NASA Astrophysics Data System (ADS)
Suresh, D. M.; Amalanathan, M.; Hubert Joe, I.; Bena Jothy, V.; Diao, Yun-Peng
2014-09-01
The molecular structure, vibrational analysis and molecular docking analysis of the 3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl 4-aminobenzoate (MDDNAB) molecule have been carried out using FT-IR and FT-Raman spectroscopic techniques and DFT method. The equilibrium geometry, harmonic vibrational wave numbers, various bonding features have been computed using density functional method. The calculated molecular geometry has been compared with experimental data. The detailed interpretation of the vibrational spectra has been carried out by using VEDA program. The hyper-conjugative interactions and charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The simulated FT-IR and FT-Raman spectra satisfactorily coincide with the experimental spectra. The PES and charge analysis have been made. The molecular docking was done to identify the binding energy and the Hydrogen bonding with the cancer protein molecule.
Cerruela García, G; García-Pedrajas, N; Luque Ruiz, I; Gómez-Nieto, M Á
2018-03-01
This paper proposes a method for molecular activity prediction in QSAR studies using ensembles of classifiers constructed by means of two supervised subspace projection methods, namely nonparametric discriminant analysis (NDA) and hybrid discriminant analysis (HDA). We studied the performance of the proposed ensembles compared to classical ensemble methods using four molecular datasets and eight different models for the representation of the molecular structure. Using several measures and statistical tests for classifier comparison, we observe that our proposal improves the classification results with respect to classical ensemble methods. Therefore, we show that ensembles constructed using supervised subspace projections offer an effective way of creating classifiers in cheminformatics.
Polymer Molecular Weight Analysis by [Superscript 1]H NMR Spectroscopy
ERIC Educational Resources Information Center
Izunobi, Josephat U.; Higginbotham, Clement L.
2011-01-01
The measurement and analysis of molecular weight and molecular weight distribution remain matters of fundamental importance for the characterization and physical properties of polymers. Gel permeation chromatography (GPC) is the most routinely used method for the molecular weight determination of polymers whereas matrix-assisted laser…
Lin, Lei; Liu, Xinyue; Zhang, Fuming; Chi, Lianli; Amster, I Jonathan; Leach, Franklyn E; Xia, Qiangwei; Linhardt, Robert J
2017-01-01
Most hyphenated analytical approaches that rely on liquid chromatography-MS require relatively long separation times, produce incomplete resolution of oligosaccharide mixtures, use eluents that are incompatible with electrospray ionization, or require oligosaccharide derivatization. Here we demonstrate the analysis of heparin oligosaccharides, including disaccharides, ultralow molecular weight heparin, and a low molecular weight heparin, using a novel electrokinetic pump-based CE-MS coupling eletrospray ion source. Reverse polarity CE separation and negative-mode electrospray ionization were optimized using a volatile methanolic ammonium acetate electrolyte and sheath fluid. The online CE hyphenated negative-ion electrospray ionization MS on an LTQ Orbitrap mass spectrometer was useful in disaccharide compositional analysis and bottom-up and top-down analysis of low molecular weight heparin. The application of this CE-MS method to ultralow molecular heparin suggests that a charge state distribution and the low level of sulfate group loss that is achieved make this method useful for online tandem MS analysis of heparins. Graphical abstract Most hyphenated analytical approaches that rely on liquid chromatography-MS require relatively long separation times, produce incomplete resolution of oligosaccharide mixtures, use eluents that are incompatible with electrospray ionization, or require oligosaccharide derivatization. Here we demonstrate the analysis of heparin oligosaccharides, including disaccharides, ultralow molecular weight heparin, and a low molecular weight heparin, using a novel electrokinetic pump-based CE-MS coupling eletrospray ion source. Reverse polarity CE separation and negative-mode electrospray ionization were optimized using a volatile methanolic ammonium acetate electrolyte and sheath fluid. The online CE hyphenated negative-ion electrospray ionization MS on an LTQ Orbitrap mass spectrometer was useful in disaccharide compositional analysis and bottom-up and top-down analysis of low molecular weight heparin. The application of this CE-MS method to ultralow molecular heparin suggests that a charge state distribution and the low level of sulfate group loss that is achieved make this method useful for online tandem MS analysis of heparins.
Bacterial molecular networks: bridging the gap between functional genomics and dynamical modelling.
van Helden, Jacques; Toussaint, Ariane; Thieffry, Denis
2012-01-01
This introductory review synthesizes the contents of the volume Bacterial Molecular Networks of the series Methods in Molecular Biology. This volume gathers 9 reviews and 16 method chapters describing computational protocols for the analysis of metabolic pathways, protein interaction networks, and regulatory networks. Each protocol is documented by concrete case studies dedicated to model bacteria or interacting populations. Altogether, the chapters provide a representative overview of state-of-the-art methods for data integration and retrieval, network visualization, graph analysis, and dynamical modelling.
Suresh, D M; Amalanathan, M; Joe, I Hubert; Jothy, V Bena; Diao, Yun-Peng
2014-09-15
The molecular structure, vibrational analysis and molecular docking analysis of the 3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl 4-aminobenzoate (MDDNAB) molecule have been carried out using FT-IR and FT-Raman spectroscopic techniques and DFT method. The equilibrium geometry, harmonic vibrational wave numbers, various bonding features have been computed using density functional method. The calculated molecular geometry has been compared with experimental data. The detailed interpretation of the vibrational spectra has been carried out by using VEDA program. The hyper-conjugative interactions and charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The simulated FT-IR and FT-Raman spectra satisfactorily coincide with the experimental spectra. The PES and charge analysis have been made. The molecular docking was done to identify the binding energy and the Hydrogen bonding with the cancer protein molecule. Copyright © 2014 Elsevier B.V. All rights reserved.
Fasihi, Yasser; Fooladi, Saba; Mohammadi, Mohammad Ali; Emaneini, Mohammad; Kalantar-Neyestanaki, Davood
2017-09-06
Molecular typing is an important tool for control and prevention of infection. A suitable molecular typing method for epidemiological investigation must be easy to perform, highly reproducible, inexpensive, rapid and easy to interpret. In this study, two molecular typing methods including the conventional PCR-sequencing method and high resolution melting (HRM) analysis were used for staphylococcal protein A (spa) typing of 30 Methicillin-resistant Staphylococcus aureus (MRSA) isolates recovered from clinical samples. Based on PCR-sequencing method results, 16 different spa types were identified among the 30 MRSA isolates. Among the 16 different spa types, 14 spa types separated by HRM method. Two spa types including t4718 and t2894 were not separated from each other. According to our results, spa typing based on HRM analysis method is very rapid, easy to perform and cost-effective, but this method must be standardized for different regions, spa types, and real-time machinery.
ERIC Educational Resources Information Center
Wang, Lihua
2012-01-01
A new method is introduced for teaching group theory analysis of the infrared spectra of organometallic compounds using molecular modeling. The main focus of this method is to enhance student understanding of the symmetry properties of vibrational modes and of the group theory analysis of infrared (IR) spectra by using visual aids provided by…
NASA Astrophysics Data System (ADS)
Feng, Wei; Ma, Ning; Zhu, Dan
2015-03-01
The improvement of methods for optical clearing agent prediction exerts an important impact on tissue optical clearing technique. The molecular dynamic simulation is one of the most convincing and simplest approaches to predict the optical clearing potential of agents by analyzing the hydrogen bonds, hydrogen bridges and hydrogen bridges type forming between agents and collagen. However, the above analysis methods still suffer from some problem such as analysis of cyclic molecule by reason of molecular conformation. In this study, a molecular effective coverage surface area based on the molecular dynamic simulation was proposed to predict the potential of optical clearing agents. Several typical cyclic molecules, fructose, glucose and chain molecules, sorbitol, xylitol were analyzed by calculating their molecular effective coverage surface area, hydrogen bonds, hydrogen bridges and hydrogen bridges type, respectively. In order to verify this analysis methods, in vitro skin samples optical clearing efficacy were measured after 25 min immersing in the solutions, fructose, glucose, sorbitol and xylitol at concentration of 3.5 M using 1951 USAF resolution test target. The experimental results show accordance with prediction of molecular effective coverage surface area. Further to compare molecular effective coverage surface area with other parameters, it can show that molecular effective coverage surface area has a better performance in predicting OCP of agents.
Multiscale Modeling for the Analysis for Grain-Scale Fracture Within Aluminum Microstructures
NASA Technical Reports Server (NTRS)
Glaessgen, Edward H.; Phillips, Dawn R.; Yamakov, Vesselin; Saether, Erik
2005-01-01
Multiscale modeling methods for the analysis of metallic microstructures are discussed. Both molecular dynamics and the finite element method are used to analyze crack propagation and stress distribution in a nanoscale aluminum bicrystal model subjected to hydrostatic loading. Quantitative similarity is observed between the results from the two very different analysis methods. A bilinear traction-displacement relationship that may be embedded into cohesive zone finite elements is extracted from the nanoscale molecular dynamics results.
System and method for chromatography and electrophoresis using circular optical scanning
Balch, Joseph W.; Brewer, Laurence R.; Davidson, James C.; Kimbrough, Joseph R.
2001-01-01
A system and method is disclosed for chromatography and electrophoresis using circular optical scanning. One or more rectangular microchannel plates or radial microchannel plates has a set of analysis channels for insertion of molecular samples. One or more scanning devices repeatedly pass over the analysis channels in one direction at a predetermined rotational velocity and with a predetermined rotational radius. The rotational radius may be dynamically varied so as to monitor the molecular sample at various positions along a analysis channel. Sample loading robots may also be used to input molecular samples into the analysis channels. Radial microchannel plates are built from a substrate whose analysis channels are disposed at a non-parallel angle with respect to each other. A first step in the method accesses either a rectangular or radial microchannel plate, having a set of analysis channels, and second step passes a scanning device repeatedly in one direction over the analysis channels. As a third step, the scanning device is passed over the analysis channels at dynamically varying distances from a centerpoint of the scanning device. As a fourth step, molecular samples are loaded into the analysis channels with a robot.
[CONTEMPORARY MOLECULAR-GENETIC METHODS USED FOR ETIOLOGIC DIAGNOSTICS OF SEPSIS].
Gavrilov, S N; Skachkova, T S; Shipulina, O Yu; Savochkina, Yu A; Shipulin, G A; Maleev, V V
2016-01-01
Etiologic diagnostics of sepsis is one of the most difficult problems of contemporary medicine due to a wide variety of sepsis causative agents, many of which are components of normal human microflora. Disadvantages of contemporary "golden standard" of microbiologic diagnostics of sepsis etiology by seeding of blood for sterility are duration of cultivation, limitation in detection of non-cultivable forms of microorganisms, significant effect of preliminary empiric antibiotics therapy on results of the analysis. Methods of molecular diagnostics that are being actively developed and integrated during the last decade are deprived of these disadvantages. Main contemporary methods of molecular-biological diagnostics are examined in the review, actualdata on their diagnostic characteristic are provided. Special attention is given to methods of PCR-diagnostics, including novel Russian developments. Methods of nucleic acid hybridization and proteomic analysis are examined in comparative aspect. Evaluation of application and perspectives of development of methods of molecular diagnostics of sepsis is given.
Barteneva, Natasha S; Vorobjev, Ivan A
2018-01-01
In this paper, we review some of the recent advances in cellular heterogeneity and single-cell analysis methods. In modern research of cellular heterogeneity, there are four major approaches: analysis of pooled samples, single-cell analysis, high-throughput single-cell analysis, and lately integrated analysis of cellular population at a single-cell level. Recently developed high-throughput single-cell genetic analysis methods such as RNA-Seq require purification step and destruction of an analyzed cell often are providing a snapshot of the investigated cell without spatiotemporal context. Correlative analysis of multiparameter morphological, functional, and molecular information is important for differentiation of more uniform groups in the spectrum of different cell types. Simplified distributions (histograms and 2D plots) can underrepresent biologically significant subpopulations. Future directions may include the development of nondestructive methods for dissecting molecular events in intact cells, simultaneous correlative cellular analysis of phenotypic and molecular features by hybrid technologies such as imaging flow cytometry, and further progress in supervised and non-supervised statistical analysis algorithms.
Laser-based methods for the analysis of low molecular weight compounds in biological matrices.
Kiss, András; Hopfgartner, Gérard
2016-07-15
Laser-based desorption and/or ionization methods play an important role in the field of the analysis of low molecular-weight compounds (LMWCs) because they allow direct analysis with high-throughput capabilities. In the recent years there were several new improvements in ionization methods with the emergence of novel atmospheric ion sources such as laser ablation electrospray ionization or laser diode thermal desorption and atmospheric pressure chemical ionization and in sample preparation methods with the development of new matrix compounds for matrix-assisted laser desorption/ionization (MALDI). Also, the combination of ion mobility separation with laser-based ionization methods starts to gain popularity with access to commercial systems. These developments have been driven mainly by the emergence of new application fields such as MS imaging and non-chromatographic analytical approaches for quantification. This review aims to present these new developments in laser-based methods for the analysis of low-molecular weight compounds by MS and several potential applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Measurement of incident molecular temperature in the formation of organic thin films
NASA Astrophysics Data System (ADS)
Abe, Takahiro; Matsubara, Ryosuke; Hayakawa, Munetaka; Shimoyama, Akifumi; Tanaka, Takaaki; Tsuji, Akira; Takahashi, Yoshikazu; Kubono, Atsushi
2018-03-01
To investigate the effects of incident molecular temperature on organic-thin-film growth by vacuum evaporation, quantitative analysis of molecular temperature is required. In this study, we propose a method of determining molecular temperature based on the heat exchange between a platinum filament and molecular vapor. Molecular temperature is estimated from filament temperature, which remains unchanged even under molecular vapor supply. The results indicate that our method has sufficient sensitivity to evaluate the molecular temperature under the typical growth rate used for fabrication of functional organic thin films.
NASA Astrophysics Data System (ADS)
Nagai, Toshiki; Mitsutake, Ayori; Takano, Hiroshi
2013-02-01
A new relaxation mode analysis method, which is referred to as the principal component relaxation mode analysis method, has been proposed to handle a large number of degrees of freedom of protein systems. In this method, principal component analysis is carried out first and then relaxation mode analysis is applied to a small number of principal components with large fluctuations. To reduce the contribution of fast relaxation modes in these principal components efficiently, we have also proposed a relaxation mode analysis method using multiple evolution times. The principal component relaxation mode analysis method using two evolution times has been applied to an all-atom molecular dynamics simulation of human lysozyme in aqueous solution. Slow relaxation modes and corresponding relaxation times have been appropriately estimated, demonstrating that the method is applicable to protein systems.
Mitochondrial DNA diagnosis for taeniasis and cysticercosis.
Yamasaki, Hiroshi; Nakao, Minoru; Sako, Yasuhito; Nakaya, Kazuhiro; Sato, Marcello Otake; Ito, Akira
2006-01-01
Molecular diagnosis for taeniasis and cysticercosis in humans on the basis of mitochondrial DNA analysis was reviewed. Development and application of three different methods, including restriction fragment length polymorphism analysis, base excision sequence scanning thymine-base analysis and multiplex PCR, were described. Moreover, molecular diagnosis of cysticerci found in specimens submitted for histopathology and the molecular detection of taeniasis using copro-DNA were discussed.
NASA Technical Reports Server (NTRS)
Fahey, Robert C.; Newton, Gerald L.
1988-01-01
Methods are described for the preparation and high-performance liquid chromatography (HPLC) analysis of monobromobimane derivatives of low molecular weight thiols in extracts of biological samples. Typical problems encountered in the development and application of these methods are discussed. Analysis of mung bean extract is used as an example.
Evaluation of Contamination Inspection and Analysis Methods through Modeling System Performance
NASA Technical Reports Server (NTRS)
Seasly, Elaine; Dever, Jason; Stuban, Steven M. F.
2016-01-01
Contamination is usually identified as a risk on the risk register for sensitive space systems hardware. Despite detailed, time-consuming, and costly contamination control efforts during assembly, integration, and test of space systems, contaminants are still found during visual inspections of hardware. Improved methods are needed to gather information during systems integration to catch potential contamination issues earlier and manage contamination risks better. This research explores evaluation of contamination inspection and analysis methods to determine optical system sensitivity to minimum detectable molecular contamination levels based on IEST-STD-CC1246E non-volatile residue (NVR) cleanliness levels. Potential future degradation of the system is modeled given chosen modules representative of optical elements in an optical system, minimum detectable molecular contamination levels for a chosen inspection and analysis method, and determining the effect of contamination on the system. By modeling system performance based on when molecular contamination is detected during systems integration and at what cleanliness level, the decision maker can perform trades amongst different inspection and analysis methods and determine if a planned method is adequate to meet system requirements and manage contamination risk.
Advances in Molecular Rotational Spectroscopy for Applied Science
NASA Astrophysics Data System (ADS)
Harris, Brent; Fields, Shelby S.; Pulliam, Robin; Muckle, Matt; Neill, Justin L.
2017-06-01
Advances in chemical sensitivity and robust, solid-state designs for microwave/millimeter-wave instrumentation compel the expansion of molecular rotational spectroscopy as research tool into applied science. It is familiar to consider molecular rotational spectroscopy for air analysis. Those techniques for molecular rotational spectroscopy are included in our presentation of a more broad application space for materials analysis using Fourier Transform Molecular Rotational Resonance (FT-MRR) spectrometers. There are potentially transformative advantages for direct gas analysis of complex mixtures, determination of unknown evolved gases with parts per trillion detection limits in solid materials, and unambiguous chiral determination. The introduction of FT-MRR as an alternative detection principle for analytical chemistry has created a ripe research space for the development of new analytical methods and sampling equipment to fully enable FT-MRR. We present the current state of purpose-built FT-MRR instrumentation and the latest application measurements that make use of new sampling methods.
Molecular Diagnosis and Biomarker Identification on SELDI proteomics data by ADTBoost method.
Wang, Lu-Yong; Chakraborty, Amit; Comaniciu, Dorin
2005-01-01
Clinical proteomics is an emerging field that will have great impact on molecular diagnosis, identification of disease biomarkers, drug discovery and clinical trials in the post-genomic era. Protein profiling in tissues and fluids in disease and pathological control and other proteomics techniques will play an important role in molecular diagnosis with therapeutics and personalized healthcare. We introduced a new robust diagnostic method based on ADTboost algorithm, a novel algorithm in proteomics data analysis to improve classification accuracy. It generates classification rules, which are often smaller and easier to interpret. This method often gives most discriminative features, which can be utilized as biomarkers for diagnostic purpose. Also, it has a nice feature of providing a measure of prediction confidence. We carried out this method in amyotrophic lateral sclerosis (ALS) disease data acquired by surface enhanced laser-desorption/ionization-time-of-flight mass spectrometry (SELDI-TOF MS) experiments. Our method is shown to have outstanding prediction capacity through the cross-validation, ROC analysis results and comparative study. Our molecular diagnosis method provides an efficient way to distinguish ALS disease from neurological controls. The results are expressed in a simple and straightforward alternating decision tree format or conditional format. We identified most discriminative peaks in proteomic data, which can be utilized as biomarkers for diagnosis. It will have broad application in molecular diagnosis through proteomics data analysis and personalized medicine in this post-genomic era.
Wang, Yong; Fujii, Takeshi
2011-01-01
It is important in molecular biological analyses to evaluate contamination of co-extracted humic acids in DNA/RNA extracted from soil. We compared the sensitivity of various methods for measurement of humic acids, and influences of DNA/RNA and proteins on the measurement. Considering the results, we give suggestions as to choice of methods for measurement of humic acids in molecular biological analyses.
Irei, Satoshi
2016-01-01
Molecular marker analysis of environmental samples often requires time consuming preseparation steps. Here, analysis of low-volatile nonpolar molecular markers (5-6 ring polycyclic aromatic hydrocarbons or PAHs, hopanoids, and n-alkanes) without the preseparation procedure is presented. Analysis of artificial sample extracts was directly conducted by gas chromatography-mass spectrometry (GC-MS). After every sample injection, a standard mixture was also analyzed to make a correction on the variation of instrumental sensitivity caused by the unfavorable matrix contained in the extract. The method was further validated for the PAHs using the NIST standard reference materials (SRMs) and then applied to airborne particulate matter samples. Tests with the SRMs showed that overall our methodology was validated with the uncertainty of ~30%. The measurement results of airborne particulate matter (PM) filter samples showed a strong correlation between the PAHs, implying the contributions from the same emission source. Analysis of size-segregated PM filter samples showed that their size distributions were found to be in the PM smaller than 0.4 μm aerodynamic diameter. The observations were consistent with our expectation of their possible sources. Thus, the method was found to be useful for molecular marker studies. PMID:27127511
Analysis of time-of-flight spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, E.M.; Foxon, C.T.; Zhang, J.
1990-07-01
A simplified method of data analysis for time of flight measurements of the velocity of molecular beams sources is described. This method does not require the complex data fitting previously used in such studies. The method is applied to the study of Pb molecular beams from a true Knudsen source and has been used to show that a VG Quadrupoles SXP300H mass spectrometer, when fitted with an open cross-beam ionizer, acts as an ideal density detector over a wide range of operating conditions.
Organic molecules as chemical fossils - The molecular fossil record
NASA Technical Reports Server (NTRS)
Eglinton, G.
1983-01-01
The study of biochemical clues to the early earth and the origin of life is discussed. The methods used in such investigation are described, including the extraction, fractionation, and analysis of geolipids and the analysis of kerogen. The occurrence of molecular fossils in the geological record is examined, discussing proposed precursor-product relationships and the molecular assessment of deep sea sediments, ancient sediments, and crude petroleums. Alterations in the molecular record due to diagenesis and catagenesis are considered, and the use of microbial lipids as molecular fossils is discussed. The results of searches for molecular fossils in Precambrian sediments are assessed.
NASA Astrophysics Data System (ADS)
Gilbert, Kathleen M.; Skawinski, William J.; Misra, Milind; Paris, Kristina A.; Naik, Neelam H.; Buono, Ronald A.; Deutsch, Howard M.; Venanzi, Carol A.
2004-11-01
Methylphenidate (MP) binds to the cocaine binding site on the dopamine transporter and inhibits reuptake of dopamine, but does not appear to have the same abuse potential as cocaine. This study, part of a comprehensive effort to identify a drug treatment for cocaine abuse, investigates the effect of choice of calculation technique and of solvent model on the conformational potential energy surface (PES) of MP and a rigid methylphenidate (RMP) analogue which exhibits the same dopamine transporter binding affinity as MP. Conformational analysis was carried out by the AM1 and AM1/SM5.4 semiempirical molecular orbital methods, a molecular mechanics method (Tripos force field with the dielectric set equal to that of vacuum or water) and the HF/6-31G* molecular orbital method in vacuum phase. Although all three methods differ somewhat in the local details of the PES, the general trends are the same for neutral and protonated MP. In vacuum phase, protonation has a distinctive effect in decreasing the regions of space available to the local conformational minima. Solvent has little effect on the PES of the neutral molecule and tends to stabilize the protonated species. The random search (RS) conformational analysis technique using the Tripos force field was found to be capable of locating the minima found by the molecular orbital methods using systematic grid search. This suggests that the RS/Tripos force field/vacuum phase protocol is a reasonable choice for locating the local minima of MP. However, the Tripos force field gave significantly larger phenyl ring rotational barriers than the molecular orbital methods for MP and RMP. For both the neutral and protonated cases, all three methods found the phenyl ring rotational barriers for the RMP conformers/invertamers (denoted as cte, tte, and cta) to be: cte, tte> MP > cta. Solvation has negligible effect on the phenyl ring rotational barrier of RMP. The B3LYP/6-31G* density functional method was used to calculate the phenyl ring rotational barrier for neutral MP and gave results very similar to those of the HF/6-31G* method.
Method of identifying hairpin DNA probes by partial fold analysis
Miller, Benjamin L [Penfield, NY; Strohsahl, Christopher M [Saugerties, NY
2009-10-06
Method of identifying molecular beacons in which a secondary structure prediction algorithm is employed to identify oligonucleotide sequences within a target gene having the requisite hairpin structure. Isolated oligonucleotides, molecular beacons prepared from those oligonucleotides, and their use are also disclosed.
Method of identifying hairpin DNA probes by partial fold analysis
Miller, Benjamin L.; Strohsahl, Christopher M.
2008-10-28
Methods of identifying molecular beacons in which a secondary structure prediction algorithm is employed to identify oligonucleotide sequences within a target gene having the requisite hairpin structure. Isolated oligonucleotides, molecular beacons prepared from those oligonucleotides, and their use are also disclosed.
Vogl, Claus; Das, Aparup; Beaumont, Mark; Mohanty, Sujata; Stephan, Wolfgang
2003-11-01
Population subdivision complicates analysis of molecular variation. Even if neutrality is assumed, three evolutionary forces need to be considered: migration, mutation, and drift. Simplification can be achieved by assuming that the process of migration among and drift within subpopulations is occurring fast compared to mutation and drift in the entire population. This allows a two-step approach in the analysis: (i) analysis of population subdivision and (ii) analysis of molecular variation in the migrant pool. We model population subdivision using an infinite island model, where we allow the migration/drift parameter Theta to vary among populations. Thus, central and peripheral populations can be differentiated. For inference of Theta, we use a coalescence approach, implemented via a Markov chain Monte Carlo (MCMC) integration method that allows estimation of allele frequencies in the migrant pool. The second step of this approach (analysis of molecular variation in the migrant pool) uses the estimated allele frequencies in the migrant pool for the study of molecular variation. We apply this method to a Drosophila ananassae sequence data set. We find little indication of isolation by distance, but large differences in the migration parameter among populations. The population as a whole seems to be expanding. A population from Bogor (Java, Indonesia) shows the highest variation and seems closest to the species center.
Comparative Investigation of Normal Modes and Molecular Dynamics of Hepatitis C NS5B Protein
NASA Astrophysics Data System (ADS)
Asafi, M. S.; Yildirim, A.; Tekpinar, M.
2016-04-01
Understanding dynamics of proteins has many practical implications in terms of finding a cure for many protein related diseases. Normal mode analysis and molecular dynamics methods are widely used physics-based computational methods for investigating dynamics of proteins. In this work, we studied dynamics of Hepatitis C NS5B protein with molecular dynamics and normal mode analysis. Principal components obtained from a 100 nanoseconds molecular dynamics simulation show good overlaps with normal modes calculated with a coarse-grained elastic network model. Coarse-grained normal mode analysis takes at least an order of magnitude shorter time. Encouraged by this good overlaps and short computation times, we analyzed further low frequency normal modes of Hepatitis C NS5B. Motion directions and average spatial fluctuations have been analyzed in detail. Finally, biological implications of these motions in drug design efforts against Hepatitis C infections have been elaborated.
Determination and Quantification of Molecular Interactions in Protein Films: A Review.
Hammann, Felicia; Schmid, Markus
2014-12-10
Protein based films are nowadays also prepared with the aim of replacing expensive, crude oil-based polymers as environmentally friendly and renewable alternatives. The protein structure determines the ability of protein chains to form intra- and intermolecular bonds, whereas the degree of cross-linking depends on the amino acid composition and molecular weight of the protein, besides the conditions used in film preparation and processing. The functionality varies significantly depending on the type of protein and affects the resulting film quality and properties. This paper reviews the methods used in examination of molecular interactions in protein films and discusses how these intermolecular interactions can be quantified. The qualitative determination methods can be distinguished by structural analysis of solutions (electrophoretic analysis, size exclusion chromatography) and analysis of solid films (spectroscopy techniques, X-ray scattering methods). To quantify molecular interactions involved, two methods were found to be the most suitable: protein film swelling and solubility. The importance of non-covalent and covalent interactions in protein films can be investigated using different solvents. The research was focused on whey protein, whereas soy protein and wheat gluten were included as further examples of proteins.
Determination Quantification of Molecular Interactions in Protein Films: A Review
Hammann, Felicia; Schmid, Markus
2014-01-01
Protein based films are nowadays also prepared with the aim of replacing expensive, crude oil-based polymers as environmentally friendly and renewable alternatives. The protein structure determines the ability of protein chains to form intra- and intermolecular bonds, whereas the degree of cross-linking depends on the amino acid composition and molecular weight of the protein, besides the conditions used in film preparation and processing. The functionality varies significantly depending on the type of protein and affects the resulting film quality and properties. This paper reviews the methods used in examination of molecular interactions in protein films and discusses how these intermolecular interactions can be quantified. The qualitative determination methods can be distinguished by structural analysis of solutions (electrophoretic analysis, size exclusion chromatography) and analysis of solid films (spectroscopy techniques, X-ray scattering methods). To quantify molecular interactions involved, two methods were found to be the most suitable: protein film swelling and solubility. The importance of non-covalent and covalent interactions in protein films can be investigated using different solvents. The research was focused on whey protein, whereas soy protein and wheat gluten were included as further examples of proteins. PMID:28788285
Mačkić-Đurović, Mirela; Projić, Petar; Ibrulj, Slavka; Cakar, Jasmina; Marjanović, Damir
2014-05-01
The goal of this study was to examine the effectiveness of 6 STR markers application (D21S1435, D21S11, D21S1270, D21S1411, D21S226 and IFNAR) in molecular genetic diagnostics of Down syndrome (DS) and to compare it with cytogenetic method. Testing was performed on 73 children, with the previously cytogenetically confirmed Down syndrome. DNA isolated from the buccal swab was used. Previously mentioned loci located on chromosome 21 were simultaneously amplified using quantitative fluorescence PCR (QF PCR). Using this method, 60 previously cytogenetically diagnosed DS with standard type of trisomy 21 were confirmed. Furthermore, six of eight children with mosaic type of DS were detected. Two false negative results for mosaic type of DS were obtained. Finally, five children with the translocation type of Down syndrome were also confirmed with this molecular test. In conclusion, molecular genetic analysis of STR loci is fast, cheap and simple method that could be used in detection of DS. Regarding possible false results detected for certain number of mosaic types, cytogenetic analysis should be used as a confirmatory test.
Hernández-Toloza, Johana Esther; Rincón-Serrano, María de Pilar; Celis-Bustos, Yamile Adriana; Aguillón, Claudia Inés
2016-01-01
Global epidemiology of non-tuberculous mycobacteria (NTM) is unknown due to the fact that notification is not required in many countries, however the number of infection reports and outbreaks caused by NTM suggest a significant increase in the last years. Traditionally, mycobacteria identification is made through biochemical profiles which allow to differentiate M. tuberculosis from NTM, and in some cases the mycobacteria species. Nevertheless, these methods are technically cumbersome and time consuming. On the other hand, the introduction of methods based on molecular biology has improved the laboratory diagnosis of NTM. To establish the NTM frequency in positive cultures for acid-fast bacilli (AAFB) which were sent to Laboratorio de Salud Pública de Bogotá over a 12 month period. A total of 100 positive cultures for acid-fast bacilli from public and private hospitals from Bogotá were identified by both biochemical methods and the molecular methods PRA (PCR-restriction enzyme analysis) and multiplex-PCR. Furthermore, low prevalence mycobacteria species and non-interpretable results were confirmed by 16SrDNA sequentiation analysis. Identification using the PRA method showed NMT occurrence in 11% of cultures. In addition, this molecular methodology allowed to detect the occurrence of more than one mycobacteria in 4% of the cultures. Interestingly, a new M. kubicae pattern of PCR-restriction analysis is reported in our study. Using a mycobacteria identification algorithm, which includes the molecular method PRA, improves the diagnostic power of conventional methods and could help to advance both NTM epidemiology knowledge and mycobacteriosis control. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
[Methods of quantitative proteomics].
Kopylov, A T; Zgoda, V G
2007-01-01
In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.
Abramyan, Tigran M; Snyder, James A; Thyparambil, Aby A; Stuart, Steven J; Latour, Robert A
2016-08-05
Clustering methods have been widely used to group together similar conformational states from molecular simulations of biomolecules in solution. For applications such as the interaction of a protein with a surface, the orientation of the protein relative to the surface is also an important clustering parameter because of its potential effect on adsorbed-state bioactivity. This study presents cluster analysis methods that are specifically designed for systems where both molecular orientation and conformation are important, and the methods are demonstrated using test cases of adsorbed proteins for validation. Additionally, because cluster analysis can be a very subjective process, an objective procedure for identifying both the optimal number of clusters and the best clustering algorithm to be applied to analyze a given dataset is presented. The method is demonstrated for several agglomerative hierarchical clustering algorithms used in conjunction with three cluster validation techniques. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Dielectrophoresis-Based Sample Handling in General-Purpose Programmable Diagnostic Instruments
Gascoyne, Peter R. C.; Vykoukal, Jody V.
2009-01-01
As the molecular origins of disease are better understood, the need for affordable, rapid, and automated technologies that enable microscale molecular diagnostics has become apparent. Widespread use of microsystems that perform sample preparation and molecular analysis could ensure that the benefits of new biomedical discoveries are realized by a maximum number of people, even those in environments lacking any infrastructure. While progress has been made in developing miniaturized diagnostic systems, samples are generally processed off-device using labor-intensive and time-consuming traditional sample preparation methods. We present the concept of an integrated programmable general-purpose sample analysis processor (GSAP) architecture where raw samples are routed to separation and analysis functional blocks contained within a single device. Several dielectrophoresis-based methods that could serve as the foundation for building GSAP functional blocks are reviewed including methods for cell and particle sorting, cell focusing, cell ac impedance analysis, cell lysis, and the manipulation of molecules and reagent droplets. PMID:19684877
`Inter-Arrival Time' Inspired Algorithm and its Application in Clustering and Molecular Phylogeny
NASA Astrophysics Data System (ADS)
Kolekar, Pandurang S.; Kale, Mohan M.; Kulkarni-Kale, Urmila
2010-10-01
Bioinformatics, being multidisciplinary field, involves applications of various methods from allied areas of Science for data mining using computational approaches. Clustering and molecular phylogeny is one of the key areas in Bioinformatics, which help in study of classification and evolution of organisms. Molecular phylogeny algorithms can be divided into distance based and character based methods. But most of these methods are dependent on pre-alignment of sequences and become computationally intensive with increase in size of data and hence demand alternative efficient approaches. `Inter arrival time distribution' (IATD) is a popular concept in the theory of stochastic system modeling but its potential in molecular data analysis has not been fully explored. The present study reports application of IATD in Bioinformatics for clustering and molecular phylogeny. The proposed method provides IATDs of nucleotides in genomic sequences. The distance function based on statistical parameters of IATDs is proposed and distance matrix thus obtained is used for the purpose of clustering and molecular phylogeny. The method is applied on a dataset of 3' non-coding region sequences (NCR) of Dengue virus type 3 (DENV-3), subtype III, reported in 2008. The phylogram thus obtained revealed the geographical distribution of DENV-3 isolates. Sri Lankan DENV-3 isolates were further observed to be clustered in two sub-clades corresponding to pre and post Dengue hemorrhagic fever emergence groups. These results are consistent with those reported earlier, which are obtained using pre-aligned sequence data as an input. These findings encourage applications of the IATD based method in molecular phylogenetic analysis in particular and data mining in general.
Grid-based Continual Analysis of Molecular Interior for Drug Discovery, QSAR and QSPR.
Potemkin, Andrey V; Grishina, Maria A; Potemkin, Vladimir A
2017-01-01
In 1979, R.D.Cramer and M.Milne made a first realization of 3D comparison of molecules by aligning them in space and by mapping their molecular fields to a 3D grid. Further, this approach was developed as the DYLOMMS (Dynamic Lattice- Oriented Molecular Modelling System) approach. In 1984, H.Wold and S.Wold proposed the use of partial least squares (PLS) analysis, instead of principal component analysis, to correlate the field values with biological activities. Then, in 1988, the method which was called CoMFA (Comparative Molecular Field Analysis) was introduced and the appropriate software became commercially available. Since 1988, a lot of 3D QSAR methods, algorithms and their modifications are introduced for solving of virtual drug discovery problems (e.g., CoMSIA, CoMMA, HINT, HASL, GOLPE, GRID, PARM, Raptor, BiS, CiS, ConGO,). All the methods can be divided into two groups (classes):1. Methods studying the exterior of molecules; 2) Methods studying the interior of molecules. A series of grid-based computational technologies for Continual Molecular Interior analysis (CoMIn) are invented in the current paper. The grid-based analysis is fulfilled by means of a lattice construction analogously to many other grid-based methods. The further continual elucidation of molecular structure is performed in various ways. (i) In terms of intermolecular interactions potentials. This can be represented as a superposition of Coulomb, Van der Waals interactions and hydrogen bonds. All the potentials are well known continual functions and their values can be determined in all lattice points for a molecule. (ii) In the terms of quantum functions such as electron density distribution, Laplacian and Hamiltonian of electron density distribution, potential energy distribution, the highest occupied and the lowest unoccupied molecular orbitals distribution and their superposition. To reduce time of calculations using quantum methods based on the first principles, an original quantum free-orbital approach AlteQ is proposed. All the functions can be calculated using a quantum approach at a sufficient level of theory and their values can be determined in all lattice points for a molecule. Then, the molecules of a dataset can be superimposed in the lattice for the maximal coincidence (or minimal deviations) of the potentials (i) or the quantum functions (ii). The methods and criteria of the superimposition are discussed. After that a functional relationship between biological activity or property and characteristics of potentials (i) or functions (ii) is created. The methods of the quantitative relationship construction are discussed. New approaches for rational virtual drug design based on the intermolecular potentials and quantum functions are invented. All the invented methods are realized at www.chemosophia.com web page. Therefore, a set of 3D QSAR approaches for continual molecular interior study giving a lot of opportunities for virtual drug discovery, virtual screening and ligand-based drug design are invented. The continual elucidation of molecular structure is performed in the terms of intermolecular interactions potentials and in the terms of quantum functions such as electron density distribution, Laplacian and Hamiltonian of electron density distribution, potential energy distribution, the highest occupied and the lowest unoccupied molecular orbitals distribution and their superposition. To reduce time of calculations using quantum methods based on the first principles, an original quantum free-orbital approach AlteQ is proposed. The methods of the quantitative relationship construction are discussed. New approaches for rational virtual drug design based on the intermolecular potentials and quantum functions are invented. All the invented methods are realized at www.chemosophia.com web page. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Frank, Martin
2015-01-01
Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).
Analysis of molecular interactions in solid dosage forms; challenge to molecular pharmaceutics.
Yamamoto, Keiji; Limwikrant, Waree; Moribe, Kunikazu
2011-01-01
The molecular states of active pharmaceutical ingredients (APIs) in pharmaceutical dosage forms strongly affect the properties and quality of a drug. Various important fundamental physicochemical studies were reviewed from the standpoint of molecular pharmaceutics. Mechanochemical effects were evaluated in mixtures of APIs and pharmaceutical additives. Amorphization, complex formation and nanoparticle formation are observed after grinding process depending on the combination of APIs and pharmaceutical additives. Sealed-heating method and mesoporous materials have been used to investigate drug molecular interactions in dosage forms. Molecular states have been investigated using powder X-ray diffraction, thermal analysis, IR, solid state fluorometry, and NMR. © 2011 Pharmaceutical Society of Japan
USDA-ARS?s Scientific Manuscript database
Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Field and laboratory experiments have demonstrated that mass-collection methods, such as sweep-netting, vacuum sampling, and foliage beating, can lead to contamination of fed pred...
USDA-ARS?s Scientific Manuscript database
Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Field and laboratory experiments have demonstrated that mass-collection methods, such as sweep-netting, vacuum sampling, and foliage beating, can lead to contamination of fed pred...
Variational Identification of Markovian Transition States
NASA Astrophysics Data System (ADS)
Martini, Linda; Kells, Adam; Covino, Roberto; Hummer, Gerhard; Buchete, Nicolae-Viorel; Rosta, Edina
2017-07-01
We present a method that enables the identification and analysis of conformational Markovian transition states from atomistic or coarse-grained molecular dynamics (MD) trajectories. Our algorithm is presented by using both analytical models and examples from MD simulations of the benchmark system helix-forming peptide Ala5 , and of larger, biomedically important systems: the 15-lipoxygenase-2 enzyme (15-LOX-2), the epidermal growth factor receptor (EGFR) protein, and the Mga2 fungal transcription factor. The analysis of 15-LOX-2 uses data generated exclusively from biased umbrella sampling simulations carried out at the hybrid ab initio density functional theory (DFT) quantum mechanics/molecular mechanics (QM/MM) level of theory. In all cases, our method automatically identifies the corresponding transition states and metastable conformations in a variationally optimal way, with the input of a set of relevant coordinates, by accurately reproducing the intrinsic slowest relaxation rate of each system. Our approach offers a general yet easy-to-implement analysis method that provides unique insight into the molecular mechanism and the rare but crucial (i.e., rate-limiting) transition states occurring along conformational transition paths in complex dynamical systems such as molecular trajectories.
Molecular analysis of single oocyst of Eimeria by whole genome amplification (WGA) based nested PCR.
Wang, Yunzhou; Tao, Geru; Cui, Yujuan; Lv, Qiyao; Xie, Li; Li, Yuan; Suo, Xun; Qin, Yinghe; Xiao, Lihua; Liu, Xianyong
2014-09-01
PCR-based molecular tools are widely used for the identification and characterization of protozoa. Here we report the molecular analysis of Eimeria species using combined methods of whole genome amplification (WGA) and nested PCR. Single oocyst of Eimeria stiedai or Eimeriamedia was directly used for random amplification of the genomic DNA with either primer extension preamplification (PEP) or multiple displacement amplification (MDA), and then the WGA product was used as template in nested PCR with species-specific primers for ITS-1, 18S rDNA and 23S rDNA of E. stiedai and E. media. WGA-based PCR was successful for the amplification of these genes from single oocyst. For the species identification of single oocyst isolated from mixed E. stiedai or E. media, the results from WGA-based PCR were exactly in accordance with those from morphological identification, suggesting the availability of this method in molecular analysis of eimerian parasites at the single oocyst level. WGA-based PCR method can also be applied for the identification and genetic characterization of other protists. Copyright © 2014 Elsevier Inc. All rights reserved.
pretreatment conditions and biological digestion methods, which might not be detected by large-scale ) "Coherent Raman Microscopy Analysis of Plant Cell Walls," Biomass Conversion: Methods and Protocols, Methods in Molecular Biology (2012) "Chemical, Ultrastructural and Supramolecular Analysis
Wang, Lingling; Huan, Guo; Momen, Roya; Azizi, Alireza; Xu, Tianlv; Kirk, Steven R; Filatov, Michael; Jenkins, Samantha
2017-06-29
A quantum theory of atoms in molecules (QTAIM) and stress tensor analysis was applied to analyze intramolecular interactions influencing the photoisomerization dynamics of a light-driven rotary molecular motor. For selected nonadiabatic molecular dynamics trajectories characterized by markedly different S 1 state lifetimes, the electron densities were obtained using the ensemble density functional theory method. The analysis revealed that torsional motion of the molecular motor blades from the Franck-Condon point to the S 1 energy minimum and the S 1 /S 0 conical intersection is controlled by two factors: greater numbers of intramolecular bonds before the hop-time and unusually strongly coupled bonds between the atoms of the rotor and the stator blades. This results in the effective stalling of the progress along the torsional path for an extended period of time. This finding suggests a possibility of chemical tuning of the speed of photoisomerization of molecular motors and related molecular switches by reshaping their molecular backbones to decrease or increase the degree of coupling and numbers of intramolecular bond critical points as revealed by the QTAIM/stress tensor analysis of the electron density. Additionally, the stress tensor scalar and vector analysis was found to provide new methods to follow the trajectories, and from this, new insight was gained into the behavior of the S 1 state in the vicinity of the conical intersection.
An agarose gel electrophoretic method for analysis of hyaluronan molecular weight distribution.
Lee, H G; Cowman, M K
1994-06-01
An electrophoretic method is described for determining the molecular weight distribution of hyaluronan (HA). The method involves separation of HA by electrophoresis on a 0.5% agarose gel, followed by detection of HA using the cationic dye Stains-All (3,3'-dimethyl-9-methyl-4,5,4'5'-dibenzothiacarbocyanine). The recommended sample load is 7 micrograms. Calibration of the method with HA standards of known molecular weight has established a linear relationship between electrophoretic mobility and the logarithm of the weight-average molecular weight over the range of approximately 0.2-6 x 10(6). The separated HA pattern may also be visualized after electrotransfer of HA from the agarose gel to a nylon membrane. The membrane may be stained with the dye alcian blue. Alternatively, specific detection of HA from impure samples can be achieved by probing the nylon membrane with biotin-labeled HA-binding protein and subsequent interaction with a streptavidin-linked gold reagent and silver staining for amplification. The electrophoretic method was used to analyze HA in two different liquid connective tissues. Normal human knee joint synovial fluid showed a narrow HA molecular weight distribution, with a peak at 6-7 x 10(6). Owl monkey vitreous HA also showed a narrow molecular weight distribution, with a peak at 5-6 x 10(6). These results agree well with available published data and indicate the applicability of the method to the analysis of impure HA samples which may be available in limited amounts.
Experimental design and quantitative analysis of microbial community multiomics.
Mallick, Himel; Ma, Siyuan; Franzosa, Eric A; Vatanen, Tommi; Morgan, Xochitl C; Huttenhower, Curtis
2017-11-30
Studies of the microbiome have become increasingly sophisticated, and multiple sequence-based, molecular methods as well as culture-based methods exist for population-scale microbiome profiles. To link the resulting host and microbial data types to human health, several experimental design considerations, data analysis challenges, and statistical epidemiological approaches must be addressed. Here, we survey current best practices for experimental design in microbiome molecular epidemiology, including technologies for generating, analyzing, and integrating microbiome multiomics data. We highlight studies that have identified molecular bioactives that influence human health, and we suggest steps for scaling translational microbiome research to high-throughput target discovery across large populations.
Characterization of Low-Molecular-Weight Heparins by Strong Anion-Exchange Chromatography.
Sadowski, Radosław; Gadzała-Kopciuch, Renata; Kowalkowski, Tomasz; Widomski, Paweł; Jujeczka, Ludwik; Buszewski, Bogusław
2017-11-01
Currently, detailed structural characterization of low-molecular-weight heparin (LMWH) products is an analytical subject of great interest. In this work, we carried out a comprehensive structural analysis of LMWHs and applied a modified pharmacopeial method, as well as methods developed by other researchers, to the analysis of novel biosimilar LMWH products; and, for the first time, compared the qualitative and quantitative composition of commercially available drugs (enoxaparin, nadroparin, and dalteparin). For this purpose, we used strong anion-exchange (SAX) chromatography with spectrophotometric detection because this method is more helpful, easier, and faster than other separation techniques for the detailed disaccharide analysis of new LMWH drugs. In addition, we subjected the obtained results to statistical analysis (factor analysis, t-test, and Newman-Keuls post hoc test).
Techniques for Investigating Molecular Toxicology of Nanomaterials.
Wang, Yanli; Li, Chenchen; Yao, Chenjie; Ding, Lin; Lei, Zhendong; Wu, Minghong
2016-06-01
Nanotechnology has been a rapidly developing field in the past few decades, resulting in the more and more exposure of nanomaterials to human. The increased applications of nanomaterials for industrial, commercial and life purposes, such as fillers, catalysts, semiconductors, paints, cosmetic additives and drug carriers, have caused both obvious and potential impacts on human health and environment. Nanotoxicology is used to study the safety of nanomaterials and has grown at the historic moment. Molecular toxicology is a new subdiscipline to study the interactions and impacts of materials at the molecular level. To better understand the relationship between the molecular toxicology and nanomaterials, this review summarizes the typical techniques and methods in molecular toxicology which are applied when investigating the toxicology of nanomaterials and include six categories: namely; genetic mutation detection, gene expression analysis, DNA damage detection, chromosomal aberration analysis, proteomics, and metabolomics. Each category involves several experimental techniques and methods.
Reinventing the ames test as a quantitative lab that connects classical and molecular genetics.
Goodson-Gregg, Nathan; De Stasio, Elizabeth A
2009-01-01
While many institutions use a version of the Ames test in the undergraduate genetics laboratory, students typically are not exposed to techniques or procedures beyond qualitative analysis of phenotypic reversion, thereby seriously limiting the scope of learning. We have extended the Ames test to include both quantitative analysis of reversion frequency and molecular analysis of revertant gene sequences. By giving students a role in designing their quantitative methods and analyses, students practice and apply quantitative skills. To help students connect classical and molecular genetic concepts and techniques, we report here procedures for characterizing the molecular lesions that confer a revertant phenotype. We suggest undertaking reversion of both missense and frameshift mutants to allow a more sophisticated molecular genetic analysis. These modifications and additions broaden the educational content of the traditional Ames test teaching laboratory, while simultaneously enhancing students' skills in experimental design, quantitative analysis, and data interpretation.
Vibrational spectroscopic, molecular docking and quantum chemical studies on 6-aminonicotinamide
NASA Astrophysics Data System (ADS)
Mohamed Asath, R.; Premkumar, S.; Mathavan, T.; Milton Franklin Benial, A.
2017-04-01
The most stable molecular structure of 6-aminonicotinamide (ANA) molecule was predicted by conformational analysis and vibrational spectral analysis was carried out by experimental and theoretical methods. The calculated and experimentally observed vibrational frequencies were assigned and compared. The π→π* electronic transition of the molecule was predicted by theoretically calculated ultraviolet-visible spectra in gas and liquid phase and further validated experimentally using ethanol as a solvent. Frontier molecular orbitals analysis was carried out to probe the reactive nature of the ANA molecule and further the site selectivity to specific chemical reactions were effectively analyzed by Fukui function calculation. The molecular electrostatic potential surface was simulated to confirm the reactive sites of the molecule. The natural bond orbital analysis was also performed to understand the intra molecular interactions, which confirms the bioactivity of the ANA molecule. Neuroprotective nature of the ANA molecule was analyzed by molecular docking analysis and the ANA molecule was identified as a good inhibitor against Alzheimer's disease.
Relaxation estimation of RMSD in molecular dynamics immunosimulations.
Schreiner, Wolfgang; Karch, Rudolf; Knapp, Bernhard; Ilieva, Nevena
2012-01-01
Molecular dynamics simulations have to be sufficiently long to draw reliable conclusions. However, no method exists to prove that a simulation has converged. We suggest the method of "lagged RMSD-analysis" as a tool to judge if an MD simulation has not yet run long enough. The analysis is based on RMSD values between pairs of configurations separated by variable time intervals Δt. Unless RMSD(Δt) has reached a stationary shape, the simulation has not yet converged.
How Is Wilson Disease Inherited?
... ATP7B gene have been identified thus far. Testing Methods Available Linkage analysis (Haplotype analysis) Molecular genetic testing ... genetic counselor who can carefully discuss the best method of testing to perform and the benefits, limitations, ...
Shah, Kumar A; Peoples, Michael C; Halquist, Matthew S; Rutan, Sarah C; Karnes, H Thomas
2011-01-25
The work described in this paper involves development of a high-throughput on-line microfluidic sample extraction method using capillary micro-columns packed with MIP beads coupled with tandem mass spectrometry for the analysis of urinary NNAL. The method was optimized and matrix effects were evaluated and resolved. The method enabled low sample volume (200 μL) and rapid analysis of urinary NNAL by direct injection onto the microfluidic column packed with molecularly imprinted beads engineered to NNAL. The method was validated according to the FDA bioanalytical method validation guidance. The dynamic range extended from 20.0 to 2500.0 pg/mL with a percent relative error of ±5.9% and a run time of 7.00 min. The lower limit of quantitation was 20.0 pg/mL. The method was used for the analysis of NNAL and NNAL-Gluc concentrations in smokers' urine. Copyright © 2010 Elsevier B.V. All rights reserved.
Bhilocha, Shardul; Amin, Ripal; Pandya, Monika; Yuan, Han; Tank, Mihir; LoBello, Jaclyn; Shytuhina, Anastasia; Wang, Wenlan; Wisniewski, Hans-Georg; de la Motte, Carol; Cowman, Mary K.
2011-01-01
Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5–500 kDa have been investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffers systems were determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition, over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample, and calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa, at sample loads of 0.5 µg (for polyacrylamide) to 2.5 µg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1-IGD-G2 domains) to a 150 kDa HA standard. PMID:21684248
Local-feature analysis for automated coarse-graining of bulk-polymer molecular dynamics simulations.
Xue, Y; Ludovice, P J; Grover, M A
2012-12-01
A method for automated coarse-graining of bulk polymers is presented, using the data-mining tool of local feature analysis. Most existing methods for polymer coarse-graining define superatoms based on their covalent bonding topology along the polymer backbone, but here superatoms are defined based only on their correlated motions, as observed in molecular dynamics simulations. Correlated atomic motions are identified in the simulation data using local feature analysis, between atoms in the same or in different polymer chains. Groups of highly correlated atoms constitute the superatoms in the coarse-graining scheme, and the positions of their seed coordinates are then projected forward in time. Based on only the seed positions, local feature analysis enables the full reconstruction of all atomic positions. This reconstruction suggests an iterative scheme to reduce the computation of the simulations to initialize another short molecular dynamic simulation, identify new superatoms, and again project forward in time.
USDA-ARS?s Scientific Manuscript database
Molecular gut-content analysis enables direct detection of arthropod predation with minimal disruption of on-going ecosystem processes. Mass-collection methods, such as sweep-netting, vacuum sampling, and foliage beating, could lead to regurgitation or even rupturing of predators along with uneaten ...
Importance and pitfalls of molecular analysis to parasite epidemiology.
Constantine, Clare C
2003-08-01
Molecular tools are increasingly being used to address questions about parasite epidemiology. Parasites represent a diverse group and they might not fit traditional population genetic models. Testing hypotheses depends equally on correct sampling, appropriate tool and/or marker choice, appropriate analysis and careful interpretation. All methods of analysis make assumptions which, if violated, make the results invalid. Some guidelines to avoid common pitfalls are offered here.
Arjunan, V; Raj, Arushma; Anitha, R; Mohan, S
2014-05-05
Optimised geometrical structural parameters, harmonic vibrational frequencies, natural bonding orbital analysis and frontier molecular orbitals are determined by B3LYP and B3PW91 methods. The exact geometry of 5-chloro-1-methyl-4-nitroimidazole is determined through conformational analysis. The experimentally observed infrared and Raman bands have been assigned and analysed. The (13)C and (1)H NMR chemical shifts of the compound are investigated. The total electron density and molecular electrostatic potentials are determined. The electrostatic potential (electron+nuclei) distribution, molecular shape, size and dipole moments of the molecule have been displayed. The energies of the frontier molecular orbitals and LUMO-HOMO energy gap are measured. The possible electronic transitions of the molecule are studied by TD-DFT method along with the UV-Visible spectrum. The structure-activity relationship of the compound is also investigated by conceptual DFT methods. Copyright © 2014 Elsevier B.V. All rights reserved.
The use of biochemical methods in extraterrestrial life detection
NASA Astrophysics Data System (ADS)
McDonald, Gene
2006-08-01
Instrument development for in situ extraterrestrial life detection focuses primarily on the ability to distinguish between biological and non-biological material, mostly through chemical analysis for potential biosignatures (e.g., biogenic minerals, enantiomeric excesses). In constrast, biochemical analysis techniques commonly applied to Earth life focus primarily on the exploration of cellular and molecular processes, not on the classification of a given system as biological or non-biological. This focus has developed because of the relatively large functional gap between life and non-life on Earth today. Life on Earth is very diverse from an environmental and physiological point of view, but is highly conserved from a molecular point of view. Biochemical analysis techniques take advantage of this similarity of all terrestrial life at the molecular level, particularly through the use of biologically-derived reagents (e.g., DNA polymerases, antibodies), to enable analytical methods with enormous sensitivity and selectivity. These capabilities encourage consideration of such reagents and methods for use in extraterrestrial life detection instruments. The utility of this approach depends in large part on the (unknown at this time) degree of molecular compositional differences between extraterrestrial and terrestrial life. The greater these differences, the less useful laboratory biochemical techniques will be without significant modification. Biochemistry and molecular biology methods may need to be "de-focused" in order to produce instruments capable of unambiguously detecting a sufficiently wide range of extraterrestrial biochemical systems. Modern biotechnology tools may make that possible in some cases.
NASA Astrophysics Data System (ADS)
Jeyavijayan, S.
2015-04-01
This study is a comparative analysis of FTIR and FT-Raman spectra of 2-amino-4-hydroxypyrimidine. The total energies of different conformations have been obtained from DFT (B3LYP) method with 6-31+G(d,p) and 6-311++G(d,p) basis sets. The barrier of planarity between the most stable and planar form is also predicted. The molecular structure, vibrational wavenumbers, infrared intensities, Raman scattering activities were calculated for the molecule using the B3LYP density functional theory (DFT) method. The computed values of frequencies are scaled using multiple scaling factors to yield good coherence with the observed values. Reliable vibrational assignments were made on the basis of total energy distribution (TED) along with scaled quantum mechanical (SQM) method. The stability of the molecule arising from hyperconjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Non-linear properties such as electric dipole moment (μ), polarizability (α), and hyperpolarizability (β) values of the investigated molecule have been computed using B3LYP quantum chemical calculation. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Besides, molecular electrostatic potential (MEP), Mulliken's charges analysis, and several thermodynamic properties were performed by the DFT method.
Molecular karyotyping of the 2La inversion in Anopheles gambiae.
White, Bradley J; Santolamazza, Federica; Kamau, Luna; Pombi, Marco; Grushko, Olga; Mouline, Karine; Brengues, Cecile; Guelbeogo, Wamdaogo; Coulibaly, Mamadou; Kayondo, Jonathan K; Sharakhov, Igor; Simard, Frederic; Petrarca, Vincenzo; Della Torre, Alessandra; Besansky, Nora J
2007-02-01
The African malaria vector Anopheles gambiae is polymorphic for alternative arrangements on the left arm of chromosome 2 (2La and 2L+(a)) that are non-randomly distributed with respect to degree of aridity. Detailed studies on the ecological role of inversion 2La have been hindered by the technical demands of traditional karyotype analysis and by sex- and stage-specific limitations on the availability of polytene chromosomes favorable for analysis. Recent molecular characterization of both inversion breakpoints presented the opportunity to develop a polymerase chain reaction (PCR)-based method for karyotype analysis. Here we report the development of this molecular diagnostic assay and the results of extensive field validation. When tested on 765 An. gambiae specimens sampled across Africa, the molecular approach compared favorably with traditional cytologic methods, correctly scoring > 94% of these specimens. By providing ready access to the 2La karyotype, this tool lays groundwork for future studies of the ecological genomics of this medically important species.
2013-01-01
Background Differential gene expression (DGE) analysis is commonly used to reveal the deregulated molecular mechanisms of complex diseases. However, traditional DGE analysis (e.g., the t test or the rank sum test) tests each gene independently without considering interactions between them. Top-ranked differentially regulated genes prioritized by the analysis may not directly relate to the coherent molecular changes underlying complex diseases. Joint analyses of co-expression and DGE have been applied to reveal the deregulated molecular modules underlying complex diseases. Most of these methods consist of separate steps: first to identify gene-gene relationships under the studied phenotype then to integrate them with gene expression changes for prioritizing signature genes, or vice versa. It is warrant a method that can simultaneously consider gene-gene co-expression strength and corresponding expression level changes so that both types of information can be leveraged optimally. Results In this paper, we develop a gene module based method for differential gene expression analysis, named network-based differential gene expression (nDGE) analysis, a one-step integrative process for prioritizing deregulated genes and grouping them into gene modules. We demonstrate that nDGE outperforms existing methods in prioritizing deregulated genes and discovering deregulated gene modules using simulated data sets. When tested on a series of smoker and non-smoker lung adenocarcinoma data sets, we show that top differentially regulated genes identified by the rank sum test in different sets are not consistent while top ranked genes defined by nDGE in different data sets significantly overlap. nDGE results suggest that a differentially regulated gene module, which is enriched for cell cycle related genes and E2F1 targeted genes, plays a role in the molecular differences between smoker and non-smoker lung adenocarcinoma. Conclusions In this paper, we develop nDGE to prioritize deregulated genes and group them into gene modules by simultaneously considering gene expression level changes and gene-gene co-regulations. When applied to both simulated and empirical data, nDGE outperforms the traditional DGE method. More specifically, when applied to smoker and non-smoker lung cancer sets, nDGE results illustrate the molecular differences between smoker and non-smoker lung cancer. PMID:24341432
Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results.
Koopmans, Klaas P; Neels, Oliver N; Kema, Ido P; Elsinga, Philip H; Links, Thera P; de Vries, Elisabeth G E; Jager, Pieter L
2009-09-01
Neuroendocrine tumors can originate almost everywhere in the body and consist of a great variety of subtypes. This paper focuses on molecular imaging methods using nuclear medicine techniques in neuroendocrine tumors, coupling molecular uptake mechanisms of radiotracers with clinical results. A non-systematic review is presented on receptor based and metabolic imaging methods. Receptor-based imaging covers the molecular backgrounds of somatostatin, vaso-intestinal peptide (VIP), bombesin and cholecystokinin (CCK) receptors and their link with nuclear imaging. Imaging methods based on specific metabolic properties include meta-iodo-benzylguanide (MIBG) and dimercapto-sulphuric acid (DMSA-V) scintigraphy as well as more modern positron emission tomography (PET)-based methods using radio-labeled analogues of amino acids, glucose, dihydroxyphenylalanine (DOPA), dopamine and tryptophan. Diagnostic sensitivities are presented for each imaging method and for each neuroendocrine tumor subtype. Finally, a Forest plot analysis of diagnostic performance is presented for each tumor type in order to provide a comprehensive overview for clinical use.
Identification of Logic Relationships between Genes and Subtypes of Non-Small Cell Lung Cancer
Su, Yansen; Pan, Linqiang
2014-01-01
Non-small cell lung cancer (NSCLC) has two major subtypes: adenocarcinoma (AC) and squamous cell carcinoma (SCC). The diagnosis and treatment of NSCLC are hindered by the limited knowledge about the pathogenesis mechanisms of subtypes of NSCLC. It is necessary to research the molecular mechanisms related with AC and SCC. In this work, we improved the logic analysis algorithm to mine the sufficient and necessary conditions for the presence states (presence or absence) of phenotypes. We applied our method to AC and SCC specimens, and identified lower and higher logic relationships between genes and two subtypes of NSCLC. The discovered relationships were independent of specimens selected, and their significance was validated by statistic test. Compared with the two earlier methods (the non-negative matrix factorization method and the relevance analysis method), the current method outperformed these methods in the recall rate and classification accuracy on NSCLC and normal specimens. We obtained biomarkers. Among biomarkers, genes have been used to distinguish AC from SCC in practice, and other six genes were newly discovered biomarkers for distinguishing subtypes. Furthermore, NKX2-1 has been considered as a molecular target for the targeted therapy of AC, and other genes may be novel molecular targets. By gene ontology analysis, we found that two biological processes (‘epidermis development’ and ‘cell adhesion’) were closely related with the tumorigenesis of subtypes of NSCLC. More generally, the current method could be extended to other complex diseases for distinguishing subtypes and detecting the molecular targets for targeted therapy. PMID:24743794
FDDO and DSMC analyses of rarefied gas flow through 2D nozzles
NASA Technical Reports Server (NTRS)
Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.
1992-01-01
Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas expanding through a two-dimensional nozzle and into a surrounding low-density environment. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, the variable hard sphere model is used as a molecular model and the no time counter method is employed as a collision sampling technique. The results of both the FDDO and the DSMC methods show good agreement. The FDDO method requires less computational effort than the DSMC method by factors of 10 to 40 in CPU time, depending on the degree of rarefaction.
Genomic Methods for Clinical and Translational Pain Research
Wang, Dan; Kim, Hyungsuk; Wang, Xiao-Min; Dionne, Raymond
2012-01-01
Pain is a complex sensory experience for which the molecular mechanisms are yet to be fully elucidated. Individual differences in pain sensitivity are mediated by a complex network of multiple gene polymorphisms, physiological and psychological processes, and environmental factors. Here, we present the methods for applying unbiased molecular-genetic approaches, genome-wide association study (GWAS), and global gene expression analysis, to help better understand the molecular basis of pain sensitivity in humans and variable responses to analgesic drugs. PMID:22351080
Schuck, Peter; Gillis, Richard B.; Besong, Tabot M.D.; Almutairi, Fahad; Adams, Gary G.; Rowe, Arthur J.; Harding, Stephen E.
2014-01-01
Sedimentation equilibrium (analytical ultracentrifugation) is one of the most inherently suitable methods for the determination of average molecular weights and molecular weight distributions of polymers, because of its absolute basis (no conformation assumptions) and inherent fractionation ability (without the need for columns or membranes and associated assumptions over inertness). With modern instrumentation it is also possible to run up to 21 samples simultaneously in a single run. Its application has been severely hampered because of difficulties in terms of baseline determination (incorporating estimation of the concentration at the air/solution meniscus) and complexity of the analysis procedures. We describe a new method for baseline determination based on a smart-smoothing principle and built into the highly popular platform SEDFIT for the analysis of the sedimentation behavior of natural and synthetic polymer materials. The SEDFIT-MSTAR procedure – which takes only a few minutes to perform - is tested with four synthetic data sets (including a significantly non-ideal system) a naturally occurring protein (human IgG1) and two naturally occurring carbohydrate polymers (pullulan and λ–carrageenan) in terms of (i) weight average molecular weight for the whole distribution of species in the sample (ii) the variation in “point” average molecular weight with local concentration in the ultracentrifuge cell and (iii) molecular weight distribution. PMID:24244936
Morphological, spectral and chromatography analysis and forensic comparison of PET fibers.
Farah, Shady; Tsach, Tsadok; Bentolila, Alfonso; Domb, Abraham J
2014-06-01
Poly(ethylene terephthalate) (PET) fiber analysis and comparison by spectral and polymer molecular weight determination was investigated. Plain fibers of PET, a common textile fiber and plastic material was chosen for this study. The fibers were analyzed for morphological (SEM and AFM), spectral (IR and NMR), thermal (DSC) and molecular weight (MS and GPC) differences. Molecular analysis of PET fibers by Gel Permeation Chromatography (GPC) allowed the comparison of fibers that could not be otherwise distinguished with high confidence. Plain PET fibers were dissolved in hexafluoroisopropanol (HFIP) and analyzed by GPC using hexafluoroisopropanol:chloroform 2:98 v/v as eluent. 14 PET fiber samples, collected from various commercial producers, were analyzed for polymer molecular weight by GPC. Distinct differences in the molecular weight of the different fiber samples were found which may have potential use in forensic fiber comparison. PET fibers with average molecular weights between about 20,000 and 70,000 g mol(-1) were determined using fiber concentrations in HFIP as low as 1 μg mL(-1). This GPC analytical method can be applied for exclusively distinguish between PET fibers using 1 μg of fiber. This method can be extended to forensic comparison of other synthetic fibers such as polyamides and acrylics. Copyright © 2014 Elsevier B.V. All rights reserved.
Mumma, Matthew A; Soulliere, Colleen E; Mahoney, Shane P; Waits, Lisette P
2014-01-01
Predator species identification is an important step in understanding predator-prey interactions, but predator identifications using kill site observations are often unreliable. We used molecular tools to analyse predator saliva, scat and hair from caribou calf kills in Newfoundland, Canada to identify the predator species, individual and sex. We sampled DNA from 32 carcasses using cotton swabs to collect predator saliva. We used fragment length analysis and sequencing of mitochondrial DNA to distinguish between coyote, black bear, Canada lynx and red fox and used nuclear DNA microsatellite analysis to identify individuals. We compared predator species detected using molecular tools to those assigned via field observations at each kill. We identified a predator species at 94% of carcasses using molecular methods, while observational methods assigned a predator species to 62.5% of kills. Molecular methods attributed 66.7% of kills to coyote and 33.3% to black bear, while observations assigned 40%, 45%, 10% and 5% to coyote, bear, lynx and fox, respectively. Individual identification was successful at 70% of kills where a predator species was identified. Only one individual was identified at each kill, but some individuals were found at multiple kills. Predator sex was predominantly male. We demonstrate the first large-scale evaluation of predator species, individual and sex identification using molecular techniques to extract DNA from swabs of wild prey carcasses. Our results indicate that kill site swabs (i) can be highly successful in identifying the predator species and individual responsible; and (ii) serve to inform and complement traditional methods. © 2013 John Wiley & Sons Ltd.
Food and forensic molecular identification: update and challenges.
Teletchea, Fabrice; Maudet, Celia; Hänni, Catherine
2005-07-01
The need for accurate and reliable methods for animal species identification has steadily increased during past decades, particularly with the recent food scares and the overall crisis of biodiversity primarily resulting from the huge ongoing illegal traffic of endangered species. A relatively new biotechnological field, known as species molecular identification, based on the amplification and analysis of DNA, offers promising solutions. Indeed, despite the fact that retrieval and analysis of DNA in processed products is a real challenge, numerous technically consistent methods are now available and allow the detection of animal species in almost any organic substrate. However, this field is currently facing a turning point and should rely more on knowledge primarily from three fundamental fields--paleogenetics, molecular evolution and systematics.
Kay, Richard; Barton, Chris; Ratcliffe, Lucy; Matharoo-Ball, Balwir; Brown, Pamela; Roberts, Jane; Teale, Phil; Creaser, Colin
2008-10-01
A rapid acetonitrile (ACN)-based extraction method has been developed that reproducibly depletes high abundance and high molecular weight proteins from serum prior to mass spectrometric analysis. A nanoflow liquid chromatography/tandem mass spectrometry (nano-LC/MS/MS) multiple reaction monitoring (MRM) method for 57 high to medium abundance serum proteins was used to characterise the ACN-depleted fraction after tryptic digestion. Of the 57 targeted proteins 29 were detected and albumin, the most abundant protein in serum and plasma, was identified as the 20th most abundant protein in the extract. The combination of ACN depletion and one-dimensional nano-LC/MS/MS enabled the detection of the low abundance serum protein, insulin-like growth factor-I (IGF-I), which has a serum concentration in the region of 100 ng/mL. One-dimensional sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the depleted serum showed no bands corresponding to proteins of molecular mass over 75 kDa after extraction, demonstrating the efficiency of the method for the depletion of high molecular weight proteins. Total protein analysis of the ACN extracts showed that approximately 99.6% of all protein is removed from the serum. The ACN-depletion strategy offers a viable alternative to the immunochemistry-based protein-depletion techniques commonly used for removing high abundance proteins from serum prior to MS-based proteomic analyses.
Keedakkadan, Habeeb Rahman; Abe, Osamu
2015-04-30
The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic and molecular fractionations, and this fractionation by molecular sieves can be corrected by the amount of molecular sieve used in the experiment. The reproducibility of the method was tested by the measurement of the oxygen isotope ratios of dissolved oxygen at equilibrium with atmospheric air. We confirmed that the choice of methods for making air-equilibrated water was not related to the magnitude of isotope fractionation, whereas there was a difference between seawater and deionized water. Copyright © 2015 John Wiley & Sons, Ltd.
Molecular analysis of tumor margins by MALDI mass spectrometry in renal carcinoma.
Oppenheimer, Stacey R; Mi, Deming; Sanders, Melinda E; Caprioli, Richard M
2010-05-07
The rate of tumor recurrence post resection suggests that there are underlying molecular changes in nearby histologically normal tissue that go undetected by conventional diagnostic methods that utilize contrast agents and immunohistochemistry. MALDI MS is a molecular technology that has the specificity and sensitivity to monitor and identify molecular species indicative of these changes. The current study utilizes this technology to assess molecular distributions within a tumor and adjacent normal tissue in clear cell renal cell carcinoma biopsies. Results indicate that the histologically normal tissue adjacent to the tumor expresses many of the molecular characteristics of the tumor. Proteins of the mitochondrial electron transport system are examples of such distributions. This work demonstrates the utility of MALDI MS for the analysis of tumor tissue in the elucidation of aberrant molecular changes in the tumor microenvironment.
NASA Astrophysics Data System (ADS)
Rossetti, Cecilia; Świtnicka-Plak, Magdalena A.; Grønhaug Halvorsen, Trine; Cormack, Peter A. G.; Sellergren, Börje; Reubsaet, Léon
2017-03-01
Robust biomarker quantification is essential for the accurate diagnosis of diseases and is of great value in cancer management. In this paper, an innovative diagnostic platform is presented which provides automated molecularly imprinted solid-phase extraction (MISPE) followed by liquid chromatography-mass spectrometry (LC-MS) for biomarker determination using ProGastrin Releasing Peptide (ProGRP), a highly sensitive biomarker for Small Cell Lung Cancer, as a model. Molecularly imprinted polymer microspheres were synthesized by precipitation polymerization and analytical optimization of the most promising material led to the development of an automated quantification method for ProGRP. The method enabled analysis of patient serum samples with elevated ProGRP levels. Particularly low sample volumes were permitted using the automated extraction within a method which was time-efficient, thereby demonstrating the potential of such a strategy in a clinical setting.
NASA Astrophysics Data System (ADS)
Britvin, Sergey N.; Rumyantsev, Andrey M.; Zobnina, Anastasia E.; Padkina, Marina V.
2017-02-01
Molecular structure of 1,4-diazabicyclo[3.2.1]octane, a parent ring of TAN1251 family of alkaloids, is herein characterized for the first time in comparison with the structure of nortropane (8-azabicyclo[3.2.1]octane), the parent framework of tropane ring system. The methods of study involve X-ray structural analysis, DFT geometry optimizations with infrared frequency calculations followed by natural bond orbital (NBO) analysis, and vibrational analysis of infrared spectrum.
Drummond, A; Rodrigo, A G
2000-12-01
Reconstruction of evolutionary relationships from noncontemporaneous molecular samples provides a new challenge for phylogenetic reconstruction methods. With recent biotechnological advances there has been an increase in molecular sequencing throughput, and the potential to obtain serial samples of sequences from populations, including rapidly evolving pathogens, is fast being realized. A new method called the serial-sample unweighted pair grouping method with arithmetic means (sUPGMA) is presented that reconstructs a genealogy or phylogeny of sequences sampled serially in time using a matrix of pairwise distances. The resulting tree depicts the terminal lineages of each sample ending at a different level consistent with the sample's temporal order. Since sUPGMA is a variant of UPGMA, it will perform best when sequences have evolved at a constant rate (i.e., according to a molecular clock). On simulated data, this new method performs better than standard cluster analysis under a variety of longitudinal sampling strategies. Serial-sample UPGMA is particularly useful for analysis of longitudinal samples of viruses and bacteria, as well as ancient DNA samples, with the minimal requirement that samples of sequences be ordered in time.
Reilly, Peter T. A. [Knoxville, TN; Harris, William A [Naperville, IL
2010-03-02
A matrix assisted laser desorption/ionization (MALDI) method and related system for analyzing high molecular weight analytes includes the steps of providing at least one matrix-containing particle inside an ion trap, wherein at least one high molecular weight analyte molecule is provided within the matrix-containing particle, and MALDI on the high molecular weight particle while within the ion trap. A laser power used for ionization is sufficient to completely vaporize the particle and form at least one high molecular weight analyte ion, but is low enough to avoid fragmenting the high molecular weight analyte ion. The high molecular weight analyte ion is extracted out from the ion trap, and is then analyzed using a detector. The detector is preferably a pyrolyzing and ionizing detector.
High Resolution Melt analysis for mutation screening in PKD1 and PKD2
2011-01-01
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder. It is characterized by focal development and progressive enlargement of renal cysts leading to end-stage renal disease. PKD1 and PKD2 have been implicated in ADPKD pathogenesis but genetic features and the size of PKD1 make genetic diagnosis tedious. Methods We aim to prove that high resolution melt analysis (HRM), a recent technique in molecular biology, can facilitate molecular diagnosis of ADPKD. We screened for mutations in PKD1 and PKD2 with HRM in 37 unrelated patients with ADPKD. Results We identified 440 sequence variants in the 37 patients. One hundred and thirty eight were different. We found 28 pathogenic mutations (25 in PKD1 and 3 in PKD2 ) within 28 different patients, which is a diagnosis rate of 75% consistent with literature mean direct sequencing diagnosis rate. We describe 52 new sequence variants in PKD1 and two in PKD2. Conclusion HRM analysis is a sensitive and specific method for molecular diagnosis of ADPKD. HRM analysis is also costless and time sparing. Thus, this method is efficient and might be used for mutation pre-screening in ADPKD genes. PMID:22008521
Li, Huiyi; Dou, Huanjing; Zhang, Yuhai; Li, Zhigang; Wang, Ruiyong; Chang, Junbiao
2015-02-05
FNC (2'-deoxy-2'-bfluoro-4'-azidocytidine) is a novel nucleoside analogue with pharmacologic effects on several human diseases. In this work, the binding of FNC to human hemoglobin (HHb) have been investigated by absorption spectroscopy, fluorescence quenching technique, synchronous fluorescence, three-dimensional fluorescence and molecular modeling methods. Analysis of fluorescence data showed that the binding of FNC to HHb occurred via a static quenching mechanism. Thermodynamic analysis and molecular modeling suggest that hydrogen bond and van der Waals force are the mainly binding force in the binding of FNC to HHb. Copyright © 2014 Elsevier B.V. All rights reserved.
Jiang, Xi-Wen; Wang, Jing; Chan, Leo Lai; Lam, Paul Kwan Sing; Gu, Ji-Dong
2015-08-01
Three methods for extraction and preparation of high-quality proteins from both toxic and non-toxic dinoflagellates for proteomics analysis, including Trizol method, Lysis method and Tris method, were compared with the subsequent protein separation profiles using 2-D differential gel electrophoresis (2-D DIGE), Coomassie Blue and silver staining. These methods showed suitability for proteins with different pIs and molecular weights. Tris method was better for low molecular weight and low pI protein isolation; whereas both Lysis and Trizol method were better for high-molecular weight and high pI protein purification. Trizol method showed good results with Alexandrium species and Gynodinium species, and the background in gel was much clearer than the other two methods. At the same time, only Lysis method caused breaking down of the target proteins. On the other hand, Trizol method obtained higher concentration of ribulose-1,5-bisphosphate carboxylase/oxygenase proteins by Western-blotting, while Tris method was the best for peridinin-chlorophyll-protein complexes protein and T1 protein preparation. DIGE was better than Coomassie Blue and silver staining, except for some limitations, such as the high cost of the dyes, relatively short shelf life and the requirements for extensive and special image capturing equipment. Some proteins related to PSTs synthesis in dinoflagellates are hydrophobic with high molecular weight or binding on membranes and Trizol method performed better than Tris method for these proteins. The Trizol method and 2-D DIGE were effective combination for proteomics investigations of dinoflagellates. This procedure allows reliable and high recovery efficiency of proteins from dinoflagellates for better understanding on their occurrence and toxin-production for physiological and biochemical information.
NASA Astrophysics Data System (ADS)
Jeyaseelan, S. Christopher; Hussain, Shamima; Premkumar, R.; Rekha, T. N.; Benial, A. Milton Franklin
2018-04-01
Indole and its derivatives are considered as good ligands for various disease causing proteins in human because of presence of the single nitrogen atom. In the present study, the potential energy surface scan was performed for the most stable molecular structure of the 5-Methoxyindole-3-carboxaldehyde (MICA) molecule. The most stable molecular structure was optimized by DFT/B3LYP method with 6-311G++ (d, p) basis set using Gaussian 09 program package. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculations using VEDA 4.0 program. The Frontier molecular orbitals analysis was performed and related molecular propertieswere calculated. The possible electrophilic and nucleophilic reactive sites of the molecule were studied using molecular electrostatic potential analysis, which confirms the bioactivity of the molecule. The natural bond orbital analysis was also performed to confirm the bioactivity of the title molecule.
Evaluation of Molecular Methods for Identification of Salmonella Serovars
Gurnik, Simone; Ahmad, Aaminah; Blimkie, Travis; Murphy, Stephanie A.; Kropinski, Andrew M.; Nash, John H. E.
2016-01-01
Classification by serotyping is the essential first step in the characterization of Salmonella isolates and is important for surveillance, source tracking, and outbreak detection. To improve detection and reduce the burden of salmonellosis, several rapid and high-throughput molecular Salmonella serotyping methods have been developed. The aim of this study was to compare three commercial kits, Salm SeroGen (Salm Sero-Genotyping AS-1 kit), Check&Trace (Check-Points), and xMAP (xMAP Salmonella serotyping assay), to the Salmonella genoserotyping array (SGSA) developed by our laboratory. They were assessed using a panel of 321 isolates that represent commonly reported serovars from human and nonhuman sources globally. The four methods correctly identified 73.8% to 94.7% of the isolates tested. The methods correctly identified 85% and 98% of the clinically important Salmonella serovars Enteritidis and Typhimurium, respectively. The methods correctly identified 75% to 100% of the nontyphoidal, broad host range Salmonella serovars, including Heidelberg, Hadar, Infantis, Kentucky, Montevideo, Newport, and Virchow. The sensitivity and specificity of Salmonella serovars Typhimurium and Enteritidis ranged from 85% to 100% and 99% to 100%, respectively. It is anticipated that whole-genome sequencing will replace serotyping in public health laboratories in the future. However, at present, it is approximately three times more expensive than molecular methods. Until consistent standards and methodologies are deployed for whole-genome sequencing, data analysis and interlaboratory comparability remain a challenge. The use of molecular serotyping will provide a valuable high-throughput alternative to traditional serotyping. This comprehensive analysis provides a detailed comparison of commercial kits available for the molecular serotyping of Salmonella. PMID:27194688
NASA Astrophysics Data System (ADS)
Woolfrey, John R.; Avery, Mitchell A.; Doweyko, Arthur M.
1998-03-01
Two three-dimensional quantitative structure-activity relationship (3D-QSAR) methods, comparative molecular field analysis (CoMFA) and hypothetical active site lattice (HASL), were compared with respect to the analysis of a training set of 154 artemisinin analogues. Five models were created, including a complete HASL and two trimmed versions, as well as two CoMFA models (leave-one-out standard CoMFA and the guided-region selection protocol). Similar r2 and q2 values were obtained by each method, although some striking differences existed between CoMFA contour maps and the HASL output. Each of the four predictive models exhibited a similar ability to predict the activity of a test set of 23 artemisinin analogues, although some differences were noted as to which compounds were described well by either model.
Direct mapping of electrical noise sources in molecular wire-based devices
Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun
2017-01-01
We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices. PMID:28233821
Direct mapping of electrical noise sources in molecular wire-based devices
NASA Astrophysics Data System (ADS)
Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun
2017-02-01
We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices.
MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.
Kumar, Sudhir; Stecher, Glen; Li, Michael; Knyaz, Christina; Tamura, Koichiro
2018-06-01
The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
Du, Wei; Sun, Min; Guo, Pengqi; Chang, Chun; Fu, Qiang
2018-09-01
Nowadays, the abuse of antibiotics in aquaculture has generated considerable problems for food safety. Therefore, it is imperative to develop a simple and selective method for monitoring illegal use of antibiotics in aquatic products. In this study, a method combined molecularly imprinted membranes (MIMs) extraction and liquid chromatography was developed for the selective analysis of cloxacillin from shrimp samples. The MIMs was synthesized by UV photopolymerization, and characterized by scanning electron microscope, Fourier transform infrared spectra, thermo-gravimetric analysis and swelling test. The results showed that the MIMs exhibited excellent permselectivity, high adsorption capacity and fast adsorption rate for cloxacillin. Finally, the method was utilized to determine cloxacillin from shrimp samples, with good accuracies and acceptable relative standard deviation values for precision. The proposed method was a promising alternative for selective analysis of cloxacillin in shrimp samples, due to the easy-operation and excellent selectivity. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Han, Zhenyu; Sun, Shouzheng; Fu, Yunzhong; Fu, Hongya
2017-10-01
Viscidity is an important physical indicator for assessing fluidity of resin that is beneficial to contact resin with the fibers effectively and reduce manufacturing defects during automated fiber placement (AFP) process. However, the effect of processing parameters on viscidity evolution is rarely studied during AFP process. In this paper, viscidities under different scales are analyzed based on multi-scale analysis method. Firstly, viscous dissipation energy (VDE) within meso-unit under different processing parameters is assessed by using finite element method (FEM). According to multi-scale energy transfer model, meso-unit energy is used as the boundary condition for microscopic analysis. Furthermore, molecular structure of micro-system is built by molecular dynamics (MD) method. And viscosity curves are then obtained by integrating stress autocorrelation function (SACF) with time. Finally, the correlation characteristics of processing parameters to viscosity are revealed by using gray relational analysis method (GRAM). A group of processing parameters is found out to achieve the stability of viscosity and better fluidity of resin.
Stretch or contraction induced inversion of rectification in diblock molecular junctions
NASA Astrophysics Data System (ADS)
Zhang, Guang-Ping; Hu, Gui-Chao; Song, Yang; Xie, Zhen; Wang, Chuan-Kui
2013-09-01
Based on ab initio theory and nonequilibrium Green's function method, the effect of stretch or contraction on the rectification in diblock co-oligomer molecular diodes is investigated theoretically. Interestingly, an inversion of rectifying direction induced by stretching or contracting the molecular junctions, which is closely related to the number of the pyrimidinyl-phenyl units, is proposed. The analysis of the molecular projected self-consistent Hamiltonian and the evolution of the frontier molecular orbitals as well as transmission coefficients under external biases gives an inside view of the observed results. It reveals that the asymmetric molecular level shift and asymmetric evolution of orbital wave functions under biases are competitive mechanisms for rectification. The stretching or contracting induced inversion of the rectification is due to the conversion of the dominant mechanism. This work suggests a feasible technique to manipulate the rectification performance in molecular diodes by use of the mechanically controllable method.
Caetano, Fabiana A; Dirk, Brennan S; Tam, Joshua H K; Cavanagh, P Craig; Goiko, Maria; Ferguson, Stephen S G; Pasternak, Stephen H; Dikeakos, Jimmy D; de Bruyn, John R; Heit, Bryan
2015-12-01
Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.
Zhou, Wei; Song, Xiang-gang; Chen, Chao; Wang, Shu-mei; Liang, Sheng-wang
2015-08-01
Action mechanism and material base of compound Danshen dripping pills in treatment of carotid atherosclerosis were discussed based on gene expression profile and molecular fingerprint in this paper. First, gene expression profiles of atherosclerotic carotid artery tissues and histologically normal tissues in human body were collected, and were screened using significance analysis of microarray (SAM) to screen out differential gene expressions; then differential genes were analyzed by Gene Ontology (GO) analysis and KEGG pathway analysis; to avoid some genes with non-outstanding differential expression but biologically importance, Gene Set Enrichment Analysis (GSEA) were performed, and 7 chemical ingredients with higher negative enrichment score were obtained by Cmap method, implying that they could reversely regulate the gene expression profiles of pathological tissues; and last, based on the hypotheses that similar structures have similar activities, 336 ingredients of compound Danshen dripping pills were compared with 7 drug molecules in 2D molecular fingerprints method. The results showed that 147 differential genes including 60 up-regulated genes and 87 down regulated genes were screened out by SAM. And in GO analysis, Biological Process ( BP) is mainly concerned with biological adhesion, response to wounding and inflammatory response; Cellular Component (CC) is mainly concerned with extracellular region, extracellular space and plasma membrane; while Molecular Function (MF) is mainly concerned with antigen binding, metalloendopeptidase activity and peptide binding. KEGG pathway analysis is mainly concerned with JAK-STAT, RIG-I like receptor and PPAR signaling pathway. There were 10 compounds, such as hexadecane, with Tanimoto coefficients greater than 0.85, which implied that they may be the active ingredients (AIs) of compound Danshen dripping pills in treatment of carotid atherosclerosis (CAs). The present method can be applied to the research on material base and molecular action mechanism of TCM.
A SAR and QSAR study of new artemisinin compounds with antimalarial activity.
Santos, Cleydson Breno R; Vieira, Josinete B; Lobato, Cleison C; Hage-Melim, Lorane I S; Souto, Raimundo N P; Lima, Clarissa S; Costa, Elizabeth V M; Brasil, Davi S B; Macêdo, Williams Jorge C; Carvalho, José Carlos T
2013-12-30
The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs) and molecular docking were used to investigate the interaction between ligands and the receptor (heme). Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE), the charge on the O11 oxygen atom (QO11), the torsion angle O1-O2-Fe-N2 (D2) and the maximum rate of R/Sanderson Electronegativity (RTe+). These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.
Kumar, Vineet; Rana, Vikas; Soni, P L
2013-01-01
Mucilaginous polysaccharide extracted from Dalbergia sissoo Roxb. leaves has a number of medicinal applications. Molecular weight studies and correlation analysis of the structure of polysaccharide with oligosaccharides can be helpful for further utilisation, modification and structure-activity relationship for biological applications. To determine molecular weight of medicinally important polysaccharide. To establish an unequivocal correlation of the polysaccharide monosugars with constituting oligosaccharides and glucuronic acid content based on gas-liquid chromatography (GLC) with the spectrophotometric method. Complete and partial hydrolytic studies of pure polysaccharide yielded constituting monosugars and oligosaccharides. The ratio of sugars in polysaccharide and oligosaccharides was studied by preparation of alditol acetates and analysed using GLC. The uronic acid content was studied by GLC analysis and spectrophotometry. Molecular weight of the polysaccharide was determined using the viscometric method. Dalbergia sissoo leaves yielded 14.0% pure polysaccharide, containing 15.7% of glucuronic acid. Complete hydrolysis and GLC analysis of alditol acetate derivatives of reduced and unreduced monosugars indicated the presence of L-rhamnose, D-glucuronic acid, D-galactose and D-glucose in 1.00:1.00:2.00:2.33 molar ratios. Partial hydrolysis followed by monosugar analysis of oligosaccharides established the monosugar ratio in complete agreement with polysaccharide, thereby corroborating the sugar ratio. Similar uronic acid content was obtained by GLC and spectrophotometry. The polysaccharide had an average molecular weight of 1.5 × 10⁵ Da. The study has established an obvious correlation of the structure of polysaccharide with oligosaccharides, leading to unambiguous identification of monosaccharides, which normally is not studied conclusively while reporting the polysaccharide structure. The molecular weight of the polysaccharide was determined. Copyright © 2012 John Wiley & Sons, Ltd.
Coutelle, C; Speer, A; Grade, K; Rosenthal, A; Hunger, H D
1989-01-01
The introduction of molecular human genetics has become a paradigma for the application of genetic engineering in medicine. The main principles of this technology are the isolation of molecular probes, their application in hybridization reactions, specific gene-amplification by the polymerase chain reaction, and DNA sequencing reactions. These methods are used for the analysis of monogenic diseases by linkage studies and the elucidation of the molecular defect causing these conditions, respectively. They are also the basis for genomic diagnosis of monogenic diseases, introduced into the health care system of the GDR by a national project on Duchenne/Becker muscular dystrophy, Cystic Fibrosis and Phenylketonuria. The rapid development of basic research on the molecular analysis of the human genome and genomic diagnosis indicates, that human molecular genetics is becoming a decisive basic discipline of modern medicine.
Woo, Kang-Lyung
2005-01-01
Low molecular weight alcohols including fusel oil were determined using diethyl ether extraction and capillary gas chromatography. Twelve kinds of alcohols were successfully resolved on the HP-FFAP (polyethylene glycol) capillary column. The diethyl ether extraction method was very useful for the analysis of alcohols in alcoholic beverages and biological samples with excellent cleanliness of the resulting chromatograms and high sensitivity compared to the direct injection method. Calibration graphs for all standard alcohols showed good linearity in the concentration range used, 0.001-2% (w/v) for all alcohols. Salting out effects were significant (p < 0.01) for the low molecular weight alcohols methanol, isopropanol, propanol, 2-butanol, n-butanol and ethanol, but not for the relatively high molecular weight alcohols amyl alcohol, isoamyl alcohol, and heptanol. The coefficients of variation of the relative molar responses were less than 5% for all of the alcohols. The limits of detection and quantitation were 1-5 and 10-60 microg/L for the diethyl ether extraction method, and 10-50 and 100-350 microg/L for the direct injection method, respectively. The retention times and relative retention times of standard alcohols were significantly shifted in the direct injection method when the injection volumes were changed, even with the same analysis conditions, but they were not influenced in the diethyl ether extraction method. The recoveries by the diethyl ether extraction method were greater than 95% for all samples and greater than 97% for biological samples.
A reduced basis method for molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Vincent-Finley, Rachel Elisabeth
In this dissertation, we develop a method for molecular simulation based on principal component analysis (PCA) of a molecular dynamics trajectory and least squares approximation of a potential energy function. Molecular dynamics (MD) simulation is a computational tool used to study molecular systems as they evolve through time. With respect to protein dynamics, local motions, such as bond stretching, occur within femtoseconds, while rigid body and large-scale motions, occur within a range of nanoseconds to seconds. To capture motion at all levels, time steps on the order of a femtosecond are employed when solving the equations of motion and simulations must continue long enough to capture the desired large-scale motion. To date, simulations of solvated proteins on the order of nanoseconds have been reported. It is typically the case that simulations of a few nanoseconds do not provide adequate information for the study of large-scale motions. Thus, the development of techniques that allow longer simulation times can advance the study of protein function and dynamics. In this dissertation we use principal component analysis (PCA) to identify the dominant characteristics of an MD trajectory and to represent the coordinates with respect to these characteristics. We augment PCA with an updating scheme based on a reduced representation of a molecule and consider equations of motion with respect to the reduced representation. We apply our method to butane and BPTI and compare the results to standard MD simulations of these molecules. Our results indicate that the molecular activity with respect to our simulation method is analogous to that observed in the standard MD simulation with simulations on the order of picoseconds.
Chen, Tung-Sheng; Chang, Mu-Hsin; Kuo, Wei-Wen; Lin, Yueh-Min; Yeh, Yu-Lan; Day, Cecilia Hsuan; Lin, Chien-Chung; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang
2013-04-01
Statistical and clinical reports indicate that betel nut chewing is strongly associated with progression of oral cancer because some ingredients in betel nuts are potential cancer promoters, especially arecoline. Early diagnosis for cancer biomarkers is the best strategy for prevention of cancer progression. Several methods are suggested for investigating cancer biomarkers. Among these methods, gel-based proteomics approach is the most powerful and recommended tool for investigating biomarkers due to its high-throughput. However, this proteomics approach is not suitable for screening biomarkers with molecular weight under 10 KDa because of the characteristics of gel electrophoresis. This study investigated biomarkers with molecular weight under 10 KDa in rats with arecoline challenge. The centrifuging vials with membrane (10 KDa molecular weight cut-off) played a crucial role in this study. After centrifuging, the filtrate (containing compounds with molecular weight under 10 KDa) was collected and spotted on a sample plate for MALDI-TOF mass spectrometry analysis. Compared to control, three extra peaks (m/z values were 1553.1611, 1668.2097 and 1740.1832, respectively) were found in sera and two extra peaks were found in heart tissue samples (408.9719 and 524.9961, respectively). These small compounds should play important roles and may be potential biomarker candidates in rats with arecoline. This study successfully reports a mass-based method for investigating biomarker candidates with small molecular weight in different types of sample (including serum and tissue). In addition, this reported method is more time-efficient (1 working day) than gel-based proteomics approach (5~7 working days).
NASA Astrophysics Data System (ADS)
Ma, Yupengxue; Gong, Xinning; He, Bangbang; Li, Xiaofei; Cao, Dianyu; Li, Junshuai; Xiong, Qing; Chen, Qiang; Chen, Bing Hui; Huo Liu, Qing
2018-04-01
Hydroxyl (OH) radical is one of the most important reactive species produced by plasma-liquid interactions, and the OH in liquid phase (dissolved OH radical, OHdis) takes effect in many plasma-based applications due to its high reactivity. Therefore, the quantification of the OHdis in a plasma-liquid system is of great importance, and a molecular probe method usually used for the OHdis detection might be applied. Herein, we investigate the validity of using the molecular probe method to estimate the [OHdis] in the plasma-liquid system. Dimethyl sulfoxide is used as the molecular probe to estimate the [OHdis] in an air plasma-liquid system, and usually the estimation of [OHdis] is deduced by quantifying the OHdis-induced derivative, the formaldehyde (HCHO). The analysis indicates that the true concentration of the OHdis should be estimated from the sum of three terms: the formed HCHO, the existing OH scavengers, and the H2O2 formed from the OHdis. The results show that the measured [HCHO] needs to be corrected since the HCHO consumption is not negligible in the plasma-liquid system. We conclude from the results and the analysis that the molecular probe method generally underestimates the [OHdis] in the plasma-liquid system. If one wants to obtain the true concentration of the OHdis in the plasma-liquid system, one needs to know the consumption behavior of the OHdis-induced derivatives, the information of the OH scavengers (such as hydrated electron, atomic hydrogen besides the molecular probe), and also the knowledge of the H2O2 formed from the OHdis.
Excoffier, L; Smouse, P E; Quattro, J M
1992-06-01
We present here a framework for the study of molecular variation within a single species. Information on DNA haplotype divergence is incorporated into an analysis of variance format, derived from a matrix of squared-distances among all pairs of haplotypes. This analysis of molecular variance (AMOVA) produces estimates of variance components and F-statistic analogs, designated here as phi-statistics, reflecting the correlation of haplotypic diversity at different levels of hierarchical subdivision. The method is flexible enough to accommodate several alternative input matrices, corresponding to different types of molecular data, as well as different types of evolutionary assumptions, without modifying the basic structure of the analysis. The significance of the variance components and phi-statistics is tested using a permutational approach, eliminating the normality assumption that is conventional for analysis of variance but inappropriate for molecular data. Application of AMOVA to human mitochondrial DNA haplotype data shows that population subdivisions are better resolved when some measure of molecular differences among haplotypes is introduced into the analysis. At the intraspecific level, however, the additional information provided by knowing the exact phylogenetic relations among haplotypes or by a nonlinear translation of restriction-site change into nucleotide diversity does not significantly modify the inferred population genetic structure. Monte Carlo studies show that site sampling does not fundamentally affect the significance of the molecular variance components. The AMOVA treatment is easily extended in several different directions and it constitutes a coherent and flexible framework for the statistical analysis of molecular data.
System Concept for Remote Measurement of Asteroid Molecular Composition
NASA Astrophysics Data System (ADS)
Hughes, G. B.; Lubin, P. M.; Zhang, Q.; Brashears, T.; Cohen, A. N.; Madajian, J.
2016-12-01
We propose a method for probing the molecular composition of cold solar system targets (asteroids, comets, planets, moons) from a distant vantage, such as from a spacecraft orbiting the object. A directed energy beam is focused on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption of the blackbody radiation occurs within the ejected plume. Bulk composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected material. Our proposed method differs from technologies such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes materials in the target; scattered ions emit characteristic radiation, and the LIBS detector performs atomic composition analysis by observing emission spectra. Standoff distance for LIBS is limited by the strength of characteristic emission, and distances greater than 10 m are problematic. Our proposed method detects atomic and molecular absorption spectra in the plume; standoff distance is limited by the size of heated spot, and the plume opacity; distances on the order of tens of kilometers are immediately feasible. Simulations have been developed for laser heating of a rocky target, with concomitant evaporation. Evaporation rates lead to determination of plume density and opacity. Absorption profiles for selected materials are estimated from plume properties. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis from tens of kilometers distance. This paper explores the feasibility a hypothetical mission that seeks to perform surface molecular composition analysis of a near-earth asteroid while the craft orbits the asteroid. Such a system has compelling potential benefit for solar system exploration.
Trabanino, Rene J; Vaidehi, Nagarajan; Hall, Spencer E; Goddard, William A; Floriano, Wely
2013-02-05
The invention provides computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the presence of transmembrane regions in proteins, such as G-Protein Coupled Receptors (GPCR), and protein structural models generated according to the protocol. The protocol features a coarse grain sampling method, such as hydrophobicity analysis, to provide a fast and accurate procedure for predicting transmembrane regions. Methods and apparatus of the invention are useful to screen protein or polynucleotide databases for encoded proteins with transmembrane regions, such as GPCRs.
Vega-Ramos, Karla L; Uvalle-Bueno, J Xavier; Gómez-Leyva, Juan F
2013-04-01
In this study, 115 isolates of Fusarium oxysporum from roots of Agave tequilana Weber cv azul plants and soil in commercial plantations in western Mexico were characterized using morphological and molecular methods. Genetic analyses of monosporic isolates included restriction enzyme analysis of rDNA (ARDRA) using HaeIII and HinfI, and genetic diversity was determined using Box-PCR molecular markers. Box-PCR analysis generated 14 groups. The groups correlated highly with the geographic location of the isolate and sample type. These results demonstrate the usefulness of ARDRA and Box-PCR techniques in the molecular characterization of the Fusarium genus for the discrimination of pathogenic isolates.
Khamis, Atieh; Raoult, Didier; La Scola, Bernard
2005-01-01
Higher proportions (91%) of 168 corynebacterial isolates were positively identified by partial rpoB gene determination than by that based on 16S rRNA gene sequences. This method is thus a simple, molecular-analysis-based method for identification of corynebacteria, but it should be used in conjunction with other tests for definitive identification. PMID:15815024
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steenbergen, K. G., E-mail: kgsteen@gmail.com; Gaston, N.
2014-02-14
Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement formore » a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.« less
Steenbergen, K G; Gaston, N
2014-02-14
Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement for a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.
Koromyslova, Anna D; Chugunov, Anton O; Efremov, Roman G
2014-04-28
Molecular surfaces are the key players in biomolecular recognition and interactions. Nowadays, it is trivial to visualize a molecular surface and surface-distributed properties in three-dimensional space. However, such a representation trends to be biased and ambiguous in case of thorough analysis. We present a new method to create 2D spherical projection maps of entire protein surfaces and manipulate with them--protein surface topography (PST). It permits visualization and thoughtful analysis of surface properties. PST helps to easily portray conformational transitions, analyze proteins' properties and their dynamic behavior, improve docking performance, and reveal common patterns and dissimilarities in molecular surfaces of related bioactive peptides. This paper describes basic usage of PST with an example of small G-proteins conformational transitions, mapping of caspase-1 intersubunit interface, and intrinsic "complementarity" in the conotoxin-acetylcholine binding protein complex. We suggest that PST is a beneficial approach for structure-function studies of bioactive peptides and small proteins.
Analysis of an ethanol precipitate from ileal digesta: evaluation of a method to determine mucin.
Miner-Williams, Warren M; Moughan, Paul J; Fuller, Malcolm F
2013-11-06
The precipitation of mucin using high concentrations of ethanol has been used by many researchers while others have questioned the validity of the technique. In this study, analysis of an ethanol precipitate, from the soluble fraction of ileal digesta from pigs was undertaken using molecular weight profiling and polyacrylamide gel electrophoresis. The precipitate contained 201 mg·g⁻¹ protein, 87% of which had a molecular weight >20 KDa. Polyacrylamide gel electrophoresis stained with Coomassie blue and periodic acid/Schiff, revealed that most glycoprotein had a molecular weight between 37-100 KDa. The molecular weight of glycoprotein in the precipitate was therefore lower than that of intact mucin. These observations indicated that the glycoprotein in the ethanol precipitate was significantly degraded. The large amount of protein and carbohydrate in the supernatant from ethanol precipitation indicated that the precipitation of glycoprotein was incomplete. As a method for determining the concentration of mucin in digesta, ethanol precipitation is unreliable.
Marquis-Nicholson, Renate; Lai, Daniel; Love, Jennifer M.; Love, Donald R.
2013-01-01
Purpose. The aim of this study was to develop a streamlined mutation screening protocol for the DMD gene in order to confirm a clinical diagnosis of Duchenne or Becker muscular dystrophy in affected males and to clarify the carrier status of female family members. Methods. Sequence analysis and array comparative genomic hybridization (aCGH) were used to identify mutations in the dystrophin DMD gene. We analysed genomic DNA from six individuals with a range of previously characterised mutations and from eight individuals who had not previously undergone any form of molecular analysis. Results. We successfully identified the known mutations in all six patients. A molecular diagnosis was also made in three of the four patients with a clinical diagnosis who had not undergone prior genetic screening, and testing for familial mutations was successfully completed for the remaining four patients. Conclusion. The mutation screening protocol described here meets best practice guidelines for molecular testing of the DMD gene in a diagnostic laboratory. The aCGH method is a superior alternative to more conventional assays such as multiplex ligation-dependent probe amplification (MLPA). The combination of aCGH and sequence analysis will detect mutations in 98% of patients with the Duchenne or Becker muscular dystrophy. PMID:23476807
Exploring Surface Analysis Techniques for the Detection of Molecular Contaminants on Spacecraft
NASA Technical Reports Server (NTRS)
Rutherford, Gugu N.; Seasly, Elaine; Thornblom, Mark; Baughman, James
2016-01-01
Molecular contamination is a known area of concern for spacecraft. To mitigate this risk, projects involving space flight hardware set requirements in a contamination control plan that establishes an allocation budget for the exposure of non-volatile residues (NVR) onto critical surfaces. The purpose of this work will focus on non-contact surface analysis and in situ monitoring to mitigate molecular contamination on space flight hardware. By using Scanning Electron Microscopy and Energy Dispersive Spectroscopy (SEM-EDS) with Raman Spectroscopy, an unlikely contaminant was identified on space flight hardware. Using traditional and surface analysis methods provided the broader view of the contamination sources allowing for best fit solutions to prevent any future exposure.
Molecular Phylogenetics: Concepts for a Newcomer.
Ajawatanawong, Pravech
Molecular phylogenetics is the study of evolutionary relationships among organisms using molecular sequence data. The aim of this review is to introduce the important terminology and general concepts of tree reconstruction to biologists who lack a strong background in the field of molecular evolution. Some modern phylogenetic programs are easy to use because of their user-friendly interfaces, but understanding the phylogenetic algorithms and substitution models, which are based on advanced statistics, is still important for the analysis and interpretation without a guide. Briefly, there are five general steps in carrying out a phylogenetic analysis: (1) sequence data preparation, (2) sequence alignment, (3) choosing a phylogenetic reconstruction method, (4) identification of the best tree, and (5) evaluating the tree. Concepts in this review enable biologists to grasp the basic ideas behind phylogenetic analysis and also help provide a sound basis for discussions with expert phylogeneticists.
Quantifying Three-Dimensional Morphology and RNA from Individual Embryos
Green, Rebecca M.; Leach, Courtney L.; Hoehn, Natasha; Marcucio, Ralph S.; Hallgrímsson, Benedikt
2017-01-01
Quantitative analysis of morphogenesis aids our understanding of developmental processes by providing a method to link changes in shape with cellular and molecular processes. Over the last decade many methods have been developed for 3D imaging of embryos using microCT scanning to quantify the shape of embryos during development. These methods generally involve a powerful, cross-linking fixative such as paraformaldehyde to limit shrinkage during the CT scan. However, the extended time frames that these embryos are incubated in such fixatives prevent use of the tissues for molecular analysis after microCT scanning. This is a significant problem because it limits the ability to correlate variation in molecular data with morphology at the level of individual embryos. Here, we outline a novel method that allows RNA, DNA or protein isolation following CT scan while also allowing imaging of different tissue layers within the developing embryo. We show shape differences early in craniofacial development (E11.5) between common mouse genetic backgrounds, and demonstrate that we are able to generate RNA from these embryos after CT scanning that is suitable for downstream RT-PCR and RNAseq analyses. PMID:28152580
Wilson, Walter B.; Alfarhani, Bassam; Moore, Anthony F. T.; Bisson, Cristina; Wise, Stephen A.; Campiglia, Andres D.
2016-01-01
This article presents an alternative approach for the analysis of high molecular weight – polycyclic aromatic hydrocarbons (HMW-PAHs) with molecular mass 302 Da in complex environmental samples. This is not a trivial task due to the large number of molecular mass 302 Da isomers with very similar chromatographic elution times and similar, possibly even virtually identical, mass fragmentation patterns. The method presented here is based on 4.2 K laser-excited time-resolved Shpol'skii spectroscopy, a high resolution spectroscopic technique with the appropriate selectivity for the unambiguous determination of PAHs with the same molecular mass. The potential of this approach is demonstrated here with the analysis of a coal tar standard reference material (SRM) 1597a. Liquid chromatography fractions were submitted to the spectroscopic analysis of five targeted isomers, namely dibenzo[a,l]pyrene, dibenzo[a,e]pyrene, dibenzo[a,i]pyrene, naphtho[2,3-a]pyrene and dibenzo[a,h]pyrene. Prior to analyte determination, the liquid chromatographic fractions were pre-concentrated with gold nanoparticles. Complete analysis was possible with microliters of chromatographic fractions and organic solvents. The limits of detection varied from 0.05 (dibenzo[a,l]pyrene) to 0.24 μg L−1 (dibenzo[a,e]pyrene). The excellent analytical figures of merit associated to its non-destructive nature, which provides ample opportunity for further analysis with other instrumental methods, makes this approach an attractive alternative for the determination of PAH isomers in complex environmental samples. PMID:26653471
Donczo, Boglarka; Guttman, Andras
2018-06-05
More than a century ago in 1893, a revolutionary idea about fixing biological tissue specimens was introduced by Ferdinand Blum, a German physician. Since then, a plethora of fixation methods have been investigated and used. Formalin fixation with paraffin embedment became the most widely used types of fixation and preservation method, due to its proper architectural conservation of tissue structures and cellular shape. The huge collection of formalin-fixed, paraffin-embedded (FFPE) sample archives worldwide holds a large amount of unearthed information about diseases that could be the Holy Grail in contemporary biomarker research utilizing analytical omics based molecular diagnostics. The aim of this review is to critically evaluate the omics options for FFPE tissue sample analysis in the molecular diagnostics field. Copyright © 2018. Published by Elsevier B.V.
Rocha, João M; Kalo, Paavo J; Ollilainen, Velimatti; Malcata, F Xavier
2010-04-30
A novel method was developed for the analysis of molecular species in neutral lipid classes, using separation by normal phase high-performance liquid chromatography, followed by detection by evaporative light-scattering and electrospray ionization tandem mass spectrometry. Monoacid standards, i.e. sterol esters, triacylglycerols, fatty acids, diacylglycerols, free sterols and monoacylglycerols, were separated to baseline on microbore 3 microm-silica gel columns. Complete or partial separation of molecular species in each lipid class permitted identification by automatic tandem mass spectrometry of ammonium adducts, produced via positive electrospray ionization. After optimization of the method, separation and identification of molecular species of various lipid classes was comprehensively tested by analysis of neutral lipids from the free lipid extract of maize flour. 2010 Elsevier B.V. All rights reserved.
40 CFR Table 2 to Subpart Cccc of... - Requirements for Performance Tests
Code of Federal Regulations, 2010 CFR
2010-07-01
... port's location and the number of traverse points Method 1* 3. Measure volumetric flow rate. Method 2* 4. Perform gas analysis to determine the dry molecular weight of the stack gas Method 3* 5...
Pérez-Hernández, Guillermo; Noé, Frank
2016-12-13
Analysis of molecular dynamics, for example using Markov models, often requires the identification of order parameters that are good indicators of the rare events, i.e. good reaction coordinates. Recently, it has been shown that the time-lagged independent component analysis (TICA) finds the linear combinations of input coordinates that optimally represent the slow kinetic modes and may serve in order to define reaction coordinates between the metastable states of the molecular system. A limitation of the method is that both computing time and memory requirements scale with the square of the number of input features. For large protein systems, this exacerbates the use of extensive feature sets such as the distances between all pairs of residues or even heavy atoms. Here we derive a hierarchical TICA (hTICA) method that approximates the full TICA solution by a hierarchical, divide-and-conquer calculation. By using hTICA on distances between heavy atoms we identify previously unknown relaxation processes in the bovine pancreatic trypsin inhibitor.
Wijnrocx, K; François, L; Stinckens, A; Janssens, S; Buys, N
2016-10-01
The genetic diversity in 23 dog breeds raised in Belgium was investigated using both genealogical analysis and microsatellite markers. Some of these breeds are native breeds, with only small populations maintained. Pedigree and molecular data, obtained from the Belgian kennel club, were used to calculate the inbreeding coefficients, realised effective population size as well as probabilities of gene origin and average observed heterozygosity. Inbreeding coefficients ranged from 0.8 to 44.7% and realised effective population size varied between 3.2 and 829.1, according to the used method and breed. Mean observed heterozygosity ranged from 0.47 to 0.73. Both pedigree and molecular methods reveal low genetic diversity and presence of bottlenecks, especially in native Belgian breeds with small population sizes. Furthermore, principal component analysis on the set of investigated diversity parameters revealed no groups of breeds that could be identified in which similar breeding strategies could be applied to maintain genetic diversity. © 2016 Blackwell Verlag GmbH.
[MALDI-TOF mass spectrometry in the investigation of large high-molecular biological compounds].
Porubl'ova, L V; Rebriiev, A V; Hromovyĭ, T Iu; Minia, I I; Obolens'ka, M Iu
2009-01-01
MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight) mass spectrometry has become, in the recent years, a tool of choice for analyses of biological polymers. The wide mass range, high accuracy, informativity and sensitivity make it a superior method for analysis of all kinds of high-molecular biological compounds including proteins, nucleic acids and lipids. MALDI-TOF-MS is particularly suitable for the identification of proteins by mass fingerprint or microsequencing. Therefore it has become an important technique of proteomics. Furthermore, the method allows making a detailed analysis of post-translational protein modifications, protein-protein and protein-nucleic acid interactions. Recently, the method was also successfully applied to nucleic acid sequencing as well as screening for mutations.
Fang, Jiansong; Wu, Ping; Yang, Ranyao; Gao, Li; Li, Chao; Wang, Dongmei; Wu, Song; Liu, Ai-Lin; Du, Guan-Hua
2014-12-01
In this study two genistein derivatives (G1 and G2) are reported as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and differences in the inhibition of AChE are described. Although they differ in structure by a single methyl group, the inhibitory effect of G1 (IC50=264 nmol/L) on AChE was 80 times stronger than that of G2 (IC50=21,210 nmol/L). Enzyme-kinetic analysis, molecular docking and molecular dynamics (MD) simulations were conducted to better understand the molecular basis for this difference. The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE. The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area (MM/GBSA) method were consistent with the experimental data. The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions (ΔE ele+ΔG GB) was responsible for the binding affinities of these two inhibitors. Additionally, analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124, Glu292, Val294 and Phe338 of AChE. In conclusion, the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds.
Effects of low molecular sugars on the retrogradation of tapioca starch gels during storage
Li, Rongfang; Kang, Huaibin; Luo, Denglin; Fan, Jinling; Zhu, Wenxue; Liu, Xinfang; Tong, Qunyi
2017-01-01
The effects of low molecular sugars (sucrose, glucose and trehalose) on the retrogradation of tapioca starch (TS) gels stored at 4°C for different periods were examined with different methods. Decrease in melting enthalpy (ΔHmelt) were obtained through differential scanning calorimetry analysis. Analysis of decrease in crystallization rate constant (k) and increase in semi-crystallization time (τ1/2) results obtained from retrogradation kinetics indicated that low molecular sugars could retard the retrogradation of TS gels and further revealed trehalose as the best inhibitor among the sugars used in this study. Fourier transform infrared (FTIR) analysis indicated that the intensity ratio of 1047 to 1022 cm−1 was increased with the addition of sugars in the order of trehalose > sucrose > glucose. Decrease in hardness parameters and increase in springiness parameters obtained from texture profile analysis (TPA) analysis also indicated that low molecular sugars could retard the retrogradation of TS gels. The results of FTIR and TPA showed a consistent sugar effect on starch retrogradation with those of DSC and retrogradation kinetics analysis. PMID:29284007
Effects of low molecular sugars on the retrogradation of tapioca starch gels during storage.
Zhang, Xiaoyu; Li, Rongfang; Kang, Huaibin; Luo, Denglin; Fan, Jinling; Zhu, Wenxue; Liu, Xinfang; Tong, Qunyi
2017-01-01
The effects of low molecular sugars (sucrose, glucose and trehalose) on the retrogradation of tapioca starch (TS) gels stored at 4°C for different periods were examined with different methods. Decrease in melting enthalpy (ΔHmelt) were obtained through differential scanning calorimetry analysis. Analysis of decrease in crystallization rate constant (k) and increase in semi-crystallization time (τ1/2) results obtained from retrogradation kinetics indicated that low molecular sugars could retard the retrogradation of TS gels and further revealed trehalose as the best inhibitor among the sugars used in this study. Fourier transform infrared (FTIR) analysis indicated that the intensity ratio of 1047 to 1022 cm-1 was increased with the addition of sugars in the order of trehalose > sucrose > glucose. Decrease in hardness parameters and increase in springiness parameters obtained from texture profile analysis (TPA) analysis also indicated that low molecular sugars could retard the retrogradation of TS gels. The results of FTIR and TPA showed a consistent sugar effect on starch retrogradation with those of DSC and retrogradation kinetics analysis.
Basic Principles of Spectroscopy
NASA Astrophysics Data System (ADS)
Penner, Michael H.
Spectroscopy deals with the production, measurement, and interpretation of spectra arising from the interaction of electromagnetic radiation with matter. There are many different spectroscopic methods available for solving a wide range of analytical problems. The methods differ with respect to the species to be analyzed (such as molecular or atomic spectroscopy), the type of radiation-matter interaction to be monitored (such as absorption, emission, or diffraction), and the region of the electromagnetic spectrum used in the analysis. Spectroscopic methods are very informative and widely used for both quantitative and qualitative analyses. Spectroscopic methods based on the absorption or emission of radiation in the ultraviolet (UV), visible (Vis), infrared (IR), and radio (nuclear magnetic resonance, NMR) frequency ranges are most commonly encountered in traditional food analysis laboratories. Each of these methods is distinct in that it monitors different types of molecular or atomic transitions. The basis of these transitions is explained in the following sections.
NASA Astrophysics Data System (ADS)
Wang, Hong-Fei; Gan, Wei; Lu, Rong; Rao, Yi; Wu, Bao-Hua
Sum frequency generation vibrational spectroscopy (SFG-VS) has been proven to be a uniquely effective spectroscopic technique in the investigation of molecular structure and conformations, as well as the dynamics of molecular interfaces. However, the ability to apply SFG-VS to complex molecular interfaces has been limited by the ability to abstract quantitative information from SFG-VS experiments. In this review, we try to make assessments of the limitations, issues and techniques as well as methodologies in quantitative orientational and spectral analysis with SFG-VS. Based on these assessments, we also try to summarize recent developments in methodologies on quantitative orientational and spectral analysis in SFG-VS, and their applications to detailed analysis of SFG-VS data of various vapour/neat liquid interfaces. A rigorous formulation of the polarization null angle (PNA) method is given for accurate determination of the orientational parameter D =
Web-TCGA: an online platform for integrated analysis of molecular cancer data sets.
Deng, Mario; Brägelmann, Johannes; Schultze, Joachim L; Perner, Sven
2016-02-06
The Cancer Genome Atlas (TCGA) is a pool of molecular data sets publicly accessible and freely available to cancer researchers anywhere around the world. However, wide spread use is limited since an advanced knowledge of statistics and statistical software is required. In order to improve accessibility we created Web-TCGA, a web based, freely accessible online tool, which can also be run in a private instance, for integrated analysis of molecular cancer data sets provided by TCGA. In contrast to already available tools, Web-TCGA utilizes different methods for analysis and visualization of TCGA data, allowing users to generate global molecular profiles across different cancer entities simultaneously. In addition to global molecular profiles, Web-TCGA offers highly detailed gene and tumor entity centric analysis by providing interactive tables and views. As a supplement to other already available tools, such as cBioPortal (Sci Signal 6:pl1, 2013, Cancer Discov 2:401-4, 2012), Web-TCGA is offering an analysis service, which does not require any installation or configuration, for molecular data sets available at the TCGA. Individual processing requests (queries) are generated by the user for mutation, methylation, expression and copy number variation (CNV) analyses. The user can focus analyses on results from single genes and cancer entities or perform a global analysis (multiple cancer entities and genes simultaneously).
NASA Astrophysics Data System (ADS)
Sreedevi, R.; Saravana Kumar, G.; Amarsingh Bhabu, K.; Balu, T.; Murugakoothan, P.; Rajasekaran, T. R.
2018-02-01
Bis(guanidinium) 5-sulfosalicylate single crystal was grown by using Sankaranarayanan-Ramasamy (SR) method from the solution of methanol and water in equimolar ratio. Good quality crystal with 50 mm length and 10 mm in diameter was grown. The grown crystal was subjected to single crystal X-ray diffraction analysis to confirm the crystal structure and it was found to be orthorhombic. UV-Vis-NIR spectroscopic study revealed that the SR method grown crystal had good optical transparency with wide optical band gap of 4.4 eV. The presence of the functional groups and modes of vibrations were identified by FTIR spectroscopy recorded in the range 4000-400 cm-1. The mechanical strength of the grown crystal was confirmed using Vickers microhardness tester by applying load from 25 g to 100 g. Density functional theory (DFT) method with B3LYP/6-31-G (d,p) level basis set was employed and hence the optimized molecular geometry, first order hyperpolarizability, dipole moment, thermodynamic functions, molecular electrostatic potential and frontier molecular orbital analysis of the grown BGSSA sample was computed and analysed.
Docking and multivariate methods to explore HIV-1 drug-resistance: a comparative analysis
NASA Astrophysics Data System (ADS)
Almerico, Anna Maria; Tutone, Marco; Lauria, Antonino
2008-05-01
In this paper we describe a comparative analysis between multivariate and docking methods in the study of the drug resistance to the reverse transcriptase and the protease inhibitors. In our early papers we developed a simple but efficient method to evaluate the features of compounds that are less likely to trigger resistance or are effective against mutant HIV strains, using the multivariate statistical procedures PCA and DA. In the attempt to create a more solid background for the prediction of susceptibility or resistance, we carried out a comparative analysis between our previous multivariate approach and molecular docking study. The intent of this paper is not only to find further support to the results obtained by the combined use of PCA and DA, but also to evidence the structural features, in terms of molecular descriptors, similarity, and energetic contributions, derived from docking, which can account for the arising of drug-resistance against mutant strains.
A method to analyze molecular tagging velocimetry data using the Hough transform.
Sanchez-Gonzalez, R; McManamen, B; Bowersox, R D W; North, S W
2015-10-01
The development of a method to analyze molecular tagging velocimetry data based on the Hough transform is presented. This method, based on line fitting, parameterizes the grid lines "written" into a flowfield. Initial proof-of-principle illustration of this method was performed to obtain two-component velocity measurements in the wake of a cylinder in a Mach 4.6 flow, using a data set derived from computational fluid dynamics simulations. The Hough transform is attractive for molecular tagging velocimetry applications since it is capable of discriminating spurious features that can have a biasing effect in the fitting process. Assessment of the precision and accuracy of the method were also performed to show the dependence on analysis window size and signal-to-noise levels. The accuracy of this Hough transform-based method to quantify intersection displacements was determined to be comparable to cross-correlation methods. The employed line parameterization avoids the assumption of linearity in the vicinity of each intersection, which is important in the limit of drastic grid deformations resulting from large velocity gradients common in high-speed flow applications. This Hough transform method has the potential to enable the direct and spatially accurate measurement of local vorticity, which is important in applications involving turbulent flowfields. Finally, two-component velocity determinations using the Hough transform from experimentally obtained images are presented, demonstrating the feasibility of the proposed analysis method.
A Method for Analyzing A+2 Isotope Patterns for Use in Undergraduate Organic Courses
ERIC Educational Resources Information Center
Gross, Ray A.
2007-01-01
A novel ratio method is developed and automated for finding the bromine-chlorine-sulfur stoichiometry in the molecular formula of an unknown. This method is also useful in spectrometric analysis or beginning organic chemistry.
Enrichment of low-molecular-weight proteins from biofluids for biomarker discovery.
Chertov, Oleg; Simpson, John T; Biragyn, Arya; Conrads, Thomas P; Veenstra, Timothy D; Fisher, Robert J
2005-01-01
The dramatic progress in mass spectrometry-based methods of protein identification has triggered a new quest for disease-associated biomarkers. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and its variant surface-enhanced laser desorption/ionization mass spectrometry, provide effective means to explore the less studied information slice of the human serum proteome -- low-molecular-weight proteins and peptides. These low-molecular-weight proteins and peptides are promising for the detection of important biomarkers. Due to the significant experimental problems imposed by high-abundance and high-molecular-weight proteins, it is important to effectively remove these species prior to mass spectrometry analysis of the low-molecular-weight serum and plasma proteomes. In this review, the advantages afforded by recently introduced methods for prefractionation of serum, as they pertain to the detection and identification of biomarkers, will be discussed.
Systematic RH genotyping and variant identification in French donors of African origin
Kappler-Gratias, Sandrine; Auxerre, Carine; Dubeaux, Isabelle; Beolet, Marylise; Ripaux, Maryline; Le Pennec, Pierre-Yves; Pham, Bach-Nga
2014-01-01
Background RH molecular analysis has enabled the documentation of numerous variants of RHD and RHCE alleles, especially in individuals of African origin. The aim of the present study was to determine the type and frequency of D and/or RhCE variants among blood donors of African origin in France, by performing a systematic RH molecular analysis, in order to evaluate the implications for blood transfusion of patients of African origin. Materials and methods Samples from 316 African blood donors, whose origin was established by their Fy(a−b−) phenotype, were first analysed using the RHD and RHCE BeadChips Kit (BioArray Solutions, Immucor, Warren, NJ, USA). Sequencing was performed when necessary. Results RHD molecular analysis showed that 26.2% of donors had a variant RHD allele. It allowed the prediction of a partial D in 11% of cases. RHCE molecular analysis showed that 14.2% of donors had a variant RHCE allele or RH [RN or (C)ces] haplotype. A rare Rh phenotype associated with the loss of a high-prevalence antigen or partial RhCE antigens were predicted from RHCE molecular analysis in 1 (0.3%) and 17 (5%) cases, respectively. Discussion Systematic RHD and RHCE molecular analysis performed in blood donors of African origin provides transfusion-relevant information for individuals of African origin because of the frequency of variant RH alleles. RH molecular analysis may improve transfusion therapy of patients by allowing better donor and recipient matching, based not only on phenotypically matched red blood cell units, but also on units that are genetically matched with regards to RhCE variants. PMID:23867180
Senspex, Inc. proposes to investigate a novel diagnostic tool based upon evanescent field planar waveguide sensing and complementary nanostructured mediated molecular vibration spectroscopy methods for rapid detection and analysis of hazardous biological and chemical targets i...
ERIC Educational Resources Information Center
Loehlin, James H.; Norton, Alexandra P.
1988-01-01
Describes a crystallography experiment using both diffraction-angle and diffraction-intensity information to determine the lattice constant and a lattice independent molecular parameter, while still employing standard X-ray powder diffraction techniques. Details the method, experimental details, and analysis for this activity. (CW)
Andrew D. Bower; Bryce A. Richardson; Valerie Hipkins; Regina Rochefort; Carol Aubry
2011-01-01
Analysis of "neutral" molecular markers and "adaptive" quantitative traits are common methods of assessing genetic diversity and population structure. Molecular markers typically reflect the effects of demographic and stochastic processes but are generally assumed to not reflect natural selection. Conversely, quantitative (or "adaptive")...
Verhougstraete, Marc Paul; Brothers, Sydney; Litaker, Wayne; Blackwood, A Denene; Noble, Rachel
2015-01-01
Rapid molecular testing methods are poised to replace many of the conventional, culture-based tests currently used in fields such as water quality and food science. Rapid qPCR methods have the benefit of being faster than conventional methods and provide a means to more accurately protect public health. However, many scientists and technicians in water and food quality microbiology laboratories have limited experience using these molecular tests. To ensure that practitioners can use and implement qPCR techniques successfully, we developed a week long workshop to provide hands-on training and exposure to rapid molecular methods for water quality management. This workshop trained academic professors, government employees, private industry representatives, and graduate students in rapid qPCR methods for monitoring recreational water quality. Attendees were immersed in these new methods with hands-on laboratory sessions, lectures, and one-on-one training. Upon completion, the attendees gained sufficient knowledge and practice to teach and share these new molecular techniques with colleagues at their respective laboratories. Key findings from this workshop demonstrated: 1) participants with no prior experience could be effectively trained to conduct highly repeatable qPCR analysis in one week; 2) participants with different desirable outcomes required exposure to a range of different platforms and sample processing approaches; and 3) the collaborative interaction amongst newly trained practitioners, workshop leaders, and members of the water quality community helped foster a cohesive cohort of individuals which can advocate powerful cohort for proper implementation of molecular methods.
Verhougstraete, Marc Paul; Brothers, Sydney; Litaker, Wayne; Blackwood, A. Denene; Noble, Rachel
2015-01-01
Rapid molecular testing methods are poised to replace many of the conventional, culture-based tests currently used in fields such as water quality and food science. Rapid qPCR methods have the benefit of being faster than conventional methods and provide a means to more accurately protect public health. However, many scientists and technicians in water and food quality microbiology laboratories have limited experience using these molecular tests. To ensure that practitioners can use and implement qPCR techniques successfully, we developed a week long workshop to provide hands-on training and exposure to rapid molecular methods for water quality management. This workshop trained academic professors, government employees, private industry representatives, and graduate students in rapid qPCR methods for monitoring recreational water quality. Attendees were immersed in these new methods with hands-on laboratory sessions, lectures, and one-on-one training. Upon completion, the attendees gained sufficient knowledge and practice to teach and share these new molecular techniques with colleagues at their respective laboratories. Key findings from this workshop demonstrated: 1) participants with no prior experience could be effectively trained to conduct highly repeatable qPCR analysis in one week; 2) participants with different desirable outcomes required exposure to a range of different platforms and sample processing approaches; and 3) the collaborative interaction amongst newly trained practitioners, workshop leaders, and members of the water quality community helped foster a cohesive cohort of individuals which can advocate powerful cohort for proper implementation of molecular methods. PMID:25822486
Advances in the Molecular Analysis of Breast Cancer: Pathway Toward Personalized Medicine.
Rosa, Marilin
2015-04-01
Breast cancer is a heterogeneous disease that encompasses a wide range of clinical behaviors and histological and molecular variants. It is the most common type of cancer affecting women worldwide and is the second leading cause of cancer death. A comprehensive literature search was performed to explore the advances in molecular medicine related to the diagnosis and treatment of breast cancer. During the last few decades, advances in molecular medicine have changed the landscape of cancer treatment as new molecular tests complement and, in many instances, exceed traditional methods for determining patient prognosis and response to treatment options. Personalized medicine is becoming the standard of care around the world. Developments in molecular profiling, genomic analysis, and the discovery of targeted drug therapies have significantly improved patient survival rates and quality of life. This review highlights what pathologists need to know about current molecular tests for classification and prognostic/ predictive assessment of breast carcinoma as well as their role as part of the medical team.
Non-Gradient Blue Native Polyacrylamide Gel Electrophoresis.
Luo, Xiaoting; Wu, Jinzi; Jin, Zhen; Yan, Liang-Jun
2017-02-02
Gradient blue native polyacrylamide gel electrophoresis (BN-PAGE) is a well established and widely used technique for activity analysis of high-molecular-weight proteins, protein complexes, and protein-protein interactions. Since its inception in the early 1990s, a variety of minor modifications have been made to this gradient gel analytical method. Here we provide a major modification of the method, which we call non-gradient BN-PAGE. The procedure, similar to that of non-gradient SDS-PAGE, is simple because there is no expensive gradient maker involved. The non-gradient BN-PAGE protocols presented herein provide guidelines on the analysis of mitochondrial protein complexes, in particular, dihydrolipoamide dehydrogenase (DLDH) and those in the electron transport chain. Protocols for the analysis of blood esterases or mitochondrial esterases are also presented. The non-gradient BN-PAGE method may be tailored for analysis of specific proteins according to their molecular weight regardless of whether the target proteins are hydrophobic or hydrophilic. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Bioinformatics analysis on molecular mechanism of rheum officinale in treatment of jaundice
NASA Astrophysics Data System (ADS)
Shan, Si; Tu, Jun; Nie, Peng; Yan, Xiaojun
2017-01-01
Objective: To study the molecular mechanism of Rheum officinale in the treatment of Jaundice by building molecular networks and comparing canonical pathways. Methods: Target proteins of Rheum officinale and related genes of Jaundice were searched from Pubchem and Gene databases online respectively. Molecular networks and canonical pathways comparison analyses were performed by Ingenuity Pathway Analysis (IPA). Results: The molecular networks of Rheum officinale and Jaundice were complex and multifunctional. The 40 target proteins of Rheum officinale and 33 Homo sapiens genes of Jaundice were found in databases. There were 19 common pathways both related networks. Rheum officinale could regulate endothelial differentiation, Interleukin-1B (IL-1B) and Tumor Necrosis Factor (TNF) in these pathways. Conclusions: Rheum officinale treat Jaundice by regulating many effective nodes of Apoptotic pathway and cellular immunity related pathways.
Lucci, Paolo; Moret, Sabrina; Bettin, Sara; Conte, Lanfranco
2017-01-01
The aim of this work was to evaluate the use of a molecularly imprinted polymer as a selective solid-phase extraction sorbent for the clean-up and pre-concentration of patulin from apple-based food products. Ultra high pressure liquid chromatography coupled to ultraviolet absorbance detection was used for the analysis of patulin. The molecularly imprinted polymer was applied, for the first time, to the determination of patulin in apple juice, puree and jam samples spiked within the maximum levels specified by the European Commission No. 1881/2006. High recoveries (>77%) were obtained. The method was validated and found to be linear in the range 2-100 μg/kg with correlation coefficients greater than 0.965 and repeatability relative standard deviation below 11% in all cases. Compared with dispersive solid-phase extraction (QuEChERS method) and octadecyl sorbent, the molecularly imprinted polymer showed higher recoveries and selectivity for patulin. The application of Affinisep molecularly imprinted polymer as a selective sorbent material for detection of patulin fulfilled the method performance criteria required by the Commission Regulation No. 401/2006, demonstrating the suitability of the technique for the control of patulin at low ppb levels in different apple-based foods such as juice, puree and jam samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigation for Molecular Attraction Impact Between Contacting Surfaces in Micro-Gears
NASA Astrophysics Data System (ADS)
Yang, Ping; Li, Xialong; Zhao, Yanfang; Yang, Haiying; Wang, Shuting; Yang, Jianming
2013-10-01
The aim of this research work is to provide a systematic method to perform molecular attraction impact between contacting surfaces in micro-gear train. This method is established by integrating involute profile analysis and molecular dynamics simulation. A mathematical computation of micro-gear involute is presented based on geometrical properties, Taylor expression and Hamaker assumption. In the meantime, Morse potential function and the cut-off radius are introduced with a molecular dynamics simulation. So a hybrid computational method for the Van Der Waals force between the contacting faces in micro-gear train is developed. An example is illustrated to show the performance of this method. The results show that the change of Van Der Waals force in micro-gear train has a nonlinear characteristic with parameters change such as the modulus of the gear and the tooth number of gear etc. The procedure implies a potential feasibility that we can control the Van Der Waals force by adjusting the manufacturing parameters for gear train design.
van Bockel, David; Price, David A.; Asher, Tedi E.; Venturi, Vanessa; Suzuki, Kazuo; Warton, Kristina; Davenport, Miles P.; Cooper, David A.; Douek, Daniel C.; Kelleher, Anthony D.
2007-01-01
Recent advances in the field of molecular clonotype analysis have enabled detailed repertoire characterization of viably isolated antigen-specific T cell populations directly ex vivo. However, in the absence of a biologically contained FACS facility, peripheral blood mononuclear cell (PBMC) preparations derived from patients infected with agents such as HIV must be formaldehyde fixed to inactivate the pathogen; this procedure adversely affects nucleic acid template quality. Here, we developed and validated a method to amplify and sequence mRNA species derived from formaldehyde fixed PBMC specimens. Antigen-specific CD8+ cytotoxic T-lymphocyte populations were identified with standard fluorochrome-conjugated peptide-major histocompatibility complex class I tetramers refolded around synthetic peptides representing immunodominant epitopes from HIV p24 Gag (KRWII[M/L]GLNK/HLA B*2705) and CMV pp65 (NLVPMVATV/HLA A*0201 and TPRVTGGGAM/HLA B*0702), and acquired in separate laboratories with or without fixation. In the presence of proteinase K pre-treatment, the observed antigen-specific CD8+ T-cell repertoire determined by molecular clonotype analysis was statistically no different whether derived from fixed or unfixed PBMC. However, oligo-dT recovery methods were not suitable for use with fixed tissue as significant skewing of clonotypic representation was observed. Thus, we have developed a reliable RNA-based method for molecular clonotype analysis that is compatible with formaldehyde fixation and therefore suitable for use with primary human samples isolated by FACS outside the context of a biological safety level 3 containment facility. PMID:17716684
Portillo, M C; Gonzalez, J M
2008-08-01
Molecular fingerprints of microbial communities are a common method for the analysis and comparison of environmental samples. The significance of differences between microbial community fingerprints was analyzed considering the presence of different phylotypes and their relative abundance. A method is proposed by simulating coverage of the analyzed communities as a function of sampling size applying a Cramér-von Mises statistic. Comparisons were performed by a Monte Carlo testing procedure. As an example, this procedure was used to compare several sediment samples from freshwater ponds using a relative quantitative PCR-DGGE profiling technique. The method was able to discriminate among different samples based on their molecular fingerprints, and confirmed the lack of differences between aliquots from a single sample.
Photoluminescence of Ta2O5 films formed by the molecular layer deposition method
NASA Astrophysics Data System (ADS)
Baraban, A. P.; Dmitriev, V. A.; Prokof'ev, V. A.; Drozd, V. E.; Filatova, E. O.
2016-04-01
Ta2O5 films of different thicknesses (20-100 nm) synthesized by the molecular layer deposition method on p-type silicon substrates and thermally oxidized silicon substrates have been studied by the methods of high-frequency capacitance-voltage characteristics and photoluminescence. A hole-conduction channel is found to form in the Si-Ta2O5-field electrode system. A model of the electronic structure of Ta2O5 films is proposed based on an analysis of the measured PL spectra and performed electrical investigations.
Fuzzy method of recognition of high molecular substances in evidence-based biology
NASA Astrophysics Data System (ADS)
Olevskyi, V. I.; Smetanin, V. T.; Olevska, Yu. B.
2017-10-01
Nowadays modern requirements to achieving reliable results along with high quality of researches put mathematical analysis methods of results at the forefront. Because of this, evidence-based methods of processing experimental data have become increasingly popular in the biological sciences and medicine. Their basis is meta-analysis, a method of quantitative generalization of a large number of randomized trails contributing to a same special problem, which are often contradictory and performed by different authors. It allows identifying the most important trends and quantitative indicators of the data, verification of advanced hypotheses and discovering new effects in the population genotype. The existing methods of recognizing high molecular substances by gel electrophoresis of proteins under denaturing conditions are based on approximate methods for comparing the contrast of electrophoregrams with a standard solution of known substances. We propose a fuzzy method for modeling experimental data to increase the accuracy and validity of the findings of the detection of new proteins.
A Real-Time PCR with Melting Curve Analysis for Molecular Typing of Vibrio parahaemolyticus.
He, Peiyan; Wang, Henghui; Luo, Jianyong; Yan, Yong; Chen, Zhongwen
2018-05-23
Foodborne disease caused by Vibrio parahaemolyticus is a serious public health problem in many countries. Molecular typing has a great scientific significance and application value for epidemiological research of V. parahaemolyticus. In this study, a real-time PCR with melting curve analysis was established for molecular typing of V. parahaemolyticus. Eighteen large variably presented gene clusters (LVPCs) of V. parahaemolyticus which have different distributions in the genome of different strains were selected as targets. Primer pairs of 18 LVPCs were distributed into three tubes. To validate this newly developed assay, we tested 53 Vibrio parahaemolyticus strains, which were classified in 13 different types. Furthermore, cluster analysis using NTSYS PC 2.02 software could divide 53 V. parahaemolyticus strains into six clusters at a relative similarity coefficient of 0.85. This method is fast, simple, and conveniently for molecular typing of V. parahaemolyticus.
A composite molecular phylogeny of living lemuroid primates.
DelPero, Massimiliano; Pozzi, Luca; Masters, Judith C
2006-01-01
Lemuroid phylogeny is a source of lively debate among primatologists. Reconstructions based on morphological, physiological, behavioural and molecular data have yielded a diverse array of tree topologies with few nodes in common. In the last decade, molecular phylogenetic studies have grown in popularity, and a wide range of sequences has been brought to bear on the problem, but consensus has remained elusive. We present an analysis based on a composite molecular data set of approx. 6,400 bp assembled from the National Center for Biotechnology Information (NCBI) database, including both mitochondrial and nuclear genes, and diverse analytical methods. Our analysis consolidates some of the nodes that were insecure in previous reconstructions, but is still equivocal on the placement of some taxa. We conducted a similar analysis of a composite data set of approx. 3,600 bp to investigate the controversial relationships within the family Lemuridae. Here our analysis was more successful; only the position of Eulemur coronatus remained uncertain. Copyright 2006 S. Karger AG, Basel.
Kumar, Sudhir; Stecher, Glen; Peterson, Daniel; Tamura, Koichiro
2012-10-15
There is a growing need in the research community to apply the molecular evolutionary genetics analysis (MEGA) software tool for batch processing a large number of datasets and to integrate it into analysis workflows. Therefore, we now make available the computing core of the MEGA software as a stand-alone executable (MEGA-CC), along with an analysis prototyper (MEGA-Proto). MEGA-CC provides users with access to all the computational analyses available through MEGA's graphical user interface version. This includes methods for multiple sequence alignment, substitution model selection, evolutionary distance estimation, phylogeny inference, substitution rate and pattern estimation, tests of natural selection and ancestral sequence inference. Additionally, we have upgraded the source code for phylogenetic analysis using the maximum likelihood methods for parallel execution on multiple processors and cores. Here, we describe MEGA-CC and outline the steps for using MEGA-CC in tandem with MEGA-Proto for iterative and automated data analysis. http://www.megasoftware.net/.
Molecular analysis of microflora associated with dentoalveolar abscesses.
Dymock, D; Weightman, A J; Scully, C; Wade, W G
1996-01-01
The microflora associated with three dentoalveolar abscesses was determined by cultural and molecular methods. 16S rRNA genes were randomly amplified by means of conserved eubacterial primers and cloned. Restriction fragment length polymorphism analysis of the clones and amplified genes encoding 16S rRNA from the cultured bacteria was used to detect putative unculturable bacteria. Clones representative of five predominant groups of uncultured organisms were sequenced. Two were identified as Porphyromonas gingivalis and Prevotella oris, and one was found to be closely related to Peptostreptococcus micros. The remaining two clones did not correspond to known, previously sequenced organisms. One was related to Zoogloea ramigera, a species of aerobic waterborne organisms, while the other was distantly related to the genus Prevotella. This study has demonstrated the possibility of the characterization of microflora associated with human infection by molecular methods without the inherent biases of culture. PMID:8904410
Rajakumaran, P; Vaseeharan, B; Jayakumar, R; Chidambara, R
2014-01-01
Understanding of accurate phylogenetic relationship among Penaeidae shrimp is important for academic and fisheries industry. The Morphometric and Randomly amplified polymorphic DNA (RAPD) analysis was used to make the phylogenetic relationsip among 13 Penaeidae shrimp. For morphometric analysis forty variables and total lengths of shrimp were measured for each species, and removed the effect of size variation. The size normalized values obtained was subjected to UPGMA (Unweighted Pair-Group Method with Arithmetic Mean) cluster analysis. For RAPD analysis, the four primers showed reliable differentiation between species, and used correlation coefficient between the DNA banding patterns of 13 Penaeidae species to construct UPGMA dendrogram. Phylogenetic relationship from morphometric and molecular analysis for Penaeidae species found to be congruent. We concluded that as the results from morphometry investigations concur with molecular one, phylogenetic relationship obtained for the studied Penaeidae are considered to be reliable.
Wang, Xiaolong; Li, Lin; Zhao, Jiaxin; Li, Fangliang; Guo, Wei; Chen, Xia
2017-04-01
To evaluate the effects of different preservation methods (stored in a -20°C ice chest, preserved in liquid nitrogen and dried in silica gel) on inter simple sequence repeat (ISSR) or random amplified polymorphic DNA (RAPD) analyses in various botanical specimens (including broad-leaved plants, needle-leaved plants and succulent plants) for different times (three weeks and three years), we used a statistical analysis based on the number of bands, genetic index and cluster analysis. The results demonstrate that methods used to preserve samples can provide sufficient amounts of genomic DNA for ISSR and RAPD analyses; however, the effect of different preservation methods on these analyses vary significantly, and the preservation time has little effect on these analyses. Our results provide a reference for researchers to select the most suitable preservation method depending on their study subject for the analysis of molecular markers based on genomic DNA. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations
Yuhara, Daisuke; Barnes, Brian C.; Suh, Donguk; ...
2015-01-06
Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale. Moreover, various analysis methods for nucleation have been developed through MD to analyze nucleation. In particular, the mean first-passage time (MFPT) and survival probability (SP)more » methods have proven to be effective in procuring the nucleation rate and critical nucleus size for monatomic systems. This study assesses the MFPT and SP methods, previously used for monatomic systems, when applied to analyzing clathrate hydrate nucleation. Because clathrate hydrate nucleation is relatively difficult to observe in MD simulations (due to its high free energy barrier), these methods have yet to be applied to clathrate hydrate systems. In this study, we have analyzed the nucleation rate and critical nucleus size of methane hydrate using MFPT and SP methods from data generated by MD simulations at 255 K and 50 MPa. MFPT was modified for clathrate hydrate from the original version by adding the maximum likelihood estimate and growth effect term. The nucleation rates were calculated by MFPT and SP methods and are within 5%; the critical nucleus size estimated by the MFPT method was 50% higher, than values obtained through other more rigorous but computationally expensive estimates. These methods can also be extended to the analysis of other clathrate hydrates.« less
Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuhara, Daisuke; Barnes, Brian C.; Suh, Donguk
Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale. Moreover, various analysis methods for nucleation have been developed through MD to analyze nucleation. In particular, the mean first-passage time (MFPT) and survival probability (SP)more » methods have proven to be effective in procuring the nucleation rate and critical nucleus size for monatomic systems. This study assesses the MFPT and SP methods, previously used for monatomic systems, when applied to analyzing clathrate hydrate nucleation. Because clathrate hydrate nucleation is relatively difficult to observe in MD simulations (due to its high free energy barrier), these methods have yet to be applied to clathrate hydrate systems. In this study, we have analyzed the nucleation rate and critical nucleus size of methane hydrate using MFPT and SP methods from data generated by MD simulations at 255 K and 50 MPa. MFPT was modified for clathrate hydrate from the original version by adding the maximum likelihood estimate and growth effect term. The nucleation rates were calculated by MFPT and SP methods and are within 5%; the critical nucleus size estimated by the MFPT method was 50% higher, than values obtained through other more rigorous but computationally expensive estimates. These methods can also be extended to the analysis of other clathrate hydrates.« less
Interaction of methotrexate with trypsin analyzed by spectroscopic and molecular modeling methods
NASA Astrophysics Data System (ADS)
Wang, Yanqing; Zhang, Hongmei; Cao, Jian; Zhou, Qiuhua
2013-11-01
Trypsin is one of important digestive enzymes that have intimate correlation with human health and illness. In this work, the interaction of trypsin with methotrexate was investigated by spectroscopic and molecular modeling methods. The results revealed that methotrexate could interact with trypsin with about one binding site. Methotrexate molecule could enter into the primary substrate-binding pocket, resulting in inhibition of trypsin activity. Furthermore, the thermodynamic analysis implied that electrostatic force, hydrogen bonding, van der Waals and hydrophobic interactions were the main interactions for stabilizing the trypsin-methotrexate system, which agreed well with the results from the molecular modeling study.
NASA Astrophysics Data System (ADS)
Evangelisti, Luca; Caminati, Walther; Patterson, David; Thomas, Javix; Xu, Yunjie; West, Channing; Pate, Brooks
2017-06-01
The introduction of three wave mixing rotational spectroscopy by Patterson, Schnell, and Doyle [1,2] has expanded applications of molecular rotational spectroscopy into the field of chiral analysis. Chiral analysis of a molecule is the quantitative measurement of the relative abundances of all stereoisomers of the molecule and these include both diastereomers (with distinct molecular rotational spectra) and enantiomers (with equivalent molecular rotational spectra). This work adapts a common strategy in chiral analysis of enantiomers to molecular rotational spectroscopy. A "chiral tag" is attached to the molecule of interest by making a weakly bound complex in a pulsed jet expansion. When this tag molecule is enantiopure, it will create diastereomeric complexes with the two enantiomers of the molecule being analyzed and these can be differentiated by molecule rotational spectroscopy. Identifying the structure of this complex, with knowledge of the absolute configuration of the tag, establishes the absolute configuration of the molecule of interest. Furthermore, the diastereomer complex spectra can be used to determine the enantiomeric excess of the sample. The ability to perform chiral analysis will be illustrated by a study of solketal using propylene oxide as the tag. The possibility of using current methods of quantum chemistry to assign a specific structure to the chiral tag complex will be discussed. Finally, chiral tag rotational spectroscopy offers a "gold standard" method for determining the absolute configuration of the molecule through determination of the substitution structure of the complex. When this measurement is possible, rotational spectroscopy can deliver a quantitative three dimensional structure of the molecule with correct stereochemistry as the analysis output. [1] David Patterson, Melanie Schnell, John M. Doyle, Nature 497, 475 (2013). [2] David Patterson, John M. Doyle, Phys. Rev. Lett. 111, 023008 (2013).
Tisdale, Evgenia; Wilkins, Charles
2014-04-11
The influence of the sample preparation parameters (the choice of the solvent and of the matrix:analyte ratio) was investigated and optimal conditions were established for MALDI mass spectrometry analysis of the pristine low molecular weight polyvinyl acetate (PVAc). It was demonstrated that comparison of polymer's and solvent's Hansen solubility parameters could be used as a guide when choosing the solvent for MALDI sample preparation. The highest intensity PVAc signals were obtained when ethyl acetate was used as a solvent along with the lowest matrix-analyte ratio (2,5-dihydroxybenzoic acid was used as a matrix in all experiments). The structure of the PVAc was established with high accuracy using the matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry (MALDI-FTMS) analysis. It was demonstrated that PVAc undergoes unimolecular decomposition by losing acetic acid molecules from its backbone under the conditions of FTMS measurements. Number and weight average molecular weights as well as polydispersity indices were determined with both MALDI-TOF and MALDI-FTMS methods. The sample preparation protocol developed was applied to the analysis of a chewing gum and the molecular weight and structure of the polyvinyl acetate present in the sample were established. Thus, it was shown that optimized MALDI mass spectrometry could be used successfully for characterization of polyvinyl acetate in commercially available chewing gum. Copyright © 2014 Elsevier B.V. All rights reserved.
[Laser microdissection for biology and medicine].
Podgornyĭ, O V; Lazarev, V N; Govorun, V M
2012-01-01
For routine extraction of DNA, RNA, proteins and metabolites, small tissue pieces are placed into lysing solution. These tissue pieces in general contain different cell types. For this reason, lysate contains components of different cell types, which complicates the interpretation of molecular analysis results. The laser microdissection allows overcoming this trouble. The laser microdissection is a method to procure tissue samples contained defined cell subpopulations, individual cells and even subsellular components under direct microscopic visualization. Collected samples can be undergone to different downstream molecular assays: DNA analysis, RNA transcript profiling, cDNA library generation and gene expression analysis, proteomic analysis and metabolite profiling. The laser microdissection has wide applications in oncology (research and routine), cellular and molecular biology, biochemistry and forensics. This paper reviews the principles of different laser microdissection instruments, examples of laser microdissection application and problems of sample preparation for laser microdissection.
Fatima, Nikhat; Khan, Aleem A.; Vishwakarma, Sandeep K.
2017-01-01
Background: Growing evidence shows that dental pulp (DP) tissues could be a potential source of adult stem cells for the treatment of devastating neurological diseases and several other conditions. Aims: Exploration of the expression profile of several key molecular markers to evaluate the molecular dynamics in undifferentiated and differentiated DP-derived stem cells (DPSCs) in vitro. Settings and Design: The characteristics and multilineage differentiation ability of DPSCs were determined by cellular and molecular kinetics. DPSCs were further induced to form adherent (ADH) and non-ADH (NADH) neurospheres under serum-free condition which was further induced into neurogenic lineage cells and characterized for their molecular and cellular diversity at each stage. Statistical Analysis Used: Statistical analysis used one-way analysis of variance, Student's t-test, Livak method for relative quantification, and R programming. Results: Immunophenotypic analysis of DPSCs revealed >80% cells positive for mesenchymal markers CD90 and CD105, >70% positive for transferring receptor (CD71), and >30% for chemotactic factor (CXCR3). These cells showed mesodermal differentiation also and confirmed by specific staining and molecular analysis. Activation of neuronal lineage markers and neurogenic growth factors was observed during lineage differentiation of cells derived from NADH and ADH spheroids. Greater than 80% of cells were found to express β-tubulin III in both differentiation conditions. Conclusions: The present study reported a cascade of immunophenotypic and molecular markers to characterize neurogenic differentiation of DPSCs under serum-free condition. These findings trigger the future analyses for clinical applicability of DP-derived cells in regenerative applications. PMID:28566856
Chen, Chih-Hao; Hsu, Chueh-Lin; Huang, Shih-Hao; Chen, Shih-Yuan; Hung, Yi-Lin; Chen, Hsiao-Rong; Wu, Yu-Chung
2015-01-01
Although genome-wide expression analysis has become a routine tool for gaining insight into molecular mechanisms, extraction of information remains a major challenge. It has been unclear why standard statistical methods, such as the t-test and ANOVA, often lead to low levels of reproducibility, how likely applying fold-change cutoffs to enhance reproducibility is to miss key signals, and how adversely using such methods has affected data interpretations. We broadly examined expression data to investigate the reproducibility problem and discovered that molecular heterogeneity, a biological property of genetically different samples, has been improperly handled by the statistical methods. Here we give a mathematical description of the discovery and report the development of a statistical method, named HTA, for better handling molecular heterogeneity. We broadly demonstrate the improved sensitivity and specificity of HTA over the conventional methods and show that using fold-change cutoffs has lost much information. We illustrate the especial usefulness of HTA for heterogeneous diseases, by applying it to existing data sets of schizophrenia, bipolar disorder and Parkinson’s disease, and show it can abundantly and reproducibly uncover disease signatures not previously detectable. Based on 156 biological data sets, we estimate that the methodological issue has affected over 96% of expression studies and that HTA can profoundly correct 86% of the affected data interpretations. The methodological advancement can better facilitate systems understandings of biological processes, render biological inferences that are more reliable than they have hitherto been and engender translational medical applications, such as identifying diagnostic biomarkers and drug prediction, which are more robust. PMID:25793610
NASA Astrophysics Data System (ADS)
Fathima Rizwana, B.; Prasana, Johanan Christian; Abraham, Christina Susan; Muthu, S.
2018-07-01
Entecavir, a new deoxyguanine nucleoside analogue, is a selective inhibitor of the replication of the hepatitis B virus. In the present study, Quantum mechanical approach was carried out on the title compound to study the vibrational spectrum, the stability of the compound, the intermolecular and intramolecular interactions by using Density Functional Theory (DFT) with B3LYP 6-311++G(d,p) basis set. The B3LYP/DFT method was chosen because diverse studies have shown that the results obtained with it are in good agreement with those determined by other costly computational methods. The computational methods were aided by the experimental spectroscopic techniques, namely FTIR and FT Raman spectroscopies. The optimized molecular geometry, vibrational wavenumbers, infrared intensities and Raman scattering activities were calculated. The calculated HOMO and LUMO energies were found to be -6.397 eV and -1.504 eV which indicate the charge transfer within the molecule. The maximum absorption wavelength and the band gap energy of the title compound were obtained from the UV absorption spectrum computed theoretically. Natural Bond Orbital analysis has been carried out to explain the charge transfer (or) delocalization of charge due to the intra molecular interactions. The molecule orbital contributions are studied by using the total (TDOS), partial (PDOS), and overlap population (OPDOS) density of states. Molecular electrostatic potential (MEP), First order hyperpolarizability, Hirshfield surface analysis and Fukui functions calculation were also performed. From the calculations the first order hyperpolarizability was found to be 2.3854 × 10-30 esu. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures have been calculated. Molecular docking studies were made on the title compound to study the hydrogen bond interactions and the minimum binding energy was calculated.
NASA Astrophysics Data System (ADS)
Jayasheela, K.; Al-Wahaibi, Lamya H.; Periandy, S.; Hassan, Hanan M.; Sebastian, S.; Xavier, S.; Daniel, Joseph C.; El-Emam, Ali A.; Attia, Mohamed I.
2018-05-01
The promising anti-Candida agent, 4-chlorophenyl ({[1E-3(1H-imidazole-1-yl)-1-phenylpropylidene}oxy)methanone (4-CPIPM) was comprehensively characterized by FT-IR, FT-Raman, UV, as well as 1H and 13C spectroscopic techniques. The theoretical calculations in the current study utilized Gaussian 09 W software with DFT approach of the B3LYP/6-311++G(d,p) method. The experimental X-ray diffraction data of the 4-CPIPM molecule were compared with the optimized structure and showed well agreement. Intermolecular electronic interactions and their stabilization energies have been analyzed by natural bond orbital method. Potential energy distribution confirmed the normal fundamental mode of vibration with the aid of MOLVIB software. The chemical shift values of the 1H and 13C spectra of the title compound were computed using gauge independent atomic orbital and the results were compared with the experimental values. The time-dependent density function theory method was used to predict the electronic, absorption wavelength and frontier molecular orbital energies. The HOMO-LUMO plots proved the charge transfer in the molecular system of the title compound through conjugated paths. The molecular electrostatic potential analysis provided the electrophilic and nucleophilic reactive sites in the title molecule which have been analyzed using Hirshfeld surface and two dimensions fingerprint plots. Non covalent interactions were also studied using reduced density gradient analysis and color filled electron density diagram. Molecular docking studies of the ligand-protein interactions along with their binding energies were carried out aiming to explain the potent anti-Candida activity of the title molecule.
USDA-ARS?s Scientific Manuscript database
The objective of the study was to use band-based molecular methods including BOX-PCR (Polymerase Chain Reaction) and Pulsed-Field Gel Electrophoresis (PFGE) to determine if genetically related enterococci were found among different stores, food types, or years. Enterococci were also characterized f...
NASA Astrophysics Data System (ADS)
Raja, M.; Raj Muhamed, R.; Muthu, S.; Suresh, M.; Muthu, K.
2017-02-01
The title compound, (E)-1-(3-bromobenzylidene)semicarbazide (3BSC) was synthesized and characterized by FT-IR, FT-Raman, UV, 1HNMR and 13CNMR spectral analysis. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated by using density functional theory (DFT) B3LYP method with 6-311++G(d,p) basis set. The calculated HOMO and LUMO energies show that charge transfer within the molecule. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The hyperpolarizability calculation reveals the present material has a reasonably good propensity for nonlinear optical activity. Molecular electrostatic potential (MEP) and Fukui functions were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the 3BSC at different temperatures have been calculated. The biological applications of 3BSC have been screened for its antimicrobial activity and found to exhibit antifungal and antibacterial effects. In addition, the Molecular docking was also performed for the different receptors.
Zhang, Y Y; Huang, N; Xiao, X H; Huang, L; Liu, F; Su, W H; Que, Y X
2015-07-14
Sugarcane smut caused by the fungus Sporisorium scitamineum is a worldwide disease and also one of the most prevalent diseases in sugarcane production in mainland China. To study molecular variation in S. scitamineum, 23 S. scitamineum isolates from the 6 primary sugar-cane production areas in mainland, China (Guangxi, Yunnan, Guangdong, Hainan, Fujian, and Jiangxi Provinces), were assessed using internal transcribed spacer (ITS) methods. The results of ITS sequence analysis showed that the organisms can be defined at the genus level, including Ustilago and Sporisorium, and can also differentiate between closely related species. This method was not suitable for phylogenetic relationship analysis of different S. scitamineum isolates and could not provide support regarding their race ascription at the molecular level. The results of the present study will be useful for studies examining the molecular diversity of S. scitamineum and for establishing a genetic foundation for their pathogenicity differentiation and new race detection. In addition, our results can provide useful information for the pathogen selection principle in sugarcane smut resistance breeding and variety distribution.
Wang, Jun-Wen; Liu, Yang; Tong, Yuan-Yuan; Yang, Ce; Li, Hai-Yan
2016-05-01
This study collected 1995-2014 molecular pharmacognosy study, a total of 595 items, funded by Natural Science Foundation of China (NSFC). TDA and Excel software were used to analyze the data of the projects about general situation, hot spots of research with rank analytic and correlation analytic methods. Supported by NSFC molecular pharmacognosy projects and funding a gradual increase in the number of, the proportion of funds for pharmaceutical research funding tends to be stable; mainly supported by molecular biology methods of genuine medicinal materials, secondary metabolism and Germplasm Resources Research; hot drugs including Radix Salviae Miltiorrhizae, Radix Rehmanniae, Cordyceps sinensis, hot contents including tanshinone biosynthesis, Rehmannia glutinosa continuous cropping obstacle. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Li, Peizhen; Tian, Yueli; Zhai, Honglin; Deng, Fangfang; Xie, Meihong; Zhang, Xiaoyun
2013-11-01
Non-purine derivatives have been shown to be promising novel drug candidates as xanthine oxidase inhibitors. Based on three-dimensional quantitative structure-activity relationship (3D-QSAR) methods including comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), two 3D-QSAR models for a series of non-purine xanthine oxidase (XO) inhibitors were established, and their reliability was supported by statistical parameters. Combined 3D-QSAR modeling and the results of molecular docking between non-purine xanthine oxidase inhibitors and XO, the main factors that influenced activity of inhibitors were investigated, and the obtained results could explain known experimental facts. Furthermore, several new potential inhibitors with higher activity predicted were designed, which based on our analyses, and were supported by the simulation of molecular docking. This study provided some useful information for the development of non-purine xanthine oxidase inhibitors with novel structures.
Molecularly imprinted polymer for analysis of trace atrazine herbicide in water.
Kueseng, Pamornrat; Noir, Mathieu L; Mattiasson, Bo; Thavarungkul, Panote; Kanatharana, Proespichaya
2009-11-01
A molecularly imprinted polymer (MIP) for atrazine was synthesized by non-covalent method. The binding capacity of MIP was 1.00 mg g(-1) polymer. The selectivity and recovery were investigated with various pesticides which are mostly, found in the environment, for both similar and different chemical structure of atrazine. The competitive recognition between atrazine and structurally similar compounds was evaluated and it was found that the system provided highest recovery and selectivity for atrazine while low recovery and selectivity were obtained for the other compounds. The highest recovery was obtained from MIP compared with non-imprinted polymer (NIP), a commercial C(18) and a granular activated carbon (GAC) sorbent. The method provided high recoveries ranged from 94 to 99% at two spiked levels with relative standard deviations less than 2%. The lower detection limit of the method was 80 ng L(-1). This method was successfully applied for analysis of environmental water samples.
Field Analysis of Microbial Contamination Using Three Molecular Methods in Parallel
NASA Technical Reports Server (NTRS)
Morris, H.; Stimpson, E.; Schenk, A.; Kish, A.; Damon, M.; Monaco, L.; Wainwright, N.; Steele, A.
2010-01-01
Advanced technologies with the capability of detecting microbial contamination remain an integral tool for the next stage of space agency proposed exploration missions. To maintain a clean, operational spacecraft environment with minimal potential for forward contamination, such technology is a necessity, particularly, the ability to analyze samples near the point of collection and in real-time both for conducting biological scientific experiments and for performing routine monitoring operations. Multiple molecular methods for detecting microbial contamination are available, but many are either too large or not validated for use on spacecraft. Two methods, the adenosine- triphosphate (ATP) and Limulus Amebocyte Lysate (LAL) assays have been approved by the NASA Planetary Protection Office for the assessment of microbial contamination on spacecraft surfaces. We present the first parallel field analysis of microbial contamination pre- and post-cleaning using these two methods as well as universal primer-based polymerase chain reaction (PCR).
Oligomeric cationic polymethacrylates: a comparison of methods for determining molecular weight.
Locock, Katherine E S; Meagher, Laurence; Haeussler, Matthias
2014-02-18
This study compares three common laboratory methods, size-exclusion chromatography (SEC), (1)H nuclear magnetic resonance (NMR), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), to determine the molecular weight of oligomeric cationic copolymers. The potential bias for each method was examined across a series of polymers that varied in molecular weight and cationic character (both choice of cation (amine versus guanidine) and relative proportion present). SEC was found to be the least accurate, overestimating Mn by an average of 140%, owing to the lack of appropriate cationic standards available, and the complexity involved in estimating the hydrodynamic volume of copolymers. MALDI-TOF approximated Mn well for the highly monodisperse (Đ < 1.1), low molecular weight (degree of polymerization (DP) <50) species but appeared unsuitable for the largest polymers in the series due to the mass bias associated with the technique. (1)H NMR was found to most accurately estimate Mn in this study, differing to theoretical values by only 5.2%. (1)H NMR end-group analysis is therefore an inexpensive and facile, primary quantitative method to estimate the molecular weight of oliogomeric cationic polymethacrylates if suitably distinct end-groups signals are present in the spectrum.
NASA Astrophysics Data System (ADS)
Demircioğlu, Zeynep; Özdemir, Fethi Ahmet; Dayan, Osman; Şerbetçi, Zafer; Özdemir, Namık
2018-06-01
Synthesized compounds of N-(2-aminophenyl)benzenesulfonamide 1 and (Z)-N-(2-((2-nitrobenzylidene)amino)phenyl)benzenesulfonamide 2 were characterized by antimicrobial activity, FT-IR, 1H and 13C NMR. Two new Schiff base ligands containing aromatic sulfonamide fragment of (Z)-N-(2-((3-nitrobenzylidene)amino)phenyl)benzenesulfonamide 3 and (Z)-N-(2-((4-nitrobenzylidene)amino)phenyl)benzenesulfonamide 4 were synthesized and investigated by spectroscopic techniques including 1H and 13C NMR, FT-IR, single crystal X-ray diffraction, Hirshfeld surface, theoretical method analyses and by antimicrobial activity. The molecular geometry obtained from the X-ray structure determination was optimized Density Functional Theory (DFT/B3LYP) method with the 6-311++G(d,p) basis set in ground state. From the optimized geometry of the molecules of 3 and 4, the geometric parameters, vibrational wavenumbers and chemical shifts were computed. The optimized geometry results, which were well represented the X-ray data, were shown that the chosen of DFT/B3LYP 6-311G++(d,p) was a successful choice. After a successful optimization, frontier molecular orbitals, chemical activity, non-linear optical properties (NLO), molecular electrostatic mep (MEP), Mulliken population method, natural population analysis (NPA) and natural bond orbital analysis (NBO), which cannot be obtained experimentally, were calculated and investigated.
NASA Astrophysics Data System (ADS)
Muthu, S.; Renuga, S.
2014-11-01
In this work, the vibrational spectral analysis was carried out by using FT-Raman and FTIR spectroscopy in the range 50-4000 cm-1 and 450-4000 cm-1 respectively, for 2-hydroxy-3-(2-methoxyphenoxy) propyl carbamate (2H3MPPLC) molecule. The molecular structure, fundamental vibrational frequencies and intensities of the vibrational bands were interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) and ab initio HF methods with 6-31G(d,p) basis set. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution (PED). The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The scaled B3LYP/6-31G(d,p) results show the best agreement with the experimental values over the other method. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results confirm the occurrence of intramolecular charge-transfer (ICT) within the molecule. The dipole moment (μ), polarizability (α) and hyperpolarizability (β) of the investigated molecule has been computed using B3LYP/6-31G(d,p) method. Mulliken population analysis on atomic charges was also calculated. Besides, frontier molecular orbitals, molecular electrostatic potential (MEP) and thermodynamic properties were performed.
Youker, Robert T.; Teng, Haibing
2014-01-01
Abstract. Quantitative analysis of protein complex stoichiometries and mobilities are critical for elucidating the mechanisms that regulate cellular pathways. Fluorescence fluctuation spectroscopy (FFS) techniques can measure protein dynamics, such as diffusion coefficients and formation of complexes, with extraordinary precision and sensitivity. Complete calibration and characterization of the microscope instrument is necessary in order to avoid artifacts during data acquisition and to capitalize on the full capabilities of FFS techniques. We provide an overview of the theory behind FFS techniques, discuss calibration procedures, provide protocols, and give practical considerations for performing FFS experiments. One important parameter recovered from FFS measurements is the relative molecular brightness that can correlate with oligomerization. Three methods for measuring molecular brightness (fluorescence correlation spectroscopy, photon-counting histogram, and number and brightness analysis) recover similar values when measuring samples under ideal conditions in vitro. However, examples are given illustrating that these different methods used for calculating molecular brightness of fluorescent molecules in cells are not always equivalent. Methods relying on spot measurements are more prone to bleaching and movement artifacts that can lead to underestimation of brightness values. We advocate for the use of multiple FFS techniques to study molecular brightnesses to overcome and compliment limitations of individual techniques. PMID:25260867
Exploring oxidative ageing behaviour of hydrocarbons using ab initio molecular dynamics analysis
NASA Astrophysics Data System (ADS)
Pan, Tongyan; Cheng, Cheng
2016-06-01
With a proper approximate solution to the Schrödinger Equation of a multi-electron system, the method of ab initio molecular dynamics (AIMD) performs first-principles molecular dynamics analysis without pre-defining interatomic potentials as are mandatory in traditional molecular dynamics analyses. The objective of this study is to determine the oxidative-ageing pathway of petroleum asphalt as a typical hydrocarbon system, using the AIMD method. This objective was accomplished in three steps, including (1) identifying a group of representative asphalt molecules to model, (2) determining an atomistic modelling method that can effectively simulate the production of critical functional groups in oxidative ageing of hydrocarbons and (3) evaluating the oxidative-ageing pathway of a hydrocarbon system. The determination of oxidative-ageing pathway of hydrocarbons was done by tracking the generations of critical functional groups in the course of oxidative ageing. The chemical elements of carbon, nitrogen and sulphur all experience oxidative reactions, producing polarised functional groups such as ketones, aldehydes or carboxylic acids, pyrrolic groups and sulphoxides. The electrostatic forces of the polarised groups generated in oxidation are responsible for the behaviour of aged hydrocarbons. The developed AIMD model can be used for modelling the ageing of generic hydrocarbon polymers and developing antioxidants without running expensive experiments.
Buzzega, Dania; Maccari, Francesca; Volpi, Nicola
2008-11-01
We report the use of fluorophore-assisted carbohydrate electrophoresis (FACE) to determine the molecular mass (M) values of heparins (Heps) and low-molecular-weight (LMW)-Hep derivatives. Hep are labeled with 8-aminonaphthalene-1,3,6-trisulfonic acid and FACE is able to resolve each fraction as a discrete band depending on their M. After densitometric acquisition, the migration distance of each Hep standard is acquired and the third-grade polynomial calibration standard curve is determined by plotting the logarithms of the M values as a function of migration ratio. Purified Hep samples having different properties, pharmaceutical Heps and various LMW-Heps were analyzed by both FACE and conventional high-performance size-exclusion liquid chromatography (HPSEC) methods. The molecular weight value on the top of the chromatographic peak (Mp), the number-average Mn, weight-average Mw and polydispersity (Mw/Mn) were examined by both techniques and found to be similar. This approach offers certain advantages over the HPSEC method. The derivatization process with 8-aminonaphthalene-1,3,6-trisulfonic acid is complete after 4 h so that many samples may be analyzed in a day also considering that multiple samples can be run simultaneously and in parallel and that a single FACE analysis requires approx. 15 min. Furthermore, FACE is a very sensitive method as it requires approx. 5-10 microg of Heps, about 10-100-fold lower than samples and standards used in HPSEC evaluation. Finally, the utilization of mini-gels allows the use of very low amounts of reagents with neither expensive equipment nor any complicated procedures having to be applied. This study demonstrates that FACE analysis is a sensitive method for the determination of the M values of Heps and LMW-Heps with possible utilization in virtually any kind of research and development such as quality control laboratories due to its rapid, parallel analysis of multiple samples by means of common and simple largely used analytical laboratory equipment.
Molecular epidemiology of Pseudomonas aeruginosa.
Speert, David P
2002-10-01
Pseudomonas aeruginosa is a serious opportunistic pathogen in certain compromised hosts, such as those with cystic fibrosis, thermal burns and cancer. It also causes less severe noninvasive disease, such as otitis externa and hot tub folliculitis, in normal hosts. P. aeruginosa is phenotypically very unstable, particularly in patients with chronic infection. Phenotypic typing techniques are useful for understanding the epidemiology of acute infections, but they are limited by their discriminatory power and by their inability to group isolates that are phenotypically unrelated but genetically homologous. Molecular typing techniques, developed over the past decade, are highly discriminatory and are useful for typing strains from patients with chronic infection where the bacterial phenotype is unstable; this is particularly true in cystic fibrosis, where patients often are infected with the same strain for several decades, but the bacteria undergo phenotypic alteration. Molecular typing techniques, which have proven useful in typing P. aeruginosa for epidemiological purposes, include pulsed field gel electrophoresis, restriction fragment length polymorphic DNA analysis, random amplified polymorphic DNA analysis, repetitive extrapalindromic PCR analysis, and multilocus sequence typing. These methods are generally only available in specialized laboratories, but they should be used when data from phenotypic typing analysis are ambiguous or when phenotypic methods are unreliable, such as in cystic fibrosis.
NASA Astrophysics Data System (ADS)
Vatsal, Manu; Devi, Vandna; Awasthi, Pamita
2018-04-01
The 1-[1-oxo-3-phenyl-(2-benzosulfonamide)-propyl amido] - anthracene-9,10-dione (BPAQ) an analogue of anthracenedione class of antibiotic has been synthesized. To characterize molecular functional groups FT-IR and FT-Raman spectrum were recorded and vibrational frequencies were assigned accordingly. The optimized geometrical parameters, vibrational assignments, chemical shifts and thermodynamic properties of title compound were computed by ab initio calculations at Density Functional Theory (DFT) method with 6-31G(d,p) as basis set. The calculated harmonic vibrational frequencies of molecule were then analysed in comparison to experimental FT-IR and Raman spectrum. Gauge independent atomic orbital (GIAO) method was used for determining, (1H) and carbon (13C) nuclear magnetic resonance (NMR) spectra of the molecule. Molecular parameters were calculated along with its periodic boundary conditions calculation (PBC) analysis supported by X-ray diffraction studies. The frontier molecular orbital (HOMO, LUMO) analysis describes charge distribution and stability of the molecule which concluded that nucleophilic substitution is more preferred and the mullikan charge analysis also confirmed the same. Further the title compound showed an inhibitory action at d(TCCCCC), an intermolecular i-motif sequence, hence molecular docking study suggested the inhibitory activity of the compound at these junction.
NASA Astrophysics Data System (ADS)
Cao, Shandong
2012-08-01
The purpose of the present study was to develop in silico models allowing for a reliable prediction of polo-like kinase inhibitors based on a large diverse dataset of 136 compounds. As an effective method, quantitative structure activity relationship (QSAR) was applied using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The proposed QSAR models showed reasonable predictivity of thiophene analogs (Rcv2=0.533, Rpred2=0.845) and included four molecular descriptors, namely IC3, RDF075m, Mor02m and R4e+. The optimal model for imidazopyridine derivatives (Rcv2=0.776, Rpred2=0.876) was shown to perform good in prediction accuracy, using GATS2m and BEHe1 descriptors. Analysis of the contour maps helped to identify structural requirements for the inhibitors and served as a basis for the design of the next generation of the inhibitor analogues. Docking studies were also employed to position the inhibitors into the polo-like kinase active site to determine the most probable binding mode. These studies may help to understand the factors influencing the binding affinity of chemicals and to develop alternative methods for prescreening and designing of polo-like kinase inhibitors.
NASA Astrophysics Data System (ADS)
Shimada, Haruo; Maeno, Katsuyuki; Kinoshita, Kazumasa; Shida, Yasuo
2017-07-01
A novel method for the simultaneous detection of ingredients in pharmaceutical applications such as creams and lotions was developed. An ultrasonic atomizer has been used to produce a mist containing ingredients. The analyte molecules in the mist can be ionized by using direct analysis in real time (DART) at lower temperature than traditionally used, and we thus solved the problem of normal DART-MS measurement using a high-temperature gas. Thereby, molecular-related ions of heat-unstable components and nonvolatile components became detectable. The deprotonated molecular ion of glycyrrhizic acid (m/z 821), which is unstable at high temperatures, was detected without pyrolysis by ultrasonic mist-DART-MS using unheated helium gas, although it was not detected by normal DART-MS using heated helium gas. The cationized molecular ions of derivatives of polyethylene glycol fatty acid monoesters, which are nonvolatile compounds, were also detected as m/z peaks observed from 800 to 2300. Although the protonated molecular ion of tocopherol acetate was not detected in ionization by ultrasonic mist, it was detected by ultrasonic mist-DART-MS even in the emulsion. It was not necessary to dissolve a sample completely to detect its ions. This method enabled us to obtain the composition of pharmaceutical applications simply and rapidly.
Cantara, Silvia; Marzocchi, Carlotta; Pilli, Tania; Cardinale, Sandro; Forleo, Raffaella; Castagna, Maria Grazia; Pacini, Furio
2017-01-01
Fine needle aspiration cytology (FNAC) represents the gold standard for determining the nature of thyroid nodules. It is a reliable method with good sensitivity and specificity. However, indeterminate lesions remain a diagnostic challenge and researchers have contributed molecular markers to search for in cytological material to refine FNAC diagnosis and avoid unnecessary surgeries. Nowadays, several “home-made” methods as well as commercial tests are available to investigate the molecular signature of an aspirate. Moreover, other markers (i.e., microRNA, and circulating tumor cells) have been proposed to discriminate benign from malignant thyroid lesions. Here, we review the literature and provide data from our laboratory on mutational analysis of FNAC material and circulating microRNA expression obtained in the last 6 years. PMID:28383480
Rico-Yuste, A; Walravens, J; Urraca, J L; Abou-Hany, R A G; Descalzo, A B; Orellana, G; Rychlik, M; De Saeger, S; Moreno-Bondi, M C
2018-03-15
Molecularly imprinted porous polymer microspheres selective to Alternaria mycotoxins, alternariol (AOH) and alternariol monomethyl ether (AME), were synthesized and applied to the extraction of both mycotoxins in food samples. The polymer was prepared using 4-vinylpiridine (VIPY) and methacrylamide (MAM) as functional monomers, ethylene glycol dimethacrylate (EDMA) as cross-linker and 3,8,9-trihydroxy-6H-dibenzo[b,d]pyran-6-one (S2) as AOH surrogate template. A molecularly imprinted solid phase extraction (MISPE) method has been optimized for the selective isolation of the mycotoxins from aqueous samples coupled to HPLC with fluorescence (λ ex =258nm; λ em =440nm) or MS/MS analysis. The MISPE method was validated by UPLC-MS/MS for the determination of AOH and AME in tomato juice and sesame oil based on the European Commission Decision 2002/657/EC. Method performance was satisfactory with recoveries from 92.5% to 106.2% and limits of quantification within the 1.1-2.8µgkg -1 range in both samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molecular design of new aggrecanases-2 inhibitors.
Shan, Zhi Jie; Zhai, Hong Lin; Huang, Xiao Yan; Li, Li Na; Zhang, Xiao Yun
2013-10-01
Aggrecanases-2 is a very important potential drug target for the treatment of osteoarthritis. In this study, a series of known aggrecanases-2 inhibitors was analyzed by the technologies of three-dimensional quantitative structure-activity relationships (3D-QSAR) and molecular docking. Two 3D-QSAR models, which based on comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods, were established. Molecular docking was employed to explore the details of the interaction between inhibitors and aggrecanases-2 protein. According to the analyses for these models, several new potential inhibitors with higher activity predicted were designed, and were supported by the simulation of molecular docking. This work propose the fast and effective approach to design and prediction for new potential inhibitors, and the study of the interaction mechanism provide a better understanding for the inhibitors binding into the target protein, which will be useful for the structure-based drug design and modifications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vibrational spectroscopic and structural investigations on fullerene: A DFT approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christy, P. Anto; Premkumar, S.; Asath, R. Mohamed
2016-05-06
The molecular structure of fullerene (C{sub 60}) molecule was optimized by the DFT/B3LYP method with 6-31G and 6-31G(d,p) basis sets using Gaussian 09 program. The vibrational frequencies were calculated for the optimized molecular structure of the molecule. The calculated vibrational frequencies confirm that the molecular structure of the molecule was located at the minimum energy potential energy surface. The calculated vibrational frequencies were assigned on the basis of functional group analysis and also confirmed using the GaussView 05 software. The frontier molecular orbitals analysis was carried out. The FMOs related molecular properties were predicted. The higher ionization potential, higher electronmore » affinity, higher softness, lower band gap energy and lower hardness values were obtained, which confirm that the fullerene molecule has a higher molecular reactivity. The Mulliken atomic charge distribution of the molecule was also calculated. Hence, these results play an important role due to its potential applications as drug delivery devices.« less
Characterization and analysis of the molecular weight of lignin for biorefining studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolbert, Allison; Akinosho, Hannah; Khunsupat, Ratayakorn
2014-06-04
The molecular weight of lignin is a fundamental property that infl uences the recalcitrance of biomass and the valorization of lignin. The determination of the molecular weight of lignin in native biomass is dependent on the bioresources used and the isolation and purifi cation procedures employed. The three most commonly employed isolation methods are milled wood lignin (MWL), cellulolytic enzyme lignin (CEL), and enzymatic mild acidolysis lignin (EMAL). Common characterization techniques for determining the molecular weight of lignin will be addressed, with an emphasis on gel permeation chromatography (GPC). This review also examines the mechanisms behind several biological, physical, andmore » chemical pre-treatments and their impact on the molecular weight of lignin. The number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity index (D) all vary in magnitude depending on the biomass source, pre-treatment conditions, and isolation method. Additionally, there is a growing body of literature that supports changes in the molecular weight of lignin in response to genetic modifi cations in the lignin biosynthetic pathways. This review summarizes different procedures for obtaining the molecular weight of lignin that have been used in recent years and highlight future opportunities for applications of lignin.« less
Arooj, Mahreen; Thangapandian, Sundarapandian; John, Shalini; Hwang, Swan; Park, Jong K; Lee, Keun W
2012-12-01
To provide a new idea for drug design, a computational investigation is performed on chymase and its novel 1,4-diazepane-2,5-diones inhibitors that explores the crucial molecular features contributing to binding specificity. Molecular docking studies of inhibitors within the active site of chymase were carried out to rationalize the inhibitory properties of these compounds and understand their inhibition mechanism. The density functional theory method was used to optimize molecular structures with the subsequent analysis of highest occupied molecular orbital, lowest unoccupied molecular orbital, and molecular electrostatic potential maps, which revealed that negative potentials near 1,4-diazepane-2,5-diones ring are essential for effective binding of inhibitors at active site of enzyme. The Bayesian model with receiver operating curve statistic of 0.82 also identified arylsulfonyl and aminocarbonyl as the molecular features favoring and not favoring inhibition of chymase, respectively. Moreover, genetic function approximation was applied to construct 3D quantitative structure-activity relationships models. Two models (genetic function approximation model 1 r(2) = 0.812 and genetic function approximation model 2 r(2) = 0.783) performed better in terms of correlation coefficients and cross-validation analysis. In general, this study is used as example to illustrate how combinational use of 2D/3D quantitative structure-activity relationships modeling techniques, molecular docking, frontier molecular orbital density fields (highest occupied molecular orbital and lowest unoccupied molecular orbital), and molecular electrostatic potential analysis may be useful to gain an insight into the binding mechanism between enzyme and its inhibitors. © 2012 John Wiley & Sons A/S.
Relaxation Estimation of RMSD in Molecular Dynamics Immunosimulations
Schreiner, Wolfgang; Karch, Rudolf; Knapp, Bernhard; Ilieva, Nevena
2012-01-01
Molecular dynamics simulations have to be sufficiently long to draw reliable conclusions. However, no method exists to prove that a simulation has converged. We suggest the method of “lagged RMSD-analysis” as a tool to judge if an MD simulation has not yet run long enough. The analysis is based on RMSD values between pairs of configurations separated by variable time intervals Δt. Unless RMSD(Δt) has reached a stationary shape, the simulation has not yet converged. PMID:23019425
Determination of molecular weight distributions in native and pretreated wood.
Leskinen, Timo; Kelley, Stephen S; Argyropoulos, Dimitris S
2015-03-30
The analysis of native wood components by size-exclusion chromatography (SEC) is challenging. Isolation, derivatization and solubilization of wood polymers is required prior to the analysis. The present approach allowed the determination of molecular weight distributions of the carbohydrates and of lignin in native and processed woods, without preparative component isolation steps. For the first time a component selective SEC analysis of sawdust preparations was made possible by the combination of two selective derivatization methods, namely; ionic liquid assisted benzoylation of the carbohydrate fraction and acetobromination of the lignin in acetic acid media. These were optimized for wood samples. The developed method was thus used to examine changes in softwood samples after degradative mechanical and/or chemical treatments, such as ball milling, steam explosion, green liquor pulping, and chemical oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The methodology can also be applied to examine changes in molecular weight and lignin-carbohydrate linkages that occur during wood-based biorefinery operations, such as pretreatments, and enzymatic saccharification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Orientation of N-benzoyl glycine on silver nanoparticles: SERS and DFT studies
NASA Astrophysics Data System (ADS)
Parameswari, A.; Asath, R. Mohamed; Premkumar, R.; Benial, A. Milton Franklin
2017-05-01
Surface enhanced Raman scattering (SERS) studies of N-benzoyl glycine (NBG) adsorbed on silver nanoparticles (AgNPs) was studied by experimental and density functional theory (DFT) approach. Single crystals of NBG were prepared using slow evaporation method. The AgNPs were prepared and characterized. The DFT/ B3PW91 method with LanL2DZ basis set was used to optimize the molecular structure of NBG and NBG adsorbed on silver cluster. The calculated and observed vibrational frequencies were assingned on the basis of potential energy distribution calculation. The reduced band gap value was obtained for NBG adsorbed on silver nanoparticles from the frontier molecular orbitals analysis. Natural bond orbital analysis was carried out to inspect the intra-molecular stabilization interactions, which are responsible for the bio activity and nonlinear optical property of the molecule. The spectral analysis was also evidenced that NBG would adsorb tilted orientation on the silver surface over the binding sites such as lone pair electron of N atom in amine group and through phenyl ring π system.
Molecular beacon sequence design algorithm.
Monroe, W Todd; Haselton, Frederick R
2003-01-01
A method based on Web-based tools is presented to design optimally functioning molecular beacons. Molecular beacons, fluorogenic hybridization probes, are a powerful tool for the rapid and specific detection of a particular nucleic acid sequence. However, their synthesis costs can be considerable. Since molecular beacon performance is based on its sequence, it is imperative to rationally design an optimal sequence before synthesis. The algorithm presented here uses simple Microsoft Excel formulas and macros to rank candidate sequences. This analysis is carried out using mfold structural predictions along with other free Web-based tools. For smaller laboratories where molecular beacons are not the focus of research, the public domain algorithm described here may be usefully employed to aid in molecular beacon design.
Taboada, Eduardo; Grant, Christopher C. R.; Blakeston, Connie; Pollari, Frank; Marshall, Barbara; Rahn, Kris; MacKinnon, Joanne; Daignault, Danielle; Pillai, Dylan; Ng, Lai-King
2012-01-01
Campylobacter spp. may be responsible for unreported outbreaks of food-borne disease. The detection of these outbreaks is made more difficult by the fact that appropriate methods for detecting clusters of Campylobacter have not been well defined. We have compared the characteristics of five molecular typing methods on Campylobacter jejuni and C. coli isolates obtained from human and nonhuman sources during sentinel site surveillance during a 3-year period. Comparative genomic fingerprinting (CGF) appears to be one of the optimal methods for the detection of clusters of cases, and it could be supplemented by the sequencing of the flaA gene short variable region (flaA SVR sequence typing), with or without subsequent multilocus sequence typing (MLST). Different methods may be optimal for uncovering different aspects of source attribution. Finally, the use of several different molecular typing or analysis methods for comparing individuals within a population reveals much more about that population than a single method. Similarly, comparing several different typing methods reveals a great deal about differences in how the methods group individuals within the population. PMID:22162562
Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija
2018-01-01
The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.
Applying phylogenetic analysis to viral livestock diseases: moving beyond molecular typing.
Olvera, Alex; Busquets, Núria; Cortey, Marti; de Deus, Nilsa; Ganges, Llilianne; Núñez, José Ignacio; Peralta, Bibiana; Toskano, Jennifer; Dolz, Roser
2010-05-01
Changes in livestock production systems in recent years have altered the presentation of many diseases resulting in the need for more sophisticated control measures. At the same time, new molecular assays have been developed to support the diagnosis of animal viral disease. Nucleotide sequences generated by these diagnostic techniques can be used in phylogenetic analysis to infer phenotypes by sequence homology and to perform molecular epidemiology studies. In this review, some key elements of phylogenetic analysis are highlighted, such as the selection of the appropriate neutral phylogenetic marker, the proper phylogenetic method and different techniques to test the reliability of the resulting tree. Examples are given of current and future applications of phylogenetic reconstructions in viral livestock diseases. Copyright 2009 Elsevier Ltd. All rights reserved.
Modeling of diatomic molecule using the Morse potential and the Verlet algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fidiani, Elok
Performing molecular modeling usually uses special software for Molecular Dynamics (MD) such as: GROMACS, NAMD, JMOL etc. Molecular dynamics is a computational method to calculate the time dependent behavior of a molecular system. In this work, MATLAB was used as numerical method for a simple modeling of some diatomic molecules: HCl, H{sub 2} and O{sub 2}. MATLAB is a matrix based numerical software, in order to do numerical analysis, all the functions and equations describing properties of atoms and molecules must be developed manually in MATLAB. In this work, a Morse potential was generated to describe the bond interaction betweenmore » the two atoms. In order to analyze the simultaneous motion of molecules, the Verlet Algorithm derived from Newton’s Equations of Motion (classical mechanics) was operated. Both the Morse potential and the Verlet algorithm were integrated using MATLAB to derive physical properties and the trajectory of the molecules. The data computed by MATLAB is always in the form of a matrix. To visualize it, Visualized Molecular Dynamics (VMD) was performed. Such method is useful for development and testing some types of interaction on a molecular scale. Besides, this can be very helpful for describing some basic principles of molecular interaction for educational purposes.« less
Vickers, Andrew J; Cronin, Angel M; Elkin, Elena B; Gonen, Mithat
2008-01-01
Background Decision curve analysis is a novel method for evaluating diagnostic tests, prediction models and molecular markers. It combines the mathematical simplicity of accuracy measures, such as sensitivity and specificity, with the clinical applicability of decision analytic approaches. Most critically, decision curve analysis can be applied directly to a data set, and does not require the sort of external data on costs, benefits and preferences typically required by traditional decision analytic techniques. Methods In this paper we present several extensions to decision curve analysis including correction for overfit, confidence intervals, application to censored data (including competing risk) and calculation of decision curves directly from predicted probabilities. All of these extensions are based on straightforward methods that have previously been described in the literature for application to analogous statistical techniques. Results Simulation studies showed that repeated 10-fold crossvalidation provided the best method for correcting a decision curve for overfit. The method for applying decision curves to censored data had little bias and coverage was excellent; for competing risk, decision curves were appropriately affected by the incidence of the competing risk and the association between the competing risk and the predictor of interest. Calculation of decision curves directly from predicted probabilities led to a smoothing of the decision curve. Conclusion Decision curve analysis can be easily extended to many of the applications common to performance measures for prediction models. Software to implement decision curve analysis is provided. PMID:19036144
Karain, Wael I
2017-11-28
Proteins undergo conformational transitions over different time scales. These transitions are closely intertwined with the protein's function. Numerous standard techniques such as principal component analysis are used to detect these transitions in molecular dynamics simulations. In this work, we add a new method that has the ability to detect transitions in dynamics based on the recurrences in the dynamical system. It combines bootstrapping and recurrence quantification analysis. We start from the assumption that a protein has a "baseline" recurrence structure over a given period of time. Any statistically significant deviation from this recurrence structure, as inferred from complexity measures provided by recurrence quantification analysis, is considered a transition in the dynamics of the protein. We apply this technique to a 132 ns long molecular dynamics simulation of the β-Lactamase Inhibitory Protein BLIP. We are able to detect conformational transitions in the nanosecond range in the recurrence dynamics of the BLIP protein during the simulation. The results compare favorably to those extracted using the principal component analysis technique. The recurrence quantification analysis based bootstrap technique is able to detect transitions between different dynamics states for a protein over different time scales. It is not limited to linear dynamics regimes, and can be generalized to any time scale. It also has the potential to be used to cluster frames in molecular dynamics trajectories according to the nature of their recurrence dynamics. One shortcoming for this method is the need to have large enough time windows to insure good statistical quality for the recurrence complexity measures needed to detect the transitions.
Spotting the difference in molecular dynamics simulations of biomolecules
NASA Astrophysics Data System (ADS)
Sakuraba, Shun; Kono, Hidetoshi
2016-08-01
Comparing two trajectories from molecular simulations conducted under different conditions is not a trivial task. In this study, we apply a method called Linear Discriminant Analysis with ITERative procedure (LDA-ITER) to compare two molecular simulation results by finding the appropriate projection vectors. Because LDA-ITER attempts to determine a projection such that the projections of the two trajectories do not overlap, the comparison does not suffer from a strong anisotropy, which is an issue in protein dynamics. LDA-ITER is applied to two test cases: the T4 lysozyme protein simulation with or without a point mutation and the allosteric protein PDZ2 domain of hPTP1E with or without a ligand. The projection determined by the method agrees with the experimental data and previous simulations. The proposed procedure, which complements existing methods, is a versatile analytical method that is specialized to find the "difference" between two trajectories.
NASA Astrophysics Data System (ADS)
Mohamed Asath, R.; Premkumar, R.; Mathavan, T.; Milton Franklin Benial, A.
2017-09-01
Potential energy surface scan was performed and the most stable molecular structure of the N,N-di-tert-butoxycarbonyl (Boc)-2-amino pyridine (DBAP) molecule was predicted. The most stable molecular structure of the molecule was optimized using B3LYP method with cc-pVTZ basis set. Anticancer activity of the DBAP molecule was evaluated by molecular docking analysis. The structural parameters and vibrational wavenumbers were calculated for the optimized molecular structure. The experimental and theoretical wavenumbers were assigned and compared. Ultraviolet-Visible spectrum was simulated and validated experimentally. The molecular electrostatic potential surface was simulated and Fukui function calculations were also carried out to investigate the reactive nature of the DBAP molecule. The natural bond orbital analysis was also performed to probe the intramolecular interactions and confirm the bioactivity of the DBAP molecule. The molecular docking analysis reveals the better inhibitory nature of the DBAP molecule against the epidermal growth factor receptor (EGFR) protein which causes lung cancer. Hence, the present study unveils the structural and bioactive nature of the title molecule. The DBAP molecule was identified as a potential inhibitor against the lung cancer which may be useful in further development of drug designing in the treatment of lung cancer.
NASA Astrophysics Data System (ADS)
Wyrick, Jonathan; Einstein, T. L.; Bartels, Ludwig
2015-03-01
We present a method of analyzing the results of density functional modeling of molecular adsorption in terms of an analogue of molecular orbitals. This approach permits intuitive chemical insight into the adsorption process. Applied to a set of anthracene derivates (anthracene, 9,10-anthraquinone, 9,10-dithioanthracene, and 9,10-diselenonanthracene), we follow the electronic states of the molecules that are involved in the bonding process and correlate them to both the molecular adsorption geometry and the species' diffusive behavior. We additionally provide computational code to easily repeat this analysis on any system.
Quantum chemical and statistical study of megazol-derived compounds with trypanocidal activity
NASA Astrophysics Data System (ADS)
Rosselli, F. P.; Albuquerque, C. N.; da Silva, A. B. F.
In this work we performed a structure-activity relationship (SAR) study with the aim to correlate molecular properties of the megazol compound and 10 of its analogs with the biological activity against Trypanosoma cruzi (trypanocidal or antichagasic activity) presented by these molecules. The biological activity indication was obtained from in vitro tests and the molecular properties (variables or descriptors) were obtained from the optimized chemical structures by using the PM3 semiempirical method. It was calculated ˜80 molecular properties selected among steric, constitutional, electronic, and lipophilicity properties. In order to reduce dimensionality and investigate which subset of variables (descriptors) would be more effective in classifying the compounds studied, according to their degree of trypanocidal activity, we employed statistical methodologies (pattern recognition and classification techniques) such as principal component analysis (PCA), hierarchical cluster analysis (HCA), K-nearest neighbor (KNN), and discriminant function analysis (DFA). These methods showed that the descriptors molecular mass (MM), energy of the second lowest unoccupied molecular orbital (LUMO+1), charge on the first nitrogen at substituent 2 (qN'), dihedral angles (D1 and D2), bond length between atom C4 and its substituent (L4), Moriguchi octanol-partition coefficient (MLogP), and length-to-breadth ratio (L/Bw) were the variables responsible for the separation between active and inactive compounds against T. cruzi. Afterwards, the PCA, KNN, and DFA models built in this work were used to perform trypanocidal activity predictions for eight new megazol analog compounds.
High Performance Parallel Computational Nanotechnology
NASA Technical Reports Server (NTRS)
Saini, Subhash; Craw, James M. (Technical Monitor)
1995-01-01
At a recent press conference, NASA Administrator Dan Goldin encouraged NASA Ames Research Center to take a lead role in promoting research and development of advanced, high-performance computer technology, including nanotechnology. Manufacturers of leading-edge microprocessors currently perform large-scale simulations in the design and verification of semiconductor devices and microprocessors. Recently, the need for this intensive simulation and modeling analysis has greatly increased, due in part to the ever-increasing complexity of these devices, as well as the lessons of experiences such as the Pentium fiasco. Simulation, modeling, testing, and validation will be even more important for designing molecular computers because of the complex specification of millions of atoms, thousands of assembly steps, as well as the simulation and modeling needed to ensure reliable, robust and efficient fabrication of the molecular devices. The software for this capacity does not exist today, but it can be extrapolated from the software currently used in molecular modeling for other applications: semi-empirical methods, ab initio methods, self-consistent field methods, Hartree-Fock methods, molecular mechanics; and simulation methods for diamondoid structures. In as much as it seems clear that the application of such methods in nanotechnology will require powerful, highly powerful systems, this talk will discuss techniques and issues for performing these types of computations on parallel systems. We will describe system design issues (memory, I/O, mass storage, operating system requirements, special user interface issues, interconnects, bandwidths, and programming languages) involved in parallel methods for scalable classical, semiclassical, quantum, molecular mechanics, and continuum models; molecular nanotechnology computer-aided designs (NanoCAD) techniques; visualization using virtual reality techniques of structural models and assembly sequences; software required to control mini robotic manipulators for positional control; scalable numerical algorithms for reliability, verifications and testability. There appears no fundamental obstacle to simulating molecular compilers and molecular computers on high performance parallel computers, just as the Boeing 777 was simulated on a computer before manufacturing it.
Bayesian molecular dating: opening up the black box.
Bromham, Lindell; Duchêne, Sebastián; Hua, Xia; Ritchie, Andrew M; Duchêne, David A; Ho, Simon Y W
2018-05-01
Molecular dating analyses allow evolutionary timescales to be estimated from genetic data, offering an unprecedented capacity for investigating the evolutionary past of all species. These methods require us to make assumptions about the relationship between genetic change and evolutionary time, often referred to as a 'molecular clock'. Although initially regarded with scepticism, molecular dating has now been adopted in many areas of biology. This broad uptake has been due partly to the development of Bayesian methods that allow complex aspects of molecular evolution, such as variation in rates of change across lineages, to be taken into account. But in order to do this, Bayesian dating methods rely on a range of assumptions about the evolutionary process, which vary in their degree of biological realism and empirical support. These assumptions can have substantial impacts on the estimates produced by molecular dating analyses. The aim of this review is to open the 'black box' of Bayesian molecular dating and have a look at the machinery inside. We explain the components of these dating methods, the important decisions that researchers must make in their analyses, and the factors that need to be considered when interpreting results. We illustrate the effects that the choices of different models and priors can have on the outcome of the analysis, and suggest ways to explore these impacts. We describe some major research directions that may improve the reliability of Bayesian dating. The goal of our review is to help researchers to make informed choices when using Bayesian phylogenetic methods to estimate evolutionary rates and timescales. © 2017 Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Murthy, P. Krishna; Sheena Mary, Y.; Shyma Mary, Y.; Panicker, C. Yohannan; Suneetha, V.; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Suchetan, P. A.
2017-04-01
4-benzyl-5-oxomorpholine-3-carbamide has been synthesized; single crystals were grown by slow evaporation solution growth technique at room temperature and characterized by single crystal X-ray diffraction, FT-IR, FT-Raman and 1H-NMR. The compound crystallizes in the monoclinic space group P21/n. The molecular geometry of the compound was optimized by using Density Functional Theory (DFT/B3LYP) method with 6-311++G(d,p) basis set in the ground state and geometric parameters are in agreement with the X-ray analysis results of the structure. The experimental vibrational spectra were compared with the calculated spectra and each vibrational wave number was assigned on the basis of potential energy distribution (PED). The electronic and charge transfer properties have been explained on the basis of highest occupied molecular orbital's (HOMOs) and lowest unoccupied molecular orbital's (LUMOs). Besides molecular electrostatic potential (MEP), frontier molecular orbital's (FMOs), some global reactivity descriptors, thermodynamic properties, non-linear optical (NLO) behavior and Mullikan charge analysis of the title compound were computed with the same method in gas phase, theoretically. Potential reactive sites of the title compound have been identified by average local ionization energy and Fukui functions, both mapped to the electron density surface. Bond dissociation energies for all single acyclic bonds have been calculated in order to investigate autoxidation and degradation properties of the title compound. Atoms with pronounced interactions with water molecules have been detected by calculations of radial distribution functions after molecular dynamics simulations. The experimental results are compared with the theoretical calculations using DFT methods for the fortification of the paper. Further the docking studies revealed that the title compound as a docked ligand forms a stable complex with pyrrole inhibitor with a binding affinity value of -7.5 kcal/mol. This suggests that the title compound might exhibit inhibitory activity against pyrrole inhibitor. To confirm the potential practical applicability of the title compound antimicrobial activity was tested against gram negative and gram positive bacteria.
Analysis of Serial and Parallel Algorithms for Use in Molecular Dynamics.. Review and Proposals
NASA Astrophysics Data System (ADS)
Mazzone, A. M.
This work analyzes the stability and accuracy of multistep methods, either for serial or parallel calculations, applied to molecular dynamics simulations. Numerical testing is made by evaluating the equilibrium configurations of mono-elemental crystalline lattices of metallic and semiconducting type (Ag and Si, respectively) and of a cubic CuY compound.
Enterococci are frequently monitored in water samples as indicators of fecal pollution. Attention is now shifting from culture based methods for enumerating these organisms to more rapid molecular methods such as QPCR. Accurate quantitative analyses by this method requires highly...
Quantitative molecular analysis in mantle cell lymphoma.
Brízová, H; Hilská, I; Mrhalová, M; Kodet, R
2011-07-01
A molecular analysis has three major roles in modern oncopathology--as an aid in the differential diagnosis, in molecular monitoring of diseases, and in estimation of the potential prognosis. In this report we review the application of the molecular analysis in a group of patients with mantle cell lymphoma (MCL). We demonstrate that detection of the cyclin D1 mRNA level is a molecular marker in 98% of patients with MCL. Cyclin D1 quantitative monitoring is specific and sensitive for the differential diagnosis and for the molecular monitoring of the disease in the bone marrow. Moreover, the dynamics of cyclin D1 in bone marrow reflects the disease development and it predicts the clinical course. We employed the molecular analysis for a precise quantitative detection of proliferation markers, Ki-67, topoisomerase IIalpha, and TPX2, that are described as effective prognostic factors. Using the molecular approach it is possible to measure the proliferation rate in a reproducible, standard way which is an essential prerequisite for using the proliferation activity as a routine clinical tool. Comparing with immunophenotyping we may conclude that the quantitative PCR-based analysis is a useful, reliable, rapid, reproducible, sensitive and specific method broadening our diagnostic tools in hematopathology. In comparison to interphase FISH in paraffin sections quantitative PCR is less technically demanding and less time-consuming and furthermore it is more sensitive in detecting small changes in the mRNA level. Moreover, quantitative PCR is the only technology which provides precise and reproducible quantitative information about the expression level. Therefore it may be used to demonstrate the decrease or increase of a tumor-specific marker in bone marrow in comparison with a previously aspirated specimen. Thus, it has a powerful potential to monitor the course of the disease in correlation with clinical data.
Scerbo, Michelle H; Kaplan, Heidi B; Dua, Anahita; Litwin, Douglas B; Ambrose, Catherine G; Moore, Laura J; Murray, Col Clinton K; Wade, Charles E; Holcomb, John B
2016-06-01
Sepsis from bacteremia occurs in 250,000 cases annually in the United States, has a mortality rate as high as 60%, and is associated with a poorer prognosis than localized infection. Because of these high figures, empiric antibiotic administration for patients with systemic inflammatory response syndrome (SIRS) and suspected infection is the second most common indication for antibiotic administration in intensive care units (ICU)s. However, overuse of empiric antibiotics contributes to the development of opportunistic infections, antibiotic resistance, and the increase in multi-drug-resistant bacterial strains. The current method of diagnosing and ruling out bacteremia is via blood culture (BC) and Gram stain (GS) analysis. Conventional and molecular methods for diagnosing bacteremia were reviewed and compared. The clinical implications, use, and current clinical trials of polymerase chain reaction (PCR)-based methods to detect bacterial pathogens in the blood stream were detailed. BC/GS has several disadvantages. These include: some bacteria do not grow in culture media; others do not GS appropriately; and cultures can require up to 5 d to guide or discontinue antibiotic treatment. PCR-based methods can be potentially applied to detect rapidly, accurately, and directly microbes in human blood samples. Compared with the conventional BC/GS, particular advantages to molecular methods (specifically, PCR-based methods) include faster results, leading to possible improved antibiotic stewardship when bacteremia is not present.
Using Velocity Anisotropy to Analyze Magnetohydrodynamic Turbulence in Giant Molecular Clouds
NASA Astrophysics Data System (ADS)
Madrid, Alecio; Hernandez, Audra
2018-01-01
Structure function (SF) analysis is a strong tool for gaging the Alfvénic properties of magnetohydrodynamic (MHD) simulations, yet there is a lack of literature rigorously investigating limitations in the context of radio spectroscopy. This study takes an in depth approach to studying the limitations of SF analysis for analyzing MHD turbulence in giant molecular cloud (GMC) spectroscopy data. MHD turbulence plays a critical role in the structure and evolution of GMCs as well as in the formation of sub-structures known to spawn stellar progenitors. Existing methods of detection are neither economical nor robust (e.g. dust polarization), and nowhere is this more clear than in the theoretical-observational divide in current literature. A significant limitation of GMC spectroscopy results from the large variation in methods used for extracting GMCs from survey data. Thus, a robust method for studying MHD turbulence must correctly gauge physical properties regardless of the data extraction method used. While SF analysis has demonstrated strong potential across a range of simulated conditions, this study finds significant concern regarding its feasibility as a robust tool in GMC spectroscopy.
Ivanov, P L; Leonov, S N; Zemskova, E Iu
2012-01-01
The present study was designed to estimate the possibilities of application of the laser capture microdissection (LCM) technology for the molecular-genetic expert analysis (genotyping) of human chromosomal DNA. The experimental method employed for the purpose was the multiplex multilocus analysis of autosomal DNA polymorphism in the preparations of buccal epitheliocytes obtained by LCM. The key principles of the study were the application of physical methods for contrast enhancement of the micropreparations (such as phase-contrast microscopy and dark-field microscopy) and PCR-compatible cell lysis. Genotyping was carried out with the use of AmpFISTR Minifiler TM PCR Amplification Kits ("Applied Biosynthesis", USA). It was shown that the technique employed in the present study ensures reliable genotyping of human chromosomal DNA in the pooled preparations containing 10-20 dissected diploid cells each. This result fairly well agrees with the calculated sensitivity of the method. A few practical recommendations are offered.
NASA Astrophysics Data System (ADS)
Senthil kumar, J.; Arivazhagan, M.; Thangaraju, P.
2015-08-01
The FTIR and FT-Raman spectra of 2-chloro-6-fluorobenzoic acid and 3,4-dichlorobenzoic acid have been recorded in the region 4000-400 cm-1 and 3500-50 cm-1, respectively. Utilizing the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of fundamental modes of the compounds were carried out. The optimized molecular geometries, vibrational frequencies, thermodynamic properties and atomic charge of the compounds were calculated by using density functional theory (B3LYP) method with 6-311+G and 6-311++G basis sets. The difference between the observed and scaled wave number values of most of fundamentals is very small. Unambiguous vibration assignment of all the fundamentals is made up the total energy distribution (TED). The calculated HOMO and LUMO energies show that charge transfer occurs within the molecules. Besides, molecular electro static potential (MESP), Mulliken's charge analysis, first order hyper polarizability and several thermodynamic properties were performed by the DFT method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obaid, R.; Applied Chemistry Department, Palestine Polytechnic University, Hebron, Palestine; Leibscher, M., E-mail: monika.leibscher@itp.uni-hannover.de
2015-02-14
We present a molecular symmetry analysis of electronic states and transition dipole moments for molecules which undergo large amplitude intramolecular torsions. The method is based on the correlation between the point group of the molecule at highly symmetric configurations and the molecular symmetry group. As an example, we determine the global irreducible representations of the electronic states and transition dipole moments for the quinodimethane derivative 2-[4-(cyclopenta-2,4-dien-1-ylidene)cyclohexa-2,5-dien-1-ylidene]-2H-1, 3-dioxole for which two torsional degrees of freedom can be activated upon photo-excitation and construct the resulting symmetry adapted transition dipole functions.
Spectroscopic analysis of cinnamic acid using quantum chemical calculations
NASA Astrophysics Data System (ADS)
Vinod, K. S.; Periandy, S.; Govindarajan, M.
2015-02-01
In this present study, FT-IR, FT-Raman, 13C NMR and 1H NMR spectra for cinnamic acid have been recorded for the vibrational and spectroscopic analysis. The observed fundamental frequencies (IR and Raman) were assigned according to their distinctiveness region. The computed frequencies and optimized parameters have been calculated by using HF and DFT (B3LYP) methods and the corresponding results are tabulated. On the basis of the comparison between computed and experimental results assignments of the fundamental vibrational modes are examined. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by HF and DFT methods. The alternation of the vibration pattern of the pedestal molecule related to the substitutions was analyzed. The 13C and 1H NMR spectra have been recorded and the chemical shifts have been calculated using the gauge independent atomic orbital (GIAO) method. The Mulliken charges, UV spectral analysis and HOMO-LUMO analysis of have been calculated and reported. The molecular electrostatic potential (MEP) was constructed.
NASA Astrophysics Data System (ADS)
Subashchandrabose, S.; Ramesh Babu, N.; Saleem, H.; Syed Ali Padusha, M.
2015-08-01
The (E)-1-((pyridine-2-yl)methylene)semicarbazide (PMSC) was synthesized. The experimental and theoretical study on molecular structure and vibrational spectra were carried out. The FT-IR (400-4000 cm-1), FT-Raman (50-3500 cm-1) and UV-Vis (200-500 nm) spectra of PMSC were recorded. The geometric structure, conformational analysis, vibrational wavenumbers of PMSC in the ground state have been calculated using B3LYP method of 6-311++G(d,p) basis set. The complete vibrational assignments were made on the basis of TED, calculated by SQM method. The Non-linear optical activity was measured by means of first order hyperpolarizability calculation and π-electrons of conjugative bond in the molecule. The intra-molecular charge transfer, mode hyperconjugative interaction and molecular stabilization energies were calculated. The band gap energies between occupied and unoccupied molecular orbitals were analyzed; it proposes lesser band gap with more reactivity. To understand the electronic properties of this molecule the Mulliken charges were also calculated.
Subtle Monte Carlo Updates in Dense Molecular Systems.
Bottaro, Sandro; Boomsma, Wouter; E Johansson, Kristoffer; Andreetta, Christian; Hamelryck, Thomas; Ferkinghoff-Borg, Jesper
2012-02-14
Although Markov chain Monte Carlo (MC) simulation is a potentially powerful approach for exploring conformational space, it has been unable to compete with molecular dynamics (MD) in the analysis of high density structural states, such as the native state of globular proteins. Here, we introduce a kinetic algorithm, CRISP, that greatly enhances the sampling efficiency in all-atom MC simulations of dense systems. The algorithm is based on an exact analytical solution to the classic chain-closure problem, making it possible to express the interdependencies among degrees of freedom in the molecule as correlations in a multivariate Gaussian distribution. We demonstrate that our method reproduces structural variation in proteins with greater efficiency than current state-of-the-art Monte Carlo methods and has real-time simulation performance on par with molecular dynamics simulations. The presented results suggest our method as a valuable tool in the study of molecules in atomic detail, offering a potential alternative to molecular dynamics for probing long time-scale conformational transitions.
Dutheil, Julien; Gaillard, Sylvain; Bazin, Eric; Glémin, Sylvain; Ranwez, Vincent; Galtier, Nicolas; Belkhir, Khalid
2006-04-04
A large number of bioinformatics applications in the fields of bio-sequence analysis, molecular evolution and population genetics typically share input/output methods, data storage requirements and data analysis algorithms. Such common features may be conveniently bundled into re-usable libraries, which enable the rapid development of new methods and robust applications. We present Bio++, a set of Object Oriented libraries written in C++. Available components include classes for data storage and handling (nucleotide/amino-acid/codon sequences, trees, distance matrices, population genetics datasets), various input/output formats, basic sequence manipulation (concatenation, transcription, translation, etc.), phylogenetic analysis (maximum parsimony, markov models, distance methods, likelihood computation and maximization), population genetics/genomics (diversity statistics, neutrality tests, various multi-locus analyses) and various algorithms for numerical calculus. Implementation of methods aims at being both efficient and user-friendly. A special concern was given to the library design to enable easy extension and new methods development. We defined a general hierarchy of classes that allow the developer to implement its own algorithms while remaining compatible with the rest of the libraries. Bio++ source code is distributed free of charge under the CeCILL general public licence from its website http://kimura.univ-montp2.fr/BioPP.
Korshoj, Lee E; Afsari, Sepideh; Chatterjee, Anushree; Nagpal, Prashant
2017-11-01
Electronic conduction or charge transport through single molecules depends primarily on molecular structure and anchoring groups and forms the basis for a wide range of studies from molecular electronics to DNA sequencing. Several high-throughput nanoelectronic methods such as mechanical break junctions, nanopores, conductive atomic force microscopy, scanning tunneling break junctions, and static nanoscale electrodes are often used for measuring single-molecule conductance. In these measurements, "smearing" due to conformational changes and other entropic factors leads to large variances in the observed molecular conductance, especially in individual measurements. Here, we show a method for characterizing smear in single-molecule conductance measurements and demonstrate how binning measurements according to smear can significantly enhance the use of individual conductance measurements for molecular recognition. Using quantum point contact measurements on single nucleotides within DNA macromolecules, we demonstrate that the distance over which molecular junctions are maintained is a measure of smear, and the resulting variance in unbiased single measurements depends on this smear parameter. Our ability to identify individual DNA nucleotides at 20× coverage increases from 81.3% accuracy without smear analysis to 93.9% with smear characterization and binning (SCRIB). Furthermore, merely 7 conductance measurements (7× coverage) are needed to achieve 97.8% accuracy for DNA nucleotide recognition when only low molecular smear measurements are used, which represents a significant improvement over contemporary sequencing methods. These results have important implications in a broad range of molecular electronics applications from designing robust molecular switches to nanoelectronic DNA sequencing.
Hyperspectral small animal fluorescence imaging: spectral selection imaging
NASA Astrophysics Data System (ADS)
Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Hall, Heidi; Vizard, Douglas; Robinson, J. Paul
2008-02-01
Molecular imaging is a rapidly growing area of research, fueled by needs in pharmaceutical drug-development for methods for high-throughput screening, pre-clinical and clinical screening for visualizing tumor growth and drug targeting, and a growing number of applications in the molecular biology fields. Small animal fluorescence imaging employs fluorescent probes to target molecular events in vivo, with a large number of molecular targeting probes readily available. The ease at which new targeting compounds can be developed, the short acquisition times, and the low cost (compared to microCT, MRI, or PET) makes fluorescence imaging attractive. However, small animal fluorescence imaging suffers from high optical scattering, absorption, and autofluorescence. Much of these problems can be overcome through multispectral imaging techniques, which collect images at different fluorescence emission wavelengths, followed by analysis, classification, and spectral deconvolution methods to isolate signals from fluorescence emission. We present an alternative to the current method, using hyperspectral excitation scanning (spectral selection imaging), a technique that allows excitation at any wavelength in the visible and near-infrared wavelength range. In many cases, excitation imaging may be more effective at identifying specific fluorescence signals because of the higher complexity of the fluorophore excitation spectrum. Because the excitation is filtered and not the emission, the resolution limit and image shift imposed by acousto-optic tunable filters have no effect on imager performance. We will discuss design of the imager, optimizing the imager for use in small animal fluorescence imaging, and application of spectral analysis and classification methods for identifying specific fluorescence signals.
Wangroongsarb, Piyada; Kohda, Tomoko; Jittaprasartsin, Chutima; Suthivarakom, Karun; Kamthalang, Thanitchi; Umeda, Kaoru; Sawanpanyalert, Pathom; Kozaki, Shunji; Ikuta, Kazuyoshi
2014-01-01
Background Thailand has had several foodborne outbreaks of botulism, one of the biggest being in 2006 when laboratory investigations identified the etiologic agent as Clostridium botulinum type A. Identification of the etiologic agent from outbreak samples is laborious using conventional microbiological methods and the neurotoxin mouse bioassay. Advances in molecular techniques have added enormous information regarding the etiology of outbreaks and characterization of isolates. We applied these methods in three outbreaks of botulism in Thailand in 2010. Methodology/Principal Findings A total of 19 cases were involved (seven each in Lampang and Saraburi and five in Maehongson provinces). The first outbreak in Lampang province in April 2010 was associated with C. botulinum type F, which was detected by conventional methods. Outbreaks in Saraburi and Maehongson provinces occurred in May and December were due to C. botulinum type A1(B) and B that were identified by conventional methods and molecular techniques, respectively. The result of phylogenetic sequence analysis showed that C. botulinum type A1(B) strain Saraburi 2010 was close to strain Iwate 2007. Molecular analysis of the third outbreak in Maehongson province showed C. botulinum type B8, which was different from B1–B7 subtype. The nontoxic component genes of strain Maehongson 2010 revealed that ha33, ha17 and botR genes were close to strain Okra (B1) while ha70 and ntnh genes were close to strain 111 (B2). Conclusion/Significance This study demonstrates the utility of molecular genotyping of C. botulinum and how it contributes to our understanding the epidemiology and variation of boNT gene. Thus, the recent botulism outbreaks in Thailand were induced by various C. botulinum types. PMID:24475015
Wangroongsarb, Piyada; Kohda, Tomoko; Jittaprasartsin, Chutima; Suthivarakom, Karun; Kamthalang, Thanitchi; Umeda, Kaoru; Sawanpanyalert, Pathom; Kozaki, Shunji; Ikuta, Kazuyoshi
2014-01-01
Thailand has had several foodborne outbreaks of botulism, one of the biggest being in 2006 when laboratory investigations identified the etiologic agent as Clostridium botulinum type A. Identification of the etiologic agent from outbreak samples is laborious using conventional microbiological methods and the neurotoxin mouse bioassay. Advances in molecular techniques have added enormous information regarding the etiology of outbreaks and characterization of isolates. We applied these methods in three outbreaks of botulism in Thailand in 2010. A total of 19 cases were involved (seven each in Lampang and Saraburi and five in Maehongson provinces). The first outbreak in Lampang province in April 2010 was associated with C. botulinum type F, which was detected by conventional methods. Outbreaks in Saraburi and Maehongson provinces occurred in May and December were due to C. botulinum type A1(B) and B that were identified by conventional methods and molecular techniques, respectively. The result of phylogenetic sequence analysis showed that C. botulinum type A1(B) strain Saraburi 2010 was close to strain Iwate 2007. Molecular analysis of the third outbreak in Maehongson province showed C. botulinum type B8, which was different from B1-B7 subtype. The nontoxic component genes of strain Maehongson 2010 revealed that ha33, ha17 and botR genes were close to strain Okra (B1) while ha70 and ntnh genes were close to strain 111 (B2). This study demonstrates the utility of molecular genotyping of C. botulinum and how it contributes to our understanding the epidemiology and variation of boNT gene. Thus, the recent botulism outbreaks in Thailand were induced by various C. botulinum types.
Groseth, Allison; Hoenen, Thomas
2017-01-01
Molecular biology is a broad discipline that seeks to understand biological phenomena at a molecular level, and achieves this through the study of DNA, RNA, proteins, and/or other macromolecules (e.g., those involved in the modification of these substrates). Consequently, it relies on the availability of a wide variety of methods that deal with the collection, preservation, inactivation, separation, manipulation, imaging, and analysis of these molecules. As such the state of the art in the field of ebolavirus molecular biology research (and that of all other viruses) is largely intertwined with, if not driven by, advancements in the technical methodologies available for these kinds of studies. Here we review of the current state of our knowledge regarding ebolavirus biology and emphasize the associated methods that made these discoveries possible.
Mendieta-Moreno, Jesús I; Marcos-Alcalde, Iñigo; Trabada, Daniel G; Gómez-Puertas, Paulino; Ortega, José; Mendieta, Jesús
2015-01-01
Quantum mechanics/molecular mechanics (QM/MM) methods are excellent tools for the modeling of biomolecular reactions. Recently, we have implemented a new QM/MM method (Fireball/Amber), which combines an efficient density functional theory method (Fireball) and a well-recognized molecular dynamics package (Amber), offering an excellent balance between accuracy and sampling capabilities. Here, we present a detailed explanation of the Fireball method and Fireball/Amber implementation. We also discuss how this tool can be used to analyze reactions in biomolecules using steered molecular dynamics simulations. The potential of this approach is shown by the analysis of a reaction catalyzed by the enzyme triose-phosphate isomerase (TIM). The conformational space and energetic landscape for this reaction are analyzed without a priori assumptions about the protonation states of the different residues during the reaction. The results offer a detailed description of the reaction and reveal some new features of the catalytic mechanism. In particular, we find a new reaction mechanism that is characterized by the intramolecular proton transfer from O1 to O2 and the simultaneous proton transfer from Glu 165 to C2. Copyright © 2015 Elsevier Inc. All rights reserved.
Facile synthesis, single crystal analysis, and computational studies of sulfanilamide derivatives
NASA Astrophysics Data System (ADS)
Tahir, Muhammad Nawaz; Khalid, Muhammad; Islam, Ayesha; Ali Mashhadi, Syed Muddassir; Braga, Ataualpa A. C.
2017-01-01
Antibacterial resistance is a worldwide problem. Sulfanilamide is widely used antibacterial. For the first time, we report here a simple method for the derivative synthesis of the title drugs, single crystal XRD and density functional theory (DFT) studies. The optimized molecular structure, natural bond orbital (NBO), frontier molecular orbitals (FMOs) molecular electrostatic potential studies (MEP) and Mulliken population analysis (MPA) have been performed using M06-2X/6-31G(d, p). The FT-IR spectra and thermodynamic parameters were calculated at M06-2X/6-311 + G(2d,p) and B3LYP/6-31G(d, p) levels respectively, while, the UV-Vis analysis was performed using TD-DFT/B3LYP/6-31G(d, p) method. The experimental FT-IR spectra of both compounds were also carried out to reconfirm sbnd H⋯Osbnd hydrogen bonds. The DFT optimized parameters exhibiting good agreement with the experimental data. NBO analysis explored the hyper conjugative interaction and stability of title crystals, especially, reconfirmed the existence of sbnd H⋯Osbnd hydrogen bonds between the dimers. The FT-IR, thermodynamic parameters, MEP and MPA also revealed the hydrogen bonding detail is harmonious to XRD data. As a matter of the fact, the hydrogen bonding is a significant parameter for the understanding and design of molecular crystals, subsequently; it can also play a vital role in the supramolecular chemistry. Moreover, the global reactivity descriptors suggest that title compounds might be bioactive.
Santiago, Paula; Jiménez-Belenguer, Ana; García-Hernández, Jorge; Estellés, Rosa Montes; Hernández Pérez, Manuel; Castillo López, M Angeles; Ferrús, María Antonia; Moreno, Yolanda
2018-01-01
Salmonella spp. is one of the most important causal agents of food-borne illness in developed countries and its presence in irrigation water poses a risk to public health. Its detection in environmental samples is not easy when culture methods are used, and molecular techniques such as PCR or ribosomal rRNA probe hybridization (Fluorescent in situ Hybridization, FISH) are outstanding alternatives. The aim of this work was to determine the environmental risk due to the presence of Salmonella spp. in wastewater by culture, PCR and FISH. A new specific rDNA probe for Salmonella was designed and its efficiency was compared with the rest of methods Serotype and antibiotic resistance of isolated strains were determined. Forty-five wastewater samples (collected from two secondary wastewater treatment plants) were analysed. Salmonella strains were isolated in 24 wastewater samples (53%), two of them after disinfection treatment. Twenty-three Salmonella strains exhibited resistance to one or more antimicrobial agent. Analysis of wastewater samples yielded PCR positive results for Salmonella in 28 out of the 45 wastewater samples (62%). FISH analysis allowed for the detection of Salmonella in 27 (60%) samples. By using molecular methods, Salmonella was detected in four samples after disinfection treatment. These results show the prevalence of Salmonella in reclaimed wastewater even after U.V. disinfection, what is a matter of public health concern, the high rates of resistance to antibiotics and the adequacy of molecular methods for its rapid detection. FISH method, with SA23 probe developed and assayed in this work provides a tool for detecting Salmonella in water within few hours, with a high rate of effectiveness. Copyright © 2017 Elsevier GmbH. All rights reserved.
[Relevance of big data for molecular diagnostics].
Bonin-Andresen, M; Smiljanovic, B; Stuhlmüller, B; Sörensen, T; Grützkau, A; Häupl, T
2018-04-01
Big data analysis raises the expectation that computerized algorithms may extract new knowledge from otherwise unmanageable vast data sets. What are the algorithms behind the big data discussion? In principle, high throughput technologies in molecular research already introduced big data and the development and application of analysis tools into the field of rheumatology some 15 years ago. This includes especially omics technologies, such as genomics, transcriptomics and cytomics. Some basic methods of data analysis are provided along with the technology, however, functional analysis and interpretation requires adaptation of existing or development of new software tools. For these steps, structuring and evaluating according to the biological context is extremely important and not only a mathematical problem. This aspect has to be considered much more for molecular big data than for those analyzed in health economy or epidemiology. Molecular data are structured in a first order determined by the applied technology and present quantitative characteristics that follow the principles of their biological nature. These biological dependencies have to be integrated into software solutions, which may require networks of molecular big data of the same or even different technologies in order to achieve cross-technology confirmation. More and more extensive recording of molecular processes also in individual patients are generating personal big data and require new strategies for management in order to develop data-driven individualized interpretation concepts. With this perspective in mind, translation of information derived from molecular big data will also require new specifications for education and professional competence.
Itteboina, Ramesh; Ballu, Srilata; Sivan, Sree Kanth; Manga, Vijjulatha
2017-10-01
Janus kinase 1 (JAK 1) belongs to the JAK family of intracellular nonreceptor tyrosine kinase. JAK-signal transducer and activator of transcription (JAK-STAT) pathway mediate signaling by cytokines, which control survival, proliferation and differentiation of a variety of cells. Three-dimensional quantitative structure activity relationship (3 D-QSAR), molecular docking and molecular dynamics (MD) methods was carried out on a dataset of Janus kinase 1(JAK 1) inhibitors. Ligands were constructed and docked into the active site of protein using GLIDE 5.6. Best docked poses were selected after analysis for further 3 D-QSAR analysis using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methodology. Employing 60 molecules in the training set, 3 D-QSAR models were generate that showed good statistical reliability, which is clearly observed in terms of r 2 ncv and q 2 loo values. The predictive ability of these models was determined using a test set of 25 molecules that gave acceptable predictive correlation (r 2 Pred ) values. The key amino acid residues were identified by means of molecular docking, and the stability and rationality of the derived molecular conformations were also validated by MD simulation. The good consonance between the docking results and CoMFA/CoMSIA contour maps provides helpful clues about the reasonable modification of molecules in order to design more efficient JAK 1 inhibitors. The developed models are expected to provide some directives for further synthesis of highly effective JAK 1 inhibitors.
Dreuw, Andreas
2006-11-13
With the advent of modern computers and advances in the development of efficient quantum chemical computer codes, the meaningful computation of large molecular systems at a quantum mechanical level became feasible. Recent experimental effort to understand photoinitiated processes in biological systems, for instance photosynthesis or vision, at a molecular level also triggered theoretical investigations in this field. In this Minireview, standard quantum chemical methods are presented that are applicable and recently used for the calculation of excited states of photoinitiated processes in biological molecular systems. These methods comprise configuration interaction singles, the complete active space self-consistent field method, and time-dependent density functional theory and its variants. Semiempirical approaches are also covered. Their basic theoretical concepts and mathematical equations are briefly outlined, and their properties and limitations are discussed. Recent successful applications of the methods to photoinitiated processes in biological systems are described and theoretical tools for the analysis of excited states are presented.
The market trend analysis and prospects of cancer molecular diagnostics kits.
Seo, Ju Hwan; Lee, Joon Woo; Cho, Daemyeong
2018-01-01
The molecular diagnostics market can be broadly divided into PCR (rt-PCR, d-PCR), NGS(Next Generation Sequencing), Microarray, FISH(Fluorescent in situ-hybridization) and other categories, based on the diagnostic technique. Also, depending on the disease being diagnosed, the market can also be divided into cancer, infectious diseases, HIV/STDs (herpes, syphilis), and women's health issues such as breast cancer, cervical cancer, ovarian cancer, HPV(human papillomavirus), and vaginitis.Chromosome analysis (including Fluorescent In-situ Hybridization) is one type of blood cancer diagnostic method, which involves the direct detection of individual cells with chromosomal translocation, but there have been problems of sensitivity when using this method. PCR targeting individual genes or the RT (reverse transcription)-PCR method offers outstanding sensitivity, but one drawback is the risk of false-positive reaction caused by contamination of samples, etc. Blood cancer molecular diagnostics kits allow us to overcome these shortcomings, and related products have been under development, with a focus on improving detection sensitivity, enabling multiple tests, and reducing the cost and diagnostic time. Blood cancer molecular diagnostics is usually performed based on platforms such as PCR. The global market for blood cancer molecular diagnostics kits is $ 335.9 million as of 2016 and is expected to reach $ 6980 million in 2026 with an average annual growth rate of 32.9%. The market in South Korea is anticipated to grow at an average annual rate of 28.9%, from $ 3.75 million as of 2016 to $ 60.89 million in 2026. The Market for blood cancer molecular diagnostics kits is judged to be higher in growth possibility due to the increase in the number of cancer patients.
Multiresolution molecular mechanics: Implementation and efficiency
NASA Astrophysics Data System (ADS)
Biyikli, Emre; To, Albert C.
2017-01-01
Atomistic/continuum coupling methods combine accurate atomistic methods and efficient continuum methods to simulate the behavior of highly ordered crystalline systems. Coupled methods utilize the advantages of both approaches to simulate systems at a lower computational cost, while retaining the accuracy associated with atomistic methods. Many concurrent atomistic/continuum coupling methods have been proposed in the past; however, their true computational efficiency has not been demonstrated. The present work presents an efficient implementation of a concurrent coupling method called the Multiresolution Molecular Mechanics (MMM) for serial, parallel, and adaptive analysis. First, we present the features of the software implemented along with the associated technologies. The scalability of the software implementation is demonstrated, and the competing effects of multiscale modeling and parallelization are discussed. Then, the algorithms contributing to the efficiency of the software are presented. These include algorithms for eliminating latent ghost atoms from calculations and measurement-based dynamic balancing of parallel workload. The efficiency improvements made by these algorithms are demonstrated by benchmark tests. The efficiency of the software is found to be on par with LAMMPS, a state-of-the-art Molecular Dynamics (MD) simulation code, when performing full atomistic simulations. Speed-up of the MMM method is shown to be directly proportional to the reduction of the number of the atoms visited in force computation. Finally, an adaptive MMM analysis on a nanoindentation problem, containing over a million atoms, is performed, yielding an improvement of 6.3-8.5 times in efficiency, over the full atomistic MD method. For the first time, the efficiency of a concurrent atomistic/continuum coupling method is comprehensively investigated and demonstrated.
Tornow, Matthew A; Skelton, Randall R
2012-01-01
When molecules and morphology produce incongruent hypotheses of primate interrelationships, the data are typically viewed as incompatible, and molecular hypotheses are often considered to be better indicators of phylogenetic history. However, it has been demonstrated that the choice of which taxa to include in cladistic analysis as well as assumptions about character weighting, character state transformation order, and outgroup choice all influence hypotheses of relationships and may positively influence tree topology, so that relationships between extant taxa are consistent with those found using molecular data. Thus, the source of incongruence between morphological and molecular trees may lie not in the morphological data themselves but in assumptions surrounding the ways characters evolve and their impact on cladistic analysis. In this study, we investigate the role that assumptions about character polarity and transformation order play in creating incongruence between primate phylogenies based on morphological data and those supported by multiple lines of molecular data. By releasing constraints imposed on published morphological analyses of primates from disparate clades and subjecting those data to parsimony analysis, we test the hypothesis that incongruence between morphology and molecules results from inherent flaws in morphological data. To quantify the difference between incongruent trees, we introduce a new method called branch slide distance (BSD). BSD mitigates many of the limitations attributed to other tree comparison methods, thus allowing for a more accurate measure of topological similarity. We find that releasing a priori constraints on character behavior often produces trees that are consistent with molecular trees. Case studies are presented that illustrate how congruence between molecules and unconstrained morphological data may provide insight into issues of polarity, transformation order, homology, and homoplasy.
Pietsch, Torsten; Schmidt, Rene; Remke, Marc; Korshunov, Andrey; Hovestadt, Volker; Jones, David TW; Felsberg, Jörg; Kaulich, Kerstin; Goschzik, Tobias; Kool, Marcel; Northcott, Paul A.; von Hoff, Katja; von Bueren, André O.; Friedrich, Carsten; Skladny, Heyko; Fleischhack, Gudrun; Taylor, Michael D.; Cremer, Friedrich; Lichter, Peter; Faldum, Andreas; Reifenberger, Guido; Rutkowski, Stefan; Pfister, Stefan M.
2014-01-01
BACKGROUND: This study aimed to prospectively evaluate clinical, histopathological and molecular variables for outcome prediction in medulloblastoma patients. METHODS: Patients from the HIT2000 cooperative clinical trial were prospectively enrolled based on the availability of sufficient tumor material and complete clinical information. This revealed a cohort of 184 patients (median age 7.6 years), which was randomly split at a 2:1 ratio into a training (n = 127), and a validation (n = 57) dataset. All samples were subjected to thorough histopathological investigation, CTNNB1 mutation analysis, quantitative PCR, MLPA and FISH analyses for cytogenetic variables, and methylome analysis. RESULTS: By univariable analysis, clinical factors (M-stage), histopathological variables (large cell component, endothelial proliferation, synaptophysin pattern), and molecular features (chromosome 6q status, MYC amplification, TOP2A copy-number, subgrouping) were found to be prognostic. Molecular consensus subgrouping (WNT, SHH, Group 3, Group 4) was validated as an independent feature to stratify patients into different risk groups. When comparing methods for the identification of WNT-driven medulloblastoma, this study identified CTNNB1 sequencing and methylation profiling to most reliably identify these patients. After removing patients with particularly favorable (CTNNB1 mutation, extensive nodularity) or unfavorable (MYC amplification) markers, a risk score for the remaining “intermediate molecular risk” population dependent on age, M-stage, pattern of synaptophysin expression, and MYCN copy-number status was identified and validated, with speckled synaptophysin expression indicating worse outcome. CONCLUSIONS: Methylation subgrouping and CTNNB1 mutation status represent robust tools for the risk-stratification of medulloblastoma. A simple clinico-pathological risk score for “intermediate molecular risk” patients was identified, which deserves further validation. SECONDARY CATEGORY: Pediatrics.
Molecular barcodes detect redundancy and contamination in hairpin-bisulfite PCR
Miner, Brooks E.; Stöger, Reinhard J.; Burden, Alice F.; Laird, Charles D.; Hansen, R. Scott
2004-01-01
PCR amplification of limited amounts of DNA template carries an increased risk of product redundancy and contamination. We use molecular barcoding to label each genomic DNA template with an individual sequence tag prior to PCR amplification. In addition, we include molecular ‘batch-stamps’ that effectively label each genomic template with a sample ID and analysis date. This highly sensitive method identifies redundant and contaminant sequences and serves as a reliable method for positive identification of desired sequences; we can therefore capture accurately the genomic template diversity in the sample analyzed. Although our application described here involves the use of hairpin-bisulfite PCR for amplification of double-stranded DNA, the method can readily be adapted to single-strand PCR. Useful applications will include analyses of limited template DNA for biomedical, ancient DNA and forensic purposes. PMID:15459281
NASA Astrophysics Data System (ADS)
Sivaprakash, S.; Prakash, S.; Mohan, S.; Jose, Sujin P.
2017-12-01
Quantum chemical calculations of energy and geometrical parameters of 1-aminoisoquinoline [1-AIQ] were carried out by using DFT/B3LYP method using 6-311G (d,p), 6-311G++(d,p) and cc-pVTZ basis sets. The vibrational wavenumbers were computed for the energetically most stable, optimized geometry. The vibrational assignments were performed on the basis of potential energy distribution (PED) using VEDA program. The NBO analysis was done to investigate the intra molecular charge transfer of the molecule. The frontier molecular orbital (FMO) analysis was carried out and the chemical reactivity descriptors of the molecule were studied. The Mulliken charge analysis, molecular electrostatic potential (MEP), HOMO-LUMO energy gap and the related properties were also investigated at B3LYP level. The absorption spectrum of the molecule was studied from UV-Visible analysis by using time-dependent density functional theory (TD-DFT). Fourier Transform Infrared spectrum (FT-IR) and Raman spectrum of 1-AIQ compound were analyzed and recorded in the range 4000-400 cm-1 and 3500-100 cm-1 respectively. The experimentally determined wavenumbers were compared with those calculated theoretically and they complement each other.
Gamage, I H; Jonker, A; Zhang, X; Yu, P
2014-01-24
The objective of this study was to determine the possibility of using molecular spectroscopy with multivariate technique as a fast method to detect the source effects among original feedstock sources of wheat and their corresponding co-products, wheat DDGS, from bioethanol production. Different sources of the bioethanol feedstock and their corresponding bioethanol co-products, three samples per source, were collected from the same newly-built bioethanol plant with current bioethanol processing technology. Multivariate molecular spectral analyses were carried out using agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA). The molecular spectral data of different feedstock sources and their corresponding co-products were compared at four different regions of ca. 1800-1725 cm(-1) (carbonyl CO ester, mainly related to lipid structure conformation), ca. 1725-1482 cm(-1) (amide I and amide II region mainly related to protein structure conformation), ca. 1482-1180 cm(-1) (mainly associated with structural carbohydrate) and ca. 1180-800 cm(-1) (mainly related to carbohydrates) in complex plant-based system. The results showed that the molecular spectroscopy with multivariate technique could reveal the structural differences among the bioethanol feedstock sources and among their corresponding co-products. The AHCA and PCA analyses were able to distinguish the molecular structure differences associated with chemical functional groups among the different sources of the feedstock and their corresponding co-products. The molecular spectral differences indicated the differences in functional, biomolecular and biopolymer groups which were confirmed by wet chemical analysis. These biomolecular and biopolymer structural differences were associated with chemical and nutrient profiles and nutrient utilization and availability. Molecular spectral analyses had the potential to identify molecular structure difference among bioethanol feedstock sources and their corresponding co-products. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gamage, I. H.; Jonker, A.; Zhang, X.; Yu, P.
2014-01-01
The objective of this study was to determine the possibility of using molecular spectroscopy with multivariate technique as a fast method to detect the source effects among original feedstock sources of wheat and their corresponding co-products, wheat DDGS, from bioethanol production. Different sources of the bioethanol feedstock and their corresponding bioethanol co-products, three samples per source, were collected from the same newly-built bioethanol plant with current bioethanol processing technology. Multivariate molecular spectral analyses were carried out using agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA). The molecular spectral data of different feedstock sources and their corresponding co-products were compared at four different regions of ca. 1800-1725 cm-1 (carbonyl Cdbnd O ester, mainly related to lipid structure conformation), ca. 1725-1482 cm-1 (amide I and amide II region mainly related to protein structure conformation), ca. 1482-1180 cm-1 (mainly associated with structural carbohydrate) and ca. 1180-800 cm-1 (mainly related to carbohydrates) in complex plant-based system. The results showed that the molecular spectroscopy with multivariate technique could reveal the structural differences among the bioethanol feedstock sources and among their corresponding co-products. The AHCA and PCA analyses were able to distinguish the molecular structure differences associated with chemical functional groups among the different sources of the feedstock and their corresponding co-products. The molecular spectral differences indicated the differences in functional, biomolecular and biopolymer groups which were confirmed by wet chemical analysis. These biomolecular and biopolymer structural differences were associated with chemical and nutrient profiles and nutrient utilization and availability. Molecular spectral analyses had the potential to identify molecular structure difference among bioethanol feedstock sources and their corresponding co-products.
Combined 3D-QSAR modeling and molecular docking study on azacycles CCR5 antagonists
NASA Astrophysics Data System (ADS)
Ji, Yongjun; Shu, Mao; Lin, Yong; Wang, Yuanqiang; Wang, Rui; Hu, Yong; Lin, Zhihua
2013-08-01
The beta chemokine receptor 5 (CCR5) is an attractive target for pharmaceutical industry in the HIV-1, inflammation and cancer therapeutic areas. In this study, we have developed quantitative structure activity relationship (QSAR) models for a series of 41 azacycles CCR5 antagonists using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and Topomer CoMFA methods. The cross-validated coefficient q2 values of 3D-QASR (CoMFA, CoMSIA, and Topomer CoMFA) methods were 0.630, 0.758, and 0.852, respectively, the non-cross-validated R2 values were 0.979, 0.978, and 0.990, respectively. Docking studies were also employed to determine the most probable binding mode. 3D contour maps and docking results suggested that bulky groups and electron-withdrawing groups on the core part would decrease antiviral activity. Furthermore, docking results indicated that H-bonds and π bonds were favorable for antiviral activities. Finally, a set of novel derivatives with predicted activities were designed.
Kaplan, Heidi B.; Dua, Anahita; Litwin, Douglas B.; Ambrose, Catherine G.; Moore, Laura J.; Murray, COL Clinton K.; Wade, Charles E.; Holcomb, John B.
2016-01-01
Abstract Background: Sepsis from bacteremia occurs in 250,000 cases annually in the United States, has a mortality rate as high as 60%, and is associated with a poorer prognosis than localized infection. Because of these high figures, empiric antibiotic administration for patients with systemic inflammatory response syndrome (SIRS) and suspected infection is the second most common indication for antibiotic administration in intensive care units (ICU)s. However, overuse of empiric antibiotics contributes to the development of opportunistic infections, antibiotic resistance, and the increase in multi-drug-resistant bacterial strains. The current method of diagnosing and ruling out bacteremia is via blood culture (BC) and Gram stain (GS) analysis. Methods: Conventional and molecular methods for diagnosing bacteremia were reviewed and compared. The clinical implications, use, and current clinical trials of polymerase chain reaction (PCR)-based methods to detect bacterial pathogens in the blood stream were detailed. Results: BC/GS has several disadvantages. These include: some bacteria do not grow in culture media; others do not GS appropriately; and cultures can require up to 5 d to guide or discontinue antibiotic treatment. PCR-based methods can be potentially applied to detect rapidly, accurately, and directly microbes in human blood samples. Conclusions: Compared with the conventional BC/GS, particular advantages to molecular methods (specifically, PCR-based methods) include faster results, leading to possible improved antibiotic stewardship when bacteremia is not present. PMID:26918696
Maas, Miriam; van Roon, Annika; Dam-Deisz, Cecile; Opsteegh, Marieke; Massolo, Alessandro; Deksne, Gunita; Teunis, Peter; van der Giessen, Joke
2016-10-30
A new method, based on a magnetic capture based DNA extraction followed by qPCR, was developed for the detection of the zoonotic parasite Echinococcus multilocularis in definitive hosts. Latent class analysis was used to compare this new method with the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. In total, 60 red foxes and coyotes from three different locations were tested with both molecular methods and the sedimentation and counting technique (SCT) or intestinal scraping technique (IST). Though based on a limited number of samples, it could be established that the magnetic capture based DNA extraction followed by qPCR showed similar sensitivity and specificity as the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. All methods have a high specificity as shown by Bayesian latent class analysis. Both molecular assays have higher sensitivities than the combined SCT and IST, though the uncertainties in sensitivity estimates were wide for all assays tested. The magnetic capture based DNA extraction followed by qPCR has the advantage of not requiring hazardous chemicals like the phenol-chloroform DNA extraction followed by single tube nested PCR. This supports the replacement of the phenol-chloroform DNA extraction followed by single tube nested PCR by the magnetic capture based DNA extraction followed by qPCR for molecular detection of E. multilocularis in definitive hosts. Copyright © 2016 Elsevier B.V. All rights reserved.
Vickers, Andrew J; Cronin, Angel M; Elkin, Elena B; Gonen, Mithat
2008-11-26
Decision curve analysis is a novel method for evaluating diagnostic tests, prediction models and molecular markers. It combines the mathematical simplicity of accuracy measures, such as sensitivity and specificity, with the clinical applicability of decision analytic approaches. Most critically, decision curve analysis can be applied directly to a data set, and does not require the sort of external data on costs, benefits and preferences typically required by traditional decision analytic techniques. In this paper we present several extensions to decision curve analysis including correction for overfit, confidence intervals, application to censored data (including competing risk) and calculation of decision curves directly from predicted probabilities. All of these extensions are based on straightforward methods that have previously been described in the literature for application to analogous statistical techniques. Simulation studies showed that repeated 10-fold crossvalidation provided the best method for correcting a decision curve for overfit. The method for applying decision curves to censored data had little bias and coverage was excellent; for competing risk, decision curves were appropriately affected by the incidence of the competing risk and the association between the competing risk and the predictor of interest. Calculation of decision curves directly from predicted probabilities led to a smoothing of the decision curve. Decision curve analysis can be easily extended to many of the applications common to performance measures for prediction models. Software to implement decision curve analysis is provided.
Wade, William Geoffrey
2011-03-01
Only around half of oral bacteria can be grown in the laboratory using conventional culture methods. Molecular methods based on 16S rRNA gene sequence are now available and are being used to characterize the periodontal microbiota in its entirety. This review describes the cultural characterization of the oral and periodontal microbiotas and explores the influence of the additional data now available from culture-independent molecular analyses on current thinking on the role of bacteria in periodontitis. Culture-independent molecular analysis of the periodontal microbiota has shown it to be far more diverse than previously thought. A number of species including some that have yet to be cultured are as strongly associated with disease as those organisms traditionally regarded as periodontal pathogens. Sequencing of bacterial genomes has revealed a high degree of intra-specific genetic diversity. The use of molecular methods for the characterization of the periodontal microbiome has greatly expanded the range of bacterial species known to colonize this habitat. Understanding the interactions between the human host and its commensal bacterial community at the functional level is a priority. © 2011 John Wiley & Sons A/S.
Chen, Raymond; Ilasi, Nicholas; Sekulic, Sonja S
2011-12-05
Molecular weight distribution is an important quality attribute for hypromellose acetate succinate (HPMCAS), a pharmaceutical excipient used in spray-dried dispersions. Our previous study showed that neither relative nor universal calibration method of size exclusion chromatography (SEC) works for HPMCAS polymers. We here report our effort to develop a SEC method using a mass sensitive multi angle laser light scattering detector (MALLS) to determine molecular weight distributions of HPMCAS polymers. A solvent screen study reveals that a mixed solvent (60:40%, v/v 50mM NaH(2)PO(4) with 0.1M NaNO(3) buffer: acetonitrile, pH* 8.0) is the best for HPMCAS-LF and MF sub-classes. Use of a mixed solvent creates a challenging condition for the method that uses refractive index detector. Therefore, we thoroughly evaluated the method performance and robustness. The mean weight average molecular weight of a polyethylene oxide standard has a 95% confidence interval of (28,443-28,793) g/mol vs. 28,700g/mol from the Certificate of Analysis. The relative standard deviations of average molecular weights for all polymers are 3-6%. These results and the Design of Experiments study demonstrate that the method is accurate and robust. Copyright © 2011 Elsevier B.V. All rights reserved.
Arivazhagan, M; Jeyavijayan, S; Geethapriya, J
2013-03-01
The FTIR and FT-Raman spectra of 5-nitro-2-furaldehyde oxime (NFAO) have been recorded in the regions 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The total energies of different conformations have been obtained from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The computational results identify the most stable conformer of NFAO as the C1 form. Utilizing the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. The optimum molecular geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, were calculated by density functional theory (DFT/B3LYP) method with 6-31+G(d,p) and 6-311++G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of NFAO is also reported based on total energy distribution (TED). Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. Besides, molecular electrostatic potential (MEP), HOMO and LUMO analysis, and several thermodynamic properties were performed by the DFT method. Mulliken's net charges have been calculated and compared with the natural atomic charges. Ultraviolet-visible spectrum of the title molecule has also been calculated using TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.
Nétor Velásquez, Jorge; Marta, Edgardo; Alicia di Risio, Cecilia; Etchart, Cristina; Gancedo, Elisa; Victor Chertcoff, Agustín; Bruno Malandrini, Jorge; Germán Astudillo, Osvaldo; Carnevale, Silvana
2012-12-01
Several species of microsporidia and coccidia are protozoa parasites responsible for cholan-giopathy disease in patients infected with human immunodeficiency virus (HIV). The goals of this work were to identift opportunistic protozoa by molecular methods and describe the clinical manifestations at the gastrointestinal tract and the biliary system in patients with AIDS-associated cholangiopathy from Buenos Aires, Argentina. This study included 11 adult HIV-infected individuals with diagnosis ofAIDS- associated cholangiopathy. An upper gastrointestinal endoscopy with biopsy specimen collection and a stool analysis for parasites were performed on each patient. The ultrasound analysis revealed bile ducts compromise. An endoscopic retrograde cholangiopancreatography and a magnetic resonance cholangiography were carried out. The identification to the species level was performed on biopsy specimens by molecular methods. Microorganisms were identified in 10 cases. The diagnosis in patients with sclerosing cholangitis was cryptosporidiosis in 3 cases, cystoisosporosis in 1 and microsporidiosis in 1. In patients with sclerosing cholangitis and papillary stenosis the diagnosis was microsporidiosis in 2 cases, cryptosporidiosis in 2 and cryptosporidiosis associated with microsporidiosis in 1. In 3 cases with cryptosporidiosis the species was Cryptosporidium hominis, 1 of them was associated with Enterocytozoon bieneusi, and the other 2 were coinfected with Cryptosporidium parvum. In the 4 cases with microsporidiosis the species was Enterocytozoon bieneusi. These results suggest that molecular methods may be useful tools to identify emerging protozoa in patients with AIDS-associated cholangiopathy.
Demircioğlu, Zeynep; Kaştaş, Çiğdem Albayrak; Büyükgüngör, Orhan
2015-03-15
A new o-hydroxy Schiff base, (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile was isolated and investigated by experimental and theoretical methodologies. The solid state molecular structure was determined by X-ray diffraction method. The vibrational spectral analysis was carried out by using FT-IR spectroscopy in the range of 4000-400cm(-)(1). Theoretical calculations were performed by density functional theory (DFT) method using 6-31G(d,p) basis set. The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The UV-vis spectrum of the compound was recorded in the region 200-800 nm in several solvents and electronic properties such as excitation energies, and wavelengths were calculated by TD-DFT/B3LYP method. The most prominent transitions were corresponds to π→π∗. Hybrid density functional theory (DFT) was used to investigate the enol-imine and keto-amine tautomers of titled compound. The titled compound showed the preference of enol form, as supported by X-ray and spectroscopic analysis results. The geometric and molecular properties were compaired for both enol-imine and keto-amine forms. Additionally, geometry optimizations in solvent media were performed with the same level of theory by the integral equation formalism polarizable continuum (IEF-PCM). Stability of the molecule arises from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed using natural bond orbital (NBO) analysis. Mulliken population method and natural population analysis (NPA) have been studied. Also, condensed Fukui function and relative nucleophilicity indices calculated from charges obtained with orbital charge calculation methods (NPA). Molecular electrostatic potential (MEP) and non linear optical (NLO) properties are also examined. Copyright © 2014 Elsevier B.V. All rights reserved.
Laser-enhanced dynamics in molecular rate processes
NASA Technical Reports Server (NTRS)
George, T. F.; Zimmerman, I. H.; Devries, P. L.; Yuan, J.-M.; Lam, K.-S.; Bellum, J. C.; Lee, H.-W.; Slutsky, M. S.
1978-01-01
The present discussion deals with some theoretical aspects associated with the description of molecular rate processes in the presence of intense laser radiation, where the radiation actually interacts with the molecular dynamics. Whereas for weak and even moderately intense radiation, the absorption and stimulated emission of photons by a molecular system can be described by perturbative methods, for intense radiation, perturbation theory is usually not adequate. Limiting the analysis to the gas phase, an attempt is made to describe nonperturbative approaches applicable to the description of such processes (in the presence of intense laser radiation) as electronic energy transfer in molecular (in particular atom-atom) collisions; collision-induced ionization and emission; and unimolecular dissociation.
Electronic and transport properties of a molecular junction with asymmetric contacts.
Tsai, M-H; Lu, T-H
2010-02-10
Asymmetric molecular junctions have been shown experimentally to exhibit a dual-conductance transport property with a pulse-like current-voltage characteristic, by Reed and co-workers. Using a recently developed first-principles integrated piecewise thermal equilibrium current calculation method and a gold-benzene-1-olate-4-thiolate-gold model molecular junction, this unusual transport property has been reproduced. Analysis of the electrostatics and the electronic structure reveals that the high-current state results from subtle bias induced charge transfer at the electrode-molecule contacts that raises molecular orbital energies and enhances the current-contributing molecular density of states and the probabilities of resonance tunneling of conduction electrons from one electrode to another.
Filip, Xenia; Borodi, Gheorghe; Filip, Claudiu
2011-10-28
A solid state structural investigation of ethoxzolamide is performed on microcrystalline powder by using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct space methods with information from (13)C((15)N) solid-state Nuclear Magnetic Resonance (SS-NMR) and molecular modeling. Quantum chemical computations of the crystal were employed for geometry optimization and chemical shift calculations based on the Gauge Including Projector Augmented-Wave (GIPAW) method, whereas a systematic search in the conformational space was performed on the isolated molecule using a molecular mechanics (MM) approach. The applied methodology proved useful for: (i) removing ambiguities in the XRPD crystal structure determination process and further refining the derived structure solutions, and (ii) getting important insights into the relationship between the complex network of non-covalent interactions and the induced supra-molecular architectures/crystal packing patterns. It was found that ethoxzolamide provides an ideal case study for testing the accuracy with which this methodology allows to distinguish between various structural features emerging from the analysis of the powder diffraction data. This journal is © the Owner Societies 2011
Mojsiewicz-Pieńkowska, Krystyna
2012-01-25
The pharmaceutical industry is one of the more important sectors for the use of polydimethylsiloxanes (PDMS), which belong to the organosilicon polymers. In drugs for internal use, they are used as an active pharmaceutical ingredient (API) called dimeticone or simeticone. Due to their specific chemical nature, PDMS can have different degrees of polymerization, which determine the molecular weight and viscosity. The Pharmacopoeial monographs for dimeticone and simeticone, only give the permitted polymerization and viscosity range. It is, however, essential to know also the degree of polymerization or the specific molecular weight of PDMS that are present in pharmaceutical formulations. In the literature there is information about the impact of particle size, and thus molecular weight, on the toxicity, absorption and migration in living organisms. This study focused on the use of a developed method - the exclusion chromatography with evaporative light scattering detector (SEC-ELSD) - for identification and determination of dimeticone and simeticone in various pharmaceutical formulations. The method had a high degree of specificity and was suitable for speciation analysis of these polymers. So far the developed method has not been used in the control of medicinal products containing dimeticone or simeticone. Copyright © 2011 Elsevier B.V. All rights reserved.
Application of the Finite Element Method in Atomic and Molecular Physics
NASA Technical Reports Server (NTRS)
Shertzer, Janine
2007-01-01
The finite element method (FEM) is a numerical algorithm for solving second order differential equations. It has been successfully used to solve many problems in atomic and molecular physics, including bound state and scattering calculations. To illustrate the diversity of the method, we present here details of two applications. First, we calculate the non-adiabatic dipole polarizability of Hi by directly solving the first and second order equations of perturbation theory with FEM. In the second application, we calculate the scattering amplitude for e-H scattering (without partial wave analysis) by reducing the Schrodinger equation to set of integro-differential equations, which are then solved with FEM.
Dahlberg, Jerry; Tkacik, Peter T; Mullany, Brigid; Fleischhauer, Eric; Shahinian, Hossein; Azimi, Farzad; Navare, Jayesh; Owen, Spencer; Bisel, Tucker; Martin, Tony; Sholar, Jodie; Keanini, Russell G
2017-12-04
An analog, macroscopic method for studying molecular-scale hydrodynamic processes in dense gases and liquids is described. The technique applies a standard fluid dynamic diagnostic, particle image velocimetry (PIV), to measure: i) velocities of individual particles (grains), extant on short, grain-collision time-scales, ii) velocities of systems of particles, on both short collision-time- and long, continuum-flow-time-scales, iii) collective hydrodynamic modes known to exist in dense molecular fluids, and iv) short- and long-time-scale velocity autocorrelation functions, central to understanding particle-scale dynamics in strongly interacting, dense fluid systems. The basic system is composed of an imaging system, light source, vibrational sensors, vibrational system with a known media, and PIV and analysis software. Required experimental measurements and an outline of the theoretical tools needed when using the analog technique to study molecular-scale hydrodynamic processes are highlighted. The proposed technique provides a relatively straightforward alternative to photonic and neutron beam scattering methods traditionally used in molecular hydrodynamic studies.
Molecular Epidemiology of Human Intestinal Amoebas in Iran
Hooshyar, H; Rostamkhani, P; Rezaian, M
2012-01-01
Many microscopic-based epidemiological surveys on the prevalence of human intestinal pathogenic and non-pathogenic protozoa including intestinal amoeba performed in Iran show a high prevalence of human intestinal amoeba in different parts of Iran. Such epidemiological studies on amoebiasis are confusing, mainly due to recently appreciated distinction between the Entamoeba histolytica, E. dispar and E. moshkovskii. Differential diagnosis can be done by some methods such as PCR-based methods, monoclonal antibodies and the analysis of isoenzyme typing, however the molecular study of these protozoa in Iran is low. Based on molecular studies, it seems that E. dispar is predominant species especially in the central and northern areas of Iran and amoebiasis due to E. histolytica is a rare infection in the country. It is suggested that infection with E. moshkovskii may be common among Iranians. Considering the importance of molecular epidemiology of amoeba in Iran and also the current data, the present study reviews the data currently available on the molecular distribution of intestinal human amoeba in Iran. PMID:23193500
NASA Astrophysics Data System (ADS)
Tanak, Hasan; Marchewka, Mariusz K.; Drozd, Marek
2013-03-01
The experimental and theoretical vibrational spectra of Bis(melaminium) terephthalate dihydrate were studied. The Fourier transform infrared (FT-IR) spectra of the Bis(melaminium) terephthalate dihydrate and its deuterated analogue were recorded in the solid phase. The molecular geometry and vibrational frequencies of Bis(melaminium) terephthalate dihydrate in the ground state have been calculated by using the density functional method (B3LYP) with 6-31++G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The molecule contains the weak hydrogen bonds of Nsbnd H⋯O, Nsbnd H⋯N and Osbnd H⋯O types, and those bonds are calculated with DFT method. In addition, molecular electrostatic potential, frontier molecular orbitals and natural bond orbital analysis of the title compound were investigated by theoretical calculations. The lack of the second harmonic generation (SHG) confirms the presence of macroscopic center of inversion.
Tanak, Hasan; Marchewka, Mariusz K; Drozd, Marek
2013-03-15
The experimental and theoretical vibrational spectra of Bis(melaminium) terephthalate dihydrate were studied. The Fourier transform infrared (FT-IR) spectra of the Bis(melaminium) terephthalate dihydrate and its deuterated analogue were recorded in the solid phase. The molecular geometry and vibrational frequencies of Bis(melaminium) terephthalate dihydrate in the ground state have been calculated by using the density functional method (B3LYP) with 6-31++G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The molecule contains the weak hydrogen bonds of N-H···O, N-H···N and O-H···O types, and those bonds are calculated with DFT method. In addition, molecular electrostatic potential, frontier molecular orbitals and natural bond orbital analysis of the title compound were investigated by theoretical calculations. The lack of the second harmonic generation (SHG) confirms the presence of macroscopic center of inversion. Copyright © 2012 Elsevier B.V. All rights reserved.
Bühlmann, Andreas; Dreo, Tanja; Rezzonico, Fabio; Pothier, Joël F; Smits, Theo H M; Ravnikar, Maja; Frey, Jürg E; Duffy, Brion
2014-07-01
Erwinia amylovora causes a major disease of pome fruit trees worldwide, and is regulated as a quarantine organism in many countries. While some diversity of isolates has been observed, molecular epidemiology of this bacterium is hindered by a lack of simple molecular typing techniques with sufficiently high resolution. We report a molecular typing system of E. amylovora based on variable number of tandem repeats (VNTR) analysis. Repeats in the E. amylovora genome were identified with comparative genomic tools, and VNTR markers were developed and validated. A Multiple-Locus VNTR Analysis (MLVA) was applied to E. amylovora isolates from bacterial collections representing global and regional distribution of the pathogen. Based on six repeats, MLVA allowed the distinction of 227 haplotypes among a collection of 833 isolates of worldwide origin. Three geographically separated groups were recognized among global isolates using Bayesian clustering methods. Analysis of regional outbreaks confirmed presence of diverse haplotypes but also high representation of certain haplotypes during outbreaks. MLVA analysis is a practical method for epidemiological studies of E. amylovora, identifying previously unresolved population structure within outbreaks. Knowledge of such structure can increase our understanding on how plant diseases emerge and spread over a given geographical region. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picard, Richard Roy; Bhat, Kabekode Ghanasham
2017-07-18
We examine sensitivity analysis and uncertainty quantification for molecular dynamics simulation. Extreme (large or small) output values for the LAMMPS code often occur at the boundaries of input regions, and uncertainties in those boundary values are overlooked by common SA methods. Similarly, input values for which code outputs are consistent with calibration data can also occur near boundaries. Upon applying approaches in the literature for imprecise probabilities (IPs), much more realistic results are obtained than for the complacent application of standard SA and code calibration.
Quantitative study of mammalian cells by scanning transmission soft X-ray microscopy
NASA Astrophysics Data System (ADS)
Shinohara, K.; Ohigashi, T.; Toné, S.; Kado, M.; Ito, A.
2017-06-01
Molecular distribution in mammalian cells was studied by soft X-ray scanning transmission microscopy with respect to the quantitative aspect of analysis. NEXAFS profiles at the C, N and O K-absorption edges were combined and used for the analysis. For the estimation of quantity for nucleic acids and proteins, NEXAFS profiles of DNA and bovine serum albumin (BSA) at the N K-absorption edge were applied assuming that those were their representatives. The method has a potential to explore the other molecular components than nucleic acids and proteins.
NASA Astrophysics Data System (ADS)
Khasanah, M.; Darmokoesoemo, H.; Rizki, D. A.
2017-09-01
Modification of carbon paste electrode with molecularly imprinted polymer (CP-MIP) as a voltammetric sensor for creatinine has been developed. MIP was synthesized by reacting melamine, chloranil and creatinine with a mole ratio of 1:1:0.1. Creatinine was extracted from polymer chain by using hot water to form a specific imprinted for creatinine molecule. Carbon paste-MIP electrode was prepared by mixing activated carbon, solid paraffin, and MIP in a 45:40:15(w/w %) ratio. The optimum conditions of creatinine analysis by differential pulse stripping voltammetry (DPSV) using the developed electrode were the accumulation potential -1000 mV during 90 s at pH 5. The precision of the method for 0.1-0.5 μlg/L creatinine was 88.7-96.3%, while the detection limit of this method was 0.0315 μlg/L. The accuracy compared by spectrophotometric method was 95.3-103.6%
Matsuyama, T; Fukuda, Y; Sakai, T; Tanimoto, N; Nakanishi, M; Nakamura, Y; Takano, T; Nakayasu, C
2017-08-01
Bacterial haemolytic jaundice caused by Ichthyobacterium seriolicida has been responsible for mortality in farmed yellowtail, Seriola quinqueradiata, in western Japan since the 1980s. In this study, polymorphic analysis of I. seriolicida was performed using three molecular methods: amplified fragment length polymorphism (AFLP) analysis, multilocus sequence typing (MLST) and multiple-locus variable-number tandem repeat analysis (MLVA). Twenty-eight isolates were analysed using AFLP, while 31 isolates were examined by MLST and MLVA. No polymorphisms were identified by AFLP analysis using EcoRI and MseI, or by MLST of internal fragments of eight housekeeping genes. However, MLVA revealed variation in repeat numbers of three elements, allowing separation of the isolates into 16 sequence types. The unweighted pair group method using arithmetic averages cluster analysis of the MLVA data identified four major clusters, and all isolates belonged to clonal complexes. It is likely that I. seriolicida populations share a common ancestor, which may be a recently introduced strain. © 2016 John Wiley & Sons Ltd.
Computational mass spectrometry for small molecules
2013-01-01
The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222
Teaching the structure of immunoglobulins by molecular visualization and SDS-PAGE analysis.
Rižner, Tea Lanišnik
2014-01-01
This laboratory class combines molecular visualization and laboratory experimentation to teach the structure of the immunoglobulins (Ig). In the first part of the class, the three-dimensional structures of the human IgG and IgM molecules available through the RCSB PDB database are visualized using freely available software. In the second part, IgG and IgM are studied using electrophoretic methods. Through SDS-PAGE analysis under reducing conditions, the students determine the number and molecular masses of the polypeptide chains, while through SDS-PAGE under nonreducing conditions, the students assess the oligomerization of these Ig molecules. The aims of this class are to expand upon the knowledge and understanding of the Ig structure that the students have gained from classroom lectures. The combination of this molecular visualization of the Ig molecules and the SDS-PAGE experimentation ensures variety in the teaching techniques, while the implication of the Ig molecules in human disease promotes interest for biomedical students. © 2014 by The International Union of Biochemistry and Molecular Biology.
Spectroscopic, quantum chemical calculation and molecular docking of dipfluzine
NASA Astrophysics Data System (ADS)
Srivastava, Karnica; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Wang, Jing
2016-12-01
Molecular structure and vibrational analysis of dipfluzine (C27H29FN2O) were presented using FT-IR and FT-Raman spectroscopy and quantum chemical calculations. The theoretical ground state geometry and electronic structure of dipfluzine are optimized by the DFT/B3LYP/6-311++G (d,p) method and compared with those of the crystal data. The 1D potential energy scan was performed by varying the dihedral angle using B3LYP functional at 6-31G(d,p) level of theory and thus the most stable conformer of the compound were determined. Molecular electrostatic potential surface (MEPS), frontier orbital analysis and electronic reactivity descriptor were used to predict the chemical reactivity of molecule. Energies of intra- and inter-molecular hydrogen bonds in molecule and their electronic aspects were investigated by natural bond orbital (NBO). To find out the anti-apoptotic activity of the title compound molecular docking studies have been performed against protein Fas.
A combined experimental and DFT investigation of disazo dye having pyrazole skeleton
NASA Astrophysics Data System (ADS)
Şener, Nesrin; Bayrakdar, Alpaslan; Kart, Hasan Hüseyin; Şener, İzzet
2017-02-01
Disazo dye containing pyrazole skeleton has been synthesized. The structure of the dye has been confirmed by using FT-IR, 1H NMR, 13C NMR, HRMS spectral technique and elemental analysis. The molecular geometry and infrared spectrum are also calculated by the Density Functional Theory (DFT) employing B3LYP level with 6-311G (d,p) basis set. The chemical shifts calculation for 1H NMR of the title molecule is done by using by Gauge-Invariant Atomic Orbital (GIAO) method by utilizing the same basis sets. The total density of state, the partial density of state and the overlap population density of state diagram analysis are done via Gauss Sum 3.0 program. Frontier molecular orbitals such as highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and molecular electrostatic potential surface on the title molecule are predicted for various intramolecular interactions that are responsible for the stabilization of the molecule. The experimental results and theoretical values have been compared.
Panda, Subhamay; Kumari, Leena
2017-01-01
Serine proteases are a group of enzymes that hydrolyses the peptide bonds in proteins. In mammals, these enzymes help in the regulation of several major physiological functions such as digestion, blood clotting, responses of immune system, reproductive functions and the complement system. Serine proteases obtained from the venom of Octopodidae family is a relatively unexplored area of research. In the present work, we tried to effectively utilize comparative composite molecular modeling technique. Our key aim was to propose the first molecular model structure of unexplored serine protease 5 derived from big blue octopus. The other objective of this study was to analyze the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis with the aid of different bioinformatic tools. In the present study, molecular model has been generated with the help of I-TASSER suite. Afterwards the refined structural model was validated with standard methods. For functional annotation of protein molecule we used Protein Information Resource (PIR) database. Serine protease 5 of big blue octopus was analyzed with different bioinformatical algorithms for the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis. The functionally critical amino acids and ligand- binding site (LBS) of the proteins (modeled) were determined using the COACH program. The molecular model data in cooperation to other pertinent post model analysis data put forward molecular insight to proteolytic activity of serine protease 5, which helps in the clear understanding of procoagulant and anticoagulant characteristics of this natural lead molecule. Our approach was to investigate the octopus venom protein as a whole or a part of their structure that may result in the development of new lead molecule. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaolin; Ye, Li; Wang, Xiaoxiang
2012-12-15
Several recent reports suggested that hydroxylated polybrominated diphenyl ethers (HO-PBDEs) may disturb thyroid hormone homeostasis. To illuminate the structural features for thyroid hormone activity of HO-PBDEs and the binding mode between HO-PBDEs and thyroid hormone receptor (TR), the hormone activity of a series of HO-PBDEs to thyroid receptors β was studied based on the combination of 3D-QSAR, molecular docking, and molecular dynamics (MD) methods. The ligand- and receptor-based 3D-QSAR models were obtained using Comparative Molecular Similarity Index Analysis (CoMSIA) method. The optimum CoMSIA model with region focusing yielded satisfactory statistical results: leave-one-out cross-validation correlation coefficient (q{sup 2}) was 0.571 andmore » non-cross-validation correlation coefficient (r{sup 2}) was 0.951. Furthermore, the results of internal validation such as bootstrapping, leave-many-out cross-validation, and progressive scrambling as well as external validation indicated the rationality and good predictive ability of the best model. In addition, molecular docking elucidated the conformations of compounds and key amino acid residues at the docking pocket, MD simulation further determined the binding process and validated the rationality of docking results. -- Highlights: ► The thyroid hormone activities of HO-PBDEs were studied by 3D-QSAR. ► The binding modes between HO-PBDEs and TRβ were explored. ► 3D-QSAR, molecular docking, and molecular dynamics (MD) methods were performed.« less
Silva, Marcio Roberto; Rocha, Adalgiza da Silva; da Costa, Ronaldo Rodrigues; de Alencar, Andrea Padilha; de Oliveira, Vania Maria; Fonseca Júnior, Antônio Augusto; Sales, Mariana Lázaro; Issa, Marina de Azevedo; Filho, Paulo Martins Soares; Pereira, Omara Tereza Vianello; dos Santos, Eduardo Calazans; Mendes, Rejane Silva; Ferreira, Angela Maria de Jesus; Mota, Pedro Moacyr Pinto Coelho; Suffys, Philip Noel; Guimarães, Mark Drew Crosland
2013-05-01
In this cross-sectional study, mycobacteria specimens from 189 tuberculosis (TB) patients living in an urban area in Brazil were characterised from 2008-2010 using phenotypic and molecular speciation methods (pncA gene and oxyR pseudogene analysis). Of these samples, 174 isolates simultaneously grew on Löwenstein-Jensen (LJ) and Stonebrink (SB)-containing media and presented phenotypic and molecular profiles of Mycobacterium tuberculosis, whereas 12 had molecular profiles of M. tuberculosis based on the DNA analysis of formalin-fixed paraffin wax-embedded tissue samples (paraffin blocks). One patient produced two sputum isolates, the first of which simultaneously grew on LJ and SB media and presented phenotypic and molecular profiles of M. tuberculosis, and the second of which only grew on SB media and presented phenotypic profiles of Mycobacterium bovis. One patient provided a bronchial lavage isolate, which simultaneously grew on LJ and SB media and presented phenotypic and molecular profiles of M. tuberculosis, but had molecular profiles of M. bovis from paraffin block DNA analysis, and one sample had molecular profiles of M. tuberculosis and M. bovis identified from two distinct paraffin blocks. Moreover, we found a low prevalence (1.6%) of M. bovis among these isolates, which suggests that local health service procedures likely underestimate its real frequency and that it deserves more attention from public health officials.
Molecular Markers Useful for Intraspecies Subtyping and Strain Differentiation of Dermatophytes.
Mochizuki, Takashi; Takeda, Kiminobu; Anzawa, Kazushi
2017-02-01
Dermatophytosis is a very common skin disorder and the most frequent infection encountered by practicing dermatologists. The identification, pathogenicity, biology, and epidemiology of dermatophytes, the causative agents of dermatophytosis, are of interest for both dermatologists and medical mycologists. Recent advances in molecular methods have provided new techniques for identifying dermatophytes, including intraspecies variations. Intraspecies subtyping and strain differentiation have made possible the tracking of infections, the identification of common sources of infections, recurrence or reinfection after treatment, and analysis of strain virulence and drug resistance. This review describes molecular methods of intraspecies subtyping and strain differentiation, including analyses of mitochondrial DNA and non-transcribed spacer regions of ribosomal RNA genes, random amplification of polymorphic DNA, and microsatellite markers, along with their advantages and limitations.
Molecular structure and the EPR calculation of the gas phase succinonitrile molecule
NASA Astrophysics Data System (ADS)
Kepceoǧlu, A.; Kılıç, H. Ş.; Dereli, Ö.
2017-02-01
Succinonitrile (i.e. butanedinitrile) is a colorless nitrile compound that can be used in the gel polymer batteries as a solid-state solvent electrolytes and has a plastic crystal structure. Prior to the molecular structure calculation of the succinonitrile molecule, the conformer analysis were calculated by using semi empirical method PM3 core type Hamiltonian and eight different conformer structures were determined. Molecular structure with energy related properties of these conformers having the lowest energy was calculated by using DFT (B3LYP) methods with 6-311++G(d,p) basis set. Possible radicals, can be formed experimentally, were modeled in this study. EPR parameters of these model radicals were calculated and then compared with that obtained experimentally.
Theoretical calculation of polarizability isotope effects.
Moncada, Félix; Flores-Moreno, Roberto; Reyes, Andrés
2017-03-01
We propose a scheme to estimate hydrogen isotope effects on molecular polarizabilities. This approach combines the any-particle molecular orbital method, in which both electrons and H/D nuclei are described as quantum waves, with the auxiliary density perturbation theory, to calculate analytically the polarizability tensor. We assess the performance of method by calculating the polarizability isotope effect for 20 molecules. A good correlation between theoretical and experimental data is found. Further analysis of the results reveals that the change in the polarizability of a X-H bond upon deuteration decreases as the electronegativity of X increases. Our investigation also reveals that the molecular polarizability isotope effect presents an additive character. Therefore, it can be computed by counting the number of deuterated bonds in the molecule.
[Comparative cost analysis of molecular biology methods in the diagnosis of sarcomas].
Baffert, Sandrine; Italiano, Antoine; Pierron, Gaëlle; Traoré, Marie-Angèle; Rapp, Jocelyn; Escande, Fabienne; Ghnassia, Jean-Pierre; Terrier, Philippe; Voegeli, Anne-Claire; Ranchere-Vince, Dominique; Coindre, Jean-Michel; Pedeutour, Florence
2013-10-01
Sarcomas represent a complex and heterogeneous group of rare malignant tumors and their correct diagnosis is often difficult. Recent molecular biological techniques have been of great diagnostic use and there is a need to assess the cost of these procedures in routine clinical practice. Using prospective and observational data from eight molecular biology laboratories in France, we used "microcosting" method to assess the cost of molecular biological techniques in the diagnosis of five types of sarcoma. The mean cost of fluorescence in situ hybridization (FISH) was 318 € (273-393) per sample; mean reverse transcription polymerase chain reaction (RT-PCR) cost ranged from 300 € (229-481) per formalin-fixed, paraffin-embedded specimen to 258 € (213-339) per frozen specimen; mean quantitative polymerase chain reaction (Q-PCR) cost was 184 € (112-229) and mean CGH-array cost was 332 € (329-335). The cost of these recently implemented techniques varied according to the type of sarcoma; the method of tissue collection and local organizational factors including the level of local expertise and investment. The cost of molecular diagnostic techniques needs to be balanced against their respective performance.
Cocoa content influences chocolate molecular profile investigated by MALDI-TOF mass spectrometry.
Bonatto, Cínthia C; Silva, Luciano P
2015-06-01
Chocolate authentication is a key aspect of quality control and safety. Matrix-assisted laser desorption ionization time-of flight (MALDI-TOF) mass spectrometry (MS) has been demonstrated to be useful for molecular profiling of cells, tissues, and even food. The present study evaluated if MALDI-TOF MS analysis on low molecular mass profile may classify chocolate samples according to the cocoa content. The molecular profiles of seven processed commercial chocolate samples were compared by using MALDI-TOF MS. Some ions detected exclusively in chocolate samples corresponded to the metabolites of cocoa or other constituents. This method showed the presence of three distinct clusters according to confectionery and sensorial features of the chocolates and was used to establish a mass spectra database. Also, novel chocolate samples were evaluated in order to check the validity of the method and to challenge the database created with the mass spectra of the primary samples. Thus, the method was shown to be reliable for clustering unknown samples into the main chocolate categories. Simple sample preparation of the MALDI-TOF MS approach described will allow the surveillance and monitoring of constituents during the molecular profiling of chocolates. © 2014 Society of Chemical Industry.
Smith, M. Alex; Fisher, Brian L; Hebert, Paul D.N
2005-01-01
The role of DNA barcoding as a tool to accelerate the inventory and analysis of diversity for hyperdiverse arthropods is tested using ants in Madagascar. We demonstrate how DNA barcoding helps address the failure of current inventory methods to rapidly respond to pressing biodiversity needs, specifically in the assessment of richness and turnover across landscapes with hyperdiverse taxa. In a comparison of inventories at four localities in northern Madagascar, patterns of richness were not significantly different when richness was determined using morphological taxonomy (morphospecies) or sequence divergence thresholds (Molecular Operational Taxonomic Unit(s); MOTU). However, sequence-based methods tended to yield greater richness and significantly lower indices of similarity than morphological taxonomy. MOTU determined using our molecular technique were a remarkably local phenomenon—indicative of highly restricted dispersal and/or long-term isolation. In cases where molecular and morphological methods differed in their assignment of individuals to categories, the morphological estimate was always more conservative than the molecular estimate. In those cases where morphospecies descriptions collapsed distinct molecular groups, sequence divergences of 16% (on average) were contained within the same morphospecies. Such high divergences highlight taxa for further detailed genetic, morphological, life history, and behavioral studies. PMID:16214741
2016-01-01
Semiempirical (SE) methods can be derived from either Hartree–Fock or density functional theory by applying systematic approximations, leading to efficient computational schemes that are several orders of magnitude faster than ab initio calculations. Such numerical efficiency, in combination with modern computational facilities and linear scaling algorithms, allows application of SE methods to very large molecular systems with extensive conformational sampling. To reliably model the structure, dynamics, and reactivity of biological and other soft matter systems, however, good accuracy for the description of noncovalent interactions is required. In this review, we analyze popular SE approaches in terms of their ability to model noncovalent interactions, especially in the context of describing biomolecules, water solution, and organic materials. We discuss the most significant errors and proposed correction schemes, and we review their performance using standard test sets of molecular systems for quantum chemical methods and several recent applications. The general goal is to highlight both the value and limitations of SE methods and stimulate further developments that allow them to effectively complement ab initio methods in the analysis of complex molecular systems. PMID:27074247
Plazzotta, Beatrice; Diget, Jakob Stensgaard; Zhu, Kaizheng; Nyström, Bo
2016-01-01
ABSTRACT Determination of molecular masses of charged polymers is often nontrivial and most methods have their drawbacks. For polyelectrolytes, a new possibility for the determination of number‐average molecular masses is represented by small‐angle X‐ray scattering (SAXS) which allows fast determinations with a 10% accuracy. This is done by relating the mass to the position of a characteristic peak feature which arises in SAXS due to the local ordering caused by charge‐repulsions between polyelectrolytes. Advantages of the technique are the simplicity of data analysis, the independency from polymer architecture, and the low sample and time consumption. The method was tested on polyelectrolytes of various structures and chemical compositions, and the results were compared with those obtained from more conventional techniques, such as asymmetric flow field‐flow fractionation, gel permeation chromatography, and classical SAXS data analysis, showing that the accuracy of the suggested method is similar to that of the other techniques. © 2016 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1913–1917 PMID:27840558
Tissue proteomics of the low-molecular weight proteome using an integrated cLC-ESI-QTOFMS approach.
Alvarez, MeiHwa Tanielle Bench; Shah, Dipti Jigar; Thulin, Craig D; Graves, Steven W
2013-05-01
Analysis of the protein/peptide composition of tissue has provided meaningful insights into tissue biology and even disease mechanisms. However, little has been published regarding top down methods to investigate lower molecular weight (MW) (500-5000 Da) species in tissue. Here, we evaluate a tissue proteomics approach involving tissue homogenization followed by depletion of large proteins and then cLC-MS (where c stands for capillary) analysis to interrogate the low MW/low abundance tissue proteome. In the development of this method, sheep heart, lung, liver, kidney, and spleen were surveyed to test our ability to observe tissue differences. After categorical tissue differences were demonstrated, a detailed study of this method's reproducibility was undertaken to determine whether or not it is suitable for analyzing more subtle differences in the abundance of small proteins and peptides. Our results suggest that this method should be useful in exploring the low MW proteome of tissues. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Eke, Iris; Makinde, Adeola Y; Aryankalayil, Molykutty J; Ahmed, Mansoor M; Coleman, C Norman
2016-11-01
New technologies enabling the analysis of various molecules, including DNA, RNA, proteins and small metabolites, can aid in understanding the complex molecular processes in cancer cells. In particular, for the use of novel targeted therapeutics, elucidation of the mechanisms leading to cell death or survival is crucial to eliminate tumor resistance and optimize therapeutic efficacy. While some techniques, such as genomic analysis for identifying specific gene mutations or epigenetic testing of promoter methylation, are already in clinical use, other "omics-based" assays are still evolving. Here, we provide an overview of the current status of molecular profiling methods, including promising research strategies, as well as possible challenges, and their emerging role in radiation oncology. Published by Elsevier Ireland Ltd.
In-situ preparation of functionalized molecular sieve material and a methodology to remove template
NASA Astrophysics Data System (ADS)
Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal
2016-03-01
A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.
Super-resolution Imaging of Chemical Synapses in the Brain
Dani, Adish; Huang, Bo; Bergan, Joseph; Dulac, Catherine; Zhuang, Xiaowei
2010-01-01
Determination of the molecular architecture of synapses requires nanoscopic image resolution and specific molecular recognition, a task that has so far defied many conventional imaging approaches. Here we present a super-resolution fluorescence imaging method to visualize the molecular architecture of synapses in the brain. Using multicolor, three-dimensional stochastic optical reconstruction microscopy, the distributions of synaptic proteins can be measured with nanometer precision. Furthermore, the wide-field, volumetric imaging method enables high-throughput, quantitative analysis of a large number of synapses from different brain regions. To demonstrate the capabilities of this approach, we have determined the organization of ten protein components of the presynaptic active zone and the postsynaptic density. Variations in synapse morphology, neurotransmitter receptor composition, and receptor distribution were observed both among synapses and across different brain regions. Combination with optogenetics further allowed molecular events associated with synaptic plasticity to be resolved at the single-synapse level. PMID:21144999
In-situ preparation of functionalized molecular sieve material and a methodology to remove template.
Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal
2016-03-10
A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, (13)C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.
NASA Astrophysics Data System (ADS)
Borah, Mukunda Madhab; Devi, Th. Gomti
2017-05-01
In the present work, L-phenylalanine is studied using the experimental and theoretical methods. The spectral characterization of the molecule has been done using Raman, FTIR, Hartee-Fock(HF), density functional theory (DFT) and vibrational energy distribution analysis (VEDA) calculation. The optimization of the molecule has been studied using basis set HF/6-31G(d,p) and B3LYP/6-31G(d,p) for Hartree Fock and density functional theory calculation. The complete vibrational assignment of the molecule in monomer and dimer states have been attempted. The potential energy distribution and normal mode analysis are also carried out to determine the contributions of bond oscillators in each normal mode. The molecular geometry, HOMO-LUMO energy gap, molecular hardness (η), ionization energy (IE), electron affinity (EA), total energy and dipole moment were determined from the calculated data. The observed experimental and the scaled theoretical results are compared and found to be in good agreement. The vibrational assignment of molecule in different dimer states has also been done using SERS data and better correlated Raman peaks are observed as compare to normal Raman technique.
Analysis of gene expression in single live neurons.
Eberwine, J; Yeh, H; Miyashiro, K; Cao, Y; Nair, S; Finnell, R; Zettel, M; Coleman, P
1992-01-01
We present here a method for broadly characterizing single cells at the molecular level beyond the more common morphological and transmitter/receptor classifications. The RNA from defined single cells is amplified by microinjecting primer, nucleotides, and enzyme into acutely dissociated cells from a defined region of rat brain. Further processing yields amplified antisense RNA. A second round of amplification results in greater than 10(6)-fold amplification of the original starting material, which is adequate for analysis--e.g., use as a probe, making of cDNA libraries, etc. We demonstrate this method by constructing expression profiles of single live cells from rat hippocampus. This profiling suggests that cells that appear to be morphologically similar may show marked differences in patterns of expression. In addition, we characterize several mRNAs from a single cell, some of which were previously undescribed, perhaps due to "rarity" when averaged over many cell types. Electrophysiological analysis coupled with molecular biology within the same cell will facilitate a better understanding of how changes at the molecular level are manifested in functional properties. This approach should be applicable to a wide variety of studies, including development, mutant models, aging, and neurodegenerative disease. Images PMID:1557406
Systematic analysis of molecular mechanisms for HCC metastasis via text mining approach.
Zhen, Cheng; Zhu, Caizhong; Chen, Haoyang; Xiong, Yiru; Tan, Junyuan; Chen, Dong; Li, Jin
2017-02-21
To systematically explore the molecular mechanism for hepatocellular carcinoma (HCC) metastasis and identify regulatory genes with text mining methods. Genes with highest frequencies and significant pathways related to HCC metastasis were listed. A handful of proteins such as EGFR, MDM2, TP53 and APP, were identified as hub nodes in PPI (protein-protein interaction) network. Compared with unique genes for HBV-HCCs, genes particular to HCV-HCCs were less, but may participate in more extensive signaling processes. VEGFA, PI3KCA, MAPK1, MMP9 and other genes may play important roles in multiple phenotypes of metastasis. Genes in abstracts of HCC-metastasis literatures were identified. Word frequency analysis, KEGG pathway and PPI network analysis were performed. Then co-occurrence analysis between genes and metastasis-related phenotypes were carried out. Text mining is effective for revealing potential regulators or pathways, but the purpose of it should be specific, and the combination of various methods will be more useful.
Lu, Minghua; Yang, Xueqing; Yang, Yixin; Qin, Peige; Wu, Xiuru; Cai, Zongwei
2017-04-21
Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds.
Lu, Minghua; Yang, Xueqing; Yang, Yixin; Qin, Peige; Wu, Xiuru; Cai, Zongwei
2017-01-01
Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds. PMID:28430138
Kelley, Laura C.; Wang, Zheng; Hagedorn, Elliott J.; Wang, Lin; Shen, Wanqing; Lei, Shijun; Johnson, Sam A.; Sherwood, David R.
2018-01-01
Cell invasion through basement membrane (BM) barriers is crucial during development, leukocyte trafficking, and for the spread of cancer. Despite its importance in normal and diseased states, the mechanisms that direct invasion are poorly understood, in large part because of the inability to visualize dynamic cell-basement membrane interactions in vivo. This protocol describes multi-channel time-lapse confocal imaging of anchor cell invasion in live C. elegans. Methods presented include outline slide preparation and worm growth synchronization (15 min), mounting (20 min), image acquisition (20-180 min), image processing (20 min), and quantitative analysis (variable timing). Images acquired enable direct measurement of invasive dynamics including invadopodia formation, cell membrane protrusions, and BM removal. This protocol can be combined with genetic analysis, molecular activity probes, and optogenetic approaches to uncover molecular mechanisms underlying cell invasion. These methods can also be readily adapted for real-time analysis of cell migration, basement membrane turnover, and cell membrane dynamics by any worm laboratory. PMID:28880279
NASA Astrophysics Data System (ADS)
Priya, M. Siva; Benitta, T. Asenath; James, C.
2011-03-01
Colorless crystals of 5-(2,5-dimethylphenoxy)-2,2-dimethyl pentanoic acid were grown by slow evaporation method and the FT-IR and FT-Raman spectra of the sample were recorded in the region 4000-450 cm -1 and 4000-50 cm -1 respectively. Molecular structure is optimized with the help of B3LYP/6-31G (d) density functional theory method. Stability of the molecule arising from hyperconjugation and charge delocalization is confirmed by the natural bond orbital analysis (NBO). The results show that electron density (ED) in the σ ∗ antibonding orbitals and E (2) energies confirms the occurrence of intra-molecular charge transfer (ICT) within the molecule. The assignments of the vibrational spectra have been carried out with the help of Normal coordinate analysis following the scaled quantum mechanical force field (SQMFF) methodology. Mulliken population analysis on atomic charges is also calculated. The calculated HOMO and LUMO energy gap shows that charge transfer occurs within the molecule.
Molecular analysis of the NDP gene in two families with Norrie disease.
Rivera-Vega, M Refugio; Chiñas-Lopez, Silvet; Vaca, Ana Luisa Jimenez; Arenas-Sordo, M Luz; Kofman-Alfaro, Susana; Messina-Baas, Olga; Cuevas-Covarrubias, Sergio Alberto
2005-04-01
To describe the molecular defects in the Norrie disease protein (NDP) gene in two families with Norrie disease (ND). We analysed two families with ND at molecular level through polymerase chain reaction, DNA sequence analysis and GeneScan. Two molecular defects found in the NDP gene were: a missense mutation (265C > G) within codon 97 that resulted in the interchange of arginine by proline, and a partial deletion in the untranslated 3' region of exon 3 of the NDP gene. Clinical findings were more severe in the family that presented the partial deletion. We also diagnosed the carrier status of one daughter through GeneScan; this method proved to be a useful tool for establishing female carriers of ND. Here we report two novel mutations in the NDP gene in Mexican patients and propose that GeneScan is a viable mean of establishing ND carrier status.
Al-Samarrai, Taha H.; Zhang, Ningxin; Lamont, Iain L.; Martin, Lois; Kolbe, John; Wilsher, Margaret; Morris, Arthur J.; Schmid, Jan
2000-01-01
We describe here a method for computer-assisted fingerprinting of Pseudomonas aeruginosa. In this method, DNA is digested with SalI, and bands with molecular sizes of ≥9.7 kb are visually scored after electrophoresis on agarose gels. Pattern scores are entered into a Microsoft Excel database. In scoring, the number of bands within each of a set of molecular size ranges is scored, rather than the absolute molecular size of each band, substantially enhancing the speed and reproducibility of the method, while eliminating the need for using expensive gel scanning equipment and software. Pattern scores are used to generate matrices of genetic distance values, which can be visualized in neighbor-joining trees. The method reliably distinguishes two epidemiologically unrelated isolates in 99.3% of all comparisons. The genetic relationships between isolates observed with the method were consistent with those obtained by analysis of two P. aeruginosa genes, indicating that it provides valid estimates of genetic divergence between isolates. Using the method, respiratory tract isolates from cystic fibrosis patients in Green Lane Hospital in Auckland, New Zealand, were shown to be genetically less diverse than epidemiologically unrelated isolates from other patients. This finding was not due to the existence of clusters of related strains specialized toward colonization of the respiratory tract and thus was indicative of transmission between patients. Analysis of multiple isolates from individual cystic fibrosis patients suggested that up to five separate clusters of genetically related strains may simultaneously be present in a patient. The method described should significantly enhance our ability to investigate the epidemiology of P. aeruginosa. PMID:11101578
Demircioğlu, Zeynep; Albayrak, Çiğdem; Büyükgüngör, Orhan
2014-07-15
A suitable single crystal of (E)-3-methoxy-2-[(p-tolylimino)methyl]phenol, formulated as C15H15N1O2, reveals that the structure is adopted to its E configuration about the azomethine C=N double bond. The compound adopts a enol-imine tautomeric form with a strong intramolecular O-H⋯N hydrogen bond. The single crystal X-ray diffraction analysis at 296K crystallizes in the monoclinic space group P21/c with a = 13.4791(11) Å, b = 6.8251(3) Å, c = 18.3561(15) Å, α = 90°, β = 129.296(5)°, γ = 90° and Z = 4. Comprehensive theoretical and experimental structural studies on the molecule have been carried out by FT-IR and UV-vis spectrometry. Optimized molecular structure and harmonic vibrational frequencies have been investigated by DFT/B3LYP method with 6-31G(d,p) basis set. Stability of the molecule, hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond has been analyzed by using natural bond orbital (NBO) analysis. Electronic structures were discussed by TD-DFT method and the relocation of the electron density were determined. The energetic behavior of the title compound has been examined in solvent media using polarizable continuum model (PCM). Molecular electrostatic potential (MEP), Mulliken population method and natural population analysis (NPA) have been studied. Nonlinear optical (NLO) properties were also investigated. In addition, frontier molecular orbitals analysis have been performed from the optimized geometry. An ionization potential (I), electron affinity (A), electrophilicity index (ω), chemical potential (μ), electronegativity (χ), hardness (η), and softness (S), have been investigated. Copyright © 2014 Elsevier B.V. All rights reserved.
Dynamic Histogram Analysis To Determine Free Energies and Rates from Biased Simulations.
Stelzl, Lukas S; Kells, Adam; Rosta, Edina; Hummer, Gerhard
2017-12-12
We present an algorithm to calculate free energies and rates from molecular simulations on biased potential energy surfaces. As input, it uses the accumulated times spent in each state or bin of a histogram and counts of transitions between them. Optimal unbiased equilibrium free energies for each of the states/bins are then obtained by maximizing the likelihood of a master equation (i.e., first-order kinetic rate model). The resulting free energies also determine the optimal rate coefficients for transitions between the states or bins on the biased potentials. Unbiased rates can be estimated, e.g., by imposing a linear free energy condition in the likelihood maximization. The resulting "dynamic histogram analysis method extended to detailed balance" (DHAMed) builds on the DHAM method. It is also closely related to the transition-based reweighting analysis method (TRAM) and the discrete TRAM (dTRAM). However, in the continuous-time formulation of DHAMed, the detailed balance constraints are more easily accounted for, resulting in compact expressions amenable to efficient numerical treatment. DHAMed produces accurate free energies in cases where the common weighted-histogram analysis method (WHAM) for umbrella sampling fails because of slow dynamics within the windows. Even in the limit of completely uncorrelated data, where WHAM is optimal in the maximum-likelihood sense, DHAMed results are nearly indistinguishable. We illustrate DHAMed with applications to ion channel conduction, RNA duplex formation, α-helix folding, and rate calculations from accelerated molecular dynamics. DHAMed can also be used to construct Markov state models from biased or replica-exchange molecular dynamics simulations. By using binless WHAM formulated as a numerical minimization problem, the bias factors for the individual states can be determined efficiently in a preprocessing step and, if needed, optimized globally afterward.
Vendrell, Xavier; Bautista-Llácer, Rosa
2012-12-01
The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.
A Modularity-Based Method Reveals Mixed Modules from Chemical-Gene Heterogeneous Network
Song, Jianglong; Tang, Shihuan; Liu, Xi; Gao, Yibo; Yang, Hongjun; Lu, Peng
2015-01-01
For a multicomponent therapy, molecular network is essential to uncover its specific mode of action from a holistic perspective. The molecular system of a Traditional Chinese Medicine (TCM) formula can be represented by a 2-class heterogeneous network (2-HN), which typically includes chemical similarities, chemical-target interactions and gene interactions. An important premise of uncovering the molecular mechanism is to identify mixed modules from complex chemical-gene heterogeneous network of a TCM formula. We thus proposed a novel method (MixMod) based on mixed modularity to detect accurate mixed modules from 2-HNs. At first, we compared MixMod with Clauset-Newman-Moore algorithm (CNM), Markov Cluster algorithm (MCL), Infomap and Louvain on benchmark 2-HNs with known module structure. Results showed that MixMod was superior to other methods when 2-HNs had promiscuous module structure. Then these methods were tested on a real drug-target network, in which 88 disease clusters were regarded as real modules. MixMod could identify the most accurate mixed modules from the drug-target 2-HN (normalized mutual information 0.62 and classification accuracy 0.4524). In the end, MixMod was applied to the 2-HN of Buchang naoxintong capsule (BNC) and detected 49 mixed modules. By using enrichment analysis, we investigated five mixed modules that contained primary constituents of BNC intestinal absorption liquid. As a matter of fact, the findings of in vitro experiments using BNC intestinal absorption liquid were found to highly accord with previous analysis. Therefore, MixMod is an effective method to detect accurate mixed modules from chemical-gene heterogeneous networks and further uncover the molecular mechanism of multicomponent therapies, especially TCM formulae. PMID:25927435
Brookes, Emre; Cao, Weiming; Demeler, Borries
2010-02-01
We report a model-independent analysis approach for fitting sedimentation velocity data which permits simultaneous determination of shape and molecular weight distributions for mono- and polydisperse solutions of macromolecules. Our approach allows for heterogeneity in the frictional domain, providing a more faithful description of the experimental data for cases where frictional ratios are not identical for all components. Because of increased accuracy in the frictional properties of each component, our method also provides more reliable molecular weight distributions in the general case. The method is based on a fine grained two-dimensional grid search over s and f/f (0), where the grid is a linear combination of whole boundary models represented by finite element solutions of the Lamm equation with sedimentation and diffusion parameters corresponding to the grid points. A Monte Carlo approach is used to characterize confidence limits for the determined solutes. Computational algorithms addressing the very large memory needs for a fine grained search are discussed. The method is suitable for globally fitting multi-speed experiments, and constraints based on prior knowledge about the experimental system can be imposed. Time- and radially invariant noise can be eliminated. Serial and parallel implementations of the method are presented. We demonstrate with simulated and experimental data of known composition that our method provides superior accuracy and lower variance fits to experimental data compared to other methods in use today, and show that it can be used to identify modes of aggregation and slow polymerization.
Values of molecular markers in the differential diagnosis of thyroid abnormalities.
Tennakoon, T M P B; Rushdhi, M; Ranasinghe, A D C U; Dassanayake, R S
2017-06-01
Thyroid cancer (TC), follicular adenoma (FA) and Hashimoto's thyroiditis (HT) are three of the most frequently reported abnormalities that affect the thyroid gland. A frequent co-occurrence along with similar histopathological features is observed between TC and FA as well as between TC and HT. The conventional diagnostic methods such as histochemical analysis present complications in differential diagnosis when these abnormalities occur simultaneously. Hence, the authors recognize novel methods based on screening genetic defects of thyroid abnormalities as viable diagnostic and prognostic methods that could complement the conventional methods. We have extensively reviewed the existing literature on TC, FA and HT and also on three genes, namely braf, nras and ret/ptc, that could be used to differentially diagnose the three abnormalities. Emphasis was also given to the screening methods available to detect the said molecular markers. It can be conferred from the analysis of the available data that the utilization of braf, nras and ret/ptc as markers for the therapeutic evaluation of FA and HT is debatable. However, molecular screening for braf, nras and ret/ptc mutations proves to be a conclusive method that could be employed to differentially diagnose TC from HT and FA in the instance of a suspected co-occurrence. Thyroid cancer patients can be highly benefited from the screening for the said genetic markers, especially the braf gene due to its diagnostic value as well as due to the availability of personalized medicine targeted specifically for braf mutants.
Preparation of the low molecular weight serum proteome for mass spectrometry analysis.
Waybright, Timothy J; Chan, King C; Veenstra, Timothy D; Xiao, Zhen
2013-01-01
The discovery of viable biomarkers or indicators of disease states is complicated by the inherent complexity of the chosen biological specimen. Every sample, whether it is serum, plasma, urine, tissue, cells, or a host of others, contains thousands of large and small components, each interacting in multiple ways. The need to concentrate on a group of these components to narrow the focus on a potential biomarker candidate becomes, out of necessity, a priority, especially in the search for immune-related low molecular weight serum biomarkers. One such method in the field of proteomics is to divide the sample proteome into groups based on the size of the protein, analyze each group, and mine the data for statistically significant items. This chapter details a portion of this method, concentrating on a method for fractionating and analyzing the low molecular weight proteome of human serum.
Czakó, Gábor; Kaledin, Alexey L; Bowman, Joel M
2010-04-28
We report the implementation of a previously suggested method to constrain a molecular system to have mode-specific vibrational energy greater than or equal to the zero-point energy in quasiclassical trajectory calculations [J. M. Bowman et al., J. Chem. Phys. 91, 2859 (1989); W. H. Miller et al., J. Chem. Phys. 91, 2863 (1989)]. The implementation is made practical by using a technique described recently [G. Czako and J. M. Bowman, J. Chem. Phys. 131, 244302 (2009)], where a normal-mode analysis is performed during the course of a trajectory and which gives only real-valued frequencies. The method is applied to the water dimer, where its effectiveness is shown by computing mode energies as a function of integration time. Radial distribution functions are also calculated using constrained quasiclassical and standard classical molecular dynamics at low temperature and at 300 K and compared to rigorous quantum path integral calculations.
Solid phase sequencing of biopolymers
Cantor, Charles; Koster, Hubert
2010-09-28
This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include DNA or RNA in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.
Comparison of mode estimation methods and application in molecular clock analysis
NASA Technical Reports Server (NTRS)
Hedges, S. Blair; Shah, Prachi
2003-01-01
BACKGROUND: Distributions of time estimates in molecular clock studies are sometimes skewed or contain outliers. In those cases, the mode is a better estimator of the overall time of divergence than the mean or median. However, different methods are available for estimating the mode. We compared these methods in simulations to determine their strengths and weaknesses and further assessed their performance when applied to real data sets from a molecular clock study. RESULTS: We found that the half-range mode and robust parametric mode methods have a lower bias than other mode methods under a diversity of conditions. However, the half-range mode suffers from a relatively high variance and the robust parametric mode is more susceptible to bias by outliers. We determined that bootstrapping reduces the variance of both mode estimators. Application of the different methods to real data sets yielded results that were concordant with the simulations. CONCLUSION: Because the half-range mode is a simple and fast method, and produced less bias overall in our simulations, we recommend the bootstrapped version of it as a general-purpose mode estimator and suggest a bootstrap method for obtaining the standard error and 95% confidence interval of the mode.
Molecular ecological network analyses.
Deng, Ye; Jiang, Yi-Huei; Yang, Yunfeng; He, Zhili; Luo, Feng; Zhou, Jizhong
2012-05-30
Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological Network Analysis Pipeline (MENAP), which is open-accessible now (http://ieg2.ou.edu/MENA). The RMT-based molecular ecological network analysis provides powerful tools to elucidate network interactions in microbial communities and their responses to environmental changes, which are fundamentally important for research in microbial ecology and environmental microbiology.
Ye, Shuji; Wei, Feng; Li, Hongchun; Tian, Kangzhen; Luo, Yi
2013-01-01
In situ and real-time characterization of molecular structures and orientation of proteins at interfaces is essential to understand the nature of interfacial protein interaction. Such work will undoubtedly provide important clues to control biointerface in a desired manner. Sum frequency generation vibrational spectroscopy (SFG-VS) has been demonstrated to be a powerful technique to study the interfacial structures and interactions at the molecular level. This paper first systematically introduced the methods for the calculation of the Raman polarizability tensor, infrared transition dipole moment, and SFG molecular hyperpolarizability tensor elements of proteins/peptides with the secondary structures of α-helix, 310-helix, antiparallel β-sheet, and parallel β-sheet, as well as the methodology to determine the orientation of interfacial protein secondary structures using SFG amide I spectra. After that, recent progresses on the determination of protein structure and orientation at different interfaces by SFG-VS were then reviewed, which provides a molecular-level understanding of the structures and interactions of interfacial proteins, specially understanding the nature of driving force behind such interactions. Although this review has focused on analysis of amide I spectra, it will be expected to offer a basic idea for the spectral analysis of amide III SFG signals and other complicated molecular systems such as RNA and DNA. Copyright © 2013 Elsevier Inc. All rights reserved.
On simulation of local fluxes in molecular junctions
NASA Astrophysics Data System (ADS)
Cabra, Gabriel; Jensen, Anders; Galperin, Michael
2018-05-01
We present a pedagogical review of the current density simulation in molecular junction models indicating its advantages and deficiencies in analysis of local junction transport characteristics. In particular, we argue that current density is a universal tool which provides more information than traditionally simulated bond currents, especially when discussing inelastic processes. However, current density simulations are sensitive to the choice of basis and electronic structure method. We note that while discussing the local current conservation in junctions, one has to account for the source term caused by the open character of the system and intra-molecular interactions. Our considerations are illustrated with numerical simulations of a benzenedithiol molecular junction.
Remote laser evaporative molecular absorption spectroscopy
NASA Astrophysics Data System (ADS)
Hughes, Gary B.; Lubin, Philip; Cohen, Alexander; Madajian, Jonathan; Kulkarni, Neeraj; Zhang, Qicheng; Griswold, Janelle; Brashears, Travis
2016-09-01
We describe a novel method for probing bulk molecular and atomic composition of solid targets from a distant vantage. A laser is used to melt and vaporize a spot on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption occurs as the blackbody radiation passes through the ejected plume. Bulk molecular and atomic composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected plume. The proposed method is distinct from current stand-off approaches to composition analysis, such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes target material and observes emission spectra to determine bulk atomic composition. Initial simulations of absorption profiles with laser heating show great promise for Remote Laser-Evaporative Molecular Absorption (R-LEMA) spectroscopy. The method is well-suited for exploration of cold solar system targets—asteroids, comets, planets, moons—such as from a spacecraft orbiting the target. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole or trench, and shallow subsurface composition profiling is possible. This paper describes system concepts for implementing the proposed method to probe the bulk molecular composition of an asteroid from an orbiting spacecraft, including laser array, photovoltaic power, heating and ablation, plume characteristics, absorption, spectrometry and data management.
Optical Biopsy: A New Frontier in Endoscopic Detection and Diagnosis
WANG, THOMAS D.; VAN DAM, JACQUES
2007-01-01
Endoscopic diagnosis currently relies on the ability of the operator to visualize abnormal patterns in the image created by light reflected from the mucosal surface of the gastrointestinal tract. Advances in fiber optics, light sources, detectors, and molecular biology have led to the development of several novel methods for tissue evaluation in situ. The term “optical biopsy” refers to methods that use the properties of light to enable the operator to make an instant diagnosis at endoscopy, previously possible only by using histological or cytological analysis. Promising imaging techniques include fluorescence endoscopy, optical coherence tomography, confocal microendoscopy, and molecular imaging. Point detection schemes under development include light scattering and Raman spectroscopy. Such advanced diagnostic methods go beyond standard endoscopic techniques by offering improved image resolution, contrast, and tissue penetration and providing biochemical and molecular information about mucosal disease. This review describes the basic biophysics of light-tissue interactions, assesses the strengths and weaknesses of each method, and examines clinical and preclinical evidence for each approach. PMID:15354274
Lasić, Lejla; Lojo-Kadrić, Naida; Silajdžić, Elma; Pojskić, Lejla; Hadžiselimović, Rifat; Pojskić, Naris
2013-01-01
There are two major theories for inheritance of Rh blood group system: Fisher – Race theory and Wiener theory. Aim of this study was identifying frequency of RHDCE alleles in Bosnian – Herzegovinian population and introduction of this method in screening for Rh phenotype in B&H since this type of analysis was not used for blood typing in B&H before. Rh blood group was typed by Polymerase Chain Reaction, using the protocols and primers previously established by other authors, then carrying out electrophoresis in 2-3% agarose gel. Percentage of Rh positive individuals in our sample is 84.48%, while the percentage of Rh negative individuals is 15.52%. Inter-rater agreement statistic showed perfect agreement (K=1) between the results of Rh blood system detection based on serological and molecular-genetics methods. In conclusion, molecular – genetic methods are suitable for prenatal genotyping and specific cases while standard serological method is suitable for high-throughput of samples. PMID:23448604
The wavelet transform as an analysis tool for structure identification in molecular clouds
NASA Astrophysics Data System (ADS)
Gill, Arnold Gerald
1993-01-01
Of the many methods used to attempt to understand the complex structure of giant molecular clouds, perhaps the most commonly used are the autocorrelation functions (ACF), the structure function, and the power spectrum. However, these do not give unique interpretations of structure, as is shown by explicit examples compared to the Taurus Molecular Complex. Thus, another, independent method of analysis is indicated. Here, the wavelet transform is presented, a relatively new technique less than 10 years old. It can be thought of as a band-pass filter that identifies structures of specific sizes. In addition, its mathematical properties allow it to be used to identify fractal structures and accurately identify the scaling exponent. This is shown by the wavelet transform identifying the fractal dimension of a hierarchical rain cloud model first proposed by Frisch et al. (1978). A wavelet analysis is then carried out for a range of astronomical CO data, including the clouds Orion A and B and NGC 7538 (in (12)CO) and Orion A and B, Mon R2, and L1551 (in (13)CO). The data analyzed consists of the velocities of the fitted Gaussians to the individual spectra, the halfwidths and amplitude of these Gaussians, and the total area of the spectral line. For most of the clouds investigated, each of these data types showed a very high degree of scaling coherence over a wide range of scales, from down at the beam spacing up to the full size of the cloud. The analysis carried out uses both the scaling and structure identification strengths of the wavelet transform The fragmentation parameters used by Scalo (1985) and the parameters of the geometric molecular cloud description introduced by Henriksen (1986) are calculated for each cloud. These results are all consistent with previous observations of these and other molecular clouds, though they are obtained individually for each cloud investigated. It is found that the uncertainties are of a magnitude that the differentiation of various theories of molecular cloud structure is not possible. It is noted that the effects of projection and superposition strongly affect the values of some of these parameters, thus hampering a thorough understanding of the underlying physics. The strengths and weaknesses of the wavelet transform in the analysis of molecular cloud data are presented, as well as directions for future work.
Girsanov reweighting for path ensembles and Markov state models
NASA Astrophysics Data System (ADS)
Donati, L.; Hartmann, C.; Keller, B. G.
2017-06-01
The sensitivity of molecular dynamics on changes in the potential energy function plays an important role in understanding the dynamics and function of complex molecules. We present a method to obtain path ensemble averages of a perturbed dynamics from a set of paths generated by a reference dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state models (MSMs) of the molecular dynamics can be formulated as a combined phase-space and path ensemble average, the method can be extended to reweight MSMs by combining it with a reweighting of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting in a molecular dynamics simulation program by calculating parts of the reweighting factor "on the fly" during the simulation, and we benchmark the method on test systems ranging from a two-dimensional diffusion process and an artificial many-body system to alanine dipeptide and valine dipeptide in implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to the original dynamics.
Erickson, Heidi S
2012-09-28
The future of personalized medicine depends on the ability to efficiently and rapidly elucidate a reliable set of disease-specific molecular biomarkers. High-throughput molecular biomarker analysis methods have been developed to identify disease risk, diagnostic, prognostic, and therapeutic targets in human clinical samples. Currently, high throughput screening allows us to analyze thousands of markers from one sample or one marker from thousands of samples and will eventually allow us to analyze thousands of markers from thousands of samples. Unfortunately, the inherent nature of current high throughput methodologies, clinical specimens, and cost of analysis is often prohibitive for extensive high throughput biomarker analysis. This review summarizes the current state of high throughput biomarker screening of clinical specimens applicable to genetic epidemiology and longitudinal population-based studies with a focus on considerations related to biospecimens, laboratory techniques, and sample pooling. Copyright © 2012 John Wiley & Sons, Ltd.
Pestana-Caldas, C N; Silva, S A; Machado, E L; de Souza, D R; Cerqueira-Pereira, E C; Silva, M S
2016-10-05
The aim of this study was to investigate the genetic divergence between accessions of Jatropha curcas through joint analysis of morphoagronomic and molecular characters. To this end, we investigated 11 morphoagronomic characters and performed molecular genotyping, using 23 inter-simple sequence repeat (ISSR) primers in 46 accessions of J. curcas. We calculated the contribution of each character on divergence using analysis of variance. The grouping among accessions was performed using the Ward-MLM (modified location model) method, using morphoagronomic and molecular data, whereas the cophenetic correlation was obtained based on Gower's algorithm. There were significant differences in all growth-related characteristics: number of primary and secondary branches per plant, plant height, and stem diameter. For characters related to grain production, differences were found for number of fruit clusters per plant and number of inflorescence clusters per plant and average number of seeds per fruit. The greatest phenotypic variation was found in plant height (59.67- 222.33 cm), whereas the smallest variation was found in average number of seeds per fruit (0-2.90), followed by the number of fruit clusters per plant (0-8.67). In total, 94 polymorphic ISSR fragments were obtained. The genotypic grouping identified six groups, indicating that there is genetic divergence among the accessions. The most promising crossings for future hybridization were identified among accessions UFRB60 and UFVJC45, and UFRB61 and UFVJC18. In conclusion, the joint analysis of morphoagronomic characters and ISSR markers is an efficient method to assess the genetic divergence in J. curcas.
Landi, S.; Held, H. R.
1965-01-01
Tuberculin purified protein derivative (PPD) has been prepared by seven different precipitation methods from culture filtrate of Mycobacterium tuberculosis var. hominis. It was found to contain 48 to 99% tuberculoprotein, depending on the method of precipitation. The remaining percentage is represented by nucleic acid, polysaccharide, and ash. Activation analysis on tuberculin PPD and on tubercle bacilli has revealed the presence of trace elements. The molecular weight of tuberculin PPD has been found to be of the order of 14,800 to 27,800. The biological activity of tuberculin PPD varies from lot to lot and from method to method. A correlation between its molecular weight and its biological activity seems to exist. Images Fig. 1 Fig. 3 PMID:14325869
DOE Office of Scientific and Technical Information (OSTI.GOV)
So Hirata
2012-01-03
This report discusses the following highlights of the project: (1) grid-based Hartree-Fock equation solver; (2) explicitly correlated coupled-cluster and perturbation methods; (3) anharmonic vibrational frequencies and vibrationally averaged NMR and structural parameters of FHF; (4) anharmonic vibrational frequencies and vibrationally averaged structures of hydrocarbon combustion species; (5) anharmonic vibrational analysis of the guanine-cytosine base pair; (6) the nature of the Born-Oppenheimer approximation; (7) Polymers and solids Brillouin-zone downsampling - the modulo MP2 method; (8) explicitly correlated MP2 for extended systems; (9) fast correlated method for molecular crystals - solid formic acid; and (10) fast correlated method for molecular crystals -more » solid hydrogen fluoride.« less
Takeda, Hiroaki; Izumi, Yoshihiro; Takahashi, Masatomo; Paxton, Thanai; Tamura, Shohei; Koike, Tomonari; Yu, Ying; Kato, Noriko; Nagase, Katsutoshi; Shiomi, Masashi; Bamba, Takeshi
2018-05-03
Lipidomics, the mass spectrometry-based comprehensive analysis of lipids, has attracted attention as an analytical approach to provide novel insight into lipid metabolism and to search for biomarkers. However, an ideal method for both comprehensive and quantitative analysis of lipids has not been fully developed. Herein, we have proposed a practical methodology for widely-targeted quantitative lipidome analysis using supercritical fluid chromatography fast-scanning triple-quadrupole mass spectrometry (SFC/QqQMS) and theoretically calculated a comprehensive lipid multiple reaction monitoring (MRM) library. Lipid classes can be separated by SFC with a normal phase diethylamine-bonded silica column with high-resolution, high-throughput, and good repeatability. Structural isomers of phospholipids can be monitored by mass spectrometric separation with fatty acyl-based MRM transitions. SFC/QqQMS analysis with an internal standard-dilution method offers quantitative information for both lipid class and individual lipid molecular species in the same lipid class. Additionally, data acquired using this method has advantages including reduction of misidentification and acceleration of data analysis. Using the SFC/QqQMS system, alteration of plasma lipid levels in myocardial infarction-prone rabbits to the supplementation of eicosapentaenoic acid was first observed. Our developed SFC/QqQMS method represents a potentially useful tool for in-depth studies focused on complex lipid metabolism and biomarker discovery. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Liu, Guangxin; Wang, Pei; Li, Chan; Wang, Jing; Sun, Zhenyu; Zhao, Xinfeng; Zheng, Xiaohui
2017-07-01
Drug-protein interaction analysis is pregnant in designing new leads during drug discovery. We prepared the stationary phase containing immobilized β 2 -adrenoceptor (β 2 -AR) by linkage of the receptor on macroporous silica gel surface through N,N'-carbonyldiimidazole method. The stationary phase was applied in identifying antiasthmatic target of protopine guided by the prediction of site-directed molecular docking. Subsequent application of immobilized β 2 -AR in exploring the binding of protopine to the receptor was realized by frontal analysis and injection amount-dependent method. The association constants of protopine to β 2 -AR by the 2 methods were (1.00 ± 0.06) × 10 5 M -1 and (1.52 ± 0.14) × 10 4 M -1 . The numbers of binding sites were (1.23 ± 0.07) × 10 -7 M and (9.09 ± 0.06) × 10 -7 M, respectively. These results indicated that β 2 -AR is the specific target for therapeutic action of protopine in vivo. The target-drug binding occurred on Ser 169 in crystal structure of the receptor. Compared with frontal analysis, injection amount-dependent method is advantageous to drug saving, improvement of sampling efficiency, and performing speed. It has grave potential in high-throughput drug-receptor interaction analysis. Copyright © 2017 John Wiley & Sons, Ltd.
Using VMD - An Introductory Tutorial
Hsin, Jen; Arkhipov, Anton; Yin, Ying; Stone, John E.; Schulten, Klaus
2010-01-01
VMD (Visual Molecular Dynamics) is a molecular visualization and analysis program designed for biological systems such as proteins, nucleic acids, lipid bilayer assemblies, etc. This unit will serve as an introductory VMD tutorial. We will present several step-by-step examples of some of VMD’s most popular features, including visualizing molecules in three dimensions with different drawing and coloring methods, rendering publication-quality figures, animate and analyze the trajectory of a molecular dynamics simulation, scripting in the text-based Tcl/Tk interface, and analyzing both sequence and structure data for proteins. PMID:19085979
Molecular analysis of breast sentinel lymph nodes.
Blumencranz, Peter W; Pieretti, Maura; Allen, Kathleen G; Blumencranz, Lisa E
2011-07-01
Lymphatic mapping and sentinel lymph node (SLN) biopsy have become the standard of care for staging the axilla in patients with invasive breast cancer. Current histologic methods for SLN evaluation have limitations, including subjectivity, limited sensitivity, and lack of standardization. The discovery of molecular markers to detect metastases has been reported over the last 2 decades. The authors review the historical development of these markers and the clinical use of one of the molecular platforms in 478 patients at their institution. Controversies and future directions are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jain, A.
2017-08-01
Computer based method can help in discovery of leads and can potentially eliminate chemical synthesis and screening of many irrelevant compounds, and in this way, it save time as well as cost. Molecular modeling systems are powerful tools for building, visualizing, analyzing and storing models of complex molecular structure that can help to interpretate structure activity relationship. The use of various techniques of molecular mechanics and dynamics and software in Computer aided drug design along with statistics analysis is powerful tool for the medicinal chemistry to synthesis therapeutic and effective drugs with minimum side effect.
Ryberg, Anna; Olsson, Crister; Ahrné, Siv; Monstein, Hans-Jürg
2011-02-01
Molecular typing of Klebsiella species has become important for monitoring dissemination of β-lactamase-producers in hospital environments. The present study was designed to evaluate poly-trinucleotide (GTG)(5)- and rDNA intergenic transcribed spacer (ITS)-PCR fingerprint analysis for typing of Klebsiella pneumoniae and Klebsiella oxytoca isolates. Multiple displacement amplified DNA derived from 19 K. pneumoniae (some with an ESBL-phenotype), 35 K. oxytoca isolates, five K. pneumoniae, two K. oxytoca, three Raoultella, and one Enterobacter aerogenes type and reference strains underwent (GTG)(5) and ITS-PCR analysis. Dendrograms were constructed using cosine coefficient and the Neighbour joining method. (GTG)(5) and ITS-PCR analysis revealed that K. pneumoniae and K. oxytoca isolates, reference and type strains formed distinct cluster groups, and tentative subclusters could be established. We conclude that (GTG)(5) and ITS-PCR analysis combined with automated capillary electrophoresis provides promising tools for molecular typing of Klebsiella isolates. Copyright © 2010 Elsevier B.V. All rights reserved.
Lüdeke, Catharina H M; Fischer, Markus; LaFon, Patti; Cooper, Kara; Jones, Jessica L
2014-07-01
Vibrio parahaemolyticus is the leading cause of infectious illness associated with seafood consumption in the United States. Molecular fingerprinting of strains has become a valuable research tool for understanding this pathogen. However, there are many subtyping methods available and little information on how they compare to one another. For this study, a collection of 67 oyster and 77 clinical V. parahaemolyticus isolates were analyzed by three subtyping methods--intergenic spacer region (ISR-1), direct genome restriction analysis (DGREA), and pulsed-field gel electrophoresis (PFGE)--to determine the utility of these methods for discriminatory subtyping. ISR-1 analysis, run as previously described, provided the lowest discrimination of all the methods (discriminatory index [DI]=0.8665). However, using a broader analytical range than previously reported, ISR-1 clustered isolates based on origin (oyster versus clinical) and had a DI=0.9986. DGREA provided a DI=0.9993-0.9995, but did not consistently cluster the isolates by any identifiable characteristics (origin, serotype, or virulence genotype) and ∼ 15% of isolates were untypeable by this method. PFGE provided a DI=0.9998 when using the combined pattern analysis of both restriction enzymes, SfiI and NotI. This analysis was more discriminatory than using either enzyme pattern alone and primarily grouped isolates by serotype, regardless of strain origin (clinical or oyster) or presence of currently accepted virulence markers. These results indicate that PFGE and ISR-1 are more reliable methods for subtyping V. parahemolyticus, rather than DGREA. Additionally, ISR-1 may provide an indication of pathogenic potential; however, more detailed studies are needed. These data highlight the diversity within V. parahaemolyticus and the need for appropriate selection of subtyping methods depending on the study objectives.
NASA Astrophysics Data System (ADS)
Xavier, S.; Periandy, S.; Carthigayan, K.; Sebastian, S.
2016-12-01
Vibrational spectral analysis of Diphenyl Carbonate (DPC) is carried out by using FT-IR and FT-Raman spectroscopic techniques. It is found that all vibrational modes are in the expected region. Gaussian computational calculations were performed using B3LYP method with 6-311++G (d, p) basis set. The computed geometric parameters are in good agreement with XRD data. The observation shows that the structure of the carbonate group is unsymmetrical by ∼5° due to the attachment of the two phenyl rings. The stability of the molecule arising from hyperconjugative interaction and charge delocalization are analyzed by Natural Bond Orbital (NBO) study and the results show the lone pair transition has higher stabilization energy compared to all other. The 1H and 13C NMR chemical shifts are calculated using the Gauge-Including Atomic Orbital (GIAO) method with B3LYP/6-311++G (d, p) method. The chemical shifts computed theoretically go very closer to the experimental results. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies and Molecular electrostatic potential (MEP) exhibit the high reactivity nature of the molecule. The non-linear optical property of the DPC molecule predicted theoretically found to be good candidate for NLO material. TG/DTA analysis was made and decomposition of the molecule with respect to the temperature was studied. DPC having the anthelmintic activity is docked in the Hemoglobin of Fasciola hepatica protein. The DPC has been screened to antimicrobial activity and found to exhibit antibacterial effects.
Raicu, Valerică
2018-06-15
Investigations of static or dynamic interactions between proteins or other biological macromolecules in living cells often rely on the use of fluorescent tags with two different colors in conjunction with adequate theoretical descriptions of Förster Resonance Energy Transfer (FRET) and molecular-level micro-spectroscopic technology. One such method based on these general principles is FRET spectrometry, which allows determination of the quaternary structure of biomolecules from cell-level images of the distributions, or spectra of occurrence frequency of FRET efficiencies. Subsequent refinements allowed combining FRET frequency spectra with molecular concentration information, thereby providing the proportion of molecular complexes with various quaternary structures as well as their binding/dissociation energies. In this paper, we build on the mathematical principles underlying FRET spectrometry to propose two new spectrometric methods, which have distinct advantages compared to other methods. One of these methods relies on statistical analysis of color mixing in subpopulations of fluorescently tagged molecules to probe molecular association stoichiometry, while the other exploits the color shift induced by FRET to also derive geometric information in addition to stoichiometry. The appeal of the first method stems from its sheer simplicity, while the strength of the second consists in its ability to provide structural information. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Raicu, Valerică
2018-06-01
Investigations of static or dynamic interactions between proteins or other biological macromolecules in living cells often rely on the use of fluorescent tags with two different colors in conjunction with adequate theoretical descriptions of Förster Resonance Energy Transfer (FRET) and molecular-level micro-spectroscopic technology. One such method based on these general principles is FRET spectrometry, which allows determination of the quaternary structure of biomolecules from cell-level images of the distributions, or spectra of occurrence frequency of FRET efficiencies. Subsequent refinements allowed combining FRET frequency spectra with molecular concentration information, thereby providing the proportion of molecular complexes with various quaternary structures as well as their binding/dissociation energies. In this paper, we build on the mathematical principles underlying FRET spectrometry to propose two new spectrometric methods, which have distinct advantages compared to other methods. One of these methods relies on statistical analysis of color mixing in subpopulations of fluorescently tagged molecules to probe molecular association stoichiometry, while the other exploits the color shift induced by FRET to also derive geometric information in addition to stoichiometry. The appeal of the first method stems from its sheer simplicity, while the strength of the second consists in its ability to provide structural information.
Applications of modern statistical methods to analysis of data in physical science
NASA Astrophysics Data System (ADS)
Wicker, James Eric
Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.
Kim, S-J; Kim, D-K; Kang, D-H
2016-04-01
We investigated and compared the efficacy of a new apparatus for detaching micro-organisms from meat samples. The efficacy of Spindle and stomacher in detaching micro-organisms from meat samples was evaluated. Also, evaluation of appropriateness of suspensions generated by both methods for carrying out molecular biological analysis was implemented. A nearly identical correlation and high R(2) were obtained between Spindle and stomacher in Aerobic Plate Count (APC), and no significant differences were observed in detachment of three major foodborne pathogens. The suspension generated by the Spindle showed lower turbidity and total protein concentration. Also, significantly different threshold cycles were observed in Real-time PCR analysis using suspensions generated by both methods. The Spindle shows nearly identical efficacy with stomacher treatment in detaching micro-organisms from meat samples. Furthermore, the high quality of suspensions generated by the Spindle, in terms of turbidity and total protein assay, allows for a lower threshold cycle than stomached suspension in Real-time PCR. The Spindle could be an alternative method for detaching micro-organisms, yielding a higher quality of suspensions which may be better suited for further molecular microbiological analysis. © 2016 The Society for Applied Microbiology.
Ramazanzadeh, Rashid; Rouhi, Samaneh; Shakib, Pegah; Shahbazi, Babak; Bidarpour, Farzam; Karimi, Mohammad
2015-05-01
Vibrio cholerae causes diarrhoeal disease that afflicts thousands of people annually. V. cholerae is classified on the basis of somatic antigens into serovars or serogroups and there are at least 200 known serogroup. Two serogroups, O1 and O139 have been associated with epidemic diseases. Virulence genes of these bacteria are OmpW, ctxA and tcpA. Due to the importance of V. cholerae infection and developing molecular diagnostics of this organism in medical and microbiology sciences, this study aimed to describe molecular characterization of V. cholerae isolated from clinical samples using a molecular method. In this study, 48 samples were provided during summer 2013 (late August and early September) by reference laboratory. Samples were assessed using biochemical tests initially. The primer of OmpW, ctxA and tcpA genes was used in Polymerase Chain Reaction (PCR) protocols. Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR and Repetitive Extragenic Palindromic (REP)-PCR methods were used to subtype V. cholerae. In this study, from a total of 48 clinical stool samples 39 (81.2 %) were positive for V. cholerae in biochemical tests and bacteria culture tests. The PCR results showed that of 39 positive isolates 35 (89.7%), 34 (87.1%) and 37 (94.8%) were positive for ctxA, tcpA and OmpW gene, respectively. Also, in the REP-PCR method with ERIC primer strains were divided into 10 groups. In the REP-PCR method with REP primer, strains were divided into 13 groups. Polymerase chain reaction has specificity and accuracy for identification of the organism and is able to differentiate biotypes. Enterobacterial repetitive intergenic consensus sequence is one of the informative and discriminative methods for the analysis of V. cholerae diversity. The REP-PCR is a less informative and discriminative method compared to other methods for the analysis of V. cholerae diversity.
Procedures for numerical analysis of circadian rhythms
REFINETTI, ROBERTO; LISSEN, GERMAINE CORNÉ; HALBERG, FRANZ
2010-01-01
This article reviews various procedures used in the analysis of circadian rhythms at the populational, organismal, cellular and molecular levels. The procedures range from visual inspection of time plots and actograms to several mathematical methods of time series analysis. Computational steps are described in some detail, and additional bibliographic resources and computer programs are listed. PMID:23710111
Principal Component Analysis of Microbial Community Data from an Accelerated Decay Cellar Test
Grant T. Kirker; Patricia K. Lebow
2014-01-01
Analysis of microbial communities is a valuable tool for characterization and identification of microbes in a myriad of environments. We are currently using the molecular method terminal restriction fragment length polymorphism (T-RFLP) analysis to characterize changes in bacterial and fungal communities on treated and untreated wood in soil. T-RFLP uses fluorescently...
NASA Astrophysics Data System (ADS)
Olivares-Amaya, Roberto; Hachmann, Johannes; Amador-Bedolla, Carlos; Daly, Aidan; Jinich, Adrian; Atahan-Evrenk, Sule; Boixo, Sergio; Aspuru-Guzik, Alán
2012-02-01
Organic photovoltaic devices have emerged as competitors to silicon-based solar cells, currently reaching efficiencies of over 9% and offering desirable properties for manufacturing and installation. We study conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices with a molecular library motivated by experimental feasibility. We use quantum mechanics and a distributed computing approach to explore this vast molecular space. We will detail the screening approach starting from the generation of the molecular library, which can be easily extended to other kinds of molecular systems. We will describe the screening method for these materials which ranges from descriptor models, ubiquitous in the drug discovery community, to eventually reaching first principles quantum chemistry methods. We will present results on the statistical analysis, based principally on machine learning, specifically partial least squares and Gaussian processes. Alongside, clustering methods and the use of the hypergeometric distribution reveal moieties important for the donor materials and allow us to quantify structure-property relationships. These efforts enable us to accelerate materials discovery in organic photovoltaics through our collaboration with experimental groups.
Diaz, Maureen H; Winchell, Jonas M
2016-01-01
Over the past decade there have been significant advancements in the methods used for detecting and characterizing Mycoplasma pneumoniae, a common cause of respiratory illness and community-acquired pneumonia worldwide. The repertoire of available molecular diagnostics has greatly expanded from nucleic acid amplification techniques (NAATs) that encompass a variety of chemistries used for detection, to more sophisticated characterizing methods such as multi-locus variable-number tandem-repeat analysis (MLVA), Multi-locus sequence typing (MLST), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), single nucleotide polymorphism typing, and numerous macrolide susceptibility profiling methods, among others. These many molecular-based approaches have been developed and employed to continually increase the level of discrimination and characterization in order to better understand the epidemiology and biology of M. pneumoniae. This review will summarize recent molecular techniques and procedures and lend perspective to how each has enhanced the current understanding of this organism and will emphasize how Next Generation Sequencing may serve as a resource for researchers to gain a more comprehensive understanding of the genomic complexities of this insidious pathogen.
Wang, Hsiaoling; Levi, Mark S; Del Grosso, Alfred V; McCormick, William M; Bhattacharyya, Lokesh
2017-05-10
Size exclusion (SE) high performance liquid chromatography (HPLC) is widely used for the molecular size distribution (MSD) analyses of various therapeutic proteins. We report development and validation of a SE-HPLC method for MSD analyses of immunoglobulin G (IgG) in products using a TSKgel SuperSW3000 column and eluting it with 0.4M NaClO 4 , a chaotropic salt, in 40mM phosphate buffer, pH 6.8. The chromatograms show distinct peaks of aggregates, tetramer, and two dimers, as well as the monomer and fragment peaks. In addition, the method offers about half the run time (12min), better peak resolution, improved peak shape and more stable base-line compared to HPLC methods reported in the literature, including that in the European Pharmacopeia (EP). A comparison of MSD analysis results between our method and the EP method shows interactions between the protein and the stationary phase and partial adsorption of aggregates and tetramer on the stationary phase, when the latter method is used. Thus, the EP method shows lower percent of aggregates and tetramer than are actually present in the products. In view of the fact that aggregates have been attributed to playing a critical role in adverse reactions due to IgG products, our observation raises a major concern regarding the actual aggregate content in these products since the EP method is widely used for MSD analyses of IgG products. Our method eliminates (or substantially reduces) the interactions between the proteins and stationary phase as well as the adsorption of proteins onto the column. Our results also show that NaClO 4 in the eluent is more effective in overcoming the protein/column interactions compared to Arg-HCl, another chaotropic salt. NaClO 4 is shown not to affect the molecular size and relative distribution of different molecular forms of IgG. The method validated as per ICH Q2(R1) guideline using IgG products, shows good specificity, accuracy, precision and a linear concentration dependence of peak areas for different molecular forms. In summary, our method gives more reliable results than the SE-HPLC methods for MSD analyses of IgG reported in the literature, including the EP, particularly for aggregates and tetramer. The results are interpreted in terms of ionic (polar) and hydrophobic interactions between the stationary phase and the IgG protein. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.
2015-04-01
A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of Carbamazepine.
Microfluidic approaches to malaria detection
Gascoyne, Peter; Satayavivad, Jutamaad; Ruchirawat, Mathuros
2009-01-01
Microfluidic systems are under development to address a variety of medical problems. Key advantages of micrototal analysis systems based on microfluidic technology are the promise of small size and the integration of sample handling and measurement functions within a single, automated device having low mass-production costs. Here, we review the spectrum of methods currently used to detect malaria, consider their advantages and disadvantages, and discuss their adaptability towards integration into small, automated micro total analysis systems. Molecular amplification methods emerge as leading candidates for chip-based systems because they offer extremely high sensitivity, the ability to recognize malaria species and strain, and they will be adaptable to the detection of new genotypic signatures that will emerge from current genomic-based research of the disease. Current approaches to the development of chip-based molecular amplification are considered with special emphasis on flow-through PCR, and we present for the first time the method of malaria specimen preparation by dielectrophoretic field-flow-fractionation. Although many challenges must be addressed to realize a micrototal analysis system for malaria diagnosis, it is concluded that the potential benefits of the approach are well worth pursuing. PMID:14744562
Patel, Isha R.; Gangiredla, Jayanthi; Lacher, David W.; Mammel, Mark K.; Jackson, Scott A.; Lampel, Keith A.
2016-01-01
ABSTRACT Most Escherichia coli strains are nonpathogenic. However, for clinical diagnosis and food safety analysis, current identification methods for pathogenic E. coli either are time-consuming and/or provide limited information. Here, we utilized a custom DNA microarray with informative genetic features extracted from 368 sequence sets for rapid and high-throughput pathogen identification. The FDA Escherichia coli Identification (FDA-ECID) platform contains three sets of molecularly informative features that together stratify strain identification and relatedness. First, 53 known flagellin alleles, 103 alleles of wzx and wzy, and 5 alleles of wzm provide molecular serotyping utility. Second, 41,932 probe sets representing the pan-genome of E. coli provide strain-level gene content information. Third, approximately 125,000 single nucleotide polymorphisms (SNPs) of available whole-genome sequences (WGS) were distilled to 9,984 SNPs capable of recapitulating the E. coli phylogeny. We analyzed 103 diverse E. coli strains with available WGS data, including those associated with past foodborne illnesses, to determine robustness and accuracy. The array was able to accurately identify the molecular O and H serotypes, potentially correcting serological failures and providing better resolution for H-nontypeable/nonmotile phenotypes. In addition, molecular risk assessment was possible with key virulence marker identifications. Epidemiologically, each strain had a unique comparative genomic fingerprint that was extended to an additional 507 food and clinical isolates. Finally, a 99.7% phylogenetic concordance was established between microarray analysis and WGS using SNP-level data for advanced genome typing. Our study demonstrates FDA-ECID as a powerful tool for epidemiology and molecular risk assessment with the capacity to profile the global landscape and diversity of E. coli. IMPORTANCE This study describes a robust, state-of-the-art platform developed from available whole-genome sequences of E. coli and Shigella spp. by distilling useful signatures for epidemiology and molecular risk assessment into one assay. The FDA-ECID microarray contains features that enable comprehensive molecular serotyping and virulence profiling along with genome-scale genotyping and SNP analysis. Hence, it is a molecular toolbox that stratifies strain identification and pathogenic potential in the contexts of epidemiology and phylogeny. We applied this tool to strains from food, environmental, and clinical sources, resulting in significantly greater phylogenetic and strain-specific resolution than previously reported for available typing methods. PMID:27037122
Morinha, Francisco; Travassos, Paulo; Seixas, Fernanda; Santos, Nuno; Sargo, Roberto; Sousa, Luís; Magalhães, Paula; Cabral, João A; Bastos, Estela
2013-05-01
High-resolution melting (HRM) analysis is a very attractive and flexible advanced post-PCR method with high sensitivity/specificity for simple, fast and cost-effective genotyping based on the detection of specific melting profiles of PCR products. Next generation real-time PCR systems, along with improved saturating DNA-binding dyes, enable the direct acquisition of HRM data after quantitative PCR. Melting behaviour is particularly influenced by the length, nucleotide sequence and GC content of the amplicons. This method is expanding rapidly in several research areas such as human genetics, reproductive biology, microbiology and ecology/conservation of wild populations. Here we have developed a successful HRM protocol for avian sex identification based on the amplification of sex-specific CHD1 fragments. The melting curve patterns allowed efficient sexual differentiation of 111 samples analysed (plucked feathers, muscle tissues, blood and oral cavity epithelial cells) of 14 bird species. In addition, we sequenced the amplified regions of the CHD1 gene and demonstrated the usefulness of this strategy for the genotype discrimination of various amplicons (CHD1Z and CHD1W), which have small size differences, ranging from 2 bp to 44 bp. The established methodology clearly revealed the advantages (e.g. closed-tube system, high sensitivity and rapidity) of a simple HRM assay for accurate sex differentiation of the species under study. The requirements, strengths and limitations of the method are addressed to provide a simple guide for its application in the field of molecular sexing of birds. The high sensitivity and resolution relative to previous real-time PCR methods makes HRM analysis an excellent approach for improving advanced molecular methods for bird sexing. © 2013 Blackwell Publishing Ltd.
POLYVIEW-MM: web-based platform for animation and analysis of molecular simulations
Porollo, Aleksey; Meller, Jaroslaw
2010-01-01
Molecular simulations offer important mechanistic and functional clues in studies of proteins and other macromolecules. However, interpreting the results of such simulations increasingly requires tools that can combine information from multiple structural databases and other web resources, and provide highly integrated and versatile analysis tools. Here, we present a new web server that integrates high-quality animation of molecular motion (MM) with structural and functional analysis of macromolecules. The new tool, dubbed POLYVIEW-MM, enables animation of trajectories generated by molecular dynamics and related simulation techniques, as well as visualization of alternative conformers, e.g. obtained as a result of protein structure prediction methods or small molecule docking. To facilitate structural analysis, POLYVIEW-MM combines interactive view and analysis of conformational changes using Jmol and its tailored extensions, publication quality animation using PyMol, and customizable 2D summary plots that provide an overview of MM, e.g. in terms of changes in secondary structure states and relative solvent accessibility of individual residues in proteins. Furthermore, POLYVIEW-MM integrates visualization with various structural annotations, including automated mapping of known inter-action sites from structural homologs, mapping of cavities and ligand binding sites, transmembrane regions and protein domains. URL: http://polyview.cchmc.org/conform.html. PMID:20504857
Chiral Analysis of Isopulegol by Fourier Transform Molecular Rotational Spectroscopy
NASA Astrophysics Data System (ADS)
Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks
2016-06-01
Chiral analysis on molecules with multiple chiral centers can be performed using pulsed-jet Fourier transform rotational spectroscopy. This analysis includes quantitative measurement of diastereomer products and, with the three wave mixing methods developed by Patterson, Schnell, and Doyle (Nature 497, 475-477 (2013)), quantitative determination of the enantiomeric excess of each diastereomer. The high resolution features enable to perform the analysis directly on complex samples without the need for chromatographic separation. Isopulegol has been chosen to show the capabilities of Fourier transform rotational spectroscopy for chiral analysis. Broadband rotational spectroscopy produces spectra with signal-to-noise ratio exceeding 1000:1. The ability to identify low-abundance (0.1-1%) diastereomers in the sample will be described. Methods to rapidly identify rotational spectra from isotopologues at natural abundance will be shown and the molecular structures obtained from this analysis will be compared to theory. The role that quantum chemistry calculations play in identifying structural minima and estimating their spectroscopic properties to aid spectral analysis will be described. Finally, the implementation of three wave mixing techniques to measure the enantiomeric excess of each diastereomer and determine the absolute configuration of the enantiomer in excess will be described.
Rudkjøbing, Vibeke Børsholt; Thomsen, Trine Rolighed; Xu, Yijuan; Melton-Kreft, Rachael; Ahmed, Azad; Eickhardt, Steffen; Bjarnsholt, Thomas; Poulsen, Steen Seier; Nielsen, Per Halkjær; Earl, Joshua P; Ehrlich, Garth D; Moser, Claus
2016-11-08
Necrotizing soft tissue infections (NSTIs) are a group of infections affecting all soft tissues. NSTI involves necrosis of the afflicted tissue and is potentially life threatening due to major and rapid destruction of tissue, which often leads to septic shock and organ failure. The gold standard for identification of pathogens is culture; however molecular methods for identification of microorganisms may provide a more rapid result and may be able to identify additional microorganisms that are not detected by culture. In this study, tissue samples (n = 20) obtained after debridement of 10 patients with NSTI were analyzed by standard culture, fluorescence in situ hybridization (FISH) and multiple molecular methods. The molecular methods included analysis of microbial diversity by 1) direct 16S and D2LSU rRNA gene Microseq 2) construction of near full-length 16S rRNA gene clone libraries with subsequent Sanger sequencing for most samples, 3) the Ibis T5000 biosensor and 4) 454-based pyrosequencing. Furthermore, quantitative PCR (qPCR) was used to verify and determine the relative abundance of Streptococcus pyogenes in samples. For 70 % of the surgical samples it was possible to identify microorganisms by culture. Some samples did not result in growth (presumably due to administration of antimicrobial therapy prior to sampling). The molecular methods identified microorganisms in 90 % of the samples, and frequently detected additional microorganisms when compared to culture. Although the molecular methods generally gave concordant results, our results indicate that Microseq may misidentify or overlook microorganisms that can be detected by other molecular methods. Half of the patients were found to be infected with S. pyogenes, but several atypical findings were also made including infection by a) Acinetobacter baumannii, b) Streptococcus pneumoniae, and c) fungi, mycoplasma and Fusobacterium necrophorum. The study emphasizes that many pathogens can be involved in NSTIs, and that no specific "NSTI causing" combination of species exists. This means that clinicians should be prepared to diagnose and treat any combination of microbial pathogens. Some of the tested molecular methods offer a faster turnaround time combined with a high specificity, which makes supplemental use of such methods attractive for identification of microorganisms, especially for fulminant life-threatening infections such as NSTI.
Molecular typing of Sarcocystis neurona: current status and future trends.
Elsheikha, Hany M; Mansfield, Linda S
2007-10-21
Sarcocystis neurona is an important protozoal pathogen because it causes the serious neurological disease equine protozoal myeloencephalitis (EPM). The capacity of this organism to cause a wide spectrum of neurological signs in horses and the broad geographic distribution of observed cases in the Americas drive the need for sensitive, reliable and rapid typing methods to characterize strains. Various molecular methods have been developed and used to diagnose EPM due to S. neurona, to identify S. neurona isolates and to determine the heterogeneity and evolutionary relatedness within this species and related Sarcocystis spp. These methods included sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), immuno-fluorescent assay (IFA), slide agglutination test (SAT), SnSAG-specific ELISA, random amplified polymorphic DNA (RAPD), PCR-based restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP) fingerprinting, and sequence analysis of surface protein genes, ribosomal genes, microsatellite alleles and other molecular markers. Here, the utility of these molecular methods is reviewed and evaluated with respect to the need for molecular approaches that utilize well-characterized polymorphic, simple, independent, and stable genetic markers. These tools have the potential to add to knowledge of the genetic population structure of S. neurona and to provide new insights into the pathogenesis of EPM and S. neurona epidemiology. In particular, these methods provide new tools to address the hypothesis that particular genetic variants are associated with adverse clinical outcomes (severe pathotypes). The ultimate goal is to utilize them in future studies to improve treatment and prevention strategies.
NASA Astrophysics Data System (ADS)
Gupta, Ujval; Kumar, Vinay; Singh, Vivek K.; Kant, Rajni; Khajuria, Yugal
2015-04-01
The Fourier Transform Infrared (FTIR), Ultra-Violet Visible (UV-Vis) spectroscopy and Thermogravimetric (TG) analysis of (3,4-dimethoxybenzylidene) propanedinitrile have been carried out and investigated using quantum chemical calculations. The molecular geometry, harmonic vibrational frequencies, Mulliken charges, natural atomic charges and thermodynamic properties in the ground state have been investigated by using Hartree Fock Theory (HF) and Density Functional Theory (DFT) using B3LYP functional with 6-311G(d,p) basis set. Both HF and DFT methods yield good agreement with the experimental data. Vibrational modes are assigned with the help of Vibrational Energy Distribution Analysis (VEDA) program. UV-Visible spectrum was recorded in the spectral range of 190-800 nm and the results are compared with the calculated values using TD-DFT approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results obtained from the studies of Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) are used to calculate molecular parameters like ionization potential, electron affinity, global hardness, electron chemical potential and global electrophilicity.
Application of laser-capture microdissection to analysis of gene expression in the testis.
Sluka, Pavel; O'Donnell, Liza; McLachlan, Robert I; Stanton, Peter G
2008-01-01
The isolation and molecular analysis of highly purified cell populations from complex, heterogeneous tissues has been a challenge for many years. Spermatogenesis in the testis is a particularly difficult process to study given the unique multiple cellular associations within the seminiferous epithelium, making the isolation of specific cell types difficult. Laser-capture microdissection (LCM) is a recently developed technique that enables the isolation of individual cell populations from complex tissues. This technology has enhanced our ability to directly examine gene expression in enriched testicular cell populations by routine methods of gene expression analysis, such as real-time RT-PCR, differential display, and gene microarrays. The application of LCM has however introduced methodological hurdles that have not been encountered with more conventional molecular analyses of whole tissue. In particular, tissue handling (i.e. fixation, storage, and staining), consumables (e.g. slide choice), staining reagents (conventional H&E vs. fluorescence), extraction methods, and downstream applications have all required re-optimisation to facilitate differential gene expression analysis using the small amounts of material obtained using LCM. This review will discuss three critical issues that are essential for successful procurement of cells from testicular tissue sections; tissue morphology, capture success, and maintenance of molecular integrity. The importance of these issues will be discussed with specific reference to the two most commonly used LCM systems; the Arcturus PixCell IIe and PALM systems. The rat testis will be used as a model, and emphasis will be placed on issues of tissue handling, processing, and staining methods, including the application of fluorescence techniques to assist in the identification of cells of interest for the purposes of mRNA expression analysis.
Moreno-Vilet, Lorena; Bostyn, Stéphane; Flores-Montaño, Jose-Luis; Camacho-Ruiz, Rosa-María
2017-12-15
Agave fructans are increasingly important in food industry and nutrition sciences as a potential ingredient of functional food, thus practical analysis tools to characterize them are needed. In view of the importance of the molecular weight on the functional properties of agave fructans, this study has the purpose to optimize a method to determine their molecular weight distribution by HPLC-SEC for industrial application. The optimization was carried out using a simplex method. The optimum conditions obtained were at column temperature of 61.7°C using tri-distilled water without salt, adjusted pH of 5.4 and a flow rate of 0.36mL/min. The exclusion range is from 1 to 49 of polymerization degree (180-7966Da). This proposed method represents an accurate and fast alternative to standard methods involving multiple-detection or hydrolysis of fructans. The industrial applications of this technique might be for quality control, study of fractionation processes and determination of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.
2018-05-01
New charge transfer complex (CTC) between the electron donor 2,3-diaminopyridine (DAP) with the electron acceptor chloranilic (CLA) acid has been synthesized and characterized experimentally and theoretically using a variety of physicochemical techniques. The experimental work included the use of elemental analysis, UV-vis, IR and 1H NMR studies to characterize the complex. Electronic spectra have been carried out in different hydrogen bonded solvents, methanol (MeOH), acetonitrile (AN) and 1:1 mixture from AN-MeOH. The molecular composition of the complex was identified to be 1:1 from Jobs and molar ratio methods. The stability constant was determined using minimum-maximum absorbances method where it recorded high values confirming the high stability of the formed complex. The solid complex was prepared and characterized by elemental analysis that confirmed its formation in 1:1 stoichiometric ratio. Both IR and NMR studies asserted the existence of proton and charge transfers in the formed complex. For supporting the experimental results, DFT computations were carried out using B3LYP/6-31G(d,p) method to compute the optimized structures of the reactants and complex, their geometrical parameters, reactivity parameters, molecular electrostatic potential map and frontier molecular orbitals. The analysis of DFT results strongly confirmed the high stability of the formed complex based on existing charge transfer beside proton transfer hydrogen bonding concordant with experimental results. The origin of electronic spectra was analyzed using TD-DFT method where the observed λmax are strongly consisted with the computed ones. TD-DFT showed the contributed states for various electronic transitions.
Rajani, Vishaal; Carrero, Gustavo; Golan, David E.; de Vries, Gerda; Cairo, Christopher W.
2011-01-01
The diffusion of receptors within the two-dimensional environment of the plasma membrane is a complex process. Although certain components diffuse according to a random walk model (Brownian diffusion), an overwhelming body of work has found that membrane diffusion is nonideal (anomalous diffusion). One of the most powerful methods for studying membrane diffusion is single particle tracking (SPT), which records the trajectory of a label attached to a membrane component of interest. One of the outstanding problems in SPT is the analysis of data to identify the presence of heterogeneity. We have adapted a first-passage time (FPT) algorithm, originally developed for the interpretation of animal movement, for the analysis of SPT data. We discuss the general application of the FPT analysis to molecular diffusion, and use simulations to test the method against data containing known regions of confinement. We conclude that FPT can be used to identify the presence and size of confinement within trajectories of the receptor LFA-1, and these results are consistent with previous reports on the size of LFA-1 clusters. The analysis of trajectory data for cell surface receptors by FPT provides a robust method to determine the presence and size of confined regions of diffusion. PMID:21402028
Choosing and Using Introns in Molecular Phylogenetics
Creer, Simon
2007-01-01
Introns are now commonly used in molecular phylogenetics in an attempt to recover gene trees that are concordant with species trees, but there are a range of genomic, logistical and analytical considerations that are infrequently discussed in empirical studies that utilize intron data. This review outlines expedient approaches for locus selection, overcoming paralogy problems, recombination detection methods and the identification and incorporation of LVHs in molecular systematics. A range of parsimony and Bayesian analytical approaches are also described in order to highlight the methods that can currently be employed to align sequences and treat indels in subsequent analyses. By covering the main points associated with the generation and analysis of intron data, this review aims to provide a comprehensive introduction to using introns (or any non-coding nuclear data partition) in contemporary phylogenetics. PMID:19461984
NASA Astrophysics Data System (ADS)
Nishikawa, Yuji; Ito, Hiroto; Noda, Isao
2018-03-01
A rheo-optical method, based on pulsed compression ATR dynamic infrared linear dichroism (DIRLD) step scan time-resolved-FT-IR/2D-IR spectroscopy, is further improved. By inserting a tungsten carbide block with massive weight between a film sample and a piezo electric actuator, a ring-down response was successfully generated according to the inertial effect. The improved method is used to analyze molecular interactions in cellulose acetate propionate (CAP) films including tricresyl-phosphate (TCP), as compared with cellulose triacetate (CTA) films with the TCP case. The result suggests that the existence of molecular interaction among propionyl groups in the CAP, the TCP's Methyl, and phenyl rings, which is not observed in the CTA-TCP system.
Molecular structure and vibrational spectra of Irinotecan: a density functional theoretical study.
Chinna Babu, P; Sundaraganesan, N; Sudha, S; Aroulmoji, V; Murano, E
2012-12-01
The solid phase FTIR and FT-Raman spectra of Irinotecan have been recorded in the regions 400-4000 and 50-4000 cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d) as basis set. The vibrational frequencies were calculated for Irinotecan by DFT method and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared spectrum was also simulated from the calculated intensities. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis were investigated using theoretical calculations. Copyright © 2012 Elsevier B.V. All rights reserved.
Quantitative analysis of pyroglutamic acid in peptides.
Suzuki, Y; Motoi, H; Sato, K
1999-08-01
A simplified and rapid procedure for the determination of pyroglutamic acid in peptides was developed. The method involves the enzymatic cleavage of an N-terminal pyroglutamate residue using a thermostable pyroglutamate aminopeptidase and isocratic HPLC separation of the resulting enzymatic hydrolysate using a column switching technique. Pyroglutamate aminopeptidase from a thermophilic archaebacteria, Pyrococcus furiosus, cleaves N-terminal pyroglutamic acid residue independent of the molecular weight of the substrate. It cleaves more than 85% of pyroglutamate from peptides whose molecular weight ranges from 362.4 to 4599.4 Da. Thus, a new method is presented that quantitatively estimates N-terminal pyroglutamic acid residue in peptides.
2014-01-01
Background Placenta-mediated pregnancy complications include pre-eclampsia, late pregnancy loss, placental abruption, and the small-for-gestational age newborn. They are leading causes of maternal, fetal, and neonatal morbidity and mortality in developed nations. Women who have experienced these complications are at an elevated risk of recurrence in subsequent pregnancies. However, despite decades of research no effective strategies to prevent recurrence have been identified, until recently. We completed a pooled summary-based meta-analysis that strongly suggests that low-molecular-weight heparin reduces the risk of recurrent placenta-mediated complications. The proposed individual patient data meta-analysis builds on this successful collaboration. The project is called AFFIRM, An individual patient data meta-analysis oF low-molecular-weight heparin For prevention of placenta-medIated pRegnancy coMplications. Methods/Design We conducted a systematic review to identify randomized controlled trials with a low-molecular-weight heparin intervention for the prevention of recurrent placenta-mediated pregnancy complications. Investigators and statisticians representing eight trials met to discuss the outcomes and analysis plan for an individual patient data meta-analysis. An additional trial has since been added for a total of nine eligible trials. The primary analyses from the original trials will be replicated for quality assurance prior to recoding the data from each trial and combining it into a common dataset for analysis. Using the anonymized combined data we will conduct logistic regression and subgroup analyses aimed at identifying which women with previous pregnancy complications benefit most from treatment with low-molecular-weight heparin during pregnancy. Discussion The goal of the proposed individual patient data meta-analysis is a thorough estimation of treatment effects in patients with prior individual placenta-mediated pregnancy complications and exploration of which complications are specifically prevented by low-molecular-weight heparin. Systematic review registration PROSPERO (International Prospective Registry of Systematic Reviews) 23 December 2013, CRD42013006249 PMID:24969227
Lau, Billy T; Ji, Hanlee P
2017-09-21
RNA-Seq measures gene expression by counting sequence reads belonging to unique cDNA fragments. Molecular barcodes commonly in the form of random nucleotides were recently introduced to improve gene expression measures by detecting amplification duplicates, but are susceptible to errors generated during PCR and sequencing. This results in false positive counts, leading to inaccurate transcriptome quantification especially at low input and single-cell RNA amounts where the total number of molecules present is minuscule. To address this issue, we demonstrated the systematic identification of molecular species using transposable error-correcting barcodes that are exponentially expanded to tens of billions of unique labels. We experimentally showed random-mer molecular barcodes suffer from substantial and persistent errors that are difficult to resolve. To assess our method's performance, we applied it to the analysis of known reference RNA standards. By including an inline random-mer molecular barcode, we systematically characterized the presence of sequence errors in random-mer molecular barcodes. We observed that such errors are extensive and become more dominant at low input amounts. We described the first study to use transposable molecular barcodes and its use for studying random-mer molecular barcode errors. Extensive errors found in random-mer molecular barcodes may warrant the use of error correcting barcodes for transcriptome analysis as input amounts decrease.
Fusarium diversity in soil using a specific molecular approach and a cultural approach.
Edel-Hermann, Véronique; Gautheron, Nadine; Mounier, Arnaud; Steinberg, Christian
2015-04-01
Fusarium species are ubiquitous in soil. They cause plant and human diseases and can produce mycotoxins. Surveys of Fusarium species diversity in environmental samples usually rely on laborious culture-based methods. In the present study, we have developed a molecular method to analyze Fusarium diversity directly from soil DNA. We designed primers targeting the translation elongation factor 1-alpha (EF-1α) gene and demonstrated their specificity toward Fusarium using a large collection of fungi. We used the specific primers to construct a clone library from three contrasting soils. Sequence analysis confirmed the specificity of the assay, with 750 clones identified as Fusarium and distributed among eight species or species complexes. The Fusarium oxysporum species complex (FOSC) was the most abundant one in the three soils, followed by the Fusarium solani species complex (FSSC). We then compared our molecular approach results with those obtained by isolating Fusarium colonies on two culture media and identifying species by sequencing part of the EF-1α gene. The 750 isolates were distributed into eight species or species complexes, with the same dominant species as with the cloning method. Sequence diversity was much higher in the clone library than in the isolate collection. The molecular approach proved to be a valuable tool to assess Fusarium diversity in environmental samples. Combined with high throughput sequencing, it will allow for in-depth analysis of large numbers of samples. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Issaoui, Noureddine; Ghalla, Houcine; Muthu, S.; Flakus, H. T.; Oujia, Brahim
2015-02-01
In this work, the molecular structure, harmonic vibrational frequencies, UV, NBO and AIM of 3-thiophenecarboxilic acid (abbreviated as 3-TCA) monomer and dimer has been investigated. The FT-IR and FT-Raman spectra were recorded. The ground-state molecular geometry and vibrational frequencies have been calculated by using the Hartree-Fock (HF) and density functional theory (DFT)/B3LYP methods and 6-311++G(d,p) as a basis set. The fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with VEDA program. Comparison of the observed fundamental vibrational frequencies of 3-TCA with calculated results by HF and DFT methods indicates that B3LYP is better to HF method for molecular vibrational problems. The difference between the observed and scaled wavenumber values is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title compound have been constructed. A study on the Mulliken atomic charges, the electronic properties were performed by time-dependent DFT (TD-DFT) approach, frontier molecular orbitals (HOMO-LUMO), molecular electrostatic potential (MEP) and thermodynamic properties have been performed. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule have been also computed.
Issaoui, Noureddine; Ghalla, Houcine; Muthu, S; Flakus, H T; Oujia, Brahim
2015-02-05
In this work, the molecular structure, harmonic vibrational frequencies, UV, NBO and AIM of 3-thiophenecarboxilic acid (abbreviated as 3-TCA) monomer and dimer has been investigated. The FT-IR and FT-Raman spectra were recorded. The ground-state molecular geometry and vibrational frequencies have been calculated by using the Hartree-Fock (HF) and density functional theory (DFT)/B3LYP methods and 6-311++G(d,p) as a basis set. The fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with VEDA program. Comparison of the observed fundamental vibrational frequencies of 3-TCA with calculated results by HF and DFT methods indicates that B3LYP is better to HF method for molecular vibrational problems. The difference between the observed and scaled wavenumber values is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title compound have been constructed. A study on the Mulliken atomic charges, the electronic properties were performed by time-dependent DFT (TD-DFT) approach, frontier molecular orbitals (HOMO-LUMO), molecular electrostatic potential (MEP) and thermodynamic properties have been performed. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule have been also computed. Copyright © 2014 Elsevier B.V. All rights reserved.
Molecular analysis of microbial diversity in corrosion samples from energy transmission towers.
Oliveira, Valéria M; Lopes-Oliveira, Patrícia F; Passarini, Michel R Z; Menezes, Claudia B A; Oliveira, Walter R C; Rocha, Adriano J; Sette, Lara D
2011-04-01
Microbial diversity in corrosion samples from energy transmission towers was investigated using molecular methods. Ribosomal DNA fragments were used to assemble gene libraries. Sequence analysis indicated 10 bacterial genera within the phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. In the two libraries generated from corroded screw-derived samples, the genus Acinetobacter was the most abundant. Acinetobacter and Clostridium spp. dominated, with similar percentages, in the libraries derived from corrosion scrapings. Fungal clones were affiliated with 14 genera belonging to the phyla Ascomycota and Basidiomycota; of these, Capnobotryella and Fellomyces were the most abundant fungi observed. Several of the microorganisms had not previously been associated with biofilms and corrosion, reinforcing the need to use molecular techniques to achieve a more comprehensive assessment of microbial diversity in environmental samples.
Baba, Takashi; Campbell, J Larry; Le Blanc, J C Yves; Baker, Paul R S
2016-11-01
Electron-induced dissociation or electron impact excitation of ions from organics (EIEIO) was applied to triacylglycerols (TAGs) for in-depth molecular structure analysis using MS. In EIEIO, energetic electrons (∼10 eV) fragmented TAG ions to allow for regioisomeric assignment of identified acyl groups at the sn-2 or sn-1/3 positions of the glycerol backbone. In addition, carbon-carbon double bond locations within the acyl chains could also be assigned by EIEIO. Beyond the analysis of lipid standards, this technique was applied to edible oils and natural lipid extracts to demonstrate the power of this method to provide in-depth structural elucidation of TAG molecular species. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Sathya, K.; Dhamodharan, P.; Dhandapani, M.
2018-05-01
A molecular complex, 1H-benzo[d][1,2,3]triazol-3-ium-3,5-dinitrobenzoate, (BTDB), was synthesized, crystallized and characterized by CHN analysis and 1H, 13C NMR spectral studies. The crystal is transparent in entire visible region as evidenced by UV-Vis-NIR spectrum. TG/DTA analysis shows that BTDB is stable up to 150 °C. Single crystal XRD analysis was carried out to ascertain the molecular structure and BTDB crystallizes in the monoclinic system with space group P21/n. Computational studies that include optimization of molecular geometry, natural bond analysis (NBO), Mulliken population analysis and HOMO-LUMO analysis were performed using Gaussian 09 software by B3LYP method at 6-311G(d,p) level. Hirshfeld surfaces and 2D fingerprint plots revealed that O⋯H, H⋯H and O⋯C interactions are the most prevalent. The first order hyperpolarizability (β) of BITB is 44 times greater than urea. The results show that the BTDB may be used for various opto-electronic applications.
NASA Astrophysics Data System (ADS)
Leenaraj, D. R.; Hubert Joe, I.
2017-06-01
Spectral features of non-opioid analgesic drug flupirtine have been explored by the Fourier transform infrared, Raman and Nuclear magnetic resonance spectroscopic techniques combined with density functional theory computations. The bioactive conformer of flupirtine is stabilized by an intramolecular Csbnd H⋯N hydrogen bonding resulting by the steric strain of hydrogen atoms. Natural bond orbital and natural population analysis support this result. The charge redistribution also has been analyzed. Antimicrobial activities of flupirtine have been screened by agar well disc diffusion and molecular docking methods, which exposes the importance of triaminopyridine in flupirtine.
Theoretical and experimental study of polycyclic aromatic compounds as β-tubulin inhibitors.
Olazarán, Fabian E; García-Pérez, Carlos A; Bandyopadhyay, Debasish; Balderas-Rentería, Isaias; Reyes-Figueroa, Angel D; Henschke, Lars; Rivera, Gildardo
2017-03-01
In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors. Graphical abstract Bennett's acceptance ratio (BAR) method.
Omics Profiling in Precision Oncology*
Yu, Kun-Hsing; Snyder, Michael
2016-01-01
Cancer causes significant morbidity and mortality worldwide, and is the area most targeted in precision medicine. Recent development of high-throughput methods enables detailed omics analysis of the molecular mechanisms underpinning tumor biology. These studies have identified clinically actionable mutations, gene and protein expression patterns associated with prognosis, and provided further insights into the molecular mechanisms indicative of cancer biology and new therapeutics strategies such as immunotherapy. In this review, we summarize the techniques used for tumor omics analysis, recapitulate the key findings in cancer omics studies, and point to areas requiring further research on precision oncology. PMID:27099341
Libert, X; Chasseur, C; Packeu, A; Bureau, F; Roosens, N H; De Keersmaecker, S J C
2016-02-01
Exophiala jeanselmei is an opportunistic pathogenic black yeast growing in humid environments such as water reservoirs of air-conditioning systems. Because this fungal contaminant could be vaporized into the air and subsequently cause health problems, its monitoring is recommended. Currently, this monitoring is based on culture and microscopic identification which are complex, sometimes ambiguous and time-demanding, i.e., up to 21 days. Therefore, molecular, culture-independent methods could be more advantageous for the monitoring of E. jeanselmei. In this study, we developed a SYBR®green real-time PCR assay based on the internal transcribed spacer 2 from the 18S ribosomal DNA complex for the specific detection of E. jeanselmei. The selectivity (100 %), PCR efficiency (95.5 %), dynamic range and repeatability of this qPCR assay were subsequently evaluated. The limit of detection for this qPCR assay was determined to be 1 copy of genomic DNA of E. jeanselmei. Finally, water samples collected from cooling reservoirs were analyzed using this qPCR assay to deliver a proof of concept for the molecular detection of E. jeanselmei in environmental samples. The results obtained by molecular analysis were compared with those of classical methods (i.e., culture and microscopic identification) used in routine analysis and were 100 % matching. This comparison demonstrated that this SYBR®green qPCR assay can be used as a molecular alternative for monitoring and routine investigation of samples contaminated by E. jeanselmei, while eliminating the need for culturing and thereby considerably decreasing the required analysis time to 2 days.
Ruan, Xiaofang; Zhang, Ruisheng; Yao, Xiaojun; Liu, Mancang; Fan, Botao
2007-03-01
Alkylphenols are a group of permanent pollutants in the environment and could adversely disturb the human endocrine system. It is therefore important to effectively separate and measure the alkylphenols. To guide the chromatographic analysis of these compounds in practice, the development of quantitative relationship between the molecular structure and the retention time of alkylphenols becomes necessary. In this study, topological, constitutional, geometrical, electrostatic and quantum-chemical descriptors of 44 alkylphenols were calculated using a software, CODESSA, and these descriptors were pre-selected using the heuristic method. As a result, three-descriptor linear model (LM) was developed to describe the relationship between the molecular structure and the retention time of alkylphenols. Meanwhile, the non-linear regression model was also developed based on support vector machine (SVM) using the same three descriptors. The correlation coefficient (R(2)) for the LM and SVM was 0.98 and 0. 92, and the corresponding root-mean-square error was 0. 99 and 2. 77, respectively. By comparing the stability and prediction ability of the two models, it was found that the linear model was a better method for describing the quantitative relationship between the retention time of alkylphenols and the molecular structure. The results obtained suggested that the linear model could be applied for the chromatographic analysis of alkylphenols with known molecular structural parameters.
Salaba, O; Rylková, K; Vadlejch, J; Petrtýl, M; Scháňková, S; Brožová, A; Jankovská, I; Jebavý, L; Langrová, I
2013-03-01
Trichuris nematodes were isolated from roe deer (Capreolus capreolus). At first, nematodes were determined using morphological and biometrical methods. Subsequently genomic DNA was isolated and the ITS1-5.8S-ITS2 segment from ribosomal DNA (RNA) was amplified and sequenced using PCR techniques. With u sing morphological and biometrical methods, female nematodes were identified as Trichuris globulosa, and the only male was identified as Trichuris ovis. The females were classified into four morphotypes. However, analysis of the internal transcribed spacers (ITS1-5.8S-ITS2) of specimens did not confirm this classification. Moreover, the female individuals morphologically determined as T. globulosa were molecularly identified as Trichuris discolor. In the case of the only male molecular analysis match the result of the molecular identification. Furthermore, a comparative phylogenetic study was carried out with the ITS1 and ITS2 sequences of the Trichuris species from various hosts. A comparison of biometric information from T. discolor individuals from this study was also conducted.
NASA Astrophysics Data System (ADS)
Nagabalasubramanian, P. B.; Periandy, S.; Karabacak, Mehmet; Govindarajan, M.
2015-06-01
The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100 cm-1. The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated.
NASA Astrophysics Data System (ADS)
Chaitanya, K.
2012-02-01
The FT-IR (4000-450 cm -1) and FT-Raman spectra (3500-100 cm -1) of benzophenone 2,4-dicarboxylic acid (2,4-BDA) have been recorded in the condensed state. Density functional theory calculation with B3LYP/6-31G(d,p) basis set have been used to determine ground state molecular geometries (bond lengths and bond angles), harmonic vibrational frequencies, infrared intensities, Raman activities and bonding features of the title compounds. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability ( β0) and related properties ( β, α0 and Δ α) of 2,4-BDA is calculated using HF/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO analysis. The calculated first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charges is also calculated. Because of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-vis spectra and electronic absorption properties were explained and illustrated from the frontier molecular orbitals.
Vorobjev, Y N; Almagro, J C; Hermans, J
1998-09-01
A new method for calculating the total conformational free energy of proteins in water solvent is presented. The method consists of a relatively brief simulation by molecular dynamics with explicit solvent (ES) molecules to produce a set of microstates of the macroscopic conformation. Conformational energy and entropy are obtained from the simulation, the latter in the quasi-harmonic approximation by analysis of the covariance matrix. The implicit solvent (IS) dielectric continuum model is used to calculate the average solvation free energy as the sum of the free energies of creating the solute-size hydrophobic cavity, of the van der Waals solute-solvent interactions, and of the polarization of water solvent by the solute's charges. The reliability of the solvation free energy depends on a number of factors: the details of arrangement of the protein's charges, especially those near the surface; the definition of the molecular surface; and the method chosen for solving the Poisson equation. Molecular dynamics simulation in explicit solvent relaxes the protein's conformation and allows polar surface groups to assume conformations compatible with interaction with solvent, while averaging of internal energy and solvation free energy tend to enhance the precision. Two recently developed methods--SIMS, for calculation of a smooth invariant molecular surface, and FAMBE, for solution of the Poisson equation via a fast adaptive multigrid boundary element--have been employed. The SIMS and FAMBE programs scale linearly with the number of atoms. SIMS is superior to Connolly's MS (molecular surface) program: it is faster, more accurate, and more stable, and it smooths singularities of the molecular surface. Solvation free energies calculated with these two programs do not depend on molecular position or orientation and are stable along a molecular dynamics trajectory. We have applied this method to calculate the conformational free energy of native and intentionally misfolded globular conformations of proteins (the EMBL set of deliberately misfolded proteins) and have obtained good discrimination in favor of the native conformations in all instances.
Zhang, Tao; Wei, Dong-Qing; Chou, Kuo-Chen
2012-03-01
Comparative molecular field analysis (CoMFA) is a widely used 3D-QSAR method by which we can investigate the potential relation between biological activity of compounds and their structural features. In this study, a new application of this approach is presented by combining the molecular modeling with a new developed pharmacophore model specific to CYP1A2 active site. During constructing the model, we used the molecular dynamics simulation and molecular docking method to select the sensible binding conformations for 17 CYP1A2 substrates based on the experimental data. Subsequently, the results obtained via the alignment of binding conformations of substrates were projected onto the active- site residues, upon which a simple blueprint of active site was produced. It was validated by the experimental and computational results that the model did exhibit the high degree of rationality and provide useful insights into the substrate binding. It is anticipated that our approach can be extended to investigate the protein-ligand interactions for many other enzyme-catalyzed systems as well.
Molecular studies of achondroplasia
Nahar, Risha; Saxena, Renu; Kohli, Sudha; Puri, Ratna; Verma, Ishwar Chandra
2009-01-01
Background: Achondroplasia (ACH) is the most frequent form of short-limbed dwarfism, caused by mutations in the FGFR3 gene. It follows an autosomal dominant inheritance, though most cases are sporadic. The molecular techniques are the only available methods to confirm the diagnosis of a skeletal dysplasia. Clinical and radiological features are only suggestive and not confirmatory. The present study was conducted to find out how often the clinical diagnosis of achondroplasia is verified on molecular studies. Materials and Methods: From 1998 through 2007, we carried out molecular analysis for the two common mutations in the FGFR3 gene in 130 cases clinically suspected to have ACH. Results: A diagnostic mutation was identified in 53 (40.8%) cases. The common mutation (1138G>A) was present in 50 (94.7%) of the positive cases, while the rare 1138 G>C substitution was found in three (5.3%). Conclusion: This study shows that confirmation of clinical diagnosis of ACH by molecular genetic testing is essential to distinguish it from other skeletal dysplasias, to plan therapeutic options, and to offer genetic counseling. Management (medical and surgical) in patients confirmed to have ACH, is briefly discussed. PMID:19838370
Sun, Shihao; Wang, Hui; Xie, Jianping; Su, Yue
2016-01-01
Jujube extract is commonly used as a food additive and flavoring. The sensory properties of the extract, especially sweetness, are a critical factor determining the product quality and therefore affecting consumer acceptability. Small molecular carbohydrates make major contribution to the sweetness of the jujube extract, and their types and contents in the extract have direct influence on quality of the product. So, an appropriate qualitative and quantitative method for determination of the carbohydrates is vitally important for quality control of the product. High performance liquid chromatography-evaporative light scattering detection (HPLC-ELSD), liquid chromatography-electronic spay ionization tandem mass spectrometry (LC-ESI-MS/MS), and gas chromatography-mass spectrometry (GC-MS) methods have been developed and applied to determining small molecular carbohydrates in jujube extract, respectively. Eight sugars and alditols were identified from the extract, including rhamnose, xylitol, arabitol, fructose, glucose, inositol, sucrose, and maltose. Comparisons were carried out to investigate the performance of the methods. Although the methods have been found to perform satisfactorily, only three sugars (fructose, glucose and inositol) could be detected by all these methods. Meanwhile, a similar quantitative result for the three sugars can be obtained by the methods. Eight sugars and alditols in the jujube extract were determined by HPLC-ELSD, LC-ESI-MS/MS and GC-MS, respectively. The LC-ELSD method and the LC-ESI-MS/MS method with good precision and accuracy were suitable for quantitative analysis of carbohydrates in jujube extract; although the performance of the GC-MS method for quantitative analysis was inferior to the other methods, it has a wider scope in qualitative analysis. A multi-analysis technique should be adopted in order to obtain complete constituents of about the carbohydrates in jujube extract, and the methods should be employed according to the purpose of analysis.
Budday, Dominik; Leyendecker, Sigrid; van den Bedem, Henry
2015-01-01
Proteins operate and interact with partners by dynamically exchanging between functional substates of a conformational ensemble on a rugged free energy landscape. Understanding how these substates are linked by coordinated, collective motions requires exploring a high-dimensional space, which remains a tremendous challenge. While molecular dynamics simulations can provide atomically detailed insight into the dynamics, computational demands to adequately sample conformational ensembles of large biomolecules and their complexes often require tremendous resources. Kinematic models can provide high-level insights into conformational ensembles and molecular rigidity beyond the reach of molecular dynamics by reducing the dimensionality of the search space. Here, we model a protein as a kinematic linkage and present a new geometric method to characterize molecular rigidity from the constraint manifold Q and its tangent space Q at the current configuration q. In contrast to methods based on combinatorial constraint counting, our method is valid for both generic and non-generic, e.g., singular configurations. Importantly, our geometric approach provides an explicit basis for collective motions along floppy modes, resulting in an efficient procedure to probe conformational space. An atomically detailed structural characterization of coordinated, collective motions would allow us to engineer or allosterically modulate biomolecules by selectively stabilizing conformations that enhance or inhibit function with broad implications for human health. PMID:26213417
NASA Astrophysics Data System (ADS)
Budday, Dominik; Leyendecker, Sigrid; van den Bedem, Henry
2015-10-01
Proteins operate and interact with partners by dynamically exchanging between functional substates of a conformational ensemble on a rugged free energy landscape. Understanding how these substates are linked by coordinated, collective motions requires exploring a high-dimensional space, which remains a tremendous challenge. While molecular dynamics simulations can provide atomically detailed insight into the dynamics, computational demands to adequately sample conformational ensembles of large biomolecules and their complexes often require tremendous resources. Kinematic models can provide high-level insights into conformational ensembles and molecular rigidity beyond the reach of molecular dynamics by reducing the dimensionality of the search space. Here, we model a protein as a kinematic linkage and present a new geometric method to characterize molecular rigidity from the constraint manifold Q and its tangent space Tq Q at the current configuration q. In contrast to methods based on combinatorial constraint counting, our method is valid for both generic and non-generic, e.g., singular configurations. Importantly, our geometric approach provides an explicit basis for collective motions along floppy modes, resulting in an efficient procedure to probe conformational space. An atomically detailed structural characterization of coordinated, collective motions would allow us to engineer or allosterically modulate biomolecules by selectively stabilizing conformations that enhance or inhibit function with broad implications for human health.
Ballu, Srilata; Itteboina, Ramesh; Sivan, Sree Kanth; Manga, Vijjulatha
2018-04-01
Staphylococcus aureus is a gram positive bacterium. It is the leading cause of skin and respiratory infections, osteomyelitis, Ritter's disease, endocarditis, and bacteraemia in the developed world. We employed combined studies of 3D QSAR, molecular docking which are validated by molecular dynamics simulations and in silico ADME prediction have been performed on Isothiazoloquinolones inhibitors against methicillin resistance Staphylococcus aureus. Three-dimensional quantitative structure-activity relationship (3D-QSAR) study was applied using comparative molecular field analysis (CoMFA) with Q 2 of 0.578, R 2 of 0.988, and comparative molecular similarity indices analysis (CoMSIA) with Q 2 of 0.554, R 2 of 0.975. The predictive ability of these model was determined using a test set of molecules that gave acceptable predictive correlation (r 2 Pred) values 0.55 and 0.57 of CoMFA and CoMSIA respectively. Docking, simulations were employed to position the inhibitors into protein active site to find out the most probable binding mode and most reliable conformations. Developed models and Docking methods provide guidance to design molecules with enhanced activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Thomas, Renjith; Hossain, Mossaraf; Mary, Y. Sheena; Resmi, K. S.; Armaković, Stevan; Armaković, Sanja J.; Nanda, Ashis Kumar; Ranjan, Vivek Kumar; Vijayakumar, G.; Van Alsenoy, C.
2018-04-01
Solvent-free synthesis pathway for obtaining two imidazole derivatives (2-chloro-1-(4-methoxyphenyl)-4,5-dimethyl-1H-imidazole (CLMPDI) and 1-(4-bromophenyl)-2-chloro-4,5-dimethyl-1H-imidazole (BPCLDI) has been reported in this work, followed by detailed experimental and computational spectroscopic characterization and reactivity study. Spectroscopic methods encompassed IR, FT-Raman and NMR techniques, with the mutual comparison of experimentally and computationally obtained results at DFT/B3LYP level of theory. Reactivity study based on DFT calculations encompassed molecular orbitals analysis, followed by calculations of molecular electrostatic potential (MEP) and average local ionization energy (ALIE) values, Fukui functions and bond dissociation energies (BDE). Additionally, the stability of title molecules in water has been investigated via molecular dynamics (MD) simulations, while interactivity with aspulvinonedimethylallyl transferase protein has been evaluated by molecular docking procedure. CLMPDI compound showed antimicrobial activity against all four bacterial strain in both gram positive and gram negative bacteria while, BPCLDI showed only in gram positive bacteria, Staphylococcus Aureus (MTCC1144). The first order hyperpolarizability of CLMPDI and BPCLDI are 20.15 and 6.10 times that of the standard NLO material urea.
Maione, Camila; Barbosa, Rommel Melgaço
2018-01-24
Rice is one of the most important staple foods around the world. Authentication of rice is one of the most addressed concerns in the present literature, which includes recognition of its geographical origin and variety, certification of organic rice and many other issues. Good results have been achieved by multivariate data analysis and data mining techniques when combined with specific parameters for ascertaining authenticity and many other useful characteristics of rice, such as quality, yield and others. This paper brings a review of the recent research projects on discrimination and authentication of rice using multivariate data analysis and data mining techniques. We found that data obtained from image processing, molecular and atomic spectroscopy, elemental fingerprinting, genetic markers, molecular content and others are promising sources of information regarding geographical origin, variety and other aspects of rice, being widely used combined with multivariate data analysis techniques. Principal component analysis and linear discriminant analysis are the preferred methods, but several other data classification techniques such as support vector machines, artificial neural networks and others are also frequently present in some studies and show high performance for discrimination of rice.
Topological analysis of long-chain branching patterns in polyolefins.
Bonchev, D; Markel, E; Dekmezian, A
2001-01-01
Patterns in molecular topology and complexity for long-chain branching are quantitatively described. The Wiener number, the topological complexity index, and a new index of 3-starness are used to quantify polymer structure. General formulas for these indices were derived for the cases of 3-arm star, H-shaped, and B-arm comb polymers. The factors affecting complexity in monodisperse polymer systems are ranked as follows: number of arms > arm length > arm central position approximately equal to arm clustering > total molecular weight approximately equal to backbone molecular weight. Topological indices change rapidly and then plateau as the molecular weight of branches on a polyolefin backbone increases from 0 to 5 kD. Complexity calculations relate 2-arm or 3-arm comb structures to the corresponding 3-arm stars of equivalent complexity but much higher molecular weight. In a subsequent paper, we report the application of topological analysis for developing structure/property relationships for monodisperse polymers. While the focus of the present work is on the description of monodisperse, well-defined architectures, the methods may be extended to the description of polydisperse systems.
Individual Biomarkers Using Molecular Personalized Medicine Approaches.
Zenner, Hans P
2017-01-01
Molecular personalized medicine tries to generate individual predictive biomarkers to assist doctors in their decision making. These are thought to improve the efficacy and lower the toxicity of a treatment. The molecular basis of the desired high-precision prediction is modern "omex" technologies providing high-throughput bioanalytical methods. These include genomics and epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, imaging, and functional analyses. In most cases, producing big data also requires a complex biomathematical analysis. Using molecular personalized medicine, the conventional physician's check of biomarker results may no longer be sufficient. By contrast, the physician may need to cooperate with the biomathematician to achieve the desired prediction on the basis of the analysis of individual big data typically produced by omex technologies. Identification of individual biomarkers using molecular personalized medicine approaches is thought to allow a decision-making for the precise use of a targeted therapy, selecting the successful therapeutic tool from a panel of preexisting drugs or medical products. This should avoid the treatment of nonresponders and responders that produces intolerable unwanted effects. © 2017 S. Karger AG, Basel.
Pasi, Marco; Zakrzewska, Krystyna; Maddocks, John H.
2017-01-01
Abstract We propose a method for analyzing the magnitude and direction of curvature within nucleic acids, based on the curvilinear helical axis calculated by Curves+. The method is applied to analyzing curvature within minicircles constructed with varying degrees of over- or under-twisting. Using the molecular dynamics trajectories of three different minicircles, we are able to quantify how curvature varies locally both in space and in time. We also analyze how curvature influences the local environment of the minicircles, notably via increased heterogeneity in the ionic distributions surrounding the double helix. The approach we propose has been integrated into Curves+ and the utilities Canal (time trajectory analysis) and Canion (environmental analysis) and can be used to study a wide variety of static and dynamic structural data on nucleic acids. PMID:28180333
NASA Astrophysics Data System (ADS)
Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong
2017-09-01
Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.
NASA Technical Reports Server (NTRS)
Toth, L. V.; Mattila, K.; Haikala, L.; Balazs, L. G.
1992-01-01
The spectra of the 21cm HI radiation from the direction of L1780, a small high-galactic latitude dark/molecular cloud, were analyzed by multivariate methods. Factor analysis was performed on HI (21cm) spectra in order to separate the different components responsible for the spectral features. The rotated, orthogonal factors explain the spectra as a sum of radiation from the background (an extended HI emission layer), and from the L1780 dark cloud. The coefficients of the cloud-indicator factors were used to locate the HI 'halo' of the molecular cloud. Our statistically derived 'background' and 'cloud' spectral profiles, as well as the spatial distribution of the HI halo emission distribution were compared to the results of a previous study which used conventional methods analyzing nearly the same data set.
Huanca-Mamani, W; Rivera-Cabello, D; Maita-Maita, J
2015-07-17
In this study, we report a modified CTAB-PVP method combined with silicon dioxide (silica) treatment for the extraction of high quality genomic DNA from a single larva or pupa. This method efficiently obtains DNA from small specimens, which is difficult and challenging because of the small amount of starting tissue. Maceration with liquid nitrogen, phenol treatment, and the ethanol precipitation step are eliminated using this methodology. The A260/A280 absorbance ratios of the isolated DNA were approximately 1.8, suggesting that the DNA is pure and can be used for further molecular analysis. The quality of the isolated DNA permits molecular applications and represents a fast, cheap, and effective alternative method for laboratories with low budgets.
Akperova, G A
2014-11-01
IThe purpose of this study was to evaluate of the efficiency of RDBH-method and Big DyeTM Terminator technology in an accurate diagnosis of β-thalassemia and the allelic polymorphism of β-globin cluster. It was done a complete hematology analysis (HB, MCH, MCV, MCHC, RBC, Hct, HbA2, HbF, Serum iron, Serum ferritin at four children (males, 6-10 years old) and their parents. Molecular analysis included Reverse Dot-Blot Hybridization StripAssay (RDBH) and DNA sequencing on ABI PRISM Big DyeTM Terminator. Hematologic and molecular parameters were contradictory. The homozygosity for β0-thalassemia (β0IVS2.1[G>A] and β0codon 8[-AA]) at three boys with the mild clinical manifestation and heterozygosity of their parents for mutations, and the absence of β-globin mutations at parents and a boy who holds monthly transfusion was established by RDBH-analysis. DNA sequencing by technology Big DyeTM Terminator showed polymorphism at positions -551 and -521 of Cap5'-region (-650-250) - (AT)7(T)7 and (AT)8(T)5. Application of the integrated clinical-molecular approach is an ideal method for an accurate diagnosis, identification of asymptomatic carriers and a reduce of the risk of complications from β-thalassemia, moreover screening of γG-gene and the level of fetal hemoglobin in early childhood will help manage of β-thalassemia clinic and prevent heavy consequences of the disease.
NASA Astrophysics Data System (ADS)
Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Anbalagan, G.
2013-12-01
New organic crystals of 2,4,6-triamino-1,3,5-triazin-1-ium 3-(prop-2-enoyloxy) propanoate acrylic acid monosolvate monohydrate (MAC) have been obtained from aqueous solution by the slow solvent evaporation method at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallises in the triclinic system with centrosymmetric space group P-1. FT-IR and FT-Raman spectra of MAC have been recorded and analyzed. The molecular geometry and vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimization based on density functional theory (DFT) B3LYP method with 6-31G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction data. The theoretical results show that the optimized geometry can well reproduce the crystal structure, and the calculated vibrational frequency values show good agreement with experimental values. A study of the electronic properties, such as HOMO and LUMO energies and Molecular electrostatic potential (MEP) were performed. Mulliken charges and NBO charges of the title molecule were also calculated and interpreted. Thermogravimetric analysis has been done to study the thermal behaviour of MAC. The 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.
Methods for the Study of Gonadal Development.
Piprek, Rafal P
2016-01-01
Current knowledge on gonadal development and sex determination is the product of many decades of research involving a variety of scientific methods from different biological disciplines such as histology, genetics, biochemistry, and molecular biology. The earliest embryological investigations, followed by the invention of microscopy and staining methods, were based on histological examinations. The most robust development of histological staining techniques occurred in the second half of the nineteenth century and resulted in structural descriptions of gonadogenesis. These first studies on gonadal development were conducted on domesticated animals; however, currently the mouse is the most extensively studied species. The next key point in the study of gonadogenesis was the advancement of methods allowing for the in vitro culture of fetal gonads. For instance, this led to the description of the origin of cell lines forming the gonads. Protein detection using antibodies and immunolabeling methods and the use of reporter genes were also invaluable for developmental studies, enabling the visualization of the formation of gonadal structure. Recently, genetic and molecular biology techniques, especially gene expression analysis, have revolutionized studies on gonadogenesis and have provided insight into the molecular mechanisms that govern this process. The successive invention of new methods is reflected in the progress of research on gonadal development.
Integrating protein structural dynamics and evolutionary analysis with Bio3D.
Skjærven, Lars; Yao, Xin-Qiu; Scarabelli, Guido; Grant, Barry J
2014-12-10
Popular bioinformatics approaches for studying protein functional dynamics include comparisons of crystallographic structures, molecular dynamics simulations and normal mode analysis. However, determining how observed displacements and predicted motions from these traditionally separate analyses relate to each other, as well as to the evolution of sequence, structure and function within large protein families, remains a considerable challenge. This is in part due to the general lack of tools that integrate information of molecular structure, dynamics and evolution. Here, we describe the integration of new methodologies for evolutionary sequence, structure and simulation analysis into the Bio3D package. This major update includes unique high-throughput normal mode analysis for examining and contrasting the dynamics of related proteins with non-identical sequences and structures, as well as new methods for quantifying dynamical couplings and their residue-wise dissection from correlation network analysis. These new methodologies are integrated with major biomolecular databases as well as established methods for evolutionary sequence and comparative structural analysis. New functionality for directly comparing results derived from normal modes, molecular dynamics and principal component analysis of heterogeneous experimental structure distributions is also included. We demonstrate these integrated capabilities with example applications to dihydrofolate reductase and heterotrimeric G-protein families along with a discussion of the mechanistic insight provided in each case. The integration of structural dynamics and evolutionary analysis in Bio3D enables researchers to go beyond a prediction of single protein dynamics to investigate dynamical features across large protein families. The Bio3D package is distributed with full source code and extensive documentation as a platform independent R package under a GPL2 license from http://thegrantlab.org/bio3d/ .
Ammonia Analysis by Gas Chromatograph/Infrared Detector (GC/IRD)
NASA Technical Reports Server (NTRS)
Scott, Joseph P.; Whitfield, Steve W.
2003-01-01
Methods are being developed at Marshall Space Flight Center's Toxicity Lab on a CG/IRD System that will be used to detect ammonia in low part per million (ppm) levels. These methods will allow analysis of gas samples by syringe injections. The GC is equipped with a unique cryogenic-cooled inlet system that will enable our lab to make large injections of a gas sample. Although the initial focus of the work will be analysis of ammonia, this instrument could identify other compounds on a molecular level. If proper methods can be developed, the IRD could work as a powerful addition to our offgassing capabilities.
Tang, Weiyang; Li, Guizhen; Row, Kyung Ho; Zhu, Tao
2016-05-15
A novel double-templates technique was adopted for solid-phase extraction packing agent, and the obtained hybrid molecularly imprinted polymers with double-templates (theophylline and chlorogenic acid) were characterized by fourier transform infrared and field emission scanning electron microscope. The molecular recognition ability and binding capability for theophylline and chlorogenic acid of polymers was evaluated by static absorption and dynamic adsorption curves. A rapid and accurate approach was established for simultaneous purification of theophylline and chlorogenic acid in green tea by coupling hybrid molecularly imprinted solid-phase extraction with high performance liquid chromatography. With optimization of SPE procedure, a reliable analytical method was developed for highly recognition towards theophylline and chlorogenic acid in green tea with satisfactory extraction recoveries (theophylline: 96.7% and chlorogenic acid: 95.8%). The limit of detection and limit of quantity of the method were 0.01 μg/mL and 0.03 μg/mL for theophylline, 0.05 μg/mL and 0.17 μg/mL for chlorogenic acid, respectively. The recoveries of proposed method at three spiked levels analysis were 98.7-100.8% and 98.3-100.2%, respectively, with the relative standard deviation less than 1.9%. Hybrid molecularly imprinted polymers with double-templates showed good performance for two kinds of targets, and the proposed approach with high affinity of hybrid molecularly imprinted polymers might offer a novel method for the purification of complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Adelson, David; Brown, Fred; Chaudhri, Naeem
2017-01-01
The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice. PMID:28812013
Banjar, Haneen; Adelson, David; Brown, Fred; Chaudhri, Naeem
2017-01-01
The use of intelligent techniques in medicine has brought a ray of hope in terms of treating leukaemia patients. Personalized treatment uses patient's genetic profile to select a mode of treatment. This process makes use of molecular technology and machine learning, to determine the most suitable approach to treating a leukaemia patient. Until now, no reviews have been published from a computational perspective concerning the development of personalized medicine intelligent techniques for leukaemia patients using molecular data analysis. This review studies the published empirical research on personalized medicine in leukaemia and synthesizes findings across studies related to intelligence techniques in leukaemia, with specific attention to particular categories of these studies to help identify opportunities for further research into personalized medicine support systems in chronic myeloid leukaemia. A systematic search was carried out to identify studies using intelligence techniques in leukaemia and to categorize these studies based on leukaemia type and also the task, data source, and purpose of the studies. Most studies used molecular data analysis for personalized medicine, but future advancement for leukaemia patients requires molecular models that use advanced machine-learning methods to automate decision-making in treatment management to deliver supportive medical information to the patient in clinical practice.
Investigation of binding features: effects on the interaction between CYP2A6 and inhibitors.
Ai, Chunzhi; Li, Yan; Wang, Yonghua; Li, Wei; Dong, Peipei; Ge, Guangbo; Yang, Ling
2010-07-15
A computational investigation has been carried out on CYP2A6 and its naphthalene inhibitors to explore the crucial molecular features contributing to binding specificity. The molecular bioactive orientations were obtained by docking (FlexX) these compounds into the active site of the enzyme. And the density functional theory method was further used to optimize the molecular structures with the subsequent analysis of molecular lipophilic potential (MLP) and molecular electrostatic potential (MEP). The minimal MLPs, minimal MEPs, and the band gap energies (the energy difference between the highest occupied molecular orbital and lowest unoccupied molecular orbital) showed high correlations with the inhibition activities (pIC(50)s), illustrating their significant roles in driving the inhibitor to adopt an appropriate bioactive conformation oriented in the active site of CYP2A6 enzyme. The differences in MLPs, MEPs, and the orbital energies have been identified as key features in determining the binding specificity of this series of compounds to CYP2A6 and the consequent inhibitory effects. In addition, the combinational use of the docking, MLP and MEP analysis is also demonstrated as a good attempt to gain an insight into the interaction between CYP2A6 and its inhibitors. Copyright 2010 Wiley Periodicals, Inc.
Phylogenetic relationships of Malassezia species based on multilocus sequence analysis.
Castellá, Gemma; Coutinho, Selene Dall' Acqua; Cabañes, F Javier
2014-01-01
Members of the genus Malassezia are lipophilic basidiomycetous yeasts, which are part of the normal cutaneous microbiota of humans and other warm-blooded animals. Currently, this genus consists of 14 species that have been characterized by phenetic and molecular methods. Although several molecular methods have been used to identify and/or differentiate Malassezia species, the sequencing of the rRNA genes and the chitin synthase-2 gene (CHS2) are the most widely employed. There is little information about the β-tubulin gene in the genus Malassezia, a gene has been used for the analysis of complex species groups. The aim of the present study was to sequence a fragment of the β-tubulin gene of Malassezia species and analyze their phylogenetic relationship using a multilocus sequence approach based on two rRNA genes (ITS including 5.8S rRNA and D1/D2 region of 26S rRNA) together with two protein encoding genes (CHS2 and β-tubulin). The phylogenetic study of the partial β-tubulin gene sequences indicated that this molecular marker can be used to assess diversity and identify new species. The multilocus sequence analysis of the four loci provides robust support to delineate species at the terminal nodes and could help to estimate divergence times for the origin and diversification of Malassezia species.
Tamura, Koichiro; Peterson, Daniel; Peterson, Nicholas; Stecher, Glen; Nei, Masatoshi; Kumar, Sudhir
2011-01-01
Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net. PMID:21546353
Bergman, Juraj; Mitrikeski, Petar T.
2015-01-01
Summary Sporulation efficiency in the yeast Saccharomyces cerevisiae is a well-established model for studying quantitative traits. A variety of genes and nucleotides causing different sporulation efficiencies in laboratory, as well as in wild strains, has already been extensively characterised (mainly by reciprocal hemizygosity analysis and nucleotide exchange methods). We applied a different strategy in order to analyze the variation in sporulation efficiency of laboratory yeast strains. Coupling classical quantitative genetic analysis with simulations of phenotypic distributions (a method we call phenotype modelling) enabled us to obtain a detailed picture of the quantitative trait loci (QTLs) relationships underlying the phenotypic variation of this trait. Using this approach, we were able to uncover a dominant epistatic inheritance of loci governing the phenotype. Moreover, a molecular analysis of known causative quantitative trait genes and nucleotides allowed for the detection of novel alleles, potentially responsible for the observed phenotypic variation. Based on the molecular data, we hypothesise that the observed dominant epistatic relationship could be caused by the interaction of multiple quantitative trait nucleotides distributed across a 60--kb QTL region located on chromosome XIV and the RME1 locus on chromosome VII. Furthermore, we propose a model of molecular pathways which possibly underlie the phenotypic variation of this trait. PMID:27904371
Chattopadhyay, Aditya; Zheng, Min; Waller, Mark Paul; Priyakumar, U Deva
2018-05-23
Knowledge of the structure and dynamics of biomolecules is essential for elucidating the underlying mechanisms of biological processes. Given the stochastic nature of many biological processes, like protein unfolding, it's almost impossible that two independent simulations will generate the exact same sequence of events, which makes direct analysis of simulations difficult. Statistical models like Markov Chains, transition networks etc. help in shedding some light on the mechanistic nature of such processes by predicting long-time dynamics of these systems from short simulations. However, such methods fall short in analyzing trajectories with partial or no temporal information, for example, replica exchange molecular dynamics or Monte Carlo simulations. In this work we propose a probabilistic algorithm, borrowing concepts from graph theory and machine learning, to extract reactive pathways from molecular trajectories in the absence of temporal data. A suitable vector representation was chosen to represent each frame in the macromolecular trajectory (as a series of interaction and conformational energies) and dimensionality reduction was performed using principal component analysis (PCA). The trajectory was then clustered using a density-based clustering algorithm, where each cluster represents a metastable state on the potential energy surface (PES) of the biomolecule under study. A graph was created with these clusters as nodes with the edges learnt using an iterative expectation maximization algorithm. The most reactive path is conceived as the widest path along this graph. We have tested our method on RNA hairpin unfolding trajectory in aqueous urea solution. Our method makes the understanding of the mechanism of unfolding in RNA hairpin molecule more tractable. As this method doesn't rely on temporal data it can be used to analyze trajectories from Monte Carlo sampling techniques and replica exchange molecular dynamics (REMD).
Alessandria, Valentina; Rantsiou, Kalliopi; Dolci, Paola; Cocolin, Luca
2010-07-31
In this study we investigated the occurrence of Listeria monocytogenes in a dairy processing plant during two sampling campaigns in 2007 and 2008. Samples represented by semifinished and finished cheeses, swabs from the equipment and brines from the salting step, were subjected to analysis by using traditional and molecular methods, represented mainly by quantitative PCR. Comparing the results obtained by the application of the two approaches used, it became evident how traditional microbiological analysis underestimated the presence of L. monocytogenes in the dairy plant. Especially samples of the brines and the equipment swabs were positive only with qPCR. For some equipment swabs it was possible to detect a load of 10(4)-10(5) cfu/cm(2), while the modified ISO method employed gave negative results both before and after the enrichment step. The evidences collected during the first sampling year, highlighting a heavy contamination of the brines and of the equipment, lead to the implementation of specific actions that decreased the contamination in these samples during the 2008 campaign. However, no reduction in the number of L. monocytogenes positive final products was observed, suggesting that a more strict control is necessary to avoid the presence of the pathogen. All the isolates of L. monocytogenes were able to attach to abiotic surfaces, and, interestingly, considering the results obtained from their molecular characterization it became evident how strains present in the brines, were genetically connected with isolates from the equipment and from the final product, suggesting a clear route of contamination of the pathogen in the dairy plant. This study underlines the necessity to use appropriate analytical tools, such as molecular methods, to fully understand the spread and persistence of L. monocytogenes in food producing companies. Copyright 2010 Elsevier B.V. All rights reserved.
TUBEs-Mass Spectrometry for Identification and Analysis of the Ubiquitin-Proteome.
Azkargorta, Mikel; Escobes, Iraide; Elortza, Felix; Matthiesen, Rune; Rodríguez, Manuel S
2016-01-01
Mass spectrometry (MS) has become the method of choice for the large-scale analysis of protein ubiquitylation. There exist a number of proposed methods for mapping ubiquitin sites, each with different pros and cons. We present here a protocol for the MS analysis of the ubiquitin-proteome captured by TUBEs and subsequent data analysis. Using dedicated software and algorithms, specific information on the presence of ubiquitylated peptides can be obtained from the MS search results. In addition, a quantitative and functional analysis of the ubiquitylated proteins and their interacting partners helps to unravel the biological and molecular processes they are involved in.
Random amplified polymorphic DNA PCR in the teaching of molecular epidemiology.
Reinoso, Elina B; Bettera, Susana G
2016-07-08
In this article, we describe a basic practical laboratory designed for fifth-year undergraduate students of Microbiology as part of the Epidemiology course. This practice provides the students with the tools for molecular epidemiological analysis of pathogenic microorganisms using a rapid and simple PCR technique. The aim of this work was to assay RAPD-PCR technique in order to infer possible epidemiological relationships. The activity gives students an appreciation of the value of applying a simple molecular biological method as RAPD-PCR to a discipline-specific question. It comprises a three-session laboratory module to genetically assay DNAs from strains isolated from a food outbreak. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(4):391-396, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.
A Molecular Dynamic Modeling of Hemoglobin-Hemoglobin Interactions
NASA Astrophysics Data System (ADS)
Wu, Tao; Yang, Ye; Sheldon Wang, X.; Cohen, Barry; Ge, Hongya
2010-05-01
In this paper, we present a study of hemoglobin-hemoglobin interaction with model reduction methods. We begin with a simple spring-mass system with given parameters (mass and stiffness). With this known system, we compare the mode superposition method with Singular Value Decomposition (SVD) based Principal Component Analysis (PCA). Through PCA we are able to recover the principal direction of this system, namely the model direction. This model direction will be matched with the eigenvector derived from mode superposition analysis. The same technique will be implemented in a much more complicated hemoglobin-hemoglobin molecule interaction model, in which thousands of atoms in hemoglobin molecules are coupled with tens of thousands of T3 water molecule models. In this model, complex inter-atomic and inter-molecular potentials are replaced by nonlinear springs. We employ the same method to get the most significant modes and their frequencies of this complex dynamical system. More complex physical phenomena can then be further studied by these coarse grained models.
Single-Molecule Studies of Actin Assembly and Disassembly Factors
Smith, Benjamin A.; Gelles, Jeff; Goode, Bruce L.
2014-01-01
The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks. PMID:24630103
Cai, Tian; Guo, Ze-Qin; Xu, Xiao-Ying; Wu, Zhi-Jun
2018-03-01
Liquid chromatography-Mass Spectrometry (LC-MS) has been widely used in natural product analysis. Global detection and identification of nontargeted components are desirable in natural product research, for example, in quality control of Chinese herbal medicine. Nontargeted components analysis continues to expand to exciting life science application domains such as metabonomics. With this background, the present review summarizes recent developments in the analysis of minor unknown natural products using LC-MS and mainly focuses on the determination of the molecular formulae, selection of precursor ions, and characteristic fragmentation patterns of the known compounds. This review consists of three parts. Firstly, the methods used to determine unique molecular formula of unknown compounds such as accurate mass measurements, MS n spectra, or relative isotopic abundance information, are introduced. Secondly, the methods improving signal-to-noise ratio of MS/MS spectra by manual-MS/MS or workflow targeting-only signals were elucidated; pure precursor ions can be selected by changing the precursor ion isolated window. Lastly, characteristic fragmentation patterns such as Retro-Diels-Alder (RDA), McLafferty rearrangements, "internal residue loss," and so on, occurring in the molecular ions of natural products are summarized. Classical application of characteristic fragmentation patterns in identifying unknown compounds in extracts and relevant fragmentation mechanisms are presented (RDA reactions occurring readily in the molecular ions of flavanones or isoflavanones, McLafferty-type fragmentation reactions of some natural products such as epipolythiodioxopiperazines; fragmentation by "internal residue loss" possibly involving ion-neutral complex intermediates). © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:202-216, 2018. © 2016 Wiley Periodicals, Inc.
Christensen, Paul A.; Ni, Yunyun; Bao, Feifei; Hendrickson, Heather L.; Greenwood, Michael; Thomas, Jessica S.; Long, S. Wesley; Olsen, Randall J.
2017-01-01
Introduction: Next-generation-sequencing (NGS) is increasingly used in clinical and research protocols for patients with cancer. NGS assays are routinely used in clinical laboratories to detect mutations bearing on cancer diagnosis, prognosis and personalized therapy. A typical assay may interrogate 50 or more gene targets that encompass many thousands of possible gene variants. Analysis of NGS data in cancer is a labor-intensive process that can become overwhelming to the molecular pathologist or research scientist. Although commercial tools for NGS data analysis and interpretation are available, they are often costly, lack key functionality or cannot be customized by the end user. Methods: To facilitate NGS data analysis in our clinical molecular diagnostics laboratory, we created a custom bioinformatics tool termed Houston Methodist Variant Viewer (HMVV). HMVV is a Java-based solution that integrates sequencing instrument output, bioinformatics analysis, storage resources and end user interface. Results: Compared to the predicate method used in our clinical laboratory, HMVV markedly simplifies the bioinformatics workflow for the molecular technologist and facilitates the variant review by the molecular pathologist. Importantly, HMVV reduces time spent researching the biological significance of the variants detected, standardizes the online resources used to perform the variant investigation and assists generation of the annotated report for the electronic medical record. HMVV also maintains a searchable variant database, including the variant annotations generated by the pathologist, which is useful for downstream quality improvement and research projects. Conclusions: HMVV is a clinical grade, low-cost, feature-rich, highly customizable platform that we have made available for continued development by the pathology informatics community. PMID:29226007
USDA-ARS?s Scientific Manuscript database
A computational chemistry analysis of six unique tautomers of cyromazine, a pesticide used for fly control, was performed with density functional theory (DFT) and canonical second order Møller–Plesset perturbation theory (MP2) methods to gain insight into the contributions of molecular structure to ...
Lee, Chin Mei; Sieo, Chin Chin; Cheah, Yoke-Kqueen; Abdullah, Norhani; Ho, Yin Wan
2012-02-01
Four repetitive element sequence-based polymerase chain reaction (rep-PCR) methods, namely repetitive extragenic palindromic PCR (REP-PCR), enterobacterial repetitive intergenic consensus PCR (ERIC-PCR), polytrinucleotide (GTG)₅ -PCR and BOX-PCR, were evaluated for the molecular differentiation of 12 probiotic Lactobacillus strains previously isolated from the gastrointestinal tract of chickens and used as a multistrain probiotic. This study represents the first analysis of the comparative efficacy of these four rep-PCR methods and their combination (composite rep-PCR) in the molecular typing of Lactobacillus strains based on a discriminatory index (D). Species-specific and strain-specific profiles were observed from rep-PCR. From the numerical analysis of composite rep-PCR, BOX-PCR, (GTG)₅ -PCR, REP-PCR and ERIC-PCR, D values of 0.9118, 0.9044, 0.8897, 0.8750 and 0.8529 respectively were obtained. Composite rep-PCR analysis was the most discriminative method, with eight Lactobacillus strains, namely L. brevis ATCC 14869(T) , L. reuteri C 10, L. reuteri ATCC 23272(T) , L. gallinarum ATCC 33199(T) , L. salivarius ATCC 11741(T) , L. salivarius I 24, L. panis JCM 11053(T) and L. panis C 17, being differentiated at the strain level. Composite rep-PCR analysis is potentially a useful fingerprinting method to discriminate probiotic Lactobacillus strains isolated from the gastrointestinal tract of chickens. Copyright © 2011 Society of Chemical Industry.
A procedure for Alcian blue staining of mucins on polyvinylidene difluoride membranes.
Dong, Weijie; Matsuno, Yu-ki; Kameyama, Akihiko
2012-10-16
The isolation and characterization of mucins are critically important for obtaining insight into the molecular pathology of various diseases, including cancers and cystic fibrosis. Recently, we developed a novel membrane electrophoretic method, supported molecular matrix electrophoresis (SMME), which separates mucins on a polyvinylidene difluoride (PVDF) membrane impregnated with a hydrophilic polymer. Alcian blue staining is widely used to visualize mucopolysaccharides and acidic mucins on both blotted membranes and SMME membranes; however, this method cannot be used to stain mucins with a low acidic glycan content. Meanwhile, periodic acid-Schiff staining can selectively visualize glycoproteins, including mucins, but is incompatible with glycan analysis, which is indispensable for mucin characterizations. Here we describe a novel staining method, designated succinylation-Alcian blue staining, for visualizing mucins on a PVDF membrane. This method can visualize mucins regardless of the acidic residue content and shows a sensitivity 2-fold higher than that of Pro-Q Emerald 488, a fluorescent periodate Schiff-base stain. Furthermore, we demonstrate the compatibility of this novel staining procedure with glycan analysis using porcine gastric mucin as a model mucin.
Molecular tools for carotenogenesis analysis in the zygomycete Mucor circinelloides.
Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M; Garre, Victoriano; López-García, Sergio; Navarro, Eusebio; Vila, Ana
2012-01-01
The carotene producer fungus Mucor circinelloides is the zygomycete more amenable to genetic manipulations by using molecular tools. Since the initial development of an effective procedure of genetic transformation, more than two decades ago, the availability of new molecular approaches such as gene replacement techniques and gene expression inactivation by RNA silencing, in addition to the sequencing of its genome, has made Mucor a valuable organism for the study of a number of processes. Here we describe in detail the main techniques and methods currently used to manipulate M. circinelloides, including transformation, gene replacement, gene silencing, RNAi, and immunoprecipitation.
Molecular profiles to biology and pathways: a systems biology approach.
Van Laere, Steven; Dirix, Luc; Vermeulen, Peter
2016-06-16
Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.
Hernández-Osorio, L A; Márquez-Dueñas, C; Florencio-Martínez, L E; Ballesteros-Rodea, G; Martínez-Calvillo, S; Manning-Cela, R G
2010-01-01
Trypanosoma cruzi undergoes a biphasic life cycle that consists of four alternate developmental stages. In vitro conditions to obtain a synchronic transformation and efficient rates of pure intermediate forms (IFs), which are indispensable for further biochemical, biological, and molecular studies, have not been reported. In the present study, we established an improved method to obtain IFs from secondary amastigogenesis. During the transformation kinetics, we observed progressive decreases in the size of the parasite body, undulating membrane and flagellum that were concomitant with nucleus remodeling and kinetoplast displacement. In addition, a gradual reduction in parasite movement and acquisition of the amastigote-specific Ssp4 antigen were observed. Therefore, our results showed that the in vitro conditions used obtained large quantities of highly synchronous and pure IFs that were clearly distinguished by morphometrical and molecular analyses. Obtaining these IFs represents the first step towards an understanding of the molecular mechanisms involved in amastigogenesis.
Analysis of nanoscale two-phase flow of argon using molecular dynamics
NASA Astrophysics Data System (ADS)
Verma, Abhishek Kumar; Kumar, Rakesh
2014-12-01
Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.
Mairinger, Fabian D; Walter, Robert Fh; Vollbrecht, Claudia; Hager, Thomas; Worm, Karl; Ting, Saskia; Wohlschläger, Jeremias; Zarogoulidis, Paul; Zarogoulidis, Konstantinos; Schmid, Kurt W
2014-01-01
Isothermal multiple displacement amplification (IMDA) can be a powerful tool in molecular routine diagnostics for homogeneous and sequence-independent whole-genome amplification of notably small tumor samples, eg, microcarcinomas and biopsies containing a small amount of tumor. Currently, this method is not well established in pathology laboratories. We designed a study to confirm the feasibility and convenience of this method for routine diagnostics with formalin-fixed, paraffin-embedded samples prepared by laser-capture microdissection. A total of 250 μg DNA (concentration 5 μg/μL) was generated by amplification over a period of 8 hours with a material input of approximately 25 cells, approximately equivalent to 175 pg of genomic DNA. In the generated DNA, a representation of all chromosomes could be shown and the presence of elected genes relevant for diagnosis in clinical samples could be proven. Mutational analysis of clinical samples could be performed without any difficulty and showed concordance with earlier diagnostic findings. We established the feasibility and convenience of IMDA for routine diagnostics. We also showed that small amounts of DNA, which were not analyzable with current molecular methods, could be sufficient for a wide field of applications in molecular routine diagnostics when they are preamplified with IMDA.
NASA Astrophysics Data System (ADS)
Shalashilin, Dmitrii V.; Beddard, Godfrey S.; Paci, Emanuele; Glowacki, David R.
2012-10-01
Molecular dynamics (MD) methods are increasingly widespread, but simulation of rare events in complex molecular systems remains a challenge. We recently introduced the boxed molecular dynamics (BXD) method, which accelerates rare events, and simultaneously provides both kinetic and thermodynamic information. We illustrate how the BXD method may be used to obtain high-resolution kinetic data from explicit MD simulations, spanning picoseconds to microseconds. The method is applied to investigate the loop formation dynamics and kinetics of cyclisation for a range of polypeptides, and recovers a power law dependence of the instantaneous rate coefficient over six orders of magnitude in time, in good agreement with experimental observations. Analysis of our BXD results shows that this power law behaviour arises when there is a broad and nearly uniform spectrum of reaction rate coefficients. For the systems investigated in this work, where the free energy surfaces have relatively small barriers, the kinetics is very sensitive to the initial conditions: strongly non-equilibrium conditions give rise to power law kinetics, while equilibrium initial conditions result in a rate coefficient with only a weak dependence on time. These results suggest that BXD may offer us a powerful and general algorithm for describing kinetics and thermodynamics in chemical and biochemical systems.
Homology and the optimization of DNA sequence data
NASA Technical Reports Server (NTRS)
Wheeler, W.
2001-01-01
Three methods of nucleotide character analysis are discussed. Their implications for molecular sequence homology and phylogenetic analysis are compared. The criterion of inter-data set congruence, both character based and topological, are applied to two data sets to elucidate and potentially discriminate among these parsimony-based ideas. c2001 The Willi Hennig Society.
Loudiyi, M; Rutledge, D N; Aït-Kaddour, A
2018-10-30
Common Dimension (ComDim) chemometrics method for multi-block data analysis was employed to evaluate the impact of different added salts and ripening times on physicochemical, color, dynamic low amplitude oscillatory rheology, texture profile, and molecular structure (fluorescence and MIR spectroscopies) of five Cantal-type cheeses. Firstly, Independent Components Analysis (ICA) was applied separately on fluorescence and MIR spectra in order to extract the relevant signal source and the associated proportions related to molecular structure characteristics. ComDim was then applied on the 31 data tables corresponding to the proportion of ICA signals obtained for spectral methods and the global analysis of cheeses by the other techniques. The ComDim results indicated that generally cheeses made with 50% NaCl or with 75:25% NaCl/KCl exhibit the equivalent characteristics in structural, textural, meltability and color properties. The proposed methodology demonstrates the applicability of ComDim for the characterization of samples when different techniques describe the same samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Quantitation of heat-shock proteins in clinical samples using mass spectrometry.
Kaur, Punit; Asea, Alexzander
2011-01-01
Mass spectrometry (MS) is a powerful analytical tool for proteomics research and drug and biomarker discovery. MS enables identification and quantification of known and unknown compounds by revealing their structural and chemical properties. Proper sample preparation for MS-based analysis is a critical step in the proteomics workflow because the quality and reproducibility of sample extraction and preparation for downstream analysis significantly impact the separation and identification capabilities of mass spectrometers. The highly expressed proteins represent potential biomarkers that could aid in diagnosis, therapy, or drug development. Because the proteome is so complex, there is no one standard method for preparing protein samples for MS analysis. Protocols differ depending on the type of sample, source, experiment, and method of analysis. Molecular chaperones play significant roles in almost all biological functions due to their capacity for detecting intracellular denatured/unfolded proteins, initiating refolding or denaturation of such malfolded protein sequences and more recently for their role in the extracellular milieu as chaperokines. In this chapter, we describe the latest techniques for quantitating the expression of molecular chaperones in human clinical samples.
Tabletop Molecular Communication: Text Messages through Chemical Signals
Farsad, Nariman; Guo, Weisi; Eckford, Andrew W.
2013-01-01
In this work, we describe the first modular, and programmable platform capable of transmitting a text message using chemical signalling – a method also known as molecular communication. This form of communication is attractive for applications where conventional wireless systems perform poorly, from nanotechnology to urban health monitoring. Using examples, we demonstrate the use of our platform as a testbed for molecular communication, and illustrate the features of these communication systems using experiments. By providing a simple and inexpensive means of performing experiments, our system fills an important gap in the molecular communication literature, where much current work is done in simulation with simplified system models. A key finding in this paper is that these systems are often nonlinear in practice, whereas current simulations and analysis often assume that the system is linear. However, as we show in this work, despite the nonlinearity, reliable communication is still possible. Furthermore, this work motivates future studies on more realistic modelling, analysis, and design of theoretical models and algorithms for these systems. PMID:24367571
Saito, Akira; Numata, Yasushi; Hamada, Takuya; Horisawa, Tomoyoshi; Cosatto, Eric; Graf, Hans-Peter; Kuroda, Masahiko; Yamamoto, Yoichiro
2016-01-01
Recent developments in molecular pathology and genetic/epigenetic analysis of cancer tissue have resulted in a marked increase in objective and measurable data. In comparison, the traditional morphological analysis approach to pathology diagnosis, which can connect these molecular data and clinical diagnosis, is still mostly subjective. Even though the advent and popularization of digital pathology has provided a boost to computer-aided diagnosis, some important pathological concepts still remain largely non-quantitative and their associated data measurements depend on the pathologist's sense and experience. Such features include pleomorphism and heterogeneity. In this paper, we propose a method for the objective measurement of pleomorphism and heterogeneity, using the cell-level co-occurrence matrix. Our method is based on the widely used Gray-level co-occurrence matrix (GLCM), where relations between neighboring pixel intensity levels are captured into a co-occurrence matrix, followed by the application of analysis functions such as Haralick features. In the pathological tissue image, through image processing techniques, each nucleus can be measured and each nucleus has its own measureable features like nucleus size, roundness, contour length, intra-nucleus texture data (GLCM is one of the methods). In GLCM each nucleus in the tissue image corresponds to one pixel. In this approach the most important point is how to define the neighborhood of each nucleus. We define three types of neighborhoods of a nucleus, then create the co-occurrence matrix and apply Haralick feature functions. In each image pleomorphism and heterogeneity are then determined quantitatively. For our method, one pixel corresponds to one nucleus feature, and we therefore named our method Cell Feature Level Co-occurrence Matrix (CFLCM). We tested this method for several nucleus features. CFLCM is showed as a useful quantitative method for pleomorphism and heterogeneity on histopathological image analysis.
A fast recursive algorithm for molecular dynamics simulation
NASA Technical Reports Server (NTRS)
Jain, A.; Vaidehi, N.; Rodriguez, G.
1993-01-01
The present recursive algorithm for solving molecular systems' dynamical equations of motion employs internal variable models that reduce such simulations' computation time by an order of magnitude, relative to Cartesian models. Extensive use is made of spatial operator methods recently developed for analysis and simulation of the dynamics of multibody systems. A factor-of-450 speedup over the conventional O(N-cubed) algorithm is demonstrated for the case of a polypeptide molecule with 400 residues.
NASA Astrophysics Data System (ADS)
Jia, Hong-Bin; Yu, Jie-Hui; Xu, Ji-Qing; Ye, Ling; Ding, Hong; Jing, Wei-Jie; Wang, Tie-Gang; Xu, Jia-Ning; Li, Zeng-Chun
2002-10-01
By hydrothermal method, a novel supramolecular compound, Co(NIA) 2(H 2O) 4 was synthesized and its structure was characterized with elemental analysis, FT-IR spectrum, TGA and X-ray diffractometer, indicating that it is a novel polyporous supramolecule with molecular ladder hydrogen-bonded chains. TGA curve shows its thermal stability up to 520 °C.
Bălăcescu, Loredana; Bălăcescu, O; Crişan, N; Fetica, B; Petruţ, B; Bungărdean, Cătălina; Rus, Meda; Tudoran, Oana; Meurice, G; Irimie, Al; Dragoş, N; Berindan-Neagoe, Ioana
2011-01-01
Prostate cancer represents the first leading cause of cancer among western male population, with different clinical behavior ranging from indolent to metastatic disease. Although many molecules and deregulated pathways are known, the molecular mechanisms involved in the development of prostate cancer are not fully understood. The aim of this study was to explore the molecular variation underlying the prostate cancer, based on microarray analysis and bioinformatics approaches. Normal and prostate cancer tissues were collected by macrodissection from prostatectomy pieces. All prostate cancer specimens used in our study were Gleason score 7. Gene expression microarray (Agilent Technologies) was used for Whole Human Genome evaluation. The bioinformatics and functional analysis were based on Limma and Ingenuity software. The microarray analysis identified 1119 differentially expressed genes between prostate cancer and normal prostate, which were up- or down-regulated at least 2-fold. P-values were adjusted for multiple testing using Benjamini-Hochberg method with a false discovery rate of 0.01. These genes were analyzed with Ingenuity Pathway Analysis software and were established 23 genetic networks. Our microarray results provide new information regarding the molecular networks in prostate cancer stratified as Gleason 7. These data highlighted gene expression profiles for better understanding of prostate cancer progression.
Towards de novo identification of metabolites by analyzing tandem mass spectra.
Böcker, Sebastian; Rasche, Florian
2008-08-15
Mass spectrometry is among the most widely used technologies in proteomics and metabolomics. Being a high-throughput method, it produces large amounts of data that necessitates an automated analysis of the spectra. Clearly, database search methods for protein analysis can easily be adopted to analyze metabolite mass spectra. But for metabolites, de novo interpretation of spectra is even more important than for protein data, because metabolite spectra databases cover only a small fraction of naturally occurring metabolites: even the model plant Arabidopsis thaliana has a large number of enzymes whose substrates and products remain unknown. The field of bio-prospection searches biologically diverse areas for metabolites which might serve as pharmaceuticals. De novo identification of metabolite mass spectra requires new concepts and methods since, unlike proteins, metabolites possess a non-linear molecular structure. In this work, we introduce a method for fully automated de novo identification of metabolites from tandem mass spectra. Mass spectrometry data is usually assumed to be insufficient for identification of molecular structures, so we want to estimate the molecular formula of the unknown metabolite, a crucial step for its identification. The method first calculates all molecular formulas that explain the parent peak mass. Then, a graph is build where vertices correspond to molecular formulas of all peaks in the fragmentation mass spectra, whereas edges correspond to hypothetical fragmentation steps. Our algorithm afterwards calculates the maximum scoring subtree of this graph: each peak in the spectra must be scored at most once, so the subtree shall contain only one explanation per peak. Unfortunately, finding this subtree is NP-hard. We suggest three exact algorithms (including one fixed parameter tractable algorithm) as well as two heuristics to solve the problem. Tests on real mass spectra show that the FPT algorithm and the heuristics solve the problem suitably fast and provide excellent results: for all 32 test compounds the correct solution was among the top five suggestions, for 26 compounds the first suggestion of the exact algorithm was correct. http://www.bio.inf.uni-jena.de/tandemms
Zhai, Hongyan; Zhang, Xiangru
2009-05-01
With the presence of bromide in source waters, numerous brominated disinfection byproducts (DBPs) are formed during chlorination. Many of them are polar/highly polar DBPs and thus hard to be detected by gas chromatography mass spectrometry. Electrospray ionization triple quadrupole mass spectrometry (ESI-MS/MS) is reported to be an effective method in finding polar brominated DBPs by setting precursor ion scans of m/z 79 and 81. But as a soft ionization technique, ESI could form adducts of common DBPs, which may complicate ESI-MS/MS spectra and hinder the efforts in finding new brominated DBPs. In this paper, a new method was developed for differentiating adducts of common DBPs from higher molecular weight DBPs. This method was based on the ESI-MS/MS precursor ion scans of the fragments that correspond to the molecular ions of common DBPs. Adducts of common DBPs were selectively detected in the ESI-MS/MS spectra of a simulated drinking water sample. Moreover, the structures of several new brominated DBPs in the sample were tentatively proposed.
Cotton, Robin W; Fisher, Matthew B
2015-09-01
Forensic DNA testing is grounded in molecular biology and population genetics. The technologies that were the basis of restriction length polymorphism testing (RFLP) have given way to PCR based technologies. While PCR has been the pillar of short tandem repeat (STR) methods and will continue to be used as DNA sequencing and analysis of single nucleotide polymorphisms (SNPs) are introduced into human identification, the molecular biology techniques in use today represent significant advances since the introduction of STR testing. Large forensic laboratories with dedicated research teams and forensic laboratories which are part of academic institutions have the resources to keep track of advances which can then be considered for further research or incorporated into current testing methods. However, many laboratories have limited ability to keep up with research advances outside of the immediate area of forensic science and may not have access to a large university library systems. This review focuses on filling this gap with respect to areas of research that intersect with selected methods used in forensic biology. The review summarizes information collected from several areas of the scientific literature where advances in molecular biology have produced information relevant to DNA analysis of sexual assault evidence and methods used in presumptive and confirmatory identification of semen. Older information from the literature is also included where this information may not be commonly known and is relevant to current methods. The topics selected highlight (1) information from applications of proteomics to sperm biology and human reproduction, (2) seminal fluid proteins and prostate cancer diagnostics, (3) developmental biology of sperm from the fertility literature and (4) areas where methods are common to forensic analysis and research in contraceptive use and monitoring. Information and progress made in these areas coincide with the research interests of forensic biology and cross-talk between these disciplines may benefit both. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Bone structure studies with holographic interferometric nondestructive testing and x-ray methods
NASA Astrophysics Data System (ADS)
Silvennoinen, Raimo; Nygren, Kaarlo; Rouvinen, Juha; Petrova, Valentina V.
1994-02-01
Changes in the biomechanics and in the molecular texture and structure of isolated radioulnar bones of subadult European moose (Alces alces L.) collected in various environmentally polluted areas of Finland were investigated by means of holographic interferometric non- destructive testing (HNDT), radiological, morphometrical, and x-ray diffraction methods. By means of small caudal-cranial bending forces, the surface movements of the lower end (distal epiphysis) of the radial bone were recorded with the HNDT method. To study bone molecular texture and structure changes under external compressing forces, the samples for x-ray diffraction analysis were taken from the upper end of the ulnar bone (olecranon tip). Results showed that the bones obtained from the Harjavalta area and those of North Karelian moose showing malnutrition and healing femoral fractures produced different HNDT pictures compared with the four normally developed North Karelian moose. In the x-ray diffraction, the Harjavalta samples showed changes in molecular texture and structure compared with the samples from the apparently normal North Karelian animals.
Hyper-polyhedron model applied to molecular screening of guanidines as Na/H exchange inhibitors.
Bao, Xin-Hua; Lu, Wen-Cong; Liu, Liang; Chen, Nian-Yi
2003-05-01
To investigate structure-activity relationships of N-(3-Oxo-3,4-dihydro-2H-benzo[1,4]oxazine-6-carbonyl) guanidines in Na/H exchange inhibitory activities and probe into a new method of the computer-aided molecular screening. The hyper-polyhedron model (HPM) was proposed in our lab. The samples with probably higher activities could be determined in such a way that their representing points should be in the hyper-polyhedron region where all known samples with high activities were distributed. And the predictive ability of different methods available was tested by the cross-validation experiment. The accurate rate of molecular screening of N-(3-Oxo-3,4-dihydro-2H-benzo[1,4]oxazine-6-carbonyl) guanidines by HPM was much higher than that obtained by PCA (principal component analysis) and Fisher methods for the data set available here. Therefore, HPM could be used as a powerful tool for screening new compounds with probably higher activities.
Bhowmick, P P; Khushiramani, R; Raghunath, P; Karunasagar, I; Karunasagar, I
2008-02-01
Evaluation of protein profiling for typing Vibrio parahaemolyticus using 71 strains isolated from different seafood and comparison with other molecular typing techniques such as random amplified polymorphic DNA analysis (RAPD) and enterobacterial repetitive intergenic consensus sequence (ERIC)-PCR. Three molecular typing methods were used for the typing of 71 V. parahaemolyticus isolates from seafood. RAPD had a discriminatory index (DI) of 0.95, while ERIC-PCR showed a DI of 0.94. Though protein profiling had less discriminatory power, use of this method can be helpful in identifying new proteins which might have a role in establishment in the host or virulence of the organism. The use of protein profiling in combination with other established typing methods such as RAPD and ERIC-PCR generates useful information in the case of V. parahaemolyticus associated with seafood. The study demonstrates the usefulness of nucleic acid and protein-based studies in understanding the relationship between various isolates from seafood.
Plant genotoxicity: a molecular cytogenetic approach in plant bioassays.
Maluszynska, Jolanta; Juchimiuk, Jolanta
2005-06-01
It is important for the prevention of DNA changes caused by environment to understand the biological consequences of DNA damages and their molecular modes of action that lead to repair or alterations of the genetic material. Numerous genotoxicity assay systems have been developed to identify DNA reactive compounds. The available data show that plant bioassays are important tests in the detection of genotoxic contamination in the environment and the establishment of controlling systems. Plant system can detect a wide range of genetic damage, including gene mutations and chromosome aberrations. Recently introduced molecular cytogenetic methods allow analysis of genotoxicity, both at the chromosomal and DNA level. FISH gives a new possibility of the detection and analysis of chromosomal rearrangements in a great detail. DNA fragmentation can be estimated using the TUNEL test and the single cell gel electrophoresis (Comet assay).
3D-QSAR modeling and molecular docking studies on a series of 2,5 disubstituted 1,3,4-oxadiazoles
NASA Astrophysics Data System (ADS)
Ghaleb, Adib; Aouidate, Adnane; Ghamali, Mounir; Sbai, Abdelouahid; Bouachrine, Mohammed; Lakhlifi, Tahar
2017-10-01
3D-QSAR (comparative molecular field analysis (CoMFA)) and comparative molecular similarity indices analysis (CoMSIA) were performed on novel 2,5 disubstituted 1,3,4-oxadiazoles analogues as anti-fungal agents. The CoMFA and CoMSIA models using 13 compounds in the training set gives Q2 values of 0.52 and 0.51 respectively, while R2 values of 0.92. The adapted alignment method with the suitable parameters resulted in reliable models. The contour maps produced by the CoMFA and CoMSIA models were employed to determine a three-dimensional quantitative structure-activity relationship. Based on this study a set of new molecules with high predicted activities were designed. Surflex-docking confirmed the stability of predicted molecules in the receptor.
NASA Astrophysics Data System (ADS)
Avdović, Edina H.; Milenković, Dejan; Dimitrić Marković, Jasmina M.; Đorović, Jelena; Vuković, Nenad; Vukić, Milena D.; Jevtić, Verica V.; Trifunović, Srećko R.; Potočňák, Ivan; Marković, Zoran
2018-04-01
The experimental and theoretical investigations of structure of the 3-(1-(phenylamino)ethylidene)-chroman-2,4-dione were performed. X-ray structure analysis and spectroscopic methods (FTIR and FT-Raman, 1H and 13C NMR), along with the density functional theory calculations (B3LYP functional with empirical dispersion corrections D3BJ in combination with the 6-311 + G(d,p) basis set), were used in order to characterize the molecular structure and spectroscopic behavior of the investigated coumarin derivative. Molecular docking analysis was carried out to identify the potency of inhibition of the title molecule against human's Ubiquinol-Cytochrome C Reductase Binding Protein (UQCRB) and Methylenetetrahydrofolate reductase (MTHFR). The inhibition activity was obtained for ten conformations of ligand inside the proteins.
Histories of molecules: Reconciling the past.
O'Malley, Maureen A
2016-02-01
Molecular data and methods have become centrally important to evolutionary analysis, largely because they have enabled global phylogenetic reconstructions of the relationships between organisms in the tree of life. Often, however, molecular stories conflict dramatically with morphology-based histories of lineages. The evolutionary origin of animal groups provides one such case. In other instances, different molecular analyses have so far proved irreconcilable. The ancient and major divergence of eukaryotes from prokaryotic ancestors is an example of this sort of problem. Efforts to overcome these conflicts highlight the role models play in phylogenetic reconstruction. One crucial model is the molecular clock; another is that of 'simple-to-complex' modification. I will examine animal and eukaryote evolution against a backdrop of increasing methodological sophistication in molecular phylogeny, and conclude with some reflections on the nature of historical science in the molecular era of phylogeny. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kowalczyk, Marek; Sekuła, Andrzej; Mleczko, Piotr; Olszowy, Zofia; Kujawa, Anna; Zubek, Szymon; Kupiec, Tomasz
2015-01-01
Aim To assess the usefulness of a DNA-based method for identifying mushroom species for application in forensic laboratory practice. Methods Two hundred twenty-one samples of clinical forensic material (dried mushrooms, food remains, stomach contents, feces, etc) were analyzed. ITS2 region of nuclear ribosomal DNA (nrDNA) was sequenced and the sequences were compared with reference sequences collected from the National Center for Biotechnology Information gene bank (GenBank). Sporological identification of mushrooms was also performed for 57 samples of clinical material. Results Of 221 samples, positive sequencing results were obtained for 152 (69%). The highest percentage of positive results was obtained for samples of dried mushrooms (96%) and food remains (91%). Comparison with GenBank sequences enabled identification of all samples at least at the genus level. Most samples (90%) were identified at the level of species or a group of closely related species. Sporological and molecular identification were consistent at the level of species or genus for 30% of analyzed samples. Conclusion Molecular analysis identified a larger number of species than sporological method. It proved to be suitable for analysis of evidential material (dried hallucinogenic mushrooms) in forensic genetic laboratories as well as to complement classical methods in the analysis of clinical material. PMID:25727040
Ju, Lining; Wang, Yijie Dylan; Hung, Ying; Wu, Chien-Fu Jeff; Zhu, Cheng
2013-01-01
Motivation: Abrupt reduction/resumption of thermal fluctuations of a force probe has been used to identify association/dissociation events of protein–ligand bonds. We show that off-rate of molecular dissociation can be estimated by the analysis of the bond lifetime, while the on-rate of molecular association can be estimated by the analysis of the waiting time between two neighboring bond events. However, the analysis relies heavily on subjective judgments and is time-consuming. To automate the process of mapping out bond events from thermal fluctuation data, we develop a hidden Markov model (HMM)-based method. Results: The HMM method represents the bond state by a hidden variable with two values: bound and unbound. The bond association/dissociation is visualized and pinpointed. We apply the method to analyze a key receptor–ligand interaction in the early stage of hemostasis and thrombosis: the von Willebrand factor (VWF) binding to platelet glycoprotein Ibα (GPIbα). The numbers of bond lifetime and waiting time events estimated by the HMM are much more than those estimated by a descriptive statistical method from the same set of raw data. The kinetic parameters estimated by the HMM are in excellent agreement with those by a descriptive statistical analysis, but have much smaller errors for both wild-type and two mutant VWF-A1 domains. Thus, the computerized analysis allows us to speed up the analysis and improve the quality of estimates of receptor–ligand binding kinetics. Contact: jeffwu@isye.gatech.edu or cheng.zhu@bme.gatech.edu PMID:23599504
Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry
2013-01-01
Background Wax esters are highly hydrophobic neutral lipids that are major constituents of the cutin and suberin layer. Moreover they have favorable properties as a commodity for industrial applications. Through transgenic expression of wax ester biosynthetic genes in oilseed crops, it is possible to achieve high level accumulation of defined wax ester compositions within the seed oil to provide a sustainable source for such high value lipids. The fatty alcohol moiety of the wax esters is formed from plant-endogenous acyl-CoAs by the action of fatty acyl reductases (FAR). In a second step the fatty alcohol is condensed with acyl-CoA by a wax synthase (WS) to form a wax ester. In order to evaluate the specificity of wax ester biosynthesis, analytical methods are needed that provide detailed wax ester profiles from complex lipid extracts. Results We present a direct infusion ESI-tandem MS method that allows the semi-quantitative determination of wax ester compositions from complex lipid mixtures covering 784 even chain molecular species. The definition of calibration prototype groups that combine wax esters according to their fragmentation behavior enables fast quantitative analysis by applying multiple reaction monitoring. This provides a tool to analyze wax layer composition or determine whether seeds accumulate a desired wax ester profile. Besides the profiling method, we provide general information on wax ester analysis by the systematic definition of wax ester prototypes according to their collision-induced dissociation spectra. We applied the developed method for wax ester profiling of the well characterized jojoba seed oil and compared the profile with wax ester-accumulating Arabidopsis thaliana expressing the wax ester biosynthetic genes MaFAR and ScWS. Conclusions We developed a fast profiling method for wax ester analysis on the molecular species level. This method is suitable to screen large numbers of transgenic plants as well as other wax ester samples like cuticular lipid extracts to gain an overview on the molecular species composition. We confirm previous results from APCI-MS and GC-MS analysis, which showed that fragmentation patterns are highly dependent on the double bond distribution between the fatty alcohol and the fatty acid part of the wax ester. PMID:23829499
Martinez, A L A; Araújo, J S P; Ragassi, C F; Buso, G S C; Reifschneider, F J B
2017-07-06
Capsicum peppers are native to the Americas, with Brazil being a significant diversity center. Capsicum baccatum accessions at Instituto Federal (IF) Goiano represent a portion of the species genetic resources from central Brazil. We aimed to characterize a C. baccatum working collection comprising 27 accessions and 3 commercial cultivars using morphological traits and molecular markers to describe its genetic and morphological variability and verify the occurrence of duplicates. This set included 1 C. baccatum var. praetermissum and 29 C. baccatum var. pendulum with potential for use in breeding programs. Twenty-two morphological descriptors, 57 inter-simple sequence repeat, and 34 random amplified polymorphic DNA markers were used. Genetic distance was calculated through the Jaccard similarity index and genetic variability through cluster analysis using the unweighted pair group method with arithmetic mean, resulting in dendrograms for both morphological analysis and molecular analysis. Genetic variability was found among C. baccatum var. pendulum accessions, and the distinction between the two C. baccatum varieties was evident in both the morphological and molecular analyses. The 29 C. baccatum var. pendulum genotypes clustered in four groups according to fruit type in the morphological analysis. They formed seven groups in the molecular analysis, without a clear correspondence with morphology. No duplicates were found. The results describe the genetic and morphological variability, provide a detailed characterization of genotypes, and discard the possibility of duplicates within the IF Goiano C. baccatum L. collection. This study will foment the use of this germplasm collection in C. baccatum breeding programs.
Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods
2016-01-01
Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units–variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications. PMID:27709842
Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi
2017-07-21
In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na + , K + , and Ca 2+ solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.
Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods.
Ei, Phyu Win; Aung, Wah Wah; Lee, Jong Seok; Choi, Go Eun; Chang, Chulhun L
2016-11-01
Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units-variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications.
Masuda, Yosuke; Yoshida, Tomoki; Yamaotsu, Noriyuki; Hirono, Shuichi
2018-01-01
We recently reported that the Gibbs free energy of hydrolytic water molecules (ΔG wat ) in acyl-trypsin intermediates calculated by hydration thermodynamics analysis could be a useful metric for estimating the catalytic rate constants (k cat ) of mechanism-based reversible covalent inhibitors. For thorough evaluation, the proposed method was tested with an increased number of covalent ligands that have no corresponding crystal structures. After modeling acyl-trypsin intermediate structures using flexible molecular superposition, ΔG wat values were calculated according to the proposed method. The orbital energies of antibonding π* molecular orbitals (MOs) of carbonyl C=O in covalently modified catalytic serine (E orb ) were also calculated by semi-empirical MO calculations. Then, linear discriminant analysis (LDA) was performed to build a model that can discriminate covalent inhibitor candidates from substrate-like ligands using ΔG wat and E orb . The model was built using a training set (10 compounds) and then validated by a test set (4 compounds). As a result, the training set and test set ligands were perfectly discriminated by the model. Hydrolysis was slower when (1) the hydrolytic water molecule has lower ΔG wat ; (2) the covalent ligand presents higher E orb (higher reaction barrier). Results also showed that the entropic term of hydrolytic water molecule (-TΔS wat ) could be used for estimating k cat and for covalent inhibitor optimization; when the rotational freedom of the hydrolytic water molecule is limited, the chance for favorable interaction with the electrophilic acyl group would also be limited. The method proposed in this study would be useful for screening and optimizing the mechanism-based reversible covalent inhibitors.
Geometric and electrostatic modeling using molecular rigidity functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Xia, Kelin; Wei, Guowei
Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less
Geometric and electrostatic modeling using molecular rigidity functions
Mu, Lin; Xia, Kelin; Wei, Guowei
2017-03-01
Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less
DFT computational analysis of piracetam
NASA Astrophysics Data System (ADS)
Rajesh, P.; Gunasekaran, S.; Seshadri, S.; Gnanasambandan, T.
2014-11-01
Density functional theory calculation with B3LYP using 6-31G(d,p) and 6-31++G(d,p) basis set have been used to determine ground state molecular geometries. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of piracetam is calculated using B3LYP/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO/NLMO analysis. The calculation of first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. Molecular electrostatic potential (MEP) at a point in the space around a molecule gives an indication of the net electrostatic effect produced at that point by the total charge distribution of the molecule. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charge is also calculated. Because of vibrational analysis, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-Vis spectra and electronic absorption properties are explained and illustrated from the frontier molecular orbitals.
Suárez, Inmaculada; Coto, Baudilio
2015-08-14
Average molecular weights and polydispersity indexes are some of the most important parameters considered in the polymer characterization. Usually, gel permeation chromatography (GPC) and multi angle light scattering (MALS) are used for this determination, but GPC values are overestimated due to the dispersion introduced by the column separation. Several procedures were proposed to correct such effect usually involving more complex calibration processes. In this work, a new method of calculation has been considered including diffusion effects. An equation for the concentration profile due to diffusion effects along the GPC column was considered to be a Fickian function and polystyrene narrow standards were used to determine effective diffusion coefficients. The molecular weight distribution function of mono and poly disperse polymers was interpreted as a sum of several Fickian functions representing a sample formed by only few kind of polymer chains with specific molecular weight and diffusion coefficient. Proposed model accurately fit the concentration profile along the whole elution time range as checked by the computed standard deviation. Molecular weights obtained by this new method are similar to those obtained by MALS or traditional GPC while polydispersity index values are intermediate between those obtained by the traditional GPC combined to Universal Calibration method and the MALS method. Values for Pearson and Lin coefficients shows improvement in the correlation of polydispersity index values determined by GPC and MALS methods when diffusion coefficients and new methods are used. Copyright © 2015 Elsevier B.V. All rights reserved.
Theoretical study of optical activity of 1:1 hydrogen bond complexes of water with S-warfarin
NASA Astrophysics Data System (ADS)
Dadsetani, Mehrdad; Abdolmaleki, Ahmad; Zabardasti, Abedin
2016-11-01
The molecular interaction between S-warfarin (SW) and a single water molecule was investigated using the B3LYP method at 6-311 ++G(d,p) basis set. The vibrational spectra of the optimized complexes have been investigated for stabilization checking. Quantum theories of atoms in molecules, natural bond orbitals, molecular electrostatic potentials and energy decomposition analysis methods have been applied to analyze the intermolecular interactions. The intermolecular charge transfer in the most stable complex is in the opposite direction from those in the other complexes. The optical spectra and the hyperpolarizabilities of SW-water hydrogen bond complexes have been computed.
Grand canonical ensemble Monte Carlo simulation of the dCpG/proflavine crystal hydrate.
Resat, H; Mezei, M
1996-09-01
The grand canonical ensemble Monte Carlo molecular simulation method is used to investigate hydration patterns in the crystal hydrate structure of the dCpG/proflavine intercalated complex. The objective of this study is to show by example that the recently advocated grand canonical ensemble simulation is a computationally efficient method for determining the positions of the hydrating water molecules in protein and nucleic acid structures. A detailed molecular simulation convergence analysis and an analogous comparison of the theoretical results with experiments clearly show that the grand ensemble simulations can be far more advantageous than the comparable canonical ensemble simulations.
The effect of processing on the surface physical stability of amorphous solid dispersions.
Yang, Ziyi; Nollenberger, Kathrin; Albers, Jessica; Moffat, Jonathan; Craig, Duncan; Qi, Sheng
2014-11-01
The focus of this study was to investigate the effect of processing on the surface crystallization of amorphous molecular dispersions and gain insight into the mechanisms underpinning this effect. The model systems, amorphous molecular dispersions of felodipine-EUDRAGIT® E PO, were processed both using spin coating (an ultra-fast solvent evaporation based method) and hot melt extrusion (HME) (a melting based method). Amorphous solid dispersions with drug loadings of 10-90% (w/w) were obtained by both processing methods. Samples were stored under 75% RH/room temperatures for up to 10months. Surface crystallization was observed shortly after preparation for the HME samples with high drug loadings (50-90%). Surface crystallization was characterized by powder X-ray diffraction (PXRD), ATR-FTIR spectroscopy and imaging techniques (SEM, AFM and localized thermal analysis). Spin coated molecular dispersions showed significantly higher surface physical stability than hot melt extruded samples. For both systems, the progress of the surface crystal growth followed zero order kinetics on aging. Drug enrichment at the surfaces of HME samples on aging was observed, which may contribute to surface crystallization of amorphous molecular dispersions. In conclusion it was found the amorphous molecular dispersions prepared by spin coating had a significantly higher surface physical stability than the corresponding HME samples, which may be attributed to the increased process-related apparent drug-polymer solubility and reduced molecular mobility due to the quenching effect caused by the rapid solvent evaporation in spin coating. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Moorthi, P. P.; Gunasekaran, S.; Swaminathan, S.; Ramkumaar, G. R.
2015-02-01
A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of mannitol. The FT-IR and FT-Raman spectra of mannitol were recorded in the solid phase. The molecular geometry, vibrational frequencies, thermodynamic functions and atomic charges of mannitol in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking cc-pVDZ basis set. The complete vibrational assignments were performed on the basis of Total Energy Distribution (TED) of the vibrational modes. The UV absorption spectra of the title compound dissolved in water. Natural bond orbital analysis has been carried out to explain the charge transfer or delocalization of charge due to the intra-molecular interactions. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO methods. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of mannitol are calculated using B3LYP/cc-pVDZ and HF/cc-pVDZ methods on the finite-field approach. By using TD-DFT calculation, electronic absorption spectra of the title compound have been predicted and a good agreement with experimental one is established. In addition, the molecular electrostatic potential (MEP) have been investigated using theoretical calculations, the calculated HOMO and LUMO energies shows that the charge transfer within the molecule.
Karasawa, N; Mitsutake, A; Takano, H
2017-12-01
Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n]polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μs molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.
Wang, Shunhai; Liu, Anita P; Yan, Yuetian; Daly, Thomas J; Li, Ning
2018-05-30
Traditional SDS-PAGE method and its modern equivalent CE-SDS method are both widely applied to assess the purity of therapeutic monoclonal antibody (mAb) drug products. However, structural identification of low molecular weight (LMW) impurities using those methods has been challenging and largely based on empirical knowledges. In this paper, we present that hydrophilic interaction chromatography (HILIC) coupled with mass spectrometry analysis is a novel and orthogonal method to characterize such LMW impurities present within a purified mAb drug product sample. We show here that after removal of N-linked glycans, the HILIC method separates mAb-related LMW impurities with a size-based elution order. The subsequent mass measurement from a high-resolution accurate mass spectrometer provides direct and unambiguous identification of a variety of low-abundance LMW impurities within a single LC-MS analysis. Free light chain, half antibody, H2L species (antibody possessing a single light chain) and protein backbone-truncated species can all be confidently identified and elucidated in great detail, including the truncation sites and associated post-translational modifications. It is worth noting that this study provides the first example where the H2L species can be directly detected in a mAb drug product sample by intact mass analysis without prior enrichment. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Karasawa, N.; Mitsutake, A.; Takano, H.
2017-12-01
Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n ] polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μ s molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.
Chen, Xiaomei; Wang, Fangfei; Wang, Yunqiang; Li, Xuelan; Wang, Airong; Wang, Chunlan; Guo, Shunxing
2012-12-01
The aim of this study was to establish a method for discriminating Dendrobium officinale from four of its close relatives Dendrobium chrysanthum, Dendrobium crystallinum, Dendrobium aphyllum and Dendrobium devonianum based on chemical composition analysis. We analyzed 62 samples of 24 Dendrobium species. High performance liquid chromatography analysis confirmed that the four low molecular weight compounds 4',5,7-trihydroxyflavanone (naringenin), 3,4-dihydroxy-4',5-dime-thoxybibenzyl (DDB-2), 3',4-dihydroxy-3,5'-dimethoxybibenzyl (gigantol), and 4,4'-dihydroxy-3,3',5-trimethoxybibenzy (moscatilin), were common in the genus. The phenol-sulfuric acid method was used to quantify polysaccharides, and the monosaccharide composition of the polysaccharides was determined by gas chromatography. Stepwise discriminant analysis was used to differentiate among the five closely related species based on the chemical composition analysis. This proved to be a simple and accurate approach for discriminating among these species. The results also showed that the polysaccharide content, the amounts of the four low molecular weight compounds, and the mannose to glucose ratio, were important factors for species discriminant. Therefore, we propose that a chemical analysis based on quantification of naringenin, bibenzyl, and polysaccharides is effective for identifying D. officinale.
Gupta, Ujval; Kumar, Vinay; Singh, Vivek K; Kant, Rajni; Khajuria, Yugal
2015-04-05
The Fourier Transform Infrared (FTIR), Ultra-Violet Visible (UV-Vis) spectroscopy and Thermogravimetric (TG) analysis of (3,4-dimethoxybenzylidene) propanedinitrile have been carried out and investigated using quantum chemical calculations. The molecular geometry, harmonic vibrational frequencies, Mulliken charges, natural atomic charges and thermodynamic properties in the ground state have been investigated by using Hartree Fock Theory (HF) and Density Functional Theory (DFT) using B3LYP functional with 6-311G(d,p) basis set. Both HF and DFT methods yield good agreement with the experimental data. Vibrational modes are assigned with the help of Vibrational Energy Distribution Analysis (VEDA) program. UV-Visible spectrum was recorded in the spectral range of 190-800nm and the results are compared with the calculated values using TD-DFT approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results obtained from the studies of Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) are used to calculate molecular parameters like ionization potential, electron affinity, global hardness, electron chemical potential and global electrophilicity. Copyright © 2014 Elsevier B.V. All rights reserved.
KRAS Mutation as a Potential Prognostic Biomarker of Biliary Tract Cancers
Yokoyama, Masaaki; Ohnishi, Hiroaki; Ohtsuka, Kouki; Matsushima, Satsuki; Ohkura, Yasuo; Furuse, Junji; Watanabe, Takashi; Mori, Toshiyuki; Sugiyama, Masanori
2016-01-01
BACKGROUND The aim of this study was to identify the unique molecular characteristics of biliary tract cancer (BTC) for the development of novel molecular-targeted therapies. MATERIALS AND METHODS We performed mutational analysis of KRAS, BRAF, PIK3CA, and FBXW7 and immunohistochemical analysis of EGFR and TP53 in 63 Japanese patients with BTC and retrospectively evaluated the association between the molecular characteristics and clinicopathological features of BTC. RESULTS KRAS mutations were identified in 9 (14%) of the 63 BTC patients; no mutations were detected within the analyzed regions of BRAF, PIK3CA, and FBXW7. EGFR overexpression was observed in 5 (8%) of the 63 tumors, while TP53 overexpression was observed in 48% (30/63) of the patients. Overall survival of patients with KRAS mutation was significantly shorter than that of patients with the wild-type KRAS gene (P = 0.005). By multivariate analysis incorporating molecular and clinicopathological features, KRAS mutations and lymph node metastasis were identified to be independently associated with shorter overall survival (KRAS, P = 0.004; lymph node metastasis, P = 0.015). CONCLUSIONS Our data suggest that KRAS mutation is a poor prognosis predictive biomarker for the survival in BTC patients. PMID:28008299
Shulman, Lester M; Manor, Yossi; Hindiyeh, Musa; Sofer, Danit; Mendelson, Ella
2016-01-01
Polioviruses are enteric viruses that cause paralytic poliomyelitis in less than 0.5 % of infections and are asymptomatic in >90 % infections of naïve hosts. Environmental surveillance monitors polio in populations rather than in individuals. When this very low morbidity to infection ratio, drops drastically in highly vaccinated populations, environmental surveillance employing manual or automatic sampling coupled with molecular analysis carried out in well-equipped central laboratories becomes the surveillance method of choice since polioviruses are excreted by infected individuals regardless of whether or not the infection is symptomatic. This chapter describes a high throughput rapid turn-around time method for molecular characterization of polioviruses from sewage. It is presented in five modules: (1) Sewage collection and concentration of the viruses in the sewage; (2) Cell cultures for identification of virus in the concentrated sewage; (3) Nucleic acid extractions directly from sewage and from tissue cultures infected with aliquots of concentrated sewage; (4) Nucleic Acid Amplification for poliovirus serotype identification and intratypic differentiation (discriminating wild and vaccine derived polioviruses form vaccine strains); and (5) Molecular characterization of viral RNA by qRT-PCR, TR-PCR, and Sequence analysis. Monitoring silent or symptomatic transmission of vaccine-derived polioviruses or wild polioviruses is critical for the endgame of poliovirus eradication. We present methods for adapting standard kits and validating the changes for this purpose based on experience gained during the recent introduction and sustained transmission of a wild type 1 poliovirus in Israel in 2013 in a population with an initial IPV vaccine coverage >90 %.
Suhasini, M; Sailatha, E; Gunasekaran, S; Ramkumaar, G R
2015-04-15
A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the (13)C and (1)H NMR chemical shifts of Carbamazepine. Copyright © 2015 Elsevier B.V. All rights reserved.
Symbiotic Fungus of Marine Sponge Axinella sp. Producing Antibacterial Agent
NASA Astrophysics Data System (ADS)
Trianto, A.; Widyaningsih, S.; Radjasa, OK; Pribadi, R.
2017-02-01
The emerging of multidrug resistance pathogenic bacteria cause the treatment of the diseaseshave become ineffective. There for, invention of a new drug with novel mode of action is an essential for curing the disease caused by an MDR pathogen. Marine fungi is prolific source of bioactive compound that has not been well explored. This study aim to obtain the marine sponges-associated fungus that producing anti-MDR bacteria substaces. We collected the sponge from Riung water, NTT, Indonesia. The fungus was isolated with affixed method, followed with purification with streak method. The overlay and disk diffusion agar methods were applied for bioactivity test for the isolate and the extract, respectively. Molecular analysis was employed for identification of the isolate. The sponge was identified based on morphological and spicular analysis. The ovelay test showed that the isolate KN15-3 active against the MDR Staphylococcus aureus and Eschericia coli. The extract of the cultured KN15-3 was also inhibited the S. aureus and E. coli with inhibition zone 2.95 mm and 4.13 mm, respectively. Based on the molecular analysis, the fungus was identified as Aspergillus sydowii. While the sponge was identified as Axinella sp.
Clustering the Orion B giant molecular cloud based on its molecular emission
Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal
2017-01-01
Context Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results A clustering analysis based only on the J = 1 – 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes (nH ~ 100 cm−3, ~ 500 cm−3, and > 1000 cm−3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 − 0 line of HCO+ and the N = 1 − 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH ~ 7 × 103 cm−3 ~ 4 × 104 cm−3) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO+ (1 – 0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Conclusions Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers. PMID:29456256
NASA Astrophysics Data System (ADS)
Vennila, P.; Govindaraju, M.; Venkatesh, G.; Kamal, C.
2016-05-01
Fourier transform - Infra red (FT-IR) and Fourier transform - Raman (FT-Raman) spectroscopic techniques have been carried out to analyze O-methoxy benzaldehyde (OMB) molecule. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT). The vibrational analysis of stable isomer of OMB has been carried out by FT-IR and FT-Raman in combination with theoretical method simultaneously. The first-order hyperpolarizability and the anisotropy polarizability invariant were computed by DFT method. The atomic charges, hardness, softness, ionization potential, electronegativity, HOMO-LUMO energies, and electrophilicity index have been calculated. The 13C and 1H Nuclear magnetic resonance (NMR) have also been obtained by GIAO method. Molecular electronic potential (MEP) has been calculated by the DFT calculation method. Electronic excitation energies, oscillator strength and excited states characteristics were computed by the closed-shell singlet calculation method.
Method for preparation and readout of polyatomic molecules in single quantum states
NASA Astrophysics Data System (ADS)
Patterson, David
2018-03-01
Polyatomic molecular ions contain many desirable attributes of a useful quantum system, including rich internal degrees of freedom and highly controllable coupling to the environment. To date, the vast majority of state-specific experimental work on molecular ions has concentrated on diatomic species. The ability to prepare and read out polyatomic molecules in single quantum states would enable diverse experimental avenues not available with diatomics, including new applications in precision measurement, sensitive chemical and chiral analysis at the single-molecule level, and precise studies of Hz-level molecular tunneling dynamics. While cooling the motional state of a polyatomic ion via sympathetic cooling with a laser-cooled atomic ion is straightforward, coupling this motional state to the internal state of the molecule has proven challenging. Here we propose a method for readout and projective measurement of the internal state of a trapped polyatomic ion. The method exploits the rich manifold of technically accessible rotational states in the molecule to realize robust state preparation and readout with far less stringent engineering than quantum logic methods recently demonstrated on diatomic molecules. The method can be applied to any reasonably small (≲10 atoms) polyatomic ion with an anisotropic polarizability.
Molecular methods for the detection of mutations.
Monteiro, C; Marcelino, L A; Conde, A R; Saraiva, C; Giphart-Gassler, M; De Nooij-van Dalen, A G; Van Buuren-van Seggelen, V; Van der Keur, M; May, C A; Cole, J; Lehmann, A R; Steinsgrimsdottir, H; Beare, D; Capulas, E; Armour, J A
2000-01-01
We report the results of a collaborative study aimed at developing reliable, direct assays for mutation in human cells. The project used common lymphoblastoid cell lines, both with and without mutagen treatment, as a shared resource to validate the development of new molecular methods for the detection of low-level mutations in the presence of a large excess of normal alleles. As the "gold standard, " hprt mutation frequencies were also measured on the same samples. The methods under development included i) the restriction site mutation (RSM) assay, in which mutations lead to the destruction of a restriction site; ii) minisatellite length-change mutation, in which mutations lead to alleles containing new numbers of tandem repeat units; iii) loss of heterozygosity for HLA epitopes, in which antibodies can be used to direct selection for mutant cells; iv) multiple fluorescence-based long linker arm nucleotides assay (mf-LLA) technology, for the detection of substitutional mutations; v) detection of alterations in the TP53 locus using a (CA) array as the target for the screening; and vi) PCR analysis of lymphocytes for the presence of the BCL2 t(14:18) translocation. The relative merits of these molecular methods are discussed, and a comparison made with more "traditional" methods.
Mass Spectrometry Imaging for the Investigation of Intratumor Heterogeneity.
Balluff, B; Hanselmann, M; Heeren, R M A
2017-01-01
One of the big clinical challenges in the treatment of cancer is the different behavior of cancer patients under guideline therapy. An important determinant for this phenomenon has been identified as inter- and intratumor heterogeneity. While intertumor heterogeneity refers to the differences in cancer characteristics between patients, intratumor heterogeneity refers to the clonal and nongenetic molecular diversity within a patient. The deciphering of intratumor heterogeneity is recognized as key to the development of novel therapeutics or treatment regimens. The investigation of intratumor heterogeneity is challenging since it requires an untargeted molecular analysis technique that accounts for the spatial and temporal dynamics of the tumor. So far, next-generation sequencing has contributed most to the understanding of clonal evolution within a cancer patient. However, it falls short in accounting for the spatial dimension. Mass spectrometry imaging (MSI) is a powerful tool for the untargeted but spatially resolved molecular analysis of biological tissues such as solid tumors. As it provides multidimensional datasets by the parallel acquisition of hundreds of mass channels, multivariate data analysis methods can be applied for the automated annotation of tissues. Moreover, it integrates the histology of the sample, which enables studying the molecular information in a histopathological context. This chapter will illustrate how MSI in combination with statistical methods and histology has been used for the description and discovery of intratumor heterogeneity in different cancers. This will give evidence that MSI constitutes a unique tool for the investigation of intratumor heterogeneity, and could hence become a key technology in cancer research. © 2017 Elsevier Inc. All rights reserved.
a Study of the Synchrotron Laue Method for Quantitative Crystal Structure Analysis.
NASA Astrophysics Data System (ADS)
Gomez de Anderez, Dora M.
1990-01-01
Available from UMI in association with The British Library. Quantitative crystal structure analyses have been carried out on small molecule crystals using synchrotron radiation and the Laue method. A variety of single crystal structure determinations and associated refinements are used and compared with the monochromatic analyses. The new molecular structure of 7-amino-5-bromo -4-methyl-2-oxo-1,2,3,4-tetrahidro-1, 6 -naphthyridine-8-carbonitrile (C_{10 }H_9ON_4 Br.H_2O) has been determined, first using monochromatic Mo Kalpha radiation and a four-circle diffractometer, then using synchrotron Laue diffraction photography. The structure refinements showed a R-factor of 4.97 and 14.0% for the Mo Kalpha and Laue data respectively. The molecular structure of (S)-2-chloro-2-fluoro-N-((S)-1-phenylethyl) ethanamide, (C_{10}H _{11}ClFNO), has been determined using the same crystal throughout for X-ray monochromatic analyses (Mo Kalpha and Cu K alpha) followed by synchrotron Laue data collection. The Laue and monochromatic data compare favourably. The R -factors (on F) were 6.23, 6.45 and 8.19% for the Mo K alpha, Cu Kalpha and Laue data sets respectively. The molecular structure of 3-(5-hydroxy-3-methyl-1-phenylpyrazol-4-yl)-1,3-diphenyl -prop- 2-en-1-one, (C_{25 }H_{20}N _2O_2) has been determined using the synchrotron Laue method. The results compare very well with Mo Kalpha monochromatic data. The R-factors (on F) were 4.60 and 5.29% for Mo Kalpha and Laue analysis respectively. The Laue method is assessed in locating the 20 hydrogen atoms in this structure. The structure analysis of the benzil compound ((C_6H_5 O.CO_2)) is carried out using the synchrotron Laue method firstly at room temperature and secondly at low temperature -114 ^circC. The structure shows an R-factor (on F) of 13.06% and 6.85% for each data set respectively. The synchrotron Laue method was used to collect data for ergocalciferol (Vitamin D_2). The same crystal was also used to record oscillation data with the synchrotron radiation monochromatic beam. A new molecular structure of (Dinitrato-(N,N ^'-dimethylethylene-diamine)copper(II)) has been determined using Mo Kalpha radiation on a four circle diffractometer. The refinement resulted in an R-factor (on F) of 4.06%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martens, C.C.; Davis, M.J.; Ezra, G.S.
In this Comment, we correct a misunderstanding in the title paper concerning the accuracy of the fast Fourier transform method of local frequency analysis of Martens, Davis, and Ezra. We also discuss the application of the Martens{endash}Davis{endash}Ezra method to a two degree of freedom model of OSC. {copyright} {ital 1998 American Institute of Physics.}
Cancer Imaging Phenomics Toolkit (CaPTk) | Informatics Technology for Cancer Research (ITCR)
CaPTk is a software toolkit to facilitate translation of quantitative image analysis methods that help us obtain rich imaging phenotypic signatures of oncologic images and relate them to precision diagnostics and prediction of clinical outcomes, as well as to underlying molecular characteristics of cancer. The stand-alone graphical user interface of CaPTk brings analysis methods from the realm of medical imaging research to the clinic, and will be extended to use web-based services for computationally-demanding pipelines.
1980-04-01
advantage over the benzyl bromide method, which easily detected acetic and formic acid levels as low as 0.25 mg/L. Recovery was quantitative, with a...inner diameter glass, packed with 10% OV-l on 80/100 mesh Chromosorb WHP ( Alltech Associates) Carrier: Nitrogen at 24 cc/minute Column temperature: 150°C...found to be effective for analysis of acetic and formic acids. There was no advantage to the use of pentafluorobenzyl bromide over benzyl bromide, even
Gomez-Puerta, Luis A; Pacheco, Joel; Gonzales-Viera, Omar; Lopez-Urbina, Maria T; Gonzalez, Armando E
2015-09-15
In the present report metacestodes were collected from the mesentery of a taruca (Hippocamelus antisensis) and from the omentum of a red brocket deer (Mazama americana) in Peru. Various metacestodes parameters, including rostellar hook characteristics, were measured. Molecular analysis was performed to amplify the mitochondrial cytochrome c oxidase subunit 1 gene from metacestode isolates. Metacestodes were identified as T. hydatigena by morphology and molecular methods. This constitutes the first molecular detection of T. hydatigena metacestodes in the taruca and the red brocket deer and demonstrates that these animal species are natural intermediate hosts for this parasite. Copyright © 2015 Elsevier B.V. All rights reserved.
Putz, Mihai V.; Putz, Ana-Maria; Lazea, Marius; Ienciu, Luciana; Chiriac, Adrian
2009-01-01
Aiming to assess the role of individual molecular structures in the molecular mechanism of ligand-receptor interaction correlation analysis, the recent Spectral-SAR approach is employed to introduce the Quantum-SAR (QuaSAR) “wave” and “conversion factor” in terms of difference between inter-endpoint inter-molecular activities for a given set of compounds; this may account for inter-conversion (metabolization) of molecular (concentration) effects while indicating the structural (quantum) based influential/detrimental role on bio-/eco- effect in a causal manner rather than by simple inspection of measured values; the introduced QuaSAR method is then illustrated for a study of the activity of a series of flavonoids on breast cancer resistance protein. PMID:19399244
NASA Astrophysics Data System (ADS)
Faucci, Maria Teresa; Melani, Fabrizio; Mura, Paola
2002-06-01
Molecular modeling was used to investigate factors influencing complex formation between cyclodextrins and guest molecules and predict their stability through a theoretical model based on the search for a correlation between experimental stability constants ( Ks) and some theoretical parameters describing complexation (docking energy, host-guest contact surfaces, intermolecular interaction fields) calculated from complex structures at a minimum conformational energy, obtained through stochastic methods based on molecular dynamic simulations. Naproxen, ibuprofen, ketoprofen and ibuproxam were used as model drug molecules. Multiple Regression Analysis allowed identification of the significant factors for the complex stability. A mathematical model ( r=0.897) related log Ks with complex docking energy and lipophilic molecular fields of cyclodextrin and drug.
Study establishes basis for genomic classification of endometrial cancers
A comprehensive genomic analysis of nearly 400 endometrial tumors suggests that certain molecular characteristics – such as the frequency of mutations – could complement current pathology methods and help distinguish between principal types of endometrial
Pure-rotational spectrometry: a vintage analytical method applied to modern breath analysis.
Hrubesh, Lawrence W; Droege, Michael W
2013-09-01
Pure-rotational spectrometry (PRS) is an established method, typically used to study structures and properties of polar gas-phase molecules, including isotopic and isomeric varieties. PRS has also been used as an analytical tool where it is particularly well suited for detecting or monitoring low-molecular-weight species that are found in exhaled breath. PRS is principally notable for its ultra-high spectral resolution which leads to exceptional specificity to identify molecular compounds in complex mixtures. Recent developments using carbon aerogel for pre-concentrating polar molecules from air samples have extended the sensitivity of PRS into the part-per-billion range. In this paper we describe the principles of PRS and show how it may be configured in several different modes for breath analysis. We discuss the pre-concentration concept and demonstrate its use with the PRS analyzer for alcohols and ammonia sampled directly from the breath.
Oztekin, Erman K; Burton, Dallas J; Hahn, David W
2016-04-01
Explosives detection is carried out with a novel spectral analysis technique referred to as differential laser-induced perturbation spectroscopy (DLIPS) on thin films of TNT, RDX, HMX, and PETN. The utility of Raman spectroscopy for detection of explosives is enhanced by inducing deep ultraviolet laser perturbation on molecular structures in combination with a differential Raman sensing scheme. Principal components analysis (PCA) is used to quantify the DLIPS method as benchmarked against a traditional Raman scattering probe, and the related photo-induced effects on the molecular structure of the targeted explosives are discussed in detail. Finally, unique detection is observed with TNT samples deposited on commonly available background substrates of nylon and polyester. Overall, the data support DLIPS as a noninvasive method that is promising for screening explosives in real-world environments and backgrounds. © The Author(s) 2016.
Traeger-Synodinos, Joanne; Harteveld, Cornelis L; Old, John M; Petrou, Mary; Galanello, Renzo; Giordano, Piero; Angastioniotis, Michael; De la Salle, Barbara; Henderson, Shirley; May, Alison
2015-04-01
Haemoglobinopathies constitute the commonest recessive monogenic disorders worldwide, and the treatment of affected individuals presents a substantial global disease burden. Carrier identification and prenatal diagnosis represent valuable procedures that identify couples at risk for having affected children, so that they can be offered options to have healthy offspring. Molecular diagnosis facilitates prenatal diagnosis and definitive diagnosis of carriers and patients (especially 'atypical' cases who often have complex genotype interactions). However, the haemoglobin disorders are unique among all genetic diseases in that identification of carriers is preferable by haematological (biochemical) tests rather than DNA analysis. These Best Practice guidelines offer an overview of recommended strategies and methods for carrier identification and prenatal diagnosis of haemoglobinopathies, and emphasize the importance of appropriately applying and interpreting haematological tests in supporting the optimum application and evaluation of globin gene DNA analysis.
Traeger-Synodinos, Joanne; Harteveld, Cornelis L; Old, John M; Petrou, Mary; Galanello, Renzo; Giordano, Piero; Angastioniotis, Michael; De la Salle, Barbara; Henderson, Shirley; May, Alison
2015-01-01
Haemoglobinopathies constitute the commonest recessive monogenic disorders worldwide, and the treatment of affected individuals presents a substantial global disease burden. Carrier identification and prenatal diagnosis represent valuable procedures that identify couples at risk for having affected children, so that they can be offered options to have healthy offspring. Molecular diagnosis facilitates prenatal diagnosis and definitive diagnosis of carriers and patients (especially ‘atypical' cases who often have complex genotype interactions). However, the haemoglobin disorders are unique among all genetic diseases in that identification of carriers is preferable by haematological (biochemical) tests rather than DNA analysis. These Best Practice guidelines offer an overview of recommended strategies and methods for carrier identification and prenatal diagnosis of haemoglobinopathies, and emphasize the importance of appropriately applying and interpreting haematological tests in supporting the optimum application and evaluation of globin gene DNA analysis. PMID:25052315
Expression microdissection adapted to commercial laser dissection instruments
Hanson, Jeffrey C; Tangrea, Michael A; Kim, Skye; Armani, Michael D; Pohida, Thomas J; Bonner, Robert F; Rodriguez-Canales, Jaime; Emmert-Buck, Michael R
2016-01-01
Laser-based microdissection facilitates the isolation of specific cell populations from clinical or animal model tissue specimens for molecular analysis. Expression microdissection (xMD) is a second-generation technology that offers considerable advantages in dissection capabilities; however, until recently the method has not been accessible to investigators. This protocol describes the adaptation of xMD to commonly used laser microdissection instruments and to a commercially available handheld laser device in order to make the technique widely available to the biomedical research community. The method improves dissection speed for many applications by using a targeting probe for cell procurement in place of an operator-based, cell-by-cell selection process. Moreover, xMD can provide improved dissection precision because of the unique characteristics of film activation. The time to complete the protocol is highly dependent on the target cell population and the number of cells needed for subsequent molecular analysis. PMID:21412274
Bird, Patrick; Flannery, Jonathan; Crowley, Erin; Agin, James; Goins, David; Monteroso, Lisa; Benesh, DeAnn
2015-01-01
The 3M™ Molecular Detection Assay (MDA) Listeria is used with the 3M Molecular Detection System for the detection of Listeria species in food, food-related, and environmental samples after enrichment. The assay utilizes loop-mediated isothermal amplification to rapidly amplify Listeria target DNA with high specificity and sensitivity, combined with bioluminescence to detect the amplification. The 3M MDA Listeria method was evaluated using an unpaired study design in a multilaboratory collaborative study and compared to the AOAC Official Method of AnalysisSM (OMA) 993.12 Listeria monocytogenes in Milk and Dairy Products reference method for the detection of Listeria species in full-fat (4% milk fat) cottage cheese (25 g test portions). A total of 15 laboratories located in the continental United States and Canada participated. Each matrix had three inoculation levels: an uninoculated control level (0 CFU/test portion), and two levels artificially contaminated with Listeria monocytogenes, a low inoculum level (0.2-2 CFU/test portion) and a high inoculum level (2-5 CFU/test portion) using nonheat-stressed cells. In total, 792 unpaired replicate portions were analyzed. Statistical analysis was conducted according to the probability of detection (POD) model. Results obtained for the low inoculum level test portions produced a difference in cross-laboratory POD value of -0.07 with a 95% confidence interval of (-0.19, 0.06). No statistically significant differences were observed in the number of positive samples detected by the 3M MDA Listeria method versus the AOAC OMA method.
Iván, Kristóf; Maráz, Anna
2015-12-20
Detection and identification of food-borne pathogenic bacteria are key points for the assurance of microbiological food safety. Traditional culture-based methods are more and more replaced by or supplemented with nucleic acid based molecular techniques, targeting specific (preferably virulence) genes in the genomes. Internationally validated DNA amplification - most frequently real-time polymerase chain reaction - methods are applied by the food microbiological testing laboratories for routine analysis, which will result not only in shortening the time for results but they also improve the performance characteristics (e.g. sensitivity, specificity) of the methods. Beside numerous advantages of the polymerase chain reaction based techniques for routine microbiological analysis certain drawbacks have to be mentioned, such as the high cost of the equipment and reagents, as well as the risk of contamination of the laboratory environment by the polymerase chain reaction amplicons, which require construction of an isolated laboratory system. Lab-on-a-chip systems can integrate most of these laboratory processes within a miniaturized device that delivers the same specificity and reliability as the standard protocols. The benefits of miniaturized devices are: simple - often automated - use, small overall size, portability, sterility due to single use possibility. These miniaturized rapid diagnostic tests are being researched and developed at the best research centers around the globe implementing various sample preparation and molecular DNA amplification methods on-chip. In parallel, the aim of the authors' research is to develop microfluidic Lab-on-a-chip devices for the detection and identification of food-borne pathogenic bacteria.
NASA Astrophysics Data System (ADS)
Almutairi, Maha S.; Zakaria, Azza S.; Ignasius, P. Primsa; Al-Wabli, Reem I.; Joe, Isaac Hubert; Attia, Mohamed I.
2018-02-01
Indole-isatin molecular hybrids 5a-i have been synthesized and characterized by different spectroscopic methods to be evaluated as new antimicrobial agents against a panel of Gram positive bacteria, Gram negative bacteria, and moulds. Compound 5h was selected as a representative example of the prepared compounds 5a-i to perform computational investigations. Its vibrational properties have been studied using FT-IR and FT-Raman with the aid of density functional theory approach. The natural bond orbital analysis as well as HOMO and LUMO molecular orbitals investigations of compound 5h were carried out to explore its possible intermolecular delocalization or hyperconjugation and its possible interactions with the target protein. Molecular docking of compound 5h predicted its binding mode with the fungal target protein.
Application of the Covalent Bond Classification Method for the Teaching of Inorganic Chemistry
ERIC Educational Resources Information Center
Green, Malcolm L. H.; Parkin, Gerard
2014-01-01
The Covalent Bond Classification (CBC) method provides a means to classify covalent molecules according to the number and types of bonds that surround an atom of interest. This approach is based on an elementary molecular orbital analysis of the bonding involving the central atom (M), with the various interactions being classified according to the…
40 CFR Table 1 to Subpart Bbbbb of... - Requirements for Performance Tests
Code of Federal Regulations, 2014 CFR
2014-07-01
... HAP used as the calibration gas must be the single organic HAP representing the largest percent of... determining compliance with a ppmv concentration limit. c. Conduct gas molecular weight analysis i. Method 3... York, NY 10016-5990) as an alternative to EPA Method 3B. d. Measure moisture content of the stack gas...
String Mining in Bioinformatics
NASA Astrophysics Data System (ADS)
Abouelhoda, Mohamed; Ghanem, Moustafa
Sequence analysis is a major area in bioinformatics encompassing the methods and techniques for studying the biological sequences, DNA, RNA, and proteins, on the linear structure level. The focus of this area is generally on the identification of intra- and inter-molecular similarities. Identifying intra-molecular similarities boils down to detecting repeated segments within a given sequence, while identifying inter-molecular similarities amounts to spotting common segments among two or multiple sequences. From a data mining point of view, sequence analysis is nothing but string- or pattern mining specific to biological strings. For a long time, this point of view, however, has not been explicitly embraced neither in the data mining nor in the sequence analysis text books, which may be attributed to the co-evolution of the two apparently independent fields. In other words, although the word "data-mining" is almost missing in the sequence analysis literature, its basic concepts have been implicitly applied. Interestingly, recent research in biological sequence analysis introduced efficient solutions to many problems in data mining, such as querying and analyzing time series [49,53], extracting information from web pages [20], fighting spam mails [50], detecting plagiarism [22], and spotting duplications in software systems [14].
String Mining in Bioinformatics
NASA Astrophysics Data System (ADS)
Abouelhoda, Mohamed; Ghanem, Moustafa
Sequence analysis is a major area in bioinformatics encompassing the methods and techniques for studying the biological sequences, DNA, RNA, and proteins, on the linear structure level. The focus of this area is generally on the identification of intra- and inter-molecular similarities. Identifying intra-molecular similarities boils down to detecting repeated segments within a given sequence, while identifying inter-molecular similarities amounts to spotting common segments among two or multiple sequences. From a data mining point of view, sequence analysis is nothing but string- or pattern mining specific to biological strings. For a long time, this point of view, however, has not been explicitly embraced neither in the data mining nor in the sequence analysis text books, which may be attributed to the co-evolution of the two apparently independent fields. In other words, although the word “data-mining” is almost missing in the sequence analysis literature, its basic concepts have been implicitly applied. Interestingly, recent research in biological sequence analysis introduced efficient solutions to many problems in data mining, such as querying and analyzing time series [49,53], extracting information from web pages [20], fighting spam mails [50], detecting plagiarism [22], and spotting duplications in software systems [14].
Jaiswara, Ranjana; Nandi, Diptarup; Balakrishnan, Rohini
2013-01-01
Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6-7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification.
New method for stock-tank oil compositional analysis.
McAndrews, Kristine; Nighswander, John; Kotzakoulakis, Konstantin; Ross, Paul; Schroeder, Helmut
2009-01-01
A new method for accurately determining stock-tank oil composition to normal pentatriacontane using gas chromatography is developed and validated. The new method addresses the potential errors associated with the traditional equipment and technique employed for extended hydrocarbon gas chromatography outside a controlled laboratory environment, such as on an offshore oil platform. In particular, the experimental measurement of stock-tank oil molecular weight with the freezing point depression technique and the use of an internal standard to find the unrecovered sample fraction are replaced with correlations for estimating these properties. The use of correlations reduces the number of necessary experimental steps in completing the required sample preparation and analysis, resulting in reduced uncertainty in the analysis.
Lledías, Fernando; Hernández, Felipe; Rivas, Viridiana; García-Mendoza, Abisaí; Cassab, Gladys I; Nieto-Sotelo, Jorge
2017-08-01
Crassulacean acid metabolism plants have some morphological features, such as succulent and reduced leaves, thick cuticles, and sunken stomata that help them prevent excessive water loss and irradiation. As molecular constituents of these morphological adaptations to xeric environments, succulent plants produce a set of specific compounds such as complex polysaccharides, pigments, waxes, and terpenoids, to name a few, in addition to uncharacterized proteases. Since all these compounds interfere with the analysis of proteins by electrophoretic techniques, preparation of high quality samples from these sources represents a real challenge. The absence of adequate protocols for protein extraction has restrained the study of this class of plants at the molecular level. Here, we present a rapid and reliable protocol that could be accomplished in 1 h and applied to a broad range of plants with reproducible results. We were able to obtain well-resolved SDS/PAGE protein patterns in extracts from different members of the subfamilies Agavoideae (Agave, Yucca, Manfreda, and Furcraea), Nolinoideae (Dasylirion and Beucarnea), and the Cactaceae family. This method is based on the differential solubility of contaminants and proteins in the presence of acetone and pH-altered solutions. We speculate about the role of saponins and high molecular weight carbohydrates to produce electrophoretic-compatible samples. A modification of the basic protocol allowed the analysis of samples by bidimensional electrophoresis (2DE) for proteomic analysis. Furostanol glycoside 26-O-β-glucosidase (an enzyme involved in steroid saponin synthesis) was successfully identified by mass spectrometry analysis and de novo sequencing of a 2DE spot from an Agave attenuata sample.
Zhi-Bin Wen; Ming-Li Zhang; Ge-Lin Zhu; Stewart C. Sanderson
2010-01-01
To reconstruct phylogeny and verify the monophyly of major subgroups, a total of 52 species representing almost all species of Salsoleae s.l. in China were sampled, with analysis based on three molecular markers (nrDNA ITS, cpDNA psbB-psbH and rbcL), using maximum parsimony, maximum likelihood, and Bayesian inference methods. Our molecular evidence provides strong...
Molecular docking, spectroscopic studies and quantum calculations on nootropic drug.
Uma Maheswari, J; Muthu, S; Sundius, Tom
2014-04-05
A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed. Copyright © 2014 Elsevier B.V. All rights reserved.
Nondestructive cryomicro-CT imaging enables structural and molecular analysis of human lung tissue.
Vasilescu, Dragoş M; Phillion, André B; Tanabe, Naoya; Kinose, Daisuke; Paige, David F; Kantrowitz, Jacob J; Liu, Gang; Liu, Hanqiao; Fishbane, Nick; Verleden, Stijn E; Vanaudenaerde, Bart M; Lenburg, Marc; Stevenson, Christopher S; Spira, Avrum; Cooper, Joel D; Hackett, Tillie-Louise; Hogg, James C
2017-01-01
Micro-computed tomography (CT) enables three-dimensional (3D) imaging of complex soft tissue structures, but current protocols used to achieve this goal preclude cellular and molecular phenotyping of the tissue. Here we describe a radiolucent cryostage that permits micro-CT imaging of unfixed frozen human lung samples at an isotropic voxel size of (11 µm) 3 under conditions where the sample is maintained frozen at -30°C during imaging. The cryostage was tested for thermal stability to maintain samples frozen up to 8 h. This report describes the methods used to choose the materials required for cryostage construction and demonstrates that whole genome mRNA integrity and expression are not compromised by exposure to micro-CT radiation and that the tissue can be used for immunohistochemistry. The new cryostage provides a novel method enabling integration of 3D tissue structure with cellular and molecular analysis to facilitate the identification of molecular determinants of disease. The described micro-CT cryostage provides a novel way to study the three-dimensional lung structure preserved without the effects of fixatives while enabling subsequent studies of the cellular matrix composition and gene expression. This approach will, for the first time, enable researchers to study structural changes of lung tissues that occur with disease and correlate them with changes in gene or protein signatures. Copyright © 2017 the American Physiological Society.
Prasad, Bhim Bali; Srivastava, Amrita; Tiwari, Mahavir Prasad
2013-03-29
The present work is related to combination of molecularly imprinted solid-phase microextraction and complementary molecularly imprinted polymer-sensor. The molecularly imprinted polymer grafted on titanium dioxide modified silica fiber was used for microextraction, while the same polymer immobilized on multiwalled carbon nanotubes/titanium dioxide modified pencil graphite electrode served as a detection tool. In both cases, the surface initiated polymerization was found to be advantageous to obtain a nanometer thin imprinted film. The modified silica fiber exhibited high adsorption capacity and enantioselective diffusion of aspartic acid isomers into respective molecular cavities. This combination enabled double preconcentrations of d- and l-aspartic acid that helped sensing both isomers in real samples, without any cross-selectivity and matrix complications. Taking into account 6×10(4)-fold dilution of serum and 2×10(3)-fold dilution of cerebrospinal fluid required by the proposed method, the limit of detection for l-aspartic acid is 0.031ngmL(-1). Also, taking into account 50-fold dilution required by the proposed method, the limit of detection for d-aspartic acid is 0.031ngmL(-1) in cerebrospinal fluid. Copyright © 2013 Elsevier B.V. All rights reserved.
Exploiting interfacial water properties for desalination and purification applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Hongwu; Varma, Sameer; Nyman, May Devan
2008-09-01
A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meek, Garrett A.; Levine, Benjamin G., E-mail: levine@chemistry.msu.edu
2016-05-14
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplingsmore » at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.« less
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections
NASA Astrophysics Data System (ADS)
Meek, Garrett A.; Levine, Benjamin G.
2016-05-01
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.
Meek, Garrett A; Levine, Benjamin G
2016-05-14
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.
Wan, Jianbo; Li, Changming; Li, Shaopin; Kong, Lingyi; Wang, Yitao
2005-10-01
To establish a method for qualitative analysis of saponins from Panax notoginseng using pressurized solvent extraction coupled with LC-ESI-MS. The PSE technology was applied to the process of extraction for Panax notoginseng, and the negative ion detection and multiple reaction monitoring model were used. The saponins were investigated based on total ion chromatogram (TIC) and MRM chromatogram. According to the fragment character of saponins, the molecular weight and their structures could be identified. The method can be used for qualitative analysis of saponins from Panax notoginseng.
Electric potential calculation in molecular simulation of electric double layer capacitors
NASA Astrophysics Data System (ADS)
Wang, Zhenxing; Olmsted, David L.; Asta, Mark; Laird, Brian B.
2016-11-01
For the molecular simulation of electric double layer capacitors (EDLCs), a number of methods have been proposed and implemented to determine the one-dimensional electric potential profile between the two electrodes at a fixed potential difference. In this work, we compare several of these methods for a model LiClO4-acetonitrile/graphite EDLC simulated using both the traditional fixed-charged method (FCM), in which a fixed charge is assigned a priori to the electrode atoms, or the recently developed constant potential method (CPM) (2007 J. Chem. Phys. 126 084704), where the electrode charges are allowed to fluctuate to keep the potential fixed. Based on an analysis of the full three-dimensional electric potential field, we suggest a method for determining the averaged one-dimensional electric potential profile that can be applied to both the FCM and CPM simulations. Compared to traditional methods based on numerically solving the one-dimensional Poisson’s equation, this method yields better accuracy and no supplemental assumptions.
Serag, Maged F.; Abadi, Maram; Habuchi, Satoshi
2014-01-01
Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields. PMID:25283876
Devonshire, Alison S; O'Sullivan, Denise M; Honeyborne, Isobella; Jones, Gerwyn; Karczmarczyk, Maria; Pavšič, Jernej; Gutteridge, Alice; Milavec, Mojca; Mendoza, Pablo; Schimmel, Heinz; Van Heuverswyn, Fran; Gorton, Rebecca; Cirillo, Daniela Maria; Borroni, Emanuele; Harris, Kathryn; Barnard, Marinus; Heydenrych, Anthenette; Ndusilo, Norah; Wallis, Carole L; Pillay, Keshree; Barry, Thomas; Reddington, Kate; Richter, Elvira; Mozioğlu, Erkan; Akyürek, Sema; Yalçınkaya, Burhanettin; Akgoz, Muslum; Žel, Jana; Foy, Carole A; McHugh, Timothy D; Huggett, Jim F
2016-08-03
Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification of Mycobacterium tuberculosis would provide a clinically useful readout. The methods described in this study provide a means by which the technical performance of quantitative molecular methods can be evaluated independently of clinical variability to improve accuracy of measurement results. These will assist in ultimately increasing the likelihood that such approaches could be used to improve patient management of TB.
Systems and methods for integrating ion mobility and ion trap mass spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Yehia M.; Garimella, Sandilya; Prost, Spencer A.
Described herein are examples of systems and methods for integrating IMS and MS systems. In certain examples, systems and methods for decoding double multiplexed data are described. The systems and methods can also perform multiple refining procedures in order to minimize the demultiplexing artifacts. The systems and methods can be used, for example, for the analysis of proteomic and petroleum samples, where the integration of IMS and high mass resolution are used for accurate assignment of molecular formulae.
Murgu, Septimiu; Colt, Henri
2013-11-01
In the growing era of personalized medicine for the treatment of non-small-cell lung cancer (NSCLC), it is becoming increasingly important that sufficient quality and quantity of tumor tissue are available for morphologic diagnosis and molecular analysis. As new treatment options emerge that might require more frequent and possibly higher volume biopsies, the role of the pulmonologist will expand, and it will be important for pulmonologists to work within a multidisciplinary team to provide optimal therapeutic management for patients with NSCLC. In this review, we discuss the rationale for individualized treatment decisions for patients with NSCLC, molecular pathways and specific molecular predictors relevant to personalized NSCLC therapy, assay technologies for molecular marker analysis, and specifics regarding tumor specimen selection, acquisition, and handling. Moreover, we briefly address issues regarding racial and socioeconomic disparities as they relate to molecular testing and treatment decisions, and cost considerations for molecular testing and targeted therapies in NSCLC. We also propose a model for an institution-based multidisciplinary team, including oncologists, pathologists, pulmonologists, interventional radiologists, and thoracic surgeons, to ensure adequate material is available for cytological and histological studies and to standardize methods of tumor specimen handling and processing in an effort to provide beneficial, individualized therapy for patients with NSCLC. Copyright © 2013 Elsevier Inc. All rights reserved.
Sheena Mary, Y; Yohannan Panicker, C; Sapnakumari, M; Narayana, B; Sarojini, B K; Al-Saadi, Abdulaziz A; Van Alsenoy, Christian; War, Javeed Ahmad
2015-03-05
The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of ethyl-6-(4-chlorophenyl)-4-(4-fluoro-phenyl)-2-oxocyclohex-3-ene-1-carboxylate have been investigated experimentally and theoretically using Gaussian09 software. The title compound was optimized using the HF and DFT levels of theory. The geometrical parameters are in agreement with the XRD data. The stability of the molecule has been analyzed by NBO analysis. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential was performed by the DFT method. As can be seen from the MEP map of the title compound, regions having the negative potential are over the electro negative atoms, the region having the positive potential are over the phenyl rings and the remaining species are surrounded by zero potential. First hyperpolarizability is calculated in order to find its role in non linear optics. The title compound binds at the active sites of both CypD and β-secretase and the molecular docking results draw the conclusion that the compound might exhibit β-secretase inhibitory activity which could be utilized for development of new anti-alzheimeric drugs with mild CypD inhibitory activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Beres, Stephen B; Sylva, Gail L; Sturdevant, Daniel E; Granville, Chanel N; Liu, Mengyao; Ricklefs, Stacy M; Whitney, Adeline R; Parkins, Larye D; Hoe, Nancy P; Adams, Gerald J; Low, Donald E; DeLeo, Frank R; McGeer, Allison; Musser, James M
2004-08-10
Molecular factors that contribute to the emergence of new virulent bacterial subclones and epidemics are poorly understood. We hypothesized that analysis of a population-based strain sample of serotype M3 group A Streptococcus (GAS) recovered from patients with invasive infection by using genome-wide investigative methods would provide new insight into this fundamental infectious disease problem. Serotype M3 GAS strains (n = 255) cultured from patients in Ontario, Canada, over 11 years and representing two distinct infection peaks were studied. Genetic diversity was indexed by pulsed-field gel electrophoresis, DNA-DNA microarray, whole-genome PCR scanning, prophage genotyping, targeted gene sequencing, and single-nucleotide polymorphism genotyping. All variation in gene content was attributable to acquisition or loss of prophages, a molecular process that generated unique combinations of proven or putative virulence genes. Distinct serotype M3 genotypes experienced rapid population expansion and caused infections that differed significantly in character and severity. Molecular genetic analysis, combined with immunologic studies, implicated a 4-aa duplication in the extreme N terminus of M protein as a factor contributing to an epidemic wave of serotype M3 invasive infections. This finding has implications for GAS vaccine research. Genome-wide analysis of population-based strain samples cultured from clinically well defined patients is crucial for understanding the molecular events underlying bacterial epidemics.
NASA Astrophysics Data System (ADS)
Tanak, Hasan; Toy, Mehmet
2013-11-01
The molecular geometry and vibrational frequencies of bis[2-hydroxy-кO-N-(2-pyridyl)-1-naphthaldiminato-кN]zinc(II) in the ground state have been calculated by using the Hartree-Fock (HF) and density functional method (B3LYP) with 6-311G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The energetic and atomic charge behavior of the title compound in solvent media has been examined by applying the Onsager and the polarizable continuum model. To investigate second order nonlinear optical properties of the title compound, the electric dipole (μ), linear polarizability (α) and first-order hyperpolarizability (β) were computed using the density functional B3LYP and CAM-B3LYP methods with the 6-31+G(d) basis set. According to our calculations, the title compound exhibits nonzero (β) value revealing second order NLO behavior. In addition, DFT calculations of the title compound, molecular electrostatic potential (MEP), frontier molecular orbitals, and thermodynamic properties were performed at B3LYP/6-311G(d,p) level of theory.
Li, Bojiang; Dong, Chao; Li, Pinghua; Ren, Zhuqing; Wang, Han; Yu, Fengxiang; Ning, Caibo; Liu, Kaiqing; Wei, Wei; Huang, Ruihua; Chen, Jie; Wu, Wangjun; Liu, Honglin
2016-10-17
Meat color is considered to be the most important indicator of meat quality, however, the molecular mechanisms underlying traits related to meat color remain mostly unknown. In this study, to elucidate the molecular basis of meat color, we constructed six cDNA libraries from biceps femoris (Bf) and soleus (Sol), which exhibit obvious differences in meat color, and analyzed the whole-transcriptome differences between Bf (white muscle) and Sol (red muscle) using high-throughput sequencing technology. Using DEseq2 method, we identified 138 differentially expressed genes (DEGs) between Bf and Sol. Using DEGseq method, we identified 770, 810, and 476 DEGs in comparisons between Bf and Sol in three separate animals. Of these DEGs, 52 were overlapping DEGs. Using these data, we determined the enriched GO terms, metabolic pathways and candidate genes associated with meat color traits. Additionally, we mapped 114 non-redundant DEGs to the meat color QTLs via a comparative analysis with the porcine quantitative trait loci (QTL) database. Overall, our data serve as a valuable resource for identifying genes whose functions are critical for meat color traits and can accelerate studies of the molecular mechanisms of meat color formation.
Li, Bojiang; Dong, Chao; Li, Pinghua; Ren, Zhuqing; Wang, Han; Yu, Fengxiang; Ning, Caibo; Liu, Kaiqing; Wei, Wei; Huang, Ruihua; Chen, Jie; Wu, Wangjun; Liu, Honglin
2016-01-01
Meat color is considered to be the most important indicator of meat quality, however, the molecular mechanisms underlying traits related to meat color remain mostly unknown. In this study, to elucidate the molecular basis of meat color, we constructed six cDNA libraries from biceps femoris (Bf) and soleus (Sol), which exhibit obvious differences in meat color, and analyzed the whole-transcriptome differences between Bf (white muscle) and Sol (red muscle) using high-throughput sequencing technology. Using DEseq2 method, we identified 138 differentially expressed genes (DEGs) between Bf and Sol. Using DEGseq method, we identified 770, 810, and 476 DEGs in comparisons between Bf and Sol in three separate animals. Of these DEGs, 52 were overlapping DEGs. Using these data, we determined the enriched GO terms, metabolic pathways and candidate genes associated with meat color traits. Additionally, we mapped 114 non-redundant DEGs to the meat color QTLs via a comparative analysis with the porcine quantitative trait loci (QTL) database. Overall, our data serve as a valuable resource for identifying genes whose functions are critical for meat color traits and can accelerate studies of the molecular mechanisms of meat color formation. PMID:27748458
Quantum Dot Platform for Single-Cell Molecular Profiling
NASA Astrophysics Data System (ADS)
Zrazhevskiy, Pavel S.
In-depth understanding of the nature of cell physiology and ability to diagnose and control the progression of pathological processes heavily rely on untangling the complexity of intracellular molecular mechanisms and pathways. Therefore, comprehensive molecular profiling of individual cells within the context of their natural tissue or cell culture microenvironment is essential. In principle, this goal can be achieved by tagging each molecular target with a unique reporter probe and detecting its localization with high sensitivity at sub-cellular resolution, primarily via microscopy-based imaging. Yet, neither widely used conventional methods nor more advanced nanoparticle-based techniques have been able to address this task up to date. High multiplexing potential of fluorescent probes is heavily restrained by the inability to uniquely match probes with corresponding molecular targets. This issue is especially relevant for quantum dot probes---while simultaneous spectral imaging of up to 10 different probes is possible, only few can be used concurrently for staining with existing methods. To fully utilize multiplexing potential of quantum dots, it is necessary to design a new staining platform featuring unique assignment of each target to a corresponding quantum dot probe. This dissertation presents two complementary versatile approaches towards achieving comprehensive single-cell molecular profiling and describes engineering of quantum dot probes specifically tailored for each staining method. Analysis of expanded molecular profiles is achieved through augmenting parallel multiplexing capacity with performing several staining cycles on the same specimen in sequential manner. In contrast to other methods utilizing quantum dots or other nanoparticles, which often involve sophisticated probe synthesis, the platform technology presented here takes advantage of simple covalent bioconjugation and non-covalent self-assembly mechanisms for straightforward probe preparation and specimen labeling, requiring no advanced technical skills and being directly applicable for a wide range of molecular profiling studies. Utilization of quantum dot platform for single-cell molecular profiling promises to greatly benefit both biomedical research and clinical diagnostics by providing a tool for addressing phenotypic heterogeneity within large cell populations, opening access to studying low-abundance events often masked or completely erased by batch processing, and elucidating biomarker signatures of diseases critical for accurate diagnostics and targeted therapy.
NASA Astrophysics Data System (ADS)
Ghasemian, Motaleb; Kakanejadifard, Ali; Karami, Tahereh
2016-11-01
The azo-azomethine dyes with a different substitution have been designed from the reaction of 4,4‧-diaminodiphenyl sulfone with 2-hydroxy-5-(aryldiazenyl)benzaldehyde. The compounds have been characterized by elemental analysis, Mass, IR, UV-Vis, TGA-DTA and NMR spectroscopy. The solvatochromism behaviors, effects of substitution and pH on the electronic absorption spectra of dyes were evaluated. The in vitro antimicrobial activities were also screened for their potential for antibiotic activities by broth micro dilution method. Also, the optimum molecular geometries, molecular electrostatic potential (MEP), nucleus-independent chemical shift (NICS) and frontier molecular orbitals (FMO), vibrational spectra (IR) and electronic absorption (UV-Vis) spectra of the title compounds have been investigated with the help of DFT and TDDFT methods with 6-311 ++G(d,p) basis sets and PCM calculations. The results of the calculations show excellent agreement with the experimental value.
Molecular methods for septicemia diagnosis.
Marco, Francesc
2017-11-01
Septicemia remains a major cause of hospital mortality. Blood culture remains the best approach to identify the etiological microorganisms when a bloodstream infection is suspected but it takes long time because it relies on bacterial or fungal growth. The introduction in clinical microbiology laboratories of the matrix-assisted laser desorption ionization time-of-flight mass spectrometry technology, DNA hybridization, microarrays or rapid PCR-based test significantly reduce the time to results. Tests for direct detection in whole blood samples are highly desirable because of their potential to identify bloodstream pathogens without waiting for blood cultures to become positive. Nonetheless, limitations of current molecular diagnostic methods are substantial. This article reviews these new molecular approaches (LightCycler SeptiFast, Magicplex sepsis real time, Septitest, VYOO, PCR/ESI-MS analysis, T2Candida). Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Global Gene Expression Analysis of Yeast Cells during Sake Brewing▿ †
Wu, Hong; Zheng, Xiaohong; Araki, Yoshio; Sahara, Hiroshi; Takagi, Hiroshi; Shimoi, Hitoshi
2006-01-01
During the brewing of Japanese sake, Saccharomyces cerevisiae cells produce a high concentration of ethanol compared with other ethanol fermentation methods. We analyzed the gene expression profiles of yeast cells during sake brewing using DNA microarray analysis. This analysis revealed some characteristics of yeast gene expression during sake brewing and provided a scaffold for a molecular level understanding of the sake brewing process. PMID:16997994
Shirahata, Mitsuaki; Iwao-Koizumi, Kyoko; Saito, Sakae; Ueno, Noriko; Oda, Masashi; Hashimoto, Nobuo; Takahashi, Jun A; Kato, Kikuya
2007-12-15
Current morphology-based glioma classification methods do not adequately reflect the complex biology of gliomas, thus limiting their prognostic ability. In this study, we focused on anaplastic oligodendroglioma and glioblastoma, which typically follow distinct clinical courses. Our goal was to construct a clinically useful molecular diagnostic system based on gene expression profiling. The expression of 3,456 genes in 32 patients, 12 and 20 of whom had prognostically distinct anaplastic oligodendroglioma and glioblastoma, respectively, was measured by PCR array. Next to unsupervised methods, we did supervised analysis using a weighted voting algorithm to construct a diagnostic system discriminating anaplastic oligodendroglioma from glioblastoma. The diagnostic accuracy of this system was evaluated by leave-one-out cross-validation. The clinical utility was tested on a microarray-based data set of 50 malignant gliomas from a previous study. Unsupervised analysis showed divergent global gene expression patterns between the two tumor classes. A supervised binary classification model showed 100% (95% confidence interval, 89.4-100%) diagnostic accuracy by leave-one-out cross-validation using 168 diagnostic genes. Applied to a gene expression data set from a previous study, our model correlated better with outcome than histologic diagnosis, and also displayed 96.6% (28 of 29) consistency with the molecular classification scheme used for these histologically controversial gliomas in the original article. Furthermore, we observed that histologically diagnosed glioblastoma samples that shared anaplastic oligodendroglioma molecular characteristics tended to be associated with longer survival. Our molecular diagnostic system showed reproducible clinical utility and prognostic ability superior to traditional histopathologic diagnosis for malignant glioma.
Macyszyn, Luke; Akbari, Hamed; Pisapia, Jared M.; Da, Xiao; Attiah, Mark; Pigrish, Vadim; Bi, Yingtao; Pal, Sharmistha; Davuluri, Ramana V.; Roccograndi, Laura; Dahmane, Nadia; Martinez-Lage, Maria; Biros, George; Wolf, Ronald L.; Bilello, Michel; O'Rourke, Donald M.; Davatzikos, Christos
2016-01-01
Background MRI characteristics of brain gliomas have been used to predict clinical outcome and molecular tumor characteristics. However, previously reported imaging biomarkers have not been sufficiently accurate or reproducible to enter routine clinical practice and often rely on relatively simple MRI measures. The current study leverages advanced image analysis and machine learning algorithms to identify complex and reproducible imaging patterns predictive of overall survival and molecular subtype in glioblastoma (GB). Methods One hundred five patients with GB were first used to extract approximately 60 diverse features from preoperative multiparametric MRIs. These imaging features were used by a machine learning algorithm to derive imaging predictors of patient survival and molecular subtype. Cross-validation ensured generalizability of these predictors to new patients. Subsequently, the predictors were evaluated in a prospective cohort of 29 new patients. Results Survival curves yielded a hazard ratio of 10.64 for predicted long versus short survivors. The overall, 3-way (long/medium/short survival) accuracy in the prospective cohort approached 80%. Classification of patients into the 4 molecular subtypes of GB achieved 76% accuracy. Conclusions By employing machine learning techniques, we were able to demonstrate that imaging patterns are highly predictive of patient survival. Additionally, we found that GB subtypes have distinctive imaging phenotypes. These results reveal that when imaging markers related to infiltration, cell density, microvascularity, and blood–brain barrier compromise are integrated via advanced pattern analysis methods, they form very accurate predictive biomarkers. These predictive markers used solely preoperative images, hence they can significantly augment diagnosis and treatment of GB patients. PMID:26188015
Liu, Jie; Kabir, Furqan; Manneh, Jainaba; Lertsethtakarn, Paphavee; Begum, Sharmin; Gratz, Jean; Becker, Steve M; Operario, Darwin J; Taniuchi, Mami; Janaki, Lalitha; Platts-Mills, James A; Haverstick, Doris M; Kabir, Mamun; Sobuz, Shihab U; Nakjarung, Kaewkanya; Sakpaisal, Pimmada; Silapong, Sasikorn; Bodhidatta, Ladaporn; Qureshi, Shahida; Kalam, Adil; Saidi, Queen; Swai, Ndealilia; Mujaga, Buliga; Maro, Athanasia; Kwambana, Brenda; Dione, Michel; Antonio, Martin; Kibiki, Gibson; Mason, Carl J; Haque, Rashidul; Iqbal, Najeeha; Zaidi, Anita K M; Houpt, Eric R
2014-08-01
Childhood diarrhoea can be caused by many pathogens that are difficult to assay in the laboratory. Molecular diagnostic techniques provide a uniform method to detect and quantify candidate enteropathogens. We aimed to develop and assess molecular tests for identification of enteropathogens and their association with disease. We developed and assessed molecular diagnostic tests for 15 enteropathogens across three platforms-PCR-Luminex, multiplex real-time PCR, and TaqMan array card-at five laboratories worldwide. We judged the analytical and clinical performance of these molecular techniques against comparator methods (bacterial culture, ELISA, and PCR) using 867 diarrhoeal and 619 non-diarrhoeal stool specimens. We also measured molecular quantities of pathogens to predict the association with diarrhoea, by univariate logistic regression analysis. The molecular tests showed very good analytical and clinical performance at all five laboratories. Comparator methods had limited sensitivity compared with the molecular techniques (20-85% depending on the target) but good specificity (median 97·3%, IQR 96·5-98·9; mean 95·2%, SD 9·1). Positive samples by comparator methods usually had higher molecular quantities of pathogens than did negative samples, across almost all platforms and for most pathogens (p<0·05). The odds ratio for diarrhoea at a given quantity (measured by quantification cycle, Cq) showed that for most pathogens associated with diarrhoea-including Campylobacter jejuni and Campylobacter coli, Cryptosporidium spp, enteropathogenic Escherichia coli, heat-stable enterotoxigenic E coli, rotavirus, Shigella spp and enteroinvasive E coli, and Vibrio cholerae-the strength of association with diarrhoea increased at higher pathogen loads. For example, Shigella spp at a Cq range of 15-20 had an odds ratio of 8·0 (p<0·0001), but at a Cq range of 25-30 the odds ratio fell to 1·7 (p=0·043). Molecular diagnostic tests can be implemented successfully and with fidelity across laboratories around the world. In the case of diarrhoea, these techniques can detect pathogens with high sensitivity and ascribe diarrhoeal associations based on quantification, including in mixed infections, providing rich and unprecedented measurements of infectious causes. Bill & Melinda Gates Foundation Next Generation Molecular Diagnostics Project. Copyright © 2014 Elsevier Ltd. All rights reserved.