NASA Astrophysics Data System (ADS)
Lazarenko, A. A.; Berezovskaya, T. N.; Denisov, D. V.; Sobolev, M. S.; Pirogov, E. V.; Nikitina, E. V.
2017-11-01
This article discusses the process of preparation of a silicon surface for subsequent growth of dilute nitride alloys by molecular-beam epitaxy. The method of preparation of Si (100) and Si (111) substrates was developed. This method provides reproducible high-quality silicon surface for molecular-beam epitaxy of Si-GaP heterostructures. As a result, it managed to reduce the eviction oxide temperature below 800 °C, which is an important parameter for the MBE technology.
NASA Technical Reports Server (NTRS)
Hughes, Vernon W.
1959-01-01
The use of a rotational state transition as observed by the molecular beam electric resonance method is discussed as a possible frequency standard particularly in the millimeter wavelength range. As a promising example the 100 kMc transition between the J = 0 and J = 1 rotational states of Li 6F19 is considered. The relative insensitivity of the transition frequency to external electric and magnetic fields and the low microwave power requirements appear favorable; the small fraction of the molecular beam that is in a single rotational state is a limiting factor.
Isotope separation apparatus and method
Cotter, Theodore P.
1982-12-28
The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.
Analysis of time-of-flight spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, E.M.; Foxon, C.T.; Zhang, J.
1990-07-01
A simplified method of data analysis for time of flight measurements of the velocity of molecular beams sources is described. This method does not require the complex data fitting previously used in such studies. The method is applied to the study of Pb molecular beams from a true Knudsen source and has been used to show that a VG Quadrupoles SXP300H mass spectrometer, when fitted with an open cross-beam ionizer, acts as an ideal density detector over a wide range of operating conditions.
Isotope separation apparatus and method
Feldman, Barry J.
1985-01-01
The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvador Palau, A.; Eder, S. D., E-mail: sabrina.eder@uib.no; Kaltenbacher, T.
Time-of-flight (TOF) is a standard experimental technique for determining, among others, the speed ratio S (velocity spread) of a molecular beam. The speed ratio is a measure for the monochromaticity of the beam and an accurate determination of S is crucial for various applications, for example, for characterising chromatic aberrations in focussing experiments related to helium microscopy or for precise measurements of surface phonons and surface structures in molecular beam scattering experiments. For both of these applications, it is desirable to have as high a speed ratio as possible. Molecular beam TOF measurements are typically performed by chopping the beammore » using a rotating chopper with one or more slit openings. The TOF spectra are evaluated using a standard deconvolution method. However, for higher speed ratios, this method is very sensitive to errors related to the determination of the slit width and the beam diameter. The exact sensitivity depends on the beam diameter, the number of slits, the chopper radius, and the chopper rotation frequency. We present a modified method suitable for the evaluation of TOF measurements of high speed ratio beams. The modified method is based on a systematic variation of the chopper convolution parameters so that a set of independent measurements that can be fitted with an appropriate function are obtained. We show that with this modified method, it is possible to reduce the error by typically one order of magnitude compared to the standard method.« less
Ultra-Low Threshold Vertical-Cavity Surface-Emitting Lasers for USAF Applications
2005-01-01
molecular beam epitaxy , semiconductors, finite element method, modeling and simulation, oxidation furnace 16. SECURITY CLASSIFICATION OF: 19a. NAME OF...Patterson Air Force Base). Device material growth was accomplished by means of molecular beam epitaxy (MBE) using a Varian GENII MBE system owned by the...grown by molecular beam epitaxy on a GaAs substrate. Vertical posts, with square and circular cross sections ranging in size from 5 to 40 microns
Molecular-beam Studies of Primary Photochemical Processes
DOE R&D Accomplishments Database
Lee, Y. T.
1982-12-01
Application of the method of molecular-beam photofragmentation translational spectroscopy to the investigation of primary photochemical processes of polyatomic molecules is described. Examples will be given to illustrate how information concerning the energetics, dynamics, and mechanism of dissociation processes can be obtained from the precise measurements of angular and velocity distributions of products in an experiment in which a well-defined beam of molecules is crossed with a laser.
Norman Ramsey and the Separated Oscillatory Fields Method
methods of investigation; in particular, he contributed many refinements of the molecular beam method for the study of atomic and molecular properties, he invented the separated oscillatory field method of atomic and molecular spectroscopy and it is the practical basis for the most precise atomic clocks
Development of an apparatus for obtaining molecular beams in the energy range from 2 to 200 eV
NASA Technical Reports Server (NTRS)
Clapier, R.; Devienne, F. M.; Roustan, A.; Roustan, J. C.
1985-01-01
The formation and detection of molecular beams obtained by charge exchange from a low-energy ion source is discussed. Dispersion in energy of the ion source was measured and problems concerning detection of neutral beams were studied. Various methods were used, specifically secondary electron emissivity of a metallic surface and ionization of a gas target with a low ionization voltage. The intensities of neutral beams as low as 10 eV are measured by a tubular electron multiplier and a lock-in amplifier.
ERIC Educational Resources Information Center
Estermann, Immanuel
1975-01-01
Describes the early historical period of the molecular beam method, including the Stern-Gerlach experiment, the work of Davisson and Germer, and the magnetic moment determinations for the proton, neutron, and deuteron. Contains some amusing historical sidelights on the research personalities that dominated that period. (MLH)
Supersonic molecular beam experiments on surface chemical reactions.
Okada, Michio
2014-10-01
The interaction of a molecule and a surface is important in various fields, and in particular in complex systems like biomaterials and their related chemistry. However, the detailed understanding of the elementary steps in the surface chemistry, for example, stereodynamics, is still insufficient even for simple model systems. In this Personal Account, I review our recent studies of chemical reactions on single-crystalline Cu and Si surfaces induced by hyperthermal oxygen molecular beams and by oriented molecular beams, respectively. Studies of oxide formation on Cu induced by hyperthermal molecular beams demonstrate a significant role of the translational energy of the incident molecules. The use of hyperthermal molecular beams enables us to open up new chemical reaction paths specific for the hyperthermal energy region, and to develop new methods for the fabrication of thin films. On the other hand, oriented molecular beams also demonstrate the possibility of understanding surface chemical reactions in detail by varying the orientation of the incident molecules. The steric effects found on Si surfaces hint at new ways of material fabrication on Si surfaces. Controlling the initial conditions of incoming molecules is a powerful tool for finely monitoring the elementary step of the surface chemical reactions and creating new materials on surfaces. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crossed Molecular Beam Studies and Dynamics of Decomposition of Chemically Activated Radicals
DOE R&D Accomplishments Database
Lee, Y. T.
1973-09-01
The power of the crossed molecular beams method in the investigation of the dynamics of chemical reactions lies mainly in the direct observation of the consequences of single collisions of well controlled reactant molecules. The primary experimental observations which provide information on reaction dynamics are the measurements of angular and velocity distributions of reaction products.
NASA Astrophysics Data System (ADS)
Talghader, J. J.; Hadley, M. A.; Smith, J. S.
1995-12-01
A molecular beam epitaxy growth monitoring method is developed for distributed Bragg reflectors and vertical-cavity surface-emitting laser (VCSEL) resonators. The wavelength of the substrate thermal emission that corresponds to the optical cavity resonant wavelength is selected by a monochromator and monitored during growth. This method allows VCSEL cavities of arbitrary design wavelength to be grown with a single control program. This letter also presents a theoretical model for the technique which is based on transmission matrices and simple thermal emission properties. Demonstrated reproducibility of the method is well within 0.1%.
Studies on Beam Formation in an Atomic Beam Source
NASA Astrophysics Data System (ADS)
Nass, A.; Stancari, M.; Steffens, E.
2009-08-01
Atomic beam sources (ABS) are widely used workhorses producing polarized atomic beams for polarized gas targets and polarized ion sources. Although they have been used for decades the understanding of the beam formation processes is crude. Models were used more or less successfully to describe the measured intensity and beam parameters. ABS's are also foreseen for future experiments, such as PAX [1]. An increase of intensity at a high polarization would be beneficial. A direct simulation Monte-Carlo method (DSMC) [2] was used to describe the beam formation of a hydrogen or deuterium beam in an ABS. For the first time a simulation of a supersonic gas expansion on a molecular level for this application was performed. Beam profile and Time-of-Flight measurements confirmed the simulation results. Furthermore a new method of beam formation was tested, the Carrier Jet method [3], based on an expanded beam surrounded by an over-expanded carrier jet.
Method for producing an atomic oxygen beam
NASA Technical Reports Server (NTRS)
Outlaw, Ronald A. (Inventor)
1989-01-01
A method for producing an atomic oxygen beam is provided by the present invention. First, a material 10' is provided which dissociates molecular oxygen and dissolves atomic oxygen into its bulk. Next, molecular oxygen is exposed to entrance surface 11' of material 10'. Next, material 10' is heated by heater 17' to facilitate the permeation of atomic oxygen through material 10' to the UHV side 12'. UHV side 12' is interfaced with an ultra-high vacuum (UHV) environment provided by UHV pump 15'. The atomic oxygen on the UHV side 12' is excited to a non-binding state by exciter 14' thus producing the release of atomic oxygen to form an atomic oxygen beam 35'.
Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.
1977-01-01
An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.
Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph
1982-01-01
An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.
Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.
1992-12-15
A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.
Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.
1992-01-01
A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.
Chen, C Y; Yu, D L; Feng, B B; Yao, L H; Song, X M; Zang, L G; Gao, X Y; Yang, Q W; Duan, X R
2016-09-01
On HL-2A tokamak, supersonic molecular beam injection (SMBI) has been developed as a routine refueling method. The key components of the system are an electromagnetic valve and a conic nozzle. The valve and conic nozzle are assembled to compose the simplified Laval nozzle for generating the pulsed beam. The appurtenance of the system includes the cooling system serving the cooled SMBI generation and the in situ calibration component for quantitative injection. Compared with the conventional gas puffing, the SMBI features prompt response and larger fueling flux. These merits devote the SMBI a good fueling method, an excellent plasma density feedback control tool, and an edge localized mode mitigation resource.
Principles and Design of a Zeeman–Sisyphus Decelerator for Molecular Beams
Tarbutt, M. R.
2016-01-01
Abstract We explore a technique for decelerating molecules using a static magnetic field and optical pumping. Molecules travel through a spatially varying magnetic field and are repeatedly pumped into a weak‐field seeking state as they move towards each strong field region, and into a strong‐field seeking state as they move towards weak field. The method is time‐independent and so is suitable for decelerating both pulsed and continuous molecular beams. By using guiding magnets at each weak field region, the beam can be simultaneously guided and decelerated. By tapering the magnetic field strength in the strong field regions, and exploiting the Doppler shift, the velocity distribution can be compressed during deceleration. We develop the principles of this deceleration technique, provide a realistic design, use numerical simulations to evaluate its performance for a beam of CaF, and compare this performance to other deceleration methods. PMID:27629547
NASA Astrophysics Data System (ADS)
Saito, Hideaki; Ogura, Ichiro; Sugimoto, Yoshimasa; Kasahara, Kenichi
1995-05-01
The monolithic incorporation and performance of vertical-cavity surface-emitting lasers (VCSELs) emitting at two distinct wavelengths, which were suited for application to wavelength division multiplexing (WDM) systems were reported. The monolithic integration of two-wavelength VCSEL arrays was achieved by using mask molecular beam epitaxy. This method can generate arrays that have the desired integration area size and wavelength separation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruse, J. E.; Doundoulakis, G.; Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, N. Plastira 100, 70013 Heraklion
2016-06-14
We analyze a method to selectively grow straight, vertical gallium nitride nanowires by plasma-assisted molecular beam epitaxy (MBE) at sites specified by a silicon oxide mask, which is thermally grown on silicon (111) substrates and patterned by electron-beam lithography and reactive-ion etching. The investigated method requires only one single molecular beam epitaxy MBE growth process, i.e., the SiO{sub 2} mask is formed on silicon instead of on a previously grown GaN or AlN buffer layer. We present a systematic and analytical study involving various mask patterns, characterization by scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy, as well asmore » numerical simulations, to evaluate how the dimensions (window diameter and spacing) of the mask affect the distribution of the nanowires, their morphology, and alignment, as well as their photonic properties. Capabilities and limitations for this method of selective-area growth of nanowires have been identified. A window diameter less than 50 nm and a window spacing larger than 500 nm can provide single nanowire nucleation in nearly all mask windows. The results are consistent with a Ga diffusion length on the silicon dioxide surface in the order of approximately 1 μm.« less
A new high intensity and short-pulse molecular beam valve
NASA Astrophysics Data System (ADS)
Yan, B.; Claus, P. F. H.; van Oorschot, B. G. M.; Gerritsen, L.; Eppink, A. T. J. B.; van de Meerakker, S. Y. T.; Parker, D. H.
2013-02-01
In this paper, we report on the design and performance of a new home-built pulsed gas valve, which we refer to as the Nijmegen Pulsed Valve (NPV). The main output characteristics include a short pulse width (as short as 20 μs) combined with operating rates up to 30 Hz. The operation principle of the NPV is based on the Lorentz force created by a pulsed current passing through an aluminum strip located within a magnetic field, which opens the nozzle periodically. The amplitude of displacement of the opening mechanism is sufficient to allow the use of nozzles with up to 1.0 mm diameter. To investigate the performance of the valve, several characterizations were performed with different experimental methods. First, a fast ionization gauge was used to measure the beam intensity of the free jet emanating from the NPV. We compare free jets from the NPV with those from several other pulsed valves in current use in our laboratory. Results showed that a high intensity and short pulse-length beam could be generated by the new valve. Second, the NPV was tested in combination with a skimmer, where resonance enhanced multiphoton ionization combined with velocity map imaging was used to show that the NPV was able to produce a pulsed molecular beam with short pulse duration (˜20 μs using 0.1% NO/He at 6 bars) and low rotational temperature (˜1 K using 0.5% NO/Ar at 6 bars). Third, a novel two-point pump-probe method was employed which we label double delay scan. This method allows a full kinematic characterization of the molecular beam, including accurate speed ratios at different temporal positions. It was found that the speed ratio was maximum (S = 50 using 0.1% NO/He at 3 bars) at the peak position of the molecular beam and decreased when it was on the leading or falling edge.
C.M. Hoover; K.A. Magrini; R.J. Evans
2002-01-01
This study was conducted to: (1) test the utility of a new and rapid analytical method, pyrolysis molecular beam mass spectrometry (py-MBMS), for the measurement and characterization of carbon in forest soils, and (2) examine the effects of natural disturbance on soil carbon dynamics. An additional objective was to test the ability of py-MBMS to distinguish recent from...
Zn(1-x)MnxTe diluted magnetic semiconductor nanowires grown by molecular beam epitaxy.
Zaleszczyk, Wojciech; Janik, Elzbieta; Presz, Adam; Dłuzewski, Piotr; Kret, Sławomir; Szuszkiewicz, Wojciech; Morhange, Jean-François; Dynowska, Elzbieta; Kirmse, Holm; Neumann, Wolfgang; Petroutchik, Aleksy; Baczewski, Lech T; Karczewski, Grzegorz; Wojtowicz, Tomasz
2008-11-01
It is shown that the growth of II-VI diluted magnetic semiconductor nanowires is possible by the catalytically enhanced molecular beam epitaxy (MBE). Zn(1-x)MnxTe NWs with manganese content up to x=0.60 were produced by this method. X-ray diffraction, Raman spectroscopy, and temperature dependent photoluminescence measurements confirm the incorporation of Mn(2+) ions in the cation substitutional sites of the ZnTe matrix of the NWs.
Mass Spectrometry as a Preparative Tool for the Surface Science of Large Molecules
NASA Astrophysics Data System (ADS)
Rauschenbach, Stephan; Ternes, Markus; Harnau, Ludger; Kern, Klaus
2016-06-01
Measuring and understanding the complexity that arises when nanostructures interact with their environment are one of the major current challenges of nanoscale science and technology. High-resolution microscopy methods such as scanning probe microscopy have the capacity to investigate nanoscale systems with ultimate precision, for which, however, atomic scale precise preparation methods of surface science are a necessity. Preparative mass spectrometry (pMS), defined as the controlled deposition of m/z filtered ion beams, with soft ionization sources links the world of large, biological molecules and surface science, enabling atomic scale chemical control of molecular deposition in ultrahigh vacuum (UHV). Here we explore the application of high-resolution scanning probe microscopy and spectroscopy to the characterization of structure and properties of large molecules. We introduce the fundamental principles of the combined experiments electrospray ion beam deposition and scanning tunneling microscopy. Examples for the deposition and investigation of single particles, for layer and film growth, and for the investigation of electronic properties of individual nonvolatile molecules show that state-of-the-art pMS technology provides a platform analog to thermal evaporation in conventional molecular beam epitaxy. Additionally, it offers additional, unique features due to the use of charged polyatomic particles. This new field is an enormous sandbox for novel molecular materials research and demands the development of advanced molecular ion beam technology.
Perspective. Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy
Wu, J.; Bozovic, I.
2015-04-06
Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.
DOE R&D Accomplishments Database
Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.
1982-04-01
From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.
Overcoming Ehrlich-Schwöbel barrier in (1 1 1)A GaAs molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Ritzmann, Julian; Schott, Rüdiger; Gross, Katherine; Reuter, Dirk; Ludwig, Arne; Wieck, Andreas D.
2018-01-01
In this work, we first study the effect of different growth parameters on the molecular beam epitaxy (MBE) growth of GaAs layers on (1 1 1)A oriented substrates. After that we present a method for the MBE growth of atomically smooth layers by sequences of growth and annealing phases. The samples exhibit low surface roughness and good electrical properties shown by atomic force microscopy (AFM), scanning electron microscopy (SEM) and van-der-Pauw Hall measurements.
Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy
Chambers, Scott A.
2006-02-21
A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.
Systematic Studies for the Development of High-Intensity Abs
NASA Astrophysics Data System (ADS)
Barion, L.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Lenisa, P.; Statera, M.
2011-01-01
The effect of the dissociator cooling temperature has been tested in order to explain the unexpected RHIC atomic beam intensity. Studies on trumpet nozzle geometry, compared to standard sonic nozzle have been performed, both with simulation methods and test bench measurements on molecular beams, obtaining promising results.
Growth of InP, InGaAs, and InGaAsP on InP by gas-source molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Asonen, H.; Rakennus, K.; Tappura, K.; Hovinen, M.; Pessa, M.
1990-10-01
Gas-source molecular beam epitaxy (GSMBE), designating the method where the group III beams are derived from the evaporation of solid materials while the group V beams are derived from the high-temperature cracking of AsH 3 and PH 3, is a very promising method. We show in this work that using indium of high purity and optimizing the growth conditions, unintentional impurities in these films prepared by GSMBE can be reduced to a level comparable to that obtained by all-vapor-source chemical beam epitaxy (CBE). The films grown by GSMBE are of very high quality, as deduced from the measurements of electrical, optical, and structural properties. Furthermore, we have found that the alloy composition in InGaAsP for the wavelength λ of 1.1 μm changes significantly in a range of growth temperature from 525 to 530°C, likely due to an abrupt change in the sticking probability of phosphorus. We have also found that the phosphorus-to-gallium flux ratio strongly affects surface morphology of InGaAsP for λ = 1.3 μm.
Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong
2017-11-01
Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi 3 + beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm 2 . The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.
NASA Astrophysics Data System (ADS)
Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong
2017-11-01
Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi3+ beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm2. The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.
Frequency shift measurement in shock-compressed materials
Moore, David S.; Schmidt, Stephen C.
1985-01-01
A method for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the shock front advancing through the sample, thereby minimizing adverse effects of refraction.
Frequency shift measurement in shock-compressed materials
Moore, D.S.; Schmidt, S.C.
1984-02-21
A method is disclosed for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the stock front advancing through the sample, thereby minimizing adverse effects of refraction.
Profiling of MOCVD- and MBE-grown VCSEL wafers for WDM sources
NASA Astrophysics Data System (ADS)
Sze, Theresa; Mahbobzadeh, A. M.; Cheng, Julian; Hersee, Stephen D.; Osinski, Marek; Brueck, Steven R. J.; Malloy, Kevin J.
1993-06-01
We compare vertical-cavity surface emitting lasers grown by molecular beam epitaxial methods to those grown by metal organic chemical vapor deposition methods as sources for wavelength-division multiplexing systems.
Rovibrational optical pumping of a molecular beam
NASA Astrophysics Data System (ADS)
Cournol, A.; Pillet, P.; Lignier, H.; Comparat, D.
2018-03-01
The preparation of molecules in well-defined internal states is essential for various studies in fundamental physics and physical chemistry. It is thus of particular interest to find methods that increase the brightness of molecular beams. Here, we report on rotational and vibrational pumpings of a supersonic beam of barium monofluoride molecules. With respect to previous works, the time scale of optical vibrational pumping has been greatly reduced by enhancing the spectral power density in the vicinity of the appropriate molecular transitions. We demonstrate a complete transfer of the rovibrational populations lying in v″=1 -3 into the vibrational ground-state v″=0 . Rotational pumping, which requires efficient vibrational pumping, has been also demonstrated. According to a Maxwell-Boltzmann description, the rotational temperature of our sample has been reduced by a factor of ˜8 . In this fashion, the population of the lowest rotational levels increased by more than one order of magnitude.
Growth of strontium ruthenate films by hybrid molecular beam epitaxy
Marshall, Patrick B.; Kim, Honggyu; Ahadi, Kaveh; ...
2017-09-01
We report on the growth of epitaxial Sr 2RuO 4 films using a hybrid molecular beam epitaxy approach in which a volatile precursor containing RuO 4 is used to supply ruthenium and oxygen. The use of the precursor overcomes a number of issues encountered in traditional molecular beam epitaxy that uses elemental metal sources. Phase-pure, epitaxial thin films of Sr 2RuO 4 are obtained. At high substrate temperatures, growth proceeds in a layer-by-layer mode with intensity oscillations observed in reflection high-energy electron diffraction. Films are of high structural quality, as documented by x-ray diffraction, atomic force microscopy, and transmission electronmore » microscopy. In conclusion, the method should be suitable for the growth of other complex oxides containing ruthenium, opening up opportunities to investigate thin films that host rich exotic ground states.« less
Isotope separation by photodissociation of Van der Waal's molecules
Lee, Yuan T.
1977-01-01
A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.
Measuring the density of a molecular cluster injector via visible emission from an electron beam.
Lundberg, D P; Kaita, R; Majeski, R; Stotler, D P
2010-10-01
A method to measure the density distribution of a dense hydrogen gas jet is presented. A Mach 5.5 nozzle is cooled to 80 K to form a flow capable of molecular cluster formation. A 250 V, 10 mA electron beam collides with the jet and produces H(α) emission that is viewed by a fast camera. The high density of the jet, several 10(16) cm(-3), results in substantial electron depletion, which attenuates the H(α) emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.
NASA Astrophysics Data System (ADS)
Nakasu, Taizo; Sun, W.; Kobayashi, M.; Asahi, T.
2017-06-01
Zinc telluride layers were grown on highly-lattice-mismatched sapphire substrates by molecular beam epitaxy, and their crystallographic properties were studied by means of X-ray diffraction pole figures. The crystal quality of the ZnTe thin film was further studied by scanning electron microscopy, X-ray rocking curves and low-temperature photoluminescence measurements. These methods show that high-crystallinity (111)-oriented single domain ZnTe layers with the flat surface and good optical properties are realized when the beam intensity ratio of Zn and Te beams is adjusted. The migration of Zn and Te was inhibited by excess surface material and cracks were appeared. In particular, excess Te inhibited the formation of a high-crystallinity ZnTe film. The optical properties of the ZnTe layer revealed that the exciton-related features were dominant, and therefore the film quality was reasonably high even though the lattice constants and the crystal structures were severely mismatched.
Molecular Beam Epitaxial Regrowth of Antimonide-Based Semiconductors
2011-01-01
Molecular Beam Epitaxial Regrowth of Antimonide-Based Semiconductors MATTHEW REASON,1 BRIAN R. BENNETT,1,2 RICHARD MAGNO,1 and J. BRAD BOOS1 1...2010 to 00-00-2010 4. TITLE AND SUBTITLE Molecular Beam Epitaxial Regrowth of Antimonide-Based Semiconductors 5a. CONTRACT NUMBER 5b. GRANT...Prescribed by ANSI Std Z39-18 EXPERIMENTAL PROCEDURES The samples reported in this work were grown by solid-source molecular - beam epitaxy (MBE) with
Mode-Locked Deceleration of Molecular Beams: Physics with Ultracold Molecules
2017-02-07
AFRL-AFOSR-VA-TR-2017-0035 Mode-Locked Deceleration of Molecular Beams: Physics with Ultracold Molecules Wesley Campbell UNIVERSITY OF CALIFORNIA...REPORT TYPE Final 3. DATES COVERED (From - To) April 2013 - June 2016 4. TITLE AND SUBTITLE Mode-Locked Deceleration of Molecular Beams: Physics with...of Molecular Beams: Physics with Ultracold Molecules" P.I. Wesley C. Campbell Report Period: April 1, 2013- March 30, 2016 As a direct result of
Perspective: Oxide molecular-beam epitaxy rocks!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlom, Darrell G., E-mail: schlom@cornell.edu
2015-06-01
Molecular-beam epitaxy (MBE) is the “gold standard” synthesis technique for preparing semiconductor heterostructures with high purity, high mobility, and exquisite control of layer thickness at the atomic-layer level. Its use for the growth of multicomponent oxides got off to a rocky start 30 yr ago, but in the ensuing decades, it has become the definitive method for the preparation of oxide heterostructures too, particularly when it is desired to explore their intrinsic properties. Examples illustrating the unparalleled achievements of oxide MBE are given; these motivate its expanding use for exploring the potentially revolutionary states of matter possessed by oxide systems.
Semiconductor Laser Joint Study Program with Rome Laboratory
1994-09-01
VCSELs 3.3 Laser Wafer Growth by Molecular Beam Epitaxy 8 The VCSEL structures were grown by molecular beam ...cavity surface emittimg lasers ( VCSEL ), Optical 40 interconnects, Moelcular beam epitaxy It CECOOE 17. SECURfTY CLASWICATION SECURFlY CLASSIFICATION 1 Q...7 3.3 Laser Wafer Growth by Molecular Beam Epitax. ............ 8 3.4 VCSEL Fabrication Process ................................................
Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies
NASA Astrophysics Data System (ADS)
Andersen, Tassie K.; Cook, Seyoung; Benda, Erika; Hong, Hawoong; Marks, Laurence D.; Fong, Dillon D.
2018-03-01
A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. The high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO3 oxide perovskites containing elements from both the metalorganic source and a traditional effusion cell.
Delayed Shutters For Dual-Beam Molecular Epitaxy
NASA Technical Reports Server (NTRS)
Grunthaner, Frank J.; Liu, John L.; Hancock, Bruce
1989-01-01
System of shutters for dual-molecular-beam epitaxy apparatus delays start of one beam with respect to another. Used in pulsed-beam equipment for deposition of low-dislocation layers of InAs on GaAs substrates, system delays application of arsenic beam with respect to indium beam to assure proper stoichiometric proportions on newly forming InAs surface. Reflectance high-energy electron diffraction (RHEED) instrument used to monitor condition of evolving surface of deposit. RHEED signal used to time pulsing of molecular beams in way that minimizes density of defects and holds lattice constant of InAs to that of GaAs substrate.
Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies
Andersen, Tassie K.; Cook, Seyoung; Benda, Erika; ...
2018-03-08
A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. In conclusion, the high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO 3 oxide perovskites containing elements from both themore » metalorganic source and a traditional effusion cell.« less
Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Tassie K.; Cook, Seyoung; Benda, Erika
A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. In conclusion, the high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO 3 oxide perovskites containing elements from both themore » metalorganic source and a traditional effusion cell.« less
The Cl + O3 reaction: a detailed QCT simulation of molecular beam experiments.
Menéndez, M; Castillo, J F; Martínez-Haya, B; Aoiz, F J
2015-10-14
We have studied in detail the dynamics of the Cl + O3 reaction in the 1-56 kcal mol(-1) collision energy range using quasi-classical trajectory (QCT) calculations on a recent potential energy surface (PES) [J. F. Castillo et al., Phys. Chem. Chem. Phys., 2011, 13, 8537]. The main goal of this work has been to assess the accuracy of the PES and the reliability of the QCT method by comparison with the existing crossed molecular beam results [J. Zhang and Y. T. Lee J. Phys. Chem. A, 1997, 101, 6485]. For this purpose, we have developed a methodology that allows us to determine the experimental observables in crossed molecular beam experiments (integral and differential cross sections, recoil velocity distributions, scattering angle-recoil velocity polar maps, etc.) as continuous functions of the collision energy. Using these distributions, raw experimental data in the laboratory frame (angular distributions and time-of-flight spectra) have been simulated from first principles with the sole information on the instrumental parameters and taking into account the energy spread. A general good agreement with the experimental data has been found, thereby demonstrating the adequacy of the QCT method and the quality of the PES to describe the dynamics of this reaction at the level of resolution of the existing crossed beam experiments. Some features which are apparent in the differential cross sections have also been analysed in terms of the dynamics of the reaction and its evolution with the collision energy.
Biomass Characterization | Bioenergy | NREL
analytical methods for biomass characterization available for downloading. View the Biomass Compositional Methods Molecular Beam Mass Spectrometry Photo of a man in front of multiple computer screens that present Characterization of Biomass We develop new methods and tools to understand the chemical composition of raw biomass
Wang, Wei-Guo; Xu, Yong; Yang, Xue-Feng; Wang, Wen-Chun; Zhu, Ai-Min
2005-01-01
Atomic hydrogen plays important roles in chemical vapor deposition of functional materials, plasma etching and new approaches to chemical synthesis of hydrogen-containing compounds. The present work reports experimental determinations of atomic hydrogen near the grounded electrode in medium-pressure dielectric barrier discharge hydrogen plasmas by means of molecular beam threshold ionization mass spectrometry (MB-TIMS). At certain discharge conditions (a.c. frequency of 24 kHz, 28 kV of peak-to-peak voltage), the measured hydrogen dissociation fraction is decreased from approximately 0.83% to approximately 0.14% as the hydrogen pressure increases from 2.0 to 14.0 Torr. A simulation method for extraction of the approximate electron beam energy distribution function in the mass spectrometer ionizer and a semi-quantitative approach to calibrate the mass discrimination effect caused by the supersonic beam formation and the mass spectrometer measurement are reported. Copyright 2005 John Wiley & Sons, Ltd.
Free vibration analysis of microtubules based on the molecular mechanics and continuum beam theory.
Zhang, Jin; Wang, Chengyuan
2016-10-01
A molecular structural mechanics (MSM) method has been implemented to investigate the free vibration of microtubules (MTs). The emphasis is placed on the effects of the configuration and the imperfect boundaries of MTs. It is shown that the influence of protofilament number on the fundamental frequency is strong, while the effect of helix-start number is almost negligible. The fundamental frequency is also found to decrease as the number of the blocked filaments at boundaries decreases. Subsequently, the Euler-Bernoulli beam theory is employed to reveal the physics behind the simulation results. Fitting the Euler-Bernoulli beam into the MSM data leads to an explicit formula for the fundamental frequency of MTs with various configurations and identifies a possible correlation between the imperfect boundary conditions and the length-dependent bending stiffness of MTs reported in experiments.
1992-05-29
Spectroscopy of 1,2- Difluoroethane in a Molecular Beam: A Case Study of Vibrational Mode-Coupling by Steven W. Mork, C. Cameron Miller, and Laura A...and sale; its distribution is unlimited. 92-14657 l9lll l l l , II a HIGH RESOLUTION SPECTROSCOPY OF 1,2- DIFLUOROETHANE IN A MOLECULAR BEAM: A CASE...14853-1301 Abstract The high resolution infrared spectrum of 1,2- difluoroethane (DFE) in a molecular beam has been obtained over the 2978-2996 cm-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mynbaev, K. D., E-mail: mynkad@mail.ioffe.ru; Zablotsky, S. V.; Shilyaev, A. V.
Defects in mercury-cadmium-telluride heteroepitaxial structures (with 0.3 to 0.4 molar fraction of cadmium telluride) grown by molecular-beam epitaxy on silicon substrates are studied. The low-temperature photoluminescence method reveals that there are comparatively deep levels with energies of 50 to 60 meV and shallower levels with energies of 20 to 30 meV in the band gap. Analysis of the temperature dependence of the minority carrier lifetime demonstrates that this lifetime is controlled by energy levels with an energy of ∼30 meV. The possible relationship between energy states and crystal-structure defects is discussed.
Molecular-beam epitaxy of 7-8 μm range quantum-cascade laser heterostructures
NASA Astrophysics Data System (ADS)
Babichev, A. V.; Denisov, D. V.; Filimonov, A. V.; Nevedomsky, V. N.; Kurochkin, A. S.; Gladyshev, A. G.; Karachinsky, L. Ya; Sokolovskii, G. S.; Novikov, I. I.; Bousseksou, A.; Egorov, A. Yu
2017-11-01
The method of molecular beam epitaxy demonstrates the possibility to create high quality heterostructures of quantum cascade lasers in a spectral range of 7-8 μm containing 50 quantum cascades in an active region. Design based on the principle of two-phonon resonant scattering is used. X-ray diffraction and transmission electron microscopy experiments confirm high structural properties of the created heterostructures, e.g. the identity of the composition and thickness of epitaxial layers in all 50 cascades. Edge-emitting lasers based on the grown heterostructure demonstrate lasing with threshold current density of 2.8 kA/cm2 at a temperature of 78 K.
Nitrogen Plasma Optimization for High-Quality Dilute Nitrides
2005-02-01
Available online 1 February 2005Abstract Growth of GaInNAs by molecular beam epitaxy (MBE) generally requires a nitrogen plasma, which complicates growth...InGaAs and InGaAsP lasers. This paper addresses several of the challenges of plasma-assisted molecular beam epitaxy (MBE) of high-quality dilute nitrides...A.L. Holmes, Using beam flux monitor as Langmuir probe for plasma-assisted molecular beam epitaxy , J. Vac. Sci. Technol. B, in press.
doping of III-Nitride materials grown by molecular beam epitaxy (MBE). He joined NREL after graduation in (0001) GaN Growth by Radio Frequency Plasma-Assisted Molecular Beam Epitaxy, A.J. Ptak, M.R. Millecchia . Phys. Lett. 77, 2479 (2000). Magnesium Incorporation in GaN Grown by rf-Plasma Assisted Molecular Beam
Electronic Transport in Ultrathin Heterostructures.
1981-10-01
heterostructures, superlattices, diffusion-enhanced disorder, transport properties, molecular beam epitaxy (MBE), photoluminescence, optical absorption...tion of single and multilayer GatlAs/GaAs heterostructures by metalorganic chemical vapor deposition (MJCVD) and molecular beam epitaxy (MBE) has...fundamental nature of these clusters and their relevance to other epitaxial techniques such as molecular beam epitaxy (MBE). To further varify or
NASA Astrophysics Data System (ADS)
Kearney, Patrick A.; Slaughter, J. M.; Powers, K. D.; Falco, Charles M.
1988-01-01
Roughness measurements were made on uncoated silicon wafers and float glass using a WYKO TOPO-3D phase shifting interferometry, and the results are reported. The wafers are found to be slightly smoother than the flat glass. The effects of different cleaning methods and of the deposition of silicon 'buffer layers' on substrate roughness are examined. An acid cleaning method is described which gives more consistent results than detergent cleaning. Healing of the roughness due to sputtered silicon buffer layers was not observed on the length scale probed by the WYKO. Sputtered multilayers are characterized using both the WYKO interferometer and low-angle X-ray diffraction in order to yield information about the roughness of the top surface and of the multilayer interfaces. Preliminary results on film growth using molecular beam epitaxy are also presented.
Perspective: Rapid synthesis of complex oxides by combinatorial molecular beam epitaxy
A. T. Bollinger; Wu, J.; Bozovic, I.
2016-03-15
In this study, the molecular beam epitaxy(MBE) technique is well known for producing atomically smooth thin films as well as impeccable interfaces in multilayers of many different materials. In particular, molecular beam epitaxy is well suited to the growth of complex oxides, materials that hold promise for many applications. Rapid synthesis and high throughput characterization techniques are needed to tap into that potential most efficiently. We discuss our approach to doing that, leaving behind the traditional one-growth-one-compound scheme and instead implementing combinatorial oxide molecular beam epitaxy in a custom built system.
Photoelectron photoion molecular beam spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trevor, D.J.
1980-12-01
The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.
Transient diffraction grating measurements of molecular diffusion in the undergraduate laboratory
NASA Astrophysics Data System (ADS)
Spiegel, Daniel R.; Tuli, Santona
2011-07-01
Diffusion is a central process in many biological, chemical, and physical systems. We describe an experiment that employs the interference of laser beams to allow the measurement of molecular diffusion on submillimeter length scales. The interference fringes of two intersecting pump beams within a dye solution create a sinusoidal distribution of long-lived molecular excited states. A third probe beam is incident at a wavelength at which the indices of refraction of the ground and excited states are different, so the probe beam diffracts from the spatially periodic excited-state pattern. After the pump beams are switched off, the excited-state periodicity washes out as the system diffuses back to equilibrium. The molecular diffusion constant is obtained from the rate constant of the exponential decay of the diffracted beam. It is also possible to measure the excited-state lifetime.
2016-07-01
AWARD NUMBER: W81XWH- 14-1-0192 TITLE: Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer...DATES COVERED 4. TITLE AND SUBTITLE Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer Tissue
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
1997-05-15
Quantum Box/Dot, Strained Epitaxy , 3D islands, Patterned Substrates, Molecular Beam Epitaxy Focused Ion Beam , In-Situ Processing, Quantum Box Lasers...Grown on Planar and Patterned GaAs(100) Substrates by Molecular Beam Epitaxy ", J. Vac. Sei. Technol. B13, 642(1995) 5. A. Madhukar, P. Chen, Q. Xie...Formation and Vertical Self-Organization on GaAs(lOO) via Molecular Beam Epitaxy ", Paper presented at MRS Spring Meeting (Apr. 17-21, 1995, San
Single-crystalline BaTiO3 films grown by gas-source molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Matsubara, Yuya; Takahashi, Kei S.; Tokura, Yoshinori; Kawasaki, Masashi
2014-12-01
Thin BaTiO3 films were grown on GdScO3 (110) substrates by metalorganic gas-source molecular beam epitaxy. Titanium tetra-isopropoxide (TTIP) was used as a volatile precursor that provides a wide growth window of the supplied TTIP/Ba ratio for automatic adjustment of the film composition. Within the growth window, compressively strained films can be grown with excellent crystalline quality, whereas films grown outside of the growth window are relaxed with inferior crystallinity. This growth method will provide a way to study the intrinsic properties of ferroelectric BaTiO3 films and their heterostructures by precise control of the stoichiometry, structure, and purity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casallas-Moreno, Y. L.; Perez-Caro, M.; Gallardo-Hernandez, S.
InN epitaxial films with cubic phase were grown by rf-plasma-assisted molecular beam epitaxy (RF-MBE) on GaAs(001) substrates employing two methods: migration-enhanced epitaxy (MEE) and conventional MBE technique. The films were synthesized at different growth temperatures ranging from 490 to 550 Degree-Sign C, and different In beam fluxes (BEP{sub In}) ranging from 5.9 Multiplication-Sign 10{sup -7} to 9.7 Multiplication-Sign 10{sup -7} Torr. We found the optimum conditions for the nucleation of the cubic phase of the InN using a buffer composed of several thin layers, according to reflection high-energy electron diffraction (RHEED) patterns. Crystallographic analysis by high resolution X-ray diffraction (HR-XRD)more » and RHEED confirmed the growth of c-InN by the two methods. We achieved with the MEE method a higher crystal quality and higher cubic phase purity. The ratio of cubic to hexagonal components in InN films was estimated from the ratio of the integrated X-ray diffraction intensities of the cubic (002) and hexagonal (1011) planes measured by X-ray reciprocal space mapping (RSM). For MEE samples, the cubic phase of InN increases employing higher In beam fluxes and higher growth temperatures. We have obtained a cubic purity phase of 96.4% for a film grown at 510 Degree-Sign C by MEE.« less
Molecular Dynamics Simulation of the Three-Dimensional Ordered State in Laser-Cooled Heavy-Ion Beams
NASA Astrophysics Data System (ADS)
Yuri, Yosuke
A molecular dynamics simulation is performed to study the formation of three-dimensional ordered beams by laser cooling in a cooler storage ring. Ultralow-temperature heavy-ion beams are generated by transverse cooling with displaced Gaussian lasers and resonant coupling. A three-dimensional ordered state of the ion beam is attained at a high line density. The ordered beam exhibits several unique characteristics different from those of an ideal crystalline beam.
3D-Printed Beam Splitter for Polar Neutral Molecules
NASA Astrophysics Data System (ADS)
Gordon, Sean D. S.; Osterwalder, Andreas
2017-04-01
We describe a macroscopic beam splitter for polar neutral molecules. A complex electrode structure is required for the beam splitter which would be very difficult to produce with traditional manufacturing methods. Instead, we make use of a nascent manufacturing technique: 3D printing of a plastic piece, followed by electroplating. This fabrication method opens a plethora of avenues for research, since 3D printing imposes practically no limitations on possible shapes, and the plating produces chemically robust, conductive construction elements with an almost free choice of surface material. It has the added advantage of dramatically reduced production cost and time. Our beam splitter is an electrostatic hexapole guide that smoothly transforms into two bent quadrupoles. We demonstrate the correct functioning of this device by separating a supersonic molecular beam of ND3 into two correlated fractions. It is shown that this device can be used to implement experiments with differential detection wherein one of the fractions serves as a probe and the other as a reference. Reverse operation would allow the merging of two beams of polar neutral molecules.
Precision atomic beam density characterization by diode laser absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxley, Paul; Wihbey, Joseph
2016-09-15
We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident lasermore » light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10{sup −5} are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10{sup 4} atoms cm{sup −3}. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.« less
Precision atomic beam density characterization by diode laser absorption spectroscopy.
Oxley, Paul; Wihbey, Joseph
2016-09-01
We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 -5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm -3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harman-Ware, Anne E.; Davis, Mark F.; Peter, Gary F.
Terpenes can be used as renewable fuels and chemicals and quantifying their presence in biomass is becoming increasingly important. A novel method was developed to rapidly quantify total diterpenoid resin acids using pyrolysis-molecular beam mass spectrometry (py-MBMS). Pine sapling monoterpenes and diterpenoids were extracted from wood using a 1:1 (v/v) mixture of hexane and acetone and analyses were performed before and after extraction to determine the extraction efficiency of the solvent system. The resulting extract was analyzed for total diterpenoid content using py-MBMS and was combined with total monoterpene content that was determined using a low thermal mass modular acceleratedmore » column heater (LTM MACH) fast-GC/FID to measure the terpene content present in pine saplings. Oleoresin extruded from larger pine trees was used to validate mass balance closure of the terpene content in the extract solvent.« less
Harman-Ware, Anne E.; Davis, Mark F.; Peter, Gary F.; ...
2017-01-16
Terpenes can be used as renewable fuels and chemicals and quantifying their presence in biomass is becoming increasingly important. A novel method was developed to rapidly quantify total diterpenoid resin acids using pyrolysis-molecular beam mass spectrometry (py-MBMS). Pine sapling monoterpenes and diterpenoids were extracted from wood using a 1:1 (v/v) mixture of hexane and acetone and analyses were performed before and after extraction to determine the extraction efficiency of the solvent system. The resulting extract was analyzed for total diterpenoid content using py-MBMS and was combined with total monoterpene content that was determined using a low thermal mass modular acceleratedmore » column heater (LTM MACH) fast-GC/FID to measure the terpene content present in pine saplings. Oleoresin extruded from larger pine trees was used to validate mass balance closure of the terpene content in the extract solvent.« less
Stacked Quantum Wire AlN/GaN HEMTs
2012-04-27
Zimmermann, Debdeep Jena and Huili Xing. Molecular beam epitaxy regrowth of ohmics in metal-face AlN/GaN transistors. International Conference on...mobility transistors with regrown ohmic contacts by molecular beam epitaxy . Physica Status Solidi (a), 208(7), 1617-1619, (2011). [9] Debdeep Jena...high Si doping concentrations grown by molecular beam epitaxy . Submitted, (2012). [14] Guowang Li, Ronghua Wang, Jai Verma, Yu Cao, Satyaki Ganguly
FIFTY YEARS IN PHYSICAL CHEMISTRY: Homage to Mentors, Methods, and Molecules
NASA Astrophysics Data System (ADS)
Herschbach, Dudley
2000-10-01
A nostalgic account is given of my scientific odyssey, recalling early encounters, some fateful, some just fun, with mentors, methods, and molecules. These include stories of my student years at Stanford, pursuing chemical kinetics with Harold Johnston; graduate study at Harvard, doing molecular spectroscopy with Bright Wilson; and fledgling faculty years at Berkeley, launching molecular beam studies of reaction dynamics. A few vignettes from my "ever after " era on the Harvard faculty emphasize thematic motivations or methods inviting further exploration. An Appendix provides a concise listing of colleagues in research and the topics we have pursued.
SU-G-IeP3-10: Molecular Imaging with Clinical X-Ray Sources and Compton Cameras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernekohl, D; Ahmad, M; Chinn, G
2016-06-15
Purpose: The application of Compton cameras (CC) is a novel approach translating XFCT to a practical modality realized with clinical CT systems without the restriction of pencil beams. The dual modality design offers additional information without extra patient dose. The purpose of this work is to investigate the feasibility and efficacy of using CCs for volumetric x-ray fluorescence (XF) imaging by Monte Carlo (MC) simulations and statistical image reconstruction. Methods: The feasibility of a CC for imaging x-ray fluorescence emitted from targeted lesions is examined by MC simulations. 3 mm diameter water spheres with various gold concentrations and detector distancesmore » are placed inside the lung of an adult human phantom (MIRD) and are irradiated with both fan and cone-beam geometries. A sandwich design CC composed of Silicon and CdTe is used to image the gold nanoparticle distribution. The detection system comprises four 16×26 cm{sup 2} detector panels placed on the chest of a MIRD phantom. Constraints of energy-, spatial-resolution, clinical geometries and Doppler broadening are taken into account. Image reconstruction is performed with a list-mode MLEM algorithm with cone-projector on a GPU. Results: The comparison of reconstruction of cone- and fan-beam excitation shows that the spatial resolution is improved by 23% for fan-beams with significantly decreased processing time. Cone-beam excitation increases scatter content disturbing quantification of lesions near the body surface. Spatial resolution and detectability limit in the center of the lung is 8.7 mm and 20 fM for 50 nm diameter gold nanoparticles at 20 mGy. Conclusion: The implementation of XFCT with a CC is a feasible method for molecular imaging with high atomic number probes. Given constrains of detector resolutions, Doppler broadening, and limited exposure dose, spatial resolutions comparable with PET and molecular sensitivities in the fM range are realizable with current detector technology.« less
Chopped molecular beam multiplexing system
NASA Technical Reports Server (NTRS)
Adams, Billy R. (Inventor)
1986-01-01
The integration of a chopped molecular beam mass spectrometer with a time multiplexing system is described. The chopping of the molecular beam is synchronized with the time intervals by a phase detector and a synchronous motor. Arithmetic means are generated for phase shifting the chopper with respect to the multiplexer. A four channel amplifier provides the capacity to independently vary the baseline and amplitude in each channel of the multiplexing system.
AlGaSb Buffer Layers for Sb-Based Transistors
2010-01-01
transistor ( HEMT ), molecular beam epitaxy (MBE), field-effect transistor (FET), buffer layer INTRODUCTION High-electron-mobility transistors ( HEMTs ) with InAs...monolayers/s. The use of thinner buffer layers reduces molecular beam epitaxial growth time and source consumption. The buffer layers also exhibit...source. In addition, some of the flux from an Sb cell in a molecular beam epitaxy (MBE) system will deposit near the mouth of the cell, eventually
1993-06-28
entitled "MBE Grown Microcavities for Optoelectronic Devices." In the dissertation work,1 the precision of molecular - beam epitaxy (MBE) is taken...Layers For Surface Normal Optoelectronic Devices," North American Conference on Molecular Beam Epitaxy , Ottawa, Canada, October 12-14, 1992, to be...8. C. Lei, T. J. Rogers, D. G. Deppe, and B. G. Streetman, "InGaAs-GaAs Quantum Well Vertical-Cavity Surface-Emitting Laser Using Molecular Beam
Development of Mid-infrared GeSn Light Emitting Diodes on a Silicon Substrate
2015-04-22
Materials, Heterostrucuture Semiconductor, Light Emitting Devices, Molecular Beam Epitaxy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...LED) structure. Optimization of traditional and hetero- P-i-N structures designed and grown on Ge-buffer Si (001) wafers using molecular beam epitaxy ...designed structures were grown on Ge-buffer Si (001) wafers using molecular beam epitaxy (MBE) with the low-temperature growth technique. (The Ge-buffer
Predictive Finite Rate Model for Oxygen-Carbon Interactions at High Temperature
NASA Astrophysics Data System (ADS)
Poovathingal, Savio
An oxidation model for carbon surfaces is developed to predict ablation rates for carbon heat shields used in hypersonic vehicles. Unlike existing empirical models, the approach used here was to probe gas-surface interactions individually and then based on an understanding of the relevant fundamental processes, build a predictive model that would be accurate over a wide range of pressures and temperatures, and even microstructures. Initially, molecular dynamics was used to understand the oxidation processes on the surface. The molecular dynamics simulations were compared to molecular beam experiments and good qualitative agreement was observed. The simulations reproduced cylindrical pitting observed in the experiments where oxidation was rapid and primarily occurred around a defect. However, the studies were limited to small systems at low temperatures and could simulate time scales only of the order of nanoseconds. Molecular beam experiments at high surface temperature indicated that a majority of surface reaction products were produced through thermal mechanisms. Since the reactions were thermal, they occurred over long time scales which were computationally prohibitive for molecular dynamics to simulate. The experiments provided detailed dynamical data on the scattering of O, O2, CO, and CO2 and it was found that the data from molecular beam experiments could be used directly to build a model. The data was initially used to deduce surface reaction probabilities at 800 K. The reaction probabilities were then incorporated into the direct simulation Monte Carlo (DSMC) method. Simulations were performed where the microstructure was resolved and dissociated oxygen convected and diffused towards it. For a gas-surface temperature of 800 K, it was found that despite CO being the dominant surface reaction product, a gas-phase reaction forms significant CO2 within the microstructure region. It was also found that surface area did not play any role in concentration of reaction products because the reaction probabilities were in the diffusion dominant regime. The molecular beam data at different surface temperatures was then used to build a finite rate model. Each reaction mechanism and all rate parameters of the new model were determined individually based on the molecular beam data. Despite the experiments being performed at near vacuum conditions, the finite rate model developed using the data could be used at pressures and temperatures relevant to hypersonic conditions. The new model was implemented in a computational fluid dynamics (CFD) solver and flow over a hypersonic vehicle was simulated. The new model predicted similar overall mass loss rates compared to existing models, however, the individual species production rates were completely different. The most notable difference was that the new model (based on molecular beam data) predicts CO as the oxidation reaction product with virtually no CO2 production, whereas existing models predict the exact opposite trend. CO being the dominant oxidation product is consistent with recent high enthalpy wind tunnel experiments. The discovery that measurements taken in molecular beam facilities are able to determine individual reaction mechanisms, including dependence on surface coverage, opens up an entirely new way of constructing ablation models.
Detection system for a gas chromatograph
Hayes, John M.; Small, Gerald J.
1984-01-01
A method and apparatus are described for the quantitative analysis of vaporizable compounds, and in particular of polycyclic aromatic hydrocarbons which may be induced to fluoresce. The sample to be analyzed is injected into a gas chromatography column and is eluted through a narrow orifice into a vacuum chamber. The free expansion of the eluted sample into the vacuum chamber creates a supersonic molecular beam in which the sample molecules are cooled to the extent that the excited vibrational and rotational levels are substantially depopulated. The cooled molecules, when induced to fluoresce by laser excitation, give greatly simplified spectra suitable for analytical purposes. The laser induced fluorimetry provides great selectivity, and the gas chromatograph provides quantitative transfer of the sample to the molecular beam.
NASA Astrophysics Data System (ADS)
Iida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-ichiro
1995-01-01
A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV-30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C+) irradiation during MBE growth of GaAs was carried out at substrate temperatures Tg between 500 and 590 °C. C+-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. CAs acceptor-related emissions such as ``g,'' [g-g], and [g-g]β are observed and their spectra are significantly changed with increasing C+ beam current density Ic. PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for Tg as low as 500 °C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C+ with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.
Continuous all-optical deceleration of molecular beams
NASA Astrophysics Data System (ADS)
Jayich, Andrew; Chen, Gary; Long, Xueping; Wang, Anna; Campbell, Wesley
2014-05-01
A significant impediment to generating ultracold molecules is slowing a molecular beam to velocities where the molecules can be cooled and trapped. We report on progress toward addressing this issue with a general optical deceleration technique for molecular and atomic beams. We propose addressing the molecular beam with a pump and dump pulse sequence from a mode-locked laser. The pump pulse counter-propagates with respect to the beam and drives the molecules to the excited state. The dump pulse co-propagates and stimulates emission, driving the molecules back to the ground state. This cycle transfers 2 ℏk of momentum and can generate very large optical forces, not limited by the spontaneous emission lifetime of the molecule or atom. Importantly, avoiding spontaneous emission limits the branching to dark states. This technique can later be augmented with cooling and trapping. We are working towards demonstrating this optical force by accelerating a cold atomic sample.
Excitation of Mercuric Bromide by Electrons.
1982-08-30
molecular beam of IHgBr 2 . The apparatus permits simultaneous meas- urements of negative ion, positive ion, and wavelength resolved photon production...system has proven to be trouble-free and allows very close control of the IHgBr 2, vapor pressure and conseqt’ent molecular beam intensity. The...experiment is represented schematicallv in Figure 1. The gas under study is introduced into the collision region in the form of a molecular beam, directed
Bipolar Cascade Vertical-Cavity Surface-Emitting Lasers for RF Photonic Link Applications
2007-09-01
6 IV Current versus Voltage . . . . . . . . . . . . . . . . . . . . . 7 MBE Molecular Beam Epitaxy ...of carrying maximum photocur- rent. Numerous material parameters have been studied. Growth parameters for molecular beam epitaxy (MBE), metal-organic...12 MOCVD Metal-Organic Chemical Vapor Deposition . . . . . . . . . . 12 CBE Chemical Beam Epitaxy . . . . . . . . . . . . . . . . . . . . 12 LPE
Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.
Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei
2017-01-01
X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.
Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method
Liu, Fei; Luo, Jianwen; Xie, Yaoqin; Bai, Jing
2017-01-01
X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods. PMID:27576245
2013-10-14
Aerodynamics Laboratory (TMUAL) at MSU. This modification , which was completed successfully, included two parts: (I) the addition of two large...quartz inserts and the 3 DOF motion system. The sketch also depicts a typical UV laser beam path for Molecular Tagging Velocimetry measurements UV laser ... beam UV mirror 3 IV.2. Airfoil Fabrication Using 3D Printing Methods For the parts of the investigation focused on studying the effect of
Reliability assessment of multiple quantum well avalanche photodiodes
NASA Technical Reports Server (NTRS)
Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.
1995-01-01
The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.
NASA Astrophysics Data System (ADS)
Pirani, F.; Cappelletti, D.; Vecchiocattivi, F.; Vattuone, L.; Gerbi, A.; Rocca, M.; Valbusa, U.
2004-02-01
A light and compact mechanical velocity selector, of novel design, for applications in supersonic molecular-beam studies has been developed. It represents a simplified version of the traditional, 50 year old, slotted disks velocity selector. Taking advantage of new materials and improved machining techniques, the new version has been realized with only two rotating slotted disks, driven by an electrical motor with adjustable frequency of rotation, and thus has a much smaller weight and size with respect to the original design, which may allow easier implementation in most of the available molecular-beam apparatuses. This new type of selector, which maintains a sufficiently high velocity resolution, has been developed for sampling molecules with different degrees of rotational alignment, like those emerging from a seeded supersonic expansion. This sampling is the crucial step to realize new molecular-beam experiments to study the effect of molecular alignment in collisional processes.
Fabrication of precision high quality facets on molecular beam epitaxy material
Petersen, Holly E.; Goward, William D.; Dijaili, Sol P.
2001-01-01
Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.
2013-09-01
Optimization of the Nonradiative Lifetime of Molecular- Beam-Epitaxy (MBE)-Grown Undoped GaAs/AlGaAs Double Heterostructures (DH) by P...it to the originator. Army Research Laboratory Adelphi, MD 20783-1197 ARL-TR-6660 September 2013 Optimization of the Nonradiative ...REPORT TYPE Final 3. DATES COVERED (From - To) FY2013 4. TITLE AND SUBTITLE Optimization of the Nonradiative Lifetime of Molecular-Beam-Epitaxy
Systematic Study of p-type Doping and Related Defects in III-Nitrides: Pathway toward a Nitride HBT
2012-11-20
InGaN growth where an intermediate regime does not exist.40 Considering GaN molecular - beam epitaxy (MBE) growth phase diagrams such as those...1009 (2007). 44 S. D. Burnham, Improved Understanding and Control of Magnesium-Doped Gallium Nitride by Plasma Assisted Molecular Beam Epitaxy , in...reported using a modified form of molecular beam epitaxy (MBE) called Metal-Modulated Epitaxy (MME).11, 12 The details of this shuttered technique
Ultra-High Aggregate Bandwidth Two-Dimensional Multiple-Wavelength Diode Laser Arrays
1994-04-09
surface temperature across the wafer during the growth of the cavity spacer region using the fact that the molecular beam epitaxy (MBE) growth of GaAs...substrate surface temperature across the wafer during the growth of the cavity spacer region. Using the fact that, during an molecular beam epitaxy (MBE...K. Bacher and J.S. Harris, "Periodically Induced Mode Shift in Vertical Cavity Fabry Perot Etalons Grown by Molecular Beam Epitaxy ," to be presented
1992-06-30
in the film. Ion-assisted molecular beam epitaxy is one of a class of techniques that allow modification growth kinetics during heteroepitaxy, with...the potential for novel means of misfit accommodation. In the last quarter, using ion-assisted molecular beam epitaxy , we have demonstrated 1. Reduction...shown in Figure 1. The results are compared with single quantum well material grown by Molecular Beam Epitaxy (MBE) previously. The optimum cavity
Photoionization studies with molecular beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, C.Y.
1976-09-01
A molecular beam photoionization apparatus which combines the advantages of both the molecular beam method with photoionization mass spectrometry has been designed and constructed for carrying out some unique photoionization experiments. Rotational cooling during the supersonic expansion has resulted in high resolution photoionization efficiency curves for NO, ICl, C/sub 2/H/sub 2/ and CH/sub 3/I. The analysis of these spectra has yielded ionization potentials for these molecules to an accuracy of +- 3 MeV. Detailed autoionization structures were also resolved. This allows the investigation of the selection rules for autoionization, and the identification of the Rydberg series which converge to themore » excited states of the molecular ions. The degree of relaxation for thermally populated excited states has been examined using NO and ICl as examples. As a result of adiabatic cooling, a small percentage of dimers is also formed during the expansion. The photoionization efficiency curves for (NO)/sub 2/, ArICl, Ar/sub 2/, Kr/sub 2/ and Xe/sub 2/ have been obtained near the thresholds. Using the known dissociation energies of the (NO)/sub 2/, Ar/sub 2/, Kr/sub 2/ and Xe/sub 2/ van der Waals molecules, the corresponding dissociation energies for NO-NO/sup +/, Ar/sub 2//sup +/, Kr/sub 2//sup +/, and Xe/sub 2//sup +/ have been determined. The ionization mechanisms for this class of molecules are examined and discussed.« less
Development of a Submillimeter Multipass Spectrometer for the Study of Molecular Ions
NASA Astrophysics Data System (ADS)
Carroll, A.; Rocher, B.; Laas, J. C.; Deprince, B. A.; Hays, B.; Weaver, S. L. Widicus; Lang, S.
2012-06-01
We have developed a multipass spectrometer for the submillimeter spectral region that is being used to study molecular ions through gas phase spectroscopy. The optical configuration is based on the design of Perry and coworkers that was implemented in the optical regime. To our knowledge, this is the first implementation of this optical configuration at long wavelengths. The setup involves two nearly concentric spherical mirrors that focus the multiple beam passes into a small area, or ``waist'', in the middle of the sample chamber. A supersonic molecular beam is coupled to the setup so that the molecular beam crosses the optical path at the waist. Initial studies have focused on neutral test molecules to probe the physical properties of the molecular beam under various arrangements of the molecular source relative to the optical path. Current studies focus on coupling a plasma discharge source to the setup to enable the study of molecular ions. Here we present the design of this instrument, compare the spectrometer capabilities to a traditional single pass spectrometer, and discuss the results of initial spectroscopic studies.
Nanoscale molecularly imprinted polymers and method thereof
Hart, Bradley R [Brentwood, CA; Talley, Chad E [Brentwood, CA
2008-06-10
Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.
Optical Behavior of III-TM-N Materials and Devices
2008-09-26
0296 University of Florida GaN films were doped with Eu to a concentration of ~0.12 at. % during growth at 800 °C by molecular beam epitaxy , with...MAGNETIC SEMICONDUCTOR GROWTH AND CHARACTERIZATION Growth of the films presented occurred in a Varian Gen II by gas-source molecular beam epitaxy ...versus temperature for films of either undoped AlN, single phase AlMnN, or Mn4N. AlCrN films were grown by Molecular Beam Epitaxy (MBE) on c-plane
Enhanced Hole Mobility and Density in GaSb Quantum Wells
2013-01-01
Keywords: Molecular beam epitaxy Quantum wells Semiconducting III–V materials Field-effect transistors GaSb a b s t r a c t Modulation-doped quantum wells...QWs) of GaSb clad by AlAsSb were grown by molecular beam epitaxy on InP substrates. By virtue of quantum confinement and compressive strain of the...heterostructures studied here are grown by molecular beam epitaxy (MBE) on semi-insulating (001) InP substrates using a Riber Compact 21T MBE system. A cross
Chip-Scale Controlled Storage All-Optical Memory
2007-02-01
half width at half maximum KHZ kilo Hertz KK Kramers-Kronig LH light hole MBE molecular beam epitaxy MHz mega Hertz MZI Mach-Zehnder...waveguide geometry. The sample used in experiments 1 and 2 consists of 15 GaAs (135Å)/Al0.3Ga0.7As(150 Å) QWs grown by molecular beam epitaxy (MBE...We developed the capability to grow GaAs QWs on (110)-oriented substrates using molecular beam epitaxy in a very short amount of time. The very
High-Temperature Spintronic Devices and Circuits in Absence of Magnetic Field
2012-04-23
non-equilibrium Green’s function (NEGF) formalism. • Molecular beam epitaxy (MBE) growth of ferromagnetic metals (Fe, MnAs) and...measured for two diode injection currents in the Faraday geometry. The quantum dot microcavity device was grown by molecular beam epitaxy with a low...channel (10 nm, lxlOl9j Mn-doped) / undoped-AlAs (1 nm) tunnel barrier / undoped-GaAs (0.5 nm) / MnAs (25 nm) were grown by molecular beam epitaxy (MBE
Detection system for a gas chromatograph. [. cap alpha. -methylnaphthalene,. beta. -methylnapthalene
Hayes, J.M.; Small, G.J.
1982-04-26
A method and apparatus are described for the quantitative analysis of vaporizable compounds, and in particular of polycyclic aromatic hydrocarbons which may be induced to fluoresce. The sample to be analyzed is injected into a gas chromatography column and is eluted through a narrow orifice into a vacuum chamber. The free expansion of the eluted sample into the vacuum chamber creates a supersonic molecular beam in which the sample molecules are cooled to the extent that the excited vibrational and rotational levels are substantially depopulated. The cooled molecules, when induced to fluoresce by laser excitation, give greatly simplified spectra suitable for analytical purposes. The laser induced fluorimetry provides great selectivity, and the gas chromatograph provides quantitative transfer of the sample to the molecular beam. 3 figures, 2 tables.
Doping of free-standing zinc-blende GaN layers grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Novikov, S. V.; Powell, R. E. L.; Staddon, C. R.; Kent, A. J.; Foxon, C. T.
2014-10-01
Currently there is high level of interest in developing of vertical device structures based on the group III nitrides. We have studied n- and p-doping of free-standing zinc-blende GaN grown by plasma-assisted molecular beam epitaxy (PA-MBE). Si was used as the n-dopant and Mg as the p-dopant for zinc-blende GaN. Controllable levels of doping with Si and Mg in free-standing zinc-blende GaN have been achieved by PA-MBE. The Si and Mg doping depth uniformity through the zinc-blende GaN layers have been confirmed by secondary ion mass spectrometry (SIMS). Controllable Si and Mg doping makes PA-MBE a promising method for the growth of conducting group III-nitrides bulk crystals.
Lobo, Rui F M; Santos, Diogo M F; Sequeira, Cesar A C; Ribeiro, Jorge H F
2012-02-06
Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi 3.6 Co 0.85 Al 0.3 Mn 0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam-thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.
NASA Technical Reports Server (NTRS)
Boumsellek, S.; Alajajian, S. H.; Chutjian, A.
1992-01-01
First results of a beam-beam, single-collision study of negative-ion mass spectra produced by attachment of zero-energy electrons to the molecules of the explosives RDX, PETN, and TNT are presented. The technique used is reversal electron attachment detection (READ) wherein the zero-energy electrons are produced by focusing an intense electron beam into a shaped electrostatic field which reverses the trajectory of electrons. The target beam is introduced at the reversal point, and attachment occurs because the electrons have essentially zero longitudinal and radial velocity. The READ technique is used to obtain the 'signature' of molecular ion formation and/or fragmentation for each explosive. Present data are compared with results from atmospheric-pressure ionization and negative-ion chemical ionization methods.
NASA Astrophysics Data System (ADS)
Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F. C.; Geske, M.; Taha, A.; Pelzer, K.; Schlögl, R.
2006-05-01
A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000°C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10ms. A detection time resolution of up to 20ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250°C on a Pt catalyst are presented. The detection of CH3• radicals is successfully demonstrated.
Topics in atomic hydrogen standard research and applications
NASA Technical Reports Server (NTRS)
Peters, H. E.
1971-01-01
Hydrogen maser based frequency and time standards have been in continuous use at NASA tracking stations since February 1970, while laboratory work at Goddard has continued in the further development and improvement of hydrogen masers. Concurrently, experimental work has been in progress with a new frequency standard based upon the hydrogen atom using the molecular beam magnetic resonance method. Much of the hydrogen maser technology is directly applicable to the new hydrogen beam standard, and calculations based upon realistic data indicate that the accuracy potential of the hydrogen atomic beam exceeds that of either the cesium beam tube or the hydrogen maser, possibly by several orders of magnitude. In addition, with successful development, the hydrogen beam standard will have several other performance advantages over other devices, particularly exceptional stability and long continuous operating life. Experimental work with a new laboratory hydrogen beam device has recently resulted in the first resonance transition curves, measurements of relative state populations, beam intensities, etc. The most important aspects of both the hydrogen maser and the hydrogen beam work are covered.
NASA Astrophysics Data System (ADS)
Ansari, R.; Sahmani, S.
2012-04-01
The free vibration response of single-walled carbon nanotubes (SWCNTs) is investigated in this work using various nonlocal beam theories. To this end, the nonlocal elasticity equations of Eringen are incorporated into the various classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Reddy beam theory (RBT) to consider the size-effects on the vibration analysis of SWCNTs. The generalized differential quadrature (GDQ) method is employed to discretize the governing differential equations of each nonlocal beam theory corresponding to four commonly used boundary conditions. Then molecular dynamics (MD) simulation is implemented to obtain fundamental frequencies of nanotubes with different chiralities and values of aspect ratio to compare them with the results obtained by the nonlocal beam models. Through the fitting of the two series of numerical results, appropriate values of nonlocal parameter are derived relevant to each type of chirality, nonlocal beam model, and boundary conditions. It is found that in contrast to the chirality, the type of nonlocal beam model and boundary conditions make difference between the calibrated values of nonlocal parameter corresponding to each one.
Production of high current proton beams using complex H-rich molecules at GSI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adonin, A., E-mail: a.adonin@gsi.de; Barth, W.; Heymach, F.
2016-02-15
In this contribution, the concept of production of intense proton beams using molecular heavy ion beams from an ion source is described, as well as the indisputable advantages of this technique for operation of the GSI linear accelerator. The results of experimental investigations, including mass-spectra analysis and beam emittance measurements, with different ion beams (CH{sub 3}{sup +},C{sub 2}H{sub 4}{sup +},C{sub 3}H{sub 7}{sup +}) using various gaseous and liquid substances (methane, ethane, propane, isobutane, and iodoethane) at the ion source are summarized. Further steps to improve the ion source and injector performance with molecular beams are depicted.
NASA Astrophysics Data System (ADS)
Lida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-Ichiro
1995-01-01
A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV - 30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C(+)) irradiation during MBE growth of GaAs was carried out at substrate temperatures T(sub g) between 500 and 590 C. C(+)-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. C(sub As) acceptor-related emissions such as 'g', (g-g), and (g-g)(sub beta) are observed and their spectra are significantly changed with increasing C(+) beam current density I(sub c). PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for T(sub g) as low as 500 C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C(+) with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.
NASA Astrophysics Data System (ADS)
Lozano, A. I.; Oller, J. C.; Krupa, K.; Ferreira da Silva, F.; Limão-Vieira, P.; Blanco, F.; Muñoz, A.; Colmenares, R.; García, G.
2018-06-01
A novel experimental setup has been implemented to provide accurate electron scattering cross sections from molecules at low and intermediate impact energies (1-300 eV) by measuring the attenuation of a magnetically confined linear electron beam from a molecular target. High-resolution electron energy is achieved through confinement in a magnetic gas trap where electrons are cooled by successive collisions with N2. Additionally, we developed and present a method to correct systematic errors arising from energy and angular resolution limitations. The accuracy of the entire measurement procedure is validated by comparing the N2 total scattering cross section in the considered energy range with benchmark values available in the literature.
METHOD AND APPARATUS FOR TRAPPING IONS IN A MAGNETIC FIELD
Luce, J.S.
1962-04-17
A method and apparatus are described for trapping ions within an evacuated container and within a magnetic field utilizing dissociation and/or ionization of molecular ions to form atomic ions and energetic neutral particles. The atomic ions are magnetically trapped as a result of a change of charge-to- mass ratio. The molecular ions are injected into the container and into the path of an energetic carbon arc discharge which dissociates and/or ionizes a portion of the molecular ions into atomic ions and energetic neutrals. The resulting atomic ions are trapped by the magnetic field to form a circulating beam of atomic ions, and the energetic neutrals pass out of the system and may be utilized in a particle accelerator. (AEC)
Wavelength-scale Microlasers based on VCSEL-Photonic Crystal Architecture
2015-01-20
molecular beam epitaxy , MBE). We will also assume the triangular lattice of air...Abbreviations, and Acronyms InP: indium phosphide InGaAsP: indium gallium arsenide phosphide MBE: molecular beam epiitaxy VCSEL : vertical cavity...substrates and were grown by MBE. Electron beam lithography and reactive ion etching was used to deep‐etch the holes of the PhC‐ VCSELS ,
Strained GaSb/AlAsSb Quantum Wells for p-Channel Field-Effect Transistors
2008-01-01
Available online 18 October 2008 PACS: 72.80.Ey 73.61.Ey 81.05.Ea 85.30.Tv Keywords: A3. Molecular beam epitaxy A3. Quantum wells B2. Semiconducting III–V...were grown by molecular beam epitaxy on GaAs substrates. The buffer layer and barrier layers consisted of relaxed AlAsxSb1x. The composition of the...composition in order to control the strain in the GaSb quantum well. The heterostructures studied here are grown by molecular beam epitaxy (MBE) on semi
Study of Spin Splitting in GaN/AlGaN Quantum Wells
2009-05-11
plasma-assisted molecular - beam epitaxy ”, Jap. J. Appl. Phys. 47, 891 (2008), we have grown M-plane GaN films with self-assembled C-plane GaN nanopillars...on a γ-LiAlO2 substrate by plasma-assisted molecular - beam epitaxy . The diameters of the basal plane of the nanopillars are about 200 to 900 nm and...Line defects of M-plane GaN grown on γ-LiAlO2 by plasma-assisted molecular beam epitaxy ”, Appl. Phys. Lett. 92 pp.202106 (2008), we studied the
2010-05-17
arranged by Prof. A. Zaslavsky Keywords: Gallium nitride High electron mobility transistor Molecular beam epitaxy Homoepitaxy Doping a b s t r a c t AlGaN...GaN/Be:GaN heterostructures have been grown by rf-plasma molecular beam epitaxy on free- standing semi-insulating GaN substrates, employing...hydride vapor phase epitaxy (HVPE) grown GaN sub- strates has enabled the growth by molecular beam epitaxy (MBE) of AlGaN/GaNHEMTswith significantly
2002-06-03
resonant-cavity light-emitting diodes (RC LEDs) and vertical-cavity surface-emitting lasers ( VCSELs )] fabricated from molecular beam epitaxy (MBE)-grown...grown 8470-631. by molecular beam epitaxy (MBE) using a Riber 32P E-mail address: muszal@ite.waw.pl (0. Muszalski). reactor. Details of the growth can be... molecular beams hit the center of a rotating sion features of RC LED and VCSEL structures, as well sample. However, due to the transversal distribution of as
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuri, Yosuke, E-mail: yuri.yosuke@jaea.go.jp
Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazaki, M.; Kasai, Y.; Oishi, K.
An (e,2e) apparatus for electron momentum spectroscopy (EMS) has been developed, which employs an ultrashort-pulsed incident electron beam with a repetition rate of 5 kHz and a pulse duration in the order of a picosecond. Its instrumental design and technical details are reported, involving demonstration of a new method for finding time-zero. Furthermore, EMS data for the neutral Ne atom in the ground state measured by using the pulsed electron beam are presented to illustrate the potential abilities of the apparatus for ultrafast molecular dynamics, such as by combining EMS with the pump-and-probe technique.
Natrella, Michele; Rouvalis, Efthymios; Liu, Chin-Pang; Liu, Huiyun; Renaud, Cyril C; Seeds, Alwyn J
2012-08-13
We report the first InGaAsP-based uni-travelling carrier photodiode structure grown by Solid Source Molecular Beam Epitaxy; the material contains layers of InGaAsP as thick as 300 nm and a 120 nm thick InGaAs absorber. Large area vertically illuminated test devices have been fabricated and characterised; the devices exhibited 0.1 A/W responsivity at 1550 nm, 12.5 GHz -3 dB bandwidth and -5.8 dBm output power at 10 GHz for a photocurrent of 4.8 mA. The use of Solid Source Molecular Beam Epitaxy enables the major issue associated with the unintentional diffusion of zinc in Metal Organic Vapour Phase Epitaxy to be overcome and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of Gas Source Molecular Beam Epitaxy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1996-04-01
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1996-03-01
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less
New concepts in ionospheric modification. Final report, 15 April 1986-30 September 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, P.M.; Fraser-Smith, A.C.; Gilchrist, B.E.
1987-04-01
This report considers the ionospheric modification that can be produced by energetic charged-particle and photon beams, which are emitted from a platform or vehicle (spacecraft or rockets) located in the ionosphere. The various beams considered include (1) charged-particle beams composed of low-, moderate-, and high-energy electrons, (2) beams of ions and plasma, and (3) photon beams of soft x rays and extreme-ultraviolet radiation. Briefly considered, in addition to the beam topics, is the ionospheric modification produced by the release of neutral gas of high molecular weight from a rapidly moving vehicle such as the Space Shuttle Orbiter. When a rankingmore » is made in terms of the new information that may be obtained, the scale of the modification that may be produced, and the availability of beam sources, ionospheric modification by means of relativistic electron beams appears particularly promising. However, all the methods have their own distinctive features that could make their use desirable under particular circumstances. The modification produced by means of beams of soft x rays, for example, is not strongly dependent on the beam's direction relative to the earth's magnetic field, and thus modification can be produced in regions inaccessible to a charged-particle beam from the same vehicle.« less
NASA Astrophysics Data System (ADS)
Sartori, E.; Carozzi, G.; Veltri, P.; Spolaore, M.; Cavazzana, R.; Antoni, V.; Serianni, G.
2017-08-01
The measurement of the plasma potential and the energy spectrum of secondary particles in the drift region of a negative ion beam offers an insight into beam-induced plasma formation and beam transport in low pressure gasses. Plasma formation in negative-ion beam systems, and the characteristics of such a plasma are of interest especially for space charge compensation, plasma formation in neutralizers, and the development of improved schemes of beam-induced plasma neutralisers for future fusion devices. All these aspects have direct implications in the ITER Heating Neutral Beam and the operation of the prototypes, SPIDER and MITICA, and also have important role in the conceptual studies for NBI systems of DEMO, while at present experimental data are lacking. In this paper we present the design and development of an ion energy analyzer to measure the beam plasma formation and space charge compensation in negative ion beams. The diagnostic is a retarding field energy analyzer (RFEA), and will measure the transverse energy spectra of plasma molecular ions. The calculations that supported the design are reported, and a method to interpret the measurements in negative ion beam systems is also proposed. Finally, the experimental results of the first test in a magnetron plasma are presented.
NASA Astrophysics Data System (ADS)
Dhar, S.; Brandt, O.; Trampert, A.; Friedland, K. J.; Sun, Y. J.; Ploog, K. H.
2003-04-01
We present a detailed study of the magnetic properties of (Ga,Mn)N layers grown directly on 4H-SiC substrates by reactive molecular-beam epitaxy. X-ray diffraction and transmission electron microscopy demonstrates that homogeneous (Ga,Mn)N alloys of high crystal quality can be synthesized by this growth method up to a Mn-content of 10 12 %. Using a variety of magnetization experiments (temperature-dependent dc magnetization, isothermal remanent magnetization, frequency and field dependent ac susceptibility), we demonstrate that insulating (Ga,Mn)N alloys represent a Heisenberg spin-glass with a spin-freezing temperature around 4.5 K. We discuss the origins of this spin-glass characteristics in terms of the deep-acceptor nature of Mn in GaN and the resulting insulating character of this compound.
All-dielectric perforated metamaterials with toroidal dipolar response (Conference Presentation)
NASA Astrophysics Data System (ADS)
Stenishchev, Ivan; Basharin, Alexey A.
2017-05-01
We present metamaterials based on dielectric slab with perforated identical cylindrical clusters with perforated holes, which allow to support the toroidal dipolar response due to Mie-resonances in each hole. Note that proposed metamaterial is technologically simple for fabrication in optical frequency range. Metamaterial can be fabricated by several methods. For instance, we may apply the molecular beam epitaxy method for deposition of Si or GaAs layers, which have permittivity close to 16. Next step, nanometer/micrometer holes are perforated by focused ion beam method or laser cutting method. Fundamental difference of proposed metamaterial is technological fabrication process. Classically all- dielectric optical metamaterials consist of nano-spheres or nano-discs, which are complicated for fabrication, while our idea and suggested metamaterials are promising prototype of various optical/THz all-dielectic devices as sensor, nano-antennas elements for nanophotonics.
Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sacramento, R. L.; Alves, B. X.; Silva, B. A.
2015-07-15
We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.
Formation of long-lived CDn2+ and CHn2+ dications
NASA Astrophysics Data System (ADS)
Levy, Y.; Bar-David, A.; Ben-Itzhak, I.; Gertner, I.; Rosner, B.
1999-08-01
A systematic study of the formation of CDn2+ and CHn2+ dications in fast charge-stripping collisions with Ar atoms was conducted. The experimental method was based on the detection of the D (or H) fragments of the molecular ion of interest, and thus reducing the effect of the fraction of molecular ions containing the 13C isotope and other beam impurities. We observed long-lived CD22+, CD42+, and CD52+ dications. In the same process neither long-lived CD2+ nor CD32+ were observed. The mean lifetime of CD22+ was determined to be 4.0±1.11.3 µs, and those of CD42+ and CD52+ were longer than 2.1 and 3.3 µs, respectively. The production cross sections of CDn2+ from different CDm+ beams were measured. Long-lived CD22+ was formed from all CDm+ beams (micons/Journals/Common/geq" ALT="geq" ALIGN="TOP"/>2) and also directly from the rf ion source. In contrast, CD42+ and CD52+ were formed only from CD4+ and CD5+, respectively.
DOE R&D Accomplishments Database
Continetti, R. E.; Balko, B. A.; Lee, Y. T.
1989-02-01
A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.
Schneider, Falk; Waithe, Dominic; Galiani, Silvia; Bernardino de la Serna, Jorge; Sezgin, Erdinc; Eggeling, Christian
2018-06-19
The diffusion dynamics in the cellular plasma membrane provide crucial insights into molecular interactions, organization, and bioactivity. Beam-scanning fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (scanning STED-FCS) measures such dynamics with high spatial and temporal resolution. It reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially for each pixel along the scanned line. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED-FCS measurement method, line interleaved excitation scanning STED-FCS (LIESS-FCS), that discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS-FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS-FCS to investigate the spatiotemporal organization of glycosylphosphatidylinositol-anchored proteins in the plasma membrane of live cells, which, interestingly, show multiple diffusion modes at different spatial positions.
NASA Technical Reports Server (NTRS)
Wilmoth, R. G.; Fisher, S. S.
1974-01-01
Stay-time distributions have been obtained for Xe physisorbing on polycrystalline nickel as a function of the target temperature using a pulsed molecular-beam technique. Some interesting effects due to ion bombardment of the surface using He, Ar, and Xe ions are presented. Measured detector signal shapes are found to deviate from those predicted for first-order desorption with velocities corresponding to Maxwellian effusion at the surface temperature. Evidence is found for interaction between beam pulse adsorption and steady-state adsorption of beam species background atoms.
NASA Technical Reports Server (NTRS)
Cook, S. R.; Hoffbauer, M. A.
1996-01-01
The first comprehensive measurements of the magnitude and direction of the forces exerted on surfaces by molecular beams are discussed and used to obtain information about the microscopic properties of the gas-surface interactions. This unique approach is not based on microscopic measurements of the scattered molecules. The reduced force coefficients are introduced as a new set of parameters that completely describe the macroscopic average momentum transfer to a surface by an incident molecular beam. By using a specialized torsion balance and molecular beams of N2, CO, CO2, and H2, the reduced force coefficients are determined from direct measurements of the force components exerted on surface of a solar panel array material, Kapton, SiO2-coated Kapton, and Z-93 as a function of the angle of incidence ranging from 0 degrees to 85 degrees. The absolute flux densities of the molecular beams were measured using a different torsion balance with a beam-stop that nullified the force of the scattered molecules. Standard time-of-flight techniques were used to determine the flux-weighted average velocities of the various molecular beams ranging from 1600 m/s to 4600 m/s. The reduced force coefficients can be used to directly obtain macroscopic average properties of the scattered molecules, such as the flux-weighted average velocity and translational energy, that can then be used to determine microscopic details concerning gas-surface interactions without the complications associated with averaging microscopic measurements.
Experimental methods of molecular matter-wave optics.
Juffmann, Thomas; Ulbricht, Hendrik; Arndt, Markus
2013-08-01
We describe the state of the art in preparing, manipulating and detecting coherent molecular matter. We focus on experimental methods for handling the quantum motion of compound systems from diatomic molecules to clusters or biomolecules.Molecular quantum optics offers many challenges and innovative prospects: already the combination of two atoms into one molecule takes several well-established methods from atomic physics, such as for instance laser cooling, to their limits. The enormous internal complexity that arises when hundreds or thousands of atoms are bound in a single organic molecule, cluster or nanocrystal provides a richness that can only be tackled by combining methods from atomic physics, chemistry, cluster physics, nanotechnology and the life sciences.We review various molecular beam sources and their suitability for matter-wave experiments. We discuss numerous molecular detection schemes and give an overview over diffraction and interference experiments that have already been performed with molecules or clusters.Applications of de Broglie studies with composite systems range from fundamental tests of physics up to quantum-enhanced metrology in physical chemistry, biophysics and the surface sciences.Nanoparticle quantum optics is a growing field, which will intrigue researchers still for many years to come. This review can, therefore, only be a snapshot of a very dynamical process.
Dahlberg, Jerry; Tkacik, Peter T; Mullany, Brigid; Fleischhauer, Eric; Shahinian, Hossein; Azimi, Farzad; Navare, Jayesh; Owen, Spencer; Bisel, Tucker; Martin, Tony; Sholar, Jodie; Keanini, Russell G
2017-12-04
An analog, macroscopic method for studying molecular-scale hydrodynamic processes in dense gases and liquids is described. The technique applies a standard fluid dynamic diagnostic, particle image velocimetry (PIV), to measure: i) velocities of individual particles (grains), extant on short, grain-collision time-scales, ii) velocities of systems of particles, on both short collision-time- and long, continuum-flow-time-scales, iii) collective hydrodynamic modes known to exist in dense molecular fluids, and iv) short- and long-time-scale velocity autocorrelation functions, central to understanding particle-scale dynamics in strongly interacting, dense fluid systems. The basic system is composed of an imaging system, light source, vibrational sensors, vibrational system with a known media, and PIV and analysis software. Required experimental measurements and an outline of the theoretical tools needed when using the analog technique to study molecular-scale hydrodynamic processes are highlighted. The proposed technique provides a relatively straightforward alternative to photonic and neutron beam scattering methods traditionally used in molecular hydrodynamic studies.
Method of deposition by molecular beam epitaxy
Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.
1995-01-01
A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time.
Method of deposition by molecular beam epitaxy
Chalmers, S.A.; Killeen, K.P.; Lear, K.L.
1995-01-10
A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time. 9 figures.
Production of pulsed atomic oxygen beams via laser vaporization methods
NASA Technical Reports Server (NTRS)
Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava
1987-01-01
Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P sub J) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus.
Analysis of the Alkali Metal Diatomic Spectra; Using molecular beams and ultracold molecules
NASA Astrophysics Data System (ADS)
Kim, Jin-Tae
2014-12-01
This ebook illustrates the complementarity of molecular beam (MB) spectra and ultracold molecule (UM) spectra in unraveling the complex electronic spectra of diatomic alkali metal molecules, using KRb as a prime example. Researchers interested in molecular spectroscopy, whether physicist, chemist, or engineer, may find this ebook helpful and may be able to apply similar ideas to their molecules of interest.
Optically stimulated slowing of polar heavy-atom molecules with a constant beat phase
NASA Astrophysics Data System (ADS)
Yin, Yanning; Xu, Supeng; Xia, Meng; Xia, Yong; Yin, Jianping
2018-04-01
Polar heavy-atom molecules have been well recognized as promising candidates for precision measurements and tests of fundamental physics. A much slower molecular beam to increase the interaction time should lead to a more sensitive measurement. Here we theoretically demonstrate the possibility of the stimulated longitudinal slowing of heavy-atom molecules by the coherent optical bichromatic force with a constant beat phase. Taking the YbF meolecule as an example, we show that a rapid and short-distance deceleration of heavy molecules by a phase-compensation method is feasible with moderate conditions. A molecular beam of YbF with a forward velocity of 120 m/s can be decelerated below 10 m/s within a distance of 3.5 cm and with a laser irradiance for each traveling wave of 107.2 W/cm 2 . Our proposed slowing method could be a promising approach to break through the space constraint or the limited capture efficiency of molecules loadable into a magneto-optical trap in traditional deceleration schemes, opening the possibility for a significant improvement of the precision measurement sensitivity.
Fabrication of Subnanometer-Precision Nanopores in Hexagonal Boron Nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, S. Matt; Dunn, Gabriel; Azizi, Amin
Here, we demonstrate the fabrication of individual nanopores in hexagonal boron nitride (h-BN) with atomically precise control of the pore shape and size. Previous methods of pore production in other 2D materials typically create pores with irregular geometry and imprecise diameters. In contrast, other studies have shown that with careful control of electron irradiation, defects in h-BN grow with pristine zig-zag edges at quantized triangular sizes, but they have failed to demonstrate production and control of isolated defects. In this work, we combine these techniques to yield a method in which we can create individual size-quantized triangular nanopores through anmore » h-BN sheet. The pores are created using the electron beam of a conventional transmission electron microscope; which can strip away multiple layers of h-BN exposing single-layer regions, introduce single vacancies, and preferentially grow vacancies only in the single-layer region. We further demonstrate how the geometry of these pores can be altered beyond triangular by changing beam conditions. Precisely size- and geometry-tuned nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu
2016-05-01
Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the othermore » hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.« less
Fabrication of Subnanometer-Precision Nanopores in Hexagonal Boron Nitride
Gilbert, S. Matt; Dunn, Gabriel; Azizi, Amin; ...
2017-11-08
Here, we demonstrate the fabrication of individual nanopores in hexagonal boron nitride (h-BN) with atomically precise control of the pore shape and size. Previous methods of pore production in other 2D materials typically create pores with irregular geometry and imprecise diameters. In contrast, other studies have shown that with careful control of electron irradiation, defects in h-BN grow with pristine zig-zag edges at quantized triangular sizes, but they have failed to demonstrate production and control of isolated defects. In this work, we combine these techniques to yield a method in which we can create individual size-quantized triangular nanopores through anmore » h-BN sheet. The pores are created using the electron beam of a conventional transmission electron microscope; which can strip away multiple layers of h-BN exposing single-layer regions, introduce single vacancies, and preferentially grow vacancies only in the single-layer region. We further demonstrate how the geometry of these pores can be altered beyond triangular by changing beam conditions. Precisely size- and geometry-tuned nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation.« less
Excited-state dissociation dynamics of phenol studied by a new time-resolved technique
NASA Astrophysics Data System (ADS)
Lin, Yen-Cheng; Lee, Chin; Lee, Shih-Huang; Lee, Yin-Yu; Lee, Yuan T.; Tseng, Chien-Ming; Ni, Chi-Kung
2018-02-01
Phenol is an important model molecule for the theoretical and experimental investigation of dissociation in the multistate potential energy surfaces. Recent theoretical calculations [X. Xu et al., J. Am. Chem. Soc. 136, 16378 (2014)] suggest that the phenoxyl radical produced in both the X and A states from the O-H bond fission in phenol can contribute substantially to the slow component of photofragment translational energy distribution. However, current experimental techniques struggle to separate the contributions from different dissociation pathways. A new type of time-resolved pump-probe experiment is described that enables the selection of the products generated from a specific time window after molecules are excited by a pump laser pulse and can quantitatively characterize the translational energy distribution and branching ratio of each dissociation pathway. This method modifies conventional photofragment translational spectroscopy by reducing the acceptance angles of the detection region and changing the interaction region of the pump laser beam and the molecular beam along the molecular beam axis. The translational energy distributions and branching ratios of the phenoxyl radicals produced in the X, A, and B states from the photodissociation of phenol at 213 and 193 nm are reported. Unlike other techniques, this method has no interference from the undissociated hot molecules. It can ultimately become a standard pump-probe technique for the study of large molecule photodissociation in multistates.
NASA Astrophysics Data System (ADS)
Shao, Lin; Gigax, Jonathan; Chen, Di; Kim, Hyosim; Garner, Frank A.; Wang, Jing; Toloczko, Mychailo B.
2017-10-01
Self-ion irradiation is widely used as a method to simulate neutron damage in reactor structural materials. Accelerator-based simulation of void swelling, however, introduces a number of neutron-atypical features which require careful data extraction and, in some cases, introduction of innovative irradiation techniques to alleviate these issues. We briefly summarize three such atypical features: defect imbalance effects, pulsed beam effects, and carbon contamination. The latter issue has just been recently recognized as being relevant to simulation of void swelling and is discussed here in greater detail. It is shown that carbon ions are entrained in the ion beam by Coulomb force drag and accelerated toward the target surface. Beam-contaminant interactions are modeled using molecular dynamics simulation. By applying a multiple beam deflection technique, carbon and other contaminants can be effectively filtered out, as demonstrated in an irradiation of HT-9 alloy by 3.5 MeV Fe ions.
NASA Astrophysics Data System (ADS)
Lei, Qingyu; Golalikhani, Maryam; Davidson, Bruce A.; Liu, Guozhen; Schlom, Darrell G.; Qiao, Qiao; Zhu, Yimei; Chandrasena, Ravini U.; Yang, Weibing; Gray, Alexander X.; Arenholz, Elke; Farrar, Andrew K.; Tenne, Dmitri A.; Hu, Minhui; Guo, Jiandong; Singh, Rakesh K.; Xi, Xiaoxing
2017-12-01
Advancements in nanoscale engineering of oxide interfaces and heterostructures have led to discoveries of emergent phenomena and new artificial materials. Combining the strengths of reactive molecular-beam epitaxy and pulsed-laser deposition, we show here, with examples of Sr1+xTi1-xO3+δ, Ruddlesden-Popper phase Lan+1NinO3n+1 (n = 4), and LaAl1+yO3(1+0.5y)/SrTiO3 interfaces, that atomic layer-by-layer laser molecular-beam epitaxy significantly advances the state of the art in constructing oxide materials with atomic layer precision and control over stoichiometry. With atomic layer-by-layer laser molecular-beam epitaxy we have produced conducting LaAlO3/SrTiO3 interfaces at high oxygen pressures that show no evidence of oxygen vacancies, a capability not accessible by existing techniques. The carrier density of the interfacial two-dimensional electron gas thus obtained agrees quantitatively with the electronic reconstruction mechanism.
Lam, Jessica; Rennick, Christopher J; Softley, Timothy P
2015-05-01
A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br2 and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80,000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br2. The duration is consistent with a simple analytical model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.
Zappalà, G; Motta, V; Tuccitto, N; Vitale, S; Torrisi, A; Licciardello, A
2015-12-15
Secondary ion mass spectrometry (SIMS) with polyatomic primary ions provides a successful tool for molecular depth profiling of polymer systems, relevant in many technological applications. Widespread C60 sources, however, cause in some polymers extensive damage with loss of molecular information along depth. We study a method, based on the use of a radical scavenger, for inhibiting ion-beam-induced reactions causing sample damage. Layered polystyrene sulfonate and polyacrylic acid based polyelectrolyte films, behaving differently towards C60 beam-induced damage, were selected and prepared as model systems. They were depth profiled by means of time-of-flight (TOF)-SIMS in dual beam mode, using fullerene ions for sputtering. Nitric oxide was introduced into the analysis chamber as a radical scavenger. The effect of sample cooling combined with NO-dosing on the quality of depth profiles was explored. NO-dosing during C60-SIMS depth profiling of >1 micrometer-thick multilayered polyelectrolytes allows detection, along depth, of characteristic fragments from systems otherwise damaged by C60 bombardment, and increases sputtering yield by more than one order of magnitude. By contrast, NO has little influence on those layers that are well profiled with C60 alone. Such leveling effect, more pronounced at low temperature, leads to a dramatic improvement of profile quality, with a clear definition of interfaces. NO-dosing provides a tool for extending the applicability, in SIMS depth profiling, of the widely spread fullerene ion sources. In view of the acceptable erosion rates on inorganics, obtainable with C60, the method could be of relevance also in connection with the 3D-imaging of hybrid polymer/inorganic systems. Copyright © 2015 John Wiley & Sons, Ltd.
Burton, George L.; Diercks, David R.; Perkins, Craig L.; ...
2017-07-01
Recent studies have demonstrated that growth of CdTe on CdTe (100) and (211)B substrates via molecular beam epitaxy (MBE) results in planar defect densities 2 and 3 orders of magnitude higher than growth on InSb (100) substrates, respectively. To understand this shortcoming, MBE growth on CdTe substrates with a variety of substrate preparation methods is studied by scanning electron microscopy, secondary ion mass spectrometry, x-ray photoelectron spectroscopy, cross sectional transmission electron microscopy, and atom probe tomography (APT). Prior to growth, carbon is shown to remain on substrate surfaces even after atomic hydrogen cleaning. APT revealed that following the growth ofmore » films, trace amounts of carbon remained at the substrate/film interface. This residual carbon may lead to structural degradation, which was determined as the main cause of higher defect density.« less
Self-consistent expansion for the molecular beam epitaxy equation
NASA Astrophysics Data System (ADS)
Katzav, Eytan
2002-03-01
Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the nonlinear molecular beam epitaxy (MBE) equation, a self-consistent expansion for the nonlinear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(r-->-r',t-t')=2D0\\|r-->- r'\\|2ρ-dδ(t-t'). I find a lower critical dimension dc(ρ)=4+2ρ, above which the linear MBE solution appears. Below the lower critical dimension a ρ-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe nonlinear MBE, using a reliable method that proved itself in the past by giving reasonable results for the strong-coupling regime of the Kardar-Parisi-Zhang system (for d>1), where DRG failed to do so.
Self-consistent expansion for the molecular beam epitaxy equation.
Katzav, Eytan
2002-03-01
Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the nonlinear molecular beam epitaxy (MBE) equation, a self-consistent expansion for the nonlinear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(r-r('),t-t('))=2D(0)[r-->-r(')](2rho-d)delta(t-t(')). I find a lower critical dimension d(c)(rho)=4+2rho, above which the linear MBE solution appears. Below the lower critical dimension a rho-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe nonlinear MBE, using a reliable method that proved itself in the past by giving reasonable results for the strong-coupling regime of the Kardar-Parisi-Zhang system (for d>1), where DRG failed to do so.
Ya, Huiyuan; Chen, Qiufang; Wang, Weidong; Chen, Wanguang; Qin, Guangyong; Jiao, Zhen
2012-01-01
The stimulation effect that some beneficial agronomic qualities have exhibited in present-generation plants have also been observed due to ion implantation on plants. However, there is relatively little knowledge regarding the molecular mechanism of the stimulation effects of ion-beam implantation. In order to extend our current knowledge about the functional genes related to this stimulation effect, we have reported a comprehensive microarray analysis of the transcriptome features of the promoted-growth rice seedlings germinating from seeds implanted by a low-energy N+ beam. The results showed that 351 up-regulated transcripts and 470 down-regulated transcripts, including signaling proteins, kinases, plant hormones, transposable elements, transcription factors, non-coding protein RNA (including miRNA), secondary metabolites, resistance proteins, peroxidase and chromatin modification, are all involved in the stimulating effects of ion-beam implantation. The divergences of the functional catalog between the vacuum and ion implantation suggest that ion implantation is the principle cause of the ion-beam implantation biological effects, and revealed the complex molecular networks required to adapt to ion-beam implantation stress in plants, including enhanced transposition of transposable elements, promoted ABA biosynthesis and changes in chromatin modification. Our data will extend the current understanding of the molecular mechanisms and gene regulation of stimulation effects. Further research on the candidates reported in this study should provide new insights into the molecular mechanisms of biological effects induced by ion-beam implantation. PMID:22843621
The Optical Bichromatic Force in Molecular Systems
NASA Astrophysics Data System (ADS)
Aldridge, Leland; Galica, Scott; Eyler, E. E.
2015-05-01
The optical bichromatic force has been demonstrated to be useful for slowing atomic beams much more rapidly than radiative forces. Through numerical simulations, we examine several aspects of applying the bichromatic force to molecular beams. One is the unavoidable existence of out-of-system radiative decay, requiring one or more repumping beams. We find that the average deceleration varies strongly with the repumping intensity, but when using optimal parameters, the force approaches the limiting value allowed by population statistics. Another consideration is the effect of fine and hyperfine structure. We examine a simplified multlevel model based on the B <--> X transition in calcium monofluoride. To circumvent optical pumping into coherent dark states, we include two possible schemes: (1) a skewed dc magnetic field, and (2) rapid optical polarization switching. Our results indicate that the bichromatic force remains a viable option for creating large forces in molecular beams, with a reduction in the peak force by approximately an order of magnitude compared to a two-level atom, but little effect on the velocity range over which the force is effective. We also describe our progress towards experimental tests of the bichromatic force on a molecular beam of CaF. Supported by the National Science Foundation.
A low Earth orbit molecular beam space simulation facility
NASA Technical Reports Server (NTRS)
Cross, J. B.
1984-01-01
A brief synopsis of the low Earth orbit (LEO) satellite environment is presented including neutral and ionic species. Two ground based atomic and molecular beam instruments are described which are capable of simulating the interaction of spacecraft surfaces with the LEO environment and detecting the results of these interactions. The first detects mass spectrometrically low level fluxes of reactively and nonreactively surface scattered species as a function of scattering angle and velocity while the second ultrahigh velocity (UHV) molecular beam, laser induced fluorescence apparatus is capable of measuring chemiluminescence produced by either gas phase or gas-surface interactions. A number of proposed experiments are described.
NASA Technical Reports Server (NTRS)
Wilmoth, R. G.
1973-01-01
A molecular beam time-of-flight technique is studied as a means of determining surface stay times for physical adsorption. The experimental approach consists of pulsing a molecular beam, allowing the pulse to strike an adsorbing surface and detecting the molecular pulse after it has subsequently desorbed. The technique is also found to be useful for general studies of adsorption under nonequilibrium conditions including the study of adsorbate-adsorbate interactions. The shape of the detected pulse is analyzed in detail for a first-order desorption process. For mean stay times, tau, less than the mean molecular transit times involved, the peak of the detected pulse is delayed by an amount approximately equal to tau. For tau much greater than these transit times, the detected pulse should decay as exp(-t/tau). However, for stay times of the order of the transit times, both the molecular speed distributions and the incident pulse duration time must be taken into account.
Low energy ion beam dynamics of NANOGAN ECR ion source
NASA Astrophysics Data System (ADS)
Kumar, Sarvesh; Mandal, A.
2016-04-01
A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, Jessica; Rennick, Christopher J.; Softley, Timothy P.
A chopper wheel construct is used to shorten the duration of a molecular beam to 13 μs. Molecular beams seeded with NO or with Br{sub 2} and an initial pulse width of ≥200 μs were passed through a spinning chopper wheel, which was driven by a brushless DC in vacuo motor at a range of speeds, from 3000 rpm to 80 000 rpm. The resulting duration of the molecular-beam pulses measured at the laser detection volume ranged from 80 μs to 13 μs and was the same for both NO and Br{sub 2}. The duration is consistent with a simple analyticalmore » model, and the minimum pulse width measured is limited by the spreading of the beam between the chopper and the detection point as a consequence of the longitudinal velocity distribution of the beam. The setup adopted here effectively eliminates buildup of background gas without the use of a differential pumping stage, and a clean narrow pulse is obtained with low rotational temperature.« less
NASA Astrophysics Data System (ADS)
Nihill, Kevin John
This thesis details a range of experiments and techniques that use the scattering of atomic beams from surfaces to both characterize a variety of interfaces and harness mass-specific scattering conditions to separate and enrich isotopic components in a mixture of gases. Helium atom scattering has been used to characterize the surface structure and vibrational dynamics of methyl-terminated Ge(111), thereby elucidating the effects of organic termination on a rigid semiconductor interface. Helium atom scattering was employed as a surface-sensitive, non-destructive probe of the surface. By means of elastic gas-surface diffraction, this technique is capable of providing measurements of atomic spacing, step height, average atomic displacement as a function of surface temperature, gas-surface potential well depth, and surface Debye temperature. Inelastic time-of-flight studies provide highly resolved energy exchange measurements between helium atoms and collective lattice vibrations, or phonons; a collection of these measurements across a range of incident kinematic parameters allowed for a thorough mapping of low-energy phonons (e.g., the Rayleigh wave) across the surface Brillouin zone and subsequent comparison with complementary theoretical calculations. The scattering of molecular beams - here, hydrogen and deuterium from methyl-terminated Si(111) - enables the measurement of the anisotropy of the gas-surface interaction potential through rotationally inelastic diffraction (RID), whereby incident atoms can exchange internal energy between translational and rotational modes and diffract into unique angular channels as a result. The probability of rotational excitations as a function of incident energy and angle were measured and compared with electronic structure and scattering calculations to provide insight into the gas-surface interaction potential and hence the surface charge density distribution, revealing important details regarding the interaction of H2 with an organic-functionalized semiconductor interface. Aside from their use as probes for surface structure and dynamics, atomic beam sources are also demonstrated to enable the efficient separation of gaseous mixtures of isotopes by means of diffraction and differential condensation. In the former method, the kinematic conditions for elastic diffraction result in an incident beam of natural abundance neon diffracting into isotopically distinct angles, resulting in the enrichment of a desired isotope; this purification can be improved by exploiting the difference in arrival times of the two isotopes at a given final angle. In the latter method, the identical incident velocities of coexpanded isotopes lead to minor but important differences in their incident kinetic energies, and thus their probability of adsorbing on a sufficiently cold surface, resulting in preferential condensation of a given isotope that depends on the energy of the incident beam. Both of these isotope separation techniques are made possible by the narrow velocity distribution and velocity seeding effect offered only by high-Mach number supersonic beam sources. These experiments underscore the utility of supersonically expanded atomic and molecular beam sources as both extraordinarily precise probes of surface structure and dynamics and as a means for high-throughput, non-dissociative isotopic enrichment methods.
Development of Metal Cluster-Based Energetic Materials at NSWC-IHD
2011-01-01
reactivity of NixAly + clusters with nitromethane was investigated using a gas-phase molecular beam system. Results indicate that nitromethane is highly...clusters make up the subunit of a molecular metal-based energetic material. The reactivity of NixAly+ clusters with nitromethane was investigated using...a gas-phase molecular beam system. Results indicate that nitromethane is highly reactive toward the NixAly+ clusters and suggests it would not make
Molecular Beam Mass Spectrometry With Tunable Vacuum Ultraviolet (VUV) Synchrotron Radiation
Golan, Amir; Ahmed, Musahid
2012-01-01
Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics1-4. Fundamental studies of photoionization processes of biomolecules provide information about the electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water1, 5-9. We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-dimethyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline10 located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds1. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations11, 12. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain in detail the electronic structure and dynamics of the investigated species 1, 3. PMID:23149375
Three-dimensional imaging of the ultracold plasma formed in a supersonic molecular beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz-Weiling, Markus; Grant, Edward
Double-resonant excitation of nitric oxide in a seeded supersonic molecular beam forms a state-selected Rydberg gas that evolves to form an ultracold plasma. This plasma travels with the propagation of the molecular beam in z over a variable distance as great as 600 mm to strike an imaging detector, which records the charge distribution in the dimensions, x and y. The ω{sub 1} + ω{sub 2} laser crossed molecular beam excitation geometry convolutes the axial Gaussian distribution of NO in the molecular beam with the Gaussian intensity distribution of the perpendicularly aligned laser beam to create an ellipsoidal volume of Rydbergmore » gas. Detected images describe the evolution of this initial density as a function of selected Rydberg gas initial principal quantum number, n{sub 0}, ω{sub 1} laser pulse energy (linearly related to Rydberg gas density, ρ{sub 0}) and flight time. Low-density Rydberg gases of lower principal quantum number produce uniformly expanding, ellipsoidal charge-density distributions. Increase either of n{sub 0} or ρ{sub 0} breaks the ellipsoidal symmetry of plasma expansion. The volume bifurcates to form repelling plasma volumes. The velocity of separation depends on n{sub 0} and ρ{sub 0} in a way that scales uniformly with ρ{sub e}, the density of electrons formed in the core of the Rydberg gas by prompt Penning ionization. Conditions under which this electron gas drives expansion in the long axis dimension of the ellipsoid favours the formation of counter-propagating shock waves.« less
SU-E-T-610: Phosphor-Based Fiber Optic Probes for Proton Beam Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darafsheh, A; Soldner, A; Liu, H
2015-06-15
Purpose: To investigate feasibility of using fiber optics probes with rare-earth-based phosphor tips for proton beam radiation dosimetry. We designed and fabricated a fiber probe with submillimeter resolution (<0.5 mm3) based on TbF3 phosphors and evaluated its performance for measurement of proton beam including profiles and range. Methods: The fiber optic probe with TbF3 phosphor tip, embedded in tissue-mimicking phantoms was irradiated with double scattering proton beam with energy of 180 MeV. Luminescence spectroscopy was performed by a CCD-coupled spectrograph to analyze the emission spectra of the fiber tip. In order to measure the spatial beam profile and percentage depthmore » dose, we used singular value decomposition method to spectrally separate the phosphors ionoluminescence signal from the background Cerenkov radiation signal. Results: The spectra of the TbF3 fiber probe showed characteristic ionoluminescence emission peaks at 489, 542, 586, and 620 nm. By using singular value decomposition we found the contribution of the ionoluminescence signal to measure the percentage depth dose in phantoms and compared that with measurements performed with ion chamber. We observed quenching effect at the spread out Bragg peak region, manifested as under-responding of the signal, due to the high LET of the beam. However, the beam profiles were not dramatically affected by the quenching effect. Conclusion: We have evaluated the performance of a fiber optic probe with submillimeter resolution for proton beam dosimetry. We demonstrated feasibility of spectral separation of the Cerenkov radiation from the collected signal. Such fiber probes can be used for measurements of proton beams profile and range. The experimental apparatus and spectroscopy method developed in this work provide a robust platform for characterization of proton-irradiated nanophosphor particles for ultralow fluence photodynamic therapy or molecular imaging applications.« less
Future carbon beams at SPIRAL1 facility: Which method is the most efficient?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maunoury, L., E-mail: maunoury@ganil.fr; Delahaye, P.; Dubois, M.
2014-02-15
Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P.more » Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO{sub 2}), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.« less
Future carbon beams at SPIRAL1 facility: Which method is the most efficient?
NASA Astrophysics Data System (ADS)
Maunoury, L.; Delahaye, P.; Angot, J.; Dubois, M.; Dupuis, M.; Frigot, R.; Grinyer, J.; Jardin, P.; Leboucher, C.; Lamy, T.
2014-02-01
Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.
Future carbon beams at SPIRAL1 facility: which method is the most efficient?
Maunoury, L; Delahaye, P; Angot, J; Dubois, M; Dupuis, M; Frigot, R; Grinyer, J; Jardin, P; Leboucher, C; Lamy, T
2014-02-01
Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.
Roediger, P; Wanzenboeck, H D; Waid, S; Hochleitner, G; Bertagnolli, E
2011-06-10
Recently focused-electron-beam-induced etching of silicon using molecular chlorine (Cl(2)-FEBIE) has been developed as a reliable and reproducible process capable of damage-free, maskless and resistless removal of silicon. As any electron-beam-induced processing is considered non-destructive and implantation-free due to the absence of ion bombardment this approach is also a potential method for removing focused-ion-beam (FIB)-inflicted crystal damage and ion implantation. We show that Cl(2)-FEBIE is capable of removing FIB-induced amorphization and gallium ion implantation after processing of surfaces with a focused ion beam. TEM analysis proves that the method Cl(2)-FEBIE is non-destructive and therefore retains crystallinity. It is shown that Cl(2)-FEBIE of amorphous silicon when compared to crystalline silicon can be up to 25 times faster, depending on the degree of amorphization. Also, using this method it has become possible for the first time to directly investigate damage caused by FIB exposure in a top-down view utilizing a localized chemical reaction, i.e. without the need for TEM sample preparation. We show that gallium fluences above 4 × 10(15) cm(-2) result in altered material resulting from FIB-induced processes down to a depth of ∼ 250 nm. With increasing gallium fluences, due to a significant gallium concentration close beneath the surface, removal of the topmost layer by Cl(2)-FEBIE becomes difficult, indicating that gallium serves as an etch stop for Cl(2)-FEBIE.
Molecular Beam Epitaxial Materials Study for Microwave and Millimeter Wave Devices.
1978-10-01
competing for domi- nance with any given set of system components and deposition sequence. The evidence indicates that BeO substrate heaters contribute...34Single- Tranverse -Mode Injection Lasers with Embedded Stripe Layer Grown by Molecular Beam Epitaxy," Appl. Phys. Lett., 29, pp. 164-166 (1976). 178
A Pulsed Laser and Molecular Beam Apparatus for Surface Studies
1985-03-01
will be carried out are in part described in the proposal A Pulsed Laser and Molecular Beam Apparatus for Surface Studies submitted by Howard ... University in November 1982 for review by AFOSR, under the DOD University Instrumentation Program. This report describes the progress made during the
Bhatnagar, Divya; Dube, Koustubh; Damodaran, Vinod B; Subramanian, Ganesan; Aston, Kenneth; Halperin, Frederick; Mao, Meiyu; Pricer, Kurt; Murthy, N Sanjeeva; Kohn, Joachim
2016-10-01
The effects of ethylene oxide (EO), vaporized hydrogen peroxide (VHP), gamma (γ) radiation, and electron-beam (E-beam) on the physiochemical and morphological properties of medical device polymers are investigated. Polymers with ether, carbonate, carboxylic acid, amide and ester functionalities are selected from a family of poly(ethylene glycol) (PEG) containing tyrosine-derived polycarbonates (TyrPCs) to include slow, medium, fast, and ultrafast degrading polymers. Poly(lactic acid) (PLA) is used for comparison. Molecular weight ( M w ) of all tested polymers decreases upon gamma and E-beam, and this effect becomes more pronounced at higher PEG content. Gamma sterilization increases the glass transition temperature of polymers with high PEG content. EO esterifies the carboxylic acid groups in desaminotyrosol-tyrosine (DT) and causes significant degradation. VHP causes hydroxylation of the phenyl ring, and hydrolytic degradation. This study signifies the importance of the chemical composition when selecting a sterilization method, and provides suggested conditions for each of the sterilization methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, R.; Ihmann, K.; Ihmann, J.
2006-05-15
A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 {mu}m sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecularmore » beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N{sub 2} and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N{sub 2} to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH{sub 3}{center_dot} radicals is successfully demonstrated.« less
Model Reduction in Biomechanics
NASA Astrophysics Data System (ADS)
Feng, Yan
The mechanical characteristic of the cell is primarily performed by the cytoskeleton. Microtubules, actin, and intermediate filaments are the three main cytoskeletal polymers. Of these, microtubules are the stiffest and have multiple functions within a cell that include: providing tracks for intracellular transport, transmitting the mechanical force necessary for cell division during mitosis, and providing sufficient stiffness for propulsion in flagella and cilia. Microtubule mechanics has been studied by a variety of methods: detailed molecular dynamics (MD), coarse-grained models, engineering type models, and elastic continuum models. In principle, atomistic MD simulations should be able to predict all desired mechanical properties of a single molecule, however, in practice the large computational resources are required to carry out a simulation of larger biomolecular system. Due to the limited accessibility using even the most ambitious all-atom models and the demand for the multiscale molecular modeling and simulation, the emergence of the reduced models is critically important to provide the capability for investigating the biomolecular dynamics that are critical to many biological processes. Then the coarse-grained models, such as elastic network models and anisotropic network models, have been shown to bequite accurate in predicting microtubule mechanical response, but still requires significant computational resources. On the other hand, the microtubule is treated as comprising materials with certain continuum material properties. Such continuum models, especially Euler-Bernoulli beam models, are often used to extract mechanical parameters from experimental results. The microtubule is treated as comprising materials with certain continuum material properties. Such continuum models, especially Euler-Bernoulli beam models in which the biomolecular system is assumed as homogeneous isotropic materials with solid cross-sections, are often used to extract mechanical parameters from experimental results. However, in real biological world, these homogeneous and isotropic assumptions are usually invalidate. Thus, instead of using hypothesized model, a specific continuum model at mesoscopic scale can be introduced based upon data reduction of the results from molecular simulations at atomistic level. Once a continuum model is established, it can provide details on the distribution of stresses and strains induced within the biomolecular system which is useful in determining the distribution and transmission of these forces to the cytoskeletal and sub-cellular components, and help us gain a better understanding in cell mechanics. A data-driven model reduction approach to the problem of microtubule mechanics as an application is present, a beam element is constructed for microtubules based upon data reduction of the results from molecular simulation of the carbon backbone chain of alphabeta-tubulin dimers. The data base of mechanical responses to various types of loads from molecular simulation is reduced to dominant modes. The dominant modes are subsequently used to construct the stiffness matrix of a beam element that captures the anisotropic behavior and deformation mode coupling that arises from a microtubule's spiral structure. In contrast to standard Euler-Bernoulli or Timoshenko beam elements, the link between forces and node displacements results not from hypothesized deformation behavior, but directly from the data obtained by molecular scale simulation. Differences between the resulting microtubule data-driven beam model (MTDDBM) and standard beam elements are presented, with a focus on coupling of bending, stretch, shear deformations. The MTDDBM is just as economical to use as a standard beam element, and allows accurate reconstruction of the mechanical behavior of structures within a cell as exemplified in a simple model of a component element of the mitotic spindle.
NASA Astrophysics Data System (ADS)
Yen, M. Y.; Haas, T. W.
1990-06-01
We have observed intensity oscillations in reflection high-energy electron diffraction during molecular beam epitaxial growth of GaAs on (111)B GaAs substrates. These oscillations only exist over a narrow range of growth conditions and their behavior is strongly dependent on the migration kinetics of group III and the molecular dissociative reaction of group V elements.
Continuous All-Optical Deceleration and Single-Photon Cooling of Molecular Beams
2014-02-21
PHYSICAL REVIEW A 89 , 023425 (2014) Continuous all-optical deceleration and single-photon cooling of molecular beams A. M. Jayich,1 A. C. Vutha,2 M...details including multilevel numerical simulations of strontium monohydride. These techniques are applicable to a large number of molecular species and...molecules that are considered difficult to directly laser cool—a class that includes many 1050-2947/2014/ 89 (2)/023425(8) 023425-1 ©2014 American
Mg incorporation in GaN grown by plasma-assisted molecular beam epitaxy at high temperatures
NASA Astrophysics Data System (ADS)
Yang, W. C.; Lee, P. Y.; Tseng, H. Y.; Lin, C. W.; Tseng, Y. T.; Cheng, K. Y.
2016-04-01
The influence of growth conditions on the incorporation and activation of Mg in GaN grown by plasma-assisted molecular beam epitaxy at high growth temperature (>700 °C) is presented. It is found that the highest Mg incorporation with optimized electrical properties is highly sensitive both to the Mg/Ga flux ratio and III/V flux ratio. A maximum Mg activation of ~5% can be achieved at a growth temperature of 750 °C. The lowest resistivity achieved is 0.56 Ω-cm which is associated with a high hole mobility of 6.42 cm2/V-s and a moderately high hole concentration of 1.7×1018 cm-3. Although the highest hole concentration achieved in a sample grown under a low III/V flux ratio and a high Mg/Ga flux ratio reaches 7.5×1018 cm-3, the mobility is suffered due to the formation of defects by the excess Mg. In addition, we show that modulated beam growth methods do not enhance Mg incorporation at high growth temperature in contrast to those grown at a low temperature of 500 °C (Appl. Phys. Lett. 93, 172112, Namkoong et al., 2008 [19]).
1992-09-01
SI by Ion-Assisted Molecular Beam Enltaxy Currently there is considerable interest in misfit accommodation in hetero- epitaxy for integration of device...of misfit accommodation. In the last quarter, we have demonstrated, using ion-assisted molecular beam epitaxy : * Reduction of dislocation density in... beam epitaxy (MOMBE) hardware, and demonstration of state-of-the-art MOMBE AlGaAs (1990). MOCVD Materials Growth Facilities and Eauipment Extension to
Method and apparatus for molecular imaging using x-rays at resonance wavelengths
Chapline, G.F. Jr.
Holographic x-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent x-rays upon the object to produce scattering of the x-rays by the object, producing interference on a recording medium between the scattered x-rays from the object and unscattered coherent x-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent x-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent x-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.
Method and apparatus for molecular imaging using X-rays at resonance wavelengths
Chapline, Jr., George F.
1985-01-01
Holographic X-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent X-rays upon the object to produce scattering of the X-rays by the object, producing interference on a recording medium between the scattered X-rays from the object and unscattered coherent X-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent X-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent X-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.
A combined thermal dissociation and electron impact ionization source for RIB generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1995-12-31
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for RIB applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome thismore » handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article.« less
NASA Astrophysics Data System (ADS)
Schwob, Lucas; Lalande, Mathieu; Chesnel, Jean-Yves; Domaracka, Alicja; Huber, Bernd A.; Maclot, Sylvain; Poully, Jean-Christophe; Rangama, Jimmy; Rousseau, Patrick; Vizcaino, Violaine; Adoui, Lamri; Méry, Alain
2018-04-01
In the present paper, we describe a new home-built crossed-beam apparatus devoted to ion-induced ionization and fragmentation of isolated biologically relevant molecular systems. The biomolecular ions are produced by an electrospray ionization source, mass-over-charge selected, accumulated in a 3D ion trap, and then guided to the extraction region of an orthogonal time-of-flight mass spectrometer. Here, the target molecular ions interact with a keV atomic ion beam produced by an electron cyclotron resonance ion source. Cationic products from the collision are detected on a position sensitive detector and analyzed by time-of-flight mass spectrometry. A detailed description of the operation of the setup is given, and early results from irradiation of a protonated pentapeptide (leucine-enkephalin) by a 7 keV He+ ion beam are presented as a proof-of-principle.
Ran, Qin; Matsiev, Daniel; Wodtke, Alec M; Auerbach, Daniel J
2007-10-01
We describe an advanced and highly sensitive instrument for quantum state-resolved molecule-surface energy transfer studies under ultrahigh vacuum (UHV) conditions. The apparatus includes a beam source chamber, two differential pumping chambers, and a UHV chamber for surface preparation, surface characterization, and molecular beam scattering. Pulsed and collimated supersonic molecular beams are generated by expanding target molecule mixtures through a home-built pulsed nozzle, and excited quantum state-selected molecules were prepared via tunable, narrow-band laser overtone pumping. Detection systems have been designed to measure specific vibrational-rotational state, time-of-flight, angular and velocity distributions of molecular beams coming to and scattered off the surface. Facilities are provided to clean and characterize the surface under UHV conditions. Initial experiments on the scattering of HCl(v = 0) from Au(111) show many advantages of this new instrument for fundamental studies of the energy transfer at the gas-surface interface.
Polycyclic aromatic hydrocarbons (PAHs) comprise a class of potentially hazardous compounds of concern to the U.S.EPA. The application of particle-beam (PB) liquid chromatography-mass spectrometry (LC-MS) to the measurement of high-molecular-weight PAHs was investigated. Instrume...
Anisotropic Etching Using Reactive Cluster Beams
NASA Astrophysics Data System (ADS)
Koike, Kunihiko; Yoshino, Yu; Senoo, Takehiko; Seki, Toshio; Ninomiya, Satoshi; Aoki, Takaaki; Matsuo, Jiro
2010-12-01
The characteristics of Si etching using nonionic cluster beams with highly reactive chlorine-trifluoride (ClF3) gas were examined. An etching rate of 40 µm/min or higher was obtained even at room temperature when a ClF3 molecular cluster was formed and irradiated on a single-crystal Si substrate in high vacuum. The etching selectivity of Si with respect to a photoresist and SiO2 was at least 1:1000. We also succeeded in highly anisotropic etching with an aspect ratio of 10 or higher. Moreover, this etching method has a great advantage of low damage, compared with the conventional plasma process.
Surface contamination detection by means of near-infrared stimulation of thermal luminescence
NASA Astrophysics Data System (ADS)
Carrieri, Arthur H.; Roese, Erik S.
2006-02-01
A method for remotely detecting liquid chemical contamination on terrestrial surfaces is presented. Concurrent to irradiation by an absorbing near-infrared beam, the subject soil medium liberates radiance called thermal luminescence (TL) comprising middle-infrared energies (numir) that is scanned interferometrically in beam duration tau. Cyclic states of absorption and emission by the contaminant surrogate are rendered from a sequential differential-spectrum measurement [deltaS(numir,tau)] of the scanned TL. Detection of chemical warfare agent simulant wetting soil is performed in this manner, for example, through pattern recognition of its unique, thermally dynamic, molecular vibration resonance bands on display in the deltaS(numir,tau) metric.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, Jani Cheri; Lehman, Richard Michael; Bauer, William Francis
We report the use of a surface analysis approach, static secondary ion mass spectrometry (SIMS) equipped with a molecular (ReO4-) ion primary beam, to analyze the surface of intact microbial cells. SIMS spectra of 28 microorganisms were compared to fatty acid profiles determined by gas chromatographic analysis of transesterfied fatty acids extracted from the same organisms. The results indicate that surface bombardment using the molecular primary beam cleaved the ester linkage characteristic of bacteria at the glycerophosphate backbone of the phospholipid components of the cell membrane. This cleavage enables direct detection of the fatty acid conjugate base of intact microorganismsmore » by static SIMS. The limit of detection for this approach is approximately 107 bacterial cells/cm2. Multivariate statistical methods were applied in a graded approach to the SIMS microbial data. The results showed that the full data set could initially be statistically grouped based upon major differences in biochemical composition of the cell wall. The gram-positive bacteria were further statistically analyzed, followed by final analysis of a specific bacterial genus that was successfully grouped by species. Additionally, the use of SIMS to detect microbes on mineral surfaces is demonstrated by an analysis of Shewanella oneidensis on crushed hematite. The results of this study provide evidence for the potential of static SIMS to rapidly detect bacterial species based on ion fragments originating from cell membrane lipids directly from sample surfaces.« less
Meteorological effects on laser propagation for power transmission
NASA Technical Reports Server (NTRS)
Beverly, R. E., III
1982-01-01
An examination of possible laser operating parameters for power transmission to earth from solar power satellites is presented, with particular attention paid to assuring optimal delivery at midlatitudes. The degradation of beam efficiency due to molecular scattering, molecular absorption, aerosol scattering, and aerosol absorption during beam propagation through the atmosphere can be alleviated by judicious choice of wavelength windows, elevating the receptor sites, using a vertical propagation path, or by hole boring, i.e., vaporizing the aerosol particles in the beam path. Analyses are given for the beam propagation through fog, haze, clouds, and snow using various transitions. Only weapons-quality lasers are seen as being capable of boring through clouds and aerosols, employing a CW beam with superimposed pulses at high power densities. It is concluded that further short wavelength transmission experiments be performed to demonstrate transmission feasibility with the CW/pulsed mode of beam propagation.
A method of producing high quality oxide and related films on surfaces
NASA Technical Reports Server (NTRS)
Ruckman, Mark W.; Strongin, Myron; Gao, Yongli
1991-01-01
Aluminum oxide or aluminum nitride films were deposited on molecular beam epitaxy (MBE) grown GaAS(100) using a novel cryogenic-based reactive thin film deposition technique. The process involves the condensation of molecular oxygen, ammonia, or other gases normally used for reactive thin film deposition on the substrate before the metal is deposited. The metal vapor is deposited into this layer and reacts with the molecular solid to form the desired compound or a precursor that can be thermally decomposed to generate the desired compound. The films produced by this method are free of impurities, and the low temperatures can be used to control the film and interfacial structure. The process can be easily integrated with existing MBE systems. Ongoing research using the same apparatus suggests that photon or electron irradiation could be used to promote the reactions needed to produce the intended material.
NASA Astrophysics Data System (ADS)
Tellekamp, M. Brooks; Greenlee, Jordan D.; Shank, Joshua C.; Doolittle, W. Alan
2015-09-01
In order to consistently grow high quality niobium oxides and lithium niobium oxides, a novel solid/liquid state oxygen source, LiClO4, has been implemented in a molecular beam epitaxy (MBE) system. LiClO4 is shown to decompose into both molecular and atomic oxygen upon heating. This allows oxidation rates similar to that of molecular oxygen but at a reduced overall beam flux, quantified by in situ Auger analysis. LiClO4 operation is decomposition limited to less than 400 °C, and other material limitations are identified. The design of a custom near-ambient NbCl5 effusion cell is presented, which improves both short and long term stability. Films of Nb oxidation state +2, +3, and +5 are grown using these new tools, including the multi-functional sub-oxide LiNbO2.
Application of electron beam plasma for biopolymers modification
NASA Astrophysics Data System (ADS)
Vasilieva, T. M.
2012-06-01
The effects of the Electron Beam Plasma treatment on natural polysaccharide chitosan were studied experimentally. Low molecular water-soluble products of chitosan and chitooligosaccharides were obtained by treating the original polymers in the Electron Beam Plasma of oxygen and water vapor. The molecular mass of the products varied from 18 kDa to monomeric fragments. The degradation of the original polymers was due to the action of active oxygen particles (atomic and singlet oxygen) and the particles of the water plasmolysis (hydroxyl radicals, hydrogen peroxides). The 95% yield of low molecular weight chitosans was attained by optimizing the treatment conditions. The studies of the antimicrobial activity of low molecular products showed that they strongly inhibit the multiplication of colon bacillus, aurococcus and yeast-like fungi. The EBP-stimulated degradation of polysaccharides and proteins were found to result from breaking β-1,4 glycosidic bounds and peptide bonds, respectively.
NASA Technical Reports Server (NTRS)
Byer, R. L.
1982-01-01
The measurement of high resolution pulsed and continuous wave (CW) coherent anti-Stokes Raman spectroscopy (CARS) measurements in pulsed and steady state supersonic expansions were demonstrated. Pulsed molecular beam sources were characterized, and saturation of a Raman transition and, for the first time, the Raman spectrum of a complex molecular cluster were observed. The observation of CW CARS spectra in a molecular expansion and the effects of transit time broadening is described. Supersonic expansion is established as a viable technique for high resolution Raman spectroscopy of cold molecules with resolutions of 100 MH2.
Phase-Locked Semiconductor Quantum Well Laser Arrays.
1987-03-01
heated monocrystalline substrate. 149 APPENDIX B. A TECHNOLOGICAL APPENDIX 150 The general topic of molecular beam epitaxy (MBE) of compound semi...APPENDIX B. A TECHNOLOGICAL APPENDIX 151 - MONOCRYSTALLINE GaAs SUBSTRATE MOLECULAR / BEAMS...for 30 minutes at 300 C. During this time, the growth chamber cryo- panel is cooled with liquid nitrogen and the sources in the effusion cells are
Quantitative RHEED Studies of MBE Growth of 3-5 Compounds
1991-06-03
Vertical - Cavity Surface - Emitting Laser Using Molecular Beam Epitaxial ...Growth of Vertical Cavity Surface - emitting Lasers Our work under this ARO contract on the control of MBE growth has enhanced our ability to grow...pattern about the surface structure of nearly perfect crystals prepared by Molecular Beam Epitaxy ( MBE ) and to use these techniques
2013-03-07
Approved for public release; distribution is unlimited Molecular Beam Epitaxy of α-Sn on InSb Arnold Kiefer & Bruce Claflin, AFRL/RYDH Unique...Schlom & Kyle Shen (Cornell) Tight coupling of molecular - beam epitaxy (MBE) and angle-resolved photoelectron spectroscopy (ARPES) reveals metal...Materials & Devices Beyond Graphene Jim Hwang, Gernot Pomrenke, Joycelyn Harrison & Misoon Mah (AFOSR) 3D VCSEL Heterostructure h-BN/Graphene/h-BN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiarella, F., E-mail: fabio.chiarella@spin.cnr.it; Barra, M.; Ciccullo, F.
In this paper, we report on the fabrication of N,N′-1H,1H-perfluorobutil dicyanoperylenediimide (PDIF-CN{sub 2}) organic thin-film transistors by Supersonic Molecular Beam Deposition. The devices exhibit mobility up to 0.2 cm{sup 2}/V s even if the substrate is kept at room temperature during the organic film growth, exceeding by three orders of magnitude the electrical performance of those grown at the same temperature by conventional Organic Molecular Beam Deposition. The possibility to get high-mobility n-type transistors avoiding thermal treatments during or after the deposition could significantly extend the number of substrates suitable to the fabrication of flexible high-performance complementary circuits by using this compound.
Choi, Dae Sik; Rao, B Jayachander; Kim, Doyeon; Shim, Sang-Hee; Rhee, Hanju; Cho, Minhaeng
2018-06-14
Coherent Raman scattering spectroscopy and microscopy are useful methods for studying the chemical and biological structures of molecules with Raman-active modes. In particular, coherent anti-Stokes Raman scattering (CARS) microscopy, which is a label-free method capable of imaging structures by displaying the vibrational contrast of the molecules, has been widely used. However, the lack of a technique for switching-off the CARS signal has prevented the development of the super-resolution Raman imaging method. Here, we demonstrate that a selective suppression of the CARS signal is possible by using a three-beam double stimulated Raman scattering (SRS) scheme; the three beams are the pump, Stokes, and depletion lights in order of frequency. Both pump-Stokes and pump-depletion beam pairs can generate SRS processes by tuning their beat frequencies to match two different vibrational modes, then two CARS signals induced by pump-Stokes-pump and pump-depletion-pump interactions can be generated, where the two CARS signals are coupled with each other because they both involve interactions with the common pump beam. Herein, we show that as the intensity of the depletion beam is increased, one can selectively suppress the pump-Stokes-pump CARS signal because the pump-depletion SRS depletes the pump photons. A detailed theoretical description of the coupled differential equations for the three incident fields and the generated CARS signal fields is presented. Taking benzene as a molecular system, we obtained a maximum CARS suppression efficiency of about 97% with our experimental scheme, where the ring breathing mode of the benzene is associated with pump-Stokes-pump CARS, while the C-H stretching mode is associated with the competing pump-depletion SRS process. We anticipate that this selective switching-off scheme will be of use in developing super-resolution label-free CARS microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Lin; Gigax, Jonathan; Chen, Di
Self-ion irradiation is widely used as a method to simulate neutron damage in reactor structural materials. Accelerator-based simulation of void swelling, however, introduces a number of neutron-atypical features which require careful data extraction and in some cases introduction of innovative irradiation techniques to alleviate these issues. We briefly summarize three such atypical features: defect imbalance effects, pulsed beam effects, and carbon contamination. The latter issue has just been recently recognized as being relevant to simulation of void swelling and is discussed here in greater detail. It is shown that carbon ions are entrained in the ion beam by Coulomb forcemore » drag and accelerated toward the target surface. Beam-contaminant interactions are modeled using molecular dynamics simulation. By applying a multiple beam deflection technique, carbon and other contaminants can be effectively filtered out, as demonstrated in an irradiation of HT-9 alloy by 3.5 MeV Fe ions.« less
1998-07-30
contribution we will present size dependent results absorption.of photons from two ultrashort laser pulses on the dynamics of electronic excitations in the at a... cluster beam has confirmed that the nanoparticles in the gas phase and deposited in thin laser -driven flow reactor is capable of producing films. hydrogen ...approximately 7 times larger than neutrals. MB 11 - 138 Molecular Beam Studies of Ammonia Clustered with III Group Metals Produced by Pulsed Laser Reactive
1991-01-01
Hagino Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432, Japan This paper describes composition control of GaAsP...by performing As controlled RHEED oscillation experiments 110]. The SPMQW essentially equivalent to 20% and 33% alloys were grown by deposition of 1...and the Office of Naval Research . Hence RTD No. 28 was grown at 425 0 C with the As 4 beam equivalent pressure (BEP) reduced to 1.6 x 10 - " Torr
Sb-Based n- and p-Channel Heterostructure FETs for High-Speed, Low-Power Applications
2008-07-01
Laboratory are presented. 2. InAlSb/InAs HEMTs The HEMT material was grown by solid-source molecu- lar beam epitaxy (MBE) on a semi-insulating (100) GaAs...and S.Y. Lin, “Strained quantum well modulation-doped InGaSb/AlGaSb struc- tures grown by molecular beam epitaxy ,” J. Electron. Mater., vol.22, no.3...where he majored in solid state physics and researched growth by molecular - beam epitaxy (MBE) of certain compound semiconductor ma- terials. Since
Theoretical study of ArH+ dissociative recombination and electron-impact vibrational excitation
NASA Astrophysics Data System (ADS)
Abdoulanziz, A.; Colboc, F.; Little, D. A.; Moulane, Y.; Mezei, J. Zs; Roueff, E.; Tennyson, J.; Schneider, I. F.; Laporta, V.
2018-06-01
Cross sections are presented for dissociative recombination and electron-impact vibrational excitation of the ArH+ molecular ion at electron energies appropriate for the interstellar environment. The R-matrix method is employed to determine the molecular structure data, i.e. the position and width of the resonance states. The cross sections and the corresponding Maxwellian rate coefficients are computed using a method based on the Multichannel Quantum Defect Theory. The main result of the paper is the very low dissociative recombination rate found at temperatures below 1000K. This is in agreement with the previous upper limit measurement in merged beams and offers a realistic explanation to the presence of ArH+ in exotic interstellar conditions.
TH-AB-209-04: 3D Light Sheet Luminescence Imaging with Cherenkov Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruza, P; Lin, H; Jarvis, L
Purpose: To recover a three-dimensional density distribution of luminescent molecular probes located several centimeters deep within a highly scattering tissue. Methods: We developed a novel sheet beam Cherenkov-excited luminescence scanned imaging (CELSI) methodology. The sample was irradiated by a horizontally oriented, vertically scanned 6 MV X-ray sheet beam (200mm × 5mm, 0.2mm vertical step) from a radiotherapy linear accelerator. The resulting Cherenkov light emission – and thus luminescent probe excitation – occurred exclusively along the irradiation plane due to a short diffusion path of secondary particles and Cherenkov photons. Cherenkov-excited luminescence was detected orthogonally to the sheet beam by gated,more » intensified charge coupled device camera. Analogously to light sheet microscopy, a series of luminescence images was taken for varied axial positions (depths) of the Cherenkov light sheet in sample. Knowledge of the excitation plane position allowed a 3D image stack deconvolution and depth-variant attenuation correction. The 3D image post-processing yielded a true spatial density distribution of luminescent molecules in highly scattering tissue. Results: We recovered a three-dimensional shape and position of 400 µL lesion-mimicking phantom tubes containing 25 µM solution of PtG4 molecular probe from 3 centimeter deep tissue-like media. The high sensitivity of CELSI also allowed resolving 100 micron capillaries of test solution. Functional information of partial oxygen pressure at the site of PtG4 molecular probe was recovered from luminescence lifetime CELSI. Finally, in-vivo sheet beam CELSI localized milimeter-sized PtG4-labelled tumor phantoms in multiple biological objects (hairless mice) from single scan. Conclusion: Presented sheet beam CELSI technique greatly extended the useful depth range of luminescence molecular imaging. More importantly, the light sheet microscopy approach was successfully adapted to CELSI, providing means to recover a completely attenuation-corrected 3D image of luminescent probe distribution. Gated CELSI acquisition yielded functional information of a spatially resolved oxygen concentration map of deep lying targets. This work was supported by NIH research grant R01CA109558 and R21EB017559, as well as by Pilot Grant Funds from the Norris Cotton Cancer Center.« less
Preparation and Optical Properties of GeBi Films by Using Molecular Beam Epitaxy Method
NASA Astrophysics Data System (ADS)
Zhang, Dainan; Liao, Yulong; Jin, Lichuan; Wen, Qi-Ye; Zhong, Zhiyong; Wen, Tianlong; Xiao, John Q.
2017-12-01
Ge-based alloys have drawn great interest as promising materials for their superior visible to infrared photoelectric performances. In this study, we report the preparation and optical properties of germanium-bismuth (Ge1-xBix) thin films by using molecular beam epitaxy (MBE). GeBi thin films belong to the n-type conductivity semiconductors, which have been rarely reported. With the increasing Bi-doping content from 2 to 22.2%, a series of Ge1-xBix thin film samples were obtained and characterized by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. With the increase of Bi content, the mismatch of lattice constants increases, and the GeBi film shifts from direct energy band-gaps to indirect band-gaps. The moderate increase of Bi content reduces optical reflectance and promotes the transmittance of extinction coefficient in infrared wavelengths. The absorption and transmittance of GeBi films in THz band increase with the increase of Bi contents.
NASA Astrophysics Data System (ADS)
Hall, Joshua; Pielić, Borna; Murray, Clifford; Jolie, Wouter; Wekking, Tobias; Busse, Carsten; Kralj, Marko; Michely, Thomas
2018-04-01
Based on an ultra-high vacuum compatible two-step molecular beam epitaxy synthesis with elemental sulphur, we grow clean, well-oriented, and almost defect-free monolayer islands and layers of the transition metal disulphides MoS2, TaS2 and WS2. Using scanning tunneling microscopy and low energy electron diffraction we investigate systematically how to optimise the growth process, and provide insight into the growth and annealing mechanisms. A large band gap of 2.55 eV and the ability to move flakes with the scanning tunneling microscope tip both document the weak interaction of MoS2 with its substrate consisting of graphene grown on Ir(1 1 1). As the method works for the synthesis of a variety of transition metal disulphides on different substrates, we speculate that it could be of great use for providing hitherto unattainable high quality monolayers of transition metal disulphides for fundamental spectroscopic investigations.
Cone beam x-ray luminescence computed tomography: a feasibility study.
Chen, Dongmei; Zhu, Shouping; Yi, Huangjian; Zhang, Xianghan; Chen, Duofang; Liang, Jimin; Tian, Jie
2013-03-01
The appearance of x-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging by x ray. In the previous XLCT system, the sample was irradiated by a sequence of narrow x-ray beams and the x-ray luminescence was measured by a highly sensitive charge coupled device (CCD) camera. This resulted in a relatively long sampling time and relatively low utilization of the x-ray beam. In this paper, a novel cone beam x-ray luminescence computed tomography strategy is proposed, which can fully utilize the x-ray dose and shorten the scanning time. The imaging model and reconstruction method are described. The validity of the imaging strategy has been studied in this paper. In the cone beam XLCT system, the cone beam x ray was adopted to illuminate the sample and a highly sensitive CCD camera was utilized to acquire luminescent photons emitted from the sample. Photons scattering in biological tissues makes it an ill-posed problem to reconstruct the 3D distribution of the x-ray luminescent sample in the cone beam XLCT. In order to overcome this issue, the authors used the diffusion approximation model to describe the photon propagation in tissues, and employed the sparse regularization method for reconstruction. An incomplete variables truncated conjugate gradient method and permissible region strategy were used for reconstruction. Meanwhile, traditional x-ray CT imaging could also be performed in this system. The x-ray attenuation effect has been considered in their imaging model, which is helpful in improving the reconstruction accuracy. First, simulation experiments with cylinder phantoms were carried out to illustrate the validity of the proposed compensated method. The experimental results showed that the location error of the compensated algorithm was smaller than that of the uncompensated method. The permissible region strategy was applied and reduced the reconstruction error to less than 2 mm. The robustness and stability were then evaluated from different view numbers, different regularization parameters, different measurement noise levels, and optical parameters mismatch. The reconstruction results showed that the settings had a small effect on the reconstruction. The nonhomogeneous phantom simulation was also carried out to simulate a more complex experimental situation and evaluated their proposed method. Second, the physical cylinder phantom experiments further showed similar results in their prototype XLCT system. With the discussion of the above experiments, it was shown that the proposed method is feasible to the general case and actual experiments. Utilizing numerical simulation and physical experiments, the authors demonstrated the validity of the new cone beam XLCT method. Furthermore, compared with the previous narrow beam XLCT, the cone beam XLCT could more fully utilize the x-ray dose and the scanning time would be shortened greatly. The study of both simulation experiments and physical phantom experiments indicated that the proposed method was feasible to the general case and actual experiments.
Frequency comb SFG: a new approach to multiplex detection.
Kearns, Patrick M; Sohrabpour, Zahra; Massari, Aaron M
2016-08-22
Determination of molecular orientation at interfaces by vibrational sum frequency generation spectroscopy (VSFG) requires measurements using at least two different polarization combinations of the incoming visible, IR, and generated SFG beams. We present a new method for the simultaneous collection of different VSFG polarization outputs by use of a modified 4f pulseshaper to create a simple frequency comb. Via the frequency comb, two visible pulses are separated spectrally but aligned in space and time to interact at the sample with mixed polarization IR light. This produces two different VSFG outputs that are separated by their frequencies at the monochromator rather than their polarizations. Spectra were collected from organic thin films with different polarization combinations to show the reliability of the method. The results show that the optical arrangement is immune to fluctuations in laser power, beam pointing, and IR spectral shape.
Novel Biomedical Devices Utilizing Light-Emitting Nanostructures
NASA Technical Reports Server (NTRS)
Goldman, Rachel S.
2004-01-01
As part of the NASA project, we are investigating the formation, properties, and performance of QD heterostructures, to be incorporated into a novel biomedical device for detecting bacteria and/or viruses in fluids on board space vehicles. We are presently synthesizing the epitaxial quantum dot structures using molecular beam epitaxy. We recently developed a method for controlling the arrangement of QDs, based upon a combination of buffer layer growth and controlled annealing sequences. This method is promising for producing arrangements of QDs with a locally well-controlled distribution of sizes. In the future, we plan to explore selective pre-patterning of the starting surface using focused ion-beam nanopatterning, which will enable us to precisely tune the compositions, sizes, and placement of the QDs, in order laterally tune the emission and detection wavelengths of QD based devices.
Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition.
Richter, Gunther; Hillerich, Karla; Gianola, Daniel S; Mönig, Reiner; Kraft, Oliver; Volkert, Cynthia A
2009-08-01
The strength of metal crystals is reduced below the theoretical value by the presence of dislocations or by flaws that allow easy nucleation of dislocations. A straightforward method to minimize the number of defects and flaws and to presumably increase its strength is to increase the crystal quality or to reduce the crystal size. Here, we describe the successful fabrication of high aspect ratio nanowhiskers from a variety of face-centered cubic metals using a high temperature molecular beam epitaxy method. The presence of atomically smooth, faceted surfaces and absence of dislocations is confirmed using transmission electron microscopy investigations. Tensile tests performed in situ in a focused-ion beam scanning electron microscope on Cu nanowhiskers reveal strengths close to the theoretical upper limit and confirm that the properties of nanomaterials can be engineered by controlling defect and flaw densities.
White, F.A.
1960-08-23
A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.
Applying CLIPS to control of molecular beam epitaxy processing
NASA Technical Reports Server (NTRS)
Rabeau, Arthur A.; Bensaoula, Abdelhak; Jamison, Keith D.; Horton, Charles; Ignatiev, Alex; Glover, John R.
1990-01-01
A key element of U.S. industrial competitiveness in the 1990's will be the exploitation of advanced technologies which involve low-volume, high-profit manufacturing. The demands of such manufacture limit participation to a few major entities in the U.S. and elsewhere, and offset the lower manufacturing costs of other countries which have, for example, captured much of the consumer electronics market. One such technology is thin-film epitaxy, a technology which encompasses several techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for creating a variety of electronic and electro-optical materials. Compared to standard microelectronic production techniques (including gaseous diffusion, ion implantation, and chemical vapor deposition), MBE is much more exact, though much slower. Although newer than the standard technologies, MBE is the technology of choice for fabrication of ultraprecise materials for cutting-edge microelectronic devices and for research into the properties of new materials.
Note: A short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator
NASA Astrophysics Data System (ADS)
Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Oldham, James M.; Suits, Arthur G.
2014-11-01
Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.
Note: a short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator.
Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Oldham, James M; Suits, Arthur G
2014-11-01
Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercial fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.
Optimized cell geometry for buffer-gas-cooled molecular-beam sources
NASA Astrophysics Data System (ADS)
Singh, Vijay; Samanta, Amit K.; Roth, Nils; Gusa, Daniel; Ossenbrüggen, Tim; Rubinsky, Igor; Horke, Daniel A.; Küpper, Jochen
2018-03-01
We have designed, constructed, and commissioned a cryogenic helium buffer-gas source for producing a cryogenically cooled molecular beam and evaluated the effect of different cell geometries on the intensity of the produced molecular beam, using ammonia as a test molecule. Planar and conical entrance and exit geometries are tested. We observe a threefold enhancement in the NH3 signal for a cell with planar entrance and conical-exit geometry, compared to that for a typically used "boxlike" geometry with planar entrance and exit. These observations are rationalized by flow field simulations for the different buffer-gas cell geometries. The full thermalization of molecules with the helium buffer gas is confirmed through rotationally resolved resonance-enhanced multiphoton ionization spectra yielding a rotational temperature of 5 K.
Pinpoint Delivery of Molecules by Using Electron Beam Addressing Virtual Cathode Display.
Hoshino, Takayuki; Yoshioka, Moto; Wagatsuma, Akira; Miyazako, Hiroki; Mabuchi, Kunihiko
2018-03-01
Electroporation, a physical transfection method to introduce genomic molecules in selective living cells, could be implemented by microelectrode devices. A local electric field generated by a finer electrode can induces cytomembrane poration in the electrode vicinity. To employ fine, high-speed scanning electrodes, we developed a fine virtual cathode pattern, which was generated on a cell adhesive surface of 100-nm-thick SiN membrane by inverted-electron beam lithography. The SiN membrane works as both a vacuum barrier and the display screen of the virtual cathode. The kinetic energy of the incident primary electrons to the SiN membrane was completely blocked, whereas negative charges and leaking electric current appeared on the surface of the dielectric SiN membrane within a region of 100 nm. Locally controlled transmembrane molecular delivery was demonstrated on adhered C2C12 myoblast cells in a culturing medium with fluorescent dye propidium iodide (PI). Increasing fluorescence of pre-diluted PI indicated local poration and transmembrane inflow at the virtual cathode position, as well as intracellular diffusion. The transmembrane inflows depended on beam duration time and acceleration voltage. At the post-molecular delivery, a slight decrease in intracellular PI fluorescence intensity indicates membrane recovery from the poration. Cell viability was confirmed by time-lapse cell imaging of post-exposure cell migration.
NASA Astrophysics Data System (ADS)
Lin, Jingsu
In this thesis we present results of experimental methods for studying surface structures of ultra-thin films and describe a new apparatus to study the recombination of atomic hydrogen on well characterized low temperature surface using atomic and molecular beam methods. We have used atomic beam scattering (ABS) to characterize the growth of mercury and lead overlayers on Cu(001) surface. The structures of ordered phases have been identified using ABS and low-energy electron diffraction (LEED). A model to analyze diffraction data from these phases is presented. The new apparatus we are going to describe includes a high performance atomic hydrogen source using radio-frequency (RF) dissociation. The dissociation efficiency can be as high as 90% in the optimized pressure range. An atomic hydrogen beam line has been added to our ultra-high vacuum (UHV) scattering apparatus. We have also designed and constructed a low temperature sample manipulator for experiments at liquid helium temperatures. The manipulator has one degree of freedom of rotation and the capability of heating the sample to 700K and cooling down to 12K. The first sample studied was a single graphite surface. We have used a He beam to characterize the sample surface and to monitor deposition of H on the sample surface in real time. A series of "adsorption curves" have been obtained at different temperature and doses. We found that at temperatures below 16K, both H and H_2 have formed a partial layer on the surface. From adsorption curve, we deduce that the initial sticking coefficient for H is about 0.06 when surface at 16K. When the H beam is interrupted, the He specularly reflected beam recovers partially, indicating that hydrogen atoms desorb, while others remain on the surface. The residual coverage of H is estimated to be about 2% of a monolayer.
Remote laser evaporative molecular absorption spectroscopy
NASA Astrophysics Data System (ADS)
Hughes, Gary B.; Lubin, Philip; Cohen, Alexander; Madajian, Jonathan; Kulkarni, Neeraj; Zhang, Qicheng; Griswold, Janelle; Brashears, Travis
2016-09-01
We describe a novel method for probing bulk molecular and atomic composition of solid targets from a distant vantage. A laser is used to melt and vaporize a spot on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption occurs as the blackbody radiation passes through the ejected plume. Bulk molecular and atomic composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected plume. The proposed method is distinct from current stand-off approaches to composition analysis, such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes target material and observes emission spectra to determine bulk atomic composition. Initial simulations of absorption profiles with laser heating show great promise for Remote Laser-Evaporative Molecular Absorption (R-LEMA) spectroscopy. The method is well-suited for exploration of cold solar system targets—asteroids, comets, planets, moons—such as from a spacecraft orbiting the target. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole or trench, and shallow subsurface composition profiling is possible. This paper describes system concepts for implementing the proposed method to probe the bulk molecular composition of an asteroid from an orbiting spacecraft, including laser array, photovoltaic power, heating and ablation, plume characteristics, absorption, spectrometry and data management.
Pseudomorphic InGaAs Materials
1990-07-31
tive mass Schrodinger equation can be cast using a finite element technique (Galerkin residual method) into a symmetric tridiagonal matrix formulation...lnr’Gal-.’As composition. All of the structures were fabricated by molecular beam epitaxy (MBE). The effects of different growth conditions were evaluated... different growth conditions were evaluated with a combination of characterization techniques. Key results to emerge from this work relate to the
K.A. Magrini; R.J. Evans; C.M. Hoover; C.C. Elam; M.F. Davis
2002-01-01
The components of soil organic matter (SOM) and their degradation dynamics in forest soils are difficult to study and thus poorly understood,due to time-consuming sample collection, preparation, and difficulty of analyzing and identifying major components. As a result, changes in soil organic matter chemical composition as a function of age, forest type, or disturbance...
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Adams, B. R.
1983-01-01
A performance evaluation is conducted for a molecular beam/mass spectrometer (MB/MS) system, as applied to a 1-30 torr microwave-discharge flow reactor (MWFR) used in the formation of the methylperoxy radical and a study of its subsequent destruction in the presence or absence of NO(x). The modulated MB/MS system is four-staged and differentially pumped. The results obtained by the MWFR study is illustrative of overall system performance, including digital waveform analysis; significant improvements over previous designs are noted in attainable S/N ratio, detection limit, and accuracy.
2010-01-01
Heterostructure epitaxial material growth was performed by RF plasma-assisted molecular - beam epitaxy (MBE) on a 2-in. semi- insulating 4H SiC wafer. From... beam epitaxy of beryllium-doped GaN buffer layers for AlGaN/GaN HEMTs . J Cryst Growth 2003;251:481–6. [25] Storm DF, Katzer DS, Binari SC, Glaser ER...Shanabrook BV, Roussos JA. Reduction of buffer layer conduction near plasma-assisted molecular - beam epitaxy grown GaN/AlN interfaces by beryllium
Photochromic amorphous molecular materials and their applications
NASA Astrophysics Data System (ADS)
Shirota, Yasuhiko; Utsumi, Hisayuki; Ujike, Toshiki; Yoshikawa, Satoru; Moriwaki, Kazuyuki; Nagahama, Daisuke; Nakano, Hideyuki
2003-01-01
Two novel classes of photochromic amorphous molecular materials based on azobenzene and dithienylethene were designed and synthesized. They were found to readily form amorphous glasses with well-defined glass-transition temperatures when the melt samples were cooled on standing in air and to exhibit photochromism in their amorphous films as well as in solution. Photochromic properties of these materials are discussed in relation to their molecular structures. Surface relief grating was formed on the amorphous films of azobenzene-based photochromic amorphous molecular materials by irradiation with two coherent Ar + laser beams. Dual image was formed at the same location of the films of dithienylethene-based photochromic amorphous molecular materials by irradiation with two linearly polarized light beams perpendicular to each other.
Stephen S. Kelley; Roger M. Rowell; Mark Davis; Cheryl K. Jurich; Rebecca Ibach
2004-01-01
The chemical composition of a variety of agricultural biomass samples was analyzed with near infrared spectroscopy and pyrolysis molecular beam mass spectroscopy. These samples were selected from a wide array of agricultural residue samples and included residues that had been subjected to a variety of di2erent treatments including solvent extractions and chemical...
Advanced Shutter Control for a Molecular Beam Epitaxy Reactor
An open-source hardware and software-based shutter controller solution was developed that communicates over Ethernet with our original equipment...manufacturer (OEM) molecular beam epitaxy (MBE) reactor control software. An Arduino Mega microcontroller is the used for the brain of the shutter... controller , while a custom-designed circuit board distributes 24-V power to each of the 16 shutter solenoids available on the MBE. Using Ethernet
Development of 1300 nm GaAs-Based Microcavity Light-Emitting Diodes
2001-06-01
vertical - cavity surface emitting lasers ( VCSEL ) and micro- cavity light- emitting diodes (MC-LED) for short-to-medium... epitaxial growth run [1 ]. Self-organized In(Ga)As quantum dot (QD) heterostructures grown by molecular beam epitaxy ( MBE ) are promising candidates as...successfully grown by molecular beam epitaxy on GaAs substrates without the need to rely on any in-situ calibration technique. Fabricated
NASA Astrophysics Data System (ADS)
McCollum, M. J.; Jackson, S. L.; Szafranek, I.; Stillman, G. E.
1990-10-01
We report the growth of GaAs by molecular beam epitaxy (MBE), gas source molecular beam epitaxy (GSMBE), and chemical beam epitaxy (CBE) in an epitaxial III-V reactor which features high pumping speed. The system is comprised of a modified Perkin-Elmer 430P molecular beam epitaxy system and a custom gas source panel from Emcore. The growth chamber is pumped with a 7000 1/s (He) diffusion pump (Varian VHS-10 with Monsanto Santovac 5 oil). The gas source panel includes pressure based flow controllers (MKS 1150) allowing triethylaluminum (TEA), triethylgallium (TEG), and trimethylindium (TMI) to be supplied without the use of hydrogen. All source lines, including arsine and phosphine, are maintained below atmospheric pressure. The high pumping speed allows total system flow rates as high as 100 SCCM and V/III ratios as high as 100. The purity of GaAs grown by MBE in this system increases with pumping speed. GaAs layers grown by GSMBE with arsine flows of 10 and 20 SCCM have electron concentrations of 1 × 10 15 cm -3 (μ 77=48,000 cm 2/V·) and 2 × 10 14 cm -3 (μ 77=78,000 cm 2/V·s) respectively. El ectron concentration varies with hydride injector temperature such that the minimum in electron concentration occurs for less than complete cracking. The effect of V/III ratio and the use of a metal eutectic bubbler on residual carrier concentration in GaAs grown by CBE is presented. Intentional Si and Be doping of CBE grown GaAs is demonstrated at a high growth rate of 5.4 μm/h.
Production of a Beam of Highly Vibrationally Excited CO Using Perturbations
NASA Astrophysics Data System (ADS)
Bartels, N.; Schäfer, T.; Hühnert, J.; Wodtke, A. M.; Field, R. W.
2012-06-01
For many experimentalists (especially those, who are not spectroscopists), molecular pertubations are a curse, as they make assignments and analysis of spectral data more difficult. Nevertheless, they can also be a boon! In this talk we will show how a molecular beam of CO in high vibrational states (v=17,18) can be prepared by an optical pumping scheme that we call PUMP-PUMP-PERTURB and DUMP (P^3D). P^3D exploits the loaning, via spin-orbit perturbations, of the large oscillator strength of the 4th positive system, A ^1 π ← X ^1 Σ ^+, to the triplet manifold. This allows some nominally spin-forbidden transitions to be exploited in multistep optical pumping schemes. The ability to {state-selectively} prepare CO in high vibrational states opens up new opportunities for molecular beam scattering experiments.
Note: A short-pulse high-intensity molecular beam valve based on a piezoelectric stack actuator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abeysekera, Chamara; Joalland, Baptiste; Shi, Yuanyuan
2014-11-15
Solenoid and piezoelectric disk valves, which are widely used to generate molecular beam pulses, still suffer from significant restrictions, such as pulse durations typically >50 μs, low repetition rates, and limited gas flows and operational times. Much of this arises owing to the limited forces these actuators can achieve. To overcome these limitations, we have developed a new pulsed valve based on a high-force piezoelectric stack actuator. We show here that operation with pulse durations as low as 20 μs and repetition rates up to 100 Hz can be easily achieved by operating the valve in conjunction with a commercialmore » fast high-voltage switch. We outline our design and demonstrate its performance with molecular beam characterization via velocity map ion imaging.« less
Pulsed rotating supersonic source for merged molecular beams
NASA Astrophysics Data System (ADS)
Sheffield, L.; Hickey, M. S.; Krasovitskiy, V.; Rathnayaka, K. D. D.; Lyuksyutov, I. F.; Herschbach, D. R.
2012-06-01
We describe a pulsed rotating supersonic beam source, evolved from an ancestral device [M. Gupta and D. Herschbach, J. Phys. Chem. A 105, 1626 (2001)]. The beam emerges from a nozzle near the tip of a hollow rotor which can be spun at high-speed to shift the molecular velocity distribution downward or upward over a wide range. Here we consider mostly the slowing mode. Introducing a pulsed gas inlet system, cryocooling, and a shutter gate eliminated the main handicap of the original device in which continuous gas flow imposed high background pressure. The new version provides intense pulses, of duration 0.1-0.6 ms (depending on rotor speed) and containing ˜1012 molecules at lab speeds as low as 35 m/s and ˜1015 molecules at 400 m/s. Beams of any molecule available as a gas can be slowed (or speeded); e.g., we have produced slow and fast beams of rare gases, O2, Cl2, NO2, NH3, and SF6. For collision experiments, the ability to scan the beam speed by merely adjusting the rotor is especially advantageous when using two merged beams. By closely matching the beam speeds, very low relative collision energies can be attained without making either beam very slow.
Pulsed rotating supersonic source for merged molecular beams
NASA Astrophysics Data System (ADS)
Sheffield, Les; Hickey, Mark; Krasovitskiy, Vitaliy; Rathnayaka, Daya; Lyuksyutov, Igor; Herschbach, Dudley
2012-10-01
We continue the characterization of a pulsed rotating supersonic beam source. The original device was described by M. Gupta and D. Herschbach, J. Phys. Chem. A 105, 1626 (2001). The beam emerges from a nozzle near the tip of a hollow rotor which can be spun at high-speed to shift the molecular velocity distribution downward or upward over a wide range. Here we consider mostly the slowing mode. Introducing a pulsed gas inlet system, and a shutter gate eliminate the main handicap of the original device in which continuous gas flow imposed high background pressure. The new version provides intense pulses, of duration 0.1--0.6 ms (depending on rotor speed) and containing ˜10^12 molecules at lab speeds as low as 35 m/s and ˜10^15 molecules at 400 m/s. Beams of any molecule available as a gas can be slowed (or speeded); e.g., we have produced slow and fast beams of rare gases, O2, NO2, NH3, and SF6. For collision experiments, the ability to scan the beam speed by merely adjusting the rotor is especially advantageous when using two merged beams. By closely matching the beam speeds, very low relative collision energies can be attained without making either beam very slow.
New method for MBE growth of GaAs nanowires on silicon using colloidal Au nanoparticles
NASA Astrophysics Data System (ADS)
Bouravleuv, A.; Ilkiv, I.; Reznik, R.; Kotlyar, K.; Soshnikov, I.; Cirlin, G.; Brunkov, P.; Kirilenko, D.; Bondarenko, L.; Nepomnyaschiy, A.; Gruznev, D.; Zotov, A.; Saranin, A.; Dhaka, V.; Lipsanen, H.
2018-01-01
We present a new method for the deposition of colloidal Au nanoparticles on the surface of silicon substrates based on short-time Ar plasma treatment without the use of any polymeric layers. The elaborated method is compatible with molecular beam epitaxy, which allowed us to carry out the detailed study of GaAs nanowire synthesis on Si(111) substrates using colloidal Au nanoparticles as seeds for their growth. The results obtained elucidated the causes of the difference between the initial nanoparticle sizes and the diameters of the grown nanowires.
NASA Astrophysics Data System (ADS)
Wang, Surui; Rogachev, A. A.; Yarmolenko, M. A.; Rogachev, A. V.; Xiaohong, Jiang; Gaur, M. S.; Luchnikov, P. A.; Galtseva, O. V.; Chizhik, S. A.
2018-01-01
Highly ordered conductive polyaniline (PANI) coatings containing gold nanoparticles were prepared by low-energy electron beam deposition method, with emeraldine base and chloroauric acid used as target materials. The molecular and chemical structure of the layers was studied by Fourier transform infrared, Raman, UV-vis and X-ray photoelectron spectroscopy. The morphology of the coatings was investigated by atomic force and transmission electron microscopy. Conductive properties were obtained by impedance spectroscopy method and scanning spreading resistance microscopy mode at the micro- and nanoscale. It was found that the emeraldine base layers formed from the products of electron-beam dispersion have extended, non-conductive polymer chains with partially reduced structure, with the ratio of imine and amine groups equal to 0.54. In case of electron-beam dispersion of the emeraldine base and chloroauric acid, a protoemeraldine structure is formed with conductivity 0.1 S/cm. The doping of this structure was carried out due to hydrochloric acid vapor and gold nanoparticles formed by decomposition of chloroauric acid, which have a narrow size distribution, with the most probable diameter about 40 nm. These gold nanoparticles improve the conductivity of the thin layers of PANI + Au composite, promoting intra- and intermolecular charge transfer of the PANI macromolecules aligned along the coating surface both at direct and alternating voltage. The proposed deposition method of highly oriented, conductive nanocomposite PANI-based coatings may be used in the direct formation of functional layers on conductive and non-conductive substrates.
Molecular-beam gas-sampling system
NASA Technical Reports Server (NTRS)
Young, W. S.; Knuth, E. L.
1972-01-01
A molecular beam mass spectrometer system for rocket motor combustion chamber sampling is described. The history of the sampling system is reviewed. The problems associated with rocket motor combustion chamber sampling are reported. Several design equations are presented. The results of the experiments include the effects of cooling water flow rates, the optimum separation gap between the end plate and sampling nozzle, and preliminary data on compositions in a rocket motor combustion chamber.
Gas Source Molecular Beam Epitaxial Growth of GaN
1992-11-25
identify by block number) FIELW GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessary and Identify by block number) Aluminum gallium nitride (AlGaN...AND TASK OBJECTIVES Aluminum gallium nitride (AIGaN) has long been recognized as a promising radiation hard optoelectronic material. AIGaN has a wide...Efficient, pure, low temperature sources for the gas source molecular beam epitaxial (GSMBE) growth of aluminum gallium nitride will essentially
Gallium Nitride (GaN) High Power Electronics (FY11)
2012-01-01
GaN films grown by metal-organic chemical vapor deposition (MOCVD) and ~1010 in films grown by molecular beam epitaxy (MBE) when they are deposited...inductively coupled plasma I-V current-voltage L-HVPE low doped HVPE MBE molecular beam epitaxy MOCVD metal-organic chemical vapor deposition...figure of merit HEMT high electron mobility transistor H-HVPE high doped HVPE HPE high power electronics HVPE hydride vapor phase epitaxy ICP
Ultrahigh vacuum and low-temperature cleaning of oxide surfaces using a low-concentration ozone beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, A.; Department of Physics, University of York, Heslington, York YO10 5DD; Graziosi, P.
We present a novel method of delivering a low-concentration (<15%) ozone beam to an ultra-high vacuum environment for the purpose of cleaning and dosing experimental samples through oxidation processing. The system described is safe, low-cost, and practical and overcomes the limitations of ozone transport in the molecular flow environment of high or ultrahigh vacuum whilst circumventing the use of pure ozone gas which is potentially highly explosive. The effectiveness of this method in removing surface contamination is demonstrated through comparison of high-temperature annealing of a simple oxide (MgO) in ozone and oxygen environments as monitored using quadrupole mass spectroscopy andmore » Auger electron spectroscopy. Additionally, we demonstrate the potential of ozone for obtaining clean complex oxide surfaces without the need for high-temperature annealing which may significantly alter surface structure.« less
Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.
1997-08-12
Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.
Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James
1997-01-01
Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.
Calculation of x-ray scattering patterns from nanocrystals at high x-ray intensity
Abdullah, Malik Muhammad; Jurek, Zoltan; Son, Sang-Kil; Santra, Robin
2016-01-01
We present a generalized method to describe the x-ray scattering intensity of the Bragg spots in a diffraction pattern from nanocrystals exposed to intense x-ray pulses. Our method involves the subdivision of a crystal into smaller units. In order to calculate the dynamics within every unit, we employ a Monte-Carlo-molecular dynamics-ab-initio hybrid framework using real space periodic boundary conditions. By combining all the units, we simulate the diffraction pattern of a crystal larger than the transverse x-ray beam profile, a situation commonly encountered in femtosecond nanocrystallography experiments with focused x-ray free-electron laser radiation. Radiation damage is not spatially uniform and depends on the fluence associated with each specific region inside the crystal. To investigate the effects of uniform and non-uniform fluence distribution, we have used two different spatial beam profiles, Gaussian and flattop. PMID:27478859
Quartz-Enhanced Photoacoustic Spectroscopy: A Review
Patimisco, Pietro; Scamarcio, Gaetano; Tittel, Frank K.; Spagnolo, Vincenzo
2014-01-01
A detailed review on the development of quartz-enhanced photoacoustic sensors (QEPAS) for the sensitive and selective quantification of molecular trace gas species with resolved spectroscopic features is reported. The basis of the QEPAS technique, the technology available to support this field in terms of key components, such as light sources and quartz-tuning forks and the recent developments in detection methods and performance limitations will be discussed. Furthermore, different experimental QEPAS methods such as: on-beam and off-beam QEPAS, quartz-enhanced evanescent wave photoacoustic detection, modulation-cancellation approach and mid-IR single mode fiber-coupled sensor systems will be reviewed and analysed. A QEPAS sensor operating in the THz range, employing a custom-made quartz-tuning fork and a THz quantum cascade laser will be also described. Finally, we evaluated data reported during the past decade and draw relevant and useful conclusions from this analysis. PMID:24686729
Molecular Design and Synthesis of New Noncrystalline Solids
1981-06-01
1. Powder X-ray diffraction pattern obtained have concluded that the crystallinity of the films using CuKa radiation. Sharp lines in is a sensitive ...pattern ;is formned in tile detector plane for each position of thle incident beam onl thre specimen. Thte diameter of the region giving thie...analyzer or over an aperture placed immediately in front of a scintillator-photomultiplier detector . This recording method is so inefficient that
Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; ...
2015-01-09
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Y. L.; Southwestern Institute of Physics, Chengdu 610041; Wang, Z. H., E-mail: zhwang@swip.ac.cn
Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heatmore » and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less
DOE R&D Accomplishments Database
Zare, P. N.; Herschbach, D. R.
1964-01-29
Conventional photochemical experiments give no information about the partitioning of energy between translational recoil and internal excitation of the fragment molecules formed in photodissociation of a polyatomic molecule. In a molecular beam experiment, it becomes possible to determine the energy partition from the form of the laboratory angular distribution of one of the photodissociation products. A general kinematic analysis is worked out in detail, and the uncertainty introduced by the finite angular resolution of the apparatus and the velocity spread in the parent beam is examined. The experimental requirements are evaluated for he photolysis of methyl iodide by the 2537 angstrom Hg line.
Molecular beam mass spectrometer development
NASA Technical Reports Server (NTRS)
Brock, F. J.; Hueser, J. E.
1976-01-01
An analytical model, based on the kinetics theory of a drifting Maxwellian gas is used to determine the nonequilibrium molecular density distribution within a hemispherical shell open aft with its axis parallel to its velocity. The concept of a molecular shield in terrestrial orbit above 200 km is also analyzed using the kinetic theory of a drifting Maxwellian gas. Data are presented for the components of the gas density within the shield due to the free stream atmosphere, outgassing from the shield and enclosed experiments, and atmospheric gas scattered off a shield orbiter system. A description is given of a FORTRAN program for computating the three dimensional transition flow regime past the space shuttle orbiter that employs the Monte Carlo simulation method to model real flow by some thousands of simulated molecules.
NASA Technical Reports Server (NTRS)
Norton, H. N.
1979-01-01
An earth-orbiting molecular shield that offers a unique opportunity for conducting physics, chemistry, and material processing experiments under a combination of environmental conditions that are not available in terrestrial laboratories is equipped with apparatus for forming a molecular beam from the freestream. Experiments are carried out using a moderate energy, high flux density, high purity atomic oxygen beam in the very low density environment within the molecular shield. As a minimum, the following instruments are required for the molecular shield: (1) a mass spectrometer; (2) a multifunction material analysis instrumentation system; and (3) optical spectrometry equipment. The design is given of a furlable molecular shield that allows deployment and retrieval of the system (including instrumentation and experiments) to be performed without contamination. Interfaces between the molecular shield system and the associated spacecraft are given. An in-flight deployment sequence is discussed that minimizes the spacecraft-induced contamination in the vicinity of the shield. Design approaches toward a precursor molecular shield system are shown.
Vacuum MOCVD fabrication of high efficience cells
NASA Technical Reports Server (NTRS)
Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.
1985-01-01
Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.
NASA Technical Reports Server (NTRS)
Stearns, C. A.; Kohl, F. J.
1974-01-01
The high temperature vaporization of the metal-carbon systems TiC, ZrC, HfC, and ThC was studied by the Knudsen effusion - mass spectrometric method. For each system the metal dicarbide and tetracarbide molecular species were identified in the gas phase. Relative ion currents of the carbides and metals were measured as a function of temperature. Second- and third-law methods were used to determine enthalpies. Maximum values were established for the dissociation energies of the metal monocarbide molecules TiC, ZrC, HfC, and ThC. Thermodynamic functions used in the calculations are discussed in terms of assumed molecular structures and electronic contributions to the partition functions. The trends shown by the dissociation energies of the carbides of Group 4B are compared with those of neighboring groups and discussed in relation to the corresponding oxides and chemical bonding. The high temperature molecular beam inlet system and double focusing mass spectrometer are described.
Bandgap Tuning of GaAs/GaAsSb Core-Shell Nanowires Grown by Molecular Beam Epitaxy
2015-09-21
SECURITY CLASSIFICATION OF: Semiconductor nanowires have been identified as a viable technology for next-generation infrared (IR) photodetectors with... nanowires , by varying the Sb content using Ga-assisted molecular beam epitaxy. An increase in Sb content leads to strain accumulation in shell...manifesting in rough surface morphology, multifaceted growths, curved nanowires , and deterioration in the 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE
High Power Mid Wave Infrared Semiconductor Lasers
2006-06-15
resonance and the gain spectrum. The devices were grown using solid source molecular beam epitaxy (MBE) in a V80 reactor. Two side polished, undoped...verify the inherent low activation energy. N-type and P-type AISb, and various compositions of InxAl 1xSb, were grown by solid-source molecular beam ...level monitoring. Advances in epitaxial growth of semiconductor materials have allowed the development of Arsenic- free optically-pumped MWIR lasers on
Continuous all-optical deceleration of molecular beams and demonstration with Rb atoms
NASA Astrophysics Data System (ADS)
Long, Xueping; Jayich, Andrew; Campbell, Wesley
2017-04-01
Ultracold samples of molecules are desirable for a variety of applications, such as many-body physics, precision measurement and quantum information science. However, the pursuit of ultracold molecules has achieved limited success: spontaneous emission into many different dark states makes it hard to optically decelerate molecules to trappable speed. We propose to address this problem with a general optical deceleration technique that exploits a pump-dump pulse pair from a mode-locked laser. A molecular beam is first excited by a counter-propagating ``pump'' pulse. The molecular beam is then driven back to the initial ground state by a co-propagating ``dump'' pulse via stimulated emission. The delay between the pump and dump pulse is set to be shorter than the excited state lifetimes in order to limit decays to dark states. We report progress benchmarking this stimulated force by accelerating a cold sample of neutral Rb atoms.
NASA Astrophysics Data System (ADS)
Erofeev, M. V.; Orlovskii, Viktor M.; Skakun, V. S.; Sosnin, E. A.; Tarasenko, Viktor F.
2000-06-01
The spectral and amplitude—time characteristics of HF lasers pumped by a nonchain chemical reaction and initiated by radially convergent and planar electron beams were investigated. The principal channels leading to the formation of vibrationally excited HF molecules were analysed. It was confirmed that high efficiencies (~10%) of a nonchain HF laser may be attained only as a result of the simultaneous formation of atomic and molecular fluorine when the active mixture is acted upon by an electron beam and of the participation of molecular fluorine in population inversion. It was shown that a laser pulse has a complex spectral—temporal profile caused by the successive generation of P-lines and the overlap during the radiation pulse of both the rotational lines of the same vibrational band and of individual vibrational bands.
Group-III nitride VCSEL structures grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Ng, HockMin; Moustakas, Theodore D.
2000-07-01
III-nitride VCSEL structures designed for electron-beam pumping have been grown by molecular beam epitaxy (MBE). The structures consist of a sapphire substrate on which an AlN/GaN distributed Bragg reflector (DBR) with peak reflectance >99% at 402 nm is deposited. The active region consists of a 2-(lambda) cavity with 25 In0.1Ga0.9N/GaN multiquantum wells (MQWs) whose emission coincides with the high reflectance region of the DBR. The thicknesses of the InGaN wells and the GaN barriers are 35 angstrom and 75 angstrom respectively. The top reflector consists of a silver metallic mirror which prevents charging effects during electron-beam pumping. The structure was pumped from the top- side with a cw electron-beam using a modified cathodoluminescence (CL) system mounted on a scanning electron microscope chamber. Light output was collected from the polished sapphire substrate side. Measurements performed at 100 K showed intense emission at 407 nm with narrowing of the linewidth with increasing beam current. A narrow emission linewidth of 0.7 nm was observed indicating the onset of stimulated emission.
Molecular-Flow Properties of RIB Type Vapor-Transport Systems Using a Fast-Valve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, Gerald D; Bilheux, Hassina Z; Zhang, Y.
2014-01-01
The advent of the fast-valve device, described previously, permits measurement of molecular-flow times of chemically active or inactive gaseous species through radioactive ion beam (RIB) target ion source systems, independent of size, geometry and materials of construction. Thus, decay losses of short-half-life RIBs can be determined for a given target/vapor-transport system in advance of on-line operation, thereby ascertaining the feasibility of the system design for successful processing of a given isotope. In this article, molecular-flow-time theory and experimentally measured molecular-flow time data are given for serial- and parallel-coupled Ta metal RIB vapor-transport systems similar to those used at ISOL basedmore » RIB facilities. In addition, the effect of source type on the molecular-flow time properties of a given system is addressed, and a chemical passivation method for negating surface adsorption enthalpies for chemically active gaseous species on Ta surfaces is demonstrated.« less
Chang, Chia-Ching; Sun, Kien Wen; Lee, Shang-Fan; Kan, Lou-Sing
2007-04-01
The paper reports the methods of preparing molecular magnets and patterning of the molecules on a semiconductor surface. A highly magnetically aligned metallothionein containing Mn and Cd (Mn,Cd-MT-2) is first synthesized, and the molecules are then placed into nanopores prepared on silicon (001) surfaces using electron beam lithography and reactive ion-etching techniques. We have observed the self-assemble growth of the MT molecules on the patterned Si surface such that the MT molecules have grown into rod or ring type three-dimensional nanostructures, depending on the patterned nanostructures on the surface. We also provide scanning electron microscopy, atomic force microscopy, and magnetic force microscope studies of the molecular nanostructures. This engineered molecule shows molecular magnetization and is biocompatible with conventional semiconductors. These features make Mn,Cd-MT-2 a good candidate for biological applications and sensing sources of new nanodevices. Using molecular self-assembly and topographical patterning of the semiconductor substrate, we can close the gap between bio-molecules and nanoelectronics built into the semiconductor chip.
Davis, S C; Makarov, A A; Hughes, J D
1999-01-01
Analysis of sub-ppb levels of polynuclear aromatic hydrocarbons (PAHs) in drinking water by high performance liquid chromatography (HPLC) fluorescence detection typically requires large water samples and lengthy extraction procedures. The detection itself, although selective, does not give compound identity confirmation. Benchtop gas chromatography/mass spectrometry (GC/MS) systems operating in the more sensitive selected ion monitoring (SIM) acquisition mode discard spectral information and, when operating in scanning mode, are less sensitive and scan too slowly. The selectivity of hyperthermal surface ionisation (HSI), the high column flow rate capacity of the supersonic molecular beam (SMB) GC/MS interface, and the high acquisition rate of time-of-flight (TOF) mass analysis, are combined here to facilitate a rapid, specific and sensitive technique for the analysis of trace levels of PAHs in water. This work reports the advantages gained by using the GC/HSI-TOF system over the HPLC fluorescence method, and discusses in some detail the nature of the instrumentation used.
NO-assisted molecular-beam epitaxial growth of nitrogen substituted EuO
NASA Astrophysics Data System (ADS)
Wicks, R.; Altendorf, S. G.; Caspers, C.; Kierspel, H.; Sutarto, R.; Tjeng, L. H.; Damascelli, A.
2012-04-01
We have investigated a method for substituting oxygen with nitrogen in EuO thin films, which is based on molecular beam epitaxy distillation with NO gas as the oxidizer. By varying the NO gas pressure, we produce crystalline, epitaxial EuO1 -xNx films with good control over the films' nitrogen concentration. In situ x-ray photoemission spectroscopy reveals that nitrogen substitution is connected to the formation Eu3+4f6 and a corresponding decrease in the number of Eu2+4f7, indicating that nitrogen is being incorporated in its 3- oxidation state. While small amounts of Eu3+ in over-oxidized Eu1-δO thin films lead to a drastic suppression of the ferromagnetism, the formation of Eu3+ in EuO1-xNx still allows the ferromagnetic phase to exist with an unaffected Tc, thus providing an ideal model system to study the interplay between the magnetic f7 (J = 7/2) and the non-magnetic f6 (J = 0) states close to the Fermi level.
Water cluster fragmentation probed by pickup experiments
NASA Astrophysics Data System (ADS)
Huang, Chuanfu; Kresin, Vitaly V.; Pysanenko, Andriy; Fárník, Michal
2016-09-01
Electron ionization is a common tool for the mass spectrometry of atomic and molecular clusters. Any cluster can be ionized efficiently by sufficiently energetic electrons, but concomitant fragmentation can seriously obstruct the goal of size-resolved detection. We present a new general method to assess the original neutral population of the cluster beam. Clusters undergo a sticking collision with a molecule from a crossed beam, and the velocities of neat and doped cluster ion peaks are measured and compared. By making use of longitudinal momentum conservation, one can reconstruct the sizes of the neutral precursors. Here this method is applied to H2O and D2O clusters in the detected ion size range of 3-10. It is found that water clusters do fragment significantly upon electron impact: the deduced neutral precursor size is ˜3-5 times larger than the observed cluster ions. This conclusion agrees with beam size characterization by another experimental technique: photoionization after Na-doping. Abundant post-ionization fragmentation of water clusters must therefore be an important factor in the interpretation of experimental data; interestingly, there is at present no detailed microscopic understanding of the underlying fragmentation dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishida, Jun; Fayer, Michael D., E-mail: fayer@stanford.edu
Functionalized organic monolayers deposited on planar two-dimensional surfaces are important systems for studying ultrafast orientational motions and structures of interfacial molecules. Several studies have successfully observed the orientational relaxation of functionalized monolayers by fluorescence depolarization experiments and recently by polarization-resolved heterodyne detected vibrational transient grating (HDTG) experiments. In this article we provide a model-independent theory to extract orientational correlation functions unique to interfacial molecules and other uniaxial systems based on polarization-resolved resonant third-order spectroscopies, such as pump-probe spectroscopy, HDTG spectroscopy, and fluorescence depolarization experiment. It will be shown (in the small beam-crossing angle limit) that five measurements are necessary tomore » completely characterize the monolayer's motions: I{sub ∥}(t) and I{sub ⊥}(t) with the incident beams normal to the surface, I{sub ∥}(t) and I{sub ⊥}(t) with a non-zero incident angle, and a time averaged linear dichroism measurement. Once these measurements are performed, two orientational correlation functions corresponding to in-plane and out-of-plane motions are obtained. The procedure is applicable not only for monolayers on flat surfaces, but any samples with uniaxial symmetry such as uniaxial liquid crystals and aligned planar bilayers. The theory is valid regardless of the nature of the actual molecular motions on interface. We then apply the general results to wobbling-in-a-cone model, in which molecular motions are restricted to a limited range of angles. Within the context of the model, the cone angle, the tilt of the cone relative to the surface normal, and the orientational diffusion constant can be determined. The results are extended to describe analysis of experiments where the beams are not crossing in the small angle limit.« less
NASA Astrophysics Data System (ADS)
Cabalu, J. S.; Bhattacharyya, A.; Thomidis, C.; Friel, I.; Moustakas, T. D.; Collins, C. J.; Komninou, Ph.
2006-11-01
In this paper, we report on the growth by molecular beam epitaxy and fabrication of high power nitride-based ultraviolet light emitting diodes emitting in the spectral range between 340 and 350nm. The devices were grown on (0001) sapphire substrates via plasma-assisted molecular beam epitaxy. The growth of the light emitting diode (LED) structures was preceded by detailed materials studies of the bottom n-AlGaN contact layer, as well as the GaN /AlGaN multiple quantum well (MQW) active region. Specifically, kinetic conditions were identified for the growth of the thick n-AlGaN films to be both smooth and to have fewer defects at the surface. Transmission-electron microscopy studies on identical GaN /AlGaN MQWs showed good quality and well-defined interfaces between wells and barriers. Large area mesa devices (800×800μm2) were fabricated and were designed for backside light extraction. The LEDs were flip-chip bonded onto a Si submount for better heat sinking. For devices emitting at 340nm, the measured differential on-series resistance is 3Ω with electroluminescence spectrum full width at half maximum of 18nm. The output power under dc bias saturates at 0.5mW, while under pulsed operation it saturates at approximately 700mA to a value of 3mW, suggesting that thermal heating limits the efficiency of these devices. The output power of the investigated devices was found to be equivalent with those produced by the metal-organic chemical vapor deposition and hydride vapor-phase epitaxy methods. The devices emitting at 350nm were investigated under dc operation and the output power saturates at 4.5mW under 200mA drive current.
Precision Atomic Beam Laser Spectroscopy
1999-02-20
optical efficiency with a new coupled- cavity scheme. We have locked a MISER Nd:YAG laser to a finesse 50,000 cavity with a...sensitivity of optical heterodyne detection is preserved with ZERO sensitivity to small laser / cavity frequency noises. The new method is called Noise-Immune...1996), P. Dube, L.- S. Ma, J. Ye, and J.L.Hall. 9 . "Free-induction decay in molecular iodine measured with an extended - cavity diode laser ,"
Propagation of Polarization Modulated Beams Through a Turbulent Atmosphere
2014-11-24
Clifford Algebra to Geometric Calculus , Reidel, 1984. Hirschfelder, J.O., Curtiss, C.F. & Bird, R.B., Molecular Theory of Gases and Liquids, Wiley, 1954...are made explicit in a Poincaré sphere and geometric (Clifford) algebra representation. Section 5.0 of this report provides the evidence supporting...MEDIA 4.0 LABORATORY TEST CONFIGURATIONS 5.0 TEST RESULTS 5.1 DATA ANALYSIS METHODS 5.2 DATA ANALYSIS 6.0 GEOMETRIC ALGEBRA 6.1 INTRODUCTION
Development of MBE grown Pb-salt semiconductor lasers for the 8.0 to 15.0 micrometer spectral region
NASA Technical Reports Server (NTRS)
Miller, M. D.
1981-01-01
Diodes lasers are fabricated using multiple source molecular beam expitaxial growth of (PbSn)Te on BaF2 substrates. Methods for crystal growth, crystal transfer, and device fabrication by photolithographic techniques were developed. The lasers operate in the spectra range from 10 microns to 14 microns and at temperatures from 12K to 60K continuous wave and to 95 K pulsed.
Comparison of AlGaAs Oxidation in MBE and MOCVD Grown Samples
2002-01-01
vertical cavity surface emitting lasers ( VCSELs ) [1, 2, 3]. They are also being... molecular beam epitaxy ( MBE ) [5, 6] or metal organic chemical vapor deposition (MOCVD) [7, 8]. The MBE -grown A1GaAs layers are sometimes pseudo or digital...Simultaneous wet-thermal oxidation of MBE and MOCVD grown AlxGal_xAs layers (x = 0.1 to 1.0) showed that the epitaxial growth method does not
1982-12-28
molecular beam-surface scattering, high pressure microreactor , heterogeneous catalysis. :116. AmTRAC? ’CAuI1ae 4111, 8ee 1 111 It oesey -1lP d ify by...Crystallography.. . ..... ....................... 4 11. Design and Construction of a High Pressure Catalvtic Microreactor ... microreactor has been designed and constructed. This micro- reactor will be a useful adjunct to the molecular beam machine since in the former overall
Molecular-Beam-Epitaxy Program
NASA Technical Reports Server (NTRS)
Sparks, Patricia D.
1988-01-01
Molecular Beam Epitaxy (MBE) computer program developed to aid in design of single- and double-junction cascade cells made of silicon. Cascade cell has efficiency 1 or 2 percent higher than single cell, with twice the open-circuit voltage. Input parameters include doping density, diffusion lengths, thicknesses of regions, solar spectrum, absorption coefficients of silicon (data included for 101 wavelengths), and surface recombination velocities. Results include maximum power, short-circuit current, and open-circuit voltage. Program written in FORTRAN IV.
Crossed Molecular Beam Study of the Reactions of Oxygen and Fluorine Atoms.
1981-03-30
Because the sum of the translational energy and internal energy is the excess energy available for dissociatior, the fastest products detected should...large as 19.5 kcal, then at least 15 kcal/mole is available to the products in the ketene dissociation at 351 nm. A maximum of 3.8 kcal appears as...spectrometric measurements of velocity and angular distri- butions of primary products using an universal crossed molecular beams apparatus. Two types of
Molecular Beam Epitaxial Growth of GaAs on (631) Oriented Substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz Hernandez, Esteban; Rojas Ramirez, Juan-Salvador; Contreras Hernandez, Rocio
2007-02-09
In this work, we report the study of the homoepitaxial growth of GaAs on (631) oriented substrates by molecular beam epitaxy (MBE). We observed the spontaneous formation of a high density of large scale features on the surface. The hilly like features are elongated towards the [-5, 9, 3] direction. We show the dependence of these structures with the growth conditions and we present the possibility of to create quantum wires structures on this surface.
Ultra-High Aggregate Bandwidth Two-Dimensional Multiple-Wavelength Diode Laser Arrays
1993-12-09
during the growth of the cavity spacer region using the fact that the molecular beam epitaxy growth of GaAs is highly sensitive to the substrate... molecular beam epitaxy (MBE) crystal growth, the GaAs growth rate is highly sensitive to the substrate temperature above 650"C (2], a GaAs/AIGaAs... epitaxial growth technique to make reproducible and repeatable multi-wavelength VCSEL arrays. Our approach to fabricate the spatially graded layer
Balucani, Nadia; Casavecchia, Piergiorgio
2006-12-01
We have investigated gas-phase reactions of N((2)D) with the most abundant hydrocarbons in the atmosphere of Titan by the crossed molecular beam technique. In all cases, molecular products containing a novel CN bond are formed, thus suggesting possible routes of formation of gas-phase nitriles in the atmosphere of Titan and primordial Earth. The same approach has been recently extended to the study of radical-radical reactions, such as the reaction of atomic oxygen with the CH(3) and C(3)H(5) radicals. Products other than those already considered in the modeling of planetary atmospheres and interstellar medium have been identified.
Sub-30 nm patterning of molecular resists based on crosslinking through tip based oxidation
NASA Astrophysics Data System (ADS)
Lorenzoni, Matteo; Wagner, Daniel; Neuber, Christian; Schmidt, Hans-Werner; Perez-Murano, Francesc
2018-06-01
Oxidation Scanning Probe Lithography (o-SPL) is an established method employed for device patterning at the nanometer scale. It represents a feasible and inexpensive alternative to standard lithographic techniques such as electron beam lithography (EBL) and nanoimprint lithography (NIL). In this work we applied non-contact o-SPL to an engineered class of molecular resists in order to obtain crosslinking by electrochemical driven oxidation. By patterning and developing various resist formulas we were able to obtain a reliable negative tone resist behavior based on local oxidation. Under optimal conditions, directly written patterns can routinely reach sub-30 nm lateral resolution, while the final developed features result wider, approaching 50 nm width.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Lin; Gigax, Jonathan; Chen, Di
Self-ion irradiation is widely used as a method to simulate neutron damage in reactor structural materials. Accelerator-based simulation of void swelling, however, introduces a number of neutron-atypical features which require careful data extraction and, in some cases, introduction of innovative irradiation techniques to alleviate these issues. In this paper, we briefly summarize three such atypical features: defect imbalance effects, pulsed beam effects, and carbon contamination. The latter issue has just been recently recognized as being relevant to simulation of void swelling and is discussed here in greater detail. It is shown that carbon ions are entrained in the ion beammore » by Coulomb force drag and accelerated toward the target surface. Beam-contaminant interactions are modeled using molecular dynamics simulation. Finally, by applying a multiple beam deflection technique, carbon and other contaminants can be effectively filtered out, as demonstrated in an irradiation of HT-9 alloy by 3.5 MeV Fe ions.« less
Shao, Lin; Gigax, Jonathan; Chen, Di; ...
2017-06-12
Self-ion irradiation is widely used as a method to simulate neutron damage in reactor structural materials. Accelerator-based simulation of void swelling, however, introduces a number of neutron-atypical features which require careful data extraction and, in some cases, introduction of innovative irradiation techniques to alleviate these issues. In this paper, we briefly summarize three such atypical features: defect imbalance effects, pulsed beam effects, and carbon contamination. The latter issue has just been recently recognized as being relevant to simulation of void swelling and is discussed here in greater detail. It is shown that carbon ions are entrained in the ion beammore » by Coulomb force drag and accelerated toward the target surface. Beam-contaminant interactions are modeled using molecular dynamics simulation. Finally, by applying a multiple beam deflection technique, carbon and other contaminants can be effectively filtered out, as demonstrated in an irradiation of HT-9 alloy by 3.5 MeV Fe ions.« less
Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.
Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture.more » In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery.« less
Buffer Gas Cooled Molecule Source for Cpmmw Spectroscopy
NASA Astrophysics Data System (ADS)
Zhou, Yan; Grimes, David; Barnum, Timothy J.; Klein, Ethan; Field, Robert W.
2014-06-01
We have built a new molecular beam source that implements 20 K Neon buffer gas cooling for the study of the spectra of small molecules. In particular, laser ablation of BaF2 pellets has been optimized to produce a molecular beam of BaF with a number density more than 100 times greater than what we have previously obtained from a typical Smalley-type photoablation supersonic beam source. Moreover, the forward beam velocity of 150 m/s in our apparatus represents an approximate 10-fold reduction, improving spectroscopic resolution from 500 kHz to better than 50 kHz at 100 GHz in a chirped-pulse millimeter-wave experiment in which resolution is limited by Doppler broadening. Novel improvements in our buffer gas source and advantages for CPmmW spectroscopy studies will be discussed. We thank David Patterson, John Barry, John Doyle, and David DeMille for help in the design of our source.
Stability of high-mass molecular libraries: the role of the oligoporphyrin core
Sezer, Uĝur; Schmid, Philipp; Felix, Lukas; Mayor, Marcel; Arndt, Markus
2015-01-01
Molecular beam techniques are a key to many experiments in physical chemistry and quantum optics. In particular, advanced matter-wave experiments with high-mass molecules profit from the availability of slow, neutral and mass-selected molecular beams that are sufficiently stable to remain intact during laser heating and photoionization mass spectrometry. We present experiments on the photostability with molecular libraries of tailored oligoporphyrins with masses up to 25 000 Da. We compare two fluoroalkylsulfanyl-functionalized libraries based on two different molecular cores that offer the same number of anchor points for functionalization but differ in their geometry and electronic properties. A pentaporphyrin core stabilizes a library of chemically well-defined molecules with more than 1600 atoms. They can be neutrally desorbed with velocities as low as 20 m/s and efficiently analyzed in photoionization mass spectrometry. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25601698
Characterization of GaN microstructures grown by plasma-assisted molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Ikai; Pang, Wen-Yuan; Hsu, Yu-Chi
2013-06-15
The characterization of GaN microstructures grown by plasma-assisted molecular beam epitaxy on LiAlO{sub 2} substrate was studied by cathodoluminescence and photoluminescence measurements. We demonstrated that the cathodoluminescence from oblique semi-polar surfaces of mushroom-shaped GaN was much brighter than that from top polar surface due to the reduction of polarization field on the oblique semi-polar surfaces. It implies that the oblique semi-polar surface is superior for the light-emitting surface of wurtzite nano-devices.
Multispectral optical tweezers for molecular diagnostics of single biological cells
NASA Astrophysics Data System (ADS)
Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin
2012-03-01
Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.
2016-07-01
AWARD NUMBER: W81XWH-14-1-0180 TITLE: Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer Tissue...1212 REPORT DATE: July 2016 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012...SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER
Fabrication of IrSi(3)/p-Si Schottky diodes by a molecular beam epitaxy technique
NASA Technical Reports Server (NTRS)
Lin, T. L.; Iannelli, J. M.
1990-01-01
IrSi(3)/p-Si Schottky diodes have been fabricated by a molecular beam epitaxy technique at 630 C. Good surface morphology was observed for IrSi(3) layers grown at temperatures below 680 C, and an increasing tendency to form islands is observed in samples grown at higher temperatures. Good diode current-voltage characteristics were observed and Schottky barrier heights of 0.14-0.18 eV were determined by activation energy analysis and spectral response measurement.
Molecular-beam epitaxy of (Zn,Mn)Se on Si(100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slobodskyy, T.; Ruester, C.; Fiederling, R.
2004-12-20
We have investigated the growth by molecular-beam epitaxy of the II-VI diluted magnetic semiconductor (Zn,Mn)Se on As-passivated Si(100) substrates. The growth start has been optimized by using low-temperature epitaxy. Surface properties were assessed by Nomarski and scanning electron microscopy. Optical properties of (Zn,Mn)Se have been studied by photoluminescence and a giant Zeeman splitting of up to 30 meV has been observed. Our observations indicate a high crystalline quality of the epitaxial films.
Molecular beam epitaxial growth and structural characterization of ZnS on (001) GaAs
NASA Technical Reports Server (NTRS)
Benz, R. G., II; Huang, P. C.; Stock, S. R.; Summers, C. J.
1988-01-01
The effect of surface nucleation processes on the quality of ZnS layers grown on (001) GaAs substrates by molecular beam epitaxy is reported. Reflection high energy electron diffraction indicated that nucleation at high temperatures produced more planar surfaces than nucleation at low temperatures, but the crystalline quality as assessed by X-ray double crystal diffractometry is relatively independent of nucleation temperature. A critical factor in layer quality was the initial roughness of the GaAs surfaces.
1992-04-14
P.J. Restle, and S.S. Iyer SILICON-BASED LONG WAVELENGTH INFRARED DETECTORS FABRICATED BY MOLECULAR BEAM EPITAXY 477 T.L. Lin, E.W. Jones, T. George, A...behaviour was defect generation cause by cascade propagation by the Si+ ions. Two important questions arise in use of PED. Firstly, relying as it does...Avenue, Santa Clara, CA 95052 ABSTRACT Strong hole intersubband infrared absorption in 6-doped Si multiple quantum wells is observed. The structures
DC Characteristics of InAs/AlSb HEMTs at Cryogenic Temperatures
2009-05-01
Molecular Beam Epitaxy - MBE XIV, April 2007, Volumes 301- 302, Pages 1025-1029 Fig. 5: SEM image showing the 2x50μm InAs/AlSb HEMT . 325 ...started with a heterostructure grown by molecular beam epitaxy on a semi- insulating InP substrate. The heterostructure is shown in Fig. 1. Mesa isolation...DC characteristics of InAs/AlSb HEMTs at cryogenic temperatures G. Moschetti, P-Å Nilsson, N. Wadefalk, M. Malmkvist, E. Lefebvre, J. Grahn
Photodissociation Dynamics in a Pulsed Molecular Beam.
1982-09-16
Howard University on May 12-14, 1982. To be. published in the proceedings oif’the meeting, 1983. IS.&E WON"S (COU"IaU. #-" owm of* ""Wu Md 5dmff~’ Ar...Pulsed Molecular Beam Richang Lu, J. B. Halpern and Wf. M4. Jackson Department of Chemistry Howard University Washington, D. C. 20059 k *a. .- The...Valrafen Department of Chemistry Department of Chemistry University of Southern Howard University California Washington, D.C.. 20059 Los "agles
NASA Astrophysics Data System (ADS)
Kaveev, A. K.; Bursian, V. E.; Gastev, S. V.; Krichevtsov, B. B.; Suturin, S. M.; Volkov, M. P.; Sokolov, N. S.
2016-12-01
Laser molecular-beam epitaxy has been employed to obtain layers of yttrium-iron garnet (YIG) Y3Fe5O12 on gallium nitride substrates. It was found that there exists a polycrystalline YIG phase without admixtures of other structural phases. A magnetic anisotropy of films of the "easy-magnetic plane" type was found. The gyromagnetic ratio and the demagnetizing field 4π M S were calculated.
Design and Characterization of Optically Pumped Vertical Cavity Surface Emitting Lasers
1992-12-01
technology to make VCSELs (e.g. Molecular Beam Epitaxy (MBE) and Metal-Organic Chemical Vapor Deposition (MOCVD)) motivated the research in this area over the...Resistances for Current Injected VCSELs 3-14 4.1. Equipment Configuration used for Output Beam Characterization . . . 4-1 4.2. Optical Pump Beam and Focusing...pursued over the past few years because VCSELs have ad- ditional inherent advantages. The VCSEL design exhibits better exit beam quality, is of smaller
SU-F-T-666: Molecular-Targeted Gold Nanorods Enhances the RBE of Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khoo, A; Sahoo, N; Krishnan, S
2016-06-15
Purpose: In recent years, proton beam radiation therapy (PBRT) has gained significant attention in the treatment of tumors in anatomically complex locations. However, the therapeutic benefit of PBRT is limited by a relative biological effectiveness (RBE) of just 1.1. The purpose of this study is to evaluate whether this limitation can be overcome by artificially enhancing the RBE using molecular-targeted gold nanorods (GNRs). Methods: Molecular-targeting of GNRs was accomplished using Cetuximab (antibody specific to epidermal growth factor receptor that is over-expressed in tumors) conjugated GNRs (cGNRs) and their binding affinity to Head and Neck cancer cells was confirmed using darkmore » field microscopy and Transmission Electron Microscopy (TEM). The radiosensitization potential of cGNRs when irradiated with photon (6MV) and proton (100 and 160 MeV) beams was determined using clonogenic assays. The RBE at 10% surviving fraction (RBE{sub 10}) for proton therapies at central and distal locations of SOBP was calculated with respect to 6 MV photons. IgGconjugated GNRs (iGNRs) were used as controls in all experiments. Results: cGNRs demonstrated significant radiosensitization when compared to iGNRs for 6MV photons (1.14 vs 1.04), 100 MeV protons (1.19 vs 1.04), and 160 MeV protons (1.17 vs 1.04). While RBE10 for proton beams at the center of SOBP revealed similar effects for both 100 and 160 MeV (RBE{sup 10}=1.39 vs 1.38; p>0.05), enhanced radiosensitization was observed at the distal SOBP with 100 MeV beams demonstrating greater effect than 160 MeV beams (RBE{sup 10}=1.79 vs 1.6; p<0.05). Conclusion: EGFR-targeting GNRs significantly enhance the RBE of protons well above the accepted 1.1 value. The enhanced RBE observed for lower energy protons (100 MeV) and at the distal SOBP suggests that low energy components may play a role in the observed radiosensitization effect. This strategy holds promise for clinical translation and could evolve as a paradigm-changing approach in the field of radiation oncology. The UT MD Anderson Cancer Center’s Institutional Research Grant funding to P. Diagaradjane.« less
The cryogenic storage ring CSR
NASA Astrophysics Data System (ADS)
von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.
2016-06-01
An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.
The cryogenic storage ring CSR.
von Hahn, R; Becker, A; Berg, F; Blaum, K; Breitenfeldt, C; Fadil, H; Fellenberger, F; Froese, M; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; Heber, O; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lange, M; Laux, F; Lohmann, S; Menk, S; Meyer, C; Mishra, P M; Novotný, O; O'Connor, A P; Orlov, D A; Rappaport, M L; Repnow, R; Saurabh, S; Schippers, S; Schröter, C D; Schwalm, D; Schweikhard, L; Sieber, T; Shornikov, A; Spruck, K; Sunil Kumar, S; Ullrich, J; Urbain, X; Vogel, S; Wilhelm, P; Wolf, A; Zajfman, D
2016-06-01
An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.
NASA Astrophysics Data System (ADS)
Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.
2016-05-01
Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested. Electronic supplementary information (ESI) available: Three movie files: 3mer-physorption.mpg and 3mer-chemisorption.mpg feature examples of the adsorption state sampling of a carbon trimer on the heated h-BN substrate as mentioned in the ``Single Molecule Adsorption Study'' section. In 3mer-film-growth.mpg, an instance of honey comb formation during the initial phase of graphene growth simulation using a carbon trimer beam is captured. An initially sp hybridized carbon atom (red colored) becomes sp2 hybridized as a result of additional covalent bonding with the impinging carbon trimer. As the bond angle around the red carbon changes from 180 degree (sp) to 120 degree (sp2), nearby carbon atoms enclose to form a hexagon structure composed of 6 carbon atoms. See DOI: 10.1039/c6nr01396a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darafsheh, A; Paik, T; Tenuto, M
Purpose: Optical properties of terbium (Tb3+)-doped gadolinium trifluoride (GdF3) nanoplates irradiated by electron and photon beams were investigated for their potential as optical probes. The contribution of induced Cerenkov radiation in exciting the nanophosphors was investigated as well. Methods: The emission spectra of Terbium-doped GdF3 dispersed in hexane, embedded in tissue mimicking phantoms were collected by an optical fiber connected to a CCD-coupled spectrograph, while the samples were irradiated by a medical linear accelerator with electron beams of energies 6, 9, 12, 16, and 20 MeV or X-ray beams of energies of 6, and 15 MV. The contribution of inducedmore » Cerenkov radiation in exciting the nanophosphores was investigated in a dedicated experimental apparatus through optical isolation of the samples and also by using 125 kVp X-ray beams whose energy is below the threshold for generating Cerenkov radiation in that medium. Results: Terbium-doped GdF3 nanoplates show characteristic cathodoluminescence emission peaks at 488, 543, 586, and 619 nm, which are responsible for the characteristic f-f transition of terbium ion. In a series of experiments, the contribution of Cerenkov radiation in the luminescence of such nanophosphors was ruled out. Conclusion: We have characterized the optical properties of Terbium-doped GdF3 nanoplates. Such nanocrystals with emission tunability and high surface area that facilitates attachment with targeting reagents are promising in situ light source candidates for molecular imaging or exciting a photosensitizer for ultralow fluence photodynamic therapy. This work is supported by the Department of Radiation Oncology at the University of Pennsylvania, the American Cancer Society through IRG-78-002-28, and the University of Pennsylvania's Nano/Bio Interface Center through NSEC DMR08-32802.« less
Optical gain in an optically driven three-level ? system in atomic Rb vapor
NASA Astrophysics Data System (ADS)
Ballmann, C. W.; Yakovlev, V. V.
2018-06-01
In this work, we report experimentally achieved optical gain of a weak probe beam in a three-level ? system in a low density Rubidium vapor cell driven by a single pump beam. The maximum measured gain of the probe beam was about 0.12%. This work could lead to new approaches for enhancing molecular spectroscopy applications.
Low-Density Nozzle Flow by the Direct Simulation Monte Carlo and Continuum Methods
NASA Technical Reports Server (NTRS)
Chung, Chang-Hong; Kim, Sku C.; Stubbs, Robert M.; Dewitt, Kenneth J.
1994-01-01
Two different approaches, the direct simulation Monte Carlo (DSMC) method based on molecular gasdynamics, and a finite-volume approximation of the Navier-Stokes equations, which are based on continuum gasdynamics, are employed in the analysis of a low-density gas flow in a small converging-diverging nozzle. The fluid experiences various kinds of flow regimes including continuum, slip, transition, and free-molecular. Results from the two numerical methods are compared with Rothe's experimental data, in which density and rotational temperature variations along the centerline and at various locations inside a low-density nozzle were measured by the electron-beam fluorescence technique. The continuum approach showed good agreement with the experimental data as far as density is concerned. The results from the DSMC method showed good agreement with the experimental data, both in the density and the rotational temperature. It is also shown that the simulation parameters, such as the gas/surface interaction model, the energy exchange model between rotational and translational modes, and the viscosity-temperature exponent, have substantial effects on the results of the DSMC method.
Active zinc-blende III-nitride photonic structures on silicon
NASA Astrophysics Data System (ADS)
Sergent, Sylvain; Kako, Satoshi; Bürger, Matthias; Blumenthal, Sarah; Iwamoto, Satoshi; As, Donat Josef; Arakawa, Yasuhiko
2016-01-01
We use a layer transfer method to fabricate free-standing photonic structures in a zinc-blende AlN epilayer grown by plasma-assisted molecular beam epitaxy on a 3C-SiC pseudosubstrate and containing GaN quantum dots. The method leads to the successful realization of microdisks, nanobeam photonic crystal cavities, and waveguides integrated on silicon (100) and operating at short wavelengths. We assess the quality of such photonic elements by micro-photoluminescence spectroscopy in the visible and ultraviolet ranges, and extract the absorption coefficient of ZB AlN membranes (α ˜ (2-5) × 102 cm-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribezzi-Crivellari, M.; Huguet, J. M.; Ritort, F.
We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecularmore » hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.« less
High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning.
Plissard, S; Larrieu, G; Wallart, X; Caroff, P
2011-07-08
We report and detail a method to achieve growth of vertical self-catalyzed GaAs nanowires directly on Si(111) with a near-perfect vertical yield, using electron-beam-defined arrays of holes in a dielectric layer and molecular beam epitaxy. In our conditions, GaAs nanowires are grown along a vapor-liquid-solid mechanism, using in situ self-forming Ga droplets. The focus of this paper is to understand the role of the substrate preparation and of the pre-growth conditioning. Without changing temperature or the V/III ratio, the yield of vertical nanowires is increased incrementally up to 95%. The possibility to achieve very dense arrays, with center-to-center inter-wire distances less than 100 nm, is demonstrated.
NASA Astrophysics Data System (ADS)
Park, K. W.; Nair, H. P.; Crook, A. M.; Bank, S. R.; Yu, E. T.
2013-02-01
A proximal probe-based quantitative measurement of thermal conductivity with ˜100-150 nm lateral and vertical spatial resolution has been implemented. Measurements on an ErAs/GaAs superlattice structure grown by molecular beam epitaxy with 3% volumetric ErAs content yielded thermal conductivity at room temperature of 9 ± 2 W/m K, approximately five times lower than that for GaAs. Numerical modeling of phonon scattering by ErAs nanoparticles yielded thermal conductivities in reasonable agreement with those measured experimentally and provides insight into the potential influence of nanoparticle shape on phonon scattering. Measurements of wedge-shaped samples created by focused ion beam milling provide direct confirmation of depth resolution achieved.
Linear self-focusing of continuous UV laser beam in photo-thermo-refractive glasses.
Sidorov, Alexander I; Gorbyak, Veronika V; Nikonorov, Nikolay V
2018-03-19
The experimental and theoretical study of continuous UV laser beam propagation through thick silver-containing photo-thermo-refractive glass is presented. It is shown for the first time that self-action of UV Gaussian beam in glass results in its self-focusing. The observed linear effect is non-reversible and is caused by the transformation of subnanosized charged silver molecular clusters to neutral state under UV laser radiation. Such transformation is accompanied by the increase of molecular clusters polarizability and the refractive index increase in irradiated area. As a result, an extended positive lens is formed in glass bulk. In a theoretical study of linear self-focusing effect, the "aberration-free" approximation was used, taking into account spatial distribution of induced absorption.
NASA Astrophysics Data System (ADS)
Craft, H. S.; Collazo, R.; Losego, M. D.; Mita, S.; Sitar, Z.; Maria, J.-P.
2007-10-01
MgO is a proposed dielectric for use as a tunneling barrier in devices integrating GaN and ferroelectric oxides. In this study, we present data regarding the growth mode and band offsets of MgO grown epitaxially on GaN (0002) surfaces using molecular beam epitaxy. Using in situ x-ray photoelectron spectroscopy (XPS) and molecular beam epitaxy, we determine, from sequential growth experiments, that the growth of MgO proceeds via the Volmer-Weber (three-dimensional) mode, and full coalescence of the film does not occur until approximately 12nm of MgO has been deposited. The observation of a three-dimensional growth mode is in agreement with previously published data. For the valence band offset, we find a value of 1.2±0.2eV, which corresponds to a 3.2eV conduction band offset. XPS measurements suggest a chemically abrupt interface and no effect on band lineup due to the slow coalescence behavior.
The directed self-assembly for the surface patterning by electron beam II
NASA Astrophysics Data System (ADS)
Nakagawa, Sachiko T.
2015-03-01
When a low-energy electron beam (EB) or a low-energy ion beam (IB) irradiates a crystal of zincblende (ZnS)-type as crystalline Si (c-Si), a very similar {311} planar defect is often observed. Here, we used a molecular dynamics simulation for a c-Si that included uniformly distributed Frenkel-pairs, assuming a wide beam and sparse distribution of defects caused by each EB. We observed the formation of ? linear defects, which agglomerate to form planar defects labeled with the Miller index {311} as well as the case of IB irradiation. These were identified by a crystallographic analysis called pixel mapping (PM) method. The PM had suggested that self-interstitial atoms may be stabilized on a specific frame of a lattice made of invisible metastable sites in the ZnS-type crystal. This agglomeration appears as {311} planar defects. It was possible at a much higher temperature than room temperature,for example, at 1000 K. This implies that whatever disturbance may bring many SIAs in a ZnS-type crystal, elevated lattice vibration promotes self-organization of the SIAs to form {311} planar defects according to the frame of metastable lattice as is guided by a chart presented by crystallography.
Li, Si; Wang, Chengyuan; Nithiarasu, Perumal
2018-04-01
Quasi-one-dimensional microtubules (MTs) in cells enjoy high axial rigidity but large transverse flexibility due to the inter-protofilament (PF) sliding. This study aims to explore the structure-property relation for MTs and examine the relevance of the beam theories to their unique features. A molecular structural mechanics (MSM) model was used to identify the origin of the inter-PF sliding and its role in bending and vibration of MTs. The beam models were then fitted to the MSM to reveal how they cope with the distinct mechanical responses induced by the inter-PF sliding. Clear evidence showed that the inter-PF sliding is due to the soft inter-PF bonds and leads to the length-dependent bending stiffness. The Euler beam theory is found to adequately describe MT deformation when the inter-PF sliding is largely prohibited. Nevertheless, neither shear deformation nor the nonlocal effect considered in the 'more accurate' beam theories can fully capture the effect of the inter-PF sliding. This reflects the distinct deformation mechanisms between an MT and its equivalent continuous body.
InGaAs Multiple Quantum Well Modulating Retro-reflector for Free Space Optical Communications
2002-01-01
PIN optical modulators grown on GaAs substrates by molecular beam epitaxy ,J. Vac Sci. B 18, 1609-16 13 (2000). Peter G. Goetz, W. S. Rabinovich...reflector is then interrogated by a cw laser beam from a conventional optical communications system and returns a modulated signal beam to the...optical communication systems. By mounting an electro-optic shutter in front of the corner- cube, the retro-reflected beam can be turned on or off (or at
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Kim, Hyun Jung (Inventor); Skuza, Jonathan R. (Inventor); Lee, Kunik (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor)
2017-01-01
An X-ray defraction (XRD) characterization method for sigma=3 twin defects in cubic semiconductor (100) wafers includes a concentration measurement method and a wafer mapping method for any cubic tetrahedral semiconductor wafers including GaAs (100) wafers and Si (100) wafers. The methods use the cubic semiconductor's (004) pole figure in order to detect sigma=3/{111} twin defects. The XRD methods are applicable to any (100) wafers of tetrahedral cubic semiconductors in the diamond structure (Si, Ge, C) and cubic zinc-blend structure (InP, InGaAs, CdTe, ZnSe, and so on) with various growth methods such as Liquid Encapsulated Czochralski (LEC) growth, Molecular Beam Epitaxy (MBE), Organometallic Vapor Phase Epitaxy (OMVPE), Czochralski growth and Metal Organic Chemical Vapor Deposition (MOCVD) growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozimova, A E; Bruevich, V V; Parashchuk, D Yu
2011-12-31
A phenomenological model of the laser photobleaching dynamics of a semiconducting polymer in a dual-beam scheme for different wavelengths of the burning and probe beams is developed. An experimental method is implemented based on this model, which allows one to investigate materials with significantly different photodegradation rates. The photodegradation quantum yield in mixtures of a semiconducting polymer belonging to polyparaphenylene vinylenes (MEH-PPV) with a low-molecular electron acceptor 2,4,7-trinitrofluorenone (TNF) is measured at burning wavelengths of 488 and 514 nm for different component ratios of MEHPPV : TNF. It is found that adding the acceptor decreases the polymer photodegradation quantum yieldmore » by at least four orders of magnitude in the MEH-PPV : TNF = 1 : 0.4 mixture; the photodegradation quantum yields are the same at both wavelengths. It is shown that the photodegradation rates of the MEH-PPV : TNF films measured by laser photobleaching and IR spectroscopy are in good agreement.« less
Comparison of InGaAs(100) Grown by Chemical Beam Epitaxy and Metal Organic Chemical Vapor Deposition
NASA Technical Reports Server (NTRS)
Williams, M. D.; Greene, A. L.; Daniels-Race, T.; Lum, R. M.
2000-01-01
Secondary ion mass spectrometry is used to study the effects of substrate temperature on the composition and growth rate of InGaAs/InP(100) multilayers grown by chemical beam epitaxy, metal-organic chemical vapor deposition and solid source molecular beam epitaxy. The growth kinetics of the material grown by the different techniques are analyzed and compared.
Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R
2014-04-01
Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without breaking vacuum, and convenient visual access to the sample and tip inside a superconducting magnet cryostat. A sample/tip handling system is optimized for both the molecular beam epitaxy growth system and the scanning tunneling microscope system. The sample/tip handing system enables in situ STM studies on epitaxially grown samples, and tip exchange in the superconducting magnet cryostat. The hybrid molecular beam epitaxy and low temperature scanning tunneling microscopy system is capable of growing semiconductor-based hetero-structures with controlled accuracy down to a single atomic-layer and imaging them down to atomic resolution.
NASA Astrophysics Data System (ADS)
Jones, Emrys A.; Lockyer, Nicholas P.; Vickerman, John C.
2007-02-01
Recent developments in desorption/ionisation mass spectrometry techniques have made their application to biological analysis a realistic and successful proposition. Developments in primary ion source technology, mainly through the advent of polyatomic ion beams, have meant that the technique of secondary ion mass spectrometry (SIMS) can now access the depths of information required to allow biological imaging to be a viable option. Here the role of the primary ion C60+ is assessed with regard to molecular imaging of lipids and pharmaceuticals within tissue sections. High secondary ion yields and low surface damage accumulation are demonstrated on both model and real biological samples, indicating the high secondary ion efficiency afforded to the analyst by this primary ion when compared to other cluster ion beams used in imaging. The newly developed 40 keV C60+ ion source allows the beam to be focused such that high resolution imaging is demonstrated on a tissue sample, and the greater yields allow the molecular signal from the drug raclopride to be imaged within tissue section following in vivo dosing. The localisation shown for this drug alludes to issues regarding the chemical environment affecting the ionisation probability of the molecule; the importance of this effect is demonstrated with model systems and the possibility of using laser post-ionisation as a method for reducing this consequence of bio-sample complexity is demonstrated and discussed.
Effect of molecular anisotropy on beam scattering measurements
NASA Technical Reports Server (NTRS)
Goldflam, R.; Green, S.; Kouri, D. J.; Monchick, L.
1978-01-01
Within the energy sudden approximation, the total integral and total differential scattering cross sections are given by the angle average of scattering cross sections computed at fixed rotor orientations. Using this formalism the effect of molecular anisotropy on scattering of He by HCl and by CO is examined. Comparisons with accurate close coupling calculations indicate that this approximation is quite reliable, even at very low collision energies, for both of these systems. Comparisons are also made with predictions based on the spherical average of the interaction. For HCl the anisotropy is rather weak and its main effect is a slight quenching of the oscillations in the differential cross sections relative to predictions of the spherical averaged potential. For CO the anisotropy is much stronger, so that the oscillatory pattern is strongly quenched and somewhat shifted. It appears that the sudden approximation provides a simple yet accurate method for describing the effect of molecular anisotropy on scattering measurements.
Thermospheric temperature measurement technique.
NASA Technical Reports Server (NTRS)
Hueser, J. E.; Fowler, P.
1972-01-01
A method for measurement of temperature in the earth's lower thermosphere from a high-velocity probes is described. An undisturbed atmospheric sample is admitted to the instrument by means of a free molecular flow inlet system of skimmers which avoids surface collisions of the molecules prior to detection. Measurement of the time-of-flight distribution of an initially well-localized group of nitrogen metastable molecular states produced in an open, crossed electron-molecular beam source, yields information on the atmospheric temperature. It is shown that for high vehicle velocities, the time-of-flight distribution of the metastable flux is a sensitive indicator of atmospheric temperature. The temperature measurement precision should be greater than 94% at the 99% confidence level over the range of altitudes from 120-170 km. These precision and altitude range estimates are based on the statistical consideration of the counting rates achieved with a multichannel analyzer using realistic values for system parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, S.; Sites, J.R.
A Kaufman-type broad beam ion source, used for sputtering and etching purposes, has been operated with Ar, Kr,O/sub 2/ and N/sub 2/ gas inputs over a wide range of beam energies (200-1200 eV) and gas flow rates (1-10 sccm). The maximum ion beam current density for each gas saturates at about 2.5 mA/sq. cm. as gas flow is increased. The discharge threshold voltage necessary to produce a beam and the beam efficiency (beam current/molecular current), however, varied considerably. Kr had the lowest threshold and highest efficiency, Ar next, then N/sub 2/ and O/sub 2/. The ion beam current varied onlymore » weakly with beam energy for low gas flow rates, but showed a factor of two increase when the gas flow was higher.« less
Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Farzana, Esmat; Ahmadi, Elaheh; Speck, James S.; Arehart, Aaron R.; Ringel, Steven A.
2018-04-01
Deep level defects were characterized in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy (PAMBE) using deep level optical spectroscopy (DLOS) and deep level transient (thermal) spectroscopy (DLTS) applied to Ni/β-Ga2O3:Ge (010) Schottky diodes that displayed Schottky barrier heights of 1.50 eV. DLOS revealed states at EC - 2.00 eV, EC - 3.25 eV, and EC - 4.37 eV with concentrations on the order of 1016 cm-3, and a lower concentration level at EC - 1.27 eV. In contrast to these states within the middle and lower parts of the bandgap probed by DLOS, DLTS measurements revealed much lower concentrations of states within the upper bandgap region at EC - 0.1 - 0.2 eV and EC - 0.98 eV. There was no evidence of the commonly observed trap state at ˜EC - 0.82 eV that has been reported to dominate the DLTS spectrum in substrate materials synthesized by melt-based growth methods such as edge defined film fed growth (EFG) and Czochralski methods [Zhang et al., Appl. Phys. Lett. 108, 052105 (2016) and Irmscher et al., J. Appl. Phys. 110, 063720 (2011)]. This strong sensitivity of defect incorporation on crystal growth method and conditions is unsurprising, which for PAMBE-grown β-Ga2O3:Ge manifests as a relatively "clean" upper part of the bandgap. However, the states at ˜EC - 0.98 eV, EC - 2.00 eV, and EC - 4.37 eV are reminiscent of similar findings from these earlier results on EFG-grown materials, suggesting that possible common sources might also be present irrespective of growth method.
Experimental progress in positronium laser physics
NASA Astrophysics Data System (ADS)
Cassidy, David B.
2018-03-01
The field of experimental positronium physics has advanced significantly in the last few decades, with new areas of research driven by the development of techniques for trapping and manipulating positrons using Surko-type buffer gas traps. Large numbers of positrons (typically ≥106) accumulated in such a device may be ejected all at once, so as to generate an intense pulse. Standard bunching techniques can produce pulses with ns (mm) temporal (spatial) beam profiles. These pulses can be converted into a dilute Ps gas in vacuum with densities on the order of 107 cm-3 which can be probed by standard ns pulsed laser systems. This allows for the efficient production of excited Ps states, including long-lived Rydberg states, which in turn facilitates numerous experimental programs, such as precision optical and microwave spectroscopy of Ps, the application of Stark deceleration methods to guide, decelerate and focus Rydberg Ps beams, and studies of the interactions of such beams with other atomic and molecular species. These methods are also applicable to antihydrogen production and spectroscopic studies of energy levels and resonances in positronium ions and molecules. A summary of recent progress in this area will be given, with the objective of providing an overview of the field as it currently exists, and a brief discussion of some future directions.
Smerieri, M; Reichelt, R; Savio, L; Vattuone, L; Rocca, M
2012-09-01
We report here on a new experimental apparatus combining a commercial low temperature scanning tunneling microscope with a supersonic molecular beam. This setup provides a unique tool for the in situ investigation of the topography of activated adsorption systems and opens thus new interesting perspectives. It has been tested towards the formation of the O/Ag(110) added rows reconstruction and of their hydroxylation, comparing data recorded upon O(2) exposure at thermal and hyperthermal energies.
NASA Astrophysics Data System (ADS)
Shi, Z.; Xu, G.; McCann, P. J.; Fang, X. M.; Dai, N.; Felix, C. L.; Bewley, W. W.; Vurgaftman, I.; Meyer, J. R.
2000-06-01
Midinfrared broadband high-reflectivity Pb1-xSrxSe/BaF2 distributed Bragg reflectors and vertical-cavity surface-emitting lasers (VCSELs) with PbSe as the active material were grown by molecular-beam epitaxy. Because of an extremely high index contrast, mirrors with only three quarter-wave layer pairs had reflectivities exceeding 99%. For pulsed optical pumping, a lead salt VCSEL emitting at the cavity wavelength of 4.5-4.6 μm operated nearly to room temperature (289 K).
Deep levels in H-irradiated GaAs1-xNx (x < 0.01) grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Shafi, M.; Mari, R. H.; Khatab, A.; Henini, M.; Polimeni, A.; Capizzi, M.; Hopkinson, M.
2011-12-01
Dilute nitride GaAs1-xNx layers have been grown by molecular beam epitaxy with nitrogen concentration ranging from 0.2% to 0.8%. These samples have been studied before and after hydrogen irradiation by using standard deep level transient spectroscopy (DLTS) and high resolution Laplace DLTS techniques. The activation energy, capture cross section and density of the electron traps have been estimated and compared with results obtained in N-free as-grown and H-irradiated bulk GaAs.
Short-period (AlAs)(GaAs) superlattice lasers grown by molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blood, P.; Fletcher, E.D.; Foxon, C.T.
1988-07-25
We have used short-period all-binary (AlAs)(GaAs) superlattices with layers as thin as three monolayers to synthesize the barrier and cladding regions of GaAs quantum well lasers grown by molecular beam epitaxy. By studying the threshold current of single- and double-well devices as a function of cavity length and temperature, we conclude that the optical scattering losses are very low, that the gain-current characteristics are similar to alloy barrier devices, and that there is evidence for current leakage by recombination in the barriers.
NASA Astrophysics Data System (ADS)
Velicu, S.; Bommena, R.; Morley, M.; Zhao, J.; Fahey, S.; Cowan, V.; Morath, C.
2013-09-01
The development of a broadband IR focal plane array poses several challenges in the area of detector design, material, device physics, fabrication process, hybridization, integration and testing. The purpose of our research is to address these challenges and demonstrate a high-performance IR system that incorporates a HgCdTe-based detector array with high uniformity and operability. Our detector architecture, grown using molecular beam epitaxy (MBE), is vertically integrated, leading to a stacked detector structure with the capability to simultaneously detect in two spectral bands. MBE is the method of choice for multiplelayer HgCdTe growth because it produces material of excellent quality and allows composition and doping control at the atomic level. Such quality and control is necessary for the fabrication of multicolor detectors since they require advanced bandgap engineering techniques. The proposed technology, based on the bandgap-tunable HgCdTe alloy, has the potential to extend the broadband detector operation towards room temperature. We present here our modeling, MBE growth and device characterization results, demonstrating Auger suppression in the LWIR band and diffusion limited behavior in the MWIR band.
Comparison of fan beam, slit-slat and multi-pinhole collimators for molecular breast tomosynthesis.
van Roosmalen, Jarno; Beekman, Freek J; Goorden, Marlies C
2018-05-16
Recently, we proposed and optimized dedicated multi-pinhole molecular breast tomosynthesis (MBT) that images a lightly compressed breast. As MBT may also be performed with other types of collimators, the aim of this paper is to optimize MBT with fan beam and slit-slat collimators and to compare its performance to that of multi-pinhole MBT to arrive at a truly optimized design. Using analytical expressions, we first optimized fan beam and slit-slat collimator parameters to reach maximum sensitivity at a series of given system resolutions. Additionally, we performed full system simulations of a breast phantom containing several tumours for the optimized designs. We found that at equal system resolution the maximum achievable sensitivity increases from pinhole to slit-slat to fan beam collimation with fan beam and slit-slat MBT having on average a 48% and 20% higher sensitivity than multi-pinhole MBT. Furthermore, by inspecting simulated images and applying a tumour-to-background contrast-to-noise (TB-CNR) analysis, we found that slit-slat collimators underperform with respect to the other collimator types. The fan beam collimators obtained a similar TB-CNR as the pinhole collimators, but the optimum was reached at different system resolutions. For fan beam collimators, a 6-8 mm system resolution was optimal in terms of TB-CNR, while with pinhole collimation highest TB-CNR was reached in the 7-10 mm range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theuws, P.G.A.; Beijerinck, H.C.W.; Schram, D.C.
Velocity analysis of the molecular beam is done with a time-of-flight method. The measured velocity distribution of the fast neutral atoms is described by the sum of two Maxwell-Boltzmann distributions with temperatures on the order of 0.25 and 1 eV, respectively. This bimodal distribution is attributed to an overpopulation of the high-energy tail of the ion velocity distribution. The measured intensities of the fast neutrals vary between 5 x 10/sup 14/ and 7 x 10/sup 15/ (molecules s/sup -1/ sr/sup -1/).
Dissociation energy and photochemistry of NO[sub 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, H.F.; Kim, Bongsoo; Johnston, H.S.
1993-03-11
The photodissociation of NO[sub 3] was studied using the method of molecular beam photofragmentation translational spectroscopy. The existence of two photodissociation channels was confirmed under collision-free conditions. At excitation energies below D[sub 0](O-NO[sub 2]) for internally cold NO[sub 3], the authors observe a large quantum yield (0.70 [+-] 0.10 at 588 nm) for a concerted three-center rearrangement resulting in NO([sup 2][Pi]) + O[sub 2]([sup 3][Sigma][sub g][sup [minus
Method of Forming Three-Dimensional Semiconductors Structures
NASA Technical Reports Server (NTRS)
Fathauer, Robert W. (Inventor)
2002-01-01
Silicon and metal are coevaporated onto a silicon substrate in a molecular beam epitaxy system with a larger than stoichiometric amount of silicon so as to epitaxially grow columns of metal silicide embedded in a matrix of single crystal, epitaxially grown silicon. Higher substrate temperatures and lower deposition rates yield larger columns that are farther apart while more silicon produces smaller columns. Column shapes and locations are selected by seeding the substrate with metal silicide starting regions. A variety of 3-dimensional, exemplary electronic devices are disclosed.
1991-04-24
2X2) structure caracteristic of a cation rich surface. During the growth we observe intense RHEED oscillations, which show that the growth of Hg...layer which then suffers plastic deformation when the energy stored in the epilayer (proportional to its thickness) is sufficient to create dislocations...table I we present the variation of the in plane lattice mismatch vs. layerthickness. Plastic deformation of the layer starts around 4 to 5 ML, which can
NASA Astrophysics Data System (ADS)
Vogt, J.
This document is part of Part 3 of Subvolume D `Asymmetric Top Molecules' of Volume 29 `Molecular Constants Mostly from Microwave, Molecular Beam, and Sub-Doppler Laser Spectroscopy' of Landolt-Börnstein - Group II `Molecules and Radicals'.
Craig L. Perkins, Ph.D. | NREL
molecular beam epitaxy systems, two photoemission systems, a field-emission scanning Auger microprobe, a ;Molecular Anchors for Self-Assembled Monolayers on ZnO: A Direct Comparison of the Thiol and Phosphonic Acid
A magnetically focused molecular beam of ortho-water.
Kravchuk, T; Reznikov, M; Tichonov, P; Avidor, N; Meir, Y; Bekkerman, A; Alexandrowicz, G
2011-01-21
Like dihydrogen, water exists as two spin isomers, ortho and para, with the nuclear magnetic moments of the hydrogen atoms either parallel or antiparallel. The ratio of the two spin isomers and their physical properties play an important role in a wide variety of research fields, ranging from astrophysics to nuclear magnetic resonance (NMR). Unlike ortho and para H(2), however, the two water isomers remain challenging to separate, and as a consequence, very little is currently known about their different physical properties. Here, we report the formation of a magnetically focused molecular beam of ortho-water. The beam we formed also had a particular spin projection. Thus, in the presence of holding magnetic fields, the water molecules are hyperpolarized, laying the foundation for ultrasensitive NMR experiments in the future.
Reevaluation of the Beam and Radial Hypotheses of Parallel Fiber Action in the Cerebellar Cortex
Cramer, Samuel W.; Gao, Wangcai; Chen, Gang
2013-01-01
The role of parallel fibers (PFs) in cerebellar physiology remains controversial. Early studies inspired the “beam” hypothesis whereby granule cell (GC) activation results in PF-driven, postsynaptic excitation of beams of Purkinje cells (PCs). However, the “radial” hypothesis postulates that the ascending limb of the GC axon provides the dominant input to PCs and generates patch-like responses. Using optical imaging and single-cell recordings in the mouse cerebellar cortex in vivo, this study reexamines the beam versus radial controversy. Electrical stimulation of mossy fibers (MFs) as well as microinjection of NMDA in the granular layer generates beam-like responses with a centrally located patch-like response. Remarkably, ipsilateral forepaw stimulation evokes a beam-like response in Crus I. Discrete molecular layer lesions demonstrate that PFs contribute to the peripherally generated responses in Crus I. In contrast, vibrissal stimulation induces patch-like activation of Crus II and GABAA antagonists fail to convert this patch-like activity into a beam-like response, implying that molecular layer inhibition does not prevent beam-like responses. However, blocking excitatory amino acid transporters (EAATs) generates beam-like responses in Crus II. These beam-like responses are suppressed by focal inhibition of MF-GC synaptic transmission. Using EAAT4 reporter transgenic mice, we show that peripherally evoked patch-like responses in Crus II are aligned between parasagittal bands of EAAT4. This is the first study to demonstrate beam-like responses in the cerebellar cortex to peripheral, MF, and GC stimulation in vivo. Furthermore, the spatial pattern of the responses depends on extracellular glutamate and its local regulation by EAATs. PMID:23843513
Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube.
Hafizi, B; Peñano, J; Fischer, R; DiComo, G; Ting, A
2014-08-01
Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO₂ laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database).
NASA Technical Reports Server (NTRS)
Harik, Vasyl Michael; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Ranges of validity for the continuum-beam model, the length-scale effects and continuum assumptions are analyzed in the framework of scaling analysis of NT structure. Two coupled criteria for the applicability of the continuum model are presented. Scaling analysis of NT buckling and geometric parameters (e.g., diameter and length) is carried out to determine the key non-dimensional parameters that control the buckling strains and modes of NT buckling. A model applicability map, which represents two classes of NTs, is constructed in the space of non-dimensional parameters. In an analogy with continuum mechanics, a mechanical law of geometric similitude is presented for two classes of beam-like NTs having different geometries. Expressions for the critical buckling loads and strains are tailored for the distinct groups of NTs and compared with the data provided by the molecular dynamics simulations. Implications for molecular dynamics simulations and the NT-based scanning probes are discussed.
Genome-wide transcription responses to synchrotron microbeam radiotherapy.
Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W
2012-10-01
The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.
NASA Astrophysics Data System (ADS)
Paynter, D.; Weston, S. J.; Cosgrove, V. P.; Thwaites, D. I.
2018-01-01
Flattening filter free (FFF) beams have reached widespread use for clinical treatment deliveries. The usual methods for FFF beam characterisation for their quality assurance (QA) require the use of associated conventional flattened beams (cFF). Methods for QA of FFF without the need to use associated cFF beams are presented and evaluated against current methods for both FFF and cFF beams. Inflection point normalisation is evaluated against conventional methods for the determination of field size and penumbra for field sizes from 3 cm × 3 cm to 40 cm × 40cm at depths from dmax to 20 cm in water for matched and unmatched FFF beams and for cFF beams. A method for measuring symmetry in the cross plane direction is suggested and evaluated as FFF beams are insensitive to symmetry changes in this direction. Methods for characterising beam energy are evaluated and the impact of beam energy on profile shape compared to that of cFF beams. In-plane symmetry can be measured, as can cFF beams, using observed changes in profile, whereas cross-plane symmetry can be measured by acquiring profiles at collimator angles 0 and 180. Beam energy and ‘unflatness’ can be measured as with cFF beams from observed shifts in profile with changing beam energy. Normalising the inflection points of FFF beams to 55% results in an equivalent penumbra and field size measurement within 0.5 mm of conventional methods with the exception of 40 cm × 40 cm fields at a depth of 20 cm. New proposed methods are presented that make it possible to independently carry out set up and QA measurements on beam energy, flatness, symmetry and field size of an FFF beam without the need to reference to an equivalent flattened beam of the same energy. The methods proposed can also be used to carry out this QA for flattened beams, resulting in universal definitions and methods for MV beams. This is presented for beams produced by an Elekta linear accelerator, but is anticipated to also apply to other manufacturers’ beams.
Note: A novel method for in situ loading of gases via x-ray induced chemistry
NASA Astrophysics Data System (ADS)
Pravica, Michael; Bai, Ligang; Park, Changyong; Liu, Yu; Galley, Martin; Robinson, John; Bhattacharya, Neelanjan
2011-10-01
We have developed and demonstrated a novel method to load oxygen in a sealed diamond anvil cell via the x-ray induced decomposition of potassium chlorate. By irradiating a pressurized sample of an oxidizer (KClO3) with either monochromatic or white beam x-rays from the Advanced Photon Source at ambient temperature and variable pressure, we succeeded in creating a localized region of molecular oxygen surrounded by unreacted sample which was confirmed via Raman spectroscopy. We anticipate that this technique will be useful in loading even more challenging, difficult-to-load gases such as hydrogen and also to load multiple gases.
Note: A novel method for in situ loading of gases via x-ray induced chemistry.
Pravica, Michael; Bai, Ligang; Park, Changyong; Liu, Yu; Galley, Martin; Robinson, John; Bhattacharya, Neelanjan
2011-10-01
We have developed and demonstrated a novel method to load oxygen in a sealed diamond anvil cell via the x-ray induced decomposition of potassium chlorate. By irradiating a pressurized sample of an oxidizer (KClO(3)) with either monochromatic or white beam x-rays from the Advanced Photon Source at ambient temperature and variable pressure, we succeeded in creating a localized region of molecular oxygen surrounded by unreacted sample which was confirmed via Raman spectroscopy. We anticipate that this technique will be useful in loading even more challenging, difficult-to-load gases such as hydrogen and also to load multiple gases.
In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Lee, J. H.; Tung, I. C.; Chang, S.-H.; Bhattacharya, A.; Fong, D. D.; Freeland, J. W.; Hong, Hawoong
2016-01-01
In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.
In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy.
Lee, J H; Tung, I C; Chang, S-H; Bhattacharya, A; Fong, D D; Freeland, J W; Hong, Hawoong
2016-01-01
In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-ray and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malin, T. V., E-mail: mal-tv@mail.ru; Gilinsky, A. M.; Mansurov, V. G.
2015-10-15
The room-temperature diffusion length of minority carriers in n-Al{sub 0.1}Ga{sub 0.9}N layers grown by ammonia molecular beam epitaxy on sapphire (0001) substrates used in structures for ultraviolet photodetectors is studied. Measurements were performed using the spectral dependence of the photocurrent recorded in a built-in p–n junction for thin samples and using the induced electron-current procedure for films up to 2 µm thick. The results show that the hole diffusion length in n-AlGaN films is 120–150 nm, which is larger than in GaN films grown under similar growth conditions by a factor of 3–4. This result can be associated with themore » larger lateral sizes characteristic of hexagonal columns in AlGaN layers grown by molecular beam epitaxy. No increase in the hole diffusion length is observed for thicker films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hojin; Strachan, Alejandro
2015-11-28
We use large-scale molecular dynamics (MD) to characterize fluid damping between a substrate and an approaching beam. We focus on the near contact regime where squeeze film (where fluid gap is comparable to the mean free path of the gas molecules) and many-body effects in the fluid become dominant. The MD simulations provide explicit description of many-body and non-equilibrium processes in the fluid as well as the surface topography. We study how surface roughness and beam width increases the damping coefficient due to their effect on fluid mobility. We find that the explicit simulations are in good agreement with priormore » direct simulation Monte Carlo results except at near-contact conditions where many-body effects in the compressed fluid lead the increased damping and weaker dependence on beam width. We also show that velocity distributions near the beam edges and for short gaps deviate from the Boltzmann distribution indicating a degree of local non-equilibrium. These results will be useful to parameterize compact models used for microsystem device-level simulations and provide insight into mesoscale simulations of near-contact damping.« less
System Concept for Remote Measurement of Asteroid Molecular Composition
NASA Astrophysics Data System (ADS)
Hughes, G. B.; Lubin, P. M.; Zhang, Q.; Brashears, T.; Cohen, A. N.; Madajian, J.
2016-12-01
We propose a method for probing the molecular composition of cold solar system targets (asteroids, comets, planets, moons) from a distant vantage, such as from a spacecraft orbiting the object. A directed energy beam is focused on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption of the blackbody radiation occurs within the ejected plume. Bulk composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected material. Our proposed method differs from technologies such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes materials in the target; scattered ions emit characteristic radiation, and the LIBS detector performs atomic composition analysis by observing emission spectra. Standoff distance for LIBS is limited by the strength of characteristic emission, and distances greater than 10 m are problematic. Our proposed method detects atomic and molecular absorption spectra in the plume; standoff distance is limited by the size of heated spot, and the plume opacity; distances on the order of tens of kilometers are immediately feasible. Simulations have been developed for laser heating of a rocky target, with concomitant evaporation. Evaporation rates lead to determination of plume density and opacity. Absorption profiles for selected materials are estimated from plume properties. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis from tens of kilometers distance. This paper explores the feasibility a hypothetical mission that seeks to perform surface molecular composition analysis of a near-earth asteroid while the craft orbits the asteroid. Such a system has compelling potential benefit for solar system exploration.
NASA Astrophysics Data System (ADS)
Demaison, J.
This document is part of Part 1 of Subvolume D 'Asymmetric Top Molecules' of Volume 29 'Molecular Constants Mostly from Microwave, Molecular Beam, and Sub-Doppler Laser Spectroscopy' of Landolt-Börnstein - Group II 'Molecules and Radicals'.
2009-01-01
Knudsen Kn λ/L Hydrodynamic time / collision time Lewis Le κ/D *Thermal conduction/molecular diffusion Lorentz Lo V/c Magnitude of relativistic effects...to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data...44 Relativistic Electron Beams . . . . . . . . . . . . . . . . . . . . 46 Beam Instabilities
NASA Technical Reports Server (NTRS)
Harik, V. M.
2001-01-01
Limitations in the validity of the continuum beam model for carbon nanotubes (NTs) and nanorods are examined. Applicability of all assumptions used in the model is restricted by the two criteria for geometric parameters that characterize the structure of NTs. The key non-dimensional parameters that control the NT buckling behavior are derived via dimensional analysis of the nanomechanical problem. A mechanical law of geometric similitude for NT buckling is extended from continuum mechanics for different molecular structures. A model applicability map, where two classes of beam-like NTs are identified, is constructed for distinct ranges of non-dimensional parameters. Expressions for the critical buckling loads and strains are tailored for two classes of NTs and compared with the data provided by the molecular dynamics simulations. copyright 2001 Elsevier Science Ltd. All rights reserved.
Oxidation of Carbon Nanotubes in an Ionizing Environment.
Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert
2016-02-10
In this work, we present systematic studies on how an illuminating electron beam which ionizes molecular gas species can influence the mechanism of carbon nanotube oxidation in an environmental transmission electron microscope (ETEM). We found that preferential attack of the nanotube tips is much more prevalent than for oxidation in a molecular gas environment. We establish the cumulative electron doses required to damage carbon nanotubes from 80 keV electron beam irradiation in gas versus in high vacuum. Our results provide guidelines for the electron doses required to study carbon nanotubes within or without a gas environment, to determine or ameliorate the influence of the imaging electron beam. This work has important implications for in situ studies as well as for the oxidation of carbon nanotubes in an ionizing environment such as that occurring during field emission.
YCo5±x thin films with perpendicular anisotropy grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Sharma, S.; Hildebrandt, E.; Sharath, S. U.; Radulov, I.; Alff, L.
2017-06-01
The synthesis conditions of buffer-free (00l) oriented YCo5 and Y2Co17 thin films onto Al2O3 (0001) substrates have been explored by molecular beam epitaxy (MBE). The manipulation of the ratio of individual atomic beams of Yttrium, Y and Cobalt, Co, as well as growth rate variations allows establishing a thin film phase diagram. Highly textured YCo5±x thin films were stabilized with saturation magnetization of 517 emu/cm3 (0.517 MA/m), coercivity of 4 kOe (0.4 T), and anisotropy constant, K1, equal to 5.34 ×106 erg/cm3 (0.53 MJ/m3). These magnetic parameters and the perpendicular anisotropy obtained without additional underlayers make the material system interesting for application in magnetic recording devices.
Growth of ZnMgTe/ZnTe waveguide structures on ZnTe (0 0 1) substrates by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Kumagai, Y.; Imada, S.; Baba, T.; Kobayashi, M.
2011-05-01
ZnMgTe/ZnTe/ZnMgTe layered structures were grown on (0 0 1) ZnTe substrates by molecular beam epitaxy. This structure was designed to apply to waveguides in various optoelectronic devices to reduce light loss. Since the lattice mismatch between ZnTe and ZnMgTe was not negligible, the critical layer thickness (CLT) was theoretically derived. Structures with varying Mg composition and layer thickness of ZnMgTe cladding layer were grown and examined for crystal quality with respect to theoretical data. The crystal quality was investigated by means of cross sectional transmission electron microscopy (TEM) and reciprocal space mapping (RSM). Optical confinements were observed by irradiating a laser beam from one end of the sample and monitoring the transmitted light from the other end.
Covalent nitrogen doping in molecular beam epitaxy-grown and bulk WSe2
NASA Astrophysics Data System (ADS)
Khosravi, Ava; Addou, Rafik; Smyth, Christopher M.; Yue, Ruoyu; Cormier, Christopher R.; Kim, Jiyoung; Hinkle, Christopher L.; Wallace, Robert M.
2018-02-01
Covalent p-type doping of WSe2 thin films grown by molecular beam epitaxy and WSe2 exfoliated from bulk crystals is achieved via remote nitrogen plasma exposure. X-ray photoelectron and Raman spectroscopies indicate covalently bonded nitrogen in the WSe2 lattice as well as tunable nitrogen concentration with N2 plasma exposure time. Furthermore, nitrogen incorporation induces compressive strain on the WSe2 lattice after N2 plasma exposure. Finally, atomic force microscopy and scanning tunneling microscopy reveal that N2 plasma treatment needs to be carefully tuned to avoid any unwanted strain or surface damage.
NASA Astrophysics Data System (ADS)
Chen, Cheng-Yu; Hsiao, Li-Han; Chyi, Jen-Inn
2015-09-01
In this study, Ga-doped ZnO (GZO) thin films were deposited on GaN templates by using plasma-assisted molecular beam epitaxy. To obtain low resistivity GZO films, in-situ post-annealing under Zn overpressure was carried out to avoid the generation of acceptor-liked Zn vacancies. The resultant films showed optical transparency over 95% in the visible spectral range. By reducing the acceptor-like defects, GZO films with compensation ratio near 0.4 and resistivity simultaneously lower than 1×10-4 Ω cm have been successfully demonstrated.
Helium Atom Scattering from C2H6, F2HCCH3, F3CCH2F and C2F6 in Crossed Molecular Beams
NASA Astrophysics Data System (ADS)
Hammer, Markus; Seidel, Wolfhart
1997-10-01
Rotationally unresolved differential cross sections were measured in crossed molecular beam experiments by scattering Helium atoms from Ethane, 1,1-Difluoroethane, 1,1,1,2-Tetrafluoroethane and Hexafluoroethane. The damping of observed diffraction oscillations was used to extract anisotropic interaction potentials for these scattering systems applying the infinite order sudden approximation (IOSA). Binary macroscopic parameters such as second heterogeneous virial coefficients and the coefficients of diffusion and viscosity were computed from these potentials and compared to results from macroscopic experiments.
NASA Technical Reports Server (NTRS)
Nouhi, A.; Radhakrishnan, G.; Katz, J.; Koliwad, K.
1988-01-01
Epitaxial CdTe has been grown on both (100)GaAs/Si and (111)GaAs/Si substrates. A combination of molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) has been employed for the first time to achieve this growth: the GaAs layers are grown on Si substrates by MBE and the CdTe film is subsequently deposited on GaAs/Si by MOCVD. The grown layers have been characterized by X-ray diffraction, scanning electron microscopy, and photoluminescence.
Growth of analog Al(x)Ga(1-x)As/GaAs parabolic quantum wells by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Wang, S. M.; Treideris, G.; Chen, W. Q.; Andersson, T. G.
1993-01-01
Parabolic Al(x)Ga(1-x)As/GaAs quantum wells have been grown by molecular beam epitaxy with linear ramping of the Al effusion cell temperature, where the ramping rate was carefully analyzed to avoid a flux lag. The calculated potential profile from the temperature variation was very close to the parabolic one. Low-temperature photoluminescence showed clear interband transitions up to the n = 3 sublevels. The equal energy spacing between adjacent transitions involving heavy-hole states confirmed the parabolic shape of the quantum well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Hyunsun, E-mail: hyunsun@nfri.re.kr; In, Y.; Jeon, Y. M.
The change of tokamak plasma behavior by supersonic molecular beam injection (SMBI) was investigated by applying a three-dimensional magnetic perturbation that could suppress edge localized modes (ELMs). From the time trace of decreasing electron temperature and with increasing plasma density keeping the total confined energy constant, the SMBI seems to act as a cold pulse on the plasma. However, the ELM behaviors were changed drastically (i.e., the symptom of ELM suppression has disappeared). The plasma collisionality in the edge-pedestal region could play a role in the change of the ELM behaviors.
Comparison of fan beam, slit-slat and multi-pinhole collimators for molecular breast tomosynthesis
NASA Astrophysics Data System (ADS)
van Roosmalen, Jarno; Beekman, Freek J.; Goorden, Marlies C.
2018-05-01
Recently, we proposed and optimized dedicated multi-pinhole molecular breast tomosynthesis (MBT) that images a lightly compressed breast. As MBT may also be performed with other types of collimators, the aim of this paper is to optimize MBT with fan beam and slit-slat collimators and to compare its performance to that of multi-pinhole MBT to arrive at a truly optimized design. Using analytical expressions, we first optimized fan beam and slit-slat collimator parameters to reach maximum sensitivity at a series of given system resolutions. Additionally, we performed full system simulations of a breast phantom containing several tumours for the optimized designs. We found that at equal system resolution the maximum achievable sensitivity increases from pinhole to slit-slat to fan beam collimation with fan beam and slit-slat MBT having on average a 48% and 20% higher sensitivity than multi-pinhole MBT. Furthermore, by inspecting simulated images and applying a tumour-to-background contrast-to-noise (TB-CNR) analysis, we found that slit-slat collimators underperform with respect to the other collimator types. The fan beam collimators obtained a similar TB-CNR as the pinhole collimators, but the optimum was reached at different system resolutions. For fan beam collimators, a 6–8 mm system resolution was optimal in terms of TB-CNR, while with pinhole collimation highest TB-CNR was reached in the 7–10 mm range.
NASA Astrophysics Data System (ADS)
Park, Yeonjoon
The advanced semiconductor material InGaAsN was grown with nitrogen plasma assisted Molecular Beam Epitaxy (MBE). The InGaAsN layers were characterized with High Resolution X-ray Diffraction (HRXDF), Atomic Fore Microscope (AFM), X-ray Photoemission Spectroscopy (XPS) and Photo-Luminescence (PL). The reduction of the band gap energy was observed with the incorporation of nitrogen and the lattice matched condition to the GaAs substrate was achieved with the additional incorporation of indium. A detailed investigation was made for the growth mode changes from planar layer-by-layer growth to 3D faceted growth with a higher concentration of nitrogen. A new X-ray diffraction analysis was developed and applied to the MBE growth on GaAs(111)B, which is one of the facet planes of InGaAsN. As an effort to enhance the processing tools for advanced semiconductor materials, gas assisted Focused Ion Beam (FIB) vertical milling was performed on GaN. The FIB processed area shows an atomically flat surface, which is good enough for the fabrication of Double Bragg Reflector (DBR) mirrors for the Blue GaN Vertical Cavity Surface Emitting Laser (VCSEL) Diodes. An in-situ electron beam system was developed to combine the enhanced lithographic processing capability with the atomic layer growth capability by MBE. The electron beam system has a compensation capability against substrate vibration and thermal drift. In-situ electron beam lithography was performed with the low pressure assisting gas. The advanced processing and characterization methods developed in this thesis will assist the development of superior semiconductor materials for the future.
Zhang, Lujun; Chen, Qiufang; Su, Mingjie; Yan, Biao; Zhang, Xiangqi; Jiao, Zhen
2016-03-15
High-molecular-weight glutenin subunits (HMW-GSs) play a critical role in determining the viscoelastic properties of wheat. Mutations induced by ion beam radiation have been applied to improve the yield and quality of crop. In this study, HMW-GS-deficient mutant lines were selected and the effects of Glu-1 loci deletion on wheat quality properties were illustrated according to the analysis of dry seeds of common wheat (Triticum aestivum L.) Xiaoyan 81 treated with a nitrogen ion beam. Three HMW-GS-deficient mutant lines were obtained and then detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Large-chromosome-fragment deletion resulted in specific deficiencies, and the deleted region sizes were determined using molecular markers. Agronomic characters, quantity and proportion of glutenins and dough microstructure of the deletion lines all proved to be quite different from those of wild-type Xiaoyan 81. Analysis of quality properties suggested that GluA1(-) had superior property parameters, while GluB1(-) and GluD1(-) both showed a significant decrease in quality properties compared with Xiaoyan 81. The effects of the three Glu-1 loci on flour and dough quality-related parameters should be Glu-D1 > Glu-B1 > Glu-A1. Ion beam radiation can be used as a mutagen to create new crop mutants. © 2015 Society of Chemical Industry.
Hybrid Molecular and Spin-Semiconductor Based Research
2005-02-02
thick layers of low- temperature-grown (LTG) GaAs, i.e. GaAs grown at lower than normal substrate temperatures in a molecular beam epitaxy system...1999 – Oct.31, 2004 4. TITLE AND SUBTITLE Hybrid Molecular and Spin-Semiconductor Based research 5. FUNDING NUMBERS DAAD19-99-1-0198...spintronic devices. Thrust III is entitled “ Molecular Electronics” and its objective is to develop, characterize and model organic/inorganic
Efficient rotational cooling of Coulomb-crystallized molecular ions by a helium buffer gas.
Hansen, A K; Versolato, O O; Kłosowski, L; Kristensen, S B; Gingell, A; Schwarz, M; Windberger, A; Ullrich, J; López-Urrutia, J R Crespo; Drewsen, M
2014-04-03
The preparation of cold molecules is of great importance in many contexts, such as fundamental physics investigations, high-resolution spectroscopy of complex molecules, cold chemistry and astrochemistry. One versatile and widely applied method to cool molecules is helium buffer-gas cooling in either a supersonic beam expansion or a cryogenic trap environment. Another more recent method applicable to trapped molecular ions relies on sympathetic translational cooling, through collisional interactions with co-trapped, laser-cooled atomic ions, into spatially ordered structures called Coulomb crystals, combined with laser-controlled internal-state preparation. Here we present experimental results on helium buffer-gas cooling of the rotational degrees of freedom of MgH(+) molecular ions, which have been trapped and sympathetically cooled in a cryogenic linear radio-frequency quadrupole trap. With helium collision rates of only about ten per second--that is, four to five orders of magnitude lower than in typical buffer-gas cooling settings--we have cooled a single molecular ion to a rotational temperature of 7.5(+0.9)(-0.7) kelvin, the lowest such temperature so far measured. In addition, by varying the shape of, or the number of atomic and molecular ions in, larger Coulomb crystals, or both, we have tuned the effective rotational temperature from about 7 kelvin to about 60 kelvin by changing the translational micromotion energy of the ions. The extremely low helium collision rate may allow for sympathetic sideband cooling of single molecular ions, and eventually make quantum-logic spectroscopy of buffer-gas-cooled molecular ions feasible. Furthermore, application of the present cooling scheme to complex molecular ions should enable single- or few-state manipulations of individual molecules of biological interest.
Laser scattering method applied to determine the concentration of alfa 1-antitrypsin
NASA Astrophysics Data System (ADS)
Riquelme, Bibiana D.; Foresto, Patricia; Valverde, Juana R.; Rasia, Rodolfo J.
2000-04-01
An optical method has been developed to find (alpha) 1- antitrypsin unknown concentrations in human serum samples. This method applies light scattering properties exhibited by initially formed enzyme-inhibitor complexes and uses the curves of aggregation kinetics. It is independent of molecular hydrodynamics. Theoretical approaches showed that scattering properties of transient complexes obey the Rayleigh-Debie conditions. Experiments were performed on the Trypsin/(alpha) 1-antitrypsin system. Measurements were performed in newborn, adult and pregnant sera containing (alpha) 1-antitrypsin in the Trypsin excess region. The solution was excite by a He-Ne laser beam. SO, the particles formed during the reaction are scattering centers for the interacting light. The intensity of the scattered light at 90 degrees from incident beam depends on the nature of those scattering centers. Th rate of increase in scattered intensity depends on the variation in size and shape of the scatterers, being independent of its original size. Peak values of the first derivative linearly correlate with the concentration of (alpha) 1-antitrypsin originally present in the sample. Results are displayed 5 minutes after the initiation of the experimental process. Such speed is of great importance in the immuno-biochemistry determinations.
Growth and interface properties of Au Schottky contact on ZnO grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Asghar, M.; Mahmood, K.; Malik, Faisal; Hasan, M. A.
2013-06-01
In this paper, we have discussed the growth of ZnO by molecular beam epitaxy (MBE) and interface properties of Au Schottky contacts on grown sample. After the verification of structure and surface properties by X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM), respectively, Au metal contact was fabricated by e-beam evaporation to study contact properties. The high value of ideality factor (2.15) and barrier height (0.61 eV) at room temperature obtained by current-voltage (I-V) characteristics suggested the presence of interface states between metal and semiconductor. To confirm this observation we carried out frequency dependent capacitance-voltage (C-V) and conductance-voltage (G-V) demonstrated that the capacitance of diode decreased with increasing frequency. The reason of this behavior is related with density of interface states, series resistance and image force lowering. The C-2-V plot drawn to calculate the carrier concentration and barrier height with values 1.4×1016 cm-3 and 0.92 eV respectively. Again, high value of barrier height obtained from C-V as compared to the value obtained from I-V measurements revealed the presence of interface states. The density of these interface states (Dit) was calculated by well known Hill-Coleman method. The calculated value of Dit at 1 MHz frequency was 2×1012 eV-1 cm-2. The plot between interface states and frequency was also drawn which demonstrated that density of interface states had inverse proportion with measuring frequency.
NASA Astrophysics Data System (ADS)
Takada, M.; Kamada, S.; Suda, M.; Fujii, R.; Nakamura, M.; Hoshi, M.; Sato, H.; Endo, S.; Hamano, T.; Arai, S.; Higashimata, A.
2012-10-01
We developed a real-time and non-destructive method of beam profile measurement on a target under large beam current irradiation, and without any complex radiation detectors or electrical circuits. We measured the beam profiles on a target by observing the target temperature using an infrared-radiation thermometer camera. The target temperatures were increased and decreased quickly by starting and stopping the beam irradiation within 1 s in response speed. Our method could trace beam movements rapidly. The beam size and position were calibrated by measuring O-ring heat on the target. Our method has the potential to measure beam profiles at beam current over 1 mA for proton and deuteron with the energy around 3 MeV and allows accelerator operators to adjust the beam location during beam irradiation experiments without decreasing the beam current.
Structural analysis of the industrial grade calcite
NASA Astrophysics Data System (ADS)
Shah, Rajiv P.; Raval, Kamlesh G.
2017-05-01
The chemical, optical and structural characterization of the industrial grade Calcite by EDAX, FT-IR and XRD. EDAX is a widely used technique to analyze the chemical components in a material, FT-IR stands for Fourier Transform Infra-Red, the preferred method of infrared spectroscopy. The resultant spectrum represents the molecular absorption and transmission, creating a molecular fingerprint of the sample, The atomic planes of a crystal cause an incident beam of X-rays to interfere with one another as they leave the crystal. The phenomenon is called X ray diffraction.(XRD). Data analysis of EDAX, FT-IR and XRD has been carried out with help of various instruments and software and find out the results of the these industrial grade materials which are mostly used in ceramics industries
Hydrogen chemistry - Perspective on experiment and theory. [atmospheric chemistry
NASA Technical Reports Server (NTRS)
Kaufman, F.
1975-01-01
A review is presented of the advantages and limitations of various experimental methods for the investigation of the kinetics of hydrogen chemistry, including classic thermal and photochemical methods and the crossed molecular beam method. Special attention is given to the flash photolysis-resonance fluorescence apparatus developed by Braun et al, in which repetitive vacuum UV flashes result in the photolytic generation of the desired species, and to the discharge-flow technique. The use of various theoretical methods for the selection or elimination of kinetic data is considered in a brief discussion of the rate theory of two-body encounters and recombination-dissociation processes in neutral reactions. Recent kinetic studies of a series of OH reactions and of a major loss process for odd H in the stratosphere are summarized.
Light guiding properties of soap films
NASA Astrophysics Data System (ADS)
Emile, Janine; Emile, Olivier; Casanova, Federico
2013-02-01
The injection of a laser beam from the side in a horizontal free-standing draining soap film is reported. We observe the self-deflection of the beam that varies in a random way. The film thinning is affected by the injection and depends on the polarization of the light beam, not on the laser power. The liquid in the soap film is ejected towards the meniscus, without modifying its molecular structure. Besides, this injection seems to stabilize the film near the light beam propagation and to destabilize the film in the other zones. Consequences and applications are then discussed.
Hearon, Keith; Besset, Celine J.; Lonnecker, Alexander T.; Ware, Taylor; Voit, Walter E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.
2014-01-01
The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (Mw as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID:25411511
SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xiaoliang Sunney
Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly,more » even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular specificity than absorption and fluorescence. Current sensitivity limit of SRS microscopy has not yet reached single molecule detection. We proposed to capitalize on our state-of-the-art SRS microscopy and develop near-resonance enhanced SRS for single molecule detection of carotenoids and heme proteins. The specific aims we pursued are: (1) building the next SRS generation microscope that utilizes near resonance enhancement to allow detection and imaging of single molecules with undetectable fluorescence, such as -carotene. (2) using near-resonance SRS as a contrast mechanism to study dye-sensitize semiconductor interface, elucidating the heterogeneous electron ejection kinetics with high spatial and temporal resolution. (3) studying the binding and unbinding of oxygen in single hemoglobin molecules in order to gain molecular level understanding of the long-standing issue of cooperativity. The new methods developed in the fund period of this grant have advanced the detection sensitivity in many aspects. Near-resonance SRS improved the signal by using shorter wavelengths for SRS microscopy. Frequency modulation and multi-color SRS target the reduction of background to improve the chemical specificity of SRS while maintaining the high imaging speed. Time-domain coherent Raman scattering microscopy targets to reduce the noise floor of coherent Raman microscopy. These methods have already demonstrated first-of-a-kind new applications in biology and medical research. However, we are still one order of magnitude away from single molecule limit. It is important to continue to improve the laser specification and develop new imaging methods to finally achieve label-free single molecule microscopy.« less
C2H4ArF2 1,2-Difluoroethane - argon (1/1)
NASA Astrophysics Data System (ADS)
Demaison, J.
This document is part of Part 1 of Subvolume D 'Asymmetric Top Molecules' of Volume 29 'Molecular Constants Mostly from Microwave, Molecular Beam, and Sub-Doppler Laser Spectroscopy' of Landolt-Börnstein - Group II 'Molecules and Radicals'.
C2H4ArF2 1,1-Difluoroethane - argon (1/1)
NASA Astrophysics Data System (ADS)
Demaison, J.
This document is part of Part 1 of Subvolume D 'Asymmetric Top Molecules' of Volume 29 'Molecular Constants Mostly from Microwave, Molecular Beam, and Sub-Doppler Laser Spectroscopy' of Landolt-Börnstein - Group II 'Molecules and Radicals'.
Atomic and Molecular Spectroscopic Studies of the DIII-D Neutral Beam Ion Source and Neutralizer
NASA Astrophysics Data System (ADS)
Crowley, B.; Rauch, J.; Scoville, J. T.; Sharma, S. K.; Choksi, B.
2015-11-01
The neutral beam system is interesting in that it comprises two distinct low temperature plasmas. Firstly, the ion source is typically a filament or RF driven plasma from which ions are extracted by a high voltage accelerator grid system. Secondly the neutralizer is essentially a low temperature plasma system with the beam serving as the primary ionization source and the neutralizer walls serving as conducting boundaries. Atomic spectroscopy of Doppler shifted D-alpha light emanating from the fast atoms is studied to determine the composition of the source and the divergence of the beam. Molecular spectroscopy involves measuring fine structure in electron-vibrational rotational bands. The technique has applications in low temperature plasmas and here it is used to determine gas temperature in the neutralizer. We describe the experimental set-up and the physics model used to relate the spectroscopic data to the plasma parameters and we present results of recent experiments exploring how to increase neutralization efficiency. Supported by the US DOE under DE-FC02-04ER54698.
Simulation Approach for Microscale Noncontinuum Gas-Phase Heat Transfer
NASA Astrophysics Data System (ADS)
Torczynski, J. R.; Gallis, M. A.
2008-11-01
In microscale thermal actuators, gas-phase heat transfer from the heated beams to the adjacent unheated substrate is often the main energy-loss mechanism. Since the beam-substrate gap is comparable to the molecular mean free path, noncontinuum gas effects are important. A simulation approach is presented in which gas-phase heat transfer is described by Fourier's law in the bulk gas and by a wall boundary condition that equates the normal heat flux to the product of the gas-solid temperature difference and a heat transfer coefficient. The dimensionless parameters in this heat transfer coefficient are determined by comparison to Direct Simulation Monte Carlo (DSMC) results for heat transfer from beams of rectangular cross section to the substrate at free-molecular to near-continuum gas pressures. This simulation approach produces reasonably accurate gas-phase heat-transfer results for wide ranges of beam geometries and gas pressures. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Dissociative electron attachment to C{sub 2}F{sub 5} radicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haughey, Sean A.; Field, Thomas A.; Langer, Judith
Dissociative electron attachment to the reactive C{sub 2}F{sub 5} molecular radical has been investigated with two complimentary experimental methods; a single collision beam experiment and a new flowing afterglow Langmuir probe technique. The beam results show that F{sup -} is formed close to zero electron energy in dissociative electron attachment to C{sub 2}F{sub 5}. The afterglow measurements also show that F{sup -} is formed in collisions between electrons and C{sub 2}F{sub 5} molecules with rate constants of 3.7 Multiplication-Sign 10{sup -9} cm{sup 3} s{sup -1} to 4.7 Multiplication-Sign 10{sup -9} cm{sup 3} s{sup -1} at temperatures of 300-600 K. Themore » rate constant increases slowly with increasing temperature, but the rise observed is smaller than the experimental uncertainty of 35%.« less
Optical Imaging of Ionizing Radiation from Clinical Sources.
Shaffer, Travis M; Drain, Charles Michael; Grimm, Jan
2016-11-01
Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
A Zeeman slower for diatomic molecules
NASA Astrophysics Data System (ADS)
Petzold, M.; Kaebert, P.; Gersema, P.; Siercke, M.; Ospelkaus, S.
2018-04-01
We present a novel slowing scheme for beams of laser-coolable diatomic molecules reminiscent of Zeeman slowing of atomic beams. The scheme results in efficient compression of the one-dimensional velocity distribution to velocities trappable by magnetic or magneto-optical traps. We experimentally demonstrate our method in an atomic testbed and show an enhancement of flux below v = 35 m s‑1 by a factor of ≈20 compared to white light slowing. 3D Monte Carlo simulations performed to model the experiment show excellent agreement. We apply the same simulations to the prototype molecule 88Sr19F and expect 15% of the initial flux to be continuously compressed in a narrow velocity window at around 10 m s‑1. This is the first experimentally shown continuous and dissipative slowing technique in molecule-like level structures, promising to provide the missing link for the preparation of large ultracold molecular ensembles.
Direct detection of x-rays for protein crystallography employing a thick, large area CCD
Atac, Muzaffer; McKay, Timothy
1999-01-01
An apparatus and method for directly determining the crystalline structure of a protein crystal. The crystal is irradiated by a finely collimated x-ray beam. The interaction of the x-ray beam with the crystal produces scattered x-rays. These scattered x-rays are detected by means of a large area, thick CCD which is capable of measuring a significant number of scattered x-rays which impact its surface. The CCD is capable of detecting the position of impact of the scattered x-ray on the surface of the CCD and the quantity of scattered x-rays which impact the same cell or pixel. This data is then processed in real-time and the processed data is outputted to produce a image of the structure of the crystal. If this crystal is a protein the molecular structure of the protein can be determined from the data received.
NASA Technical Reports Server (NTRS)
Alterovitz, Samuel A.; Snyder, Paul G.; Merkel, Kenneth G.; Woollam, John A.; Radulescu, David C.
1988-01-01
Variable angle spectroscopic ellipsometry has been applied to a GaAs-AlGaAs multilayer structure to obtain a three-dimensional characterization, using repetitive measurements at several spots on the same sample. The reproducibility of the layer thickness measurements is of order 10 A, while the lateral dimension is limited by beam diameter, presently of order 1 mm. Thus, the three-dimensional result mainly gives the sample homogeneity. In the present case three spots were used to scan the homogeneity over 1 in of a wafer which had molecular-beam epitaxially grown layers. The thickness of the AlGaAs, GaAs, and oxide layers and the Al concentration varied by 1 percent or less from edge to edge. This result was confirmed by two methods of data analysis. No evidence of an interfacial layer was observed on top of the AlGaAs.
Application of Laser Mass Spectrometry to Art and Archaeology
NASA Technical Reports Server (NTRS)
Gulian, Lase Lisa E.; Callahan, Michael P.; Muliadi, Sarah; Owens, Shawn; McGovern, Patrick E.; Schmidt, Catherine M.; Trentelman, Karen A.; deVries, Mattanjah S.
2011-01-01
REMPI laser mass spectrometry is a combination of resonance enhanced multiphoton ionization spectroscopy and time of flight mass spectrometry, This technique enables the collection of mass specific optical spectra as well as of optically selected mass spectra. Analytes are jet-cooled by entrainment in a molecular beam, and this low temperature gas phase analysis has the benefit of excellent vibronic resolution. Utilizing this method, mass spectrometric analysis of historically relevant samples can be simplified and improved; Optical selection of targets eliminates the need for chromatography while knowledge of a target's gas phase spectroscopy allows for facile differentiation of molecules that are in the aqueous phase considered spectroscopically indistinguishable. These two factors allow smaller sample sizes than commercial MS instruments, which in turn will require less damage to objects of antiquity. We have explored methods to optimize REMPI laser mass spectrometry as an analytical tool to archaeology using theobromine and caffeine as molecular markers in Mesoamerican pottery, and are expanding this approach to the field of art to examine laccaic acid in shellacs.
Dissociative recombination of molecular ions with electrons
NASA Technical Reports Server (NTRS)
Johnsen, Rainer
1990-01-01
An overview is presented for the present state of the art of laboratory measurements of the dissociative recombination of molecular ions with electrons. Most work has focussed on obtaining rates and their temperature dependence, as these are of primary interest for model calculations of ionospheres. A comparison of data obtained using the microwave afterglow method, the flowing afterglow technique, and the merged beam technique shows that generally the agreement is quite good, but there are some serious discrepancies, especially in the case of H(3+) recombination, that need to be resolved. Results of some earlier experimental work need to be reexamined in the light of more recent developments. Such cases are pointed out and a compilation of rate coefficients that have withstood scrutiny is presented. Recent advances in experimental methods, such as the use of laser-in-duced fluorescence, make it possible to identify some neutral products of dissociative recombination. What has been done so far and what results one might expect from future work are briefly reviewed.
The structural characteristics of inflatable beams
NASA Astrophysics Data System (ADS)
Wicker, William J.
1992-08-01
Two inflatable beams are designed and fabricated from polyethylene of ultrahigh molecular weight, and the structures are tested against similar composite and metal-alloy tubes. Specific attention is given to the choice of material that insures material stiffness, good strength-to-weight ratio, creep resistance, and durability. A cloth beam is built from a commercial extended-chain polyethylene fiber, and the inflated beams are tested by means of three- and four-point loading to measure bending and shear deformation. Comparing geometrically similar structures shows that the fabric beams can be about 35 percent as stiff as aluminum for small deflections. The inflatable beams have elastic stiffness coefficients five and two times higher than those for nylon and polyester tubes, respectively. Inflatable structures are concluded to hold promise for lightweight aerospace applications which demand small storage areas.
Effect of SiC buffer layer on GaN growth on Si via PA-MBE
NASA Astrophysics Data System (ADS)
Kukushkin, S. A.; Mizerov, A. M.; Osipov, A. V.; Redkov, A. V.; Telyatnik, R. S.; Timoshnev, S. N.
2017-11-01
The study is devoted to comparison of GaN thin films grown on SiC/Si substrates made by the method of atoms substitution with the films grown directly on Si substrates. The growth was performed in a single process via plasma assisted molecular beam epitaxy. The samples were studied via optical microscopy, Raman spectroscopy, ellipsometry, and a comparison of their characteristics was made. Using chemical etching in KOH, the polarity of GaN films grown on SiC/Si and Si substrates was determined.
Application of the ALE and MBE Methods to the Growth of Layered Hg sub x Cd sub 1-x Te Films.
1986-09-26
films / We have studied the applicability of the Atomic Layer Epitaxy (ALE, vee Ref. -1pand Molecular Beam Epitaxy (MBE) ito growth of Hg2 Cdi- ,Te...thin- films throughout the composition range 0 x $ 0.8. The progress of the Contract has been reported periodically in five interim reports. This final...I separate sources) yielded films with high x values. On the grounds of these observations we do not find ALE suitable for growth of HgCdTe. 2) ALE
Method for Hot Real-Time Analysis of Pyrolysis Vapors at Pilot Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomeroy, Marc D
Pyrolysis oils contain more than 400 compounds, up to 60% of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during quenching and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition before condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors at the pilot scale, many challenges must be overcome.
Defect-driven localization crossovers in MBE-grown La-doped SrSn O3 films
NASA Astrophysics Data System (ADS)
Wang, Tianqi; Thoutam, Laxman Raju; Prakash, Abhinav; Nunn, William; Haugstad, Greg; Jalan, Bharat
2017-11-01
Through systematic control of cation stoichiometry using a hybrid molecular beam epitaxy method, we show a crossover from weak to strong localization of electronic carriers in La-doped SrSn O3 films on LaAl O3 (001). We demonstrate that substrate-induced dislocations in these films can have a strong influence on the electron phase coherence length resulting in two-dimensional to three-dimensional weak localization crossover. We discuss the correlation between electronic transport, and defects associated with nonstoichiometry and dislocations.
Crosslinking of aromatic polyamides via pendant propargyl groups
NASA Technical Reports Server (NTRS)
St.clair, A. K.; St.clair, T. L.; Barrick, J. D.; Campbell, F. J.
1980-01-01
Methods for crosslinking N-methyl substituted aromatic polyamides were investigated in an effort to improve the applicability of these polymers as matrix resins for Kavlar trademark fiber composites. High molecular weight polymers were prepared from isophthaloyl dichloride and 4,4'- bis(methylamino)diphenylmethane with varying proportions of the N,N'bispropargyl diamine incorporated as a crosslinking agent. The propargylcontaining diamines were crosslinked thermally and characterized by infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Attempts were also made to crosslink polyamide films by exposure to ultraviolet light, electron beam, and gamma radiation.
Terpolymerization of ethylene, sulfur dioxide and carbon monoxide
Johnson, Richard; Steinberg, Meyer
1981-01-01
This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.
Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions
NASA Astrophysics Data System (ADS)
Noël, Céline; Houssiau, Laurent
2016-05-01
The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs+ beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs+ ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.
NASA Astrophysics Data System (ADS)
Marceca, Ernesto; Becker, Jörg A.; Hensel, Friedrich
1997-08-01
Under routine source conditions, the optimum nozzle-skimmer distance to achieve maximum molecular beam intensities is within the range of a few millimeters. In cases where double skimming is additionally required, the distance between the skimmers should be kept small in order to sample a sufficiently large solid angle of the beam and hence maintain a good enough intensity. These two facts make it normally difficult to isolate the first from the second expansion chamber using a commercial vacuum gate valve due to the lack of remaining space. This note presents the design of a vacuum-tight valve which allows the aperture of a skimmer to be closed by plugging a needle directly against its internal conical wall. The valve can be driven manually or pneumatically from outside the vacuum chamber. The helium conductance of the valve was measured to be better than 1×10-8 mbar×l×s-1 for a helium partial pressure difference of 1 bar.
In-plane InSb nanowires grown by selective area molecular beam epitaxy on semi-insulating substrate.
Desplanque, L; Bucamp, A; Troadec, D; Patriarche, G; Wallart, X
2018-07-27
In-plane InSb nanostructures are grown on a semi-insulating GaAs substrate using an AlGaSb buffer layer covered with a patterned SiO 2 mask and selective area molecular beam epitaxy. The shape of these nanostructures is defined by the aperture in the silicon dioxide layer used as a selective mask thanks to the use of an atomic hydrogen flux during the growth. Transmission electron microscopy reveals that the mismatch accommodation between InSb and GaAs is obtained in two steps via the formation of an array of misfit dislocations both at the AlGaSb buffer layer/GaAs and at the InSb nanostructures/AlGaSb interfaces. Several micron long in-plane nanowires (NWs) can be achieved as well as more complex nanostructures such as branched NWs. The electrical properties of the material are investigated by the characterization of an InSb NW MOSFET down to 77 K. The resulting room temperature field effect mobility values are comparable with those reported on back-gated MOSFETs based on InSb NWs obtained by vapor liquid solid growth or electrodeposition. This growth method paves the way to the fabrication of complex InSb-based nanostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazioti, C.; Kehagias, Th.; Pavlidou, E.
2015-10-21
We investigate the structural properties of a series of high alloy content InGaN epilayers grown by plasma-assisted molecular beam epitaxy, employing the deposition temperature as variable under invariant element fluxes. Using transmission electron microscopy methods, distinct strain relaxation modes were observed, depending on the indium content attained through temperature adjustment. At lower indium contents, strain relaxation by V-pit formation dominated, with concurrent formation of an indium-rich interfacial zone. With increasing indium content, this mechanism was gradually substituted by the introduction of a self-formed strained interfacial InGaN layer of lower indium content, as well as multiple intrinsic basal stacking faults andmore » threading dislocations in the rest of the film. We show that this interfacial layer is not chemically abrupt and that major plastic strain relaxation through defect introduction commences upon reaching a critical indium concentration as a result of compositional pulling. Upon further increase of the indium content, this relaxation mode was again gradually succeeded by the increase in the density of misfit dislocations at the InGaN/GaN interface, leading eventually to the suppression of the strained InGaN layer and basal stacking faults.« less
Analysis of twin defects in GaAs(111)B molecular beam epitaxy growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Yeonjoon; Cich, Michael J.; Zhao, Rian
2000-05-01
The formation of twin is common during GaAs(111) and GaN(0001) molecular beam epitaxy (MBE) metalorganic chemical vapor deposition growth. A stacking fault in the zinc-blende (ZB)(111) direction can be described as an insertion of one monolayer of wurtzite structure, sandwiched between two ZB structures that have been rotated 60 degree sign along the growth direction. GaAs(111)A/B MBE growth within typical growth temperature regimes is complicated by the formation of pyramidal structures and 60 degree sign rotated twins, which are caused by faceting and stacking fault formation. Although previous studies have revealed much about the structure of these twins, a well-establishedmore » simple nondestructive characterization method which allows the measurement of total aerial density of the twins does not exist at present. In this article, the twin density of AlGaAs layers grown on 1 degree sign miscut GaAs(111)B substrates has been measured using high resolution x-ray diffraction, and characterized with a combination of Nomarski microscopy, atomic force microscopy, and transmission electron microscopy. These comparisons permit the relationship between the aerial twin density and the growth condition to be determined quantitatively. (c) 2000 American Vacuum Society.« less
Monoenergetic source of kilodalton ions from Taylor cones of ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larriba, C.; Castro, S.; Fernandez de la Mora, J.
2007-04-15
The ionic liquid ion sources (ILISs) recently introduced by Lozano and Martinez Sanchez [J. Colloid Interface Sci. 282, 415 (2005)], based on electrochemically etched tungsten tips as emitters for Taylor cones of ionic liquids (ILs), have been tested with ionic liquids [A{sup +}B{sup -}] of increasing molecular weight and viscosity. These ILs have electrical conductivities well below 1 S/m and were previously thought to be unsuitable to operate in the purely ionic regime because their Taylor cones produce mostly charged drops from conventional capillary tube sources. Strikingly, all the ILs tried on ILIS form charged beams composed exclusively of smallmore » ions and cluster ions A{sup +}(AB){sub n} or B{sup -}(AB){sub n}, with abundances generally peaking at n=1. Particularly interesting are the positive and negative ion beams produced from the room temperature molten salts 1-methyl-3-pentylimidazolium tris(pentafluoroethyl) trifluorophosphate (C{sub 5}MI-(C{sub 2}F{sub 5}){sub 3}PF{sub 3}) and 1-ethyl-3-methylimidazolium bis(pentafluoroethyl) sulfonylimide (EMI-(C{sub 2}F{sub 5}SO{sub 3}){sub 2}N). We extend to these heavier species the previous conclusions from Lozano and Martinez Sanchez on the narrow energy distributions of the ion beams. In combination with suitable ILs, this source yields nanoamphere currents of positive and negative monoenergetic molecular ions with masses exceeding 2000 amu. Potential applications are in biological secondary ion mass spectrometry, chemically assisted high-resolution ion beam etching, and electrical propulsion. Advantages of the ILISs versus similar liquid metal ion sources include the possibility to form negative as well as positive ion beams and a much wider range of ion compositions and molecular masses.« less
1995-12-01
of a Molecular Beam Epitaxy (MBE) system prior to growing a Vertical Cavity Surface Emitting Laser ( VCSEL ). VCSEL bistability is discussed later in...addition, optical bistability 1 in the reflectivity of a DBR, as well as in the lasing power, wavelength, and beam divergence of a lasing VCSEL are...Spectral Reflectivity of AlGaAs/AlAs VCSEL Top DBR Mirror Cavity Bottom DBR Mirror Substrate Output Beam Resonance Pump Minimum Stop Band Figure 2. VCSEL
Quantum control of molecular fragmentation in strong laser fields
NASA Astrophysics Data System (ADS)
Zohrabi, Mohammad
Present advances in laser technology allow the production of ultrashort (<˜5 fs, approaching single cycle at 800 nm), intense tabletop laser pulses. At these high intensities laser-matter interactions cannot be described with perturbation theory since multiphoton processes are involved. This is in contrast to photodissociation by the absorption of a single photon, which is well described by perturbation theory. For example, at high intensities (<˜5x1013 W/cm2) the fragmentation of molecular hydrogen ions has been observed via the absorption of three or more photons. In another example, an intriguing dissociation mechanism has been observed where molecular hydrogen ions seem to fragment by apparently absorbing no photons. This is actually a two photon process, photoabsorption followed by stimulated emission, resulting in low energy fragments. We are interested in exploring these kinds of multiphoton processes. Our research group has studied the dynamics and control of fragmentation induced by strong laser fields in a variety of molecular targets. The main goal is to provide a basic understanding of fragmentation mechanisms and possible control schemes of benchmark systems such as H2+. This knowledge is further extended to more complex systems like the benchmark H3+ polyatomic and other molecules. In this dissertation, we report research based on two types of experiments. In the first part, we describe laser-induced fragmentation of molecular ion-beam targets. In the latter part, we discuss the formation of highly-excited neutral fragments from hydrogen molecules using ultrashort laser pulses. In carrying out these experiments, we have also extended experimental techniques beyond their previous capabilities. We have performed a few experiments to advance our understanding of laser-induced fragmentation of molecular-ion beams. For instance, we explored vibrationally resolved spectra of O2+ dissociation using various wavelengths. We observed a vibrational suppression effect in the dissociation spectra due to the small magnitude of the dipole transition moment, which depends on the photon energy --- a phenomenon known as Cooper minima. By changing the laser wavelength, the Cooper minima shift, a fact that was used to identify the dissociation pathways. In another project, we studied the carrier-envelope phase (CEP) dependences of highly-excited fragments from hydrogen molecules. General CEP theory predicts a CEP dependence in the total dissociation yield due to the interference of dissociation pathways differing by an even net number of photons, and our measurements are consistent with this prediction. Moreover, we were able to extract the difference in the net number of photons involved in the interfering pathways by using a Fourier analysis. In terms of our experimental method, we have implemented a pump-probe style technique on a thin molecular ion-beam target and explored the feasibility of such experiments. The results presented in this work should lead to a better understanding of the dynamics and control in molecular fragmentation induced by intense laser fields.
Spatial fluorescence cross-correlation spectroscopy between core and ring pinholes
NASA Astrophysics Data System (ADS)
Blancquaert, Yoann; Delon, Antoine; Derouard, Jacques; Jaffiol, Rodolphe
2006-04-01
Fluorescence Correlation Spectroscopy (FCS) is an attractive method to measure molecular concentration, mobility parameters and chemical kinetics. However its ability to descriminate different diffusing species needs to be improved. Recently, we have proposed a simplified spatial Fluorescence cross Correlation Spectroscopy (sFCCS) method, allowing, with only one focused laser beam to obtain two confocal volumes spatially shifted. Now, we present a new sFCCS optical geometry where the two pinholes, a ring and core, are encapsulated one in the other. In this approach all physical and chemical processes that occur in a single volume, like singlet-triplet dynamics and photobleaching, can be eliminated; moreover, this new optical geometry optimises the collection of fluorescence. The first cross Correlation curves for Rhodamine 6G (Rh6G) in Ethanol are presented, in addition to the effect of the size of fluorescent particules (nano-beads, diameters : 20, 100 and 200 nm). The relative simplicity of the method leads us to propose sFCCS as an appropriate method for the determination of diffusion parameters of fluorophores in solution or cells. Nevertheless, progresses in the ingeniering of the optical Molecular Detection Efficiency volumes are highly desirable, in order to improve the descrimination between the cross correlated volumes.
Heavy-ion beam induced effects in enriched gadolinium target films prepared by molecular plating
NASA Astrophysics Data System (ADS)
Mayorov, D. A.; Tereshatov, E. E.; Werke, T. A.; Frey, M. M.; Folden, C. M.
2017-09-01
A series of enriched gadolinium (Gd, Z = 64) targets was prepared using the molecular plating process for nuclear physics experiments at the Cyclotron Institute at Texas A&M University. After irradiation with 48Ca and 45Sc projectiles at center-of-target energies of Ecot = 3.8-4.7 MeV/u, the molecular films displayed visible discoloration. The morphology of the films was examined and compared to the intact target surface. The thin films underwent a heavy-ion beam-induced density change as identified by scanning electron microscopy and α-particle energy loss measurements. The films became thinner and more homogenous, with the transformation occurring early on in the irradiation. This transformation is best described as a crystalline-to-amorphous phase transition induced by atomic displacement and destruction of structural order of the original film. The chemical composition of the thin films was surveyed using energy dispersive spectroscopy and X-ray diffraction, with the results confirming the complex chemistry of the molecular films previously noted in other publications.
DOE R&D Accomplishments Database
Sibener, S. J.; Lee, Y. T.
1978-05-01
An experiment was performed which confirms the existence of an internal mode dependence of molecular sticking probabilities for collisions of molecules with a cold surface. The scattering of a velocity selected effusive beam of CCl{sub 4} from a 90 K CC1{sub 4} ice surface has been studied at five translational velocities and for two different internal temperatures. At a surface temperature of 90 K (approx. 99% sticking probability) a four fold increase in reflected intensity was observed for the internally excited (560 K) CC1{sub 4} relative to the room temperature (298 K) CC1{sub 4} at a translational velocity of 2.5 X 10{sup 4} cm/sec. For a surface temperature of 90 K all angular distributions were found to peak 15{sup 0} superspecularly independent of incident velocity.
Cold chemistry with cold molecules
NASA Astrophysics Data System (ADS)
Shagam, Yuval
Low temperature chemistry has been predicted to be dominated by quantum effects, such as shape resonances, where colliding particles exhibit wave-like behavior and tunnel through potential barriers. Observation of these quantum effects provides valuable insight into the microscopic mechanism that governs scattering processes. Our recent advances in the control of neutral supersonic molecular beams, namely merged beam experiments, have enabled continuous tuning of collision energies from the classical regime at room temperature down to 0.01 kelvin, where a quantum description of the dynamics is necessary. I will discuss our use of this technique to study how the dynamics change when molecules participate in collisions, demonstrating the crucial role the molecular quantum rotor plays. We have found that at low temperatures rotational state of the molecule can strongly affect collision dynamics considerably changing reaction rates, due to the different symmetries of the molecular wavefunction.
Nanostructured silicon membranes for control of molecular transport.
Srijanto, Bernadeta R; Retterer, Scott T; Fowlkes, Jason D; Doktycz, Mitchel J
2010-11-01
A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure and surface chemistry of the pores. Here, a combination of electron beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating. Functional characterization of the membranes was performed by using quantitative fluorescence microscopy to document the transport of molecular species across the membrane.
Lovas, F. J.; Lide, D. R.; Suenram, R. D.; Johnson, D. R.
2012-01-01
This paper describes the beginning and evolution of microwave rotational spectroscopic research starting in 1954 at the National Bureau of Standards (NBS), located at that time in Washington, DC, through the present at NIST in Gaithersburg, MD. David Lide was hired in 1954 to start this research employing Stark modulated waveguide septum cells. When Donald R. Johnson joined the lab in 1968, he developed parallel plate cells coupled with rf and DC discharge methods to study free radicals and transient species. In the mid 1980s Lovas and Suenram constructed a pulsed molecular beam Fourier Transform microwave (FTMW) spectrometer to study hydrogen bonded and van der Waals dimers and trimers. This article describes the types of molecules studied and the type molecular properties derived from these measurements as well as some of the instruments developed for these studies. The two major areas of application described are atmospheric chemistry and molecular radio astronomy. PMID:26900528
Lovas, F J; Lide, D R; Suenram, R D; Johnson, D R
2012-01-01
This paper describes the beginning and evolution of microwave rotational spectroscopic research starting in 1954 at the National Bureau of Standards (NBS), located at that time in Washington, DC, through the present at NIST in Gaithersburg, MD. David Lide was hired in 1954 to start this research employing Stark modulated waveguide septum cells. When Donald R. Johnson joined the lab in 1968, he developed parallel plate cells coupled with rf and DC discharge methods to study free radicals and transient species. In the mid 1980s Lovas and Suenram constructed a pulsed molecular beam Fourier Transform microwave (FTMW) spectrometer to study hydrogen bonded and van der Waals dimers and trimers. This article describes the types of molecules studied and the type molecular properties derived from these measurements as well as some of the instruments developed for these studies. The two major areas of application described are atmospheric chemistry and molecular radio astronomy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, N; Shen, C; Tian, Z
Purpose: Monte Carlo (MC) simulation is typically regarded as the most accurate dose calculation method for proton therapy. Yet for real clinical cases, the overall accuracy also depends on that of the MC beam model. Commissioning a beam model to faithfully represent a real beam requires finely tuning a set of model parameters, which could be tedious given the large number of pencil beams to commmission. This abstract reports an automatic beam-model commissioning method for pencil-beam scanning proton therapy via an optimization approach. Methods: We modeled a real pencil beam with energy and spatial spread following Gaussian distributions. Mean energy,more » and energy and spatial spread are model parameters. To commission against a real beam, we first performed MC simulations to calculate dose distributions of a set of ideal (monoenergetic, zero-size) pencil beams. Dose distribution for a real pencil beam is hence linear superposition of doses for those ideal pencil beams with weights in the Gaussian form. We formulated the commissioning task as an optimization problem, such that the calculated central axis depth dose and lateral profiles at several depths match corresponding measurements. An iterative algorithm combining conjugate gradient method and parameter fitting was employed to solve the optimization problem. We validated our method in simulation studies. Results: We calculated dose distributions for three real pencil beams with nominal energies 83, 147 and 199 MeV using realistic beam parameters. These data were regarded as measurements and used for commission. After commissioning, average difference in energy and beam spread between determined values and ground truth were 4.6% and 0.2%. With the commissioned model, we recomputed dose. Mean dose differences from measurements were 0.64%, 0.20% and 0.25%. Conclusion: The developed automatic MC beam-model commissioning method for pencil-beam scanning proton therapy can determine beam model parameters with satisfactory accuracy.« less
Low defect densities in molecular beam epitaxial GaAs achieved by isoelectronic In doping
NASA Technical Reports Server (NTRS)
Bhattacharya, P. K.; Dhar, S.; Berger, P.; Juang, F.-Y.
1986-01-01
A study has been made of the effects of adding small amounts of In (0.2-1.2 pct) to GaAs grown by molecular beam epitaxy. The density of four electron traps decreases in concentration by an order of magnitude, and the peak intensities of prominent emissions in the excitonic spectra are reduced with increase in In content. Based on the higher surface migration rate of In, compared to Ga, at the growth temperatures it is apparent that the traps and the excitonic transitions are related to point defects. This agrees with earlier observations by Briones and Collins (1982) and Skromme et al. (1985).
Hole defects in molecular beam epitaxially grown p-GaAs introduced by alpha irradiation
NASA Astrophysics Data System (ADS)
Goodman, S. A.; Auret, F. D.; Meyer, W. E.
1994-01-01
Epitaxial aluminum Schottky barrier diodes on molecular beam epitaxially grown p-GaAs with a free carrier density of 2×1016 cm-3 were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radio nuclide. For the first time, the radiation induced hole defects are characterized using conventional deep level transient spectroscopy (DLTS). The introduction rates and DLTS ``signatures'' of three prominent radiation induced defects Hα1, Hα4, and Hα5, situated 0.08, 0.20, and 0.30 eV above the valence band, respectively, are calculated and compared to those of similar defects introduced during electron irradiation.
Neutron molecular spectroscopy using a white beam time-of-flight spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.; Jorgensen, J.D.; Berney, C.V.
1978-01-01
An inverted-geometry white beam TOF neutron spectrometer using an extended graphite crystal analyzer was constructed at the CP-5 reactor at Argonne. A performance test of the spectrometer for incoherent inelastic scattering studies was made with five selected molecular solids. The results demonstrate the utility of such a spectrometer for investigation of lattice vibrational spectra of hydrogenous compounds in the energy range 0--400 cm/sup -1/. We describe design considerations and energy resolution of the spectrometer, and discuss observed low-frequency spectra of acetic acid (CH/sub 3/COOH, CD/sub 3/COOH, and CH/sub 3/COOD), cyclohexane, and cyclopentane.
Heavily boron-doped Si layers grown below 700 C by molecular beam epitaxy using a HBO2 source
NASA Technical Reports Server (NTRS)
Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.
1989-01-01
Boron doping in Si layers grown by molecular beam epitaxy (MBE) at 500-700 C using an HBO2 source has been studied. The maximum boron concentration without detectable oxygen incorporation for a given substrate temperature and Si growth rate has been determined using secondary-ion mass spectrometry analysis. Boron present in the Si MBE layers grown at 550-700 C was found to be electrically active, independent of the amount of oxygen incorporation. By reducing the Si growth rate, highly boron-doped layers have been grown at 600 C without detectable oxygen incorporation.
InN island shape and its dependence on growth condition of molecular-beam epitaxy
NASA Astrophysics Data System (ADS)
Cao, Y. G.; Xie, M. H.; Liu, Y.; Ng, Y. F.; Wu, H. S.; Tong, S. Y.
2003-12-01
During molecular-beam epitaxy of InN films on GaN(0001) surface, three-dimensional (3D) islands are observed following an initial wetting layer formation. Depending on deposition condition, the 3D islands take different shapes. Pyramidal islands form when excess nitrogen fluxes are used, whereas pillar-shaped islands are obtained when excess indium fluxes are employed. The pillar-shaped islands are identified to represent the equilibrium shape, whereas the pyramidal ones are limited by kinetics. As the size of islands increases, their aspect ratio shows a decreasing trend, which is attributed to a gradual relaxation of strain in the layer by defects.
In situ surface/interface x-ray diffractometer for oxide molecular beam epitaxy
Lee, J. H.; Tung, I. C.; Chang, S. -H.; ...
2016-01-05
In situ studies of oxide molecular beam epitaxy by synchrotron x-ray scattering has been made possible by upgrading an existing UHV/molecular beam epitaxy (MBE) six-circle diffractometer system. For oxide MBE growth, pure ozone delivery to the chamber has been made available, and several new deposition sources have been made available on a new 12 in. CF (ConFlat, a registered trademark of Varian, Inc.) flange. X-ray diffraction has been used as a major probe for film growth and structures for the system. In the original design, electron diffraction was intended for the secondary diagnostics available without the necessity of the x-raymore » and located at separate positions. Deposition of films was made possible at the two diagnostic positions. And, the aiming of the evaporation sources is fixed to the point between two locations. Ozone can be supplied through two separate nozzles for each location. Also two separate thickness monitors are installed. Finally, additional features of the equipment are also presented together with the data taken during typical oxide film growth to illustrate the depth of information available via in situ x-ray techniques.« less
Fourier Transform Microwave Spectroscopic Studies of Dimethyl Ether and Ethylene Flames
NASA Astrophysics Data System (ADS)
Obenchain, Daniel A.; Wullenkord, Julia; Kohse-Höinghaus, Katharina; Grabow, Jens-Uwe; Hansen, Nils
2017-06-01
Microwave spectroscopy has been a proven technique for the detection of short-lived molecules produced from a variety of molecular sources. With the goal of observing more reactive intermediates produced in combustion reactions, the products of a home-built flat flame burner were measured on a coaxially oriented beam resonator arrangement (COBRA) Fourier transform microwave spectrometer. The products are coupled into a molecular beam using a fast-mixing nozzle styled after the work of Gutowsky and co-workers. Probing the flame at various positions, the relative abundance of products can be observed as a function of flame depth. One dimensional intensity profiles are available for formaldehyde, ketene, acetaldehyde, and dimethyl ether, where either a dimethyl ether fuel or an ethylene fuel was burned in the presence of oxygen. The current arrangement allows only for stable species produced in the flame to be observed in the molecular beam. This combination of species source and detection shows promise for future work in observing new, short-lived, combustion intermediates. J.-U. Grabow, W. Stahl, H. Dreizler, Rev. Sci. Instrum. 67, 4072, 1996 T. Emilsson, T. D. Klots, R. S. Ruoff, H.S. Gutowsky, J. Chem. Phys. 93, 6971, 1990
NASA Astrophysics Data System (ADS)
Han, Sang-Heon; Mauze, Akhil; Ahmadi, Elaheh; Mates, Tom; Oshima, Yuichi; Speck, James S.
2018-04-01
Ge and Sn as n-type dopants in (001) β-Ga2O3 films were investigated using plasma-assisted molecular beam epitaxy. The Ge concentration showed a strong dependence on the growth temperature, whereas the Sn concentration remains independent of the growth temperature. The maximum growth temperature at which a wide range of Ge concentrations (from 1017 to 1020 cm-3) could be achieved was 675 °C while the same range of Sn concentration could be achieved at growth temperature of 750 °C. Atomic force microscopy results revealed that higher growth temperature shows better surface morphology. Therefore, our study reveals a tradeoff between higher Ge doping concentration and high quality surface morphology on (001) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. The Ge doped films had an electron mobility of 26.3 cm2 V-1 s-1 at the electron concentration of 6.7 × 1017 cm-3 whereas the Sn doped films had an electron mobility of 25.3 cm2 V-1 s-1 at the electron concentration of 1.1 × 1018 cm-3.
NASA Technical Reports Server (NTRS)
Jordan, Rebecca H.; King, Oliver; Wicks, Gary W.; Hall, Dennis G.; Anderson, Erik H.; Rooks, Michael J.
1993-01-01
We describe the fabrication and operational characteristics of a novel, surface-emitting semiconductor laser that makes use of a concentric-circle grating to both define its resonant cavity and to provide surface emission. A properly fabricated circular grating causes the laser to operate in radially inward- and outward-going circular waves in the waveguide, thus, introducing the circular symmetry needed for the laser to emit a beam with a circular cross-section. The basic circular-grating-resonator concept can be implemented in any materials system; an AlGaAs/GaAs graded-index, separate confinement heterostructure (GRINSCH), single-quantum-well (SQW) semiconductor laser, grown by molecular beam epitaxy (MBE), was used for the experiments discussed here. Each concentric-circle grating was fabricated on the surface of the AlGaAs/GaAs semiconductor laser. The circular pattern was first defined by electron-beam (e-beam) lithography in a layer of polymethylmethacrylate (PMMA) and subsequently etched into the semiconductor surface using chemically-assisted (chlorine) ion-beam etching (CAIBE). We consider issues that affect the fabrication and quality of the gratings. These issues include grating design requirements, data representation of the grating pattern, and e-beam scan method. We provide examples of how these techniques can be implemented and their impact on the resulting laser performance. A comparison is made of the results obtained using two fundamentally different electron-beam writing systems. Circular gratings with period lambda = 0.25 microns and overall diameters ranging from 80 microns to 500 microns were fabricated. We also report our successful demonstration of an optically pumped, concentric-circle grating, semiconductor laser that emits a beam with a far-field divergence angle that is less than one degree. The emission spectrum is quite narrow (less than 0.1 nm) and is centered at wavelength lambda = 0.8175 microns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung Shingyu, E-mail: masyleung@ust.h; Qian Jianliang, E-mail: qian@math.msu.ed
2010-11-20
We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying themore » FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.« less
The backward phase flow and FBI-transform-based Eulerian Gaussian beams for the Schrödinger equation
NASA Astrophysics Data System (ADS)
Leung, Shingyu; Qian, Jianliang
2010-11-01
We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schrödinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in [12]. In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.
Parham, Christopher; Zhong, Zhong; Pisano, Etta; Connor, Dean; Chapman, Leroy D.
2010-06-22
Systems and methods for detecting an image of an object using an X-ray beam having a polychromatic energy distribution are disclosed. According to one aspect, a method can include detecting an image of an object. The method can include generating a first X-ray beam having a polychromatic energy distribution. Further, the method can include positioning a single monochromator crystal in a predetermined position to directly intercept the first X-ray beam such that a second X-ray beam having a predetermined energy level is produced. Further, an object can be positioned in the path of the second X-ray beam for transmission of the second X-ray beam through the object and emission from the object as a transmitted X-ray beam. The transmitted X-ray beam can be directed at an angle of incidence upon a crystal analyzer. Further, an image of the object can be detected from a beam diffracted from the analyzer crystal.
Parham, Christopher A; Zhong, Zhong; Pisano, Etta; Connor, Jr., Dean M
2015-03-03
Systems and methods for detecting an image of an object using a multi-beam imaging system from an x-ray beam having a polychromatic energy distribution are disclosed. According to one aspect, a method can include generating a first X-ray beam having a polychromatic energy distribution. Further, the method can include positioning a plurality of monochromator crystals in a predetermined position to directly intercept the first X-ray beam such that a plurality of second X-ray beams having predetermined energy levels are produced. Further, an object can be positioned in the path of the second X-ray beams for transmission of the second X-ray beams through the object and emission from the object as transmitted X-ray beams. The transmitted X-ray beams can each be directed at an angle of incidence upon one or more crystal analyzers. Further, an image of the object can be detected from the beams diffracted from the analyzer crystals.
Measuring Incorporation Of Arsenic In Molecular-Beam Expitaxy
NASA Technical Reports Server (NTRS)
Lewis, Blair F.; Fernandez, Rouel F.; Madhukar, Anupam; Grunthaner, Frank J.
1988-01-01
Changes in surface layers cause oscillations in RHEED measurements. Specular RHEED Beam intensity measured before, during, and after deposition of seven to eight monomolecular layers of gallium during 1.5 seconds. Arsenic pressure was 1.7x10 to the negative seventh power torr (2.3x10 to the negative fifth power Pa) throughout measurements.
Initial alignment method for free space optics laser beam
NASA Astrophysics Data System (ADS)
Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi
2016-08-01
The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.
NASA Technical Reports Server (NTRS)
Lee, Long C.; Srivastava, Santosh K.
1990-01-01
Electron-impact ionization and electron attachment cross sections of radicals and excited molecules were measured using an apparatus that consists of an electron beam, a molecular beam and a laser beam. The information obtained is needed for the pulse power applications in the areas of high power gaseous discharge switches, high energy lasers, particle beam experiments, and electromagnetic pulse systems. The basic data needed for the development of optically-controlled discharge switches were also investigated. Transient current pulses induced by laser irradiation of discharge media were observed and applied for the study of electron-molecule reaction kinetics in gaseous discharges.
NASA Astrophysics Data System (ADS)
Gao, Guilong; Tian, Jinshou; Wang, Tao; He, Kai; Zhang, Chunmin; Zhang, Jun; Chen, Shaorong; Jia, Hui; Yuan, Fenfang; Liang, Lingliang; Yan, Xin; Li, Shaohui; Wang, Chao; Yin, Fei
2017-11-01
We report and experimentally demonstrate an ultrafast all-optical imaging technique capable of single-shot ultrafast recording with a picosecond-scale temporal resolution and a micron-order two-dimensional spatial resolution. A GaAs/AlxGa1 - xAs multiple-quantum-well (MQW) semiconductor with a picosecond response time, grown using molecular beam epitaxy (MBE) at a low temperature (LT), is used for the first time in ultrafast imaging technology. The semiconductor transforms the signal beam information to the probe beam, the birefringent delay crystal time-serializes the input probe beam, and the beam displacer maps different polarization probe beams onto different detector locations, resulting in two frames with an approximately 9 ps temporal separation and approximately 25 lp/mm spatial resolution in the visible range.
NASA Astrophysics Data System (ADS)
Johansson, Sofia M.; Kong, Xiangrui; Thomson, Erik S.; Papagiannakopoulos, Panos; Pettersson, Jan B. C.; Lovrić, Josip; Toubin, Céline
2016-04-01
Water uptake on aerosol particles modifies their chemistry and microphysics with important implications for air quality and climate. A large fraction of the atmospheric aerosol consists of organic aerosol particles or inorganic particles with condensed organic components. Here, we combine laboratory studies using the environmental molecular beam (EMB) method1 with molecular dynamics (MD) simulations to characterize water interactions with organic surfaces in detail. The over-arching aim is to characterize the mechanisms that govern water uptake, in order to guide the development of physics-based models to be used in atmospheric modelling. The EMB method enables molecular level studies of interactions between gases and volatile surfaces at near ambient pressure,1 and the technique may provide information about collision dynamics, surface and bulk accommodation, desorption and diffusion kinetics. Molecular dynamics simulations provide complementary information about the collision dynamics and initial interactions between gas molecules and the condensed phase. Here, we focus on water interactions with condensed alcohol phases that serve as highly simplified proxies for systems in the environment. Gas-surface collisions are in general found to be highly inelastic and result in efficient surface accommodation of water molecules. As a consequence, surface accommodation of water can be safely assumed to be close to unity under typical ambient conditions. Bulk accommodation is inefficient on solid alcohol and the condensed materials appear to produce hydrophobic surface structures, with limited opportunities for adsorbed water to form hydrogen bonds with surface molecules. Accommodation is significantly more efficient on the dynamic liquid alcohol surfaces. The results for n-butanol (BuOH) are particularly intriguing where substantial changes in water accommodation taking place over a 10 K interval below and above the BuOH melting point.2 The governing mechanisms for the observed water accommodation are discussed based on the combined EMB and MD results. The studies illustrate that the detailed surface properties of the condensed organic phase may substantially modify water uptake, with potential implications for the properties and action of aerosols and clouds in the Earth system. References: 1. X.R. Kong, E. S. Thomson, P. Papagiannakopoulos, S.M. Johansson, and J.B.C. Pettersson, Water Accommodation on Ice and Organic Surfaces: Insights from Environmental Molecular Beam Experiments. J. Phys. Chem. B 118 (2014) 13378-13386. 2. P. Papagiannakopoulos, X. Kong, E. S. Thomson, N. Marković, and J. B. C. Pettersson, Surface Transformations and Water Uptake on Liquid and Solid Butanol near the Melting Temperature. J. Phys. Chem. C 117 (2013) 6678-6685.
Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy
Rhodes, Mark
2013-12-17
A method of measuring a temperature of a noble gas in a chamber includes providing the noble gas in the chamber. The noble gas is characterized by a pressure and a temperature. The method also includes directing a first laser beam into the chamber and directing a second laser beam into the chamber. The first laser beam is characterized by a first frequency and the second laser beam is characterized by a second frequency. The method further includes converting at least a portion of the first laser beam and the second laser beam into a coherent anti-Stokes beam, measuring a Doppler broadening of the coherent anti-Stokes beam, and computing the temperature using the Doppler broadening.
Lobo, Rui F. M.; Santos, Diogo M. F.; Sequeira, Cesar A. C.; Ribeiro, Jorge H. F.
2012-01-01
Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam—thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption. PMID:28817043
Shon, Hyun Kyong; Yoon, Sohee; Moon, Jeong Hee; Lee, Tae Geol
2016-06-09
The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectra analyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration.
Electron beams scanning: A novel method
NASA Astrophysics Data System (ADS)
Askarbioki, M.; Zarandi, M. B.; Khakshournia, S.; Shirmardi, S. P.; Sharifian, M.
2018-06-01
In this research, a spatial electron beam scanning is reported. There are various methods for ion and electron beam scanning. The best known of these methods is the wire scanning wherein the parameters of beam are measured by one or more conductive wires. This article suggests a novel method for e-beam scanning without the previous errors of old wire scanning. In this method, the techniques of atomic physics are applied so that a knife edge has a scanner role and the wires have detector roles. It will determine the 2D e-beam profile readily when the positions of the scanner and detectors are specified.
Sartori, E; Brescaccin, L; Serianni, G
2016-02-01
Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Serianni, G.; Brescaccin, L.
2016-02-15
Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production—detrimental for high current negative ion systems such as beam sources for fusion—are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient andmore » energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.« less
Neutral beam dump with cathodic arc titanium gettering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, A.; Korepanov, S. A.; Putvinski, S.
An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features amore » new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 x 10{sup 17} H/(cm{sup 2}s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is {approx}0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.« less
Edge roughness evaluation method for quantifying at-size beam blur in electron-beam lithography
NASA Astrophysics Data System (ADS)
Yoshizawa, Masaki; Moriya, Shigeru
2000-07-01
At-size beam blur at any given pattern size of an electron beam (EB) direct writer, HL800D, was quantified using the new edge roughness evaluation (ERE) method to optimize the electron-optical system. We characterized the two-dimensional beam-blur dependence on the electron deflection length of the EB direct writer. The results indicate that the beam blur ranged from 45 nm to 56 nm in a deflection field 2520 micrometer square. The new ERE method is based on the experimental finding that line edge roughness of a resist pattern is inversely proportional to the slope of the Gaussian-distributed quasi-beam-profile (QBP) proposed in this paper. The QBP includes effects of the beam blur, electron forward scattering, acid diffusion in chemically amplified resist (CAR), the development process, and aperture mask quality. The application the ERE method to investigating the beam-blur fluctuation demonstrates the validity of the ERE method in characterizing the electron-optical column conditions of EB projections such as SCALPEL and PREVAIL.
NASA Astrophysics Data System (ADS)
Yen, Ming Y.; Haas, T. W.
1990-10-01
We present the temporal behavior of intensity oscillations in reflection high-energy electron diffraction (RHEED) during molecular beam epitaxial (MBE) growth of GaAs and A1GaAs on (1 1 1)B GaAs substrates. The RHEED intensity oscillations were examined as a function of growth parameters in order to provide the insight into the dynamic characteristics and to identify the optimal condition for the two-dimensional layer-by-layer growth. The most intense RHEED oscillation was found to occur within a very narrow temperature range which seems to optimize the surface migration kinetics of the arriving group III elements and the molecular dissodiative reaction of the group V elements. The appearance of an initial transient of the intensity upon commencement of the growth and its implications are described.
Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M
2000-10-01
Two methods for determining ion chamber calibration factors (Nx) are presented for polychromatic tungsten x-ray beams whose spectra differ from beams with known Nx. Both methods take advantage of known x-ray fluence and kerma spectral distributions. In the first method, the x-ray tube potential is unchanged and spectra of differing filtration are measured. A primary standard ion chamber with known Nx for one beam is used to calculate the x-ray fluence spectrum of a second beam. Accurate air energy absorption coefficients are applied to the x-ray fluence spectra of the second beam to calculate actual air kerma and Nx. In the second method, two beams of differing tube potential and filtration with known Nx are used to bracket a beam of unknown Nx. A heuristically derived Nx interpolation scheme based on spectral characteristics of all three beams is described. Both methods are validated. Both methods improve accuracy over the current half value layer Nx estimating technique.
Method for measuring and controlling beam current in ion beam processing
Kearney, Patrick A.; Burkhart, Scott C.
2003-04-29
A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.
Growth and Characterization of In(1-x)Ga(x)As(y)P(1-y) and GaAs Using Molecular Beam Epitaxy.
1980-03-01
incident beams of As and P, respectively. The high vapor pressure , group V elements have a very short lifetime on the heated substrate unless there is...oven loaded with a high vapor pressure , group V element such as arsenic and phosphorous. An error analysis of Equation 5 reveals that incremental
Vertical-cavity surface-emitting lasers - Design, growth, fabrication, characterization
NASA Astrophysics Data System (ADS)
Jewell, Jack L.; Lee, Y. H.; Harbison, J. P.; Scherer, A.; Florez, L. T.
1991-06-01
The authors have designed, fabricated, and tested vertical-cavity surface-emitting lasers (VCSEL) with diameters ranging from 0.5 microns to above 50 microns. Design issues, molecular beam epitaxial growth, fabrication, and lasing characteristics are discussed. The topics considered in fabrication of VCSELs are microlaser geometries; ion implementation and masks; ion beam etching; packaging and arrays; and ultrasmall devices.
NASA Astrophysics Data System (ADS)
Tang, Yaguo; Shan, Xu; Liu, Zhaohui; Niu, Shanshan; Wang, Enliang; Chen, Xiangjun
2018-03-01
The low count rate of (e, 2e) electron momentum spectroscopy (EMS) has long been a major limitation of its application to the investigation of molecular dynamics. Here we report a new EMS apparatus developed for time-resolved experiments in the nanosecond time scale, in which a double toroidal energy analyzer is utilized to improve the sensitivity of the spectrometer and a nanosecond pulsed electron gun with a repetition rate of 10 kHz is used to obtain an average beam current up to nA. Meanwhile, a picosecond ultraviolet laser with a repetition rate of 5 kHz is introduced to pump the sample target. The time zero is determined by photoionizing the target using a pump laser and monitoring the change of the electron beam current with time delay between the laser pulse and electron pulse, which is influenced by the plasma induced by the photoionization. The performance of the spectrometer is demonstrated by the EMS measurement on argon using a pulsed electron beam, illustrating the potential abilities of the apparatus for investigating the molecular dynamics in excited states when employing the pump-probe scheme.
Du, Yongzhao; Fu, Yuqing; Zheng, Lixin
2016-12-20
A real-time complex amplitude reconstruction method for determining the dynamic beam quality M2 factor based on a Mach-Zehnder self-referencing interferometer wavefront sensor is developed. By using the proposed complex amplitude reconstruction method, full characterization of the laser beam, including amplitude (intensity profile) and phase information, can be reconstructed from a single interference pattern with the Fourier fringe pattern analysis method in a one-shot measurement. With the reconstructed complex amplitude, the beam fields at any position z along its propagation direction can be obtained by first utilizing the diffraction integral theory. Then the beam quality M2 factor of the dynamic beam is calculated according to the specified method of the Standard ISO11146. The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment, including the static and dynamic beam process. The experimental method is simple, fast, and operates without movable parts and is allowed in order to investigate the laser beam in inaccessible conditions using existing methods.
NASA Astrophysics Data System (ADS)
Wang, Wei; Shen, Jianqi
2018-06-01
The use of a shaped beam for applications relying on light scattering depends much on the ability to evaluate the beam shape coefficients (BSC) effectively. Numerical techniques for evaluating the BSCs of a shaped beam, such as the quadrature, the localized approximation (LA), the integral localized approximation (ILA) methods, have been developed within the framework of generalized Lorenz-Mie theory (GLMT). The quadrature methods usually employ the 2-/3-dimensional integrations. In this work, the expressions of the BSCs for an elliptical Gaussian beam (EGB) are simplified into the 1-dimensional integral so as to speed up the numerical computation. Numerical results of BSCs are used to reconstruct the beam field and the fidelity of the reconstructed field to the given beam field is estimated. It is demonstrated that the proposed method is much faster than the 2-dimensional integrations and it can acquire more accurate results than the LA method. Limitations of the quadrature method and also the LA method in the numerical calculation are analyzed in detail.
Continuous centrifuge decelerator for polar molecules.
Chervenkov, S; Wu, X; Bayerl, J; Rohlfes, A; Gantner, T; Zeppenfeld, M; Rempe, G
2014-01-10
Producing large samples of slow molecules from thermal-velocity ensembles is a formidable challenge. Here we employ a centrifugal force to produce a continuous molecular beam with a high flux at near-zero velocities. We demonstrate deceleration of three electrically guided molecular species, CH3F, CF3H, and CF3CCH, with input velocities of up to 200 m s(-1) to obtain beams with velocities below 15 m s(-1) and intensities of several 10(9) mm(-2) s(-1). The centrifuge decelerator is easy to operate and can, in principle, slow down any guidable particle. It has the potential to become a standard technique for continuous deceleration of molecules.
Nucleation Of Ge 3D-islands On Pit-patterned Si Substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, P. L.; Smagina, J. V.; Vlasov, D. Yu.
2011-12-23
Joint experimental and theoretical study of Ge nanoislands growth on pit-patterned Si substrate is carried out. Si substrates that have been templated by means of electron beam lithography and reactive ion etching have been used to grow Ge by molecular-beam epitaxy. Atomic-force-microscopy studies show that at Si(100) substrate temperature 550 deg. C, Ge nanoislands are formed at the pits' edges, rather than between the pits. The effect is interpreted in terms of energy barrier, that is formed near the edge of a pit and prevents Ge transport inside the pit. By molecular dynamics calculations the value of the energy barriermore » 0.9 eV was obtained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonks, James P., E-mail: james.tonks@awe.co.uk; AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR; Galloway, Ewan C., E-mail: ewan.galloway@awe.co.uk
2016-08-15
A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systemsmore » designed for only one of these techniques.« less
Emission control of InGaN nanocolumns grown by molecular-beam epitaxy on Si(111) substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M. A.
This work studies the effect of the growth temperature on the morphology and emission characteristics of self-assembled InGaN nanocolumns grown by plasma assisted molecular beam epitaxy. Morphology changes are assessed by scanning electron microscopy, while emission is measured by photoluminescence. Within the growth temperature range of 750 to 650 deg. C, an increase in In incorporation for decreasing temperature is observed. This effect allows tailoring the InGaN nanocolumns emission line shape by using temperature gradients during growth. Depending on the gradient rate, span, and sign, broad emission line shapes are obtained, covering the yellow to green range, even yielding whitemore » emission.« less
In vacancies in InN grown by plasma-assisted molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Reurings, Floris; Tuomisto, Filip; Gallinat, Chad S.; Koblmüller, Gregor; Speck, James S.
2010-12-01
The authors have applied positron annihilation spectroscopy to study the effect of different growth conditions on vacancy formation in In- and N-polar InN grown by plasma-assisted molecular beam epitaxy. The results suggest that the structural quality of the material and limited diffusion of surface adatoms during growth dictate the In vacancy formation in low electron-density undoped epitaxial InN, while growth conditions and thermodynamics have a less important role, contrary to what is observed in, e.g., GaN. Furthermore, the results imply that in high quality InN, the electron mobility is likely limited not by ionized point defect scattering, but rather by threading dislocations.
Size quantization patterns in self-assembled InAs/GaAs quantum dots
NASA Astrophysics Data System (ADS)
Colocci, M.; Bogani, F.; Carraresi, L.; Mattolini, R.; Bosacchi, A.; Franchi, S.; Frigeri, P.; Taddei, S.; Rosa-Clot, M.
1997-07-01
Molecular beam epitaxy has been used for growing self-assembled InAs quantum dots. A continuous variation of the InAs average coverage across the sample has been obtained by properly aligning the (001) GaAs substrate with respect to the molecular beam. Excitation of a large number of dots (laser spot diameter ≈ 100 μm) results in structured photoluminescence spectra; a clear quantization of the dot sizes is deduced from the distinct luminescence bands separated in energy by an average spacing of 20-30 meV. We ascribe the individual bands of the photoluminescence spectrum after low excitation to families of dots with roughly the same diameter and heights differing by one monolayer.
Molecular beam epitaxy-grown wurtzite MgS thin films for solar-blind ultra-violet detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Y. H.; He, Q. L.; Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China
2013-04-29
Molecular beam epitaxy grown MgS on GaAs(111)B substrate was resulted in wurtzite phase, as demonstrated by detailed structural characterizations. Phenomenological arguments were used to account for why wurtzite phase is preferred over zincblende phase or its most stable rocksalt phase. Results of photoresponse and reflectance measurements performed on wurtzite MgS photodiodes suggest a direct bandgap at around 5.1 eV. Their response peaks at 245 nm with quantum efficiency of 9.9% and enjoys rejection of more than three orders at 320 nm and close to five orders at longer wavelengths, proving the photodiodes highly competitive in solar-blind ultraviolet detection.
Deposition of Cubic AlN Films on MgO (100) Substrates by Laser Molecular Beam Epitaxy
NASA Astrophysics Data System (ADS)
Mo, Z. K.; Yang, W. J.; Weng, Y.; Fu, Y. C.; He, H.; Shen, X. M.
2017-12-01
Cubic AlN (c-AlN) films were deposited on MgO (100) substrates by laser molecular beam epitaxy (LMBE) technique. The crystal structure and surface morphology of deposited films with various laser pulse energy and substrate temperature were investigated. The results indicate that c-AlN films exhibit the (200) preferred orientation, showing a good epitaxial relationship with the substrate. The surface roughness of c-AlN films increases when the laser pulse energy and substrate temperature increase. The film grown at laser pulse energy of 150 mJ and substrate temperature of 700 °C shows the best crystalline quality and relatively smooth surface.
Supersonic beams at high particle densities: model description beyond the ideal gas approximation.
Christen, Wolfgang; Rademann, Klaus; Even, Uzi
2010-10-28
Supersonic molecular beams constitute a very powerful technique in modern chemical physics. They offer several unique features such as a directed, collision-free flow of particles, very high luminosity, and an unsurpassed strong adiabatic cooling during the jet expansion. While it is generally recognized that their maximum flow velocity depends on the molecular weight and the temperature of the working fluid in the stagnation reservoir, not a lot is known on the effects of elevated particle densities. Frequently, the characteristics of supersonic beams are treated in diverse approximations of an ideal gas expansion. In these simplified model descriptions, the real gas character of fluid systems is ignored, although particle associations are responsible for fundamental processes such as the formation of clusters, both in the reservoir at increased densities and during the jet expansion. In this contribution, the various assumptions of ideal gas treatments of supersonic beams and their shortcomings are reviewed. It is shown in detail that a straightforward thermodynamic approach considering the initial and final enthalpy is capable of characterizing the terminal mean beam velocity, even at the liquid-vapor phase boundary and the critical point. Fluid properties are obtained using the most accurate equations of state available at present. This procedure provides the opportunity to naturally include the dramatic effects of nonideal gas behavior for a large variety of fluid systems. Besides the prediction of the terminal flow velocity, thermodynamic models of isentropic jet expansions permit an estimate of the upper limit of the beam temperature and the amount of condensation in the beam. These descriptions can even be extended to include spinodal decomposition processes, thus providing a generally applicable tool for investigating the two-phase region of high supersaturations not easily accessible otherwise.
Cell viability test after laser guidance
NASA Astrophysics Data System (ADS)
Rosenbalm, Tabitha N.; Owens, Sarah; Bakken, Daniel; Gao, Bruce Z.
2006-02-01
To precisely control the position of multiple types of cells in a coculture for the study of cell-cell interactions, we have developed a laser micropatterning technique. The technique employs the optical forces generated by a weakly focused laser beam. In the beam's focal region, the optical force draws microparticles, such as cells, into the center of the beam, propels them along the beam axis, and guides them onto a target surface. Specific patterns are created through computercontrolled micromanipulation of the substrate relative to the laser beam. Preliminary data have demonstrated cell viability after laser guidance. This project was designed to systematically vary the controllable laser parameters, namely, intensity and exposure time of the laser on single cells, and thus determine the laser parameters that allow negligible cell damage with functional cellular position control. To accomplish this goal, embryonic day 7 (E7) chick forebrain neurons were cultured in 35 mm petri dishes. Control and test cells were selected one hour after cell placement to allow cell attachment. Test cells were subjected to the laser at the focal region. The experimental parameters were chosen as: wavelength - 800 nm, intensities - 100 mW, 200 mW, and 300 mW, and exposure times - 10 s and 60 s. Results were analyzed based on neurite outgrowth and the Live/Dead assay (Viability/Cytoxicity kit from Molecular Probes). No statistical difference (p >> 0.1, student t-test) in viability or function was found between the control neurons and those exposed to the laser. This confirms that laser guidance seems to be a promising method for cellular manipulation.
Chen, Walter W; Balaj, Leonora; Liau, Linda M; Samuels, Michael L; Kotsopoulos, Steve K; Maguire, Casey A; Loguidice, Lori; Soto, Horacio; Garrett, Matthew; Zhu, Lin Dan; Sivaraman, Sarada; Chen, Clark; Wong, Eric T; Carter, Bob S; Hochberg, Fred H; Breakefield, Xandra O; Skog, Johan
2013-07-23
Development of biofluid-based molecular diagnostic tests for cancer is an important step towards tumor characterization and real-time monitoring in a minimally invasive fashion. Extracellular vesicles (EVs) are released from tumor cells into body fluids and can provide a powerful platform for tumor biomarkers because they carry tumor proteins and nucleic acids. Detecting rare point mutations in the background of wild-type sequences in biofluids such as blood and cerebrospinal fluid (CSF) remains a major challenge. Techniques such as BEAMing (beads, emulsion, amplification, magnetics) PCR and droplet digital PCR (ddPCR) are substantially more sensitive than many other assays for mutant sequence detection. Here, we describe a novel approach that combines biofluid EV RNA and BEAMing RT-PCR (EV-BEAMing), as well droplet digital PCR to interrogate mutations from glioma tumors. EVs from CSF of patients with glioma were shown to contain mutant IDH1 transcripts, and we were able to reliably detect and quantify mutant and wild-type IDH1 RNA transcripts in CSF of patients with gliomas. EV-BEAMing and EV-ddPCR represent a valuable new strategy for cancer diagnostics, which can be applied to a variety of biofluids and neoplasms.Molecular Therapy-Nucleic Acids (2013) 2, e109; doi:10.1038/mtna.2013.28; published online 23 July 2013.
NASA Technical Reports Server (NTRS)
Morten, F. D. (Editor); Seeley, John S. (Editor)
1986-01-01
The present conference on advancements in IR-sensitive materials and detector technologies employing them gives attention to thermal detectors, focal plane array processing detectors, novel detector designs, general properties of IR optics materials, and preparation methods for such materials. Specific topics encompass the fabrication of InSb MIS structures prepared by photochemical vapor deposition, IR heterodyne detectors employing cadmium mercury telluride, low microphony pyroelectric arrays, IR detection based on minority carrier extrusion, longwave reststrahl in IR crystals, and molecular beam techniques for optical thin film fabrication.
Probability of twin formation on self-catalyzed GaAs nanowires on Si substrate
2012-01-01
We attempted to control the incorporation of twin boundaries in self-catalyzed GaAs nanowires (NWs). Self-catalyzed GaAs NWs were grown on a Si substrate under various arsenic pressures using molecular beam epitaxy and the vapor-liquid-solid method. When the arsenic flux is low, wurtzite structures are dominant in the GaAs NWs. On the other hand, zinc blende structures become dominant as the arsenic flux rises. We discussed this phenomenon on the basis of thermodynamics and examined the probability of twin-boundary formation in detail. PMID:23043754
Interaction Potentials for Br(2P) + Ar, Kr, Xe (1S) by the Crossed Molecular Beams Method.
1981-03-01
recombination was significantly affected by eBr-RG" In their study, the interaction potential between Br and RG was assumed to be of the Lennard ... Jones (L-J) form with the following parameters: RG=Ar, c=1.0 kcal/mole, a=3.0 A; RG=Xe, e-1.0 kcal/mole, a=3.5 A. A slightly shallower Br-Ar potential ...AOA-A00 002 CALIFORNIA UNIV BERKELEY LAWRENCE BERKELEY LAB F/6 20/7 INTERACTION POTENTIALS FOR BR2P) + AR. KR. XE (IS) BY THE CROS--ETCfIU MAR 81 P
1992-09-14
AIGaAs-GaAs QUANTUM WELLS GROWN ON LOW TEMPERATURE GaAs 239 Y. Hwang, D. Zhang, T. Zhang, M. Mytych, and R.M. Kolbas MOLECULAR BEAM EPITAXY OF LOW...GaA/ quantum wells : 24i howvever, in our case. AIks layers were not introduced. Formation (if these rows is most prolf,.+l influenced hb the diffusimon...regions. Preliminary investigations into this method have been performed using GaAs quantum wells between thick AIGaAs barriers as shown in Fig. 7. This
Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices
Betancourt, Tania; Brannon-Peppas, Lisa
2006-01-01
Micro- and nanofabrication techniques have revolutionized the pharmaceutical and medical fields as they offer the possibility for highly reproducible mass-fabrication of systems with complex geometries and functionalities, including novel drug delivery systems and bionsensors. The principal micro- and nanofabrication techniques are described, including photolithography, soft lithography, film deposition, etching, bonding, molecular self assembly, electrically induced nanopatterning, rapid prototyping, and electron, X-ray, colloidal monolayer, and focused ion beam lithography. Application of these techniques for the fabrication of drug delivery and biosensing systems including injectable, implantable, transdermal, and mucoadhesive devices is described. PMID:17722281
Kuciauskas, Darius; Wernsing, Keith; Jensen, Soren Alkaersig; ...
2016-11-01
Here, we used time-resolved photoluminescence microscopy to analyze charge carrier transport and recombination in CdTe double heterostructures fabricated by molecular beam epitaxy (MBE). This allowed us to determine the charge carrier mobility in this system, which was found to be 500-625 cm 2/(V s). Charge carrier lifetimes in the 15-100 ns range are limited by the interface recombination, and the data indicate higher interface recombination velocity near extended defects. This study describes a new method to analyze the spatial distribution of the interface recombination velocity and the interface defects in semiconductor heterostructures.
Terpolymerization of ethylene, sulfur dioxide and carbon monoxide
Johnson, R.; Steinberg, M.
This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.
Band bending at magnetic Ni/Ge(001) interface investigated by X-ray photoelectron spectroscopy
NASA Astrophysics Data System (ADS)
Bocîrnea, Amelia Elena; Tănase, Liviu Cristian; Costescu, Ruxandra Maria; Apostol, Nicoleta Georgiana; Teodorescu, Cristian Mihail
2017-12-01
We report the molecular beam epitaxy growth of Ni on a clean Ge(001) surface with an intermediate NiGe layer forming at the interface at room temperature. The crystallinity of the substrate is lost after the deposition of more than 2 Ni monolayers. The Schottky barrier formation is investigated by X-ray photoelectron spectroscopy. The method allows us to infer a 0.39-0.45 eV band bending at the interface between the compound and Ge(001). Magneto-optical Kerr effect measurements were conclusive in detecting the ferromagnetic ordering of Ni outermost layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuciauskas, Darius; Wernsing, Keith; Jensen, Soren Alkaersig
Here, we used time-resolved photoluminescence microscopy to analyze charge carrier transport and recombination in CdTe double heterostructures fabricated by molecular beam epitaxy (MBE). This allowed us to determine the charge carrier mobility in this system, which was found to be 500-625 cm 2/(V s). Charge carrier lifetimes in the 15-100 ns range are limited by the interface recombination, and the data indicate higher interface recombination velocity near extended defects. This study describes a new method to analyze the spatial distribution of the interface recombination velocity and the interface defects in semiconductor heterostructures.
System and method for optically locating microchannel positions
Brewer, Laurence R.; Kimbrough, Joseph; Balch, Joseph; Davidson, J. Courtney
2001-01-01
A system and method is disclosed for optically locating a microchannel position. A laser source generates a primary laser beam which is directed at a microchannel plate. The microchannel plates include microchannels at various locations. A back-reflectance beam detector receives a back-reflected beam from the plate. The back-reflected beam is generated when the primary beam reflects off of the plate. A photodiode circuit generates a trigger signal when the back-reflected beam exceeds a predetermined threshold, indicating a presence of the microchannel. The method of the present invention includes the steps of generating a primary beam, directing the primary beam to a plate containing a microchannel, receiving from the plate a back-reflected beam generated in response to the primary beam, and generating a trigger signal when the back-reflected beam exceeds a predetermined threshold which corresponds to a presence of the microchannel.
In situ monitoring of the surface reconstructions on InP(001) prepared by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Ozanyan, K. B.; Parbrook, P. J.; Hopkinson, M.; Whitehouse, C. R.; Sobiesierski, Z.; Westwood, D. I.
1997-07-01
Reflection anisotropy spectroscopy (RAS) and reflection high-energy electron diffraction (RHEED) were applied to study clean InP(001) surfaces prepared by molecular beam epitaxy (MBE). At phosphorus beam equivalent pressures (BEPs) between 3.5×10-7 and 3.5×10-6 mbar and substrate temperature (Ts) falling from 590 to 150 °C, (2×4), (2×1), (2×2), and c(4×4) RHEED patterns are observed. The main RAS features, observed at 1.7-1.9 and 2.6-2.9 eV are assigned to In and P dimers, respectively. The above reconstruction sequence is associated closely with transformations identified in RAS signatures that are induced by progressively increasing the P surface coverage. The RAS results also imply the existence of (2×4)α and (2×4)β phases. A surface-phase diagram for MBE-grown (001) InP, in the whole range of Ts and phosphorus BEPs is proposed.
Theory of Microwave 5-WAVE Mixing of Chiral Molecules
NASA Astrophysics Data System (ADS)
Lehmann, Kevin
2016-06-01
Microwave three-wave mixing spectroscopy produces a Free Induction Decay Field that is proportional to the enantiomeric excess ( ee ) of a sample of chiral molecules. However, since there is an unavoidable loss of measured signal strength due to dephasing of the molecular emission, it is not possible to quantitate this ee unless one has an enantiomeric pure sample of the same molecule with which to compare the amplitude of the signal of a sample of unknown ee. In this talk, I will demonstrate that it is in principle possible to use a 5 wave mixing experiment, based upon AC Stark shifts produced by nearly resonant fields, to produce a differential splitting of a transition such that one has frequency resolved peaks for the two enantiomers. The peaks corresponding to the two enantiomers can be switched by phase cycling of the fields. This method is promising to allow the quantitative measurement of molecular ee's by microwave spectroscopy. There are experimental issues that make such an experiment difficult. It will likely be required to use of skimmed molecular beam (which will substantially reduce the number of molecular emitters and thus signal level) in order to reduce the field amplitude and phase inhomogeneity of the excited molecules.
NASA Astrophysics Data System (ADS)
Dementjev, Aleksandr S.; Jovaisa, A.; Silko, Galina; Ciegis, Raimondas
2005-11-01
Based on the developed efficient numerical methods for calculating the propagation of light beams, the alternative methods for measuring the beam radius and propagation ratio proposed in the international standard ISO 11146 are analysed. The specific calculations of the alternative beam propagation ratios Mi2 performed for a number of test beams with a complicated spatial structure showed that the correlation coefficients ci used in the international standard do not establish the universal one-to-one relation between the alternative propagation ratios Mi2 and invariant propagation ratios Mσ2 found by the method of moments.
Protein Bricks: 2D and 3D Bio-Nanostructures with Shape and Function on Demand.
Jiang, Jianjuan; Zhang, Shaoqing; Qian, Zhigang; Qin, Nan; Song, Wenwen; Sun, Long; Zhou, Zhitao; Shi, Zhifeng; Chen, Liang; Li, Xinxin; Mao, Ying; Kaplan, David L; Gilbert Corder, Stephanie N; Chen, Xinzhong; Liu, Mengkun; Omenetto, Fiorenzo G; Xia, Xiaoxia; Tao, Tiger H
2018-05-01
Precise patterning of polymer-based biomaterials for functional bio-nanostructures has extensive applications including biosensing, tissue engineering, and regenerative medicine. Remarkable progress is made in both top-down (based on lithographic methods) and bottom-up (via self-assembly) approaches with natural and synthetic biopolymers. However, most methods only yield 2D and pseudo-3D structures with restricted geometries and functionalities. Here, it is reported that precise nanostructuring on genetically engineered spider silk by accurately directing ion and electron beam interactions with the protein's matrix at the nanoscale to create well-defined 2D bionanopatterns and further assemble 3D bionanoarchitectures with shape and function on demand, termed "Protein Bricks." The added control over protein sequence and molecular weight of recombinant spider silk via genetic engineering provides unprecedented lithographic resolution (approaching the molecular limit), sharpness, and biological functions compared to natural proteins. This approach provides a facile method for patterning and immobilizing functional molecules within nanoscopic, hierarchical protein structures, which sheds light on a wide range of biomedical applications such as structure-enhanced fluorescence and biomimetic microenvironments for controlling cell fate. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stand-off molecular composition analysis
NASA Astrophysics Data System (ADS)
Hughes, Gary B.; Lubin, Philip; Meinhold, Peter; O'Neill, Hugh; Brashears, Travis; Zhang, Qicheng; Griswold, Janelle; Riley, Jordan; Motta, Caio
2015-09-01
Molecular composition of distant stars is explored by observing absorption spectra. The star produces blackbody radiation that passes through the molecular cloud of vaporized material surrounding the star. Characteristic absorption lines are discernible with a spectrometer, and molecular composition is investigated by comparing spectral observations with known material profiles. Most objects in the solar system—asteroids, comets, planets, moons—are too cold to be interrogated in this manner. Molecular clouds around cold objects consist primarily of volatiles, so bulk composition cannot be probed. Additionally, low volatile density does not produce discernible absorption lines in the faint signal generated by low blackbody temperatures. This paper describes a system for probing the molecular composition of cold solar system targets from a distant vantage. The concept utilizes a directed energy beam to melt and vaporize a spot on a distant target, such as from a spacecraft orbiting the object. With sufficient flux (~10 MW/m2), the spot temperature rises rapidly (to ~2 500 K), and evaporation of all materials on the target surface occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a molecular plume in front of the spot. Bulk composition is investigated by using a spectrometer to view the heated spot through the ejected material. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole, and shallow sub-surface composition profiling is also possible. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis.
Investigation of the silicon ion density during molecular beam epitaxy growth
NASA Astrophysics Data System (ADS)
Eifler, G.; Kasper, E.; Ashurov, Kh.; Morozov, S.
2002-05-01
Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate between 0 to -1000 V. The dependencies of ion and electron densities were shown and discussed within the framework of a simple model. The charged carrier densities measured with the monitoring system enable to separate the ion part of the substrate current and show its correlation to the generation rate. Comparing the ion density on the whole substrate and in the center gives a hint to the ion beam focusing effect. The maximum ion and electron current densities obtained were 0.40 and 0.61 μA/cm2, respectively.
Cleaved-edge-overgrowth nanogap electrodes.
Luber, Sebastian M; Bichler, Max; Abstreiter, Gerhard; Tornow, Marc
2011-02-11
We present a method to fabricate multiple metal nanogap electrodes of tailored width and distance in parallel, on the cleaved plane of a GaAs/AlGaAs heterostructure. The three-dimensional patterned structures are obtained by a combination of molecular-beam-epitaxial regrowth on a crystal facet, using the cleaved-edge-overgrowth (CEO) method, and subsequent wet selective etching and metallization steps. SEM and AFM studies reveal smooth and co-planar electrodes of width and distance of the order of 10 nm. Preliminary electrical characterization indicates electrical gap insulation in the 100 MΩ range with kΩ lead resistance. We propose our methodology to realize multiple electrode geometries that would allow investigation of the electrical conductivity of complex nanoscale objects such as branched organic molecules.
Transient atomic behavior and surface kinetics of GaN
NASA Astrophysics Data System (ADS)
Moseley, Michael; Billingsley, Daniel; Henderson, Walter; Trybus, Elaissa; Doolittle, W. Alan
2009-07-01
An in-depth model for the transient behavior of metal atoms adsorbed on the surface of GaN is developed. This model is developed by qualitatively analyzing transient reflection high energy electron diffraction (RHEED) signals, which were recorded for a variety of growth conditions of GaN grown by molecular-beam epitaxy (MBE) using metal-modulated epitaxy (MME). Details such as the initial desorption of a nitrogen adlayer and the formation of the Ga monolayer, bilayer, and droplets are monitored using RHEED and related to Ga flux and shutter cycles. The suggested model increases the understanding of the surface kinetics of GaN, provides an indirect method of monitoring the kinetic evolution of these surfaces, and introduces a novel method of in situ growth rate determination.
NASA Astrophysics Data System (ADS)
Cheng, Cunfeng; van der Poel, Aernout P. P.; Ubachs, Wim; Bethlem, Hendrick
2017-06-01
The resolution of any spectroscopic experiment is limited by the coherent interaction time between the probe radiation and the particle that is being studied. The introduction of cooling techniques for atoms and ions has resulted in a dramatic increase of interaction times and accuracy, it is hoped that molecular cooling techniques will lead to a similar increase. Here we demonstrate the first molecular fountain, a development which permits hitherto unattainably long interrogation times with molecules. In our experiment, beams of ammonia molecules are decelerated, trapped and cooled using inhomogeneous electric fields and subsequently launched. Using a combination of quadrupole lenses and buncher elements, the beam is shaped such that it has a large position spread and a small velocity spread (corresponding to a transverse temperature of less than 10μK and a longitudinal temperature of less than 1μK) while the molecules are in free fall, but strongly focused at the detection region. The molecules are in free fall for up to 266 milliseconds, making it possible, in principle, to perform sub-Hz measurements in molecular systems and paving the way for stringent tests of fundamental physics theories.
Laser beam alignment apparatus and method
Gruhn, C.R.; Hammond, R.B.
The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.
Laser beam alignment apparatus and method
Gruhn, Charles R.; Hammond, Robert B.
1981-01-01
The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.
Real-time determination of laser beam quality by modal decomposition.
Schmidt, Oliver A; Schulze, Christian; Flamm, Daniel; Brüning, Robert; Kaiser, Thomas; Schröter, Siegmund; Duparré, Michael
2011-03-28
We present a real-time method to determine the beam propagation ratio M2 of laser beams. The all-optical measurement of modal amplitudes yields M2 parameters conform to the ISO standard method. The experimental technique is simple and fast, which allows to investigate laser beams under conditions inaccessible to other methods.
NASA Astrophysics Data System (ADS)
Sukhomlinov, V.; Mustafaev, A.; Timofeev, N.
2018-04-01
Previously developed methods based on the single-sided probe technique are altered and applied to measure the anisotropic angular spread and narrow energy distribution functions of charged particle (electron and ion) beams. The conventional method is not suitable for some configurations, such as low-voltage beam discharges, electron beams accelerated in near-wall and near-electrode layers, and vacuum electron beam sources. To determine the range of applicability of the proposed method, simple algebraic relationships between the charged particle energies and their angular distribution are obtained. The method is verified for the case of the collisionless mode of a low-voltage He beam discharge, where the traditional method for finding the electron distribution function with the help of a Legendre polynomial expansion is not applicable. This leads to the development of a physical model of the formation of the electron distribution function in a collisionless low-voltage He beam discharge. The results of a numerical calculation based on Monte Carlo simulations are in good agreement with the experimental data obtained using the new method.
Adaptive conversion of a high-order mode beam into a near-diffraction-limited beam.
Zhao, Haichuan; Wang, Xiaolin; Ma, Haotong; Zhou, Pu; Ma, Yanxing; Xu, Xiaojun; Zhao, Yijun
2011-08-01
We present a new method for efficiently transforming a high-order mode beam into a nearly Gaussian beam with much higher beam quality. The method is based on modulation of phases of different lobes by stochastic parallel gradient descent algorithm and coherent addition after phase flattening. We demonstrate the method by transforming an LP11 mode into a nearly Gaussian beam. The experimental results reveal that the power in the diffraction-limited bucket in the far field is increased by more than a factor of 1.5.
Beam position monitor for energy recovered linac beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, Thomas; Evtushenko, Pavel
A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.
Electrical characterization of HgTe nanowires using conductive atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gundersen, P.; Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim; Kongshaug, K. O.
Self-organized HgTe nanowires grown by molecular beam epitaxy (MBE) have been characterized using conductive atomic force microscopy. As HgTe will degrade or evaporate at normal baking temperatures for electron beam lithography (EBL) resists, an alternative method was developed. Using low temperature optical lithography processes, large Au contacts were deposited on a sample covered with randomly oriented, lateral HgTe nanowires. Nanowires partly covered by the large electrodes were identified with a scanning electron microscope and then localized in the atomic force microscope (AFM). The conductive tip of the AFM was then used as a movable electrode to measure current-voltage curves atmore » several locations on HgTe nanowires. The measurements revealed that polycrystalline nanowires had diffusive electron transport, with resistivities two orders of magnitude larger than that of an MBE-grown HgTe film. The difference can be explained by scattering at the rough surface walls and at the grain boundaries in the wires. The method can be a solution when EBL is not available or requires too high temperature, or when measurements at several positions along a wire are required.« less
Universal method for creating optically active nanostructures on layered materials
NASA Astrophysics Data System (ADS)
Kidd, Tim; He, Rui; Stollenwerk, Andrew; Oshea, Aaron; Beck, Ben; Spurgeon, Kyle; Gu, Genda
2014-03-01
We report a new method for the creating of nanostructures using a scanning electron microscope. Residual organic molecules on the surface of layered materials can be excited by electron beam radiation to burrow into the open spaces between the layers of these materials, and then are broken down further to form photoluminescent carbon nanoclusters. Surface characterization by atomic force microscopy shows the surface is nearly undamaged at the molecular level by this process, and a lack of nanostructure formation in non-layered materials confirms that the structures are created by sub-surface incorporation. The presence of carbon nanoclusters was determined by Raman Spectroscopy and photoluminescence in the visible light range. The nanostructures are react strongly to visible light, making them readily apparent using an optical microscope even for features measuring only a few nanometers tall. This technique can be used on apparently any layered material, with successful results on dichalcogenides, topological insulators, graphite, and high temperature copper oxide superconductors. This technique can create patterned nanostructures with vertical resolution at the nanometer scale and lateral resolution of tens of nanometers depending on beam spot size. This work is funded by University of Northern Iowa, NSF #DMR-1206530, and DOE #DE-AC02-98CH10886.
Shu, Hong; Mokhov, Sergiy; Zeldovich, Boris Ya; Bass, Michael
2009-01-01
A further extension of the iteration method for beam propagation calculation is presented that can be applied for volume Bragg gratings (VBGs) with extremely large grating strength. A reformulation of the beam propagation formulation is presented for analyzing the reflection of a laser beam by a deformed VBG. These methods will be shown to be very accurate and efficient. A VBG with generic z-dependent distortion has been analyzed using these methods.
Fabrication of nanometer single crystal metallic CoSi2 structures on Si
NASA Technical Reports Server (NTRS)
Nieh, Kai-Wei (Inventor); Lin, True-Lon (Inventor); Fathauer, Robert W. (Inventor)
1991-01-01
Amorphous Co:Si (1:2 ratio) films are electron gun-evaporated on clean Si(111), such as in a molecular beam epitaxy system. These layers are then crystallized selectively with a focused electron beam to form very small crystalline Co/Si2 regions in an amorphous matrix. Finally, the amorphous regions are etched away selectively using plasma or chemical techniques.
Method and Apparatus for Measuring Near-Angle Scattering of Mirror Coatings
NASA Technical Reports Server (NTRS)
Chipman, Russell A. (Inventor); Daugherty, Brian J. (Inventor); McClain, Stephen C. (Inventor); Macenka, Steven A. (Inventor)
2013-01-01
Disclosed herein is a method of determining the near angle scattering of a sample reflective surface comprising the steps of: a) splitting a beam of light having a coherence length of greater than or equal to about 2 meters into a sample beam and a reference beam; b) frequency shifting both the sample beam and the reference beam to produce a fixed beat frequency between the sample beam and the reference beam; c) directing the sample beam through a focusing lens and onto the sample reflective surface, d) reflecting the sample beam from the sample reflective surface through a detection restriction disposed on a movable stage; e) recombining the sample beam with the reference beam to form a recombined beam, followed by f) directing the recombined beam to a detector and performing heterodyne analysis on the recombined beam to measure the near-angle scattering of the sample reflective surface, wherein the position of the detection restriction relative to the sample beam is varied to occlude at least a portion of the sample beam to measure the near-angle scattering of the sample reflective surface. An apparatus according to the above method is also disclosed.
Method and apparatus for efficient photodetachment and purification of negative ion beams
Beene, James R [Oak Ridge, TN; Liu, Yuan [Knoxville, TN; Havener, Charles C [Knoxville, TN
2008-02-26
Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.
Chen, Dongmei; Zhu, Shouping; Cao, Xu; Zhao, Fengjun; Liang, Jimin
2015-01-01
X-ray luminescence computed tomography (XLCT) has become a promising imaging technology for biological application based on phosphor nanoparticles. There are mainly three kinds of XLCT imaging systems: pencil beam XLCT, narrow beam XLCT and cone beam XLCT. Narrow beam XLCT can be regarded as a balance between the pencil beam mode and the cone-beam mode in terms of imaging efficiency and image quality. The collimated X-ray beams are assumed to be parallel ones in the traditional narrow beam XLCT. However, we observe that the cone beam X-rays are collimated into X-ray beams with fan-shaped broadening instead of parallel ones in our prototype narrow beam XLCT. Hence we incorporate the distribution of the X-ray beams in the physical model and collected the optical data from only two perpendicular directions to further speed up the scanning time. Meanwhile we propose a depth related adaptive regularized split Bregman (DARSB) method in reconstruction. The simulation experiments show that the proposed physical model and method can achieve better results in the location error, dice coefficient, mean square error and the intensity error than the traditional split Bregman method and validate the feasibility of method. The phantom experiment can obtain the location error less than 1.1 mm and validate that the incorporation of fan-shaped X-ray beams in our model can achieve better results than the parallel X-rays. PMID:26203388
Chaudhri, Naved; Saito, Nami; Bert, Christoph; Franczak, Bernhard; Steidl, Peter; Durante, Marco; Rietzel, Eike; Schardt, Dieter
2010-06-21
Fast radiological range adaptation of the ion beam is essential when target motion is mitigated by beam tracking using scanned ion beams for dose delivery. Electromagnetically controlled deflection of a well-focused ion beam on a small static wedge degrader positioned between two dipole magnets, inside the beam delivery system, has been considered as a fast range adaptation method. The principle of the range adaptation method was tested in experiments and Monte Carlo simulations for the therapy beam line at the GSI Helmholtz Centre for Heavy Ions Research. Based on the simulations, ion optical settings of beam deflection and realignment of the adapted beam were experimentally applied to the beam line, and additional tuning was manually performed. Different degrader shapes were employed for the energy adaptation. Measured and simulated beam profiles, i.e. lateral distribution and range in water at isocentre, were analysed and compared with the therapy beam values for beam scanning. Deflected beam positions of up to +/-28 mm on degrader were performed which resulted in a range adaptation of up to +/-15 mm water equivalence (WE). The maximum deviation between the measured adapted range from the nominal range adaptation was below 0.4 mm WE. In experiments, the width of the adapted beam at the isocentre was adjustable between 5 and 11 mm full width at half maximum. The results demonstrate the feasibility/proof of the proposed range adaptation method for beam tracking from the beam quality point of view.
Steele, J. A.; Lewis, R. A.; Horvat, J.; Nancarrow, M. J. B.; Henini, M.; Fan, D.; Mazur, Y. I.; Schmidbauer, M.; Ware, M. E.; Yu, S.-Q.; Salamo, G. J.
2016-01-01
Herein we investigate a (001)-oriented GaAs1−xBix/GaAs structure possessing Bi surface droplets capable of catalysing the formation of nanostructures during Bi-rich growth, through the vapour-liquid-solid mechanism. Specifically, self-aligned “nanotracks” are found to exist trailing the Bi droplets on the sample surface. Through cross-sectional high-resolution transmission electron microscopy the nanotracks are revealed to in fact be elevated above surface by the formation of a subsurface planar nanowire, a structure initiated mid-way through the molecular-beam-epitaxy growth and embedded into the epilayer, via epitaxial overgrowth. Electron microscopy studies also yield the morphological, structural, and chemical properties of the nanostructures. Through a combination of Bi determination methods the compositional profile of the film is shown to be graded and inhomogeneous. Furthermore, the coherent and pure zincblende phase property of the film is detailed. Optical characterisation of features on the sample surface is carried out using polarised micro-Raman and micro-photoluminescence spectroscopies. The important light producing properties of the surface nanostructures are investigated through pump intensity-dependent micro-PL measurements, whereby relatively large local inhomogeneities are revealed to exist on the epitaxial surface for important optical parameters. We conclude that such surface effects must be considered when designing and fabricating optical devices based on GaAsBi alloys. PMID:27377213
Effect of Ag addition to L1{sub 0} FePt and L1{sub 0} FePd films grown by molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokuoka, Y.; Seto, Y.; Kato, T., E-mail: takeshik@nuee.nagoya-u.ac.jp
2014-05-07
L1{sub 0} ordered FePt-Ag (5 nm) and FePd-Ag (5 nm) films were grown on MgO (001) substrate at temperatures of 250–400 °C by using molecular beam epitaxy method, and their crystal and surface structures, perpendicular magnetic anisotropies and Curie temperatures were investigated. In the case of FePt-Ag, Ag addition with the amount of 10–20 at. % was effective to promote L1{sub 0} ordering and granular growth, resulting in the increase of the perpendicular magnetic anisotropy and coercivity of the FePt-Ag films. On the other hand, in the case of FePd-Ag, Ag addition changed the surface morphology from island to continuous film associated with themore » reductions of its coercivity and perpendicular anisotropy. The variations of lattice constants and Curie temperature with Ag addition were significantly different between FePt-Ag and FePd-Ag. For FePd-Ag, the c and a axes lattice spacings and Curie temperature gradually changed with increasing Ag content, while they unchanged for FePt-Ag. These results suggest the possibility of the formation of FePdAg alloy in FePd-Ag, while Ag segregation in FePt-Ag.« less
Measurement of the M² beam propagation factor using a focus-tunable liquid lens.
Niederriter, Robert D; Gopinath, Juliet T; Siemens, Mark E
2013-03-10
We demonstrate motion-free beam quality M² measurements of stigmatic, simple astigmatic, and general astigmatic (twisted) beams using only a focus-tunable liquid lens and a CCD camera. We extend the variable-focus technique to the characterization of general astigmatic beams by measuring the 10 second-order moments of the power density distribution for the twisted beam produced by passage through multimode optical fiber. Our method measures the same M² values as the traditional variable-distance method for a wide range of laser beam sources, including nearly TEM(00) (M²≈1) and general astigmatic multimode beams (M²≈8). The method is simple and compact, with no moving parts or complex apparatus and measurement precision comparable to the standard variable-distance method.
Measurement of M²-Curve for Asymmetric Beams by Self-Referencing Interferometer Wavefront Sensor.
Du, Yongzhao
2016-11-29
For asymmetric laser beams, the values of beam quality factor M x 2 and M y 2 are inconsistent if one selects a different coordinate system or measures beam quality with different experimental conditionals, even when analyzing the same beam. To overcome this non-uniqueness, a new beam quality characterization method named as M²-curve is developed. The M²-curve not only contains the beam quality factor M x 2 and M y 2 in the x -direction and y -direction, respectively; but also introduces a curve of M x α 2 versus rotation angle α of coordinate axis. Moreover, we also present a real-time measurement method to demonstrate beam propagation factor M²-curve with a modified self-referencing Mach-Zehnder interferometer based-wavefront sensor (henceforth SRI-WFS). The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment in multimode beams. The experimental results showed that the proposed measurement method is simple, fast, and a single-shot measurement procedure without movable parts.
Measurement of M2-Curve for Asymmetric Beams by Self-Referencing Interferometer Wavefront Sensor
Du, Yongzhao
2016-01-01
For asymmetric laser beams, the values of beam quality factor Mx2 and My2 are inconsistent if one selects a different coordinate system or measures beam quality with different experimental conditionals, even when analyzing the same beam. To overcome this non-uniqueness, a new beam quality characterization method named as M2-curve is developed. The M2-curve not only contains the beam quality factor Mx2 and My2 in the x-direction and y-direction, respectively; but also introduces a curve of Mxα2 versus rotation angle α of coordinate axis. Moreover, we also present a real-time measurement method to demonstrate beam propagation factor M2-curve with a modified self-referencing Mach-Zehnder interferometer based-wavefront sensor (henceforth SRI-WFS). The feasibility of the proposed method is demonstrated with the theoretical analysis and experiment in multimode beams. The experimental results showed that the proposed measurement method is simple, fast, and a single-shot measurement procedure without movable parts. PMID:27916845
Dual x-ray fluorescence spectrometer and method for fluid analysis
Wilson, Bary W.; Shepard, Chester L.
2005-02-22
Disclosed are an X-ray fluorescence (SRF) spectrometer and method for on-site and in-line determination of contaminant elements in lubricating oils and in fuel oils on board a marine vessel. An XRF source block 13 contains two radionuclide sources 16, 17 (e.g. Cd 109 and Fe 55), each oriented 180 degrees from the other to excite separate targets. The Cd 109 source 16 excites sample lube oil flowing through a low molecular weight sample line 18. The Fe 55 source 17 excites fuel oil manually presented to the source beam inside a low molecular weight vial 26 or other container. Two separate detectors A and B are arranged to detect the fluorescent x-rays from the targets, photons from the analyte atoms in the lube oil for example, and sulfur identifying x-rays from bunker fuel oil for example. The system allows both automated in-line and manual on-site analysis using one set of signal processing and multi-channel analyzer electronics 34, 37 as well as one computer 39 and user interface 43.
Interfacial fluctuations of block copolymers: a coarse-grain molecular dynamics simulation study.
Srinivas, Goundla; Swope, William C; Pitera, Jed W
2007-12-13
The lamellar and cylindrical phases of block copolymers have a number of technological applications, particularly when they occur in supported thin films. One such application is block copolymer lithography, the use of these materials to subdivide or enhance submicrometer patterns defined by optical or electron beam methods. A key parameter of all lithographic methods is the line edge roughness (LER), because the electronic or optical activities of interest are sensitive to small pattern variations. While mean-field models provide a partial picture of the LER and interfacial width expected for the block interface in a diblock copolymer, these models lack chemical detail. To complement mean-field approaches, we have carried out coarse-grain molecular dynamics simulations on model poly(ethyleneoxide)-poly(ethylethylene) (PEO-PEE) lamellae, exploring the influence of chain length and hypothetical chemical modifications on the observed line edge roughness. As expected, our simulations show that increasing chi (the Flory-Huggins parameter) is the most direct route to decreased roughness, although the addition of strong specific interactions at the block interface can also produce smoother patterns.
Thin film growth studies using time-resolved x-ray scattering
NASA Astrophysics Data System (ADS)
Kowarik, Stefan
2017-02-01
Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.
Thin film growth studies using time-resolved x-ray scattering.
Kowarik, Stefan
2017-02-01
Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.
NASA Astrophysics Data System (ADS)
Dietiker, P.; Miloglyadov, E.; Quack, M.; Schneider, A.; Seyfang, G.
2015-12-01
We have set up an experiment for the efficient population transfer by a sequential two photon—absorption and stimulated emission—process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of 14NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, 14N quadrupole coupling constants for all fundamentals and some overtones of 14NH3 are known and can be used for further theoretical analysis.
Dietiker, P; Miloglyadov, E; Quack, M; Schneider, A; Seyfang, G
2015-12-28
We have set up an experiment for the efficient population transfer by a sequential two photon-absorption and stimulated emission-process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of (14)NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, (14)N quadrupole coupling constants for all fundamentals and some overtones of (14)NH3 are known and can be used for further theoretical analysis.
Methods and apparatus for altering material using ion beams
Bloomquist, Douglas D.; Buchheit, Rudy; Greenly, John B.; McIntyre, Dale C.; Neau, Eugene L.; Stinnett, Regan W.
1996-01-01
A method and apparatus for treating material surfaces using a repetitively pulsed ion beam. In particular, a method of treating magnetic material surfaces in order to reduce surface defects, and produce amorphous fine grained magnetic material with properties that can be tailored by adjusting treatment parameters of a pulsed ion beam. In addition to a method of surface treating materials for wear and corrosion resistance using pulsed particle ion beams.
Is biomedical nuclear magnetic resonance limited by a revisitable paradigm in physics?
de Certaines, J D
2005-12-14
The history of nuclear magnetic resonance (NMR) can be divided generally into two phases: before the Second World War, molecular beam methods made it possible to detect the whole set of spins. However, these methods were destructive for the sample and had a very low precision. The publications of F. Bloch and E. Purcell in 1946 opened up a second phase for NMR with the study of condensed matter, but at the expense of an enormous loss in theoretical sensitivity. During more than half a century, the method of Bloch and Purcell, based on inductive detection of the NMR signal, has allowed many developments in biomedicine. But, curiously, this severely constraining limitation on sensitivity has not been called into question during this half-century, as if the pioneers of the pre-war period had been forgotten.
NASA Astrophysics Data System (ADS)
Zhang, Jie; He, Yunteng; Lei, Lei; Alghamdi, Maha; Oswalt, Andrew; Kong, Wei
2017-08-01
In an effort to solve the crystallization problem in crystallography, we have been engaged in developing a method termed "serial single molecule electron diffraction imaging" (SS-EDI). The unique features of SS-EDI are superfluid helium droplet cooling and field-induced orientation: together the two features constitute a molecular goniometer. Unfortunately, the helium atoms surrounding the sample molecule also contribute to a diffraction background. In this report, we analyze the properties of a superfluid helium droplet beam and its doping statistics, and demonstrate the feasibility of overcoming the background issue by using the velocity slip phenomenon of a pulsed droplet beam. Electron diffraction profiles and pair correlation functions of ferrocene-monomer-doped droplets and iodine-nanocluster-doped droplets are presented. The timing of the pulsed electron gun and the effective doping efficiency under different dopant pressures can both be controlled for size selection. This work clears any doubt of the effectiveness of superfluid helium droplets in SS-EDI, thereby advancing the effort in demonstrating the "proof-of-concept" one step further.
Remote sensing with intense filaments enhanced by adaptive optics
NASA Astrophysics Data System (ADS)
Daigle, J.-F.; Kamali, Y.; Châteauneuf, M.; Tremblay, G.; Théberge, F.; Dubois, J.; Roy, G.; Chin, S. L.
2009-11-01
A method involving a closed loop adaptive optic system is investigated as a tool to significantly enhance the collected optical emissions, for remote sensing applications involving ultrafast laser filamentation. The technique combines beam expansion and geometrical focusing, assisted by an adaptive optics system to correct the wavefront aberrations. Targets, such as a gaseous mixture of air and hydrocarbons, solid lead and airborne clouds of contaminated aqueous aerosols, were remotely probed with filaments generated at distances up to 118 m after the focusing beam expander. The integrated backscattered signals collected by the detection system (15-28 m from the filaments) were increased up to a factor of 7, for atmospheric N2 and solid lead, when the wavefronts were corrected by the adaptive optic system. Moreover, an extrapolation based on a simplified version of the LIDAR equation showed that the adaptive optic system improved the detection distance for N2 molecular fluorescence, from 45 m for uncorrected wavefronts to 125 m for corrected.
Atomic Resolution Cryo-EM Structure of β-Galactosidase.
Bartesaghi, Alberto; Aguerrebere, Cecilia; Falconieri, Veronica; Banerjee, Soojay; Earl, Lesley A; Zhu, Xing; Grigorieff, Nikolaus; Milne, Jacqueline L S; Sapiro, Guillermo; Wu, Xiongwu; Subramaniam, Sriram
2018-05-10
The advent of direct electron detectors has enabled the routine use of single-particle cryo-electron microscopy (EM) approaches to determine structures of a variety of protein complexes at near-atomic resolution. Here, we report the development of methods to account for local variations in defocus and beam-induced drift, and the implementation of a data-driven dose compensation scheme that significantly improves the extraction of high-resolution information recorded during exposure of the specimen to the electron beam. These advances enable determination of a cryo-EM density map for β-galactosidase bound to the inhibitor phenylethyl β-D-thiogalactopyranoside where the ordered regions are resolved at a level of detail seen in X-ray maps at ∼ 1.5 Å resolution. Using this density map in conjunction with constrained molecular dynamics simulations provides a measure of the local flexibility of the non-covalently bound inhibitor and offers further opportunities for structure-guided inhibitor design. Published by Elsevier Ltd.
McKee, Rodney A.; Walker, Frederick J.
1996-01-01
A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.
Optical Properties of A GaInNAs Multi-Quantum Well Semiconductor
NASA Astrophysics Data System (ADS)
Hughes, Timothy S.; Ren, Shang-Fen; Jiang, De-Sheng; Xiaogan, Liang
2002-03-01
Optoelectronic devices used today depend on lasers that have wavelengths in the optical fiber transmission window of 1.3 to 1.55 micrometers. When using GaAs substrate semiconductor lasers, we typically see this range of light emission. Quaternary materials, such as GaInNAs grown on this substrate, not only allow us to control the output wavelength, but it also allows us to manipulate the lattice constant. Further research has potential to produce low-costing highly efficient Vertical Cavity Surface Emitting Lasers (VCSEL). Using a Fourier-Transform Spectrometer, a method of using a Michelson Interferometer to measure the interference between two coherent beams, we measured and analyzed the photoluminescence spectra of a GaInNAs multi-quantum well semiconductor, grown using the Molecular Beam Epitaxy (MBE) growth technique. The experiments of this research were carried out in an undergraduate international research experience at the Chinese Semiconductor Institute supported by the Division of International Programs of NSF.
Acquisition and replay systems for direct-to-digital holography and holovision
Thomas, Clarence E.; Hanson, Gregory R.
2003-02-25
Improvements to the acquisition and replay systems for direct-to-digital holography and holovision are described. A method of recording an off-axis hologram includes: splitting a laser beam into an object beam and a reference beam; reflecting the reference beam from a reference beam mirror; reflecting the object beam from an illumination beamsplitter; passing the object beam through an objective lens; reflecting the object beam from an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form an off-axis hologram; digitally recording the off-axis hologram; and transforming the off-axis hologram in accordance with a Fourier transform to obtain a set of results. A method of writing an off-axis hologram includes: passing a laser beam through a spatial light modulator; and focusing the laser beam at a focal plane of a photorefractive crystal to impose a holographic diffraction grating pattern on the photorefractive crystal. A method of replaying an off-axis hologram includes: illuminating a photorefractive crystal having a holographic diffraction grating with a replay beam.
A simple three dimensional wide-angle beam propagation method
NASA Astrophysics Data System (ADS)
Ma, Changbao; van Keuren, Edward
2006-05-01
The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.
A simple three dimensional wide-angle beam propagation method.
Ma, Changbao; Van Keuren, Edward
2006-05-29
The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.