowen, Brian B.; Trost, Brett; Napper, Scott; Kusalik, Anthony; Johnson, Reed F.; Safronetz, David; Prescott, Joseph; Wahl-Jensen, Victoria; Jahrling, Peter B.; Kindrachuk, Jason

    2015-01-01

    The Syrian golden hamster has been increasingly used to study viral hemorrhagic fever (VHF) pathogenesis and countermeasure efficacy. As VHFs are a global health concern, well-characterized animal models are essential for both the development of therapeutics and vaccines as well as for increasing our understanding of the molecular events that underlie viral pathogenesis. However, the paucity of reagents or platforms that are available for studying hamsters at a molecular level limits the ability to extract biological information from this important animal model. As such, there is a need to develop platforms/technologies for characterizing host responses of hamsters at a molecular level. To this end, we developed hamster-specific kinome peptide arrays to characterize the molecular host response of the Syrian golden hamster. After validating the functionality of the arrays using immune agonists of defined signaling mechanisms (lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α), we characterized the host response in a hamster model of VHF based on Pichinde virus (PICV1) infection by performing temporal kinome analysis of lung tissue. Our analysis revealed key roles for vascular endothelial growth factor (VEGF), interleukin (IL) responses, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, and Toll-like receptor (TLR) signaling in the response to PICV infection. These findings were validated through phosphorylation-specific Western blot analysis. Overall, we have demonstrated that hamster-specific kinome arrays are a robust tool for characterizing the species-specific molecular host response in a VHF model. Further, our results provide key insights into the hamster host response to PICV infection and will inform future studies with high-consequence VHF pathogens. PMID:25573744

  14. Exhaled molecular profiles in the assessment of cystic fibrosis and primary ciliary dyskinesia.

    PubMed

    Paff, T; van der Schee, M P; Daniels, J M A; Pals, G; Postmus, P E; Sterk, P J; Haarman, E G

    2013-09-01

    Early diagnosis and monitoring of disease activity are essential in cystic fibrosis (CF) and primary ciliary dyskinesia (PCD). We aimed to establish exhaled molecular profiles as the first step in assessing the potential of breath analysis. Exhaled breath was analyzed by electronic nose in 25 children with CF, 25 with PCD and 23 controls. Principle component reduction and canonical discriminant analysis were used to construct internally cross-validated ROC curves. CF and PCD patients had significantly different breath profiles when compared to healthy controls (CF: sensitivity 84%, specificity 65%; PCD: sensitivity 88%, specificity 52%) and from each other (sensitivity 84%, specificity 60%). Patients with and without exacerbations had significantly different breath profiles (CF: sensitivity 89%, specificity 56%; PCD: sensitivity 100%, specificity 90%). Exhaled molecular profiles significantly differ between patients with CF, PCD and controls. The eNose may have potential in disease monitoring based on the influence of exacerbations on the VOC-profile. Copyright © 2012 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  15. Meta-review of protein network regulating obesity between validated obesity candidate genes in the white adipose tissue of high-fat diet-induced obese C57BL/6J mice.

    PubMed

    Kim, Eunjung; Kim, Eun Jung; Seo, Seung-Won; Hur, Cheol-Goo; McGregor, Robin A; Choi, Myung-Sook

    2014-01-01

    Worldwide obesity and related comorbidities are increasing, but identifying new therapeutic targets remains a challenge. A plethora of microarray studies in diet-induced obesity models has provided large datasets of obesity associated genes. In this review, we describe an approach to examine the underlying molecular network regulating obesity, and we discuss interactions between obesity candidate genes. We conducted network analysis on functional protein-protein interactions associated with 25 obesity candidate genes identified in a literature-driven approach based on published microarray studies of diet-induced obesity. The obesity candidate genes were closely associated with lipid metabolism and inflammation. Peroxisome proliferator activated receptor gamma (Pparg) appeared to be a core obesity gene, and obesity candidate genes were highly interconnected, suggesting a coordinately regulated molecular network in adipose tissue. In conclusion, the current network analysis approach may help elucidate the underlying molecular network regulating obesity and identify anti-obesity targets for therapeutic intervention.

  16. Zebrafish knockout of Down syndrome gene, DYRK1A, shows social impairments relevant to autism.

    PubMed

    Kim, Oc-Hee; Cho, Hyun-Ju; Han, Enna; Hong, Ted Inpyo; Ariyasiri, Krishan; Choi, Jung-Hwa; Hwang, Kyu-Seok; Jeong, Yun-Mi; Yang, Se-Yeol; Yu, Kweon; Park, Doo-Sang; Oh, Hyun-Woo; Davis, Erica E; Schwartz, Charles E; Lee, Jeong-Soo; Kim, Hyung-Goo; Kim, Cheol-Hee

    2017-01-01

    DYRK1A maps to the Down syndrome critical region at 21q22. Mutations in this kinase-encoding gene have been reported to cause microcephaly associated with either intellectual disability or autism in humans. Intellectual disability accompanied by microcephaly was recapitulated in a murine model by overexpressing Dyrk1a which mimicked Down syndrome phenotypes. However, given embryonic lethality in homozygous knockout (KO) mice, no murine model studies could present sufficient evidence to link Dyrk1a dysfunction with autism. To understand the molecular mechanisms underlying microcephaly and autism spectrum disorders (ASD), we established an in vivo dyrk1aa KO model using zebrafish. We identified a patient with a mutation in the DYRK1A gene using microarray analysis. Circumventing the barrier of murine model studies, we generated a dyrk1aa KO zebrafish using transcription activator-like effector nuclease (TALEN)-mediated genome editing. For social behavioral tests, we have established a social interaction test, shoaling assay, and group behavior assay. For molecular analysis, we examined the neuronal activity in specific brain regions of dyrk1aa KO zebrafish through in situ hybridization with various probes including c-fos and crh which are the molecular markers for stress response. Microarray detected an intragenic microdeletion of DYRK1A in an individual with microcephaly and autism. From behavioral tests of social interaction and group behavior, dyrk1aa KO zebrafish exhibited social impairments that reproduce human phenotypes of autism in a vertebrate animal model. Social impairment in dyrk1aa KO zebrafish was further confirmed by molecular analysis of c-fos and crh expression. Transcriptional expression of c-fos and crh was lower than that of wild type fish in specific hypothalamic regions, suggesting that KO fish brains are less activated by social context. In this study, we established a zebrafish model to validate a candidate gene for autism in a vertebrate animal. These results illustrate the functional deficiency of DYRK1A as an underlying disease mechanism for autism. We also propose simple social behavioral assays as a tool for the broader study of autism candidate genes.

  17. Collaborative study for the establishment of replacement batches of heparin low- molecular-mass for assay biological reference preparations.

    PubMed

    Terao, E; Daas, A; Rautmann, G; Buchheit, K-H

    2010-10-01

    A collaborative study was run by the European Directorate for the Quality of Medicines & HealthCare (EDQM) in the context of the Biological Standardisation Programme (BSP), under the aegis of the Council of Europe and the European Commission, to establish replacement batches for the dwindling stocks of the Heparin low-molecular-mass for assay European Pharmacopoeia Biological Reference Preparation (BRP). The replacement batches of BRP are intended to be used in the assays for anti-Xa and anti-IIa activities, as described in the European Pharmacopoeia (Ph. Eur.) monograph Heparins, low-molecular-mass (0828). Three freeze-dried candidate batches were calibrated against the current International Standard (IS) for Heparin, lowmolecular- weight (2nd IS, 01/608). For the purpose of the continuity check between subsequent BRP batches, the current Heparin low-molecular-mass for assay BRP (batch 5) was also included in the test panel. Thirteen official medicines control and manufacturers laboratories from European and non-European countries contributed data. A central statistical analysis of the datasets was performed at the EDQM. On the basis of the results, the 3 candidate materials were assigned a potency of 104 IU/vial for the anti-Xa activity and 31 IU/vial for the anti-IIa activity. Taken into account the preliminary stability data and the results of this collaborative study, the 3 batches of candidate BRP were adopted in June 2010 by the Commission of the Ph. Eur. as Heparin low-molecular-mass for assay BRP batches 6, 7 and 8.

  18. Molecular mechanism of carbon nanotube to activate Subtilisin Carlsberg in polar and non-polar organic media

    NASA Astrophysics Data System (ADS)

    Zhang, Liyun; Li, Yuzhi; Yuan, Yuan; Jiang, Yuanyuan; Guo, Yanzhi; Li, Menglong; Pu, Xuemei

    2016-11-01

    In the work, we mainly used molecular dynamics (MD) simulation and protein structure network (PSN) to study subtilisin Carlsberg (SC) immobilized onto carbon nanotube (CNT) in water, acetonitrile and heptane solvents, in order to explore activation mechanism of enzymes in non-aqueous media. The result indicates that the affinity of SC with CNT follows the decreasing order of water > acetonitrile > heptane. The overall structure of SC and the catalytic triad display strong robustness to the change of environments, responsible for the activity retaining. However, the distances between two β-strands of substrate-binding pocket are significantly expanded by the immobilization in the increasing order of water < acetonitrile < heptane, contributing to the highest substrate-binding energy in heptane media. PSN analysis further reveals that the immobilization enhances structural communication paths to the substrate-binding pocket, leading to its larger change than the free-enzymes. Interestingly, the increase in the number of the pathways upon immobilization is not dependent on the absorbed extent but the desorbed one, indicating significant role of shifting process of experimental operations in influencing the functional region. In addition, some conserved and important hot-residues in the paths are identified, providing molecular information for functional modification.

  19. 3D-QSAR studies on the inhibitory activity of trimethoprim analogues against Escherichia coli dihydrofolate reductase.

    PubMed

    Vijayaraj, Ramadoss; Devi, Mekapothula Lakshmi Vasavi; Subramanian, Venkatesan; Chattaraj, Pratim Kumar

    2012-06-01

    Three-dimensional quantitative structure activity relationship (3D-QSAR) study has been carried out on the Escherichia coli DHFR inhibitors 2,4-diamino-5-(substituted-benzyl)pyrimidine derivatives to understand the structural features responsible for the improved potency. To construct highly predictive 3D-QSAR models, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods were used. The predicted models show statistically significant cross-validated and non-cross-validated correlation coefficient of r2 CV and r2 nCV, respectively. The final 3D-QSAR models were validated using structurally diverse test set compounds. Analysis of the contour maps generated from CoMFA and CoMSIA methods reveals that the substitution of electronegative groups at the first and second position along with electropositive group at the third position of R2 substitution significantly increases the potency of the derivatives. The results obtained from the CoMFA and CoMSIA study delineate the substituents on the trimethoprim analogues responsible for the enhanced potency and also provide valuable directions for the design of new trimethoprim analogues with improved affinity. © 2012 John Wiley & Sons A/S.

  20. Molecular Characterization and Analysis of Antimicrobial Activity of Endophytic Fungi From Medicinal Plants in Saudi Arabia

    PubMed Central

    Gashgari, Rukaia; Gherbawy, Youssuf; Ameen, Fuad; Alsharari, Salam

    2016-01-01

    Background: Endophytic fungi, which have been reported in numerous plant species, are important components of the forest community and contribute significantly to the diversity of natural ecosystems. Objectives: The current study aimed to evaluate and characterize, at the molecular level, the diversity and antimicrobial activities of endophytic fungi from medicinal plants in Saudi Arabia. Materials and Methods: Fungi growing on plant segments were isolated and identified based on morphological and molecular characteristics. The isolates were grouped into 35 distinct operational taxonomic units, based on the sequence of the internal transcribed spacer regions in the rRNA gene. The colonization frequency and the dominant fungi percentage of these endophytic fungi were calculated. A dual culture technique was adopted to investigate the antifungal activity of these endophytes. Results: Tamarix nilotica showed the highest endophytic diversity with a relative frequency of 27.27%, followed by Cressa cretica with a relative frequency of 19.27%. The most frequently isolated species was Penicillium chrysogenum with an overall colonization rate of 98.57%. Seven out of 35 endophytic fungi exhibited strong antifungal activity to all plant fungal pathogens tested. P. chrysogenum, Fusarium oxysporum, and F. nygamai exhibited the highest inhibition against the human pathogenic bacteria Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Aspergillus sydowii, P. chrysogenum, and Eupenicillium crustaceum showed strong antimicrobial activity against Enterococcus faecalis. Conclusions: The antimicrobial activity of these endophytic microorganisms could be exploited in biotechnology, medicine, and agriculture. PMID:27099679

Top